lib.ommolkefab.ir

Dave Crane, Bear Bibeault, and Jord Sonneveld
with Ted Goddard, Chris Gray, Ram Yenkataraman, and Joe Walker

AN PRACTIC

* GET GOING
s GET SAVVY
*+ 60 PROBLEMS SOLVED

MHAHHING

lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Ajax i Practice

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Ajax i Practice

DAVE CRANE
BEAR BIBEAULT
JORD SONNEVELD

WITH TED GODDARD, CHRIS GRAY,
RAM VENKATARAMAN AND JOE WALKER

MANNING

Greenwich
(74° w. long.)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

For online information and ordering of this and other Manning books, please go to
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department

Manning Publications Co.

Sound View Court 3B Fax: (609) 877-8256
Greenwich, CT 06830 Email: orders@manning.com

©2007 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy
to have the books they publish printed on acid-free paper, and we exert our best efforts

to that end.
Manning Publications Co. Copyeditor: Liz Welch
Sound View Court 3B Typesetter: Denis Dalinnik

Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-932394-99-0

Printed in the United States of America
123456789 10- MAL — 1110090807

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

brief contents

» Embracing Ajax 3
= How to talk Ajax 26
Object-oriented JavaScript and Prototype 64

A W N R
n

» Open source Ajax toolkits 117

» Handling events 163

» Form validation and submission 202
Content navigation 234

» Handling back, refresh, and undo 271
= Dragand drop 311

© 00 N O O
n

10 = Being user-friendly 336

11 = State management and caching 388
12 = Openweb APIs and Ajax 415

13 = Mashing it up with Ajax 466

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

contents

preface xiil
acknowledgments xv
about this book xviil

Embracing Ajax 3

1.1 Ajax as a disruptive technology 4

Redefining the user’s workflow 5 = Redefining web
application architecture 7

1.2 Ajax in ten minutes 9

Introducing XMLH{tpRequest 9 » Instantiating
XMLHttpRequest 10 = Sending a request 11
Processing the response 13 = Other XMLH{ttpRequest
methods and properties 14

1.3 Making Ajax simple using frameworks 16

Making requests with Prototype’s Ajax.Request
object 18 = Simplifying Ajax responses 21
1.4 Summary 24

vii

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

viii CONTENTS

How to talk Ajax 26

2.1 Generating server-side JavaScript 27

FEvaluating server-generated code 27 = Ulilizing good
code-generation practices 30

2.2 Introducing [SON 34

Generating [SON on the server 36 = Round-tripping
data using J[SON 40

2.3 Using XML and XSLT with Ajax 44

Parsing server-generated XML 44 = Better XML
handling with XSLT and XPath 50

2.4 Using Ajax with web services 56
2.5 Summary 63

Object-oriented JavaScript and Prototype 64

3.1 Object-oriented JavaScript 66

Object fundamentals 66 = Functions are first class 68
Object constructors and methods 76 = Writing a
JavaScript class: a button 82

3.2 The Prototype library 97

Generally useful functions and extensions 98 = Array
extensions 100 = The Hash class 102 = Binding context
objects to functions 103 = Object-oriented Prototype 105
Rewriting the Button class with Prototype 112

3.3 Summary 116

Open source Ajax toolkits 117
4.1 The Dojo toolkit 118

Asynchronous requests with Dojo 119 = Automatic form
marshaling with Dojo 123

4.2 Prototype 125

Asynchronous requests with Prototype 125 = Automatic wpdating
with Prototype 131 = Periodic wpdating with Prototype 134

4.3 jQuery 136

JjQuery Basics 136 = Asynchronous loading with

JjQuery 140 = Fetching dynamic data with jQuery 145
44 DWR 150

Direct Web Remoting with DWR 151
4.5 Summary 159

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CONTENTS

ix

downloaded from: lib.ommolkefab.ir

Handling events 163
5.1 Event-handling models 165

Basic event-handling registration 165 = Advanced
event handling 169

5.2 The Event object and event propagation 172
The Event object 172 = Event propagation 173
5.3 Using Prototype for event handling 178
The Prototype Event API 179
5.4 Event types 180

Mouse events 181 = Keyboard events 182 = The change
event 185 = Page evenls 186

5.5 Putting events into practice 189

Validating text fields on the server 190 = Posting form
elements without a page submit 195 = Submitting only
changed elements 198

5.6 Summary 201

Form validation and submission 202

6.1 Client-side validation 203

Validating on the client side 203 = Instant
validation 209 = Cross-field validation 211

6.2 Posting data 218

Anatomy of @ POST 218 = Posting data to
a server 220 = Posting form data to a server 223
Detecting form data changes 227

6.3 Summary 233

Content navigation 234

7.1 Principles of website navigation 235

Finding the needle in the haystack 235 = Making a better
needle-finder 237 ® Navigation and Ajax 238

7.2 Traditional web-based navigation 241
A simple navigation menu 241 = DHTML menus 243

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

X CONTENTS

7.3 Borrowing navigational aids from the desktop app 247
The qooxdoo tab view 248 = The qooxdoo toolbar
and windows 250 = The qooxdoo tree widget 254

7.4 Between the desktop and the Web 259

The OpenRico Accordion control 259 = Bwilding an
HTML-friendly tree control 263

7.5 Summary 270
Handling back, refresh, and undo 271

8.1 Removing access to the browser’s navigation
controls 272

Removing the toolbars 272 = Capturing keyboard
shortcuts 274 = Disabling the right-click context
menuw 275 = Preventing users from navigating
hustory or refreshing 276

8.2 Working with a browser’s navigation controls 280

Using the JavaScript history object 280 = Hashes as
bookmarks 281 = Introducing the Really Simple History
(RSH) framework 283 = Using RSH to maintain state
at the client level 284 = Using RSH to maintain state at
the server level 289

8.3 Handling undo operations 293

When to provide undo capability 294 = Implementing an
undo stack 295 = Extending the undo stack for more
complex actions 300

8.4 Summary 309

Drag and drop 311
9.1 JavaScript drag-and-drop frameworks 313

9.2 Drag and drop for Ajax 314

Drag-and-drop Ajax shopping cart 314 = Manipulating data
i lists 321 = The Ajax shopping cart using ICEfaces 326

9.3 Summary 335

Being user-friendly 336
10.1 Combating latency 338

Countering latency with feedback 338 = Showing
progress 345 = Timing out Ajax requests 351
Dealing with multiple clicks 355

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

CONTENTS

10.2 Preventing and detecting entry errors 359

Displaying proactive contextual help 359 = Validating
form entries 366

10.3 Maintaining focus and layering order 374

Maintaining focus order 375 = Managing stacking order 381
10.4 Summary 387

State management and caching 388
11.1 Maintaining client state 390

11.2 Caching server data 392
Exchanging Java class data 393 = Prefetching 402
11.3 Persisting client state 406

Storing and retrieving user state with JSON 406 = Persisting
JSON strings through AMASS 409

11.4 Summary 413

Open web APIs and Ajax 415
12.1 The Yahoo! Developer Network 416

Yahoo! Maps 417 = The cross-server proxy 421 = Yahoo!
Maps Geocoding 430 = Yahoo! Traffic 436

12.2 The Google Search AP1 443

Google search 443
12.3 Flickr photos 454

Flickr dentification 455 = Flickr photos and thumbnails 459
12.4 But wait! As they say, there’s more... 464

Amazon services 464 = eBay services 464
MapQuest 465 = NOAA/National Weather
Service 465 = More, more, more... 465

12.5 Summary 465

Mashing it up with Ajax 466
13.1 Introducing the Trip-o-matic application 467

Application purpose 467 = Application overview
and requirements 468
13.2 The Trip-o-matic data file 469

What format should we use? 469 = The trip data
format 470 = Setting up Flickr photo sets 471

xi

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

xii CONTENTS

downloaded from: lib.ommolkefab.ir

13.3

13.4

13.5

13.6

The TripomaticDigester class 473

The dependency check 473 = The TripomaticDigester
constructor 474 = Digesting the trip data 475
Loading the points of interest 476 = Collecting
element text 477

The Tripomatic application class 479

The Tripomatic class and constructor 480 = Creating the
content elements 482 = Filling in the trip data 484
Showing the map 487 = Loading the thumbnails 488
Displaying the photos 491

The Trip-o-matic application page 492
The Trip-o-matic HTML document 492 = Tripping along
with style 494

Summary 496
index 499

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

preface

The Web has always been a hotbed of innovation, and, in its short history,
we’ve seen many examples of an invention being repurposed and reused in
ways far beyond the intentions of the original inventor. A network-based docu-
ment retrieval protocol was subverted by the Common Gateway Interface into
serving up dynamically-generated documents delivering data from a database
back-end, allowing online access to one’s data from anywhere in the world.
HTTP headers were leveraged to provide the continuity of a user session on
top of this stateless protocol, opening the door to stateful applications such as
reservation systems and online commerce. Encrypted layers were built on top
of the core protocol, to give confidence to the customers of these new online
stores and users of business applications.

These were truly disruptive technologies, changing the way we use the Web
forever. And yet today, technologies like server pages, sessions, and SSL are just
everyday building bricks, baked into the fabric of every web developer’s toolkit,
to the point that we take them for granted. The pace of innovation is still relent-
less, though, with a new web framework appearing practically every week.

One of the biggest disruptions to the web development landscape in recent
years has been Ajax. Through all the prior innovation, the basics of the web
user interface—point and click, request, response, redraw—had not changed
very much, until Microsoft quietly introduced the XMLHttpRequest (XHR)

xiii

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

xXiv

PREFACE

object with Internet Explorer 5 in 1999, using it to power their Outlook Web
Access mail client to little fanfare.

The rest of the world suddenly sat up and took notice in 2005, when Google
nailed their flag to the Ajax mast with their mail, maps, and suggest applica-
tions. Jesse James Garrett of Adaptive Path coined the term “Ajax,” providing
the first banner that we could all gather under to discuss exactly what this new
thing was, and what we could do with it.

It seemed as if the technology was just waiting for a name, and once it had
one, a flurry of activity ensued, with people trying to get into the Ajax spirit.
However, Ajax introduced a new and different way of writing web applications.
With new issues needing to be addressed, the last two years have seen yet
another boom of innovations as the web development community figures out
how to push this new and exciting envelope.

Along the way, the fundamentals of Ajax, like the XMLHttpRequest object, are
going the way of the server page, the session, and SSL. The collective uncon-
scious of the web development community has grokked the basic technology of
Ajax, and is moving on to the broader issues that use of the technology raises.

It is in order to address these issues that we decided to write Ajax in Prac-
tice. With this book, our mission is to help accomplished (and not-quite-so-
accomplished) web developers get on board with Ajax and successfully create
their own Ajax-type applications. It can be regarded as a second-generation
Ajax book: the first generation showed you what Ajax is; the second genera-
tion shows you what you can do with it and how to do it.

The book got its start when Steve Benfield was contacted by Manning to be
the editor of a second-generation book about Ajax, as a follow-up to Dave
Crane’s popular Ajax in Action book. Later, Steve had to excuse himself as editor
and Jord Sonneveld, Bear Bibeault, and Dave Crane teamed up to bring you this
book in its completed form.

As you finish reading this preface, we have completed our mission and can sit
back and share a few well-deserved drinks. We hope you enjoy reading this book
as much as we have enjoyed writing it!

DAVE, BEAR, and JORD

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

acknowledgments

This section of a book always includes a surprisingly long list of names
because it is indeed a collaborative effort of many different talents that results
in the book that you are now holding. We have learned that firsthand! The
authors do not work alone, although the long hours spent at the keyboard
sometimes make it feel that way.

The publisher and editors at Manning Publications worked along with us,
every step of the way, making sure the book was as good as it could be and we
would like to thank them for their encouragement, insistence on quality, and
attention to detail. There are many people who worked behind the scenes
and we would like to acknowledge them here, along with publisher Marjan
Bace and our editor Mike Stephens: Karen Tegtmayer, Howard Jones, Liz
Welch, Dottie Marsico, Katie Tennant, Mary Piergies, Gabriel Dobrescu, Ron
Tomich, and Olivia DiFeterici.

Our peer reviewers made many contributions, both large and small, to the
manuscript during development, from catching errors in the code and typos in
the text to suggestions on how to organize a chapter. The manuscript was
reviewed a number of times and each pass resulted in a much better book. We
would like to thank the following reviewers for taking time out of their busy
schedules to read our chapters: Curt Christianson, Anil Radhakrishna, Robert
W. Anderson, Srinivas Nallapati, Ernest Friedman-Hill, Jeftf Cunningham,
Christopher Haupt, Bas Vodde, Bill Fly, Ryan Lowe, Aleksey Nudelman, Lucas

XV

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

xvi

ACKNOWLEDGMENTS

Carlson, Derek Lakin, Jonas Trindler, Eric Pascarello, Joel Webber, Jonathon
Esterhazy, and Benjamin Gorlick.

Special thanks to Valentin Crettaz who was the technical editor of the book.
He checked the code and reread certain chapters a number of times as we final-
ized them during production. His efforts are much appreciated.

Finally, thanks to Ted Goddard, Chris Gray, Ram Venkataraman, and Joe
Walker for their valuable contributions to the book on topics where they are the
experts. We appreciate their collaboration with us on this project.

Dave Crane

I'd like to thank my colleagues Simon Warrick, Tim Wilson, Susannah Ellis,
Simon Crossley, Rob Levine, and Miles Wilson at Historic Futures for their sup-
port for this project, and to Wendy, Nic, Graeme, and the team at Skillsmat-
ter.com—and all my talented students—for helping to shape my thoughts on how
this book should be written. Finally, and by no means least, I'd like to thank the
rest of the Crane family—Chia, Ben, and Sophie—for putting up with me while I
wrote two more programming books in parallel, my Mum and Dad, and my cats,
for making good use of the hot air from the fan exhaust of my laptop during late
night writing sessions.

Bear Bibeault

There are so many people to acknowledge and to thank. I want to thank all my
friends and fellow staffers at javaranch.com, who offered encouragement when I
expressed an interest in writing, and who include (but are not limited to): Ernest
Friedman-Hill, Ben Souther, Max Habibi, Mark Herschberg, and Kathy Sierra.

Special thanks go to Paul Wheaton, owner of javaranch.com, for creating such
a wonderful site and putting his trust in its staffers, and to Eric Pascarello for rec-
ommending me to Manning.

I want to thank my dogs Gizmo, Cozmo, and Little Bear, who provided com-
panionship by lying on my feet as I penned these chapters and code. Cozmo gets
special thanks for contributing random characters by swatting at the laptop key-
board as I typed. Thank goodness for editors.

And I want to thank my partner Jay, who put up with all the long hours it took
to work on two books in parallel and with all the ranting about Internet Explorer
and Word, and who offered nothing but encouragement for my efforts.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ACKNOWLEDGMENTS xvii

Jord Sonneveld

I would like to especially thank both of my co-authors, Dave and Bear, who
shouldered much of the load in the later stages of development. This book
would not have happened if it were not for their hard efforts.

To my parents and grandparents, thank you for buying me my first computer,
and for all of your support while I was busy with this book.

Finally, I'd like to thank my cats for short-circuiting my UPS, and Mallory, my
awesome lady friend who digs UNIX.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

about this book

Ajax has taken the web development community by storm, giving web devel-
opers the potential to create rich user-centered Internet applications. But
Ajax also adds a new level of complexity and sophistication to those applica-
tions. Ajax in Practice tackles Ajax head-on, providing countless hands-on tech-
niques and tons of reusable code to address the specific issues developers face
when building Ajax-driven solutions.

After a brief overview of Ajax, this book takes the reader through dozens of
working examples, presented in an easy-to-use solution-focused format. Read-
ers will learn how to implement rich user interfaces, including hands-on strat-
egies for drag and drop, effective navigation, event handling, form entry
validation, state management, choosing Ajax libraries, interfacing to open web
APIs, and more!

Unlike the traditional cookbook approach, Ajax in Practice provides a thor-
ough discussion of each technique presented and shows how the individual
components can be connected to create powerful solutions. A fun “mashup”
chapter concludes the book. Throughout the book, the examples chosen are
interesting, entertaining, and above all, practical.

With this book you will

* Go beyond what Ajax is, and learn how to put Ajax to work.

* Master numerous techniques for user interface design and site navigation.

xviii

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ABOUT THIS BOOK xix

= Work hands-on with professional-grade reusable Ajax code designed to
solve real problems.

Audience

Thisbook isaimed atweb developers who want their applications to be best-in-class
examples of rich user interfaces, leveraging Ajax technology to achieve this goal.

While novices to Ajax will find the first two chapters helpful in getting kick-
started into the world of asynchronous requests, this book is primarily aimed at
developers with at least a basic background in developing web applications and
in the rudimentary use of JavaScript to effect client-side activity.

In the new world of rich client-side user interfaces, the amount of client-side
code has greatly increased and it is important to treat this code with the same
level of respect due its server-side counterpart. Advanced JavaScript techniques
that help to organize this client-side code and to use Ajax effectively are pre-
sented in this book.

If you are a web developer interested in expanding your coding skills not
only with new technologies, but also with techniques and patterns that make the
best use of that technology, we think that you will find that this book addresses
those needs.

Whether you are a seasoned client-side developer, or one that is just starting
out creating rich user interfaces to your web applications, we hope this book will
have something for you.

Roadmap

We’ve divided this book into two parts. Part 1, “Fundamentals of Ajax,” includes
four introductory chapters that make sure that you've got the know-how under
your belt that you’ll need to make best use of the second part of the book. The
chapters in part 2, “Ajax Best Practices,” present various practical topics in cli-
ent-side programming, with an emphasis on using Ajax directly, or on practices
and principles that work well in Ajax-enabled applications.

Chapter 1 dives head first into what makes Ajax different from other technol-
ogies and why there’s so much to be written (and learned) about it. It presents a
crash course in using Ajax across the various browsers and how to deal with the
responses it generates. Finally it closes with a brief look at how use of the Proto-
type library makes the whole process more streamlined.

In chapter 2, we examine the various categories of Ajax communication
including JSON, XML and XSLT. We'll also investigate the use of Ajax with SOAP
web services.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

XX

ABOUT THIS BOOK

Chapter 3 introduces the concept of using object-oriented JavaScript to take
control of the increasing amount of client-side code that the typical Ajax appli-
cation contains. Key concepts such as the object construction, functions as first
class objects, functions as class methods, function contexts, as well as closures
are explained and put into perspective in relation to object-oriented techniques.
Use of the Prototype library to help easily define JavaScript classes closes out
this chapter.

Chapter 4 continues our investigation of Ajax-enabled JavaScript libraries
with a closer look at Prototype, as well as the Dojo Toolkit, jQuery, and DWR
libraries. While it would be impossible to cover the complete feature set of all
these offerings, each is examined with particular attention to what they bring to
the Ajax party. We'll see each of these libraries put into practice in the copious
code examples in the remaining chapters.

The world of event handling is examined in chapter 5. The various event mod-
els are investigated with particular emphasis on cross-browser issues, along with the
use of the Prototype library to ease those cross-browser pains. The most commonly
used event types are discussed in relation to how they fit into Ajax applications.

Chapter 6 dives into the details of data entry validation of form data and how
it ties into the event handling lessons of chapter 5. Both the Prototype and
jQuery libraries are used to great advantage in the examples of this chapter,
which include demonstrating how to hijack form submissions that would usually
initiate a full-page refresh, and redirect them to less-intrusive Ajax requests.

In chapter 7, the subject of content navigation is addressed. We’ll examine the
creation of simple menus, and then progress to more complicated navigational
aids such as tree views, accordion controls, tab views, and toolbars. The aid of
libraries such as OpenRico and qooxdoo is enlisted by the code in this chapter.

Chapter 8 focuses on the mine field of problems created when users use back
and refresh. We’ll look at the problem both from the point of view of removing
such abilities from the user, as well as working with such actions. This chapter
also discusses adding a handy undo facility to applications.

Drag-and-drop operations are the topic of chapter 9. We’ll examine the
mechanics of drag and drop sequences, and discuss support for drag and drop
in JavaScript libraries. We explore the use of Scriptaculous for manipulating
lists, and develop a simple shopping cart implementation using Scriptaculous
and ICEfaces.

In chapter 10, we discuss usability considerations and look at how Ajax can
help us solve, or at least alleviate, latency issues. Reducing user frustration by pro-
viding server-assisted pro-active help is examined, and another look at validating

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ABOUT THIS BOOK xx1

form data is taken. Dealing with tab and stacking order in the new arena of rich
user interfaces is also addressed.

Chapter 11 covers state management. We’ll explore how to maintain client
state, cache data, prefetch data, and how to persist the client state. We also dis-
cuss using the AMASS library to persist large amounts of data.

In chapter 12 we delve into the exciting world of open APIs on the web. We
learn how to avoid the dreaded “Ajax security sandbox” in order to make Ajax
requests to remote servers. We then use that knowledge to make use of open APIs
such as Yahoo! Maps, Geocoding and Traffic, the Google search engine, and
Flickr photo services.

Chapter 13 culminates the book with a full “mashup” application that
employs the open APIs we investigated in chapter 12, as well as the skills and
techniques gathered throughout the book, to create a complete and working
mashup application.

Code conventions

All source code in listings or in text is in a fixed-width font 1ikethis to separate
it from ordinary text. Method and function names, properties, XML elements,
and attributes in text are presented using this same font.

In many cases, the original source code has been reformatted: we’ve added
line breaks and reworked indentation to accommodate the available page space
in the book. In rare cases even this was not enough, and listings include line-
continuation markers. Additionally, many comments have been removed from
the listings.

Code annotations accompany many of the listings, highlighting important con-
cepts. In some cases, numbered bullets link to explanations that follow the listing.

Code downloads

Source code for all of the working examples in this book is available for down-
load from http://www.manning.com/crane2 or http:/www.manning.com/Ajaxin-
Practice.

Author Online

Purchase of Ajax in Practice includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the

downloaded from: lib.ommolkefab.ir

http://www.manning.com/crane2
http://www.manning.com/crane2
http://www.manning.com/crane2
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

xxii

ABOUT THIS BOOK

forum and subscribe to it, point your web browser to http://www.manning.com/
crane2 or http://www.manning.com/AjaxinPractice. This page provides informa-
tion on how to get on the forum once you are registered, what kind of help is avail-
able, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a mean-
ingful dialogue between individual readers and between readers and the authors
can take place. It is not a commitment to any specific amount of participation on
the part of the authors, whose contribution to the book’s forum remains volun-
tary (and unpaid). We suggest you try asking the authors some challenging ques-
tions, lest their interest stray!

The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s website as long as the book is in print.

About the cover illustration

The figure on the cover of Ajax in Practice is a “Sultana,” a female member of a
sultan’s family; both his wife and his mother could be addressed by that name.
The illustration is taken from a collection of costumes of the Ottoman Empire
published on January 1, 1802, by William Miller of Old Bond Street, London.
The title page is missing from the collection and we have been unable to track it
down to date. The book’s table of contents identifies the figures in both English
and French, and each illustration bears the names of two artists who worked on
it, both of whom would no doubt be surprised to find their art gracing the front
cover of a computer programming book...two hundred years later.

The collection was purchased by a Manning editor at an antiquarian flea mar-
ket in the “Garage” on West 26th Street in Manhattan. The seller was an American
based in Ankara, Turkey, and the transaction took place just as he was packing up
his stand for the day. The Manning editor did not have on his person the substan-
tial amount of cash that was required for the purchase, and a credit card and check
were both politely turned down. With the seller flying back to Ankara that evening
the situation was getting hopeless. What was the solution? It turned out to be
nothing more than an old-fashioned verbal agreement sealed with a handshake.
The seller simply proposed that the money be transferred to him by wire and the
editor walked out with the bank information on a piece of paper and the portfolio
of images under his arm. Needless to say, we transferred the funds the next day,
and we remain grateful and impressed by this unknown person’s trust in one of us.
It recalls something that might have happened a long time ago.

downloaded from: lib.ommolkefab.ir

http://www.manning.com/crane2
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ABOUT THIS BOOK xx1iii

The pictures from the Ottoman collection, like the other illustrations that
appear on our covers, bring to life the richness and variety of dress customs of two
centuries ago. They recall the sense of isolation and distance of that period—and
of every other historic period except our own hyperkinetic present.

Dress codes have changed since then and the diversity by region, so rich at
the time, has faded away. It is now often hard to tell the inhabitant of one conti-
nent from another. Perhaps, trying to view it optimistically, we have traded a cul-
tural and visual diversity for a more varied personal life. Or a more varied and
interesting intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of
the computer business with book covers based on the rich diversity of regional life
of two centuries ago—brought back to life by the pictures from this collection.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Part 1

Fundamentals of Ajax

Ihis book is intended as a head-on rush into the world of Ajax web appli-
cations, with particular emphasis on providing heaps of reusable, hands-on
examples that illustrate practical techniques you can employ in your own
applications. So that you are ready for that exciting journey, part 1 serves as
an intensive preparation for the chapters that follow in part 2.

Chapter 1 discusses how Ajax differs from technologies that you might
be accustomed to and sets up the expectations for the rest of the book. We
discuss how you can use Ajax in supporting browsers and how asynchro-
nous responses are dealt with in JavaScript code. We also take a brief look at
Prototype, a popular JavaScript library that we’ll be seeing again and again
throughout the book.

Chapter 2 examines the types of response formats that Ajax requests can
generate: plain text, HTML, JSON (JavaScript Object Notation), XML, or even
SOAP documents.

In chapter 3, we investigate the advanced JavaScript techniques that every
serious Ajax developer needs to have under their belts. We look at JavaScript
objects and functions, and explain how to use them to create your own Java-
Script classes in order to use object-oriented techniques to grab control of the
ever-growing amount of client-side code that Ajax requires. You'll learn how
JavaScript functions are much more complex and diverse a concept than you
might have imagined.

Chapter 4 surveys a handful of JavaScript libraries that offer Ajax support.
We explore the venerable Prototype library in greater detail, the versatile Dojo

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2 PART 1
Fundamentals of Ajax

toolkit, and jQuery, an exciting (relative) newcomer to the Ajax arena. The chap-
ter concludes with a look at how DWR uses Ajax to provide an approximation of
RPC (remote procedure calling) using Ajax as a transport mechanism.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Embracing Ajax

This chapter covers

m What makes Ajax different
m Basic usage of XMLHttpRequest
= Simplifying Ajax using libraries

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.1

CHAPTER 1
Embracing Ajax

Ajax has been growing up fast in the last year or so. At the time of this writ-
ing, Ajax is officially one and a half years old, although a lot of the underlying
techniques have existed for several years longer, without a unifying name to
describe them. The story has been related many times already, from the origin
of an ActiveX control called XMLHttpRequest in Microsoft’s Web Outlook, to
Jesse James Garrett’s coining of the term Ajax in February 2005, and the sud-
den explosion of interest in these techniques centered around Google’s Sug-
gest, GMail, and Maps applications.

As with any kid growing up in the modern world, it’s been a struggle at times,
and the Ajax that we’re seeing today looks a lot different from the being we met a
year and a half ago. The technology has matured, our vocabulary for discussing
the technology has matured, and the tools available to do the job have matured
too. We'll expand on this a little in section 1.4, and we’ll take an in-depth look at
the new breed of frameworks and libraries that are making Ajax easier to use in
chapter 4.

The biggest change that has taken place as Ajax matures, though, is that our
understanding of what we can do with Ajax has expanded. Developers are asking
themselves new sets of questions, going beyond the basics of, How do I do it? to
deeper and broader issues, such as, How do I manage my asynchronous commu-
nications?, How does Ajax affect my application architecture?, and even, What
does Ajax mean for my business model?

Collectively, the development community has embraced Ajax and, as with
the best inventions, used it in new and interesting ways. Google demonstrated
that, using Ajax, “solved problems” like online maps and webmail still had
plenty of room for radical innovation. The recent interest in “mash-ups” (the
mixing of content from more than one website in a single page) has a natural
affinity with Ajax, too.

Along the way, we've amassed practical experience in using Ajax in real-world
applications and settings. Our purpose in writing this book is to capture some of
this practical experience with Ajax, and go beyond the basic proof-of-concept
code to look at what does—and doesn’t—work in the real world. As such, we
intend to focus on the deeper, broader questions that are relevant to Ajax today.

Ajax as a disruptive technology

Ajax is a disruptive technology. That is, it has appeared and is disrupting the nor-
mal way online applications are built and delivered and is changing how people
perceive web applications and what can be done with them.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.1.1

Ajax as a disruptive technology 5

In the narrowest sense, Ajax is simply the business of making asynchronous
requests to the server. By asynchronous, we mean that the request is taking place in
the background, out of sight of the user interface. When we’re coding an Ajax
application, we’re only spending a small fraction of our time making asynchro-
nous calls to the server and processing the response. The rest of the time, we’re
using established technologies like Cascading Style Sheets (CSS), the Document
Object Model (DOM), and the browser event model. In short, we're using the set
of technologies known as Dynamic HTML, a set of technologies that were practi-
cally dead in the water two years ago, relegated to rendering fancy navigation
menus and those pop-up ad windows that we all love. Adding asynchronous
HTTP capabilities into the mix has revitalized these technologies, giving them a
new reason to be used. So why has this little nugget of Ajax made such a big
impact? The answer is surprisingly simple, as we’ll see in the next chapter.

Redefining the user’s workflow

The key to understanding the impact that Ajax has had on web development lies
in the user workflow. By workflow, we mean the way in which the user interacts with
the application and, in the broader sense, how they experience the application.
We commonly talk about web apps in terms of a division of work between the
browser and the server, but these are simply enablers for the important work that
is going on in our users’ heads. A good app makes the user productive by support-
ing their working patterns, whereas an application that dictates the user’s work
pattern based on its own technical limitations reduces productivity. Figure 1.1
shows the workflow of a pre-Ajax classic web application.

This workflow follows a work-wait pattern. That is, at any point in time, the
browser-side application is either presenting information to the user or waiting
for the server to return a response. From the user’s point of view, the experience

Walit Wait Wait
Work

Work é Work f/ Work f/
Browser

Server Figure 1.1
j H ; Work-wait pattern of user
[—- — interaction in a classic

web application

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

6 CHAPTER 1
Embracing Ajax

is very punctuated. During the wait periods, the user is unable to interact with the
web app, beyond possibly being able to read some of the content on the page that
is just about to be replaced by the server response.

From a usability perspective, this is extremely problematic. Each wait period is
an interruption to the user’s train of thought. And yet the wait periods must be
frequent. The majority of web applications will require frequent contact with the
server. This model is clearly unsuitable for any kind of activity that entails com-
plex problem solving—which is a pity, as browser-based applications have a lot of
advantages. DHTML provides all the ingredients for a pleasant, responsive user
interface, and perhaps most notably, web applications are extremely easy to
deploy and maintain, as no installation on the client machine is required.

In figure 1.2, we show how Ajax changes the workflow for the user. Here,
the application is still making the same requests to the server, but is doing so
using Ajax. This allows the user interface to remain active during the times
when the server is busy, and therefore removes the continual disruptions to the
user’s concentration.

From a business perspective, the importance of this cannot be understated.
Ajax has opened up a large new market to browser-based line-of-business apps,
disrupting not only web development, but the world of thick clients and desktop
apps in the process. Within the enterprise, adoption of Ajax-based solutions is
considerable. On the public Internet, several heavyweight Ajax-based office
suites have been developed in the last year, and web-based operating systems are
under development. Although none of these have yet gone mainstream, progress
has been considerable.

So, Ajax has had a significant, and disruptive, effect on the application mar-
ketplace, which presents challenges and opportunities for us as developers. Look-
ing within our own domain of expertise, however, Ajax can be considered
disruptive in other ways, as we’ll discuss in the next section.

Work vAg Work
4@& Browser
v +
Server
— | Figure 1.2
» *_»s’ — Work-work pattern of interaction

in an Ajax application

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Ajax as a disruptive technology 7

1.1.2 Redefining web application architecture

Web application architecture has always been an interesting field. Because of the
challenge of maintaining an adequate user workflow in the face of the work-wait
nature of the Web, there has been a continual stream of innovation in the way in
which web applications are organized on the server. Nonetheless, certain conven-
tions have been established, such as the division of responsibility between the pre-
sentation tier and a business tier, consisting of a persistable domain model.
Figure 1.3 illustrates this design, as well as the ways in which Ajax is affecting it.

In the pre-Ajax architecture, pictured on the left, all the action is taking place
on the server, with the browser acting as a dumb terminal, accepting predigested
HTML content.

The middle column illustrates the impact of introducing some relatively sim-
ple Ajax into the application. Let’s say that the server still controls all aspects of
the workflow, but hyperlinks and forms now request fragments of HTML content
that are used to update parts of the screen, rather than perform a full refresh.
Server responses are fielded by JavaScript code, which reads the response and
rearranges the DOM accordingly. The presentation tier on the browser has started
to get thicker, as we add the JavaScript to route the content received from the
server. We will also often see the presentation tier on the server starting to get
smaller, as we’re generating simpler, more focused responses, rather than assem-
bling entire pages every time.

Pre-Ajax Simple Ajax Ajax Application

Domain Model

Browser

Server

(Domain ModeD (Domain ModeD [Domain ModeD
CPersistence') CPersistence) CPersistence)

-

Figure 1.3
Database Architecture of an n-tier web application,
and the impact of Ajax on the design

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

8 CHAPTER 1
Embracing Ajax

A well-factored classic web application will tend to generate its responses in a
modular fashion anyway, so introducing some Ajax functionality is not going to
entail a complete rewrite. However, the pattern of server requests and responses
over time is likely to change, and we’ve introduced a new presentation tier on the
browser, written in JavaScript. We may not be disrupting the development team
with this approach to Ajax, but we are making them think again, and picking up
some new skills along the way.

As we get deeper into Ajax—and move toward the new breed of line-of-busi-
ness web apps that Ajax has enabled—the scope for changing the architectural
tiers increases. On the right-hand side of figure 1.3, we’ve depicted an extreme
case of an Ajax-based application, in which the JavaScript code in the browser is
sufficiently complex to be divided into tiers itself. In this case, the client-side pre-
sentation tier has control over the users’ workflow. The client-side code also
maintains a partial model of the major domain entities, and the JavaScript pre-
sentation tier will tend to communicate to these rather than directly to the server.

On the server side, we can see that the presentation tier is much reduced. Its
main responsibilities would be to provide a coarser-grained fagade on top of the
domain model, which defines the main use cases for the application. It may also
control the marshaling and unmarshaling of data across the HT'TP interface.
Flow control and visual presentation of content have been largely delegated to
the client-side JavaScript tiers.

Not every Ajax application will follow this approach to its full extreme, nor
would it be appropriate to do so. We said at the outset that the architecture of web
applications is not a well-defined, solved problem, and that plenty of room still
exists for innovation. Ajax disrupts the web architecture landscape by moving the
innovation in new directions, not by providing a single solution. Think of figure
1.3 as presenting three points along a spectrum, with Ajax-enhanced legacy
applications tending to sit near the middle, and line-of-business Ajax apps
toward the right-hand side.

We've set the scene for this book now, and we’ll return to these concerns
throughout our examples. Now, let’s jump into our first coding exercise, with a
look at how to make an Ajax request. It’s worth doing this once, just to highlight
a few issues, and the ways in which key technologies such as JavaScript and HTTP
fit together. After this, we’ll pick up speed as we wrap the low-level functionality
up in libraries, and move on to higher-level concerns. First, though, let’s look at
the XMLHttpRequest, and see what it can do.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Ajax in ten minutes 9

1.2 Ajax in ten minutes

1.2.1

If you’re already familiar with how Ajax works, then you can safely skip the rest of
this chapter. If you're not, or you're up for a refresher, this text covers the core
pieces of functionality that allow Ajax applications to be built. Ajax is not a spe-
cific product, nor is there a specific set of Ajax functions in the browser. Instead,
as you'll see, Ajax is the use of a specific JavaScript object called XMLHttpRequest
combined with JavaScript events and dynamic HTML (DHTML) (also called DOM
manipulation). In this section, we’ll take the XMLHttpRequest object out for a
walk, and come to grips with its basic capabilities.

Introducing XMLHttpRequest

When we write classic web applications, we use the HI'TP protocol to communi-
cate between the browser and the server. The primary means of user interaction
are hyperlinks and HTML forms, both of which trigger HTTP requests in the
browser. A limitation of both of these is that they automatically populate the cur-
rent page, or a frame in the current page, with the response. That is, they are
designed for retrieving content across the Web.

As we start to work with more complex client applications, we may need to
retrieve data rather than content, or retrieve finer-grained content to insert into
the current page. The XMLHttpRequest object (which we’ll abbreviate to XHR
from here on) was developed as a solution to this problem, allowing greater pro-
grammatic control over HTTP requests.

As we discussed in the previous section, the XHR object allows us to make
HTTP requests to the server and to receive the response programmatically, rather
than the browser automatically rendering the response as a new page. From the
perspective of the client-side code, then, there are several things that we need to
do in order to achieve this, as summarized in figure 1.4.

The first thing that we need to do is to create an XHR object @. We then
provide it with the information that it needs to make the request @. Finally, we
handle the response when it comes back in @. In between sending the request
and receiving the response, there is work to be done on the server too, of
course, and some more code for us to write, in PHP, Java, a .NET language, or
whatever our current environment dictates. We're interested here primarily in
the client-side code, though, as the server-side mechanics of handling a simple
Ajax request are not very different from pre-Ajax web programming. We’ll
present server-side code later in the book, for the more involved examples, but

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

10 CHAPTER 1
Embracing Ajax

Instantiate
XMLHttpRequest
Object

QT

Make Request
to Server

T |

< Response
& Tremone |
NG \

.

Figure 1.4
Key stages in making an Ajax request
using the XHR object

Parse Response
on Client

for now, we just want to figure out how the client works. We’ll refer back to fig-
ure 1.4 as we work through the steps.
The first thing that we need to do is to get ahold of an XHR object.

1.2.2 Instantiating XMLHttpRequest

The XHR object is built into the four major modern browser families: Internet
Explorer, Firetfox/Mozilla/Netscape, Safari, and Opera. To use the object, you’ll
create an instance of the XHR object, give it some parameters to set up the
request you want to send, tell it to send the request, and then process the result.
Listing 1.1 shows a cross-browser example of the first step, namely, instantiating
the XHR object.

var xhr;
if (document.XMLHttpRequest) {
) e}ldslz ; new XMLHEtpRequest () ; ﬁ Creates native object
xhr = new ActiveXObject ("Microsoft.XMLHTTP") ;
} else {
alert ("cannot use Ajax");

| Detects XHR object

ﬁ Creates ActiveX control

}
|

The reason for the complexity of this code is cross-browser incompatibility (which
should come as no surprise to seasoned web developers). Internet Explorer (prior

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.2.3

Ajax in ten minutes 11

to version 7, at least) does not have a native XHR object. Rather, it implements
XHR as an ActiveX object. Because of this, if the user has “Safe ActiveX” scripting
turned off, they will not be able to run an Ajax-enabled application. (Before cast-
ing blame on Microsoft for this implementation, remember that they invented
the XHR object in the late ’90s and implemented it as an XML parsing module
that started shipping with IE. Only recently have other major browsers added
support for XHR.)

We also need to check for older browsers that don’t support any kind of XHR
object, and issue some sort of message to them, stating that the app won’t run on
this browser. Depending on the browser in which the code is being run, we will
follow one pathway or another through the if () statements, and, at the end of'it,
have a reference to an XHR object. It might be a native object or an ActiveX con-
trol, but as long as we have an XHR of some kind, we can start to use it. Fortu-
nately, whatever kind of XHR we have, the methods and properties of the object
are pretty much identical from here on.

Sending a request

Let’s return to figure 1.4 briefly. The XHR object is now instantiated, so we’re on
to the second stage: sending the request. Before we start examining how the XHR
object does this, let’s look at the basic information needed to set up a call to the
server. We will need

m The URL of the server resource
= The HTTP Request type, usually a GET or a POST

m Parameters needed by the server resource

A JavaScript function to interpret the results returned from the server

OK, let’s start checking these items off the list. The first two items, and possibly
the third, are passed when calling the open () method. open() initializes a connec-
tion to a URL. The method is overloaded and has three forms:

open (http_method, url)

open (http_method, url, asynchronous)

open (http_method, url, asynchronous, userid, password)
The method is almost always a GET or POST, but could be any valid HTTP
method such as PUT, DELETE, HEAD, and so forth, that is supported by the
server. If asynchronous is true, then the request will run in the background, thus
allowing the user to perform other work while the XHR request is being pro-
cessed. If it is false, then the request will be synchronous and the user will be

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

12

CHAPTER 1
Embracing Ajax

blocked until the request is finished, much the same way as when working with
traditional work-wait web applications.

This third argument reflects the legacy of XHR as a general-purpose ActiveX
control. Within some applications, it may make sense to make synchronous
requests, but the JavaScript interpreter is essentially single-threaded, and making
a synchronous request will block all user interaction with the browser until the
response has returned. In an Ajax app, always make your requests asynchronous.

userid and password are used to connect to servers that require them. This is
only valid for HTTP authentication (as opposed to NT domain-based authentica-
tion, for example), which sends passwords as plain text, and should be treated
with caution unless operating over a secure socket via HT'TPS.

So, to open a connection to a URL, we might write

xhr.open('GET', 'servlets/ajax/getItem?id=321', true);

Because we’re using the HTTP GET method, we're passing parameters to the
server in the URL as a query string. If we were using POST, we’d pass them in
the request body, which we’ll look at in a minute.

The second stage to priming the XHR object is to assign a callback handler
function to receive the response. For now, we won’t worry about what the function
does, but simply assign it. For example:

xhr.onreadystatechange = parseResponse;

Note that we pass a reference to the function object. We don’t call the function at
this point—there are no parentheses after the function—but inform the XHR that
this is the function to call when the response comes back. This callback assign-
ment is identical to setting UI event handlers, such as onclick and onmouseover
on DOM elements.

The third stage is to call the send() method. send() executes the server call
and can be used to send additional data not specified in the URL. send () takes a
single argument, the additional data to be sent in the request body. Normally,
only POST requests have a body, so for GET requests, we just pass an empty string:

xhr.send('"');

That’s it! The request is now on its way to the server, and there’s nothing more for
the client code to do until the response comes back. We’ll address that issue in the
next section.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Ajax in ten minutes 13

1.2.4 Processing the response

We've fired the request at the server, and we can assume for now that the server
will do its job and return a response to us. Referring again to figure 1.4, the next
thing that we need to do is to receive the response when it comes in and unpack
it. In the previous section, we already made preparations for this moment, by
assigning a callback handler function to our XHR object. In this section, we’ll see
what happens when that callback is invoked.

You might be forgiven for thinking that the XHR would simply inform you
when the response had arrived, but instead, it informs you at several points in the
lifecycle of the response. In a minority of cases, this is extremely useful informa-
tion to have, but normally, it’s a distraction.

We assigned a callback handler called onreadystatechange in the previous sec-
tion. This function will be called at least once for every ready state that the XHR
object undergoes. In your onreadystatechange function, you will need to manu-
ally check the readystate property to determine where the request currently
stands in its lifecycle and whether you can process the final result. readyState will
always be one of these predefined values:

Value State Description
0 Uninitialized open () has not been called.
1 Loading open () has been executed.
2 Loaded send () has been executed.
3 Interactive The server has returned a chunk of data.
4 Complete The request is complete and the server is finished sending data.

You will almost always only check for readyState == 4, meaning that the request
is finished. So a typical callback function might look like this:

xhr.onreadystatechange = function() {
var ready = xhr.readyState;
if (ready == 4){

parseCompletedResponse (xhr) ;
}i }
That is, we check whether the readyState property value is 4, which indicates that
the response has arrived in its entirety and can be parsed. If so, we hand over to a
parsing function. When we parse the response, the first thing we’ll want to know
is whether the request was handled successfully.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

14

1.2.5

CHAPTER 1
Embracing Ajax

The status property contains the HTTP status of the request. A valid HTTP
GET or POST normally returns 200 if the requested URL was processed correctly.
A 404 is returned if the URL does not exist. Typically, any result code between 200
and 299 represents success; any other code indicates failure or further action by
the browser. By combining readyState and status, you can determine whether

the request has finished successfully. We might modify our function to something
like this:

xhr.onreadystatechange = function() {
var ready = xhr.readyState;
if (ready == 4) {
var status = xhr.status;
if (status >= 200 && status < 300) {
parseCompletedResponse (xhr) ;
} else {
parseErroredResponse (xhr) ;
}
}

)i
Let’s assume that our response has come in fine. The response is provided in two
properties: responseText and responseXML. responseText presents the response as
a plain string. responsexML presents the response as a parsed XML document. We’ll
look at both of these in more detail in the examples in this and the next chapter.

We’ve now followed through the full lifecycle of a simple Ajax request and
response. We've had to handle a lot of plumbing along the way, in getting ahold
of the object, in assembling the request, and in parsing the response. The good
news is that, having demonstrated these low-level details once, we aren’t going to
return to them again in this book, as there are several good frameworks and
libraries out there that will do the grunt work for us.

However, knowing how XHR works is useful, because it will help us to under-
stand what the Ajax libraries wrappers can and can’t do. To this end, we’ll present
a few additional methods and properties of the XHR object before moving on to
higher things.

Other XMLHttpRequest methods and properties

There are other, lesser-used, XHR methods. In simple cases, you won’t need to
know about these, but they can be very useful for specific tasks.

abort()
abort () aborts the current request, if possible. This is a client side-only abort—if
the send() method has already been called, the server will have received the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Ajax in ten minutes 15

HTTP request and will process the result. However, the browser will ignore the
result and stop processing.

setRequestHeader(header, value)

This function sets a header value for the HTTP request. It is most commonly used
for setting the content type of the request body. Any valid HTTP header value can
be used. You might use this function for a number of purposes, for example, to
set the request MIME type to x-www-form-urlencoded so you can emulate posting
an HTML form:

xhr .setRequestHeader (
'Content-type',
'application/x-www-form-urlencoded'
)i
With Ajax, we're not limited to POSTing key-value pairs to the server. We
might send an XML payload, in which case, we should tell the server that we're
sending XML:
xhr.setRequestHeader (
'Content-type"',
'application/xml; charset=UTF-8'
)i
xhr.send("<data source='ajax in practice'>hello world</data>") ;
We’ll discuss using XML with Ajax in greater detail in chapter 2. There are also
some methods we can make use of when handling the response.

getResponseHeader(header)/getAllIResponseHeaders()
An HTTP response typically contains many headers, each of which is a key-value
pair. The XHR object can list all header names using getAllResponseHeaders (),
and it can read a header value using getResponseHeader (), which takes a header
name as argument. For example, to determine if the server is a Microsoft IIS
server, you could use the following:

if (xhr.getResponseHeader ("Server")

.indexOf ("Microsoft-IIS") != -1) {
alert ("The server is a Microsoft IIS server.");

}
Now that we’ve worked through the use of the XHR object in detail, we can turn
our attention to more interesting questions. In the remainder of this chapter,
we’ll introduce the Prototype library’s helper objects for making Ajax easier, and
start working through a series of examples that will explore what we can do with
our newfound power to fire asynchronous requests at the server.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

16

CHAPTER 1
Embracing Ajax

1.3 Making Ajax simple using frameworks

In the previous section we saw the basics of how to create an Ajax request using
the XHR object. Now that we have the ability to fetch data from the server without
initiating a full-page refresh, we find ourselves wondering what we’re going to say
to the server, and what sort of a response it might offer.

The ground rules laid down by the HTTP protocol are fairly loose. Any com-
munication must be started by the client’s request, and completed by the server’s
response, and both halves of the communication must be text-based. Beyond
that, though, more or less anything goes. In this chapter we will look at the dif-
ferent forms of data that can be passed using Ajax, and begin to consider how
we’ll use Ajax to structure the browser/server communication in our application
as a whole.

The second thing that we’ll introduce in this chapter is some of the library and
framework code that can make our lives easier. Using a raw XHR object, we wrote
a lot of code to figure out various cross-browser conundrums, and manually
orchestrated all the fine-grained details of the HTTP request and response. This
was fine for learning how HTTP works, but when we’re writing production code,
we will generally be concerned with higher-level issues regarding application
state and logic, and have the low-level plumbing details taken care of for us.

Fortunately, several good frameworks and libraries are available for Ajax, and
we’ll lean on some of them here. We’ll present some of the frameworks more for-
mally in chapter 4. For now, we’ll introduce them as we go along.

In the examples in this chapter, we want to focus on the way in which data is
passed between the client and the server. We’'ll therefore be sticking with the
“Hello World” type of example throughout this chapter. The examples in this
chapter use JavaServer Pages (JSP) on the back end, and have been tested on a
Tomcat web server. We provide a .war file for all the examples in the download
code that accompanies this book, which provides a launching page for the various
examples, as illustrated in figure 1.5.

Now, without further ado, let’s take a look at the first example of using Ajax to
communicate with the server.

Although it is quite straightforward to create an Ajax request as we have seen
in the previous section, there’s a lot of bookkeeping involved. When we’re deliv-
ering a real web application to a client, asynchronous calls to the server are simply
a means to an end. Having to focus on readyStates, HTTP headers, and URL-
encoded query strings every time we want to talk to our domain model will be
tedious and distracting.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Making Ajax simple using frameworks 17
06 e Ajax in Practice Chapter 2 examples - Mozilla Firefox =)
Eile Edit View Co Bookmarks Tools Help
- 3 \ .:\ [:] htep:/ /localhost: 8080/ AIPZ/ Co (_}L rl=pattarn wab.xmi

Demonstrates using the Prototype Ajax helper classes to simplify an
asynchronous Ajax request.

Rather than returning plain text, we return preformatted HTML from the
server.

Return JavaScript from the server, and evaluate it on the client.

Adopt a cleverer strategy toward server-side code generation, writing to a
high-level API. We also begin to address the multiple update problem,
whereby we want to update several elements from a single Ajax
response.

We return a structured data object from the server, defined using the
JSON syntax that JavaScript readily understands.

We return structured data as XML, which the server is more likely to
understand! We parse the XML using DOM methods, which is not so
pleasant.

We make use of modern tools to handle the XML on the client, employing
XPath queries and XSL transforms rather than the DOM methods.

Invoke a web service from the JavaScript tier using Ajax.

Done 0s281ms 0s344ms 2.06KB 1/2req

Figure 1.5 Launch page for the examples in chapters 1 and 2

As with any software development, having understood the issues involved in a
particular task, we want to encapsulate our solutions into a helper object or set
of functions that allows us to focus our attention on the next level up. We want to
be able to set up a standard Ajax request and handle the response in as few lines
of code as possible, and still have access to the fine-tuning capabilities when we
need them.

We could write our own helper library to encapsulate the XHR object, or we
could make use of a third-party library that has already done the grunt work for
us. In this section, we’ll look at the Prototype library’s Ajax helper classes, and
see how they can simplify Ajax for us. First, we’ll look at the business of making
a request.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

18 CHAPTER 1
Embracing Ajax

1.3.1 Making requests with Prototype’s Ajax.Request object

When we sent an Ajax request to the server in our example in section 1.2, we
faced a number of messy issues. First, we had to create an XHR object in a
browser-independent fashion. Second, we had to invoke several methods on the
XHR object to provide it with a URL, HTTP method, and POST body, and set
other HTTP headers. Getting these right required a working knowledge of the
HTTP protocol. A working knowledge of the underlying stack is always a good
thing, but we shouldn’t be forced to think about it every time we make a call back
to the server.

A good wrapper object such as Prototype’s Ajax.Request will automate the
cross-browser issues for us. It will also allow us to pass in only the information
that concerns us, and automatically provide sensible defaults for any parame-
ters that we don’t explicitly provide.

Problem

Working with the XHR object requires us to concentrate on a lot of low-level
details, such as obtaining the object in a cross-browser fashion, and responding to
subtle changes in readyState during the arrival of the response.

Solution

Use a framework to simplify creating an Ajax request. Let’s start by introducing
our simple application, the UI for which is shown in figure 1.6.

Please introduce yourself by entering your name in the box below Figure 1.6

User interface for version 1 of
our Hello World application

_Submit |
We've provided a text input box and a submit button. When the button is
clicked, the text in the input box will be sent to the server, and the phrase
“Hello, stranger” replaced with the name returned by the server. In this case,
the server isn’t actually doing anything with the name—it’s simply echoing it
back—but our concern here is fielding the response on the client. On the
server, any kind of processing might be taking place. We’ll start by looking at
the client-side code.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Making Ajax simple using frameworks ‘ 19

Coding the client
Listing 1.2 shows the client-side code for this example.

Listing 1.2 hello1.html

<html>

<head>

<title>Hello Ajax version l</title>

<style type='text/css'>

* { font-family: Tahoma, Arial, sans-serif; }
#helloTitle{ color: #48f; font-size: 1.5em; }

</style>
<script type='text/javascript' 49 Includes Prototype
src='prototype.js'> </script> library

<script type='text/javascript'>
window.onload=function() {
document .getElementById('helloBtn')
.onclick = function() {
var name = document.getElementById('helloTxt"')

.value; Creates Ajax.Request
new Ajax.Request (object
"hellol.jsp?name = "+encodeURI (name),
{ q& Provides URL (mandatory)
method: "get",
onComplete: function (xhr) { Proﬁdesopﬁonm
document .getElementById('helloTitle") parameters

.innerHTML = xhr.responseText;

) ;

};
}i
</script>
</head>
<body>
<hl id='helloTitle'>Hello, stranger</hl>
<p>Please introduce yourself by entering
your name in the box below</p>
<input type='text' size='24' id='helloTxt'>

</input>

<button id='helloBtn'>Submit</button>
</body>

</html>

The first thing that we need to do is to include the Prototype library in our page
@ . Prototype ships as a single file, which makes this a one-line task.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

20

CHAPTER 1
Embracing Ajax

In the window.onload event handler, we reference the button object, and assign
a click event handler to it. Within the event handler, we read the name from the
text input box @, and then create an Ajax.Request object. This object takes two
arguments. The first is the URL of the resource on the server @. The second is a
free-form JavaScript object that may contain an arbitrary set of extra configura-
tion options @. These can include HTTP verbs, headers, request bodies, a variety
of callback options and other features. In this case, we only pass in two options.
First, we set the HT'TP method to GET, because the Ajax.Request defaults to POST.
Second, we provide a callback function.

Looking back at section 1.3, we saw that the XHR object took a callback that
was triggered whenever the readystate was changed. When the Ajax.Request cre-
ates an XHR object internally, it defines an internal callback to handle these fine
details. As an end user of the library, we can provide higher-level callbacks, such
as onComplete, that fit better with our immediate requirements. In the relatively
rare cases that we do want to be notified of other changes in readystate, we can
provide additional callback functions to capture these.

Our callback function is admirably simple, modifying the text in the title ele-
ment of the page, as shown in figure 1.7. The user has typed in their name and
clicked the submit button, and the title has been modified.

Please introduce yourself by entering vour name in the box below Figure 1.7
o s Hello World version 1 after
= | [Submit]| processing the Ajax response

That’s the client-side code handled for this example. In the next section, we’ll
take a brief look at the server-side code.

Coding the server
The server-side implementation for this example is extremely simple, as you can
see in listing 1.3.

<jsp:directive.page contentType="text/plain"/>
<%

String name = request.getParameter ("name") ;

%>

Hello, <%=name%>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.3.2

Making Ajax simple using frameworks 21

As we noted earlier, we’ve made the server-side code as simple as possible for this
example, because we want to focus on the client-side code. Please feel free to
imagine a complex n-tier app sitting behind this simple JSP—the principles are
the same.

Discussion

The Ajax.Request class provided by Prototype allowed us to make our Ajax
request with a minimum of fuss. All we had to provide was a URL, the HTTP
method, and a callback function. Internally, Ajax.Request worked out how to cre-
ate the XHR object and filled in the blanks when shaping the request. It also sim-
plified the callback semantics considerably, allowing us to supply a function that
would only be called once on completion of the response, and that therefore only
had to deal with application logic.

Prototype provides a lot more than just the Ajax helper classes. In this exam-
ple, we've deliberately avoided using any of these other features, as we’re simply
using Ajax.Request as an example of a well-designed wrapper object. Similar
wrappers, with equally straightforward calling semantics, exist in other popular
Ajax libraries. Dojo has the dojo.io.Request class, MochiKit has MochiKit.Async,
and jQuery has the $.ajax() function, to name but three. Depending on the
library that you plan to use, the exact capabilities of your Ajax wrapper will vary,
but you're likely to experience a satisfactory time savings from any of them.

The callback function that we provided to handle the response was, in this
case, very simple. In the next example, we’ll see what’s needed to allow for Ajax-
based generation of richer content.

Simplifying Ajax responses

In the previous example, we used the innerHTML property to write the server con-
tents directly into a DOM element on the page. The response that the server
offered us was a simple piece of text. In many cases, though, we will want the
server to deliver more complicated information to us, often with an internal
structure of its own. In chapter 2, we’ll look at ways of passing that structured
information between the server and the client.

Structured data lies at the heart of most web applications. On the server side,
the data is typically stored in a relational database. On the client, the data is dis-
played as some sort of report or user interface. In between, the data may be
manipulated or operated on by the logic of the application. Traditionally, this has
been done entirely on the server, with the client acting as a dumb terminal. With

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

22 CHAPTER 1
Embracing Ajax

Ajax, we have the capability to run logic on the client or the server, or even both.
There are many permutations to explore.

We'll start off by following the dumb terminal approach. The server generates
a rich report from the application data, and sends it to the client for display. The
client doesn’t need to know what the information means, but only how to display
it. We'll jazz up the response a little for this example, returning an extra bit of
content (entirely trivial, in this case!) below the header. The example with the full
response inserted into the page is shown in figure 1.8.

Please introduce yourself by entering your name in the box below Figure 1.8
N Result of returning rich HTML
dave LiSubmit}| in the Ajax response
Problem

The server is sending us a rich visual report (rather than a simple piece of text) on
the application state that is to be incorporated into our user interface.

Solution

The solution to this problem is quite straightforward, and requires little in the
way of JavaScript coding. The changes on the client are minimal, in fact, and we
can still use the innerHTML property to paste the response into our document.
Listing 1.4 shows the client-side code for example 2.

Listing 1.4 hello2.html

<html>
<head>
<title>Hello Ajax version 2</title>
<style type='text/css'>
* { font-family: Tahoma, Arial, sans-serif; }
#helloTitle{ color: #48f; }
</style>
<script type='text/javascript' src='prototype.js'> </script>
<script type='text/javascript'>
window.onload=function () {
S('helloBtn') .onclick = function() {
var name = $('helloTxt') .value;
new Ajax.Request (
"hello2.jsp?name = "+encodeURI (name),

{

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Making Ajax simple using frameworks 23

method: "get",
onComplete: function (xhr) {
S('helloTitle') .innerHTML = xhr.responseText;

)
}i

}i
</script>
</head>
<body>
<div id='helloTitle'>
<hl>Hello, stranger</hl>
</div>
<p>Please introduce yourself by entering your name in the box below</p>
<input type='text' size='24' id='helloTxt'></input>

<button id='helloBtn'>Submit</button
</body>
</html>
|

The main changes that need to be made here are on the server. Our modified JSP
is shown in listing 1.5.

Listing 1.5 hello2.jsp

<jsp:directive.page contentType="text/html"/>

<%

String name=request.getParameter ("name") ;

%>

<hl>Hello <%=name%></hl>

<p>I used to know someone called <i><%=name%></i>. Are you
related?</p>

We've set the MIME type of the response to text/html, out of politeness. This
isn’t strictly necessary but provides a statement of intent. Some Ajax libraries will
pay attention to the MIME type of responses, as you'll see, so it’s a good habit to
get into.

The body of the response generates a small bit of content from the input
parameters. In this case, we’re not doing anything other than parroting back the
name supplied by the user, but that’s just to keep the back end simple for our
example. In production, we’d have some proper code—front controllers, domain
objects, databases, and so on—taking the request parameters and generating a

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

24

1.4

CHAPTER 1
Embracing Ajax

response. As far as the Ajax mechanics are concerned, the effect would be the
same, with a fragment of HTML being returned to the client.

Discussion

Generating HTML fragments on the server is a viable strategy for Ajax web app
development, and can provide everything one needs. It offers a clear incremental
migration path from classic web applications and frameworks, in which the server
is already generating HTML to send to the browser.

We used innerHTML to insert the new fragments into the existing page. This is
effective in the majority of cases, completely wiping out the existing content in
an element and replacing it with the new content. If we want finer control, there
are other DOM methods such as insertAdjacentHTML () and createContextual-
Fragment (), but these are generally not cross-browser. The Prototype library
offers cross-browser wrappers around these in the form of the Insertion objects,
and other libraries may provide similar features.

When using innerHTML , there are a couple of “gotchas” you need to be aware
of. First, <script> tags included in a page using innerHTML will be ignored by the
browser. Second, HTML table elements, with the exception of the individual cell
(i.e., the <TD> tag) have read-only innerHTML properties.

Finally, it’s worth pointing out that the Prototype library provides a special
subclass of Ajax.Request that makes it even easier to do this sort of thing by
automatically assigning the response as the innerHTML property of a named
DOM element. If you're using Prototype and want to send HTML fragments
from your server, we urge you to take a look at the Ajax.Updater, but we didn’t
want to use it here ourselves because it hides a lot of the underlying mechanics
that we wished to explore, and it would focus the discussion too narrowly on a
single library.

Summary

We began this chapter with a brief discussion of where Ajax is now. The technol-
ogy is maturing fast, and doing some interesting things. In terms of general
trends, we noted two things. First, the discussion has moved on from how to make
an Ajax request to what to do with this capability. Interesting issues are being
raised in terms of web application architecture, and in terms of business models,
and what new possibilities Ajax is enabling.

The second point to note is the emergence of mature frameworks and librar-
ies for Ajax. The days of hand-coding cross-browser plumbing are, thankfully,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Summary 25

receding, and many good practices are being wrapped up in libraries such as
Prototype, Dojo, Rico, and DWR, to name a few.

These two issues shape this book. We want to discuss the higher-level issues
around Ajax development, and we want to show you how to make life easy when
addressing these issues by using best-of-breed toolkits. Together, these will give
you the practical knowledge to use Ajax successfully in real-world settings.

We can’t forget the plumbing and low-level details entirely, though. In the sec-
ond part of this chapter, we walked through the mechanics of the XHR object. We
then showed you how to make it a lot easier by using a wrapper object, in this case
Prototype’s Ajax.Request. In the final example, we began to address the next level
of application design, by asking what sort of data the server might respond with.
We looked at the simplest approach, whereby we retrieved fragments of HTML
from the server, and stitched them into the existing page.

This approach can serve us well, and deliver a lot of the benefits of Ajax to our
apps with relatively simple JavaScript. However, it cannot provide a high degree of
responsiveness to complex operations on the client, as all-important decisions
require a round-trip to the server. For that, we need to move some of the intelli-
gence to the client. In the next chapter, we’ll look at ways of doing that, using Java-
Script, JSON, and XML.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

How to talk Ajax

This chapter covers

m |dentifying the main dialects of Ajax
m Using Ajax with JavaScript and JSON
m Working with XML, XPath, and web services

26

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Generating server-side JavaScript 27

Ajax is a melting pot, with many different approaches to application design and a
myriad of dialects. In chapter 1 we looked at the mechanics of the XHR object
that lies at the heart of Ajax, and you saw how to wrap those details up in a helper
object. Without the distraction of having to write all that plumbing code by hand,
we can focus on the more interesting issues of structuring the communication
between the server and the client. We can now look at the different categories of
Ajax communication, and teach you how to talk Ajax in a range of dialects.

We'll continue to work with the Hello World example that we introduced in
chapter 1 and the problem/solution format. We’ll also continue to use frameworks
to handle the low-level Ajax concerns for us and free us up to look at the interest-
ing issues. Many of the examples will continue to use Prototype’s Ajax. Request
object, but we’ll also take a look at Sarissa and a web services client toolkit. Let’s
begin by looking at JavaScript as a medium of communication.

2.1 Generating server-side JavaScript

When the server returns HTML from an Ajax request, we can generate complex
user interfaces on the fly, but they remain largely static. Any significant interac-
tion with the application will require further communication with the server. In
many cases, this isn’t a problem, but in others, it is necessary to deliver behavior
as well as content. All client-side behavior is driven by JavaScript, so one way for-
ward is for the server to generate JavaScript for us.

2.1.1 Evaluating server-generated code

When handling server-generated HTML, we can go a long way using only
innerHTML. When handling server-generated JavaScript, we can make similar use
of the eval () method. JavaScript is an interpreted language, and any snippet of
text is a candidate for evaluating as code. In the next example, we’ll see how to
use eval () as part of the Ajax-processing pipeline.

We’ll stick with our Hello World app through this chapter. In this first
example, we’ll use the response to modify the title element again, as shown in
figure 2.1.

Please introduce yourself by entering your name in the box below Figure 2.1

T o Result of evaluating server-
e generated JavaScript

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

28 CHAPTER 2
How to talk Ajax

Problem

The server is returning JavaScript code from an Ajax request. We need to run the
code when we receive it.

Solution
Using eval () is almost as simple as using innerHTML. Listing 2.1 presents the third
incarnation of our Hello World application.

Listing 2.1 hello3.html

<html>
<head>
<title>Hello Ajax version 3</title>
<style type='text/css'>
* { font-family: Tahoma, Arial, sans-serif; }
#helloTitle{ color: #48f; }
</style>
<script type='text/javascript' src='prototype.js'> </script>
<script type='text/javascript'>
window.onload=function () {
$S('helloBtn') .onclick=function() {
var name=$ ('helloTxt') .value;
new Ajax.Request (
"hello3.jsp?name="+encodeURI (name) ,
{
method: "get",
onComplete: function (xhr) {
eval (xhr.responseText) ;

} 43 Evaluates the response

)
};

}i

</script>

</head>

<body>

<div id='helloTitle'>

<hl>Hello, stranger</hl>
</div>
<p>Please introduce yourself by entering your name
in the box below</p>
<input type='text' size='24' id='helloTxt'></input>

<button id='helloBtn'>Submit</button>
</body>
</html>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Generating server-side JavaScript 29

Comparing our earlier solution with listing 2.1, you can see that we’ve had to
change very little. We can still read the response body using the responseText
property of the XHR object, which we then pass straight to eval () @.

We want to modify the title block of the page when the response comes in. To
do this, we need to perform a bit of DOM manipulation. The method calls can be
generated directly on the server, as shown in listing 2.2.

<jsp:directive.page contentType="text/plain"/>

<%

String name = request.getParameter ("name") ;

%>

document .getElementById('helloTitle') .innerHTML =
"<hl>Hello, <i>"+name+"</i></hl>";

Generally, it is good manners to set the MIME type, but we’ve switched it off here
because Prototype is clever enough to recognize the text/javascript MIME type
and would evaluate it automatically for us. Here we want to do the evaluation
manually in order to demonstrate some general principles, not show off Proto-
type’s power-user features!

Discussion

In this example, we’ve demonstrated the principle of passing JavaScript from the
server to the client, but in the process we've raised a few interesting problems.
We'll fix these up in the next example, but first let’s examine them.

The first problem is that we’ve created a very tight coupling between the client
and server code. The JSP needs to know the id attribute of the DOM element that
it is going to populate. If we change the HTML on the user interface, we need to
alter the server code. In a small example like this one, that’s not too great a bur-
den, but it will quickly become unscalable.

Second, we’ve created a solution looking for a problem. We aren’t doing any-
thing here that we couldn’t do more elegantly and simply using innerHTML. As
long as we're using the response to update a single element on the page, this
approach is overkill.

In the next example, we're going to address both these points and see how to
reduce the coupling across the tiers as well as update several elements at once.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

30

CHAPTER 2
How to talk Ajax

2.1.2 Utilizing good code-generation practices

When we generate JavaScript on the server, we are practicing code generation.
Code generation is an interesting topic in its own right, with a well-established set
of conventions and ground rules. A cardinal rule of code generation is to always
generate code at the highest level possible.

In the next example, we're going to increase the complexity of our Hello
World application a little and demonstrate how to tighten up our code genera-
tion to cope with it.

Problem

Writing low-level JavaScript on the server leads to unacceptable tight coupling
between the server and client codebases. This will give our application severe
growing pains and lead to increased brittleness.

At the same time, we want to maintain a list of previous visitors to our page, as
well as display the name of the current visitor. The server is going to classify visi-
tors’ names as either long or short, and we’ll provide a separate list for each (once
again, this is a surrogate for real business logic, because we want to keep the
server code simple in this chapter).

We’ll also pop up an alert message when the data comes in. The revised UI for
the Hello World app is shown in figure 2.2.

Every time the form is submitted to the server, the most recent name will be
displayed in the title element, as before. We'll also keep a running list of visitors
in the box elements on the left. Figure 2.3 shows our version 4 Hello World in
action, after several interesting visitors have passed by!

People I've met with short | |People I've met with long
names names

Please introduce yourself by entering
your name in the box below

Submit

Figure 2.2 Expanded Ul for version 4 of Hello World, with a list of previous visitors
alongside the form

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Generating server-side JavaScript 31

Hello, dr watson

People I've met with short | [People I've met with long
names names

Please introduce yourself by entering
your name in the box below

dave sherlock holmes
jord professor moriarty dr watson Submit
bear dr watson

/ '\\ Hey, we've got a visitor called ‘dr watson' here

Done v ws s ssovne | yaiey D

Figure 2.3 Hello World version 4 after several visits. Here we see a modified title, an
updated list to the left, and an alert message, all from a single server-generated call.

Solution
When the response comes back from the server, we want to update the client with
the new information. The code that the server is sending us is simply a carrier for
some data, so we will simplify the server-generated JavaScript to call a single
updateName () function, passing in the data as arguments.

On the client side, we need to define that updateName () function as handwrit-
ten JavaScript, as shown in listing 2.3. updateName () will handle all of our expan-
ded requirements.

Listing 2.3 hello4.html

<html>
<head>
<title>Hello Ajax version 4</title>
<style type='text/css'>
* { font-family: Tahoma, Arial, sans-serif; }
#helloTitle{ color: #48f; }
.sidebar({

background-color: #adf;

color: navy;

border: solid blue 1lpx;

width: 180px;

height: 200px;

padding: 2px;

margin: 3px;

float: left;
}
</style>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

32 CHAPTER 2
How to talk Ajax

<script type='text/javascript' src='prototype.js'> </script>
<script type='text/javascript'>
window.onload=function () {
S('helloBtn') .onclick = function() {
var name=$ ('helloTxt') .value;
new Ajax.Request (
"hello4d.jsp?name = "+encodeURI (name),
{
method: "get",
onComplete: function (xhr) {

eval (xhr.responseText) ; <1—J Evaluates response

| Defines API

function updateName (name, isLong) {
$('helloTitle') .innerHTML=
"<hl>Hello, <i>"+name+"</i></hl>";
var listDivId=(isLong)
? 'longNames' : 'shortNames';
$(listDivId) .innerHTML+=name+"
";
alert ("Hey, we've got a visitor called '"
+name+"' here");

</script>
</head>
<body>

<div id='shortNames' class='sidebar'>

<h5>People I've met with short names</h5><hr/>

</div>

<div id='longNames' class='sidebar'>

<h5>People I've met with long names</h5><hr/>

</div>

<div>

<div id='helloTitle'>

<hl>Hello, stranger</hl>

</div>

<p>Please introduce yourself by entering your name
in the box below</p>

<input type='text' size='24' id='helloTxt'></input>

<button id='helloBtn'>Submit</button>

</div>

</body>

</html>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Generating server-side JavaScript 33

In spite of the increased complexity of our requirements, the server-side code has
become simpler. Listing 2.4 shows the JSP used to serve data to version 4 of our app.

<jsp:directive.page contentType="text/plain"/>
<%

String name = request.getParameter ("name") ;
boolean isLong = (name.length() > 8);

%>

updateName ("<%= name %>",<%= isLong %>);

The JSP is simpler in terms of length of code, but also in the number of concepts.
It is only concerned with the business logic appropriate to the server and talks to
the client via a high-level API.

Discussion

With this example, we’ve crossed an important threshold and need to update
multiple regions of the UI from a single Ajax call. At this point, the simple
innerHTML approach that we used in example 2 can no longer suffice. In this case,
the requirements were somewhat artificial, but in many real-world applications,
multiple update requirements exist. For example:

m In a shopping cart, adding a new item will result in adding a row to the
cart body, and updating the total price, and possibly shipping costs, esti-
mated shipping date, and so on.

m Updating a row in a data grid may require updates to totals, paging infor-
mation, and so on.

® A two-pane layout in which a summary list is shown on the left and drill-
down details of the selected item on the right will have a tight interdepen-
dency between the two panes.

We solved the multiple-update issue in this case by defining a JavaScript API and
generating calls against that API. In this case, we defined one API method and
called it only once, but a more sophisticated application might offer a handful of
API calls and generate scripts consisting of several lines. As long as we stick to the
principle of talking in conceptual terms, not in the details of DOM element IDs
and methods, that strategy should be able to work for us as the application grows.

An alternative to generating API calls on the server is to generate raw data and
pass it to the client for parsing. This opens up a rich field, which we’ll spend the
remainder of this chapter exploring.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

34

CHAPTER 2
How to talk Ajax

2.2 Introducing JSON

We began our exploration of Ajax techniques in chapter 1 by doing all the pro-
cessing on the server and sending prerendered HTML content to the browser. In
section 2.1, we looked at JavaScript as an alternative payload in the HT TP response.
The crucial win here was that we were able to update several parts of the screen at
once. At the same time, we were able to maintain a low degree of coupling between
the client-side and server-side code.

If we follow this progression further, we can divide the responsibilities
between the tiers, such that only business logic is processed server-side and only
application workflow logic on the client. This design resembles a thick-client
architecture, but without the downside of installing and maintaining the client
on client PCs.

In this type of design, the server would send data to the client—potentially
complex structured data. As we noted at the beginning of this chapter, we have a
great deal of freedom as to what form this data can take. There are two strong
contenders at the moment: JavaScript Object Notation (JSON) and XML. We’ll
begin to explore data-centric Ajax in this section with a look at JSON.

A one-minute JSON primer

Before we dive into any examples, let’s quickly introduce JSON. JSON is a light-
weight data-interchange format that can be easily generated and parsed in many
different server-side technologies and in JavaScript. A complete data-interchange
format will provide two-way translation between the interchange format and live
objects, as illustrated in figure 2.4.

Half of J[SON is provided for free as part of the JavaScript language specifica-
tion, and the other half is available as a third-party library. That sounds like an
unusual state of affairs, so let’s explain what we mean by it.

First, let’s look at what a JSON definition looks like. The following example
defines a variable customers and stores in it an array attribute called details.
Each array element is a collection of attributes of each customer object. Each cus-
tomer object has three attributes: num, name, and city.

var customers = { "details": [
{"num": "1","name":"JBoss","city":"Atlanta"},
{"num": "2","name":"Red Hat","city":"Raleigh"},
{"num": "3","name":"Sun", "city":"Santa Clara"},
{"num": "4", "name":"Microsoft", "city":"Redmond"}

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Introducing J[SON 35
Convert
Client-Side Object
to JSON ~
- Convert JSON to
Server-Side Object
e
E——
Convert JSON to
Client-Side Object -
Convert .
Server-Side Object Figure 2.4
to JSON JSON as a round-trip data-

— interchange format

We’ve defined this rather complex variable using JSON syntax. At the same time,
all we’ve written is a standard piece of JavaScript. Curly braces are used to delimit
JavaScript objects (which behave kind of like associative arrays), and square
braces delimit JavaScript Array objects. If you want to brush up on your core Java-
Script language skills, we cover these things in greater depth in chapter 4.

Once we've defined the variable, we can easily read its values using standard
JavaScript syntax:

alert (customers.details[2].name) ;

This would display the string “Sun” in an alert box. So far, all we've done is take a
standard piece of JavaScript syntax and called it JSON.

We can also create a string variable and then evaluate it using eval () to gen-
erate our variable:

var customerTxt = "{ 'details': [" +
"{'num': 'l', 'name':'JBoss', 'city':'Atlanta'}, " +
" {'num': '2','name':'Red Hat', 'city':'Raleigh'}, " +
" {'num': '3', 'name':'Sun', 'city':'Santa Clara'}, " +
" {'num': '4', 'name':'Microsoft', 'city':'Redmond'}" +
"1
var cust = eval ('(' + customerTxt + ')');

alert (cust.details[0].city); //shows 'Atlanta'

There’s no good reason to write code like this when we’re declaring the string
ourselves, but if we’re retrieving the string in a different way—say, as the response

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

36

2.2.1

CHAPTER 2
How to talk Ajax

to an Ajax request—then suddenly we have a nifty data format that can express
complex data structures easily and that can be unpacked with extreme ease by the
JavaScript interpreter.

At this point, we have half a data-interchange format. Standard JavaScript
doesn’t provide any way of converting a JavaScript object into a JSON string. How-
ever, third-party libraries can be found at http://www.json.org, which allow us to
serialize client-side objects as JSON, using a function called stringify(). The
JSON library also provides a parse () method that wraps up the use of eval () nicely.

You'll also find libraries at json.org for creating and consuming JSON in a
number of server-side languages. With these tools, it’s possible for the client and
server to send structured data back and forth as JSON over the entire course of a
web application’s user session.

Let’s return to our Hello World example for now, and see how the client han-
dles a JSON response.

Generating JSON on the server

We can go quite a long way with JSON, so let’s break it up into two parts. First,
we're going to look at how far we can get simply by using the browser’s built-in
ability to parse JSON data, and replace the generic JavaScript response from the
previous example with a JSON object definition.

Problem
We want the server to respond to our request with rich structured data, and let the
client decide how to render the data.

Solution
Sticking with the Hello World theme, this example is going to return a fuller
description of the individual than just their name:

= The person’s initial, calculated on the server using string manipulation
= A list of things that the person likes

m Their favorite recipe, encoded as an associative array

Figure 2.5 shows the application after receiving a response.

In keeping with previous examples, the back end is going to be pretty dumb
and will, in fact, return the same data (apart from the initial) for every name. It’s
a simple step from dummy data to a real database, but we don’t want to confuse
things by introducing too many Java-specific back-end features, as the client-side
code can talk to any server-side technology.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Introducing J[SON

o Hello, dave
D likes... D's favorite recipe
) apples : 3k Please introduce yourself by
Ja\.f_aScnpt sﬁngar . 1kgg entering your name in the box
Skiing pastry : 2.4kg below
Apple Pie gl
bestEaten : outdoors
dave
(iSubmiti)

Figure 2.5 JSON-powered Hello World application displaying rich data

37

So, first we're going to do things the simple way and just make use of JavaScript’s

built-in J[SON-parsing capabilities. Our client-side code appears in listing 2.5.

Listing 2.5 hello5.html

<html>
<head>
<title>Hello Ajax version 5</title>
<style type='text/css'>
* { font-family: Tahoma, Arial, sans-serif; }
#helloTitle{ color: #48f; }
.sidebar{

background-color: #adf;

color: navy;

border: solid blue 1px;

width: 180px;

height: 200px;

padding: 2px;

margin: 3px;

float: left;
}
</style>
<script type='text/javascript' src='prototype.js'> </script>
<script type='text/javascript'>
window.onload=function () {

$S('helloBtn') .onclick = function() {

var name=$ ('helloTxt') .value;
new Ajax.Request (
"hello5.jsp?name = "+encodeURI (name),
{
method: "get",
onComplete: function (xhr) {
var responseObj = eval (" ("+xhr.responseText+")"); <};$

update (responseObj) ;
response

downloaded from: lib.ommolkefab.ir

Parses JSON

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

38 CHAPTER 2
How to talk Ajax

}i
}i

function update (obj) {

S('helloTitle') .innerHTML = "<hl>Hello, <i>"
+0bj .name qa
+'</i></h1>"; Uses parsed object

var likesHTML = "<h5>"

+obj.initial
+"likes...</h5><hr/>";
for (var i=0;i<obj.likes.length;i++) {
1likesHTML += obj.likes[i]l+"
";
}
$('likesList') .innerHTML = likesHTML;
var recipeHTML = "<h5>"
+obj.initial
+"'s favorite recipe</h5>";
for (key in obj.ingredients) {
recipeHTML += key
+" o "
+0bj.ingredients[key]
+"
";
}
S('ingrList') .innerHTML=recipeHTML;

</script>
</head>
<body>

<div id='likesList' class='sidebar'>

<h5>Likes</h5><hr/>

</div>

<div id='ingrList' class='sidebar'>

<h5>Ingredients</h5><hr/>

</div>

<div>

<div id='helloTitle'>

<hl>Hello, stranger</hl>

</div>

<p>Please introduce yourself by entering your name
in the box below</p>

<input type='text' size='24' id='helloTxt'></input>

<button id='helloBtn'>Submit</button>

</div>

</body>

</html>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Introducing J[SON 39

Working with JSON in this way is pretty simple. We use eval () to parse the JSON
response @, remembering to add parentheses around the string before we parse
it. Using the parsed object in our update () method @ is then entirely natural,
because it’s just another JavaScript object.

Let’s look briefly at the server-side code required to get us this far. Listing 2.6
shows iteration 5 of our JSP file.

<jsp:directive.page contentType="application/javascript"/>
<%
String name=request.getParameter ("name") ;
%>
{
name: "<%=name%>",
initial: "<%=name.substring(0,1) .toUpperCase()%>",
likes: ["JavaScript", "Skiing", "Apple Pie" 1],
ingredients: {
apples: "3kg",
sugar: "lkg",
pastry: "2.4kg",
bestEaten: "outdoors"

As we said earlier, most of the data that we've generated here is dummy data.
What’s interesting to us here is the creation of the JSON string, which we’ve sim-
ply written out by hand, inserting variable values where appropriate.

Discussion

We’ve demonstrated in this example that parsing JSON on the client is extremely
easy, and that alone makes it a compelling possibility. However, looking back at
figure 2.4, you can see that we’ve only covered one of the four stops in the full
round-trip between client and server: the conversion of JSON to client-side
objects. For a small app like this one, what we’ve done so far is good enough, but
in larger apps, or those handling more complex data, we would want to automat-
ically handle all aspects of serialization and deserialization, and be free to con-
centrate on business logic on the server and rendering code on the client. Before
we leave JSON, let’s run through one more example, in which we execute a full
round-trip between the client and server.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

40

CHAPTER 2
How to talk Ajax

2.2.2 Round-tripping data using JSON

When we’re writing the client callback, we love JSON, because it makes every-
thing so simple. However, we passed the request data down to the server using a
standard HTTP query string, and then constructed the JSON response by hand.
If we could manage all communication between the browser and server using
JSON, we might save ourselves a lot of extra coding.

To get to that happy place, we’re going to have to employ a few third-party
libraries. So, let’s get coding, and see how happy we are when we’ve got there.

Problem

We want to apply JSON at all the interfaces between our application tiers and
HTTE, so that the client code can be written purely as JavaScript objects and the
server purely as Java (or PHP, .NET, or whatever) objects.

Solution

We can use figure 2.4 as a crib sheet, to see where the gaps in our design are. On
the browser, we've already handled step 4, the conversion of the response text
into a JavaScript object. We still need to consider the conversion of the object into
JSON on the client, though. To do this, we’ll need to use the json.js library from
www.json.org. Listing 2.7 shows how it works.

<html>
<head>
<title>Hello Ajax version 5a</title>
<style type='text/css'>
* { font-family: Tahoma, Arial, sans-serif; }
#helloTitle{ color: #48f; }
.sidebar{
background-color: #adf;
color: navy;
border: solid blue 1lpx;
width: 180px;
height: 200px;
padding: 2px;
margin: 3px;
float: left;
}
</style>
<script type='text/javascript' src='prototype.js'> </script>
<script type='text/javascript' src='json.js'> </script> Includes
<script type='text/javascript'> jso“library
window.onload = function() {

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

41

Introducing J[SON
S('helloBtn') .onclick = function() {
var name = $('helloTxt') .value;
new Ajax.Request (
"hellob5a.jsp",
(Converts object
postBody:JSON.stringify ({name:name}), to JSON
onComplete: function (xhr) {
var responseObj = JSON.parse (xhr.responseText) ; Converts
update (responseObj) ; jSONto
} object
}
)i
Y
Y
function update (obj) {
$('helloTitle').innerHTML = "<hl>Hello, <i>"+4o0bj.name+"</i></hl>";
var likesHTML = "<h5>"+obj.initial+" likes...</h5><hr/>";

for (var i=0;i<obj.likes.length;i++) {
likesHTML+=0obj.likes[i]+"
";

}

$('likesList') .innerHTML=1ikesHTML;

var recipeHTML="<h5>"+0bj.initial+"'s favorite recipe</h5>";

for (key in obj.ingredients) {
recipeHTML+=key+" : "+obj.ingredients[key]+"
";

}

S('ingrList') .innerHTML=recipeHTML;

}

</script>
</head>
<body>

<div id='likesList' class='sidebar'>

<h5>Likes</h5><hr/>

</div>

<div id='ingrList' class='sidebar'>

<h5>Ingredients</h5><hr/>

</div>

<div>

<div id='helloTitle'>

<hl>Hello, stranger</hl>

</div>

<p>Please introduce yourself by entering your name
in the box below</p>

<input type='text' size='24' id='helloTxt'></input>

<button id='helloBtn'>Submit</button>

</div>

</body>

</html>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

42 CHAPTER 2
How to talk Ajax

The first thing that we need to do is include the json.js library @. Once we've
done that, we can simplify the response-handling code by using the JSON.parse ()
method @. More importantly, though, we can reconsider the way we put together
the request.

So far, we’ve been sending GET requests to the server, passing in data on the
query string. This is fine for requesting data, but when we want to update infor-
mation or send a more complex request to the server, we’d be better off using a
POST request. POST requests have a body as well as a set of headers, and we can
populate that body with any text that we want. Here, we’re going to use JSON.

We’re still using Prototype to send the request, and we now pass in a postBody
property with the options to the Ajax.Request constructor. The value of this is the
result of calling JSON.stringify () @. stringify() takes a JavaScript object as an
argument and recurses through it, writing it out as JSON. Thus, our POST body
will not contain URL-encoded key-value pairs, as it would if sent from an HTML
form, but a JSON string, something like this:

{ name: 'dave' }

For such a simple piece of structured data, this might be considered overkill, but
we could potentially pass very complex data in this way.

Now that we've figured out the client side of the solution, let’s turn to the
server. We happen to be using Java on the server for these examples, and Java
knows nothing about JSON whatsoever. Neither do most server-side languages.
So, to make sense of the response we've just been sending, we’ll need to bring in a
third-party library.

Whatever your server-side technology, you're likely to find a JSON library to fit
it at www.json.org (scroll down to the bottom of the page). We selected Json-lib,
which is based on Doug Crockford’s original JSON for Java libraries.

Json-lib has quite a bit of work to do. JSON encodes structured data in a very
fluid way, and Java is a strongly typed language, so the two don’t sit together nat-
urally. Nonetheless, we managed to get the job done without too much trouble.
Listing 2.8 shows the not-so-gory details.

<jsp:directive.page
contentType="application/javascript"
import="java.util.*,net.sf.json.*" qa
/> Imports JSON classes
<%

String json=request.getReader () .readLine(); 4—0 Reads POST body

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Introducing J[SON 43

JSONObject jsonObj=new JSONObject (json); <) ParsesSON string
String name=(String) (jsonObj.get ("name")) ;

48 Reads parsed object
jsonObj.put("initial",

name.substring(0,1) .toUpperCase()) ; (Qib
Adds new values
String[] likes=new Stringl[]
{ "JavaScript", "Skiing", "Apple Pie" };

jsonObj.put("likes", likes) ;

Map ingredients=new HashMap () ;

ingredients.put ("apples", "3kg") ;

ingredients.put ("sugar", "1kg") ;

ingredients.put ("pastry", "2.4kg") ;

ingredients.put ("bestEaten", "outdoors") ;

jsonObj.put ("ingredients", ingredients) ; 49 Writes object as JSON
%><%=json0bj%>

|

In order to use the Json-lib classes in our project, we need to import the
net.sf.json package, which we do in the <jsp:directive.page> tag @. Now, on to
the code.

The first challenge that we face is decoding the POST body. The Java Servlet
API, like many web technologies, has been designed to make it easy to work with
POST requests sent from HTML forms. With a JSON request body, we can’t use
HttpServletRequest.getParameter (), but need to read the JSON string in the
request via a java.io.Reader @. Similar capabilities are available for other tech-
nologies. If you're using PHP, use the $HTTP_RAW_POST_DATA variable. If you're
using the .NET libraries, you'll need to get an InputStream from the HttpRequest
object, much as we’ve done here with our Java classes.

Back to the Java now. Once we've got the JSON string, we parse it as an object
©. Because of the fundamental disjoint between loosely typed JSON and strictly
typed Java, the Json-lib library has defined a JSONObject class to represent a
parsed JSON object. We can read from it using the get () method @ and extract
the name from the request.

Now that we've deserialized the incoming JSON object, we want to manipulate
it, and then send it back to the client again. The JSONObject class is able to con-
sume simple variable types such as strings, arrays, and Java Maps (that is, associa-
tive arrays) @, to add extra data to the object. Once we’ve modified the object, we
serialize it again @, sending it back to the browser in the response.

And that’s it! We've now sent an object from the client, modified it on the
server, and returned it back to the client again.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

44

2.3

2.3.1

CHAPTER 2
How to talk Ajax

Discussion

This has been the most complex example so far, demonstrating a way of commu-
nicating structured objects back and forth over the network on top of the text-
based HTTP protocol. Because both the client and server can understand the
JSON syntax, with a little help from some libraries, we haven’t had to write any
parsing code ourselves. However, as we noted, JSON is suited for use with loosely
typed scripting languages, and so there was still some translation required. The
goal of a system like this is to be able to serialize and deserialize our domain
objects over the network. If our domain objects graph is written in Java (or C#,
say), then we still need to manually translate them into generic hashes and arrays
before they can be passed to the JSON serializer. The clumsiest piece of coding in
our round-trip was in the JSP, where we assembled the Maps and lists of data for
the JSONODbject. This problem is strongly emphasized in the case of Java, which
lacks a concise syntax for defining associative arrays in particular, compared with
Ruby or PHP, for example.

From square brackets to angle brackets

There is another text-based format that can be understood by both client and
server: XML. Most server-side languages have good support for XML, so we might
find that we have an easier time working with XML than with JSON on the server.
In the next section, we’ll look at XML and Ajax, and see whether that is the case.

Using XML and XSLT with Ajax

XML is a mature technology for representing structured data, supported by most
programming languages either as a core part of the language or through well-
tested libraries or extensions. In the remainder of this chapter, we’ll look at how
various XML technologies work with XML, and complete our survey of basic Ajax
communication techniques.

The XMLHttpRequest object that we’ve been using for our Ajax requests has
special support for XML built into it. So far, we’ve been extracting the body of the
HTTP response as text and parsing it from there. JavaScript in the web browser
doesn’t have a standard XML parser available to it, but the XHR object can parse
XML responses for us, as we'll see in the next example.

Parsing server-generated XML

So far, we've had the server generate HTML, JavaScript, and JSON responses for
us in various versions of our Hello World application. All of these formats are

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Using XML and XSLT with Ajax 45

designed to appeal to the browser rather than the server. XML, in contrast, is
often used to communicate between server processes, in a variety of technologies
ranging from RSS syndication feeds to web service protocols, such as XML-RPC
and SOAP. If we’re transmitting information from our domain objects up to the
client, then many server-side technologies provide support for serializing and
deserializing objects as XML.

In any of these scenarios, we may find that it’s easy to transmit data as XML,
from the perspective of the server. If this is going to be a useful way forward, then
we’ll also need to handle the XML on the client. We’ll start by looking at the built-
in support for XML offered by the XHR object. XML, like JSON, is a format for
exchanging structured data. The best way to compare the two is to set them the
same task, so we’ll follow the lead from the previous section and supply a list of
likes and a favorite recipe, as shown in figure 2.6.

D likes... D's favorite recipe is apple

pie

) Please introduce yourself by
JavaScript apples : 3kg entering your name in the box
Skiing sugar : 1kg below
Apple Pie pastry : 2.4kg
dave
Best Faten Outdoors! (Submit)
Mmm!

Figure 2.6 Hello World example version 6 after parsing XML response

Problem

The server is sending structured data as XML. We need to parse this data on
the client.

Solution

The first step in handling XML on the client side is to use the XHR’s ability to
parse the response into a structured XML document. The second step is to read
(and potentially write) the parsed XML document using the W3C standard known
as the Document Object Model (DOM). In JavaScript, we already have an imple-
mentation of the DOM for working with HTML web pages programmatically. The
good news, then, is that we can leverage these existing skills to work with XML
documents delivered by Ajax. Listing 2.9 shows the full code for version 6 of our
Hello World application.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

46 CHAPTER 2
How to talk Ajax

Listing 2.9 hello6.html

<html>

<head>

<title>Hello Ajax version 6</title>
<style type='text/css'>

* { font-family: Tahoma, Arial, sans-serif;

#helloTitle{ color: #48f; }
.sidebar({
background-color: #adf;
color: navy;
border: solid blue 1lpx;
width: 180px;
height: 200px;
padding: 2px;
margin: 3px;
float: left;
}
</style>

<script type='text/javascript' src='prototype.js'> </script>

<script type='text/javascript'>
window.onload = function() {
S('helloBtn') .onclick = function() {
var name=$ ('helloTxt') .value;
new Ajax.Request (
"hello6.jsp?name="+encodeURI (name) ,
{
method: "get",
onComplete: function (xhr) {

var responseDoc = xhr.responseXML;

update (responseDoc) ;

function update (doc) {

var personNode = doc
.getElementsByTagName ('person') [0];

var initial = personNode
.getAttribute('initial');

var nameNode = personNode
.getElementsByTagName ('name') [0];

var name = nameNode.firstChild.data;

var likesNode = personNode
.getElementsByTagName ('likes') [0];

var likesList = likesNode
.getElementsByTagName ('item') ;

var likes = [];

for (var i=0;i<likesList.length;i++) {

downloaded from: lib.ommolkefab.ir

4?) Reads response as XML

Extracts data
using DOM

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Using XML and XSLT with Ajax 47

var itemNode = likesList[il]; A
likes[i] = itemNode
.firstChild.data;
}
var recipeNode = personNode
.getElementsByTagName ('recipe') [0];
var recipeNameNode = recipeNode
.getElementsByTagName ('name') [0] ;
var recipeName = recipeNameNode.firstChild.data;
var recipeSuggestNode = recipeNode
.getElementsByTagName (' serving-suggestion') [0];

var recipeSuggest = recipeSuggestNode.firstChild.data; \6 Extracts data

var ingredientsList = recipeNode using DOM
.getElementsByTagName ('ingredient') ;

var ingredients = {};

for(var i=0;i<ingredientsList.length;i++) {
var ingredientNode = ingredientsList[i];
var gty = ingredientNode.getAttribute("qgty");
var iname = ingredientNode.firstChild.data;
ingredients[iname] = gty;

$('helloTitle') .innerHTML =
"<hl>Hello, <i>"
+name
+"</i></hl>";
var likesHTML = '<hb5>"'
+initial
+' likes...</h5><hr/>"';
for (var i=0;i<likes.length;i++) {
likesHTML += likes[i]+"
";
}
$('likesList').innerHTML = likesHTML;

var recipeHTML = "<h5>" /e Assembles HTML
+initial
+"'s favorite recipe is "
+recipeName
+"</h5>";

for (key in ingredients) {
recipeHTML += key+" : "
+ingredients[key]
+"
";
}
recipeHTML+="
<i>"
+recipeSuggest
+h</i>";
$('ingrList') .innerHTML=recipeHTML;

</script>
</head>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

48 CHAPTER 2
How to talk Ajax

<body>

<div id='likesList' class='sidebar'>

<h5>Likes</h5><hr/>

</div>

<div id='ingrList' class='sidebar'>

<h5>Ingredients</h5><hr/>

</div>

<div>

<div id='helloTitle'>

<hl>Hello, stranger</hl>

</div>

<p>Please introduce yourself by entering your name
in the box below</p>

<input type='text' size='24' id='helloTxt'></input>

<button id='helloBtn'>Submit</button>

</div>

</body>

</html>

|

The first step here is by far the easiest. We can retrieve the response as an XML
document object simply by reading the responsexML property @ rather than
responseText. We've then rewritten our update() function to accept the XML
object. All we need to do now is read the individual data elements from the
XML object @ and render the data as HTML content @.

In practice, neither of these steps is difficult, but they are rather lengthy.
Using the DOM methods and properties such as getElementsByTagName (), get-
Attribute(), and firstchild, we can drill down to the data we want, but we
need to do it step by step. These properties and methods are identical to the
ones that we use when working with HTML documents, so we won't deal with
them individually here. If you've used the DOM to manipulate HTML, every-
thing should look familiar. If you haven’t, then there is plenty of information on
these methods online.

Once we have extracted the data that we need, then we simply assemble the
HTML content necessary to update the UI.

We’ve already discussed the many scenarios under which it might make sense
for the server to generate XML. To keep things simple in this example and avoid
in-depth coverage of technologies that only apply to a single programming lan-
guage, we've simply generated the XML by hand in our JSP. Listing 2.10 presents
the JSP for the sake of completeness.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Using XML and XSLT with Ajax ‘ 49

Listing 2.10 hello6.jsp

<jsp:directive.page contentType="text/xml"/>
<%
String name=request.getParameter ("name") ;
%>
<person initial="<%=name.substring(0,1) .toUpperCase()%>">
<name><! [CDATA [<%=name%>]] ></name>
<likes>
<item>JavaScript</item>
<item>Skiing</item>
<item>Apple Pie</item>
</likes>
<recipe>
<name>apple pie</name>
<ingredient gty="3kg">apples</ingredient>
<ingredient gty="1lkg">sugar</ingredient>
<ingredient gty="2.4kg">pastry</ingredient>
<serving-suggestion>
<! [CDATA[Best Eaten Outdoors! Mmm!]]>
</serving-suggestion>
</recipe>
</person>

Note that we’ve set the contentType of our response as text/xml in this case.
We’ve been doing this throughout our examples, largely as a show of good hab-
its. In this case, though, we have a strong practical reason for doing so. If we
don’t set the MIME type to some type of xml (either text/xml or application/
xml will do), then the responsexML property of the XHR object won’t be popu-
lated correctly.

The rest of the JSP is unremarkable. To a seasoned Java and XML coder, it
might also look overly simplistic, with the XML being handwritten as text. A more
robust solution would be to use a library like JDOM to generate the XML docu-
ment programmatically, and we encourage the reader to do that in practice.
However, we've left it simple here—maybe painfully simple—to show the intent
of what we’re doing without getting too deeply into Java-specific libraries. After
all, our main aim in this book is to teach client-side techniques, and our choice of
Java rather than PHP, Ruby, or .NET was essentially arbitrary.

So, getting back to the code, we've simply created a template of the XML doc-
ument, most of which contains dummy data, and added in a few dynamic values
along the way. Let’s move on to evaluate our experience with this example.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

50

2.3.2

CHAPTER 2
How to talk Ajax

Discussion

Our first encounter with XML and Ajax has been rather mixed. Initially, things
looked pretty good, given the special support for XML baked into the XHR object.
However, manually walking through the XML response using the DOM was rather
lengthy and uninspiring. Experience of this sort of coding has been sufficient to
put a lot of developers off XML in favor of JSON.

The DOM is a language-independent standard, with implementations in Java,
PHP, C++, and .NET, as well as the JavaScript/web browser version that we’re
familiar with. When we look at the use of XML outside of the web browser, we find
that the DOM is not very widely used and that other XML technologies exist that
make working with XML much more palatable. Thankfully, these technologies are
available within the browser too, and we’ll see in the next section how we can use
them to make Ajax and XML work together in a much happier way.

Better XML handling with XSLT and XPath

The XML techniques that we saw in the previous example represent the core func-
tionality that is available free of charge via all implementations of the XHR object.
Working directly with the DOM is not pleasant, especially if you're used to more
modern XML-handling technologies in other languages. The most common of
these tools are XPath queries and Extensible Stylesheet Language Transforma-
tions (XSLT) transforms.

XPath is a language for extracting data out of XML documents. In listing 2.9,
we had to drill down through the document one node at a time. Using XPath, we
can traverse many nodes in a single line. XSLT is an XML-based templating lan-
guage that will allow us to generate any kind of content, such as, for instance,
HTML, from our XML document more easily, and also separate out the logic
from the presentation rather better than we’ve been doing so far. XSLT style
sheets (as the templates are known—no relation to Cascading Style Sheets) use
XPath internally to bind data to the presentation.

The good news is that XSLT transforms and XPath queries are available on
many browsers, specifically on Firefox and Internet Explorer. Even better, these
are native objects exposed to the JavaScript engine, so performance is good.
Safari hasn’t yet provided a native XSLT processor, so this isn’t a good option if
support for a (non-Firefox) Mac audience is important.

In the following example, we’ll let Prototype have a well-earned rest, and use
the Sarissa library to demonstrate simple cross-browser XSLT and XPath as a way
of simplifying our XML-based Hello World example.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Using XML and XSLT with Ajax 51

Problem

Working with the DOM on our Ajax XML responses is slow and cumbersome.
We want to use modern XML technologies to make it easy to develop with Ajax
and XML.

Solution

Use XPath and XSLT to simplify things for you. Both Internet Explorer and
Firefox support these technologies, but in quite different ways. As with most
cross-browser incompatibilities, the best strategy is to use a third-party library
to present a unified front to our code. For this example, we've chosen Sarissa
(http://sarissa.sf.net), which provides cross-browser wrappers for many aspects
of working with XML in the browser. Listing 2.11 shows the client-side code for
our XSLT and XPath-powered app.

Listing 2.11 hello7.html

<html>
<head>
<title>Hello Ajax version 7</title>
<style type='text/css'>
* { font-family: Tahoma, Arial, sans-serif; }
#helloTitle{ color: #48f; }
.sidebar({
background-color: #adf;
color: navy;
border: solid blue 1lpx;
width: 180px;
height: 200px;
padding: 2px;
margin: 3px;
float: left;
}
</style>
<script type='text/javascript'
src='sarissa.js'> </script>
<script type='text/javascript' |mE°n5
src='sarissa_ieemu_xpath.js'> </script> §3r5§?
<script type='text/javascript' libraries
src='sarissa_dhtml.js'> </script>
<script type='text/javascript'>

var xslDoc=null;

window.onload=function () {

xslDoc=Sarissa.getDomDocument () ; Loads XSL
xslDoc.load("recipe.xsl") ; style sheet

document .getElementById('helloBtn')

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

52 CHAPTER 2
How to talk Ajax

.onclick = function() {
var name = document.getElementById('helloTxt') .value;
var xhr = new XMLHttpRequest() ;
xhr.open ("GET", Creates XHR
"hello7.jsp?name=" object
+encodeURI (name) , true) ;
xhr.onreadystatechange = function() { F‘) Assigns callback
if (xhr.readyState == 4){ function
update (xhr.responseXML) ;
}
}i
xhr.send("") ;
}i
}i

function update (doc) {

var initial = doc.selectSingleNode (
' /person/@initial’
) .value; Selects individual
var name = doc.selectSingleNode (nodes
' /person/name/text ()"
) .nodeValue;
document .getElementById('helloTitle"')
.innerHTML = "<hl>Hello, <i>"
+name+"</i></hl>";
var likesList = doc Selects multiple
.selectNodes (' /person/likes/item') ; nodes

var likes = []1;

for (var i=0;i<likesList.length;i++) {
var itemNode = likesList[i];
likes[i]=1itemNode

.firstChild.data;

}

var likesHTML='<h5>"
+initial+' likes...</h5><hr/>"';

for (var i=0;i<likes.length;i++) {
likesHTML += likes[il+"
";

}

document .getElementById('likesList"')
.innerHTML = likesHTML;

var personNode = doc.selectSingleNode (' /person') ;

var xsltproc = new XSLTProcessor() ;
xsltproc.importStylesheet (xslDoc) ;

Sarissa.updateContentFromNode (Invokes XSLT
personNode, transform
document .getElementById('ingrList'),
xsltproc

)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Using XML and XSLT with Ajax 53

</script>

</head>

<body>

<div id='likesList' class='sidebar'>
<h5>Likes</h5><hr/>

</div>

<div id='ingrList' class='sidebar'>

<h5>Ingredients</h5><hr/>

</div>

<div>

<div id='helloTitle'>

<hl>Hello, stranger</hl>

</div>

<p>Please introduce yourself by entering your name
in the box below</p>

<input type='text' size='24' id='helloTxt'></input>

<button id='helloBtn'>Submit</button>

</div>

</body>

</html>

|

The first thing that we need to do is to import the Sarissa libraries @. As well as
importing the core library, we import a support library that provides IE-style
XPath under Firefox, and a helper library that offers some convenience methods
for inserting XSLI-generated content into web pages.

Generating content using XSLT requires two XML documents from the server:
the style sheet (that is, the template) and the data. We’ll fetch the data on demand,
as before, but can load the style sheet up front when we load the app @. We do this
using a DomDocument object rather than the XHR. Once again, Sarissa provides
us with a cross-browser wrapper.

To load the XML data, we will use an XHR object. Because we’ve put Prototype
aside for this example, we need to create the XHR object by hand @ and assign
the callback @. Nonetheless, the code is simpler than we saw in chapter 1,
because we can access a native XHR object, even on Internet Explorer. Internally,
Sarissa does a bit of object detection, and if no native XHR object can be found, it
will create one for us that secretly creates an ActiveX control and uses it.

So, once we’ve got our XHR object, we can pass a DOM object to our update ()
function. This was where our troubles started when using the DOM. Using XPath,
we can drill down through several layers of DOM node in a single line of code. For
example, the XPath query

/person/name/text ()

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

54 CHAPTER 2
How to talk Ajax

selects the internal text of a <name> tag nested directly under a <person> tag at the
top of the document. XPath is too big a subject for us to tackle in depth here. We
suggest http:/zvon.org as a good starting place for newcomers to XPath and
XSLT. The DOM Node methods selectSingleNode () @ and selectNodes () @ are
normally only found in Internet Explorer, but the second Sarissa library that we
loaded has provided implementations for Firefox/Mozilla. We're using XPath to
extract the name data and the list of likes, and constructing the HTML content for
those regions of the screen manually, as they’re relatively straightforward. The
recipe section is more complex, so we’ll use that to showcase XSLT.

The final step is to perform the XSLT transform @. The XSLTProcessor object
is native to Mozilla, and provided under IE by Sarissa. We pass it a reference to
the style sheet, and then call a method updateContentFromNode (). This helper
method, provided by the third Sarissa library that we loaded, will pass the data
(i.e., personNode) through the XSLT processor and write the resulting HTML into
the specified DOM node (i.e., ingrList).

To make this work, of course, we also need to provide an XSL style sheet.
That’s shown in listing 2.12.

<?xml version="1.0"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/
Transform">

<xsl:output method="xml"/>

<xsl:template match="/person">

<div>

<h5><xsl:value-of select='@initial'/>'s

favorite recipe is

<xsl:value-of select='recipe/name'/></h5>
<p><xsl:apply-templates select="recipe/ingredient" /></p>
<p><i><xsl:value-of select='recipe/serving-suggestion'/></i></p>
</div>
</xsl:template>

<xsl:template match="ingredient">
<xsl:value-of select='@qgty'/> : <xsl:value-of select='.'/>

</xsl:template>

</xsl:stylesheet>
||

Our XSL style sheet is quite straightforward. It’s a mixture of ordinary XHTML
markup, and special tags prefixed with xs1, indicating the XSL namespace. These

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Using XML and XSLT with Ajax 55

are treated as processing instructions. <xs1:template> tags specify chunks of con-
tent that will be output when a node matching the XPath query in the match
attribute is encountered. <xs1:value-of> prints out data from the matched nodes,
again using XPath expressions. The <xsl:apply-templates> tag routes nodes to
other template tags for further processing. In this case, each ingredient node will
be passed to the second template from the first, generating a list.

Again, we don’t have space for a full exposition of XSLT style sheet rules here.
If you wish to know more, we recommend you visit http://zvon.org.

Finally, let’s turn briefly to the server side. The JSP used in this example is
identical to that from the previous example, as presented in listing 2.10. The only
changes that we've introduced have been in the client code.

Discussion

Using XSLT and XPath has certainly simplified our client-side XML-handling
code. In a more complex application, these technologies will scale more easily
than the DOM in terms of coding effort. We recommend that anyone considering
using Ajax with XML investigate these technologies.

In our section on JSON, we discussed the notion of round-tripping struc-
tured data between the client and the server. Sarissa promotes this approach,
using XML as the interchange format, as it also supports cross-browser serializa-
tion of XML objects. As we stated earlier, almost any server-side technology will
provide support for serializing and deserializing XML, too. We won’t explore a
full example here, but the principle is similar to the JSON case. When using
JSON with Java, we noted that a fair amount of manual work was required to
construct the JSON response because of the mismatch between loosely typed
JSON and strictly typed Java. The same issues exist when converting between
Java and XML, but the problem space is better understood, and out-of-the-box
solutions such as Castor and Apache XMLBeans are available.

We’ve presented Sarissa as a one-stop shop for these technologies. It isn’t the
only game in town. If you only want XPath queries, then the mozXPath.js library
(http://kmOtiOn.blunted.co.uk/mozXPath.xap) provides a lightweight alternative,
with support for the Opera browser as well. And if you like the look of XSLT but
need it to work on Safari, then you can try Google’s AJAXSLT, a 100 percent Java-
Script XSLT engine (http://goog-ajaxslt.sf.net). Be warned, though, that AJAXSLT
is slow compared to the native engines in IE and Mozilla and won’t support the
full XSL namespace, so you'll need to write your style sheets with the limitations
of the library in mind and keep them reasonably small.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

56 CHAPTER 2
How to talk Ajax

We’re nearly done with our review of Ajax technologies. In the final section,
we’ll explore another Internet technology that makes use of XML, SOAP web ser-
vices, and see how Ajax can interface with that.

2.4 Using Ajax with web services

In this section, we will see how to call web services running on a remote server
over SOAP. After all, what is a web service but XML data being passed back and
forth? The XHR object is ideally suited for such a task and makes invoking remote
methods over SOAP less of a daunting task than it may seem.

Internet Explorer and the Mozilla versions of browsers all have native objects
that can be used to invoke web services. Sadly, these objects are not portable
between browsers; the developer is left to write a custom framework that can
choose the proper objects to invoke. Microsoft maintains several pages dedicated
to its version of browser-side SOAP at http:/msdn.microsoft.com/workshop/
author/webservice/overview.asp. Microsoft’s implementation is based on both Java-
Script and VBScript. Mozilla explains their version at www.mozilla.org/projects/
webservices/; more information can also be found at http://developer.mozilla.org/
en/docs/SOAP_in_Gecko-based Browsers. Their version of browser-side SOAP is
accessible through native objects that can be constructed on the browser side.

Fortunately, there is another way. Instead of writing a high-level API that can
make use of either Internet Explorer or Mozilla objects, we can create our own
library that uses XMLHttpRequest to exchange XML, and that can parse and
generate the SOAP messages. Such a library would also allow us to run our code
on browsers that do not supply either the Microsoft or Mozilla SOAP APIs but
that do have the XHR object. The kind people at IBM have created just such a
library and have named it ws-wsajax. It can be found at www.ibm.com/developer-
works/webservices/library/ws-wsajax/. We will be using this library for the remain-
der of this section.

We’ve simplified the UI for this example, removing the recipe section. Passing
in the name will return a map with three entries: the name, the initial, and the list
of likes. Figure 2.7 shows the UI for this example.

This section assumes some familiarity with SOAP and SOAP-RPC. Once again,
there are several books available, as well as many good tutorials online, that cover
this topic in depth.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Using Ajax with web services 57

Hello, stranger

Likes

Please introduce yourself by entering your name in the box below

|

Figure 2.7 Hello World version 8. We've simplified the presentation here, removing
the recipe element from the UL

Problem

You need to perform SOAP-RPC from a web browser. You need to display the
resulting SOAP response as HTML.

Solution

In this section, we will write a small client using IBM’s SOAP toolkit to access our
own Hello World SOAP service, written using Apache’s Axis framework (http://
ws.apache.org/axis/). Let’s begin by defining our web service. Axis makes it very
easy to prototype web services by writing Java classes in files with a special file-
name extension: .jws. Like JSPs, . jws files will be compiled on demand by a spe-
cial servlet, in this case the AxisServlet, and, while not robust enough for
production use, serve the purposes of our simple demonstration admirably. List-
ing 2.13 shows a simple . jws file for our Hello World service.

Listing 2.13 HelloWorld.jws

import java.util.Map;
import java.util.HashMap;

/**
* class to list headers sent in request as a string array
*/

public class HelloWorld ({

public Map getInfo (String name) {
String initial=name.substring(0,1) .toUpperCase() ;
String[] likes=new Stringl[]
{ "JavaScript", "Skiing", "Apple Pie" };
Map result=new HashMap() ;
result.put ("name", name) ;
result.put("initial",initial);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

58 CHAPTER 2
How to talk Ajax

result.put ("likes", likes) ;
return result;

The class contains a single method, which will be mapped to a SOAP-RPC func-
tion. The function takes one argument, of type String, and returns an associative
array (referred to in Java as a Map).

Pointing our browser at HelloWorld. jws will return a Web Service Description
Language (WSDL) file, which the SOAP client, such as the IBM library, can inter-
rogate in order to build up client-side stubs, allowing us to call the service. List-
ing 2.14 shows the WSDL generated by this class.

Listing 2.14 WSDL for HelloWorld.jws

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
targetNamespace="http://localhost:8080/AiP2/HelloWorld.jws"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="http://localhost:8080/AiP2/HelloWorld. jws"
xmlns:intf="http://localhost:8080/AiP2/HelloWorld. jws"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!--WSDL created by Apache Axis version: 1.4
Built on Apr 22, 2006 (06:55:48 PDT)-->
<wsdl: types>
<schema
targetNamespace="http://xml.apache.org/xml-soap"
xmlns="http://www.w3.0rg/2001/XMLSchema">
<import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
<complexType name="mapItem">
<sequence>
<element name="key" nillable="true" type="xsd:anyType"/>
<element name="value" nillable="true" type="xsd:anyType"/>
</sequence>
</complexType>
<complexType name="Map">
<sequence>
<element maxOccurs="unbounded" minOccurs="0"
name="item" type="apachesoap:mapIltem"/>
</sequence>
</complexType>
</schema>
</wsdl:types>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Using Ajax with web services 59

<wsdl :message name="getInfoResponse">
<wsdl :part name="getInfoReturn" type="apachesoap:Map"/>
</wsdl:message>
<wsdl :message name="getInfoRequest">
<wsdl:part name="name" type="xsd:string"/>
</wsdl:message>
<wsdl:portType name="HelloWorld">
<wsdl:operation name="getInfo" parameterOrder="name">
<wsdl:input message="impl:getInfoRequest"
name="getInfoRequest" />
<wsdl:output message="impl:getInfoResponse"
name="getInfoResponse" />
</wsdl:operation>
</wsdl :portType>
<wsdl:binding name="HelloWorldSoapBinding" type="impl:HelloWorld">
<wsdlsoap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="getInfo">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getInfoRequest">
<wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://Defaul tNamespace" use="encoded"/>
</wsdl:input>
<wsdl:output name="getInfoResponse">
<wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://localhost:8080/AiP2/HelloWorld. jws"
use="encoded" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="HelloWorldService">
<wsdl:port binding="impl:HelloWorldSoapBinding"
name="HelloWorld">
<wsdlsoap:address
location="http://localhost:8080/AiP2/HelloWorld.jws" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

The WSDL includes details on the argument types and return types of each RPC
call, bindings to the functions, and other details needed by the client and server
to specify the nature of the interchange. Fortunately, the WSDL is generated for us
automatically by Axis and is consumed by the IBM toolkit, so we don’t need to
understand every line in it.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

60 CHAPTER 2
How to talk Ajax

Let’s turn now to our client-side code. Listing 2.15 shows the full listing for
version 8 of our Hello World app.

Listing 2.15 hello8.html

<html>
<head>
<title>Hello Ajax version 8</title>
<style type='text/css'>
* { font-family: Tahoma, Arial, sans-serif; }
#helloTitle{ color: #48f; }
.sidebar{

background-color: #adf;

color: navy;

border: solid blue 1px;

width: 180px;

height: 200px;

padding: 2px;

margin: 3px;

float: left;
}

</style>

<script type='text/javascript' £ Imports Prototype
src='prototype_v131l.js'> </script>

<script type='text/javascript' src='ws.Jjs'> </script> Imports IBM

<script type='text/javascript'> WS library

window.onload=function () {
$('helloBtn') .onclick = function() {
var name=$ ('helloTxt') .value;

var wsNamespace = '../axis/HelloWorld.jws'; w Creates client

var wsCall = new WS.Call (wsNamespace) ; from WSDL
var rpcFunction = new

WS.QName ('getInfo', wsNamespace) ; <1—o References RPC function
wsCall.invoke_rpc (

rpcFunction,

[{name: 'name', value:name}], < Passes RPC arguments

null,

function(call, envelope) {

var soapBody = envelope.get_body () ; % Defines callback

var soapMap = soapBody
.get_all_children() [1].asElement () ;

var itemNodes = soapMap
.getElementsByTagName ('item') ;

var initial = "";

var likes = [];

for (var i=0;i<itemNodes.length;i++) {
var itemNode = itemNodes[i];
var key = itemNode

.getElementsByTagName ('key') [0]

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Using Ajax with web services

.firstChild.data;
if (key == 'initial'){
initial = itemNode
.getElementsByTagName ('value') [0]
.firstChild.data;
telse if (key == 'likes'){
var likeNodes = itemNode
.getElementsByTagName ('value') [0]
.getElementsByTagName ('value') ;
for (var j=0;j<likeNodes.length;j++) {
likes[likes.length] = likeNodes|[]]
.firstChild.data;

}

update (initial, likes) ;

function update(initial,likes) { <1—0 Updates Ul
var content = "<h5>"+initial
+" likes...</h5><hr/>";
for (var i=0;i<likes.length;i++) {
content += likes[i]+"
";
}
$('likesList') .innerHTML = content;
}

</script>
</head>
<body>

<div id='likesList' class='sidebar'>

<h5>Likes</h5><hr/>

</div>

<div>

<div id='helloTitle'>

<hl>Hello, stranger</hl>

</div>

<p>Please introduce yourself by entering your name
in the box below</p>

<input type='text' size='24' id='helloTxt'></input>

<button id='helloBtn'>Submit</button>

</div>

</body>

</html>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

62 CHAPTER 2
How to talk Ajax

There’s a lot going on here, so let’s take it line by line. First, we need to import the
IBM library @. Because this library is built on top of Prototype, we include that
too. It relies on an older version of Prototype (v1.3.1), so we've renamed it to
avoid confusion with the rest of our examples @.

To consume the Web Service, the first thing that we need to do is reference the
WSDL and feed it to a wS.call object @. We then extract a reference to the spe-
cific function, as a ws.QName object @. We can call this object, providing the input
parameters as a JavaScript object (which we’ve defined inline here using JSON)
@©. and a callback function to parse the response @. Parsing the response
requires a lot of node traversal. We’re working with SOAP nodes rather than DOM
nodes here, but the SOAP nodes can be converted to DOM nodes at any point.
We’ve omitted any use of XPath here to keep the example simple, but wading
through a larger SOAP response would certainly merit investigating use of XPath.
Once we have extracted the data from the response, we pass it to our update ()
function @, as usual. Again, we’ve opted for simplicity here, but there’s nothing
to stop you from using XSLT transforms on the SOAP response once you've got
ahold of it.

Discussion

We’ve shown that it’s possible to use SOAP with Ajax, provided of course that the
SOAP service is coming from the same server as the Ajax client, and therefore
honoring the browser’s same-origin security restrictions. If your back-end system
already generates SOAP, then this is a valid way of reusing existing resources.
However, we’'d be tempted to say that SOAP, as an architecture for a green-field
development, is unnecessarily complex if interoperability with external entities is
not also a requirement.

The IBM SOAP toolkit made it very easy to call the service, but somewhat less easy
to parse the response. SOAP-RPC responses typically involve several namespaces
and are complex to decode. Document/literal-style SOAP bindings generally pro-
vide simpler responses, which might be a better fit for this toolkit in production.

As always, caveat programmer. If you need a quick solution, SOAP may not be
the way to go. However, if you are creating a large application that you foresee will
require many updates and extensions, as well as integration with many aspects of
your organization, and you have the time and skills to do it, browser-side SOAP
may benefit you.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Summary 63

2.5 Summary

By the end of chapter 1, we’d figured out how to make an Ajax request, and
looked at ways of simplifying the process by using third-party libraries. We’ve cov-
ered a lot of ground since then and shifted our focus from simply being able to
make a request, to looking at how we want to structure the conversation between
client and server over the lifetime of the application.

We’ve looked at several techniques in this chapter and evaluated the strengths
and weaknesses of each. We began by looking at generating JavaScript code on
the server and saw the benefits of writing generated code against a high-level API
in order to prevent excessive tangling between the client and server codebases.

We moved on from there to look at ways of passing structured data between
the client and server, starting with JSON and then continuing on to XML. In each
case, we began by simply looking at how to parse the data when it arrived from
the server, and then moved on to consider the full round-trip of data between cli-
ent and server. By round-tripping the data, and having library code to serialize
and deserialize at both ends, we can free ourselves up to write business code
rather than low-level plumbing.

In contrast to JSON and XML, JSON has a closer affinity with the client side.
We struggled with our client-side XML initially but made significant advances
when we picked up XPath and XSLT. There is no clear winner between the two
technologies, and the decision remains a matter of personal taste, and depends
on whether you are integrating with legacy systems that naturally fit better with
either JSON or XML.

In the next chapter, we’ll look at JavaScript as the programmatic glue that binds
the entire Ajax app together. We’ll discuss recent advances in thinking about Java-
Script, and how they can help you to write better-structured code for your Ajax
app. We'll conclude with a discussion of some of the popular Ajax frameworks.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Object-oriented
JavaScript
and Prototype

This chapter covers

m Working with core JavaScript types

m Writing effective object-oriented JavaScript
m Using the Prototype library

64

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Object-oriented JavaScript and Prototype 65

If you are like most web developers, you probably got your start with JavaScript by
writing small and simple scripts on fairly basic web pages. Perhaps it was to create
image rollovers, or to perform simple form validation on entry fields prior to
form submission.

But if you're reading this book, your web application skills have probably pro-
gressed far beyond those humble beginnings—and so has the nature of the script
being written for the pages of your web applications.

Given the nature of modern web applications, the amount and complexity of
the code that goes into them (whether on the server or the client side of the
equation) is steadily growing. And once you add Ajax to the mix, the complex-
ity and sheer amount of client-side code gets a significant bump for even mod-
est applications.

This creates a compelling need for JavaScript code to “grow up” and be
treated with the same level of care and respect previously reserved for code writ-
ten in server-side languages such as Java, C++, and C#. Organizing our client-
side code with the same care as its server-side counterparts not only helps us
maintain our own sanity with regard to its creation, it also facilitates readability,
reuse, testing, extensibility, and the maintainability of the code.

One prevalent methodology used to organize the code that is common to all
the server-side languages we’ve mentioned is object orientation. While JavaScript s
an object-oriented (OO) language, it does lack some of the OO concepts and
capabilities that other object-oriented languages possess. But that doesn’t mean
we cannot benefit from the lessons and concepts that are so easily available to
such languages. JavaScript may not have all the OO bells and whistles that Java or
C++ can boast about, but it has some unique features of its own that those lan-
guages lack. In this chapter you’ll learn exactly what those features are, and how
they can be exploited to use object-oriented concepts and techniques to bring
order to your client-side JavaScript.

The pedantic might argue that what we discuss in this chapter is not truly
object-oriented code but rather object-orientation-influenced code. Whatever.
We’ll call it object-oriented JavaScript and we’ll all know what we really mean.

First, we’ll take a look at the unique aspects of JavaScript that make such code
possible, and learn how to use it to our advantage to create better-organized
code using OO techniques and concepts. Then we’ll introduce a freely available
JavaScript library named Prototype and see how it can help us write better Java-
Script, with a focus on better object-oriented JavaScript.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

66

3.1

3.1.1

CHAPTER 3
Object-oriented JavaScript and Prototype

Object-oriented JavaScript

It shouldn’t come as a surprise to anyone that the concept of an object is the core
of any object-oriented language. And so it is with JavaScript, but in ways that
might seem rather mysterious or just downright strange to anyone familiar with
the more traditional OO languages such as Java or C++.

The key to understanding how to best make use of JavaScript’s OO features
lies not only with a good understanding of how the JavaScript object works, but
also in a thorough understanding of how JavaScript functions operate. Indeed, it
is the rather unique and interesting fashion in which functions are implemented
that is crucial to grasping how to best make use of JavaScript’s features to rein in
complex code.

As such, we’ll explore both the concept of the JavaScript object as well as Java-
Script functions in this section. After an overview of the features and operation of
each, we’ll show how these concepts can be combined to form the basis of what we
are calling object-oriented JavaScript.

Let’s start by taking a look at the fundamental concepts behind the Java-
Script object.

Object fundamentals

The first step in wrapping your head around the concept of a JavaScript object is
to rid your mind of any preconceived notions about how the Object class—usu-
ally the basic unit from which all other objects are built—is implemented in
other languages. Even though in JavaScript the Object class is the fundamental
unit from which all other objects are built, the resemblance doesn’t go much fur-
ther than that.

Perhaps the best way to think of objects in JavaScript is as an unordered col-
lection of key-value pairs, very similar to the concept of a Map or Dictionary in
other languages. This pair is called a property, and consists of a key or name that
identifies the property, and a value that the property possesses.

You might think that properties are similar to member variables of other lan-
guages, but because JavaScript is not a declarative language in which the mem-
bers of a class need to be declared, properties of objects are created on the fly by
simply assigning a value to them. Moreover, the data type of these properties is
dynamic rather than predeclared. A property takes on the data type of any value
assigned to it, and it can even change data types over its lifetime.

Let’s take a look at a simple example. Suppose we wanted to keep track of our
collection of music CDs. Each object that represents a CD will have properties that

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Object-oriented JavaScript 67

record its title, the artist or band, and the number of the shelf or drawer that we
keep it in. Did we mention that we have a lot of these?

There are, of course, many other attributes of a CD that we could create prop-
erties for. But for illustrative purposes, these three will suffice. Setting up such an
object might look like the code shown in listing 3.1.

var aCD = new Object () ;

aCDh.title = 'The Lovin\' Spoonful Greatest Hits';
aCD.artist = 'The Lovin\' Spoonful';

aCD.location = 3;

In listing 3.1, the first thing that we did was create an instance of the Object class
by invoking the new operator on the Object constructor. Although this seems
almost a trivial task, there are some important nuances that it’s crucial to under-
stand regarding the new operator.

Up to now, you may not have thought of new as an operator, but that’s exactly
what it is. Its operand is a function that it construes to be the constructor for the
object that new creates.

We’'ll get into constructors a bit more after we’ve examined functions in
greater detail, but for now suffice it to say that the object created by new is created
with the help of the constructor function specified as its operand, which in the
case of the predefined JavaScript Object class generates a blank object instance;
that is, one with no properties.

In our example, the blank object is assigned to a variable named acp, ready for
us to assign properties, which we do over the next three lines.

Note that we didn’t need to predeclare that our object could accept these prop-
erties, as we would have needed to do in a declarative language. In JavaScript, the
act of assigning values to the properties causes them to come into existence.

Properties are most often referenced using the “dot” (period) operator as
shown in our example, but may also be referenced using the more general “prop-
erty accessor” operator. Using this general notation, the assignment to the loca-
tion property could have been

acD['location'] = 3;

This is completely equivalent to the dot notation of acD.location = 3.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

68

3.1.2

CHAPTER 3
Object-oriented JavaScript and Prototype

The dot notation can be used whenever the property name adheres to the for-
mat for an identifier. If the property name violates that form—for example, say it
contains a space character—the bracket notation must be used:

ACD['the location of the CD'] = 3;

Generally, in the interest of readability, object properties are usually given names
that follow the format used for identifiers.

So now we have an instance of an object that contains three properties describ-
ing a CD. This is all well and good, but if you think about it, it’s not all that scal-
able. It took four lines to create and populate the object. If we were to enter many
CDs—remember, we warned you this was a large collection—we’d need a lot of
lines of code.

Even if we weren’t concerned about the sheer amount of code, the possibility
of error is high. Since we are explicitly setting the property names on each
instance of creating a CD object, a typo in any one set of assignments throws a
hard-to-find monkey wrench into the works. Remember that we can create any
property simply by assigning it. Let’s imagine that we were to accidentally type

anotherCD.lcoation = 213;

No errors would occur at the time of the assignment, but at some point later on
down the line we’d wonder why that instance was missing its location property.

What we’d really like to do is to create a constructor for the CD instances that
handles all of this consistently and internally, employing the object-oriented con-
cept of encapsulation—perhaps something along the lines of

var aCD = new CD('The Very Best of the Rascals', 'The Rascals',6 6);

That way, a single block of code (the constructor) would take care of making
the property assignments, thus removing the possibility of typos in repeated
blocks of code.

But before we can discuss the use of functions as constructors, we need to
understand how functions themselves operate in JavaScript. Let’s take a look.

Functions are first class

While JavaScript functions may at first seem to share many similarities with meth-
ods of traditional OO languages, some vast differences become apparent as soon
as we start scratching the surface a bit.

A large part of these differences lies in the fact that JavaScript functions are
treated as “first-class” objects within the language. That doesn’t mean they get

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Object-oriented JavaScript 69

wider seats when flying, but rather that they are on equal footing, and share char-
acteristics with, the other object types in the language. They can be created on the
fly, created via anonymous literals, referenced by variables, passed as parameters,
returned as the results of other functions, and in general, treated like any other
data value.

Let’s start by taking a look at how functions can be declared and invoked.

Declaring and calling functions

Before a function can be invoked, it must have come into existence via its decla-
ration. At its simplest, a function could be declared using syntax that is probably
quite familiar:

function doSomething(value) {

alert ("I'm doing something with " + value);

}

But functions don’t need to be named. They can be created via a function lteral,
also sometimes called an anonymous function:

function(value) {

alert ("I'm doing something with " + value);

}

That’s interesting, but (at least in this example) not all that useful since we have
no way of actually calling such a function. How useful is a function that can never
be invoked?

But remember that functions, as first-class objects, can be assigned to variables.
When such a reference exists, the function can be invoked through that reference.
Thisis true not only of function references in variables, but also of references passed
as function parameters, and of functions stored as properties of an Object instance.

This opens up a lot of interesting possibilities. Consider the following:

var doSomething = function(value) {
alert ("I'm doing something with " + value);

}

Now, the code fragment doSomething ('some value') can be used just as if we had
declared the function with a name.

Aside from being an interesting alternative syntax, this ability to invoke a
function given a reference to it comes in very handy in other scenarios. Consider
this code:

function saySomething(text) { alert('value: ' + text); }

function doSomething(value,onComplete) {

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

70 CHAPTER 3
Object-oriented JavaScript and Prototype

// does something with value
onComplete (value) ;
}

doSomething (213, saySomething) ;

The first function takes a value and constructs an alert using that value, while the
second performs some function on a passed value. The interesting thing about
the second function is that, when the processing is complete, it has allowed its
caller to customize whatever notification is to occur by allowing a reference to a
callback function to be passed to it as the parameter onComplete.

The callback function is passed as a reference to the processing function and is
mvoked via that reference. This allows the caller of the function, rather than the
function itself, to determine what occurs when the processing is complete.

“So what?” you might be thinking. “Why would I want to go through all that
when I can just do whatever I want after the processing function call returns?”

That might be true in a synchronous fragment of code, but this ability to call
back to functions by reference becomes much more interesting and compelling
when we start to throw asynchronous scenarios, such as input events and Ajax,
into the mix.

That aside, the main point of this code example was to show how function ref-
erences could be used as parameters to other functions. Function references can
also be used as property values for Object instances. Consider:

var o = new Object();
o.doSomething = function() { alert('Yo!'"'); }

In this case, the function could be invoked with
o.doSomething () ;

When assigned as a property of an Object instance, the function is termed a
method of that object—a concept that is not as superficial as you might at first
think. Storing a reference to a function in an object’s property serves as more
than just a place to store a reference; it also creates an association between the
method and the object within which it is referenced.

Which brings us to the concept of the function context. Let’s see what that’s
all about.

Understanding function contexts

All functions execute in the context of a JavaScript object, even if you never real-
ized that. That object, termed the function context, is available to the body of the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Object-oriented JavaScript 71

function via the reserved word this, which you might be familiar with from lan-
guages such as C++ and Java.

When a function is invoked through a reference stored as the property of an
object (making it a method of that object), the context object referenced by this in
that function is the containing object. Even named functions not stored as object
methods have a context object, consisting of the window object for the page.

It’s important to note that the function context is an attribute of a function
mvocation, not of the function itself. Let’s consider the code in listing 3.2.

function xyz() { <€) Creates named function
alert (this.handle) ;
}
Creates and assigns
var o = new Object(); function to object
o.methodXyz = xyz;

window.handle = "I'm the window"; <) Creates handle property
o.handle = "I'm o";
xyz(); <@ Invokes function twice

o.methodXyz () ;
||

In this code fragment we first create a named function, xyz @), that issues an alert
containing the value of the handle property of whatever object is referenced by
this—in other words, the handle property of the function context object. Note
that handle is not a built-in property of any object; it’s a property that we’ll be cre-
ating as a way to easily identify individual objects.

Next, an object is created and assigned to o @. A property named methodXyz is
created on that object that stores a reference to the xyz function. Then, a property
named handle is created on the window object for the page, as well as on the
object referenced by o @. This will allow us to easily identify which of these
objects is being referenced at any time.

We then invoke the function twice @: once directly via the xyz name, and once
via the methodXyz property of object o. Executing this code results in the display
of two alerts as shown in figure 3.1.

These alerts, displayed one after the other, clearly demonstrate that even
though the same function is being called in each case, the function context for the
function is determined for each function invocation as a result of the manner in
which the function is called.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

72

CHAPTER 3
Object-oriented JavaScript and Prototype

=

JavaScript
@ I'm the window

= JavaScript
@ I.m :

@ Figure 3.1

Same function, different
contexts!

The fact that the context for a function, when referenced via an object property
as a method of that object, is the object itself is essentially what makes object-
oriented JavaScript possible.

But sometimes, the JavaScript interpreter can supplant what we might nor-
mally expect to be the context object. What’s up with that?

When a stranger holds the leash

We saw in the previous section that the context object for a function is determined
by how the function is called. When the function is a method of an object, and is
invoked through that object, the object is the function’s context.

As we’ll see in many of our examples, it is sometimes convenient for us to use
class methods as event handlers—for example, as an onclick handler for a but-
ton. And that’s when things get thrown into a bit of a loop. You see, when a func-
tion is invoked as a handler as a result of an event, the function context is set to be
the element that triggered the event even if the function is already a method of
another object.

Head spinning yet?

Sorry about that. Let’s try a somewhat specious but hopefully helpful analogy.

Let’s say that you have a pet iguana, which represents a function. Iguanas, not
being the brightest of nature’s creatures, need a way to refer to their owner, you,
representing the function’s context object. This connection is a leash, represent-
ing the this variable.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Object-oriented JavaScript 73

When the iguana needs to reference you, say for food, it uses the leash as a
guide and is rewarded with a handful of healthy dandelion greens. But let’s say
the iguana (function) is invoked as a handler. In this case, the context object is
changed to the event-initiating object—in other words, the leash is handed to a
stranger. When the hungry iguana follows the leash to the interloper, he doesn’t
get fed. (After all, would you feed a strange iguana?)

That’s a problem that we’ll need to deal with in our examples. One means that
we’ll explore is setting properties on the element so that we can get back to the
“right” object given a reference to the element. But later in this chapter we’ll also
see a clever means to force the JavaScript interpreter to bow to our wills with
regard to a handler’s context.

But before we get there, it is possible for us to control what object is to serve
as the context of a function invocation when we’re the ones in the driver’s seat.
This won’t help us out in the handler case (as we're not the ones who make the
call in that scenario), but when we are in control, let’s check out how we can
explicitly specify what object is to serve as the function context.

Setting the function context
Each function (as an instance of the JavaScript built-in class Function) has a
method (remember since functions are first-class objects, they can possess prop-
erties and methods just like other objects) named call ().

When a function is invoked “normally,” the function’s context object is deter-
mined by the interpreter, as we previously discussed.

Consider the following code snippet:

function whatsYourName () {
alert (this.name) ;

}
var o = { name: 'Felix the Cat' };

whatsYourName () ;

whatsYourName.call (o) ;
Executing this code results in the alerts that we see in figure 3.2.

In this code fragment, the whatsYourName () function issues an alert with the
name property of whatever object is serving as its function context.

When the function is invoked directly, the alert displays the name prop-
erty of the window since that object is supplied as the context object for that
function invocation. The displayed string may be something along the lines of

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

74 CHAPTER 3
Object-oriented JavaScript and Prototype

a

. JavaScript
@ file:/ flocalhost

[~]

— JavaScript
@ Felix the Cat
Figure 3.2
C OK
p— O We have control over the

function context should we
wish it.

“file://localhost” or some such, depending on your browser and how you
loaded the page into it.

We also defined an object o (using JSON notation) that possesses a name
attribute. When the function is invoked using the call () method, supplying the o
object as the parameter, it should be clear that o has been used as the function
invocation’s context.

Before we return to our discussion of objects with this newfound knowledge
under our belts, there’s another concept with regard to functions that we need to
understand: the concept of a closure. Let’s see what that’s all about.

Closing in on closures

Closures are a concept that you might not have run into if you are coming here
from the Java or C++ world, as there is no corresponding concept in these lan-
guages. It can be a difficult concept to grasp, so let’s start with some sample code
right off the bat, as shown in listing 3.3.

Listing 3.3 Creating a closure

var o = new Object();
o.setup = function() {
var someText = 'This is some text';
this.doSomething = function() {
alert (someText) ;
Y
Y

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Object-oriented JavaScript 75

o.setup();
o.doSomething () ;
|

In the code snippet in listing 3.3, we create a new object assigned to o, and then
create a setup () function to initialize it. (This is something better accomplished
via a constructor, but we’ll get to that before too much longer.)

In setup(), we create a local variable named someText and give it a string
value. We then set up a method named doSomething () that simply emits an alert
message displaying the value of that variable. We call the setup () function to ini-
tialize the object, and then call the doSomething () method.

On inspecting the code for that method, we detect a problem: the code refer-
ences the someText variable, which was local to the block in which the function was
created, but according to JavaScript rules, that variable went out of scope as soon
as that block terminated.

Therefore, we’d expect that when the doSomething () function is called later—
at the top level and clearly outside of the scope of the block that defined some-
Text—an undefined reference would occur. But upon execution, we see an alert,
as shown in figure 3.3.

Odd. The string was emitted in the alert. How can that be? Does this make us
want to question what we thought we knew about JavaScript scoping rules?

The someText variable is indeed out of scope when we make the call to
o.doSomething (). If we were to add the statement alert (someText); right after
that call, we’d find that the JavaScript interpreter would indeed issue a “someText
is not defined” error. So how did the method work?

What has happened is that when the JavaScript interpreter creates a function
(as an instance of an object of type Function), it creates a closure for that function
that is composed not only of the function itself but also of the environment that is
in scope at the time that the function is created.

JavaScript

\@‘ This is some text

Figure 3.3

What hat did this get
pulled out of?

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

76

3.1.3

CHAPTER 3
Object-oriented JavaScript and Prototype

So anything that is in scope when a function is declared is also available to the func-
tion when it is invoked.

This is as powerful a concept as it is a confusing one and should be used with
caution. You can create some really terrible code by using this technique thought-
lessly, but later on we’ll see how closures will help make some elegant code in an
object-oriented fashion.

Another important thing to note: the function context (the this pointer) of the
executing function is never included in a closure when one is created. This is also
something we’ll see the implications of when we get deeper into defining Java-
Script classes.

Finally, as promised, now that we know a little more about functions, we’re
ready to look at creating our own JavaScript classes in more detail, starting
with constructors.

Object constructors and methods

Now that we know what a JavaScript object is, and have a better understanding of
JavaScript functions, we’re ready to see how we can use objects and functions to
create well-organized JavaScript objects of our own via classes.

To start with, let’s take a look at the new operator and how it operates on a
function to transform that function into a constructor for an object.

Defining constructors
Consider the following code:
function Something(pl,p2,p3) {
this.paraml = pl;
this.param2 = p2;
this.param3 = p3;
}
It’s a pretty straightforward function that takes its parameters and stores them as
properties on the current context object. Those familiar with object-oriented pro-
gramming in Java or C++ will readily recognize this as following the usual pat-
tern for constructors. But is it a constructor?
The answer is: yes and no—or perhaps more accurately, it depends.
Let’s imagine that, after we have defined this function, we call it as follows:

Something(1,2,3);

What happens?

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Object-oriented JavaScript 77

When the function executes, it creates three properties on its context object. In
this case, because the function is simply being called from top-level code, that
context object is the window object of the current page.

Well, that’s not very interesting, is it?

But something much more interesting happens when, rather than calling the
function directly, we apply the new operator to the function, as in

new Something(1,2,3);

The new operator creates a new, empty Object instance and then invokes the
function supplied as its operand with that newly created object as the function
invocation’s context. The result is that when the function executes, the this
pointer references the new object, thus turning the function into a constructor
for that object.

That’s more like it! Now, when Something() executes, it will create the three
properties on the new instance of an object just as a constructor should.

That’s great. We now know how to declare constructors and use them to initial-
ize newly created objects. But aside from encapsulating the initialization of an
object into a tidy package, what have we really gained?

Not to dismiss the advantages that such encapsulation gives us—review the
example of listing 3.1—but in order for our object to be really useful, it needs
more than just a constructor; it needs methods to act upon it in an object-
oriented fashion.

We’ve previously seen how we can create methods by assigning functions to
object properties, so let’s examine how we can use that mechanism to further
define our objects.

Adding methods
Let’s take our CD example from earlier in the chapter and define a constructor
for it, as shown in listing 3.4.

function CD(title,artist,location) {
this.title = title;
this.artist = artist;
this.location = location;

Let’s say that we wanted to add a method that would tell us where the CD is
located. Remember that in order for a function to be a method of an object, it

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

78

CHAPTER 3
Object-oriented JavaScript and Prototype

must be referenced through a property of the object so that when invoked, its
function context will be that object instance. We could do this by

var aCD = new CD('Afterburner',6 'Z2Z Top',17);
aCD.whereIsIt = function() {

alert('The CD is on shelf ' + this.location);
Y

But that won’t do at all! If we had more than one CD (and why would we be doing
this if that weren’t the case?), then we’d need to perform this for each and every
instance, as shown here (with the addition of an array to hold multiple instances):

var myCDs = new Array();
var aCD = new CD('Afterburner',6 '2Z Top',17);
aCD.whereIsIt = function() {

alert('The CD is on shelf ' + this.location);
}
myCDs.push(aCD) ;
aCDh = new CD('Mirage', 'Fleetwood Mac',7);
aCDh.whereIsIt = function() {

alert('The CD is on shelf ' + this.location);
}
myCDs.push(aCD) ;
aCD = new CD(''Please, 'Pet Shop Boys',23);
aCD.whereIsIt = function() {

alert('The CD is on shelf ' + this.location);

}

How silly, not to mention messy, would that be?

We could factor out the common code into a standalone function that we could
assign as a property of each instance, but while that might reduce the propensity
for error, that wouldn’t make this any more scalable. Instead, as with the code to
set up properties that we factored into the constructor, we want to encapsulate the
creation of the methods into a tidy little package.

One way might be to place the creation of the methods within the constructor
itself. The result could be as shown in listing 3.5.

Listing 3.5 Constructor for the CD object

function CD(title,artist,location) {
this.title = title;
this.artist = artist;
this.location = location;
this.whereIsIt = function() {
alert('The CD is on shelf ' + this.location);
Y

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Object-oriented JavaScript 79

That achieves our goal of encapsulating the creation of the method(s), but has
a drawback in that each and every constructed object will possess a copy of this
function. That’s rather wasteful as, unlike properties such as title, which will
be unique for each instance, each instance of CD will have an identical where-
IsIt() function.

What would be ideal would be if there were a way to have all instances of the
class reference a single instance of the function as their method. And that’s where
the prototype mechanism of JavaScript constructors comes in.

Let’s find out what that’s all about.

Defining prototypes

When an instance of an object is created as a result of the new operator, that object
is initially empty; that is, it contains no properties. However, there’s more than
you might think going on behind the scenes.

When we make a reference to a property of an object, the JavaScript inter-
preter looks in the object instance for a property with the referenced name. That
is exactly as we might expect.

Butwhat you might not have known is that it doesn’t stop there. If no such prop-
erty is found on the object itself, the interpreter looks to the constructor for the
object in a last-ditch effort to find the property. This last-chance set of properties
is stored in a property of the constructor itself named prototype. If the construc-
tor’s prototype contains a property of the name we referenced, it will be returned
as the value before the interpreter gives up the ghost and returns undefined.

This is an incredibly useful mechanism for sharing definitions among many
instances of an object type without the need to copy the values into each and
every instance.

At this point you might be thinking that this sounds a lot like class-level dec-
larations of languages such as C++ and Java, and you’d be correct in thinking that
there are high-level similarities. But the analogy can begin to break down pretty
quickly if you start to dig into it, so it’s probably best to think of the prototyping
mechanism as a defaulting mechanism rather than as class-level declarations.

Defining our method as a prototype method of the CD object is simple, as
shown in listing 3.6.

function CD(title,artist,location) {
this.title = title;
this.artist = artist;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

80

CHAPTER 3
Object-oriented JavaScript and Prototype

this.location = location;

}

CD.prototype.whereIsIt = function() {
alert('The CD is on shelf ' + this.location);
}
||

Now, whenever an instance of CD is created, it essentially “inherits” any proper-
ties defined in the prototype of the constructor. Note that “inherits” was quoted
quite purposefully, as this is not a true inheritance mechanism as defined by
object-oriented concepts; it’s a defaulting mechanism.

That distinction aside, prototyping is also useful for more than just meth-
ods. Any value that you'd like to define a default value for can be specified in
the prototype. Consider for example, the following:

CD.protoype.LOCATION_PREFIX = 'The CD is on shelf ';

This essentially creates a “class constant” that can be referenced in any method of
a CD instance, including the whereIsIt () method:
CD.prototype.whereIsIt = function() {
alert(this.LOCATION_PREFIX + this.location);

}

If a particular instance wanted to provide another prefix, it could define a prop-
erty with the same name. Since the interpreter will always look into the object
instance first, any such declaration overrides a declaration in the prototype. One
note of caution: once you define a property in an object instance, it will forever
override any prototype declaration even if you set the property to null.

The built-in JavaScript objects are also prototype-based. As such, you can
modify or extend them to suit your needs.

Although any such endeavor should be approached with all due caution—
after all, you would be modifying classes intrinsic to the language—it’s usually
fairly safe to add convenience methods to the built-in types when methods you
think would be useful are missing.

One such example could be a “trim” method on the String object. Trimming a
string of trailing and leading white space is something that we might frequently
be called upon to do—perhaps as part of validating user input into controls,
where trailing white space could either need to be ignored or prohibited. Seem-
ingly inexplicably, even though this is a very useful method and one most other
languages with String classes provide, the String class in JavaScript has no such
trimming function.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Object-oriented JavaScript 81

So let’s add one, shall we?

As we have seen, adding a method to a class’s prototype is as easy as assigning
a function literal to that prototype. Adding a trim() method to the String class is,
then, as simple as shown in listing 3.7.

String.prototype.trim = function() {

var matches = this.match(/~[\t\n\rl+/);

var prefixLength = (matches == null) ? 0 : matches[0].length;
matches = this.match(/[\t\r\nl+$/);

var suffixLength = (matches == null) ? 0 : matches[0].length;

return this.slice(prefixLength, this.length - suffixLength) ;

This new method to the String class uses JavaScript’s regular expression match-
ing capabilities to count the number of white space characters at the begin-
ning and end of the string, and then uses the String’s own slice() method to
extract and return a trimmed version of the String’s value.

Note that in a similar fashion to other String methods, the value of the String
itself is not modified; rather, the modified version of the value is returned as the
method’s results. When extending objects, be they built-in or otherwise, it’s always
a good idea to follow the API style of the object when adding new functionalities.

In OO parlance, these methods that we've created, either on our classes or built-
in classes like String, are called instance methods since they are accessed through
instances of the class and possess the class instance as their function contexts.

But there’s another type of method we can define.

Creating class methods

We saw how we can create instance methods by adding functions as properties to

the prototype of constructors, but JavaScript also gives us the ability to create

what would be called class methods in other OO languages. This is accomplished by

adding a method, not to the constructor’s prototype but to the constructor itself.
For example, these two statements perform very different actions:

Object.prototype.sayHi = function() { alert('Hi!'); }
Object.sayHello = function() { alert('Hello!'); }

The first statement creates a method named sayHi () accessible through each
and every instance of type Object (which happens to be every object ever

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

82

3.1.4

CHAPTER 3
Object-oriented JavaScript and Prototype

created). The second creates a class method named sayHello() directly on
the Object constructor.
In order to call the sayHi () method, an instance of the object is required so

that its method can be invoked:

var o = new Object();

o.sayHi();
In order to call the sayHello () class method, we just need to use the owning con-
structor as a prefix:

Object.sayHello() ;

“Look, Ma! No instance!”

This type of method makes most sense when there is no need for an instance
to be available to the code of the method as the function context. Indeed, in other
OO languages, class methods have no concept of this, and any attempts to use
this in one will usually result in a compilation error. However, in JavaScript every
function has a function context, even class methods.

Without an object instance to serve as the function context, can you guess what
does serve in that capacity? If you guessed the window, you get points for trying,
but no cigar. For such methods, the constructor function itself serves as the function
context. If the idea of a function serving as the function context blows your mind,
don’t worry too much about it. First, remember that in JavaScript, functions are a
type of object and can serve in capacities that other objects can. Second, in this
situation the fact that the constructor is the context object is pretty much useless.
So it’s OK to just ignore the fact that JavaScript class methods have a this refer-
ence if it makes you feel more comfortable.

Now that you know how JavaScript’s mechanisms can be used to create Java-
Script classes and other object-oriented constructs, let’s put that knowledge to
work and write a class of our own.

Writing a JavaScript class: a button

Now that you're aware of the JavaScript facilities for creating object-oriented
classes, let’s dig in and write a simple one.

The class we’ll write in this section will be used to add instrumentation to an
instance of an HTML button element. While the <button> element is a handy
component of the set of HTML controls, it lacks the ability to present visual feed-
back to the user as it changes state.

The class we’ll write will give us the ability to modify the visual rendition of the
button when certain state changes occur, such as

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Object-oriented JavaScript 83

When the mouse cursor enters the button area, thus “arming” the button

When the mouse cursor exits the button area, “disarming” the button

When the mouse button is pressed down, “pressing” the button

When the mouse button is released, “un-pressing” the button
When the button is enabled or disabled

By changing the CSS style class (not to be confused with an OO class) assigned to
the button as these state changes occur, we can present visual feedback to the user
beyond that provided by the native implementation.

We’ll cleverly call our class Button, and by convention, define it in a JavaScript
file named for the class it contains: Button.js.

To begin with, let’s define some characteristics that we want this class to possess:

m The class will instrument an existing HTML <button> instance identified by
1ts id.

m The class will accept a number of options at construction, consisting of
— Whether the button is initially enabled or disabled

— Style class names to be applied at the various state changes
— A function to be executed when the button is clicked

m Reasonable defaults will be provided for any option not specified.

With all that in mind, let’s begin by writing our constructor for this class.

The button constructor

As you'll recall from our earlier discussion, the constructor of a JavaScript class is
simply a normal, everyday function. The distinction comes when the function
intended to serve as a constructor is used as the operand of the new operator. This
invokes the function with a context consisting of a newly allocated and empty
Object instance.

By convention, a constructor is named for the class it creates, in our case But-
ton, and should set up the object into an initial and valid state.

To achieve this, our button constructor has more than a few bits of informa-
tion that it needs to accept in order to completely set up the instance. At mini-
mum, it needs the id of the button that the instance is to instrument. According
to its stated goals, it also takes a variety of optional information, including the
names of various style classes and a callback handler to be invoked when the but-
ton is clicked.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

84 CHAPTER 3
Object-oriented JavaScript and Prototype

The simplest approach is to just define a constructor with a parameter list that
specifies each possible parameter. After all, we can supply null for any optional
parameter that we don’t want to include, right?

The signature of such a constructor would take the form of

function Button(elementName, disabled, onClickCallback,

enabledStyleClass, disabledStyleClass,

armedStyleClass, pressedStyleClass)
That’s one required parameter (the element name), which is placed first in the
parameter list, followed by six optional parameters.

OK, that’s not too onerous to deal with from the point of view of coding the
constructor; any parameters that come in as null just need to have default values
provided for them.

But what about from the point of view of the caller?

Because association of parameter values to parameter names happens in an
ordinal fashion, any function signature with a large number of optional parame-
ters presents a not-so-nice API to users of that function. Consider an invocation of
this constructor where the caller wants the initial state and all the style class
names except the “pressed” style to default:

new Button ('myButton',null,doSomething,null,null,null,

'pressedButton') ;
Just look at all those nasty nulls.

By defining our constructor signature in this manner, we've forced the
users of our class to count nulls carefully to be sure that they match the corre-
sponding parameters in our fairly long parameter lists. And what if we decide
to extend our class to encompass more functionalities and, therefore, more
optional parameters?

It quickly becomes clear that defining function signatures with large numbers
of parameters—particularly if many of those parameters are optional—is an
unfriendly and unscalable solution. To avoid such ugliness, we’ll adopt a tech-
nique that is rapidly gaining favor and acceptance for providing sets of optional
parameters: the hash, sometimes called an anonymous object.

This is simply a single object, passed as a parameter, whose properties serve as
the optional parameters to the function. Because they are passed as a single
option, the number of parameters to a function is limited to the list of required
parameters, followed by a single optional parameter. And because properties are
named, the requirement to order the optional parameters in any particular
sequence, or to leave blanks for parameters that are omitted, simply disappears.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Object-oriented JavaScript 85

This technique is widely used in popular JavaScript libraries (some of which
we’ll be taking a closer look at later in this and the next chapter), and reduces
the rather unwieldy and less-than-readable constructor invocation that we saw
earlier to

new Button('myButton',

{ onClick: doSomething,
pressedClassName: 'pressedButton'
1)
Not only does this eliminate all those nulls, but it also makes for much more read-
able code as each optional parameter is explicitly named. There is no need to
remember the order of parameters, and no counting is involved to figure out
which parameter is which.

This does place a slightly larger burden on the constructor code, but that bur-
den is minor and if there’s going to be a burden anywhere, it’s better to factor it
into the constructor, which needs to be written once, than in each and every line of
code that will ever be written to call that constructor.

OK, enough talk; let’s code! Here’s the skeleton for our constructor using the
hash technique that we just described:

function Button(elementName, options) {

//TODO: fill this in!

}

Now we’ll fill in the body of the constructor. The workings of this code will be
described in detail after listing 3.8.

function Button(elementName, options) { 4? Locates HTML
this.element = document.getElementById(elementName) ; button
if (!'this.element) throw new Error (elementName + ' not found');
th%s.element.butto? = this; Spedﬁes
Fhls.opFlons = options || {}; <}ﬁ) options hash
if (options) {
this.options.enabled = options.enabled || true;
this.options.onClick = options.onClick || function() {};
this.options.enabledClassName =
options.enabledClassName || this.CLASS_DEFAULT CLASS_ENABLED;
this.options.disabledClassName =
options.disabledClassName || this.CLASS_DEFAULT CLASS_DISABLED;
this.options.armedClassName =
options.armedClassName || this.CLASS_DEFAULT_CLASS_ARMED;
this.options.pressedClassName =
options.pressedClassName || this.CLASS_DEFAULT CLASS_PRESSED;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CHAPTER 3
Object-oriented JavaScript and Prototype

}

var instance = this;

) . . Instruments HTML
this.element.onclick = function() { button
if (instance.options.enabled) {
instance.options.onClick.call (instance) ;
}
} Changes button’s
this.element.onmouseover = this.onArm; visual state

this.element.onmouseout = this.onDisarm;

this.element.onmousedown = this.onPress;

this.element.onmouseup = this.onRelease;

if (this.options.enabled) {
this.enable() ;

Places button in

) proper state

else {
this.disable();
}

While this constructor may look a bit long and foreboding, what it does is actually
fairly simple—but with some twists that might be confusing had we not examined
them earlier in the chapter.

The very first thing we do in this constructor is to locate the HTML <button>
element that we are going to instrument . Using the document.getElement-
ById() function, we obtain a reference to the element in the HTML DOM and
assign it to a property on the context object named element. Remember that the
new operator created a brand-spanking-new Object instance on our behalf and set
it as the context object for our constructor. We don’t have to worry about allocat-
ing the object; once the constructor is invoked, the new object is readily accessible
via the this reference.

By assigning the DOM reference of the element to a property, we will be able to
easily locate the <button> element whenever we have a reference to the Button
object. If for any reason we can’t locate the element whose id was passed, we
throw an error that will appear on the JavaScript console of the browser being
used. By doing so, an error on the caller’s part (misspelling the id of the element,
for example) results in a clear error rather than some mysterious “object has no
properties” (or similarly nondescript) errors later down the line.

We now have a reference to the instrumented <button> element given a Button
object instance, but we also want to be able to find the Button object instance
given the <button> element. To facilitate that, we add a property to the <button>
element named button that contains a reference to the Button instance.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Object-oriented JavaScript 87

This little trick means we can find either the DOM element or the object
instance regardless of which one we happen to have a reference to. This will come
in quite handy a little later on.

Having dealt with the elementName parameter, let’s turn our attention to the
options hash @. We are going to want to be able to access the options in the hash
object throughout the methods of this class, so we’ll assign the options object to a
property of the object.

But wait! This hash is called “options” because, well, it’s optional! What if
the caller doesn’t supply a hash object at all? We could be rather surly and insist
that the caller supply an empty hash object when no options are to be passed,
but that’d be downright unfriendly. Rather, we’ll deal with the possibility within
the constructor.

We do so with a statement that might look odd if you haven’t seen this sort of
construct before:

this.options = options || {};

Or-ing objects? Isn’t that just for Boolean expressions?

This terse, but handy, notation essentially means “use this first operand if it
exists, otherwise use the second.” It works because, unlike in languages such as
Java, any expression, Boolean or otherwise, can be used in a context where a
Boolean is expected; coercion rules to express the values as Boolean are applied
to each operand.

In our case, we use the fact that null and undefined convert to false. Therefore,
if the first operand evaluates to either null or undefined, the expression evaluates
to the second operand of the or-ed expression. So what the previous line does, in
very succinct notation, is assign the options parameter to the property named
options if it exists; otherwise, it assigns an empty object to the property.

At this point, options refers to an empty object if no properties were provided,
or an object prepopulated by the caller with whatever options he or she specified.
We now need to go through and assign reasonable default values to any option
that was not specified. That was one of our goals, remember?

So, one by one, we test each possible option using the handy “or-ing” trick that
we learned earlier. For each, we check if a value already exists, and if so, we leave
it be. Otherwise, we assign a default value.

The first option we test is simple:

this.options.enabled = options.enabled || true;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

88

CHAPTER 3
Object-oriented JavaScript and Prototype

If no enabled option was specified in the options hash, a default value of true
is assigned.

Similarly, the next statement supplies a default callback function of the
onClick handler:

this.options.onClick = options.onClick || function() {};

Here, since we have no idea what a reasonable action would be, we default to a
function that does nothing if the caller supplied no callback.

The remainder of the options assign default CSS style class names in the
absence of explicitly provided names. We’d probably expect the default to be a
string containing the name, and it very well could be, but our implementation
chooses a slightly different course.

The first of these statements is

this.options.enabledClassName =

options.enabledClassName || this.CLASS_DEFAULT CLASS_ENABLED;
The structure of this statement is the same as the others, but instead of a literal as
a default value, we see a reference to something we know nothing about yet.
Because it’s referenced by this, we know it’s going to be part of the definition of
the class. But what?

These references will be properties that we will set up on the prototype for this
class containing string literals that will define the default style class names. We
don’t just hard-code the string literals in the constructor because we’re following
awell-established practice. Factoring out such literals into “class members” serves
two purposes:

m It isolates the string literals from the code, making them easier to locate
for the programmer as opposed to embedding them in code where they
may be hard to spot.

m If the methods in the class need to reference the string value more than
once, the references all resolve to a single instance of the string. That way,
simple typos in string literals don’t turn into hard-to-find bugs, and any
changes to the value of the literal in the course of development need to
take place in one location.

The use of all uppercase characters when naming these references is a C++ and
Java convention that is applied to “class constants,” following the practice stated
earlier. In JavaScript, there is no such thing as a constant, but by using this nota-
tion we make clear our intention that these values are to be treated as constants.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Object-oriented JavaScript 89

When these statements complete, we have a property that contains the combi-
nation of any caller-supplied options and class-supplied defaults. From this point
forward, we have the luxury of having to make no distinction between the two; by
constructing this options hash up-front, we have placed the entire configuration
for our class in one neat little bundle for us to use throughout the remainder of
the code.

So, next we turn our attention to actually instrumenting the HTML <button>
@, starting with the onclick handler:

var instance = this;

this.element.onclick = function() {

if (instance.options.enabled) {
instance.options.onClick.call (instance) ;

)i }

In this snippet, we assign an inline function as the onclick handler of the
<button> element.

In this function, we need to check whether the button is enabled before fir-
ing off the click handler. (Actually, we could be lazy since this function should
never be called for a disabled button, but you know what they say about an
ounce of prevention!)

This poses a small problem for us. When an event handler is activated, its con-
text object is the element that initiated the event; in this case, that would be the
<button> element, and not our Button instance. We could either rely on the self-
reference we placed on the element (something we will do in later methods) or
employ the closure in which the function is defined.

Since we’ll employ our self-reference in other methods, let’s use the closure for
this one if for no other reason than to demonstrate the use of closures. (In an
actual implementation you'd probably want to pick one tactic and stick with it
consistently, but for illustrative purposes, let’s be daring.)

If you recall how closures work, the function that we assign to the <button> ele-
ment’s onclick handler will have access to variables defined in the scope in which
the function is declared. However, the this reference is never included as part of
a closure, and that’s exactly what we need access to! So, we get around that little
issue by assigning the value of this to a local variable named instance. As a local
variable in scope when the function is declared, the value of instance, a copy of the
reference to our Button instance, most certainly is available as part of the closure.

With click handling out of the way, let’s turn our attention to the mouse events
that we will want to capture in order to change the visual state of the <button>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

90

CHAPTER 3
Object-oriented JavaScript and Prototype

element @. Unlike onclick, in which we assigned an anonymous inline function
(and its closure) as the element handler, we assign references to methods that
we’ll define later in the prototype. Doing so makes for a cleaner-looking con-
structor and allows us to segment the code into smaller chunks, but we lose the
ability to reference the instance of the Button object via closures:

this.element.onmouseover = this.onArm;

this.element.onmouseout = this.onDisarm;

this.element.onmousedown = this.onPress;

this.element.onmouseup = this.onRelease;
As we’ll see in just a moment when we examine the implementation of these
functions, the self-reference that we stored on the <button> element will come
to our aid.

Finally, we want to make sure that the <button> element and Button instance
are placed into the appropriate initial enabled or disabled state @. We call one of
two methods depending on the state defined by the options hash. We’ll investi-
gate the implementation of those functions later, in listing 3.11.

Now, remember those “class constants” that weren’t really constants at all?
Let’s define those next.

Class-level member variables

In our discussion of the constructor, we noted that it’s often a good practice to fac-
tor literals (strings or otherwise) out of inline code and into members so that one
instance of a literal can be consistently referenced throughout the code. In our
Button class, we declare a series of string members to be used as the default values
for the various CSS class names that will be assigned to the <button> element as it
changes state. These are shown in listing 3.9.

Button.prototype.CLASS_DEFAULT_ CLASS_ENABLED = 'buttonEnabled';
Button.prototype.CLASS_DEFAULT_ CLASS_ARMED = 'buttonArmed';
Button.prototype.CLASS_DEFAULT CLASS_DISABLED = 'buttonDisabled’;
Button.prototype.CLASS_DEFAULT_ CLASS_PRESSED = 'buttonPressed';

We specify that we’d like these members to be treated as constants (even though

JavaScript possesses no such concept) by using all uppercase names—a conven-

tion used in many languages such as Java, C, and C++ to indicate a constant ref-
erence. By collecting these string literals in this manner, we ensure that multiple
references to the members reference the same string literal.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Object-oriented JavaScript 91

This is superior to hard-coding multiple instances of the literals throughout
the code. A typo in the member reference will result in a relatively easy-to-debug
“undefined” error, whereas a typo in a string literal results in the element not
behaving correctly, thus leaving us to guess why until we spot the misspelled lit-
eral. Class-level members such as this can be used for either read-write variables
that we want to share across multiple instances of Button, or for read-only
pseudo-constants like the ones we have defined here.

With that behind us, we face defining the handler functions that we assigned
to the mouse events of the <button> element. Let’s take those on.

The mouse event handlers

Changing the visual state of the <button> element as the mouse events occur is a
simple matter of swapping out different CSS style classes as the events occur.
We’ve given the user of our class the option of supplying the style class names or
using the default names that we provide.

As you'll recall, we assigned the mouse event handlers as references to meth-
ods of the Button class. For example, when the mouse cursor moves into the but-
ton area, we want to display the style class associated with the armed state.

We assigned the handler as such in the constructor:

this.element.onmouseover = this.onArm;

Now, we define that method (and its kin) as shown in listing 3.10.

Button.prototype.onArm = function() {
if (this.button.options.enabled) {
this.className = this.button.options.armedClassName;

}

Button.prototype.onDisarm = function() {
if (this.button.options.enabled) {
this.className = this.button.options.enabledClassName;

}

Button.prototype.onPress = function() {
if (this.button.options.enabled) {
this.className = this.button.options.pressedClassName;

}

Button.prototype.onRelease = function() {
if (this.button.options.enabled) {

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

92

CHAPTER 3
Object-oriented JavaScript and Prototype

this.className = this.button.options.enabledClassName;

Note that when any of these event handlers is triggered, its context object,
despite being a method of Button, is the triggering element: in this case, the
<button>. Yet we need access to the Button instance so we can look up the vari-
ous options.

We could have dealt with the issue by defining the methods inline and using
closures (as we did for the onclick handler), but since we thoughtfully placed a
reference to the Button instance into a property on the <button> element during
construction (creatively named button), we have the reference we need. So in each
handler, we first check the enabled option to make sure the button is “live,” and if
so, we apply the appropriate style class to the element’s className property.

The final step in defining our class is giving the caller control over the enabled
state of the button.

The enabled state methods
We gave the user of our class the ability to initially place the button in either an
enabled or a disabled state. A disabled button isn’t much good to anyone if you
can’'t enable it at some point, so we need to add methods to our class to let the
caller have some level of control over this state postconstruction.

We'll define three methods for this purpose:

= Allow the caller to discover the current state.
= Allow the caller to place the button in an enabled state.

= Allow the caller to place the button in a disabled state.

The implementation of these methods is shown in listing 3.11.

Button.prototype.isEnabled = function() {
return this.options.enabled;

}
Places button in

Button.prototype.enable = function() { enabled state
this.options.enabled = true;
this.element.disabled = false;
this.element.className = this.options.enabledClassName;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Object-oriented JavaScript 93

Button.prototype.disable = function() { qgt’ Disables the button
this.options.enabled = false;
this.element.disabled = true;
this.element.className = this.options.disabledClassName;

These methods are a bit more straightforward than their brethren. Because they
are simple methods on the class (as opposed to event handlers), we don’t need to
worry about closures or event context objects; the context object of these methods
is simply the Button instance, exactly as we’d expect.

With the isEnabled () method, we give the user of our class the means to deter-
mine the current state of the button by returning the value of the enabled option
property. We will be careful to ensure that, in our remaining methods, this prop-
erty always accurately represents the current state of the element.

In fact, let’s take a look at the method for placing a button into the enabled
state @. The first thing it does is to set the enabled options property to true. It
then enables the <button> element itself by setting its disabled property to false
(all of the HTML form elements use this reverse-logic setting to determine the
enabled state of the controls). Finally, the CSS style class of the element is set to
the enabled style class name.

The method to disable the button @ follows an identical set of steps, except it
uses values that disable the button and place the appropriate style class upon it.

With that, our Button class is complete. Or at least until we think of something
else to add to it!

In creating this small class, we employed many of the OO techniques that we
discussed in earlier sections: object properties, functions, context objects, clo-
sures, and the prototype property. Armed with this knowledge, we are ready to
embark on defining any other object classes that we’d like to create to help orga-
nize our code.

But before we get too far ahead of ourselves, we need to test our code to make
sure that it works!

Testing the Button class

To test our Button class, we’ll create a simple little HTML page and put the class
through some of its paces. If all is correctly functioning, upon clicking an instru-
mented button on the test page we’d expect to see the alert shown in figure 3.4
that displays the ID of the clicked button element. Listing 3.12 shows us how to
get there.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

94 CHAPTER 3
Object-oriented JavaScript and Prototype

= JavaScript

Button testButton has been clicked

—_—

Figure 3.4
Did we get the right button?

Listing 3.12 Putting the Button class to the test

<html>
<head> .
<title>Button Test</title> References .js ﬁlej
<script type="text/javascript" src="Button.js"> </script>

<script type="text/javascript">

w:an.loxg.onload = func'ilon() { Creates button
window.testButton = new Button(instance
'testButton',

{
onClick: onClicked
)

i 49 Triggers button
function onClicked() {

alert ('Button ' + this.element.id + ' has been clicked');

}

function toggleButtonState() {
if (window.testButton.isEnabled
window.testButton.disable() ;

Detects button state
0) |

}
else {
window.testButton.enable() ;

}
</script>
<style type="text/css"> <) Sets visual styles

#testButton {
padding: 3px 6px;
font-size: 1.lem;
border-width: 3px;

}

.buttonEnabled {
background-color: maroon;
border-color: maroon;
color: white;
border-style: outset;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Object-oriented JavaScript 95
.buttonDisabled {
background-color: #999999;
border-color: #999999;
color: white;
border-style: outset;
}
.buttonArmed {
background-color: maroon;
border-color: maroon;
color: orange;
border-style: outset;
}
.buttonPressed {
background-color: #660000;
border-color: maroon;
color: orange;
border-style: inset;
}
</style>
</head>
<body> Identifies <button> element j
<button type="button" id="testButton">Click me!</button>
<div style="margin-top:lé6px">
<input type="checkbox" onclick="toggleButtonState() ;">
</Ziiible button Triggers enabling/
disabling function
</body>
</html>

Note that this page in no way constitutes a thorough test of the class. It only
serves as a template for a series of more thorough tests that you should consider
conducting as an exercise. It does, however, represent the manner in which we
believe that our Button class will be most often used.

In this page, we import our Button class by referencing the .js file @. This
brings the Button constructor and its prototype into scope on the page. Note that
we must do this for each page on which the Button class will be used.

In the onload handler for the page @, we create an instance of Button and
assign it to a property named testButton on window. We do this so that the But-
ton instance will be available throughout the rest of the page. Were we to simply
use a var, its scope would be limited to the onload handler. We could also have
declared a window-scoped var outside of the handler and assigned its value inside

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

96

CHAPTER 3
Object-oriented JavaScript and Prototype

the handler, but why spread a declaration over two locations when you can make
it one statement?

In the constructor for Button, we specified the id string of “testButton”
that identifies a simple <button> element that is defined @ in the body of
the page.

The only option we provide in this test is a reference to a function named
onClicked that is to be triggered when the button is clicked.

That was easy, which is exactly what we intended. If the user needs to be a bit
pickier, there are other options that can be specified. But this example probably
represents how most Button instances will be created, and you can see that we've
made things pretty easy for users of our class.

The next major element of our test page is the onClicked() function that will
be triggered when a user clicks the <button> element @. In this function—
which in a real environment would probably do something much more interest-
ing—we issue an alert that verifies that the proper object was set as the context
for this function.

The reference this.element.id verifies that the Button instance is the context
object. The this reference should evaluate to the Button instance whose element
property contains a reference to the <button> element.

That will test the button-clicking functionality, but we also want to exercise the
enabled state functions of our class. To this end, we write a function @ that
detects which state the button is in—using the handy method that we so thought-
fully provided—and set the button to the opposite state. We’ll see in just a little
while how we trigger this function from a page element.

The lion’s share of the page is devoted to the CSS
styles @ that give our button the visual feedback that ;

(enabled)
we seek—after all, that was the whole purpose of the
Button class. The styles chosen give the button an out-
set appearance when inactive and enabled, a “grayed-
out” appearance when disabled, a highlighted appear-
ance (by turning the text orange) when armed, and an m (armed)
inset appearance when pressed. These states are shown
in figure 3.5, though they’re not terribly exciting when
shown in static screen shots (especially after conversion (pressed)
to grayscale), but you get the idea.

In the body of the HTML page, we define two con- Figure 3.5 Button visual
trol elements. First is the button @ that we are instru- States
menting. Note that the only attribute that we needed to

(disabled)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

3.2

The Prototype library 97

place on the button was its id. The remainder of the instrumentation, consisting
of the handlers and class names, are applied by the Button class. How easy is that?

The second control element is a checkbox @ used to trigger the enabling/dis-
abling function that we defined earlier @.

Obviously, the next series of tests that we should conduct would check that we
can correctly override the default CSS class names with those of our own choos-
ing, and verify that we can place the button into an initially disabled state.

Negative testing should also be conducted to ensure that our class behaves
reasonably well when passed bad values. As an additional exercise, you might
want to ponder how to make the class even more robust in this regard. For exam-
ple, in the interests of brevity we never checked that the element passed was really
a button! What other “holes” can you fill?

Now that we have a handle on how JavaScript enables us to write better-
organized code using object-oriented principles, let’s take a look at a popular
JavaScript library that makes it easier for us to create such code.

The Prototype library

You've seen in the first part of this chapter how JavaScript is a language with
built-in facilities for extending itself. The prototype-based inheritance feature of
JavaScript makes it possible to create and extend not only our own classes, but
also the classes that make up the language itself.

This ability has not escaped the attention of library writers, who have
exploited these features to provide useful extensions to JavaScript. In this sec-
tion we explore one such library, which has become very popular in the web
development community: Prototype (so named after the prototype mechanism
of JavaScript).

Prototype provides a wide array of extremely useful extensions and addi-
tions to JavaScript that make the life of web application authors, especially those
writing applications containing a good amount of DHTML (such as Ajax applica-
tions), a lot easier. It has even become the basis for other popular and higher-
level libraries available to JavaScript authors.

In this section we won’t have the time or space to cover all of the features that
Prototype has to offer; indeed, that could be the subject of a whole separate
book. Rather, we’ll concentrate on some of the most useful features, and then
focus on those that will help us in our endeavor to organize our code using an
object-oriented approach. In the next chapter, we will visit with Prototype again,
this time with a specific focus on the Ajax features of Prototype.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

98 CHAPTER 3
Object-oriented JavaScript and Prototype

To use Prototype, all you need is the prototype.js file, which can be down-
loaded from the Prototype site at http://prototype.conio.net/. Import this library
into your pages, and you’re ready to go!

Let’s begin by taking a look at some of the convenient features of Prototype
that are useful to just about any JavaScript code.

3.2.1 Generally useful functions and extensions

Although our main goal here is to focus on the object creation and manipulation
mechanisms of Prototype, there are a few general features of Prototype that are so
useful—not to mention just plain nifty—that they deserve to be explored first.
We’ll start by looking at a helper function that’s so convenient, once you get
accustomed to using it, you'll wonder how you ever got along without it.

Obtaining DOM element references
Whether our goal is to peek at its properties, add to or manipulate the prop-
erty values in some fashion, or to apply full-on instrumentation as we did in the
first part of this chapter, obtaining references to DOM elements in a page is a
frequent occurrence.

This process usually entails locating DOM elements given their id value, so
we’ll fairly often write code along the lines of

document .getElementbyId("someElementId")

That’s not difficult to grasp or to write, but it is rather wordy. Prototype defines a
shorthand function for this very common operation in the guise of the $ () func-
tion. (Yes, the name of the function is just the dollar sign.)

Using this function, element references by id become

S ("someElementId")

This is a much terser notation than its native version. Granted, when first writing
code using this function, it can take some getting used to. But once you've used it
even a little bit, you get accustomed to the initially odd notation and find that you
miss it badly in environments where you aren’t using Prototype.

But more so than just offering a compact notation, the $ () function has a well-
planned nuance: if the value passed to the function is already a DOM reference (as
opposed to an id string), the reference is simply returned as the result. This
allows us to use $ () without caring whether we have a DOM reference or an id
string, and, perhaps more importantly, keeps us from having to care which we
have. This may not sound like a big deal, but it will come in tremendously useful
when writing classes as well as in general JavaScript code.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Prototype library 99

Element references aren’t the only thing that Prototype makes it easier
to obtain.

Getting the value of form controls
Another useful shorthand function provided by Prototype is the $r() func-
tion, which returns the value of the form control element whose id is passed
as a parameter.

Let’s say, for example, that we have a text control whose id is someTextControl.
Its value could be obtained via

SF ("someTextControl")

It is important to note that this function refers to control elements by their id,
and not by their name. Form control elements possess both an id attribute and a
name attribute, which can be rather confusing until you understand the difference
between them. Consider the following control element:

<input type="text" id="someId" name="someName" value="whatever"/>

This element can be referenced in JavaScript code in two ways—by name (assum-
ing that the element is contained within a form named someForm):

document . someForm. someName
or by ia:
document .getElementById("someId")

The difference between the two attributes is that the id attribute assigns identifi-
cation for the element in the HTML DOM and must be unique within the page,
while the name attribute assigns the name of the request parameter that will be
part of the request created when the form is submitted. Any number of controls
can share the same name.

The id attribute is applicable to all elements that become part of the HTML
DOM, while the name attribute is only applicable to control elements that repre-
sent values that will become parameters upon a form submission.

It’s important to remember that the $F () function expects to be passed the id
of the element, not the name of the element.

As a bonus, in typical Prototype fashion, the $r () function can be passed a
reference to the DOM element for a control rather than its id and still func-
tion correctly.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

100

CHAPTER 3
Object-oriented JavaScript and Prototype

3.2.2 Array extensions

It’s hard to imagine programming without arrays. While there are other con-
structs that are useful for ordered lists of data, the array is one of the most preva-
lent and is intrinsic to most programming languages.

JavaScript is no exception. The Array class provides many useful methods for
dealing with repeating elements of data in our pages. But, as they say, there’s
always room for improvement.

Prototype extends the JavaScript Array class with some very clever features
that we will find useful in our applications. Again, we’re only seeing the tip of the
iceberg here, so please feel free to dig through the Prototype code or Internet
resources for more details than we can cover here.

The $A() function
While not technically an extension of the Array object, the Prototype $a() func-
tion is useful for transforming other constructs into instances of the Array class.
Of particular benefit to us as Ajax programmers is its ability to transform an
XML document’s NodeList into an Array. That way, not only can we easily
traverse it, but we can also use it with the Prototype Array extensions that we’re
about to explore.

For example, let’s assume we have an XML document referenced by a variable
named xmlDoc:

var arrayOfNodes = $A(xmlDoc.getElementsByTagName ('xyz'));

This would create an array of all <xyz> elements in the XML document and assign
it to arrayOfNodes.

Now let’s take a look at how Prototype has made the JavaScript Array class an
even more useful construct than its native definition.

The Enumerable class and methods
Prototype extends the Array class itself with some interesting functions such as
shift () (which allows you to treat an array as a stack) and compact () (which will
return a copy of a source array with undefined entries removed). But what will
really interest us as we progress through Ajax examples in this book is that Proto-
type makes Array an “extension” of a Prototype-defined class named Enumerable.
We use the term “extension” loosely here because, while we know that Java-
Script has no true object-oriented extending capabilities, Prototype allows us to
fake it rather admirably. (We’ll be talking about that in section 3.2.5.)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Prototype library 101

The Enumerable class features a bevy of useful functions for iterating over the
elements of an Enumerable instance (and hence, all arrays), the simplest of which
is the each () function.

This function accepts a single parameter, a reference to an iterator function
that will be invoked for each element of the Enumerable instance in indexed
order. This iterator function should adhere to the following interface:

function iteratorFunction(element, index) ;

where element is the current element from the array, and index is that element’s
index within the array. A trivial example is shown in listing 3.13.

var myArray = [1, 2, 3, 4 1; Iterates over each
myArray .each (showMe) ; myArray element
Is invoked for
function showMe (element, index) { each element
document .write('<p>[' + index + '] ' + element + '</p>');

}
|

Although the usefulness of this function may not be evident in this simple exam-
ple—after all, would it not be just as easy, and perhaps clearer, to just use a for
loop?—its utility will become clear when employed for more complex tasks.
Never underestimate the benefit of factoring complex code out of an algorithm
into a separate function—especially if the function is well named. The simplicity
that such factoring can bring to complex code is usually well worth the time spent
in structuring it properly.

We’ll see in later sections how using this pattern helps to keep the individual
functions shorter and easier to mentally grasp. Using this pattern also reduces the
amount of notation needed to address the array elements when processing them.

The Enumerable class sports many more such iteration functions that can be
used to make our way through arrays in a customizable fashion, and even to easily
create new arrays by applying various criteria to the elements to choose which
should become part of the new array. You are strongly encouraged to explore
these functions.

Arrays, as we stated, are an essential element in programming for storing
ordered lists of data. Let’s take a look at how Prototype gives us a formalized ver-
sion of another essential construct that we’ve already examined within this chap-
ter: the hash as implemented by the Hash class.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

102 CHAPTER 3
Object-oriented JavaScript and Prototype

3.2.3 The Hash class

As we discovered earlier in this chapter, the fact that object properties can be
dynamically created and assigned values allows us to use instances of the Object
class as ad hoc “associative arrays,” which are similar to what we think of as Maps
or Hashes in other languages.

Prototype takes this one step further by formally defining a Hash class that not
only provides the expected key-to-value associations, but also features such useful
methods as keys (), values (), and merge (). It also defines a method that we will
find incredibly useful in Ajax code: the toQueryString () method.

This method formats and returns an HTTP-compliant query string formed
from the name-value pairs contained within the hash. Together with the $H()
function, which creates an instance of Hash from the properties and values of
any JavaScript object, the toQuerystring() method will be employed in later
examples to help us easily generate, with minimum chance of error, URLs to use
as Ajax targets.

Listing 3.14 shows a small example of its use, which would result in the follow-
ing output:

a=1&b=2&c=3

Now that’s nifty! Even better, this function handles any URL encoding that
might be necessary for reserved characters in the names or values of the query
string parameters.

var o = new Object () ;

o.a = 1; Creates object,

o.b = 2; assigns properties .
o.c = 3; Formats and writes
document .write ($H (o) .toQueryString()) ; query string

Consider the previous example with more complex values and alternative nota-
tion. It displays
param%$201=1%261¶m%202=2%3D2¶m%203=3%2B3
Here’s the code that makes it happen:
var queryString = S$H(
{

'param 1': '1&1°',
'param 2': '2=2",

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

3.2.4

The Prototype library 103

'param 3': '3+3"'
}

) .toQueryString () ;

document .write (queryString) ;
Note that in this example, each parameter name contains a space character that
needs to be encoded, and each value likewise contains characters (&, =, and +)
that also need encoding.

Each special character has been automatically replaced with its encoding.
Aren’t you glad you won't have to do all that yourself?

Binding context objects to functions

Recalling our discussion of functions in section 3.1.2, remember that the context
object of a function is the object that is referenced by the this reference while that
function is executing. Normally, this object is the page’s window (for top-level
functions), or the owning object instance when functions are invoked as methods.

But when methods of an object are invoked as callback (handler) functions as
the result of an event (such as a mouse click), the this variable refers to the
event-generating element. Under these circumstances we employed some Java-
Script sleight-of-hand to make sure that we had access to the instance of the
method’s object.

One means that we can use is to invoke the function using the Function
class’s call() method, rather than making a direct call to a function. When we
do so, the first parameter specified to call() is established as the context object
for the function.

For example, if we want the this variable within a called method to refer to an
object of our choosing, we would employ the function’s call () method to set the
object that will become this within the function:

var a = someFunction.call (someObject) ;

By doing so, the this reference in the body of the someFunction() function will
refer to someObject.

That’s all well and good when we are the ones calling the function. But what
about when we do not have control at the time of the call, for example, when pass-
ing a function reference to another object to use as a callback? That’s a very real
scenario that we’ll encounter within our Ajax programs in which we pass function
references to XMLHttpRequest or other library code to be used as callback notifi-
cations. We’ll no longer have control over how the function will be invoked, and
yet we’d like to bind the this variable to a specific object other than the one to
which it would normally be bound.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

104 CHAPTER 3
Object-oriented JavaScript and Prototype

For just these occasions, Prototype has extended the Function class with a
method named bind (), which we can use to pre-bind an object to the function ref-
erence such that, when the function is later invoked, its this variable will point to
that object.

Once again, a listing being worth a thousand words, see listing 3.15 for
an example.

window.x = 1; <) Marks the window object

var o = { x: 2 }; Creates and marks

)) an arbitrary object
function doSomething(callback) {
Defines unbound

callback

callback() ;
}

function callback() { <) Defines bound callback
alert (this.x);
}

doSomething (callback) ;
doSomething (callback.bind (o)) ;

In this example, we mark the window object with a property named x @ and create
an arbitrary object, also assigning it a property x but with a different value @. This
will allow us to easily identify to which of these objects a reference is pointing.

We then define a processing function named doSomething () that accepts a call-
back function referenced as its lone parameter @. For illustrative purposes, this
function does nothing but invoke the passed callback function, but in a real-world
example, it could be a library function that performs some processing and then
invokes the callback when it is through.

The callback function itself @ merely displays an alert with the value of the x
property for whatever object is referred to by the this variable.

To demonstrate the difference between an unbound and bound function, we
first call the doSomething () function, passing in a simple reference to the callback
function. When the alert is displayed, we see the value 1, indicating that for the
invocation of the callback, the this variable points to the window object.

Then, we call dosomething () again, this time binding the object o to the call-
back using Prototype’s bind () extension. When the alert appears, we see the value
2, indicating that the this pointer now refers to the o object.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

3.2.5

The Prototype library 105

This type of pre-binding will turn out to be incredibly useful to us when pass-
ing handler functions to the processing methods of XHR and other library func-
tions, thus allowing us to control what the context object (the object referred to by
this) will be when the handler is invoked.

When your callback function is going to be invoked as the result of a DOM event
(such as a mouse click) and that function needs access to the triggering event, Pro-
totype provides a similar method named bindasEventListener (). This method
operates in a similar fashion to bind(), accepting as its parameter the object that
1s to be established as the context. However, it makes sure that when the callback is
invoked, the event object is passed as the parameter to the callback. We’ll see
examples of this method’s use in later chapters.

With all this newfound Prototype know-how, now let’s take a look at how Pro-
totype helps us to write object-oriented JavaScript.

Object-oriented Prototype

We’ve seen in the first part of this chapter how applying object-oriented concepts
to JavaScript can help make code better-organized and reusable. In this section
we will explore the way that Prototype makes it even easier for us to write object-
oriented JavaScript classes.

Let’s start off by looking at a Prototype-provided class named Class.

Creating classes with Prototype

Prototype’s Class class is a shorthand means for generating object constructors
using a simpler notation—one that is also perhaps more consistent—than when
using raw JavaScript.

As you may remember from our Button example of section 3.1.4, a JavaScript
class definition consists of a constructor function followed by declarations that
assign members and methods to the prototype of that constructor. Some could
find that notation a bit inconsistent, with initialization code going in a normal
function declaration that operates as the constructor while method code is placed
in functions assigned to the prototype.

For those who would prefer to aggregate the code in a more consistent man-
ner, the create () method of Class (which turns out to be its only method) gener-
ates a constructor whose functionality can then be declared in the prototype.
When the constructor is invoked, it will hand control over to a method named
initialize() that it will expect to find defined within the class. Let’s take a look
at the example in listing 3.16.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

106 CHAPTER 3
Object-oriented JavaScript and Prototype

Listing 3.16 Constructing a class the Prototype way

Something = Class.create();

Something.prototype.initialize = function(pl,p2,p3) {
/* constructor code goes here */

Y

Something.prototype.someMethod = function() {
/* method code goes here */
Y
||

In listing 3.16 we see that the code to construct an instance of the object is dele-
gated to a method named initialize(), which can be passed any number of
parameters and is declared just like any other method in the prototype of the
class. Many developers prefer this consistency, in which all code is declared in
the prototype.

For even tighter-looking code, many developers also use the alternate J[SON
notation for aggregating the prototype properties, as shown in listing 3.17.

Listing 3.17 Aggregating properties the JSON way

Something = Class.create();
Something.prototype = {
initialize: function(pl,p2,p3) {
/* constructor code goes here */
I
someMethod: function() {

/* method code goes here */
}

The code shown in listing 3.17 is entirely equivalent to the code in listing 3.16,
albeit using a different notation. Many developers prefer to assign the members
and methods to the prototype for a class en masse in this manner.

Which notation you use to declare your JavaScript classes is a matter of per-
sonal preference. Regardless of how you declare the class—using raw JavaScript,
or with the assistance of Prototype’s Class, and with or without using JSON nota-
tion—the remainder of Prototype’s object extensions can be used. And regardless

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Prototype library 107

of the means of declaration, instances of the class are created in the same manner
using the new operator:

var anInstance = new Something(1l,2,3);

Prototype has many extensions that make the various things that we need to do
with objects easier to manage. Let’s take a peek at a few of them.

Merging objects with Prototype

Whether you've realized it or not, we’ve already looked at an instance of merging
objects earlier in this chapter. But before we get into that, let’s take a look at how
Prototype allows us to merge objects and exactly what that means.

In Prototype, the concept of merging two objects is to essentially make a union
of all the properties found in both objects. This is accomplished with a class
method defined on the Object constructor named extend ().

Odd. Wouldn’t you expect it to be named merge () ? Well, the reason for the
choice of name will become clear before too much longer.

The extend() function is destructive in that one of the two parameters passed
to it is modified to be the result of the merge. The signature of the method is

Object.extend (objectl, object2)

The function operates by copying any properties found in object2 into
objectl. The result is that objectl ends up with all the properties it initially
possessed, as well as all the properties that are in object2.

If both objects possess a property with the same name, the object2 property
value is copied over the objectl property value, giving the object2 properties
precedence. When the merge is complete, a reference to objectl is returned as
the value of the function.

When we rewrite our Button class using Prototype’s assistance, we’ll find this
method useful for dealing with the options hash. We’ll see all that in section 3.2.6.

Beyond merging object instances, the extend() method has a more funda-
mental use—one that explains its name.

Extending classes with Prototype

In object-oriented languages such as Java and C++, class hierarchies can be
created through inheritance, in which a subclass inherits members and meth-
ods from a superclass. JavaScript possesses no such inheritance capabilities,
but the object.extend() class method gives us a darn good approximation of
those facilities.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

108

CHAPTER 3
Object-oriented JavaScript and Prototype

Remember that a JavaScript class is created by the combination of a constructor
and properties defined in its prototype. While we can’t magically cause a JavaScript
class to inherit anything from another class, what if we use the Object.extend()
method to merge the prototype of an object serving as a subclass with a superclass
object to form a new protoype composed from both objects?

Head spinning yet?

Let’s take a look at an example to see if we can make this work.

Remember our CD example from the beginning of the chapter? We created a
small object to hold information that represented a CD in our vast collection. We
recorded (as properties) the title of the CD, the artist, and the location (as a shelf
number) where the physical disc is stored.

Well, as it turns out, we’re not only wild about music, we’re also movie buffs! So
we’d like to expand our example to also include DVDs. We’re just crazy that way.

As we know, CDs and DVDs share a lot of characteristics, but they each possess
unique characteristics as well. The concept of an “artist” as applied to a CD
doesn’t make much sense for DVDs, and with DVDs we might want to record the
director of the film, which makes no sense for CDs. But both share the character-
istics of a title and a location in our collection.

Let’s start by creating a class that describes the common characteristics of both
of these types of discs. Using Prototype, the result is shown in listing 3.18.

Disc = Class.create(); Creates the constructor,

Disc.prototype = { Prototype style
initialize: function(title, location, type) {
this._initializeDisc(title, location, type);

I

Defines initialize method
for constructor

_initializeDisc: function(title,location, type) {
this.title = title;
this.location = location;
this.type = type;

I

whereIsIt: function() {
return 'The ' + this.type + ' titled ' + this.title +
' is on shelf ' + this.location;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Prototype library 109

As you saw earlier, first we create the constructor (the Prototype way) @, and
then define the members in the prototype. Because we used Prototype’s Class.
create () mechanism, we define an initialize() method @ for the constructor
to call in order to set up the instance at construction time. And that’s where we
did something just a little bit odd.

The initialize() method just turns around and calls yet another method
named _initializeDisc (), and lets it set up the instance. What’s up with that?

First of all, the leading underscore in the name of the _initializeDisc()
method is just a convention used to indicate that the method is intended to be
used internally and should never be called by code that employs this class. Java-
Script doesn’t possess the concept of private or protected members, so by naming
the method in that way, we indicate our infention that the method be ignored by
code outside of this class (or its hierarchy, as we will see) even if we have no way to
actually enforce it.

But why further delegate in this manner at all?

Remember that our intention is that this class serve as a superclass for the yet-
to-be written CD and DVD classes. When we set up those classes, each will have its
own initialize() method that will supercede the one we are defining in this
class. To make sure that we can initialize the superclass from the subclasses, we
factor the initialization code into the _initializeDisc () method, which will not
be superceded by the subclasses, thereby keeping it available for the subclasses to
call. We need to do this sort of two-level initialization for any class that is to be
used as a superclass to be extended by other classes.

You might consider _initializeDisc() to be rather wordy, or feel that the
use of the class name in this local initializer is redundant, but consider a situa-
tion in which the subclasses are to be used as superclasses for yet other classes. If
we used a simpler name such as _initialize(), we run into the same problems
where that method would be superceded by classes further down in the inherit-
ance chain. By using the class name as part of the name for the local initial-
izer, each class has a unique name for its local initializer with no chance of it
being superceded by a subclass.

OK, so now that we know how to properly code a class so that it can be used as
a superclass, let’s see how we code the subclasses: CD and DVD. Listing 3.19 shows
the code for the CD subclass.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

110

CHAPTER 3
Object-oriented JavaScript and Prototype

CD = Class.create(); DeﬁnesPropotypfs

) Class.create() method
CD.prototype = Object.extend/(

new Disc (),
{
initialize: function(title,artist,location) {
th?s._ln?tlallzeD?sc(tltle,locatlon, CD'); Calls “inherited”
this.artist = artist;

Merges with Disc class

initializer

Listing 3.19 is surprisingly short, but upon examination, not so simple. There are
a few strange things going on here.

The first thing we do is to use Prototype’s Class.create () method in the nor-
mal fashion @. But when we get to defining the class prototype, things get con-
siderably more interesting.

Normally when creating a class prototype, we assign an object with properties
representing the members and methods of the class to the class’s prototype. And
we do that here, except that instead of assigning it directly, we use it as the second
parameter to the Object.extend () method, merging it with a new instance of the
Disc class @).

What’s going on there?

If we recall how Object.extend () operates, it takes all the properties it finds on
the object passed as the second parameter, adds them to the object passed as the
first parameter, and returns that object as the result of the method.

So here’s what’s happening: the hash object that we use to define the members
of CD (in this case, solely consisting of the initialize() method) is added to a
new instance of Disc, and that Disc instance becomes the prototype object for CD.
The result is that the CD prototype contains all the members of Disc, and all the
members of CD. Because CD is the second parameter to Object.extend(), any
properties that it has in common with Disc will be given precedence.

In reality, no inheritance has occurred. But by merging the properties of CD
with those of Disc, the perception of inheritance is achieved: it appears that CD has
not only defined its own properties, but has also inherited Disc’s properties.

The other interesting aspect of this example to note is that in the initializer for
CD, we call the local initializer that we inherited from the Disc class to set the
common properties @.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Prototype library ‘ 111

The declaration of the DVD subclass is similar, as you can see in listing 3.20.

Listing 3.20 Coding the DVD subclass

DVD = Class.create();

DVD.prototype = Object.extend(
new Disc(),
{
initialize: function(title,director,location) {
this._initializeDisc(title,location, 'DVD') ;
this.director = director;

Shall we do some rudimentary testing? The result is shown in figure 3.6. List-
ing 3.21 shows a simple test page that created this output.

ins - Google

18 B Sides:The CD titled 18 B Sides is on shelf 17
Bellatrix:The CD titled Bellatrix is on shelf 4
City to City:The CD titled City to City is on shelf 15
Alien:The DVD titled Alien is on shelf 45
Brazil:The DVD titled Brazil is on shelf 2
Chicken Run:The DVD titled Chicken Run is on shelf 213 .
P Figure 3.6
— Where are the discs?

Listing 3.21 Testing the hierarchy

<html>
<head>
<title>Disc Test</title>
<script type="text/javascript" src="../scripts/prototype.js"> </script>

<script type="text/javascript" src="Disc.js"> </script>
<script type="text/javascript" src="CD.js"> </script>
<script type="text/javascript" src="DVD.js"> </script>
<script type="text/javascript">
var myCollection = [
new CD('18 B Sides', 'Moby',17),
new CD('Bellatrix', 'Jorgen Skogmo',4),

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

112

3.2.6

CHAPTER 3
Object-oriented JavaScript and Prototype

new CD('City to City', 'Jerry Rafferty',b15),
new DVD('Alien', 'Ridley Scott',45),
new DVD('Brazil', 'Terry Gilliam',2),
new DVD('Chicken Run', 'Nick Park',6213)
/* and on and on ... */
1;
</script>
</head>

<body>

<script type="text/javascript">
myCollection.each(
function(disc) {
document .write(
'<p>' + disc.title + ':' + disc.whereIsIt() + '</p>'
)
}
)i
</script>

</body>

</html>
||

Naturally, if we were going to actually record our collection, we’d want to do so in
a database rather than in an HTML page! But we're doing it here to illustrate the
concept of using Object.extend() to emulate class inheritance, so pretend this is
all reasonable.

When the page is displayed, we’d expect to see the name and locations of the
discs in our collection, as shown in figure 3.6. Note the use of the whereIsIt()
method, which was inherited by CD and DVD from Disc.

Before we move on to the next chapter—which takes a look at how Prototype
and a handful of other freely available tools will help us to easily write Ajax
code—Ilet’s use the Prototype facilities we’ve learned about so far to rewrite the
Button class we developed earlier in the chapter.

Rewriting the Button class with Prototype

With the sleight-of-hand tricks that Prototype provides us for declaring Java-
Script object classes, let’s reimplement the Button class from section 3.1.4 using
these newfound abilities.

The rewrite contains a lot of code that looks familiar, but it also has a number
of significant changes, as you can see in listing 3.22.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Prototype library ‘ 113

Listing 3.22 The Button class revisited

Button = Class.create();

Button.prototype = {

function (element,
$ (element) ;

initialize:
this.element
if (!this.element)
this.options
{
enabled:
onClick:
enabledClassName:
disabledClassName:
armedClassName:
pressedClassName:
1,
options
)
this.element.
this.element.
this.element.
this.element.
this.element.onmouseup
if (this.options.enabled) {
this.enable() ;

true,
function ()

{1,

onclick
onmouseover
onmouseout

onmousedown

}
else {
this.disable() ;
}
I

throw new Error (element + '
Object.extend (

<@ Declares the constructor

<—@) Declares class prototype

Accepts constructor’s

options) { parameters

not found') ;

this.CLASS_DEFAULT_CLASS_ENABLED,
this.CLASS_DEFAULT_CLASS_DISABLED,

this.CLASS_DEFAULT_CLASS_ARMED,

this.CLASS_DEFAULT_CLASS_PRESSED

this.onclick.bind(this);
this.onArm.bind (this) ;
this.onDisarm.bind(this) ;
this.onPress.bind(this);
this.onRelease.bind(this) ;

CLASS_DEFAULT_CLASS_ENABLED: 'buttonEnabled',
CLASS_DEFAULT_CLASS_ARMED: 'buttonArmed',
CLASS_DEFAULT_CLASS_DISABLED: 'buttonDisabled',
CLASS_DEFAULT_CLASS_PRESSED: 'buttonPressed',

onclick: function() {

if

(this.options.enabled) {

this.options.onClick.call (this);

}
I

OnArm:
if

function() {

this.element.className
}
I

onDisarm: function() {

downloaded from: lib.ommolkefab.ir

(this.options.enabled) {

this.options.armedClassName;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

114 CHAPTER 3
Object-oriented JavaScript and Prototype

if (this.options.enabled) {
this.element.className = this.options.enabledClassName;
}
I

onPress: function() {
if (this.options.enabled) {
this.element.className = this.options.pressedClassName;
}
I

onRelease: function() {
if (this.options.enabled) {
this.element.className = this.options.enabledClassName;
}
I

isEnabled: function() {
return this.options.enabled;
I

enable: function() {

this.options.enabled = true;

this.element.disabled = false;

this.element.className = this.options.enabledClassName;
I

disable: function() {
this.options.enabled = false;
this.element.disabled = true;
this.element.className = this.options.disabledClassName;

This rewrite features some significant differences from the original implementa-
tion. First, we used Class.create() to declare the constructor @. Again, Proto-
type’s approach to declaring a constructor in this manner—moving the actual
setup code into an initialization method—lends a certain consistency to the class
code that you might find desirable. If not, you can continue to use the original
native notation as a matter of taste. Regardless of which notation is used, the
remainder of Prototype’s facilities can still be used.

Next, the class’s prototype is declared using JSON notation @. Use of this
notation is orthogonal to the use of Prototype; it’s just an alternative notation we
can choose to use—or not to use. But this notation does appear to be the choice

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Prototype library 115

of many developers who use Prototype—and that’s where things start to get
really interesting.

Because we used Prototype’s constructor mechanism, we need to create an
initialize() method that accepts the constructor’s parameters. We do so @, and
in the very first line we assign the element parameter to the element member.
Because we use Prototype’s $ () function, the element parameter can be either an
element id or a reference to the element.

We could have coded this sort of flexibility into our original class by doing
some type checking and conditional assignment, but here we get it for free by
using $ (). We also renamed the parameter from the original elementName to the
more general element to indicate this.

Unlike in our original implementation, we do not create a property on the
<button> element that points back to this instance of Button. We’re not being
stubborn; it’s just that it’s going to turn out not to be necessary. We’ll see why in
just a bit.

When it comes time to set up the options, Prototype’s assistance really starts to
shine. In the original, we populated the options member one option at a time,
testing to see if the caller had provided a setting for the option and using a default
value if not. In our new implementation, we use the power of Object.extend() to
merge the caller-provided options object with one of our own that we prepopulate
with the defaults.

Compare the notation used in the original in listing 3.8 to that in listing 3.22.
The clarity of the latter approach should be more than apparent. The set of
options available and their default values is much better organized and clear at a
moment’s glance.

Next, we assign the <button> elements handlers. Using the bind() extension
that Prototype added to the Function object, we quickly and easily set up each
handler so that when called, their function contexts will be the Button instance
rather than the <button> element.

In our native implementation, either we relied on closures to get a reference to
the Button instance, or we relied on the property we had added to the <button>
element. Neither of these tricks is needed here, which is why we could dispense
with adding any property to the element.

The constructor is completed with the exact same code as the original to
ensure that the button is in the correct initial state.

The remainder of the implementation is straightforward and simple. It is
important to note that (thanks to the use of bind()) when the event handlers are

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

116

CHAPTER 3
Object-oriented JavaScript and Prototype

set up, all the handlers can assume that the Button instance (and not the <button>
element) is the context object when the handler is triggered.

Summary

We presented a great deal of material in this chapter.

We focused on how JavaScript code can be organized using object-oriented con-
cepts even though the language doesn’t natively provide some object-oriented
facilities common to other OO languages. You learned how to create JavaScript
classes that contain members and methods, and by doing so gained all the benefits
that JavaScript’s object-oriented brethren lend to code written in those languages.
Organizing code into classes not only makes it, well, more organized, but also facil-
itates reuse and will help the code to be more extensible and maintainable.

We then introduced the Prototype library. You saw that Prototype provides a
bevy of helpful functions that could be useful in just about any JavaScript code
base. We then looked into how Prototype helps us to write object-oriented Java-
Script easily and more clearly. You saw how to merge objects, and how to use that
ability to emulate class inheritance in a language that possesses no such concept.

But bear in mind that we’ve only scratched the surface here. There’s much
more to Prototype than we are able to cover in half a chapter. For example, Pro-
totype contains facilities for easing the implementation of event-handling code—
a usually onerous task due to the browser-specific nature of events. However,
we’re not quite done with Prototype yet. We will see a bit more of Prototype, in
particular its Ajax facilities, in the next chapter.

While Prototype is fast becoming one of the most popular JavaScript libraries,
it’s far from the only one. In the next chapter we explore how some of the various
freely available libraries (to include Prototype) can specifically help us as writers
of Ajax applications.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Open source Ajax toolkits

This chapter covers

m Choosing an open source toolkit

m Making Ajax requests using the Dojo toolkit
m Making Ajax requests using Prototype

m Making Ajax requests using jQuery

= |nvoking server-side Java methods with DWR

117

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

118

4.1

CHAPTER 4
Open source Ajax toolkits

Sometimes other people make our lives easier. Sometimes we pay them for this
service. And sometimes we can actually get something for nothing.

The Internet is full of open source tools that people have made available for
others to use without charge, free for the taking. Whether the motivation behind
making their labors freely available is a matter of seeking recognition, resume
building, free advertising for other services, bragging rights, or just plain old-
fashioned altruism, we can gratefully take advantage of these tools.

Though that doesn’t mean we get an entirely free ride.

Since just about anybody with an FTP client can put just about anything out
there on the Net, it behooves us to carefully choose which library or tool we are
going to make use of. We need to take any number of factors into account when
choosing open source software to use, but one good indicator is the number of
successful projects that have already employed a tool or library.

In this chapter, we’ll survey a few of the open source toolkits that can make our
lives—as Ajax web developers—a bit easier. We'll look at the Dojo toolkit, Proto-
type (again, this time with an eye toward its Ajax capabilities), jQuery, and DWR.
You will find all of these libraries used in examples throughout the remainder of
the book. Prototype will be used extensively, while the other libraries are used
here and again among the examples.

Be aware that the descriptions and examples within this chapter are in no way
intended to serve as complete tutorials or primers for the full set of features of the
toolkits that we’ll examine. Nor will a comprehensive survey of the toolkits’ capa-
bilities be presented. Rather, we’ll focus on the aspects of the toolkits that simplify
the process of asynchronously communicating between client browser and server
using Ajax.

Examining the remainder of the features each toolkit brings to the table will
be an exercise in discovery—usually one that’s really fun—Ileft to the reader.

The Dojo toolkit

Dojo is an open source JavaScript library published and maintained by the Dojo
Foundation. Like most other JavaScript toolkits, its aim is to make DHTML
tasks—especially popular but complicated tasks such as animations—easier to
create and maintain.

You can download an edition of Dojo at http://dojotoolkit.org/download/. Dojo
is packaged as numerous editions that contain specific packages that you might
be interested in using. For the purposes of the code that we’ll write using Dojo,
any edition that includes the I/O package will do.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Dojo toolkit 119

4.1.1 Asynchronous requests with Dojo

After downloading, simply place the dojo.js file in an appropriate location
within your web application. For ease of setup, we’ll just put it in the same folder
as our examples for this section.

With regard to making asynchronous requests to the server, Dojo provides a
simplification of the steps needed to make and respond to Ajax requests in the
guise of the dojo.i0.bind() function. This function accepts a single parameter: a
JavaScript object whose properties serve as the parameters to the function—sim-
ilar to the options hash that we examined in the previous chapter. This may seem
to be a rather unconventional approach if you haven’t come across it before, but it
does have some distinct advantages and is gaining popularity among JavaScript
programmers and especially toolkit authors. Using this technique, parameter
order becomes moot, optional parameters are easy to deal with, and since each
parameter property is named, the calling syntax is highly readable.

Problem
We want to create a page that we can use to look up phone numbers, given a list of
names. We want to do so without any form submission that requires us to refresh

the page.

Solution

For this problem, we're going to make use of the Dojo I/O bind function to make
the asynchronous call to the server in order to look up and return a phone num-
ber, given a name string.

First, we need to import the Dojo library. In the head element of our page,
we add

<script type="text/javascript" src="dojo.js"></script>

Then, we’ll hard-code the list of names in order to keep this example simple. (In
a later problem, we’ll look at ways of obtaining such lists dynamically).
In the body section of our page we write the following:

<form name="lookupForm" onsubmit="return false;"> ﬂ—o Declares form element
<select name="who" onchange="lookup() ;">
<option value="JOHN">John</option>
<option value="MARY">Mary</option>
<option value="BILL">Bill</option>
</select>
</form>

Hard-codes
control selections

We declare a form element @ with an onsubmit event handler that prevents the
form from ever being submitted to the server. We’re handling the server traffic

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

120

CHAPTER 4
Open source Ajax toolkits

ourselves, so we don’t ever need the form to be submitted—at least not in this
example. A select element is declared with an onchange event handler that will trig-
ger the lookup of the phone number when a selection from the list has been made.

The options in the control are hard-coded on the page @ for this example.
Obviously in real-world code these would need to be dynamically created from
the names available in the server’s contact database. We can either gloss over that
for this example, or imagine that this page was set up by some server-side mech-
anism, JSP or PHP perhaps, that handled that aspect of the page for us.

Upon selection, the lookup () function is invoked as the element’s onchange
event handler. This is where we use Dojo to make the Ajax call on our behalf:

function lookup () {

dojo.io.bind(
{ url: 'phone.jsp?who="'+document.lookupForm.who.value,
mimetype: 'text/plain',
load:
function(type, data, req) {
document .getElementById('displayArea’') .innerHTML = data;
} }
)i

}

In this function, we make a call to the dojo.io.bind() function, passing all the
information it needs in order to process our request as a JSON-formatted Java-
Script object with specific properties that act as the function’s parameters.

The url property specifies the URL of the server-side resource to invoke. In
this example, we've defined a simple JSP file to handle the request. This ridicu-
lously simple JSP file, which takes advantage of the powerful JSP Expression Lan-
guage, merely takes the who request parameter that we pass to it and adds it to the
end of a phone number prefix in order to create the phone number. It consists of
the single line

555.555.${param.who}

It’s easy to envision, however, that this JSP (or servlet, or PHP script, or other
server-side resource) could just as well perform a database lookup or other pro-
cess in order to obtain the phone number.

By default, the dojo.io.bind() function will use the GET HTTP method when
making the request to the server. We could change this by including the method
property with a value of pPosST and using the content property to provide the
request parameter.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Dojo toolkit 121

The mimetype property is set to specify that the response will be plain text. The
load property specifies a handler function that is to be invoked upon normal com-
pletion of the request. Since the handler function is so short in this example, we’ve
inlined it as part of the parameter object. It could just as readily be a reference to
a function defined elsewhere on the page. If we wanted to register a handler to be
called in the event of a problem, we could do that with the error property.

The load handler function is passed three parameters:

m The first is the type of handler being invoked. In this case it will always be
load. This parameter allows a handler function to be reused for more than
one event type.

m The second parameter is the response data—in this case, the generated
phone number.

m The third parameter is a reference to the XMLHttpRequest object itself,
which, if desired, can be queried for details about the status of the request.

The job performed by the load handler is simple: take the response data and
dynamically set it into an element named displayArea using that element’s
innerHTML property.

The displayArea element is simply defined as an initially empty span element:

<div>

Phone # is:

</div>
That pretty much sums up all the parts that need to go into our page. When dis-
played in a browser, it looks as shown in figure 4.1. The entire code for this rather
Spartan-looking page is shown in listing 4.1.

1600 Phone Number Lookup with Dojo 1

B < > + http://localhost:8080/aip/chapl@® ~ Q- Googl !

i [#]http:/ /localhos /aip/chapl® = Q- Google |

lP!lone Number Lookup wit...] -ﬁi
Bill_14)

Phone # is: 555.555.BILL

Figure 4.1

— Phoning Mr. Bill

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

122

CHAPTER 4
Open source Ajax toolkits

Listing 4.1 Phone number lookup with Dojo

<html>
<head>
<title>Phone Number Lookup with Dojo</title>
<script type="text/javascript" src="dojo.js"></script>
<script type="text/javascript">
function lookup() {
dojo.i0.bind(
{

url: 'phone.jsp?who="'+document.lookupForm.who.value,

mimetype: 'text/plain',

load:

function(type, data, req) {
document .getElementById('displayArea’') .
innerHTML=data;

}
)
}

</script>

</head>
<body>
<form name="lookupForm" onsubmit="return false;">
<select name="who" onchange="lookup() ;">

<option value="JOHN">John</option>
<option value="MARY">Mary</option>
<option value="BILL">Bill</option>
</select>
</form>
<div>
Phone # is:
</div>
</body>

</html>

Discussion
This section introduced us to using the dojo.io.bind() function to make Ajax
requests to server-side resources.

A comparison of the amount of JavaScript code necessary to make such a
request ourselves using the XHR object directly, versus using the Dojo function,
would show a nontrivial, but hardly earth-shattering, reduction. However, more so
than just lines of code, use of a toolkit such a Dojo helps reduce the complexity of
the code by reducing the amount of “plumbing” code on the page so that the code

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Dojo toolkit 123

that remains is core code that is focused on providing the page’s functionality.
Such reduction in plumbing code, especially over the course of a large and com-
plicated page, can significantly reduce the complexity of the page even if it makes
only a small dent in the number of lines of code.

4.1.2 Automatic form marshaling with Dojo

The previous section showed how easy it was to use the Dojo dojo.io.bind()
function to make a call back to the server to retrieve data asynchronously. One
issue with that example was that in order to construct the URL to perform the
GET operation, we needed to build a query string to append onto our URL. Gen-
erally, building query strings for URLs by hand is something that’s best avoided in
order to steer clear of common pitfalls such as

= Syntax issues, such as how many times you have used the ? in place of the
&, and vice versa

m Incorrect encoding (or complete lack thereof) of the parameter names
and values

But even if we don’t want to have to deal with it, something has to build the
query string.

Problem
We want to avoid having to build query strings to the URLSs that we will pass to the
Dojo bind () function. We think, “Wouldn’t it be great if we could just ‘submit’ the
form containing our select element to the asynchronous request instead of having
to read the value and build the query string ourselves?”

As it happens, Dojo allows us to do just that.

Solution
The parameter object for the dojo.io.bind() function accepts a property named
formNode, which lets us specify the DOM element node of a form element whose
controls are passed as request parameters to the asynchronous request. This
allows us to effectively “submit” the form via the Ajax request, even though we
know that the form isn’t actually being submitted.

This entails making only a few changes to the code of our previous section.
First, we change the call to the bind() function as follows:

dojoio.bind(

{
url: 'phone.jsp', <) Look, Ma! No params!

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

124 CHAPTER 4
Open source Ajax toolkits

mimetype: 'text/plain',
load:
function(type, data, req) {
document.getElementById('displayArea') .innerHTML = data;
Iy
formNode: document.lookupForm <@ Specifies form to submit
}
)i
Note that a query string is no longer constructed and placed on the URL that we
set as the value of the url property @, and that we have added a formNode prop-
erty @ that specifies a reference to the form containing the select element. This
causes the bind () function to automatically marshal the values of the control ele-
ments in the specified form and pass them as parameters to the asynchronous
request. The changed page, with modifications highlighted in bold, is shown in

listing 4.2.

Listing 4.2 Asynchronous form submission with Dojo

<html>
<head>
<title>Phone Number Lookup with Dojo</title>
<script type="text/javascript" src="dojo.js"></script>
<script type="text/javascript">
function lookup () {
dojo.i0.bind(
{
url: 'phone.jsp',
mimetype: 'text/plain',
load:
function(type, data, req) {
document .getElementById('displayArea') .innerHTML=data;
T,
formNode: document.lookupForm
}
)
}

</script>
</head>
<body>
<form name="lookupForm" onsubmit="return false;">
<select name="who" onchange="lookup() ;">

<option value="JOHN">John</option>
<option value="MARY">Mary</option>
<option value="BILL">Bill</option>
</select>
</form>
<div>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4.2

Prototype 125
Phone # is:
</div>
</body>
</html>
|
Discussion

This example showed us a way to easily submit a form to an asynchronous request
without the cumbersome requirement of building a query string from the values
of the form controls. By merely passing a reference to the Dojo function, we
ensure that the mechanics are handled on our behalf.

While gathering form values and constructing a query string for the URL is
by no means rocket science, it’s a rather messy and onerous task, and one in
which it is easy to introduce silly errors. By taking care of this tiresome task, this
aspect of Dojo provides a good example of how providing features that may not
greatly reduce lines of code can still greatly reduce the complexity of the on-

page code.

Prototype

Unless you skipped over the previous chapter, you've already been introduced to
Prototype, a JavaScript toolkit that aims to make the life of DHTML coders easier.
It’s a popular toolkit that is not only useful in its own right but has also been used
as the basis for other toolkits and frameworks such as Scriptaculous, Ruby on
Rails, and Rico.

In order to use Prototype, all you need is the prototype.js file, which can be
downloaded from the Prototype site thttp:/prototype.conio.net/. Like the Dojo
toolkit, Prototype offers a wide range of DHTML features. If you did breeze over
the Prototype section of chapter 3, you might want to go back and read that sec-
tion before continuing, as we’ll be using some of the more useful Prototype exten-
sions in our example code.

4.2.1 Asynchronous requests with Prototype

Like the Dojo toolkit, Prototype provides a number of easy ways to make asyn-
chronous requests via Ajax. Let’s start by looking at Prototype’s means for making
a basic request.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

126 CHAPTER 4
Open source Ajax toolkits

Problem

On an order entry page, we are faced with the common problem of dynamically
populating the contents of a dropdown control (<select> element) based on the
selection made in another. For this example, we’ll present a dropdown with a list
of colors in which our collection of T-shirts are available. Based on the color selec-
tion, we need to dynamically consult our inventory database and populate the
sizes dropdown to show only sizes that we actually have on hand for that color.

Solution
First, we import the Prototype library. Assuming that we have placed the proto-
type.js file in the same folder as the HTML page, that would be as easy as

<script type="text/javascript" src="prototype.js"></script>

Now, let’s set up our form. For simplicity’s sake, we’ll only include the two drop-
down elements and a submit button. Obviously, many other controls would be
needed for an actual order form.

<form action="/submitOrder" name="tshirtForm">
<label>T-shirt color:</label>

<select name="color" id="color" onchange="updateSizes();"> Defines
<opt}on value="">Se}ect colorf/optlon>. onchange
<option value="cardinal">Cardinal</option> handler

<option value="ecru">Ecru</option>
<option value="hunter">Hunter</option>
<option value="azure">Azure</option>

</select>

<label>Size:</label>

<select name="size" id="size" disabled="disabled">
<option value="">Select size</option>

</select>

<input type="submit"/>

</form>

Creates sizes
dropdown

A few things are notable about this form. First, note that the form’s control ele-
ments have been given both an id and a name attribute, and that these values are
the same. This allows us to refer to the control elements by either ID or by name,
and since these identifiers exist in separate JavaScript namespaces, nothing will
be confused by the fact that we used the same value for both. We also defined an
onchange event handler on the colors dropdown @ so that we can react when the
user selects a color from the list. The sizes dropdown @, which is empty except
for a “Select size” directive, is initially disabled; it makes no sense for users to click
on it until it’s populated with some values.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Prototype 127

When the user selects a color from the list of available colors, the update-
Sizes () function is invoked:

Obtains value of

function updateSizes () {
color dropdown

if ($F('color')=='"') return;
new Ajax.Request('getSizes.jsp?color=' + S$F('color'),
{

method: 'get',

onSuccess: populateSizes,

onFailure: function(r) {

throw new Error('Fetch sizes failed: <44€) Throws error
+ r.statusText);

}
)i

}

The first thing that this handler does is use the $F () function to obtain the value
of the color dropdown @ and exit if no color was actually selected (the user could
click on the “Select color” entry, which we're just using as a helpful label). We
could be more robust here in order to ensure that the size element is placed into a
known state, but we're focusing on the Ajax request for now.

If that check passes, an asynchronous request is made using Prototype’s
Ajax.Request object. The asynchronous request itself is triggered by constructing
a new instance of Ajax.Request, passing two parameters: the URL for the request,
and a hash object containing properties that specify the options of the request. (We
used this same technique in chapter 3, and it is also employed by the Dojo toolkit.)

The URL specifies a JSP file that we will use to simulate a database lookup into
our inventory, and is passed the value of the chosen color. In the options param-
eters object, we specify the HTTP method as a GET (Prototype insists on lowercase
here) with the method property, and provide function references for success and
failure handlers with onSuccess and onFailure, respectively.

The failure handler, which is passed a reference to the XHR instance, throws
an error depicting the failure status @. The success handler is a reference to the
populateSizes () function.

To make life easy on the client-side code (it’s almost always a good idea for the
server-side code to “take one for the team” and handle as much of the complex
processing as possible to help simplify the client-side code), the JSP will return as
its response a JSON string containing the notation for a JavaScript array of the
available sizes. A typical response might be

['Small', 'Medium', 'Large', 'XL', 'XXL"']

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

128 CHAPTER 4
Open source Ajax toolkits

The code for the JSP, which utilizes the JSTL (JSP Standard Tag Library) core
actions, 1s

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<c:choose>
<c:when test="${param.color =='azure'}">
['Small', 'Medium', 'XXXL"']
</c:when>
<c:when test="${param.color =='cardinal'}">
['Medium', 'Large', 'XL"']
</c:when>
<c:when test="${param.color =='ecru'}">
['Small', 'Medium', 'Large', 'XL', 'XXL', 'XXXL"']
</c:when>
<c:when test="${param.color =='hunter'}">
['Small', 'Medium', 'Large', 'XL', 'XXL"']
</c:when>
</c:choose>

Of course, in a real-world situation, this would be a servlet or other server-side
resource that would perform a database lookup rather than returning hard-
coded values.

When this JSP returns its response, the Prototype Ajax.Request object will

invoke the populateSizes () function (assuming all has gone well, of course), which
we have defined as follows:

function populateSizes(r .
bopu- () { Obtains dropdown
eval ('var sizes=' + r.responseText) ;
. . element reference
var sizeElement = $('size');
while (sizeElement.options.length > 1) {
sizeElement.remove (1) ;
}
for (var n = 0; n < sizes.length; n++) {
sizeElement.add (
new Option(sizes[n],sizes[n]),document.all ? 0 : null
)

Empties dropdown
element

Adds the

) options

sizeElement.disabled = false;
}
This handler is passed a reference to the XHR instance, and the first thing that it
does is to obtain the results of the response. Using the JavaScript eval () func-
tion, we evaluate the JSON response text and assign it to a variable for use later
in the function. After the evaluation, this variable will contain a reference to a
JavaScript string array, specifying the size values that our JSP returned for the
passed color.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Prototype 129

We want to add those values to the sizes dropdown, so we obtain a reference to
the dropdown element @ and empty it by removing all of its options with the
exception of the first (which contains our helpful “Select size” label) @. We then
iterate over each of our returned size values and add a new option containing the
size to the sizes dropdown.

When we make the call to the select element’s add() method @, the second
parameter warrants some explanation:

document.all ? 0 : null

The W3C specification for the add() method of the select element calls for the
second parameter to specify the index of the existing option before which the new
option will be inserted, or null in order to insert the new option at the end of
the list.

Internet Explorer, however, insists on using a zero rather than null to indicate
that the new option be placed at the end, so we do a little browser detection and
provide the appropriate value. Usually object detection rather than browser detec-
tion is recommended for making client-dependent choices, but in this case
there’s no object to test in order to make the appropriate decision.

Finally, after all the sizes have been added, the sizes dropdown is enabled. In a
browser, before a color selection, we would see a page such as shown in figure 4.2.
The same page after a color selection is shown in figure 4.3. The completed code
for our page is shown in listing 4.3.

80060 T-shirts!

N« » + | @ hup://yogi.local:8080/aip/chapl7 ~ Q- Googl 5’
| 9 tp: //yogi.local faip/chap Q; 00gle 1,
| T-shints! J =

T-shirt color: [select color | %’ Size: selectsize & (‘Submit

Figure 4.2

M Color selection page: before

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

130 CHAPTER 4
Open source Ajax toolkits

Q~ Google

T-shirt color: [Huner [3) Size v select size
Small
Medium

— Figure 4.3
E Color selection page: after
Listing 4.3 Dynamic lookup with Prototype

<html>
<head>
<title>T-shirts!</title>
<script type="text/javascript" src="prototype.js"></script>

<script>
function updateSizes () {
if ($F('color')=='"') return;
new Ajax.Request('getSizes.jsp?color=' + SF('color'),
{

method: 'get',
onSuccess: populateSizes,
onFailure: function(r) {
throw new Error('Updates sizes failed: ' +
r.statusText);

}
}
) ;
}
function populateSizes(r) {
eval ('var sizes=' + r.responseText) ;
var sizeElement = S$('size');

while (sizeElement.options.length > 1) sizeElement.remove(1l);
for (var n = 0; n < sizes.length; n++) {
sizeElement.add (
new Option(sizes[n],sizes[n]), document.all ? 0 : null
)
}

sizeElement.disabled = false;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Prototype 131

</script>
</head>

<body>
<form action="/submitOrder" name="tshirtForm">
<label>T-shirt color: </label>
<select name="color" id="color" onchange="updateSizes();">
<option value="">Select color</option>
<option value="cardinal">Cardinal</option>
<option value="ecru">Ecru</option>
<option value="hunter">Hunter</option>
<option value="azure">Azure</option>
</select>
<label>Size:</label>
<select name="size" id="size" disabled="disabled">
<option value="">Select size</option>
</select>
<input type="submit"/>
</form>
</body>
</html>

Discussion

Like the Dojo toolkit, Prototype allows us to make asynchronous Ajax requests in
a simpler fashion (compared with using the XHR object directly) by handling the
details of making the request and handling the state change callback. This allows
us to abstract the code necessary to initiate and handle the request, focusing on
the processing at hand.

The value of the small level of abstraction that Prototype provides in this area
may not be apparent in an example of this size, but on a more complicated real-
world page, the advantages of keeping the code neat can become a major factor
in the maintainability and extensibility of the page.

4.2.2 Automatic updating with Prototype

In the previous problem, the data that came back to our page from the server
required some processing in order to display; a string array of values needed to
be converted to option elements with which to populate a select element.

But frequently, we may want to display data that we get back from the server as
is with no interpretation necessary. For just such occasions, Prototype provides
the Ajax.Updater class to make this process easy and painless.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

132

CHAPTER 4
Open source Ajax toolkits

Problem

Upon some event on the page—a button click, perhaps—we wish to obtain the
date and time from the server and display it on the page.

Solution
As expected, we start by importing the Prototype toolkit:

<script type="text/javascript" src="prototype.js"></script>

We'll be triggering the update of the date and time information as a result of a
button press, so we define a button:

<button type="button" onclick="update();">Click me!</button>
and an initially empty container in which to display the date and time:

The onclick event handler of the button triggers the update () function in which
we employ the Ajax.Updater object:

function update() {

new Ajax.Updater ('timeDisplay', 'date.jsp’,
{
method: 'get'
}
)i

}

As we did with the Ajax.Request object, we use the Ajax.Updater object by cre-
ating an instance and passing the relevant information in the constructor’s
parameters.

The first parameter specifies the id of the element into which the response
text will be placed, and the second parameter specifies the URL from which to
obtain the response. In this case the server-side resource is a JSP page named
date.jsp, which employs the JSTL internationalization actions to format and
return the current time:

<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>
<jsp:useBean id="now" class="java.util.Date"/>
<fmt:formatDate value="${now}" pattern="MMMM dd, yyyy hh:mm aa"/>
The third parameter is a JavaScript object containing the request options, just as
we saw with Ajax.Request. In this case, we merely specify the HTTP method as GET.

This results in the display (after a click of the button) shown in figure 4.4. The

complete code that resulted in this page is shown in listing 4.4.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Prototype 133

3 http: / /yogi.local:8080/aip/chapl7/pro ~ Q- Google

Click mel April 23, 2006 12:07 AM

Figure 4.4
Finding out what time it is
with Prototype

Listing 4.4 Keeping up-to-date

<html>
<head>
<title>Now!</title>
<script type="text/javascript" src="prototype.js"></script>
<script>
function update() {
new Ajax.Updater('timeDisplay', 'date.jsp',
{
method: 'get'
}
)
}
</script>
</head>

<body>
<button type="button" onclick="update();">Click me!</button>

</body>
</html>

Discussion

Updating an HTML element with data gathered from an Ajax request is an
extremely common occurrence on many Ajax-enabled pages. By providing the
Ajax.Updater object, Prototype reduces the amount of code necessary to perform
this common task to the barest minimum.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

134

4.2.3

CHAPTER 4
Open source Ajax toolkits

This is especially useful for requests made to server-side resources that can
easily return already-formatted HTML code, such as JSP pages, PHP scripts, or
even static HTML files. Having the server-side resource perform the formatting
can greatly reduce the amount of processing necessary on the page to gather raw
data and use it to either format HTML strings for use with innerHTML, or to use the
DOM API to dynamically build the desired HTML elements.

Periodic updating with Prototype

In the previous problem, we used the Prototype Ajax.Updater object to cause an
HTML element container to be updated automatically with preformatted response
data from the server; we used the current date and time as an example.

We were able to do this with a minimum of code, and it was convenient to just
be able to name the target display element by its id. There are times, however,
where we would want to execute the same function, but at set intervals in order to
ensure that the displayed data will be as up-to-date as feasible.

Problem
We wish to obtain and display data from the server (using the current date and
time once again) at periodic intervals.

Solution

Starting with the code of the previous solution, we could easily achieve our
goal by invoking the services of the Ajax.Updater class in a timeout handler
invoked by using the JavaScript window.setTimeout () Or window.setInterval ()
function. But once again, Prototype makes things even easier for us by provid-
ing the Ajax.PeriodicalUpdater class. To use this class, we need only make a
few minor adjustments to our previous solution.

We'll be calling a slightly different back-end processing resource, date2.jsp,
which returns as its response the current data and time in a manner similar to its
predecessor. But this time we include the seconds in the time value so that we can
detect updates on a second-by-second basis:

<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>

<jsp:useBean id="now" class="java.util.Date"/>

<fmt:formatDate value="${now}" pattern="MMMM dd, yyyy hh:mm:ss aa"/>
The changes to the update () function include using the Ajax.PeriodicalUpdater
class and specifying the interval at which the automatic updates are to occur:

function update() {
new Ajax.PeriodicalUpdater ('timeDisplay', 'date2.jsp"',

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Prototype 135

{
method: 'get',
frequency: 5
}
)i

}

As you can see, only two changes are involved. First, we create an instance of
Ajax.PeriodicalUpdater that refers to the new JSP page in the request URL. Sec-
ond, we introduce a frequency property in the parameters object that specifies
the number of seconds between updates.

When we display this page in the browser, it looks and acts exactly like our pre-
vious solution, except that once the button is clicked to display the date, it will
automatically update every 5 seconds. The complete code for this page, with the
changes from the previous solution highlighted in bold, is shown in listing 4.5.

Listing 4.5 Keeping constantly up-to-date with Prototype

<html>
<head>
<title>Right now!</title>
<script type="text/javascript" src="prototype.js"></script>

<script>
function update() {
new Ajax.PeriodicalUpdater('timeDisplay', 'date2.jsp',

{
method: 'get',
frequency: 5
}
)
}
</script>
</head>

<body>
<button type="button" onclick="update();">Click me!</button>

</body>

</html>

Discussion

With very little effort, we’ve updated our previous example with the ability to auto-
matically keep the display of the server-provided data up-to-date at a frequency
that best suits our page. The Prototype Ajax.PeriodicalUpdater class made it easy

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

136 CHAPTER 4
Open source Ajax toolkits

for us to schedule the automatic updates without having to code any scheduling
logic or write timeout handlers.

When using such automatically fired updaters, care should be taken not to
overwhelm the server with requests. Although initially it may seem like a good
idea to fire off an update every second in order to keep the display as up-to-date
as possible, imagine the load that could be created when hundreds, or even thou-
sands, of visitors to our site are all looking at a page that hammers the server with
requests for updated data. Granted, the request and the generated response are
usually small (and certainly are in this example), but it’s possible to kill the server
via the proverbial “death by a million paper cuts.”

When choosing what to automatically update and at what interval, the expected
number of simultaneous visitors, the size of the update response, the process
required to generate that response, and the load-handling capability of the server
configuration all need to be taken into account. At best, the update interval could
be factored out into a configuration file rather than being hard-coded into the
pages, so that an administrator could adjust the value on the fly without having to
recode pages.

4.3 jQuery

jQuery, a self-professed “new type” of JavaScript library, operates from a slightly
different viewpoint than the toolkits we've seen so far in this chapter. It pur-
ports to change the way that you write JavaScript, and quite truly, adopting the
jQuery philosophy can make a huge impact on how you develop the script for
your pages.

The jQuery downloads and documentation can be found at http://jquery.com/.
You can download this JavaScript library as either an uncompressed library (with
human-readable code) or a smaller compressed file (not readable).

In either case, import the jQuery script file into any pages on which you wish
to use jQuery. For the purposes of this section, we’ll use the uncompressed (read-
able) version of the script file, place it in the same folder as our example pages
(for easy importing), and name it jquery.js.

4.3.1 jQuery Basics

Before diving into making Ajax requests with jQuery, let’s take a look at some of
the basic concepts that we need to have under our belts before beginning to make
sense of how jQuery operates.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

jQuery 137

This section will by no means be a complete primer on jQuery—that would
take much more space than we have allotted here—but it should give you an idea
of the philosophy behind jQuery’s modus operandi.

The jQuery wrapper
Other libraries that we have seen, particularly Prototype, operate by introducing
new classes and by extending the built-in JavaScript classes in order to augment
the capabilities of the script on our pages. In chapter 3, for example, we saw how
Prototype extended the Object, Function, and Array classes.

jQuery takes a different approach.

Rather than extending classes, jQuery provides a new class, appropriately
named jQuery, that serves as a wrapper around other objects in order to provide
extended operations upon those objects. The concept of a wrapper object is not
foreign to advanced developers of object-oriented programs. This pattern is
often used as an adapter to present an interface for manipulating an object that
is different from the original object’s interface.

In jQuery, most operations are performed by using the jQuery wrapper
around a set of items and calling wrapper methods that operate upon the
wrapped items. In order to make expressions and statements containing jQuery
wrappers terser, the jQuery class is mapped to $. This is not to be confused with
Prototype’s use of (), which serves a completely different purpose.

The jQuery object can wrap a number of different object types, and what it can
do for us depends on what has been wrapped. For example, we can wrap an
HTML snippet:

$ ("<p>What's cooking?</p>")

This constructs a DOM fragment from the HTML that we can then operate upon
with jQuery’s methods. For example, if we wanted to append this fragment to the
end of the document, we could use

S ("<p>What's cooking?</p>") .appendTo ("body") ;

As Ajax developers who often have a need to generate new DOM elements, the
advantages of this convenient and short means to effect such additions should be
readily apparent.

In addition to adding new DOM elements, we often find ourselves needing
to manipulate existing elements in our pages. The jQuery wrapper also allows
us to wrap existing elements by passing a string to the $() wrapper that pro-
vides a number of ways to identify the items to be wrapped: CSS selectors,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

138

CHAPTER 4
Open source Ajax toolkits

XPath expressions, and element names. We’ll be using CSS selectors a great deal
within our example code. Consider the following:

§("div")

This will cause all <div> elements in the document to be wrapped for manipula-
tion. Another example is

S ("#someId")

This wraps the DOM element with the id of some1d for manipulation. Here’s yet a
third example:

$(".someClass")

This will wrap all elements, regardless of type, that possess the CSS class name
of someClass.

The authors of jQuery were very clever in using CSS selectors and XPath to
identify target elements as opposed to inventing some jQuery-specific syntax that
users of jQuery would be forced to adopt. By using mechanisms that we, as page
developers, are already familiar with, they have made it far easier for us to adopt
and use jQuery to identify the elements that we wish to manipulate.

It is also possible to wrap other items such as elements and functions. We’ll be
seeing examples later in this section.

Chaining jQuery operations
jQuery sensibly allows us to string together numerous operations into a single
expression. Most of the jQuery wrapper methods return a reference to the
jQuery wrapper object itself so that we can just keep tacking operations onto a
single expression when we need to perform multiple manipulations on the
wrapped object(s).

Consider the case where we might want to add a CSS class to an element
(whose id is something) and then cause it to be shown (assuming it was initially
hidden). Rather than

S ('#something') .addClass ('someClass');
S ('#something') .show() ;

we would write

S ('#something') .addClass ('someClass') .show() ;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

jQuery 139

Executing code when the document is ready

Frequently on our pages, we need some initialization code to execute in order to
prepare the page before the user gets a chance to interact with it. Generally we
use the window’s onload event handler for such initializations. This guarantees
that the page has completed loading prior to executing the onload code, thereby
guaranteeing that the DOM elements exist and are ready for manipulation.

But one problem with relying on onload is that not only does it wait until the
document body has been loaded, but it also waits for images to load. Since images
must be fetched from the server if the browser has not cached them, this can
sometimes extend the point at which the initialization code runs far beyond the
point at which the document has been loaded and the code is safe to execute.

jQuery solves this problem for us by introducing the concept of the “doc-
ument ready handler.” This mechanism causes a function to execute when
the document has loaded but prior to waiting for any images and the onload
event handler.

The syntax for employing this mechanism is to wrap the document element
and to call the ready () method on the wrapped document:

$ (document) .ready (function) ;

Whatever function is passed to ready () will execute when the DOM is ready for
manipulation. Note that when you use both the ready mechanism and an onload
event handler on a page, both handlers will execute, with the ready event handler
triggered prior to the onload event handler.

A shorthand notation for a ready () handler can be used by wrapping a func-
tion in the jQuery wrapper. The code fragment

$ (function) ;

is equivalent to the code fragment for declaring a ready () handler that was pre-
sented earlier.

Using jQuery and Prototype together

Prototype is a very popular library, and jQuery is rapidly gaining ground. As such,
it’s not unlikely that page authors might wish to use the power of both libraries on
the same page.

In general, jQuery follows best-practice guidelines and avoids polluting the
global namespace—for example, by placing such constructs as utility functions
within the jQuery namespace. But one area of conflict, which we’ve already
alluded to earlier, is the use of the $ as a global name.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

140 CHAPTER 4
Open source Ajax toolkits

jQuery, being a good library citizen, has anticipated this issue. When using
Prototype and jQuery on the same page, calling the jQuery utility function
jQuery.noConflict () any time after both libraries have been loaded will cause the
functionality of the $ name to revert to Prototype’s definition.

jQuery functionality will still be available through the jouery namespace, or
you could define your own shorthand alias. For those times when you use jQuery
together with Prototype, the jQuery documentation suggests the following alias:

var $j = jQuery;

That’s enough preliminaries!

We’ll see more use of jQuery methods within the solutions in this section. But
even so, we’ll only be lightly touching on jQuery’s capabilities. If after reading
these solutions you find yourself intrigued by jQuery’s capabilities, we strongly
urge you to visit http://docs.jquery.com/ to read the extensive online documenta-
tion and find out what other capabilities jQuery has to offer.

4.3.2 Asynchronous loading with jQuery

jQuery provides a fairly large number of methods to make Ajax requests. Some
are simple and useful high-level methods that initiate Ajax requests to perform
some of the most commonly required tasks. Others are more low-level, providing
control over every aspect of the Ajax request.

We’ll employ a representative handful of these methods in the solutions within
this section. First, let’s tackle one of the most common of Ajax interactions:
obtaining dynamic content from the server.

Problem
Let’s imagine that we own an efridge—a hypothetical high-tech refrigerator that
not only keeps track of what its contents are, but also provides an Internet inter-
face that server software can use to communicate and interact with the eFridge.
The imaginary technology used by the eFridge to keep track of its inventory is
unimportant. It could be bar-code scanning, RFID (Radio Frequency Identifica-
tion) tags, or some yet-to-be-imagined technology. All we care about as page
authors is that we have a server component to which we can make requests in
order to obtain information about the state of our food!
The page we’ll focus on will present a list of the items that are in our
eFridge. Upon clicking on an item in this list, more information about the item
will be displayed.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

jQuery 141

For this problem, we’ll assume that the page was prepopulated with the list
of items by whatever server-side templating mechanism generated our page.
In the next section, we’ll see a technique to obtain this list dynamically from
the server.

Solution
To begin, in order to use jQuery on a page it is necessary to import the
jQuery library:

<script type="text/javascript" src="jquery.Jjs"></script>

The list of items in the eFridge, which we’re assuming was generated on our
behalf by some server-side mechanism, is presented in a select element:
<form>
<select id="itemsControl" name="items" size="10">
<option value="1">Milk</option>
<option value="2">Cole Slaw</option>
<option value="3">BBQ Sauce</option>
<option value="4">Lunch Meat</option>
<option value="5">Mustard</option>
<option value="6">Hot Sauce</option>
<option value="7">Cheese</option>
<option value="8">Iced Tea</option>
</select>
</form>
For the purpose of this example, we're only showing eight items. The average
refrigerator would probably contain more than this, but we all know fast-food
Jjunkies whose refrigerator contents are sometimes pretty sparse.

The server (perhaps some “eFridge driver”) assigns each item an identifica-
tion number that is used to uniquely identify each item—in this case, a simple
sequential integer value. This identifier is set as the value for each <option> rep-
resenting an item.

Even though we know that we need the select control to react to user input,
note that no handlers are declared within the markup that creates the <select>
element. This brings up another philosophy behind the design of jQuery.

One of the goals of jQuery is to make it easy for page authors to separate script
from document markup, much in the same manner that CSS allows us to separate
presentation from the document markup. Granted, we could do it ourselves with-
out jQuery’s help—after all, jQuery is written in JavaScript and doesn’t do any-
thing we couldn’t do—but jQuery does a lot of the work for us, and is designed
with the goal of easily separating script from document markup. So, rather than

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

142 CHAPTER 4
Open source Ajax toolkits

adding an onchange event handler directly in the markup of the <select> ele-
ment, we’ll use jQuery’s help to add it under script control.

We can’t manipulate the DOM elements on our page until after the document
is ready, so in the <script> element in our page header, we’ll institute a jQuery
ready () handler as we previously discussed. Within that handler, we’ll use
jQuery’s method to add a change handler to an element, as shown in the follow-
ing code fragment:

$ (document) .ready (function () {

S ('#itemsControl') .change (showItemInfo) ;

3
In the ready() handler, we create a jQuery instance that wraps the <select> ele-
ment, which we have given the id of itemsControl. We then use the jQuery
change () method, which assigns its parameter as the change handler for the
wrapped element.

In this case, we’ve identified a function named showItemInfo (). It’s within this
function that we’ll make the Ajax request for the item that is selected from the list:

function showItemInfo() ({ Wraps element and invokes
$('div#itemData') .load(load method

' ,fetChItemDat?' sp', : Identifies server-side
{itemId: $(this).val()} % Obtains item id and resource
})i passes as parameter

jQuery provides a fair number of different ways to make Ajax requests to the
server. For the purposes of this solution, we’d like to fetch a pre-formatted snippet
of HTML from the server (containing the item data) and load it into a waiting ele-
ment, that is, a <div> element having an id of itemData. The jQuery load()
method @ serves this requirement perfectly.

This method fetches a response from a URL provided as its first parameter
and inserts it into the wrapped DOM element. A second parameter to this func-
tion allows us to pass an object whose properties serve as the parameters for the
request. A third parameter can be used to specify a callback function to be exe-
cuted when the request completes.

First, we wrap a DOM element @ identified by the CSS selector div#itemData,
which is an empty <div> element into which we want the item data to be loaded.
Then, using the load() method, we provide the URL to a JSP page @ that will
fetch the item data identified by the itemId request parameter supplied in the
second method parameter @.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir
jQuery 143

A What's for dinner? =
@ http: / /yogi.local:8080/aip/chap17 ricc = (Qv Google

s for dinner?

«|Item:Milk

Description:HCF Milk, gallon
Lunch meat || Category:dairy

Mustard | |Expires:4/23/2006

Hot Sauce

— = Figure 4.5
u Got milk?

The value of that parameter needs to be the value of the option that the user
clicks on in the <select> element. Because the <select> element is set as the
function context of the change handler, it is available to it via the this reference.
We wrap that reference and use JQuery’s val() method to obtain the current
selected value of the control @.

Since all we want to do is to load the item data into the DOM, we have no need
for a callback and omit the third parameter to the load() method.

That’s all there is to it.

jQuery’s capabilities have taken a very common procedure that might have
taken a nontrivial amount of code to implement and allow us to perform it with
very few lines of simple code. The JSP page that gets invoked by this handler uses
the value of the itemId request parameter to fetch the info for the corresponding
item and formats it as HTML to be displayed on the page.

Our finished page, shown in figure 4.5 after selecting a refrigerator item, is
laid out in its entirety in listing 4.6.

Listing 4.6 What'’s for dinner with jQuery

<html>
<head>
<title>What's for dinner?</title>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript">
$ (document) .ready (function () {
S ('#itemsControl') .change (showItemInfo) ;
)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

144 CHAPTER 4
Open source Ajax toolkits

function showItemInfo() {
$('div#itemData') .load/(
'fetchItemData.jsp',
{itemId: $(this).val()}
)
}
</script>
<style type="text/css">
form, #itemData {
float: left;
}
</style>
</head>

<body>
<form>
<select id="itemsControl" name="items" size="10">
<option value="1">Milk</option>
<option value="2">Cole Slaw</option>
<option value="3">BBQ Sauce</option>
<option value="4">Lunch Meat</option>
<option value="5">Mustard</option>
<option value="6">Hot Sauce</option>
<option value="7">Cheese</option>
<option value="8">Iced Tea</option>
</select>
</form>

<div id="itemData"></div>
</body>
</html>

Discussion
This section introduced us to one of JQuery’s means of performing Ajax requests,
the load() method.

The jQuery load() method is very well suited for use with server-side templat-
ing languages such as JSP and PHP that make it a snap to format and return
HTML as the response. The fetchItemData.jsp file, as well as the Java classes that
fake the eFridge functionality, are available in the downloadable source code for
this chapter.

A few other important jQuery features are also exposed in this solution. For
example, we used a ready () handler to trigger the execution of code that must
execute before a user is allowed to interact with the page, but after the entire
DOM has been constructed for the page.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4.3.3

jQuery 145

We also saw the val () method, which returns the value of the wrapped input
element. If more than one element is wrapped, the value of the first matched ele-
ment is returned by this method.

In this solution, we assumed that the original list of eFridge contents was gen-
erated by whatever server-side resource produced the page—a JSP template, for
example. That’s a common expectation for a web application, but in the interest
of exploring more of jQuery’s Ajax abilities, let’s pretend that we need to fetch
that list dynamically upon page load in the next problem.

Fetching dynamic data with jQuery

In the previous section we were introduced to the jQuery load() method, which
made it extremely easy to perform the common task of fetching an HTML snip-
pet to load into a DOM element. While the utility of this method cannot be dis-
missed, there are times when we might want to exert more control over the
Ajax request process, or to obtain data (as opposed to preformatted HTML)
from the server.

In this section we’ll explore more of what jQuery has to offer in the Ajax arena.

Problem
We wish to augment the code of the previous section to obtain the list of items in
the eFridge from a page-initiated asynchronous request.

Solution

Reviewing the previous solution, we can readily see that in order to load the select
options dynamically, the changes that we would need to make are to remove the
<option> elements from the <select> element and to add code to the ready ()
handler to fetch and load the items. But before we embark upon that effort, we’re
going to change the way that we coded the showItemInfo ()handler function if for
no other reason than as an excuse to further explore jQuery’s capabilities. Rather
than using the load() method of the jQuery wrapper, we're going to use one of
jQuery’s utility functions: $.get ().

Hey, wait a minute! What’s that period character doing in there? That’s not
the $ () wrapper that we’ve been using up to now!

Not only does jQuery provide the wrapper class that we've make good use of
up to this point, but it also provides a number of utility functions, many imple-
mented as class methods of the $ wrapper class.

If the notation $. functionName () looks odd to you, imagine the expression
without using the $ alias for the jQuery function:

jQuery.get () ;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

146

CHAPTER 4
Open source Ajax toolkits

OK, that looks more familiar. The $.get () function is defined as a class method—
that is, a function property of the jQuery wrapper function. (If the concept of a
class method is still giving you a headache, you might wish to review section 3.1.3.)
Although we know them to be class methods on the jQuery wrapper class, jQuery
terms these methods utility functions and to be consistent with the jQuery termi-
nology, that’s how we’ll refer to them in this section.

The $.get() utility function accepts the same parameters as the load()
method: the URL of the request, a hash of the request parameters, and a callback
function to execute upon completion of the request. When using this utility func-
tion, because there is no object being wrapped that will automatically be injected
with the response, the callback function, although an optional parameter, is
almost always specified. It is the primary means for causing something to happen
when the request completes.

It should also be noted that the callback function can be specified as the second
parameter to this utility function when no request parameters need to be passed.
Internally, jQuery uses some JavaScript sleight of hand to ensure that the param-
eters are interpreted correctly.

The rewritten showItemInfo () handler using this utility function is as follows:

function showItemInfo() {

$.get (' fetchItemData.jsp',
{itemId: $(this).val()},
function(data) {
$S('#itemData') .empty () .append(data) ;
) }

}

Aside from using the $.get () utility function, another change to the code of the
previous solution was the addition of a callback function as the third parameter,
which we use to insert the returned HTML into the itemData element.

In doing so, we make use of two more wrapper methods: empty (), which clears
out the wrapped DOM element, and append (), which adds to the wrapped ele-
ment the HTML snippet passed to the callback in the data parameter.

Now we’re ready to tackle loading the <options> from data that we will obtain
from the server when the document is loading. In this case, we're going to obtain
the raw data for the options from the server in the form of a JavaScript hash
object. We could return the data as XML, but we’ll opt to use JSON, which is easier
for JavaScript code to digest.

jQuery comes to our rescue once again with a utility function that is well suited
to this common task: the $.getgson() utility function. This function accepts the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

jQuery 147

now-familiar trio of parameters: a URL, a hash of request parameters, and a call-
back function.

The advantage that the $.getJgson () utility function brings to the table is that
the callback function will be invoked with the already-evaluated JSON structure.
We won’t have to perform any evaluation of the returned response. How handy!

Using this utility method, the following line gets added to the document’s
ready () handler:

$.getJSON('fetchItemList.jsp', loadItems) ;

A JSP page named fetchItemList.jsp is used as the URL, and a function named

loadItenms () (wWhose definition we’ll be looking at next) is supplied as the callback

function. Note that, since we don’t need to pass any request parameters, we can

simply omit the object hash and provide the callback as the second parameter.
The loadItems () function is defined as

function loadItems (itemList) { Invokes callback with
if (titemList) return; q?) evaluated JSON structure
for(var n = 0; n < itemList.length; n++) {
$('#itemsControl') .get (0) .add(<— Locates select element
new Option(itemList([n].name,itemList[n].id),
document.all ? 0 : null <$€) Adds new option

)
}
}

Recall that the $.getgson() utility function invokes the callback with the JSON

response already evaluated as its JavaScript equivalent @. In our solution, the
fetchItemList.jsp page will return a response that contains

[

{id:'3"',name: 'BBQ Sauce'},
{id:'5',name: 'Mustard'},
{id:'7',name: 'Cheese'},
{id:'2"',name: 'Cole Slaw'},
{id:'4"' ,name: 'Lunch Meat'},
{id:'8',name: 'Iced Tea'},
{id:'6',name: 'Hot Sauce'},
{id:'1',name: 'Milk"'}

1

When our callback is invoked, this response string will already have been con-
verted to an array of JavaScript objects, each of which contains an id and a name
property, courtesy of jQuery. Each of these objects will be used to construct a new
<option> element to be added to the select control @ in a similar fashion as we
saw in the solution of section 4.2.1.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

148

CHAPTER 4
Open source Ajax toolkits

In order to add an option to the <select> element, we need a reference to that
control’s DOM element. We could just use document .getElementById() or $(), but
we have chosen to do it the jQuery way with the get () wrapper method:

S ('#itemsControl') .get (0)

This method, when passed no parameters, returns an array of all the elements
matched by the CSS selector of the jQuery wrapper on which it is invoked. If
we only want one of those matches, we can specify a zero-based index as a
parameter. In our case, we know that there will only be a single match to the
selector because we used an id, so we specify an index of 0 to return the first
matched element.

The code for the entire page, with changes from the previous solution high-
lighted in bold, is shown in listing 4.7.

Listing 4.7 More dinner with jQuery

<html>
<head>
<title>What's for dinner?</title>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript">
$ (document) .ready (function () {
$.9etJSON('fetchItemList.jsp',loadItems);
S ('#itemsControl') .change (showItemInfo) ;
)

function loadItems(itemList) {
if (!itemList) return;
for(var n = 0; n < itemList.length; n++) {
$('#itemsControl') .get (0) .add(
new Option(itemList[n] .name,itemList[n].id),
document.all ? 0 : null

function showItemInfo() {
$.get ('fetchItemData.jsp’',
{itemId: $(this).val()},
function(data) {
$('#itemData') .empty() .append(data);

)i
}
</script>
</head>

<body>
<form style="float:left">

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

jQuery 149

<select id="itemsControl" name="items" size="10">
</select>
</form>
<div id="itemData" style="float:left"></div>
</body>
</html>

Discussion

This section exposed us to more of jQuery’s abilities in the areas of DOM manip-
ulation and traversal, as well as Ajax request initiation. We saw the jQuery $.get ()
utility function, which made it easy for us to make Ajax requests using the HTTP
GET method. A corresponding utility function named $.post () with the exact
same function signature makes it equally easy to submit POST requests via Ajax. As
both utility functions use the same parameter signature—most notably the request
parameter hash—we can easily switch between which HTTP method we’d like to
use without having to get bogged down in the details of whether the request
parameters need to be encoded in the query string (for GET) or as the body of the
request (for POST).

Another Ajax utility function, $.getJsoN(), makes it incredibly easy for us to
use the power of the server to format and return JSON notation. The callback for
this operation is invoked with the JSON string already evaluated, preventing us
from having to work with the vagaries of the JavaScript eval () function ourselves.

For occasions where we might wish to exert more control over, and visibility
into, an Ajax request, jQuery provides a versatile utility function named $.ajax().
The online documentation provides more details about how to use this low-level
utility function.

We also saw a handful of the powerful DOM manipulation wrapper methods
such as get (), empty (), val(), and append (), all geared toward making it easy for
us—as Ajax page developers—to manipulate the page DOM.

This is all just barely plumbing the depth of jQuery capabilities. For example,
space prevents us from exploring the effects API, which provides fading, sliding,
flashing, hovering. and even the ability to provide your own animations. You are
urged to visit http:/jquery.com/ for more information on jQuery and how it can
help you write powerful Ajax applications.

Additionally, advanced developers might be interested in jQuery’s plug-in
API. This API is one of jQuery’s most powerful assets, as anyone can extend the
toolkit in a snap. For more information, please see http://docs.jquery.com/Plu-
gins/Authoring.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

150

4.4

CHAPTER 4
Open source Ajax toolkits

And now, as they say, for something completely different. Let’s take a look at
a fourth framework that approaches the issue of asynchronous requests from a
new angle.

DWR

DWR stands for Direct Web Remoting and is a means of performing remote procedure
calling from client-side JavaScript to server-side Java code using Ajax as the trans-
port mechanism. In the libraries we've looked at so far in this chapter, the para-
digm of submitting a request to a server-side resource and receiving a response has
been maintained. With DWR, things are a bit different.

Remote Procedure Calling (RPC) is a mechanism to allow local code to call meth-
ods on objects that exist on a remote server as if that remote object were also
local. Generally, RPC works (with a lot of hand-waving and glossing over details
that aren’t all that important to us at this point) by creating a local proxy inter-
face that mimics the signature of the remote method (usually called a stub). The
local code makes a call to the local interface, and an RPC agent on the local sys-
tem marshals any input data for the call and performs the network processing
necessary to pass that information to its counterpart running on the remote sys-
tem. The remote agent unpacks the data into the appropriate formats and makes
the call to the actual remote method. When the method returns, any returned
data is marshaled and sent back to the local agent, which in turn returns control
from the proxy stub to the original caller of the remote method.

From the point of view of the local calling code, the fact that all that data
marshaling and network communications went on behind the fagade of the
proxy is hidden. Likewise, the remote method has no knowledge that it was
invoked remotely.

DWR isn’t exactly a pure RPC implementation for two main reasons:

m The signature of the proxy method used from JavaScript is not identical to
that of the remote Java method.

m The call is not synchronous. Like other Ajax mechanisms, the invocation of
the remote method is asynchronous and a handler function is invoked
upon completion of the remote method.

But beyond any academic arguments over the purity of the implementation, DWR
offers a clever means for those who prefer to think in terms of method calls rather
than the traditional HTTP request-response cycle.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

DWR 151

The DWR JAR file is available at http://getahead.ltd.uk/dwr/. After download-
ing, place this JAR file in the weB-1INF/1ib folder of your web application.

4.4.1 Direct Web Remoting with DWR

DWR is cleverly implemented as a servlet that handles all the needs of the cli-
ent. Most RPC implementations require the use of a preprocessor that creates
the client and server stubs. DWR, on the other hand, generates the client-side
stubs dynamically via a reference to the servlet that looks like a normal Java-
Script file reference.
But before we get to that, some setup is required: the DWR servlet needs to be
declared and mapped in the web application’s deployment descriptor (web.xml).
To declare the servlet, add a <servlet> element to the deployment descriptor
as follows:
<servlet>
<servlet-name>DwrServlet</servlet-name>
<servlet-class>uk.ltd.getahead.dwr.DWRServlet</servlet-class>
<init-param>
<param-name>debug</param-name>
<param-value>true</param-value>
</init-param>
</servlet>
The debug init parameter is optional but is very useful during development. Don’t
include it for actual deployment because it will allow visitors with less-than-noble
intentions to obtain information about your code that is best not shared. We’ll see
what this parameter does for us in just a little bit.
The servlet is mapped to a URL via
<servlet-mapping>
<servlet-name>DwrServlet</servlet-name>
<url-pattern>/dwrserver/*</url-pattern>
</servlet-mapping>
This maps any URL for your web application beginning with /dwrserver to the
DWR servlet.
There’s one more setup step, but it is dependent on how we are going to use
DWR. So, on to a specific example...

Problem

On a page that contains a form with customer information, we want to automati-
cally fill in the address information for a customer if the name of that customer
can be uniquely found in our database. And, of course, we wish to do so asynchro-
nously without the need for a page reload.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

152 CHAPTER 4
Open source Ajax toolkits

Solution

The first thing we’ll do is set up a Java class that we can query for customer infor-
mation, given a first and last name. Obviously, a real-world implementation of
such a class would perform a database lookup, but for the purposes of this exam-
ple, we’ll just hard-code a false implementation behind the API for the class—one
that assumes we have a single customer named Bill Moody.

public class CustomerFactory {

public Customer findByName (String firstName, String lastName) {
if ("Bill".equalsIgnoreCase(firstName) &&
"Moody" .equalsIgnoreCase(lastName)) {
return new Customer ("Bill", "Moody", "123 Nowhere Lane",
"Austin", "TX", "USA", "78701");
} else {
return null;

}

The findByName () method returns either an instance of a located customer, or
null if none is found. In a real implementation it would also return null if multi-
ple customers with the same name were found since it would not have enough
information to uniquely identify a particular customer.

To define this class to the DWR engine, we create an XML file named dwr.xml
in the weB-INF folder:

<!DOCTYPE dwr PUBLIC
"-//GetAhead Limited//DTD Direct Web Remoting 1.0//EN"
"http://www.getahead.ltd.uk/dwr/dwrl0.dtd">

<dwr>
<allow> Specifies
<convert converter="bean" match="org.bibeault.*"/> bean classes

<create creator="new" javascript="CustomerFactory">

Defines
<param name="class"

. . JavaScript class
value="org.bibeault.aip.dwr.CustomerFactory" />

</create>
</allow>
</dwr>

The DWR documentation should be consulted for all the possible settings that can
be made in this file, but essentially we tell DWR that we want it to convert bean
classes (such as the one we will return from our findByName () method) from our

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

DWR 153

package @. Then we define the class that we wish to remote, along with the
means of construction (creator="new") and the name of the JavaScript object that
will serve as its client-side stub @.

Now comes the fun!

Start the web application and “hit” the DWR servlet with no path info. Assum-
ing that the web application’s context path is /aip.chap4, the URL could be http://
localhost:8080/aip.chap4/dwrserver/. Because we enabled the debug mode via
the init parameter to the servlet, DWR displays a test page that dynamically
shows us some very useful information about our DWR environment, as shown in
figure 4.6.

This page shows us all the classes that DWR has mapped for us. Clicking the
CustomerFactory link reveals some useful information about that class, as shown
in figure 4.7.

Not only does this page show us the <script> elements that need to be
included in order to use the class, it also shows us the methods that are declared
and even allows us to test them with sample data. The utility of this feature during
development cannot be stressed enough!

If we inspect the URLSs for the <script> elements, we see that even though they
look like JavaScript file references, they are actually invocations of the DWR serv-
let that we declared in the web.xml. These . js files do not actually exist anywhere
in the filesystem, but are dynamically served from the DWR servlet upon refer-
ence. This makes DWR an easy toolkit to use as, except for the servlet and the
dwr.xml file, there’s not much else to keep track of.

If we click the link for the customerFactory.js file, we see the display in fig-
ure 4.8, where we see the local stub created for the methods in our mapped class.

enn DWR Test Index

E] B @ @hltp://Iocalhost:BOBO/aip.chap4/dwrserver/ 2(Q~ Google
Classes known to DWR:

e CustomerFactory (org.bibeault.aip.dwr.CustomerFactory)

Other Links

s Up to top level of web app.

Figure 4.6 DWR test display: list of known classes

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

154 CHAPTER 4
Open source Ajax toolkits

— DWR Test =
a @ @http:/lIocalhos(:8080lalp.chap4IdwrserverltestftustomerQ - rﬂ.v Google

e G

Methods For: CustomerFactory
(org.bibeault.aip.dwr.CustomerFactory)

To use this class in your javascript you will need the following script includes:

<script type='text/javascript' src='/aip.chapd/dwrserver/interface/CustomerFactory.js">|
<script type='text/javascript' src='/aip.chapd/dwrserver/engine.js'></script>

In addition there is an optional utility script:
<script type='text/javascript' srec='/aip.chapd/dwrserver/util.js'></script>

Replies from DWR are shown with a yellow background if they are simple or in an
alert box otherwise.
The inputs are evaluated as Javascript so strings must be quoted before execution.

There are 10 declared methods:

s findByName(™ ' B)i Cexecune)

« hashCode() is not available: Methods defined in java.lang.Object are not
accessible

« getClass() is not available: Methods defined in java.lang.Object are not

accessible

equals() is not available: Methods defined in java.lang.Object are not accessible

toString() is not available: Methods defined in java.lang.Object are not accessible

wait() is not available: Methods defined in java.lang.Object are not accessible

wait() is not available: Methods defined in java.lang.Object are not accessible

wait() is not available: Methods defined in java.lang.Object are not accessible

notify() is not available: Methods defined in java.lang.Object are not accessible

notifyAll() is not available: Methods defined in java.lang.Object are not accessible

Other Links

« Back to class index.
e Up to top level of web app.

e

Figure 4.7 DWR test display: class information

So now we're ready to actually code our page. Cutting and pasting the script ele-
ments from the DWR-generated page of figure 4.7, we start by adding them to the
<head> element of our page:
<script type='text/javascript'
src='/aip.chapd4/dwrserver/interface/CustomerFactory.js'></script>

<script type='text/javascript'
src='/aip.chap4/dwrserver/engine.js'></script>

The form to capture the customer data is coded as

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

DWR 155

8eno http://localhost:8080/aip.chap4/dwrserver/interface /CustomerFactory.js =

f@ @ [Ehttp://localhost:8080/aip.chap4 /dwrserver/interface/Customerf:® = Q- Google \—

function CustomerFactory() { }
CustomerFactory._ path = '/aip.chap4/dwrserver';

CustomerFactory.findByName = function(p0, pl, callback) {

DWREngine._execute(CustomerFactory._path, 'CustomerFactory', 'findByName', p0, pl, callback);
}

Figure 4.8 DWR dynamically generated JS stub

<form name="customerForm" action="/doSomething">
<div>
<label>First name:</label>
<input type="text" name="firstName"
onblur="1lookupByName (this.form) ;" />
<label>Last name:</label>
<input type="text" name="lastName"
onblur="1lookupByName (this.form) ;" />
</div>
<div>
<label>Address:</label>
<input type="text" name="address"/>
</div>
<div>
<label>City:</label>
<input type="text" name="city"/>
<label>State/Province:</label>
<input type="text" name="state"/>
</div>
<div>
<label>Postal Code:</label>
<input type="text" name="postalCode"/>
<label>Country:</label>
<input type="text" name="country"/>
</div>
<div>
<input type="submit" value="OK"/>
</div>
</form>

This form is fairly straightforward (if incredibly ugly without any styling) except
for the calls to the lookupByName() function set up as the onblur event han-
dlers for the firstName and lastName fields:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

156

CHAPTER 4
Open source Ajax toolkits

function lookupByName (form) { <1—o Passes containing form
if ((form.firstName.value != '') &&
(form.lastName.value != "'"'")) {
CustomerFactory. findByName (form. firstName.value, Invokes stub for
form.lastName.value, ﬁndByNameO
onCustomerFound) ;

}

In this handler, the containing form is passed @ and checks the firstName and
lastName fields to see if they are both populated. If so, the stub for the remote
findByName () method is invoked @.

Note that this stub is similar, but not identical, to the remote method being
stubbed. First of all, there is no return value from this function because it is not
invoked synchronously. Second, an extra parameter has been added to the method
signature to specify the callback function that is to be invoked when the asynchro-
nous call completes. This function will be passed the remote method’s return value
as its single parameter.

The code for this callback handler is as follows:

function onCustomerFound (customer) {
if (customer != null) {

var form = document.customerForm;
form.address.value = customer.address;
form.city.value = customer.city;
form.state.value = customer.state;
form.postalCode.value = customer.postalCode;
form.country.value = customer.country;

}

This callback is invoked with the return value from the remote method. We simply
check to make sure that it is not null (recall that the remote method returns null
if a customer cannot be uniquely identified). If it’s not null, we fill in the form
with values from the passed object.

DWR has marshaled the data from the Java Customer class and created a Java-
Script object with properties that correspond to each of the JavaBean properties
that we defined on our Java Customer class. Displaying the example page in our
browser and entering the name of our lone customer results in the display shown
in figure 4.9. The entire page, when completed, is shown in listing 4.8.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

DWR 157
A Google)
First name: sil Last name: Moody
Address:
City: Austin | State/Province: Tx
Postal Code: '7s701 Country: 'usa
Figure 4.9

Paging Bill Moody!

Direct remoting with DWR

<html>
<head>

<title>Who's that Customer?</title>

<script type='text/javascript'
src='/aip.chap4/dwrserver/interface/CustomerFactory.js'>

</script>

<script type='text/javascript'
src='/aip.chap4/dwrserver/engine.js'></script>

<script>
function lookupByName (form) {
if ((form.firstName.value != '') &&
(form.lastName.value != '')) {

CustomerFactory. findByName (form. firstName.value,
form.lastName.value,

onCustomerFound) ;
}
}
function onCustomerFound(customer) {
if (customer != null) {
var form = document.customerForm;
form.address.value = customer.address;
form.city.value = customer.city;
form.state.value = customer.state;
form.postalCode.value = customer.postalCode;
form.country.value = customer.country;
}
}
</script>
</head>
<body>

<form name="customerForm" action="/doSomething">

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

158 CHAPTER 4
Open source Ajax toolkits

<div>
<label>First name:</label>
<input type="text" name="firstName"
onblur="lookupByName (this.form);"/>
<label>Last name:</label>
<input type="text" name="lastName"
onblur="lookupByName (this.form);"/>
</div>
<div>
<label>Address:</label>
<input type="text" name="address"/>
</div>
<div>
<label>City:</label>
<input type="text" name="city"/>
<label>State/Province:</label>
<input type="text" name="state"/>
</div>
<div>
<label>Postal Code:</label>
<input type="text" name="postalCode"/>
<label>Country:</label>
<input type="text" name="country"/>
</div>
<div>
<input type="submit" value="OK"/>
</div>
</form>
</body>

</html>

Discussion

This section exposed us to a small fraction of the capabilities of the DWR toolkit.
Unlike the other Ajax-capable toolkits we have looked at, DWR abstracts the
request-response cycle away in favor of providing an RPC-like means to call Java
functions on the server.

While our example is simple, it’s easy to envision how such capabilities can be
used for a variety of client-side tasks, not limited to mere data lookups. Imagine,
for example, the value of these capabilities when performing field data valida-
tions that require server-side participation.

Obviously DWR is only useful for Java web applications hosted by a servlet
engine. Developers or page designers who are using alternative server-side mech-
anisms would be best served by using a toolkit that adheres to the typical request-
response cycle.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Summary 159

4.5 Summary

In this chapter we introduced a number of open source libraries that make it eas-
ier to use Ajax in our web applications, or that use Ajax to provide asynchronous
communication between a client browser and the server.

Some of these libraries, such as the Dojo toolkit and Prototype, provide a thin
wrapper around Ajax calls that make them easier to code and maintain. Others,
such as jQuery, provide a substantial number of methods that make it easy to per-
form some of the most common Ajax interactions. Still others, such as DWR, pro-
vide a different paradigm from the typical HTTP request-response cycle using
Ajax as the transport mechanisms. These libraries are just a few of the many
freely available on the Internet.

Time, space, and other practical considerations prevent us from examining
more of the available libraries. If this sampling has piqued your interest, here are
some others that you may wish to investigate:

m Scriptaculous (http://script.aculo.us/), another JavaScript library based on
Prototype, very closely aligned with the Ruby on Rails project

m Rico (http://openrico.org/), a JavaScript library for creating rich Inter-
net applications that includes support for drag and drop, Ajax, and cin-
ematic effects

m Echo2 (www.nextapp.com/), a platform for developing web applications
intended to provide the rich capabilities of desktop clients

m Sarissa (http://sarissa.sourceforge.net/), an XML and XSLT-centric library
that acts as a cross-browser wrapper for native XML APIs

m Sajax (www.modernmethod.com/sajax/), a JavaScript Ajax framework intend-
ed for web applications developed with PHE, Perl, or Python

m ThinkCAP JX (www.clearnova.com/), a RAD development tool for Ajax-
enabled business applications

And more... This lists only scratches the surface.

So get on out there and look around. This is an exciting and rapidly growing
area. By the time this book reaches print, even more new and exciting toolkits
may have hit the Web!

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Part 2

Ajax Best Practices

Part 2 presents nine chapters, each of which dives into an area of web appli-
cation development essential for Ajax programs.

Chapter 5 begins part 2 with an in-depth look at event handling in the
browsers. We discuss models of event handling and explain how to establish
event handlers for the various event types. We identify browser issues and tac-
tics to ease cross-browser coding.

In chapter 6, we develop ways to validate form-data entry values using the
event-handling lessons of the previous chapter. We examine a validation
framework, and you’ll learn how to hijack form submissions to avoid full-page
refreshes.

Navigating application content is the subject of chapter 7. Menus, trees,
accordion controls, tabs and toolbars are all discussed. We include peeks at
OpenRico and qooxdoo in the example code for this chapter.

The pain of dealing with users who insist on hitting those back and refresh
browser controls is addressed in chapter 8. We describe tactics for hiding these
controls, as well as strategies for dealing with them when they’re not hidden.

Chapter 9 focuses on adding drag-and-drop capabilities to web applica-
tions. We enlist the aid of the Scriptaculous library to sort lists using drag and
drop, and then examine a simple drag-and-drop shopping cart. A look at ICE-
faces rounds out the chapter.

Usability concerns, particularly those commonly associated with Ajax
applications, are explored in chapter 10. We develop strategies for dealing
with latency issues and discuss how to alleviate user frustration.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

162 PART 2
Ajax Best Practices

Chapter 11 takes a look at maintaining client state, caching and prefetching
data, and other topics in the realm of state management.

Rousing web service open APIs such as Yahoo! Maps, Yahoo! Geocoding,
Yahoo! Traffic, Google search, and Flickr photo services are investigated in chap-
ter 12. We devise a means to circumvent the dreaded cross-browser security limi-
tations, and you’ll learn how to make RESTful requests to these exciting services
via Ajax.

Finally, chapter 13 ties everything together to create a fully functional
“mashup” web application employing the Yahoo! and Flickr open APIs.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Handling events

This chapter covers

m Models of browser event handling

= Commonly handled event types

m Making event handling easier

m Event handling in practical applications

163

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

164 CHAPTER 5
Handling events

The days of boring HTML applications are over now that Ajax allows us to build
highly interactive web applications that respond fluidly to user actions. Such user
actions may include clicking a button, typing in a text box, or simply moving the
mouse. User actions have been translated into events throughout the history of
graphical user interfaces (GUIs), and it is no different in the browser world. When
a user interacts with a web page, events are fired within the DOM hierarchy that is
being interacted with, and if there are event handlers associated with the events
fired on the document’s elements, they will be called when the events occur. Ajax
applications depend heavily on these events and their handlers; they could even
be considered the lifeline of every Ajax application.

Before we get ahead of ourselves, let’s see how we can add a simple event han-
dler to a web page. In the following code snippet, notice how the element
has an onclick attribute. This attribute defines an event handler that will be
called by the browser when the user clicks the mouse on the element.

<html>

<body>

</body>

</html>
If you load this example into a browser, you will see that when the mouse button is
clicked while hovering over the image, the alert box showing the message
“Woof!” is displayed, as shown in figure 5.1.

000 http://localhost:8080/aip.chap5/solution-5.0.html —
BERS @http://Io(alhosl:SOBU/aipxhapS/squuoO ‘va Google

http:/ /localhost:8080
Woofl

Figure 5.1 Making the dog bark

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Event-handling models 165

This demonstrates how easy it is to assign an event handler to a DOM element.
Throughout this chapter we’ll examine the major aspects of event handling. We
begin by reviewing the various ways in which we can define event handlers
using the various models available. We’ll see how the process differs across the
browser platforms and look at ways to make it portable across browser imple-
mentations. We’ll also learn about the information about the event made avail-
able to event handlers when they are invoked. We’ll discuss the concepts of event
bubbling and event capturing that specify how events are propagated through the
DOM, and we’ll also look closely at the commonly handled event types. Finally,
we’ll whip up some real-world examples that demonstrate how we can put these
concepts to use in our applications.

5.1 Event-handling models

While we’ve seen how easy it is to declare simple event handlers, you would think
that writing event handlers should be just as easy. We just write some script into
the handler attributes and the browser executes it when the event occurs. What
could be simpler? But we wouldn’t need this chapter if it were really that simple,
would we?

In the present-day world, there are three event models that we need to con-
tend with in order to use events in our web applications:

m The Basic Event Model, also informally known as the DOM Level 0 Event
Model, which is fairly easy, straightforward, and reasonably cross-platform.

= The DOM Level 2 Event Model, which provides more flexibility but is
supported only on standards-compliant browsers such as Firefox, Mozilla,
and Safari.

m The Internet Explorer Event Model, which is functionally similar to the
DOM Level 2 Model, but which is proprietary to Internet Explorer.

First we'll take a look at registering and writing handlers using the basic model,
and then we’ll look at using the two advanced models.

5.1.1 Basic event-handling registration

The example we examined in the chapter introduction illustrates the use of the
Basic, or DOM Level 0, Model. This is the oldest approach to event handling and
enjoys strong (though not complete) platform independence. It is well suited for
basic event-handling needs. And as we’ll see, it’s not completely replaced by the
more advanced models, but is typically used in conjunction with those models.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

166

CHAPTER 5
Handling events

This model allows event handlers to be assigned in one of two ways:

= Inline with the HTML element markup, using event attributes of the
HTML elements

= Under script control, using properties of the DOM elements

Recall the element from our small example:

This is an example of using the inline technique.

The value of the onclick event attribute becomes the body of an anonymous
function that serves as the handler for the click event. While this is easy, it has
its limitations.

The best-practice design approach to building web applications separates
the view of the application (HTML) from its behavior (JavaScript). Using the
inline approach of defining event handlers violates this principle, and there-
fore it is generally recommended that use of inline handler declarations be lim-
ited or avoided.

The better approach is to attach the event handler to the DOM element
under script control. This technique has become more prevalent in recent years,
as the browser DOM has become more standardized and JavaScript developers
have become more familiar with it. All DOM elements have properties that repre-
sent the events that can be fired on the element: for example, onclick, onkeyup,
or onchange.

Let’s rework the sample code that we saw earlier into a complete HTML docu-
ment and programmatically set the onclick event handler of the image as shown
in listing 5.1.

<html>
<head>
<title>Events!</title> Declares the page’s
<script type="text/javascript"> <}‘r onload handler
window.onload = function() {

document .getElementById('anImage') .onclick = function() {
alert ('Woof!");
}
}s
</script>
</head>
<body>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Event-handling models 167

</body>
</html>

Declares the script-free
image element

If you have downloaded the source code that accompanies this chapter from
www.manning.com/crane2, you'll find this HTML document in the file chap5/
listing-5.1.html.

While this example is functionally equivalent to our previous example, it
exhibits a higher level of sophistication than the previous code. We've separated
the behavior from the view by factoring the script out of the <body> element @
and into a <script> element in the <head>. Note that we have placed the code in
yet another event-handler function: the onload event handler @ for the page.

Although this seems like more code to do the same thing that we saw in the
first example, this technique not only improves the structure of the page but also
gives us more flexibility.

An important aspect of that flexibility is the ability to control when handlers
are established and removed. With the inline method, we’re limited to establish-
ing handlers when the page loads, and those handlers exist for the duration of
the page. Assigning the handler under script control allows us to establish a han-
dler whenever we want to. In the example of listing 5.1, we chose to establish the
handler when the page loads, but we could just as easily have deferred that action
until a later time as the result of some other event. Moreover, we can remove the
event handler at any time by assigning null to the event property—something we
can’t do with inline handlers.

In our example, we created the event handler using an anonymous function
literal—after all, why create a separate named function if we don’t have to? But
when assigning named functions as event handlers, it is important to remember
not to include parentheses after the function name. We want to assign a reference
to the function as the property value, not the result of invoking the function! For
example, the following will invoke a function named sayWoof () rather than set-
ting it as the event handler. Don’t make this common mistake.

element.onclick = sayWoof (); //Wrong!

element.onclick = sayWoof; //Correct!

Although the DOM Level 0 Event Model is somewhat flexible, it does suffer from
limitations; for example, it doesn’t easily allow chaining of multiple JavaScript
functions in response to an event.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

168

CHAPTER 5
Handling events

So how would we register two functions to handle a single event? Let’s ini-
tially take a rather naive approach and modify our example by adding two Java-
Script event handlers to the onclick property of the element, as shown in
listing 5.2 (found in the file chap5/1isting-5.2.html in the downloadable source
code) with the added code highlighted in bold.

<html>
<head>
<title>Events!</title>
<script type="text/javascript">
window.onload = function() {
document .getElementById('anImage') .onclick = function() {
alert ('Woof!"');
}
document .getElementById('anImage') .onclick = function() {
alert ('Woof again!');
}
Y
</script>
</head>
<body>

</body>
</html>
||

When we run this code, it is obvious that only the second handler is called
because only a single alert containing “Woof again!” is displayed. Looking at the
code, this shouldn’t be much of a surprise. Since onclick is simply a property of
the element, multiple assignments to it will overwrite any previous assign-
ment, just as with any other property.

This poses an interesting question: is it possible to call multiple functions in
response to an event? Using the DOM Level 0 Event Model, there is no means to
register multiple event handlers on the same event by assigning the handlers
to the element’s event properties. We could factor the code from multiple func-
tions into a single function, or we could write a function that in turn called the
other functions. But each of these tactics is a rather pedestrian approach and is
not very scalable. If we had no other recourse, a more sophisticated means to
accomplish this would be to utilize the Observer pattern (also known as the Pub-
lisher/Subscriber pattern) in which our registered handler would serve as the
observer, and other functions could register themselves as subscribers.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Event-handling models 169

Luckily, we won’t have to resort to such shenanigans as the browsers allow us to
register multiple handlers—though, unfortunately, not in a browser-independent
fashion—if we use the advanced event-handling models. Let’s take a look at how
to do just that.

5.1.2 Advanced event handling

In a perfect world, code written for one browser would work flawlessly in all
other browsers. We don’t live in that world. So when it comes to the advanced
event models, we need to deal with browser differences. On the one hand, there
is the World Wide Web Consortium (W3C) way of doing things, and then there is
the Microsoft way of doing things. Let’s look at the standardized W3C way first.

For browsers that adhere to the DOM Level 2 Event Model, a method named
addEventListener () is defined for each DOM element and can be invoked to add
an event handler to that element. This method accepts three arguments: a string
declaring the event type, the event-handler function to be executed (also known
as the listener), and a Boolean value denoting whether or not event capturing is to
be enabled. We’ll explain this last argument when we discuss event propagation,
but for the time being, we’ll just leave it set to false.

The event type argument expects a string containing the name of the event
type to be observed. This is the attribute name for the event with the on prefix
omitted—for example, click or mouseover.

Let’s change our sample code of listing 5.2 to use this method. We’ll replace
the basic means (which sets the onclick property of the element) with calls to the
addEventListener () method, as shown in listing 5.3 (with changes highlighted
in bold).

<html>
<head>
<title>Events!</title>
<script type="text/javascript">

window.onload = function() {

document .getElementById('anImage') .addEventListener (
'click',
function() { alert('Woof!'); 1},
false);

document .getElementById('anImage') .addEventListener (
'click',
function() { alert('Woof again!'); 1},
false);

Y

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

170 CHAPTER 5
Handling events

</script>
</head>
<body>

</body>
</html>
||

When this page is displayed and the image is clicked, both the alert boxes show up
without resorting to hokey container functions to chain both event handlers. Note
that this code does not work in Internet Explorer; later in this section we’ll see
how IE implements advanced event handling in its proprietary fashion.

Also note that, when multiple handlers for the same event on the same ele-
ments are established as we have done in our example, the DOM Level 2 Event
Model does not guarantee the order in which the handlers will be executed. In
testing, it was observed that the handlers seemed to be called in the order that
they were established, but there is no guarantee that will always be the case and it
would be folly to write code that relies on that order.

To remove an event handler from an element, we can use the removeEvent-
Listener () method defined for the DOM elements.

The proprietary Microsoft means of attaching events is similar in concept, but
different in implementation. It uses a method named attachEvent () defined for
the DOM elements to establish event handlers. This function accepts two argu-
ments: the event name and the event-handler function to be executed. Unlike the
event type that is used with addEventListener (), the event property name, com-
plete with the on prefix, is expected.

Armed with this information, let’s modify our sample code once again. We’ll
add some detection to our code and use the method that’s appropriate to the
containing browser. The updated code is shown in listing 5.4 (available in the
downloadable source code for this chapter), once again with changes highlighted
in bold.

<html>
<head>
<title>Events!</title>
<script type="text/javascript">
window.onload = function() {
if (document.getElementById('anImage').attachEvent) {
document .getElementById('anImage') .attachEvent (
'onclick',

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Event-handling models 171

function() { alert('Woof!'); 1});
document .getElementById('anImage') .attachEvent (
'onclick',
function() { alert('Woof again!'); });
}

else {
document .getElementById('anImage') .addEventListener (
‘click',
function() { alert('Woof!'); 1},
false) ;
document .getElementById('anImage') .addEventListener (
‘click!',
function() { alert('Woof again!'); 1},
false) ;
}
}
</script>
</head>
<body>

</body>

</html>
||

In the first line of the onload event handler, we check to see which method we
should use. Note the use of a test known as object detection. Rather than testing for
a specific browser, we check to see if the proprietary attachEvent () method exists
on the element. If so, we use it; otherwise, we use the standardized W3C method.

When we display this page in any browser, it is guaranteed to work as long as
the browser supports either one of these mechanisms. When we click on the image
when displayed in Internet Explorer, we notice something strange: the alerts are
shown in the reverse order! Or maybe not. Truth be told, as with the DOM Level 2
Event Model, we don’t know in which order they will be shown. The definition of
the attachEvent () method clearly states that multiple event handlers attached
to the same event type on an element will be triggered in random order.

This completes our exploration into the ways in which event handlers can be
registered across the different browsers. You saw the ease with which we can use the
inline technique as well as its disadvantages. The DOM Level 0 means of register-
ing event handlers is portable across browsers, but does not provide an automatic
way of chaining multiple event-handler functions. We showed you how to attach
event handlers in a more advanced way using either the DOM Level 2 or Internet
Explorer models. Although this approach is flexible and allows us to dynami-
cally attach, detach, and chain event handlers, it suffers from cross-browser issues,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

172

5.2

5.2.1

CHAPTER 5
Handling events

forcing us to resort to object detection in order to call the method appropriate to
the current browser. Fortunately, frameworks are available that abstract all these
differences away and help us write code that is portable across all supported
browsers. We’ll see how using Prototype helps us in this manner in section 5.3.

Before we do that, let’s build on our foundations of event handling in gen-
eral. In the next couple of sections you'll see in detail how event information is
made available to an event handler and how events are propagated through the
DOM tree.

The Event object and event propagation

Two other important topics that we need to understand when dealing with events
in the browser are the Event object and the manner in which events are propa-
gated. The Event object, actually an instance of the Event class, is important for
obtaining information about the event, and event propagation defines the order
in which an event is delivered to its observers. First let’s tackle the Event object.

The Event object

When an event is triggered, an instance of the Event class is created that contains
anumber of interesting properties describing that event. In our event handlers, we
typically want to access that Event object to obtain interesting properties such as
the HTML element on which the event occurred, or which mouse button was clicked
(for mouse events). As with much else in the world of events, this Event object
instance is made available to the event handlers in a browser-specific fashion.

For standards-compliant browsers, the Event object instance is passed as the first
parameter to the event-handler function. In Internet Explorer, the instance is
attached as a property to the window object instance (essentially a global variable).

Let’s explore what it takes to deal with this object. Since we’re getting tired of
the alerts, let’s also change the code to write diagnostic information into a <div>
element below the image, as shown in listing 5.5.

<html>
<head>
<title>Events!</title>
<script type="text/javascript">
window.onload = function() {
document .getElementById('anImage') .onclick =
function(event) {
if (levent) event = <) Grabs event object instance

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

5.2.2

The Event object and event propagation 173

window.event; 49 Obtains event target element reference
var target =
event.target ? event.target : event.srcElement;
document .getElementById('info') .innerHTML +=
'I woof at ' + target.id + '!
';
}
}
</script>
</head>
<body>

<div id="info"></div>
</body>
</html>
|

In this example, we obtain a reference to the instance of Event by checking first to
see if the parameter passed to the event-handler function, which we cleverly
named event, is defined (as it will be for standards-compliant browsers) and if
not, copies the event property from the window object @ where IE will have
placed it.

We then want to obtain a reference to the target element @—that is, the ele-
ment for which the event was generated. Again, we need to do so in a browser-
specific manner as the definition of the Event class differs between IE and
standard browsers.

We check to see if the standard target property is defined, and if not, we use
the proprietary srcElement property.

What a pain! It seems that almost each and every step of event handling needs
to do things differently in order to work in both IE and the browsers that support
the W3C standards!

Well, yes, that’s pretty much the case. But fear not; help is at hand. But first,
let’s find out what event propagation is all about.

Event propagation

We’ve focused, up to this point, on handlers that are directly defined on the ele-
ments that trigger the events, as if they are the only handlers that are significant.
As it turns out, this is not the case. Rather, the event is delivered not only to the
target element, but potentially to all its ancestors in the DOM tree as well. In this
section, we'll see how events are propagated through the DOM tree, and learn
how we can affect which event handlers are called along the way—and even how
to control the propagation of an event.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

174

CHAPTER 5
Handling events

We'll start by talking about how events are propagated in browsers that follow
the DOM Level 2 Event Model. We’ll then examine how Internet Explorer sup-
ports only a subset of that model.

In standards-compliant browsers that support the DOM Level 2 Model, when
an event is triggered, that event is handled in three phases. These phases, in
order, are called capture, target, and bubble phases.

During the capture phase, the event traverses the DOM tree from the docu-
ment root element down to the target element. Any event handlers established on
the traversed elements for the type of event that is being propagated are invoked
if the event handler was registered as a capture handler. Remember that third
parameter to the addEventListener () method that we've been ignoring up until
now? If that parameter is set to true, the event handler is registered as a capture
handler. If it’s set to false, as we have been doing up to now, the event handler is
established as a bubble handler. Each event handler can be either a capture or a
bubble handler, but never both.

Once the event has traversed downward to the target element, activating any
appropriate capture handlers along the way, the propagation enters the target
phase. During this phase, the event handlers established on the target element
itself are triggered as appropriate. If both a capture and a bubble handler are
established on the target element, they are both invoked during this phase.

The event propagation then reverses direc-
tion and “bubbles” up the DOM tree from the
target element to the root element. This is
the bubble phase, and along the way, any bub-
ble handlers established for the event type on

the traversed elements are triggered. % D
Enough talk—how about a diagram? Let's & g
say that we modify the body of our example g >
. - 3 =1
program to nest the element within two s o
<div> elements as follows: o <div> @
<div id="levell"> level2
<div id="level2">

</div>
</div> anlmage
When we click on the image element, the click
. Target phase
event is propagated through the DOM tree as
shown in figure 5.2. Figure 5.2 Down and up the DOM tree

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Event object and event propagation ‘ 175

Now let’s see it in action. Consider the code in listing 5.6.

Listing 5.6 Establishing capture and bubble handlers

<html>
<head>
<title>Events!</title>
<script type="text/javascript"> 49 Establishes handlers
window.onload = function() {
document .getElementById('anImage') .addEventListener (
'click', react, false);
document .getElementById('levell') .addEventListener (
'click', react, true);
document .getElementById('level2') .addEventListener (
'click', react, false);
}
£ Defines handler function
function react (event) {
document .getElementById('info') .innerHTML +=

'T woof at ' + event.currentTarget.id + '!
';
}
</script>
</head>
<body> £ Defines nested element
<div id="levell">

<div id="level2">

</div>
</div>
<div id="info"></div>
</body>
</html>
||

In this example, we've modified the body @ as described earlier, nesting the
 element within two <div> elements.

Within the onload event handler @), we establish three event handlers: one on
the element, and one on each of the nesting <div> elements. Note that the
event handler established on the element with the id of levell is registered as a
capture handler by way of its third parameter.

All event handlers are assigned the same function, react () @, which emits a
message that contains the value of the currentTarget property of the passed
event instance. This property difters from the target property in that the target
property identifies the element that triggered the event while currentTarget
identifies the element that is the current subject of the event propagation—in
other words, the element upon which the handler was established.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

176 CHAPTER 5
Handling events

Before looking at figure 5.3, try to guess what the order of handler invocation will
be. Did you get it right?

When we display this example in a standards-compliant browser (remember,
the code we’re using is not suited for Internet Explorer yet) and click the image,
we see the display shown in figure 5.3.

The reason for the order of the output should be clear. The handler estab-
lished on the levell element is a capture handler, while the rest are bubble han-
dlers. The levell handler triggers, emitting its output, during the capture phase;
the event handler on the element triggers during the target phase; and
finally, the event handler on level2 is invoked during the bubble phase.

Internet Explorer supports only the target and bubble phases; no capture
phase is supported. To modify this example for IE, we need to change the calls to
the addEventListener () method to attachEvent () and alter the event-handler
function as well. Unfortunately, there is no property corresponding to current-
Target in the Event class provided by Internet Explorer.

If you are targeting IE, and getting a reference to the current target element of
the bubble phase is essential to your requirements, you'll need to come up with
some underhanded means of getting a reference to that element to the event
handler. One tactic that we could employ would be to use the Prototype bind ()

2

- . Events! =
g @ @ [http:/ /localhost:8080/aip.chap5 /listing- & ~(Q- Google

- [localv yogiv Worksv 3 Chilesv refsv TiVo HeadShave Netflix bddb

I woof at levell!
I woof at anImage!
I woof at level2!

Figure 5.3 Result of capture and bubble

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Event object and event propagation 177

mechanism to force the function context object (the this reference) for the event
handler to be the element upon which the handler is being established, as in

Event.observe ('someId', 'click', someHandler.bind($ ('someId'))) ;
Then, in the event handler, we could add
if (!event.currentTarget) event.currentTarget = this;

This would detect environments where currentTarget is not defined and set
the context object reference into the Event instance to be used in a browser-
independent fashion in the remainder of the handler. A bit Byzantine, per-
haps, but useful if you absolutely must have this information available across
all browsers.

Stopping propagation

There are times when you may want to prevent an event from continuing its
propagation. An example is when you know that you have handled the event as
much as you require and allowing the event to further propagate would trigger
unwanted handlers.

In a standards-compliant browser, the stopPropagation () method of the Event
class would be called within an event handler to prevent further propagation of the
current event. In IE, the cancelBubble property of the Event instance is set to true.
It may seem odd to set a property, rather than call a method, in order to effect a
stop to the propagation, but that’s how IE defines this action.

Preventing the default action
Some events, known as semantic events, trigger a default action in the browser—
such as when a form is submitted, or when an anchor element is clicked.

In DOM Level 0 handlers, the value false can be returned in order to cause that
default action to be canceled. In DOM Level 2 handlers, the preventDefault ()
method of the Event class serves the same purpose. Calling this method prevents
the default action from taking place. This can be used, for example, to prevent a
form from being submitted if a validation check conducted by a submit event han-
dler determines that one or more form fields are not valid. In IE, the returnvalue
property of the Event instance is set to false to prevent the browser from carrying
out the default action.

All these browser differences are a royal pain to deal with. Luckily, we’re not
the only ones who think so, and those who write JavaScript libraries have come to
our aid. Let’s take a look at how a now-familiar library makes event handling less
painful in our pages.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

178

CHAPTER 5
Handling events

5.3 Using Prototype for event handling

Several JavaScript libraries are available that simplify the process of defining
event handlers by abstracting browser differences away. Prototype, which we
examined previously in chapters 3 and 4 with regard to helping us write object-
oriented JavaScript and make Ajax requests, also provides a simple but conve-
nient abstraction to help us with event handling.

Prototype defines an Event namespace that possesses a handful of useful
methods; the two most important ones are observe () and stopObserving (). The
observe () method allows you to attach an event handler to an element, while
stopObserving () removes event handlers from those elements.

Let’s take our example of listing 5.6 and modify it using Prototype. The result
is shown in listing 5.7.

<html>
<head>
<title>Events!</title>
<script type="text/javascript" src="prototype-1.5.1.js">
</script>
<script type="text/javascript"> <}!P Defines event handlers

window.onload = function() {
Event.observe('anImage', 'click', react, false);
Event.observe('levell', 'click', react, true);
Event.observe('level2', 'click', react, false);

£ Declares handler function
function react (event) {
$('info') .innerHTML +=
'T woof at ' + Event.element (event).id + '!
"';
}
</script>
</head>
<body>
<div id="levell">
<div id="level2">

</div>
</div>
<div id="info"></div>
</body>
</html>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

5.3.1

Using Prototype for event handling 179

What a difference Prototype makes! Not only were we able to use the handy $ ()
function that Prototype provides, we were also able to make our example cross-
browser compatible while reducing the amount of code we had to write.

In the onload event handler @), we used the Event .observe () method to estab-
lish our handlers in a cross-browser manner. We are still able to specify, for W3C-
compatible browsers, whether the event handler should be a capture or a bubble
handler. Under IE, this distinction will just be ignored.

In our event-handler function @, we used the Event.element () method to
obtain a reference to the target element in a browser-agnostic manner.

Note that Prototype does not provide a 100 percent abstraction of the differ-
ences between browser event handling. For example, if we wanted to obtain the
value of the currentTarget property, we'd need to do that directly, and we’d have
to be sure to not make such a reference when running within IE. However, Proto-
type does abstract a great deal of the most commonly used event-handling
requirements.

The Prototype Event API

This section provides a quick rundown of the API for the Prototype Event
namespace, describing each method available.
To begin, the method

Event .observe (element, eventType, handler,useCapture)

establishes an event handler for the named event type on the passed element.
The useCapture parameter may be omitted and defaults to false. This parameter
is ignored in IE.

Next, the method

Event.stopObserving (element, eventType, handler,useCapture)

removes an event handler. The parameters should exactly match those used to
establish the handler that is to be removed.
The method

Event.unloadCache ()

removes all handlers established through observe() and frees all references in
order to make them available for garbage collection. This is especially important
for IE, which has a severe memory leak problem with regard to event handling.
The best news is that under IE, Prototype automatically calls this method when a
page is unloaded.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

180

5.4

CHAPTER 5
Handling events

Next, the method
Event.element (event)

returns the target element of the passed event.
The method

Event.findElement (event, tagName)

returns the nearest ancestor of the target element for the passed event that has

the passed tag name. For example, you could use this to find the nearest <div>

parent of the target element by passing the string “div” as the tagName parameter.
The method

Event.pointerX (event)
returns the page-relative horizontal position of a mouse event, and the method
Event.pointerY (event)

returns the page-relative vertical position of a mouse event.
The method

Event.isLeftClick (event)

returns true if a mouse event was a result of a click of the primary mouse button.
Finally, the method

Event.stop (event)

stops the event from propagating any further and cancels any default action asso-
ciated with the event.

There! That should make coding for events a lot simpler for us. Now let’s turn
our attention to the various event types that we commonly need to deal with.

Event types

When we consider a web application, we know that most events of interest to us
occur as the result of the user interacting with the application using the mouse or
the keyboard. These events are fired in the DOM element tree in response to user
actions such as causing the page to load, clicking a button, moving the mouse,
dragging the mouse, typing on the keyboard, or taking an action that would cause
the page to unload. As we have seen, we can write event handlers for these events
so that our application can respond to these actions. We'll take a closer look at the
more commonly handled event types in this section, and we’ll start by looking at
the mouse events.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Event types 181

5.4.1 Mouse events

The mouse events that are most commonly handled in a web application are
mouseup, mousedown, click, dblclick, and mousemove. When a user clicks on an
element, three events are fired: mousedown, mouseup, and click. Let’s observe this
firsthand by inspecting the code in listing 5.8.

Listing 5.8 Mouse events on a single click

<html>
<head>
<title>Mouse events!</title>
<script type="text/javascript" src="prototype-1.5.1.js">
</script>
<script type="text/javascript"> <,9 Establishes mouse event handlers

window.onload = function() {
Event.observe('anImage', 'click',6 react);
Event.observe('anImage', 'mousedown', react):;
Event.observe ('anImage', 'mouseup', react);

<,9 Emits info about event
function react (event) {
$('info') .innerHTML +=

'T bark for ' + event.type +

' at (' + Event.pointerX(event) + ', '+
Event.pointerY (event) + ') !
';
}
</script>
</head>
<body>

<div id="info"></div>
</body>
</html>
||

In this code, we establish event handlers @ for the click, mouseup, and mousedown
events on the element. When the image is clicked on, the event-handler
function @ examines the event instance and emits output containing the event
type, as well as the page-relative coordinates of the mouse cursor at the time of
the click. In the browser, we’ll see the display shown in figure 5.4.

We can see from these results that when the element is clicked on, the mouse-
down event fires first, followed by mouseup, and finally, click. As an exercise, add
mousemove or dblclick event handlers, and see how those events are delivered in
relation to the other event types.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

182

5.4.2

CHAPTER 5
Handling events

Mouse events! el

- @ http:IlIocalhost:8080laip.chap5llisting-s.s. ~(Q-

Google

I bark for mousedown at (148,32)!
I bark for mouseup at (148,32)!
I bark for click at (148,32)!

Figure 5.4 Reaction to mouse events

Keyboard events

The commonly handled keyboard events are keyup, keydown, blur, and focus. The
keyup and keydown events are similar to the mouseup and mousedown events; the
keydown event is fired when the key is pressed, and the keyup event is fired when
the key is released.

The focus and blur events are triggered when a DOM element gains or loses
focus. In any loaded page, only one DOM element can have focus at a time. The
focus can be changed programmatically or as a result of user actions. When a user
tabs out of a field, the blur event will be fired, followed by the focus event of the
next element gaining focus. The user can also change focus by clicking on a
focusable element.

Let’s look at an example of how the blur and focus events work. Examine the
code in listing 5.9.

Listing 5.9 Blur and focus and blur and focus and...

<html>
<head>
<title>Blur and Focus</title>
<script type="text/javascript" src="prototype-1.5.1.js">

</script>
<script type="text/javascript"> £ Establishes handlers on page load
window.onload = function() {
Event.observe ('nameField', 'blur', react);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Event types

Event.observe ('nameField', 'focus', react);
Event.observe ('breedField', 'blur',6 react);
Event.observe('breedField', 'focus',6 react);
Event.observe ('dobField', 'blur', react);
Event.observe ('dobField', 'focus', react);
$('nameField') .focus();
} QB Assigns focus to first field
function react(event) { <€) Handles blur and focus events
$('info') .innerHTML +=
Event.element (event) .id + ' ' +

event.type + '
';
}
</script>
</head>
<body>
<form name="infoForm"> 4—0 Contains focusable elements
<div>
<label>Dog's name:</label>
<input type="text" id="nameField"/>
</div>
<div>
<label>Breed:</label>
<input type="text" id="breedField"/>
</div>
<div>
<label>Date of birth:</label>
<input type="text" id="dobField"/>
</div>
<div>
<input type="submit" id="submitButton"/>
</div>
</form>
<div id="info"></div>
</body>
</html>

183

The structure of this example is similar to the ones that we’ve been looking at up
to this point, but we’ve made some significant changes in order to shift focus from

mouse events (primarily click) to keyboard events.

The body of the page has been modified to contain a <form> element @ in
which we have defined three text fields. In the onload event handler @, we estab-
lish a focus event handler and a blur event handler for each of the text fields. We
added these handlers individually for clarity. As an exercise, how would you
rewrite this code so that all text fields in a form would be instrumented with the

event handlers without having to list them individually?

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

184 CHAPTER 5
Handling events

At the conclusion of the onload handler, we also assign the focus @ to the first
field in the form under script control. This is significant (besides being a friendly
thing to do) because it shows us that when the page loads, the focus handler for
that first field will trigger. This tells us that the focus event is triggered either
when focus is assigned by script or when assigned via user activity.

This is not true for all events. The submit event for a form element, for exam-
ple, will not be triggered when a form is submitted under script control.

We’ve also slightly modified our react () @ event-handler function to emit the
name of the target element followed by the event type.

When this page is initially loaded into the browser, we see the display as shown
in the top portion of figure 5.5. As you can see, an invocation of the focus event

890060 Blur and Focus

@ @ http: / /localhost:8080 faip.chap5 /listing-5.9. -va Google B D

Dog's name:
Breed:

Date of birth:
(Submit

nameField focus

0006 Blur and Focus ===

E @ [@] @ http://localhost:8080/aip.chaps /listing-5.9. A Q- Coogle 1

Dog's name: Little Bear
Breed: Pomeranian

Date of birth:
Submit

nameField focus
nameField blur
breedField focus
breedField blur
dobField focus

Figure 5.5 Focusing and blurring

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

5.4.3

Event types 185

handler has already taken place because we assigned focus to the nameField ele-
ment in the onload event handler.

After filling in some data and tabbing to the dobField element, we can see that
as we tab out of each field, the blur event handler is called for the element that we
are leaving, and the focus event handler is triggered as the next element in the tab
order gains focus (we’ll be seeing a lot more regarding tab order in chapter 10).

Make a copy of the example code in listing 5.9 and add event handlers for the
other keyboard events to text fields. Observe how they are triggered as you type
the values into the fields.

The change event

We have seen how we can use a blur event handler to be notified when the user
leaves an element. But it would also be useful to know whether the value of a DOM
element has changed when it loses focus—for example, if we want to perform val-
idation on a field only when its data has changed instead of every time it loses
focus. For certain types of elements, such as text, textarea, select, and file, the
DOM fires a change event when an element loses focus and the content of the ele-
ment has changed between the time that field gains and loses focus.

To see this in action, we’ll modify our previous example to add change event
handlers to the text field elements. The result is shown in listing 5.10, with
changes from listing 5.9 highlighted in bold.

<html>
<head>
<title>Ch-ch-changes</title>
<script type="text/javascript" src="prototype-1.5.1.js">
</script>
<script type="text/javascript">

window.onload = function() {

Event.observe ('nameField', 'blur', react);
Event.observe ('nameField', 'focus', react);
Event .observe ('nameField', 'change', react);
Event.observe ('breedField', 'blur', react);
Event.observe('breedField', 'focus', react);
Event .observe('breedField', 'change', react);
Event.observe('dobField', 'blur', react);
Event.observe('dobField', 'focus',6 react);

Event .observe('dobField', 'change', react);
$('nameField') .focus () ;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

186 CHAPTER 5
Handling events

function react (event) {
$('info') .innerHTML +=
Event.element (event) .id + ' ' +
event.type + '
';
}
</script>
</head>
<body>
<form name="infoForm">
<div>
<label>Dog's name:</label>
<input type="text" id="nameField"/>
</div>
<div>
<label>Breed:</label>
<input type="text" id="breedField"/>
</div>
<div>
<label>Date of birth:</label>
<input type="text" id="dobField"/>
</div>
<div>
<input type="submit" id="submitButton"/>
</div>
</form>
<div id="info"></div>
</body>
</html>
|

With very little in the way of changes to the HTML document, we've added the
ability to be notified when changes are effected on the text fields in our form.

If we were to load this page into our browser, enter some text into the first field,
tab to the second, and then tab to the third without entering text into the second
field, we’d see something like figure 5.6. As you can see, a change event was trig-
gered just prior to the blur event for the name field, whose value was changed as
a result of user input, but not for the breed field, which was not changed.

5.4.4 Page events

So far we’ve seen events that are fired when a user interacts with the elements
within a loaded page, but the browser can also fire events representing page-level
activity. These are called page events, and they occur when the document is loaded,
unloaded, resized, or scrolled. Although these events sound special, we can cap-
ture them just as we do with other events by providing event handlers on the
<body> element of the page or assigning them via the window object.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Event types 187

— Ch-ch-changes ; —
| 4+ | @ hup://localhost:8080/aip.chap5/listing-5.10 - _f).v Google

Dog's name: Little Bear
Breed:
Date of birth: |]

nameField focus
nameField change
nameField blur
breedField focus
breedField blur
dobField focus

Figure 5.6 What’s changed?

In every example we've examined in this chapter, we've already seen the load
event in action; we used it to declare the other event handlers that we wanted to
demonstrate. Now let’s add examples of the unload and onbeforeunload events
into the mix, as shown in listing 5.11.

Listing 5.11 Handling page events

<html>
<head>
<title>Page Events</title>
<script type="text/javascript" src="prototype-1.5.1.js">
</script>
<script type="text/javascript">
window.onload = function() { <) Alerts that page is loaded
alert ('Loaded!") ;
window.onunload = function() { <@ Alerts that page is unloading
alert ('Unloaded! ') ;
}
window.onbeforeunload = 4—‘, Offers choice
function() {
return 'Leaving so soon?';
}
}
}
</script>
</head>
<body>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

188 CHAPTER 5
Handling events

Do it again!
</body>
</html>
||

As we’re going to be loading and unloading the page itself, using on-page out-
put to see what’s going on won’t work very well, so we’ve resorted to alert dialog
boxes again. In the onload event handler, we issue an alert when the page is
loaded @ and then proceed to establish event handlers for the unload and
beforeunload events.

In the onunload event handler @, we simply issue another alert that announ-
ces that that event has triggered. But the onbeforeunload event handler is a bit
more interesting.

In the onunload event handler, there’s not much we can do except react to the
fact that the page is unloading, but in the onbeforeunload event handler, we can
actually affect whether or not the page will unload. If a value is returned, as in our
onbeforeunload event handler @, the browser will display a dialog box that asks
the user whether the page should unload. That dialog box contains the value that
we returned from the handler as part of its text.

When we load this example into the browser, we get an annoying alert that
announces that the page has been loaded. Upon clicking the link on the page,
which we’ve wired to simply display the same page again, we see that the browser
triggers our onbeforeunload event handler and, as a result of the value we
returned from that handler, displays the dialog box shown in figure 5.7.

‘m

00 Page Events !
| 3

: @ [:] @ hutp:/ /localhost:8080/aip.chaps/listing-5.11 A Q= Google 1

Do it again!
http:/ /localhost:8080
Are you sure you want to navigate away from this
page?

Leaving so soon?

!
|

Press OK to continue or Cancel to stay on the current

» (Cancel) —ox—)

Figure 5.7 Let’s chat before you go.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

5.5

Putting events into practice 189

It doesn’t take much imagination to see that this technique could be quite useful for
making sure that users don’t lose data when they attempt to leave a page before
completing their operation. If the user clicks the Cancel button, the page naviga-
tion is canceled and the unload operation never takes place. If the user clicks the
OK button, the unload operation proceeds and the user receives the alert announc-
ing that the unload event handler has been called just before the page reloads.

One aside on the use of the load event: it’s not uncommon to see pages in
which a <script> element is placed near the bottom of the page in order to exe-
cute code as the page loads. The difference between using this tactic and imple-
menting the load event is that the load event is guaranteed not to be triggered
until after the page has completed loading, to include external elements such as
script files, CSS style sheets, and images.

That completes our survey of event handling and our examination of some of
the most commonly handled event types. Obviously, we haven’t explored all
events that can be fired within a web page—such an overview could take many
chapters—but the information presented here is certainly enough to help you
understand how event handling operates and how to handle the event types that
are most typically used in modern web applications.

Now that we have a good working knowledge of event handling and the event
types, let’s take a look at a few practical examples of putting them to work.

Putting events into practice

The examples in this section require the services of server-side resources in order
to execute. To make this as painless and simple as possible for the reader, the
sample code for this chapter at www.manning.com/crane? is already set up to be a
complete and runnable web application.

If you are already running a servlet container on your system, simply create a
new application context named aip.chap5 that points to the chap5 folder of the
downloaded code as its document base.

If you are not already running a servlet engine, no need to panic. A PDF doc-
ument in the chap4 folder of the download walks you through downloading and
configuring Tomcat, and also shows you how to set up application contexts.

When opening these examples in the browser, be sure to address the pages
through the web server rather than merely opening the HTML pages as files. For
example, to load the example in listing 5.12, you would use the address:

http://localhost:8080/aip.chap5/1listing-5.12.html

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

190

5.5.1

CHAPTER 5
Handling events

This assumes, of course, that you are running the servlet container on the default
port of 8080. If you've changed that port to another one, be sure to adjust the
URL accordingly.

Validating text fields on the server

With the knowledge of how to attach change and blur event handlers to DOM ele-
ments under our belts, it is quite easy to use such handlers to validate input
elements on the client to ensure that the data entered is acceptable. Simple client-
side checks are easy to conduct, but sometimes business requirements dictate
that the data may need to be validated using knowledge that is only available on
the server. This may be because the validation is too complex to handle in Java-
Script, or because the information that needs to be available in order to validate
the data is too vast to send to the page for client-side use.

A common strategy used in classical web applications is to perform the simple
validation on the page, and then to perform the more complex validations when
the form is submitted. But with the advent of Ajax, we no longer need to put the
user through this rather schizophrenic means of validation. To conduct server-
assisted validation on the fly, we’ll make a server request when a suitable event
occurs on the client side, which will validate the data and respond to the client
with an appropriate message.

We have all the information we need to solve this problem. We know that we can
attach an event to a textbox to detect any changes, and that we can use that event
to trigger a request to the server with Ajax. The server-side resource that such a
request contacts can validate the data and send back an error message if the data
proves invalid.

Note that the purpose of the example in this section is to demonstrate a real-
world use of event handling, not to present a mature or sophisticated validation
framework. That is a subject that will be discussed later in this book in chapter 6
and then again in chapter 10.

Problem
We need to validate text fields using a server-side resource when their value
changes.

Solution

We've already seen how to instrument an input text element with event han-
dlers, and this solution will do no differently. The question is: do we trap blur
or change events?

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Putting events into practice 191

The answer depends on the nature of the data and of the validations to be per-
formed. Since we are going to be making a server round-trip whenever we want to
perform a server-assisted validation operation, we want to make sure that we're
not firing off requests any more than we need to.

If we know that the data is valid to begin with, we can limit ourselves to trap-
ping change events. After all, there’s no need to validate data that we know is
already good. But in the more common case where fields may start oft with
unknown data (or even empty), we probably need to trap blur events so that the
field can be validated every time it is visited.

Establishing an event handler for the field to be validated is as simple as this:

Event.observe('fieldId', 'blur',validationFunction) ;

Listing 5.12 shows a page with a small form consisting of fields for a U.S. address,
city, state, and zip code. Our business requirements dictate that the zip code and
address must match. This requires consulting a server-side API that the United
States Postal Service (USPS) makes available and that must be consulted in the
server-side code. Let’s see how we handle that on the page.

Listing 5.12 Validating the zip code

<html>
<head>
<title>I Need Validation</title>
<script type="text/javascript" src="prototype-1.5.1.js">

</script>
<script type="text/javascript"> 49 Sets up event handling
window.onload = function() {

Event.observe ('zipCodeField', 'blur',validatezipCode) ;
$('addressField') .focus () ;
}

function validateZipCode(event) { <@ Initiates validation request
new Ajax.Request (
'/aip.chap5/validateZipCode',
{
method: 'get',
parameters: $('infoForm') .serialize(true),
onSuccess: function (transport) {
if (transport.responseText.length != 0)
alert (transport.responseText) ;

}
) ;
}
</script>
</head>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

192 CHAPTER 5
Handling events

<body>
<form id="infoForm"> <) Sets up data entry form
<div>
<label>Address:</label>
<input type="text" id="addressField" name="address"/>
</div>
<div>
<label>City:</label>
<input type="text" id="cityField" name="city"/>
<label>State:</label>
<input type="text" id="stateField" name="state"/>
<label>Zip Code:</label>
<input type="text" id="zipCodeField" name="zipCode"/>
</div>
<div>
<input type="submit" id="submitButton"/>
</div>
</form>
<div id="info"></div>
</body>
</html>
||

Three major activities are addressed by this page: setting up the event handling
@. reacting to the blur event by initiating the validation request to server-side
resource @, and setting up the data entry form @ for the user to fill in.

In the onload event handler @ for the page, we set up the handler for the blur
event so that the validatezipCode () function will be called whenever the user
leaves the zip code field. This function @ fires off a Prototype-assisted Ajax
request to a server-side resource named validatezipCode. As you’ll see in a
moment, this resource is a Java servlet that does some simplistic hand waving in
order to emulate an actual zip code validation operation.

To this resource, we pass the fields of the our form utilizing the handy serial-
ize() method that Prototype conveniently adds to the <form> element.

The server-side validation resource is defined to return an empty response if
all is well and to return an error message if validation fails. So in the onSuccess
event handler for the Ajax request, we test the text of the response and emit a
simple alert if the field failed validation. Remember, more sophisticated valida-
tion handling is something that we’ll explore in later chapters.

Load this page into a browser (be sure to use the web server URL, not the File
menu) and fill in the fields. Note that when you leave the Zip Code field, an alert
is issued displaying the validation failure message, as shown in figure 5.8.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Putting events into practice ‘ 193

= I Need Validation e
@ @http:,'IIocthost:BOSO/aip.chapSllistlng-S.lz.h(ml "‘-(Oc- Google

Address: 123 Anywhere Lane
City: [Anytown State: [Zip Code: [7z701

http://localhost:3080

The zip code value of 78701 does not match the
specified street address

Figure 5.8 Zip code invalid!

In fact, you'll find that every zip code that you type in will generate a validation
warning unless you just happened to guess the one valid zip code value of 01826.
That’s because our server-side validation servlet is, of course, not really connect-
ing to the USPS database in order to perform an actual validation. The servlet
code that is faking a validation operation appears in listing 5.13.

Listing 5.13 Faking our way through a zip code validation

package org.aip.chap5;

import java.io.IOException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
* Smoke-and-mirrors validator servlet for listing 5.12. The
* zip code must be non-blank and equal to "01826" to be
* considered valid.
*/
public class ZipCodeValidatorServlet extends HttpServlet {

protected void doGet (HttpServletRequest request,
HttpServletResponse response)
throws IOException {
StringBuilder result = new StringBuilder ();
String zipCodeValue = request.getParameter ("zipCode") ;
if (zipCodevalue.length() == 0) {
result.append("The zip code field cannot be blank");

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

194 CHAPTER 5
Handling events

else if (!zipCodeValue.equals("01826")) {
result
.append ("The zip code value of ")
.append (zipCodeValue)
.append (" does not match the specified street address");
}
response.getWriter () .write(result.toString()) ;

}

There’s really not too much to comment on here, except that if this were an
actual validation resource, all the fields for the form would be gathered, and a
USPS-provided API would be utilized to perform the actual validation. Because
that’s not the focus of this example (or even of this book), we’re just supplying a
fake resource that allows us to see our client-side code in practice.

Discussion

In this section, we saw a hybrid method of using client-initiated, server-assisted
validation that enables us to give users immediate feedback regarding their
entered data, regardless of whether the validation needs server resources.

We used the blur event to detect when a user left a field in order to initiate the
check. But could we be smarter about this? Once the data has been checked the
first time, there’s no need to go through the overhead of another server round-
trip unless the data has changed. How would you modify the code to only initiate
the server check if the validity of the data is unknown?

This hybrid approach of using both client-side and server-assisted on-the-fly
validation is a powerful addition to our web application toolbox. Such immediate
validation can prevent a lot of user frustration resulting from being told afier the
form submission that there are problems with the submitted data. So by all means,
you should implement such validation. But you can never rely on it!

Our client-side code is readily available to anyone visiting our pages, and
nefarious types will find it easy to reverse-engineer this code to submit their own
false data, totally bypassing any client-side validations framework no matter how
cleverly crafted. To be sure that the data is valid, always implement server-side
validation upon form submission regardless of how much validation has been
performed prior to that point. You can leverage the same code that you use for
client-initiated, server-assisted validation (such as the code we examined in this
example) for the final submission-time checks.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

5.5.2

Putting events into practice 195

Speaking of form submission, there may be times when we want to submit a
form to the server without the overhead of a complete page reload. Let’s examine
that next.

Posting form elements without a page submit

The vast majority of web pages that accept input today are written using the clas-
sical technique of submitting a form to the server when data entry is complete.
This entails a complete page refresh, which may be undesirable in the context of
the rich web applications that we can now deliver using Ajax.

Problem
We want to post a form to a server resource without a full-page reload.

Solution

As it turns out, the solution is almost completely trivial. In fact, we've already
pretty much accomplished this task in our previous example. To “submit” the
form, we’ll use the same technique that we utilized in that example to send form
elements to the server for validation.

Trivial and familiar as this solution might be, a few nuances make this prob-
lem worth considering. We’'ll take the code of our previous example, remove the
validation check (so that we can focus on the submission topic), and rewire it to
hijack the form-submission process in order to send the form to the server under
Ajax control rather than as a normal form submission. The results are shown in
listing 5.14.

<html>
<head>
<title>Submit!</title>
<script type="text/javascript" src="prototype-1.5.1.js">
</script>
<script type="text/javascript"> <,9 Establishes submit event handler
window.onload = function() {
Event.observe ('infoForm', 'submit', submitMe) ;
S ('addressField') .focus () ;
}

function submitMe(event) { <—@) Submits form under Ajax control
new Ajax.Request (
'/aip.chap5/handleSubmission’',

{

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

196 CHAPTER 5
Handling events

method: 'post',
parameters: S$('infoForm').serialize(true),
onSuccess: function (transport) {

$('info') .innerHTML = transport.responseText;

}
)i
Event.stop (event) ;
}
</script>
</head>

<body> 49 Assigns normal submission action
<form id="infoForm"
action="/aip.chap5/shouldNotActivate">
<div>
<label>Address:</label>
<input type="text" id="addressField" name="address"/>
</div>
<div>
<label>City:</label>
<input type="text" id="cityField" name="city"/>
<label>State:</label>
<input type="text" id="stateField" name="state"/>
<label>Zip Code:</label>
<input type="text" id="zipCodeField" name="zipCode"/>
</div>
<div>
<input type="submit" id="submitButton"/>
</div>
</form>
<div id="info"></div>
</body>
</html>

The changes to this page are subtle but significant. First, we’ve added a handler
to the form for the submit event in the window’s onload handler @), which will
cause the submitMe () function to be called when the form is submitted @.

We’ll deal with that function in just a minute, but first take a look at the
change we made to the <form> element €. We added an action attribute that
specifies a server-side resource that does not exist. By doing so, we’ll quickly
know if our form is ever submitted using the normal default action: the browser
will display an unmistakable error page when the server reports that the resource
cannot be found.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Putting events into practice 197

The submitMe () function, called when the submit event is triggered, initiates
an Ajax request similar to the one we saw in the previous example. But in this
case, we specified an HT'TP method of 'post' rather than 'get'. The heavy lifting
is done by the Prototype serialize () method.

The server-side resource for the request is a servlet that collects the request
parameters and formats a response that contains an HTML snippet showing
the names and values of those parameters. (As its operation is not germane to
this discussion, we won’t inspect it here. But if you're curious, youll find the
source code for the servlet in the downloadable code as the org.aip.chap5.
ParameterInspectorServlet class.) This response body is displayed on the page
in the info element.

Finally, the following statement is executed:

Event.stop (event) ;

This Prototype method stops the event from propagating any further and cancels
the default action of the event, which in this case is the form submission. Without
this statement, the form would go on submitting to the resource identified by the
form’s action attribute.

Discussion

Although this example didn’t cover much new ground, it did point out some
important concepts, such as using the submit event to prevent the submission
of the form. We used an event handler and the Prototype event methods for
this purpose, but if all you're trying to accomplish is preventing form submis-
sion, you can use the following form declaration to return false from a DOM
Level 0 handler:

<form id="my Form" action="whatever" onsubmit="return false;">

In our example, we also relied heavily on the services of the Prototype serialize()
method. This method marshals all the values of the containing form’s elements
and constructs either a query string or an object hash from those parameters.
Because we specified true as the parameter to this method, it returns an object
hash, which is the preferred technique for Prototype 1.5.

When this page is loaded, data entered, and the Submit button clicked (or the
Enter key pressed), the display appears as shown in figure 5.9.

That was all pretty easy. But what if we want to be slightly pickier?

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

198 CHAPTER 5
Handling events

1800 Submit!

@ + || &4 | [&]hup://localhost:8080/aip.chap5/listing-5.14.htmlZac® ~Q~ Google l

Address: 123 Anywhere Lane
City: Tanytown State: ‘ma Zip Code: lo1sz26l
(submit)

address=

123 Anywhere Lane
city=

Anytown

state=

MA

zipCode=

01826

Figure 5.9 Submitting without submitting!

5.5.3 Submitting only changed elements

The previous example showed us that we can take control of the form-submission
process and use event handling to reroute the submitted data to an Ajax request.
Prototype’s serialize() method made it almost trivial for us to gather all the
data elements of a form to send to the server.

But what if we don’t want to send all the form data? What if we only want
to send data elements that have changed? Indeed, why make the request at all
if none of the data has changed? We could use the change event of the form
elements to know when an element’s value has changed, but how do we best
keep track of this information for use when it comes time to send the data to
the server?

We could be sophomoric about it and store the information in global variables.
But not only would that be inelegant, it would also create severe problems on
pages with multiple forms, and is not an object-oriented approach.

We could be sophisticated about it and store the information right on the ele-
ment itself by adding a custom property, as follows:

element.hasChanged = true;

We could then loop through the elements when it comes time to gather the data
for submission, looking for elements that have this property set.

Or better yet, we can be clever about it (that sounds so much better than
lazy) and leverage code that we already have handy. Listing 5.15 shows just
such an approach.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Putting events into practice ‘ 199

Listing 5.15 Submitting only changed data

<html>
<head>
<title>Submit, or not!</title>
<script type="text/javascript" src="prototype-1.5.1.js">

</script>
<script type="text/javascript">
window.onload = function() {

Event.observe ('infoForm', 'submit', submitMe) ;

Event.observe('infoForm', 'change',
markChanged) ;

$ ('addressField') .focus() ;

Establishes change
handler on form

}
49 Marks target element as changed
{

function markChanged (event)
Event.element (event) .addClassName ('changedField') ;
}
49 Collects only changed elements
) A

function submitMe (event
var changedElements = S('.changedField');
if (changedElements.length > 0) {
var parameters = {};
changedElements.each(
function(element) {
parameters[element.name] = element.value;
element.removeClassName ('changedField') ;
}
)
new Ajax.Request (
'/aip.chap5/handleSubmission’',
{
method: 'post',
parameters: parameters,
onSuccess: function (transport) {

S('info') .innerHTML = transport.responseText;
}
}
) ;
}
Event.stop (event) ;
}
</script>
</head>
<body>
<form id="infoForm" action="/aip.chap5/shouldNotActivate">
<div>

<label>Address:</label>

<input type="text" id="addressField" name="address"/>
</div>
<div>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

200

CHAPTER 5
Handling events

<label>City:</label>
<input type="text" id="cityField" name="city"/>
<label>State:</label>
<input type="text" id="stateField" name="state"/>
<label>Zip Code:</label>
<input type="text" id="zipCodeField" name="zipCode"/>
</div>
<div>
<input type="submit" id="submitButton"/>
</div>
</form>
<div id="info"></div>
</body>
</html>
|

In this example we’ve made some minor but significant changes to the code in
listing 5.14. In the onload event handler, we've established a change event handler
on the form @. We could have looped through the form, adding a handler on
each individual element, but why bother when the form will receive the event
notification during the bubble phase?

The handler function, markChanged () @, which will be called whenever a form
element has changed, obtains a reference to the event’s target element and adds
the CSS class changedField to that element.

Huh? What does CSS have to do with keeping track of changed fields? All is
revealed when we examine the changes to the submitdMe () event-handler function.

In that function @, we use the Prototype $$ () function. This handy function
returns an array of all elements that match the CSS selector passed as its param-
eter. Since we specified the string '.changedField', an array of all elements
marked with that CSS class name is returned.

If that array is empty, we simply skip over the code that submits the request.
Otherwise, we loop through the elements, creating an object hash of the name/
value pairs that we gather from the array elements. That hash is then used as the
parameter set for the Ajax request.

Since the data has been submitted and is no longer considered changed, we
remove the CSS class name changedrield from the elements, and we’re good to
go again!

Discussion

This example builds on the code in listing 5.14 to limit the parameters submitted
on the Ajax request to those that have changed value, and to completely skip sub-
mitting the request if no changes have taken place.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

5.6

Summary 201

Submit, or not! |

®00 _
‘ (3] @ hup://localhost:8080/aip.chaps listing-5.15.htmI ~(Q- Google I

Address: |
City: pracut

(Submit)

State: ‘ma Zip Code: |

city=
Dracut

state=
MA

Figure 5.10 Submitting only what counts

We used a change event handler on the form to catch changes to all its elements,
cleverly taking advantage of the bubble phase of event propagation. And we saw a
clever way of marking elements for later identification through the use of CSS
class names and the Prototype $$ () function.

When displayed in the browser, and with only the City and State fields
changed, we see the display as shown in figure 5.10.

Summary

In this chapter, we saw some interesting and powerful techniques to add interac-
tivity to web applications. We looked at the various ways in which you can add
event handlers to a DOM element, and we saw how the Prototype JavaScript
library greatly simplifies the process of attaching and writing event handlers. We
looked at all the major event types, and we examined many code snippets that
demonstrated how these events can be used in our web applications. We also
looked at some validation and form submission examples, something we’ll cover
more in-depth in the next chapter.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Form validation
and submission

This chapter covers

Client-side field validation

Client-side cross-field validation

The POST HTTP request method
XMLHttpRequest (XHR) form submissions

202

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

6.1

6.1.1

Client-side validation 203

Input validation is probably one of the least-favorite activities of web developers.
“Why can’t users just type their data in right the first time?” and “We’re going to
validate it on the server later anyway, so why bother?” are some common com-
plaints, the latter having perhaps more merit. So why do it?

We do it because it creates a better user experience by

m Giving users immediate feedback regarding incorrect form data

= Cutting down on server resource usage (traffic and server cycles), which
makes the user interface (UI) snappier

Input validation goes hand in hand with HTML forms: first, data is validated, and
then it’s submitted to the server. In the second part of this chapter, we’ll discuss
handling and submitting HTML forms as Ajax requests. Handling your own POST
requests is in the lowest level of data handling, as you will be talking directly to
the server yourself instead of letting the browser take care of it for you. This pro-
cess can be quite error prone, but if implemented correctly, it can speed up your
UI by eliminating those pesky browser refreshes.

Client-side validation

What is form validation? Simply put, it’s a way of ensuring that the data a user
enters into a form is valid. Now, valid is a bit of a nebulous concept, but basically it
means that the data conforms to certain rules.

Form validation has been around for a while; first implemented mostly on
the server side, it later moved toward the client side, which made for snappier
feedback. Several server-side frameworks, such as Struts, are available, but sadly,
client-side validation has always been a bit undersupported.

In this section, we’ll take a look at creating our own extensible client-side val-
idation framework. We’ll build it up slowly with simple validations, and then
move on to instant “as you type” validation and cross-field validation.

Validating on the client side

Validating on the client side can be a real... well, it’s not fun. It sure would be
great if you could just create a library that you could reuse on each page without
having to rewrite it every time. And that’s precisely what we’ll be looking at.

As mentioned, we’ll be using object-oriented JavaScript to ease both main-
tainability and extensibility. If you need a refresher, please refer to chapter 3 of
this book.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

204

CHAPTER 6
Form validation and submission

o6 Listing 6.1

=

@ ? [hrtp:/ /localhost:8080/. ¥ = | [G]~ Coogle

Q

M

Name : IFeIix the cat
Age : [s5r

'85r' is not a number.
iSubmit Query;

Figure 6.1 Validation in action

Problem
You need a reusable validation framework so that you don’t have to rewrite client-
side validation rules. It needs to be extensible, easy to maintain, and easy to use.

Solution
We'll use the assistance of the Prototype library to write our validation frame-
work. Why Prototype? Because, as we saw in chapters 3 and 4, using a good
JavaScript library makes it easier for us to write our validation framework in a
more object-oriented way, which will promote code reuse. And everyone knows
that object-oriented code is very easy to reuse! We’ll use Prototype, but the same
concepts can be applied using jQuery or the Dojo Toolkit.

Let’s see what our framework can do with a look at figure 6.1. The user appar-

9

<html>
<head>

<title>Listing 6.1</title>

<script type="text/javascript" Uses
src="prototype-1.5.1.js"> Prototype

</script>

<script type="text/javascript" Contains validation
src="listing.6.2.js"> framework

</script>

<script type="text/javascript">
var framework = new ValidatorFramework() ;

window.onload = function() {
Event.observe('testForm', 'submit', Calls
function(event) { framework

downloaded from: lib.ommolkefab.ir

ently slipped and typed an extraneous “r” character in a field that requires a
numeric value. Now let’s look at the HTML and script for this page in listing 6.1.

Listing 6.1 HTML for a validation framework

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Client-side validation 205

if (!framework.validateForm(event.target))
Event.stop (event) ;
}
)
}s
</script>
<title>Validation FrameWork</title>
<style type="text/css">
div.error {
color: red;
}
</style>
</head>
<body>
<form id="testForm"
method="post"
action="/aip. chap6/requestInspector">
<div> Name
<input name="name" type="text" Marks input as
id="name" valid="all" validatable
error="name_err" />
<div class="error" id="name_err"></div>
</div>
<div> Age
<input name="age" type="text" Uses number
id="age" valid="number" validator
error="age_err"/>
<div class="error" id="age_err"></div>
</div>
<div>
<input type="submit"/>
</div>
</form>
</body>
</html>
|

Simple enough. We mark the fields that we wish to validate with two attributes in
the input tag: valid tells the validator what validation rule to use; error tells it
where to put any error message.

This technique of adding custom attributes to HTML elements is a useful but
tricky approach because not all browsers support it in the same way. Internet
Explorer and Safari make such attributes properties of the elements, but Firefox
and other Gecko-based browsers do not. But all major browsers seem to allow
retrieval of the value via the element’s getattribute () method. Now let’s look at
our validation framework classes (listing 6.2).

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

206 CHAPTER 6
Form validation and submission

Listing 6.2 Validation framework

var Validator = Class.create();

Validator.prototype = {
type: "all",

initialize: function(validators) {
validators[this.type] = this;
I

Registers validator
by its type

dovValidate: function (input) { Defines subclass
return ""; hook
I

validate: function (input, errordiv) {
errorMsg = this.doValidate (input) ;
errordiv.innerHTML = errorMsg;
return (errorMsg.length == 0);

Evaluates
doValidate() output

var NumberValidator = Class.create();

Object.extend (NumberValidator.prototype,
Validator.prototype) ;

Object.extend (NumberValidator.prototype, { £ Takes care of all number fields
type: "number",

doValidate: function (input) { Overrides doValidate()
var numberpattern=/(~\d+$) | ("\d+\.\d+$)/; method
if (numberpattern.test (input)) {
return "";
} else {
return "'" + input + "' is not a number." ;
}
}

)i
var ValidatorFramework = Class.create();

ValidatorFramework.prototype =
(Defines hash map

validators: 0 of validators

validateForm: function(form) {
var retval = true;
for(i = 0; 1 < form.length; i++) {
currentInput = forml[il];
type = currentInput.getAttribute("valid") ;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Client-side validation 207

errorDivName = currentInput.getAttribute("error");

if (type == null || errorDivName == null) {
continue; . .

} else { J Validates with
valid = this.validate(appropriate validator

type, currentInput.value, $(errorDivName)) ;
if (!lvalid) {
retval = false;
}
}
}
return retval;
I

validate: function(type, input, errordiv) {

return this.validators[typel. .
} Grabs appropriate

validate (input, errordiv); .
validator

I

initialize: function() {
this.validators = new Object () ;
new Validator (this.validators) ;
new NumberValidator (this.validators) ;

Sets up hash map,
registers validators

Discussion
Let’s talk about what’s happening in listing 6.2. First, we’ll discuss the Validator
class. The Validator class will serve as the base class of all validators that we wish to
implement. We've set its validation type to all, which does not mean much in this
case; however, subclasses of Validator will set this to something more meaningful.
The ValidatorFramework class examines this property to decide which regis-
tered validator implementation to execute when it reads the valid attribute of
an <input> element. The ValidatorFramework instance is informed of this map-
ping in the initialize() method @ where the new Validator object registers
itself. The real meat of the Validator class is its dovalidate () method @, where we
evaluate the input value. The Validator’s dovalidate () method returns an empty
string, which is regarded as success. The dovalidate () method is called from the
validate () method @, which sets the validation error message, updates the error
<div>’s contents to display the error message, and returns true or false depend-
ing on whether there were any errors.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

208

CHAPTER 6
Form validation and submission

Now that we’ve seen how the basic Validator superclass works, we’ll take a look
at how we subclass it (using the techniques we learned in chapter 3) to create our
own Validator classes. We’ll start with a simple NumberValidator class, which will
validate all number fields @ with a regular expression in its overriding dovali-
date () method @. You can see how easy it is to create your own Validator classes:
subclass Validator, set the appropriate type, and create an appropriate dovali-
date () method.

Our Validator classes are useless without something to drive them, which is
where the ValidatorFramework class comes in. The ValidatorFramework class
contains an object hash called validators containing all Validator objects that
are registered with it @, which is set up in its initialize() method @. When we
call its validateForm() method from our UI, it will look through all the input
tags on the supplied form and find the appropriate validator @, @ for validat-
ing that input.

And what do we see if we run our example with invalid data? You can see for
yourself in figure 6.1—85r is certainly not a number. Our validator works!

Frameworks such as these are easy to set up, especially using an object-oriented
approach aswe just did. You’ll find such frameworks easy to maintain, aswell as easy
to extend—for example, with new validation rules. By using error <div>s and
assigning them a CSS class, you can maintain a consistent look and feel across your
entire application.

One caveat when dealing with client-side validation: it is not secure! We’ve men-
tioned this before, but it bears repeating. Even if you are validating the data on
the client, you must always revalidate on the server. Crafty users can simply fake
an HTTP POST to submit any data that they wish, totally bypassing your beauti-
fully constructed validation framework.

You might also want to take a look back at chapter 5 to recall how to create
server-assisted validations; such hybrid validations can cut down on your lines of
code and ease the maintenance hassle associated with keeping server-side Java
and JavaScript in sync.

A drawback of the framework we just implemented is that users must submit
their form before they are notified of the validity of their inputs. A more user-
friendly approach might be to immediately inform them of the errors of their
ways. The following example will do exactly that by giving users instant feedback
on the validity of their input.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Client-side validation 209

6.1.2 Instant validation

You’ve most certainly seen web applications that give you instant feedback on the
validity of your inputs as you type. This saves users a lot of time and frustration,
because they know that their inputs are valid before they click the submit button.
This example extends our framework to support that type of behavior.

Problem
You wish to give users instant feedback on the validity of their inputs as they

are typing.

Solution

It sure is nice when users can see whether they have made any mistakes in their
data as they are typing it in, as opposed to filling in a form completely, only to
find out when submitting that they have made errors.

We talked the big talk about code reuse throughout this book. As the authors
do not wish to be accused of being “all hat and no cattle” (see http://en.wiktionary.
org/wiki/all_hat and_no_cattle), we’ll reuse our validation framework to validate
input fields as users are typing. In fact, the only thing we’ll change is to add a
keyup event handler to the form. First take a look at figure 6.2, which shows the
error message delivered immediately after the “r” has been typed.

CXSXS) Listing 6.3 o
\I'J' &j {L‘ @hnp://localhost:sosw v || .' Google Q) 3

Name : lFeIixthe cat
Age : |85rf
'85r' is not a number.

Submit Query

Figure 6.2 Instant feedback as you type

Rather than repeating the entire code of listing 6.1, listing 6.3 only shows the
onload event handler, with the added code in bold.

Listing 6.3 As-you-type form validation

window.onload = function() {
Event.observe('testForm', 'submit', function (event) {
if (!framework.validateForm(event.target))

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

210

CHAPTER 6
Form validation and submission

Event.stop (event) ;
)i
Event.observe('testForm', 'keyup', function(event) {
framework.validateForm(event.target.form);
});
Y

Discussion

This solution didn’t change very much from the solution of the previous sec-
tion. However, this time we have constant feedback telling us when we type in a
valid number.

But how does this work? You might be saying to yourself, “The onkeyup event
handler is bound to the <form>, not to the <input> tags where I'm changing the
data!” Good observation. Remember that in the browser event model, events
propagate through the DOM tree. Therefore, if a keyup event is triggered on an
<input> element, it will bubble up to the containing <form> element during the
bubble phase, whose onkeyup event handler is invoked and calls our validator. There
is no need to laboriously add onkeyup event handlers to each <input> element.

One annoying aspect of this approach is that, while we are typing into the
name field, a message that the blank age field is invalid is displayed. How would
you change our framework to alleviate this annoyance? (Hint: Consider using
onfocus and onblur event handlers to enable and disable the instant validation
when a field does not have focus.)

Another issue is that on each keyup event, validation for the entire form is
performed needlessly. After all, we can only be changing one field at a time. How
would you modify or extend the validation framework to allow individual field
validation, and how would that help deal with the annoyance problem that we
just mentioned?

Providing users with useful validations is not just an option these days; it has
become a requirement. Users have become accustomed to easy-to-use web appli-
cations that inform them of errors at the first opportunity. Failure to provide
them with a way to ensure the validity of their data before they incur the time
expense of a server round-trip will result in complaints and lost customers.

Great—now we can validate single fields of data. But what if we have data
being entered that needs to be validated in conjunction with the data from
another field? This is what is called cross-field validation, and we’ll tackle that
topic next.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Client-side validation 211

6.1.3 Cross-field validation

Cross-field validation does not concern itself so much with whether individual
element values are of the correct format (is it a number? is it an email address?),
but rather that the values for two or more input elements are valid in relation to
each other according to a set of business rules. For example, consider a form that
asks for a start and end date of some event. Obviously, the start date must be
before the end date. Our regular validators can take care of checking whether the
entered values are valid dates, and if they are, we’ll run the cross-field validator to
make sure that they are also semantically correct—that the start date is before the
end date. Let’s get on with it.

Problem
You need to validate multiple fields in relation to each other.

Solution

Let’s start developing our cross-field validation mechanism. We’ll expand on what
we've developed previously and add the capability to validate across fields. Let’s
begin with some HTML that sets up our form and cross-field validators (listing 6.4).

Listing 6.4 Cross-validation HTML

<html>
<head>
<title>Listing 6.4</title>
<script type="text/javascript"
src="prototype-1.5.1.js"></script>
<script type="text/javascript"
src="listing.6.5.js"></script>
<script type="text/javascript">
var framework = new ValidatorFramework() ;
var xrefl;
var xref2;

window.onload = function() {
Event.observe('testForm', 'submit', function (event) {
if (!framework.validateForm(event.target))

Event.stop (event) ;
3
Event.observe ('testForm', 'keyup', function (event) {
framework.validateForm(event.target.form) ;

- | Cross-validates first group

xrefl =
new DateRangeCrossValidator (
framework,
new Array ($('start'),$('end')),S$('startend_err'));

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

212 CHAPTER 6
Form validation and submission

xref2 = , 7] Cross-validates second group
new DateRangeCrossValidator (
framework,
new Array($('start2'),$('end2')),S$('startend_err2'));

}s
</script>
<style type="text/css">
div.error {
color: red;
}
</style>
</head>
<body>
<form id="testForm"
method="post"
action="/aip.chap6/requestInspector">
<div id="startend_err” <7 Specifies error <div>
class="error"></div>
<div> Start Date
<input 1:1ame:"start" t}lfpe:"text" <17 Defines start date
id="start" valid="date"
error="start_err"/>
<div class="error" id="start_err">

X Specifies another
</div>

i error <div>
</div>
<div> End Date
<input name="end" type="text" (¢T Defines end date

id="end" valid="date"
error="end_err"/>
<div class="error" id="end_err"></div>
</div>

<div id="startend_err2"
class="error"></div>
<div> Start Date
<input name="start2" type="text" id="start2" valid="date"
error="start_err2"/>
<div class="error" id="start_err2"></div> </div>
<div> End Date
<input name="end2" type="text" id="end2" valid="date"
error="end_err2"/>
<div class="error" id="end_err2"></div>
</div>
<div>
<input type="submit"/>
</div>
</form>

<'T Defines second group

</body>
</html>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Client-side validation 213

8006 Listing 6.4 o
@ @ (. £ [Enup:/focalnost:8080/ ¥ > ([G]* Google Q

My

Start Date : [11/24/197]
'11/24/197' is not a date.
End Date : |
Start Date : |
End Date : |

Submit Query I

Figure 6.3 Validating an individual data field

CASNS) Listing 6.4 =
@~ o @ L 4 Enap:/ocainost8osos v > ([Glv Google Q) 3

Start Date : |11/24/1974
End Date : [11/24/1988

The start date cannot be after the end date.
Start Date : |11/24/1977
End Date : [11/24/1974]

Submit Query

Figure 6.4 Cross-field validation in action

Basically, we defined error <div>s for each <input> element in combination with an
error <div> for each cross-validation group where the error messages for that group
should go. Then we construct our cross-field validators and pass them references
to the <input> elements they must validate. Take a look at figures 6.3 and 6.4, and
then review the code (listing 6.5) that makes all this happen. We made a few changes
to the validation framework so that it can handle the cross-field validators.

Listing 6.5 The cross-validation framework

var Validator = Class.create();

Validator.prototype = {
type: "all",

initialize: function(validators) {

validators[this.type] = this;
I

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

214 CHAPTER 6
Form validation and submission

doValidate: function (input) {
return "";
I

validate: function (input, errordiv) {
errorMsg = this.dovValidate (input) ;
errordiv.innerHTML = errorMsg;
return (errorMsg.length == 0);

}
var NumberValidator = Class.create();

Object.extend (NumberValidator.prototype,
Validator.prototype) ;

Object.extend (NumberValidator.prototype, {
type: "number",

doValidate: function (input) {
var numberpattern=/("\d+$) | ("\d+\.\d+$)/;
if (numberpattern.test (input)) {

return "";
} else {
return "'" + input + "' is not a number." ;
}
}
)i
<}9 Creates new class
var DateValidator = Class.create();

Object.extend (DateValidator.prototype, Validator.prototype) ;
Object.extend (DateValidator.prototype, {
type: "date",

{ Uses browser’s date

dovalidate: function(input) h >
object for parsing

var value = Date.parse(input) ;
if (value <= 0) {

return "'" + input + "' is not a date.";
} else {

return "";

)i

var ValidatorFramework = Class.create();
ValidatorFramework.prototype =
{
validators: O, .
crossvalidators: 0, | Stores cross-field validators
validateForm: function (form) {
var retval = true;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

for(i = 0; i < form.length; i++) {
currentInput = form[i];

type = currentInput.getAttribute("valid");

Client-side validation

errorDivName = currentInput.getAttribute("error");

if (type == null || errorDivName == null)

continue;
} else {

valid = this.validate(type, currentInput.value,

$ (errorDivName)) ;
if (!lvalid) {
retval = false;

} <}9 Iterates over validators
0;

for(i =

i < this.crossValidators.length;
this.crossValidators[i].clearErrors() ;

}

if (retval

{

£ Verifies validator completion

)
for(i = 0; 1 < this.crossValidators.length; i++) {
valid = this.crossValidators[i].validate();

if (tvalid) {
retval = false;

}
return retval;
I

validate: function(type, input, errordiv)

var validator = this.validators|[typel;

if (!validator) {
alert ("No validator for type '" + type +
return "";

}

return validator.validate (input, errordiv) ;

I
initialize: function() {
this.validators = new Array();

this.crossValidators = new Array();

new Validator (this.validators) ;

new NumberValidator (this.validators) ;

new DateValidator (this.validators) ;

var CrossValidator = Class.create();
Object.extend (CrossValidator.prototype,

downloaded from: lib.ommolkefab.ir

{

)

<}9 Creates CrossValidator class

215

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

216 CHAPTER 6
Form validation and submission

type: "none",
crossError: O,
crossInputs: O,

initialize: function (framework, P?ﬁ“?s
p_crossInputs, “““4”e0
function

p_crossError) {
framework.crossValidators.push(this) ; <1T Registers with framework
this.crossError = p_crossError;
this.crossInputs = p_crossInputs;

I

validate: function() { i
errorMsg = this.doValidate(QJ Validates and sets any
this.crossInputs) ; error messages
this.crossError.innerHTML = errorMsg;
return (errorMsg.length == 0);
% Clears out previously

clearErrors: function() { <1J generated errors
this.crossError.innerHTML = "";

)

var DateRangeCrossValidator = Extends
Class.create(); CrossValidator class
Object.extend (DateRangeCrossValidator.prototype,
CrossValidator.prototype) ;
Object.extend (DateRangeCrossValidator.prototype, {

dovValidate: function(inputs) {
var startDate = Date.parse(inputs[0].value) ;
var endDate = Date.parse(inputs[1l].value) ;
if (startDate > endDate) {
return "The start date cannot be after the end date.";
} else {
return "";

Discussion

Let’s look at what we just did in listing 6.5. We needed a Validator implementa-
tion that could handle dates, so we added one @ and implemented a proper
dovalidate () method @. We'll let the JavaScript Date class decide whether or
not it is valid. Be careful, because the function will not work for dates before

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Client-side validation 217

January 1, 1970. If you need greater flexibility, you might want to consider
using a regular expression.

We didn’t need to change our framework too much. Just be aware that even
though we do not cross-validate unless all the inputs have been validated, we do
need to clear the errors that were generated by any previous cross-validation
runs @. This is because the user might be entering data and could see nonsensi-
cal error messages. Once all the regular field validators pass @, we do a cross-
field validation.

Because we’re now doing cross-field validation, we create our base class for the
cross-field validators @. This class looks a lot like the regular Validator class—its
initialize () method now takes a reference to the framework it is associated with,
along with an array of the <input> elements it is validating (the order is impor-
tant here; look at the validator you are using to see what the order should be) as
well as a reference to the <div> that will show any errors.

We've also subclassed the base cross-field validator @ to create a DateRange-
CrossValidator class, which will check whether two dates are indeed in chronolog-
ical order. This validator is passed a reference to the smaller date <input> field
first and a reference to the larger date <input> field second.

And there you have it: a reusable and extensible cross-validation framework!
Look back at figures 6.3 and 6.4 to see how this works in the browser. As you can
see, no cross-field validation occurs until the values of all the <input> fields are
correct, even though the second start/end combination is illegal. When we fix the
problem with the first date (remember, our Datevalidator won’t deal with dates
before 1970), we should see something like figure 6.4. The first combination is
fine; the second one is not.

Of course, cross-field validation is not limited to start and end dates. The
authors remember fondly an application that made good use of such cross-field
validating techniques. The application in question was designed for the trading
of electrical energy and, as such, relied on extensive knowledge of the capacities of
the available power-generating facilities. There existed multiple interdependen-
cies among the concurrent availability of power facilities, the amount of energy
available in a given time block, and the amount of energy scheduled across an
entire facility. We’ve given just a brief list of the interdependencies, but the con-
cept is clear. Before the acceptance of a power schedule, it was important to
ensure the validity of that schedule. The user interface took quite a while to draw,
and a lot of data was submitted to the server. Needless to say, this took a long time
to validate. To speed up the checking of the power schedules, we developed an
extensive validation framework that could validate the entire schedule in a couple

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

218 CHAPTER 6
Form validation and submission

of seconds. The old way of doing things could take up to two minutes. So cross-
field validators are a good thing.

We now have our data validated and ready to ship to the server. But how will
we do that? Good thing that the next section is there to show us the way!

6.2 Posting data

We saw in the previous chapter how to use Prototype to post a form via Ajax. In
this section we’ll take an in-depth look at how we can simulate the posting of a
form ourselves through the XMLHttpRequest object (XHR). Because we can use
the XHR object to make HTTP requests and specify what type of request to make,
we can easily emulate a form submit by managing the data that we send to the
server through the XHR.

Once we've shown how Ajax POST requests can be made, we’'ll take a look at
using an alternative to Prototype, jQuery, to make such requests.

6.2.1 Anatomy of a POST

So what does a POST actually look like? Great question! Let’s take a look, shall we?
First we need a form (listing 6.6).

<html>
<body>
<form method="post" action="http://localhost:2020/xyz">
<input type="text" name="inputl"/>
<input type="text" name="input2"/>
<input type="text" name="input3"/>
<input type="submit"/>
</form>
</body>
</html>
|

All right, now we have a form. The action attribute may seem a bit confusing.
Who is listening on port 2020? And the answer is... us! Using a utility called Net-
cat (http://netcat.sourceforge.net/), we can listen to arbitrary ports for incoming
connections, which will be dumped to the command prompt. Netcat makes it easy
to examine network data.

To run Netcat to listen on port 2020, we issue the following command line:

netcat -1 -p2020

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Posting data 219

806 Mozilla Firefox (=)
-« & 2t [Ehup:/flocalhost:8080/. ¥ | =[G+ Coogle Q)

Ivaluel Ivaluez fvalue3]

|
‘ Submit Query | I

\ Y

Figure 6.5 A simple form

Let’s take a look at what the client posts to the server with the plain-as-vanilla
form shown in figure 6.5.

When we submit this form, the data that is sent to port 2020 (which we are lis-
tening to via Netcat) might be as follows (there will be slight variations depending
on the browser and its settings):

POST /xyz HTTP/1.1

Host: localhost:2020

User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac 0S X;

en-US; rv:1.8.1.2) Gecko/20070219 Firefox/2.0.0.2

Accept: text/xml,application/xml,application/xhtml+xml,

text/html;g=0.9, text/plain;g=0.8, image/png, */*;g=0.5

Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-8;g=0.7,*;q9=0.7

Keep-Alive: 300

Connection: keep-alive

Content-Type: application/x-www-form-urlencoded

Content-Length: 32

inputl=valuel&input2=value2&input3=value3

There are definitely a lot of interesting bits of information in there. For the sake
of emulating a form post, we only need to specify some of those things.

The required first line contains the request method (in our case, POST), the
requested resource, and the protocol being used. This is followed by a series of
HTTP headers, consisting of key/value pairs separated by the colon character.
The HTTP 1.1 protocol only requires that the Host header be sent. The remain-
ing headers are optional but highly recommended.

The headers are followed by a blank line, which is in turn followed by the
body of the POST request. For the content type that a form typically submits,
the body consists of the URL-encoded values of the form data.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

220

6.2.2

CHAPTER 6
Form validation and submission

Looks a lot like the query string of a GET request, doesn’t it? In fact, both a
query string and POST body follow the same rules.

So, how do we perform a post with the XHR object? The following sections
make this clear. Note that the first solution we’ll consider doesn’t take care of
posting a form; we discuss that a bit later. The purpose of the upcoming solution
is to show you how to post any sort of data.

Posting data to a server

Let’s apply what we’ve learned in our analysis of POST requests earlier and show
you how you can make your own POST request to a server via XHR. This is handy
when you need to submit your own data to a server without forcing a browser
refresh. You’ll be able to post any data you want—XML, text, or whatever you
have. You just need to construct the data you post appropriately and you're on
your way.

Although you probably won’t use this method frequently, it’s often a good idea
to have an understanding of how things work under the hood.

Problem

You need to post data to the server.

Solution

This solution is quite simple, and does not differ very much from previous direct
uses of the XHR object. We simply obtain an XHR, set it up accordingly, perform a
POST to a URL, and pass the data. Keep in mind that we are not emulating a POST
the way that an HTML form would post the data; we’ll handle that in the next solu-
tion. This solution can be used to post any data to the server.

Listing 6.7 contains our example code for emulating our own POST requests.
One note about this code: it won’t work in Internet Explorer 6. This is because, as
we know, IE 6 uses an ActiveX object for XHR. We’ve already discussed how to cre-
ate an XHR instance in a cross-browser manner, so in order to focus on the post-
ing mechanism, we’ve simply assumed that the code would be run in Firefox,
Safari, or Internet Explorer 7.

When we load it into a browser, we see two alerts pop up in succession. First, we
see the client notification in figure 6.6, and once we click OK, the second alert
box, figure 6.7, shows us the message we received from the server.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Posting data
066 Listing 6.7 (=)
<« . @ » ‘/L“ The page at http://localhost:8080 says: lﬂ' Google Q) 3
Done with the POST. We sent 23 bytes.
Vi
Figure 6.6 Client notification
D06 Listing 6.7 =)

<« % @ @ ﬂ}‘ The page at http://localhost:8080 says: ; ~ Google Q)3

Server message:Received 23 bytes.

o)

Figure 6.7 Server notification

221

Listing 6.7 Posting data to a server

<html>
<head>
<title>Listing 6.7</title>
<script type="text/javascript">

window.onload = function () {
var data = "This is just some data.";
var url = "/aip.chap6/postServlet"; .
var xhr = new XMLHttpRequest () ; <1J Creates XHR instance
xhr.onreadystatechange = function () {
if (xhr.readyState == 4 && xhr.status == 200) {
alert ('Done with the POST. We sent ' + data.length +
' bytes.');
alert ('Server message:' + xhr.responseText) ;
}
else if (xhr.readyState == 4) {
alert ('Error posting. Server status: ' + xhr.status);
}
Y

xhr . open (' POST ', url, true) ; QJ Specifies POST as method

xhr .setRequestHeader (

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

222 CHAPTER 6
Form validation and submission

| Specifies junk content type

"Content-Type", "whatever");
xhr.setRequestHeader (
"Content-Length",data.length) ;
xhr.setRequestHeader (
"Connection", "close");
xhr.send (data) ;
Y
</script>
</head>
<body>
</body>
</html>

ﬁ Specifies content length

<'T Denotes a single request

We haven’t really discussed the back end behind the post; let’s do that now (list-
ing 6.8).

Listing 6.8 POST-handling serviet

public class PostServlet extends HttpServlet {
protected void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
System.out.println("Content type: " +
request.getContentType ()) ;
ServletInputStream is = request.getInputStream() ;
int data = is.read();
int bytes = 0;
while (data >= 0) {
bytes++;
data = is.read();
}

response.getWriter () .write("Received " + bytes + " bytes.");

This simple servlet merely gathers the request body and emits a response con-
taining the length of the data received.

Discussion

It looks like posting data is pretty simple. Instead of using the HTTP GET method
in the xhr.open() method, we simply specify posT. We can set the content type to
whatever we want; if you are posting XML, you may wish to set it to text/xml. We
also need to set the Content-Length request header. Even though the HTTP pro-
tocol may not strictly require it, this is important! If you make it too short, you can

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Posting data 223

lose data, because the server may assume that you're done sending it data even if
you aren’t. Likewise, if you make it too large, the server will hang, waiting for
more data to arrive. After we've correctly determined the size of the data we're
sending, we use the xhr.send() method to send the actual data.

Again, this approach looks simple, but it is quite powerful; you can use it to
pass any type of data, such as XML or JSON, to the server. Because the server can
also send back messages, you can use this mechanism as a type of remote proce-
dure call: post some data, the server processes it, the client gets data back, and
the client processes the data and updates the UI. This is how the IBM JavaScript
SOAP/web services library works to exchange SOAP messages (see http://www-
128.ibm.com/developerworks/web/library/ws-wsajax/).

Now you know how a post to the server is accomplished. Let’s focus now on
posting forms.

6.2.3 Posting form data to a server

Now that you have a grasp on the mechanics behind a POST request, let’s take
a look at posting a form to the server using Ajax. We were already introduced
to just such an example (posting form elements without a page submit) in sec-
tion 5.5.2, but where that example focused on the event-handling aspects, this
section will examine the POST itself and we’ll test things out with a wider vari-
ety of form elements.

Additionally, where the examples of the previous chapter used Prototype to
handle making the request, this section will use another of the libraries that we
explored in chapter 4: jQuery.

Problem
You need to emulate an HTML form post.

Solution

First, we’ll set up a form with a variety of control elements to test whether the
POST request is successfully submitting the values to the server. The blank form
prior to any data entry looks like figure 6.8.

Then we’ll set everything up so that “normal” form submissions are
rerouted to submissions under Ajax control. Listing 6.9 shows the code. If you
need a refresher on how jQuery works, now would be a good time to go review
section 4.3.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

224 CHAPTER 6
Form validation and submission

e oo Listing 6.9 o
@ o @ 4 Empsiocathost8oso/ai v |- (Gl Google Q) 3
Text: |

Password: |

Checkbox:

Radio buttons: ¢ 1 ¢ 2
Select:|0ne |

Textarea:

Submit Query |

Figure 6.8 POST test form

Listing 6.9 Rerouting a form POST with jQuery

<html>
<head>
<title>Listing 6.9</title> 49 Imports jQuery library
<script type="text/javascript"

src="jquery.js"></script>
<script type="text/javascript"
src="jquery.form.js"></script>
<script type="text/javascript">
$ (document) .ready (function () {
S ('#testForm') .ajaxForm({
type: 'POST',
target: '#results'
)i
)
</script>
</head>

Imports jQuery
form plug-in

Prepares form for
Ajax submission

<body>
<form id="testForm"
action="/aip.chap6/requestInspector">
<div>
Text:
<input type="text" id="aTextField" name="aTextField"/>
</div>
<div>
Password:
<input type="password" id="aPassword" name="aPassword"/>
</div>
<div>
Checkbox:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Posting data 225

<input type="checkbox" id="aCheckbox" name="aCheckbox"/>
</div>
<div>
Radio buttons:
<input type="radio" name="aRadioGroup" id="aRadiol"/> 1
<input type="radio" name="aRadioGroup" id="aRadio2"/> 2
</div>
<div>
Select:
<select name="aSelect" id="aSelect">
<option value="1">One</option>
<option value="2">Two</option>
<option value="3">Three</option>
</select>
</div>
<div>
Textarea:
<textarea rows="2" name="aTextarea" id="aTextarea">
</textarea>
</div>
<div><input type="submit"/></div>
</form>
<div id="results"></div>
</body>
</html>

Container for
server response

That seems simple enough. As you can see, using jQuery @ and its form plug-in
@ made it so easy that it almost seems like cheating!

The ajaxForm() method @ does not submit the form. Rather, it prepares the
form for submission under Ajax control when the form’s submit event is eventu-
ally triggered. Without having to dig into the code for the plug-in, you can imag-
ine how some of the steps that it needs to take are accomplished, given what
you've learned so far in this book. Ponder how the submit event, event-handling
mechanisms, and the XHR lesson of the previous solution can all be used to estab-
lish this functionality.

The options hash passed to the ajaxForm() method @ specifies a type of PoST
and a target, which is a DOM element in which the response will be displayed.
This target option specifies an empty <div> element @ defined at the bottom of
the page. Note how a CSS selector is used to identify the target element in the
“jQuery way.”

The server-side resource for this example is the same ParameterInspector-
Servlet class that we used in some of the examples in chapter 5. We won’t go into
the details of that class again, but recall that it gathers the parameters submitted
to it and formats them for display.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

226 CHAPTER 6
Form validation and submission

8066 Listing 6.9 o
@ & 4% Entp://localhost8080/ ¥ | 1> (Gl Google Q) 3!

Text: fwharever

| Password: [”n"m"

| Checkbox: M

Radio buttons: ¢ 1 ¢ 2
' Select: [Two ¥

rolling stone can
rush you.

| c
. Textarea: r

' aCheckbox=

| on

| aPassword=
itsasecret

| aRadioGroup=

| on

| aSelect=

2

| aTextField=

| whatever

| aTextarea=
A rolling stone can crush you.

| Y
N

Figure 6.9 Form submission hijacked!

After filling in some data and submitting the form, our page appears as shown
in figure 6.9.

Discussion

As you've seen, by “cheating” and using jQuery and its form plug-in, we've
ensured that hijacking the form submission to channel it to the server via Ajax
requires only a few lines of code in the page.

Emulating your own form posts in this way is a great win from a user perspec-
tive. The browser does not refresh, and a lot of time is saved not having to fetch
the user interface (which probably has not changed) from the server. From a
development perspective, server cycles and bandwidth are saved by not having to
regenerate the user interface and send it back to the client. Naturally, you do
need to develop client-side code to deal with the new way of doing things; mainly
this will involve code that keeps the user interface in a coherent state now that
we’re not forcing a browser refresh.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Posting data 227

6.2.4 Detecting form data changes

To cut down on network traffic and database access, sometimes it behooves us to
send across only those pieces of form data that have actually been modified in the
form. We addressed this issue in section 5.5.3 with a focus on how to use event
handling to accomplish this, but we gave short shrift to the details of dealing with
actual form elements. In this section, we offer a more in-depth look at handling
the form elements in an intelligent fashion. We’ll also use jQuery just to give you
another point of view with regard to event handling and DOM manipulation.

Problem
You want to detect whether changes have been made to form data and send the
server only what has changed.

Solution
The way that we're going to solve this problem is quite similar to what we did in
section 5.5.3. We'll set an onchange event handler on the <form> element that will
apply a class name of fieldChanged to any control whose value changes, and estab-
lish an onsubmit event handler to intercept the form submission. But this time
around, instead of just glossing over the nuances of dealing with the form ele-
ments, we’ll pay more attention to what we’re grabbing from the form to submit.
We'll take the solution of the previous example, with its plethora of input
types, and augment it as appropriate. We’ll also add a new control, a <select> ele-
ment with multiple enabled, because that adds some complexity to our goal.
When displayed, the page looks as shown in figure 6.10.

e66 Listing 6.10 o
&« ¢ £ Ehup://locainost 8080/ ¥ | 1> ([G* Google Q
Text: |

Password: |

Checkbox: ™

Radio buttons: © 1 ¢ 2

Select: IOne ‘j

One
Two
Multi-select: | Three

Textarea:

Submit Query

Figure 6.10 A cornucopia of waiting form elements

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

228 CHAPTER 6
Form validation and submission

Now let’s look at the code for the page (listing 6.10). We’ve added quite a bit of
script to handle the submission of only the changed elements.

Listing 6.10 Submitting only changed values

<html>
<head>

<title>Listing 6.10</title>

<script type="text/javascript"
src="jquery.js"></script>

<script type="text/javascript">

$ (document) .ready (function() { Binds change event
$('form') .bind("change", handler to form
function(event) {

$ (event.target) .addClass ('fieldChanged') ;

}
); Binds submit event
$('form') .bind ("submit", handler to form
function(event) {
submitForm() ;
return false;
}
)
trackCheckboxes () ;

)i

49 Tracks checkboxes
function trackCheckboxes () {
) -

$ ('input [@type=checkbox] ') .each(function() {

S (this) .bind('change', function() {return false;});
var hidden = document.createElement ('input') ;
hidden.type = 'hidden’';
hidden.name = this.name;
this.name = '_' + this.name;
this.hidden = hidden;
this. form.appendChild (hidden) ;
$(this) .bind('click', function() {

var onOff = $(this).attr('checked') ? 'on' : 'off';
this.hidden.value = onOff;
$(this.hidden) .addClass ('fieldChanged') ;

)i
)
}
£ Handles form submission
function submitForm() {
var params = {};

S ('#testForm .fieldChanged') .each(function() {
if (this.disabled) return;
if (this.name.length==0) return;
if ((this.type=='radio' || this.type=='checkbox') &&

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Posting data

Ithis.checked) return;
if (this.type=='reset') return;
if (this.type=='multiple' ||
this.type=='select-multiple') {
for(n = 0; n < this.length; n++) {
if (this[n].selected)
addParam (params, this.name, this[n].value) ;

}

else {

addParam (params, this.name, this.value) ;

}) 49 Posts to server
S. post

S ('#testForm'
params,
function(data) {

.get (0) .action,

S('#results') .empty () .append (data) ;

}

)i ﬁ Restores state
$('.fieldChanged"')

.removeClass ('fieldChanged"') ;

function addParam(params, name,value) {

Collects parameters
and values

if (!params[name]) params[name] = new Array();

params [name] .push (value) ;
}

</script>
<style>

.fieldChanged {
border: 1px solid red;
}

</style>

</head>

<body>

downloaded from: lib.ommolkefab.ir

<form id="testForm"

action="/aip.chap6/requestInspector">

<div>
Text:

<input type="text" id="aTextField" name="aTextField"/>

</div>
<div>

Password:

<input type="password" id="aPassword"
</div>
<div>

Checkbox:

<input type="checkbox" id="aCheckbox"
</div>

name="aPassword" />

name="aCheckbox" />

229

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

230 CHAPTER 6

Form validation and submission

<div>
Radio buttons:

<input type="radio" name="aRadioGroup"

<input type="radio" name="aRadioGroup" id="aRadiol2"/>

</div>
<div>
Select:

<select name="aSelect" id="aSelect">

<option value="1">One</option>
<option value="2">Two</option>
<option value="3">Three</option>
</select>
</div>
<div>
Multi-select:

<select name="aMultiSelect" id="aMultiSelect"
multiple="multiple" rows="3">

<option value="1">One</option>
<option value="2">Two</option>
<option value="3">Three</option>
</select>
</div>
<div>
Textarea:
<textarea rows="2" name="aTextarea"
</textarea>
</div>
<div><input type="submit"/></div>
</form>
<div id="results"></div>
</body>
</html>

id="aTextarea">

id="aRadiol"/> 1

2

In the jQuery ready() handler for the document, we bind an onchange event
handler to the <form> that gets triggered whenever a change event is fired for any
of its contained elements @. This handler marks the field as changed by adding
the fieldChanged class name to the field. In our example page, we added a CSS
rule that draws a red border around such elements for diagnostic purposes. This
helps us to visually check that the class name is being applied correctly while
debugging the code. This is probably something you wouldn’t keep in the code
for final release (unless your requirements dictate informing the user which

fields have changed).

We also apply an onsubmit event handler to the <form> element @ so that we

can interrupt the normal flow of the submission and handle it ourselves.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Posting data 231

Not much of that is new to us; we saw this in the example in section 5.5.3, but
this time we’ve used jQuery rather than Prototype to establish the event handlers.

At the end of the ready() handler, we call a function named trackCheck-
boxes () @ that does something special with checkbox input elements. We're not
quite ready to deal with that yet, so we’ll defer talking about that until we under-
stand the rest of the example.

The onsubmit event-handler function for the <form> element, submitForm()
0. is where most of the interesting stuff is happening. In this function, we iterate
through all the elements that have been marked as changed and build a list of
parameters to submit in the param hash object. But notice how picky we’re being!

We take great pains to reject any element that shouldn’t be submitted. This
includes disabled fields, those with empty names, radio or checkbox elements
that aren’t checked, and any reset element (that should never be submitted
according to W3C rules).

We then collect the values from the elements that survive those tests. But it’s
more than just a matter of simple name and value pairs. Not only do we need to
deal with multi-select elements, we also need to keep in mind that more than one
control can have the same name. This means that for each parameter name,
there can be more than one value. The addparam() function @ takes care of that
by creating arrays in which to store the parameter values.

Finally, after all the changed element values have been collected, we use the
$.post () jQuery function to post back to the server @ and remove the marking
class name from all marked elements @.

As the last action in the sequence, we are sure to return false as the value of
the onsubmit event handler to prevent the <form> element from continuing with
its “normal” submission. After we play around with the example form and click
submit, the page might look as shown in figure 6.11.

Now what about those pesky checkboxes?

Checkboxes pose a special challenge to change detection since they are rather
unique among their input element brethren, in that checkbox elements do not get
submitted as part of the HT'TP request when they are not checked.

That means that without special consideration, we will have no way of report-
ing that a checkbox has changed from checked to unchecked state. So, we’ll be
clever and give these naughty elements special consideration! That is the purpose
of the trackCheckboxes () @ function that, as you recall, we invoked as the very
last act of the ready () handler.

The tactic that this function employs to track checkbox changes is to substitute
a hidden field to represent the actual checkbox. This field will be given the value

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

232

CHAPTER 6
Form validation and submission

eo6 Listing 6.10 =
- @J /I‘ [#] http:/flocalhost:8080; ¥ > (|G| ¥ Google Q) 3
Text: }whatever

Password: |

Checkbox: I~

Radio buttons: ¢ 1 ¢ 2
Select: |Two ~|

One

Two
Multi-select: | Three

aMultiSelect=
1
3
aSelect=
2
aTextField=
whatever

A,

Figure 6.11 Only changed values have been submitted.

on or of f depending on the state of the checkbox. That way, the value of this hid-
den doppelganger can be submitted when the state of the checkbox changes,
even if the checkbox is unchecked.

The server-side code obviously needs to be prepared to deal with this
change. Normally it would expect no parameter to be submitted on the part of
an unchecked checkbox. With this tactic in place, a value of off will be passed
for unchecked checkbox elements.

The function puts this plan into practice by iterating over each checkbox ele-
ment (note how jQuery makes this easy), subverting the onchange handler for that
element, and creates a new hidden element using the original name of the check-
box element. The name of the checkbox element is changed (rather arbitrarily,
by prefixing it with an underscore) and a reference to the checkbox’s hidden
tracking element is set as a property of the checkbox. Finally, an onclick event
handler is established on the checkbox that causes the hidden element’s value to
track the state of the actual checkbox element.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

6.3

Summary 233

While all that may seem a bit on the Byzantine side, it’s not as complicated as
it may seem at first, and it gives us the ability to reliably track checkbox changes
in the same manner as the other input element types.

Discussion

In this solution, we’ve taken a deeper look at submitting only form values that
have changed to the server via an Ajax POST request. We took more care this time
to not do silly things like sending the values of disabled <form> elements. We also
used jQuery to good advantage to take care of a lot of the mundane tasks, such as
implementing event binding, adding and removing class names, and searching
for DOM elements.

Summary

This chapter looked at a few concepts related to data handling with Ajax: validat-
ing and cross-validating your data before the post, and packing all that data up
and sending it to the server by faking your own post. These techniques can lead
to substantial speed increases in your application. Validating data as they type will
save users from the hassle of waiting for the server to tell them that their data was
incorrect. Performing Ajax form POSTs will save users from time wasted while the
server is re-creating the page and performing a page refresh.

Remember that special care needs to be taken when faking a post, especially
when it comes to the encoding of data and the setting of the appropriate headers
for content length and type. Even then, you should thoroughly debug the code
because it is easy to make a mistake. We strongly recommend you use libraries such
as Prototype and jQuery; take advantage of the fact that someone has already done
the hard work for you. Code reuse, as always, is the name of the game.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Content navigation

This chapter covers

m Principles of content navigation

m Desktop and web influences

m Tab, window, and tree widgets

m Graceful degradation of JavaScript

234

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Principles of website navigation 235

We can characterize most websites, rather simplistically, as consisting of a large
repository of information residing on the server and a set of navigation mecha-
nisms with which the user can retrieve subsets of this information in order to
interact with it. In the case of a photo- or video-sharing site, the information
being navigated consists of collections of pictures or other media. In a webmail
application, the information is your mail. In an e-commerce store, the informa-
tion is the catalog of goods, and so on. Whatever the site’s nature and content, the
underlying technical problem is the same: the server contains a lot of content,
and users must be able to sift through it to find what they want. Ease of navigation
is a strong differentiator between competing services, and it is a factor that any
web-based application must address.

Alot has been written about the topic of content navigation and the Web, and
various winning strategies have evolved and become standard features of many
websites. We'll look at these briefly in this chapter, but only to set the stage for our
main topic. Because this is a book about Ajax and its disruptive impact on the
Web, we’ll look at how Ajax has changed the field of web-based content naviga-
tion. We'll begin by looking at the problem of content navigation from a bird’s-
eye view and exploring the key factors to developing a navigation strategy.

7.1 Principles of website navigation

As we've said, the fundamental problem of many web-based sites is that the server
contains a lot of information. The more successful our site is, the bigger this prob-
lem becomes. Let’s suppose that your online store carries one hundred thousand
different types of goods. Users are unable to process this volume of information,
and they’ll want to view different subsets of the data. At a technical level, this pre-
sents us with two problems: First, we need a mechanism for deriving the subsets of
data that accurately meet each user’s needs. Second, we need a way for users to
interact with the site in order to express their needs as simply as possible. Let’s
take a look at each of these issues in turn.

7.1.1 Finding the needle in the haystack

The first problem that we face is finding the right data for our users. This is
largely a back-end task, and this is largely a front-end book, but it’s still worth
spending a little time with it here in order to understand the principles. In very
general terms, there are two ways that we can organize our information: catego-
rization and classification. These are best explained by example, so let’s pick a
couple of examples that everyone should know.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

236

CHAPTER 7
Content navigation

Yahoo! employs categorization to
make sense of the enormous data set

that is the public Internet. Information

is organized in a hierarchical set of cate-
gories, and each piece of information @ @

belongs in exactly one category: shop-

ping, sport, finance, music, or whatever.

A simple categorization might consist of

only one level of categories, but Yahoo!

employs a hierarchical categorization @ @ @
scheme. That is, within each category are

further subcategories, thus creating a tree I:
structure that can hold large amounts of

information in manageable groups, no

more than a few hops away from the top
of the tree. Figure 7.1 illustrates the

L L Figure 7.1 Categorization of data orders
prlnClpleS of categorization. each element of information under exactly

Classification differs from categoriza- one category at any given level.
tion in that any item of data may belong
to more than one classification. If we think of Yahoo! as categorizing the Internet,
then Google classifies it. The same web page may be returned by several unre-
lated search terms. In Google’s case, the classification is generated automatically
when the document is indexed by the spidering software and page-ranking algo-
rithms. In other cases, classification data may be applied manually by the web-
master. Recently, the practice of allowing visitors to the site to classify content—
commonly referred to as tagging—has come into vogue, and provides a powerful
and scalable mechanism for organizing content on a site. Classification is
depicted in figure 7.2.

Classification and categorization both have their strengths and weaknesses.
Categorization doesn’t scale as well as classification, with very large data sets
eventually falling into one of three traps—too many categories at each level, too
many levels of subcategory, or too many entries stored under each leaf node of
the tree. However, categorization provides a reliable and more informative way
for users to orient themselves by giving clues as to what they might find. An
online store that simply presented a user with a search box and no hint as to
whether it sold food, hardware, or clothing wouldn’t attract many customers. In
practice, most sites use a combination of the two techniques. Yahoo!, for example,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Principles of website navigation 237

chaos
swirly
gray
dark

chaos
swirly
plant-like
light

chaos
color
plant-like
light
leaf
maple

Figure 7.2 Classification does not organize the content on the
server in a fixed pattern, but indexes or tags each element, thus
allowing subsets to be created dynamically.

provides search facilities within its categories, and Google provides some top-
level categories, such as web, image, and video search.

Now that we’ve examined the principles behind organizing our information,
let’s turn our attention to the user and see how to provide them with a way of driv-
ing our classification or categorization system.

7.1.2 Making a better needle-finder

We’ve established a means of organizing the content behind our site. Now we
need to provide a way for users to use our organizational system to find what
they want.

Categorization systems lend themselves to a number of user interface mecha-
nisms on the Web. Popular solutions include sidebars, navigation bars, and bread-
crumb trails. Yahoo! employs a simple sidebar at the top level of their site (see
figure 7.3).

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

238

7.1.3

CHAPTER 7
Content navigation

If we look away from the Web to desktop
applications, we can see that many common
widgets are designed to deal with categorization
systems, including menus, drop-down lists, tabs,
and tree widgets. Some of these approaches
have been adopted by websites, most notably
hierarchical menus. Indeed, one of the few suc-
cessful and widespread uses of Dynamic HTML
(DHTML) before the advent of Ajax was in pro-
viding interactive drop-down menu bars that
allow the presentation of many navigation
options within a limited amount of space. Fig-
ure 7.4 shows an online store utilizing a number
of navigation metaphors borrowed from the
Web and the desktop.

If we turn our attention to classification,
we’ll find that by far the most common naviga-
tion user interface is the humble search box,
epitomized by Google’s minimalist home page.
Search can be enhanced by allowing additional
fields, such as date ranges, or by mixing it with
categorization schema, such as the Google fam-
ily filter. With the advent of tagging, some alter-
native UI idioms have sprung up, such as the
popular tags mechanism employed by Flickr
(see figure 7.5).

All of these navigation systems can be sup-
ported by conventional hyperlinks and HTML

YaHoO!

My Yahoo! | My Mail |

a Autos Featured

@ FinancetHFaNCED!

@ Games

@ GeoCities

Q Groups

&7 Hotlobs

E Maps -~

& Movies § -

£ Five vay

JE Music e‘. your PC

@ Personals ﬁ See hor

&) Photos S| French ¢

h Real Estate

@ shopping In the News

@ Sports

JH Tech = House issue

J Travel « U.S. targets

ﬁ 7 « Stranded dri
= DA Police

@ Yellow Pages - Raleigh, N.C
= Tiny tree frog

® Y1 Telemundo"™"

More Yahoo! Services

= Nicole Richie

Figure 7.3 Yahoo!’s top-level
categories are presented as a simple

sidebar.

forms, perhaps with a little bit of dynamic HTML to dress them up. As we said at
the start of this chapter, our discussion so far involves simply setting the scene for
a look at how Ajax has changed the field of web navigation by providing new
mechanisms for assisting the user’s navigation of a site’s content. In the next sec-

tion, we’ll see what Ajax has brought to the party.

Navigation and Ajax

Ajax is a disruptive mix of technologies, and the positive impact of that disruption
extends to the field of navigation. Unsurprisingly, the most important change it
has brought about is the ability to improve the interactivity of navigation and to

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Principles of website navigation 239
shop components networking &
home by brand & storage compubers electronics communication peripherals

search Entire Site

) show ex vat prices

@'bu now pay Nov 07 LY

buying for business? @ return goods

w;

You're in: Home) Components & Storage » Memory

Browse Category

components & storage
Cases & Cooling
Graphics, Multimedia & 1/0
» Memory
Accessories

Flash Memory Card
Readers

Flash Memory Cards
Generic Memory =
Proprietary Memory),f} Refine Your Search

USE Flash Drives
Motherboards & Processors @ Please choose a sub-category from the following selection:

Storage
9 Memory: Accessories (7), Flash Memory Card Readers (20),

(132), Generic Memory (232), Proprietary Memory
electronics (87)

networking & communication

peripherals
software & books Freecom 4GB DATABAR USB 2
. clearance In stock now
mobile phone . g;"f':: !'?g'l;?cvws

Spares Small Price - Massive Storage!

£27 AR inr wuat

Figure 7.4 Online store dabs.com makes use of a number of Ul widgets to
orient the user within its complex categorization system, including a tree
control (left), a set of tabs (top), and a breadcrumb trail (below the tabs).

provide better feedback to the user while they move around a site. Prior to Ajax,
navigation widgets, whether composed of static HTML or DHTML, could only
actually navigate to a new location by changing the URL of the current page, or
the URL of a frame or IFrame on the page. Using Ajax, we can request informa-
tion asynchronously from the server and update the page in a more incremental
fashion. In a simple case, this can provide a more efficient route to updating a
given region of the screen. At the more complex extreme, we may partially update
several on-screen elements, creating a user experience much more like that of a
desktop application.

If we consider navigation to be a two-stage process, in which interaction with
the navigation widget is followed by retrieval of new content or data, then we
can see that Ajax reaches the parts of the process that DHTML can’t. DHTML
navigation aids could improve the interactivity of the widget to the point of

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

240 CHAPTER 7
Content navigation

All time most popular tags

06 afica amsterdam animals architecture art august @ustralia avtumn baby barcelona
beach bverin bll’thday black blackandwhite blue voston bw California
cameraphone camping Canada canon car cat cas chicago china
christmas churen city clouds color concert aso day dc december dOg england

europe rai family festival fim fiorida flower flowers food france

friends fun garden geotagged germany girl grafiti green halloween hawaii
hiking NOlidAY home honeymoon nongkong house india ireland istand italy japan july
june kids lake landscape light iive london macro may ME MEXICO mountain mountains
museum MUSic NAtUre new newyork newyorkeity newzeaiana Night nikon NYC

ocean october PAFS park pal'ty people portrait red river roadtip rock rome san
sanfrancisco scotiand sea seattle show SKY SNOW spain spring street SUMMEr
sun SUNset syaney taiwan texas thailand tokyo toronto travel tree trees tl’ip uk

uwban USA VAcCAtion vancouwver washington wWater Weddlng white winter
yellow york ZOO

Figure 7.5 Flickr.com’s alternative Ul for browsing its classification system makes use of
font size to indicate the popularity of items.

looking like a desktop app, but the retrieval of content was limited to present-
ing new content on the screen and therefore resembling a website rather than
an application.

The current state of play with navigation in Ajax applications can be viewed
as an exploration of the tensions between the user experience of a website and
that of a desktop app. At one extreme, it is possible to create web pages that look
and feel like desktop apps and use desktop-style GUI conventions throughout.
At the other extreme, we can use Ajax to update regions of content, very much
in the style of a web app. Between these two extremes are many interesting pos-
sibilities in which web- and desktop-style navigation combine to create a new
kind of application.

We’ll explore these possibilities throughout the remainder of this chapter.
Let’s start by looking at the traditional web-based approaches to navigation.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Traditional web-based navigation 241

7.2 Traditional web-based navigation

Aswe’ve already said, an Ajax application can draw on navigation conventions both
from the traditional Web and from desktop applications. With a conventional web-
site as a starting point, the simplest transition that we can make is to stick with the
web-based conventions for navigation but replace the hyperlinks or forms with
asynchronous requests to the server. When we’re working with a conventional web
app and updating some features to incorporate Ajax, this is a good place to start.

We'll begin by looking at the case of a navigation menu and see what’s
involved in Ajax-enabling that.

7.2.1 A simple navigation menu
Let’s take a look at what a simple navigation menu looks like when we’re dealing
with Ajax-style applications. As we mentioned earlier, we can’t really use hard
links; we’ll need to use something a bit more advanced.

Problem
You are porting a standard website to a single-page application. Your navigation
scheme needs to change to allow for linking to the content via an Ajax call.

Solution
For this example (see figure 7.6 for the result), we use a simple vertical list menu.
When a menu item is selected, the desired content is retrieved and dynamically

Current Image

-
. Spirochete
“* Trilobite

Figure 7.6 A simple navigation menu

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

242 CHAPTER 7
Content navigation

loaded into the content area of the page. The first step is to create a function,
invokeLink (url), that requests the content from the server and inserts it into the
DOM. After that, the links for each menu need to be changed to call the invoke-
Link () function. It’s as simple as that. Take a look at the code behind it (listing 7.1).

Listing 7.1 Our navigation menu

<html>
<head>
<title>Chaotic Images</title>
<script type='text/javascript'
src='../assets/Jjs/jQuery.js'></script> <1—0 Imports jQuery library
<script type='text/javascript'>
function invokeLink (url) {
$ ('#content_area').load(url); <1—0 Makes Ajax call

</script>
</head>
<body>
<table width='100%"'>
<tr>
<td width='25%'>Images</td>
<td width='75%"'>Current Image</td>

</tr>
<tr>
<td valign='TOP'> 4—0 Declares default content
<table>
<tr><td>
<img src='../assets/images/chaos/
W) ifs/dreamsilk.jpg' width='24' height='24"'>
Dreamsilk
</td></tr>
<tr><td>

Leaf
</td></tr>
<tr><td>
<img src='../assets/images/chaos/
W) ifs/spirochete.jpg' width='24' height='24"'>
Spirochete
</td></tr>
<tr><td>
<img src='../assets/images/chaos/
W) ifs/trilobite.jpg' width='24' height='24'>
Trilobite
</td></tr>
</table>
</td>

<td valign='TOP' id='content_area'> <) Declares preview area

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

7.2.2

Traditional web-based navigation 243

Click on an image to the left to view it.
</td>
</tr>
</table>
</body>
</html>
||
Discussion

We don’t want to spend our time coding the Ajax request by hand, so we make
use of a library to handle the low-level details for us. In this case, we've elected
to use jQuery, which we load into the browser @ before we add our own script.
Our invokeLink () function is trivially simple with jQuery there to help @. The
$() function, as with the Prototype library, is used to select DOM elements. In
jQuery, $() takes a CSS selector rule as argument. We've selected the target DOM
node by its id, as defined in the HTML @. jQuery adds a load() method to
DOM nodes resolved by the $ () function, which will create an Ajax request for us
and populate the node with the contents of the response. The HTML files that
are loaded into the content area are actually HTML snippet files, which are
merely an tag pointing to the proper picture. The contents of these
HTML snippets will replace the content area of the page, and the image is auto-
matically displayed by the browser. These HTML snippets do not have to reflect
actual files on the server; they could be server generated, allowing for a more
dynamic UL

All that remains is for us to attach the invokeLink () function to our UL We do
this here by using hyperlinks, such as anchor tags, with a JavaScript URL rather
than an HTTP one, in the HTML that defines the menu €. This works but is sim-
plistic, as we have to define the callback function as a piece of text rather than as
code that can directly refer to variables elsewhere in our program. We’ll look at
how to programmatically attach events to the UI in the next example.

We’ve now explored how easy it is to directly request content from the server
using an Ajax request. This was our very first, and our simplest, example. Let’s
move on to something that is a bit more complicated and that enjoys heavy use in
web applications today: drop-down menus.

DHTML menus

Drop-down menus were one of the few success stories of DHTML, and a quick Google
search will reveal the many variations available on the Internet for the would-be

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

244 CHAPTER 7
Content navigation

web designer to pick up and customize. DHTML menus typically use JavaScript,
and sometimes CSS, to control the interactivity of the menu widget, and then del-
egate the actions associated with active menu entries to a simple hyperlink.

In this section, we’ll take one of the better examples available and modify it to
use the invokeLink() function from our previous example to create a simple,
interactive, Ajax-enabled menu.

Problem

You are modifying a website to make use of Ajax and run across a DHTML menu,
which you need to Ajax-enable. Alternatively, you may have a new requirement to
store a set of Ajax actions in categories. Either way, you’ll find this widget useful!

Solution

The menu widget that we’ll take as our starting point is based on the techniques
described by Nick Rigby in his article “Drop-down Menus, Horizontal Style”
(http://alistapart.com/articles/horizdropdowns). Nick describes how to create a
hierarchical DHTML menu in which the majority of the layout and interaction is
done using CSS rather than JavaScript. A small amount of JavaScript is added to
overcome shortfalls in the CSS implementation in Internet Explorer.

The chaotic images that we used in our previous example all belong to a cate-
gory called iterated function systems (IFSs). In this example, we’ve added two more
images of a different type: Lindenmeyer systems, or L-systems. We've used Nick’s
approach to DHTML menus to organize our links into a hierarchical drop-down
menu, DHTML style. We’ve also taken the opportunity to rewrite the JavaScript to
make use of jQuery for greater elegance and simplicity. Figure 7.7 shows the
menu in action; the code required to do this appears in listing 7.2.

Images Current Image
IFS Dreamsilk
Leaf

Spirochete
Trilobite

L-Systems

Figure 7.7
Simple DHTML menu
enhanced with Ajax

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Traditional web-based navigation 245

Listing 7.2 DHTML navigation menu

<html>
<head>
<title>Chaotic Images</title>
<link rel="stylesheet" type="text/css" 49 Imports CSS style sheet

href="menu.css">
<script type='text/javascript'
src='../assets/js/jQuery.Jjs'></script> <)) Imports jQuery library
<script type='text/javascript'>

function startList() {

if ($.browser.msie) { <) Uses browser detection
S("#nav > 1i") .each(

function (index, node) { Adds hover styles
$ (node) .hover (programmatically
function() {
$(this) .addClass ("over") ;
1,
function() {
S (this) .removeClass ("over") ;
}

49 Fetches content using Ajax
function invokeLink (url) {

$('#content_area') .load(url) ;

}

$(startList) ;
</script>
</head>
<body>

<table width='100%"'>
<tr>
<td width='25%"'>Images</td>
<td width='75%"'>Current Image</td>
</tr>
<tr>
<td valign='TOP'> 49 Declares menu contents
<ul id="nav">
IFS

Dreamsilk</1li>
<a href="javascript:
> invokeLink('leaf.html');">Leaf
<a href="javascript:
=) invokeLink ('spirochete.html');">Spirochete</1li>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

246 CHAPTER 7
Content navigation

<a href="javascript:
invokeLink ('trilobite.html');">Trilobite</1i>

</1li>
L-Systems

Bush

Weed
</1i>

</1li>

</td>
<td valign='TOP' id='content_area'>

Click on an image to the left to view it.
</td>
</tr>
</table>
</body>
</html>

To make this example work, we need to import a CSS style sheet @ as well as the
jQuery library @. Under Firefox, the CSS alone will make the menu behave, but
under IE, we need to add some JavaScript. The CSS style sheet is available in the
downloadable source code for the examples in this chapter at www.manning.com/
crane2, and is unmodified from Nick Rigby’s original code, so we won’t spend time
on it here. We’re not interested in how the DHTML works, but in adding Ajax.
Before we consider that, though, let’s take another look at what jQuery can do
for us. In the function startList (), we've used several features from jQuery that
are worth noting. The first thing to note is that jQuery has made browser detec-
tion cleaner for us than if we were to manually inspect the user-agent string @.
Again, we’ve used $ () with a CSS selector as argument. This time, the selector
will match more than one DOM element, and so $() will return an object that
wraps an array. We can use the each () method to iterate over this array. $.each()
accepts an iterator function as argument (that is, the function that will be applied
to each element in the array). In our iterator, we add event handlers on mouseover
and mouseout to alter the CSS of the elements @. The hover () method that
jQuery adds to the DOM element makes this extremely easy for us. We also make
use of the addClass () and removeClass () methods, which allow us to modify CSS

classes with a fine degree of control.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

7.3

Borrowing navigational aids from the desktop app 247

Finally, we invoke $ () again, this time with the startList () function as argu-
ment. When invoked with a function, jQuery’s $ () will bind the function as a lis-
tener to window.onload, invoking it when the DOM for the page is fully loaded. We
could have simply written

window.onload=startList;

but using $ () has the advantage of allowing us to add more than one listener to
load. That’s no big deal in an example of this size, but it’s very useful when writ-
ing larger, modular systems.

So, that’s the menu sorted out. To add Ajax, we can simply provide our
jQuery-powered invokeLink () function again @ and add hyperlinks to the menu
nodes. The menu is declared as a set of HTML unordered list elements @, whose
appearance is modified by the CSS and optional JavaScript. And so, when the
page is loaded, our menu springs to life.

That concludes this section, in which we looked at web-style navigation. In the
next section, we’ll explore some examples that examine the other end of the spec-
trum: the desktop application approach to user interfaces.

Borrowing navigational aids from the desktop app

While the Web was still in its infancy, desktop application developers had long
been wrestling with navigation issues and had developed a number of conven-
tions for organizing visual content. The look and feel of the DHTML menus that
we looked at in the previous example is largely borrowed from desktop applica-
tions, but by and large, desktop and web applications have had little direct over-
lap. One of the reasons for this is that traditional web apps have been tied to the
full-page refresh model, whereas desktop UI conventions have evolved based on
the possibility of incremental updates. When interacting with complex UI ele-
ments such as trees, grids, and toolbars, each interaction will typically only mod-
ify a small part of the screen.

Ajax has changed this situation. By allowing incremental updates from the
server, it has created a better fit with desktop navigation techniques, and web
apps that look and feel like desktop applications are starting to emerge.

We stated at the beginning of this chapter that desktop look-alikes represent
one extreme of Ajax development, and they are certainly not a logical conclusion
for all web-based applications. There are plenty of interesting approaches to nav-
igation going on somewhere in between the desktop and traditional web models,
and we’ll return to that middle ground later in this chapter. For now, though, let’s

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

248

7.3.1

CHAPTER 7
Content navigation

consider what the world of the desktop application has to lend us in terms of nav-
igation support.

The qooxdoo tab view

In the previous example, we used CSS and a bit of JavaScript to add some behav-
ior to a piece of HTML that we had declared in the body of the page. The qoox-
doo widget library takes a radically different approach to authoring a web UI,
helping you avoid many of the pitfalls in web UI development by presenting you
with an object-oriented (OO) JavaScript API for creating and manipulating UI
components. If you have used GTK, AWT, Swing, or another thick-client OO GUI
toolkit, you'll feel at home here.

Problem

Your application contains a group of several pieces of discrete content but you
want only one group shown at a time. These pieces of content could be many
things: navigations, forms, and so on.

Solution

The first thing you need to know
about qooxdoo is that initializa-
tion of the application needs to
take place in the window.applica-
tion.main() function. You can do
this by providing an anonymous
implementation of this function,
as you can see in listing 7.3 in a

Dreamsilk | Leaf || Spirochete | Trilobite

moment. You can see the result in
figure 7.8.

In setting up our tab view, the
first thing we need to do is create an
instance of QxTabView, and then
set the left, top, width, and height.
From there we can create our four
QxTabViewButton instances (which
will provide a means for toggling
the tabs), add them to the tab view
stances bar container, and set the
first one to be selected. Next, we need to create the actual QxTabViewPage
instances and add those to our tab view instances pane container. Then we create

Figure 7.8 The qooxdoo tab view

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Borrowing navigational aids from the desktop app 249

a QxImage instance for each of our images and add them to their corresponding
pages. Finally, we add the tab view instance to the client document, qooxdoo’s root-
level container. Everything in qooxdoo lives within the client document.

You should now be able to fire up the example and tab away to your
heart’s content!

Listing 7.3 Using the qooxdoo tab view

<html>
<head>
<title>Chaotic Images</title>
<script src='../assets/js/gooxdoo/include.js'

type='text/javascript'></script>

<script LANGUAGE='JavaScript'>
<!l--
window.application.main = function()
{ 49 Declares new tab view
var tfl = new QxTabView() ;
tfl.set({ left: 20, top: 48, width: 342, height: 362 });

var tl = new OxTabViewButton('Dreamsilk'); <—@)) Creates tab view buttons
var t2 = new QxTabViewButton('Leaf');
var t3 = new QxTabViewButton ('Spirochete');

var t4 = new QxTabViewButton('Trilobite');
tl.setChecked(true) ;

tfl.getBar().add(tl, t2, t3, t4); <€) Adds buttons to tab bar
var pl = new QxTabViewPage(tl); <)) Creates tab view pages
var p2 = new QxTabViewPage (t2)
var p3 = new QxTabViewPage (t3);
var p4 = new QxTabViewPage (t4)

tfl.getPane().add(pl, p2, p3, pd); <4 Adds pages to view pane
var il = new QxImage('../assets/images/ <}9 Creates image objects
> chaos/ifs/dreamsilk.jpg');
var i2 = new QxImage('../assets/images/chaos/ifs/leaf.jpg"');
var i3 = new QxImage('../assets/images/chaos/ifs/spirochete.jpg');
var i4 = new QxImage('../assets/images/chaos/ifs/trilobite.jpg');
pl.add(il); Adds image objects
p2.add(}2); to pages
p3.add(i3);
pd.add(id);

this.getClientWindow ()
.getClientDocument ()

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

250

7.3.2

CHAPTER 7
Content navigation

-add(e£1); Adds tab view to

Vi client document

//==>
</script>
</head>
<body>

</body>
</HTML>

Discussion

In listing 7.3, we first declare a new tab view object @. After that, we create four
new tab view button objects, and set the first one to be selected @. We add these
newly created tab view buttons to the tab view bar @. We also need to create
four new tab view page objects @, which will hold the actual contents of the tab,
and add them to the tab view’s pane @. We haven’t yet supplied our content. To
that effect, we create four new image objects @ and add each image to its
respective page @. Finally, we add the tab view to the client document @ for it
to be displayed.

This first introduction to qooxdoo’s API gives you just a taste of how simple it
is to configure its widgets and how very different it is from writing a conventional
web application. Very little JavaScript and no HTML (note that the body tag is
completely devoid of content) go a long way here. There is one major drawback
to using qooxdoo and that can also be argued as its greatest strength: it com-
pletely destroys the web content design/layout model. A graphic designer can no
longer go into a WYSIWYG editor and lay out a UI.

The tabbed panel gave us a taste of what qooxdoo can do, but we addressed a
problem that could be tackled in a more conventional development approach, as
we’ll see with the Rico Accordion later in this chapter. In the next example, we’ll
raise the stakes and throw in some more distinctly desktop metaphors to see how
far we can push this style of development.

The qooxdoo toolbar and windows

Using qooxdoo again, we’ll now explore the windowing and toolbar features this
toolkit provides. Dividing the screen real estate into windows provides a flexible
alternative to the tabbed pane, and will allow users to view more than one
resource side by side if they so wish.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Borrowing navigational aids from the desktop app 251

Problem

You want to provide your users with greater control over how they allocate
screen space between several regions of content by providing a multiple-
document interface.

Solution

We can meet this requirement by providing users with a toolbar that will allow
them to launch each resource as a window control. Using qooxdoo, the toolbar
and window controls are ready-made for us, and we simply need to assemble
them. Figure 7.9 shows the finished result.

Achieving this is not too difficult, as qooxdoo does most of the heavy work for
us. Listing 7.4 shows what’s needed.

?' Dreamsik 2 Leaf A Spirochete 79-’ Trilobite

Figure 7.9 The qooxdoo toolbar and windows

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

252 CHAPTER 7
Content navigation

Listing 7.4 The qooxdoo toolbar and windows example

<html>
<head>
<title>Chaotic Images</title>
<script src='../assets/js/gooxdoo/include.js' type='text/javascript'></
script>

<script type='text/javascript'>

<l--
window.application.main = function() {
var d = this.getClientWindow ()
.getClientDocument () ;
var tb = new QOxToolBar(); <) Creates toolbar object
th.set(

{top : 20, left : 20, width : 602}
)

createLaunchButton (tb, 'Dreamsilk’',
'../assets/images/chaos/ifs/dreamsilk.jpg’') ;
createLaunchButton(tb, 'Leaf',
'../assets/images/chaos/ifs/leaf.jpg'); Adds buttons
createLaunchButton (tb, 'Spirochete' , to toolbar
'../assets/images/chaos/ifs/spirochete.jpg');
createLaunchButton(tb, 'Trilobite’',
'../assets/images/chaos/ifs/trilobite.jpg’') ;

d.add(tb) ;
Y

var windowCount=0;

function createLaunchButton (toolbar,title, image) {
var button = new QxToolBarButton (Crt.!ates button
title, 'icons/32/bitmapgraphics.png’ ObPCt
)
button.setWidth(150) ;
button.addEventListener (<44(’ Adds event handler
'execute’,
function () {
if (!button.window) {

var d = window.application
.getClientWindow ()
.getClientDocument () ;

var win=new QxWindow (Creates window
title, 'icons/16/bitmapgraphics.png’ object on demand

) ;

win.setSpace (
20+ (48* (windowCount+1)), 320,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Borrowing navigational aids from the desktop app 253
20+ (48* (windowCount+1)), 320
) ;
win.set (
{showMinimize : false,
showMaximize : false,
resizeable : false}

)
win.add (new QxImage (image)) ;

d.add (win) ;

button.window=win;

windowCount++;
}
if (button.window.isSeeable()) {
button.window.close() ; Hides or
telsef{ shows window

button.window.open() ;
}
}
) ;

toolbar.add (button) ;

//==>
</script>
</head>
<body>
</body>
</html>
||

As before, our HTML page contains no HTML markup in the body, as qooxdoo
will generate all the DOM elements for us. We assemble the widgets in the window
.application.main() method, as before.

To create the toolbar, we need to invoke the constructor for the toolbar object
itself @, and then add each of the buttons to it @. Adding the buttons will require
a few extra steps, so we have pulled that out into a helper function called create-
LaunchButton().

Within this function, we create the qooxdoo button object @, and then add
an event handler to it @. When the button is clicked, we want it to toggle
between showing and hiding the window @, but we first need to ensure that the
window has been created. We can do that by assigning a new property called win-
dow to each button that will be either null or the qooxdoo window object. So,
before hiding or showing, we first check whether this property is set, and, if it’s

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

254

7.3.3

CHAPTER 7
Content navigation

not, we create the qooxdoo window object on demand @. This part of the code
will be invoked only once, when the button is first clicked.

Note that we've defined the event handler inline as an anonymous function,
allowing us to create a closure on the button object.

Discussion

This example was a simple introduction into the power of using a multiple-
document interface within a browser window. If you are purely a web devel-
oper and have never been exposed to traditional thick-client OO GUI design,
qooxdoo may seem a bit obtuse and counterintuitive. However, the way in
which it abstracts all of the dirtiness of HTML and presents you with a clean,
concise OO API for web applications is a pretty powerful thing.

It is also necessary to consider your audience when developing an interface of
this type. The multidocument interface gives the user a lot more control over the
layout of the page, but also asks a lot more of them. Users don’t necessarily want
more control over every aspect of the user interface, and your judgment as to the
needs of your audience is critical here. In chapter 1, we discussed the distinction
between line-of-business applications and those intended for casual use. We sug-
gest that the type of “power-user” interface that we’re seeing here might be suit-
able for line-of-business applications, in which a user is willing to invest time and
effort in configuring the layout, but not for a casual-use application such as a
shopping cart or a dictionary.

Used in the right place, then, a framework such as qooxdoo can be invaluable.
Before we finish with qooxdoo, we’ll take it for one final spin, this time setting it
to work on one of the most complex of UI widgets: the tree.

The qooxdoo tree widget

Tree widgets are among the most sophisticated and powerful navigation widgets
in common use. Although simpler controls such as tabs and menus have seen
considerable adoption on the Web, trees have not generally been taken up with
enthusiasm, possibly because the effort required to interact with them is poorly
suited to the casual-use application.

Ajax brings line-of-business applications within reach of the web application,
though, and so we can expect an increasing demand for more sophisticated con-
trols such as trees. With its sights set on exactly this target, qooxdoo provides us
with a ready-to-go tree widget, and in this example, we’ll see how to make it work
for us.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Borrowing navigational aids from the desktop app 255

[Chaos
=== IFS
1o . Dreamsilk

ol Leaf
Spirochete

. = Trilobite
=-{F L-systems
| Bush ‘ —

L] weed 74 Q&\ —
v/ - -
=-{#4 Strange Attractors K

2@
i 7 deJong

| PolyT
I | Poly II
== 30

“] PolyI

=R

Figure 7.10 The qooxdoo tree control

Problem
We want to present users with a data set that is divided into many categories and
subcategories, without overloading them with hundreds of options at once.

Solution

Use a tree widget! Tree widgets are complex, and we don’t want to get bogged
down in looking after node event handlers, drawing lines connecting the nodes,
and other such implementation details ourselves. The qooxdoo library provides a
tree widget control that will allow us to focus on the business at hand: organizing
our data and presenting it to the user. For this example, we’ve added a third set of
fractal images, belonging to the set known as “Strange Attractors.” Within this set,
we’ve subdivided our images into images of two- and three-dimensional chaotic
patterns. Figure 7.10 shows how the application looks, but because of the limits of
modern print technology you’ll have to download and run the example yourself
to see the 3D images animate. Listing 7.5 shows how we set up the tree control.

Listing 7.5 Using the qooxdoo tree widget

<html>
<head>
<title>Chaotic Images - Tree Navigation</title>
<script src='../assets/js/qgooxdoo/include.js'

type="'text/javascript'></script>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

256 CHAPTER 7
Content navigation

<script type='text/javascript'>
<!--
window.application.main = function()
{
var d = this.getClientWindow ()
.getClientDocument () ;

49 Creates preview panel
var panel = new QxImage (

./assets/images/chaos/ifs/spirochete. jpg’
)
panel.set ({
left: 204, top: 48,
width: 320, height: 320
)i
d.add (panel) ;

49 Adds generic node
var addNode=function (parent,title) {

var node=new QxTreeFolder (title);
if (parent) {
parent .addToFolder (node) ;
}
return node;
Y

<}9 Adds leaf node
var addLeafNode=function (

parent, title, image, hasThumbnail

) {
var iconUrl=(hasThumbnail) °?
image+'16.jpg' : null;
var mainUrl=(hasThumbnail) °?
image+'.Jjpg' : image;

var leaf=new QxTreeFile(title, iconUrl) ;

leaf.addEventListener (
"click", % Adds event handler

function(e) {
panel.set ({ source:mainUrl });
}
)
parent.addToFolder (leaf) ;
return leaf;
Y

49 Creates root of tree
var tree = new QxTree('Chaos'

tree.useTreelLines=true;
tree.set ({

left: 20, top: 48,

width: 180, height: 320
)

<}9 Begins to add child nodes

var nodeIFS=addNode (tree, 'IFS'
addLeafNode (

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Y

downloaded from: lib.ommolkefab.ir

Borrowing navigational aids from the desktop app

nodeIFS, 'Dreamsilk"’,
'../assets/images/chaos/ifs/dreamsilk"',
true

)i

addLeafNode (nodelIFS, 'Leaf',
'../assets/images/chaos/ifs/leaf', true

)

addLeafNode (
nodelIFS, 'Spirochete’,
'../assets/images/chaos/ifs/spirochete',
true

)

addLeafNode (nodelIFS, 'Trilobite',
'../assets/images/chaos/ifs/trilobite’', true

)

var nodeLS=addNode (tree, 'L-systems') ;

addLeafNode (nodeLS, 'Bush',
'../assets/images/chaos/1ls/bush.jpg"’

)

addLeafNode (nodeLS, 'Weed',
'../assets/images/chaos/ls/weed.jpg"’

)

var nodeSA=addNode (tree, 'Strange Attractors');

var nodeSA_2D=addNode (nodeSA, '2D') ;

nodeSA.addToFolder (nodeSA_2D) ;

addLeafNode (nodeSA_2D, 'dedong',
'../assets/images/chaos/sa/sa2d/deJong.jpg’

)i

addLeafNode (nodeSA_2D, 'Lorenz',
'../assets/images/chaos/sa/sa2d/lorenzII.jpg"’

)i

addLeafNode (nodeSA_2D, 'Poly I',
'../assets/images/chaos/sa/sa2d/quad. jpg’

)i

addLeafNode (nodeSA_2D, 'Poly II',
'../assets/images/chaos/sa/sa2d/quad2.jpg’

)

var nodeSA_3D=addNode (nodeSA, '3D') ;

addLeafNode (nodeSA_3D, 'Poly I',
'../assets/images/chaos/sa/sa3d/KRTY_240.gif"

)

addLeafNode (nodeSA_3D, 'Poly ITI',
'../assets/images/chaos/sa/sa3d/MMDW_240.gif"

)

d.add(tree) ;

257

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

258

CHAPTER 7
Content navigation

//==>
</script>
</head>
<body>

</body>
</html>
||

This listing is slightly longer than previous ones, but much of it is repetition of
calls to the helper functions that build up the nodes of the tree. Most of the action
takes place in the first half, so let’s take a look at what’s going on.

The window.application.main() method should be a familiar starting point
for working with qooxdoo by now. We need to create two widgets for this applica-
tion: the tree control and the preview pane on the right, which will display the rel-
evant image. Initializing the preview pane is straightforward @), and we load it up
with an arbitrary image from our selection to start with.

When we build the tree, we’ll need to repeat ourselves a lot, so we’ve defined
two helper functions to keep the code as short as possible. The qooxdoo tree dis-
tinguishes between nodes that do and don’t contain children—that is, non-leaf
and leaf nodes—so we’ve provided separate helper methods for each. addNode ()
provides a mechanism for adding non-leaf nodes, or “folders” in qooxdoo par-
lance @, and addLeafNode () provides a way to add leaf nodes or “files” @. The
events on the non-leaf nodes—the opening and closing of the tree—will be han-
dled by qooxdoo automatically, but we’ll need to add the events on the leaf nodes
ourselves @. When we click on the leaf nodes, we want the corresponding image
to be displayed in the preview pane. We've also provided an option for leaf nodes
to supply a thumbnail image to be rendered in the tree in lieu of the standard
icon. As you can see in figure 7.10, we’ve provided thumbnails for the first four
nodes in the tree, just to demonstrate how customizable this component is.

So, now that we’ve set up our helpers, we can roll up our sleeves and start to
assemble the tree. First, we declare the root node of the tree @, and then we
begin to exercise our helper functions @, until we’ve accounted for all the images
in our collection. And that’s it—our tree control is fully operational and linked to
the preview pane.

Discussion

The tree control is considerably more complex than tabs or toolbars, and it took a
little longer to set up, but that’s largely due to the increased complexity of our
data model, now that we’ve added the extra categories. Once we put the helper

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

7.4

7.4.1

Between the desktop and the Web 259

methods in place, we didn’t have to deviate into the realms of supporting low-
level UI components, and the majority of our code was a description of our
domain model.

In this example, the tree contents were just about small enough to be hand-
coded. In a much larger set of categories, we might like to make use of Ajax to
fetch subcategories on an as-needed basis, but constraints of space prevents us
from exploring that option further here.

This concludes our foray into the world of desktop navigation metaphors. In
section 7.2, we looked at traditional web-style approaches to navigation, and we
can see a considerable gulf between those examples and the ones presented in
this section. We can partly account for that gulf based on the division between
casual-use apps, which favor web-style navigation, and line-of-business apps,
which favor a more sophisticated desktop-style approach. Nonetheless, the terri-
tory between the two is far from barren and contains some interesting possibili-
ties. We'll conclude this chapter by looking at the scope for hybrid models of
navigation that combine the best features of the Web and the desktop.

Between the desktop and the Web

Prior to Ajax, the web application was restricted to applications at the periphery
of a user’s attention, such as shopping/commerce sites, searches, dictionaries, and
lookups. A user might consult these several times during a day, but typically only
briefly, and as a complement to some other, more complex task. The complex
task itself would be handled by a desktop app or a thick client.

Peripheral apps require simple, obvious controls. As Ajax moves into the ter-
ritory occupied by thick clients, it can adopt the more complex (and more
demanding) navigation techniques of the desktop app, such as those we show-
cased in section 7.3. However, many developers and designers are reluctant to
lose the light touch of the web application, and are seeking to combine the best of
both worlds. In this section, we’ll look at a couple of examples that sit within this
middle ground.

The OpenRico Accordion control

The Accordion control from OpenRico is a useful control for reducing information
overload and making effective use of constrained space. Users are only exposed to
small pieces of content, but they can still quickly navigate to related items.

You may already have heard of the Accordion control by another name: the
Outlook bar. It consists of a single content pane, which shows the currently

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

260

CHAPTER 7
Content navigation

selected content. There are also several bars, which hold the titles of other pieces
of content that are also selectable. You can see this clearly in figure 7.11 in a
moment. As you click on the bars to access the information they contain, Open-
Rico animates the bars to progressively hide the old content and display the new.
Pretty slick!

Problem

Your application contains a group of several pieces of discrete content but you
want only one shown at a time. These pieces of content could be many things:
navigations, forms, and so on.

Solution

OpenRico provides a DHTML widget
called an Accordion. This widget
incorporates several discrete chunks
of content and provides a visually
appealing method of revealing only
one chunk of content at any given
time. This control is simple to use, but
requires a little bit of setup in the
form of some HTML structure; we’ll
show you how in listing 7.6. First, take
a look at the result in figure 7.11.

The first thing you need to do is
define a container <div> element.
In this example we named it image-
AccordionDiv. Within the container
<div> we then need to add a subcon-
tainer <div> for each chunk of con-
tent we're adding to the Accordion.
These subcontainers are identified
by the suffix Panel and will in turn
contain two <div> elements. The first
<div> in each set will serve as the title bar, which will be the only visible cue for a
content chunk other than the currently displayed one. These title bar <div>s can
be identified by the suffix Header. The second <div> in each set will contain the
given content chunk. These <div>s can be identified by the suffix content.

Spirochete

Figure 7.11 OpenRico Accordion control

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Between the desktop and the Web 261

Once the HTML structure for the Accordion has been defined, we can then
pass the JavaScript necessary to initialize the widget. This code appears in the
initialize() function. The constructor for the Accordion object takes in the con-
tainer <div> element and a properties hash. In this example we are only setting
the panelHeight property, but many more exist.

One additional note on the code in listing 7.6: in the Accordion constructor,
we use the now-familiar $ () function to retrieve the container <div>. We had a
look at jQuery’s $ () in early examples, but in this case, we’re using the Prototype
library, on which Rico is based.

Listing 7.6 Using the OpenRico Accordion widget

<html>
<head>
<title>Chaotic Images</title>
<link href='../assets/css/rico.css'
media='all' rel='Stylesheet' type='text/css' >

<script src='../assets/js/prototype.js'
type="'text/javascript'></script>

<script src='../assets/js/rico.js'

type="'text/javascript'></script>

<script type='text/javaScript'>
<l--

window.onload=initialize;

function initialize()
{
new Rico.Accordion (
$ ('imageAccordionDiv'),
{panelHeight:320}
) ;
} qa Constructs Accordion object
//==>
</script>
</head>
<body> Declares main
container
<div id='imageAccordionDiv' style='width:322px;overflow:hidden'>

<div id='dreamsilkPanel'> Declares Accordion

<div id='dreamsilkHeader' pand
class='accordionTabTitleBar'> Declares
Dreamsilk per-element Declalres .

</div> fitle per-elemen

<div id='dreamsilkContent'> content

</div>

</div>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

262 CHAPTER 7
Content navigation

<div id='leafPanel'>
<div id='leafHeader' class='accordionTabTitleBar'>
Leaf
</div>
<div id='leafContent'>

</div>
</div>
<div id='spirochetePanel'>
<div id='spirocheteHeader' class='accordionTabTitleBar'>

Spirochete
</div>
<div id='spirocheteContent'>

</div>
</div>

<div id='trilobitePanel'>
<div id='trilobiteHeader' class='accordionTabTitleBar'>

Trilobite
</div>
<div id='trilobiteContent'>

</div>
</div>
</div>
</body>
</html>

The initialize() function is the real meat of this example. It simply constructs a
new Accordion using the contents of the imageAccordionDiv <div>, and sets the
panel height to 320 pixels @.

The rest of the code depends on the proper setup of the <div>s you wish to be
shown in the Accordion. Youll need a container <div> for the entire Accordion
@, which we've labeled imageAccordionDiv. Notice that was the name we passed
to the Accordion constructor previously @. After that, we’ll need several subdivi-
sion <div> elements, which will be displayed inside the Accordion. For each ele-
ment to be displayed you will need

® A container <div> for the Accordion panel @

m A title bar <div> to display the title, marked up with the accordionTab-
TitleBar CSS class @

m A content <div> that will display the actual contents @

The Accordion object takes care of all the rest!

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

7.4.2

Between the desktop and the Web 263

Discussion

The Accordion control is a great way to add some dynamic sparkle to your web
applications. It does, however, have its drawbacks. Each content chunk must
occupy the same space as all the others. If this is not going to be the case, then
the developer will need to apply appropriate CSS styling to allow scrolling
within the per-content <div> elements.

One interesting thing to note, when comparing the Accordion to the examples
in section 7.3, is that OpenRico and qooxdoo take two very different approaches
to solving the problem of creating DHTML widgets. In the case of OpenRico, the
toolkit requires the developer to lay out the HTML and then takes care of the rest
of the work. However, with qooxdoo the aim was to create a complete GUI toolkit,
so emphasis was completely on the JavaScript API, and nonexistent on the HTML
front, at least where the core framework elements are concerned. You end up with
either very little JavaScript and a good bit of HTML footwork, or truckloads of
JavaScript and little to no HTML. That choice is up to you.

Building an HTML-friendly tree control

The Rico Accordion has presented an interesting approach to developing inter-
active navigation controls, in which we declare the elements that compose the
widget as plain HTML and then use the JavaScript simply to add the interactivity.
This is quite different to qooxdoo’s approach, in which the widget is created
entirely from JavaScript, and all DOM elements are constructed programmati-
cally. We referred earlier to the interesting territory that lays between the conven-
tional Web and the desktop app approach to navigation and application look and
feel, and here we’ve begun to explore that territory.

A question that naturally arises from this is whether the familiar declarative
approach of HTML and CSS can be successfully combined with the interactivity of
a pure JavaScript solution, giving us the best of both worlds. Indeed, can we set
up the page in such a way that it still functions—albeit less richly—when Java-
Script is turned off altogether? In the next example, we're going to look at doing
just that for the tree control, which is arguably the most complex and interactive
widget that we’ve looked at so far.

Problem

We have sufficient categories and subcategories within our data to merit the use
of a tree control. However, the application must serve a broad audience, and we
need to ensure that it is still usable in browsers that have JavaScript turned off.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

264

CHAPTER 7
Content navigation

We don’t want to maintain two completely separate codebases for the Ajax and
non-Ajax versions of the application, so we need to find a way of accommodat-
ing both sets of users within a single design.

Solution

We’re facing a pretty tall order! If we understand that the non-JavaScript version
of the application won’t be as functional as the JavaScript application, then we
can make it work.

In the previous example, we noted that the Rico Accordion added behavior to
HTML that was declared within the page. That way of doing things will suit our
needs here, as we need the unadorned HTML to provide a baseline of functional-
ity. So, what should it look like?

We’ve chosen a simple interaction model for the HTML application, with each
leaf node of the tree a hyperlink directly to the image. After viewing an image,
the user can use the back button to return to the tree. That’s not a great way of
interacting, but it works. Figure 7.12 shows the two stages of interaction with the
tree in this mode.

The entire tree contents are shown by default in expanded form and can’t be
contracted by clicking on the non-leaf nodes. The preview pane isn’t used in this

Browse
Back
Button

Click on
Hyperlink

Figure 7.12 Interacting with the tree with JavaScript switched off

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Between the desktop and the Web 265

mode, so it is initially hidden from view. Clicking on a leaf node takes the browser
to the full-sized image, from which the user can return to the tree by using the
back button. Listing 7.7 shows the HTML for the tree control.

Listing 7.7 HTML for tree control

<html>
<head>
<title>A Poem Lovely As A Tree</title>
<link rel="stylesheet" type="text/css" href="main.css">
<script type='text/javascript'
src='scripts/prototype.js'></script>

<script type='text/javascript' Q]I::IF;(;::?N
src='scripts/tree.js'></script>
<script type='text/javascript'>
window.onload=function () {
initTree() ;
Y
</script>
</head>
<body> Begins declaring
<div class="pane" id="tree"> tree nodes

<div class="nodeHeader" id="head_0">Chaos</div>
<div class="nodeChildren" id="child_0">
<div class="nodeHeader" id="head_1">IFS</div>
<div class="nodeChildren" id="child_1">

<div class="nodeHeader leaf"
id="head_2">Dreamsilk</div>

<div class="nodeHeader leaf"
id="head_3">Leaf</div>

<div class="nodeHeader leaf"
id="head_4">Spirochete</div>

<div class="nodeHeader leaf"
id="head_4">Trilobite</div>

</div>
<div class="nodeHeader" id="head_5">L-systems</div>
<div class="nodeChildren" id="child_5">

<div class="nodeHeader leaf" id="head_6">Bush</div>

<div class="nodeHeader leaf" title="ls/weed.jpg"

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

266 CHAPTER 7
Content navigation

id="head_7">Weed</div>

</div>
<div class="nodeHeader" id="head_8">Strange Attractors</div>
<div class="nodeChildren" id="child_8">
<div class="nodeHeader" id="head_8a">2D</div>
<div class="nodeChildren" id="child_8a">

<div class="nodeHeader leaf" id="head_9">deJong</div>

<div class="nodeHeader leaf" id="head_10">Lorenz</div>

<div class="nodeHeader leaf" id="head_11">Poly I</div>

<div class="nodeHeader leaf" id="head_ 12">Poly II</div>

</div>

<div class="nodeHeader" id="head_8b">3D</div>
<div class="nodeChildren" id="child_8b">

<div class="nodeHeader leaf" id="head_13">Poly I</div>

<div class="nodeHeader leaf" id="head_14">Poly II</div>

</div>
</div>
</div>
</div> Declares and hides

preview pane
<div class='pane' id='preview' stylle='display:none;'>

<img id='preview_img' src='../assets/images/chaos/ifs/
spirochete.jpg'>
</div>
</body>
</html>

The first thing that we do in this page is import the JavaScript code that we’ll
need @. We're going to make use of Prototype here, and we’ve also moved most
of our own code into a separate file, tree.js. In anything but the smallest demo
programs, this is a good idea anyway, but in this case, this approach will be spe-
cifically useful because we expect some of our users not to be using JavaScript. We
don’t want to waste their bandwidth by providing too much inline script that
they’ll ignore.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Between the desktop and the Web 267

As with the qooxdoo tree control (see listing 7.5), there is plenty of repetition
here as we assemble the tree, but this time we do it in the HTML @. We're making
use of the fact that HTML documents have a treelike structure themselves, and the
nesting of elements on the page follows the structure of our tree widget. Each
node in the tree is composed of a <div> element having the nodeHeader CSS class,
containing the caption for that node. In the case of leaf nodes, these elements
have an additional CSS class called leaf, and are surrounded with an anchor tag
defining the hyperlink. Non-leaf nodes don’t have the hyperlink, but do contain
a second <div> element having the nodecChildren CSS class, which is a sibling of
the nodeHeader element. All child nodes are contained entirely within the node-
Children element, which will allow us to expand and collapse a node when we add
the interactivity simply by showing or hiding the child container.

This approach also gives us the basic layout of the tree almost for free, as we
add a bit of CSS to ensure there is a visible amount of indentation to the left-hand
side of each child container, thereby increasing indentation at each level.

Finally, we declare the preview pane @. We’ll only want to use this in the
JavaScript-enabled version of our app, so we set the style display to none by
default, to hide it from view until we choose to programmatically reveal it.

So, we've catered to the minority of our audience who don’t use JavaScript.
What will the widget look like for the rest of us? Figure 7.13 shows the results.

Figure 7.13 Tree widget with JavaScript switched on

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

268 CHAPTER 7
Content navigation

With JavaScript enabled, the tree will be initially shown in the contracted state,
with only the root node and the preview pane visible. In the screen shot, we've
opened a few selected nodes and clicked on a leaf node, which now opens up the
relevant image in the preview pane. How do we do this? Listing 7.8 shows the con-
tents of the tree.js file that we used to rewrite the rules for interactivity.

Listing 7.8 tree.js

function initTree () { 49 Shows preview pane
S ('preview') .show() ;

var allNodes=$$('.nodeHeader"') ;
var partitioned=allNodes.partition(
function (node) {
return node.hasClassName('leaf');
}
)
var leafNodes=partitioned[0];
leafNodes.each (
function (node) {
var anchor=node.parentNode;
var imgsrc=anchor.href;

anchor . href="#"; .
node.onclick=function() { Rgphceshypeﬂmk
$('preview_img') .src=imgsrc; with onclick

Y
}

Separates leaf and
non-leaf nodes

)
var nonLeafNodes=partitioned[1l];
nonLeafNodes.each (
function (node) {
var childDivId=node.id
.replace(/head/, "child") ;
var childDiv=$ (childDivId) ;
node.onclick=function() { Adds event handler
childDiv.toggle() ;
}
childDiv.hide() ;

We can turn the HTML into an interactive tree with surprisingly little code. As
with the Rico Accordion, everything is there for us already, and all we need to add
is the interactivity. Using a library such as Prototype certainly helps to keep the
code brief, too!

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Between the desktop and the Web 269

Our first task is simple. The preview pane has been hidden, so we make it vis-
ible again @. The show() method is a Prototype extension to the DOM element
class. We then use some of Prototype’s array functions to assemble all the HTML
elements representing tree nodes, and divide them into leat and non-leaf nodes
@. We can already identify these elements by their CSS styles, and Prototype sup-
ports searching for elements using CSS selectors with the $$() function. Having
obtained all the node elements, we use the partition() method that Prototype
has kindly added to the Array class for us, which will return an Array containing
two elements. Both elements are themselves Arrays. The first contains all the ele-
ments that passed a specified test, and the second all those that failed it. The test
is defined as a function object that we pass in as an argument. Our test function
simply checks the CSS classes for the node again, to determine whether or not it’s
a leaf node.

We can then iterate through all the leaf nodes, and fix them up for use in our
JavaScript-enabled tree. The first thing we need to do is to deactivate the hyper-
link that we had added for the benefit of non-JavaScript users. Having done that,
we add a simple programmatic event handler in its place @.

Finally, we iterate through the non-leaf nodes. Under the HTML version, these
have no interactivity, so we simply need to add it in here, identifying the con-
tainer element that holds all the children for this node, and toggling its visibility
when the title is clicked @.

Discussion

The tree control that we’ve presented here doesn’t look quite as sophisticated as
the qooxdoo widget from section 7.3.3, but it’s not a bad start for a few hours’
work. And, depending on your tastes, and the style of your application, the flat-
ter, more web-style UI may be a better fit than qooxdoo’s decidedly desktop-like
styling. Certainly, there’s room for both approaches.

The technique that we’ve practiced here—allowing a web app to continue to
ofter functionality as JavaScript is removed—is often referred to as graceful degra-
dation. If you need to support a wide range of users, it can be a winning approach,
and doesn’t entail that much extra effort. By enforcing a clear separation between
content and behavior from the outset, we've been able to add the full interactivity
with relatively little code.

That concludes our review of navigation techniques and widgets, as well as this
chapter. We’ll continue to look at the user’s workflow in the next chapter, when we
examine ways of making Ajax play nicely with a browser’s history mechanisms.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

270 CHAPTER 7
Content navigation

7.5 Summary

When you’re thinking of ways to navigate content in an Ajax application, the sky
is literally the limit. A large amount of widgets already exist, free for the picking,
such as those from qooxdoo and OpenRico.

We’re in an interesting phase in the development of thinking about web navi-
gation, with an influx of ideas coming from both the traditional web design
world, as we saw in section 7.2, and from the desktop application and thick-client
arena, as we saw in section 7.3. These two approaches are beginning to interact
with one another, thanks to the disruptive nature of Ajax, which has brought line-
of-business applications within the reach of the web application.

In section 7.4, we looked at ways of combining the current thinking from both
of these areas. Along the way, we touched on issues such as the separation of
design and content from workflow logic, and ways of working with users who can’t
or won’t make use of JavaScript.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Handling back,
refresh, and undo

This chapter covers

m Disabling browser navigation features
m The Really Simple History framework
m Handling undo operations

271

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

272

8.1

8.1.1

CHAPTER 8
Handling back, refresh, and undo

One of the greatest problems when designing dynamic content for the Web is the
ability for the end user to refresh a page and navigate the browser’s history at will.
Such tools are great when you’re navigating static content, but they open up the
proverbial can of worms when using a dynamic web application. For example,
with a simple click of the back button or a press of the F5 key, the client-server
state becomes out of sync, and if your application makes use of advanced
Dynamic HTML (DHTML) techniques like draggable content, the client’s layout
state is destroyed. Ajax-enabled single-page applications compound these prob-
lems even further.

In this chapter we explore a few tricks to prevent the end user’s access to history
navigation and page refreshing. These tricks include opening a new browser win-
dow with all toolbars removed, disabling any keyboard shortcuts used for navigat-
ing history, and disabling the right-click context menu. We’ll also look at some
techniques for working with these browser features, such as using hashes to store
application state in the URL, using the Really Simple History framework to easily
add bookmarking and history navigation functionality to a single-page Ajax appli-
cation, and implementing your own undo stack.

Removing access to the browser’s
navigation controls

Removing access to the browser’s navigation controls is a threefold procedure. We
must deny the user access to the various toolbars that contain navigation func-
tionality; we must trap any keyboard shortcuts that allow navigation; and we must
disable the context menu. It is important to keep in mind that end users may not
be thrilled with this forceful narrowing of their user experience, which means
you’ll have to provide a way for them to easily navigate your application. Let’s
take a look at how best to handle these issues.

Removing the toolbars

To remove the address and navigation bars, a new window must be opened pro-
grammatically using JavaScript. It is not possible to add or remove toolbars from
an existing browser window. Because of this limitation, you’ll have to create a
launchpad page from which you can spawn a new window containing your appli-
cation. The JavaScript API for opening a new window is fairly simple and straight-
forward:

window.open (URL, name, options, replace);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Removing access to the browser’s navigation controls 273

The window.open() method provides you with a wide range of customization
options for the window to be opened. Tables 8.1 and 8.2 provide an in-depth look
at the features available for customization.

Table 8.1 window.open() parameters

Parameter Type Description

URL String Specifies the location of the page you wish to display. An empty
string may be passed if you do not wish to initially load a page (this
is helpful if you wish to dynamically generate content for the win-
dow via scripting).

name String Specifies the name property of your new window. The name of a
window allows the window to be referenced using the same con-
structs as a frame within a frameset. For example, a hyperlink of
the form
will display thepage.html in the window with the name
thewindow. If the name refers to a window that already exists,
then window. open () will display the content in that window,
instead of opening a new one.

options String Optional. Specifies the options available to the new window. This
parameter may contain one or more key=value pairs separated
by commas. Valid values for Boolean options are yes, no, 1, or 0.
You may leave off any of the Boolean options if you wish them to
default to false.

replace Boolean Optional. If true, the new location will replace the current one in
the browser’s history. This parameter may not be supported on
some browsers.

Table 8.2 window.open() commonly supported options

Option Type Description Default
width Integer The width in pixels of the window Same as parent
height Integer The height in pixels of the window Same as parent
left Integer The x-coordinate of the top-left corner | Auto

of the window

top Integer The y-coordinate of the top-left corner | Auto
of the window

scrollbars Boolean (ves, no, 1, or 0) Determines if scrollbars are available | Yes

continued on next page

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

274 CHAPTER 8
Handling back, refresh, and undo

Table 8.2 window.open() commonly supported options (continued)

Option Type Description Default
resizable Boolean (ves, no, 1, or 0) Determines if the window is resizable | Yes
toolbar Boolean (ves, no, 1, or 0) Determines if the toolbar should Yes
be displayed

location Boolean (yes, no, 1, or 0) Determines if the address bar should | Yes
be displayed

directories | Boolean (yes, no, 1, or 0) Determines if the links bar should Yes
be displayed

status Boolean (yes, no, 1, or 0) Determines if the status bar should Yes
be displayed

menubar Boolean (yes, no, 1, or 0) Determines if the menu bar should Yes
be displayed

A common use of this function is to open a window without any toolbars, in
essence an undecorated window. A generic function for opening an undecorated
window might look like this:

function openWithoutToolbars (URL, windowName) {
window. open (
URL,
windowName,
'status=1, scrollbars=1,resizable=1",
true
)
}
So, we’ve removed the visible buttons, but the user can still exercise the same
functionality by using the keyboard or the context menu. Let’s see how to remove

that access as well.

8.1.2 Capturing keyboard shortcuts

Capturing keyboard shortcuts involves adding an event handler at the docu-
ment level to intercept the appropriate keyboard shortcuts. (We discussed the
JavaScript event model in chapter 5.) There are eight common keyboard short-
cuts for controlling navigation and the state of the currently loaded page, as
table 8.3 shows.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

8.1.3

Removing access to the browser’s navigation controls 275

Table 8.3 Keyboard shortcuts for navigating history

Shortcut Description
Backspace Navigate backward in history
Alt/Option+left arrow Navigate backward in history
Alt/Option+right arrow Navigate forward in history
Ctrl/Command+left arrow Navigate backward in history
Ctrl/Command+right arrow Navigate forward in history
F5 Refresh window
Ctrl/Command+R Refresh window
Ctrl/Command+H Show history
Alt/Option+Home Go to home page

To detect these keypresses, we must attach a keydown event (and in the case of
Mozilla/Firefox we must also attach a keypress event) at the document level to
check which key was pressed as well as any relevant modifiers to detect the key
combinations and prevent the event from propagating further. Also, since the
backspace key is one of the eight shortcuts, we need to add a special case to allow
that key to be processed in the event that the end user is pressing the backspace
key while a text area or input element has input focus.

We'll present an example of this technique shortly, in section 8.1.4. For now,
let’s move on to the next feature: the context menu.

Disabling the right-click context menu

The context menu is the detached menu that appears when a user right-clicks
the mouse on the browser window’s content area. The context menu contains
some navigation features, so we need to disable this menu as well. Most newer
browser versions provide an event called oncontextmenu that fires when an end
user right-clicks the mouse. To disable this context menu, simply register an
event at the document level for the oncontextmenu event that prevents the event
from propagating.

OK, that’s everything in our checklist covered. Let’s put our new knowledge
into practice and look at a working example.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

276 CHAPTER 8
Handling back, refresh, and undo

8.1.4 Preventing users from navigating history or refreshing

When developing Ajax applications, it sometimes becomes necessary to prevent
users from navigating the browser history and from refreshing the page. Because
the Ul is so dynamic, a page refresh or history navigation will destroy the state of
the current application, and will cause the user to lose their work instead of tak-
ing them back to the previous page.

Problem

You have developed a single-page Ajax application and you need to remove from
the user the ability to navigate the browser’s history or refresh the page.

Solution

The first step in creating a browser window with all functionality removed is to
provide a mechanism to open a new window with all of the toolbars removed. You
can see the results of this in figure 8.1. We’ll create a launchpad (listing 8.1) to
serve as the starting point for a registration page; this page will not allow the end
user to navigate through history, browse to another page, or refresh/reload the
contents of the registration page.

<html>
<head>
<title>Application Launchpad</title>
<script type='text/javascript'>

function openWithoutToolbars (URL, windowName, width, height) {
window.open (
URL,
windowName, QJ A Valu_es for
'status=1, scrollbars=1,resizable=1"+ removing toolbars
(width ? ',width='+width : ')+
(height ? ', height='+height : ''),
true
)
}

function openRegistration() {
openWithoutToolbars (
'./registration.html',
'REGISTRATION',
480, 580
) ;

</script>
</head>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Removing access to the browser’s navigation controls 277
<body>

Launch Registration

</body>
</html>
|

) Application Launchpad - Mozilla Firefox] ‘Mﬂ

Ele Edt Vew Go Bookmarks Tools Help &3

&a-cp- & O @ [0 htor/focamostassoramchoachen ~] © 6o [IGL .

Launch Registration

) http:/ [localhost:8080 - Registration - Mozilla Firefox

First Name |
Middle Initial [
First Name |
Address |

|
City [

State 7
ZIp —

Comments

= ' Redmmll meel]

| Done 4

Figure 8.1 Registration app without toolbars

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

278 CHAPTER 8
Handling back, refresh, and undo

The second step (shown in listing 8.2) is to disable all of the available keyboard
shortcuts for history navigation and page refreshing from the newly opened win-
dow. In keeping with our maxim of using tried-and-tested third-party libraries,
we’ll use the Prototype library’s cross-browser event-registration mechanism here,
so we'll need to reference prototype.js in our page. The two key methods that
Prototype provides for us here are Event.observe (), which registers an event on
an object, and Event.stop (), which prevents the event from propagating.

Listing 8.2 Launchpad JavaScript

var isHistoryShortcutDisabled = false;

Event.observe (
document, 43 Disables context menu
'contextmenu’,
function (event) {
Event.stop (event) ;
return false;
}
)
Event.observe (document, 'keypress"',
checkHistoryShortcutDisabled) ; Disables hotkeys
Event.observe (document, 'keydown',
disableHistoryShortcuts) ;

function disableHistoryShortcuts (event) {
var targetTag = Event.element (event) .tagName;
var isTextInput = (

(targetTag == 'TEXTAREA')
|| (targetTag == 'INPUT')
)i
var keyCode = event.which || event.keyCode;
ﬁ Suppresses
if ((keyCode == 116) || navigation keys
((keyCode == 8) && (!isTextInput)) |
((keyCode == 36) && event.altKey) |
((keyCode == 37) && event.altKey) ||
((keyCode == 39) && event.altKey) ||
((keyCode == 37) && event.ctrlKey) ||
((keyCode == 39) && event.ctrlKey) ||
((keyCode == 82) && event.ctrlKey) ||
((keyCode == 72) && event.ctrlKey)) {

isHistoryShortcutDisabled = true;
Event.stop (event) ;
return false;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Removing access to the browser’s navigation controls 279

function checkHistoryShortcutDisabled (event) {
if (isHistoryShortcutDisabled) { % Disables Mozilla keypress
isHistoryShortcutDisabled=false;
Event.stop (event) ;
return false;

First, we disable the context menu @. All we want to do in the callback is stop the
event from propagating, so we define the function inline. Trapping the keypresses
@ requires a bit more thought, so we've defined the callback functions separately.

The main callback function is disableHistoryShortcuts (), which is registered
against the keydown event. In this function, we need to identify the navigation
hotkeys that we’ll suppress @ and prevent propagation only in those cases. This
requires us to, among other things, figure out if we’re inside a text input field or,
indeed, any other input field that responds to key presses, such as a dropdown
list. We also need to trap the keypress event in Mozilla @. We register the call-
back in any case—under Internet Explorer, the registration will have no harmful
side effects. Finally, as a result of our efforts, we’ll have a window that can be nei-
ther navigated nor refreshed.

Discussion

We have just seen a complete solution for removing the end user’s ability to nav-
igate history or refresh a page. This technique, even though it is quite effective,
may make your users unhappy with your application. None of us like to have our
freedoms revoked, and for some end users it will feel as if you have done just that:
deprived them of their ability to view and navigate your web application the way
they are accustomed to. If you decide to employ this technique, please keep that
in mind.

We need to empower users again, having hijacked their browser-given rights
of willy-nilly navigation. It is extremely important to provide alternative meth-
ods of navigation if you do override the native browser navigation controls. If
you don’t give your users alternative methods, or even ways of bookmarking,
they won’t be likely to use your application. The examples of Google’s GMail and
Maps applications spring to mind. Even though they have a dynamic, client-side
interface, they still allow the user to navigate backward and forward through the
application (and even make bookmarks) using the native browser controls. They
are just subverting those controls to their own purposes. Next up, we’ll show you
exactly how to do that.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

280

8.2

8.2.1

CHAPTER 8
Handling back, refresh, and undo

Working with a browser’s navigation controls

If you wish to provide a richer and less restrictive user experience (both of these
will make the end user much happier), you have to work with the browser’s navi-
gation and refresh features. This can be a daunting task. How do you maintain
state if the user refreshes their window, clicks the back button, or goes to a com-
pletely different site and then navigates back to your application? There are sev-
eral techniques you can use to hold the state of your single-page application
between refreshes and even to provide logical bookmarks so that when the user
clicks the back or forward button they aren’t in for a nasty surprise (the applica-
tion resetting to some default state or even worse). Instead, the user can step
backward through their actions.

Using the JavaScript history object

With the history object, JavaScript provides a way to programmatically navigate the
browser’s history. Using this object, you can emulate the browser’s back and for-
ward buttons, provide a link in a dynamic web app to take you back to the previ-
ous page (even if the current page has multiple points of entry), or even force the
browser to always show the last page in history by adding

window.onload = function() {history.go(1l);}

to all of your application’s pages. However, this is a pretty inelegant hack that will
likely get you condemned by the web development community. The properties
and functions of the history object appear in tables 8.4 and 8.5, respectively.

Table 8.4 Property of the history object

Property Description

length The number of entries in the history object

Table 8.5 Functions of the history object

Function Description
back Loads the previous URL in the history list.
forward Loads the next URL in the history list.

continued on next page

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

8.2.2

Working with a browser’s navigation controls 281

Table 8.5 Functions of the history object (continued)

Function Description

go Goes to a specific URL in the history list. The parameter where
can be an integer or a string. In the event of an integer, goes to
the URL with the specific position relative to the current docu-
ment. For example, -1 goes back one page, and 1 goes forward
one page. In the event of a string, goes to the first URL that
matches the string, either completely or partially.

Hashes as bookmarks

Hashes are those bits of a URL that hang out at the end and are prepended with a
symbol. In typical website use, hashes indicate that the browser should focus on
a named anchor tag. Note that the only way to update the location of the browser
without causing a reload of the page in its entirety is through the use