
http://lib.ommolketab.ir
http//lib.ommolketab.ir


Ajax in Practice

http://lib.ommolketab.ir
http//lib.ommolketab.ir


 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Ajax in Practice

DAVE CRANE 
BEAR BIBEAULT 

JORD SONNEVELD

WITH TED GODDARD, CHRIS GRAY, 
RAM VENKATARAMAN AND JOE WALKER

M A N N I N G

Greenwich 
(74° w. long.)

http://lib.ommolketab.ir
http//lib.ommolketab.ir


For online information and ordering of this and other Manning books, please go to 
www.manning.com. The publisher offers discounts on this book when ordered in quantity.  
For more information, please contact:

Special Sales Department
Manning Publications Co.
Sound View Court 3B Fax: (609) 877-8256
Greenwich, CT 06830 Email: orders@manning.com

©2007 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,  
in any form or by means electronic, mechanical, photocopying, or otherwise, without  
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products  
are claimed as trademarks. Where those designations appear in the book, and Manning 
Publications was aware of a trademark claim, the designations have been printed in initial  
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy  
to have the books they publish printed on acid-free paper, and we exert our best efforts  
to that end.

Manning Publications Co. Copyeditor: Liz Welch
Sound View Court 3B Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-932394-99-0

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 11 10 09 08 07

http://lib.ommolketab.ir
http//lib.ommolketab.ir


brief contents

PART 1  FUNDAMENTALS OF AJAX   ......................................... 1

1  ■ Embracing Ajax 3

2  ■ How to talk Ajax 26

3  ■ Object-oriented JavaScript and Prototype 64

4  ■ Open source Ajax toolkits 117

PART 2  AJAX BEST PRACTICES   ........................................  161

5  ■ Handling events 163

6  ■ Form validation and submission 202

7  ■ Content navigation 234

8  ■ Handling back, refresh, and undo 271

9  ■ Drag and drop 311

10  ■ Being user-friendly 336

11  ■ State management and caching 388

12  ■ Open web APIs and Ajax 415

13  ■ Mashing it up with Ajax 466
v

http://lib.ommolketab.ir
http//lib.ommolketab.ir


http://lib.ommolketab.ir
http//lib.ommolketab.ir


contents

preface xiii
acknowledgments xv
about this book xviii

PART 1 FUNDAMENTALS OF AJAX........................................ 1

1   Embracing Ajax 3
1.1 Ajax as a disruptive technology 4

Redefining the user’s workflow 5 ■ Redefining web  
application architecture 7

1.2 Ajax in ten minutes 9
Introducing XMLHttpRequest 9 ■ Instantiating 
XMLHttpRequest  10 ■ Sending a request 11
Processing the response 13 ■ Other XMLHttpRequest  
methods and properties 14

1.3 Making Ajax simple using frameworks 16
Making requests with Prototype’s Ajax.Request 
object 18 ■ Simplifying Ajax responses 21

1.4 Summary 24
vii

http://lib.ommolketab.ir
http//lib.ommolketab.ir


viii CONTENTS
2   How to talk Ajax 26
2.1 Generating server-side JavaScript 27

Evaluating server-generated code 27 ■ Utilizing good  
code-generation practices 30

2.2 Introducing JSON 34
Generating JSON on the server 36 ■ Round-tripping  
data using JSON 40

2.3 Using XML and XSLT with Ajax 44
Parsing server-generated XML 44 ■ Better XML  
handling with XSLT and XPath 50

2.4 Using Ajax with web services 56

2.5 Summary 63

3   Object-oriented JavaScript and Prototype 64
3.1 Object-oriented JavaScript 66

Object fundamentals 66 ■ Functions are first class 68
Object constructors and methods 76 ■ Writing a  
JavaScript class: a button 82

3.2 The Prototype library 97
Generally useful functions and extensions 98 ■ Array 
extensions 100 ■ The Hash class 102 ■ Binding context 
objects to functions 103 ■ Object-oriented Prototype 105
Rewriting the Button class with Prototype 112

3.3 Summary 116

4   Open source Ajax toolkits 117
4.1 The Dojo toolkit 118

Asynchronous requests with Dojo 119 ■ Automatic form 
marshaling with Dojo 123

4.2 Prototype 125
Asynchronous requests with Prototype 125 ■ Automatic updating 
with Prototype 131 ■ Periodic updating with Prototype 134

4.3 jQuery 136
jQuery Basics 136 ■ Asynchronous loading with 
jQuery 140 ■ Fetching dynamic data with jQuery 145

4.4 DWR 150
Direct Web Remoting with DWR 151

4.5 Summary 159

http://lib.ommolketab.ir
http//lib.ommolketab.ir


CONTENTS ix
PART 2 AJAX BEST PRACTICES........................................  161

5   Handling events 163
5.1 Event-handling models 165

Basic event-handling registration 165 ■ Advanced  
event handling 169

5.2 The Event object and event propagation 172
The Event object 172 ■ Event propagation 173

5.3 Using Prototype for event handling 178
The Prototype Event API 179

5.4 Event types 180
Mouse events 181 ■ Keyboard events 182 ■ The change 
event 185 ■ Page events 186

5.5 Putting events into practice 189
Validating text fields on the server 190 ■ Posting form  
elements without a page submit 195 ■ Submitting only  
changed elements 198

5.6 Summary 201

6   Form validation and submission 202
6.1 Client-side validation 203

Validating on the client side 203 ■ Instant 
validation 209 ■ Cross-field validation  211

6.2 Posting data 218
Anatomy of a POST 218 ■ Posting data to  
a server 220 ■ Posting form data to a server 223
Detecting form data changes 227

6.3 Summary 233

7   Content navigation 234
7.1 Principles of website navigation 235

Finding the needle in the haystack 235 ■ Making a better  
needle-finder 237 ■ Navigation and Ajax 238

7.2 Traditional web-based navigation 241
A simple navigation menu 241 ■ DHTML menus 243

http://lib.ommolketab.ir
http//lib.ommolketab.ir


x CONTENTS
7.3 Borrowing navigational aids from the desktop app 247
The qooxdoo tab view  248 ■ The qooxdoo toolbar  
and windows  250 ■ The qooxdoo tree widget 254

7.4 Between the desktop and the Web 259
The OpenRico Accordion control  259 ■ Building an  
HTML-friendly tree control 263

7.5 Summary  270

8   Handling back, refresh, and undo 271
8.1 Removing access to the browser’s navigation 

controls 272
Removing the toolbars 272 ■ Capturing keyboard 
shortcuts 274 ■ Disabling the right-click context 
menu 275 ■ Preventing users from navigating  
history or refreshing 276

8.2 Working with a browser’s navigation controls 280
Using the JavaScript history object 280 ■ Hashes as 
bookmarks 281 ■ Introducing the Really Simple History  
(RSH) framework 283 ■ Using RSH to maintain state  
at the client level 284 ■ Using RSH to maintain state at  
the server level 289

8.3 Handling undo operations 293
When to provide undo capability 294 ■ Implementing an  
undo stack 295 ■ Extending the undo stack for more  
complex actions 300

8.4 Summary  309

9   Drag and drop 311
9.1 JavaScript drag-and-drop frameworks 313

9.2 Drag and drop for Ajax 314
Drag-and-drop Ajax shopping cart 314 ■ Manipulating data  
in lists 321 ■ The Ajax shopping cart using ICEfaces  326

9.3 Summary 335

10   Being user-friendly 336
10.1 Combating latency 338

Countering latency with feedback 338 ■ Showing 
progress 345 ■ Timing out Ajax requests 351
Dealing with multiple clicks 355

http://lib.ommolketab.ir
http//lib.ommolketab.ir


CONTENTS xi
10.2 Preventing and detecting entry errors 359
Displaying proactive contextual help 359 ■ Validating  
form entries 366

10.3 Maintaining focus and layering order 374
Maintaining focus order 375 ■ Managing stacking order 381

10.4 Summary 387

11   State management and caching 388
11.1 Maintaining client state 390

11.2 Caching server data 392
Exchanging Java class data 393 ■ Prefetching 402

11.3 Persisting client state 406
Storing and retrieving user state with JSON 406 ■ Persisting 
JSON strings through AMASS 409

11.4 Summary 413

12   Open web APIs and Ajax 415
12.1 The Yahoo! Developer Network 416

Yahoo! Maps 417 ■ The cross-server proxy 421 ■ Yahoo! 
Maps Geocoding 430 ■ Yahoo! Traffic 436

12.2 The Google Search API 443
Google search 443

12.3 Flickr photos 454
Flickr identification 455 ■ Flickr photos and thumbnails 459

12.4 But wait! As they say, there’s more... 464
Amazon services 464 ■ eBay services 464
MapQuest 465 ■ NOAA/National Weather 
Service 465 ■ More, more, more... 465

12.5 Summary 465

13   Mashing it up with Ajax 466
13.1 Introducing the Trip-o-matic application 467

Application purpose 467 ■ Application overview  
and requirements 468

13.2 The Trip-o-matic data file 469
What format should we use? 469 ■ The trip data 
format 470 ■ Setting up Flickr photo sets 471

http://lib.ommolketab.ir
http//lib.ommolketab.ir


xii CONTENTS
13.3 The TripomaticDigester class 473
The dependency check 473 ■ The TripomaticDigester 
constructor 474 ■ Digesting the trip data 475
Loading the points of interest 476 ■ Collecting  
element text 477

13.4 The Tripomatic application class 479
The Tripomatic class and constructor 480 ■ Creating the  
content elements 482 ■ Filling in the trip data 484
Showing the map 487 ■ Loading the thumbnails 488
Displaying the photos 491

13.5 The Trip-o-matic application page 492
The Trip-o-matic HTML document 492 ■ Tripping along  
with style 494

13.6 Summary 496

index 499

http://lib.ommolketab.ir
http//lib.ommolketab.ir


preface
The Web has always been a hotbed of innovation, and, in its short history, 
we’ve seen many examples of an invention being repurposed and reused in 
ways far beyond the intentions of the original inventor. A network-based docu-
ment retrieval protocol was subverted by the Common Gateway Interface into 
serving up dynamically-generated documents delivering data from a database 
back-end, allowing online access to one’s data from anywhere in the world. 
HTTP headers were leveraged to provide the continuity of a user session on 
top of this stateless protocol, opening the door to stateful applications such as 
reservation systems and online commerce. Encrypted layers were built on top 
of the core protocol, to give confidence to the customers of these new online 
stores and users of business applications.

 These were truly disruptive technologies, changing the way we use the Web 
forever. And yet today, technologies like server pages, sessions, and SSL are just 
everyday building bricks, baked into the fabric of every web developer’s toolkit, 
to the point that we take them for granted. The pace of innovation is still relent-
less, though, with a new web framework appearing practically every week. 

 One of the biggest disruptions to the web development landscape in recent 
years has been Ajax. Through all the prior innovation, the basics of the web 
user interface—point and click, request, response, redraw—had not changed 
very much, until Microsoft quietly introduced the XMLHttpRequest (XHR) 
xiii

http://lib.ommolketab.ir
http//lib.ommolketab.ir


xiv PREFACE
object with Internet Explorer 5 in 1999, using it to power their Outlook Web 
Access mail client to little fanfare.

 The rest of the world suddenly sat up and took notice in 2005, when Google 
nailed their flag to the Ajax mast with their mail, maps, and suggest applica-
tions. Jesse James Garrett of Adaptive Path coined the term “Ajax,” providing 
the first banner that we could all gather under to discuss exactly what this new 
thing was, and what we could do with it.

 It seemed as if the technology was just waiting for a name, and once it had 
one, a flurry of activity ensued, with people trying to get into the Ajax spirit. 
However, Ajax introduced a new and different way of writing web applications. 
With new issues needing to be addressed, the last two years have seen yet 
another boom of innovations as the web development community figures out 
how to push this new and exciting envelope. 

 Along the way, the fundamentals of Ajax, like the XMLHttpRequest object, are 
going the way of the server page, the session, and SSL. The collective uncon-
scious of the web development community has grokked the basic technology of 
Ajax, and is moving on to the broader issues that use of the technology raises.

 It is in order to address these issues that we decided to write Ajax in Prac-
tice. With this book, our mission is to help accomplished (and not-quite-so-
accomplished) web developers get on board with Ajax and successfully create 
their own Ajax-type applications. It can be regarded as a second-generation 
Ajax book: the first generation showed you what Ajax is; the second genera-
tion shows you what you can do with it and how to do it.

 The book got its start when Steve Benfield was contacted by Manning to be 
the editor of a second-generation book about Ajax, as a follow-up to Dave 
Crane’s popular Ajax in Action book. Later, Steve had to excuse himself as editor 
and Jord Sonneveld, Bear Bibeault, and Dave Crane teamed up to bring you this 
book in its completed form. 

 As you finish reading this preface, we have completed our mission and can sit 
back and share a few well-deserved drinks. We hope you enjoy reading this book 
as much as we have enjoyed writing it!

DAVE, BEAR, and JORD

http://lib.ommolketab.ir
http//lib.ommolketab.ir


acknowledgments
This section of a book always includes a surprisingly long list of names 
because it is indeed a collaborative effort of many different talents that results 
in the book that you are now holding. We have learned that firsthand! The 
authors do not work alone, although the long hours spent at the keyboard 
sometimes make it feel that way.

 The publisher and editors at Manning Publications worked along with us, 
every step of the way, making sure the book was as good as it could be and we 
would like to thank them for their encouragement, insistence on quality, and 
attention to detail. There are many people who worked behind the scenes 
and we would like to acknowledge them here, along with publisher Marjan 
Bace and our editor Mike Stephens: Karen Tegtmayer, Howard Jones, Liz 
Welch, Dottie Marsico, Katie Tennant, Mary Piergies, Gabriel Dobrescu, Ron 
Tomich, and Olivia DiFeterici.

 Our peer reviewers made many contributions, both large and small, to the 
manuscript during development, from catching errors in the code and typos in 
the text to suggestions on how to organize a chapter. The manuscript was 
reviewed a number of times and each pass resulted in a much better book. We 
would like to thank the following reviewers for taking time out of their busy 
schedules to read our chapters: Curt Christianson, Anil Radhakrishna, Robert 
W. Anderson, Srinivas Nallapati, Ernest Friedman-Hill, Jeff Cunningham, 
Christopher Haupt, Bas Vodde, Bill Fly, Ryan Lowe, Aleksey Nudelman, Lucas 
xv

http://lib.ommolketab.ir
http//lib.ommolketab.ir


xvi ACKNOWLEDGMENTS
Carlson, Derek Lakin, Jonas Trindler, Eric Pascarello, Joel Webber, Jonathon 
Esterhazy, and Benjamin Gorlick.

 Special thanks to Valentin Crettaz who was the technical editor of the book. 
He checked the code and reread certain chapters a number of times as we final-
ized them during production. His efforts are much appreciated.

 Finally, thanks to Ted Goddard, Chris Gray, Ram Venkataraman, and Joe 
Walker for their valuable contributions to the book on topics where they are the 
experts. We appreciate their collaboration with us on this project.

Dave Crane

I’d like to thank my colleagues Simon Warrick, Tim Wilson, Susannah Ellis, 
Simon Crossley, Rob Levine, and Miles Wilson at Historic Futures for their sup-
port for this project, and to Wendy, Nic, Graeme, and the team at Skillsmat-
ter.com—and all my talented students—for helping to shape my thoughts on how 
this book should be written. Finally, and by no means least, I’d like to thank the 
rest of the Crane family—Chia, Ben, and Sophie—for putting up with me while I 
wrote two more programming books in parallel, my Mum and Dad, and my cats, 
for making good use of the hot air from the fan exhaust of my laptop during late 
night writing sessions.

Bear Bibeault

There are so many people to acknowledge and to thank. I want to thank all my 
friends and fellow staffers at javaranch.com, who offered encouragement when I 
expressed an interest in writing, and who include (but are not limited to): Ernest 
Friedman-Hill, Ben Souther, Max Habibi, Mark Herschberg, and Kathy Sierra.

 Special thanks go to Paul Wheaton, owner of javaranch.com, for creating such 
a wonderful site and putting his trust in its staffers, and to Eric Pascarello for rec-
ommending me to Manning.

 I want to thank my dogs Gizmo, Cozmo, and Little Bear, who provided com-
panionship by lying on my feet as I penned these chapters and code. Cozmo gets 
special thanks for contributing random characters by swatting at the laptop key-
board as I typed. Thank goodness for editors.

 And I want to thank my partner Jay, who put up with all the long hours it took 
to work on two books in parallel and with all the ranting about Internet Explorer 
and Word, and who offered nothing but encouragement for my efforts.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


ACKNOWLEDGMENTS xvii
Jord Sonneveld

I would like to especially thank both of my co-authors, Dave and Bear, who 
shouldered much of the load in the later stages of development. This book 
would not have happened if it were not for their hard efforts.

 To my parents and grandparents, thank you for buying me my first computer, 
and for all of your support while I was busy with this book.

 Finally, I’d like to thank my cats for short-circuiting my UPS, and Mallory, my 
awesome lady friend who digs UNIX.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


about this book
Ajax has taken the web development community by storm, giving web devel-
opers the potential to create rich user-centered Internet applications. But 
Ajax also adds a new level of complexity and sophistication to those applica-
tions. Ajax in Practice tackles Ajax head-on, providing countless hands-on tech-
niques and tons of reusable code to address the specific issues developers face 
when building Ajax-driven solutions.

 After a brief overview of Ajax, this book takes the reader through dozens of 
working examples, presented in an easy-to-use solution-focused format. Read-
ers will learn how to implement rich user interfaces, including hands-on strat-
egies for drag and drop, effective navigation, event handling, form entry 
validation, state management, choosing Ajax libraries, interfacing to open web 
APIs, and more!

 Unlike the traditional cookbook approach, Ajax in Practice provides a thor-
ough discussion of each technique presented and shows how the individual 
components can be connected to create powerful solutions. A fun “mashup” 
chapter concludes the book. Throughout the book, the examples chosen are 
interesting, entertaining, and above all, practical.

 With this book you will
■ Go beyond what Ajax is, and learn how to put Ajax to work.
■ Master numerous techniques for user interface design and site navigation.
xviii

http://lib.ommolketab.ir
http//lib.ommolketab.ir


ABOUT THIS BOOK xix
■ Work hands-on with professional-grade reusable Ajax code designed to 
solve real problems.

Audience
This book is aimed at web developers who want their applications to be best-in-class 
examples of rich user interfaces, leveraging Ajax technology to achieve this goal.

 While novices to Ajax will find the first two chapters helpful in getting kick-
started into the world of asynchronous requests, this book is primarily aimed at 
developers with at least a basic background in developing web applications and 
in the rudimentary use of JavaScript to effect client-side activity.

 In the new world of rich client-side user interfaces, the amount of client-side 
code has greatly increased and it is important to treat this code with the same 
level of respect due its server-side counterpart. Advanced JavaScript techniques 
that help to organize this client-side code and to use Ajax effectively are pre-
sented in this book.

 If you are a web developer interested in expanding your coding skills not 
only with new technologies, but also with techniques and patterns that make the 
best use of that technology, we think that you will find that this book addresses 
those needs.

 Whether you are a seasoned client-side developer, or one that is just starting 
out creating rich user interfaces to your web applications, we hope this book will 
have something for you.

Roadmap
We’ve divided this book into two parts. Part 1, “Fundamentals of Ajax,” includes 
four introductory chapters that make sure that you’ve got the know-how under 
your belt that you’ll need to make best use of the second part of the book. The 
chapters in part 2, “Ajax Best Practices,” present various practical topics in cli-
ent-side programming, with an emphasis on using Ajax directly, or on practices 
and principles that work well in Ajax-enabled applications.

 Chapter 1 dives head first into what makes Ajax different from other technol-
ogies and why there’s so much to be written (and learned) about it. It presents a 
crash course in using Ajax across the various browsers and how to deal with the 
responses it generates. Finally it closes with a brief look at how use of the Proto-
type library makes the whole process more streamlined.

 In chapter 2, we examine the various categories of Ajax communication 
including JSON, XML and XSLT. We’ll also investigate the use of Ajax with SOAP
web services.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


xx ABOUT THIS BOOK
 Chapter 3 introduces the concept of using object-oriented JavaScript to take 
control of the increasing amount of client-side code that the typical Ajax appli-
cation contains. Key concepts such as the object construction, functions as first 
class objects, functions as class methods, function contexts, as well as closures 
are explained and put into perspective in relation to object-oriented techniques. 
Use of the Prototype library to help easily define JavaScript classes closes out 
this chapter.

 Chapter 4 continues our investigation of Ajax-enabled JavaScript libraries 
with a closer look at Prototype, as well as the Dojo Toolkit, jQuery, and DWR
libraries. While it would be impossible to cover the complete feature set of all 
these offerings, each is examined with particular attention to what they bring to 
the Ajax party. We’ll see each of these libraries put into practice in the copious 
code examples in the remaining chapters.

 The world of event handling is examined in chapter 5. The various event mod-
els are investigated with particular emphasis on cross-browser issues, along with the 
use of the Prototype library to ease those cross-browser pains. The most commonly 
used event types are discussed in relation to how they fit into Ajax applications.

 Chapter 6 dives into the details of data entry validation of form data and how 
it ties into the event handling lessons of chapter 5. Both the Prototype and 
jQuery libraries are used to great advantage in the examples of this chapter, 
which include demonstrating how to hijack form submissions that would usually 
initiate a full-page refresh, and redirect them to less-intrusive Ajax requests.

 In chapter 7, the subject of content navigation is addressed. We’ll examine the 
creation of simple menus, and then progress to more complicated navigational 
aids such as tree views, accordion controls, tab views, and toolbars. The aid of 
libraries such as OpenRico and qooxdoo is enlisted by the code in this chapter.

 Chapter 8 focuses on the mine field of problems created when users use back 
and refresh. We’ll look at the problem both from the point of view of removing 
such abilities from the user, as well as working with such actions. This chapter 
also discusses adding a handy undo facility to applications.

 Drag-and-drop operations are the topic of chapter 9. We’ll examine the 
mechanics of drag and drop sequences, and discuss support for drag and drop 
in JavaScript libraries. We explore the use of Scriptaculous for manipulating 
lists, and develop a simple shopping cart implementation using Scriptaculous 
and ICEfaces.

 In chapter 10, we discuss usability considerations and look at how Ajax can 
help us solve, or at least alleviate, latency issues. Reducing user frustration by pro-
viding server-assisted pro-active help is examined, and another look at validating 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


ABOUT THIS BOOK xxi
form data is taken. Dealing with tab and stacking order in the new arena of rich 
user interfaces is also addressed.

 Chapter 11 covers state management. We’ll explore how to maintain client 
state, cache data, prefetch data, and how to persist the client state. We also dis-
cuss using the AMASS library to persist large amounts of data.

 In chapter 12 we delve into the exciting world of open APIs on the web. We 
learn how to avoid the dreaded “Ajax security sandbox” in order to make Ajax 
requests to remote servers. We then use that knowledge to make use of open APIs 
such as Yahoo! Maps, Geocoding and Traffic, the Google search engine, and 
Flickr photo services.

 Chapter 13 culminates the book with a full “mashup” application that 
employs the open APIs we investigated in chapter 12, as well as the skills and 
techniques gathered throughout the book, to create a complete and working 
mashup application.

Code conventions

All source code in listings or in text is in a fixed-width font like this to separate 
it from ordinary text. Method and function names, properties, XML elements, 
and attributes in text are presented using this same font.

 In many cases, the original source code has been reformatted: we’ve added 
line breaks and reworked indentation to accommodate the available page space 
in the book. In rare cases even this was not enough, and listings include line-
continuation markers. Additionally, many comments have been removed from 
the listings. 

 Code annotations accompany many of the listings, highlighting important con-
cepts. In some cases, numbered bullets link to explanations that follow the listing.

Code downloads
Source code for all of the working examples in this book is available for down-
load from http://www.manning.com/crane2 or http://www.manning.com/Ajaxin-
Practice.

Author Online
Purchase of Ajax in Practice includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical 
questions, and receive help from the authors and from other users. To access the 

http://www.manning.com/crane2
http://www.manning.com/crane2
http://www.manning.com/crane2
http://lib.ommolketab.ir
http//lib.ommolketab.ir


xxii ABOUT THIS BOOK
forum and subscribe to it, point your web browser to http://www.manning.com/
crane2 or http://www.manning.com/AjaxinPractice. This page provides informa-
tion on how to get on the forum once you are registered, what kind of help is avail-
able, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a mean-
ingful dialogue between individual readers and between readers and the authors 
can take place. It is not a commitment to any specific amount of participation on 
the part of the authors, whose contribution to the book’s forum remains volun-
tary (and unpaid). We suggest you try asking the authors some challenging ques-
tions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be 
accessible from the publisher’s website as long as the book is in print.

About the cover illustration
The figure on the cover of Ajax in Practice is a “Sultana,” a female member of a 
sultan’s family; both his wife and his mother could be addressed by that name. 
The illustration is taken from a collection of costumes of the Ottoman Empire 
published on January 1, 1802, by William Miller of Old Bond Street, London. 
The title page is missing from the collection and we have been unable to track it 
down to date. The book’s table of contents identifies the figures in both English 
and French, and each illustration bears the names of two artists who worked on 
it, both of whom would no doubt be surprised to find their art gracing the front 
cover of a computer programming book...two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea mar-
ket in the “Garage” on West 26th Street in Manhattan. The seller was an American 
based in Ankara, Turkey, and the transaction took place just as he was packing up 
his stand for the day. The Manning editor did not have on his person the substan-
tial amount of cash that was required for the purchase, and a credit card and check 
were both politely turned down. With the seller flying back to Ankara that evening 
the situation was getting hopeless. What was the solution? It turned out to be 
nothing more than an old-fashioned verbal agreement sealed with a handshake. 
The seller simply proposed that the money be transferred to him by wire and the 
editor walked out with the bank information on a piece of paper and the portfolio 
of images under his arm. Needless to say, we transferred the funds the next day, 
and we remain grateful and impressed by this unknown person’s trust in one of us. 
It recalls something that might have happened a long time ago.

http://www.manning.com/crane2
http://lib.ommolketab.ir
http//lib.ommolketab.ir


ABOUT THIS BOOK xxiii
 The pictures from the Ottoman collection, like the other illustrations that 
appear on our covers, bring to life the richness and variety of dress customs of two 
centuries ago. They recall the sense of isolation and distance of that period—and 
of every other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at 
the time, has faded away. It is now often hard to tell the inhabitant of one conti-
nent from another. Perhaps, trying to view it optimistically, we have traded a cul-
tural and visual diversity for a more varied personal life. Or a more varied and 
interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of 
the computer business with book covers based on the rich diversity of regional life 
of two centuries ago—brought back to life by the pictures from this collection.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


http://lib.ommolketab.ir
http//lib.ommolketab.ir


Part 1

Fundamentals of Ajax

This book is intended as a head-on rush into the world of Ajax web appli-
cations, with particular emphasis on providing heaps of reusable, hands-on 
examples that illustrate practical techniques you can employ in your own 
applications. So that you are ready for that exciting journey, part 1 serves as 
an intensive preparation for the chapters that follow in part 2. 

 Chapter 1 discusses how Ajax differs from technologies that you might 
be accustomed to and sets up the expectations for the rest of the book. We 
discuss how you can use Ajax in supporting browsers and how asynchro-
nous responses are dealt with in JavaScript code. We also take a brief look at 
Prototype, a popular JavaScript library that we’ll be seeing again and again 
throughout the book.

 Chapter 2 examines the types of response formats that Ajax requests can 
generate: plain text, HTML, JSON (JavaScript Object Notation), XML, or even 
SOAP documents.

 In chapter 3, we investigate the advanced JavaScript techniques that every 
serious Ajax developer needs to have under their belts. We look at JavaScript 
objects and functions, and explain how to use them to create your own Java-
Script classes in order to use object-oriented techniques to grab control of the 
ever-growing amount of client-side code that Ajax requires. You’ll learn how 
JavaScript functions are much more complex and diverse a concept than you 
might have imagined.

 Chapter 4 surveys a handful of JavaScript libraries that offer Ajax support. 
We explore the venerable Prototype library in greater detail, the versatile Dojo 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


2 PART 1 
Fundamentals of Ajax
toolkit, and jQuery, an exciting (relative) newcomer to the Ajax arena. The chap-
ter concludes with a look at how DWR uses Ajax to provide an approximation of 
RPC (remote procedure calling) using Ajax as a transport mechanism.

 
 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Embracing Ajax
This chapter covers
■ What makes Ajax different
■ Basic usage of XMLHttpRequest
■ Simplifying Ajax using libraries
3

http://lib.ommolketab.ir
http//lib.ommolketab.ir


4 CHAPTER 1 
Embracing Ajax
Ajax has been growing up fast in the last year or so. At the time of this writ-
ing, Ajax is officially one and a half years old, although a lot of the underlying 
techniques have existed for several years longer, without a unifying name to 
describe them. The story has been related many times already, from the origin 
of an ActiveX control called XMLHttpRequest in Microsoft’s Web Outlook, to 
Jesse James Garrett’s coining of the term Ajax in February 2005, and the sud-
den explosion of interest in these techniques centered around Google’s Sug-
gest, GMail, and Maps applications. 

 As with any kid growing up in the modern world, it’s been a struggle at times, 
and the Ajax that we’re seeing today looks a lot different from the being we met a 
year and a half ago. The technology has matured, our vocabulary for discussing 
the technology has matured, and the tools available to do the job have matured 
too. We’ll expand on this a little in section 1.4, and we’ll take an in-depth look at 
the new breed of frameworks and libraries that are making Ajax easier to use in 
chapter 4.

 The biggest change that has taken place as Ajax matures, though, is that our 
understanding of what we can do with Ajax has expanded. Developers are asking 
themselves new sets of questions, going beyond the basics of, How do I do it? to 
deeper and broader issues, such as, How do I manage my asynchronous commu-
nications?, How does Ajax affect my application architecture?, and even, What 
does Ajax mean for my business model?

 Collectively, the development community has embraced Ajax and, as with 
the best inventions, used it in new and interesting ways. Google demonstrated 
that, using Ajax, “solved problems” like online maps and webmail still had 
plenty of room for radical innovation. The recent interest in “mash-ups” (the 
mixing of content from more than one website in a single page) has a natural 
affinity with Ajax, too.

 Along the way, we’ve amassed practical experience in using Ajax in real-world 
applications and settings. Our purpose in writing this book is to capture some of 
this practical experience with Ajax, and go beyond the basic proof-of-concept 
code to look at what does—and doesn’t—work in the real world. As such, we 
intend to focus on the deeper, broader questions that are relevant to Ajax today.

1.1 Ajax as a disruptive technology

Ajax is a disruptive technology. That is, it has appeared and is disrupting the nor-
mal way online applications are built and delivered and is changing how people 
perceive web applications and what can be done with them.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Ajax as a disruptive technology 5
 In the narrowest sense, Ajax is simply the business of making asynchronous 
requests to the server. By asynchronous, we mean that the request is taking place in 
the background, out of sight of the user interface. When we’re coding an Ajax 
application, we’re only spending a small fraction of our time making asynchro-
nous calls to the server and processing the response. The rest of the time, we’re 
using established technologies like Cascading Style Sheets (CSS), the Document 
Object Model (DOM), and the browser event model. In short, we’re using the set 
of technologies known as Dynamic HTML, a set of technologies that were practi-
cally dead in the water two years ago, relegated to rendering fancy navigation 
menus and those pop-up ad windows that we all love. Adding asynchronous 
HTTP capabilities into the mix has revitalized these technologies, giving them a 
new reason to be used. So why has this little nugget of Ajax made such a big 
impact? The answer is surprisingly simple, as we’ll see in the next chapter.

1.1.1 Redefining the user’s workflow

The key to understanding the impact that Ajax has had on web development lies 
in the user workflow. By workflow, we mean the way in which the user interacts with 
the application and, in the broader sense, how they experience the application. 
We commonly talk about web apps in terms of a division of work between the 
browser and the server, but these are simply enablers for the important work that 
is going on in our users’ heads. A good app makes the user productive by support-
ing their working patterns, whereas an application that dictates the user’s work 
pattern based on its own technical limitations reduces productivity. Figure 1.1 
shows the workflow of a pre-Ajax classic web application. 

 This workflow follows a work-wait pattern. That is, at any point in time, the 
browser-side application is either presenting information to the user or waiting 
for the server to return a response. From the user’s point of view, the experience 

Figure 1.1  
Work-wait pattern of user 
interaction in a classic 
web application

http://lib.ommolketab.ir
http//lib.ommolketab.ir


6 CHAPTER 1 
Embracing Ajax
is very punctuated. During the wait periods, the user is unable to interact with the 
web app, beyond possibly being able to read some of the content on the page that 
is just about to be replaced by the server response.

 From a usability perspective, this is extremely problematic. Each wait period is 
an interruption to the user’s train of thought. And yet the wait periods must be 
frequent. The majority of web applications will require frequent contact with the 
server. This model is clearly unsuitable for any kind of activity that entails com-
plex problem solving—which is a pity, as browser-based applications have a lot of 
advantages. DHTML provides all the ingredients for a pleasant, responsive user 
interface, and perhaps most notably, web applications are extremely easy to 
deploy and maintain, as no installation on the client machine is required.

 In figure 1.2, we show how Ajax changes the workflow for the user. Here, 
the application is still making the same requests to the server, but is doing so 
using Ajax. This allows the user interface to remain active during the times 
when the server is busy, and therefore removes the continual disruptions to the 
user’s concentration.

 From a business perspective, the importance of this cannot be understated. 
Ajax has opened up a large new market to browser-based line-of-business apps, 
disrupting not only web development, but the world of thick clients and desktop 
apps in the process. Within the enterprise, adoption of Ajax-based solutions is 
considerable. On the public Internet, several heavyweight Ajax-based office 
suites have been developed in the last year, and web-based operating systems are 
under development. Although none of these have yet gone mainstream, progress 
has been considerable.

 So, Ajax has had a significant, and disruptive, effect on the application mar-
ketplace, which presents challenges and opportunities for us as developers. Look-
ing within our own domain of expertise, however, Ajax can be considered 
disruptive in other ways, as we’ll discuss in the next section.

Figure 1.2  
Work-work pattern of interaction 
in an Ajax application

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Ajax as a disruptive technology 7
1.1.2 Redefining web application architecture

Web application architecture has always been an interesting field. Because of the 
challenge of maintaining an adequate user workflow in the face of the work-wait 
nature of the Web, there has been a continual stream of innovation in the way in 
which web applications are organized on the server. Nonetheless, certain conven-
tions have been established, such as the division of responsibility between the pre-
sentation tier and a business tier, consisting of a persistable domain model. 
Figure 1.3 illustrates this design, as well as the ways in which Ajax is affecting it.

 In the pre-Ajax architecture, pictured on the left, all the action is taking place 
on the server, with the browser acting as a dumb terminal, accepting predigested 
HTML content.

 The middle column illustrates the impact of introducing some relatively sim-
ple Ajax into the application. Let’s say that the server still controls all aspects of 
the workflow, but hyperlinks and forms now request fragments of HTML content 
that are used to update parts of the screen, rather than perform a full refresh. 
Server responses are fielded by JavaScript code, which reads the response and 
rearranges the DOM accordingly. The presentation tier on the browser has started 
to get thicker, as we add the JavaScript to route the content received from the 
server. We will also often see the presentation tier on the server starting to get 
smaller, as we’re generating simpler, more focused responses, rather than assem-
bling entire pages every time. 

Figure 1.3  
Architecture of an n-tier web application, 
and the impact of Ajax on the design

http://lib.ommolketab.ir
http//lib.ommolketab.ir


8 CHAPTER 1 
Embracing Ajax
A well-factored classic web application will tend to generate its responses in a 
modular fashion anyway, so introducing some Ajax functionality is not going to 
entail a complete rewrite. However, the pattern of server requests and responses 
over time is likely to change, and we’ve introduced a new presentation tier on the 
browser, written in JavaScript. We may not be disrupting the development team 
with this approach to Ajax, but we are making them think again, and picking up 
some new skills along the way.

 As we get deeper into Ajax—and move toward the new breed of line-of-busi-
ness web apps that Ajax has enabled—the scope for changing the architectural 
tiers increases. On the right-hand side of figure 1.3, we’ve depicted an extreme 
case of an Ajax-based application, in which the JavaScript code in the browser is 
sufficiently complex to be divided into tiers itself. In this case, the client-side pre-
sentation tier has control over the users’ workflow. The client-side code also 
maintains a partial model of the major domain entities, and the JavaScript pre-
sentation tier will tend to communicate to these rather than directly to the server.

 On the server side, we can see that the presentation tier is much reduced. Its 
main responsibilities would be to provide a coarser-grained façade on top of the 
domain model, which defines the main use cases for the application. It may also 
control the marshaling and unmarshaling of data across the HTTP interface. 
Flow control and visual presentation of content have been largely delegated to 
the client-side JavaScript tiers.

 Not every Ajax application will follow this approach to its full extreme, nor 
would it be appropriate to do so. We said at the outset that the architecture of web 
applications is not a well-defined, solved problem, and that plenty of room still 
exists for innovation. Ajax disrupts the web architecture landscape by moving the 
innovation in new directions, not by providing a single solution. Think of figure 
1.3 as presenting three points along a spectrum, with Ajax-enhanced legacy 
applications tending to sit near the middle, and line-of-business Ajax apps 
toward the right-hand side.

 We’ve set the scene for this book now, and we’ll return to these concerns 
throughout our examples. Now, let’s jump into our first coding exercise, with a 
look at how to make an Ajax request. It’s worth doing this once, just to highlight 
a few issues, and the ways in which key technologies such as JavaScript and HTTP
fit together. After this, we’ll pick up speed as we wrap the low-level functionality 
up in libraries, and move on to higher-level concerns. First, though, let’s look at 
the XMLHttpRequest, and see what it can do. 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Ajax in ten minutes 9
1.2 Ajax in ten minutes

If you’re already familiar with how Ajax works, then you can safely skip the rest of 
this chapter. If you’re not, or you’re up for a refresher, this text covers the core 
pieces of functionality that allow Ajax applications to be built. Ajax is not a spe-
cific product, nor is there a specific set of Ajax functions in the browser. Instead, 
as you’ll see, Ajax is the use of a specific JavaScript object called XMLHttpRequest
combined with JavaScript events and dynamic HTML (DHTML) (also called DOM
manipulation). In this section, we’ll take the XMLHttpRequest object out for a 
walk, and come to grips with its basic capabilities. 

1.2.1 Introducing XMLHttpRequest

When we write classic web applications, we use the HTTP protocol to communi-
cate between the browser and the server. The primary means of user interaction 
are hyperlinks and HTML forms, both of which trigger HTTP requests in the 
browser. A limitation of both of these is that they automatically populate the cur-
rent page, or a frame in the current page, with the response. That is, they are 
designed for retrieving content across the Web. 

 As we start to work with more complex client applications, we may need to 
retrieve data rather than content, or retrieve finer-grained content to insert into 
the current page. The XMLHttpRequest object (which we’ll abbreviate to XHR
from here on) was developed as a solution to this problem, allowing greater pro-
grammatic control over HTTP requests.

 As we discussed in the previous section, the XHR object allows us to make 
HTTP requests to the server and to receive the response programmatically, rather 
than the browser automatically rendering the response as a new page. From the 
perspective of the client-side code, then, there are several things that we need to 
do in order to achieve this, as summarized in figure 1.4.

 The first thing that we need to do is to create an XHR object b. We then 
provide it with the information that it needs to make the request C. Finally, we 
handle the response when it comes back in D. In between sending the request 
and receiving the response, there is work to be done on the server too, of 
course, and some more code for us to write, in PHP, Java, a .NET language, or 
whatever our current environment dictates. We’re interested here primarily in 
the client-side code, though, as the server-side mechanics of handling a simple 
Ajax request are not very different from pre-Ajax web programming. We’ll 
present server-side code later in the book, for the more involved examples, but 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


10 CHAPTER 1 
Embracing Ajax
for now, we just want to figure out how the client works. We’ll refer back to fig-
ure 1.4 as we work through the steps.

 The first thing that we need to do is to get ahold of an XHR object.

1.2.2 Instantiating XMLHttpRequest 
The XHR object is built into the four major modern browser families: Internet 
Explorer, Firefox/Mozilla/Netscape, Safari, and Opera. To use the object, you’ll 
create an instance of the XHR object, give it some parameters to set up the 
request you want to send, tell it to send the request, and then process the result. 
Listing 1.1 shows a cross-browser example of the first step, namely, instantiating 
the XHR object.

var xhr;                                        
if (document.XMLHttpRequest) {   
   xhr = new XMLHttpRequest();   
} else {                                        
  xhr = new ActiveXObject("Microsoft.XMLHTTP");   
} else {
  alert("cannot use Ajax");
}

The reason for the complexity of this code is cross-browser incompatibility (which 
should come as no surprise to seasoned web developers). Internet Explorer (prior 

Figure 1.4  
Key stages in making an Ajax request 
using the XHR object

Listing 1.1 Instantiating an XHR object

Detects XHR object

Creates native object

Creates ActiveX control

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Ajax in ten minutes 11
to version 7, at least) does not have a native XHR object. Rather, it implements 
XHR as an ActiveX object. Because of this, if the user has “Safe ActiveX” scripting 
turned off, they will not be able to run an Ajax-enabled application. (Before cast-
ing blame on Microsoft for this implementation, remember that they invented 
the XHR object in the late ’90s and implemented it as an XML parsing module 
that started shipping with IE. Only recently have other major browsers added 
support for XHR.)

 We also need to check for older browsers that don’t support any kind of XHR
object, and issue some sort of message to them, stating that the app won’t run on 
this browser. Depending on the browser in which the code is being run, we will 
follow one pathway or another through the if() statements, and, at the end of it, 
have a reference to an XHR object. It might be a native object or an ActiveX con-
trol, but as long as we have an XHR of some kind, we can start to use it. Fortu-
nately, whatever kind of XHR we have, the methods and properties of the object 
are pretty much identical from here on.

1.2.3 Sending a request

Let’s return to figure 1.4 briefly. The XHR object is now instantiated, so we’re on 
to the second stage: sending the request. Before we start examining how the XHR
object does this, let’s look at the basic information needed to set up a call to the 
server. We will need

■ The URL of the server resource
■ The HTTP Request type, usually a GET or a POST

■ Parameters needed by the server resource
■ A JavaScript function to interpret the results returned from the server

OK, let’s start checking these items off the list. The first two items, and possibly 
the third, are passed when calling the open() method. open() initializes a connec-
tion to a URL. The method is overloaded and has three forms:

open(http_method, url)
open(http_method, url, asynchronous)
open(http_method, url, asynchronous, userid, password)

The method is almost always a GET or POST, but could be any valid HTTP
method such as PUT, DELETE, HEAD, and so forth, that is supported by the 
server. If asynchronous is true, then the request will run in the background, thus 
allowing the user to perform other work while the XHR request is being pro-
cessed. If it is false, then the request will be synchronous and the user will be 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


12 CHAPTER 1 
Embracing Ajax
blocked until the request is finished, much the same way as when working with 
traditional work-wait web applications. 

 This third argument reflects the legacy of XHR as a general-purpose ActiveX 
control. Within some applications, it may make sense to make synchronous 
requests, but the JavaScript interpreter is essentially single-threaded, and making 
a synchronous request will block all user interaction with the browser until the 
response has returned. In an Ajax app, always make your requests asynchronous.

 userid and password are used to connect to servers that require them. This is 
only valid for HTTP authentication (as opposed to NT domain-based authentica-
tion, for example), which sends passwords as plain text, and should be treated 
with caution unless operating over a secure socket via HTTPS.

 So, to open a connection to a URL, we might write

xhr.open('GET', 'servlets/ajax/getItem?id=321', true);

Because we’re using the HTTP GET method, we’re passing parameters to the 
server in the URL as a query string. If we were using POST, we’d pass them in 
the request body, which we’ll look at in a minute. 

 The second stage to priming the XHR object is to assign a callback handler 
function to receive the response. For now, we won’t worry about what the function 
does, but simply assign it. For example:

xhr.onreadystatechange = parseResponse;

Note that we pass a reference to the function object. We don’t call the function at 
this point—there are no parentheses after the function—but inform the XHR that 
this is the function to call when the response comes back. This callback assign-
ment is identical to setting UI event handlers, such as onclick and onmouseover
on DOM elements.

 The third stage is to call the send() method. send() executes the server call 
and can be used to send additional data not specified in the URL. send() takes a 
single argument, the additional data to be sent in the request body. Normally, 
only POST requests have a body, so for GET requests, we just pass an empty string:

xhr.send('');

That’s it! The request is now on its way to the server, and there’s nothing more for 
the client code to do until the response comes back. We’ll address that issue in the 
next section.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Ajax in ten minutes 13
1.2.4 Processing the response

We’ve fired the request at the server, and we can assume for now that the server 
will do its job and return a response to us. Referring again to figure 1.4, the next 
thing that we need to do is to receive the response when it comes in and unpack 
it. In the previous section, we already made preparations for this moment, by 
assigning a callback handler function to our XHR object. In this section, we’ll see 
what happens when that callback is invoked.

 You might be forgiven for thinking that the XHR would simply inform you 
when the response had arrived, but instead, it informs you at several points in the 
lifecycle of the response. In a minority of cases, this is extremely useful informa-
tion to have, but normally, it’s a distraction.

 We assigned a callback handler called onreadystatechange in the previous sec-
tion. This function will be called at least once for every ready state that the XHR
object undergoes. In your onreadystatechange function, you will need to manu-
ally check the readyState property to determine where the request currently 
stands in its lifecycle and whether you can process the final result. readyState will 
always be one of these predefined values:

You will almost always only check for readyState == 4, meaning that the request 
is finished. So a typical callback function might look like this:

xhr.onreadystatechange = function(){
  var ready = xhr.readyState;
  if (ready == 4){
    parseCompletedResponse(xhr);
  }
}; 

That is, we check whether the readyState property value is 4, which indicates that 
the response has arrived in its entirety and can be parsed. If so, we hand over to a 
parsing function. When we parse the response, the first thing we’ll want to know 
is whether the request was handled successfully.

Value State Description

0 Uninitialized open() has not been called.

1 Loading open() has been executed.

2 Loaded send() has been executed.

3 Interactive The server has returned a chunk of data.

4 Complete The request is complete and the server is finished sending data.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


14 CHAPTER 1 
Embracing Ajax
 The status property contains the HTTP status of the request. A valid HTTP
GET or POST normally returns 200 if the requested URL was processed correctly. 
A 404 is returned if the URL does not exist. Typically, any result code between 200 
and 299 represents success; any other code indicates failure or further action by 
the browser. By combining readyState and status, you can determine whether 
the request has finished successfully. We might modify our function to something 
like this:

xhr.onreadystatechange = function(){
  var ready = xhr.readyState;
  if (ready == 4) {
    var status = xhr.status;
    if (status >= 200 && status < 300) {
      parseCompletedResponse(xhr);
    } else {
      parseErroredResponse(xhr);
    }
  }
}; 

Let’s assume that our response has come in fine. The response is provided in two 
properties: responseText and responseXML. responseText presents the response as 
a plain string. responseXML presents the response as a parsed XML document. We’ll 
look at both of these in more detail in the examples in this and the next chapter.

 We’ve now followed through the full lifecycle of a simple Ajax request and 
response. We’ve had to handle a lot of plumbing along the way, in getting ahold 
of the object, in assembling the request, and in parsing the response. The good 
news is that, having demonstrated these low-level details once, we aren’t going to 
return to them again in this book, as there are several good frameworks and 
libraries out there that will do the grunt work for us. 

 However, knowing how XHR works is useful, because it will help us to under-
stand what the Ajax libraries wrappers can and can’t do. To this end, we’ll present 
a few additional methods and properties of the XHR object before moving on to 
higher things.

1.2.5 Other XMLHttpRequest methods and properties

There are other, lesser-used, XHR methods. In simple cases, you won’t need to 
know about these, but they can be very useful for specific tasks.

abort()
abort() aborts the current request, if possible. This is a client side-only abort—if 
the send() method has already been called, the server will have received the 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Ajax in ten minutes 15
HTTP request and will process the result. However, the browser will ignore the 
result and stop processing.

setRequestHeader( header, value )
This function sets a header value for the HTTP request. It is most commonly used 
for setting the content type of the request body. Any valid HTTP header value can 
be used. You might use this function for a number of purposes, for example, to 
set the request MIME type to x-www-form-urlencoded so you can emulate posting 
an HTML form:

xhr.setRequestHeader(
  'Content-type', 
  'application/x-www-form-urlencoded'
);

With Ajax, we’re not limited to POSTing key-value pairs to the server. We 
might send an XML payload, in which case, we should tell the server that we’re 
sending XML:

xhr.setRequestHeader(
  'Content-type', 
  'application/xml; charset=UTF-8'
);
xhr.send("<data source='ajax in practice'>hello world</data>");

We’ll discuss using XML with Ajax in greater detail in chapter 2. There are also 
some methods we can make use of when handling the response.

getResponseHeader(header)/getAllResponseHeaders()
An HTTP response typically contains many headers, each of which is a key-value 
pair. The XHR object can list all header names using getAllResponseHeaders(), 
and it can read a header value using getResponseHeader(), which takes a header 
name as argument. For example, to determine if the server is a Microsoft IIS
server, you could use the following:

if (xhr.getResponseHeader("Server")
  .indexOf("Microsoft-IIS") != -1 ) {
    alert("The server is a Microsoft IIS server.");
}

Now that we’ve worked through the use of the XHR object in detail, we can turn 
our attention to more interesting questions. In the remainder of this chapter, 
we’ll introduce the Prototype library’s helper objects for making Ajax easier, and 
start working through a series of examples that will explore what we can do with 
our newfound power to fire asynchronous requests at the server.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


16 CHAPTER 1 
Embracing Ajax
1.3 Making Ajax simple using frameworks

In the previous section we saw the basics of how to create an Ajax request using 
the XHR object. Now that we have the ability to fetch data from the server without 
initiating a full-page refresh, we find ourselves wondering what we’re going to say 
to the server, and what sort of a response it might offer. 

 The ground rules laid down by the HTTP protocol are fairly loose. Any com-
munication must be started by the client’s request, and completed by the server’s 
response, and both halves of the communication must be text-based. Beyond 
that, though, more or less anything goes. In this chapter we will look at the dif-
ferent forms of data that can be passed using Ajax, and begin to consider how 
we’ll use Ajax to structure the browser/server communication in our application 
as a whole.

 The second thing that we’ll introduce in this chapter is some of the library and 
framework code that can make our lives easier. Using a raw XHR object, we wrote 
a lot of code to figure out various cross-browser conundrums, and manually 
orchestrated all the fine-grained details of the HTTP request and response. This 
was fine for learning how HTTP works, but when we’re writing production code, 
we will generally be concerned with higher-level issues regarding application 
state and logic, and have the low-level plumbing details taken care of for us. 

 Fortunately, several good frameworks and libraries are available for Ajax, and 
we’ll lean on some of them here. We’ll present some of the frameworks more for-
mally in chapter 4. For now, we’ll introduce them as we go along.

 In the examples in this chapter, we want to focus on the way in which data is 
passed between the client and the server. We’ll therefore be sticking with the 
“Hello World” type of example throughout this chapter. The examples in this 
chapter use JavaServer Pages (JSP) on the back end, and have been tested on a 
Tomcat web server. We provide a .war file for all the examples in the download 
code that accompanies this book, which provides a launching page for the various 
examples, as illustrated in figure 1.5.

 Now, without further ado, let’s take a look at the first example of using Ajax to 
communicate with the server.

 Although it is quite straightforward to create an Ajax request as we have seen 
in the previous section, there’s a lot of bookkeeping involved. When we’re deliv-
ering a real web application to a client, asynchronous calls to the server are simply 
a means to an end. Having to focus on readyStates, HTTP headers, and URL-
encoded query strings every time we want to talk to our domain model will be 
tedious and distracting.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Making Ajax simple using frameworks 17
As with any software development, having understood the issues involved in a 
particular task, we want to encapsulate our solutions into a helper object or set 
of functions that allows us to focus our attention on the next level up. We want to 
be able to set up a standard Ajax request and handle the response in as few lines 
of code as possible, and still have access to the fine-tuning capabilities when we 
need them. 

 We could write our own helper library to encapsulate the XHR object, or we 
could make use of a third-party library that has already done the grunt work for 
us. In this section, we’ll look at the Prototype library’s Ajax helper classes, and 
see how they can simplify Ajax for us. First, we’ll look at the business of making 
a request.

Figure 1.5 Launch page for the examples in chapters 1 and 2 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


18 CHAPTER 1 
Embracing Ajax
1.3.1 Making requests with Prototype’s Ajax.Request object

When we sent an Ajax request to the server in our example in section 1.2, we 
faced a number of messy issues. First, we had to create an XHR object in a 
browser-independent fashion. Second, we had to invoke several methods on the 
XHR object to provide it with a URL, HTTP method, and POST body, and set 
other HTTP headers. Getting these right required a working knowledge of the 
HTTP protocol. A working knowledge of the underlying stack is always a good 
thing, but we shouldn’t be forced to think about it every time we make a call back 
to the server.

 A good wrapper object such as Prototype’s Ajax.Request will automate the 
cross-browser issues for us. It will also allow us to pass in only the information 
that concerns us, and automatically provide sensible defaults for any parame-
ters that we don’t explicitly provide.

Problem
Working with the XHR object requires us to concentrate on a lot of low-level 
details, such as obtaining the object in a cross-browser fashion, and responding to 
subtle changes in readyState during the arrival of the response.

Solution
Use a framework to simplify creating an Ajax request. Let’s start by introducing 
our simple application, the UI for which is shown in figure 1.6.

We’ve provided a text input box and a submit button. When the button is 
clicked, the text in the input box will be sent to the server, and the phrase 
“Hello, stranger” replaced with the name returned by the server. In this case, 
the server isn’t actually doing anything with the name—it’s simply echoing it 
back—but our concern here is fielding the response on the client. On the 
server, any kind of processing might be taking place. We’ll start by looking at 
the client-side code.

Figure 1.6  
User interface for version 1 of 
our Hello World application

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Making Ajax simple using frameworks 19
Coding the client 
Listing 1.2 shows the client-side code for this example.

<html>
<head>
<title>Hello Ajax version 1</title>
<style type='text/css'>
* { font-family: Tahoma, Arial, sans-serif; }
#helloTitle{ color: #48f; font-size: 1.5em; }
</style>
<script type='text/javascript' 
  src='prototype.js'> </script>   
<script type='text/javascript'>
window.onload=function() {
  document.getElementById('helloBtn')
  .onclick = function(){
    var name = document.getElementById('helloTxt')
      .value;
    new Ajax.Request(                             
      "hello1.jsp?name = "+encodeURI(name),   
      {
        method:"get",                             
        onComplete:function(xhr){              
          document.getElementById('helloTitle')
          .innerHTML = xhr.responseText;       
        }                                      
      }
    );
  };
};
</script>
</head>
<body>
<h1 id='helloTitle'>Hello, stranger</h1>
<p>Please introduce yourself by entering 
your name in the box below</p>
<input type='text' size='24' id='helloTxt'>
</input>&nbsp;
<button id='helloBtn'>Submit</button>
</body>
</html>

The first thing that we need to do is to include the Prototype library in our page 
b. Prototype ships as a single file, which makes this a one-line task.

Listing 1.2 hello1.html

Includes Prototype 
library

 B

Creates Ajax.Request 
object

 C

Provides URL (mandatory) D

Provides optional 
parameters

 E

http://lib.ommolketab.ir
http//lib.ommolketab.ir


20 CHAPTER 1 
Embracing Ajax
 In the window.onload event handler, we reference the button object, and assign 
a click event handler to it. Within the event handler, we read the name from the 
text input box C, and then create an Ajax.Request object. This object takes two 
arguments. The first is the URL of the resource on the server D. The second is a 
free-form JavaScript object that may contain an arbitrary set of extra configura-
tion options E. These can include HTTP verbs, headers, request bodies, a variety 
of callback options and other features. In this case, we only pass in two options. 
First, we set the HTTP method to GET, because the Ajax.Request defaults to POST. 
Second, we provide a callback function.

 Looking back at section 1.3, we saw that the XHR object took a callback that 
was triggered whenever the readyState was changed. When the Ajax.Request cre-
ates an XHR object internally, it defines an internal callback to handle these fine 
details. As an end user of the library, we can provide higher-level callbacks, such 
as onComplete, that fit better with our immediate requirements. In the relatively 
rare cases that we do want to be notified of other changes in readyState, we can 
provide additional callback functions to capture these. 

 Our callback function is admirably simple, modifying the text in the title ele-
ment of the page, as shown in figure 1.7. The user has typed in their name and 
clicked the submit button, and the title has been modified.

That’s the client-side code handled for this example. In the next section, we’ll 
take a brief look at the server-side code.

Coding the server
The server-side implementation for this example is extremely simple, as you can 
see in listing 1.3.

<jsp:directive.page contentType="text/plain"/>
<%
String name = request.getParameter("name");
%>
Hello, <%=name%>

Listing 1.3 hello1.jsp

Figure 1.7  
Hello World version 1 after 
processing the Ajax response

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Making Ajax simple using frameworks 21
As we noted earlier, we’ve made the server-side code as simple as possible for this 
example, because we want to focus on the client-side code. Please feel free to 
imagine a complex n-tier app sitting behind this simple JSP—the principles are 
the same. 

Discussion
The Ajax.Request class provided by Prototype allowed us to make our Ajax 
request with a minimum of fuss. All we had to provide was a URL, the HTTP
method, and a callback function. Internally, Ajax.Request worked out how to cre-
ate the XHR object and filled in the blanks when shaping the request. It also sim-
plified the callback semantics considerably, allowing us to supply a function that 
would only be called once on completion of the response, and that therefore only 
had to deal with application logic.

 Prototype provides a lot more than just the Ajax helper classes. In this exam-
ple, we’ve deliberately avoided using any of these other features, as we’re simply 
using Ajax.Request as an example of a well-designed wrapper object. Similar 
wrappers, with equally straightforward calling semantics, exist in other popular 
Ajax libraries. Dojo has the dojo.io.Request class, MochiKit has MochiKit.Async, 
and jQuery has the $.ajax() function, to name but three. Depending on the 
library that you plan to use, the exact capabilities of your Ajax wrapper will vary, 
but you’re likely to experience a satisfactory time savings from any of them.

 The callback function that we provided to handle the response was, in this 
case, very simple. In the next example, we’ll see what’s needed to allow for Ajax-
based generation of richer content.

1.3.2 Simplifying Ajax responses

In the previous example, we used the innerHTML property to write the server con-
tents directly into a DOM element on the page. The response that the server 
offered us was a simple piece of text. In many cases, though, we will want the 
server to deliver more complicated information to us, often with an internal 
structure of its own. In chapter 2, we’ll look at ways of passing that structured 
information between the server and the client.

 Structured data lies at the heart of most web applications. On the server side, 
the data is typically stored in a relational database. On the client, the data is dis-
played as some sort of report or user interface. In between, the data may be 
manipulated or operated on by the logic of the application. Traditionally, this has 
been done entirely on the server, with the client acting as a dumb terminal. With 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


22 CHAPTER 1 
Embracing Ajax
Ajax, we have the capability to run logic on the client or the server, or even both. 
There are many permutations to explore.

 We’ll start off by following the dumb terminal approach. The server generates 
a rich report from the application data, and sends it to the client for display. The 
client doesn’t need to know what the information means, but only how to display 
it. We’ll jazz up the response a little for this example, returning an extra bit of 
content (entirely trivial, in this case!) below the header. The example with the full 
response inserted into the page is shown in figure 1.8.

Problem
The server is sending us a rich visual report (rather than a simple piece of text) on 
the application state that is to be incorporated into our user interface.

Solution
The solution to this problem is quite straightforward, and requires little in the 
way of JavaScript coding. The changes on the client are minimal, in fact, and we 
can still use the innerHTML property to paste the response into our document. 
Listing 1.4 shows the client-side code for example 2.

<html>
<head>
<title>Hello Ajax version 2</title>
<style type='text/css'>
* { font-family: Tahoma, Arial, sans-serif; }
#helloTitle{ color: #48f; }
</style>
<script type='text/javascript' src='prototype.js'> </script>
<script type='text/javascript'>
window.onload=function(){
  $('helloBtn').onclick = function(){
    var name = $('helloTxt').value;
    new Ajax.Request(
      "hello2.jsp?name = "+encodeURI(name),
      {

Listing 1.4 hello2.html

Figure 1.8  
Result of returning rich HTML 
in the Ajax response

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Making Ajax simple using frameworks 23
        method:"get",
        onComplete:function(xhr){
          $('helloTitle').innerHTML = xhr.responseText;
        }
      }
    );
  };
};
</script>
</head>
<body>
<div id='helloTitle'>
<h1>Hello, stranger</h1>
</div>
<p>Please introduce yourself by entering your name in the box below</p>
<input type='text' size='24' id='helloTxt'></input>
&nbsp;
<button id='helloBtn'>Submit</button 
</body>
</html>

The main changes that need to be made here are on the server. Our modified JSP
is shown in listing 1.5.

<jsp:directive.page contentType="text/html"/>
<%
String name=request.getParameter("name");
%>
<h1>Hello <%=name%></h1>
<p>I used to know someone called <b><i><%=name%></i></b>. Are you 
related?</p>

We’ve set the MIME type of the response to text/html, out of politeness. This 
isn’t strictly necessary but provides a statement of intent. Some Ajax libraries will 
pay attention to the MIME type of responses, as you’ll see, so it’s a good habit to 
get into.

 The body of the response generates a small bit of content from the input 
parameters. In this case, we’re not doing anything other than parroting back the 
name supplied by the user, but that’s just to keep the back end simple for our 
example. In production, we’d have some proper code—front controllers, domain 
objects, databases, and so on—taking the request parameters and generating a 

Listing 1.5 hello2.jsp

http://lib.ommolketab.ir
http//lib.ommolketab.ir


24 CHAPTER 1 
Embracing Ajax
response. As far as the Ajax mechanics are concerned, the effect would be the 
same, with a fragment of HTML being returned to the client.

Discussion
Generating HTML fragments on the server is a viable strategy for Ajax web app 
development, and can provide everything one needs. It offers a clear incremental 
migration path from classic web applications and frameworks, in which the server 
is already generating HTML to send to the browser.

 We used innerHTML to insert the new fragments into the existing page. This is 
effective in the majority of cases, completely wiping out the existing content in 
an element and replacing it with the new content. If we want finer control, there 
are other DOM methods such as insertAdjacentHTML() and createContextual-
Fragment(), but these are generally not cross-browser. The Prototype library 
offers cross-browser wrappers around these in the form of the Insertion objects, 
and other libraries may provide similar features.

 When using innerHTML , there are a couple of “gotchas” you need to be aware 
of. First, <script> tags included in a page using innerHTML will be ignored by the 
browser. Second, HTML table elements, with the exception of the individual cell 
(i.e., the <TD> tag) have read-only innerHTML properties.

 Finally, it’s worth pointing out that the Prototype library provides a special 
subclass of Ajax.Request that makes it even easier to do this sort of thing by 
automatically assigning the response as the innerHTML property of a named 
DOM element. If you’re using Prototype and want to send HTML fragments 
from your server, we urge you to take a look at the Ajax.Updater, but we didn’t 
want to use it here ourselves because it hides a lot of the underlying mechanics 
that we wished to explore, and it would focus the discussion too narrowly on a 
single library.

1.4 Summary

We began this chapter with a brief discussion of where Ajax is now. The technol-
ogy is maturing fast, and doing some interesting things. In terms of general 
trends, we noted two things. First, the discussion has moved on from how to make 
an Ajax request to what to do with this capability. Interesting issues are being 
raised in terms of web application architecture, and in terms of business models, 
and what new possibilities Ajax is enabling.

 The second point to note is the emergence of mature frameworks and librar-
ies for Ajax. The days of hand-coding cross-browser plumbing are, thankfully, 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Summary 25
receding, and many good practices are being wrapped up in libraries such as 
Prototype, Dojo, Rico, and DWR, to name a few.

 These two issues shape this book. We want to discuss the higher-level issues 
around Ajax development, and we want to show you how to make life easy when 
addressing these issues by using best-of-breed toolkits. Together, these will give 
you the practical knowledge to use Ajax successfully in real-world settings.

 We can’t forget the plumbing and low-level details entirely, though. In the sec-
ond part of this chapter, we walked through the mechanics of the XHR object. We 
then showed you how to make it a lot easier by using a wrapper object, in this case 
Prototype’s Ajax.Request. In the final example, we began to address the next level 
of application design, by asking what sort of data the server might respond with. 
We looked at the simplest approach, whereby we retrieved fragments of HTML
from the server, and stitched them into the existing page.

 This approach can serve us well, and deliver a lot of the benefits of Ajax to our 
apps with relatively simple JavaScript. However, it cannot provide a high degree of 
responsiveness to complex operations on the client, as all-important decisions 
require a round-trip to the server. For that, we need to move some of the intelli-
gence to the client. In the next chapter, we’ll look at ways of doing that, using Java-
Script, JSON, and XML.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


How to talk Ajax
This chapter covers
■ Identifying the main dialects of Ajax
■ Using Ajax with JavaScript and JSON
■ Working with XML, XPath, and web services
26

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Generating server-side JavaScript 27
Ajax is a melting pot, with many different approaches to application design and a 
myriad of dialects. In chapter 1 we looked at the mechanics of the XHR object 
that lies at the heart of Ajax, and you saw how to wrap those details up in a helper 
object. Without the distraction of having to write all that plumbing code by hand, 
we can focus on the more interesting issues of structuring the communication 
between the server and the client. We can now look at the different categories of 
Ajax communication, and teach you how to talk Ajax in a range of dialects.

 We’ll continue to work with the Hello World example that we introduced in 
chapter 1 and the problem/solution format. We’ll also continue to use frameworks 
to handle the low-level Ajax concerns for us and free us up to look at the interest-
ing issues. Many of the examples will continue to use Prototype’s Ajax. Request
object, but we’ll also take a look at Sarissa and a web services client toolkit. Let’s 
begin by looking at JavaScript as a medium of communication. 

2.1 Generating server-side JavaScript

When the server returns HTML from an Ajax request, we can generate complex 
user interfaces on the fly, but they remain largely static. Any significant interac-
tion with the application will require further communication with the server. In 
many cases, this isn’t a problem, but in others, it is necessary to deliver behavior 
as well as content. All client-side behavior is driven by JavaScript, so one way for-
ward is for the server to generate JavaScript for us.

2.1.1 Evaluating server-generated code

When handling server-generated HTML, we can go a long way using only 
innerHTML. When handling server-generated JavaScript, we can make similar use 
of the eval() method. JavaScript is an interpreted language, and any snippet of 
text is a candidate for evaluating as code. In the next example, we’ll see how to 
use eval() as part of the Ajax-processing pipeline. 

 We’ll stick with our Hello World app through this chapter. In this first 
example, we’ll use the response to modify the title element again, as shown in 
figure 2.1.

Figure 2.1  
Result of evaluating server-
generated JavaScript

http://lib.ommolketab.ir
http//lib.ommolketab.ir


28 CHAPTER 2 
How to talk Ajax
Problem
The server is returning JavaScript code from an Ajax request. We need to run the 
code when we receive it.

Solution
Using eval() is almost as simple as using innerHTML. Listing 2.1 presents the third 
incarnation of our Hello World application.

<html>
<head>
<title>Hello Ajax version 3</title>
<style type='text/css'>
* { font-family: Tahoma, Arial, sans-serif; }
#helloTitle{ color: #48f; }
</style>
<script type='text/javascript' src='prototype.js'> </script>
<script type='text/javascript'>
window.onload=function(){
  $('helloBtn').onclick=function(){
    var name=$('helloTxt').value;
    new Ajax.Request(
      "hello3.jsp?name="+encodeURI(name),
      {
        method:"get",
        onComplete:function(xhr){
          eval(xhr.responseText);   
        }
      }
    );
  };
};
</script>
</head>
<body>
<div id='helloTitle'>
<h1>Hello, stranger</h1>
</div>
<p>Please introduce yourself by entering your name
 in the box below</p>
<input type='text' size='24' id='helloTxt'></input>
&nbsp;
<button id='helloBtn'>Submit</button>
</body>
</html>

Listing 2.1 hello3.html

Evaluates the response b

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Generating server-side JavaScript 29
Comparing our earlier solution with listing 2.1, you can see that we’ve had to 
change very little. We can still read the response body using the responseText
property of the XHR object, which we then pass straight to eval() b.

 We want to modify the title block of the page when the response comes in. To 
do this, we need to perform a bit of DOM manipulation. The method calls can be 
generated directly on the server, as shown in listing 2.2.

<jsp:directive.page contentType="text/plain"/>
<%
String name = request.getParameter("name");
%>
document.getElementById('helloTitle').innerHTML = 
  "<h1>Hello, <b><i>"+name+"</i></b></h1>";

Generally, it is good manners to set the MIME type, but we’ve switched it off here 
because Prototype is clever enough to recognize the text/javascript MIME type
and would evaluate it automatically for us. Here we want to do the evaluation 
manually in order to demonstrate some general principles, not show off Proto-
type’s power-user features!

Discussion
In this example, we’ve demonstrated the principle of passing JavaScript from the 
server to the client, but in the process we’ve raised a few interesting problems. 
We’ll fix these up in the next example, but first let’s examine them.

 The first problem is that we’ve created a very tight coupling between the client 
and server code. The JSP needs to know the id attribute of the DOM element that 
it is going to populate. If we change the HTML on the user interface, we need to 
alter the server code. In a small example like this one, that’s not too great a bur-
den, but it will quickly become unscalable.

 Second, we’ve created a solution looking for a problem. We aren’t doing any-
thing here that we couldn’t do more elegantly and simply using innerHTML. As 
long as we’re using the response to update a single element on the page, this 
approach is overkill. 

 In the next example, we’re going to address both these points and see how to 
reduce the coupling across the tiers as well as update several elements at once.

Listing 2.2 hello3.jsp

http://lib.ommolketab.ir
http//lib.ommolketab.ir


30 CHAPTER 2 
How to talk Ajax
2.1.2 Utilizing good code-generation practices

When we generate JavaScript on the server, we are practicing code generation. 
Code generation is an interesting topic in its own right, with a well-established set 
of conventions and ground rules. A cardinal rule of code generation is to always 
generate code at the highest level possible. 

 In the next example, we’re going to increase the complexity of our Hello 
World application a little and demonstrate how to tighten up our code genera-
tion to cope with it.

Problem
Writing low-level JavaScript on the server leads to unacceptable tight coupling 
between the server and client codebases. This will give our application severe 
growing pains and lead to increased brittleness.

 At the same time, we want to maintain a list of previous visitors to our page, as 
well as display the name of the current visitor. The server is going to classify visi-
tors’ names as either long or short, and we’ll provide a separate list for each (once 
again, this is a surrogate for real business logic, because we want to keep the 
server code simple in this chapter). 

 We’ll also pop up an alert message when the data comes in. The revised UI for 
the Hello World app is shown in figure 2.2.

 Every time the form is submitted to the server, the most recent name will be 
displayed in the title element, as before. We’ll also keep a running list of visitors 
in the box elements on the left. Figure 2.3 shows our version 4 Hello World in 
action, after several interesting visitors have passed by!

Figure 2.2 Expanded UI for version 4 of Hello World, with a list of previous visitors 
alongside the form

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Generating server-side JavaScript 31
Solution
When the response comes back from the server, we want to update the client with 
the new information. The code that the server is sending us is simply a carrier for 
some data, so we will simplify the server-generated JavaScript to call a single 
updateName() function, passing in the data as arguments. 

 On the client side, we need to define that updateName() function as handwrit-
ten JavaScript, as shown in listing 2.3. updateName() will handle all of our expan-
ded requirements. 

<html>
<head>
<title>Hello Ajax version 4</title>
<style type='text/css'>
* { font-family: Tahoma, Arial, sans-serif; }
#helloTitle{ color: #48f; }
.sidebar{
  background-color: #adf;
  color: navy;
  border: solid blue 1px;
  width: 180px;
  height: 200px;
  padding: 2px;
  margin: 3px;
  float: left;
}
</style>

Listing 2.3 hello4.html

Figure 2.3 Hello World version 4 after several visits. Here we see a modified title, an 
updated list to the left, and an alert message, all from a single server-generated call.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


32 CHAPTER 2 
How to talk Ajax
<script type='text/javascript' src='prototype.js'> </script>
<script type='text/javascript'>
window.onload=function(){
  $('helloBtn').onclick = function(){
    var name=$('helloTxt').value;
    new Ajax.Request(
      "hello4.jsp?name = "+encodeURI(name),
      {
        method:"get",
        onComplete:function(xhr){
          eval(xhr.responseText);   
        }
      }
    );
  };
};

function updateName(name,isLong){   
  $('helloTitle').innerHTML=
    "<h1>Hello, <b><i>"+name+"</i></b></h1>";
  var listDivId=(isLong) 
    ? 'longNames' : 'shortNames';
  $(listDivId).innerHTML+=name+"<br/>";
  alert("Hey, we've got a visitor called '"
    +name+"' here");
}

</script>
</head>
<body>

<div id='shortNames' class='sidebar'>
<h5>People I've met with short names</h5><hr/>
</div>
<div id='longNames' class='sidebar'>
<h5>People I've met with long names</h5><hr/>
</div>
<div>
<div id='helloTitle'>
<h1>Hello, stranger</h1>
</div>
<p>Please introduce yourself by entering your name 
 in the box below</p>
<input type='text' size='24' id='helloTxt'></input>
&nbsp;
<button id='helloBtn'>Submit</button>
</div>
</body>
</html>

Evaluates response

Defines API

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Generating server-side JavaScript 33
In spite of the increased complexity of our requirements, the server-side code has 
become simpler. Listing 2.4 shows the JSP used to serve data to version 4 of our app.

<jsp:directive.page contentType="text/plain"/>
<%
String name = request.getParameter("name");
boolean isLong = (name.length() > 8);
%>
updateName("<%= name %>",<%= isLong %>);

The JSP is simpler in terms of length of code, but also in the number of concepts. 
It is only concerned with the business logic appropriate to the server and talks to 
the client via a high-level API.

Discussion
With this example, we’ve crossed an important threshold and need to update 
multiple regions of the UI from a single Ajax call. At this point, the simple 
innerHTML approach that we used in example 2 can no longer suffice. In this case, 
the requirements were somewhat artificial, but in many real-world applications, 
multiple update requirements exist. For example:

■ In a shopping cart, adding a new item will result in adding a row to the 
cart body, and updating the total price, and possibly shipping costs, esti-
mated shipping date, and so on.

■ Updating a row in a data grid may require updates to totals, paging infor-
mation, and so on.

■ A two-pane layout in which a summary list is shown on the left and drill-
down details of the selected item on the right will have a tight interdepen-
dency between the two panes. 

We solved the multiple-update issue in this case by defining a JavaScript API and 
generating calls against that API. In this case, we defined one API method and 
called it only once, but a more sophisticated application might offer a handful of 
API calls and generate scripts consisting of several lines. As long as we stick to the 
principle of talking in conceptual terms, not in the details of DOM element IDs 
and methods, that strategy should be able to work for us as the application grows.

 An alternative to generating API calls on the server is to generate raw data and 
pass it to the client for parsing. This opens up a rich field, which we’ll spend the 
remainder of this chapter exploring. 

Listing 2.4 hello4.jsp

http://lib.ommolketab.ir
http//lib.ommolketab.ir


34 CHAPTER 2 
How to talk Ajax
2.2 Introducing JSON

We began our exploration of Ajax techniques in chapter 1 by doing all the pro-
cessing on the server and sending prerendered HTML content to the browser. In 
section 2.1, we looked at JavaScript as an alternative payload in the HTTP response. 
The crucial win here was that we were able to update several parts of the screen at 
once. At the same time, we were able to maintain a low degree of coupling between 
the client-side and server-side code. 

 If we follow this progression further, we can divide the responsibilities 
between the tiers, such that only business logic is processed server-side and only 
application workflow logic on the client. This design resembles a thick-client 
architecture, but without the downside of installing and maintaining the client 
on client PCs.

 In this type of design, the server would send data to the client—potentially 
complex structured data. As we noted at the beginning of this chapter, we have a 
great deal of freedom as to what form this data can take. There are two strong 
contenders at the moment: JavaScript Object Notation (JSON) and XML. We’ll 
begin to explore data-centric Ajax in this section with a look at JSON.

A one-minute JSON primer
Before we dive into any examples, let’s quickly introduce JSON. JSON is a light-
weight data-interchange format that can be easily generated and parsed in many 
different server-side technologies and in JavaScript. A complete data-interchange 
format will provide two-way translation between the interchange format and live 
objects, as illustrated in figure 2.4.                 

 Half of JSON is provided for free as part of the JavaScript language specifica-
tion, and the other half is available as a third-party library. That sounds like an 
unusual state of affairs, so let’s explain what we mean by it.

 First, let’s look at what a JSON definition looks like. The following example 
defines a variable customers and stores in it an array attribute called details. 
Each array element is a collection of attributes of each customer object. Each cus-
tomer object has three attributes: num, name, and city.

    var customers = { "details": [
                   {"num": "1","name":"JBoss","city":"Atlanta"},
                   {"num": "2","name":"Red Hat","city":"Raleigh"},
                   {"num": "3","name":"Sun","city":"Santa Clara"},
                   {"num": "4","name":"Microsoft","city":"Redmond"}
                ]
             } ;

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Introducing JSON 35
We’ve defined this rather complex variable using JSON syntax. At the same time, 
all we’ve written is a standard piece of JavaScript. Curly braces are used to delimit 
JavaScript objects (which behave kind of like associative arrays), and square 
braces delimit JavaScript Array objects. If you want to brush up on your core Java-
Script language skills, we cover these things in greater depth in chapter 4.

 Once we’ve defined the variable, we can easily read its values using standard 
JavaScript syntax:

    alert (customers.details[2].name);

This would display the string “Sun” in an alert box. So far, all we’ve done is take a 
standard piece of JavaScript syntax and called it JSON. 

 We can also create a string variable and then evaluate it using eval() to gen-
erate our variable:

    var customerTxt = "{ 'details': [ "  +
                  "{'num': '1','name':'JBoss','city':'Atlanta'}, " + 
                  " {'num': '2','name':'Red Hat','city':'Raleigh'}, " + 
                  " {'num': '3','name':'Sun','city':'Santa Clara'}, " + 
                  " {'num': '4','name':'Microsoft','city':'Redmond'}" + 
                "] }" ;
    var cust = eval ('(' + customerTxt + ')');
    alert (cust.details[0].city); //shows 'Atlanta'

There’s no good reason to write code like this when we’re declaring the string 
ourselves, but if we’re retrieving the string in a different way—say, as the response 

Figure 2.4  
JSON as a round-trip data-
interchange format

http://lib.ommolketab.ir
http//lib.ommolketab.ir


36 CHAPTER 2 
How to talk Ajax
to an Ajax request—then suddenly we have a nifty data format that can express 
complex data structures easily and that can be unpacked with extreme ease by the 
JavaScript interpreter. 

 At this point, we have half a data-interchange format. Standard JavaScript 
doesn’t provide any way of converting a JavaScript object into a JSON string. How-
ever, third-party libraries can be found at http://www.json.org, which allow us to 
serialize client-side objects as JSON, using a function called stringify(). The 
JSON library also provides a parse() method that wraps up the use of eval() nicely.

 You’ll also find libraries at json.org for creating and consuming JSON in a 
number of server-side languages. With these tools, it’s possible for the client and 
server to send structured data back and forth as JSON over the entire course of a 
web application’s user session.

 Let’s return to our Hello World example for now, and see how the client han-
dles a JSON response.

2.2.1 Generating JSON on the server

We can go quite a long way with JSON, so let’s break it up into two parts. First, 
we’re going to look at how far we can get simply by using the browser’s built-in 
ability to parse JSON data, and replace the generic JavaScript response from the 
previous example with a JSON object definition.

Problem
We want the server to respond to our request with rich structured data, and let the 
client decide how to render the data. 

Solution
Sticking with the Hello World theme, this example is going to return a fuller 
description of the individual than just their name:

■ The person’s initial, calculated on the server using string manipulation
■ A list of things that the person likes
■ Their favorite recipe, encoded as an associative array

Figure 2.5 shows the application after receiving a response.
 In keeping with previous examples, the back end is going to be pretty dumb 

and will, in fact, return the same data (apart from the initial) for every name. It’s 
a simple step from dummy data to a real database, but we don’t want to confuse 
things by introducing too many Java-specific back-end features, as the client-side 
code can talk to any server-side technology.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Introducing JSON 37
So, first we’re going to do things the simple way and just make use of JavaScript’s 
built-in JSON-parsing capabilities. Our client-side code appears in listing 2.5.

<html>
<head>
<title>Hello Ajax version 5</title>
<style type='text/css'>
* { font-family: Tahoma, Arial, sans-serif; }
#helloTitle{ color: #48f; }
.sidebar{
  background-color: #adf;
  color: navy;
  border: solid blue 1px;
  width: 180px;
  height: 200px;
  padding: 2px;
  margin: 3px;
  float: left;
}
</style>
<script type='text/javascript' src='prototype.js'> </script>
<script type='text/javascript'>
window.onload=function(){
  $('helloBtn').onclick = function(){
    var name=$('helloTxt').value;
    new Ajax.Request(
      "hello5.jsp?name = "+encodeURI(name),
      {
        method:"get",
        onComplete:function(xhr){
          var responseObj = eval("("+xhr.responseText+")"); 
          update(responseObj);
        }
      }

Listing 2.5 hello5.html

Figure 2.5 JSON-powered Hello World application displaying rich data

Parses JSON 
response B

http://lib.ommolketab.ir
http//lib.ommolketab.ir


38 CHAPTER 2 
How to talk Ajax
    );
  };
};

function update(obj){
  $('helloTitle').innerHTML = "<h1>Hello, <b><i>"
    +obj.name            
    +"</i></b></h1>";
  var likesHTML = "<h5>"
    +obj.initial
    +"likes...</h5><hr/>";
  for (var i=0;i<obj.likes.length;i++){
    likesHTML += obj.likes[i]+"<br/>";
  }
  $('likesList').innerHTML = likesHTML;
  var recipeHTML = "<h5>"
    +obj.initial
    +"'s favorite recipe</h5>";
  for (key in obj.ingredients){
    recipeHTML += key
     +" : "
     +obj.ingredients[key]
     +"<br/>";
  }
  $('ingrList').innerHTML=recipeHTML;
}

</script>
</head>
<body>

<div id='likesList' class='sidebar'>
<h5>Likes</h5><hr/>
</div>
<div id='ingrList' class='sidebar'>
<h5>Ingredients</h5><hr/>
</div>
<div>
<div id='helloTitle'>
<h1>Hello, stranger</h1>
</div>
<p>Please introduce yourself by entering your name 
   in the box below</p>
<input type='text' size='24' id='helloTxt'></input>
&nbsp;
<button id='helloBtn'>Submit</button>
</div>
</body>
</html>

Uses parsed object C

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Introducing JSON 39
Working with JSON in this way is pretty simple. We use eval() to parse the JSON
response b, remembering to add parentheses around the string before we parse 
it. Using the parsed object in our update() method C is then entirely natural, 
because it’s just another JavaScript object.

 Let’s look briefly at the server-side code required to get us this far. Listing 2.6 
shows iteration 5 of our JSP file.

<jsp:directive.page contentType="application/javascript"/>
<%
String name=request.getParameter("name");
%>
{
  name: "<%=name%>",
  initial: "<%=name.substring(0,1).toUpperCase()%>",
  likes: [ "JavaScript", "Skiing", "Apple Pie" ],
  ingredients: {
    apples: "3kg",
    sugar: "1kg",
    pastry: "2.4kg",
    bestEaten: "outdoors"
  }
}

As we said earlier, most of the data that we’ve generated here is dummy data. 
What’s interesting to us here is the creation of the JSON string, which we’ve sim-
ply written out by hand, inserting variable values where appropriate.

Discussion
We’ve demonstrated in this example that parsing JSON on the client is extremely 
easy, and that alone makes it a compelling possibility. However, looking back at 
figure 2.4, you can see that we’ve only covered one of the four stops in the full 
round-trip between client and server: the conversion of JSON to client-side 
objects. For a small app like this one, what we’ve done so far is good enough, but 
in larger apps, or those handling more complex data, we would want to automat-
ically handle all aspects of serialization and deserialization, and be free to con-
centrate on business logic on the server and rendering code on the client. Before 
we leave JSON, let’s run through one more example, in which we execute a full 
round-trip between the client and server.

Listing 2.6 hello5.jsp

http://lib.ommolketab.ir
http//lib.ommolketab.ir


40 CHAPTER 2 
How to talk Ajax
2.2.2 Round-tripping data using JSON

When we’re writing the client callback, we love JSON, because it makes every-
thing so simple. However, we passed the request data down to the server using a 
standard HTTP query string, and then constructed the JSON response by hand. 
If we could manage all communication between the browser and server using 
JSON, we might save ourselves a lot of extra coding. 

 To get to that happy place, we’re going to have to employ a few third-party 
libraries. So, let’s get coding, and see how happy we are when we’ve got there.

Problem
We want to apply JSON at all the interfaces between our application tiers and 
HTTP, so that the client code can be written purely as JavaScript objects and the 
server purely as Java (or PHP, .NET, or whatever) objects.

Solution
We can use figure 2.4 as a crib sheet, to see where the gaps in our design are. On 
the browser, we’ve already handled step 4, the conversion of the response text 
into a JavaScript object. We still need to consider the conversion of the object into 
JSON on the client, though. To do this, we’ll need to use the json.js library from 
www.json.org. Listing 2.7 shows how it works.

<html>
<head>
<title>Hello Ajax version 5a</title>
<style type='text/css'>
* { font-family: Tahoma, Arial, sans-serif; }
#helloTitle{ color: #48f; }
.sidebar{
  background-color: #adf;
  color: navy;
  border: solid blue 1px;
  width: 180px;
  height: 200px;
  padding: 2px;
  margin: 3px;
  float: left;
}
</style>
<script type='text/javascript' src='prototype.js'> </script>
<script type='text/javascript' src='json.js'> </script>   
<script type='text/javascript'>
window.onload = function(){

Listing 2.7 hello5a.html

Includes 
JSON library B

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Introducing JSON 41
  $('helloBtn').onclick = function(){
    var name = $('helloTxt').value;
    new Ajax.Request(
      "hello5a.jsp",
      {
        postBody:JSON.stringify({name:name}),   
        onComplete:function(xhr){
          var responseObj = JSON.parse(xhr.responseText);   
          update(responseObj);
        }
      }
    );
  };
};

function update(obj){
  $('helloTitle').innerHTML = "<h1>Hello, <b><i>"+obj.name+"</i></b></h1>";
  var likesHTML = "<h5>"+obj.initial+" likes...</h5><hr/>";
  for (var i=0;i<obj.likes.length;i++){
    likesHTML+=obj.likes[i]+"<br/>";
  }
  $('likesList').innerHTML=likesHTML;
  var recipeHTML="<h5>"+obj.initial+"'s favorite recipe</h5>";
  for (key in obj.ingredients){
    recipeHTML+=key+" : "+obj.ingredients[key]+"<br/>";
  }
  $('ingrList').innerHTML=recipeHTML;
}

</script>
</head>
<body>

<div id='likesList' class='sidebar'>
<h5>Likes</h5><hr/>
</div>
<div id='ingrList' class='sidebar'>
<h5>Ingredients</h5><hr/>
</div>
<div>
<div id='helloTitle'>
<h1>Hello, stranger</h1>
</div>
<p>Please introduce yourself by entering your name 
   in the box below</p>
<input type='text' size='24' id='helloTxt'></input>
&nbsp;
<button id='helloBtn'>Submit</button>
</div>
</body>
</html>

Converts object 
to JSON

 C

Converts 
JSON to 
object D

http://lib.ommolketab.ir
http//lib.ommolketab.ir


42 CHAPTER 2 
How to talk Ajax
The first thing that we need to do is include the json.js library b. Once we’ve 
done that, we can simplify the response-handling code by using the JSON.parse()
method D. More importantly, though, we can reconsider the way we put together 
the request.

 So far, we’ve been sending GET requests to the server, passing in data on the 
query string. This is fine for requesting data, but when we want to update infor-
mation or send a more complex request to the server, we’d be better off using a 
POST request. POST requests have a body as well as a set of headers, and we can 
populate that body with any text that we want. Here, we’re going to use JSON. 

 We’re still using Prototype to send the request, and we now pass in a postBody
property with the options to the Ajax.Request constructor. The value of this is the 
result of calling JSON.stringify() C. stringify() takes a JavaScript object as an 
argument and recurses through it, writing it out as JSON. Thus, our POST body 
will not contain URL-encoded key-value pairs, as it would if sent from an HTML
form, but a JSON string, something like this:

{ name: 'dave' }

For such a simple piece of structured data, this might be considered overkill, but 
we could potentially pass very complex data in this way.

 Now that we’ve figured out the client side of the solution, let’s turn to the 
server. We happen to be using Java on the server for these examples, and Java
knows nothing about JSON whatsoever. Neither do most server-side languages. 
So, to make sense of the response we’ve just been sending, we’ll need to bring in a 
third-party library.

 Whatever your server-side technology, you’re likely to find a JSON library to fit 
it at www.json.org (scroll down to the bottom of the page). We selected Json-lib, 
which is based on Doug Crockford’s original JSON for Java libraries.

 Json-lib has quite a bit of work to do. JSON encodes structured data in a very 
fluid way, and Java is a strongly typed language, so the two don’t sit together nat-
urally. Nonetheless, we managed to get the job done without too much trouble. 
Listing 2.8 shows the not-so-gory details.

<jsp:directive.page 
  contentType="application/javascript"
  import="java.util.*,net.sf.json.*"   
/>
<%
String json=request.getReader().readLine();   

Listing 2.8 hello5a.jsp

Imports JSON classes B

 C Reads POST body

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Introducing JSON 43
JSONObject jsonObj=new JSONObject(json);   
String name=(String)(jsonObj.get("name"));   

jsonObj.put("initial",
  name.substring(0,1).toUpperCase());   

String[] likes=new String[]
  { "JavaScript", "Skiing", "Apple Pie" };
jsonObj.put("likes",likes);

Map ingredients=new HashMap();
ingredients.put("apples","3kg");
ingredients.put("sugar","1kg");
ingredients.put("pastry","2.4kg");
ingredients.put("bestEaten","outdoors");
jsonObj.put("ingredients",ingredients);
%><%=jsonObj%>                           

In order to use the Json-lib classes in our project, we need to import the 
net.sf.json package, which we do in the <jsp:directive.page> tag b. Now, on to 
the code.

 The first challenge that we face is decoding the POST body. The Java Servlet 
API, like many web technologies, has been designed to make it easy to work with 
POST requests sent from HTML forms. With a JSON request body, we can’t use 
HttpServletRequest.getParameter(), but need to read the JSON string in the 
request via a java.io.Reader C. Similar capabilities are available for other tech-
nologies. If you’re using PHP, use the $HTTP_RAW_POST_DATA variable. If you’re 
using the .NET libraries, you’ll need to get an InputStream from the HttpRequest 
object, much as we’ve done here with our Java classes.

 Back to the Java now. Once we’ve got the JSON string, we parse it as an object 
D. Because of the fundamental disjoint between loosely typed JSON and strictly 
typed Java, the Json-lib library has defined a JSONObject class to represent a 
parsed JSON object. We can read from it using the get() method E and extract 
the name from the request.

 Now that we’ve deserialized the incoming JSON object, we want to manipulate 
it, and then send it back to the client again. The JSONObject class is able to con-
sume simple variable types such as strings, arrays, and Java Maps (that is, associa-
tive arrays) F, to add extra data to the object. Once we’ve modified the object, we 
serialize it again G, sending it back to the browser in the response.

 And that’s it! We’ve now sent an object from the client, modified it on the 
server, and returned it back to the client again.

 D Parses JSON string

Reads parsed object E

Adds new values F

Writes object as JSON G

http://lib.ommolketab.ir
http//lib.ommolketab.ir


44 CHAPTER 2 
How to talk Ajax
Discussion
This has been the most complex example so far, demonstrating a way of commu-
nicating structured objects back and forth over the network on top of the text-
based HTTP protocol. Because both the client and server can understand the 
JSON syntax, with a little help from some libraries, we haven’t had to write any 
parsing code ourselves. However, as we noted, JSON is suited for use with loosely 
typed scripting languages, and so there was still some translation required. The 
goal of a system like this is to be able to serialize and deserialize our domain 
objects over the network. If our domain objects graph is written in Java (or C#, 
say), then we still need to manually translate them into generic hashes and arrays 
before they can be passed to the JSON serializer. The clumsiest piece of coding in 
our round-trip was in the JSP, where we assembled the Maps and lists of data for 
the JSONObject. This problem is strongly emphasized in the case of Java, which 
lacks a concise syntax for defining associative arrays in particular, compared with 
Ruby or PHP, for example. 

From square brackets to angle brackets
There is another text-based format that can be understood by both client and 
server: XML. Most server-side languages have good support for XML, so we might 
find that we have an easier time working with XML than with JSON on the server. 
In the next section, we’ll look at XML and Ajax, and see whether that is the case.

2.3 Using XML and XSLT with Ajax

XML is a mature technology for representing structured data, supported by most 
programming languages either as a core part of the language or through well-
tested libraries or extensions. In the remainder of this chapter, we’ll look at how 
various XML technologies work with XML, and complete our survey of basic Ajax 
communication techniques.

 The XMLHttpRequest object that we’ve been using for our Ajax requests has 
special support for XML built into it. So far, we’ve been extracting the body of the 
HTTP response as text and parsing it from there. JavaScript in the web browser 
doesn’t have a standard XML parser available to it, but the XHR object can parse 
XML responses for us, as we’ll see in the next example.

2.3.1 Parsing server-generated XML

So far, we’ve had the server generate HTML, JavaScript, and JSON responses for 
us in various versions of our Hello World application. All of these formats are 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Using XML and XSLT with Ajax 45
designed to appeal to the browser rather than the server. XML, in contrast, is 
often used to communicate between server processes, in a variety of technologies 
ranging from RSS syndication feeds to web service protocols, such as XML-RPC
and SOAP. If we’re transmitting information from our domain objects up to the 
client, then many server-side technologies provide support for serializing and 
deserializing objects as XML. 

 In any of these scenarios, we may find that it’s easy to transmit data as XML, 
from the perspective of the server. If this is going to be a useful way forward, then 
we’ll also need to handle the XML on the client. We’ll start by looking at the built-
in support for XML offered by the XHR object. XML, like JSON, is a format for 
exchanging structured data. The best way to compare the two is to set them the 
same task, so we’ll follow the lead from the previous section and supply a list of 
likes and a favorite recipe, as shown in figure 2.6.

Problem
The server is sending structured data as XML. We need to parse this data on 
the client.

Solution
The first step in handling XML on the client side is to use the XHR’s ability to 
parse the response into a structured XML document. The second step is to read 
(and potentially write) the parsed XML document using the W3C standard known 
as the Document Object Model (DOM). In JavaScript, we already have an imple-
mentation of the DOM for working with HTML web pages programmatically. The 
good news, then, is that we can leverage these existing skills to work with XML
documents delivered by Ajax. Listing 2.9 shows the full code for version 6 of our 
Hello World application.

Figure 2.6 Hello World example version 6 after parsing XML response

http://lib.ommolketab.ir
http//lib.ommolketab.ir


46 CHAPTER 2 
How to talk Ajax
<html>
<head>
<title>Hello Ajax version 6</title>
<style type='text/css'>
* { font-family: Tahoma, Arial, sans-serif; }
#helloTitle{ color: #48f; }
.sidebar{
  background-color: #adf;
  color: navy;
  border: solid blue 1px;
  width: 180px;
  height: 200px;
  padding: 2px;
  margin: 3px;
  float: left;
}
</style>
<script type='text/javascript' src='prototype.js'> </script>
<script type='text/javascript'>
window.onload = function(){
  $('helloBtn').onclick = function(){
    var name=$('helloTxt').value;
    new Ajax.Request(
      "hello6.jsp?name="+encodeURI(name),
      {
        method:"get",
        onComplete:function(xhr){
          var responseDoc = xhr.responseXML;   
          update(responseDoc);
        }
      }
    );
  };
};

function update(doc){
  var personNode = doc                     
    .getElementsByTagName('person')[0];               
  var initial = personNode                            
    .getAttribute('initial');                         
  var nameNode = personNode                           
    .getElementsByTagName('name')[0];                 
  var name = nameNode.firstChild.data;                
  var likesNode = personNode                          
    .getElementsByTagName('likes')[0];                
  var likesList = likesNode                           
    .getElementsByTagName('item');                    
  var likes = [];                                     
  for (var i=0;i<likesList.length;i++){               

Listing 2.9 hello6.html

Reads response as XML B

Extracts data 
using DOM

 C

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Using XML and XSLT with Ajax 47
    var itemNode = likesList[i];                           
    likes[i] = itemNode                                  
      .firstChild.data;                                  
  }                                                      
  var recipeNode = personNode                            
    .getElementsByTagName('recipe')[0];                  
  var recipeNameNode = recipeNode                        
     .getElementsByTagName('name')[0];                   
  var recipeName = recipeNameNode.firstChild.data;       
  var recipeSuggestNode = recipeNode                     
    .getElementsByTagName('serving-suggestion')[0];      
  var recipeSuggest = recipeSuggestNode.firstChild.data;   
  var ingredientsList = recipeNode                       
    .getElementsByTagName('ingredient');                 
  var ingredients = {};                                  
  for(var i=0;i<ingredientsList.length;i++){             
    var ingredientNode = ingredientsList[i];             
    var qty = ingredientNode.getAttribute("qty");        
    var iname = ingredientNode.firstChild.data;          
    ingredients[iname] = qty;                            
  }

  $('helloTitle').innerHTML =             
    "<h1>Hello, <b><i>"                   
    +name                                 
    +"</i></b></h1>";                     
  var likesHTML = '<h5>'                  
    +initial                              
    +' likes...</h5><hr/>';               
  for (var i=0;i<likes.length;i++){       
    likesHTML += likes[i]+"<br/>";        
  }                                       
  $('likesList').innerHTML = likesHTML;   
  var recipeHTML = "<h5>"                 
    +initial                              
    +"'s favorite recipe is "             
    +recipeName                           
    +"</h5>";                             
  for (key in ingredients){               
    recipeHTML += key+" : "               
      +ingredients[key]                   
      +"<br/>";                           
  }                                       
  recipeHTML+="<br/><i>"                  
    +recipeSuggest                        
    +"</i>";                              
  $('ingrList').innerHTML=recipeHTML;     
}

</script>
</head>

Extracts data 
using DOM

 C

Assembles HTML D

http://lib.ommolketab.ir
http//lib.ommolketab.ir


48 CHAPTER 2 
How to talk Ajax
<body>

<div id='likesList' class='sidebar'>
<h5>Likes</h5><hr/>
</div>
<div id='ingrList' class='sidebar'>
<h5>Ingredients</h5><hr/>
</div>
<div>
<div id='helloTitle'>
<h1>Hello, stranger</h1>
</div>
<p>Please introduce yourself by entering your name 
   in the box below</p>
<input type='text' size='24' id='helloTxt'></input>
&nbsp;
<button id='helloBtn'>Submit</button>
</div>
</body>
</html>

The first step here is by far the easiest. We can retrieve the response as an XML
document object simply by reading the responseXML property b rather than 
responseText. We’ve then rewritten our update() function to accept the XML
object. All we need to do now is read the individual data elements from the 
XML object C and render the data as HTML content D.

 In practice, neither of these steps is difficult, but they are rather lengthy. 
Using the DOM methods and properties such as getElementsByTagName(), get-
Attribute(), and firstChild, we can drill down to the data we want, but we 
need to do it step by step. These properties and methods are identical to the 
ones that we use when working with HTML documents, so we won’t deal with 
them individually here. If you’ve used the DOM to manipulate HTML, every-
thing should look familiar. If you haven’t, then there is plenty of information on 
these methods online.

 Once we have extracted the data that we need, then we simply assemble the 
HTML content necessary to update the UI.

 We’ve already discussed the many scenarios under which it might make sense 
for the server to generate XML. To keep things simple in this example and avoid 
in-depth coverage of technologies that only apply to a single programming lan-
guage, we’ve simply generated the XML by hand in our JSP. Listing 2.10 presents 
the JSP for the sake of completeness.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Using XML and XSLT with Ajax 49
<jsp:directive.page contentType="text/xml"/>
<%
String name=request.getParameter("name");
%>
<person initial="<%=name.substring(0,1).toUpperCase()%>">
 <name><![CDATA[<%=name%>]]></name>
 <likes>
  <item>JavaScript</item>
  <item>Skiing</item>
  <item>Apple Pie</item>
 </likes>  
 <recipe>
  <name>apple pie</name>
  <ingredient qty="3kg">apples</ingredient>
  <ingredient qty="1kg">sugar</ingredient>
  <ingredient qty="2.4kg">pastry</ingredient>
  <serving-suggestion>
   <![CDATA[Best Eaten Outdoors! Mmm!]]>
  </serving-suggestion>
 </recipe>
</person>

Note that we’ve set the contentType of our response as text/xml in this case. 
We’ve been doing this throughout our examples, largely as a show of good hab-
its. In this case, though, we have a strong practical reason for doing so. If we 
don’t set the MIME type to some type of xml (either text/xml or application/
xml will do), then the responseXML property of the XHR object won’t be popu-
lated correctly.

 The rest of the JSP is unremarkable. To a seasoned Java and XML coder, it 
might also look overly simplistic, with the XML being handwritten as text. A more 
robust solution would be to use a library like JDOM to generate the XML docu-
ment programmatically, and we encourage the reader to do that in practice. 
However, we’ve left it simple here—maybe painfully simple—to show the intent 
of what we’re doing without getting too deeply into Java-specific libraries. After 
all, our main aim in this book is to teach client-side techniques, and our choice of 
Java rather than PHP, Ruby, or .NET was essentially arbitrary. 

 So, getting back to the code, we’ve simply created a template of the XML doc-
ument, most of which contains dummy data, and added in a few dynamic values 
along the way. Let’s move on to evaluate our experience with this example.

Listing 2.10 hello6.jsp

http://lib.ommolketab.ir
http//lib.ommolketab.ir


50 CHAPTER 2 
How to talk Ajax
Discussion
Our first encounter with XML and Ajax has been rather mixed. Initially, things 
looked pretty good, given the special support for XML baked into the XHR object. 
However, manually walking through the XML response using the DOM was rather 
lengthy and uninspiring. Experience of this sort of coding has been sufficient to 
put a lot of developers off XML in favor of JSON.

 The DOM is a language-independent standard, with implementations in Java, 
PHP, C++, and .NET, as well as the JavaScript/web browser version that we’re 
familiar with. When we look at the use of XML outside of the web browser, we find 
that the DOM is not very widely used and that other XML technologies exist that 
make working with XML much more palatable. Thankfully, these technologies are 
available within the browser too, and we’ll see in the next section how we can use 
them to make Ajax and XML work together in a much happier way. 

2.3.2 Better XML handling with XSLT and XPath

The XML techniques that we saw in the previous example represent the core func-
tionality that is available free of charge via all implementations of the XHR object. 
Working directly with the DOM is not pleasant, especially if you’re used to more 
modern XML-handling technologies in other languages. The most common of 
these tools are XPath queries and Extensible Stylesheet Language Transforma-
tions (XSLT) transforms.

 XPath is a language for extracting data out of XML documents. In listing 2.9, 
we had to drill down through the document one node at a time. Using XPath, we 
can traverse many nodes in a single line. XSLT is an XML-based templating lan-
guage that will allow us to generate any kind of content, such as, for instance, 
HTML, from our XML document more easily, and also separate out the logic 
from the presentation rather better than we’ve been doing so far. XSLT style 
sheets (as the templates are known—no relation to Cascading Style Sheets) use 
XPath internally to bind data to the presentation.

 The good news is that XSLT transforms and XPath queries are available on 
many browsers, specifically on Firefox and Internet Explorer. Even better, these 
are native objects exposed to the JavaScript engine, so performance is good. 
Safari hasn’t yet provided a native XSLT processor, so this isn’t a good option if 
support for a (non-Firefox) Mac audience is important. 

 In the following example, we’ll let Prototype have a well-earned rest, and use 
the Sarissa library to demonstrate simple cross-browser XSLT and XPath as a way 
of simplifying our XML-based Hello World example.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Using XML and XSLT with Ajax 51
Problem
Working with the DOM on our Ajax XML responses is slow and cumbersome. 
We want to use modern XML technologies to make it easy to develop with Ajax 
and XML.

Solution
Use XPath and XSLT to simplify things for you. Both Internet Explorer and 
Firefox support these technologies, but in quite different ways. As with most 
cross-browser incompatibilities, the best strategy is to use a third-party library 
to present a unified front to our code. For this example, we’ve chosen Sarissa
(http://sarissa.sf.net), which provides cross-browser wrappers for many aspects 
of working with XML in the browser. Listing 2.11 shows the client-side code for 
our XSLT and XPath-powered app.

<html>
<head>
<title>Hello Ajax version 7</title>
<style type='text/css'>
* { font-family: Tahoma, Arial, sans-serif; }
#helloTitle{ color: #48f; }
.sidebar{
  background-color: #adf;
  color: navy;
  border: solid blue 1px;
  width: 180px;
  height: 200px;
  padding: 2px;
  margin: 3px;
  float: left;
}
</style>
<script type='text/javascript'               
  src='sarissa.js'> </script>               
<script type='text/javascript'              
  src='sarissa_ieemu_xpath.js'> </script>   
<script type='text/javascript'              
  src='sarissa_dhtml.js'> </script>         
<script type='text/javascript'>             

var xslDoc=null;

window.onload=function(){

  xslDoc=Sarissa.getDomDocument();   
  xslDoc.load("recipe.xsl");         

  document.getElementById('helloBtn')

Listing 2.11 hello7.html

 B Imports 
Sarissa 
libraries

Loads XSL 
style sheet

 C

http://lib.ommolketab.ir
http//lib.ommolketab.ir


52 CHAPTER 2 
How to talk Ajax
  .onclick = function(){
    var name = document.getElementById('helloTxt').value;
    var xhr = new XMLHttpRequest();   
    xhr.open("GET",                    
      "hello7.jsp?name="               
      +encodeURI(name),true);          
    xhr.onreadystatechange = function(){   
      if (xhr.readyState == 4){            
        update(xhr.responseXML);           
      }
    };
    xhr.send("");
  };
};

function update(doc){
  var initial = doc.selectSingleNode(    
    '/person/@initial'                   
  ).value;                               
  var name = doc.selectSingleNode(       
    '/person/name/text()'                
  ).nodeValue;                           
  document.getElementById('helloTitle')
   .innerHTML = "<h1>Hello, <b><i>"
      +name+"</i></b></h1>";

  var likesList = doc                     
    .selectNodes('/person/likes/item');   
  var likes = [];
  for (var i=0;i<likesList.length;i++){
    var itemNode = likesList[i];
    likes[i]=itemNode
      .firstChild.data;
  }
  var likesHTML='<h5>'
    +initial+' likes...</h5><hr/>';
  for (var i=0;i<likes.length;i++){
    likesHTML += likes[i]+"<br/>";
  }
  document.getElementById('likesList')
    .innerHTML = likesHTML;

  var personNode = doc.selectSingleNode('/person');

  var xsltproc = new XSLTProcessor();     
  xsltproc.importStylesheet(xslDoc);      
  Sarissa.updateContentFromNode(          
    personNode,                           
    document.getElementById('ingrList'),  
    xsltproc                              
  );                                      
}

Creates XHR 
object

 D

Assigns callback 
function

 E

Selects individual 
nodes

 F

Selects multiple 
nodes

 G

Invokes XSLT 
transform

 H

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Using XML and XSLT with Ajax 53
</script>
</head>
<body>

<div id='likesList' class='sidebar'>
<h5>Likes</h5><hr/>
</div>
<div id='ingrList' class='sidebar'>
<h5>Ingredients</h5><hr/>
</div>
<div>
<div id='helloTitle'>
<h1>Hello, stranger</h1>
</div>
<p>Please introduce yourself by entering your name 
   in the box below</p>
<input type='text' size='24' id='helloTxt'></input>
&nbsp;
<button id='helloBtn'>Submit</button>
</div>
</body>
</html>

The first thing that we need to do is to import the Sarissa libraries b. As well as 
importing the core library, we import a support library that provides IE-style 
XPath under Firefox, and a helper library that offers some convenience methods 
for inserting XSLT-generated content into web pages.

 Generating content using XSLT requires two XML documents from the server: 
the style sheet (that is, the template) and the data. We’ll fetch the data on demand, 
as before, but can load the style sheet up front when we load the app C. We do this 
using a DomDocument object rather than the XHR. Once again, Sarissa provides 
us with a cross-browser wrapper.

 To load the XML data, we will use an XHR object. Because we’ve put Prototype 
aside for this example, we need to create the XHR object by hand D and assign 
the callback E. Nonetheless, the code is simpler than we saw in chapter 1, 
because we can access a native XHR object, even on Internet Explorer. Internally, 
Sarissa does a bit of object detection, and if no native XHR object can be found, it 
will create one for us that secretly creates an ActiveX control and uses it.

 So, once we’ve got our XHR object, we can pass a DOM object to our update()
function. This was where our troubles started when using the DOM. Using XPath, 
we can drill down through several layers of DOM node in a single line of code. For 
example, the XPath query 

/person/name/text()

http://lib.ommolketab.ir
http//lib.ommolketab.ir


54 CHAPTER 2 
How to talk Ajax
selects the internal text of a <name> tag nested directly under a <person> tag at the 
top of the document. XPath is too big a subject for us to tackle in depth here. We 
suggest http://zvon.org as a good starting place for newcomers to XPath and 
XSLT. The DOM Node methods selectSingleNode() F and selectNodes() G are 
normally only found in Internet Explorer, but the second Sarissa library that we 
loaded has provided implementations for Firefox/Mozilla. We’re using XPath to 
extract the name data and the list of likes, and constructing the HTML content for 
those regions of the screen manually, as they’re relatively straightforward. The 
recipe section is more complex, so we’ll use that to showcase XSLT.

 The final step is to perform the XSLT transform H. The XSLTProcessor object
is native to Mozilla, and provided under IE by Sarissa. We pass it a reference to 
the style sheet, and then call a method updateContentFromNode(). This helper 
method, provided by the third Sarissa library that we loaded, will pass the data 
(i.e., personNode) through the XSLT processor and write the resulting HTML into 
the specified DOM node (i.e., ingrList).

 To make this work, of course, we also need to provide an XSL style sheet. 
That’s shown in listing 2.12.

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/

Transform">
<xsl:output method="xml"/>

 <xsl:template match="/person">
  <div>
  <h5><xsl:value-of select='@initial'/>'s 
   favorite recipe is 
  <xsl:value-of select='recipe/name'/></h5>
  <p><xsl:apply-templates select="recipe/ingredient" /></p>
  <p><i><xsl:value-of select='recipe/serving-suggestion'/></i></p>
  </div>
 </xsl:template>

 <xsl:template match="ingredient">
  <xsl:value-of select='@qty'/> : <xsl:value-of select='.'/><br/>
 </xsl:template>

</xsl:stylesheet>

Our XSL style sheet is quite straightforward. It’s a mixture of ordinary XHTML
markup, and special tags prefixed with xsl, indicating the XSL namespace. These 

Listing 2.12 recipe.xsl

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Using XML and XSLT with Ajax 55
are treated as processing instructions. <xsl:template> tags specify chunks of con-
tent that will be output when a node matching the XPath query in the match 
attribute is encountered. <xsl:value-of> prints out data from the matched nodes, 
again using XPath expressions. The <xsl:apply-templates> tag routes nodes to 
other template tags for further processing. In this case, each ingredient node will 
be passed to the second template from the first, generating a list.

 Again, we don’t have space for a full exposition of XSLT style sheet rules here. 
If you wish to know more, we recommend you visit http://zvon.org.

 Finally, let’s turn briefly to the server side. The JSP used in this example is 
identical to that from the previous example, as presented in listing 2.10. The only 
changes that we've introduced have been in the client code.

Discussion
Using XSLT and XPath has certainly simplified our client-side XML-handling 
code. In a more complex application, these technologies will scale more easily 
than the DOM in terms of coding effort. We recommend that anyone considering 
using Ajax with XML investigate these technologies.

 In our section on JSON, we discussed the notion of round-tripping struc-
tured data between the client and the server. Sarissa promotes this approach, 
using XML as the interchange format, as it also supports cross-browser serializa-
tion of XML objects. As we stated earlier, almost any server-side technology will 
provide support for serializing and deserializing XML, too. We won’t explore a 
full example here, but the principle is similar to the JSON case. When using 
JSON with Java, we noted that a fair amount of manual work was required to 
construct the JSON response because of the mismatch between loosely typed 
JSON and strictly typed Java. The same issues exist when converting between 
Java and XML, but the problem space is better understood, and out-of-the-box 
solutions such as Castor and Apache XMLBeans are available.

 We’ve presented Sarissa as a one-stop shop for these technologies. It isn’t the 
only game in town. If you only want XPath queries, then the mozXPath.js library
(http://km0ti0n.blunted.co.uk/mozXPath.xap) provides a lightweight alternative, 
with support for the Opera browser as well. And if you like the look of XSLT but 
need it to work on Safari, then you can try Google’s AJAXSLT, a 100 percent Java-
Script XSLT engine (http://goog-ajaxslt.sf.net). Be warned, though, that AJAXSLT
is slow compared to the native engines in IE and Mozilla and won’t support the 
full XSL namespace, so you’ll need to write your style sheets with the limitations 
of the library in mind and keep them reasonably small.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


56 CHAPTER 2 
How to talk Ajax
 We’re nearly done with our review of Ajax technologies. In the final section, 
we’ll explore another Internet technology that makes use of XML, SOAP web ser-
vices, and see how Ajax can interface with that.

2.4 Using Ajax with web services

In this section, we will see how to call web services running on a remote server 
over SOAP. After all, what is a web service but XML data being passed back and 
forth? The XHR object is ideally suited for such a task and makes invoking remote 
methods over SOAP less of a daunting task than it may seem.

 Internet Explorer and the Mozilla versions of browsers all have native objects
that can be used to invoke web services. Sadly, these objects are not portable 
between browsers; the developer is left to write a custom framework that can 
choose the proper objects to invoke. Microsoft maintains several pages dedicated 
to its version of browser-side SOAP at http://msdn.microsoft.com/workshop/
author/webservice/overview.asp. Microsoft’s implementation is based on both Java-
Script and VBScript. Mozilla explains their version at www.mozilla.org/projects/
webservices/; more information can also be found at http://developer.mozilla.org/
en/docs/SOAP_in_Gecko-based_Browsers. Their version of browser-side SOAP is 
accessible through native objects that can be constructed on the browser side.

 Fortunately, there is another way. Instead of writing a high-level API that can 
make use of either Internet Explorer or Mozilla objects, we can create our own 
library that uses XMLHttpRequest to exchange XML, and that can parse and 
generate the SOAP messages. Such a library would also allow us to run our code 
on browsers that do not supply either the Microsoft or Mozilla SOAP APIs but 
that do have the XHR object. The kind people at IBM have created just such a 
library and have named it ws-wsajax. It can be found at www.ibm.com/developer-
works/webservices/library/ws-wsajax/. We will be using this library for the remain-
der of this section.

 We’ve simplified the UI for this example, removing the recipe section. Passing 
in the name will return a map with three entries: the name, the initial, and the list 
of likes. Figure 2.7 shows the UI for this example.

 This section assumes some familiarity with SOAP and SOAP-RPC. Once again, 
there are several books available, as well as many good tutorials online, that cover 
this topic in depth. 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Using Ajax with web services 57
Problem
You need to perform SOAP-RPC from a web browser. You need to display the 
resulting SOAP response as HTML. 

Solution
In this section, we will write a small client using IBM’s SOAP toolkit to access our 
own Hello World SOAP service, written using Apache’s Axis framework (http://
ws.apache.org/axis/). Let’s begin by defining our web service. Axis makes it very 
easy to prototype web services by writing Java classes in files with a special file-
name extension: .jws. Like JSPs, .jws files will be compiled on demand by a spe-
cial servlet, in this case the AxisServlet, and, while not robust enough for 
production use, serve the purposes of our simple demonstration admirably. List-
ing 2.13 shows a simple .jws file for our Hello World service.

import java.util.Map;
import java.util.HashMap;

/**
 * class to list headers sent in request as a string array
 */
public class HelloWorld {

    public Map getInfo(String name) {
      String initial=name.substring(0,1).toUpperCase();
      String[] likes=new String[]
  { "JavaScript", "Skiing", "Apple Pie" };
      Map result=new HashMap();
      result.put("name",name);
      result.put("initial",initial);

Listing 2.13 HelloWorld.jws

Figure 2.7 Hello World version 8. We’ve simplified the presentation here, removing 
the recipe element from the UI.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


58 CHAPTER 2 
How to talk Ajax
      result.put("likes",likes);
      return result;
    }
    
}

The class contains a single method, which will be mapped to a SOAP-RPC func-
tion. The function takes one argument, of type String, and returns an associative 
array (referred to in Java as a Map). 

 Pointing our browser at HelloWorld.jws will return a Web Service Description 
Language (WSDL) file, which the SOAP client, such as the IBM library, can inter-
rogate in order to build up client-side stubs, allowing us to call the service. List-
ing 2.14 shows the WSDL generated by this class.

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
  targetNamespace="http://localhost:8080/AiP2/HelloWorld.jws" 
  xmlns:apachesoap="http://xml.apache.org/xml-soap" 
  xmlns:impl="http://localhost:8080/AiP2/HelloWorld.jws" 
  xmlns:intf="http://localhost:8080/AiP2/HelloWorld.jws"  
  xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" 
  xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 
  xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<!--WSDL created by Apache Axis version: 1.4
Built on Apr 22, 2006 (06:55:48 PDT)-->
 <wsdl:types>
  <schema 
    targetNamespace="http://xml.apache.org/xml-soap" 
    xmlns="http://www.w3.org/2001/XMLSchema">
   <import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
   <complexType name="mapItem">
    <sequence>
     <element name="key" nillable="true" type="xsd:anyType"/>
     <element name="value" nillable="true" type="xsd:anyType"/> 
  </sequence>
  </complexType>
   <complexType name="Map">
    <sequence>
     <element maxOccurs="unbounded" minOccurs="0" 
       name="item" type="apachesoap:mapItem"/>
    </sequence>
   </complexType>
  </schema>
 </wsdl:types>

Listing 2.14 WSDL for HelloWorld.jws

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Using Ajax with web services 59
   <wsdl:message name="getInfoResponse">
      <wsdl:part name="getInfoReturn" type="apachesoap:Map"/>
   </wsdl:message>
   <wsdl:message name="getInfoRequest">
      <wsdl:part name="name" type="xsd:string"/>
  </wsdl:message>
  <wsdl:portType name="HelloWorld">
      <wsdl:operation name="getInfo" parameterOrder="name">
         <wsdl:input message="impl:getInfoRequest" 
            name="getInfoRequest"/>
         <wsdl:output message="impl:getInfoResponse" 
            name="getInfoResponse"/>
      </wsdl:operation>
   </wsdl:portType>
   <wsdl:binding name="HelloWorldSoapBinding" type="impl:HelloWorld">
      <wsdlsoap:binding style="rpc" 
         transport="http://schemas.xmlsoap.org/soap/http"/>
      <wsdl:operation name="getInfo">
         <wsdlsoap:operation soapAction=""/>
         <wsdl:input name="getInfoRequest">
            <wsdlsoap:body 
              encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
              namespace="http://DefaultNamespace" use="encoded"/>
         </wsdl:input>
         <wsdl:output name="getInfoResponse">
            <wsdlsoap:body 
              encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
              namespace="http://localhost:8080/AiP2/HelloWorld.jws" 
              use="encoded"/>
         </wsdl:output>
     </wsdl:operation>
  </wsdl:binding>
   <wsdl:service name="HelloWorldService">
      <wsdl:port binding="impl:HelloWorldSoapBinding" 
        name="HelloWorld">
         <wsdlsoap:address 
           location="http://localhost:8080/AiP2/HelloWorld.jws"/>
      </wsdl:port>
   </wsdl:service>
</wsdl:definitions>

The WSDL includes details on the argument types and return types of each RPC
call, bindings to the functions, and other details needed by the client and server 
to specify the nature of the interchange. Fortunately, the WSDL is generated for us 
automatically by Axis and is consumed by the IBM toolkit, so we don’t need to 
understand every line in it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


60 CHAPTER 2 
How to talk Ajax
 Let’s turn now to our client-side code. Listing 2.15 shows the full listing for 
version 8 of our Hello World app.

<html>
<head>
<title>Hello Ajax version 8</title>
<style type='text/css'>
* { font-family: Tahoma, Arial, sans-serif; }
#helloTitle{ color: #48f; }
.sidebar{
  background-color: #adf;
  color: navy;
  border: solid blue 1px;
  width: 180px;
  height: 200px;
  padding: 2px;
  margin: 3px;
  float: left;
}
</style>
<script type='text/javascript' 
  src='prototype_v131.js'> </script>   
<script type='text/javascript' src='ws.js'> </script>   
<script type='text/javascript'>

window.onload=function(){
  $('helloBtn').onclick = function(){
    var name=$('helloTxt').value;
    var wsNamespace = '../axis/HelloWorld.jws';   
    var wsCall = new WS.Call(wsNamespace);         
    var rpcFunction = new 
      WS.QName('getInfo',wsNamespace);   
    wsCall.invoke_rpc(
      rpcFunction,
      [{name:'name',value:name}],   
      null,
      function(call,envelope){                 
        var soapBody = envelope.get_body();
        var soapMap = soapBody
          .get_all_children()[1].asElement();
        var itemNodes = soapMap
          .getElementsByTagName('item');
        var initial = "";
        var likes = [];
        for (var i=0;i<itemNodes.length;i++){
          var itemNode = itemNodes[i];
          var key = itemNode
            .getElementsByTagName('key')[0]

Listing 2.15 hello8.html

Imports Prototype B

Imports IBM 
WS library C

Creates client 
from WSDL

 D

 E References RPC function

 F Passes RPC arguments

Defines callback G

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Using Ajax with web services 61
            .firstChild.data;
          if (key == 'initial'){
            initial = itemNode
              .getElementsByTagName('value')[0]
              .firstChild.data;
          }else if (key == 'likes'){
            var likeNodes = itemNode
              .getElementsByTagName('value')[0]
              .getElementsByTagName('value');
            for (var j=0;j<likeNodes.length;j++){
              likes[likes.length] = likeNodes[j]
                .firstChild.data;
            }
          }
        }
        update(initial,likes);
      }
    );
  };
};

function update(initial,likes){   
  var content = "<h5>"+initial
    +" likes...</h5><hr/>";
  for (var i=0;i<likes.length;i++){
    content += likes[i]+"<br/>";
  }
  $('likesList').innerHTML = content;
}

</script>
</head>
<body>

<div id='likesList' class='sidebar'>
<h5>Likes</h5><hr/>
</div>
<div>
<div id='helloTitle'>
<h1>Hello, stranger</h1>
</div>
<p>Please introduce yourself by entering your name 
   in the box below</p>
<input type='text' size='24' id='helloTxt'></input>
&nbsp;
<button id='helloBtn'>Submit</button>
</div>
</body>
</html>

 H Updates UI

http://lib.ommolketab.ir
http//lib.ommolketab.ir


62 CHAPTER 2 
How to talk Ajax
There’s a lot going on here, so let’s take it line by line. First, we need to import the 
IBM library C. Because this library is built on top of Prototype, we include that 
too. It relies on an older version of Prototype (v1.3.1), so we’ve renamed it to 
avoid confusion with the rest of our examples b.

 To consume the Web Service, the first thing that we need to do is reference the 
WSDL and feed it to a WS.Call object D. We then extract a reference to the spe-
cific function, as a WS.QName object E. We can call this object, providing the input 
parameters as a JavaScript object (which we’ve defined inline here using JSON) 
F, and a callback function to parse the response G. Parsing the response 
requires a lot of node traversal. We’re working with SOAP nodes rather than DOM
nodes here, but the SOAP nodes can be converted to DOM nodes at any point. 
We’ve omitted any use of XPath here to keep the example simple, but wading 
through a larger SOAP response would certainly merit investigating use of XPath. 
Once we have extracted the data from the response, we pass it to our update()
function H, as usual. Again, we’ve opted for simplicity here, but there’s nothing 
to stop you from using XSLT transforms on the SOAP response once you’ve got 
ahold of it.

Discussion
We’ve shown that it’s possible to use SOAP with Ajax, provided of course that the 
SOAP service is coming from the same server as the Ajax client, and therefore 
honoring the browser’s same-origin security restrictions. If your back-end system 
already generates SOAP, then this is a valid way of reusing existing resources. 
However, we’d be tempted to say that SOAP, as an architecture for a green-field 
development, is unnecessarily complex if interoperability with external entities is 
not also a requirement. 

 The IBM SOAP toolkit made it very easy to call the service, but somewhat less easy 
to parse the response. SOAP-RPC responses typically involve several namespaces 
and are complex to decode. Document/literal-style SOAP bindings generally pro-
vide simpler responses, which might be a better fit for this toolkit in production.

 As always, caveat programmer. If you need a quick solution, SOAP may not be 
the way to go. However, if you are creating a large application that you foresee will 
require many updates and extensions, as well as integration with many aspects of 
your organization, and you have the time and skills to do it, browser-side SOAP
may benefit you.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Summary 63
2.5 Summary

By the end of chapter 1, we’d figured out how to make an Ajax request, and 
looked at ways of simplifying the process by using third-party libraries. We’ve cov-
ered a lot of ground since then and shifted our focus from simply being able to 
make a request, to looking at how we want to structure the conversation between 
client and server over the lifetime of the application.

 We’ve looked at several techniques in this chapter and evaluated the strengths 
and weaknesses of each. We began by looking at generating JavaScript code on 
the server and saw the benefits of writing generated code against a high-level API
in order to prevent excessive tangling between the client and server codebases.

 We moved on from there to look at ways of passing structured data between 
the client and server, starting with JSON and then continuing on to XML. In each 
case, we began by simply looking at how to parse the data when it arrived from 
the server, and then moved on to consider the full round-trip of data between cli-
ent and server. By round-tripping the data, and having library code to serialize 
and deserialize at both ends, we can free ourselves up to write business code 
rather than low-level plumbing.

 In contrast to JSON and XML, JSON has a closer affinity with the client side. 
We struggled with our client-side XML initially but made significant advances 
when we picked up XPath and XSLT. There is no clear winner between the two 
technologies, and the decision remains a matter of personal taste, and depends 
on whether you are integrating with legacy systems that naturally fit better with 
either JSON or XML.

 In the next chapter, we’ll look at JavaScript as the programmatic glue that binds 
the entire Ajax app together. We’ll discuss recent advances in thinking about Java-
Script, and how they can help you to write better-structured code for your Ajax 
app. We’ll conclude with a discussion of some of the popular Ajax frameworks.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Object-oriented 
JavaScript 

and Prototype
This chapter covers
■ Working with core JavaScript types
■ Writing effective object-oriented JavaScript
■ Using the Prototype library
64

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Object-oriented JavaScript and Prototype 65
If you are like most web developers, you probably got your start with JavaScript by 
writing small and simple scripts on fairly basic web pages. Perhaps it was to create 
image rollovers, or to perform simple form validation on entry fields prior to 
form submission.

 But if you’re reading this book, your web application skills have probably pro-
gressed far beyond those humble beginnings—and so has the nature of the script 
being written for the pages of your web applications.

 Given the nature of modern web applications, the amount and complexity of 
the code that goes into them (whether on the server or the client side of the 
equation) is steadily growing. And once you add Ajax to the mix, the complex-
ity and sheer amount of client-side code gets a significant bump for even mod-
est applications.

 This creates a compelling need for JavaScript code to “grow up” and be 
treated with the same level of care and respect previously reserved for code writ-
ten in server-side languages such as Java, C++, and C#. Organizing our client-
side code with the same care as its server-side counterparts not only helps us 
maintain our own sanity with regard to its creation, it also facilitates readability, 
reuse, testing, extensibility, and the maintainability of the code.

 One prevalent methodology used to organize the code that is common to all 
the server-side languages we’ve mentioned is object orientation. While JavaScript is
an object-oriented (OO) language, it does lack some of the OO concepts and 
capabilities that other object-oriented languages possess. But that doesn’t mean 
we cannot benefit from the lessons and concepts that are so easily available to 
such languages. JavaScript may not have all the OO bells and whistles that Java or 
C++ can boast about, but it has some unique features of its own that those lan-
guages lack. In this chapter you’ll learn exactly what those features are, and how 
they can be exploited to use object-oriented concepts and techniques to bring 
order to your client-side JavaScript. 

 The pedantic might argue that what we discuss in this chapter is not truly
object-oriented code but rather object-orientation-influenced code. Whatever. 
We’ll call it object-oriented JavaScript and we’ll all know what we really mean.

 First, we’ll take a look at the unique aspects of JavaScript that make such code 
possible, and learn how to use it to our advantage to create better-organized 
code using OO techniques and concepts. Then we’ll introduce a freely available 
JavaScript library named Prototype and see how it can help us write better Java-
Script, with a focus on better object-oriented JavaScript.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


66 CHAPTER 3 
Object-oriented JavaScript and Prototype
3.1 Object-oriented JavaScript

It shouldn’t come as a surprise to anyone that the concept of an object is the core 
of any object-oriented language. And so it is with JavaScript, but in ways that 
might seem rather mysterious or just downright strange to anyone familiar with 
the more traditional OO languages such as Java or C++.

 The key to understanding how to best make use of JavaScript’s OO features 
lies not only with a good understanding of how the JavaScript object works, but 
also in a thorough understanding of how JavaScript functions operate. Indeed, it 
is the rather unique and interesting fashion in which functions are implemented 
that is crucial to grasping how to best make use of JavaScript’s features to rein in 
complex code.

 As such, we’ll explore both the concept of the JavaScript object as well as Java-
Script functions in this section. After an overview of the features and operation of 
each, we’ll show how these concepts can be combined to form the basis of what we 
are calling object-oriented JavaScript.

 Let’s start by taking a look at the fundamental concepts behind the Java-
Script object.

3.1.1 Object fundamentals

The first step in wrapping your head around the concept of a JavaScript object is 
to rid your mind of any preconceived notions about how the Object class—usu-
ally the basic unit from which all other objects are built—is implemented in 
other languages. Even though in JavaScript the Object class is the fundamental 
unit from which all other objects are built, the resemblance doesn’t go much fur-
ther than that.

 Perhaps the best way to think of objects in JavaScript is as an unordered col-
lection of key-value pairs, very similar to the concept of a Map or Dictionary in 
other languages. This pair is called a property, and consists of a key or name that 
identifies the property, and a value that the property possesses.

 You might think that properties are similar to member variables of other lan-
guages, but because JavaScript is not a declarative language in which the mem-
bers of a class need to be declared, properties of objects are created on the fly by 
simply assigning a value to them. Moreover, the data type of these properties is 
dynamic rather than predeclared. A property takes on the data type of any value 
assigned to it, and it can even change data types over its lifetime.

 Let’s take a look at a simple example. Suppose we wanted to keep track of our 
collection of music CDs. Each object that represents a CD will have properties that 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Object-oriented JavaScript 67
record its title, the artist or band, and the number of the shelf or drawer that we 
keep it in. Did we mention that we have a lot of these?

 There are, of course, many other attributes of a CD that we could create prop-
erties for. But for illustrative purposes, these three will suffice. Setting up such an 
object might look like the code shown in listing 3.1.

var aCD = new Object();
aCD.title = 'The Lovin\' Spoonful Greatest Hits';
aCD.artist = 'The Lovin\' Spoonful';
aCD.location = 3;

In listing 3.1, the first thing that we did was create an instance of the Object class 
by invoking the new operator on the Object constructor. Although this seems 
almost a trivial task, there are some important nuances that it’s crucial to under-
stand regarding the new operator.

 Up to now, you may not have thought of new as an operator, but that’s exactly 
what it is. Its operand is a function that it construes to be the constructor for the 
object that new creates.

 We’ll get into constructors a bit more after we’ve examined functions in 
greater detail, but for now suffice it to say that the object created by new is created 
with the help of the constructor function specified as its operand, which in the 
case of the predefined JavaScript Object class generates a blank object instance; 
that is, one with no properties.

 In our example, the blank object is assigned to a variable named aCD, ready for 
us to assign properties, which we do over the next three lines.

 Note that we didn’t need to predeclare that our object could accept these prop-
erties, as we would have needed to do in a declarative language. In JavaScript, the 
act of assigning values to the properties causes them to come into existence.

 Properties are most often referenced using the “dot” (period) operator as 
shown in our example, but may also be referenced using the more general “prop-
erty accessor” operator. Using this general notation, the assignment to the loca-
tion property could have been

aCD['location'] = 3;

This is completely equivalent to the dot notation of aCD.location = 3.

Listing 3.1 Creating and populating a CD object

http://lib.ommolketab.ir
http//lib.ommolketab.ir


68 CHAPTER 3 
Object-oriented JavaScript and Prototype
 The dot notation can be used whenever the property name adheres to the for-
mat for an identifier. If the property name violates that form—for example, say it 
contains a space character—the bracket notation must be used:

ACD['the location of the CD'] = 3;

Generally, in the interest of readability, object properties are usually given names 
that follow the format used for identifiers.

 So now we have an instance of an object that contains three properties describ-
ing a CD. This is all well and good, but if you think about it, it’s not all that scal-
able. It took four lines to create and populate the object. If we were to enter many 
CDs—remember, we warned you this was a large collection—we’d need a lot of 
lines of code.

 Even if we weren’t concerned about the sheer amount of code, the possibility 
of error is high. Since we are explicitly setting the property names on each 
instance of creating a CD object, a typo in any one set of assignments throws a 
hard-to-find monkey wrench into the works. Remember that we can create any 
property simply by assigning it. Let’s imagine that we were to accidentally type

anotherCD.lcoation = 213;

No errors would occur at the time of the assignment, but at some point later on 
down the line we’d wonder why that instance was missing its location property.

 What we’d really like to do is to create a constructor for the CD instances that 
handles all of this consistently and internally, employing the object-oriented con-
cept of encapsulation—perhaps something along the lines of

var aCD = new CD('The Very Best of the Rascals', 'The Rascals', 6);

That way, a single block of code (the constructor) would take care of making 
the property assignments, thus removing the possibility of typos in repeated 
blocks of code.

 But before we can discuss the use of functions as constructors, we need to 
understand how functions themselves operate in JavaScript. Let’s take a look.

3.1.2 Functions are first class

While JavaScript functions may at first seem to share many similarities with meth-
ods of traditional OO languages, some vast differences become apparent as soon 
as we start scratching the surface a bit.

 A large part of these differences lies in the fact that JavaScript functions are 
treated as “first-class” objects within the language. That doesn’t mean they get 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Object-oriented JavaScript 69
wider seats when flying, but rather that they are on equal footing, and share char-
acteristics with, the other object types in the language. They can be created on the 
fly, created via anonymous literals, referenced by variables, passed as parameters, 
returned as the results of other functions, and in general, treated like any other 
data value.

 Let’s start by taking a look at how functions can be declared and invoked.

Declaring and calling functions
Before a function can be invoked, it must have come into existence via its decla-
ration. At its simplest, a function could be declared using syntax that is probably 
quite familiar:

function doSomething(value) {
  alert("I'm doing something with " + value);
}

But functions don’t need to be named. They can be created via a function literal, 
also sometimes called an anonymous function:

function(value) {
  alert("I'm doing something with " + value);
}

That’s interesting, but (at least in this example) not all that useful since we have 
no way of actually calling such a function. How useful is a function that can never 
be invoked?

 But remember that functions, as first-class objects, can be assigned to variables. 
When such a reference exists, the function can be invoked through that reference. 
This is true not only of function references in variables, but also of references passed 
as function parameters, and of functions stored as properties of an Object instance.

 This opens up a lot of interesting possibilities. Consider the following:

var doSomething = function(value) {
  alert("I'm doing something with " + value);
}

Now, the code fragment doSomething('some value') can be used just as if we had 
declared the function with a name.

 Aside from being an interesting alternative syntax, this ability to invoke a 
function given a reference to it comes in very handy in other scenarios. Consider 
this code:

function saySomething(text) { alert('value: ' + text); }

function doSomething(value,onComplete) {

http://lib.ommolketab.ir
http//lib.ommolketab.ir


70 CHAPTER 3 
Object-oriented JavaScript and Prototype
  // does something with value
  onComplete(value);
}

doSomething(213,saySomething);

The first function takes a value and constructs an alert using that value, while the 
second performs some function on a passed value. The interesting thing about 
the second function is that, when the processing is complete, it has allowed its 
caller to customize whatever notification is to occur by allowing a reference to a 
callback function to be passed to it as the parameter onComplete.

 The callback function is passed as a reference to the processing function and is 
invoked via that reference. This allows the caller of the function, rather than the 
function itself, to determine what occurs when the processing is complete.

 “So what?” you might be thinking. “Why would I want to go through all that 
when I can just do whatever I want after the processing function call returns?”

 That might be true in a synchronous fragment of code, but this ability to call 
back to functions by reference becomes much more interesting and compelling 
when we start to throw asynchronous scenarios, such as input events and Ajax, 
into the mix.

 That aside, the main point of this code example was to show how function ref-
erences could be used as parameters to other functions. Function references can 
also be used as property values for Object instances. Consider:

var o = new Object();
o.doSomething = function() { alert('Yo!'); }

In this case, the function could be invoked with

o.doSomething();

When assigned as a property of an Object instance, the function is termed a 
method of that object—a concept that is not as superficial as you might at first 
think. Storing a reference to a function in an object’s property serves as more 
than just a place to store a reference; it also creates an association between the 
method and the object within which it is referenced.

 Which brings us to the concept of the function context. Let’s see what that’s 
all about.

Understanding function contexts
All functions execute in the context of a JavaScript object, even if you never real-
ized that. That object, termed the function context, is available to the body of the 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Object-oriented JavaScript 71
function via the reserved word this, which you might be familiar with from lan-
guages such as C++ and Java.

 When a function is invoked through a reference stored as the property of an 
object (making it a method of that object), the context object referenced by this in 
that function is the containing object. Even named functions not stored as object 
methods have a context object, consisting of the window object for the page. 

 It’s important to note that the function context is an attribute of a function 
invocation, not of the function itself. Let’s consider the code in listing 3.2.

function xyz() {      
  alert(this.handle);
}

var o = new Object();   
o.methodXyz = xyz;

window.handle = "I'm the window";   
o.handle = "I'm o";

xyz();        
o.methodXyz();

In this code fragment we first create a named function, xyz b, that issues an alert 
containing the value of the handle property of whatever object is referenced by 
this—in other words, the handle property of the function context object. Note 
that handle is not a built-in property of any object; it’s a property that we’ll be cre-
ating as a way to easily identify individual objects.

 Next, an object is created and assigned to o c. A property named methodXyz is 
created on that object that stores a reference to the xyz function. Then, a property 
named handle is created on the window object for the page, as well as on the 
object referenced by o d. This will allow us to easily identify which of these 
objects is being referenced at any time.

 We then invoke the function twice e: once directly via the xyz name, and once 
via the methodXyz property of object o. Executing this code results in the display 
of two alerts as shown in figure 3.1.

 These alerts, displayed one after the other, clearly demonstrate that even 
though the same function is being called in each case, the function context for the 
function is determined for each function invocation as a result of the manner in 
which the function is called.

Listing 3.2 Investigating function contexts

 B Creates named function

Creates and assigns 
function to object

 C

 D Creates handle property

 E Invokes function twice

http://lib.ommolketab.ir
http//lib.ommolketab.ir


72 CHAPTER 3 
Object-oriented JavaScript and Prototype
The fact that the context for a function, when referenced via an object property 
as a method of that object, is the object itself is essentially what makes object-
oriented JavaScript possible.

 But sometimes, the JavaScript interpreter can supplant what we might nor-
mally expect to be the context object. What’s up with that?

When a stranger holds the leash
We saw in the previous section that the context object for a function is determined 
by how the function is called. When the function is a method of an object, and is 
invoked through that object, the object is the function’s context.

 As we’ll see in many of our examples, it is sometimes convenient for us to use 
class methods as event handlers—for example, as an onclick handler for a but-
ton. And that’s when things get thrown into a bit of a loop. You see, when a func-
tion is invoked as a handler as a result of an event, the function context is set to be 
the element that triggered the event even if the function is already a method of 
another object.

 Head spinning yet?
 Sorry about that. Let’s try a somewhat specious but hopefully helpful analogy.
 Let’s say that you have a pet iguana, which represents a function. Iguanas, not 

being the brightest of nature’s creatures, need a way to refer to their owner, you, 
representing the function’s context object. This connection is a leash, represent-
ing the this variable.

Figure 3.1  
Same function, different 
contexts!

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Object-oriented JavaScript 73
 When the iguana needs to reference you, say for food, it uses the leash as a 
guide and is rewarded with a handful of healthy dandelion greens. But let’s say 
the iguana (function) is invoked as a handler. In this case, the context object is 
changed to the event-initiating object—in other words, the leash is handed to a 
stranger. When the hungry iguana follows the leash to the interloper, he doesn’t 
get fed. (After all, would you feed a strange iguana?)

 That’s a problem that we’ll need to deal with in our examples. One means that 
we’ll explore is setting properties on the element so that we can get back to the 
“right” object given a reference to the element. But later in this chapter we’ll also 
see a clever means to force the JavaScript interpreter to bow to our wills with 
regard to a handler’s context.

 But before we get there, it is possible for us to control what object is to serve 
as the context of a function invocation when we’re the ones in the driver’s seat. 
This won’t help us out in the handler case (as we’re not the ones who make the 
call in that scenario), but when we are in control, let’s check out how we can 
explicitly specify what object is to serve as the function context.

Setting the function context
Each function (as an instance of the JavaScript built-in class Function) has a 
method (remember since functions are first-class objects, they can possess prop-
erties and methods just like other objects) named call().

 When a function is invoked “normally,” the function’s context object is deter-
mined by the interpreter, as we previously discussed.

 Consider the following code snippet:

function whatsYourName() {            
  alert(this.name);
}

var o = { name: 'Felix the Cat' };    

whatsYourName();                      
whatsYourName.call(o);                

Executing this code results in the alerts that we see in figure 3.2.
 In this code fragment, the whatsYourName() function issues an alert with the 

name property of whatever object is serving as its function context.
 When the function is invoked directly, the alert displays the name prop-

erty of the window since that object is supplied as the context object for that 
function invocation. The displayed string may be something along the lines of 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


74 CHAPTER 3 
Object-oriented JavaScript and Prototype
“file://localhost” or some such, depending on your browser and how you 
loaded the page into it. 

 We also defined an object o (using JSON notation) that possesses a name
attribute. When the function is invoked using the call() method, supplying the o
object as the parameter, it should be clear that o has been used as the function 
invocation’s context.

 Before we return to our discussion of objects with this newfound knowledge 
under our belts, there’s another concept with regard to functions that we need to 
understand: the concept of a closure. Let’s see what that’s all about.

Closing in on closures
Closures are a concept that you might not have run into if you are coming here 
from the Java or C++ world, as there is no corresponding concept in these lan-
guages. It can be a difficult concept to grasp, so let’s start with some sample code 
right off the bat, as shown in listing 3.3.

var o = new Object();
o.setup = function() {
  var someText = 'This is some text';
  this.doSomething = function() {
    alert(someText);
  };
};

Listing 3.3 Creating a closure

Figure 3.2  
We have control over the 
function context should we 
wish it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Object-oriented JavaScript 75
o.setup();
o.doSomething();

In the code snippet in listing 3.3, we create a new object assigned to o, and then 
create a setup() function to initialize it. (This is something better accomplished 
via a constructor, but we’ll get to that before too much longer.)

 In setup(), we create a local variable named someText and give it a string 
value. We then set up a method named doSomething() that simply emits an alert 
message displaying the value of that variable. We call the setup() function to ini-
tialize the object, and then call the doSomething() method.

 On inspecting the code for that method, we detect a problem: the code refer-
ences the someText variable, which was local to the block in which the function was 
created, but according to JavaScript rules, that variable went out of scope as soon 
as that block terminated.

 Therefore, we’d expect that when the doSomething() function is called later—
at the top level and clearly outside of the scope of the block that defined some-
Text—an undefined reference would occur. But upon execution, we see an alert, 
as shown in figure 3.3.

 Odd. The string was emitted in the alert. How can that be? Does this make us 
want to question what we thought we knew about JavaScript scoping rules?

 The someText variable is indeed out of scope when we make the call to 
o.doSomething(). If we were to add the statement alert(someText); right after 
that call, we’d find that the JavaScript interpreter would indeed issue a “someText 
is not defined” error. So how did the method work?

 What has happened is that when the JavaScript interpreter creates a function 
(as an instance of an object of type Function), it creates a closure for that function 
that is composed not only of the function itself but also of the environment that is 
in scope at the time that the function is created.

Figure 3.3  
What hat did this get 
pulled out of?

http://lib.ommolketab.ir
http//lib.ommolketab.ir


76 CHAPTER 3 
Object-oriented JavaScript and Prototype
So anything that is in scope when a function is declared is also available to the func-
tion when it is invoked.

 This is as powerful a concept as it is a confusing one and should be used with 
caution. You can create some really terrible code by using this technique thought-
lessly, but later on we’ll see how closures will help make some elegant code in an 
object-oriented fashion.

 Another important thing to note: the function context (the this pointer) of the 
executing function is never included in a closure when one is created. This is also 
something we’ll see the implications of when we get deeper into defining Java-
Script classes.

 Finally, as promised, now that we know a little more about functions, we’re 
ready to look at creating our own JavaScript classes in more detail, starting 
with constructors.

3.1.3 Object constructors and methods

Now that we know what a JavaScript object is, and have a better understanding of 
JavaScript functions, we’re ready to see how we can use objects and functions to 
create well-organized JavaScript objects of our own via classes.

 To start with, let’s take a look at the new operator and how it operates on a 
function to transform that function into a constructor for an object.

Defining constructors
Consider the following code:

function Something(p1,p2,p3) {
  this.param1 = p1;
  this.param2 = p2;
  this.param3 = p3;
}

It’s a pretty straightforward function that takes its parameters and stores them as 
properties on the current context object. Those familiar with object-oriented pro-
gramming in Java or C++ will readily recognize this as following the usual pat-
tern for constructors. But is it a constructor?

 The answer is: yes and no—or perhaps more accurately, it depends.
 Let’s imagine that, after we have defined this function, we call it as follows:

Something(1,2,3); 

What happens?

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Object-oriented JavaScript 77
 When the function executes, it creates three properties on its context object. In 
this case, because the function is simply being called from top-level code, that 
context object is the window object of the current page.

 Well, that’s not very interesting, is it?
 But something much more interesting happens when, rather than calling the 

function directly, we apply the new operator to the function, as in

new Something(1,2,3);

The new operator creates a new, empty Object instance and then invokes the 
function supplied as its operand with that newly created object as the function 
invocation’s context. The result is that when the function executes, the this
pointer references the new object, thus turning the function into a constructor 
for that object.

 That’s more like it! Now, when Something() executes, it will create the three 
properties on the new instance of an object just as a constructor should.

 That’s great. We now know how to declare constructors and use them to initial-
ize newly created objects. But aside from encapsulating the initialization of an 
object into a tidy package, what have we really gained?

 Not to dismiss the advantages that such encapsulation gives us—review the 
example of listing 3.1—but in order for our object to be really useful, it needs 
more than just a constructor; it needs methods to act upon it in an object-
oriented fashion.

 We’ve previously seen how we can create methods by assigning functions to 
object properties, so let’s examine how we can use that mechanism to further 
define our objects.

Adding methods
Let’s take our CD example from earlier in the chapter and define a constructor 
for it, as shown in listing 3.4.

function CD(title,artist,location) {
  this.title = title;
  this.artist = artist;
  this.location = location;
}

Let’s say that we wanted to add a method that would tell us where the CD is 
located. Remember that in order for a function to be a method of an object, it 

Listing 3.4 Constructor for the CD object

http://lib.ommolketab.ir
http//lib.ommolketab.ir


78 CHAPTER 3 
Object-oriented JavaScript and Prototype
must be referenced through a property of the object so that when invoked, its 
function context will be that object instance. We could do this by

var aCD = new CD('Afterburner','ZZ Top',17);
aCD.whereIsIt = function() {
  alert( 'The CD is on shelf ' + this.location);
};

But that won’t do at all! If we had more than one CD (and why would we be doing 
this if that weren’t the case?), then we’d need to perform this for each and every 
instance, as shown here (with the addition of an array to hold multiple instances):

var myCDs = new Array();
var aCD = new CD('Afterburner','ZZ Top',17);
aCD.whereIsIt = function() {
  alert( 'The CD is on shelf ' + this.location);
}
myCDs.push( aCD );
aCD = new CD('Mirage','Fleetwood Mac',7);
aCD.whereIsIt = function() {
  alert( 'The CD is on shelf ' + this.location);
}
myCDs.push( aCD );
aCD = new CD(''Please,'Pet Shop Boys',23);
aCD.whereIsIt = function() {
  alert( 'The CD is on shelf ' + this.location);
}

How silly, not to mention messy, would that be?
 We could factor out the common code into a standalone function that we could 

assign as a property of each instance, but while that might reduce the propensity 
for error, that wouldn’t make this any more scalable. Instead, as with the code to 
set up properties that we factored into the constructor, we want to encapsulate the 
creation of the methods into a tidy little package.

 One way might be to place the creation of the methods within the constructor 
itself. The result could be as shown in listing 3.5.

function CD(title,artist,location) {
  this.title = title;
  this.artist = artist;
  this.location = location;
  this.whereIsIt = function() {
    alert( 'The CD is on shelf ' + this.location);
  };
}

Listing 3.5 Constructor for the CD object

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Object-oriented JavaScript 79
That achieves our goal of encapsulating the creation of the method(s), but has 
a drawback in that each and every constructed object will possess a copy of this 
function. That’s rather wasteful as, unlike properties such as title, which will 
be unique for each instance, each instance of CD will have an identical where-
IsIt() function.

 What would be ideal would be if there were a way to have all instances of the 
class reference a single instance of the function as their method. And that’s where 
the prototype mechanism of JavaScript constructors comes in.

 Let’s find out what that’s all about.

Defining prototypes
When an instance of an object is created as a result of the new operator, that object 
is initially empty; that is, it contains no properties. However, there’s more than 
you might think going on behind the scenes.

 When we make a reference to a property of an object, the JavaScript inter-
preter looks in the object instance for a property with the referenced name. That 
is exactly as we might expect.

 But what you might not have known is that it doesn’t stop there. If no such prop-
erty is found on the object itself, the interpreter looks to the constructor for the 
object in a last-ditch effort to find the property. This last-chance set of properties 
is stored in a property of the constructor itself named prototype. If the construc-
tor’s prototype contains a property of the name we referenced, it will be returned 
as the value before the interpreter gives up the ghost and returns undefined.

 This is an incredibly useful mechanism for sharing definitions among many 
instances of an object type without the need to copy the values into each and 
every instance.

 At this point you might be thinking that this sounds a lot like class-level dec-
larations of languages such as C++ and Java, and you’d be correct in thinking that 
there are high-level similarities. But the analogy can begin to break down pretty 
quickly if you start to dig into it, so it’s probably best to think of the prototyping 
mechanism as a defaulting mechanism rather than as class-level declarations.

 Defining our method as a prototype method of the CD object is simple, as 
shown in listing 3.6.

function CD(title,artist,location) {
  this.title = title;
  this.artist = artist;

Listing 3.6 Using prototyping to define a method

http://lib.ommolketab.ir
http//lib.ommolketab.ir


80 CHAPTER 3 
Object-oriented JavaScript and Prototype
  this.location = location;
}

CD.prototype.whereIsIt = function() {
  alert( 'The CD is on shelf ' + this.location);
}

Now, whenever an instance of CD is created, it essentially “inherits” any proper-
ties defined in the prototype of the constructor. Note that “inherits” was quoted 
quite purposefully, as this is not a true inheritance mechanism as defined by 
object-oriented concepts; it’s a defaulting mechanism.

 That distinction aside, prototyping is also useful for more than just meth-
ods. Any value that you’d like to define a default value for can be specified in 
the prototype. Consider for example, the following:

CD.protoype.LOCATION_PREFIX = 'The CD is on shelf ';

This essentially creates a “class constant” that can be referenced in any method of 
a CD instance, including the whereIsIt() method:

CD.prototype.whereIsIt = function() {
  alert( this.LOCATION_PREFIX + this.location);
}

If a particular instance wanted to provide another prefix, it could define a prop-
erty with the same name. Since the interpreter will always look into the object 
instance first, any such declaration overrides a declaration in the prototype. One 
note of caution: once you define a property in an object instance, it will forever 
override any prototype declaration even if you set the property to null. 

 The built-in JavaScript objects are also prototype-based. As such, you can 
modify or extend them to suit your needs.

 Although any such endeavor should be approached with all due caution—
after all, you would be modifying classes intrinsic to the language—it’s usually 
fairly safe to add convenience methods to the built-in types when methods you 
think would be useful are missing.

 One such example could be a “trim” method on the String object. Trimming a 
string of trailing and leading white space is something that we might frequently 
be called upon to do—perhaps as part of validating user input into controls, 
where trailing white space could either need to be ignored or prohibited. Seem-
ingly inexplicably, even though this is a very useful method and one most other 
languages with String classes provide, the String class in JavaScript has no such 
trimming function.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Object-oriented JavaScript 81
 So let’s add one, shall we?
 As we have seen, adding a method to a class’s prototype is as easy as assigning 

a function literal to that prototype. Adding a trim() method to the String class is, 
then, as simple as shown in listing 3.7.

String.prototype.trim = function() {
  var matches = this.match(/^[ \t\n\r]+/);
  var prefixLength = (matches == null) ? 0 : matches[0].length;
  matches = this.match(/[ \t\r\n]+$/);
  var suffixLength = (matches == null) ? 0 : matches[0].length;
  return this.slice(prefixLength, this.length - suffixLength);
}

This new method to the String class uses JavaScript’s regular expression match-
ing capabilities to count the number of white space characters at the begin-
ning and end of the string, and then uses the String’s own slice() method to 
extract and return a trimmed version of the String’s value.

 Note that in a similar fashion to other String methods, the value of the String 
itself is not modified; rather, the modified version of the value is returned as the 
method’s results. When extending objects, be they built-in or otherwise, it’s always 
a good idea to follow the API style of the object when adding new functionalities.

 In OO parlance, these methods that we’ve created, either on our classes or built-
in classes like String, are called instance methods since they are accessed through 
instances of the class and possess the class instance as their function contexts.

 But there’s another type of method we can define.

Creating class methods
We saw how we can create instance methods by adding functions as properties to 
the prototype of constructors, but JavaScript also gives us the ability to create 
what would be called class methods in other OO languages. This is accomplished by 
adding a method, not to the constructor’s prototype but to the constructor itself.

 For example, these two statements perform very different actions:

Object.prototype.sayHi = function() { alert('Hi!'); }

Object.sayHello = function() { alert('Hello!'); }

The first statement creates a method named sayHi() accessible through each 
and every instance of type Object (which happens to be every object ever 

Listing 3.7 Teaching the String class how to trim

http://lib.ommolketab.ir
http//lib.ommolketab.ir


82 CHAPTER 3 
Object-oriented JavaScript and Prototype
created). The second creates a class method named sayHello() directly on 
the Object constructor.

 In order to call the sayHi() method, an instance of the object is required so 
that its method can be invoked:

var o = new Object();
o.sayHi();

In order to call the sayHello() class method, we just need to use the owning con-
structor as a prefix:

Object.sayHello();

“Look, Ma! No instance!”
 This type of method makes most sense when there is no need for an instance 

to be available to the code of the method as the function context. Indeed, in other 
OO languages, class methods have no concept of this, and any attempts to use 
this in one will usually result in a compilation error. However, in JavaScript every
function has a function context, even class methods.

 Without an object instance to serve as the function context, can you guess what 
does serve in that capacity? If you guessed the window, you get points for trying, 
but no cigar. For such methods, the constructor function itself serves as the function 
context. If the idea of a function serving as the function context blows your mind, 
don’t worry too much about it. First, remember that in JavaScript, functions are a 
type of object and can serve in capacities that other objects can. Second, in this 
situation the fact that the constructor is the context object is pretty much useless. 
So it’s OK to just ignore the fact that JavaScript class methods have a this refer-
ence if it makes you feel more comfortable.

 Now that you know how JavaScript’s mechanisms can be used to create Java-
Script classes and other object-oriented constructs, let’s put that knowledge to 
work and write a class of our own.

3.1.4 Writing a JavaScript class: a button

Now that you’re aware of the JavaScript facilities for creating object-oriented 
classes, let’s dig in and write a simple one.

 The class we’ll write in this section will be used to add instrumentation to an 
instance of an HTML button element. While the <button> element is a handy 
component of the set of HTML controls, it lacks the ability to present visual feed-
back to the user as it changes state.

 The class we’ll write will give us the ability to modify the visual rendition of the 
button when certain state changes occur, such as

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Object-oriented JavaScript 83
■ When the mouse cursor enters the button area, thus “arming” the button
■ When the mouse cursor exits the button area, “disarming” the button
■ When the mouse button is pressed down, “pressing” the button
■ When the mouse button is released, “un-pressing” the button
■ When the button is enabled or disabled

By changing the CSS style class (not to be confused with an OO class) assigned to 
the button as these state changes occur, we can present visual feedback to the user 
beyond that provided by the native implementation.

 We’ll cleverly call our class Button, and by convention, define it in a JavaScript 
file named for the class it contains: Button.js.

 To begin with, let’s define some characteristics that we want this class to possess:

■ The class will instrument an existing HTML <button> instance identified by 
its id.

■ The class will accept a number of options at construction, consisting of
– Whether the button is initially enabled or disabled
– Style class names to be applied at the various state changes
– A function to be executed when the button is clicked

■ Reasonable defaults will be provided for any option not specified.

With all that in mind, let’s begin by writing our constructor for this class.

The button constructor
As you’ll recall from our earlier discussion, the constructor of a JavaScript class is 
simply a normal, everyday function. The distinction comes when the function 
intended to serve as a constructor is used as the operand of the new operator. This 
invokes the function with a context consisting of a newly allocated and empty 
Object instance.

 By convention, a constructor is named for the class it creates, in our case But-
ton, and should set up the object into an initial and valid state.

 To achieve this, our button constructor has more than a few bits of informa-
tion that it needs to accept in order to completely set up the instance. At mini-
mum, it needs the id of the button that the instance is to instrument. According 
to its stated goals, it also takes a variety of optional information, including the 
names of various style classes and a callback handler to be invoked when the but-
ton is clicked.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


84 CHAPTER 3 
Object-oriented JavaScript and Prototype
 The simplest approach is to just define a constructor with a parameter list that 
specifies each possible parameter. After all, we can supply null for any optional 
parameter that we don’t want to include, right?

 The signature of such a constructor would take the form of

function Button(elementName, disabled, onClickCallback,
                enabledStyleClass, disabledStyleClass,
                armedStyleClass, pressedStyleClass)  

That’s one required parameter (the element name), which is placed first in the 
parameter list, followed by six optional parameters.

 OK, that’s not too onerous to deal with from the point of view of coding the 
constructor; any parameters that come in as null just need to have default values 
provided for them.

 But what about from the point of view of the caller?
 Because association of parameter values to parameter names happens in an 

ordinal fashion, any function signature with a large number of optional parame-
ters presents a not-so-nice API to users of that function. Consider an invocation of 
this constructor where the caller wants the initial state and all the style class 
names except the “pressed” style to default: 

new Button('myButton',null,doSomething,null,null,null,
           'pressedButton');

Just look at all those nasty nulls.
 By defining our constructor signature in this manner, we’ve forced the 

users of our class to count nulls carefully to be sure that they match the corre-
sponding parameters in our fairly long parameter lists. And what if we decide 
to extend our class to encompass more functionalities and, therefore, more 
optional parameters?

 It quickly becomes clear that defining function signatures with large numbers 
of parameters—particularly if many of those parameters are optional—is an 
unfriendly and unscalable solution. To avoid such ugliness, we’ll adopt a tech-
nique that is rapidly gaining favor and acceptance for providing sets of optional 
parameters: the hash, sometimes called an anonymous object.

 This is simply a single object, passed as a parameter, whose properties serve as 
the optional parameters to the function. Because they are passed as a single 
option, the number of parameters to a function is limited to the list of required 
parameters, followed by a single optional parameter. And because properties are 
named, the requirement to order the optional parameters in any particular 
sequence, or to leave blanks for parameters that are omitted, simply disappears.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Object-oriented JavaScript 85
 This technique is widely used in popular JavaScript libraries (some of which 
we’ll be taking a closer look at later in this and the next chapter), and reduces 
the rather unwieldy and less-than-readable constructor invocation that we saw 
earlier to

new Button('myButton', 
           {
             onClick: doSomething,
             pressedClassName: 'pressedButton'
           });

Not only does this eliminate all those nulls, but it also makes for much more read-
able code as each optional parameter is explicitly named. There is no need to 
remember the order of parameters, and no counting is involved to figure out 
which parameter is which.

 This does place a slightly larger burden on the constructor code, but that bur-
den is minor and if there’s going to be a burden anywhere, it’s better to factor it 
into the constructor, which needs to be written once, than in each and every line of 
code that will ever be written to call that constructor.

 OK, enough talk; let’s code! Here’s the skeleton for our constructor using the 
hash technique that we just described:

function Button(elementName, options) {
  //TODO: fill this in!
}

Now we’ll fill in the body of the constructor. The workings of this code will be 
described in detail after listing 3.8.

function Button(elementName, options) {
  this.element = document.getElementById(elementName);   
  if (!this.element) throw new Error(elementName + ' not found');
  this.element.button = this;
  this.options = options || {};  
  if (options) {                
    this.options.enabled = options.enabled || true;
    this.options.onClick = options.onClick || function() {};
    this.options.enabledClassName =
      options.enabledClassName || this.CLASS_DEFAULT_CLASS_ENABLED;
    this.options.disabledClassName =
      options.disabledClassName || this.CLASS_DEFAULT_CLASS_DISABLED;
    this.options.armedClassName =
      options.armedClassName || this.CLASS_DEFAULT_CLASS_ARMED;
    this.options.pressedClassName =
      options.pressedClassName || this.CLASS_DEFAULT_CLASS_PRESSED;

Listing 3.8 Constructor for the Button class

Locates HTML 
button

 b

Specifies 
options hash

 c

http://lib.ommolketab.ir
http//lib.ommolketab.ir


86 CHAPTER 3 
Object-oriented JavaScript and Prototype
  }
  var instance = this;                 
  this.element.onclick = function() {
    if (instance.options.enabled) {
      instance.options.onClick.call(instance);
    }
  }
  this.element.onmouseover = this.onArm;   
  this.element.onmouseout = this.onDisarm;
  this.element.onmousedown = this.onPress;
  this.element.onmouseup = this.onRelease;
  if (this.options.enabled) {             
    this.enable();
  }
  else {
    this.disable();
  }
}

While this constructor may look a bit long and foreboding, what it does is actually 
fairly simple—but with some twists that might be confusing had we not examined 
them earlier in the chapter.

 The very first thing we do in this constructor is to locate the HTML <button>
element that we are going to instrument b. Using the document.getElement-
ById() function, we obtain a reference to the element in the HTML DOM and 
assign it to a property on the context object named element. Remember that the 
new operator created a brand-spanking-new Object instance on our behalf and set 
it as the context object for our constructor. We don’t have to worry about allocat-
ing the object; once the constructor is invoked, the new object is readily accessible 
via the this reference.

 By assigning the DOM reference of the element to a property, we will be able to 
easily locate the <button> element whenever we have a reference to the Button 
object. If for any reason we can’t locate the element whose id was passed, we 
throw an error that will appear on the JavaScript console of the browser being 
used. By doing so, an error on the caller’s part (misspelling the id of the element, 
for example) results in a clear error rather than some mysterious “object has no 
properties” (or similarly nondescript) errors later down the line.

 We now have a reference to the instrumented <button> element given a Button 
object instance, but we also want to be able to find the Button object instance 
given the <button> element. To facilitate that, we add a property to the <button>
element named button that contains a reference to the Button instance.

Instruments HTML 
button d

Changes button’s 
visual state

 E

Places button in 
proper state F

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Object-oriented JavaScript 87
 This little trick means we can find either the DOM element or the object 
instance regardless of which one we happen to have a reference to. This will come 
in quite handy a little later on.

 Having dealt with the elementName parameter, let’s turn our attention to the 
options hash c. We are going to want to be able to access the options in the hash 
object throughout the methods of this class, so we’ll assign the options object to a 
property of the object.

 But wait! This hash is called “options” because, well, it’s optional! What if 
the caller doesn’t supply a hash object at all? We could be rather surly and insist 
that the caller supply an empty hash object when no options are to be passed, 
but that’d be downright unfriendly. Rather, we’ll deal with the possibility within 
the constructor.

 We do so with a statement that might look odd if you haven’t seen this sort of 
construct before:

this.options = options || {};

Or-ing objects? Isn’t that just for Boolean expressions?
 This terse, but handy, notation essentially means “use this first operand if it 

exists, otherwise use the second.” It works because, unlike in languages such as 
Java, any expression, Boolean or otherwise, can be used in a context where a 
Boolean is expected; coercion rules to express the values as Boolean are applied 
to each operand.

 In our case, we use the fact that null and undefined convert to false. Therefore, 
if the first operand evaluates to either null or undefined, the expression evaluates 
to the second operand of the or-ed expression. So what the previous line does, in 
very succinct notation, is assign the options parameter to the property named 
options if it exists; otherwise, it assigns an empty object to the property.

 At this point, options refers to an empty object if no properties were provided, 
or an object prepopulated by the caller with whatever options he or she specified. 
We now need to go through and assign reasonable default values to any option 
that was not specified. That was one of our goals, remember?

 So, one by one, we test each possible option using the handy “or-ing” trick that 
we learned earlier. For each, we check if a value already exists, and if so, we leave 
it be. Otherwise, we assign a default value.

 The first option we test is simple:

this.options.enabled = options.enabled || true;

http://lib.ommolketab.ir
http//lib.ommolketab.ir


88 CHAPTER 3 
Object-oriented JavaScript and Prototype
If no enabled option was specified in the options hash, a default value of true
is assigned.

 Similarly, the next statement supplies a default callback function of the 
onClick handler:

this.options.onClick = options.onClick || function() {};

Here, since we have no idea what a reasonable action would be, we default to a 
function that does nothing if the caller supplied no callback.

 The remainder of the options assign default CSS style class names in the 
absence of explicitly provided names. We’d probably expect the default to be a 
string containing the name, and it very well could be, but our implementation 
chooses a slightly different course.

 The first of these statements is

this.options.enabledClassName =
  options.enabledClassName || this.CLASS_DEFAULT_CLASS_ENABLED;

The structure of this statement is the same as the others, but instead of a literal as 
a default value, we see a reference to something we know nothing about yet. 
Because it’s referenced by this, we know it’s going to be part of the definition of 
the class. But what?

 These references will be properties that we will set up on the prototype for this 
class containing string literals that will define the default style class names. We 
don’t just hard-code the string literals in the constructor because we’re following 
a well-established practice. Factoring out such literals into “class members” serves 
two purposes:

■ It isolates the string literals from the code, making them easier to locate 
for the programmer as opposed to embedding them in code where they 
may be hard to spot.

■ If the methods in the class need to reference the string value more than 
once, the references all resolve to a single instance of the string. That way, 
simple typos in string literals don’t turn into hard-to-find bugs, and any 
changes to the value of the literal in the course of development need to 
take place in one location.

The use of all uppercase characters when naming these references is a C++ and 
Java convention that is applied to “class constants,” following the practice stated 
earlier. In JavaScript, there is no such thing as a constant, but by using this nota-
tion we make clear our intention that these values are to be treated as constants.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Object-oriented JavaScript 89
 When these statements complete, we have a property that contains the combi-
nation of any caller-supplied options and class-supplied defaults. From this point 
forward, we have the luxury of having to make no distinction between the two; by 
constructing this options hash up-front, we have placed the entire configuration 
for our class in one neat little bundle for us to use throughout the remainder of 
the code.

 So, next we turn our attention to actually instrumenting the HTML <button>
d, starting with the onclick handler:

var instance = this;
this.element.onclick = function() {
  if (instance.options.enabled) {
    instance.options.onClick.call(instance);
  }
};

In this snippet, we assign an inline function as the onclick handler of the 
<button> element. 

 In this function, we need to check whether the button is enabled before fir-
ing off the click handler. (Actually, we could be lazy since this function should 
never be called for a disabled button, but you know what they say about an 
ounce of prevention!)

 This poses a small problem for us. When an event handler is activated, its con-
text object is the element that initiated the event; in this case, that would be the 
<button> element, and not our Button instance. We could either rely on the self-
reference we placed on the element (something we will do in later methods) or 
employ the closure in which the function is defined.

 Since we’ll employ our self-reference in other methods, let’s use the closure for 
this one if for no other reason than to demonstrate the use of closures. (In an 
actual implementation you’d probably want to pick one tactic and stick with it 
consistently, but for illustrative purposes, let’s be daring.)

 If you recall how closures work, the function that we assign to the <button> ele-
ment’s onclick handler will have access to variables defined in the scope in which 
the function is declared. However, the this reference is never included as part of 
a closure, and that’s exactly what we need access to! So, we get around that little 
issue by assigning the value of this to a local variable named instance. As a local 
variable in scope when the function is declared, the value of instance, a copy of the 
reference to our Button instance, most certainly is available as part of the closure.

 With click handling out of the way, let’s turn our attention to the mouse events 
that we will want to capture in order to change the visual state of the <button>

http://lib.ommolketab.ir
http//lib.ommolketab.ir


90 CHAPTER 3 
Object-oriented JavaScript and Prototype
element e. Unlike onclick, in which we assigned an anonymous inline function 
(and its closure) as the element handler, we assign references to methods that 
we’ll define later in the prototype. Doing so makes for a cleaner-looking con-
structor and allows us to segment the code into smaller chunks, but we lose the 
ability to reference the instance of the Button object via closures:

this.element.onmouseover = this.onArm;
this.element.onmouseout = this.onDisarm;
this.element.onmousedown = this.onPress;
this.element.onmouseup = this.onRelease;

As we’ll see in just a moment when we examine the implementation of these 
functions, the self-reference that we stored on the <button> element will come 
to our aid.

 Finally, we want to make sure that the <button> element and Button instance 
are placed into the appropriate initial enabled or disabled state f. We call one of 
two methods depending on the state defined by the options hash. We’ll investi-
gate the implementation of those functions later, in listing 3.11.

 Now, remember those “class constants” that weren’t really constants at all? 
Let’s define those next.

Class-level member variables
In our discussion of the constructor, we noted that it’s often a good practice to fac-
tor literals (strings or otherwise) out of inline code and into members so that one 
instance of a literal can be consistently referenced throughout the code. In our 
Button class, we declare a series of string members to be used as the default values 
for the various CSS class names that will be assigned to the <button> element as it 
changes state. These are shown in listing 3.9.

Button.prototype.CLASS_DEFAULT_CLASS_ENABLED = 'buttonEnabled';
Button.prototype.CLASS_DEFAULT_CLASS_ARMED = 'buttonArmed';
Button.prototype.CLASS_DEFAULT_CLASS_DISABLED = 'buttonDisabled';
Button.prototype.CLASS_DEFAULT_CLASS_PRESSED = 'buttonPressed';

We specify that we’d like these members to be treated as constants (even though 
JavaScript possesses no such concept) by using all uppercase names—a conven-
tion used in many languages such as Java, C, and C++ to indicate a constant ref-
erence. By collecting these string literals in this manner, we ensure that multiple 
references to the members reference the same string literal.

Listing 3.9 Class-level members for CSS style class names

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Object-oriented JavaScript 91
 This is superior to hard-coding multiple instances of the literals throughout 
the code. A typo in the member reference will result in a relatively easy-to-debug 
“undefined” error, whereas a typo in a string literal results in the element not 
behaving correctly, thus leaving us to guess why until we spot the misspelled lit-
eral. Class-level members such as this can be used for either read-write variables 
that we want to share across multiple instances of Button, or for read-only 
pseudo-constants like the ones we have defined here.

 With that behind us, we face defining the handler functions that we assigned 
to the mouse events of the <button> element. Let’s take those on.

The mouse event handlers
Changing the visual state of the <button> element as the mouse events occur is a 
simple matter of swapping out different CSS style classes as the events occur. 
We’ve given the user of our class the option of supplying the style class names or 
using the default names that we provide.

 As you’ll recall, we assigned the mouse event handlers as references to meth-
ods of the Button class. For example, when the mouse cursor moves into the but-
ton area, we want to display the style class associated with the armed state.

 We assigned the handler as such in the constructor:

this.element.onmouseover = this.onArm; 

Now, we define that method (and its kin) as shown in listing 3.10.

Button.prototype.onArm = function() {
  if (this.button.options.enabled) {
    this.className = this.button.options.armedClassName;
  }
}

Button.prototype.onDisarm = function() {
  if (this.button.options.enabled) {
    this.className = this.button.options.enabledClassName;
  }
}

Button.prototype.onPress = function() {
  if (this.button.options.enabled) {
    this.className = this.button.options.pressedClassName;
  }
}

Button.prototype.onRelease = function() {
  if (this.button.options.enabled) {

Listing 3.10 Handling the mouse events

http://lib.ommolketab.ir
http//lib.ommolketab.ir


92 CHAPTER 3 
Object-oriented JavaScript and Prototype
    this.className = this.button.options.enabledClassName;
  }
}

Note that when any of these event handlers is triggered, its context object, 
despite being a method of Button, is the triggering element: in this case, the 
<button>. Yet we need access to the Button instance so we can look up the vari-
ous options.

 We could have dealt with the issue by defining the methods inline and using 
closures (as we did for the onclick handler), but since we thoughtfully placed a 
reference to the Button instance into a property on the <button> element during 
construction (creatively named button), we have the reference we need. So in each 
handler, we first check the enabled option to make sure the button is “live,” and if 
so, we apply the appropriate style class to the element’s className property.

 The final step in defining our class is giving the caller control over the enabled 
state of the button.

The enabled state methods
We gave the user of our class the ability to initially place the button in either an 
enabled or a disabled state. A disabled button isn’t much good to anyone if you 
can’t enable it at some point, so we need to add methods to our class to let the 
caller have some level of control over this state postconstruction.

 We’ll define three methods for this purpose:

■ Allow the caller to discover the current state.
■ Allow the caller to place the button in an enabled state.
■ Allow the caller to place the button in a disabled state.

The implementation of these methods is shown in listing 3.11.

Button.prototype.isEnabled = function() {                        
  return this.options.enabled;
}

Button.prototype.enable = function() {   
  this.options.enabled = true;
  this.element.disabled = false;
  this.element.className = this.options.enabledClassName;
}

Listing 3.11 Implementation of the enabled state methods

Places button in 
enabled state

 b

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Object-oriented JavaScript 93
Button.prototype.disable = function() {   
  this.options.enabled = false;
  this.element.disabled = true;
  this.element.className = this.options.disabledClassName;
}

These methods are a bit more straightforward than their brethren. Because they 
are simple methods on the class (as opposed to event handlers), we don’t need to 
worry about closures or event context objects; the context object of these methods 
is simply the Button instance, exactly as we’d expect.

 With the isEnabled() method, we give the user of our class the means to deter-
mine the current state of the button by returning the value of the enabled option 
property. We will be careful to ensure that, in our remaining methods, this prop-
erty always accurately represents the current state of the element.

 In fact, let’s take a look at the method for placing a button into the enabled 
state b. The first thing it does is to set the enabled options property to true. It 
then enables the <button> element itself by setting its disabled property to false
(all of the HTML form elements use this reverse-logic setting to determine the 
enabled state of the controls). Finally, the CSS style class of the element is set to 
the enabled style class name.

 The method to disable the button c follows an identical set of steps, except it 
uses values that disable the button and place the appropriate style class upon it.

 With that, our Button class is complete. Or at least until we think of something 
else to add to it!

 In creating this small class, we employed many of the OO techniques that we 
discussed in earlier sections: object properties, functions, context objects, clo-
sures, and the prototype property. Armed with this knowledge, we are ready to 
embark on defining any other object classes that we’d like to create to help orga-
nize our code.

 But before we get too far ahead of ourselves, we need to test our code to make 
sure that it works!

Testing the Button class
To test our Button class, we’ll create a simple little HTML page and put the class 
through some of its paces. If all is correctly functioning, upon clicking an instru-
mented button on the test page we’d expect to see the alert shown in figure 3.4 
that displays the ID of the clicked button element. Listing 3.12 shows us how to 
get there.

 C Disables the button

http://lib.ommolketab.ir
http//lib.ommolketab.ir


94 CHAPTER 3 
Object-oriented JavaScript and Prototype
<html>
  <head>
    <title>Button Test</title>                     
    <script type="text/javascript" src="Button.js"> </script> 
    <script type="text/javascript">
      window.onload = function() {        
        window.testButton = new Button(
          'testButton',
          {
           onClick: onClicked
          });
      };

      function onClicked() {   
        alert('Button ' + this.element.id + ' has been clicked');
      }

      function toggleButtonState() {   
        if (window.testButton.isEnabled()) {
          window.testButton.disable();
        }
        else {
          window.testButton.enable();
        }
      }
    </script>
    <style type="text/css">   
      #testButton {
        padding: 3px 6px;
        font-size: 1.1em;
        border-width: 3px;
      }
      .buttonEnabled {
        background-color: maroon;
        border-color: maroon;
        color: white;
        border-style: outset;
      }

Listing 3.12 Putting the Button class to the test

Figure 3.4  
Did we get the right button?

References .js file  b

Creates button 
instance c

Triggers button d

Detects button state E

 f Sets visual styles

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Object-oriented JavaScript 95
      .buttonDisabled {
        background-color: #999999;
        border-color: #999999;
        color: white;
        border-style: outset;
      }
      .buttonArmed {
        background-color: maroon;
        border-color: maroon;
        color: orange;
        border-style: outset;
      }
      .buttonPressed {
        background-color: #660000;
        border-color: maroon;
        color: orange;
        border-style: inset;
      }
    </style>
  </head>
  
  <body>
                                        
    <button type="button" id="testButton">Click me!</button>     

    <div style="margin-top:16px">              
      <input type="checkbox" onclick="toggleButtonState();">      
      Disable button
    </div>

  </body>
  
</html>

Note that this page in no way constitutes a thorough test of the class. It only 
serves as a template for a series of more thorough tests that you should consider 
conducting as an exercise. It does, however, represent the manner in which we 
believe that our Button class will be most often used.

 In this page, we import our Button class by referencing the .js file b. This 
brings the Button constructor and its prototype into scope on the page. Note that 
we must do this for each page on which the Button class will be used.

 In the onload handler for the page c, we create an instance of Button and 
assign it to a property named testButton on window. We do this so that the But-
ton instance will be available throughout the rest of the page. Were we to simply 
use a var, its scope would be limited to the onload handler. We could also have 
declared a window-scoped var outside of the handler and assigned its value inside 

Identifies <button> element  g

Triggers enabling/
disabling function  h

http://lib.ommolketab.ir
http//lib.ommolketab.ir


96 CHAPTER 3 
Object-oriented JavaScript and Prototype
the handler, but why spread a declaration over two locations when you can make 
it one statement?

 In the constructor for Button, we specified the id string of “testButton” 
that identifies a simple <button> element that is defined g in the body of 
the page.

 The only option we provide in this test is a reference to a function named 
onClicked that is to be triggered when the button is clicked.

 That was easy, which is exactly what we intended. If the user needs to be a bit 
pickier, there are other options that can be specified. But this example probably 
represents how most Button instances will be created, and you can see that we’ve 
made things pretty easy for users of our class.

 The next major element of our test page is the onClicked() function that will 
be triggered when a user clicks the <button> element d. In this function—
which in a real environment would probably do something much more interest-
ing—we issue an alert that verifies that the proper object was set as the context 
for this function.

 The reference this.element.id verifies that the Button instance is the context 
object. The this reference should evaluate to the Button instance whose element
property contains a reference to the <button> element.

 That will test the button-clicking functionality, but we also want to exercise the 
enabled state functions of our class. To this end, we write a function e that 
detects which state the button is in—using the handy method that we so thought-
fully provided—and set the button to the opposite state. We’ll see in just a little 
while how we trigger this function from a page element.

 The lion’s share of the page is devoted to the CSS
styles f that give our button the visual feedback that 
we seek—after all, that was the whole purpose of the 
Button class. The styles chosen give the button an out-
set appearance when inactive and enabled, a “grayed-
out” appearance when disabled, a highlighted appear-
ance (by turning the text orange) when armed, and an 
inset appearance when pressed. These states are shown 
in figure 3.5, though they’re not terribly exciting when 
shown in static screen shots (especially after conversion 
to grayscale), but you get the idea.

 In the body of the HTML page, we define two con-
trol elements. First is the button g that we are instru-
menting. Note that the only attribute that we needed to 

Figure 3.5 Button visual 
states

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Prototype library 97
place on the button was its id. The remainder of the instrumentation, consisting 
of the handlers and class names, are applied by the Button class. How easy is that?

 The second control element is a checkbox h used to trigger the enabling/dis-
abling function that we defined earlier e.

 Obviously, the next series of tests that we should conduct would check that we 
can correctly override the default CSS class names with those of our own choos-
ing, and verify that we can place the button into an initially disabled state.

 Negative testing should also be conducted to ensure that our class behaves 
reasonably well when passed bad values. As an additional exercise, you might 
want to ponder how to make the class even more robust in this regard. For exam-
ple, in the interests of brevity we never checked that the element passed was really 
a button! What other “holes” can you fill?

 Now that we have a handle on how JavaScript enables us to write better-
organized code using object-oriented principles, let’s take a look at a popular 
JavaScript library that makes it easier for us to create such code.

3.2 The Prototype library

You’ve seen in the first part of this chapter how JavaScript is a language with 
built-in facilities for extending itself. The prototype-based inheritance feature of 
JavaScript makes it possible to create and extend not only our own classes, but 
also the classes that make up the language itself.

 This ability has not escaped the attention of library writers, who have 
exploited these features to provide useful extensions to JavaScript. In this sec-
tion we explore one such library, which has become very popular in the web 
development community: Prototype (so named after the prototype mechanism 
of JavaScript).

 Prototype provides a wide array of extremely useful extensions and addi-
tions to JavaScript that make the life of web application authors, especially those 
writing applications containing a good amount of DHTML (such as Ajax applica-
tions), a lot easier. It has even become the basis for other popular and higher-
level libraries available to JavaScript authors.

 In this section we won’t have the time or space to cover all of the features that 
Prototype has to offer; indeed, that could be the subject of a whole separate 
book. Rather, we’ll concentrate on some of the most useful features, and then 
focus on those that will help us in our endeavor to organize our code using an 
object-oriented approach. In the next chapter, we will visit with Prototype again, 
this time with a specific focus on the Ajax features of Prototype.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


98 CHAPTER 3 
Object-oriented JavaScript and Prototype
 To use Prototype, all you need is the prototype.js file, which can be down-
loaded from the Prototype site at http://prototype.conio.net/. Import this library 
into your pages, and you’re ready to go!

 Let’s begin by taking a look at some of the convenient features of Prototype 
that are useful to just about any JavaScript code.

3.2.1 Generally useful functions and extensions
Although our main goal here is to focus on the object creation and manipulation 
mechanisms of Prototype, there are a few general features of Prototype that are so 
useful—not to mention just plain nifty—that they deserve to be explored first.

 We’ll start by looking at a helper function that’s so convenient, once you get 
accustomed to using it, you’ll wonder how you ever got along without it.

Obtaining DOM element references
Whether our goal is to peek at its properties, add to or manipulate the prop-
erty values in some fashion, or to apply full-on instrumentation as we did in the 
first part of this chapter, obtaining references to DOM elements in a page is a 
frequent occurrence.

 This process usually entails locating DOM elements given their id value, so 
we’ll fairly often write code along the lines of

document.getElementbyId("someElementId")

That’s not difficult to grasp or to write, but it is rather wordy. Prototype defines a 
shorthand function for this very common operation in the guise of the $() func-
tion. (Yes, the name of the function is just the dollar sign.)

 Using this function, element references by id become

$("someElementId")

This is a much terser notation than its native version. Granted, when first writing 
code using this function, it can take some getting used to. But once you’ve used it 
even a little bit, you get accustomed to the initially odd notation and find that you 
miss it badly in environments where you aren’t using Prototype.

 But more so than just offering a compact notation, the $() function has a well-
planned nuance: if the value passed to the function is already a DOM reference (as 
opposed to an id string), the reference is simply returned as the result. This 
allows us to use $() without caring whether we have a DOM reference or an id
string, and, perhaps more importantly, keeps us from having to care which we 
have. This may not sound like a big deal, but it will come in tremendously useful 
when writing classes as well as in general JavaScript code.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Prototype library 99
 Element references aren’t the only thing that Prototype makes it easier 
to obtain.

Getting the value of form controls
Another useful shorthand function provided by Prototype is the $F() func-
tion, which returns the value of the form control element whose id is passed 
as a parameter.

 Let’s say, for example, that we have a text control whose id is someTextControl. 
Its value could be obtained via

$F("someTextControl")

It is important to note that this function refers to control elements by their id, 
and not by their name. Form control elements possess both an id attribute and a 
name attribute, which can be rather confusing until you understand the difference 
between them. Consider the following control element:

<input type="text" id="someId" name="someName" value="whatever"/>

This element can be referenced in JavaScript code in two ways—by name (assum-
ing that the element is contained within a form named someForm):

document.someForm.someName

or by id:

document.getElementById("someId")

The difference between the two attributes is that the id attribute assigns identifi-
cation for the element in the HTML DOM and must be unique within the page, 
while the name attribute assigns the name of the request parameter that will be 
part of the request created when the form is submitted. Any number of controls 
can share the same name.

 The id attribute is applicable to all elements that become part of the HTML
DOM, while the name attribute is only applicable to control elements that repre-
sent values that will become parameters upon a form submission.

 It’s important to remember that the $F() function expects to be passed the id
of the element, not the name of the element.

 As a bonus, in typical Prototype fashion, the $F() function can be passed a 
reference to the DOM element for a control rather than its id and still func-
tion correctly.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


100 CHAPTER 3 
Object-oriented JavaScript and Prototype
3.2.2 Array extensions

It’s hard to imagine programming without arrays. While there are other con-
structs that are useful for ordered lists of data, the array is one of the most preva-
lent and is intrinsic to most programming languages.

 JavaScript is no exception. The Array class provides many useful methods for 
dealing with repeating elements of data in our pages. But, as they say, there’s 
always room for improvement.

 Prototype extends the JavaScript Array class with some very clever features 
that we will find useful in our applications. Again, we’re only seeing the tip of the 
iceberg here, so please feel free to dig through the Prototype code or Internet 
resources for more details than we can cover here.

The $A() function
While not technically an extension of the Array object, the Prototype $A() func-
tion is useful for transforming other constructs into instances of the Array class. 
Of particular benefit to us as Ajax programmers is its ability to transform an 
XML document’s NodeList into an Array. That way, not only can we easily 
traverse it, but we can also use it with the Prototype Array extensions that we’re 
about to explore.

 For example, let’s assume we have an XML document referenced by a variable 
named xmlDoc:

var arrayOfNodes = $A(xmlDoc.getElementsByTagName('xyz'));

This would create an array of all <xyz> elements in the XML document and assign 
it to arrayOfNodes.

 Now let’s take a look at how Prototype has made the JavaScript Array class an 
even more useful construct than its native definition.

The Enumerable class and methods
Prototype extends the Array class itself with some interesting functions such as 
shift() (which allows you to treat an array as a stack) and compact() (which will 
return a copy of a source array with undefined entries removed). But what will 
really interest us as we progress through Ajax examples in this book is that Proto-
type makes Array an “extension” of a Prototype-defined class named Enumerable.

 We use the term “extension” loosely here because, while we know that Java-
Script has no true object-oriented extending capabilities, Prototype allows us to 
fake it rather admirably. (We’ll be talking about that in section 3.2.5.)

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Prototype library 101
 The Enumerable class features a bevy of useful functions for iterating over the 
elements of an Enumerable instance (and hence, all arrays), the simplest of which 
is the each() function.

 This function accepts a single parameter, a reference to an iterator function
that will be invoked for each element of the Enumerable instance in indexed 
order. This iterator function should adhere to the following interface:

function iteratorFunction(element,index);

where element is the current element from the array, and index is that element’s 
index within the array. A trivial example is shown in listing 3.13.

var myArray = [ 1, 2, 3, 4 ];
myArray.each(showMe);          

function showMe(element,index) {                    
  document.write('<p>[' + index + '] ' + element + '</p>');
}

Although the usefulness of this function may not be evident in this simple exam-
ple—after all, would it not be just as easy, and perhaps clearer, to just use a for
loop?—its utility will become clear when employed for more complex tasks. 
Never underestimate the benefit of factoring complex code out of an algorithm 
into a separate function—especially if the function is well named. The simplicity 
that such factoring can bring to complex code is usually well worth the time spent 
in structuring it properly.

 We’ll see in later sections how using this pattern helps to keep the individual 
functions shorter and easier to mentally grasp. Using this pattern also reduces the 
amount of notation needed to address the array elements when processing them.

 The Enumerable class sports many more such iteration functions that can be 
used to make our way through arrays in a customizable fashion, and even to easily 
create new arrays by applying various criteria to the elements to choose which 
should become part of the new array. You are strongly encouraged to explore 
these functions.

 Arrays, as we stated, are an essential element in programming for storing 
ordered lists of data. Let’s take a look at how Prototype gives us a formalized ver-
sion of another essential construct that we’ve already examined within this chap-
ter: the hash as implemented by the Hash class.

Listing 3.13 Using the Enumerable.each() method on an Array

Iterates over each 
myArray element

Is invoked for 
each element

http://lib.ommolketab.ir
http//lib.ommolketab.ir


102 CHAPTER 3 
Object-oriented JavaScript and Prototype
3.2.3 The Hash class

As we discovered earlier in this chapter, the fact that object properties can be 
dynamically created and assigned values allows us to use instances of the Object 
class as ad hoc “associative arrays,” which are similar to what we think of as Maps 
or Hashes in other languages.

 Prototype takes this one step further by formally defining a Hash class that not 
only provides the expected key-to-value associations, but also features such useful 
methods as keys(), values(), and merge(). It also defines a method that we will 
find incredibly useful in Ajax code: the toQueryString() method.

 This method formats and returns an HTTP-compliant query string formed 
from the name-value pairs contained within the hash. Together with the $H()
function, which creates an instance of Hash from the properties and values of 
any JavaScript object, the toQueryString() method will be employed in later 
examples to help us easily generate, with minimum chance of error, URLs to use 
as Ajax targets.

 Listing 3.14 shows a small example of its use, which would result in the follow-
ing output:

a=1&b=2&c=3

Now that’s nifty! Even better, this function handles any URL encoding that 
might be necessary for reserved characters in the names or values of the query 
string parameters.

var o = new Object();   
o.a = 1;                  
o.b = 2;                  
o.c = 3;                  
document.write($H(o).toQueryString());    

Consider the previous example with more complex values and alternative nota-
tion. It displays

param%201=1%261&param%202=2%3D2&param%203=3%2B3

Here’s the code that makes it happen:

var queryString = $H(
  {
    'param 1': '1&1',
    'param 2': '2=2',

Listing 3.14 Using the Hash.toQueryString() method

Creates object, 
assigns properties

Formats and writes 
query string

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Prototype library 103
    'param 3': '3+3'
  }
).toQueryString();
document.write(queryString);

Note that in this example, each parameter name contains a space character that 
needs to be encoded, and each value likewise contains characters (&, =, and +) 
that also need encoding. 

 Each special character has been automatically replaced with its encoding. 
Aren’t you glad you won’t have to do all that yourself?

3.2.4 Binding context objects to functions

Recalling our discussion of functions in section 3.1.2, remember that the context 
object of a function is the object that is referenced by the this reference while that 
function is executing. Normally, this object is the page’s window (for top-level 
functions), or the owning object instance when functions are invoked as methods.

 But when methods of an object are invoked as callback (handler) functions as 
the result of an event (such as a mouse click), the this variable refers to the 
event-generating element. Under these circumstances we employed some Java-
Script sleight-of-hand to make sure that we had access to the instance of the 
method’s object.

 One means that we can use is to invoke the function using the Function
class’s call() method, rather than making a direct call to a function. When we 
do so, the first parameter specified to call() is established as the context object 
for the function.

 For example, if we want the this variable within a called method to refer to an 
object of our choosing, we would employ the function’s call() method to set the 
object that will become this within the function:

var a = someFunction.call(someObject);

By doing so, the this reference in the body of the someFunction() function will 
refer to someObject.

 That’s all well and good when we are the ones calling the function. But what 
about when we do not have control at the time of the call, for example, when pass-
ing a function reference to another object to use as a callback? That’s a very real 
scenario that we’ll encounter within our Ajax programs in which we pass function 
references to XMLHttpRequest or other library code to be used as callback notifi-
cations. We’ll no longer have control over how the function will be invoked, and 
yet we’d like to bind the this variable to a specific object other than the one to 
which it would normally be bound.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


104 CHAPTER 3 
Object-oriented JavaScript and Prototype
 For just these occasions, Prototype has extended the Function class with a 
method named bind(), which we can use to pre-bind an object to the function ref-
erence such that, when the function is later invoked, its this variable will point to 
that object.

 Once again, a listing being worth a thousand words, see listing 3.15 for 
an example.

window.x = 1;    
var o = { x: 2 };               

function doSomething(callback) {   
  callback();
}

function callback() {   
  alert(this.x);
}

doSomething(callback);               
doSomething(callback.bind(o));       

In this example, we mark the window object with a property named x b and create 
an arbitrary object, also assigning it a property x but with a different value c. This 
will allow us to easily identify to which of these objects a reference is pointing.

 We then define a processing function named doSomething() that accepts a call-
back function referenced as its lone parameter d. For illustrative purposes, this 
function does nothing but invoke the passed callback function, but in a real-world 
example, it could be a library function that performs some processing and then 
invokes the callback when it is through.

 The callback function itself e merely displays an alert with the value of the x
property for whatever object is referred to by the this variable.

 To demonstrate the difference between an unbound and bound function, we 
first call the doSomething() function, passing in a simple reference to the callback 
function. When the alert is displayed, we see the value 1, indicating that for the 
invocation of the callback, the this variable points to the window object.

 Then, we call doSomething() again, this time binding the object o to the call-
back using Prototype’s bind() extension. When the alert appears, we see the value 
2, indicating that the this pointer now refers to the o object.

Listing 3.15 Pre-binding an Object instance to a function

 b Marks the window object

Creates and marks 
an arbitrary object C

Defines unbound 
callback d

 e Defines bound callback

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Prototype library 105
 This type of pre-binding will turn out to be incredibly useful to us when pass-
ing handler functions to the processing methods of XHR and other library func-
tions, thus allowing us to control what the context object (the object referred to by 
this) will be when the handler is invoked.

 When your callback function is going to be invoked as the result of a DOM event 
(such as a mouse click) and that function needs access to the triggering event, Pro-
totype provides a similar method named bindAsEventListener(). This method 
operates in a similar fashion to bind(), accepting as its parameter the object that 
is to be established as the context. However, it makes sure that when the callback is 
invoked, the event object is passed as the parameter to the callback. We’ll see 
examples of this method’s use in later chapters.

 With all this newfound Prototype know-how, now let’s take a look at how Pro-
totype helps us to write object-oriented JavaScript.

3.2.5 Object-oriented Prototype

We’ve seen in the first part of this chapter how applying object-oriented concepts 
to JavaScript can help make code better-organized and reusable. In this section 
we will explore the way that Prototype makes it even easier for us to write object-
oriented JavaScript classes.

 Let’s start off by looking at a Prototype-provided class named Class.

Creating classes with Prototype
Prototype’s Class class is a shorthand means for generating object constructors 
using a simpler notation—one that is also perhaps more consistent—than when 
using raw JavaScript.

 As you may remember from our Button example of section 3.1.4, a JavaScript 
class definition consists of a constructor function followed by declarations that 
assign members and methods to the prototype of that constructor. Some could 
find that notation a bit inconsistent, with initialization code going in a normal 
function declaration that operates as the constructor while method code is placed 
in functions assigned to the prototype.

 For those who would prefer to aggregate the code in a more consistent man-
ner, the create() method of Class (which turns out to be its only method) gener-
ates a constructor whose functionality can then be declared in the prototype. 
When the constructor is invoked, it will hand control over to a method named 
initialize() that it will expect to find defined within the class. Let’s take a look 
at the example in listing 3.16.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


106 CHAPTER 3 
Object-oriented JavaScript and Prototype
Something = Class.create();

Something.prototype.initialize = function(p1,p2,p3) {
  /* constructor code goes here */
};

Something.prototype.someMethod = function() {
  /* method code goes here */
};

In listing 3.16 we see that the code to construct an instance of the object is dele-
gated to a method named initialize(), which can be passed any number of 
parameters and is declared just like any other method in the prototype of the 
class. Many developers prefer this consistency, in which all code is declared in 
the prototype.

 For even tighter-looking code, many developers also use the alternate JSON
notation for aggregating the prototype properties, as shown in listing 3.17.

Something = Class.create();

Something.prototype = {

  initialize: function(p1,p2,p3) {
    /* constructor code goes here */
  },

  someMethod: function() {
    /* method code goes here */
  }

}

The code shown in listing 3.17 is entirely equivalent to the code in listing 3.16, 
albeit using a different notation. Many developers prefer to assign the members 
and methods to the prototype for a class en masse in this manner.

 Which notation you use to declare your JavaScript classes is a matter of per-
sonal preference. Regardless of how you declare the class—using raw JavaScript, 
or with the assistance of Prototype’s Class, and with or without using JSON nota-
tion—the remainder of Prototype’s object extensions can be used. And regardless 

Listing 3.16 Constructing a class the Prototype way

Listing 3.17 Aggregating properties the JSON way

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Prototype library 107
of the means of declaration, instances of the class are created in the same manner 
using the new operator:

var anInstance = new Something(1,2,3);

Prototype has many extensions that make the various things that we need to do 
with objects easier to manage. Let’s take a peek at a few of them.

Merging objects with Prototype
Whether you’ve realized it or not, we’ve already looked at an instance of merging 
objects earlier in this chapter. But before we get into that, let’s take a look at how 
Prototype allows us to merge objects and exactly what that means.

 In Prototype, the concept of merging two objects is to essentially make a union 
of all the properties found in both objects. This is accomplished with a class 
method defined on the Object constructor named extend().

 Odd. Wouldn’t you expect it to be named merge()? Well, the reason for the 
choice of name will become clear before too much longer.

 The extend() function is destructive in that one of the two parameters passed 
to it is modified to be the result of the merge. The signature of the method is

Object.extend(object1,object2)

The function operates by copying any properties found in object2 into 
object1. The result is that object1 ends up with all the properties it initially 
possessed, as well as all the properties that are in object2. 

 If both objects possess a property with the same name, the object2 property 
value is copied over the object1 property value, giving the object2 properties 
precedence. When the merge is complete, a reference to object1 is returned as 
the value of the function.

 When we rewrite our Button class using Prototype’s assistance, we’ll find this 
method useful for dealing with the options hash. We’ll see all that in section 3.2.6.

 Beyond merging object instances, the extend() method has a more funda-
mental use—one that explains its name.

Extending classes with Prototype
In object-oriented languages such as Java and C++, class hierarchies can be 
created through inheritance, in which a subclass inherits members and meth-
ods from a superclass. JavaScript possesses no such inheritance capabilities, 
but the Object.extend() class method gives us a darn good approximation of 
those facilities.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


108 CHAPTER 3 
Object-oriented JavaScript and Prototype
 Remember that a JavaScript class is created by the combination of a constructor 
and properties defined in its prototype. While we can’t magically cause a JavaScript 
class to inherit anything from another class, what if we use the Object.extend()
method to merge the prototype of an object serving as a subclass with a superclass 
object to form a new protoype composed from both objects?

 Head spinning yet?
 Let’s take a look at an example to see if we can make this work.
 Remember our CD example from the beginning of the chapter? We created a 

small object to hold information that represented a CD in our vast collection. We 
recorded (as properties) the title of the CD, the artist, and the location (as a shelf 
number) where the physical disc is stored.

 Well, as it turns out, we’re not only wild about music, we’re also movie buffs! So 
we’d like to expand our example to also include DVDs. We’re just crazy that way.

 As we know, CDs and DVDs share a lot of characteristics, but they each possess 
unique characteristics as well. The concept of an “artist” as applied to a CD
doesn’t make much sense for DVDs, and with DVDs we might want to record the 
director of the film, which makes no sense for CDs. But both share the character-
istics of a title and a location in our collection.

 Let’s start by creating a class that describes the common characteristics of both 
of these types of discs. Using Prototype, the result is shown in listing 3.18.

Disc = Class.create();   

Disc.prototype = {

  initialize: function(title,location,type) {   
    this._initializeDisc(title,location,type);
  },

  _initializeDisc: function(title,location,type) {               
    this.title = title;
    this.location = location;
    this.type = type;
  },

  whereIsIt: function() {                                        
    return 'The ' + this.type + ' titled ' + this.title +
           ' is on shelf ' + this.location;
  }

}

Listing 3.18 Defining the Disc “superclass”

Creates the constructor, 
Prototype style b

Defines initialize method 
for constructor c

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Prototype library 109
As you saw earlier, first we create the constructor (the Prototype way) b, and 
then define the members in the prototype. Because we used Prototype’s Class. 
create() mechanism, we define an initialize() method c for the constructor 
to call in order to set up the instance at construction time. And that’s where we 
did something just a little bit odd.

 The initialize() method just turns around and calls yet another method 
named _initializeDisc(), and lets it set up the instance. What’s up with that?

 First of all, the leading underscore in the name of the _initializeDisc()
method is just a convention used to indicate that the method is intended to be 
used internally and should never be called by code that employs this class. Java-
Script doesn’t possess the concept of private or protected members, so by naming 
the method in that way, we indicate our intention that the method be ignored by 
code outside of this class (or its hierarchy, as we will see) even if we have no way to 
actually enforce it.

 But why further delegate in this manner at all?
 Remember that our intention is that this class serve as a superclass for the yet-

to-be written CD and DVD classes. When we set up those classes, each will have its 
own initialize() method that will supercede the one we are defining in this 
class. To make sure that we can initialize the superclass from the subclasses, we 
factor the initialization code into the _initializeDisc() method, which will not 
be superceded by the subclasses, thereby keeping it available for the subclasses to 
call. We need to do this sort of two-level initialization for any class that is to be 
used as a superclass to be extended by other classes.

 You might consider _initializeDisc() to be rather wordy, or feel that the 
use of the class name in this local initializer is redundant, but consider a situa-
tion in which the subclasses are to be used as superclasses for yet other classes. If 
we used a simpler name such as _initialize(), we run into the same problems 
where that method would be superceded by classes further down in the inherit-
ance chain. By using the class name as part of the name for the local initial-
izer, each class has a unique name for its local initializer with no chance of it 
being superceded by a subclass.

 OK, so now that we know how to properly code a class so that it can be used as 
a superclass, let’s see how we code the subclasses: CD and DVD. Listing 3.19 shows 
the code for the CD subclass.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


110 CHAPTER 3 
Object-oriented JavaScript and Prototype
CD = Class.create();         

CD.prototype = Object.extend(      
  new Disc(),
  {
    initialize: function(title,artist,location) {
      this._initializeDisc(title,location,'CD');   
      this.artist = artist;
    }
  }
);

Listing 3.19 is surprisingly short, but upon examination, not so simple. There are 
a few strange things going on here.

 The first thing we do is to use Prototype’s Class.create() method in the nor-
mal fashion b. But when we get to defining the class prototype, things get con-
siderably more interesting.

 Normally when creating a class prototype, we assign an object with properties 
representing the members and methods of the class to the class’s prototype. And 
we do that here, except that instead of assigning it directly, we use it as the second 
parameter to the Object.extend() method, merging it with a new instance of the 
Disc class c.

 What’s going on there?
 If we recall how Object.extend() operates, it takes all the properties it finds on 

the object passed as the second parameter, adds them to the object passed as the 
first parameter, and returns that object as the result of the method.

 So here’s what’s happening: the hash object that we use to define the members 
of CD (in this case, solely consisting of the initialize() method) is added to a 
new instance of Disc, and that Disc instance becomes the prototype object for CD. 
The result is that the CD prototype contains all the members of Disc, and all the 
members of CD. Because CD is the second parameter to Object.extend(), any 
properties that it has in common with Disc will be given precedence.

 In reality, no inheritance has occurred. But by merging the properties of CD
with those of Disc, the perception of inheritance is achieved: it appears that CD has 
not only defined its own properties, but has also inherited Disc’s properties.

 The other interesting aspect of this example to note is that in the initializer for 
CD, we call the local initializer that we inherited from the Disc class to set the 
common properties d.

Listing 3.19 Coding the CD subclass

Defines Propotype’s 
Class.create() method b

Merges with Disc class c

Calls “inherited” 
initializer d

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Prototype library 111
The declaration of the DVD subclass is similar, as you can see in listing 3.20.

DVD = Class.create();

DVD.prototype = Object.extend(
  new Disc(),
  {
    initialize: function(title,director,location) {
      this._initializeDisc(title,location,'DVD');
      this.director = director;
    }
  }
);

Shall we do some rudimentary testing? The result is shown in figure 3.6. List-
ing 3.21 shows a simple test page that created this output.

<html>
  <head>
    <title>Disc Test</title>
    <script type="text/javascript" src="../scripts/prototype.js"> </script>
    <script type="text/javascript" src="Disc.js"> </script>
    <script type="text/javascript" src="CD.js"> </script>
    <script type="text/javascript" src="DVD.js"> </script>
    <script type="text/javascript">
      var myCollection = [
       new CD('18 B Sides','Moby',17),
       new CD('Bellatrix','Jorgen Skogmo',4),

Listing 3.20 Coding the DVD subclass

Listing 3.21 Testing the hierarchy

Figure 3.6  
Where are the discs?

http://lib.ommolketab.ir
http//lib.ommolketab.ir


112 CHAPTER 3 
Object-oriented JavaScript and Prototype
       new CD('City to City','Jerry Rafferty',15),
       new DVD('Alien','Ridley Scott',45),
       new DVD('Brazil','Terry Gilliam',2),
       new DVD('Chicken Run','Nick Park',213)
       /* and on and on ... */
      ];
    </script>
  </head>
  
  <body>

    <script type="text/javascript">
      myCollection.each(
        function(disc) {
          document.write(
            '<p>' + disc.title + ':' + disc.whereIsIt() + '</p>'      
          );
        }
      );
    </script>

  </body>
  
</html>

Naturally, if we were going to actually record our collection, we’d want to do so in 
a database rather than in an HTML page! But we’re doing it here to illustrate the 
concept of using Object.extend() to emulate class inheritance, so pretend this is 
all reasonable.

 When the page is displayed, we’d expect to see the name and locations of the 
discs in our collection, as shown in figure 3.6. Note the use of the whereIsIt()
method, which was inherited by CD and DVD from Disc.

 Before we move on to the next chapter—which takes a look at how Prototype 
and a handful of other freely available tools will help us to easily write Ajax 
code—let’s use the Prototype facilities we’ve learned about so far to rewrite the 
Button class we developed earlier in the chapter.

3.2.6 Rewriting the Button class with Prototype

With the sleight-of-hand tricks that Prototype provides us for declaring Java-
Script object classes, let’s reimplement the Button class from section 3.1.4 using 
these newfound abilities.

 The rewrite contains a lot of code that looks familiar, but it also has a number 
of significant changes, as you can see in listing 3.22.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Prototype library 113
Button = Class.create();   

Button.prototype = {   

  initialize: function(element, options) {        
    this.element = $(element);
    if (!this.element) throw new Error(element + ' not found');
    this.options = Object.extend(                                
      {
        enabled: true,
        onClick: function() {},
        enabledClassName: this.CLASS_DEFAULT_CLASS_ENABLED,
        disabledClassName: this.CLASS_DEFAULT_CLASS_DISABLED,
        armedClassName: this.CLASS_DEFAULT_CLASS_ARMED,
        pressedClassName: this.CLASS_DEFAULT_CLASS_PRESSED
      },
      options
    );
    this.element.onclick = this.onclick.bind(this);              
    this.element.onmouseover = this.onArm.bind(this);
    this.element.onmouseout = this.onDisarm.bind(this);
    this.element.onmousedown = this.onPress.bind(this);
    this.element.onmouseup = this.onRelease.bind(this);
    if (this.options.enabled) {
      this.enable();
    }
    else {
      this.disable();
    }
  },

  CLASS_DEFAULT_CLASS_ENABLED: 'buttonEnabled',
  CLASS_DEFAULT_CLASS_ARMED: 'buttonArmed',
  CLASS_DEFAULT_CLASS_DISABLED: 'buttonDisabled',
  CLASS_DEFAULT_CLASS_PRESSED: 'buttonPressed',

  onclick: function() {                                          
    if (this.options.enabled) {
      this.options.onClick.call(this);
    }
  },

  onArm: function() {
    if (this.options.enabled) {
      this.element.className = this.options.armedClassName;
    }
  },

  onDisarm: function() {

Listing 3.22 The Button class revisited

 b Declares the constructor

 c Declares class prototype
Accepts constructor’s 
parameters

 d

http://lib.ommolketab.ir
http//lib.ommolketab.ir


114 CHAPTER 3 
Object-oriented JavaScript and Prototype
    if (this.options.enabled) {
      this.element.className = this.options.enabledClassName;
    }
  },

  onPress: function() {
    if (this.options.enabled) {
      this.element.className = this.options.pressedClassName;
    }
  },

  onRelease: function() {
    if (this.options.enabled) {
      this.element.className = this.options.enabledClassName;
    }
  },

  isEnabled: function() {
    return this.options.enabled;
  },

  enable: function() {
    this.options.enabled = true;
    this.element.disabled = false;
    this.element.className = this.options.enabledClassName;
  },

  disable: function() {
    this.options.enabled = false;
    this.element.disabled = true;
    this.element.className = this.options.disabledClassName;
  }

}

This rewrite features some significant differences from the original implementa-
tion. First, we used Class.create() to declare the constructor b. Again, Proto-
type’s approach to declaring a constructor in this manner—moving the actual 
setup code into an initialization method—lends a certain consistency to the class 
code that you might find desirable. If not, you can continue to use the original 
native notation as a matter of taste. Regardless of which notation is used, the 
remainder of Prototype’s facilities can still be used.

 Next, the class’s prototype is declared using JSON notation c. Use of this 
notation is orthogonal to the use of Prototype; it’s just an alternative notation we 
can choose to use—or not to use. But this notation does appear to be the choice 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Prototype library 115
of many developers who use Prototype—and that’s where things start to get 
really interesting.

 Because we used Prototype’s constructor mechanism, we need to create an 
initialize() method that accepts the constructor’s parameters. We do so d, and 
in the very first line we assign the element parameter to the element member. 
Because we use Prototype’s $() function, the element parameter can be either an 
element id or a reference to the element.

 We could have coded this sort of flexibility into our original class by doing 
some type checking and conditional assignment, but here we get it for free by 
using $(). We also renamed the parameter from the original elementName to the 
more general element to indicate this.

 Unlike in our original implementation, we do not create a property on the 
<button> element that points back to this instance of Button. We’re not being 
stubborn; it’s just that it’s going to turn out not to be necessary. We’ll see why in 
just a bit.

 When it comes time to set up the options, Prototype’s assistance really starts to 
shine. In the original, we populated the options member one option at a time, 
testing to see if the caller had provided a setting for the option and using a default 
value if not. In our new implementation, we use the power of Object.extend() to 
merge the caller-provided options object with one of our own that we prepopulate 
with the defaults.

 Compare the notation used in the original in listing 3.8 to that in listing 3.22. 
The clarity of the latter approach should be more than apparent. The set of 
options available and their default values is much better organized and clear at a 
moment’s glance.

 Next, we assign the <button> elements handlers. Using the bind() extension 
that Prototype added to the Function object, we quickly and easily set up each 
handler so that when called, their function contexts will be the Button instance 
rather than the <button> element.

 In our native implementation, either we relied on closures to get a reference to 
the Button instance, or we relied on the property we had added to the <button>
element. Neither of these tricks is needed here, which is why we could dispense 
with adding any property to the element.

 The constructor is completed with the exact same code as the original to 
ensure that the button is in the correct initial state.

 The remainder of the implementation is straightforward and simple. It is 
important to note that (thanks to the use of bind()) when the event handlers are 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


116 CHAPTER 3 
Object-oriented JavaScript and Prototype
set up, all the handlers can assume that the Button instance (and not the <button>
element) is the context object when the handler is triggered.

3.3 Summary

We presented a great deal of material in this chapter.
 We focused on how JavaScript code can be organized using object-oriented con-

cepts even though the language doesn’t natively provide some object-oriented 
facilities common to other OO languages. You learned how to create JavaScript 
classes that contain members and methods, and by doing so gained all the benefits 
that JavaScript’s object-oriented brethren lend to code written in those languages. 
Organizing code into classes not only makes it, well, more organized, but also facil-
itates reuse and will help the code to be more extensible and maintainable.

 We then introduced the Prototype library. You saw that Prototype provides a 
bevy of helpful functions that could be useful in just about any JavaScript code 
base. We then looked into how Prototype helps us to write object-oriented Java-
Script easily and more clearly. You saw how to merge objects, and how to use that 
ability to emulate class inheritance in a language that possesses no such concept.

 But bear in mind that we’ve only scratched the surface here. There’s much 
more to Prototype than we are able to cover in half a chapter. For example, Pro-
totype contains facilities for easing the implementation of event-handling code—
a usually onerous task due to the browser-specific nature of events. However, 
we’re not quite done with Prototype yet. We will see a bit more of Prototype, in 
particular its Ajax facilities, in the next chapter.

 While Prototype is fast becoming one of the most popular JavaScript libraries, 
it’s far from the only one. In the next chapter we explore how some of the various 
freely available libraries (to include Prototype) can specifically help us as writers 
of Ajax applications.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Open source Ajax toolkits
This chapter covers
■ Choosing an open source toolkit
■ Making Ajax requests using the Dojo toolkit
■ Making Ajax requests using Prototype
■ Making Ajax requests using jQuery
■ Invoking server-side Java methods with DWR
117

http://lib.ommolketab.ir
http//lib.ommolketab.ir


118 CHAPTER 4 
Open source Ajax toolkits
Sometimes other people make our lives easier. Sometimes we pay them for this 
service. And sometimes we can actually get something for nothing.

 The Internet is full of open source tools that people have made available for 
others to use without charge, free for the taking. Whether the motivation behind 
making their labors freely available is a matter of seeking recognition, resume 
building, free advertising for other services, bragging rights, or just plain old-
fashioned altruism, we can gratefully take advantage of these tools.

 Though that doesn’t mean we get an entirely free ride.
 Since just about anybody with an FTP client can put just about anything out 

there on the Net, it behooves us to carefully choose which library or tool we are 
going to make use of. We need to take any number of factors into account when 
choosing open source software to use, but one good indicator is the number of 
successful projects that have already employed a tool or library. 

 In this chapter, we’ll survey a few of the open source toolkits that can make our 
lives—as Ajax web developers—a bit easier. We’ll look at the Dojo toolkit, Proto-
type (again, this time with an eye toward its Ajax capabilities), jQuery, and DWR.
You will find all of these libraries used in examples throughout the remainder of 
the book. Prototype will be used extensively, while the other libraries are used 
here and again among the examples.

 Be aware that the descriptions and examples within this chapter are in no way 
intended to serve as complete tutorials or primers for the full set of features of the 
toolkits that we’ll examine. Nor will a comprehensive survey of the toolkits’ capa-
bilities be presented. Rather, we’ll focus on the aspects of the toolkits that simplify 
the process of asynchronously communicating between client browser and server 
using Ajax.

 Examining the remainder of the features each toolkit brings to the table will 
be an exercise in discovery—usually one that’s really fun—left to the reader.

4.1 The Dojo toolkit

Dojo is an open source JavaScript library published and maintained by the Dojo 
Foundation. Like most other JavaScript toolkits, its aim is to make DHTML
tasks—especially popular but complicated tasks such as animations—easier to 
create and maintain. 

 You can download an edition of Dojo at http://dojotoolkit.org/download/. Dojo 
is packaged as numerous editions that contain specific packages that you might 
be interested in using. For the purposes of the code that we’ll write using Dojo, 
any edition that includes the I/O package will do.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Dojo toolkit 119
4.1.1 Asynchronous requests with Dojo
After downloading, simply place the dojo.js file in an appropriate location 
within your web application. For ease of setup, we’ll just put it in the same folder 
as our examples for this section.

 With regard to making asynchronous requests to the server, Dojo provides a 
simplification of the steps needed to make and respond to Ajax requests in the 
guise of the dojo.io.bind() function. This function accepts a single parameter: a 
JavaScript object whose properties serve as the parameters to the function—sim-
ilar to the options hash that we examined in the previous chapter. This may seem 
to be a rather unconventional approach if you haven’t come across it before, but it 
does have some distinct advantages and is gaining popularity among JavaScript 
programmers and especially toolkit authors. Using this technique, parameter 
order becomes moot, optional parameters are easy to deal with, and since each 
parameter property is named, the calling syntax is highly readable.

Problem
We want to create a page that we can use to look up phone numbers, given a list of 
names. We want to do so without any form submission that requires us to refresh 
the page.

Solution
For this problem, we’re going to make use of the Dojo I/O bind function to make 
the asynchronous call to the server in order to look up and return a phone num-
ber, given a name string.

 First, we need to import the Dojo library. In the head element of our page, 
we add

<script type="text/javascript" src="dojo.js"></script>

Then, we’ll hard-code the list of names in order to keep this example simple. (In 
a later problem, we’ll look at ways of obtaining such lists dynamically).

 In the body section of our page we write the following:

<form name="lookupForm" onsubmit="return false;">  
  <select name="who" onchange="lookup();">           
    <option value="JOHN">John</option>    
    <option value="MARY">Mary</option>
    <option value="BILL">Bill</option>
  </select>
</form>

We declare a form element b with an onsubmit event handler that prevents the 
form from ever being submitted to the server. We’re handling the server traffic 

 B Declares form element

Hard-codes 
control selections C

http://lib.ommolketab.ir
http//lib.ommolketab.ir


120 CHAPTER 4 
Open source Ajax toolkits
ourselves, so we don’t ever need the form to be submitted—at least not in this 
example. A select element is declared with an onchange event handler that will trig-
ger the lookup of the phone number when a selection from the list has been made.

 The options in the control are hard-coded on the page c for this example. 
Obviously in real-world code these would need to be dynamically created from 
the names available in the server’s contact database. We can either gloss over that 
for this example, or imagine that this page was set up by some server-side mech-
anism, JSP or PHP perhaps, that handled that aspect of the page for us.

 Upon selection, the lookup() function is invoked as the element’s onchange
event handler. This is where we use Dojo to make the Ajax call on our behalf:

function lookup() {
  dojo.io.bind(
    {
      url: 'phone.jsp?who='+document.lookupForm.who.value, 
      mimetype: 'text/plain',                               
      load:                                                
        function(type, data, req) {
          document.getElementById('displayArea').innerHTML = data;
        }
    }
  );
}

In this function, we make a call to the dojo.io.bind() function, passing all the 
information it needs in order to process our request as a JSON-formatted Java-
Script object with specific properties that act as the function’s parameters.

 The url property specifies the URL of the server-side resource to invoke. In 
this example, we’ve defined a simple JSP file to handle the request. This ridicu-
lously simple JSP file, which takes advantage of the powerful JSP Expression Lan-
guage, merely takes the who request parameter that we pass to it and adds it to the 
end of a phone number prefix in order to create the phone number. It consists of 
the single line

555.555.${param.who}

It’s easy to envision, however, that this JSP (or servlet, or PHP script, or other 
server-side resource) could just as well perform a database lookup or other pro-
cess in order to obtain the phone number.

 By default, the dojo.io.bind() function will use the GET HTTP method when 
making the request to the server. We could change this by including the method
property with a value of POST and using the content property to provide the 
request parameter.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Dojo toolkit 121
 The mimetype property is set to specify that the response will be plain text. The 
load property specifies a handler function that is to be invoked upon normal com-
pletion of the request. Since the handler function is so short in this example, we’ve 
inlined it as part of the parameter object. It could just as readily be a reference to 
a function defined elsewhere on the page. If we wanted to register a handler to be 
called in the event of a problem, we could do that with the error property.

 The load handler function is passed three parameters:

■ The first is the type of handler being invoked. In this case it will always be 
load. This parameter allows a handler function to be reused for more than 
one event type. 

■ The second parameter is the response data—in this case, the generated 
phone number.

■ The third parameter is a reference to the XMLHttpRequest object itself, 
which, if desired, can be queried for details about the status of the request.

The job performed by the load handler is simple: take the response data and 
dynamically set it into an element named displayArea using that element’s 
innerHTML property.

 The displayArea element is simply defined as an initially empty span element:

<div>
  Phone # is: <span id="displayArea"></span>
</div>

That pretty much sums up all the parts that need to go into our page. When dis-
played in a browser, it looks as shown in figure 4.1. The entire code for this rather 
Spartan-looking page is shown in listing 4.1.

Figure 4.1  
Phoning Mr. Bill

http://lib.ommolketab.ir
http//lib.ommolketab.ir


122 CHAPTER 4 
Open source Ajax toolkits
<html>
  <head>
    <title>Phone Number Lookup with Dojo</title>
    <script type="text/javascript" src="dojo.js"></script>
    <script type="text/javascript">
      function lookup() {
        dojo.io.bind(
          {
            url: 'phone.jsp?who='+document.lookupForm.who.value,
            mimetype: 'text/plain',
            load:
              function(type, data, req) { 
                document.getElementById('displayArea').
                  innerHTML=data; 
              }
          }
        );
      }
    </script>
  </head>

  <body>
    <form name="lookupForm" onsubmit="return false;">
      <select name="who" onchange="lookup();">
        <option value="JOHN">John</option>
        <option value="MARY">Mary</option>
        <option value="BILL">Bill</option>
      </select>
    </form>
    <div>
      Phone # is: <span id="displayArea"></span>
    </div>
  </body>

</html>

Discussion
This section introduced us to using the dojo.io.bind() function to make Ajax 
requests to server-side resources.

 A comparison of the amount of JavaScript code necessary to make such a 
request ourselves using the XHR object directly, versus using the Dojo function, 
would show a nontrivial, but hardly earth-shattering, reduction. However, more so 
than just lines of code, use of a toolkit such a Dojo helps reduce the complexity of 
the code by reducing the amount of “plumbing” code on the page so that the code 

Listing 4.1 Phone number lookup with Dojo

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Dojo toolkit 123
that remains is core code that is focused on providing the page’s functionality. 
Such reduction in plumbing code, especially over the course of a large and com-
plicated page, can significantly reduce the complexity of the page even if it makes 
only a small dent in the number of lines of code.

4.1.2 Automatic form marshaling with Dojo

The previous section showed how easy it was to use the Dojo dojo.io.bind()
function to make a call back to the server to retrieve data asynchronously. One 
issue with that example was that in order to construct the URL to perform the 
GET operation, we needed to build a query string to append onto our URL. Gen-
erally, building query strings for URLs by hand is something that’s best avoided in 
order to steer clear of common pitfalls such as

■ Syntax issues, such as how many times you have used the ? in place of the 
&, and vice versa

■ Incorrect encoding (or complete lack thereof) of the parameter names 
and values

But even if we don’t want to have to deal with it, something has to build the 
query string.

Problem
We want to avoid having to build query strings to the URLs that we will pass to the 
Dojo bind() function. We think, “Wouldn’t it be great if we could just ‘submit’ the 
form containing our select element to the asynchronous request instead of having 
to read the value and build the query string ourselves?”

 As it happens, Dojo allows us to do just that.

Solution
The parameter object for the dojo.io.bind() function accepts a property named 
formNode, which lets us specify the DOM element node of a form element whose 
controls are passed as request parameters to the asynchronous request. This 
allows us to effectively “submit” the form via the Ajax request, even though we 
know that the form isn’t actually being submitted.

 This entails making only a few changes to the code of our previous section. 
First, we change the call to the bind() function as follows:

dojoio.bind(
  {
    url: 'phone.jsp',    B Look, Ma! No params!

http://lib.ommolketab.ir
http//lib.ommolketab.ir


124 CHAPTER 4 
Open source Ajax toolkits
    mimetype: 'text/plain',
    load:
      function(type, data, req) {
        document.getElementById('displayArea').innerHTML = data;
      },
    formNode: document.lookupForm    
  }
);

Note that a query string is no longer constructed and placed on the URL that we 
set as the value of the url property b, and that we have added a formNode prop-
erty c that specifies a reference to the form containing the select element. This 
causes the bind() function to automatically marshal the values of the control ele-
ments in the specified form and pass them as parameters to the asynchronous 
request. The changed page, with modifications highlighted in bold, is shown in 
listing 4.2.

<html>
  <head>
    <title>Phone Number Lookup with Dojo</title>
    <script type="text/javascript" src="dojo.js"></script>
    <script type="text/javascript">
      function lookup() {
        dojo.io.bind(
          {
            url: 'phone.jsp',
            mimetype: 'text/plain',
            load:
              function(type, data, req) {
                document.getElementById('displayArea').innerHTML=data;
              },
            formNode: document.lookupForm
          }
        );
      }
    </script>
  </head>

  <body>
    <form name="lookupForm" onsubmit="return false;">
      <select name="who" onchange="lookup();">
        <option value="JOHN">John</option>
        <option value="MARY">Mary</option>
        <option value="BILL">Bill</option>
      </select>
    </form>
    <div>

Listing 4.2 Asynchronous form submission with Dojo

 C Specifies form to submit

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Prototype 125
      Phone # is: <span id="displayArea"/>
    </div>
  </body>

</html>

Discussion
This example showed us a way to easily submit a form to an asynchronous request 
without the cumbersome requirement of building a query string from the values 
of the form controls. By merely passing a reference to the Dojo function, we 
ensure that the mechanics are handled on our behalf.

 While gathering form values and constructing a query string for the URL is 
by no means rocket science, it’s a rather messy and onerous task, and one in 
which it is easy to introduce silly errors. By taking care of this tiresome task, this 
aspect of Dojo provides a good example of how providing features that may not 
greatly reduce lines of code can still greatly reduce the complexity of the on-
page code.

4.2 Prototype

Unless you skipped over the previous chapter, you’ve already been introduced to
Prototype, a JavaScript toolkit that aims to make the life of DHTML coders easier. 
It’s a popular toolkit that is not only useful in its own right but has also been used 
as the basis for other toolkits and frameworks such as Scriptaculous, Ruby on 
Rails, and Rico.

 In order to use Prototype, all you need is the prototype.js file, which can be 
downloaded from the Prototype site thttp://prototype.conio.net/. Like the Dojo 
toolkit, Prototype offers a wide range of DHTML features. If you did breeze over 
the Prototype section of chapter 3, you might want to go back and read that sec-
tion before continuing, as we’ll be using some of the more useful Prototype exten-
sions in our example code.

4.2.1 Asynchronous requests with Prototype

Like the Dojo toolkit, Prototype provides a number of easy ways to make asyn-
chronous requests via Ajax. Let’s start by looking at Prototype’s means for making 
a basic request.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


126 CHAPTER 4 
Open source Ajax toolkits
Problem
On an order entry page, we are faced with the common problem of dynamically 
populating the contents of a dropdown control (<select> element) based on the 
selection made in another. For this example, we’ll present a dropdown with a list 
of colors in which our collection of T-shirts are available. Based on the color selec-
tion, we need to dynamically consult our inventory database and populate the 
sizes dropdown to show only sizes that we actually have on hand for that color.

Solution
First, we import the Prototype library. Assuming that we have placed the proto-
type.js file in the same folder as the HTML page, that would be as easy as

<script type="text/javascript" src="prototype.js"></script> 

Now, let’s set up our form. For simplicity’s sake, we’ll only include the two drop-
down elements and a submit button. Obviously, many other controls would be 
needed for an actual order form.

<form action="/submitOrder" name="tshirtForm">
  <label>T-shirt color:</label>
  <select name="color" id="color" onchange="updateSizes();">  
    <option value="">Select color</option>
    <option value="cardinal">Cardinal</option>
    <option value="ecru">Ecru</option>
    <option value="hunter">Hunter</option>
    <option value="azure">Azure</option>
  </select>
  <label>Size:</label>
  <select name="size" id="size" disabled="disabled">   
    <option value="">Select size</option>
  </select>
  <input type="submit"/>
</form>

A few things are notable about this form. First, note that the form’s control ele-
ments have been given both an id and a name attribute, and that these values are 
the same. This allows us to refer to the control elements by either ID or by name, 
and since these identifiers exist in separate JavaScript namespaces, nothing will 
be confused by the fact that we used the same value for both. We also defined an 
onchange event handler on the colors dropdown b so that we can react when the 
user selects a color from the list. The sizes dropdown c, which is empty except 
for a “Select size” directive, is initially disabled; it makes no sense for users to click 
on it until it’s populated with some values.

Defines 
onchange 
handler B

Creates sizes 
dropdown C

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Prototype 127
 When the user selects a color from the list of available colors, the update-
Sizes() function is invoked:

function updateSizes() {
  if ($F('color')=='') return;   
  new Ajax.Request('getSizes.jsp?color=' + $F('color'),  
    {
      method: 'get',                                     
      onSuccess: populateSizes,                          
      onFailure: function(r) {                           
        throw new Error( 'Fetch sizes failed: '   
          + r.statusText );
      }
    }
  );
}

The first thing that this handler does is use the $F() function to obtain the value 
of the color dropdown b and exit if no color was actually selected (the user could 
click on the “Select color” entry, which we’re just using as a helpful label). We 
could be more robust here in order to ensure that the size element is placed into a 
known state, but we’re focusing on the Ajax request for now.  

 If that check passes, an asynchronous request is made using Prototype’s 
Ajax.Request object. The asynchronous request itself is triggered by constructing 
a new instance of Ajax.Request, passing two parameters: the URL for the request, 
and a hash object containing properties that specify the options of the request. (We 
used this same technique in chapter 3, and it is also employed by the Dojo toolkit.)

 The URL specifies a JSP file that we will use to simulate a database lookup into 
our inventory, and is passed the value of the chosen color. In the options param-
eters object, we specify the HTTP method as a GET (Prototype insists on lowercase 
here) with the method property, and provide function references for success and 
failure handlers with onSuccess and onFailure, respectively.

 The failure handler, which is passed a reference to the XHR instance, throws 
an error depicting the failure status c. The success handler is a reference to the 
populateSizes() function.

 To make life easy on the client-side code (it’s almost always a good idea for the 
server-side code to “take one for the team” and handle as much of the complex 
processing as possible to help simplify the client-side code), the JSP will return as 
its response a JSON string containing the notation for a JavaScript array of the 
available sizes. A typical response might be

['Small','Medium','Large','XL','XXL']

Obtains value of 
color dropdown

 b

 C Throws error

http://lib.ommolketab.ir
http//lib.ommolketab.ir


128 CHAPTER 4 
Open source Ajax toolkits
The code for the JSP, which utilizes the JSTL (JSP Standard Tag Library) core 
actions, is

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<c:choose>
  <c:when test="${param.color =='azure'}">
    ['Small','Medium','XXXL']
  </c:when>
  <c:when test="${param.color =='cardinal'}">
    ['Medium','Large','XL']
  </c:when>
  <c:when test="${param.color =='ecru'}">
    ['Small','Medium','Large','XL','XXL','XXXL']
  </c:when>
  <c:when test="${param.color =='hunter'}">
    ['Small','Medium','Large','XL','XXL']
  </c:when>
</c:choose>

Of course, in a real-world situation, this would be a servlet or other server-side 
resource that would perform a database lookup rather than returning hard-
coded values.

 When this JSP returns its response, the Prototype Ajax.Request object will 
invoke the populateSizes() function (assuming all has gone well, of course), which 
we have defined as follows:

function populateSizes(r) {
  eval('var sizes=' + r.responseText);                        
  var sizeElement = $('size');          
  while (sizeElement.options.length > 1) {   
    sizeElement.remove(1);
  }
  for (var n = 0; n < sizes.length; n++) {                   
    sizeElement.add(                                         
      new Option(sizes[n],sizes[n]),document.all ? 0 : null   
    );
  }
  sizeElement.disabled = false;                              
}

This handler is passed a reference to the XHR instance, and the first thing that it 
does is to obtain the results of the response. Using the JavaScript eval() func-
tion, we evaluate the JSON response text and assign it to a variable for use later 
in the function. After the evaluation, this variable will contain a reference to a 
JavaScript string array, specifying the size values that our JSP returned for the 
passed color.

Obtains dropdown 
element reference

 b

Empties dropdown 
element

Adds the 
options C

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Prototype 129
 We want to add those values to the sizes dropdown, so we obtain a reference to 
the dropdown element b and empty it by removing all of its options with the 
exception of the first (which contains our helpful “Select size” label) C. We then 
iterate over each of our returned size values and add a new option containing the 
size to the sizes dropdown. 

 When we make the call to the select element’s add() method C, the second 
parameter warrants some explanation:

document.all ? 0 : null

The W3C specification for the add() method of the select element calls for the 
second parameter to specify the index of the existing option before which the new 
option will be inserted, or null in order to insert the new option at the end of 
the list.

 Internet Explorer, however, insists on using a zero rather than null to indicate 
that the new option be placed at the end, so we do a little browser detection and 
provide the appropriate value. Usually object detection rather than browser detec-
tion is recommended for making client-dependent choices, but in this case 
there’s no object to test in order to make the appropriate decision.

 Finally, after all the sizes have been added, the sizes dropdown is enabled. In a 
browser, before a color selection, we would see a page such as shown in figure 4.2. 
The same page after a color selection is shown in figure 4.3. The completed code 
for our page is shown in listing 4.3.

Figure 4.2  
Color selection page: before

http://lib.ommolketab.ir
http//lib.ommolketab.ir


130 CHAPTER 4 
Open source Ajax toolkits
<html>
  <head>
    <title>T-shirts!</title>
    <script type="text/javascript" src="prototype.js"></script>
    <script>
      function updateSizes() {
        if ($F('color')=='') return;
        new Ajax.Request('getSizes.jsp?color=' + $F('color'),
          {
            method: 'get',
            onSuccess: populateSizes,
            onFailure: function(r) {
              throw new Error( 'Updates sizes failed: ' + 
                               r.statusText );
            }
          }
        );
      }

      function populateSizes(r) {
        eval('var sizes=' + r.responseText);
        var sizeElement = $('size');
        while (sizeElement.options.length > 1) sizeElement.remove(1);
        for (var n = 0; n < sizes.length; n++) {
          sizeElement.add(
            new Option(sizes[n],sizes[n]), document.all ? 0 : null
          );
        }
        sizeElement.disabled = false;
      }

Listing 4.3 Dynamic lookup with Prototype

Figure 4.3  
Color selection page: after

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Prototype 131
    </script>
  </head>

  <body>
    <form action="/submitOrder" name="tshirtForm">
      <label>T-shirt color: </label>
      <select name="color" id="color" onchange="updateSizes();">
        <option value="">Select color</option>
        <option value="cardinal">Cardinal</option>
        <option value="ecru">Ecru</option>
        <option value="hunter">Hunter</option>
        <option value="azure">Azure</option>
      </select>
      <label>Size:</label>
      <select name="size" id="size" disabled="disabled">
        <option value="">Select size</option>
      </select>
      <input type="submit"/>
    </form>
  </body>
</html>

Discussion
Like the Dojo toolkit, Prototype allows us to make asynchronous Ajax requests in 
a simpler fashion (compared with using the XHR object directly) by handling the 
details of making the request and handling the state change callback. This allows 
us to abstract the code necessary to initiate and handle the request, focusing on 
the processing at hand.

 The value of the small level of abstraction that Prototype provides in this area 
may not be apparent in an example of this size, but on a more complicated real-
world page, the advantages of keeping the code neat can become a major factor 
in the maintainability and extensibility of the page.   

4.2.2 Automatic updating with Prototype

In the previous problem, the data that came back to our page from the server 
required some processing in order to display; a string array of values needed to 
be converted to option elements with which to populate a select element.

 But frequently, we may want to display data that we get back from the server as 
is with no interpretation necessary. For just such occasions, Prototype provides 
the Ajax.Updater class to make this process easy and painless.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


132 CHAPTER 4 
Open source Ajax toolkits
Problem
Upon some event on the page—a button click, perhaps—we wish to obtain the 
date and time from the server and display it on the page.

Solution
As expected, we start by importing the Prototype toolkit:

<script type="text/javascript" src="prototype.js"></script>

We’ll be triggering the update of the date and time information as a result of a 
button press, so we define a button:

<button type="button" onclick="update();">Click me!</button>

and an initially empty container in which to display the date and time:

<span id="timeDisplay"></span>

The onclick event handler of the button triggers the update() function in which 
we employ the Ajax.Updater object:

function update() {
  new Ajax.Updater('timeDisplay','date.jsp',
    {
      method: 'get'
    }
  );
}

As we did with the Ajax.Request object, we use the Ajax.Updater object by cre-
ating an instance and passing the relevant information in the constructor’s 
parameters.

 The first parameter specifies the id of the element into which the response
text will be placed, and the second parameter specifies the URL from which to 
obtain the response. In this case the server-side resource is a JSP page named 
date.jsp, which employs the JSTL internationalization actions to format and 
return the current time:

<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>
<jsp:useBean id="now" class="java.util.Date"/>
<fmt:formatDate value="${now}" pattern="MMMM dd, yyyy hh:mm aa"/>

The third parameter is a JavaScript object containing the request options, just as 
we saw with Ajax.Request. In this case, we merely specify the HTTP method as GET.

 This results in the display (after a click of the button) shown in figure 4.4. The 
complete code that resulted in this page is shown in listing 4.4.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Prototype 133
<html>
  <head>
    <title>Now!</title>
    <script type="text/javascript" src="prototype.js"></script>
    <script>
      function update() {
        new Ajax.Updater( 'timeDisplay', 'date.jsp',
          {
            method: 'get'
          }
        );
      }
    </script>
  </head>

  <body>
    <button type="button" onclick="update();">Click me!</button>
    <span id="timeDisplay"></span>
  </body>
</html>

Discussion
Updating an HTML element with data gathered from an Ajax request is an 
extremely common occurrence on many Ajax-enabled pages. By providing the 
Ajax.Updater object, Prototype reduces the amount of code necessary to perform 
this common task to the barest minimum.

Listing 4.4 Keeping up-to-date

Figure 4.4  
Finding out what time it is 
with Prototype

http://lib.ommolketab.ir
http//lib.ommolketab.ir


134 CHAPTER 4 
Open source Ajax toolkits
 This is especially useful for requests made to server-side resources that can 
easily return already-formatted HTML code, such as JSP pages, PHP scripts, or 
even static HTML files. Having the server-side resource perform the formatting 
can greatly reduce the amount of processing necessary on the page to gather raw 
data and use it to either format HTML strings for use with innerHTML, or to use the 
DOM API to dynamically build the desired HTML elements.

4.2.3 Periodic updating with Prototype

In the previous problem, we used the Prototype Ajax.Updater object to cause an 
HTML element container to be updated automatically with preformatted response 
data from the server; we used the current date and time as an example.

 We were able to do this with a minimum of code, and it was convenient to just 
be able to name the target display element by its id. There are times, however, 
where we would want to execute the same function, but at set intervals in order to 
ensure that the displayed data will be as up-to-date as feasible.

Problem
We wish to obtain and display data from the server (using the current date and 
time once again) at periodic intervals.

Solution
Starting with the code of the previous solution, we could easily achieve our 
goal by invoking the services of the Ajax.Updater class in a timeout handler 
invoked by using the JavaScript window.setTimeout() or window.setInterval()
function. But once again, Prototype makes things even easier for us by provid-
ing the Ajax.PeriodicalUpdater class. To use this class, we need only make a 
few minor adjustments to our previous solution.

 We’ll be calling a slightly different back-end processing resource, date2.jsp, 
which returns as its response the current data and time in a manner similar to its 
predecessor. But this time we include the seconds in the time value so that we can 
detect updates on a second-by-second basis:

<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>
<jsp:useBean id="now" class="java.util.Date"/>
<fmt:formatDate value="${now}" pattern="MMMM dd, yyyy hh:mm:ss aa"/>

The changes to the update() function include using the Ajax.PeriodicalUpdater 
class and specifying the interval at which the automatic updates are to occur:

function update() {
  new Ajax.PeriodicalUpdater('timeDisplay','date2.jsp',    

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Prototype 135
    {
      method: 'get',
      frequency: 5                                         
    }
  );
}

As you can see, only two changes are involved. First, we create an instance of 
Ajax.PeriodicalUpdater that refers to the new JSP page in the request URL. Sec-
ond, we introduce a frequency property in the parameters object that specifies 
the number of seconds between updates.

 When we display this page in the browser, it looks and acts exactly like our pre-
vious solution, except that once the button is clicked to display the date, it will 
automatically update every 5 seconds. The complete code for this page, with the 
changes from the previous solution highlighted in bold, is shown in listing 4.5.

<html>
  <head>
    <title>Right now!</title>
    <script type="text/javascript" src="prototype.js"></script>
    <script>
      function update() {
        new Ajax.PeriodicalUpdater( 'timeDisplay', 'date2.jsp',
          {
            method: 'get',
            frequency: 5
          }
        );
      }
    </script>
  </head>

  <body>
    <button type="button" onclick="update();">Click me!</button>
    <span id="timeDisplay"/>
  </body>

</html>

Discussion
With very little effort, we’ve updated our previous example with the ability to auto-
matically keep the display of the server-provided data up-to-date at a frequency 
that best suits our page. The Prototype Ajax.PeriodicalUpdater class made it easy 

Listing 4.5 Keeping constantly up-to-date with Prototype

http://lib.ommolketab.ir
http//lib.ommolketab.ir


136 CHAPTER 4 
Open source Ajax toolkits
for us to schedule the automatic updates without having to code any scheduling 
logic or write timeout handlers.

 When using such automatically fired updaters, care should be taken not to 
overwhelm the server with requests. Although initially it may seem like a good 
idea to fire off an update every second in order to keep the display as up-to-date 
as possible, imagine the load that could be created when hundreds, or even thou-
sands, of visitors to our site are all looking at a page that hammers the server with 
requests for updated data. Granted, the request and the generated response are 
usually small (and certainly are in this example), but it’s possible to kill the server 
via the proverbial “death by a million paper cuts.”

 When choosing what to automatically update and at what interval, the expected 
number of simultaneous visitors, the size of the update response, the process 
required to generate that response, and the load-handling capability of the server 
configuration all need to be taken into account. At best, the update interval could 
be factored out into a configuration file rather than being hard-coded into the 
pages, so that an administrator could adjust the value on the fly without having to 
recode pages.

4.3 jQuery

jQuery, a self-professed “new type” of JavaScript library, operates from a slightly 
different viewpoint than the toolkits we’ve seen so far in this chapter. It pur-
ports to change the way that you write JavaScript, and quite truly, adopting the 
jQuery philosophy can make a huge impact on how you develop the script for 
your pages.

 The jQuery downloads and documentation can be found at http://jquery.com/.
You can download this JavaScript library as either an uncompressed library (with 
human-readable code) or a smaller compressed file (not readable).

 In either case, import the jQuery script file into any pages on which you wish 
to use jQuery. For the purposes of this section, we’ll use the uncompressed (read-
able) version of the script file, place it in the same folder as our example pages 
(for easy importing), and name it jquery.js.

4.3.1 jQuery Basics

Before diving into making Ajax requests with jQuery, let’s take a look at some of 
the basic concepts that we need to have under our belts before beginning to make 
sense of how jQuery operates.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


jQuery 137
 This section will by no means be a complete primer on jQuery—that would 
take much more space than we have allotted here—but it should give you an idea 
of the philosophy behind jQuery’s modus operandi.

The jQuery wrapper
Other libraries that we have seen, particularly Prototype, operate by introducing 
new classes and by extending the built-in JavaScript classes in order to augment 
the capabilities of the script on our pages. In chapter 3, for example, we saw how 
Prototype extended the Object, Function, and Array classes.

 jQuery takes a different approach.
 Rather than extending classes, jQuery provides a new class, appropriately 

named jQuery, that serves as a wrapper around other objects in order to provide 
extended operations upon those objects. The concept of a wrapper object is not 
foreign to advanced developers of object-oriented programs. This pattern is 
often used as an adapter to present an interface for manipulating an object that 
is different from the original object’s interface. 

 In jQuery, most operations are performed by using the jQuery wrapper 
around a set of items and calling wrapper methods that operate upon the 
wrapped items. In order to make expressions and statements containing jQuery 
wrappers terser, the jQuery class is mapped to $. This is not to be confused with 
Prototype’s use of $(), which serves a completely different purpose.

 The jQuery object can wrap a number of different object types, and what it can 
do for us depends on what has been wrapped. For example, we can wrap an 
HTML snippet:

$("<p>What's cooking?</p>")

This constructs a DOM fragment from the HTML that we can then operate upon 
with jQuery’s methods. For example, if we wanted to append this fragment to the 
end of the document, we could use

$("<p>What's cooking?</p>").appendTo("body");

As Ajax developers who often have a need to generate new DOM elements, the 
advantages of this convenient and short means to effect such additions should be 
readily apparent.

 In addition to adding new DOM elements, we often find ourselves needing 
to manipulate existing elements in our pages. The jQuery wrapper also allows 
us to wrap existing elements by passing a string to the $() wrapper that pro-
vides a number of ways to identify the items to be wrapped: CSS selectors, 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


138 CHAPTER 4 
Open source Ajax toolkits
XPath expressions, and element names. We’ll be using CSS selectors a great deal 
within our example code. Consider the following:

$("div")

This will cause all <div> elements in the document to be wrapped for manipula-
tion. Another example is

$("#someId")

This wraps the DOM element with the id of someId for manipulation. Here’s yet a 
third example:

$(".someClass")

This will wrap all elements, regardless of type, that possess the CSS class name 
of someClass.

 The authors of jQuery were very clever in using CSS selectors and XPath to 
identify target elements as opposed to inventing some jQuery-specific syntax that 
users of jQuery would be forced to adopt. By using mechanisms that we, as page 
developers, are already familiar with, they have made it far easier for us to adopt 
and use jQuery to identify the elements that we wish to manipulate.

 It is also possible to wrap other items such as elements and functions. We’ll be 
seeing examples later in this section.

Chaining  jQuery operations
jQuery sensibly allows us to string together numerous operations into a single 
expression. Most of the jQuery wrapper methods return a reference to the 
jQuery wrapper object itself so that we can just keep tacking operations onto a 
single expression when we need to perform multiple manipulations on the 
wrapped object(s).

 Consider the case where we might want to add a CSS class to an element 
(whose id is something) and then cause it to be shown (assuming it was initially 
hidden). Rather than

$('#something').addClass('someClass');
$('#something').show();

we would write

$('#something').addClass('someClass').show();

http://lib.ommolketab.ir
http//lib.ommolketab.ir


jQuery 139
Executing code when the document is ready
Frequently on our pages, we need some initialization code to execute in order to 
prepare the page before the user gets a chance to interact with it. Generally we 
use the window’s onload event handler for such initializations. This guarantees 
that the page has completed loading prior to executing the onload code, thereby 
guaranteeing that the DOM elements exist and are ready for manipulation.

 But one problem with relying on onload is that not only does it wait until the 
document body has been loaded, but it also waits for images to load. Since images 
must be fetched from the server if the browser has not cached them, this can 
sometimes extend the point at which the initialization code runs far beyond the 
point at which the document has been loaded and the code is safe to execute.

 jQuery solves this problem for us by introducing the concept of the “doc-
ument ready handler.” This mechanism causes a function to execute when 
the document has loaded but prior to waiting for any images and the onload
event handler.

 The syntax for employing this mechanism is to wrap the document element 
and to call the ready() method on the wrapped document:

$(document).ready(function);

Whatever function is passed to ready() will execute when the DOM is ready for 
manipulation. Note that when you use both the ready mechanism and an onload
event handler on a page, both handlers will execute, with the ready event handler 
triggered prior to the onload event handler.

 A shorthand notation for a ready() handler can be used by wrapping a func-
tion in the jQuery wrapper. The code fragment

$(function);

is equivalent to the code fragment for declaring a ready() handler that was pre-
sented earlier.

Using  jQuery and Prototype together
Prototype is a very popular library, and jQuery is rapidly gaining ground. As such, 
it’s not unlikely that page authors might wish to use the power of both libraries on 
the same page.

 In general, jQuery follows best-practice guidelines and avoids polluting the 
global namespace—for example, by placing such constructs as utility functions 
within the jQuery namespace. But one area of conflict, which we’ve already 
alluded to earlier, is the use of the $ as a global name.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


140 CHAPTER 4 
Open source Ajax toolkits
 jQuery, being a good library citizen, has anticipated this issue. When using 
Prototype and jQuery on the same page, calling the jQuery utility function 
jQuery.noConflict() any time after both libraries have been loaded will cause the 
functionality of the $ name to revert to Prototype’s definition.

 jQuery functionality will still be available through the jQuery namespace, or 
you could define your own shorthand alias. For those times when you use jQuery 
together with Prototype, the jQuery documentation suggests the following alias:

var $j = jQuery;

That’s enough preliminaries!
 We’ll see more use of jQuery methods within the solutions in this section. But 

even so, we’ll only be lightly touching on jQuery’s capabilities. If after reading 
these solutions you find yourself intrigued by jQuery’s capabilities, we strongly 
urge you to visit http://docs.jquery.com/ to read the extensive online documenta-
tion and find out what other capabilities jQuery has to offer.

4.3.2 Asynchronous loading with jQuery

jQuery provides a fairly large number of methods to make Ajax requests. Some 
are simple and useful high-level methods that initiate Ajax requests to perform 
some of the most commonly required tasks. Others are more low-level, providing 
control over every aspect of the Ajax request.

 We’ll employ a representative handful of these methods in the solutions within 
this section. First, let’s tackle one of the most common of Ajax interactions: 
obtaining dynamic content from the server.

Problem
Let’s imagine that we own an eFridge—a hypothetical high-tech refrigerator that 
not only keeps track of what its contents are, but also provides an Internet inter-
face that server software can use to communicate and interact with the eFridge.

 The imaginary technology used by the eFridge to keep track of its inventory is 
unimportant. It could be bar-code scanning, RFID (Radio Frequency Identifica-
tion) tags, or some yet-to-be-imagined technology. All we care about as page 
authors is that we have a server component to which we can make requests in 
order to obtain information about the state of our food!

 The page we’ll focus on will present a list of the items that are in our 
eFridge. Upon clicking on an item in this list, more information about the item 
will be displayed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


jQuery 141
 For this problem, we’ll assume that the page was prepopulated with the list 
of items by whatever server-side templating mechanism generated our page. 
In the next section, we’ll see a technique to obtain this list dynamically from 
the server.

Solution
To begin, in order to use jQuery on a page it is necessary to import the 
jQuery library:

<script type="text/javascript" src="jquery.js"></script>

The list of items in the eFridge, which we’re assuming was generated on our 
behalf by some server-side mechanism, is presented in a select element:

<form>
  <select id="itemsControl" name="items" size="10">
    <option value="1">Milk</option>
    <option value="2">Cole Slaw</option>
    <option value="3">BBQ Sauce</option>
    <option value="4">Lunch Meat</option>
    <option value="5">Mustard</option>
    <option value="6">Hot Sauce</option>
    <option value="7">Cheese</option>
    <option value="8">Iced Tea</option>
  </select>
</form>

For the purpose of this example, we’re only showing eight items. The average 
refrigerator would probably contain more than this, but we all know fast-food 
junkies whose refrigerator contents are sometimes pretty sparse.

 The server (perhaps some “eFridge driver”) assigns each item an identifica-
tion number that is used to uniquely identify each item—in this case, a simple 
sequential integer value. This identifier is set as the value for each <option> rep-
resenting an item.

 Even though we know that we need the select control to react to user input, 
note that no handlers are declared within the markup that creates the <select>
element. This brings up another philosophy behind the design of jQuery.

 One of the goals of jQuery is to make it easy for page authors to separate script 
from document markup, much in the same manner that CSS allows us to separate 
presentation from the document markup. Granted, we could do it ourselves with-
out jQuery’s help—–after all, jQuery is written in JavaScript and doesn’t do any-
thing we couldn’t do—but jQuery does a lot of the work for us, and is designed 
with the goal of easily separating script from document markup. So, rather than 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


142 CHAPTER 4 
Open source Ajax toolkits
adding an onchange event handler directly in the markup of the <select> ele-
ment, we’ll use jQuery’s help to add it under script control.

 We can’t manipulate the DOM elements on our page until after the document 
is ready, so in the <script> element in our page header, we’ll institute a jQuery 
ready() handler as we previously discussed. Within that handler, we’ll use 
jQuery’s method to add a change handler to an element, as shown in the follow-
ing code fragment:

$(document).ready(function(){
   $('#itemsControl').change(showItemInfo);
});

In the ready() handler, we create a jQuery instance that wraps the <select> ele-
ment, which we have given the id of itemsControl. We then use the jQuery 
change() method, which assigns its parameter as the change handler for the 
wrapped element.

 In this case, we’ve identified a function named showItemInfo(). It’s within this 
function that we’ll make the Ajax request for the item that is selected from the list:

function showItemInfo() {
   $('div#itemData').load(   
     'fetchItemData.jsp',                          
     {itemId: $(this).val()}  
   );
}

jQuery provides a fair number of different ways to make Ajax requests to the 
server. For the purposes of this solution, we’d like to fetch a pre-formatted snippet 
of HTML from the server (containing the item data) and load it into a waiting ele-
ment, that is, a <div> element having an id of itemData. The jQuery load()
method b serves this requirement perfectly.

 This method fetches a response from a URL provided as its first parameter 
and inserts it into the wrapped DOM element. A second parameter to this func-
tion allows us to pass an object whose properties serve as the parameters for the 
request. A third parameter can be used to specify a callback function to be exe-
cuted when the request completes.

 First, we wrap a DOM element b identified by the CSS selector div#itemData, 
which is an empty <div> element into which we want the item data to be loaded. 
Then, using the load() method, we provide the URL to a JSP page c that will 
fetch the item data identified by the itemId request parameter supplied in the 
second method parameter d.

Wraps element and invokes 
load method

 B

Identifies server-side 
resource cObtains item id and 

passes as parameter D

http://lib.ommolketab.ir
http//lib.ommolketab.ir


jQuery 143
The value of that parameter needs to be the value of the option that the user 
clicks on in the <select> element. Because the <select> element is set as the 
function context of the change handler, it is available to it via the this reference. 
We wrap that reference and use JQuery’s val() method to obtain the current 
selected value of the control d.

 Since all we want to do is to load the item data into the DOM, we have no need 
for a callback and omit the third parameter to the load() method.

 That’s all there is to it.
 jQuery’s capabilities have taken a very common procedure that might have 

taken a nontrivial amount of code to implement and allow us to perform it with 
very few lines of simple code. The JSP page that gets invoked by this handler uses 
the value of the itemId request parameter to fetch the info for the corresponding 
item and formats it as HTML to be displayed on the page.

 Our finished page, shown in figure 4.5 after selecting a refrigerator item, is 
laid out in its entirety in listing 4.6.

<html>
  <head>
    <title>What's for dinner?</title>
    <script type="text/javascript" src="jquery.js"></script>
    <script type="text/javascript">
      $(document).ready(function(){
         $('#itemsControl').change(showItemInfo);
      });

Listing 4.6 What’s for dinner with jQuery

Figure 4.5  
Got milk?

http://lib.ommolketab.ir
http//lib.ommolketab.ir


144 CHAPTER 4 
Open source Ajax toolkits
      function showItemInfo() {
         $('div#itemData').load(
           'fetchItemData.jsp',
           {itemId: $(this).val()}
         );
      }
    </script>
    <style type="text/css">
      form,#itemData {
        float: left;
      }
    </style>
  </head>

  <body>
    <form>
      <select id="itemsControl" name="items" size="10">
        <option value="1">Milk</option>
        <option value="2">Cole Slaw</option>
        <option value="3">BBQ Sauce</option>
        <option value="4">Lunch Meat</option>
        <option value="5">Mustard</option>
        <option value="6">Hot Sauce</option>
        <option value="7">Cheese</option>
        <option value="8">Iced Tea</option>
      </select>
    </form>

    <div id="itemData"></div>
  </body>
</html>

Discussion
This section introduced us to one of JQuery’s means of performing Ajax requests, 
the load() method.

 The jQuery load() method is very well suited for use with server-side templat-
ing languages such as JSP and PHP that make it a snap to format and return 
HTML as the response. The fetchItemData.jsp file, as well as the Java classes that 
fake the eFridge functionality, are available in the downloadable source code for 
this chapter.

 A few other important jQuery features are also exposed in this solution. For 
example, we used a ready()handler to trigger the execution of code that must 
execute before a user is allowed to interact with the page, but after the entire 
DOM has been constructed for the page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


jQuery 145
 We also saw the val() method, which returns the value of the wrapped input 
element. If more than one element is wrapped, the value of the first matched ele-
ment is returned by this method.

 In this solution, we assumed that the original list of eFridge contents was gen-
erated by whatever server-side resource produced the page—a JSP template, for 
example. That’s a common expectation for a web application, but in the interest 
of exploring more of jQuery’s Ajax abilities, let’s pretend that we need to fetch 
that list dynamically upon page load in the next problem.

4.3.3 Fetching dynamic data with jQuery
In the previous section we were introduced to the jQuery load() method, which 
made it extremely easy to perform the common task of fetching an HTML snip-
pet to load into a DOM element. While the utility of this method cannot be dis-
missed, there are times when we might want to exert more control over the 
Ajax request process, or to obtain data (as opposed to preformatted HTML) 
from the server.

 In this section we’ll explore more of what jQuery has to offer in the Ajax arena.

Problem
We wish to augment the code of the previous section to obtain the list of items in 
the eFridge from a page-initiated asynchronous request.

Solution
Reviewing the previous solution, we can readily see that in order to load the select 
options dynamically, the changes that we would need to make are to remove the 
<option> elements from the <select> element and to add code to the ready()
handler to fetch and load the items. But before we embark upon that effort, we’re 
going to change the way that we coded the showItemInfo()handler function if for 
no other reason than as an excuse to further explore jQuery’s capabilities. Rather 
than using the load() method of the jQuery wrapper, we’re going to use one of 
jQuery’s utility functions: $.get(). 

 Hey, wait a minute! What’s that period character doing in there? That’s not 
the $() wrapper that we’ve been using up to now!

 Not only does jQuery provide the wrapper class that we’ve make good use of 
up to this point, but it also provides a number of utility functions, many imple-
mented as class methods of the $ wrapper class. 

 If the notation $.functionName() looks odd to you, imagine the expression 
without using the $ alias for the jQuery function:

jQuery.get();

http://lib.ommolketab.ir
http//lib.ommolketab.ir


146 CHAPTER 4 
Open source Ajax toolkits
OK, that looks more familiar. The $.get() function is defined as a class method—
that is, a function property of the jQuery wrapper function. (If the concept of a 
class method is still giving you a headache, you might wish to review section 3.1.3.) 
Although we know them to be class methods on the jQuery wrapper class, jQuery 
terms these methods utility functions and to be consistent with the jQuery termi-
nology, that’s how we’ll refer to them in this section.

 The $.get() utility function accepts the same parameters as the load()
method: the URL of the request, a hash of the request parameters, and a callback 
function to execute upon completion of the request. When using this utility func-
tion, because there is no object being wrapped that will automatically be injected 
with the response, the callback function, although an optional parameter, is 
almost always specified. It is the primary means for causing something to happen 
when the request completes.

 It should also be noted that the callback function can be specified as the second
parameter to this utility function when no request parameters need to be passed. 
Internally, jQuery uses some JavaScript sleight of hand to ensure that the param-
eters are interpreted correctly.

 The rewritten showItemInfo() handler using this utility function is as follows:

function showItemInfo() {
  $.get('fetchItemData.jsp',
        {itemId: $(this).val()},
        function(data) {
          $('#itemData').empty().append(data);
        }
  );
}

Aside from using the $.get() utility function, another change to the code of the 
previous solution was the addition of a callback function as the third parameter, 
which we use to insert the returned HTML into the itemData element.

 In doing so, we make use of two more wrapper methods: empty(), which clears 
out the wrapped DOM element, and append(), which adds to the wrapped ele-
ment the HTML snippet passed to the callback in the data parameter.

 Now we’re ready to tackle loading the <options> from data that we will obtain 
from the server when the document is loading. In this case, we’re going to obtain 
the raw data for the options from the server in the form of a JavaScript hash 
object. We could return the data as XML, but we’ll opt to use JSON, which is easier 
for JavaScript code to digest.

 jQuery comes to our rescue once again with a utility function that is well suited 
to this common task: the $.getJSON() utility function. This function accepts the 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


jQuery 147
now-familiar trio of parameters: a URL, a hash of request parameters, and a call-
back function.

 The advantage that the $.getJSON() utility function brings to the table is that 
the callback function will be invoked with the already-evaluated JSON structure. 
We won’t have to perform any evaluation of the returned response. How handy!

 Using this utility method, the following line gets added to the document’s 
ready() handler:

$.getJSON('fetchItemList.jsp',loadItems);

A JSP page named fetchItemList.jsp is used as the URL, and a function named 
loadItems() (whose definition we’ll be looking at next) is supplied as the callback 
function. Note that, since we don’t need to pass any request parameters, we can 
simply omit the object hash and provide the callback as the second parameter.

 The loadItems()function is defined as

function loadItems(itemList) {               
  if (!itemList) return; 
  for(var n = 0; n < itemList.length; n++) {
    $('#itemsControl').get(0).add(               
      new Option(itemList[n].name,itemList[n].id),   
                 document.all ? 0 : null
    );
  }
}

Recall that the $.getJSON() utility function invokes the callback with the JSON
response already evaluated as its JavaScript equivalent b. In our solution, the 
fetchItemList.jsp page will return a response that contains

[
{id:'3',name:'BBQ Sauce'},
{id:'5',name:'Mustard'},
{id:'7',name:'Cheese'},
{id:'2',name:'Cole Slaw'},
{id:'4',name:'Lunch Meat'},
{id:'8',name:'Iced Tea'},
{id:'6',name:'Hot Sauce'},
{id:'1',name:'Milk'}
]

When our callback is invoked, this response string will already have been con-
verted to an array of JavaScript objects, each of which contains an id and a name
property, courtesy of jQuery. Each of these objects will be used to construct a new 
<option> element to be added to the select control C in a similar fashion as we 
saw in the solution of section 4.2.1.

Invokes callback with 
evaluated JSON structure b

Locates select element

Adds new option C

http://lib.ommolketab.ir
http//lib.ommolketab.ir


148 CHAPTER 4 
Open source Ajax toolkits
 In order to add an option to the <select> element, we need a reference to that 
control’s DOM element. We could just use document.getElementById() or $(), but 
we have chosen to do it the jQuery way with the get() wrapper method:

$('#itemsControl').get(0)

This method, when passed no parameters, returns an array of all the elements 
matched by the CSS selector of the jQuery wrapper on which it is invoked. If 
we only want one of those matches, we can specify a zero-based index as a 
parameter. In our case, we know that there will only be a single match to the 
selector because we used an id, so we specify an index of 0 to return the first 
matched element.

 The code for the entire page, with changes from the previous solution high-
lighted in bold, is shown in listing 4.7.

<html>
  <head>
    <title>What's for dinner?</title>
    <script type="text/javascript" src="jquery.js"></script>
    <script type="text/javascript">
      $(document).ready(function(){
        $.getJSON('fetchItemList.jsp',loadItems);
        $('#itemsControl').change(showItemInfo);
      });

      function loadItems(itemList) {
        if (!itemList) return;
        for(var n = 0; n < itemList.length; n++) {
          $('#itemsControl').get(0).add(
            new Option(itemList[n].name,itemList[n].id),
                       document.all ? 0 : null
          );
        }
      }

      function showItemInfo() {
        $.get('fetchItemData.jsp',
              {itemId: $(this).val()},
              function(data) {
                $('#itemData').empty().append(data);
              }
        );
      }
    </script>
  </head>

  <body>
    <form style="float:left">

Listing 4.7 More dinner with jQuery

http://lib.ommolketab.ir
http//lib.ommolketab.ir


jQuery 149
      <select id="itemsControl" name="items" size="10">
      </select>
    </form>
    <div id="itemData" style="float:left"></div>
  </body>
</html>

Discussion
This section exposed us to more of jQuery’s abilities in the areas of DOM manip-
ulation and traversal, as well as Ajax request initiation. We saw the jQuery $.get()
utility function, which made it easy for us to make Ajax requests using the HTTP
GET method. A corresponding utility function named $.post() with the exact 
same function signature makes it equally easy to submit POST requests via Ajax. As 
both utility functions use the same parameter signature—most notably the request 
parameter hash—we can easily switch between which HTTP method we’d like to 
use without having to get bogged down in the details of whether the request 
parameters need to be encoded in the query string (for GET) or as the body of the 
request (for POST).

 Another Ajax utility function, $.getJSON(), makes it incredibly easy for us to 
use the power of the server to format and return JSON notation. The callback for 
this operation is invoked with the JSON string already evaluated, preventing us 
from having to work with the vagaries of the JavaScript eval() function ourselves.

 For occasions where we might wish to exert more control over, and visibility 
into, an Ajax request, jQuery provides a versatile utility function named $.ajax(). 
The online documentation provides more details about how to use this low-level 
utility function.

 We also saw a handful of the powerful DOM manipulation wrapper methods 
such as get(), empty(), val(), and append(), all geared toward making it easy for 
us—as Ajax page developers—to manipulate the page DOM.

 This is all just barely plumbing the depth of jQuery capabilities. For example, 
space prevents us from exploring the effects API, which provides fading, sliding, 
flashing, hovering. and even the ability to provide your own animations. You are 
urged to visit http://jquery.com/ for more information on jQuery and how it can 
help you write powerful Ajax applications.

 Additionally, advanced developers might be interested in jQuery’s plug-in 
API. This API is one of jQuery’s most powerful assets, as anyone can extend the 
toolkit in a snap. For more information, please see http://docs.jquery.com/Plu-
gins/Authoring.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


150 CHAPTER 4 
Open source Ajax toolkits
 And now, as they say, for something completely different. Let’s take a look at 
a fourth framework that approaches the issue of asynchronous requests from a 
new angle.

4.4 DWR

DWR stands for Direct Web Remoting and is a means of performing remote procedure 
calling from client-side JavaScript to server-side Java code using Ajax as the trans-
port mechanism. In the libraries we’ve looked at so far in this chapter, the para-
digm of submitting a request to a server-side resource and receiving a response has 
been maintained. With DWR, things are a bit different.

 Remote Procedure Calling (RPC) is a mechanism to allow local code to call meth-
ods on objects that exist on a remote server as if that remote object were also 
local. Generally, RPC works (with a lot of hand-waving and glossing over details 
that aren’t all that important to us at this point) by creating a local proxy inter-
face that mimics the signature of the remote method (usually called a stub). The 
local code makes a call to the local interface, and an RPC agent on the local sys-
tem marshals any input data for the call and performs the network processing 
necessary to pass that information to its counterpart running on the remote sys-
tem. The remote agent unpacks the data into the appropriate formats and makes 
the call to the actual remote method. When the method returns, any returned 
data is marshaled and sent back to the local agent, which in turn returns control 
from the proxy stub to the original caller of the remote method.

 From the point of view of the local calling code, the fact that all that data 
marshaling and network communications went on behind the façade of the 
proxy is hidden. Likewise, the remote method has no knowledge that it was 
invoked remotely.

 DWR isn’t exactly a pure RPC implementation for two main reasons:

■ The signature of the proxy method used from JavaScript is not identical to 
that of the remote Java method.

■ The call is not synchronous. Like other Ajax mechanisms, the invocation of 
the remote method is asynchronous and a handler function is invoked 
upon completion of the remote method.

But beyond any academic arguments over the purity of the implementation, DWR
offers a clever means for those who prefer to think in terms of method calls rather 
than the traditional HTTP request-response cycle.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


DWR 151
 The DWR JAR file is available at http://getahead.ltd.uk/dwr/. After download-
ing, place this JAR file in the WEB-INF/lib folder of your web application.

4.4.1 Direct Web Remoting with DWR
DWR is cleverly implemented as a servlet that handles all the needs of the cli-
ent. Most RPC implementations require the use of a preprocessor that creates 
the client and server stubs. DWR, on the other hand, generates the client-side 
stubs dynamically via a reference to the servlet that looks like a normal Java-
Script file reference.

 But before we get to that, some setup is required: the DWR servlet needs to be 
declared and mapped in the web application’s deployment descriptor (web.xml).

 To declare the servlet, add a <servlet> element to the deployment descriptor 
as follows:

<servlet>
  <servlet-name>DwrServlet</servlet-name>
  <servlet-class>uk.ltd.getahead.dwr.DWRServlet</servlet-class>
  <init-param>
     <param-name>debug</param-name>
     <param-value>true</param-value>
  </init-param>
</servlet>

The debug init parameter is optional but is very useful during development. Don’t 
include it for actual deployment because it will allow visitors with less-than-noble 
intentions to obtain information about your code that is best not shared. We’ll see 
what this parameter does for us in just a little bit.

 The servlet is mapped to a URL via

<servlet-mapping>
  <servlet-name>DwrServlet</servlet-name>
  <url-pattern>/dwrserver/*</url-pattern>
</servlet-mapping>

This maps any URL for your web application beginning with /dwrserver to the 
DWR servlet.

 There’s one more setup step, but it is dependent on how we are going to use 
DWR. So, on to a specific example...

Problem
On a page that contains a form with customer information, we want to automati-
cally fill in the address information for a customer if the name of that customer 
can be uniquely found in our database. And, of course, we wish to do so asynchro-
nously without the need for a page reload.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


152 CHAPTER 4 
Open source Ajax toolkits
Solution
The first thing we’ll do is set up a Java class that we can query for customer infor-
mation, given a first and last name. Obviously, a real-world implementation of 
such a class would perform a database lookup, but for the purposes of this exam-
ple, we’ll just hard-code a false implementation behind the API for the class—one 
that assumes we have a single customer named Bill Moody.

public class CustomerFactory {

  public Customer findByName(String firstName,String lastName) {
    if ("Bill".equalsIgnoreCase(firstName) &&
        "Moody".equalsIgnoreCase(lastName)) {
      return new Customer("Bill", "Moody", "123 Nowhere Lane",
                          "Austin", "TX", "USA", "78701");
    } else {
      return null;
    }
  }
}

The findByName() method returns either an instance of a located customer, or 
null if none is found. In a real implementation it would also return null if multi-
ple customers with the same name were found since it would not have enough 
information to uniquely identify a particular customer.

 To define this class to the DWR engine, we create an XML file named dwr.xml
in the WEB-INF folder:

<!DOCTYPE dwr PUBLIC
    "-//GetAhead Limited//DTD Direct Web Remoting 1.0//EN"
    "http://www.getahead.ltd.uk/dwr/dwr10.dtd">

<dwr>
  <allow>                                     
    <convert converter="bean" match="org.bibeault.*"/>   

    <create creator="new" javascript="CustomerFactory">  
      <param name="class"
             value="org.bibeault.aip.dwr.CustomerFactory"/>
    </create>
  </allow>
</dwr>

The DWR documentation should be consulted for all the possible settings that can 
be made in this file, but essentially we tell DWR that we want it to convert bean 
classes (such as the one we will return from our findByName() method) from our 

Specifies 
bean classes

 b

Defines 
JavaScript class c

http://lib.ommolketab.ir
http//lib.ommolketab.ir


DWR 153
package b. Then we define the class that we wish to remote, along with the 
means of construction (creator="new") and the name of the JavaScript object that 
will serve as its client-side stub c.

 Now comes the fun!
 Start the web application and “hit” the DWR servlet with no path info. Assum-

ing that the web application’s context path is /aip.chap4, the URL could be http://
localhost:8080/aip.chap4/dwrserver/. Because we enabled the debug mode via 
the init parameter to the servlet, DWR displays a test page that dynamically 
shows us some very useful information about our DWR environment, as shown in 
figure 4.6.

 This page shows us all the classes that DWR has mapped for us. Clicking the 
CustomerFactory link reveals some useful information about that class, as shown 
in figure 4.7.

 Not only does this page show us the <script> elements that need to be 
included in order to use the class, it also shows us the methods that are declared 
and even allows us to test them with sample data. The utility of this feature during 
development cannot be stressed enough!

 If we inspect the URLs for the <script> elements, we see that even though they 
look like JavaScript file references, they are actually invocations of the DWR serv-
let that we declared in the web.xml. These .js files do not actually exist anywhere 
in the filesystem, but are dynamically served from the DWR servlet upon refer-
ence. This makes DWR an easy toolkit to use as, except for the servlet and the 
dwr.xml file, there’s not much else to keep track of.

 If we click the link for the CustomerFactory.js file, we see the display in fig-
ure 4.8, where we see the local stub created for the methods in our mapped class.

Figure 4.6 DWR test display: list of known classes

http://lib.ommolketab.ir
http//lib.ommolketab.ir


154 CHAPTER 4 
Open source Ajax toolkits
So now we’re ready to actually code our page. Cutting and pasting the script ele-
ments from the DWR-generated page of figure 4.7, we start by adding them to the 
<head> element of our page:

<script type='text/javascript' 
  src='/aip.chap4/dwrserver/interface/CustomerFactory.js'></script>
<script type='text/javascript'  

src='/aip.chap4/dwrserver/engine.js'></script>

The form to capture the customer data is coded as

Figure 4.7 DWR test display: class information

http://lib.ommolketab.ir
http//lib.ommolketab.ir


DWR 155
<form name="customerForm" action="/doSomething">
  <div>
    <label>First name:</label>
    <input type="text" name="firstName" 
      onblur="lookupByName(this.form);"/>
    <label>Last name:</label>
    <input type="text" name="lastName"
      onblur="lookupByName(this.form);"/>
  </div>
  <div>
    <label>Address:</label>
    <input type="text" name="address"/>
  </div>
  <div>
    <label>City:</label>
    <input type="text" name="city"/>
    <label>State/Province:</label>
    <input type="text" name="state"/>
  </div>
  <div>
    <label>Postal Code:</label>
    <input type="text" name="postalCode"/>
    <label>Country:</label>
    <input type="text" name="country"/>
  </div>
  <div>
    <input type="submit" value="OK"/>
  </div>
</form>

This form is fairly straightforward (if incredibly ugly without any styling) except 
for the calls to the lookupByName() function set up as the onblur event han-
dlers for the firstName and lastName fields:

Figure 4.8 DWR dynamically generated JS stub

http://lib.ommolketab.ir
http//lib.ommolketab.ir


156 CHAPTER 4 
Open source Ajax toolkits
function lookupByName(form) {        
  if ((form.firstName.value != '') &&                     
      (form.lastName.value != '')) {
    CustomerFactory.findByName(form.firstName.value,   
                               form.lastName.value,
                               onCustomerFound);
  }
}

In this handler, the containing form is passed b and checks the firstName and 
lastName fields to see if they are both populated. If so, the stub for the remote 
findByName() method is invoked c.

 Note that this stub is similar, but not identical, to the remote method being 
stubbed. First of all, there is no return value from this function because it is not 
invoked synchronously. Second, an extra parameter has been added to the method 
signature to specify the callback function that is to be invoked when the asynchro-
nous call completes. This function will be passed the remote method’s return value 
as its single parameter.

 The code for this callback handler is as follows:

function onCustomerFound(customer) {
  if (customer != null) {
    var form = document.customerForm;
    form.address.value = customer.address;
    form.city.value = customer.city;
    form.state.value = customer.state;
    form.postalCode.value = customer.postalCode;
    form.country.value = customer.country;
  }
}

This callback is invoked with the return value from the remote method. We simply 
check to make sure that it is not null (recall that the remote method returns null
if a customer cannot be uniquely identified). If it’s not null, we fill in the form 
with values from the passed object.

 DWR has marshaled the data from the Java Customer class and created a Java-
Script object with properties that correspond to each of the JavaBean properties 
that we defined on our Java Customer class. Displaying the example page in our 
browser and entering the name of our lone customer results in the display shown 
in figure 4.9. The entire page, when completed, is shown in listing 4.8.

 b Passes containing Passes containing form

Invokes stub for 
findByName() c

http://lib.ommolketab.ir
http//lib.ommolketab.ir


DWR 157
<html>
  <head>
    <title>Who's that Customer?</title>
    <script type='text/javascript'
      src='/aip.chap4/dwrserver/interface/CustomerFactory.js'>
    </script>
    <script type='text/javascript'
      src='/aip.chap4/dwrserver/engine.js'></script>
    <script>
      function lookupByName(form) {
        if ((form.firstName.value != '') &&
             (form.lastName.value != '')) {
          CustomerFactory.findByName(form.firstName.value,
                                     form.lastName.value,
                                     onCustomerFound);
        }
      }

      function onCustomerFound( customer ) {
        if (customer != null) {
          var form = document.customerForm;
          form.address.value = customer.address;
          form.city.value = customer.city;
          form.state.value = customer.state;
          form.postalCode.value = customer.postalCode;
          form.country.value = customer.country;
        }
      }

    </script>
  </head>

  <body>
    <form name="customerForm" action="/doSomething">

Listing 4.8 Direct remoting with DWR

Figure 4.9  
Paging Bill Moody!

http://lib.ommolketab.ir
http//lib.ommolketab.ir


158 CHAPTER 4 
Open source Ajax toolkits
      <div>
        <label>First name:</label>
        <input type="text" name="firstName"
               onblur="lookupByName(this.form);"/>
        <label>Last name:</label>
        <input type="text" name="lastName"
               onblur="lookupByName(this.form);"/>
      </div>
      <div>
        <label>Address:</label>
        <input type="text" name="address"/>
      </div>
      <div>
        <label>City:</label>
        <input type="text" name="city"/>
        <label>State/Province:</label>
        <input type="text" name="state"/>
      </div>
      <div>
        <label>Postal Code:</label>
        <input type="text" name="postalCode"/>
        <label>Country:</label>
        <input type="text" name="country"/>
      </div>
      <div>
        <input type="submit" value="OK"/>
      </div>
    </form>
  </body>

</html>

Discussion
This section exposed us to a small fraction of the capabilities of the DWR toolkit. 
Unlike the other Ajax-capable toolkits we have looked at, DWR abstracts the 
request-response cycle away in favor of providing an RPC-like means to call Java 
functions on the server.

 While our example is simple, it’s easy to envision how such capabilities can be 
used for a variety of client-side tasks, not limited to mere data lookups. Imagine, 
for example, the value of these capabilities when performing field data valida-
tions that require server-side participation.

 Obviously DWR is only useful for Java web applications hosted by a servlet
engine. Developers or page designers who are using alternative server-side mech-
anisms would be best served by using a toolkit that adheres to the typical request-
response cycle.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Summary 159
4.5 Summary

In this chapter we introduced a number of open source libraries that make it eas-
ier to use Ajax in our web applications, or that use Ajax to provide asynchronous 
communication between a client browser and the server.

 Some of these libraries, such as the Dojo toolkit and Prototype, provide a thin 
wrapper around Ajax calls that make them easier to code and maintain. Others, 
such as jQuery, provide a substantial number of methods that make it easy to per-
form some of the most common Ajax interactions. Still others, such as DWR, pro-
vide a different paradigm from the typical HTTP request-response cycle using 
Ajax as the transport mechanisms. These libraries are just a few of the many 
freely available on the Internet.

 Time, space, and other practical considerations prevent us from examining 
more of the available libraries. If this sampling has piqued your interest, here are 
some others that you may wish to investigate:

■ Scriptaculous (http://script.aculo.us/), another JavaScript library based on 
Prototype, very closely aligned with the Ruby on Rails project 

■ Rico (http://openrico.org/), a JavaScript library for creating rich Inter-
net applications that includes support for drag and drop, Ajax, and cin-
ematic effects

■ Echo2 (www.nextapp.com/), a platform for developing web applications 
intended to provide the rich capabilities of desktop clients 

■ Sarissa (http://sarissa.sourceforge.net/), an XML and XSLT-centric library 
that acts as a cross-browser wrapper for native XML APIs 

■ Sajax (www.modernmethod.com/sajax/), a JavaScript Ajax framework intend-
ed for web applications developed with PHP, Perl, or Python

■ ThinkCAP JX (www.clearnova.com/), a RAD development tool for Ajax-
enabled business applications 

And more... This lists only scratches the surface.
 So get on out there and look around. This is an exciting and rapidly growing 

area. By the time this book reaches print, even more new and exciting toolkits 
may have hit the Web!

http://lib.ommolketab.ir
http//lib.ommolketab.ir


 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Part 2

Ajax Best Practices

Part 2 presents nine chapters, each of which dives into an area of web appli-
cation development essential for Ajax programs. 

 Chapter 5 begins part 2 with an in-depth look at event handling in the 
browsers. We discuss models of event handling and explain how to establish 
event handlers for the various event types. We identify browser issues and tac-
tics to ease cross-browser coding.

 In chapter 6, we develop ways to validate form-data entry values using the 
event-handling lessons of the previous chapter. We examine a validation 
framework, and you’ll learn how to hijack form submissions to avoid full-page 
refreshes. 

 Navigating application content is the subject of chapter 7. Menus, trees, 
accordion controls, tabs and toolbars are all discussed. We include peeks at 
OpenRico and qooxdoo in the example code for this chapter.

 The pain of dealing with users who insist on hitting those back and refresh 
browser controls is addressed in chapter 8. We describe tactics for hiding these 
controls, as well as strategies for dealing with them when they’re not hidden. 

 Chapter 9 focuses on adding drag-and-drop capabilities to web applica-
tions. We enlist the aid of the Scriptaculous library to sort lists using drag and 
drop, and then examine a simple drag-and-drop shopping cart. A look at ICE-
faces rounds out the chapter.

 Usability concerns, particularly those commonly associated with Ajax 
applications, are explored in chapter 10. We develop strategies for dealing 
with latency issues and discuss how to alleviate user frustration. 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


162 PART 2 
Ajax Best Practices
 Chapter 11 takes a look at maintaining client state, caching and prefetching 
data, and other topics in the realm of state management. 

 Rousing web service open APIs such as Yahoo! Maps, Yahoo! Geocoding, 
Yahoo! Traffic, Google search, and Flickr photo services are investigated in chap-
ter 12. We devise a means to circumvent the dreaded cross-browser security limi-
tations, and you’ll learn how to make RESTful requests to these exciting services 
via Ajax.

 Finally, chapter 13 ties everything together to create a fully functional 
“mashup” web application employing the Yahoo! and Flickr open APIs.

 
 
 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Handling events
This chapter covers
■ Models of browser event handling
■ Commonly handled event types
■ Making event handling easier
■ Event handling in practical applications
163

http://lib.ommolketab.ir
http//lib.ommolketab.ir


164 CHAPTER 5 
Handling events
The days of boring HTML applications are over now that Ajax allows us to build 
highly interactive web applications that respond fluidly to user actions. Such user 
actions may include clicking a button, typing in a text box, or simply moving the 
mouse. User actions have been translated into events throughout the history of 
graphical user interfaces (GUIs), and it is no different in the browser world. When 
a user interacts with a web page, events are fired within the DOM hierarchy that is 
being interacted with, and if there are event handlers associated with the events 
fired on the document’s elements, they will be called when the events occur. Ajax 
applications depend heavily on these events and their handlers; they could even 
be considered the lifeline of every Ajax application.

 Before we get ahead of ourselves, let’s see how we can add a simple event han-
dler to a web page. In the following code snippet, notice how the <img> element 
has an onclick attribute. This attribute defines an event handler that will be 
called by the browser when the user clicks the mouse on the <img> element.

<html>
  <body>
    <img src="image.jpg" id="anImage" onclick="alert('Woof!');"/>
  </body>
</html>

If you load this example into a browser, you will see that when the mouse button is 
clicked while hovering over the image, the alert box showing the message 
“Woof!” is displayed, as shown in figure 5.1.

Figure 5.1 Making the dog bark

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Event-handling models 165
This demonstrates how easy it is to assign an event handler to a DOM element. 
Throughout this chapter we’ll examine the major aspects of event handling. We 
begin by reviewing the various ways in which we can define event handlers 
using the various models available. We’ll see how the process differs across the 
browser platforms and look at ways to make it portable across browser imple-
mentations. We’ll also learn about the information about the event made avail-
able to event handlers when they are invoked. We’ll discuss the concepts of event
bubbling and event capturing that specify how events are propagated through the 
DOM, and we’ll also look closely at the commonly handled event types. Finally, 
we’ll whip up some real-world examples that demonstrate how we can put these 
concepts to use in our applications.

5.1 Event-handling models

While we’ve seen how easy it is to declare simple event handlers, you would think 
that writing event handlers should be just as easy. We just write some script into 
the handler attributes and the browser executes it when the event occurs. What 
could be simpler? But we wouldn’t need this chapter if it were really that simple, 
would we?

 In the present-day world, there are three event models that we need to con-
tend with in order to use events in our web applications:

■ The Basic Event Model, also informally known as the DOM Level 0 Event 
Model, which is fairly easy, straightforward, and reasonably cross-platform.

■ The DOM Level 2 Event Model, which provides more flexibility but is 
supported only on standards-compliant browsers such as Firefox, Mozilla,
and Safari.

■ The Internet Explorer Event Model, which is functionally similar to the 
DOM Level 2 Model, but which is proprietary to Internet Explorer. 

First we’ll take a look at registering and writing handlers using the basic model, 
and then we’ll look at using the two advanced models.

5.1.1 Basic event-handling registration

The example we examined in the chapter introduction illustrates the use of the 
Basic, or DOM Level 0, Model. This is the oldest approach to event handling and 
enjoys strong (though not complete) platform independence. It is well suited for 
basic event-handling needs. And as we’ll see, it’s not completely replaced by the 
more advanced models, but is typically used in conjunction with those models.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


166 CHAPTER 5 
Handling events
 This model allows event handlers to be assigned in one of two ways:

■ Inline with the HTML element markup, using event attributes of the 
HTML elements

■ Under script control, using properties of the DOM elements

Recall the <img> element from our small example:

<img src="image.jpg" id="anImage" onclick="alert('Woof!');"/>

This is an example of using the inline technique.
 The value of the onclick event attribute becomes the body of an anonymous 

function that serves as the handler for the click event. While this is easy, it has 
its limitations.

 The best-practice design approach to building web applications separates 
the view of the application (HTML) from its behavior (JavaScript). Using the 
inline approach of defining event handlers violates this principle, and there-
fore it is generally recommended that use of inline handler declarations be lim-
ited or avoided.

 The better approach is to attach the event handler to the DOM element 
under script control. This technique has become more prevalent in recent years, 
as the browser DOM has become more standardized and JavaScript developers 
have become more familiar with it. All DOM elements have properties that repre-
sent the events that can be fired on the element: for example, onclick, onkeyup, 
or onchange.

 Let’s rework the sample code that we saw earlier into a complete HTML docu-
ment and programmatically set the onclick event handler of the image as shown 
in listing 5.1.

<html>
  <head>
    <title>Events!</title>
    <script type="text/javascript">
      window.onload = function() {    
        document.getElementById('anImage').onclick = function() {
          alert('Woof!');
        }
      };
    </script>
  </head>
  <body>

Listing 5.1 Assigning an event handler in script

Declares the page’s 
onload handler

 b

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Event-handling models 167
    <img src="image.jpg" id="anImage"/>   
  </body>
</html>

If you have downloaded the source code that accompanies this chapter from 
www.manning.com/crane2, you’ll find this HTML document in the file chap5/
listing-5.1.html.

 While this example is functionally equivalent to our previous example, it 
exhibits a higher level of sophistication than the previous code. We’ve separated 
the behavior from the view by factoring the script out of the <body> element C
and into a <script> element in the <head>. Note that we have placed the code in 
yet another event-handler function: the onload event handler b for the page.

 Although this seems like more code to do the same thing that we saw in the 
first example, this technique not only improves the structure of the page but also 
gives us more flexibility.

 An important aspect of that flexibility is the ability to control when handlers 
are established and removed. With the inline method, we’re limited to establish-
ing handlers when the page loads, and those handlers exist for the duration of 
the page. Assigning the handler under script control allows us to establish a han-
dler whenever we want to. In the example of listing 5.1, we chose to establish the 
handler when the page loads, but we could just as easily have deferred that action 
until a later time as the result of some other event. Moreover, we can remove the 
event handler at any time by assigning null to the event property—something we 
can’t do with inline handlers.

 In our example, we created the event handler using an anonymous function 
literal—after all, why create a separate named function if we don’t have to? But 
when assigning named functions as event handlers, it is important to remember 
not to include parentheses after the function name. We want to assign a reference
to the function as the property value, not the result of invoking the function! For 
example, the following will invoke a function named sayWoof() rather than set-
ting it as the event handler. Don’t make this common mistake.

element.onclick = sayWoof(); //Wrong! 

element.onclick = sayWoof; //Correct!

Although the DOM Level 0 Event Model is somewhat flexible, it does suffer from 
limitations; for example, it doesn’t easily allow chaining of multiple JavaScript 
functions in response to an event. 

Declares the script-free 
image element C

http://lib.ommolketab.ir
http//lib.ommolketab.ir


168 CHAPTER 5 
Handling events
 So how would we register two functions to handle a single event? Let’s ini-
tially take a rather naive approach and modify our example by adding two Java-
Script event handlers to the onclick property of the <img> element, as shown in 
listing 5.2 (found in the file chap5/listing-5.2.html in the downloadable source 
code) with the added code highlighted in bold.

<html>
  <head>
    <title>Events!</title>
    <script type="text/javascript">
      window.onload = function() {
        document.getElementById('anImage').onclick = function() {
          alert('Woof!');
        }
        document.getElementById('anImage').onclick = function() {
          alert('Woof again!');
        }
      };
    </script>
  </head>
  <body>
    <img src="image.jpg" id="anImage"/>
  </body>
</html>

When we run this code, it is obvious that only the second handler is called 
because only a single alert containing “Woof again!” is displayed. Looking at the 
code, this shouldn’t be much of a surprise. Since onclick is simply a property of 
the <img> element, multiple assignments to it will overwrite any previous assign-
ment, just as with any other property.

 This poses an interesting question: is it possible to call multiple functions in 
response to an event? Using the DOM Level 0 Event Model, there is no means to 
register multiple event handlers on the same event by assigning the handlers 
to the element’s event properties. We could factor the code from multiple func-
tions into a single function, or we could write a function that in turn called the 
other functions. But each of these tactics is a rather pedestrian approach and is 
not very scalable. If we had no other recourse, a more sophisticated means to 
accomplish this would be to utilize the Observer pattern (also known as the Pub-
lisher/Subscriber pattern) in which our registered handler would serve as the 
observer, and other functions could register themselves as subscribers.

Listing 5.2 Attempting to assign two handlers

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Event-handling models 169
 Luckily, we won’t have to resort to such shenanigans as the browsers allow us to 
register multiple handlers—though, unfortunately, not in a browser-independent 
fashion—if we use the advanced event-handling models. Let’s take a look at how 
to do just that. 

5.1.2 Advanced event handling

In a perfect world, code written for one browser would work flawlessly in all 
other browsers. We don’t live in that world. So when it comes to the advanced 
event models, we need to deal with browser differences. On the one hand, there 
is the World Wide Web Consortium (W3C) way of doing things, and then there is 
the Microsoft way of doing things. Let’s look at the standardized W3C way first.

 For browsers that adhere to the DOM Level 2 Event Model, a method named 
addEventListener() is defined for each DOM element and can be invoked to add 
an event handler to that element. This method accepts three arguments: a string 
declaring the event type, the event-handler function to be executed (also known 
as the listener), and a Boolean value denoting whether or not event capturing is to 
be enabled. We’ll explain this last argument when we discuss event propagation, 
but for the time being, we’ll just leave it set to false.

 The event type argument expects a string containing the name of the event 
type to be observed. This is the attribute name for the event with the on prefix 
omitted—for example, click or mouseover.

 Let’s change our sample code of listing 5.2 to use this method. We’ll replace 
the basic means (which sets the onclick property of the element) with calls to the
addEventListener() method, as shown in listing 5.3 (with changes highlighted 
in bold).

<html>
  <head>
    <title>Events!</title>
    <script type="text/javascript">
      window.onload = function() {
        document.getElementById('anImage').addEventListener(
          'click',
          function() { alert('Woof!'); },
          false);
        document.getElementById('anImage').addEventListener(
          'click',
          function() { alert('Woof again!'); },
          false);
      };

Listing 5.3 Adding an event handler the W3C way

http://lib.ommolketab.ir
http//lib.ommolketab.ir


170 CHAPTER 5 
Handling events
    </script>
  </head>
  <body>
    <img src="image.jpg" id="anImage"/>
  </body>
</html>

When this page is displayed and the image is clicked, both the alert boxes show up 
without resorting to hokey container functions to chain both event handlers. Note 
that this code does not work in Internet Explorer; later in this section we’ll see 
how IE implements advanced event handling in its proprietary fashion.

 Also note that, when multiple handlers for the same event on the same ele-
ments are established as we have done in our example, the DOM Level 2 Event 
Model does not guarantee the order in which the handlers will be executed. In 
testing, it was observed that the handlers seemed to be called in the order that 
they were established, but there is no guarantee that will always be the case and it 
would be folly to write code that relies on that order.

 To remove an event handler from an element, we can use the removeEvent-
Listener() method defined for the DOM elements.

 The proprietary Microsoft means of attaching events is similar in concept, but 
different in implementation. It uses a method named attachEvent() defined for 
the DOM elements to establish event handlers. This function accepts two argu-
ments: the event name and the event-handler function to be executed. Unlike the 
event type that is used with addEventListener(), the event property name, com-
plete with the on prefix, is expected.

 Armed with this information, let’s modify our sample code once again. We’ll 
add some detection to our code and use the method that’s appropriate to the 
containing browser. The updated code is shown in listing 5.4 (available in the 
downloadable source code for this chapter), once again with changes highlighted 
in bold.

<html>
  <head>
    <title>Events!</title>
    <script type="text/javascript">
      window.onload = function() {
        if (document.getElementById('anImage').attachEvent) {
          document.getElementById('anImage').attachEvent(
            'onclick',

Listing 5.4 Doing it either way

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Event-handling models 171
            function() { alert('Woof!'); });
          document.getElementById('anImage').attachEvent(
            'onclick',
            function() { alert('Woof again!'); });
        }
        else {
          document.getElementById('anImage').addEventListener(
            'click',
            function() { alert('Woof!'); },
            false);
          document.getElementById('anImage').addEventListener(
            'click',
            function() { alert('Woof again!'); },
            false);
        }
      }
    </script>
  </head>
  <body>
    <img src="image.jpg" id="anImage"/>
  </body>
</html>

In the first line of the onload event handler, we check to see which method we 
should use. Note the use of a test known as object detection. Rather than testing for 
a specific browser, we check to see if the proprietary attachEvent() method exists 
on the element. If so, we use it; otherwise, we use the standardized W3C method.

 When we display this page in any browser, it is guaranteed to work as long as 
the browser supports either one of these mechanisms. When we click on the image 
when displayed in Internet Explorer, we notice something strange: the alerts are 
shown in the reverse order! Or maybe not. Truth be told, as with the DOM Level 2 
Event Model, we don’t know in which order they will be shown. The definition of 
the attachEvent() method clearly states that multiple event handlers attached 
to the same event type on an element will be triggered in random order.

 This completes our exploration into the ways in which event handlers can be 
registered across the different browsers. You saw the ease with which we can use the 
inline technique as well as its disadvantages. The DOM Level 0 means of register-
ing event handlers is portable across browsers, but does not provide an automatic 
way of chaining multiple event-handler functions. We showed you how to attach 
event handlers in a more advanced way using either the DOM Level 2 or Internet 
Explorer models. Although this approach is flexible and allows us to dynami-
cally attach, detach, and chain event handlers, it suffers from cross-browser issues, 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


172 CHAPTER 5 
Handling events
forcing us to resort to object detection in order to call the method appropriate to 
the current browser. Fortunately, frameworks are available that abstract all these 
differences away and help us write code that is portable across all supported 
browsers. We’ll see how using Prototype helps us in this manner in section 5.3.

 Before we do that, let’s build on our foundations of event handling in gen-
eral. In the next couple of sections you’ll see in detail how event information is 
made available to an event handler and how events are propagated through the 
DOM tree.

5.2 The Event object and event propagation

Two other important topics that we need to understand when dealing with events 
in the browser are the Event object and the manner in which events are propa-
gated. The Event object, actually an instance of the Event class, is important for 
obtaining information about the event, and event propagation defines the order 
in which an event is delivered to its observers. First let’s tackle the Event object.

5.2.1 The Event object

When an event is triggered, an instance of the Event class is created that contains 
a number of interesting properties describing that event. In our event handlers, we 
typically want to access that Event object to obtain interesting properties such as 
the HTML element on which the event occurred, or which mouse button was clicked
(for mouse events). As with much else in the world of events, this Event object 
instance is made available to the event handlers in a browser-specific fashion.

 For standards-compliant browsers, the Event object instance is passed as the first 
parameter to the event-handler function. In Internet Explorer, the instance is 
attached as a property to the window object instance (essentially a global variable).

 Let’s explore what it takes to deal with this object. Since we’re getting tired of 
the alerts, let’s also change the code to write diagnostic information into a <div>
element below the image, as shown in listing 5.5.

<html>
  <head>
    <title>Events!</title>
    <script type="text/javascript">
      window.onload = function() {
        document.getElementById('anImage').onclick =
          function(event) {
            if (!event) event =   

Listing 5.5 Grabbing the Event instance

 B Grabs event object instance

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Event object and event propagation 173
              window.event;   
            var target =     
              event.target ? event.target : event.srcElement;
            document.getElementById('info').innerHTML +=
              'I woof at ' + target.id + '!<br/>';
          }
      }
    </script>
  </head>
  <body>
    <img src="image.jpg" id="anImage"/>
    <div id="info"></div>
  </body>
</html>

In this example, we obtain a reference to the instance of Event by checking first to 
see if the parameter passed to the event-handler function, which we cleverly 
named event, is defined (as it will be for standards-compliant browsers) and if 
not, copies the event property from the window object b where IE will have 
placed it.

 We then want to obtain a reference to the target element C—that is, the ele-
ment for which the event was generated. Again, we need to do so in a browser-
specific manner as the definition of the Event class differs between IE and 
standard browsers.

 We check to see if the standard target property is defined, and if not, we use 
the proprietary srcElement property.

 What a pain! It seems that almost each and every step of event handling needs 
to do things differently in order to work in both IE and the browsers that support 
the W3C standards!

 Well, yes, that’s pretty much the case. But fear not; help is at hand. But first, 
let’s find out what event propagation is all about.

5.2.2 Event propagation

We’ve focused, up to this point, on handlers that are directly defined on the ele-
ments that trigger the events, as if they are the only handlers that are significant. 
As it turns out, this is not the case. Rather, the event is delivered not only to the 
target element, but potentially to all its ancestors in the DOM tree as well. In this 
section, we’ll see how events are propagated through the DOM tree, and learn 
how we can affect which event handlers are called along the way—and even how 
to control the propagation of an event.

Obtains event target element reference C

http://lib.ommolketab.ir
http//lib.ommolketab.ir


174 CHAPTER 5 
Handling events
 We’ll start by talking about how events are propagated in browsers that follow 
the DOM Level 2 Event Model. We’ll then examine how Internet Explorer sup-
ports only a subset of that model.

 In standards-compliant browsers that support the DOM Level 2 Model, when 
an event is triggered, that event is handled in three phases. These phases, in 
order, are called capture, target, and bubble phases.

 During the capture phase, the event traverses the DOM tree from the docu-
ment root element down to the target element. Any event handlers established on 
the traversed elements for the type of event that is being propagated are invoked 
if the event handler was registered as a capture handler. Remember that third 
parameter to the addEventListener() method that we’ve been ignoring up until 
now? If that parameter is set to true, the event handler is registered as a capture 
handler. If it’s set to false, as we have been doing up to now, the event handler is 
established as a bubble handler. Each event handler can be either a capture or a 
bubble handler, but never both.

 Once the event has traversed downward to the target element, activating any 
appropriate capture handlers along the way, the propagation enters the target
phase. During this phase, the event handlers established on the target element 
itself are triggered as appropriate. If both a capture and a bubble handler are 
established on the target element, they are both invoked during this phase.

 The event propagation then reverses direc-
tion and “bubbles” up the DOM tree from the 
target element to the root element. This is 
the bubble phase, and along the way, any bub-
ble handlers established for the event type on 
the traversed elements are triggered.

 Enough talk—how about a diagram? Let’s 
say that we modify the body of our example 
program to nest the <img> element within two 
<div> elements as follows:

<div id="level1">
  <div id="level2">
    <img src="image.jpg" id="anImage"/>
  </div>
</div>

When we click on the image element, the click 
event is propagated through the DOM tree as 
shown in figure 5.2. Figure 5.2 Down and up the DOM tree

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Event object and event propagation 175
Now let’s see it in action. Consider the code in listing 5.6.

<html>
  <head>
    <title>Events!</title>
    <script type="text/javascript">
      window.onload = function() {    
        document.getElementById('anImage').addEventListener(
          'click', react, false);
        document.getElementById('level1').addEventListener(
          'click', react, true);
        document.getElementById('level2').addEventListener(
          'click', react, false);
      }

      function react(event) {   
        document.getElementById('info').innerHTML +=
          'I woof at ' + event.currentTarget.id + '!<br/>';
      }
 </script>
  </head>
  <body>
    <div id="level1">    
      <div id="level2">
        <img src="image.jpg" id="anImage"/>
      </div>
    </div>
    <div id="info"></div>
  </body>
</html>

In this example, we’ve modified the body D as described earlier, nesting the 
<img> element within two <div> elements.

 Within the onload event handler b, we establish three event handlers: one on 
the <img> element, and one on each of the nesting <div> elements. Note that the 
event handler established on the element with the id of level1 is registered as a 
capture handler by way of its third parameter.

 All event handlers are assigned the same function, react() C, which emits a 
message that contains the value of the currentTarget property of the passed 
event instance. This property differs from the target property in that the target
property identifies the element that triggered the event while currentTarget
identifies the element that is the current subject of the event propagation—in 
other words, the element upon which the handler was established.

Listing 5.6 Establishing capture and bubble handlers

Establishes handlers B

Defines handler function C

Defines nested element D

http://lib.ommolketab.ir
http//lib.ommolketab.ir


176 CHAPTER 5 
Handling events
Before looking at figure 5.3, try to guess what the order of handler invocation will 
be. Did you get it right?

 When we display this example in a standards-compliant browser (remember, 
the code we’re using is not suited for Internet Explorer yet) and click the image, 
we see the display shown in figure 5.3.

 The reason for the order of the output should be clear. The handler estab-
lished on the level1 element is a capture handler, while the rest are bubble han-
dlers. The level1 handler triggers, emitting its output, during the capture phase; 
the event handler on the <img> element triggers during the target phase; and 
finally, the event handler on level2 is invoked during the bubble phase.

 Internet Explorer supports only the target and bubble phases; no capture 
phase is supported. To modify this example for IE, we need to change the calls to 
the addEventListener() method to attachEvent() and alter the event-handler 
function as well. Unfortunately, there is no property corresponding to current-
Target in the Event class provided by Internet Explorer.

 If you are targeting IE, and getting a reference to the current target element of 
the bubble phase is essential to your requirements, you’ll need to come up with 
some underhanded means of getting a reference to that element to the event 
handler. One tactic that we could employ would be to use the Prototype bind()

Figure 5.3 Result of capture and bubble

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Event object and event propagation 177
mechanism to force the function context object (the this reference) for the event 
handler to be the element upon which the handler is being established, as in

Event.observe('someId','click',someHandler.bind($('someId')));

Then, in the event handler, we could add

if (!event.currentTarget) event.currentTarget = this;

This would detect environments where currentTarget is not defined and set 
the context object reference into the Event instance to be used in a browser-
independent fashion in the remainder of the handler. A bit Byzantine, per-
haps, but useful if you absolutely must have this information available across 
all browsers.

Stopping propagation
There are times when you may want to prevent an event from continuing its 
propagation. An example is when you know that you have handled the event as 
much as you require and allowing the event to further propagate would trigger 
unwanted handlers.

 In a standards-compliant browser, the stopPropagation() method of the Event 
class would be called within an event handler to prevent further propagation of the 
current event. In IE, the cancelBubble property of the Event instance is set to true. 
It may seem odd to set a property, rather than call a method, in order to effect a 
stop to the propagation, but that’s how IE defines this action.

Preventing the default action
Some events, known as semantic events, trigger a default action in the browser—
such as when a form is submitted, or when an anchor element is clicked.

 In DOM Level 0 handlers, the value false can be returned in order to cause that 
default action to be canceled. In DOM Level 2 handlers, the preventDefault()
method of the Event class serves the same purpose. Calling this method prevents 
the default action from taking place. This can be used, for example, to prevent a 
form from being submitted if a validation check conducted by a submit event han-
dler determines that one or more form fields are not valid. In IE, the returnValue
property of the Event instance is set to false to prevent the browser from carrying 
out the default action.

 All these browser differences are a royal pain to deal with. Luckily, we’re not 
the only ones who think so, and those who write JavaScript libraries have come to 
our aid. Let’s take a look at how a now-familiar library makes event handling less 
painful in our pages.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


178 CHAPTER 5 
Handling events
5.3 Using Prototype for event handling

Several JavaScript libraries are available that simplify the process of defining 
event handlers by abstracting browser differences away. Prototype, which we 
examined previously in chapters 3 and 4 with regard to helping us write object-
oriented JavaScript and make Ajax requests, also provides a simple but conve-
nient abstraction to help us with event handling.

 Prototype defines an Event namespace that possesses a handful of useful 
methods; the two most important ones are observe() and stopObserving(). The 
observe() method allows you to attach an event handler to an element, while 
stopObserving() removes event handlers from those elements.

 Let’s take our example of listing 5.6 and modify it using Prototype. The result 
is shown in listing 5.7.

<html>
  <head>
    <title>Events!</title>
    <script type="text/javascript" src="prototype-1.5.1.js">
    </script>
    <script type="text/javascript">
      window.onload = function() {    
        Event.observe('anImage', 'click', react, false);
        Event.observe('level1', 'click', react, true);
        Event.observe('level2', 'click', react, false);
      }

      function react(event) {   
        $('info').innerHTML +=
          'I woof at ' + Event.element(event).id + '!<br/>';
      }
    </script>
  </head>
  <body>
    <div id="level1">
      <div id="level2">
        <img src="image.jpg" id="anImage"/>
      </div>
    </div>
    <div id="info"></div>
  </body>
</html>

Listing 5.7 Event handlers the Prototype way!

Defines event handlers B

Declares handler function C

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Using Prototype for event handling 179
What a difference Prototype makes! Not only were we able to use the handy $()
function that Prototype provides, we were also able to make our example cross-
browser compatible while reducing the amount of code we had to write.

 In the onload event handler b, we used the Event.observe() method to estab-
lish our handlers in a cross-browser manner. We are still able to specify, for W3C-
compatible browsers, whether the event handler should be a capture or a bubble 
handler. Under IE, this distinction will just be ignored.

 In our event-handler function C, we used the Event.element() method to 
obtain a reference to the target element in a browser-agnostic manner.

 Note that Prototype does not provide a 100 percent abstraction of the differ-
ences between browser event handling. For example, if we wanted to obtain the 
value of the currentTarget property, we’d need to do that directly, and we’d have 
to be sure to not make such a reference when running within IE. However, Proto-
type does abstract a great deal of the most commonly used event-handling 
requirements.

5.3.1 The Prototype Event API

This section provides a quick rundown of the API for the Prototype Event
namespace, describing each method available.

 To begin, the method

Event.observe(element,eventType,handler,useCapture)

establishes an event handler for the named event type on the passed element. 
The useCapture parameter may be omitted and defaults to false. This parameter 
is ignored in IE.

 Next, the method

Event.stopObserving(element,eventType,handler,useCapture)

removes an event handler. The parameters should exactly match those used to 
establish the handler that is to be removed.

 The method

Event.unloadCache()

removes all handlers established through observe() and frees all references in 
order to make them available for garbage collection. This is especially important 
for IE, which has a severe memory leak problem with regard to event handling. 
The best news is that under IE, Prototype automatically calls this method when a 
page is unloaded. 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


180 CHAPTER 5 
Handling events
 Next, the method

Event.element(event)

returns the target element of the passed event.
 The method

Event.findElement(event,tagName)

returns the nearest ancestor of the target element for the passed event that has 
the passed tag name. For example, you could use this to find the nearest <div>
parent of the target element by passing the string “div” as the tagName parameter.

 The method

Event.pointerX(event)

returns the page-relative horizontal position of a mouse event, and the method

Event.pointerY(event)

returns the page-relative vertical position of a mouse event.
 The method

Event.isLeftClick(event)

returns true if a mouse event was a result of a click of the primary mouse button.
 Finally, the method

Event.stop(event)

stops the event from propagating any further and cancels any default action asso-
ciated with the event.

 There! That should make coding for events a lot simpler for us. Now let’s turn 
our attention to the various event types that we commonly need to deal with.

5.4 Event types

When we consider a web application, we know that most events of interest to us 
occur as the result of the user interacting with the application using the mouse or 
the keyboard. These events are fired in the DOM element tree in response to user 
actions such as causing the page to load, clicking a button, moving the mouse, 
dragging the mouse, typing on the keyboard, or taking an action that would cause 
the page to unload. As we have seen, we can write event handlers for these events 
so that our application can respond to these actions. We’ll take a closer look at the 
more commonly handled event types in this section, and we’ll start by looking at 
the mouse events.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Event types 181
5.4.1 Mouse events

The mouse events that are most commonly handled in a web application are 
mouseup, mousedown, click, dblclick, and mousemove. When a user clicks on an 
element, three events are fired: mousedown, mouseup, and click. Let’s observe this 
firsthand by inspecting the code in listing 5.8.

<html>
  <head>
    <title>Mouse events!</title>
    <script type="text/javascript" src="prototype-1.5.1.js">
    </script>
    <script type="text/javascript">
      window.onload = function() {    
        Event.observe('anImage', 'click', react);
        Event.observe('anImage', 'mousedown', react);
        Event.observe('anImage', 'mouseup', react);
      }

      function react(event) {   
        $('info').innerHTML +=
          'I bark for ' + event.type +
          ' at (' + Event.pointerX(event) + ','+
          Event.pointerY(event) + ')!<br/>';
      }
    </script>
  </head>
  <body>
    <img src="image.jpg" id="anImage"/>
    <div id="info"></div>
  </body>
</html>

In this code, we establish event handlers b for the click, mouseup, and mousedown
events on the <img> element. When the image is clicked on, the event-handler 
function C examines the event instance and emits output containing the event 
type, as well as the page-relative coordinates of the mouse cursor at the time of 
the click. In the browser, we’ll see the display shown in figure 5.4.

 We can see from these results that when the element is clicked on, the mouse-
down event fires first, followed by mouseup, and finally, click. As an exercise, add 
mousemove or dblclick event handlers, and see how those events are delivered in 
relation to the other event types. 

Listing 5.8 Mouse events on a single click

Establishes mouse event handlers B

Emits info about event C

http://lib.ommolketab.ir
http//lib.ommolketab.ir


182 CHAPTER 5 
Handling events
5.4.2 Keyboard events

The commonly handled keyboard events are keyup, keydown, blur, and focus. The 
keyup and keydown events are similar to the mouseup and mousedown events; the 
keydown event is fired when the key is pressed, and the keyup event is fired when 
the key is released.

 The focus and blur events are triggered when a DOM element gains or loses 
focus. In any loaded page, only one DOM element can have focus at a time. The 
focus can be changed programmatically or as a result of user actions. When a user 
tabs out of a field, the blur event will be fired, followed by the focus event of the 
next element gaining focus. The user can also change focus by clicking on a 
focusable element.

 Let’s look at an example of how the blur and focus events work. Examine the 
code in listing 5.9.

<html>
  <head>
    <title>Blur and Focus</title>
    <script type="text/javascript" src="prototype-1.5.1.js">
    </script>
    <script type="text/javascript">
      window.onload = function() {    
        Event.observe('nameField', 'blur', react);

Figure 5.4 Reaction to mouse events

Listing 5.9 Blur and focus and blur and focus and…

Establishes handlers on page load B

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Event types 183
        Event.observe('nameField', 'focus', react);
        Event.observe('breedField', 'blur', react);
        Event.observe('breedField', 'focus', react);
        Event.observe('dobField', 'blur', react);
        Event.observe('dobField', 'focus', react);
        $('nameField').focus();   
      }

      function react(event) {   
        $('info').innerHTML +=
          Event.element(event).id + ' ' +
          event.type + '<br/>';
      }
    </script>
  </head>
  <body>
    <form name="infoForm">   
      <div>
        <label>Dog's name:</label>
        <input type="text" id="nameField"/>
      </div>
      <div>
        <label>Breed:</label>
        <input type="text" id="breedField"/>
      </div>
      <div>
        <label>Date of birth:</label>
        <input type="text" id="dobField"/>
      </div>
      <div>
        <input type="submit" id="submitButton"/>
      </div>
    </form>
    <div id="info"></div>
  </body>
</html>

The structure of this example is similar to the ones that we’ve been looking at up 
to this point, but we’ve made some significant changes in order to shift focus from 
mouse events (primarily click) to keyboard events.

 The body of the page has been modified to contain a <form> element E in 
which we have defined three text fields. In the onload event handler b, we estab-
lish a focus event handler and a blur event handler for each of the text fields. We 
added these handlers individually for clarity. As an exercise, how would you 
rewrite this code so that all text fields in a form would be instrumented with the 
event handlers without having to list them individually?

Assigns focus to first field c

 D Handles blur and focus events

 E Contains focusable elements

http://lib.ommolketab.ir
http//lib.ommolketab.ir


184 CHAPTER 5 
Handling events
 At the conclusion of the onload handler, we also assign the focus C to the first 
field in the form under script control. This is significant (besides being a friendly 
thing to do) because it shows us that when the page loads, the focus handler for 
that first field will trigger. This tells us that the focus event is triggered either 
when focus is assigned by script or when assigned via user activity.

 This is not true for all events. The submit event for a form element, for exam-
ple, will not be triggered when a form is submitted under script control.

 We’ve also slightly modified our react() D event-handler function to emit the 
name of the target element followed by the event type.

 When this page is initially loaded into the browser, we see the display as shown 
in the top portion of figure 5.5. As you can see, an invocation of the focus event 

Figure 5.5 Focusing and blurring

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Event types 185
handler has already taken place because we assigned focus to the nameField ele-
ment in the onload event handler.

 After filling in some data and tabbing to the dobField element, we can see that 
as we tab out of each field, the blur event handler is called for the element that we 
are leaving, and the focus event handler is triggered as the next element in the tab 
order gains focus (we’ll be seeing a lot more regarding tab order in chapter 10).

 Make a copy of the example code in listing 5.9 and add event handlers for the 
other keyboard events to text fields. Observe how they are triggered as you type 
the values into the fields.

5.4.3 The change event

We have seen how we can use a blur event handler to be notified when the user 
leaves an element. But it would also be useful to know whether the value of a DOM
element has changed when it loses focus—for example, if we want to perform val-
idation on a field only when its data has changed instead of every time it loses 
focus. For certain types of elements, such as text, textarea, select, and file, the 
DOM fires a change event when an element loses focus and the content of the ele-
ment has changed between the time that field gains and loses focus.

 To see this in action, we’ll modify our previous example to add change event 
handlers to the text field elements. The result is shown in listing 5.10, with 
changes from listing 5.9 highlighted in bold.

<html>
  <head>
    <title>Ch-ch-changes</title>
    <script type="text/javascript" src="prototype-1.5.1.js">
    </script>
    <script type="text/javascript">
      window.onload = function() {
        Event.observe('nameField', 'blur', react);
        Event.observe('nameField', 'focus', react);
        Event.observe('nameField', 'change', react);
        Event.observe('breedField', 'blur', react);
        Event.observe('breedField', 'focus', react);
        Event.observe('breedField', 'change', react);
        Event.observe('dobField', 'blur', react);
        Event.observe('dobField', 'focus', react);
        Event.observe('dobField', 'change', react);
        $('nameField').focus();
      }

Listing 5.10 Knowing what’s changed

http://lib.ommolketab.ir
http//lib.ommolketab.ir


186 CHAPTER 5 
Handling events
      function react(event) {
        $('info').innerHTML +=
          Event.element(event).id + ' ' +
          event.type + '<br/>';
      }
    </script>
  </head>
  <body>
    <form name="infoForm">
      <div>
        <label>Dog's name:</label>
        <input type="text" id="nameField"/>
      </div>
      <div>
        <label>Breed:</label>
        <input type="text" id="breedField"/>
      </div>
      <div>
        <label>Date of birth:</label>
        <input type="text" id="dobField"/>
      </div>
      <div>
        <input type="submit" id="submitButton"/>
      </div>
    </form>
    <div id="info"></div>
  </body>
</html>

With very little in the way of changes to the HTML document, we’ve added the 
ability to be notified when changes are effected on the text fields in our form.

 If we were to load this page into our browser, enter some text into the first field, 
tab to the second, and then tab to the third without entering text into the second 
field, we’d see something like figure 5.6. As you can see, a change event was trig-
gered just prior to the blur event for the name field, whose value was changed as 
a result of user input, but not for the breed field, which was not changed.

5.4.4 Page events

So far we’ve seen events that are fired when a user interacts with the elements 
within a loaded page, but the browser can also fire events representing page-level 
activity. These are called page events, and they occur when the document is loaded, 
unloaded, resized, or scrolled. Although these events sound special, we can cap-
ture them just as we do with other events by providing event handlers on the 
<body> element of the page or assigning them via the window object.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Event types 187
In every example we’ve examined in this chapter, we’ve already seen the load
event in action; we used it to declare the other event handlers that we wanted to 
demonstrate. Now let’s add examples of the unload and onbeforeunload events 
into the mix, as shown in listing 5.11.

<html>
  <head>
    <title>Page Events</title>
    <script type="text/javascript" src="prototype-1.5.1.js">
    </script>
    <script type="text/javascript">
      window.onload = function() {   
        alert('Loaded!');
        window.onunload = function() {   
          alert('Unloaded!');
        }
        window.onbeforeunload =    
          function() {
            return 'Leaving so soon?';
          }
        }
      }
    </script>
  </head>
  <body>

Listing 5.11 Handling page events

Figure 5.6 What’s changed?

 B Alerts that page is loaded

 C Alerts that page is unloading

 D Offers choice

http://lib.ommolketab.ir
http//lib.ommolketab.ir


188 CHAPTER 5 
Handling events
    <a href="listing-5.11.html">Do it again!</a>
  </body>
</html>

As we’re going to be loading and unloading the page itself, using on-page out-
put to see what’s going on won’t work very well, so we’ve resorted to alert dialog 
boxes again. In the onload event handler, we issue an alert when the page is 
loaded b and then proceed to establish event handlers for the unload and 
beforeunload events.

 In the onunload event handler C, we simply issue another alert that announ-
ces that that event has triggered. But the onbeforeunload event handler is a bit 
more interesting.

 In the onunload event handler, there’s not much we can do except react to the 
fact that the page is unloading, but in the onbeforeunload event handler, we can 
actually affect whether or not the page will unload. If a value is returned, as in our 
onbeforeunload event handler D, the browser will display a dialog box that asks 
the user whether the page should unload. That dialog box contains the value that 
we returned from the handler as part of its text.

 When we load this example into the browser, we get an annoying alert that 
announces that the page has been loaded. Upon clicking the link on the page, 
which we’ve wired to simply display the same page again, we see that the browser 
triggers our onbeforeunload event handler and, as a result of the value we 
returned from that handler, displays the dialog box shown in figure 5.7.

Figure 5.7 Let’s chat before you go.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Putting events into practice 189
It doesn’t take much imagination to see that this technique could be quite useful for 
making sure that users don’t lose data when they attempt to leave a page before 
completing their operation. If the user clicks the Cancel button, the page naviga-
tion is canceled and the unload operation never takes place. If the user clicks the 
OK button, the unload operation proceeds and the user receives the alert announc-
ing that the unload event handler has been called just before the page reloads.

 One aside on the use of the load event: it’s not uncommon to see pages in 
which a <script> element is placed near the bottom of the page in order to exe-
cute code as the page loads. The difference between using this tactic and imple-
menting the load event is that the load event is guaranteed not to be triggered 
until after the page has completed loading, to include external elements such as 
script files, CSS style sheets, and images.

 That completes our survey of event handling and our examination of some of 
the most commonly handled event types. Obviously, we haven’t explored all 
events that can be fired within a web page—such an overview could take many 
chapters—but the information presented here is certainly enough to help you 
understand how event handling operates and how to handle the event types that 
are most typically used in modern web applications.

 Now that we have a good working knowledge of event handling and the event 
types, let’s take a look at a few practical examples of putting them to work.

5.5 Putting events into practice

The examples in this section require the services of server-side resources in order 
to execute. To make this as painless and simple as possible for the reader, the 
sample code for this chapter at www.manning.com/crane2 is already set up to be a 
complete and runnable web application.

 If you are already running a servlet container on your system, simply create a 
new application context named aip.chap5 that points to the chap5 folder of the 
downloaded code as its document base.

 If you are not already running a servlet engine, no need to panic. A PDF doc-
ument in the chap4 folder of the download walks you through downloading and 
configuring Tomcat, and also shows you how to set up application contexts.

 When opening these examples in the browser, be sure to address the pages 
through the web server rather than merely opening the HTML pages as files. For 
example, to load the example in listing 5.12, you would use the address:

http://localhost:8080/aip.chap5/listing-5.12.html

http://lib.ommolketab.ir
http//lib.ommolketab.ir


190 CHAPTER 5 
Handling events
This assumes, of course, that you are running the servlet container on the default 
port of 8080. If you’ve changed that port to another one, be sure to adjust the 
URL accordingly.

5.5.1 Validating text fields on the server

With the knowledge of how to attach change and blur event handlers to DOM ele-
ments under our belts, it is quite easy to use such handlers to validate input 
elements on the client to ensure that the data entered is acceptable. Simple client-
side checks are easy to conduct, but sometimes business requirements dictate 
that the data may need to be validated using knowledge that is only available on 
the server. This may be because the validation is too complex to handle in Java-
Script, or because the information that needs to be available in order to validate 
the data is too vast to send to the page for client-side use.

 A common strategy used in classical web applications is to perform the simple 
validation on the page, and then to perform the more complex validations when 
the form is submitted. But with the advent of Ajax, we no longer need to put the 
user through this rather schizophrenic means of validation. To conduct server-
assisted validation on the fly, we’ll make a server request when a suitable event 
occurs on the client side, which will validate the data and respond to the client 
with an appropriate message.

 We have all the information we need to solve this problem. We know that we can 
attach an event to a textbox to detect any changes, and that we can use that event 
to trigger a request to the server with Ajax. The server-side resource that such a 
request contacts can validate the data and send back an error message if the data 
proves invalid.

 Note that the purpose of the example in this section is to demonstrate a real-
world use of event handling, not to present a mature or sophisticated validation 
framework. That is a subject that will be discussed later in this book in chapter 6 
and then again in chapter 10.

Problem
We need to validate text fields using a server-side resource when their value 
changes.

Solution
We’ve already seen how to instrument an input text element with event han-
dlers, and this solution will do no differently. The question is: do we trap blur
or change events?

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Putting events into practice 191
 The answer depends on the nature of the data and of the validations to be per-
formed. Since we are going to be making a server round-trip whenever we want to 
perform a server-assisted validation operation, we want to make sure that we’re 
not firing off requests any more than we need to.

 If we know that the data is valid to begin with, we can limit ourselves to trap-
ping change events. After all, there’s no need to validate data that we know is 
already good. But in the more common case where fields may start off with 
unknown data (or even empty), we probably need to trap blur events so that the 
field can be validated every time it is visited.

 Establishing an event handler for the field to be validated is as simple as this:

Event.observe('fieldId','blur',validationFunction);

Listing 5.12 shows a page with a small form consisting of fields for a U.S. address, 
city, state, and zip code. Our business requirements dictate that the zip code and 
address must match. This requires consulting a server-side API that the United 
States Postal Service (USPS) makes available and that must be consulted in the 
server-side code. Let’s see how we handle that on the page.

<html>
  <head>
    <title>I Need Validation</title>
    <script type="text/javascript" src="prototype-1.5.1.js">
    </script>
    <script type="text/javascript">
      window.onload = function() {     
        Event.observe('zipCodeField','blur',validateZipCode);
        $('addressField').focus();
      }

      function validateZipCode(event) {   
        new Ajax.Request(
          '/aip.chap5/validateZipCode',
          {
            method: 'get',
            parameters: $('infoForm').serialize(true),
            onSuccess: function (transport) {
              if (transport.responseText.length != 0)
                alert(transport.responseText);
            }
          }
        );
      }
    </script>
  </head>

Listing 5.12 Validating the zip code

Sets up event handling B

 C Initiates validation request

http://lib.ommolketab.ir
http//lib.ommolketab.ir


192 CHAPTER 5 
Handling events
  <body>
    <form id="infoForm">   
      <div>
        <label>Address:</label>
        <input type="text" id="addressField" name="address"/>
      </div>
      <div>
        <label>City:</label>
        <input type="text" id="cityField" name="city"/>
        <label>State:</label>
        <input type="text" id="stateField" name="state"/>
        <label>Zip Code:</label>
        <input type="text" id="zipCodeField" name="zipCode"/>
      </div>
      <div>
        <input type="submit" id="submitButton"/>
      </div>
    </form>
    <div id="info"></div>
  </body>
</html>

Three major activities are addressed by this page: setting up the event handling 
b, reacting to the blur event by initiating the validation request to server-side 
resource C, and setting up the data entry form D for the user to fill in.

 In the onload event handler b for the page, we set up the handler for the blur
event so that the validateZipCode() function will be called whenever the user 
leaves the zip code field. This function C fires off a Prototype-assisted Ajax 
request to a server-side resource named validateZipCode. As you’ll see in a 
moment, this resource is a Java servlet that does some simplistic hand waving in 
order to emulate an actual zip code validation operation.

 To this resource, we pass the fields of the our form utilizing the handy serial-
ize() method that Prototype conveniently adds to the <form> element.

 The server-side validation resource is defined to return an empty response if 
all is well and to return an error message if validation fails. So in the onSuccess
event handler for the Ajax request, we test the text of the response and emit a 
simple alert if the field failed validation. Remember, more sophisticated valida-
tion handling is something that we’ll explore in later chapters.

 Load this page into a browser (be sure to use the web server URL, not the File 
menu) and fill in the fields. Note that when you leave the Zip Code field, an alert 
is issued displaying the validation failure message, as shown in figure 5.8.

 D Sets up data entry form

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Putting events into practice 193
In fact, you’ll find that every zip code that you type in will generate a validation 
warning unless you just happened to guess the one valid zip code value of 01826. 
That’s because our server-side validation servlet is, of course, not really connect-
ing to the USPS database in order to perform an actual validation. The servlet 
code that is faking a validation operation appears in listing 5.13.

package org.aip.chap5;

import java.io.IOException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
 * Smoke-and-mirrors validator servlet for listing 5.12. The
 * zip code must be non-blank and equal to "01826" to be
 * considered valid.
 */
public class ZipCodeValidatorServlet extends HttpServlet {

  protected void doGet(HttpServletRequest request,
                       HttpServletResponse response)
        throws IOException {
    StringBuilder result = new StringBuilder ();
    String zipCodeValue = request.getParameter("zipCode");
    if (zipCodeValue.length() == 0) {
      result.append("The zip code field cannot be blank");
    }

Listing 5.13 Faking our way through a zip code validation

Figure 5.8 Zip code invalid!

http://lib.ommolketab.ir
http//lib.ommolketab.ir


194 CHAPTER 5 
Handling events
    else if (!zipCodeValue.equals("01826")) {
      result
        .append("The zip code value of ")
        .append(zipCodeValue)
        .append(" does not match the specified street address");
    }
    response.getWriter().write(result.toString());
  }
}

There’s really not too much to comment on here, except that if this were an 
actual validation resource, all the fields for the form would be gathered, and a 
USPS-provided API would be utilized to perform the actual validation. Because 
that’s not the focus of this example (or even of this book), we’re just supplying a 
fake resource that allows us to see our client-side code in practice.

Discussion
In this section, we saw a hybrid method of using client-initiated, server-assisted 
validation that enables us to give users immediate feedback regarding their 
entered data, regardless of whether the validation needs server resources.

 We used the blur event to detect when a user left a field in order to initiate the 
check. But could we be smarter about this? Once the data has been checked the 
first time, there’s no need to go through the overhead of another server round-
trip unless the data has changed. How would you modify the code to only initiate 
the server check if the validity of the data is unknown?

 This hybrid approach of using both client-side and server-assisted on-the-fly 
validation is a powerful addition to our web application toolbox. Such immediate 
validation can prevent a lot of user frustration resulting from being told after the 
form submission that there are problems with the submitted data. So by all means, 
you should implement such validation. But you can never rely on it!

 Our client-side code is readily available to anyone visiting our pages, and 
nefarious types will find it easy to reverse-engineer this code to submit their own 
false data, totally bypassing any client-side validations framework no matter how 
cleverly crafted. To be sure that the data is valid, always implement server-side 
validation upon form submission regardless of how much validation has been 
performed prior to that point. You can leverage the same code that you use for 
client-initiated, server-assisted validation (such as the code we examined in this 
example) for the final submission-time checks.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Putting events into practice 195
 Speaking of form submission, there may be times when we want to submit a 
form to the server without the overhead of a complete page reload. Let’s examine 
that next.

5.5.2 Posting form elements without a page submit

The vast majority of web pages that accept input today are written using the clas-
sical technique of submitting a form to the server when data entry is complete. 
This entails a complete page refresh, which may be undesirable in the context of 
the rich web applications that we can now deliver using Ajax. 

Problem
We want to post a form to a server resource without a full-page reload.

Solution
As it turns out, the solution is almost completely trivial. In fact, we’ve already 
pretty much accomplished this task in our previous example. To “submit” the 
form, we’ll use the same technique that we utilized in that example to send form 
elements to the server for validation.

 Trivial and familiar as this solution might be, a few nuances make this prob-
lem worth considering. We’ll take the code of our previous example, remove the 
validation check (so that we can focus on the submission topic), and rewire it to 
hijack the form-submission process in order to send the form to the server under 
Ajax control rather than as a normal form submission. The results are shown in 
listing 5.14.

<html>
  <head>
    <title>Submit!</title>
    <script type="text/javascript" src="prototype-1.5.1.js">
    </script>
    <script type="text/javascript">
      window.onload = function() {    
        Event.observe('infoForm','submit',submitMe);
        $('addressField').focus();
      }

      function submitMe(event) {   
        new Ajax.Request(
          '/aip.chap5/handleSubmission',
          {

Listing 5.14 Hijacking the submission process

Establishes submit event handler B

 C Submits form under Ajax control

http://lib.ommolketab.ir
http//lib.ommolketab.ir


196 CHAPTER 5 
Handling events
            method: 'post',
            parameters: $('infoForm').serialize(true),
            onSuccess: function (transport) {
              $('info').innerHTML = transport.responseText;
            }
          }
        );
        Event.stop(event);
      }
    </script>
  </head>

  <body>
    <form id="infoForm"   
          action="/aip.chap5/shouldNotActivate">
      <div>
        <label>Address:</label>
        <input type="text" id="addressField" name="address"/>
      </div>
      <div>
        <label>City:</label>
        <input type="text" id="cityField" name="city"/>
        <label>State:</label>
        <input type="text" id="stateField" name="state"/>
        <label>Zip Code:</label>
        <input type="text" id="zipCodeField" name="zipCode"/>
      </div>
      <div>
        <input type="submit" id="submitButton"/>
      </div>
    </form>
    <div id="info"></div>
  </body>
</html>

The changes to this page are subtle but significant. First, we’ve added a handler 
to the form for the submit event in the window’s onload handler b, which will 
cause the submitMe() function to be called when the form is submitted C.

 We’ll deal with that function in just a minute, but first take a look at the 
change we made to the <form> element D. We added an action attribute that 
specifies a server-side resource that does not exist. By doing so, we’ll quickly 
know if our form is ever submitted using the normal default action: the browser 
will display an unmistakable error page when the server reports that the resource 
cannot be found.

Assigns normal submission action D

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Putting events into practice 197
 The submitMe() function, called when the submit event is triggered, initiates 
an Ajax request similar to the one we saw in the previous example. But in this 
case, we specified an HTTP method of 'post' rather than 'get'. The heavy lifting 
is done by the Prototype serialize() method.

 The server-side resource for the request is a servlet that collects the request 
parameters and formats a response that contains an HTML snippet showing 
the names and values of those parameters. (As its operation is not germane to 
this discussion, we won’t inspect it here. But if you’re curious, you’ll find the 
source code for the servlet in the downloadable code as the org.aip.chap5. 
ParameterInspectorServlet class.) This response body is displayed on the page 
in the info element.

 Finally, the following statement is executed:

Event.stop(event);

This Prototype method stops the event from propagating any further and cancels 
the default action of the event, which in this case is the form submission. Without 
this statement, the form would go on submitting to the resource identified by the 
form’s action attribute.

Discussion
Although this example didn’t cover much new ground, it did point out some 
important concepts, such as using the submit event to prevent the submission 
of the form. We used an event handler and the Prototype event methods for 
this purpose, but if all you’re trying to accomplish is preventing form submis-
sion, you can use the following form declaration to return false from a DOM
Level 0 handler:

<form id="my Form" action="whatever" onsubmit="return false;">

In our example, we also relied heavily on the services of the Prototype serialize()
method. This method marshals all the values of the containing form’s elements 
and constructs either a query string or an object hash from those parameters. 
Because we specified true as the parameter to this method, it returns an object 
hash, which is the preferred technique for Prototype 1.5.

 When this page is loaded, data entered, and the Submit button clicked (or the 
Enter key pressed), the display appears as shown in figure 5.9.

 That was all pretty easy. But what if we want to be slightly pickier?

http://lib.ommolketab.ir
http//lib.ommolketab.ir


198 CHAPTER 5 
Handling events
5.5.3 Submitting only changed elements

The previous example showed us that we can take control of the form-submission 
process and use event handling to reroute the submitted data to an Ajax request. 
Prototype’s serialize() method made it almost trivial for us to gather all the 
data elements of a form to send to the server.

 But what if we don’t want to send all the form data? What if we only want 
to send data elements that have changed? Indeed, why make the request at all 
if none of the data has changed? We could use the change event of the form 
elements to know when an element’s value has changed, but how do we best 
keep track of this information for use when it comes time to send the data to 
the server?

 We could be sophomoric about it and store the information in global variables. 
But not only would that be inelegant, it would also create severe problems on 
pages with multiple forms, and is not an object-oriented approach.

 We could be sophisticated about it and store the information right on the ele-
ment itself by adding a custom property, as follows:

element.hasChanged = true;

We could then loop through the elements when it comes time to gather the data 
for submission, looking for elements that have this property set.

 Or better yet, we can be clever about it (that sounds so much better than 
lazy) and leverage code that we already have handy. Listing 5.15 shows just 
such an approach.

Figure 5.9 Submitting without submitting!

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Putting events into practice 199
<html>
  <head>
    <title>Submit, or not!</title>
    <script type="text/javascript" src="prototype-1.5.1.js">
    </script>
    <script type="text/javascript">
      window.onload = function() {
        Event.observe('infoForm','submit',submitMe);
        Event.observe('infoForm','change',   
                      markChanged);
        $('addressField').focus();
      }

      function markChanged(event) {   
        Event.element(event).addClassName('changedField');
      }

      function submitMe(event) {   
        var changedElements = $$('.changedField');
        if (changedElements.length > 0 ) {
          var parameters = {};
          changedElements.each(
            function(element) {
              parameters[element.name] = element.value;
              element.removeClassName('changedField');
            }
          );
          new Ajax.Request(
            '/aip.chap5/handleSubmission',
            {
              method: 'post',
              parameters: parameters,
              onSuccess: function (transport) {
                $('info').innerHTML = transport.responseText;
              }
            }
          );
        }
        Event.stop(event);
      }
    </script>
  </head>

  <body>
    <form id="infoForm" action="/aip.chap5/shouldNotActivate">
      <div>
        <label>Address:</label>
        <input type="text" id="addressField" name="address"/>
      </div>
      <div>

Listing 5.15 Submitting only changed data

Establishes change 
handler on form B

Marks target element as changed C

Collects only changed elements D

http://lib.ommolketab.ir
http//lib.ommolketab.ir


200 CHAPTER 5 
Handling events
        <label>City:</label>
        <input type="text" id="cityField" name="city"/>
        <label>State:</label>
        <input type="text" id="stateField" name="state"/>
        <label>Zip Code:</label>
        <input type="text" id="zipCodeField" name="zipCode"/>
      </div>
      <div>
        <input type="submit" id="submitButton"/>
      </div>
    </form>
    <div id="info"></div>
  </body>
</html>

In this example we’ve made some minor but significant changes to the code in 
listing 5.14. In the onload event handler, we’ve established a change event handler 
on the form b. We could have looped through the form, adding a handler on 
each individual element, but why bother when the form will receive the event 
notification during the bubble phase?

 The handler function, markChanged() C, which will be called whenever a form 
element has changed, obtains a reference to the event’s target element and adds 
the CSS class changedField to that element.

 Huh? What does CSS have to do with keeping track of changed fields? All is 
revealed when we examine the changes to the submitMe() event-handler function.

 In that function D, we use the Prototype $$() function. This handy function 
returns an array of all elements that match the CSS selector passed as its param-
eter. Since we specified the string '.changedField', an array of all elements 
marked with that CSS class name is returned.

 If that array is empty, we simply skip over the code that submits the request. 
Otherwise, we loop through the elements, creating an object hash of the name/
value pairs that we gather from the array elements. That hash is then used as the 
parameter set for the Ajax request.

 Since the data has been submitted and is no longer considered changed, we 
remove the CSS class name changedField from the elements, and we’re good to 
go again!

Discussion
This example builds on the code in listing 5.14 to limit the parameters submitted 
on the Ajax request to those that have changed value, and to completely skip sub-
mitting the request if no changes have taken place.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Summary 201
We used a change event handler on the form to catch changes to all its elements, 
cleverly taking advantage of the bubble phase of event propagation. And we saw a 
clever way of marking elements for later identification through the use of CSS
class names and the Prototype $$() function.

 When displayed in the browser, and with only the City and State fields 
changed, we see the display as shown in figure 5.10.

5.6 Summary

In this chapter, we saw some interesting and powerful techniques to add interac-
tivity to web applications. We looked at the various ways in which you can add 
event handlers to a DOM element, and we saw how the Prototype JavaScript 
library greatly simplifies the process of attaching and writing event handlers. We 
looked at all the major event types, and we examined many code snippets that 
demonstrated how these events can be used in our web applications. We also 
looked at some validation and form submission examples, something we’ll cover 
more in-depth in the next chapter.

Figure 5.10 Submitting only what counts

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Form validation 
and submission
This chapter covers
■ Client-side field validation
■ Client-side cross-field validation
■ The POST HTTP request method
■ XMLHttpRequest (XHR) form submissions
202

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Client-side validation 203
Input validation is probably one of the least-favorite activities of web developers. 
“Why can’t users just type their data in right the first time?” and “We’re going to 
validate it on the server later anyway, so why bother?” are some common com-
plaints, the latter having perhaps more merit. So why do it?

 We do it because it creates a better user experience by

■ Giving users immediate feedback regarding incorrect form data
■ Cutting down on server resource usage (traffic and server cycles), which 

makes the user interface (UI) snappier

Input validation goes hand in hand with HTML forms: first, data is validated, and 
then it’s submitted to the server. In the second part of this chapter, we’ll discuss 
handling and submitting HTML forms as Ajax requests. Handling your own POST
requests is in the lowest level of data handling, as you will be talking directly to 
the server yourself instead of letting the browser take care of it for you. This pro-
cess can be quite error prone, but if implemented correctly, it can speed up your 
UI by eliminating those pesky browser refreshes.

6.1 Client-side validation

What is form validation? Simply put, it’s a way of ensuring that the data a user 
enters into a form is valid. Now, valid is a bit of a nebulous concept, but basically it 
means that the data conforms to certain rules. 

 Form validation has been around for a while; first implemented mostly on 
the server side, it later moved toward the client side, which made for snappier 
feedback. Several server-side frameworks, such as Struts, are available, but sadly, 
client-side validation has always been a bit undersupported. 

 In this section, we’ll take a look at creating our own extensible client-side val-
idation framework. We’ll build it up slowly with simple validations, and then 
move on to instant “as you type” validation and cross-field validation.

6.1.1 Validating on the client side

Validating on the client side can be a real… well, it’s not fun. It sure would be 
great if you could just create a library that you could reuse on each page without 
having to rewrite it every time. And that’s precisely what we’ll be looking at.

 As mentioned, we’ll be using object-oriented JavaScript to ease both main-
tainability and extensibility. If you need a refresher, please refer to chapter 3 of 
this book. 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


204 CHAPTER 6 
Form validation and submission
Problem 
You need a reusable validation framework so that you don’t have to rewrite client-
side validation rules. It needs to be extensible, easy to maintain, and easy to use.

Solution
We’ll use the assistance of the Prototype library to write our validation frame-
work. Why Prototype? Because, as we saw in chapters 3 and 4, using a good 
JavaScript library makes it easier for us to write our validation framework in a 
more object-oriented way, which will promote code reuse. And everyone knows 
that object-oriented code is very easy to reuse! We’ll use Prototype, but the same 
concepts can be applied using jQuery or the Dojo Toolkit. 

 Let’s see what our framework can do with a look at figure 6.1. The user appar-
ently slipped and typed an extraneous “r” character in a field that requires a 
numeric value. Now let’s look at the HTML and script for this page in listing 6.1.

<html>
  <head>
    <title>Listing 6.1</title>
    <script type="text/javascript"
            src="prototype-1.5.1.js">   
    </script>
    <script type="text/javascript"
            src="listing.6.2.js">   
    </script>
    <script type="text/javascript">
      var framework = new ValidatorFramework();
      window.onload = function() {
        Event.observe('testForm','submit',
          function(event) {                

Listing 6.1 HTML for a validation framework

Figure 6.1 Validation in action

Uses 
Prototype

Contains validation 
framework

Calls 
framework

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Client-side validation 205
            if (!framework.validateForm(event.target))
              Event.stop(event);
          }
        );
      };
    </script>
    <title>Validation FrameWork</title>
    <style type="text/css">
      div.error {
        color: red;
      }
    </style>
  </head>
  <body>
    <form id="testForm"
          method="post"
          action="/aip.  chap6/requestInspector">
      <div> Name :
        <input name="name" type="text"   
               id="name" valid="all"   
               error="name_err"/>
        <div class="error" id="name_err"></div>
      </div>
      <div> Age :
        <input name="age" type="text"
               id="age" valid="number"   
         error="age_err"/>
        <div class="error" id="age_err"></div>
      </div>
      <div>
        <input type="submit"/>
      </div>
    </form>
  </body>
</html>

Simple enough. We mark the fields that we wish to validate with two attributes in 
the input tag: valid tells the validator what validation rule to use; error tells it 
where to put any error message. 

 This technique of adding custom attributes to HTML elements is a useful but 
tricky approach because not all browsers support it in the same way. Internet 
Explorer and Safari make such attributes properties of the elements, but Firefox 
and other Gecko-based browsers do not. But all major browsers seem to allow 
retrieval of the value via the element’s getAttribute() method. Now let’s look at 
our validation framework classes (listing 6.2).

Marks input as 
validatable 

Uses number 
validator

http://lib.ommolketab.ir
http//lib.ommolketab.ir


206 CHAPTER 6 
Form validation and submission
var Validator = Class.create();

Validator.prototype = {
  type: "all",

  initialize: function(validators) {   
    validators[this.type] = this;
  },

  doValidate: function(input) {   
    return "";
  },

  validate: function(input, errordiv) {   
    errorMsg = this.doValidate(input);
    errordiv.innerHTML = errorMsg;
    return (errorMsg.length == 0);
  }
}

var NumberValidator = Class.create();

Object.extend(NumberValidator.prototype,
              Validator.prototype);

Object.extend(NumberValidator.prototype, {
    type: "number",                         

     doValidate: function(input) {                
      var numberpattern=/(^\d+$)|(^\d+\.\d+$)/;  
      if (numberpattern.test(input)) {
        return "";
      } else {
        return "'" + input + "' is not a number." ;
      }
    }
});

var ValidatorFramework = Class.create();

ValidatorFramework.prototype =
{
  validators: 0,               

  validateForm: function(form) {
    var retval = true;
    for(i = 0; i < form.length; i++) {
      currentInput = form[i];
      type = currentInput.getAttribute("valid");

Listing 6.2 Validation framework

Registers validator 
by its type B

Defines subclass 
hook C

Evaluates 
doValidate() output d

Takes care of all number fields e

Overrides doValidate() 
method F

Defines hash map 
of validators

 G

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Client-side validation 207
      errorDivName = currentInput.getAttribute("error");
      if(type == null || errorDivName == null) {
        continue;
      } else {
        valid = this.validate(    
          type, currentInput.value, $(errorDivName));
        if(!valid) {
          retval = false;
        }
      }
    }
    return retval;
  },

  validate: function(type, input, errordiv) {
    return this.validators[type].   
      validate(input, errordiv);               
  },

  initialize: function() {            
    this.validators = new Object();
    new Validator(this.validators);
    new NumberValidator(this.validators);
  }

}

Discussion
Let’s talk about what’s happening in listing 6.2. First, we’ll discuss the Validator 
class. The Validator class will serve as the base class of all validators that we wish to 
implement. We’ve set its validation type to all, which does not mean much in this 
case; however, subclasses of Validator will set this to something more meaningful. 

 The ValidatorFramework class examines this property to decide which regis-
tered Validator implementation to execute when it reads the valid attribute of 
an <input> element. The ValidatorFramework instance is informed of this map-
ping in the initialize() method b where the new Validator object registers 
itself. The real meat of the Validator class is its doValidate() method c, where we 
evaluate the input value. The Validator’s doValidate() method returns an empty 
string, which is regarded as success. The doValidate() method is called from the 
validate() method d, which sets the validation error message, updates the error 
<div>’s contents to display the error message, and returns true or false depend-
ing on whether there were any errors.

Validates with 
appropriate validator

 h

Grabs appropriate 
validator I

Sets up hash map, 
registers validators J

http://lib.ommolketab.ir
http//lib.ommolketab.ir


208 CHAPTER 6 
Form validation and submission
 Now that we’ve seen how the basic Validator superclass works, we’ll take a look 
at how we subclass it (using the techniques we learned in chapter 3) to create our 
own Validator classes. We’ll start with a simple NumberValidator class, which will 
validate all number fields E with a regular expression in its overriding doVali-
date() method F. You can see how easy it is to create your own Validator classes: 
subclass Validator, set the appropriate type, and create an appropriate doVali-
date() method.

 Our Validator classes are useless without something to drive them, which is 
where the ValidatorFramework class comes in. The ValidatorFramework class 
contains an object hash called validators containing all Validator objects that 
are registered with it G, which is set up in its initialize() method j. When we 
call its validateForm() method from our UI, it will look through all the input 
tags on the supplied form and find the appropriate validator h, i for validat-
ing that input.

 And what do we see if we run our example with invalid data? You can see for 
yourself in figure 6.1—85r is certainly not a number. Our validator works!

 Frameworks such as these are easy to set up, especially using an object-oriented 
approach as we just did. You’ll find such frameworks easy to maintain, as well as easy 
to extend—for example, with new validation rules. By using error <div>s and 
assigning them a CSS class, you can maintain a consistent look and feel across your 
entire application.

 One caveat when dealing with client-side validation: it is not secure! We’ve men-
tioned this before, but it bears repeating. Even if you are validating the data on 
the client, you must always revalidate on the server. Crafty users can simply fake 
an HTTP POST to submit any data that they wish, totally bypassing your beauti-
fully constructed validation framework.

 You might also want to take a look back at chapter 5 to recall how to create 
server-assisted validations; such hybrid validations can cut down on your lines of 
code and ease the maintenance hassle associated with keeping server-side Java 
and JavaScript in sync.

 A drawback of the framework we just implemented is that users must submit 
their form before they are notified of the validity of their inputs. A more user-
friendly approach might be to immediately inform them of the errors of their 
ways. The following example will do exactly that by giving users instant feedback 
on the validity of their input.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Client-side validation 209
6.1.2 Instant validation

You’ve most certainly seen web applications that give you instant feedback on the 
validity of your inputs as you type. This saves users a lot of time and frustration, 
because they know that their inputs are valid before they click the submit button. 
This example extends our framework to support that type of behavior.

Problem
You wish to give users instant feedback on the validity of their inputs as they 
are typing. 

Solution
It sure is nice when users can see whether they have made any mistakes in their 
data as they are typing it in, as opposed to filling in a form completely, only to 
find out when submitting that they have made errors. 

 We talked the big talk about code reuse throughout this book. As the authors 
do not wish to be accused of being “all hat and no cattle” (see http://en.wiktionary. 
org/wiki/all_hat_and_no_cattle), we’ll reuse our validation framework to validate 
input fields as users are typing. In fact, the only thing we’ll change is to add a 
keyup event handler to the form. First take a look at figure 6.2, which shows the 
error message delivered immediately after the “r” has been typed.

Rather than repeating the entire code of listing 6.1, listing 6.3 only shows the 
onload event handler, with the added code in bold.

window.onload = function() {
  Event.observe('testForm','submit',function(event) {
    if (!framework.validateForm(event.target))

Listing 6.3 As-you-type form validation

Figure 6.2 Instant feedback as you type

http://lib.ommolketab.ir
http//lib.ommolketab.ir


210 CHAPTER 6 
Form validation and submission
      Event.stop(event);
  });
  Event.observe('testForm','keyup',function(event) {
    framework.validateForm(event.target.form);
  });
};

Discussion
This solution didn’t change very much from the solution of the previous sec-
tion. However, this time we have constant feedback telling us when we type in a 
valid number.

 But how does this work? You might be saying to yourself, “The onkeyup event 
handler is bound to the <form>, not to the <input> tags where I’m changing the 
data!” Good observation. Remember that in the browser event model, events 
propagate through the DOM tree. Therefore, if a keyup event is triggered on an 
<input> element, it will bubble up to the containing <form> element during the 
bubble phase, whose onkeyup event handler is invoked and calls our validator. There 
is no need to laboriously add onkeyup event handlers to each <input> element.

 One annoying aspect of this approach is that, while we are typing into the 
name field, a message that the blank age field is invalid is displayed. How would 
you change our framework to alleviate this annoyance? (Hint: Consider using 
onfocus and onblur event handlers to enable and disable the instant validation 
when a field does not have focus.)

 Another issue is that on each keyup event, validation for the entire form is 
performed needlessly. After all, we can only be changing one field at a time. How 
would you modify or extend the validation framework to allow individual field 
validation, and how would that help deal with the annoyance problem that we 
just mentioned?

 Providing users with useful validations is not just an option these days; it has 
become a requirement. Users have become accustomed to easy-to-use web appli-
cations that inform them of errors at the first opportunity. Failure to provide 
them with a way to ensure the validity of their data before they incur the time 
expense of a server round-trip will result in complaints and lost customers.

 Great—now we can validate single fields of data. But what if we have data 
being entered that needs to be validated in conjunction with the data from 
another field? This is what is called cross-field validation, and we’ll tackle that 
topic next.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Client-side validation 211
6.1.3 Cross-field validation 

Cross-field validation does not concern itself so much with whether individual 
element values are of the correct format (is it a number? is it an email address?), 
but rather that the values for two or more input elements are valid in relation to 
each other according to a set of business rules. For example, consider a form that 
asks for a start and end date of some event. Obviously, the start date must be 
before the end date. Our regular validators can take care of checking whether the 
entered values are valid dates, and if they are, we’ll run the cross-field validator to 
make sure that they are also semantically correct—that the start date is before the 
end date. Let’s get on with it.

Problem
You need to validate multiple fields in relation to each other.

Solution
Let’s start developing our cross-field validation mechanism. We’ll expand on what 
we’ve developed previously and add the capability to validate across fields. Let’s 
begin with some HTML that sets up our form and cross-field validators (listing 6.4).

<html>
  <head>
    <title>Listing 6.4</title>
    <script type="text/javascript"
            src="prototype-1.5.1.js"></script>
    <script type="text/javascript"
            src="listing.6.5.js"></script>
    <script type="text/javascript">
      var framework = new ValidatorFramework();
      var xref1;
      var xref2;

      window.onload = function() {
        Event.observe('testForm','submit',function(event) {
          if (!framework.validateForm(event.target))
            Event.stop(event);
        });
        Event.observe('testForm','keyup',function(event) {
          framework.validateForm(event.target.form);
        });
        xref1 =                        
          new DateRangeCrossValidator(
            framework,
            new Array($('start'),$('end')),$('startend_err'));

Listing 6.4 Cross-validation HTML

Cross-validates first group

http://lib.ommolketab.ir
http//lib.ommolketab.ir


212 CHAPTER 6 
Form validation and submission
        xref2 =                         
          new DateRangeCrossValidator(
            framework,
            new Array($('start2'),$('end2')),$('startend_err2'));
      };
    </script>
    <style type="text/css">
      div.error {
        color: red;
      }
    </style>
  </head>
  <body>
    <form id="testForm"
          method="post"
          action="/aip.chap6/requestInspector">
      <div id="startend_err"     
           class="error"></div>
      <div> Start Date :
        <input name="start" type="text"  
               id="start" valid="date"
               error="start_err"/>
        <div class="error" id="start_err">   
        </div>
      </div>
      <div> End Date :
        <input name="end" type="text"   
               id="end" valid="date"
               error="end_err"/>
        <div class="error" id="end_err"></div>
      </div>

      <div id="startend_err2"    
           class="error"></div>
      <div> Start Date :
        <input name="start2" type="text" id="start2" valid="date"
               error="start_err2"/>
        <div class="error" id="start_err2"></div> </div>
      <div> End Date :
        <input name="end2" type="text" id="end2" valid="date"
               error="end_err2"/>
        <div class="error" id="end_err2"></div>
      </div>
      <div>
        <input type="submit"/>
      </div>
    </form>

  </body>
</html>

Cross-validates second group

Specifies error <div>

Defines start date

Specifies another 
error <div>

Defines end date

Defines second group

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Client-side validation 213
Basically, we defined error <div>s for each <input> element in combination with an 
error <div> for each cross-validation group where the error messages for that group 
should go. Then we construct our cross-field validators and pass them references 
to the <input> elements they must validate. Take a look at figures 6.3 and 6.4, and 
then review the code (listing 6.5) that makes all this happen. We made a few changes 
to the validation framework so that it can handle the cross-field validators. 

var Validator = Class.create();

Validator.prototype = {
  type: "all",

  initialize: function(validators) {
    validators[this.type] = this;
  },

Listing 6.5 The cross-validation framework

Figure 6.3 Validating an individual data field

Figure 6.4 Cross-field validation in action

http://lib.ommolketab.ir
http//lib.ommolketab.ir


214 CHAPTER 6 
Form validation and submission
  doValidate: function(input) {
    return "";
  },

  validate: function(input, errordiv) {
    errorMsg = this.doValidate(input);
    errordiv.innerHTML = errorMsg;
    return (errorMsg.length == 0);
  }
}

var NumberValidator = Class.create();

Object.extend(NumberValidator.prototype,
              Validator.prototype);

Object.extend(NumberValidator.prototype, {
    type: "number",

     doValidate: function(input) {
      var numberpattern=/(^\d+$)|(^\d+\.\d+$)/;
      if (numberpattern.test(input)) {
        return "";
      } else {
        return "'" + input + "' is not a number." ;
      }
    }
});

var DateValidator = Class.create();   
Object.extend(DateValidator.prototype, Validator.prototype);
Object.extend(DateValidator.prototype, {
  type: "date",

   doValidate: function(input) {
    var value = Date.parse(input);   
    if(value <= 0) {
      return "'" + input + "' is not a date.";
    } else {
      return "";
    }
  }
});

var ValidatorFramework = Class.create();
ValidatorFramework.prototype =
{
  validators: 0,
  crossValidators: 0,   

  validateForm: function(form) {
    var retval = true;

Creates new class B

Uses browser’s date 
object for parsing

 C

Stores cross-field validators

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Client-side validation 215
    for(i = 0; i < form.length; i++) {
      currentInput = form[i];
      type = currentInput.getAttribute("valid");
      errorDivName = currentInput.getAttribute("error");
      if(type == null || errorDivName == null) {
        continue;
      } else {
        valid = this.validate(type, currentInput.value,
          $(errorDivName));
        if(!valid) {
          retval = false;
        }
      }
    }
    for(i = 0;   
        i < this.crossValidators.length; i++) {
      this.crossValidators[i].clearErrors();
    }
    if (retval) {                             
      for(i = 0; i < this.crossValidators.length; i++)  {
        valid = this.crossValidators[i].validate();
        if(!valid) {
          retval = false;
        }
      }
    }
    return retval;
  },

  validate: function(type, input, errordiv) {
    var validator = this.validators[type];
    if(!validator) {
      alert("No validator for type '" + type + "'.");
      return "";
    }
    return validator.validate(input, errordiv);
  },

  initialize: function() {
    this.validators = new Array();
    this.crossValidators = new Array();

    new Validator(this.validators);
    new NumberValidator(this.validators);
    new DateValidator(this.validators);
  }

}

var CrossValidator = Class.create();   
Object.extend(CrossValidator.prototype, {

Iterates over validators D

Verifies validator completion E

Creates CrossValidator class F

http://lib.ommolketab.ir
http//lib.ommolketab.ir


216 CHAPTER 6 
Form validation and submission
    type: "none",
    crossError: 0,
    crossInputs: 0,

    initialize: function(framework,         
                         p_crossInputs,      
                         p_crossError) {   
      framework.crossValidators.push(this);   
      this.crossError = p_crossError;
      this.crossInputs = p_crossInputs;
    },

    validate: function() {
      errorMsg = this.doValidate(
        this.crossInputs);          
      this.crossError.innerHTML = errorMsg;
      return (errorMsg.length == 0);
    },

    clearErrors: function() {   
      this.crossError.innerHTML = "";
    }
});

var DateRangeCrossValidator =   
  Class.create();                                 
Object.extend(DateRangeCrossValidator.prototype,
              CrossValidator.prototype);
Object.extend(DateRangeCrossValidator.prototype, {

  doValidate: function(inputs) {
    var startDate = Date.parse(inputs[0].value);
    var endDate = Date.parse(inputs[1].value);
    if (startDate > endDate) {
      return "The start date cannot be after the end date.";
    } else {
      return "";
    }
  }

});

Discussion
Let’s look at what we just did in listing 6.5. We needed a Validator implementa-
tion that could handle dates, so we added one b and implemented a proper 
doValidate() method c. We’ll let the JavaScript Date class decide whether or 
not it is valid. Be careful, because the function will not work for dates before 

Defines 
initialize() 
function

Registers with framework

Validates and sets any 
error messages

Clears out previously 
generated errors

Extends 
CrossValidator class

 G

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Client-side validation 217
January 1, 1970. If you need greater flexibility, you might want to consider 
using a regular expression.

 We didn’t need to change our framework too much. Just be aware that even 
though we do not cross-validate unless all the inputs have been validated, we do 
need to clear the errors that were generated by any previous cross-validation 
runs d. This is because the user might be entering data and could see nonsensi-
cal error messages. Once all the regular field validators pass E, we do a cross-
field validation.

 Because we’re now doing cross-field validation, we create our base class for the 
cross-field validators F. This class looks a lot like the regular Validator class—its 
initialize() method now takes a reference to the framework it is associated with, 
along with an array of the <input> elements it is validating (the order is impor-
tant here; look at the validator you are using to see what the order should be) as 
well as a reference to the <div> that will show any errors.

 We’ve also subclassed the base cross-field validator G to create a DateRange-
CrossValidator class, which will check whether two dates are indeed in chronolog-
ical order. This validator is passed a reference to the smaller date <input> field 
first and a reference to the larger date <input> field second.

 And there you have it: a reusable and extensible cross-validation framework! 
Look back at figures 6.3 and 6.4 to see how this works in the browser. As you can 
see, no cross-field validation occurs until the values of all the <input> fields are 
correct, even though the second start/end combination is illegal. When we fix the 
problem with the first date (remember, our DateValidator won’t deal with dates 
before 1970), we should see something like figure 6.4. The first combination is 
fine; the second one is not.

 Of course, cross-field validation is not limited to start and end dates. The 
authors remember fondly an application that made good use of such cross-field 
validating techniques. The application in question was designed for the trading 
of electrical energy and, as such, relied on extensive knowledge of the capacities of
the available power-generating facilities. There existed multiple interdependen-
cies among the concurrent availability of power facilities, the amount of energy 
available in a given time block, and the amount of energy scheduled across an 
entire facility. We’ve given just a brief list of the interdependencies, but the con-
cept is clear. Before the acceptance of a power schedule, it was important to 
ensure the validity of that schedule. The user interface took quite a while to draw, 
and a lot of data was submitted to the server. Needless to say, this took a long time 
to validate. To speed up the checking of the power schedules, we developed an 
extensive validation framework that could validate the entire schedule in a couple 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


218 CHAPTER 6 
Form validation and submission
of seconds. The old way of doing things could take up to two minutes. So cross-
field validators are a good thing.

 We now have our data validated and ready to ship to the server. But how will 
we do that? Good thing that the next section is there to show us the way!

6.2 Posting data

We saw in the previous chapter how to use Prototype to post a form via Ajax. In 
this section we’ll take an in-depth look at how we can simulate the posting of a 
form ourselves through the XMLHttpRequest object (XHR). Because we can use 
the XHR object to make HTTP requests and specify what type of request to make, 
we can easily emulate a form submit by managing the data that we send to the 
server through the XHR.

 Once we’ve shown how Ajax POST requests can be made, we’ll take a look at 
using an alternative to Prototype, jQuery, to make such requests.

6.2.1 Anatomy of a POST

So what does a POST actually look like? Great question! Let’s take a look, shall we? 
First we need a form (listing 6.6).

<html>
  <body>
    <form method="post" action="http://localhost:2020/xyz">
      <input type="text" name="input1"/>
      <input type="text" name="input2"/>
      <input type="text" name="input3"/>
      <input type="submit"/>
    </form>
  </body>
</html>

All right, now we have a form. The action attribute may seem a bit confusing. 
Who is listening on port 2020? And the answer is… us! Using a utility called Net-
cat (http://netcat.sourceforge.net/), we can listen to arbitrary ports for incoming 
connections, which will be dumped to the command prompt. Netcat makes it easy 
to examine network data. 

 To run Netcat to listen on port 2020, we issue the following command line:

netcat –l –p2020

Listing 6.6 A simple form

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Posting data 219
Let’s take a look at what the client posts to the server with the plain-as-vanilla 
form shown in figure 6.5.

 When we submit this form, the data that is sent to port 2020 (which we are lis-
tening to via Netcat) might be as follows (there will be slight variations depending 
on the browser and its settings):

POST /xyz HTTP/1.1
Host: localhost:2020
User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X;
  ➥ en-US; rv:1.8.1.2) Gecko/20070219 Firefox/2.0.0.2
Accept: text/xml,application/xml,application/xhtml+xml,
  ➥ text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Content-Type: application/x-www-form-urlencoded
Content-Length: 32

input1=value1&input2=value2&input3=value3

There are definitely a lot of interesting bits of information in there. For the sake 
of emulating a form post, we only need to specify some of those things. 

 The required first line contains the request method (in our case, POST), the 
requested resource, and the protocol being used. This is followed by a series of 
HTTP headers, consisting of key/value pairs separated by the colon character. 
The HTTP 1.1 protocol only requires that the Host header be sent. The remain-
ing headers are optional but highly recommended.

 The headers are followed by a blank line, which is in turn followed by the 
body of the POST request. For the content type that a form typically submits, 
the body consists of the URL-encoded values of the form data.

Figure 6.5 A simple form

http://lib.ommolketab.ir
http//lib.ommolketab.ir


220 CHAPTER 6 
Form validation and submission
 Looks a lot like the query string of a GET request, doesn’t it? In fact, both a 
query string and POST body follow the same rules.

 So, how do we perform a post with the XHR object? The following sections 
make this clear. Note that the first solution we’ll consider doesn’t take care of 
posting a form; we discuss that a bit later. The purpose of the upcoming solution 
is to show you how to post any sort of data.

6.2.2 Posting data to a server

Let’s apply what we’ve learned in our analysis of POST requests earlier and show 
you how you can make your own POST request to a server via XHR. This is handy 
when you need to submit your own data to a server without forcing a browser 
refresh. You’ll be able to post any data you want—XML, text, or whatever you 
have. You just need to construct the data you post appropriately and you’re on 
your way.

 Although you probably won’t use this method frequently, it’s often a good idea 
to have an understanding of how things work under the hood. 

Problem
You need to post data to the server.

Solution
This solution is quite simple, and does not differ very much from previous direct 
uses of the XHR object. We simply obtain an XHR, set it up accordingly, perform a 
POST to a URL, and pass the data. Keep in mind that we are not emulating a POST
the way that an HTML form would post the data; we’ll handle that in the next solu-
tion. This solution can be used to post any data to the server.

 Listing 6.7 contains our example code for emulating our own POST requests. 
One note about this code: it won’t work in Internet Explorer 6. This is because, as 
we know, IE 6 uses an ActiveX object for XHR. We’ve already discussed how to cre-
ate an XHR instance in a cross-browser manner, so in order to focus on the post-
ing mechanism, we’ve simply assumed that the code would be run in Firefox, 
Safari, or Internet Explorer 7.

 When we load it into a browser, we see two alerts pop up in succession. First, we 
see the client notification in figure 6.6, and once we click OK, the second alert 
box, figure 6.7, shows us the message we received from the server.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Posting data 221
<html>
  <head>
    <title>Listing 6.7</title>
    <script type="text/javascript">
      window.onload = function () {
        var data = "This is just some data.";
        var url = "/aip.chap6/postServlet";
        var xhr = new XMLHttpRequest();      
        xhr.onreadystatechange = function () {
          if (xhr.readyState == 4 && xhr.status == 200) {
            alert('Done with the POST. We sent ' + data.length +
                  ' bytes.');
            alert('Server message:' + xhr.responseText);
          }
          else if (xhr.readyState == 4) {
            alert('Error posting. Server status: ' + xhr.status);
          }
        };
        xhr.open('POST',url,true);   
        xhr.setRequestHeader(

Listing 6.7 Posting data to a server

Figure 6.6 Client notification

Figure 6.7 Server notification

Creates XHR instance

Specifies POST as method

http://lib.ommolketab.ir
http//lib.ommolketab.ir


222 CHAPTER 6 
Form validation and submission
          "Content-Type", "whatever");   
        xhr.setRequestHeader(
          "Content-Length",data.length);  
        xhr.setRequestHeader(
          "Connection", "close");  
        xhr.send(data);
      };
    </script>
  </head>
  <body>
  </body>
</html>

We haven’t really discussed the back end behind the post; let’s do that now (list-
ing 6.8).

public class PostServlet extends HttpServlet {
  protected void doPost(HttpServletRequest request,
                        HttpServletResponse response)
      throws ServletException, IOException {
    System.out.println("Content type: " +
                       request.getContentType());
    ServletInputStream is = request.getInputStream();
    int data = is.read();
    int bytes = 0;
    while (data >= 0) {
      bytes++;
      data = is.read();
    }
    response.getWriter().write("Received " + bytes + " bytes.");
  }
}

This simple servlet merely gathers the request body and emits a response con-
taining the length of the data received.

Discussion
It looks like posting data is pretty simple. Instead of using the HTTP GET method 
in the xhr.open() method, we simply specify POST. We can set the content type to 
whatever we want; if you are posting XML, you may wish to set it to text/xml. We 
also need to set the Content-Length request header. Even though the HTTP pro-
tocol may not strictly require it, this is important! If you make it too short, you can 

Listing 6.8 POST-handling servlet

Specifies junk content type

Specifies content length

Denotes a single request

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Posting data 223
lose data, because the server may assume that you’re done sending it data even if 
you aren’t. Likewise, if you make it too large, the server will hang, waiting for 
more data to arrive. After we’ve correctly determined the size of the data we’re 
sending, we use the xhr.send() method to send the actual data.

 Again, this approach looks simple, but it is quite powerful; you can use it to 
pass any type of data, such as XML or JSON, to the server. Because the server can 
also send back messages, you can use this mechanism as a type of remote proce-
dure call: post some data, the server processes it, the client gets data back, and 
the client processes the data and updates the UI. This is how the IBM JavaScript 
SOAP/web services library works to exchange SOAP messages (see http://www-
128.ibm.com/developerworks/web/library/ws-wsajax/).

 Now you know how a post to the server is accomplished. Let’s focus now on 
posting forms.

6.2.3 Posting form data to a server

Now that you have a grasp on the mechanics behind a POST request, let’s take 
a look at posting a form to the server using Ajax. We were already introduced 
to just such an example (posting form elements without a page submit) in sec-
tion 5.5.2, but where that example focused on the event-handling aspects, this 
section will examine the POST itself and we’ll test things out with a wider vari-
ety of form elements.

 Additionally, where the examples of the previous chapter used Prototype to 
handle making the request, this section will use another of the libraries that we 
explored in chapter 4: jQuery.

Problem
You need to emulate an HTML form post.

Solution
First, we’ll set up a form with a variety of control elements to test whether the 
POST request is successfully submitting the values to the server. The blank form 
prior to any data entry looks like figure 6.8.

 Then we’ll set everything up so that “normal” form submissions are 
rerouted to submissions under Ajax control. Listing 6.9 shows the code. If you 
need a refresher on how jQuery works, now would be a good time to go review 
section 4.3.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


224 CHAPTER 6 
Form validation and submission
<html>
  <head>
    <title>Listing 6.9</title>
    <script type="text/javascript"   
            src="jquery.js"></script>
    <script type="text/javascript"          
            src="jquery.form.js"></script>
    <script type="text/javascript">
      $(document).ready(function() {
        $('#testForm').ajaxForm({    
          type: 'POST',
          target: '#results'
        });
      });
    </script>
  </head>

  <body>
    <form id="testForm"
          action="/aip.chap6/requestInspector">
      <div>
        Text:
        <input type="text" id="aTextField" name="aTextField"/>
      </div>
      <div>
        Password:
        <input type="password" id="aPassword" name="aPassword"/>
      </div>
      <div>
        Checkbox:

Listing 6.9 Rerouting a form POST with jQuery

Figure 6.8 POST test form

Imports jQuery library  B

Imports jQuery 
form plug-in C

Prepares form for 
Ajax submission D

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Posting data 225
        <input type="checkbox" id="aCheckbox" name="aCheckbox"/>
      </div>
      <div>
        Radio buttons:
        <input type="radio" name="aRadioGroup" id="aRadio1"/> 1
        <input type="radio" name="aRadioGroup" id="aRadio2"/> 2
      </div>
      <div>
        Select:
        <select name="aSelect" id="aSelect">
          <option value="1">One</option>
          <option value="2">Two</option>
          <option value="3">Three</option>
        </select>
      </div>
      <div>
        Textarea:
        <textarea rows="2" name="aTextarea" id="aTextarea">
        </textarea>
      </div>
      <div><input type="submit"/></div>   
    </form>
    <div id="results"></div>
  </body>
</html>

That seems simple enough. As you can see, using jQuery b and its form plug-in 
c made it so easy that it almost seems like cheating!

 The ajaxForm() method d does not submit the form. Rather, it prepares the 
form for submission under Ajax control when the form’s submit event is eventu-
ally triggered. Without having to dig into the code for the plug-in, you can imag-
ine how some of the steps that it needs to take are accomplished, given what 
you’ve learned so far in this book. Ponder how the submit event, event-handling 
mechanisms, and the XHR lesson of the previous solution can all be used to estab-
lish this functionality.

 The options hash passed to the ajaxForm() method d specifies a type of POST
and a target, which is a DOM element in which the response will be displayed. 
This target option specifies an empty <div> element e defined at the bottom of 
the page. Note how a CSS selector is used to identify the target element in the 
“jQuery way.”

 The server-side resource for this example is the same ParameterInspector-
Servlet class that we used in some of the examples in chapter 5. We won’t go into 
the details of that class again, but recall that it gathers the parameters submitted 
to it and formats them for display.

Container for 
server response E

http://lib.ommolketab.ir
http//lib.ommolketab.ir


226 CHAPTER 6 
Form validation and submission
After filling in some data and submitting the form, our page appears as shown 
in figure 6.9.

Discussion
As you’ve seen, by “cheating” and using jQuery and its form plug-in, we’ve 
ensured that hijacking the form submission to channel it to the server via Ajax 
requires only a few lines of code in the page.

 Emulating your own form posts in this way is a great win from a user perspec-
tive. The browser does not refresh, and a lot of time is saved not having to fetch 
the user interface (which probably has not changed) from the server. From a 
development perspective, server cycles and bandwidth are saved by not having to 
regenerate the user interface and send it back to the client. Naturally, you do 
need to develop client-side code to deal with the new way of doing things; mainly 
this will involve code that keeps the user interface in a coherent state now that 
we’re not forcing a browser refresh.

Figure 6.9 Form submission hijacked!

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Posting data 227
6.2.4 Detecting form data changes
To cut down on network traffic and database access, sometimes it behooves us to 
send across only those pieces of form data that have actually been modified in the 
form. We addressed this issue in section 5.5.3 with a focus on how to use event 
handling to accomplish this, but we gave short shrift to the details of dealing with 
actual form elements. In this section, we offer a more in-depth look at handling 
the form elements in an intelligent fashion. We’ll also use jQuery just to give you 
another point of view with regard to event handling and DOM manipulation.

Problem
You want to detect whether changes have been made to form data and send the 
server only what has changed.

Solution
The way that we’re going to solve this problem is quite similar to what we did in 
section 5.5.3. We’ll set an onchange event handler on the <form> element that will 
apply a class name of fieldChanged to any control whose value changes, and estab-
lish an onsubmit event handler to intercept the form submission. But this time 
around, instead of just glossing over the nuances of dealing with the form ele-
ments, we’ll pay more attention to what we’re grabbing from the form to submit.

 We’ll take the solution of the previous example, with its plethora of input 
types, and augment it as appropriate. We’ll also add a new control, a <select> ele-
ment with multiple enabled, because that adds some complexity to our goal. 
When displayed, the page looks as shown in figure 6.10.

Figure 6.10 A cornucopia of waiting form elements

http://lib.ommolketab.ir
http//lib.ommolketab.ir


228 CHAPTER 6 
Form validation and submission
Now let’s look at the code for the page (listing 6.10). We’ve added quite a bit of 
script to handle the submission of only the changed elements.

<html>
  <head>
    <title>Listing 6.10</title>
    <script type="text/javascript"
            src="jquery.js"></script>
    <script type="text/javascript">
      $(document).ready(function() {
        $('form').bind("change",      
          function(event) {
            $(event.target).addClass('fieldChanged');
          }
        );
        $('form').bind("submit",   
          function(event) {
            submitForm();
            return false;
          }
        )
        trackCheckboxes();
      });

      function trackCheckboxes() {    
        $('input[@type=checkbox]').each(function() {
        

$(this).bind('change',function() {return false;});
          var hidden = document.createElement('input');
          hidden.type = 'hidden';
          hidden.name = this.name;
          this.name = '_' + this.name;
          this.hidden = hidden;
          this.form.appendChild(hidden);
          $(this).bind('click', function() {
            var onOff = $(this).attr('checked') ? 'on' : 'off';
            this.hidden.value = onOff;
            $(this.hidden).addClass('fieldChanged');
          });
        });
      }

      function submitForm() {    
        var params = {};
        $('#testForm .fieldChanged').each(function() {
          if (this.disabled) return;
          if (this.name.length==0) return;
          if ((this.type=='radio' || this.type=='checkbox') &&

Listing 6.10 Submitting only changed values

Binds change event 
handler to form

 B

Binds submit event 
handler to form

 C

Tracks checkboxes D

Handles form submission E

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Posting data 229
              !this.checked) return;
          if (this.type=='reset') return;
          if (this.type=='multiple' ||
              this.type=='select-multiple') {
            for(n = 0; n < this.length; n++) {
               if (this[n].selected)
                 addParam(params,this.name,this[n].value);
            }
          }
          else {
            addParam(params,this.name,this.value);
          }
        });
        $.post(   
          $('#testForm').get(0).action,
          params,
          function(data) {
            $('#results').empty().append(data);
          }
        );
        $('.fieldChanged')   
          .removeClass('fieldChanged');
      }

      function addParam(params,name,value){        
        if (!params[name]) params[name] = new Array();
        params[name].push(value);
      }
    </script>
    <style>
      .fieldChanged {
        border: 1px solid red;
      }
    </style>
  </head>

  <body>
    <form id="testForm"
          action="/aip.chap6/requestInspector">
      <div>
        Text:
        <input type="text" id="aTextField" name="aTextField"/>
      </div>
      <div>
        Password:
        <input type="password" id="aPassword" name="aPassword"/>
      </div>
      <div>
        Checkbox:
        <input type="checkbox" id="aCheckbox" name="aCheckbox"/>
      </div>

Posts to server F

Restores state G

Collects parameters 
and values

 H

http://lib.ommolketab.ir
http//lib.ommolketab.ir


230 CHAPTER 6 
Form validation and submission
      <div>
        Radio buttons:
        <input type="radio" name="aRadioGroup" id="aRadio1"/> 1
        <input type="radio" name="aRadioGroup" id="aRadio2"/> 2
      </div>
      <div>
        Select:
        <select name="aSelect" id="aSelect">
          <option value="1">One</option>
          <option value="2">Two</option>
          <option value="3">Three</option>
        </select>
      </div>
      <div>
        Multi-select:
        <select name="aMultiSelect" id="aMultiSelect"
                multiple="multiple" rows="3">
          <option value="1">One</option>
          <option value="2">Two</option>
          <option value="3">Three</option>
        </select>
      </div>
      <div>
        Textarea:
        <textarea rows="2" name="aTextarea" id="aTextarea">
        </textarea>
      </div>
      <div><input type="submit"/></div>
    </form>
    <div id="results"></div>
  </body>
</html>

In the jQuery ready() handler for the document, we bind an onchange event 
handler to the <form> that gets triggered whenever a change event is fired for any 
of its contained elements b. This handler marks the field as changed by adding 
the fieldChanged class name to the field. In our example page, we added a CSS
rule that draws a red border around such elements for diagnostic purposes. This 
helps us to visually check that the class name is being applied correctly while 
debugging the code. This is probably something you wouldn’t keep in the code 
for final release (unless your requirements dictate informing the user which 
fields have changed).

 We also apply an onsubmit event handler to the <form> element c so that we 
can interrupt the normal flow of the submission and handle it ourselves.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Posting data 231
 Not much of that is new to us; we saw this in the example in section 5.5.3, but 
this time we’ve used jQuery rather than Prototype to establish the event handlers.

 At the end of the ready() handler, we call a function named trackCheck-
boxes() d that does something special with checkbox input elements. We’re not 
quite ready to deal with that yet, so we’ll defer talking about that until we under-
stand the rest of the example.

 The onsubmit event-handler function for the <form> element, submitForm()
e, is where most of the interesting stuff is happening. In this function, we iterate 
through all the elements that have been marked as changed and build a list of 
parameters to submit in the param hash object. But notice how picky we’re being!

 We take great pains to reject any element that shouldn’t be submitted. This 
includes disabled fields, those with empty names, radio or checkbox elements 
that aren’t checked, and any reset element (that should never be submitted 
according to W3C rules).

 We then collect the values from the elements that survive those tests. But it’s 
more than just a matter of simple name and value pairs. Not only do we need to 
deal with multi-select elements, we also need to keep in mind that more than one 
control can have the same name. This means that for each parameter name, 
there can be more than one value. The addParam() function H takes care of that 
by creating arrays in which to store the parameter values.

 Finally, after all the changed element values have been collected, we use the 
$.post() jQuery function to post back to the server F and remove the marking 
class name from all marked elements G.

 As the last action in the sequence, we are sure to return false as the value of 
the onsubmit event handler to prevent the <form> element from continuing with 
its “normal” submission. After we play around with the example form and click 
submit, the page might look as shown in figure 6.11.

 Now what about those pesky checkboxes?
 Checkboxes pose a special challenge to change detection since they are rather 

unique among their input element brethren, in that checkbox elements do not get 
submitted as part of the HTTP request when they are not checked.

 That means that without special consideration, we will have no way of report-
ing that a checkbox has changed from checked to unchecked state. So, we’ll be 
clever and give these naughty elements special consideration! That is the purpose 
of the trackCheckboxes() d function that, as you recall, we invoked as the very 
last act of the ready() handler.

 The tactic that this function employs to track checkbox changes is to substitute 
a hidden field to represent the actual checkbox. This field will be given the value 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


232 CHAPTER 6 
Form validation and submission
on or off depending on the state of the checkbox. That way, the value of this hid-
den doppelganger can be submitted when the state of the checkbox changes, 
even if the checkbox is unchecked.

 The server-side code obviously needs to be prepared to deal with this 
change. Normally it would expect no parameter to be submitted on the part of 
an unchecked checkbox. With this tactic in place, a value of off will be passed 
for unchecked checkbox elements.

 The function puts this plan into practice by iterating over each checkbox ele-
ment (note how jQuery makes this easy), subverting the onchange handler for that 
element, and creates a new hidden element using the original name of the check-
box element. The name of the checkbox element is changed (rather arbitrarily, 
by prefixing it with an underscore) and a reference to the checkbox’s hidden 
tracking element is set as a property of the checkbox. Finally, an onclick event 
handler is established on the checkbox that causes the hidden element’s value to 
track the state of the actual checkbox element.

Figure 6.11 Only changed values have been submitted.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Summary 233
 While all that may seem a bit on the Byzantine side, it’s not as complicated as 
it may seem at first, and it gives us the ability to reliably track checkbox changes 
in the same manner as the other input element types.

Discussion
In this solution, we’ve taken a deeper look at submitting only form values that 
have changed to the server via an Ajax POST request. We took more care this time 
to not do silly things like sending the values of disabled <form> elements. We also 
used jQuery to good advantage to take care of a lot of the mundane tasks, such as 
implementing event binding, adding and removing class names, and searching 
for DOM elements.

6.3 Summary

This chapter looked at a few concepts related to data handling with Ajax: validat-
ing and cross-validating your data before the post, and packing all that data up 
and sending it to the server by faking your own post. These techniques can lead 
to substantial speed increases in your application. Validating data as they type will 
save users from the hassle of waiting for the server to tell them that their data was 
incorrect. Performing Ajax form POSTs will save users from time wasted while the 
server is re-creating the page and performing a page refresh. 

 Remember that special care needs to be taken when faking a post, especially 
when it comes to the encoding of data and the setting of the appropriate headers 
for content length and type. Even then, you should thoroughly debug the code 
because it is easy to make a mistake. We strongly recommend you use libraries such 
as Prototype and jQuery; take advantage of the fact that someone has already done 
the hard work for you. Code reuse, as always, is the name of the game.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Content navigation
This chapter covers
■ Principles of content navigation
■ Desktop and web influences
■ Tab, window, and tree widgets
■ Graceful degradation of JavaScript
234

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Principles of website navigation 235
We can characterize most websites, rather simplistically, as consisting of a large 
repository of information residing on the server and a set of navigation mecha-
nisms with which the user can retrieve subsets of this information in order to 
interact with it. In the case of a photo- or video-sharing site, the information 
being navigated consists of collections of pictures or other media. In a webmail 
application, the information is your mail. In an e-commerce store, the informa-
tion is the catalog of goods, and so on. Whatever the site’s nature and content, the 
underlying technical problem is the same: the server contains a lot of content, 
and users must be able to sift through it to find what they want. Ease of navigation 
is a strong differentiator between competing services, and it is a factor that any 
web-based application must address.

 A lot has been written about the topic of content navigation and the Web, and 
various winning strategies have evolved and become standard features of many 
websites. We’ll look at these briefly in this chapter, but only to set the stage for our 
main topic. Because this is a book about Ajax and its disruptive impact on the 
Web, we’ll look at how Ajax has changed the field of web-based content naviga-
tion. We’ll begin by looking at the problem of content navigation from a bird’s-
eye view and exploring the key factors to developing a navigation strategy.

7.1 Principles of website navigation

As we’ve said, the fundamental problem of many web-based sites is that the server 
contains a lot of information. The more successful our site is, the bigger this prob-
lem becomes. Let’s suppose that your online store carries one hundred thousand 
different types of goods. Users are unable to process this volume of information, 
and they’ll want to view different subsets of the data. At a technical level, this pre-
sents us with two problems: First, we need a mechanism for deriving the subsets of 
data that accurately meet each user’s needs. Second, we need a way for users to 
interact with the site in order to express their needs as simply as possible. Let’s 
take a look at each of these issues in turn.

7.1.1 Finding the needle in the haystack

The first problem that we face is finding the right data for our users. This is 
largely a back-end task, and this is largely a front-end book, but it’s still worth 
spending a little time with it here in order to understand the principles. In very 
general terms, there are two ways that we can organize our information: catego-
rization and classification. These are best explained by example, so let’s pick a 
couple of examples that everyone should know.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


236 CHAPTER 7 
Content navigation
 Yahoo! employs categorization to 
make sense of the enormous data set 
that is the public Internet. Information 
is organized in a hierarchical set of cate-
gories, and each piece of information 
belongs in exactly one category: shop-
ping, sport, finance, music, or whatever. 
A simple categorization might consist of 
only one level of categories, but Yahoo! 
employs a hierarchical categorization 
scheme. That is, within each category are 
further subcategories, thus creating a tree
structure that can hold large amounts of 
information in manageable groups, no 
more than a few hops away from the top 
of the tree. Figure 7.1 illustrates the 
principles of categorization.

 Classification differs from categoriza-
tion in that any item of data may belong 
to more than one classification. If we think of Yahoo! as categorizing the Internet, 
then Google classifies it. The same web page may be returned by several unre-
lated search terms. In Google’s case, the classification is generated automatically 
when the document is indexed by the spidering software and page-ranking algo-
rithms. In other cases, classification data may be applied manually by the web-
master. Recently, the practice of allowing visitors to the site to classify content—
commonly referred to as tagging—has come into vogue, and provides a powerful 
and scalable mechanism for organizing content on a site. Classification is 
depicted in figure 7.2.

 Classification and categorization both have their strengths and weaknesses. 
Categorization doesn’t scale as well as classification, with very large data sets 
eventually falling into one of three traps—too many categories at each level, too 
many levels of subcategory, or too many entries stored under each leaf node of 
the tree. However, categorization provides a reliable and more informative way 
for users to orient themselves by giving clues as to what they might find. An 
online store that simply presented a user with a search box and no hint as to 
whether it sold food, hardware, or clothing wouldn’t attract many customers. In 
practice, most sites use a combination of the two techniques. Yahoo!, for example, 

Figure 7.1 Categorization of data orders 
each element of information under exactly 
one category at any given level.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Principles of website navigation 237
provides search facilities within its categories, and Google provides some top-
level categories, such as web, image, and video search.

 Now that we’ve examined the principles behind organizing our information, 
let’s turn our attention to the user and see how to provide them with a way of driv-
ing our classification or categorization system. 

7.1.2 Making a better needle-finder
We’ve established a means of organizing the content behind our site. Now we 
need to provide a way for users to use our organizational system to find what 
they want.

 Categorization systems lend themselves to a number of user interface mecha-
nisms on the Web. Popular solutions include sidebars, navigation bars, and bread-
crumb trails. Yahoo! employs a simple sidebar at the top level of their site (see 
figure 7.3).

Figure 7.2 Classification does not organize the content on the 
server in a fixed pattern, but indexes or tags each element, thus 
allowing subsets to be created dynamically.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


238 CHAPTER 7 
Content navigation
  If we look away from the Web to desktop 
applications, we can see that many common 
widgets are designed to deal with categorization 
systems, including menus, drop-down lists, tabs, 
and tree widgets. Some of these approaches 
have been adopted by websites, most notably 
hierarchical menus. Indeed, one of the few suc-
cessful and widespread uses of Dynamic HTML
(DHTML) before the advent of Ajax was in pro-
viding interactive drop-down menu bars that 
allow the presentation of many navigation 
options within a limited amount of space. Fig-
ure 7.4 shows an online store utilizing a number 
of navigation metaphors borrowed from the 
Web and the desktop.

 If we turn our attention to classification, 
we’ll find that by far the most common naviga-
tion user interface is the humble search box, 
epitomized by Google’s minimalist home page. 
Search can be enhanced by allowing additional 
fields, such as date ranges, or by mixing it with 
categorization schema, such as the Google fam-
ily filter. With the advent of tagging, some alter-
native UI idioms have sprung up, such as the 
popular tags mechanism employed by Flickr 
(see figure 7.5).

 All of these navigation systems can be sup-
ported by conventional hyperlinks and HTML
forms, perhaps with a little bit of dynamic HTML to dress them up. As we said at 
the start of this chapter, our discussion so far involves simply setting the scene for 
a look at how Ajax has changed the field of web navigation by providing new 
mechanisms for assisting the user’s navigation of a site’s content. In the next sec-
tion, we’ll see what Ajax has brought to the party.

7.1.3 Navigation and Ajax

Ajax is a disruptive mix of technologies, and the positive impact of that disruption 
extends to the field of navigation. Unsurprisingly, the most important change it 
has brought about is the ability to improve the interactivity of navigation and to 

Figure 7.3 Yahoo!’s top-level 
categories are presented as a simple 
sidebar.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Principles of website navigation 239
provide better feedback to the user while they move around a site. Prior to Ajax, 
navigation widgets, whether composed of static HTML or DHTML, could only 
actually navigate to a new location by changing the URL of the current page, or 
the URL of a frame or IFrame on the page. Using Ajax, we can request informa-
tion asynchronously from the server and update the page in a more incremental 
fashion. In a simple case, this can provide a more efficient route to updating a 
given region of the screen. At the more complex extreme, we may partially update 
several on-screen elements, creating a user experience much more like that of a 
desktop application. 

 If we consider navigation to be a two-stage process, in which interaction with 
the navigation widget is followed by retrieval of new content or data, then we 
can see that Ajax reaches the parts of the process that DHTML can’t. DHTML
navigation aids could improve the interactivity of the widget to the point of 

Figure 7.4 Online store dabs.com makes use of a number of UI widgets to 
orient the user within its complex categorization system, including a tree 
control (left), a set of tabs (top), and a breadcrumb trail (below the tabs).

http://lib.ommolketab.ir
http//lib.ommolketab.ir


240 CHAPTER 7 
Content navigation
looking like a desktop app, but the retrieval of content was limited to present-
ing new content on the screen and therefore resembling a website rather than 
an application. 

 The current state of play with navigation in Ajax applications can be viewed 
as an exploration of the tensions between the user experience of a website and 
that of a desktop app. At one extreme, it is possible to create web pages that look 
and feel like desktop apps and use desktop-style GUI conventions throughout. 
At the other extreme, we can use Ajax to update regions of content, very much 
in the style of a web app. Between these two extremes are many interesting pos-
sibilities in which web- and desktop-style navigation combine to create a new 
kind of application. 

 We’ll explore these possibilities throughout the remainder of this chapter. 
Let’s start by looking at the traditional web-based approaches to navigation.

Figure 7.5 Flickr.com’s alternative UI for browsing its classification system makes use of 
font size to indicate the popularity of items.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Traditional web-based navigation 241
7.2 Traditional web-based navigation

As we’ve already said, an Ajax application can draw on navigation conventions both 
from the traditional Web and from desktop applications. With a conventional web-
site as a starting point, the simplest transition that we can make is to stick with the 
web-based conventions for navigation but replace the hyperlinks or forms with 
asynchronous requests to the server. When we’re working with a conventional web 
app and updating some features to incorporate Ajax, this is a good place to start.

 We’ll begin by looking at the case of a navigation menu and see what’s 
involved in Ajax-enabling that.

7.2.1 A simple navigation menu
Let’s take a look at what a simple navigation menu looks like when we’re dealing 
with Ajax-style applications. As we mentioned earlier, we can’t really use hard 
links; we’ll need to use something a bit more advanced.

Problem
You are porting a standard website to a single-page application. Your navigation 
scheme needs to change to allow for linking to the content via an Ajax call.

Solution
For this example (see figure 7.6 for the result), we use a simple vertical list menu. 
When a menu item is selected, the desired content is retrieved and dynamically 

Figure 7.6 A simple navigation menu

http://lib.ommolketab.ir
http//lib.ommolketab.ir


242 CHAPTER 7 
Content navigation
loaded into the content area of the page. The first step is to create a function, 
invokeLink(url), that requests the content from the server and inserts it into the 
DOM. After that, the links for each menu need to be changed to call the invoke-
Link() function. It’s as simple as that. Take a look at the code behind it (listing 7.1).

<html>
  <head>
    <title>Chaotic Images</title>
      <script type='text/javascript' 
        src='../assets/js/jQuery.js'></script>   
      <script type='text/javascript'>
function invokeLink(url){
  $('#content_area').load(url);   
}
    </script>
  </head>
  <body>
    <table width='100%'>
      <tr>
        <td width='25%'>Images</td>
        <td width='75%'>Current Image</td>
      </tr>
      <tr>
        <td valign='TOP'>   
          <table>
            <tr><td>
<img src='../assets/images/chaos/
  ➥ ifs/dreamsilk.jpg' width='24' height='24'> 
<a href="javascript:invokeLink('dreamsilk.html');">Dreamsilk</a>
            </td></tr>
            <tr><td>
<img src='../assets/images/chaos/ifs/leaf.jpg' width='24' height='24'> 
<a href="javascript:invokeLink('leaf.html');">Leaf</a>
            </td></tr>
            <tr><td>
<img src='../assets/images/chaos/
  ➥ ifs/spirochete.jpg' width='24' height='24'> 
<a href="javascript:invokeLink('spirochete.html');">Spirochete</a>
            </td></tr>
            <tr><td>
<img src='../assets/images/chaos/
  ➥ ifs/trilobite.jpg' width='24' height='24'> 
<a href="javascript:invokeLink('trilobite.html');">Trilobite</a>
            </td></tr>
          </table>
        </td>
        <td valign='TOP' id='content_area'>   

Listing 7.1 Our navigation menu

 B Imports jQuery library

 C Makes Ajax call

 D Declares default content

 E Declares preview area

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Traditional web-based navigation 243
          <br/><br/>
          Click on an image to the left to view it.
        </td>
      </tr>
    </table>
  </body>
</html>

Discussion
We don’t want to spend our time coding the Ajax request by hand, so we make 
use of a library to handle the low-level details for us. In this case, we’ve elected 
to use jQuery, which we load into the browser b before we add our own script. 
Our invokeLink() function is trivially simple with jQuery there to help C. The 
$() function, as with the Prototype library, is used to select DOM elements. In 
jQuery, $() takes a CSS selector rule as argument. We’ve selected the target DOM
node by its id, as defined in the HTML E. jQuery adds a load() method to 
DOM nodes resolved by the $() function, which will create an Ajax request for us 
and populate the node with the contents of the response. The HTML files that 
are loaded into the content area are actually HTML snippet files, which are 
merely an <img> tag pointing to the proper picture. The contents of these 
HTML snippets will replace the content area of the page, and the image is auto-
matically displayed by the browser. These HTML snippets do not have to reflect 
actual files on the server; they could be server generated, allowing for a more 
dynamic UI.

 All that remains is for us to attach the invokeLink() function to our UI. We do 
this here by using hyperlinks, such as anchor tags, with a JavaScript URL rather 
than an HTTP one, in the HTML that defines the menu D. This works but is sim-
plistic, as we have to define the callback function as a piece of text rather than as 
code that can directly refer to variables elsewhere in our program. We’ll look at 
how to programmatically attach events to the UI in the next example.

 We’ve now explored how easy it is to directly request content from the server 
using an Ajax request. This was our very first, and our simplest, example. Let’s 
move on to something that is a bit more complicated and that enjoys heavy use in 
web applications today: drop-down menus.

7.2.2 DHTML menus

Drop-down menus were one of the few success stories of DHTML, and a quick Google
search will reveal the many variations available on the Internet for the would-be 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


244 CHAPTER 7 
Content navigation
web designer to pick up and customize. DHTML menus typically use JavaScript, 
and sometimes CSS, to control the interactivity of the menu widget, and then del-
egate the actions associated with active menu entries to a simple hyperlink.

 In this section, we’ll take one of the better examples available and modify it to 
use the invokeLink() function from our previous example to create a simple, 
interactive, Ajax-enabled menu.

Problem
You are modifying a website to make use of Ajax and run across a DHTML menu, 
which you need to Ajax-enable. Alternatively, you may have a new requirement to 
store a set of Ajax actions in categories. Either way, you’ll find this widget useful!

Solution
The menu widget that we’ll take as our starting point is based on the techniques 
described by Nick Rigby in his article “Drop-down Menus, Horizontal Style” 
(http://alistapart.com/articles/horizdropdowns). Nick describes how to create a 
hierarchical DHTML menu in which the majority of the layout and interaction is 
done using CSS rather than JavaScript. A small amount of JavaScript is added to 
overcome shortfalls in the CSS implementation in Internet Explorer. 

 The chaotic images that we used in our previous example all belong to a cate-
gory called iterated function systems (IFSs). In this example, we’ve added two more 
images of a different type: Lindenmeyer systems, or L-systems. We’ve used Nick’s 
approach to DHTML menus to organize our links into a hierarchical drop-down 
menu, DHTML style. We’ve also taken the opportunity to rewrite the JavaScript to 
make use of jQuery for greater elegance and simplicity. Figure 7.7 shows the 
menu in action; the code required to do this appears in listing 7.2.

Figure 7.7  
Simple DHTML menu 
enhanced with Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Traditional web-based navigation 245
<html>
<head>
<title>Chaotic Images</title>
<link rel="stylesheet" type="text/css" 
  href="menu.css">                      
<script type='text/javascript' 
src='../assets/js/jQuery.js'></script>   
<script type='text/javascript'>
  function startList() {
    if ($.browser.msie) {   
      $("#nav > li").each(
        function(index, node){
          $(node).hover(        
            function() {
              $(this).addClass("over");
            },
            function() {
              $(this).removeClass("over");
            }
          );
        }
      );
    }
  }

  function invokeLink(url){   
    $('#content_area').load(url);
  }

  $(startList);
</script>
</head>
<body>

  <table width='100%'>
    <tr>
      <td width='25%'>Images</td>
      <td width='75%'>Current Image</td>
    </tr>
    <tr>
      <td valign='TOP'>
        <ul id="nav">    
          <li><a href="#">IFS</a>
            <ul>
              <li><a 

href="javascript:invokeLink('dreamsilk.html');">Dreamsilk</a></li>
              <li><a href="javascript:
                ➥ invokeLink('leaf.html');">Leaf</a></li>
              <li><a href="javascript:
                ➥ invokeLink('spirochete.html');">Spirochete</a></li>

Listing 7.2 DHTML navigation menu

Imports CSS style sheet B

 C Imports jQuery library

 D Uses browser detection

Adds hover styles 
programmatically

 E

Fetches content using Ajax F

Declares menu contents G

http://lib.ommolketab.ir
http//lib.ommolketab.ir


246 CHAPTER 7 
Content navigation
              <li><a href="javascript:
                ➥ invokeLink('trilobite.html');">Trilobite</a></li>
            </ul>
          </li>
          <li><a href="#">L-Systems</a>
            <ul>
              <li><a href="javascript:invokeLink('bush.html');">Bush
                  </a></li>
              <li><a href="javascript:invokeLink('weed.html');">Weed
                  </a></li>
            </ul>
          </li>

        </ul>
      </td>
      <td valign='TOP' id='content_area'>
        <br/><br/>
        Click on an image to the left to view it.
      </td>
    </tr>
  </table>
</body>
</html>

To make this example work, we need to import a CSS style sheet b as well as the 
jQuery library C. Under Firefox, the CSS alone will make the menu behave, but 
under IE, we need to add some JavaScript. The CSS style sheet is available in the 
downloadable source code for the examples in this chapter at www.manning.com/
crane2, and is unmodified from Nick Rigby’s original code, so we won’t spend time 
on it here. We’re not interested in how the DHTML works, but in adding Ajax.

 Before we consider that, though, let’s take another look at what jQuery can do 
for us. In the function startList(), we’ve used several features from jQuery that 
are worth noting. The first thing to note is that jQuery has made browser detec-
tion cleaner for us than if we were to manually inspect the user-agent string D.

 Again, we’ve used $() with a CSS selector as argument. This time, the selector 
will match more than one DOM element, and so $() will return an object that 
wraps an array. We can use the each() method to iterate over this array. $.each()
accepts an iterator function as argument (that is, the function that will be applied 
to each element in the array). In our iterator, we add event handlers on mouseover
and mouseout to alter the CSS of the elements E. The hover() method that 
jQuery adds to the DOM element makes this extremely easy for us. We also make 
use of the addClass() and removeClass() methods, which allow us to modify CSS
classes with a fine degree of control.   

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Borrowing navigational aids from the desktop app 247
 Finally, we invoke $() again, this time with the startList() function as argu-
ment. When invoked with a function, jQuery’s $() will bind the function as a lis-
tener to window.onload, invoking it when the DOM for the page is fully loaded. We 
could have simply written

window.onload=startList;

but using $() has the advantage of allowing us to add more than one listener to 
load. That’s no big deal in an example of this size, but it’s very useful when writ-
ing larger, modular systems.

 So, that’s the menu sorted out. To add Ajax, we can simply provide our 
jQuery-powered invokeLink() function again F and add hyperlinks to the menu 
nodes. The menu is declared as a set of HTML unordered list elements G, whose 
appearance is modified by the CSS and optional JavaScript. And so, when the 
page is loaded, our menu springs to life.

 That concludes this section, in which we looked at web-style navigation. In the 
next section, we’ll explore some examples that examine the other end of the spec-
trum: the desktop application approach to user interfaces.

7.3 Borrowing navigational aids from the desktop app

While the Web was still in its infancy, desktop application developers had long 
been wrestling with navigation issues and had developed a number of conven-
tions for organizing visual content. The look and feel of the DHTML menus that 
we looked at in the previous example is largely borrowed from desktop applica-
tions, but by and large, desktop and web applications have had little direct over-
lap. One of the reasons for this is that traditional web apps have been tied to the 
full-page refresh model, whereas desktop UI conventions have evolved based on 
the possibility of incremental updates. When interacting with complex UI ele-
ments such as trees, grids, and toolbars, each interaction will typically only mod-
ify a small part of the screen. 

 Ajax has changed this situation. By allowing incremental updates from the 
server, it has created a better fit with desktop navigation techniques, and web 
apps that look and feel like desktop applications are starting to emerge.

 We stated at the beginning of this chapter that desktop look-alikes represent 
one extreme of Ajax development, and they are certainly not a logical conclusion 
for all web-based applications. There are plenty of interesting approaches to nav-
igation going on somewhere in between the desktop and traditional web models, 
and we’ll return to that middle ground later in this chapter. For now, though, let’s 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


248 CHAPTER 7 
Content navigation
consider what the world of the desktop application has to lend us in terms of nav-
igation support.

7.3.1 The qooxdoo tab view 
In the previous example, we used CSS and a bit of JavaScript to add some behav-
ior to a piece of HTML that we had declared in the body of the page. The qoox-
doo widget library takes a radically different approach to authoring a web UI, 
helping you avoid many of the pitfalls in web UI development by presenting you 
with an object-oriented (OO) JavaScript API for creating and manipulating UI
components. If you have used GTK, AWT, Swing, or another thick-client OO GUI
toolkit, you’ll feel at home here.

Problem
Your application contains a group of several pieces of discrete content but you 
want only one group shown at a time. These pieces of content could be many 
things: navigations, forms, and so on.

Solution
The first thing you need to know 
about qooxdoo is that initializa-
tion of the application needs to 
take place in the window.applica-
tion.main() function. You can do 
this by providing an anonymous 
implementation of this function, 
as you can see in listing 7.3 in a 
moment. You can see the result in 
figure 7.8.

 In setting up our tab view, the 
first thing we need to do is create an 
instance of QxTabView, and then
set the left, top, width, and height. 
From there we can create our four 
QxTabViewButton instances (which 
will provide a means for toggling 
the tabs), add them to the tab view 
instances bar container, and set the 
first one to be selected. Next, we need to create the actual QxTabViewPage
instances and add those to our tab view instances pane container. Then we create 

Figure 7.8 The qooxdoo tab view

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Borrowing navigational aids from the desktop app 249
a QxImage instance for each of our images and add them to their corresponding 
pages. Finally, we add the tab view instance to the client document, qooxdoo’s root-
level container. Everything in qooxdoo lives within the client document.

 You should now be able to fire up the example and tab away to your 
heart’s content!

<html>
  <head>
    <title>Chaotic Images</title>
    <script src='../assets/js/qooxdoo/include.js' 
            type='text/javascript'></script>

    <script LANGUAGE='JavaScript'>
      <!--
  window.application.main = function()
  {
    var tf1 = new QxTabView();         
    tf1.set({ left: 20, top: 48, width: 342, height: 362 });

    var t1 = new QxTabViewButton('Dreamsilk');   
    var t2 = new QxTabViewButton('Leaf');
    var t3 = new QxTabViewButton('Spirochete');
    var t4 = new QxTabViewButton('Trilobite');

    t1.setChecked(true);

    tf1.getBar().add(t1, t2, t3, t4);   

    var p1 = new QxTabViewPage(t1);   
    var p2 = new QxTabViewPage(t2);
    var p3 = new QxTabViewPage(t3);
    var p4 = new QxTabViewPage(t4);

    tf1.getPane().add(p1, p2, p3, p4);   

    var i1 = new QxImage('../assets/images/
      ➥ chaos/ifs/dreamsilk.jpg');         
    var i2 = new QxImage('../assets/images/chaos/ifs/leaf.jpg');
    var i3 = new QxImage('../assets/images/chaos/ifs/spirochete.jpg');
    var i4 = new QxImage('../assets/images/chaos/ifs/trilobite.jpg');
    
    p1.add(i1);    
    p2.add(i2);
    p3.add(i3);
    p4.add(i4);

    this.getClientWindow()
      .getClientDocument()

Listing 7.3 Using the qooxdoo tab view

Declares new tab view B

 C Creates tab view buttons

 D Adds buttons to tab bar

 E Creates tab view pages

 F Adds pages to view pane

Creates image objects G

Adds image objects 
to pages H

http://lib.ommolketab.ir
http//lib.ommolketab.ir


250 CHAPTER 7 
Content navigation
      .add(tf1);   
  };
      //-->
    </script>
  </head>
  <body>
  
  </body>
</HTML>

Discussion
In listing 7.3, we first declare a new tab view object b. After that, we create four 
new tab view button objects, and set the first one to be selected C. We add these 
newly created tab view buttons to the tab view bar D. We also need to create 
four new tab view page objects E, which will hold the actual contents of the tab, 
and add them to the tab view’s pane F. We haven’t yet supplied our content. To 
that effect, we create four new image objects G and add each image to its 
respective page H. Finally, we add the tab view to the client document I for it 
to be displayed.

 This first introduction to qooxdoo’s API gives you just a taste of how simple it 
is to configure its widgets and how very different it is from writing a conventional 
web application. Very little JavaScript and no HTML (note that the body tag is 
completely devoid of content) go a long way here. There is one major drawback 
to using qooxdoo and that can also be argued as its greatest strength: it com-
pletely destroys the web content design/layout model. A graphic designer can no 
longer go into a WYSIWYG editor and lay out a UI. 

 The tabbed panel gave us a taste of what qooxdoo can do, but we addressed a 
problem that could be tackled in a more conventional development approach, as 
we’ll see with the Rico Accordion later in this chapter. In the next example, we’ll 
raise the stakes and throw in some more distinctly desktop metaphors to see how 
far we can push this style of development.

7.3.2 The qooxdoo toolbar and windows 

Using qooxdoo again, we’ll now explore the windowing and toolbar features this 
toolkit provides. Dividing the screen real estate into windows provides a flexible 
alternative to the tabbed pane, and will allow users to view more than one 
resource side by side if they so wish. 

Adds tab view to 
client document I

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Borrowing navigational aids from the desktop app 251
Problem
You want to provide your users with greater control over how they allocate 
screen space between several regions of content by providing a multiple-
document interface.

Solution
We can meet this requirement by providing users with a toolbar that will allow 
them to launch each resource as a window control. Using qooxdoo, the toolbar 
and window controls are ready-made for us, and we simply need to assemble 
them. Figure 7.9 shows the finished result.

 Achieving this is not too difficult, as qooxdoo does most of the heavy work for 
us. Listing 7.4 shows what’s needed.

Figure 7.9 The qooxdoo toolbar and windows

http://lib.ommolketab.ir
http//lib.ommolketab.ir


252 CHAPTER 7 
Content navigation
<html>
  <head>
    <title>Chaotic Images</title>
    <script src='../assets/js/qooxdoo/include.js' type='text/javascript'></

script>

    <script type='text/javascript'>
      <!--
window.application.main = function(){

  var d  = this.getClientWindow()
    .getClientDocument();
  var tb = new QxToolBar();   
  tb.set(
   {top : 20, left : 20, width : 602}
  );

  createLaunchButton(tb, 'Dreamsilk',                
    '../assets/images/chaos/ifs/dreamsilk.jpg');  
  createLaunchButton(tb, 'Leaf',                  
    '../assets/images/chaos/ifs/leaf.jpg');       
  createLaunchButton(tb, 'Spirochete' ,           
    '../assets/images/chaos/ifs/spirochete.jpg'); 
  createLaunchButton(tb, 'Trilobite',             
    '../assets/images/chaos/ifs/trilobite.jpg');  

  d.add(tb);
};

var windowCount=0;

function createLaunchButton(toolbar,title,image){
  var button = new QxToolBarButton(               
    title, 'icons/32/bitmapgraphics.png'        
  );
  button.setWidth(150);
  button.addEventListener(   
    'execute',
    function(){
      if (!button.window){
        var d  = window.application
          .getClientWindow()
          .getClientDocument();
        var win=new QxWindow(                     
          title, 'icons/16/bitmapgraphics.png'  
        );

        win.setSpace(
          20+(48*(windowCount+1)), 320, 

Listing 7.4 The qooxdoo toolbar and windows example

 B Creates toolbar object

Adds buttons 
to toolbar

 C

Creates button 
object

 D

 E Adds event handler

Creates window 
object on demand

 F

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Borrowing navigational aids from the desktop app 253
          20+(48*(windowCount+1)), 320
        );
        win.set(
          {showMinimize : false, 
           showMaximize : false, 
           resizeable : false}
        );
        win.add(new QxImage(image));

        d.add(win);

        button.window=win;
        windowCount++;
      }
      if (button.window.isSeeable()){   
        button.window.close();                
      }else{                                  
        button.window.open();                 
      }
    }
  );

  toolbar.add(button);
}

      //-->
    </script>
  </head>
  <body>
  </body>
</html>

As before, our HTML page contains no HTML markup in the body, as qooxdoo 
will generate all the DOM elements for us. We assemble the widgets in the window 
.application.main() method, as before.

 To create the toolbar, we need to invoke the constructor for the toolbar object 
itself b, and then add each of the buttons to it C. Adding the buttons will require 
a few extra steps, so we have pulled that out into a helper function called create-
LaunchButton().

 Within this function, we create the qooxdoo button object d, and then add 
an event handler to it E. When the button is clicked, we want it to toggle 
between showing and hiding the window G, but we first need to ensure that the 
window has been created. We can do that by assigning a new property called win-
dow to each button that will be either null or the qooxdoo window object. So, 
before hiding or showing, we first check whether this property is set, and, if it’s 

Hides or 
shows window

 G

http://lib.ommolketab.ir
http//lib.ommolketab.ir


254 CHAPTER 7 
Content navigation
not, we create the qooxdoo window object on demand F. This part of the code 
will be invoked only once, when the button is first clicked.

 Note that we’ve defined the event handler inline as an anonymous function, 
allowing us to create a closure on the button object.

Discussion
This example was a simple introduction into the power of using a multiple-
document interface within a browser window. If you are purely a web devel-
oper and have never been exposed to traditional thick-client OO GUI design, 
qooxdoo may seem a bit obtuse and counterintuitive. However, the way in 
which it abstracts all of the dirtiness of HTML and presents you with a clean, 
concise OO API for web applications is a pretty powerful thing.

 It is also necessary to consider your audience when developing an interface of 
this type. The multidocument interface gives the user a lot more control over the 
layout of the page, but also asks a lot more of them. Users don’t necessarily want 
more control over every aspect of the user interface, and your judgment as to the 
needs of your audience is critical here. In chapter 1, we discussed the distinction 
between line-of-business applications and those intended for casual use. We sug-
gest that the type of “power-user” interface that we’re seeing here might be suit-
able for line-of-business applications, in which a user is willing to invest time and 
effort in configuring the layout, but not for a casual-use application such as a 
shopping cart or a dictionary.

 Used in the right place, then, a framework such as qooxdoo can be invaluable. 
Before we finish with qooxdoo, we’ll take it for one final spin, this time setting it 
to work on one of the most complex of UI widgets: the tree.

7.3.3 The qooxdoo tree widget

Tree widgets are among the most sophisticated and powerful navigation widgets 
in common use. Although simpler controls such as tabs and menus have seen 
considerable adoption on the Web, trees have not generally been taken up with 
enthusiasm, possibly because the effort required to interact with them is poorly 
suited to the casual-use application. 

 Ajax brings line-of-business applications within reach of the web application, 
though, and so we can expect an increasing demand for more sophisticated con-
trols such as trees. With its sights set on exactly this target, qooxdoo provides us 
with a ready-to-go tree widget, and in this example, we’ll see how to make it work 
for us.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Borrowing navigational aids from the desktop app 255
Problem
We want to present users with a data set that is divided into many categories and 
subcategories, without overloading them with hundreds of options at once.

Solution
Use a tree widget! Tree widgets are complex, and we don’t want to get bogged 
down in looking after node event handlers, drawing lines connecting the nodes, 
and other such implementation details ourselves. The qooxdoo library provides a 
tree widget control that will allow us to focus on the business at hand: organizing 
our data and presenting it to the user. For this example, we’ve added a third set of 
fractal images, belonging to the set known as “Strange Attractors.” Within this set, 
we’ve subdivided our images into images of two- and three-dimensional chaotic 
patterns. Figure 7.10 shows how the application looks, but because of the limits of 
modern print technology you’ll have to download and run the example yourself 
to see the 3D images animate. Listing 7.5 shows how we set up the tree control.

<html>
  <head>
    <title>Chaotic Images - Tree Navigation</title>
    <script src='../assets/js/qooxdoo/include.js' 
      type='text/javascript'></script>

Listing 7.5 Using the qooxdoo tree widget

Figure 7.10 The qooxdoo tree control

http://lib.ommolketab.ir
http//lib.ommolketab.ir


256 CHAPTER 7 
Content navigation
    <script type='text/javascript'>
      <!--
  window.application.main = function()
  {
    var d = this.getClientWindow()
      .getClientDocument();

    var panel = new QxImage(    
      '../assets/images/chaos/ifs/spirochete.jpg'
    );
    panel.set({ 
      left: 204, top: 48, 
      width: 320, height: 320 
    });
    d.add(panel);

    var addNode=function(parent,title){   
      var node=new QxTreeFolder(title);
      if (parent){
        parent.addToFolder(node);
      }
      return node;
    };

    var addLeafNode=function(   
      parent,title,image,hasThumbnail
    ){
      var iconUrl=(hasThumbnail) ? 
        image+'16.jpg' : null;
      var mainUrl=(hasThumbnail) ? 
        image+'.jpg' : image;
      var leaf=new QxTreeFile(title,iconUrl);
      leaf.addEventListener(   
        "click",
        function(e){
          panel.set({ source:mainUrl });
        }
      );
      parent.addToFolder(leaf);
      return leaf;
    };

    var tree = new QxTree('Chaos');   
    tree.useTreeLines=true;
    tree.set({ 
      left: 20, top: 48, 
      width: 180, height: 320 
    });

    var nodeIFS=addNode(tree,'IFS');   
    addLeafNode(

Creates preview panel B

Adds generic node C

Adds leaf node D

Adds event handler E

Creates root of tree F

Begins to add child nodes G

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Borrowing navigational aids from the desktop app 257
      nodeIFS,'Dreamsilk',
      '../assets/images/chaos/ifs/dreamsilk',
      true
    );

    addLeafNode(nodeIFS,'Leaf',
      '../assets/images/chaos/ifs/leaf',true
    );
    addLeafNode(
      nodeIFS,'Spirochete',
      '../assets/images/chaos/ifs/spirochete',
      true
    );
    addLeafNode(nodeIFS,'Trilobite',
      '../assets/images/chaos/ifs/trilobite',true
    );

    var nodeLS=addNode(tree,'L-systems');
    addLeafNode(nodeLS,'Bush',
      '../assets/images/chaos/ls/bush.jpg'
    );
    addLeafNode(nodeLS,'Weed',
      '../assets/images/chaos/ls/weed.jpg'
    );

    var nodeSA=addNode(tree,'Strange Attractors');
    var nodeSA_2D=addNode(nodeSA,'2D');
    nodeSA.addToFolder(nodeSA_2D);
    addLeafNode(nodeSA_2D,'deJong',
      '../assets/images/chaos/sa/sa2d/deJong.jpg'
    );
    addLeafNode(nodeSA_2D,'Lorenz',
      '../assets/images/chaos/sa/sa2d/lorenzII.jpg'
    );
    addLeafNode(nodeSA_2D,'Poly I',
      '../assets/images/chaos/sa/sa2d/quad.jpg'
    );
    addLeafNode(nodeSA_2D,'Poly II',
      '../assets/images/chaos/sa/sa2d/quad2.jpg'
    );

    var nodeSA_3D=addNode(nodeSA,'3D');
    addLeafNode(nodeSA_3D,'Poly I',
      '../assets/images/chaos/sa/sa3d/KRTY_240.gif'
    );
    addLeafNode(nodeSA_3D,'Poly II',
      '../assets/images/chaos/sa/sa3d/MMDW_240.gif'
    );

    d.add(tree);
  };

http://lib.ommolketab.ir
http//lib.ommolketab.ir


258 CHAPTER 7 
Content navigation
      //-->
    </script>
  </head>
  <body>

  </body>
</html>

This listing is slightly longer than previous ones, but much of it is repetition of 
calls to the helper functions that build up the nodes of the tree. Most of the action 
takes place in the first half, so let’s take a look at what’s going on.

 The window.application.main() method should be a familiar starting point 
for working with qooxdoo by now. We need to create two widgets for this applica-
tion: the tree control and the preview pane on the right, which will display the rel-
evant image. Initializing the preview pane is straightforward b, and we load it up 
with an arbitrary image from our selection to start with.

 When we build the tree, we’ll need to repeat ourselves a lot, so we’ve defined 
two helper functions to keep the code as short as possible. The qooxdoo tree dis-
tinguishes between nodes that do and don’t contain children—that is, non-leaf 
and leaf nodes—so we’ve provided separate helper methods for each. addNode()
provides a mechanism for adding non-leaf nodes, or “folders” in qooxdoo par-
lance C, and addLeafNode() provides a way to add leaf nodes or “files” D. The 
events on the non-leaf nodes—the opening and closing of the tree—will be han-
dled by qooxdoo automatically, but we’ll need to add the events on the leaf nodes 
ourselves E. When we click on the leaf nodes, we want the corresponding image 
to be displayed in the preview pane. We’ve also provided an option for leaf nodes 
to supply a thumbnail image to be rendered in the tree in lieu of the standard 
icon. As you can see in figure 7.10, we’ve provided thumbnails for the first four 
nodes in the tree, just to demonstrate how customizable this component is.

 So, now that we’ve set up our helpers, we can roll up our sleeves and start to 
assemble the tree. First, we declare the root node of the tree F, and then we 
begin to exercise our helper functions G, until we’ve accounted for all the images 
in our collection. And that’s it—our tree control is fully operational and linked to 
the preview pane.

Discussion
The tree control is considerably more complex than tabs or toolbars, and it took a 
little longer to set up, but that’s largely due to the increased complexity of our 
data model, now that we’ve added the extra categories. Once we put the helper 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Between the desktop and the Web 259
methods in place, we didn’t have to deviate into the realms of supporting low-
level UI components, and the majority of our code was a description of our 
domain model.

 In this example, the tree contents were just about small enough to be hand-
coded. In a much larger set of categories, we might like to make use of Ajax to 
fetch subcategories on an as-needed basis, but constraints of space prevents us 
from exploring that option further here.

 This concludes our foray into the world of desktop navigation metaphors. In 
section 7.2, we looked at traditional web-style approaches to navigation, and we 
can see a considerable gulf between those examples and the ones presented in 
this section. We can partly account for that gulf based on the division between 
casual-use apps, which favor web-style navigation, and line-of-business apps, 
which favor a more sophisticated desktop-style approach. Nonetheless, the terri-
tory between the two is far from barren and contains some interesting possibili-
ties. We’ll conclude this chapter by looking at the scope for hybrid models of 
navigation that combine the best features of the Web and the desktop.

7.4 Between the desktop and the Web

Prior to Ajax, the web application was restricted to applications at the periphery 
of a user’s attention, such as shopping/commerce sites, searches, dictionaries, and 
lookups. A user might consult these several times during a day, but typically only 
briefly, and as a complement to some other, more complex task. The complex 
task itself would be handled by a desktop app or a thick client.

 Peripheral apps require simple, obvious controls. As Ajax moves into the ter-
ritory occupied by thick clients, it can adopt the more complex (and more 
demanding) navigation techniques of the desktop app, such as those we show-
cased in section 7.3. However, many developers and designers are reluctant to 
lose the light touch of the web application, and are seeking to combine the best of 
both worlds. In this section, we’ll look at a couple of examples that sit within this 
middle ground.

7.4.1 The OpenRico Accordion control 

The Accordion control from OpenRico is a useful control for reducing information 
overload and making effective use of constrained space. Users are only exposed to 
small pieces of content, but they can still quickly navigate to related items.

 You may already have heard of the Accordion control by another name: the 
Outlook bar. It consists of a single content pane, which shows the currently 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


260 CHAPTER 7 
Content navigation
selected content. There are also several bars, which hold the titles of other pieces 
of content that are also selectable. You can see this clearly in figure 7.11 in a 
moment. As you click on the bars to access the information they contain, Open-
Rico animates the bars to progressively hide the old content and display the new. 
Pretty slick!

Problem
Your application contains a group of several pieces of discrete content but you 
want only one shown at a time. These pieces of content could be many things: 
navigations, forms, and so on.

Solution
OpenRico provides a DHTML widget 
called an Accordion. This widget 
incorporates several discrete chunks 
of content and provides a visually 
appealing method of revealing only 
one chunk of content at any given 
time. This control is simple to use, but 
requires a little bit of setup in the 
form of some HTML structure; we’ll 
show you how in listing 7.6. First, take 
a look at the result in figure 7.11.

 The first thing you need to do is 
define a container <div> element. 
In this example we named it image-
AccordionDiv. Within the container 
<div> we then need to add a subcon-
tainer <div> for each chunk of con-
tent we’re adding to the Accordion. 
These subcontainers are identified 
by the suffix Panel and will in turn 
contain two <div> elements. The first 
<div> in each set will serve as the title bar, which will be the only visible cue for a 
content chunk other than the currently displayed one. These title bar <div>s can 
be identified by the suffix Header. The second <div> in each set will contain the 
given content chunk. These <div>s can be identified by the suffix Content.

Figure 7.11 OpenRico Accordion control

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Between the desktop and the Web 261
 Once the HTML structure for the Accordion has been defined, we can then 
pass the JavaScript necessary to initialize the widget. This code appears in the 
initialize() function. The constructor for the Accordion object takes in the con-
tainer <div> element and a properties hash. In this example we are only setting 
the panelHeight property, but many more exist.

 One additional note on the code in listing 7.6: in the Accordion constructor, 
we use the now-familiar $() function to retrieve the container <div>. We had a 
look at jQuery’s $() in early examples, but in this case, we’re using the Prototype
library, on which Rico is based.

<html>
  <head>
    <title>Chaotic Images</title>
    <link href='../assets/css/rico.css'
          media='all' rel='Stylesheet' type='text/css' >

    <script src='../assets/js/prototype.js'
type='text/javascript'></script>
    <script src='../assets/js/rico.js'
type='text/javascript'></script>

    <script type='text/javaScript'>
      <!--
window.onload=initialize;

function initialize()
{
  new Rico.Accordion( 
    $('imageAccordionDiv'), 
    {panelHeight:320} 
  );           
}
      //-->
    </script>
  </head>
  <body>
                                                           
    <div id='imageAccordionDiv' style='width:322px;overflow:hidden'>
      <div id='dreamsilkPanel'>      
        <div id='dreamsilkHeader' 
          class='accordionTabTitleBar'>    
          Dreamsilk
        </div> 
        <div id='dreamsilkContent'>                       
          <img src='../assets/images/chaos/ifs/dreamsilk.jpg'>
        </div>
      </div>

Listing 7.6 Using the OpenRico Accordion widget

Constructs Accordion object B

 CDeclares main 
container

Declares Accordion 
panel D

Declares 
per-element 
title  E

Declares 
per-element 
content

 F

http://lib.ommolketab.ir
http//lib.ommolketab.ir


262 CHAPTER 7 
Content navigation
      <div id='leafPanel'>
        <div id='leafHeader' class='accordionTabTitleBar'>
          Leaf
        </div>
        <div id='leafContent'>
          <img src='../assets/images/chaos/ifs/leaf.jpg'>
        </div>
      </div>
      <div id='spirochetePanel'>
        <div id='spirocheteHeader' class='accordionTabTitleBar'>
          Spirochete
        </div>
        <div id='spirocheteContent'>
          <img src='../assets/images/chaos/ifs/spirochete.jpg'>
        </div>
      </div>
      <div id='trilobitePanel'>
        <div id='trilobiteHeader' class='accordionTabTitleBar'>
          Trilobite
        </div>
        <div id='trilobiteContent'>
          <img src='../assets/images/chaos/ifs/trilobite.jpg'>
        </div>
      </div>
    </div>
  
  </body>
</html>

The initialize() function is the real meat of this example. It simply constructs a 
new Accordion using the contents of the imageAccordionDiv <div>, and sets the 
panel height to 320 pixels b.

 The rest of the code depends on the proper setup of the <div>s you wish to be 
shown in the Accordion. You’ll need a container <div> for the entire Accordion 
C, which we’ve labeled imageAccordionDiv. Notice that was the name we passed 
to the Accordion constructor previously b. After that, we’ll need several subdivi-
sion <div> elements, which will be displayed inside the Accordion. For each ele-
ment to be displayed you will need

■ A container <div> for the Accordion panel D
■ A title bar <div> to display the title, marked up with the accordionTab-

TitleBar CSS class E
■ A content <div> that will display the actual contents F

The Accordion object takes care of all the rest!

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Between the desktop and the Web 263
Discussion
The Accordion control is a great way to add some dynamic sparkle to your web 
applications. It does, however, have its drawbacks. Each content chunk must 
occupy the same space as all the others. If this is not going to be the case, then 
the developer will need to apply appropriate CSS styling to allow scrolling 
within the per-content <div> elements.

 One interesting thing to note, when comparing the Accordion to the examples 
in section 7.3, is that OpenRico and qooxdoo take two very different approaches 
to solving the problem of creating DHTML widgets. In the case of OpenRico, the 
toolkit requires the developer to lay out the HTML and then takes care of the rest 
of the work. However, with qooxdoo the aim was to create a complete GUI toolkit, 
so emphasis was completely on the JavaScript API, and nonexistent on the HTML
front, at least where the core framework elements are concerned. You end up with 
either very little JavaScript and a good bit of HTML footwork, or truckloads of 
JavaScript and little to no HTML. That choice is up to you.

7.4.2 Building an HTML-friendly tree control

The Rico Accordion has presented an interesting approach to developing inter-
active navigation controls, in which we declare the elements that compose the 
widget as plain HTML and then use the JavaScript simply to add the interactivity. 
This is quite different to qooxdoo’s approach, in which the widget is created 
entirely from JavaScript, and all DOM elements are constructed programmati-
cally. We referred earlier to the interesting territory that lays between the conven-
tional Web and the desktop app approach to navigation and application look and 
feel, and here we’ve begun to explore that territory.

 A question that naturally arises from this is whether the familiar declarative 
approach of HTML and CSS can be successfully combined with the interactivity of 
a pure JavaScript solution, giving us the best of both worlds. Indeed, can we set 
up the page in such a way that it still functions—albeit less richly—when Java-
Script is turned off altogether? In the next example, we’re going to look at doing 
just that for the tree control, which is arguably the most complex and interactive 
widget that we’ve looked at so far.

Problem
We have sufficient categories and subcategories within our data to merit the use 
of a tree control. However, the application must serve a broad audience, and we 
need to ensure that it is still usable in browsers that have JavaScript turned off. 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


264 CHAPTER 7 
Content navigation
We don’t want to maintain two completely separate codebases for the Ajax and 
non-Ajax versions of the application, so we need to find a way of accommodat-
ing both sets of users within a single design.

Solution
We’re facing a pretty tall order! If we understand that the non-JavaScript version 
of the application won’t be as functional as the JavaScript application, then we 
can make it work. 

 In the previous example, we noted that the Rico Accordion added behavior to 
HTML that was declared within the page. That way of doing things will suit our 
needs here, as we need the unadorned HTML to provide a baseline of functional-
ity. So, what should it look like?

 We’ve chosen a simple interaction model for the HTML application, with each 
leaf node of the tree a hyperlink directly to the image. After viewing an image, 
the user can use the back button to return to the tree. That’s not a great way of 
interacting, but it works. Figure 7.12 shows the two stages of interaction with the 
tree in this mode.

 The entire tree contents are shown by default in expanded form and can’t be 
contracted by clicking on the non-leaf nodes. The preview pane isn’t used in this 

Figure 7.12 Interacting with the tree with JavaScript switched off

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Between the desktop and the Web 265
mode, so it is initially hidden from view. Clicking on a leaf node takes the browser 
to the full-sized image, from which the user can return to the tree by using the 
back button. Listing 7.7 shows the HTML for the tree control.

<html>
  <head>
    <title>A Poem Lovely As A Tree</title>
    <link rel="stylesheet" type="text/css" href="main.css">
    <script type='text/javascript'            
       src='scripts/prototype.js'></script>   
    <script type='text/javascript'           
       src='scripts/tree.js'></script>       
    <script type='text/javascript'>       
      window.onload=function(){
        initTree();
      };
    </script>
  </head>
  <body>
    <div class="pane" id="tree">   
      <div class="nodeHeader" id="head_0">Chaos</div>
      <div class="nodeChildren" id="child_0">
        <div class="nodeHeader" id="head_1">IFS</div>
        <div class="nodeChildren" id="child_1">
          <a href='../assets/images/chaos/ifs/dreamsilk.jpg'>
            <div class="nodeHeader leaf" 
              id="head_2">Dreamsilk</div>
          </a>
          <a href='../assets/images/chaos/ifs/leaf.jpg'>
            <div class="nodeHeader leaf" 
              id="head_3">Leaf</div>
          </a>
          <a href='../assets/images/chaos/ifs/spirochete.jpg'>
            <div class="nodeHeader leaf" 
               id="head_4">Spirochete</div>
          </a>
          <a href='../assets/images/chaos/ifs/trilobite.jpg'>
            <div class="nodeHeader leaf" 
               id="head_4">Trilobite</div>
          </a>
        </div>
        <div class="nodeHeader" id="head_5">L-systems</div>
        <div class="nodeChildren" id="child_5">
          <a href='../assets/images/chaos/ls/bush.jpg'>
            <div class="nodeHeader leaf" id="head_6">Bush</div>
          </a>
          <a href='../assets/images/chaos/ls/weed.jpg'>
            <div class="nodeHeader leaf" title="ls/weed.jpg" 

Listing 7.7 HTML for tree control

Imports 
JavaScript

 B

Begins declaring 
tree nodes

 C

http://lib.ommolketab.ir
http//lib.ommolketab.ir


266 CHAPTER 7 
Content navigation
               id="head_7">Weed</div>
          </a>
        </div>
        <div class="nodeHeader" id="head_8">Strange Attractors</div>
        <div class="nodeChildren" id="child_8">
          <div class="nodeHeader" id="head_8a">2D</div>
          <div class="nodeChildren" id="child_8a">
            <a href='../assets/images/chaos/sa/sa2d/deJong.jpg'>
              <div class="nodeHeader leaf" id="head_9">deJong</div>
            </a>
            <a href='../assets/images/chaos/sa/sa2d/lorenzII.jpg'>
              <div class="nodeHeader leaf" id="head_10">Lorenz</div>
            </a>
            <a href='../assets/images/chaos/sa/sa2d/quad.jpg'>
              <div class="nodeHeader leaf" id="head_11">Poly I</div>
            </a>
            <a href='../assets/images/chaos/sa/sa2d/quad2.jpg'>
              <div class="nodeHeader leaf" id="head_12">Poly II</div>
            </a>
          </div>
          <div class="nodeHeader" id="head_8b">3D</div>
          <div class="nodeChildren" id="child_8b">
            <a href='../assets/images/chaos/sa/sa3d/KRTY_240.gif'>
              <div class="nodeHeader leaf" id="head_13">Poly I</div>
            </a>
            <a href='../assets/images/chaos/sa/sa3d/MMDW_240.gif'>
              <div class="nodeHeader leaf" id="head_14">Poly II</div>
            </a>
          </div>
        </div>
      </div>
    </div>
                                              
    <div class='pane' id='preview' stylle='display:none;'>   
      <img id='preview_img' src='../assets/images/chaos/ifs/

spirochete.jpg'></img>
    </div>
  </body>
</html>

The first thing that we do in this page is import the JavaScript code that we’ll 
need b. We’re going to make use of Prototype here, and we’ve also moved most 
of our own code into a separate file, tree.js. In anything but the smallest demo 
programs, this is a good idea anyway, but in this case, this approach will be spe-
cifically useful because we expect some of our users not to be using JavaScript. We 
don’t want to waste their bandwidth by providing too much inline script that 
they’ll ignore. 

Declares and hides 
preview pane

 D

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Between the desktop and the Web 267
 As with the qooxdoo tree control (see listing 7.5), there is plenty of repetition 
here as we assemble the tree, but this time we do it in the HTML C. We’re making 
use of the fact that HTML documents have a treelike structure themselves, and the 
nesting of elements on the page follows the structure of our tree widget. Each 
node in the tree is composed of a <div> element having the nodeHeader CSS class, 
containing the caption for that node. In the case of leaf nodes, these elements 
have an additional CSS class called leaf, and are surrounded with an anchor tag 
defining the hyperlink. Non-leaf nodes don’t have the hyperlink, but do contain 
a second <div> element having the nodeChildren CSS class, which is a sibling of 
the nodeHeader element. All child nodes are contained entirely within the node-
Children element, which will allow us to expand and collapse a node when we add 
the interactivity simply by showing or hiding the child container.

  This approach also gives us the basic layout of the tree almost for free, as we 
add a bit of CSS to ensure there is a visible amount of indentation to the left-hand 
side of each child container, thereby increasing indentation at each level.

 Finally, we declare the preview pane D. We’ll only want to use this in the 
JavaScript-enabled version of our app, so we set the style display to none by 
default, to hide it from view until we choose to programmatically reveal it.

 So, we’ve catered to the minority of our audience who don’t use JavaScript. 
What will the widget look like for the rest of us? Figure 7.13 shows the results.

Figure 7.13 Tree widget with JavaScript switched on

http://lib.ommolketab.ir
http//lib.ommolketab.ir


268 CHAPTER 7 
Content navigation
With JavaScript enabled, the tree will be initially shown in the contracted state, 
with only the root node and the preview pane visible. In the screen shot, we’ve 
opened a few selected nodes and clicked on a leaf node, which now opens up the 
relevant image in the preview pane. How do we do this? Listing 7.8 shows the con-
tents of the tree.js file that we used to rewrite the rules for interactivity.

function initTree(){
  $('preview').show();   
  var allNodes=$$('.nodeHeader');
  var partitioned=allNodes.partition(    
    function(node){
      return node.hasClassName('leaf');
    }
  );
  var leafNodes=partitioned[0];
  leafNodes.each(
    function(node){
      var anchor=node.parentNode;
      var imgsrc=anchor.href;
      anchor.href='#';                 
      node.onclick=function(){                
        $('preview_img').src=imgsrc;           
      };
    }
  );
  var nonLeafNodes=partitioned[1];
  nonLeafNodes.each(
    function(node){
      var childDivId=node.id
        .replace(/head/,"child");
      var childDiv=$(childDivId);
      node.onclick=function(){     
        childDiv.toggle();               
      } 
      childDiv.hide();
    }
  );
}

We can turn the HTML into an interactive tree with surprisingly little code. As 
with the Rico Accordion, everything is there for us already, and all we need to add 
is the interactivity. Using a library such as Prototype certainly helps to keep the 
code brief, too!

Listing 7.8 tree.js

Shows preview pane B

Separates leaf and 
non-leaf nodes C

Replaces hyperlink 
with onclick

 D

Adds event handler E

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Between the desktop and the Web 269
 Our first task is simple. The preview pane has been hidden, so we make it vis-
ible again b. The show() method is a Prototype extension to the DOM element 
class. We then use some of Prototype’s array functions to assemble all the HTML
elements representing tree nodes, and divide them into leaf and non-leaf nodes 
C. We can already identify these elements by their CSS styles, and Prototype sup-
ports searching for elements using CSS selectors with the $$() function. Having 
obtained all the node elements, we use the partition() method that Prototype 
has kindly added to the Array class for us, which will return an Array containing 
two elements. Both elements are themselves Arrays. The first contains all the ele-
ments that passed a specified test, and the second all those that failed it. The test 
is defined as a function object that we pass in as an argument. Our test function 
simply checks the CSS classes for the node again, to determine whether or not it’s 
a leaf node.

 We can then iterate through all the leaf nodes, and fix them up for use in our 
JavaScript-enabled tree. The first thing we need to do is to deactivate the hyper-
link that we had added for the benefit of non-JavaScript users. Having done that, 
we add a simple programmatic event handler in its place D.

 Finally, we iterate through the non-leaf nodes. Under the HTML version, these 
have no interactivity, so we simply need to add it in here, identifying the con-
tainer element that holds all the children for this node, and toggling its visibility 
when the title is clicked E.

Discussion
The tree control that we’ve presented here doesn’t look quite as sophisticated as 
the qooxdoo widget from section 7.3.3, but it’s not a bad start for a few hours’ 
work. And, depending on your tastes, and the style of your application, the flat-
ter, more web-style UI may be a better fit than qooxdoo’s decidedly desktop-like 
styling. Certainly, there’s room for both approaches.

 The technique that we’ve practiced here—allowing a web app to continue to 
offer functionality as JavaScript is removed—is often referred to as graceful degra-
dation. If you need to support a wide range of users, it can be a winning approach, 
and doesn’t entail that much extra effort. By enforcing a clear separation between 
content and behavior from the outset, we’ve been able to add the full interactivity 
with relatively little code.

 That concludes our review of navigation techniques and widgets, as well as this 
chapter. We’ll continue to look at the user’s workflow in the next chapter, when we 
examine ways of making Ajax play nicely with a browser’s history mechanisms.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


270 CHAPTER 7 
Content navigation
7.5 Summary 

When you’re thinking of ways to navigate content in an Ajax application, the sky 
is literally the limit. A large amount of widgets already exist, free for the picking, 
such as those from qooxdoo and OpenRico. 

 We’re in an interesting phase in the development of thinking about web navi-
gation, with an influx of ideas coming from both the traditional web design 
world, as we saw in section 7.2, and from the desktop application and thick-client 
arena, as we saw in section 7.3. These two approaches are beginning to interact 
with one another, thanks to the disruptive nature of Ajax, which has brought line-
of-business applications within the reach of the web application. 

 In section 7.4, we looked at ways of combining the current thinking from both 
of these areas. Along the way, we touched on issues such as the separation of 
design and content from workflow logic, and ways of working with users who can’t 
or won’t make use of JavaScript.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Handling back, 
refresh, and undo
This chapter covers
■ Disabling browser navigation features
■ The Really Simple History framework
■ Handling undo operations
271

http://lib.ommolketab.ir
http//lib.ommolketab.ir


272 CHAPTER 8 
Handling back, refresh, and undo
One of the greatest problems when designing dynamic content for the Web is the 
ability for the end user to refresh a page and navigate the browser’s history at will. 
Such tools are great when you’re navigating static content, but they open up the 
proverbial can of worms when using a dynamic web application. For example, 
with a simple click of the back button or a press of the F5 key, the client-server 
state becomes out of sync, and if your application makes use of advanced 
Dynamic HTML (DHTML) techniques like draggable content, the client’s layout 
state is destroyed. Ajax-enabled single-page applications compound these prob-
lems even further. 

 In this chapter we explore a few tricks to prevent the end user’s access to history 
navigation and page refreshing. These tricks include opening a new browser win-
dow with all toolbars removed, disabling any keyboard shortcuts used for navigat-
ing history, and disabling the right-click context menu. We’ll also look at some 
techniques for working with these browser features, such as using hashes to store 
application state in the URL, using the Really Simple History framework to easily 
add bookmarking and history navigation functionality to a single-page Ajax appli-
cation, and implementing your own undo stack.

8.1 Removing access to the browser’s  
navigation controls

Removing access to the browser’s navigation controls is a threefold procedure. We 
must deny the user access to the various toolbars that contain navigation func-
tionality; we must trap any keyboard shortcuts that allow navigation; and we must 
disable the context menu. It is important to keep in mind that end users may not 
be thrilled with this forceful narrowing of their user experience, which means 
you’ll have to provide a way for them to easily navigate your application. Let’s 
take a look at how best to handle these issues.

8.1.1 Removing the toolbars

To remove the address and navigation bars, a new window must be opened pro-
grammatically using JavaScript. It is not possible to add or remove toolbars from 
an existing browser window. Because of this limitation, you’ll have to create a 
launchpad page from which you can spawn a new window containing your appli-
cation. The JavaScript API for opening a new window is fairly simple and straight-
forward:

window.open(URL, name, options, replace);

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Removing access to the browser’s navigation controls 273
The window.open() method provides you with a wide range of customization
options for the window to be opened. Tables 8.1 and 8.2 provide an in-depth look 
at the features available for customization.   

Table 8.1 window.open() parameters

Parameter Type Description

URL String Specifies the location of the page you wish to display. An empty 
string may be passed if you do not wish to initially load a page (this 
is helpful if you wish to dynamically generate content for the win-
dow via scripting).

name String Specifies the name property of your new window. The name of a 
window allows the window to be referenced using the same con-
structs as a frame within a frameset. For example, a hyperlink of 
the form <a target='thewindow' href='thepage.html'> 
will display thepage.html in the window with the name 
thewindow. If the name refers to a window that already exists, 
then window.open() will display the content in that window, 
instead of opening a new one.

options String Optional. Specifies the options available to the new window. This 
parameter may contain one or more key=value pairs separated 
by commas. Valid values for Boolean options are yes, no, 1, or 0. 
You may leave off any of the Boolean options if you wish them to 
default to false.

replace Boolean Optional. If true, the new location will replace the current one in  
the browser’s history. This parameter may not be supported on 
some browsers.

Table 8.2 window.open() commonly supported options 

Option Type Description Default

width Integer The width in pixels of the window Same as parent

height Integer The height in pixels of the window Same as parent

left Integer The x-coordinate of the top-left corner 
of the window

Auto

top Integer The y-coordinate of the top-left corner 
of the window

Auto

scrollbars Boolean (yes, no, 1, or 0) Determines if scrollbars are available Yes

continued on next page

http://lib.ommolketab.ir
http//lib.ommolketab.ir


274 CHAPTER 8 
Handling back, refresh, and undo
A common use of this function is to open a window without any toolbars, in 
essence an undecorated window. A generic function for opening an undecorated 
window might look like this:

function openWithoutToolbars(URL, windowName) {
    window.open(
        URL,
        windowName,
        'status=1,scrollbars=1,resizable=1',
        true
    );
}

So, we’ve removed the visible buttons, but the user can still exercise the same 
functionality by using the keyboard or the context menu. Let’s see how to remove 
that access as well.

8.1.2 Capturing keyboard shortcuts

Capturing keyboard shortcuts involves adding an event handler at the docu-
ment level to intercept the appropriate keyboard shortcuts. (We discussed the 
JavaScript event model in chapter 5.) There are eight common keyboard short-
cuts for controlling navigation and the state of the currently loaded page, as 
table 8.3 shows.

resizable Boolean (yes, no, 1, or 0) Determines if the window is resizable Yes

toolbar Boolean (yes, no, 1, or 0) Determines if the toolbar should  
be displayed

Yes

location Boolean (yes, no, 1, or 0) Determines if the address bar should 
be displayed

Yes

directories Boolean (yes, no, 1, or 0) Determines if the links bar should  
be displayed

Yes

status Boolean (yes, no, 1, or 0) Determines if the status bar should 
be displayed

Yes

menubar Boolean (yes, no, 1, or 0) Determines if the menu bar should  
be displayed

Yes

Table 8.2 window.open() commonly supported options (continued)

Option Type Description Default

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Removing access to the browser’s navigation controls 275
To detect these keypresses, we must attach a keydown event (and in the case of 
Mozilla/Firefox we must also attach a keypress event) at the document level to 
check which key was pressed as well as any relevant modifiers to detect the key 
combinations and prevent the event from propagating further. Also, since the 
backspace key is one of the eight shortcuts, we need to add a special case to allow 
that key to be processed in the event that the end user is pressing the backspace 
key while a text area or input element has input focus.

 We’ll present an example of this technique shortly, in section 8.1.4. For now, 
let’s move on to the next feature: the context menu.

8.1.3 Disabling the right-click context menu

The context menu is the detached menu that appears when a user right-clicks
the mouse on the browser window’s content area. The context menu contains 
some navigation features, so we need to disable this menu as well. Most newer 
browser versions provide an event called oncontextmenu that fires when an end 
user right-clicks the mouse. To disable this context menu, simply register an 
event at the document level for the oncontextmenu event that prevents the event 
from propagating.

 OK, that’s everything in our checklist covered. Let’s put our new knowledge 
into practice and look at a working example.

Table 8.3 Keyboard shortcuts for navigating history

Shortcut Description

Backspace Navigate backward in history

Alt/Option+left arrow Navigate backward in history

Alt/Option+right arrow Navigate forward in history

Ctrl/Command+left arrow Navigate backward in history

Ctrl/Command+right arrow Navigate forward in history

F5 Refresh window

Ctrl/Command+R Refresh window

Ctrl/Command+H Show history

Alt/Option+Home Go to home page

http://lib.ommolketab.ir
http//lib.ommolketab.ir


276 CHAPTER 8 
Handling back, refresh, and undo
8.1.4 Preventing users from navigating history or refreshing
When developing Ajax applications, it sometimes becomes necessary to prevent 
users from navigating the browser history and from refreshing the page. Because 
the UI is so dynamic, a page refresh or history navigation will destroy the state of 
the current application, and will cause the user to lose their work instead of tak-
ing them back to the previous page.

Problem
You have developed a single-page Ajax application and you need to remove from 
the user the ability to navigate the browser’s history or refresh the page.

Solution
The first step in creating a browser window with all functionality removed is to 
provide a mechanism to open a new window with all of the toolbars removed. You 
can see the results of this in figure 8.1. We’ll create a launchpad (listing 8.1) to 
serve as the starting point for a registration page; this page will not allow the end 
user to navigate through history, browse to another page, or refresh/reload the 
contents of the registration page.

<html>
  <head>
    <title>Application Launchpad</title>
    <script type='text/javascript'>

function openWithoutToolbars(URL, windowName, width, height) {
    window.open(
        URL,
        windowName,
        'status=1,scrollbars=1,resizable=1'+   
        (width  ? ',width='+width   : '')+
        (height ? ',height='+height : ''),
        true
    );
}

function openRegistration() {
    openWithoutToolbars(
        './registration.html',
        'REGISTRATION',
        480, 580
    );
}

    </script>
  </head>

Listing 8.1 Launchpad page

A Values for 

removing toolbars

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Removing access to the browser’s navigation controls 277
  <body>
    <a href='javascript:openRegistration();'>
      Launch Registration
    </a>
  </body>
</html> 

Figure 8.1 Registration app without toolbars

http://lib.ommolketab.ir
http//lib.ommolketab.ir


278 CHAPTER 8 
Handling back, refresh, and undo
The second step (shown in listing 8.2) is to disable all of the available keyboard 
shortcuts for history navigation and page refreshing from the newly opened win-
dow. In keeping with our maxim of using tried-and-tested third-party libraries, 
we’ll use the Prototype library’s cross-browser event-registration mechanism here, 
so we’ll need to reference prototype.js in our page. The two key methods that 
Prototype provides for us here are Event.observe(), which registers an event on 
an object, and Event.stop(), which prevents the event from propagating. 

var isHistoryShortcutDisabled = false;

Event.observe(   
  document,
  'contextmenu',
  function(event){
    Event.stop(event);
    return false;
  }
);
Event.observe(document,'keypress',   
  checkHistoryShortcutDisabled);   
Event.observe(document,'keydown',  
  disableHistoryShortcuts);        

function disableHistoryShortcuts(event) {
    var targetTag = Event.element(event).tagName;
    var isTextInput = (
      (targetTag == 'TEXTAREA')
      || (targetTag == 'INPUT')
    );

    var keyCode = event.which || event.keyCode;

    if (( keyCode == 116) ||                     
        ((keyCode ==   8) && (!isTextInput))    ||
        ((keyCode ==  36) && event.altKey)      ||
        ((keyCode ==  37) && event.altKey)  ||
        ((keyCode ==  39) && event.altKey)  ||
        ((keyCode ==  37) && event.ctrlKey) ||
        ((keyCode ==  39) && event.ctrlKey) ||
        ((keyCode ==  82) && event.ctrlKey) ||
        ((keyCode ==  72) && event.ctrlKey)) {
        isHistoryShortcutDisabled = true;
        Event.stop(event);
        return false;
    }
}

Listing 8.2 Launchpad JavaScript

Disables context menu B

Disables hotkeys C

Suppresses 
navigation keys

 D

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Removing access to the browser’s navigation controls 279
function checkHistoryShortcutDisabled(event){   
    if (isHistoryShortcutDisabled) {
        isHistoryShortcutDisabled=false;
        Event.stop(event);
        return false;
    }
}

First, we disable the context menu b. All we want to do in the callback is stop the 
event from propagating, so we define the function inline. Trapping the keypresses 
C requires a bit more thought, so we’ve defined the callback functions separately.

 The main callback function is disableHistoryShortcuts(), which is registered 
against the keydown event. In this function, we need to identify the navigation 
hotkeys that we’ll suppress D and prevent propagation only in those cases. This 
requires us to, among other things, figure out if we’re inside a text input field or, 
indeed, any other input field that responds to key presses, such as a dropdown 
list. We also need to trap the keypress event in Mozilla E. We register the call-
back in any case—under Internet Explorer, the registration will have no harmful 
side effects. Finally, as a result of our efforts, we’ll have a window that can be nei-
ther navigated nor refreshed.

Discussion
We have just seen a complete solution for removing the end user’s ability to nav-
igate history or refresh a page. This technique, even though it is quite effective, 
may make your users unhappy with your application. None of us like to have our 
freedoms revoked, and for some end users it will feel as if you have done just that: 
deprived them of their ability to view and navigate your web application the way 
they are accustomed to. If you decide to employ this technique, please keep that 
in mind.

 We need to empower users again, having hijacked their browser-given rights 
of willy-nilly navigation. It is extremely important to provide alternative meth-
ods of navigation if you do override the native browser navigation controls. If 
you don’t give your users alternative methods, or even ways of bookmarking, 
they won’t be likely to use your application. The examples of Google’s GMail and 
Maps applications spring to mind. Even though they have a dynamic, client-side 
interface, they still allow the user to navigate backward and forward through the 
application (and even make bookmarks) using the native browser controls. They 
are just subverting those controls to their own purposes. Next up, we’ll show you 
exactly how to do that.

Disables Mozilla keypress E

http://lib.ommolketab.ir
http//lib.ommolketab.ir


280 CHAPTER 8 
Handling back, refresh, and undo
8.2 Working with a browser’s navigation controls

If you wish to provide a richer and less restrictive user experience (both of these 
will make the end user much happier), you have to work with the browser’s navi-
gation and refresh features. This can be a daunting task. How do you maintain 
state if the user refreshes their window, clicks the back button, or goes to a com-
pletely different site and then navigates back to your application? There are sev-
eral techniques you can use to hold the state of your single-page application 
between refreshes and even to provide logical bookmarks so that when the user 
clicks the back or forward button they aren’t in for a nasty surprise (the applica-
tion resetting to some default state or even worse). Instead, the user can step 
backward through their actions.

8.2.1 Using the JavaScript history object

With the history object, JavaScript provides a way to programmatically navigate the 
browser’s history. Using this object, you can emulate the browser’s back and for-
ward buttons, provide a link in a dynamic web app to take you back to the previ-
ous page (even if the current page has multiple points of entry), or even force the 
browser to always show the last page in history by adding

window.onload = function() {history.go(1);}

to all of your application’s pages. However, this is a pretty inelegant hack that will 
likely get you condemned by the web development community. The properties 
and functions of the history object appear in tables 8.4 and 8.5, respectively.

Table 8.4 Property of the history object

Property Description 

length The number of entries in the history object

Table 8.5 Functions of the history object 

Function Description

back Loads the previous URL in the history list.

forward Loads the next URL in the history list.

continued on next page

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Working with a browser’s navigation controls 281
8.2.2 Hashes as bookmarks

Hashes are those bits of a URL that hang out at the end and are prepended with a 
# symbol. In typical website use, hashes indicate that the browser should focus on 
a named anchor tag. Note that the only way to update the location of the browser 
without causing a reload of the page in its entirety is through the use of a hash. 
You can access this value by using a smattering of regular expressions: 

var hash = window.location.href.replace(/(.*)(#)(.*)/,'$3');

The hash value can be used for all sorts of things, but it’s best used for capturing 
a snapshot of the application state. You can use it to directly store small amounts 
of application state, or as a key to a larger, more complex state snapshot. For 
example, if you have a weather service application that shows the weather for 
many locations, you can allow end users to bookmark a page after they have 
already selected the location they wish to view. That way, on their next visit they 
don’t have to reselect the location.

Problem
You need to provide a reference point in your application that the end user can 
bookmark for later viewing.

Solution
We’ll start off with a very simple example here, in which the JavaScript code will 
watch the URL of the current page for changes in the hash value and update the 
contents of a form accordingly. The rather minimalistic UI for this example is 
shown in figure 8.2. The code required to implement this example appears in 
listing 8.3. 

go Goes to a specific URL in the history list. The parameter where 
can be an integer or a string. In the event of an integer, goes to 
the URL with the specific position relative to the current docu-
ment. For example, -1 goes back one page, and 1 goes forward 
one page. In the event of a string, goes to the first URL that 
matches the string, either completely or partially.

Table 8.5 Functions of the history object (continued)

Function Description

http://lib.ommolketab.ir
http//lib.ommolketab.ir


282 CHAPTER 8 
Handling back, refresh, and undo
var ajaxRequest;
var currentHash;

setInterval('checkHash()', 250);   

function checkHash() {
    var newHash = getHash();
    
    if (newHash && (newHash != currentHash)) {   
        currentHash = newHash;
        getBookmark();   
    }
}

function getHash() {   
    if (window.location.href.indexOf('#') > -1) {
        return window.location.href.replace(/(.*)(#)(.*)/,'$3');
    } else {
        return null;
    }
}

function getBookmark() {
    new Ajax.Request(      
      '/servlet/Bookmarks?bookmarkId='+currentHash,
      { method: 'get',
        onComplete: function(xhr){   
          eval(xhr.responseText);
        }
      }
    );
}

The code in listing 8.3 checks for a hash in the window.location.href property 
E, and if one exists we’ll also verify that it doesn’t equal the bookmark being 

Listing 8.3 Hashing JavaScript

Figure 8.2 Simple bookmarking example. The contents of the text input box will be set to 
match the hash at the end of the URL. 

Sets checking interval B

Checks current 
view status

 C

Makes server request D

Extracts hash E

Creates Ajax request F

Evaluates response G

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Working with a browser’s navigation controls 283
currently viewed C. This function, called checkHash(), will be executed every 
quarter-second b. If a new hash value is found, checkHash()D will call getBook-
mark(), which will use an XMLHttpRequest object (wrapped up tidily here in Pro-
totype’s Ajax.Request) to talk to the server F, passing the hash as the bookmark 
ID. The callback will then evaluate the JavaScript returned by the server to ren-
der the bookmark state G.

Discussion
This was a simple example of what can be accomplished using this powerful tech-
nique. It is very much like passing values via the query string, but with the added 
benefit of being able to use Ajax to update only a portion of the current docu-
ment instead of requiring a full page reload.

 With state-based hash codes, you can now give users a way to bookmark their 
application in the state it was in. You may be interested in chapter 11, which dis-
cusses client-side state management. You should be able to store the state of the 
application on the client side instead of the server side. This state is indexed with 
a hash, as we’ve just discussed. When a user goes to the bookmarked hash, the 
state can then be retrieved from the client’s state cache instead of the server. You 
won’t need to worry about maintaining state on your already-stressed servers; 
simply push the responsibility to the client.

 Now that we’ve allowed our users to maintain bookmarks to dynamic user 
interfaces, let’s move on to another pain point: maintaining dynamic interface 
history. The Really Simple History framework is here to show us the way and uses 
the technique of URL hashing we’ve just discussed. 

8.2.3 Introducing the Really Simple History (RSH) framework

Continuing our exploration of browser history and state, we see that there are a 
multitude of frameworks for working with history in Ajax applications. The one 
that stands out as far as ease of use and its ability to be standalone is Brad Neu-
berg’s Really Simple History (RSH) framework, available at http://codinginpara-
dise.org. RSH provides you with the capability to store a series of history events as 
the end user interacts with your application. Each event is associated with a hash
in the document’s URL. When the user clicks the browser’s back and forward but-
tons, RSH uses the hash values to retrieve the event associated with it and calls any 
listeners that are registered with it to process the event.

 RSH provides a great deal of functionality, but for now we’ll focus on the 
basics. The mechanism RSH uses for managing history state is the dhtmlHistory 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


284 CHAPTER 8 
Handling back, refresh, and undo
object. The dhtmlHistory object provides four major methods (table 8.6) for ini-
tializing itself, registering listeners, getting the current location, and adding his-
tory events.

Let’s see some examples of RSH in action, shall we?

8.2.4 Using RSH to maintain state at the client level

In this example and the next, we’ll use RSH to enhance the tree widget from sec-
tion 7.4.2. While using the tree, the state of the page changed several times, but 
none of these changes would be captured by the browser history system. This 
could be disconcerting for our users. In the next example, we’ll use RSH to imple-
ment a client-side state management system that plays nicely with the back and 
forward buttons.

Problem
Your application contains programmatic transitions that your user might think of 
as “new pages.” They will therefore expect the history buttons to work with these 
changes, and may be frustrated if they don’t. You need to provide state manage-
ment to your single-page application while the user is using it. You only need to 
maintain the state during a client session, and can therefore code the state man-
agement on the client only.

Table 8.6 Functions of the dhtmlHistory object

Function Description

initialize Initializes the dhtmlHistory object. Should be called in  
window.onload.

getCurrentLocation Returns the location String for the current page.

addListener Adds a history event listener for handling history change events.

add Stores a history event. When the page’s URL changes and con-
tains the value of location as its hash, the history event listener  
is called and passed the location and data of the event. add() 
takes two parameters. The first is the key to the event, which will 
show as a hash in the URL. The second is the data object associ-
ated with the event.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Working with a browser’s navigation controls 285
Solution
This example will use the HTML-based tree that we wrote in chapter 7 to serve as 
the treeview component, as shown in figure 8.3.

 RSH is a flexible framework, as you’ll see, and our first task is to decide which 
changes of application state are significant enough that we want to record them in 
the browser history. We’ve decided to include both the expand/collapse of a node, 
as well as the change in the preview image when a leaf node is clicked. We’ll there-
fore need to add a history entry when either of these events occur, and store suf-
ficient information with it to restore the application state when the history is 
recalled via the back or forward button.

 The code that we wrote for the tree in chapter 7 already contains action han-
dlers for expanding/collapsing nodes, and for changing the preview image. We’ll 
define a new helper function in this example that records the current state of the 
history when either of these events occurs, using the dhtmlHistory.add() method. 
We’ll also register a listener with the dhtmlHistory object that will restore the tree 
state to a previously recorded value. Listing 8.4 contains the full JavaScript listing 
for our history-aware tree. Additional code not present in the previous version 
(see listing 7.8) appears in bold.

Figure 8.3 The tree component from chapter 7. In this chapter, we’ll add support for the 
back button.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


286 CHAPTER 8 
Handling back, refresh, and undo
var historyCount=0;

function initTree(){
var leafNodes=null;
var nonLeafNodes=null;

  $('preview').show();
  var allNodes=$$('.nodeHeader');
  var partitioned=allNodes.partition(
    function(node){
      return node.hasClassName('leaf');
    }
  );
  leafNodes=partitioned[0];
  leafNodes.each(
    function(node){
      var anchor=node.parentNode;
      var anchorParent=anchor.parentNode;
      var imgsrc=anchor.href;
      anchor.removeChild(node);
      anchorParent.replaceChild(node,anchor);
      node.onclick=function(){
        $('preview_img').src=imgsrc;
        addHistory();   
      }
    }
  );
  nonLeafNodes=partitioned[1];
  nonLeafNodes.each(
    function(node){
      var childDivId=node.id.replace(/head/,"child");
      var childDiv=$(childDivId);
      node.onclick=function(){
        childDiv.toggle();
        addHistory();   
      }
      childDiv.hide();
    }
  );

  dhtmlHistory.initialize();   
  dhtmlHistory.addListener(    
    function(location,data){
      if (data){
        setTreeState(data);
      }
    }
  );

Listing 8.4 tree.js with added history

Registers change 
of preview B

Registers expand/
collapse of node C

Initializes history D

Adds listener function E

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Working with a browser’s navigation controls 287
  if (!dhtmlHistory.getCurrentLocation()){   
    addHistory();
  }
}

function addHistory(){  
  dhtmlHistory.add(      
    'history'+historyCount,
    getTreeState()
  );
  historyCount++;
}

function getTreeState(){
  var treeState={ 
    nodes:{},
    image:$('preview_img').src
  };
  nonLeafNodes.each(
    function(node){
      var childDivId=node.id.replace(/head/,"child");
      var childDiv=$(childDivId);
      var isOpen=childDiv.visible();
      treeState.nodes[childDivId]=isOpen;
    }
  );
  return treeState;
}

function setTreeState(state){
  for (node in state.nodes){
    var nodeDiv=$(node);
    if (nodeDiv){
      if (state.nodes[node]){
        nodeDiv.show();
      }else{
        nodeDiv.hide();
      }
    }
  }
  $('preview_img').src=state.image;
}

The changes to our application are dictated by the lifecycle of the dhtmlHistory 
object, as outlined in table 8.6. First, we need to initialize the history object D. 
Immediately after doing that, we register a listener function E, which will be 
called for us by the dhtmlHistory object when the user uses the back or forward 
button. We then record the initial state as the first history item F, and modify 

Records initial 
history state F

Records history entry G

http://lib.ommolketab.ir
http//lib.ommolketab.ir


288 CHAPTER 8 
Handling back, refresh, and undo
the event handlers on the tree to add new history elements when we change the 
preview image b or expand or collapse a node C. To keep the code clean, we’ve 
provided a single helper function addHistory() G, which can be used in all 
three cases. 

 Each entry in the history needs to be uniquely named. We’ve adopted a 
straightforward approach here, simply incrementing a global counter every time 
we write to the history.

 The state of our application consists of the position of each node in the tree 
(i.e., whether it is opened or closed) and the image showing in the preview. We’ve 
provided two helper functions, getTreeState() and setTreeState(), to read and 
write this state, respectively. This keeps the interaction with the history object 
simple and separate from the internal logic of our tree.

 Note that in listing 7.8, we switched off the anchor nodes by setting the href
attribute to a single hash sign, as in 

anchor.href='#';

Here, we can’t do that, because RSH is using the hashes in the URLs in a more 
meaningful way. So, we’ve had to do a bit more DOM manipulation wizardry to 
remove the hyperlinks altogether without losing the text inside them. It’s a bit 
like the old stage magician trick of whipping the tablecloth away without disturb-
ing the plates or glasses, but without the danger of creating a mess!

Discussion
The image browser application should now be capable of maintaining its state. 
Try expanding and collapsing multiple nodes and view some of the images. Now 
use the back and forward buttons to navigate through the history of your actions.

 Users will be pleased that you have returned to them the simple semantics of 
the back and forward buttons. The RSH framework makes this type of behavior 
easy to implement by just maintaining state through URL hashes along with some 
secondary information associated with each hash. RSH allows us to make this 
information as simple or as complex as the application requires. 

 This example showed us how to maintain state on the client side, which will 
persist as long as a single session. In some cases, we may wish to preserve appli-
cation state between sessions or across machines. In this case, we’ll need to store 
the session data on the server. We’ll do that in the next example, and see what 
changes we have to make to our approach.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Working with a browser’s navigation controls 289
8.2.5 Using RSH to maintain state at the server level

Now that you know how to use RSH to maintain state on the client side, let’s take 
a look at how to use it to maintain state at the server side.

Problem
You need to preserve history between user sessions, and thus need to store the cli-
ent state on the server.

Solution
To demonstrate the use of RSH to maintain state at the server level, we’ll ask 
RSH to store just the location/keys of the events and move the persistence of the 
actual state to the server, where it will be stored in the session. (If we wanted a 
more robust solution, we could persist the state to a file or database, but we 
want to keep the server examples simple here.) For this, we need Ajax. When we 
store a history state, we’ll send the client state to the server, along with the key 
used to identify it on the client. Similarly, when a history event is triggered by 
the back button, an Ajax request containing the location/key will be sent to the 
server, which will respond with a block of data describing the historical state of 
the client.

 First, let’s take a look at the changes required on the client. Listing 8.5 pro-
vides the details, with changes from listing 8.4 shown in bold.

var leafNodes=null;
var nonLeafNodes=null;
var historyCount=0;

function initTree(){

  $('preview').show();
  var allNodes=$$('.nodeHeader');
  var partitioned=allNodes.partition(
    function(node){
      return node.hasClassName('leaf');
    }
  );
  leafNodes=partitioned[0];
  leafNodes.each(
    function(node){
      var anchor=node.parentNode;
      var anchorParent=anchor.parentNode;
      var imgsrc=anchor.href;

Listing 8.5 tree.js with server-side history maintenance

http://lib.ommolketab.ir
http//lib.ommolketab.ir


290 CHAPTER 8 
Handling back, refresh, and undo
      anchor.removeChild(node);
      anchorParent.replaceChild(node,anchor);
      node.onclick=function(){
        $('preview_img').src=imgsrc;
        addHistory();
      }
    }
  );
  nonLeafNodes=partitioned[1];
  nonLeafNodes.each(
    function(node){
      var childDivId=node.id.replace(/head/,"child");
      var childDiv=$(childDivId);
      node.onclick=function(){
        childDiv.toggle();
        addHistory();
      }
      childDiv.hide();
    }
  );

  dhtmlHistory.initialize();
  dhtmlHistory.addListener(
    function(location,key){
      if (key){
        fetchTreeState(key);
      }
    }
  );
  if (!dhtmlHistory.getCurrentLocation()){
    addHistory();
  }
}

function addHistory(){
  var data=getTreeState();
  var key='history'+historyCount;
  historyCount++;
  new Ajax.Request(         
    "jsp/treeState.jsp",
    {
      method: "post",
      parameters: $H({ 
        key:key, 
        data:JSON.stringify(data)   
      }).toQueryString(),
      onComplete:function(response){
        var responseObj=
          JSON.parse(response.responseText);   
        if (responseObj && 

Sends Ajax request B

Encodes state as JSON C

Parses JSON response D

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Working with a browser’s navigation controls 291
          responseObj.status=="ok"){
          dhtmlHistory.add(key,key);
        }
      }
    }
  );
}

function getTreeState(){
  var treeState={ 
    nodes:{},
    image:$('preview_img').src
  };
  nonLeafNodes.each(
    function(node){
      var childDivId=node.id.replace(/head/,"child");
      var childDiv=$(childDivId);
      var isOpen=childDiv.visible();
      treeState.nodes[childDivId]=isOpen;
    }
  );
  return treeState;
}

function fetchTreeState(key){   
  new Ajax.Request(
    "jsp/treeState.jsp",
    {
      method:"get",
      parameters: $H({ key:key }).toQueryString(),
      onComplete:function(response){
        var responseObj=
          JSON.parse(response.responseText);
        if (responseObj){
          updateTreeState(responseObj);
        }
      }
    }
  );
}

function updateTreeState(state){   
  for (node in state.nodes){
    var nodeDiv=$(node);
    if (nodeDiv){
      if (state.nodes[node]){
        nodeDiv.show();
      }else{
        nodeDiv.hide();
      }

Gets historical 
state from server E

Updates client state F

http://lib.ommolketab.ir
http//lib.ommolketab.ir


292 CHAPTER 8 
Handling back, refresh, and undo
    }
  }
  $('preview_img').src=state.image;
}

We make use of Ajax (using Prototype’s Ajax.Request) to record each entry in the 
history b. In the previous example, we recorded the state as JavaScript object lit-
erals, so it seems a natural choice to use JSON to encode the data when sending it 
to the server C. We’re making use of the same json.js library that we discussed in 
chapter 2. The response is returned as JSON, too D. Note that we also need to 
store the history on the client, using the addHistory() helper function that we 
introduced in the previous example. We could do so at the same time that we send 
the request, but we’ve chosen to defer that action until the response has come 
back from the server telling us that the history has been stored. That way, we can 
be sure that the data is available for us when we invoke the history.

 When we reinstate a historical state of the application, in response to the back 
button, we need to contact the server again E. Having fetched the state from the 
server, we can then parse the JSON data it contains and update the client as 
before F. (We’ve changed the name of setTreeState() to updateTreeState() to 
better reflect its role, but the code remains the same.)

 So, we’re sending data back and forth to the server, but what do we do with it 
when it gets there? Listing 8.6 shows the simple JSP that stores our history data in 
the user session.

<jsp:directive.page 
  contentType="text/json"
  import="java.util.*"
/>
<%
String key=request.getParameter("key");
String data=request.getParameter("data");
if (data==null){
  %><%=session.getAttribute(key)%><%
}else{
  session.setAttribute(key,data);
  %>{ "status" : "ok" }<%
}
%>

Listing 8.6 treeState.jsp

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Handling undo operations 293
We promised to keep the server-side code simple, and we’ve certainly done that! 
We’re not making any use on the server of the history state that we’re storing, so 
we don’t bother to decode the JSON strings that we receive but simply store them 
as strings in the session. As noted at the outset of this example, we’ve chosen the 
session for its simplicity. If we wanted the user to be able to retrieve their history 
across sessions, or machines even, we’d need to use a file or a database for more 
persistent storage. 

Discussion
This example, when run, should exhibit the same behavior as the previous server-
less example except that the state’s data persistence and rendering logic is now 
handled at the server level. The possible uses for this technique are endless and 
provide you with another great tool.

 Server-side state persistence has a few advantages, as well as disadvantages, 
compared to client-side state persistence. One of the advantages is that users are 
now no longer bound to their local browser. They can log on from any client and 
resume their session as they left it, with the full history of their previous session 
available to them. If there is an error in the application, or it behaves in an unex-
pected way, the labor of troubleshooting the application is now reduced. Developers 
can look through a user’s history to pinpoint where in the history the application 
diverged from the expected behavior. User sessions can be recorded for playback 
later, and extensive analysis of user behavior patterns is now possible.

 Of course, one disadvantage is that more code and thinking is required on the 
server side in order to provide users with this capability. Because we now start cre-
ating round-trips to the server, the issues of latency and bandwidth rear their ugly 
heads; a slow connection to the server can negatively impact the user’s experi-
ence when they attempt to navigate backward and forward through the applica-
tion. From a user privacy standpoint, if we start recording so much information 
about user behavior patterns, we can become quagmired in privacy issues. Exten-
sive care will need to be taken to protect the collected data.

 A topic closely related to handling state and history is handling some sort of 
undo mechanism. We’ll explore how to add undo capabilities to an application in 
the next section.

8.3 Handling undo operations

Browsers provide some undo/redo capability, but this capability is largely limited 
to editing forms. If you wish to allow users to undo and redo changes to custom, 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


294 CHAPTER 8 
Handling back, refresh, and undo
rich DHTML controls, you must implement your own capability. This isn’t as hard 
as it might first appear. A basic undo system needs to do four things:

■ Keep track of user actions, placing them in a stack-type data structure as 
they occur

■ Provide methods for traversing the stack, both forward and backward (in 
this capability, our undo system is not a genuine stack, as actions popped 
from the stack will remain there in case we want to redo them)

■ Provide capability for applying the actions as they are accessed
■ Keep an index of the current position in the stack

There are two more important things to remember when implementing an undo
stack. First, for each action stored in the stack, you need to keep track of both the 
before and after states of the action. For example, if an undo action involves a 
character input into a text field, the value of the text field before the new charac-
ter was added needs to be stored as well as the value after the new character was 
added. This way, the stack can be traversed backward (undo) as well as forward 
(redo). Second, if an action is added somewhere in the middle of the stack, all 
actions that have a higher index than the added action at the time of insertion are 
deleted. For example:

1 A user accomplishes 10 undoable actions.

2 The user then undoes 5 of those actions.

3 The user then performs another undoable action.

4 The undo stack now contains 6 actions; the original 1–5 are retained, as 
well as the new action at position 6. The original 6–10 are no longer 
valid, and are thus removed.

8.3.1 When to provide undo capability

Figuring out when to provide undo capability in an application depends on a 
great deal of variables, among them the type of application, the expected user 
base, and machine performance. As a general rule, undo capability should be 
provided only when an action occurs that changes small, manageable chunks of 
data. Complex actions that cannot be undone easily should obviously be avoided, 
along with actions that require server round-trips with large amounts of data 
passing back and forth.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Handling undo operations 295
8.3.2 Implementing an undo stack

For this example, we’ll create an undoStack object as a top-level variable. It will 
contain an index variable and a stack in the form of an array. We’ll provide an event 
listener to detect when Ctrl+Z and Ctrl+Y keyboard shortcuts are pressed, and 
also allow undo and redo buttons or other UI mechanisms to operate the stack.

 The object that we’ve described so far handles the generic functionality of 
maintaining an undo and redo stack. We haven’t touched on the issue of what 
happens when an undo or redo operation occurs, as this will depend on the 
nature of the application. Taking inspiration from the RSH library from the pre-
vious examples, we’ll provide a callback mechanism that will allow the user to 
define how the application state responds to undo and redo. So, let’s see what this 
undo stack looks like. 

Problem
You need to provide undo capability for actions that the browser’s undo/redo
functionality doesn’t necessarily support, or you need to replace the browser’s 
undo/redo functionality with a customized version of your own.

Solution
We’ll start off with a simple example here by attaching the undo stack to a couple 
of text input fields. There are two aspects to coding this. First, we need to imple-
ment the generic undo stack that we discussed earlier, and second, we need to 
hook it up to the text inputs. Let’s look at the undo stack itself first; listing 8.7 
presents the full code.

var undoStack={
    curIdx: 0,
    stack: [],
    undoHandler: null,
    doDiffCheck: true,
    actionPerformed:false,
    init: function(theUndoHandler){   
        Event.observe(document, 'keydown', 
          this.checkUndo);
        Event.observe(document, 'keypress',
          this.postCheckUndo);
        this.undoHandler=theUndoHandler;
    },
    checkUndo: function(event){          
        var keyCode = event.which || event.keyCode;
        if((keyCode ==  90) && event.ctrlKey){

Listing 8.7 undo.js

Initializes stack B

Handles undo keypresses C

http://lib.ommolketab.ir
http//lib.ommolketab.ir


296 CHAPTER 8 
Handling back, refresh, and undo
            undoStack.undo();
            undoStack.actionPerformed=true;
            Event.stop(event);
            return false;
        }else if((keyCode ==  89) && event.ctrlKey){
            undoStack.redo();
            undoStack.actionPerformed=true;
            Event.stop(event);
            return false;
        }
    },
    postCheckUndo: function(event){
        if(undoStack.actionPerformed){
            undoStack.actionPerformed=false;
            Event.stop(event);
            return false;
        }
    },
    seek: function(index){
        if(index >= 0 && 
          index < this.stack.length){
            this.curIdx=index;
        }
    },
    add: function(theType,theValue,
      ignoreDiffCheck){               
        var action =this
          .getNewUndoAction(theType,theValue);
        var success=false;
        var differs=(
          this.doDiffCheck && !ignoreDiffCheck)?
            (this.checkAction(action)):
            true;
        if(differs){
            this.stack[this.curIdx++]=action;
            this.stack.length=this.curIdx;
            success=true;
        }
        var stateAction=this.getNewUndoAction();
        stateAction.canUndo=true;
        stateAction.canRedo=false;
        this.undoHandler(stateAction);
        return success;
    },
    checkAction: function(action){
        var latest = this.stack[this.stack.length-1];
        return (latest) ?
            (!action.equals(latest)) :
            true;
    },

Adds action to stack D

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Handling undo operations 297
    undo: function(){      
        var action=null;

        if(this.curIdx > 0){
            action=this.stack[--this.curIdx];
        }else{
            action=this.getNewUndoAction();
        }
        action.canUndo=this.curIdx > 0;
        action.canRedo=this.curIdx < this.stack.length;
        this.undoHandler(action,true);
    },
    redo: function(){                 
        var action=null;
        if(this.curIdx < this.stack.length){
            action=this.stack[this.curIdx++];
        }else{
            action=this.getNewUndoAction();
        }
        action.canUndo=this.curIdx > 0;
        action.canRedo=this.curIdx < this.stack.length;
        this.undoHandler(action,false);
    },
    getNewUndoAction: function(theType,theValue){
        return {                 
            type:   theType,
            value:  theValue,   
            canUndo:false,
            canRedo:false,
            equals: function(action){
              return (
                JSON.stringify(this.type)  == 
                  JSON.stringify(action.type) && 
                JSON.stringify(this.value) ==
                  JSON.stringify(action.value)
              );
            }
        };
    },
};

The first thing that we do is initialize the stack b by registering keyboard event 
handlers on the entire document. As with previous examples in this chapter, we 
need to bind the keypress event as well as the keydown event in order to stop 
event propagation in Mozilla. The main key handler method is checkUndo() C, 
which will be fired on all browsers, and captures Ctrl+Z (undo) and Ctrl+Y 
(redo) key bindings.

Specifies undo action E

Specifies redo action F

Creates undo 
action object G

http://lib.ommolketab.ir
http//lib.ommolketab.ir


298 CHAPTER 8 
Handling back, refresh, and undo
 The init() method also requires a reference to a callback function, which we 
simply refer to initially. Once initialized, we can add items to the undo stack D. 
When doing this, we provide a default option to filter out duplicates. In many 
cases, if the new event matches the previous one, we won’t want to add it to the list 
twice, although there are exceptions, as we’ll see in section 8.3.3.

 When an undo E or a redo F event occurs, we invoke this callback, passing in 
a small undo action object, which contains information on the state of the appli-
cation and specifies whether the action can be undone or redone. Both undo()
and redo() also perform a fair amount of bookkeeping to ensure that there is a 
previous or next action in the stack. If there’s not, an empty object is returned, 
indicating that no action is possible.

 The final thing to look at, then, is the structure of the action object itself G. 
The undo action encapsulates the data needed to perform an undo or a redo, as 
well as two Boolean values useful for determining whether another undo or redo 
action is available. It also provides a function for evaluating the equality of itself 
and another action object; add() makes use of this function to ensure that the 
same state isn’t duplicated in two adjacent items in the stack. 

 Now that we have implemented the undo stack, let’s create a sample undo 
handler to “undo-enable” the text input fields on our page. In the HTML for the 
page, we’ve defined two text inputs, with ids of foo and baz, respectively. Listing 
8.8 shows the JavaScript required to hook these up to the undo stack.

window.onload = function(){
    addTextEventListener('foo');   
    addTextEventListener('baz');   
    undoStack.init(demoHandler);
}

function addTextEventListener(element){
    Event.observe(
        element,
        'keydown',   
        startTextUndo
    );
    Event.observe(
        element,
        'keyup',    
        endTextUndo
    );
}

Listing 8.8 Sample undo handler

Enables text inputs B

Captures keydown event C

Captures keyup event D

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Handling undo operations 299
function startTextUndo(event){
    var target   =Event.element(event);
    var keyCode  =event.which || event.keyCode;
    if((keyCode != 16 && keyCode != 17 && keyCode != 18) &&
     !((keyCode ==  90) && event.ctrlKey) &&
     !((keyCode ==  89) && event.ctrlKey)){
        target.beforeUndoVal=target.value;   
    }
}

function endTextUndo(event){
    var target   =Event.element(event);
    var keyCode  =event.which || event.keyCode;

    if((keyCode != 16 && keyCode != 17 && keyCode != 18) &&
      !((keyCode ==  90) && event.ctrlKey) &&
      !((keyCode ==  89) && event.ctrlKey)){
        undoStack.add(                
            'TEXT',
            {   elementRef:target.id,
                prevValue :target.beforeUndoVal,
                newValue  :target.value
            }
        );
    }
}

function demoHandler(action,undo){
    if(action){
        if(action.type == 'TEXT'){
            var el=$(action.value.elementRef);
            el.value=(undo) ?             
              action.value.prevValue : 
              action.value.newValue;
        }

        $('undoButton').disabled=!action.canUndo;   
        $('redoButton').disabled=!action.canRedo;   
    }}

First, we enable both of our text inputs b by binding event listener functions to 
them for both the keydown C and keyup D events. We need to capture both so 
that we can record the value before the keystroke on keydown E, and then add an 
undo action to the stack once the key is lifted again F. Note that we bypass cer-
tain keystrokes—Shift, Ctrl, and Alt—and the Ctrl+Z and Ctrl+Y keys, as we 
don’t want to add these keypresses to the undo stack.

Updates previous value E

Adds action to stack F

Updates input text G

Updates undo 
buttons

 H

http://lib.ommolketab.ir
http//lib.ommolketab.ir


300 CHAPTER 8 
Handling back, refresh, and undo
 The undo action contains an identifier of the type of action—in our case we 
have used the label TEXT—and the value object, which must contain all the state 
needed to execute the action. In our case, we’ve recorded the current and previ-
ous contents of the element, as well as a reference to the element being updated. 
Our undo() handler method will be passed the undo action object. Once we’ve 
established that it is of the correct type, we can set the text input contents appro-
priately G, depending on whether it is an undo or a redo operation. We then 
enable or disable the on-screen undo and redo buttons appropriately H. 

Discussion
This is only a generic implementation of an undo stack. Although it provides a 
reimplementation of the browser’s undo functionality, no new features are added. 
For each custom undo operation, an action handler will need to be defined to 
handle the setting and unsetting of the data. We’ll examine the implementation 
of such a custom operation in the next section.

 Providing undo capabilities in your web application is a real win from a user 
experience standpoint. It helps to bridge the gap between regular nonbrowser 
applications and web applications. Many of the semantics that users are used to 
when dealing with native OS applications and thick clients can be reused and 
leveraged in your web application to reduce the user’s learning curve. Granted, 
some web applications already have undo capabilities, but they are usually limited 
to a server-side implementation. Pushing this responsibility to the client makes 
web applications faster in their execution. This in turn makes the web application 
less frustrating for the user.

 Previously we ran through some examples of maintaining history on both the 
client and the server. Naturally, this duality applies to undo functionality as well. 
In the next example, we’ll take a look at how you can involve the server in the 
handling of the undo functionality. 

8.3.3 Extending the undo stack for more complex actions

Now that we’ve seen a simple example of an undo stack, our engines are fully 
revved to handle a more complex example. Let’s get to it, and at the same time 
involve the server, and Ajax, in our undo handling.

Problem
You need customized undo capability for actions that are more complex than sim-
ple text editing. Resetting the state of the application will require input from the 
server as well as the client.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Handling undo operations 301
Solution
This example will reuse our generic undo stack to provide undo capability for a 
simple image-manipulation application. The image operation actions will take 
place on the server, where a snapshot of the image’s previous state will be stored, 
along with an operation reference and any other relevant operation data. The 
image editor user interface is shown in figure 8.4. The current state of the image 
appears in the middle, with a list of available operations on the left and a visual 
display of the undo stack on the right.

 We first need to define the types of operations available in our image editor. 
These operations will be identified by a unique integer that will also be refer-
enced by the server-side code. The operations available in the following example 
are as follows:

■ NO_OP (no operation)—Used for the initial state
■ INVERT—Takes the negative of the image’s color values

Figure 8.4 The completed image editor, combining a set of image-manipulation tools, a preview of 
the image, and a visual representation of the undo stack

http://lib.ommolketab.ir
http//lib.ommolketab.ir


302 CHAPTER 8 
Handling back, refresh, and undo
■ POSTER (posterize)—Reduces the number of color levels in the image
■ BLUR—Blurs the image using a 3x3 convolve matrix
■ EDGE—Detects areas of the image with strong intensity contrasts
■ SHARPEN—Reduces the “blurriness” of the image
■ FLIP_H (flip horizontal)—Flips the image along the y-axis
■ FLIP_V (flip vertical)—Flips the image along the x-axis
■ ROTATE—Rotates the image (in degrees)
■ STRING—Adds a text string to the image at the specified coordinate
■ CONVOLVE—Allows the creation of a custom 3x3 convolve matrix

We’ll need to write a lot of client-side code for this example, so let’s break it 
down into stages. First, we define the image-manipulation operations as con-
stants, as follows:

var NO_OP      = 0;
var INVERT_OP  = 1;
var POSTER_OP  = 2;
var BLUR_OP    = 3;
var EDGE_OP    = 4;
var SHARPEN_OP = 5;
var FLIP_H_OP  = 6;
var FLIP_V_OP  = 7;
var ROTATE_OP  = 8;
var STRING_OP  = 9;
var CONVOLVE_OP=10;

Next we initialize our generic undo stack object from the previous example. 
Remember that the stack took a callback function as an argument? We’ll provide a 
callback here that will update the history palette on the right side of the screen 
and fetch the modified image from the server. Listing 8.9 shows how we’ve imple-
mented this part of the program.

window.onload = initialize;

function initialize() {      
    undoStack.init(imageEditorHandler);        
    undoStack.doPrevActionCheck=false;   
    new Ajax.Request(                             
      'ImageEditor?timestamp='+
        (new Date().getTime())+'&init=yes'
        +'&src='+encodeURI($('editingImage').src),
      { method: 'get',

Listing 8.9 Setting up the complex undo stack

Creates initialize 
function

 B
Initializes undo 
stack

 C

 D Ignores equality checks

Initializes server-
side undo stack E

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Handling undo operations 303
        onSuccess: addActionCallback
      }
    );}

function imageEditorHandler(action,undo) {   
    if (action != null) {
        if (action.type != null) {
            var table = $('historyPalette');   
            var selected=-1;

            for (var i = 0; i < table.rows.length; i++) {
                if(table.rows[i].selected) {
                    selected = i;
                    break;
                }
            }
            
            if (selected > -1) {
                if(undo){
                    table.rows[selected]
                      .className ='paletteDisabled';
                    table.rows[selected].selected  =false;
                    table.rows[selected].dimmed    =true;

                }else{
                    // set the next action
                    table.rows[selected]
                      .className ='paletteNormal';
                    table.rows[selected].selected  =false;
                    table.rows[selected].dimmed    =false;
                }

                var new_i=(undo) ? selected-1 : selected+1;
                table.rows[new_i].className='paletteSelected';
                table.rows[new_i].selected =true;
                table.rows[new_i].dimmed   =false;

                undoStack.seek(new_i);       
                new Ajax.Request(
                  'ImageEditor?timestamp='+
                    (new Date().getTime())+'&seek='+(new_i),
                  { method: 'get',
                    onSuccess: seekCallback
                  }
                );
            }
        }

        $('undoButton').disabled=!action.canUndo;
        $('redoButton').disabled=!action.canRedo;
    }
}

Specifies image-editor 
undo function

 F

Handles history 
palette state

 G

Activates arbitrary 
undo entry H

http://lib.ommolketab.ir
http//lib.ommolketab.ir


304 CHAPTER 8 
Handling back, refresh, and undo
function seekCallback(xhr){                  
    $('editingImage').src=xhr.responseText;
}

The new initialize() function b in listing 8.9 needs to do just a few things. We 
first need to initialize the client-side undo stack C and give it a reference to the 
custom handler. Second, we need to tell the stack to ignore the equality check 
performed when adding a new undo action D. This will allow two image opera-
tions of the same type to be performed concurrently—for instance, blurring the 
image multiple times. Finally, we need to initialize the undo stack on the server 
side and set up the initial state of the application E.

 The image-editor handler F is slightly more complicated than in the previous 
example. When an actual action is performed, not only do we need to handle the 
undo/redo, but we also have to handle the state of the history palette G. Further-
more, with the introduction of the history palette, we need to be able to activate 
an arbitrary entry H without first traversing the actions between the newly 
selected action and the previously selected one. 

 When we move to a new entry, we want to perform an Ajax request to the 
server to update the state of the server-side undo stack. We define a callback func-
tion for the Ajax request, which will simply update the main image source I. 
Although this is a simple callback, which we would normally write inline, we’ve 
defined it separately here so that we can reuse it elsewhere. 

 There’s another predefined callback in this code as well, in the Ajax request 
that we make to initialize the stack. We’ll introduce addActionCallback() shortly; 
it is somewhat more involved.

 Let’s move on, then, to look at the JavaScript behind the various actions that 
we have provided form controls for on the left. All of these actions follow a similar 
workflow, marshaling any necessary arguments, and making an Ajax.Request to 
the server, where the image manipulation will be performed. The function that 
creates this Ajax.Request is shown in listing 8.10.

function addAction(op){
    var action     =null;
    var paramString='';

    switch(op){
        case ROTATE_OP:{
            action={

Listing 8.10 addAction() method

Defines Ajax callback I

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Handling undo operations 305
                rotAngle: $F('rotAngle')
            };
            paramString='&params='+action.rotAngle;
            break;
        }
        case STRING_OP:{
            action={
                string: $F('string'),
                color:  $F('color'),
                locX:   $F('locX'),
                locY:   $F('locY')
            };
            paramString=
                '&params='+
                encodeURI(
                action.string.replace(/,/g,'%%')+','+
                action.color+','+
                action.locX+','+
                action.locY);
            break;
        }
        case CONVOLVE_OP:{
            action=[];
            for(var i=0;i<9;i++){
                action[i]=$F(
                    'c'+
                    Math.floor(i/3)+
                    '_'+
                    (i%3)
                );
            }
            paramString='&params='+encodeURI(action);
        }
        case INVERT_OP:
        case POSTER_OP:
        case BLUR_OP:
        case EDGE_OP:
        case SHARPEN_OP:
        case FLIP_H_OP:
        case FLIP_V_OP:
        case NO_OP:
        default:{break;}
    }

    undoStack.add(op,action);
    new Ajax.Request(
      'ImageEditor?timestamp='+
        (new Date().getTime())+'&action='+
        op+paramString,
      { method: 'get',

http://lib.ommolketab.ir
http//lib.ommolketab.ir


306 CHAPTER 8 
Handling back, refresh, and undo
        onSuccess: addActionCallback
      }
    );
}

The first part of the function is a case statement that extracts any relevant argu-
ments for a given operation into a variable called paramString. Note that several 
operations, such as invert and flip, require no arguments, whereas others, such as 
convolve and rotate, require several arguments. Having assembled the argu-
ments, we update the client-side undo stack, and then make a call to the server, 
passing in the type of action along with any parameters. This will update the 
server-side undo stack. 

 Again, our Ajax request provides a reference to the addActionCallback() func-
tion. We’ve already seen this callback referenced in listing 8.9, when we initialized 
the stack. Let’s take a look at what it does (listing 8.11).

function addActionCallback(xhr){
    var table   =$('historyPalette');
    var content =xhr.responseText.split('<!-- BREAK -->');
    var found   =false;
    var toDelete=new Array();

    var editingImgSrc   =content[0];
    var newRowProperties=JSON.parse(content[1]);
    var eventCalls      =content[2];

    $('editingImage').src=editingImgSrc;

    for(var i=0;i<table.rows.length;i++){
        if(newRowProperties.id == table.rows[i].id){
            found=true;
        }

        if(found){
            toDelete[toDelete.length]=i;
        }else{
            table.rows[i].className='paletteNormal';
            table.rows[i].dimmed   =false;
            table.rows[i].selected =false;
        }
    }

    for(var i=toDelete.length-1;i>=0;i--){
        table.deleteRow(toDelete[i]);
    }

Listing 8.11 addActionCallback() function

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Handling undo operations 307
    var newRow     =table.insertRow(table.rows.length);
    var imageCell  =newRow.insertCell(0);
    var contentCell=newRow.insertCell(1);

    newRow.id       =newRowProperties.id;
    newRow.className='paletteSelected';
    newRow.selected =true;
    newRow.dimmed   =false;

    imageCell.className=newRowProperties.paletteImageClass;
    imageCell.innerHTML=newRowProperties.paletteImageHTML;

    contentCell.className=newRowProperties.paletteContentClass;
    contentCell.innerHTML=newRowProperties.paletteContentHTML;

    eval(eventCalls);
}

We’ve defined a custom format for the response returned by the server here, with 
a breaking delimiter splitting the response into three parts: the URL of the pre-
view image, style properties defining the new entry in the history palette, and a 
set of JavaScript events to be called. We split the response body into these three 
sections, and then update the preview and the history palette accordingly.

 We’ve now defined the full workings of the undo stack on the client and how it 
communicates with the stack on the server. The remaining JavaScript is simply 
concerned with adding some behavior to the history palette elements, as shown 
in listing 8.12.

function historyPaletteMouseOver(event) {       
    var tr = findTarget(Event.element(event));
    var id = tr.id;
    tr.className = 'paletteHighlight';
}

function historyPaletteMouseOut(event) {   
    var tr = findTarget(Event.element(event));
    var id = tr.id;
    if (tr.dimmed) {
        tr.className = 'paletteDisabled';
    } else if (tr.selected) {
        tr.className = 'paletteSelected';
    } else {
        tr.className = 'paletteNormal';
    }
}

Listing 8.12 Adding behavior to the history palette

Highlights palette entry B

Removes palette 
entry highlight

 C

http://lib.ommolketab.ir
http//lib.ommolketab.ir


308 CHAPTER 8 
Handling back, refresh, and undo
function historyPaletteMouseDown(event) {       
    var tr = findTarget(Event.element(event));
    var id = tr.id;
    tr.className = 'paletteSelected';
}

function historyPaletteMouseClick(event) {   
    var table  = $('historyPalette');
    var tr     =findTarget(Event.element(event));
    var id     =tr.id;
    var disable=false;
    for(var i = 0; i < table.rows.length; i++) {
        var className = 'paletteNormal';
        table.rows[i].dimmed   = false;
        table.rows[i].selected = false;
        if (disable) {
            table.rows[i].dimmed = true;
            className = 'paletteDisabled';
        } else if (tr.id == table.rows[i].id) {
            table.rows[i].selected = true;
            className = 'paletteSelected';
            disable = true;
        }
        
        table.rows[i].className = className;
    }
    
    var idx = parseInt(id.replace(/action_/,''));
    
    undoStack.seek(idx);
    seekRequest=sendGETRequest(
        '/servlet/ImageEditor?timestamp='+
        (new Date().getTime())+'&seek='+
        idx,seekCallback
    );
}

function findTarget(element) {   
    var parent = null;
    
    while (parent == null) {
        if (element.id.indexOf('action_') == 0) {
            parent = element;
        } else {
            element = element.parentNode;
        }
    }
    
    return parent;
}

Selects palette entry D

Disables later entries E

Activates specific 
undo action

 F

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Summary 309
The history palette needs several events to handle its look and feel as well activate 
a specified undo action F. We will need event handlers for

■ onMouseOver to highlight the palette entry b
■ onMouseOut to un-highlight the palette entry C
■ onMouseDown to select the palette entry D
■ onClick to select the palette entry, activate the undo stack, and disable all 

later entries E

Discussion
This example has provided a much richer undo stack. You can use this example 
to create your own action handlers that provide undo capability for just about 
anything that a user does. You now have an undo/redo framework with a history 
palette to build on.

 A new problem you run into when maintaining undo data on the server is one 
of garbage collection. When is it safe to delete the undo information for a user? 
This is a question you must decide based on the merits of your application and 
the functionality you wish to present to users. One could simply expire the undo 
information when a user’s session times out. That is not difficult to implement, as 
many web application frameworks provide callbacks that are invoked on session 
timeout. Of course, in this case your users will not be able to stop working in one 
browser and resume working in another. If you wish to provide users with that 
type of functionality, then some concept of a workflow must be created on the 
server and tied to a user. Once that is in place, users can resume their workflow at 
the point where they left off. If you do decide to move to a workflow-oriented 
undo stack, then you should think hard about when it is safe to expire a user’s 
undo stack and inform users of the undo stack behavior.

 Related to this, you also need to decide how much of a history you’re willing to 
maintain. In the case of our image-editing program, users could abuse our server 
and use up all of our storage space if we failed to limit their undo stacks. Simply 
by applying a lot of image transforms (perhaps from an automated script), they 
could exhaust server resources by creating huge undo stacks.

8.4 Summary 

In this chapter we’ve seen how it is possible to deprive the end user from navi-
gating history or refreshing a page. We’ve also seen, through the use of hashes 
and the Really Simple History framework, how to work with the history and 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


310 CHAPTER 8 
Handling back, refresh, and undo
refresh features of the browser. It is much easier to just deny this functionality to 
the end user, but such an approach would ultimately drive some people away 
from your application. The smart way to address the issue is to work with these 
features and reimplement client history to provide a rich and usable experience 
for the end user.

 We have also implemented a simple undo stack to allow you, the developer, to 
create undoable actions for just about anything the user can do, not just for filling 
out forms. This increases the flexibility of your application, and gives some con-
trol back to users when they make mistakes or simply change their minds about 
an action.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Drag and drop
This chapter covers
■ Drag and drop basics
■ Drag and drop lists
■ ICEfaces drag and drop
311

http://lib.ommolketab.ir
http//lib.ommolketab.ir


312 CHAPTER 9 
Drag and drop
We’re all familiar with “drag and drop” in desktop applications; in fact, drag and 
drop is a key part of what gives an air of reality to our interactions with comput-
ers. (“My data isn’t just a bunch of zeros and ones—I have files and folders that 
move when I touch them; they’re real.”) The most familiar application is proba-
bly in the file browser. Users are presented with icons for files and folders; users 
can open folders to display their contents in a window and—most interesting to 
us as developers—they can drag icons (by pressing the mouse button and mov-
ing the mouse) from one location and drop them (by releasing the mouse but-
ton) in another. It’s an important way of saying, “Do something with this to that.” 
Other user interface techniques (such as clicking a button or selecting a menu) 
typically just let you say, “Do something to this.” Look at figure 9.1.

 We’ve just explained drag and drop in terms of its primitive mouse events, but 
this is not necessarily how it appears to the desktop application developer. 
Instead, it typically appears as a data transfer operation, with abstract drag-and-
drop events, and the concept of data being moved from one object to another. In 
other words, drag and drop is often tightly integrated with copy and paste. We 
won’t be taking drag and drop quite this far in our treatment in this chapter, but 
we’ll find drag-and-drop events that are sufficiently abstract to comfortably build 
some very interesting applications.

 What’s exciting about drag and drop is the fact that even though it’s been 
around since the beginning of desktop graphical interfaces, a lot of applications 
still don’t make good use of it. In other words, the techniques that we’ll learn in 
this chapter present an opportunity to make Ajax applications that are actually 

Figure 9.1 Desktop drag and drop

http://lib.ommolketab.ir
http//lib.ommolketab.ir


JavaScript drag-and-drop frameworks 313
superior to their desktop counterparts. As you might expect, implementing drag 
and drop in a browser takes a bit of JavaScript magic. Fortunately, it’s JavaScript 
that various nice people have already implemented. Let’s move on and see what 
JavaScript drag-and-drop frameworks are available to us.

9.1 JavaScript drag-and-drop frameworks

There are a number of open source JavaScript implementations of drag and 
drop, but it’s important to choose one that is being actively maintained (to be 
assured that it will run reliably on all modern web browsers) and that has an API
that is easily usable with Ajax. Two of the more popular frameworks are Rico
(http://openrico.org) and Script.aculo.us (http://script.aculo.us/). 

 Rico can be used to create rich Internet applications and provides full Ajax 
support, drag-and-drop management, and a cinematic effects library. Script 
.aculo.us also provides cinematic visual effects and an API for drag and drop. One 
thing that we won’t be doing is dragging and dropping between other applica-
tions and the browser. As powerful as these libraries are, anything that we make 
draggable is strictly confined to the browser window.

 Using the two APIs is really quite similar. For either API, the objects that can be 
dragged and the places they can be dropped are simply HTML <div>s. In HTML
we just need something like the following:

<div id="dragster">
  Drag This
</div>

<div id="dropster">
  Drop Something Here
</div>

But nothing’s draggable yet. We need to register the <div>s with the framework of 
our choice by passing in their ids. Using Rico, this would be

<script type="text/javascript">
    dndMgr.registerDraggable(
        new Rico.Draggable(
          "test-draggable", "dragster"));
    dndMgr.registerDropZone(new Rico.Dropzone("dropster"));
</script>

And using Script.aculo.us, 

<script type="text/javascript">
    new Draggable("dragster")
    Droppables.add("dropster");
</script>

http://lib.ommolketab.ir
http//lib.ommolketab.ir


314 CHAPTER 9 
Drag and drop
So, either framework is very easy to use. Since the techniques for one can readily 
be adapted for the other and Script.aculo.us shows slightly better browser com-
patibility, the examples in this chapter will feature Script.aculo.us. Next, let’s see 
how to mix Ajax into the draggable (things that can be dragged) and droppable
(where draggables can be dropped) objects we’ve created.

9.2 Drag and drop for Ajax

Clearly, we are not going to implement drag-and-drop functionality from scratch 
in JavaScript. By making use of a library, such as Script.aculo.us, we can ensure 
that the drag-and-drop features in our application not only work correctly but 
also are portable across a variety of browsers. For us, the challenge simply 
becomes how to tie drag-and-drop features in with Ajax. Without Ajax, all we can 
do is provide a little toy for users: they can drag some items around in their 
browser and be amused with the novelty of this activity, but there’s no way for 
them to share what they’ve done with other users or affect the real data that lies 
on the server. To make the application real, we need to hook the drag-and-drop 
events into Ajax calls to the server. Let’s see how to do this with a shopping cart 
example that makes use of Script.aculo.us.

9.2.1 Drag-and-drop Ajax shopping cart

By applying drag and drop, we can provide a shopping cart that is intuitive for 
users, allowing them to drag items that they see on the screen into a shopping cart 
for purchase. Three items will be available for purchase, as shown in figure 9.2: 
two books and a rock. If the user shouldn’t purchase a particular item (perhaps 
because they’ve run out of money, or, in our particular case, because the item is a 
rock and not a book), the shopping cart can reject the item, causing it to revert to 
its original position. 

 The concept is simple, but there are a number of user interface events that 
need to be brought to life with Ajax: onHover, onDrop, and revert. Since our 
application has only one type of object that can be dragged (items for pur-
chase) and only one place for the objects to be dropped, the events have the fol-
lowing meanings:

■ onHover—The user may be considering the item; we might as well encour-
age them to buy it. It can also indicate an item in the process of being 
removed from the shopping cart.

■ onDrop—The user has selected an item for purchase.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Drag and drop for Ajax 315
■ revert—The revert callback is our application’s chance to say whether the 
object should drop in place or snap back to where it came from. We return 
true for revert when we reject an item from the shopping cart.

We now have defined our draggable regions (the books and the rock), our drop-
pable regions (just the shopping cart), and our events (onHover, onDrop, and 
revert). Let’s take a look at the implementation.

Problem
You need browser drag-and-drop events to be communicated to the server.

Solution
To understand this example, we’ll begin by looking at the HTML; once we under-
stand that, the role of the JavaScript will be clear. In the HTML that follows, we’ll 
find a series of major pieces:

■ JavaScript library loading
■ Style definitions
■ <div> elements for our draggable and droppable regions
■ A <span> for our status message
■ Registration of the droppable region with Script.aculo.us

Figure 9.2  
Drag-and-drop shopping cart

http://lib.ommolketab.ir
http//lib.ommolketab.ir


316 CHAPTER 9 
Drag and drop
There’s only one more detail to keep in mind: each draggable region will be reg-
istered with Script.aculo.us when it’s defined. Depending on how you like to orga-
nize your code, you can take this approach, or register all the draggable regions 
together in one block. Now, if we didn’t need to do any Ajax, and if we were con-
tent to just let the user drag objects around in the browser and not send any infor-
mation back to the server, this would be all we need. As you may suspect, we’ll 
apply the Ajax when we get to the JavaScript for this example. Let’s get started by 
looking at the HTML in listing 9.1.

<html>
<head>
                                             
<script type="text/javascript" src="lib/prototype.js"></script>         
<script type="text/javascript" src="lib/scriptaculous.js"></script>     

</head>

<style type="text/css">
  div.carthoverclass {       
    border:1px solid blue;    
  }                         
  div.cart  {                
    z-index:100;                   
    text-align:center;             
    height:200px;                  
    padding:10px;                  
    background-color:#abf;         
  }                                
</style>

<body>
  <h3>Ajax Shopping Cart</h3>    

  <table><tr>

    <td>
      <div alt="Product1" id="product_1"            
         itemid="01" style="z-index:500" />             
        <img alt="Product1" src="crane_3d.jpg" />       
        <br />                                          
        Ajax in Action.                                 
      </div>                                            
      <script type="text/javascript">
        new Draggable('product_1',     
            {revert:handleRevert});    
      </script>
    </td>

Listing 9.1 Shopping cart HTML

Loads JavaScript 
libraries

Specifies cart border 
highlight style

Specifies shopping 
cart style

Defines first 
draggable item

Registers first 
draggable item

 B

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Drag and drop for Ajax 317
    <td>
      <div alt="Product2" id="product_2"            
           itemid="02" style="z-index:500" />         
        <img alt="Product2" src="black_3d.jpg" />     
        <br />                                        
        Ruby for Rails.                               
      </div>                                          
      <script type="text/javascript">
      new Draggable('product_2', {revert:handleRevert});
      </script>
    </td>

    <td>
      <div alt="Product3" id="product_3"        
           itemid="03" style="z-index:500" />          
        <img alt="Product3" src="rock.jpg" />        
        <br />                                         
        An ordinary rock.                              
      </div>                                           
      <script type="text/javascript">
        new Draggable('product_3', {revert:handleRevert});
      </script>
    </td>

  </tr></table>

  <table><tr>
  
    <td width="400px">                 
      <div id="cart" class="cart" >        
        Shopping Cart                      
      </div>                               

    </td>
    <td width="25">
    </td>

    <td width="50">                 
      <span id="cartinfo"></span>     
    </td>                             

    </tr></table>

<script type="text/javascript">                 
  cartinfoDiv = $("cartinfo");                     
  Droppables.add('cart',                           
       { hoverclass:'carthoverclass',              
         onHover:                                  
         function(dragged, dropon, event) {        
                handleHover(dragged, dropon,   
                        event, cartinfoDiv);       
         },                                        

Defines second 
draggable item

Defines third 
draggable item

Defines 
droppable

Defines status 
message region

Registers shopping 
cart droppable

 C

http://lib.ommolketab.ir
http//lib.ommolketab.ir


318 CHAPTER 9 
Drag and drop
         onDrop: :                             
         function(dragged, dropon, event) {          
                handleDrop(dragged, dropon,          
                        event, cartinfoDiv);   
   }                                                 
       }                                             
  )
</script>

</body>
</html>

We pass the id of our draggable item <div> to Script.aculo.us b and register a 
callback for revert so we can control whether an item stays in the shopping cart 
or snaps back. We also pass the id of our droppable shopping cart <div> C to 
Script.aculo.us and register onDrop and onHover anonymous callbacks so that we 
can pass the id of our status message region.

 As you see, draggable and droppable <div>s can contain anything—text, 
images, and so on—so it’s just a matter of creating the appropriate HTML to make 
the objects look the way you want. Once you have the <div>s, they just need to be 
registered with Script.aculo.us as draggable or droppable, and this will cause 
Script.aculo.us to animate the items appropriately when the user drags them with 
their mouse. Of course, we also registered a number of callbacks as well; the call-
backs are the event handlers for when a draggable is moved over a droppable 
(onHover) or when it’s dropped on a droppable (onDrop). We also registered a revert
callback that lets us return true or false to indicate whether the item should stay 
in the shopping cart or should snap back to its original location. What will we do 
in these callbacks? Ajax. Two main Ajax functions are performed by the scripting: 
fetching new status messages depending on how the user has moved the draggable 
item (such as thanking them for the purchase when they drop the item into the 
shopping cart), and fetching the revert status of the draggable item they’re using 
(the rock can’t be purchased, so it must snap back to its starting location). The rest 
of the script just makes sure that our user interface events get delivered correctly—
which turns out to be a bit tricky for the hover events. Figure 9.2 shows what the 
HTML produces, and listing 9.2 contains the HTML itself.

<script type="text/javascript">
function AjaxHTML(url, target)  {            
    AjaxOperation(url, function(req) {replaceHTML(req, target);});  
}                                                         

Listing 9.2 Shopping cart JavaScript

Registers shopping 
cart droppable C

Updates HTML via Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Drag and drop for Ajax 319
function AjaxOperation(url, func, asynch) {
   var req;
   if (window.XMLHttpRequest) {                        
       req = new XMLHttpRequest();                         
   } else if (window.ActiveXObject) {                      
       req = new ActiveXObject("Microsoft.XMLHTTP");       
   }                                                       
   if (req) {
       req.onreadystatechange =                
           function (){onReady(req, func);};  
       req.open("GET", url, true);
       req.send("");
   }
}    

function onReady(req, func) {     
   if (req.readyState == 4) {        
       if (req.status == 200) {   
           func(req);                
       }                             
   }                                 
}                                    

function replaceHTML(req, target)  {   
    var content = req.responseText;    
    target.innerHTML = content;        
}                                      

var revertFlag = true;
function checkRevert(req)  {             
    var content = req.responseText;     
    revertFlag = (1 == (content - 0));  
}                                       

var lastHover;
function handleHover(dragged, dropon, event, target)  {
    itemid = dragged.getAttribute("itemid");
    if (lastHover == itemid)  {    
        return;                   
    }                             
    lastHover = itemid;           
    AjaxOperation("revert-" + itemid + ".txt",   
            function(req) {checkRevert(req)});     
    AjaxHTML("hover-" + itemid + ".html", target);   
}

function handleDrop(dragged, dropon, event, target)  {
    lastHover = null;                         
    itemid = dragged.getAttribute("itemid");
    AjaxHTML("drop-" + itemid + ".html", target);   
}

 B

 C

Waits for complete 
asynchronous response

Updates HTML with 
Ajax response

 D

 E

 F

Asynchronously shows 
hover status via Ajax

 G

Asynchronously shows 
drop status via Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir


320 CHAPTER 9 
Drag and drop
function handleRevert(dragged)  {   
    return revertFlag;              
}                                   
</script>

Discussion
Now that we’ve seen the code, let’s discuss some of the more interesting bits a lit-
tle further. Because we need to perform multiple Ajax requests in rapid succes-
sion, we maintain distinct request objects b when we create our callback C. This 
keeps them from overwriting each other. It’s also important to note that the 
revert flag is encoded as 0 for false and 1 for true. Here D we extract it from 
the Ajax response and convert it into a JavaScript Boolean value. Also keep in 
mind that every mouse movement generates a hover event, so we filter out E all 
but the first one. After we perform our filtering, we fetch the revert flag syn-
chronously F before the hover message is fetched. We do this so that the two 
requests do not interfere with each other. Finally we reset lastHover G. This 
ensures that the handleHover() function will be fully executed when it is called 
next. We do this because, once we drop an item, we might drag it again. 

 For the most part, the JavaScript in listing 9.2 simply responds to events and 
fetches page updates from the server via Ajax. It’s only in the handleHover()
where we see a bit of complication. The first problem is that handleHover() isn’t 
just called when the hover starts; it’s called for every movement of the mouse 
while the draggable is hovering over the droppable. There’s a slim possibility that 
you want to send every mouse movement over the network, but it’s not likely, so 
we’ve added logic to process only the first hover event. This works by keeping 
track of the draggable currently hovering; if it’s the same draggable as last time, 
just return from handleHover() without further processing. 

 The second problem is that we need to perform two operations in handle-
Hover(): update the display with a relevant message encouraging the user to pur-
chase, and check whether or not the item should be reverted from the shopping 
cart. Often, simple Ajax applications can get away with a single, global, request 
object, but in this case we need to guarantee that we process both the revertFlag
and the hover message correctly. The solution is to pass the XMLHttpRequest 
object as a parameter so that each different request can be acted on individually.

 A real shopping application would likely have more than three items to choose 
from, and the items would probably be dynamically generated. Fortunately, it’s 
just a matter of including the registration code following each item:

Returns revert flag 
for Script.aculo.us

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Drag and drop for Ajax 321
      <script type="text/javascript">
        new Draggable('product_1', {revert:handleRevert});        
      </script>

9.2.2 Manipulating data in lists

The basic drag-and-drop primitives of draggables and droppables are very pow-
erful, so it’s easy to imagine how a variety of applications could be built up. For 
instance, what if you have some items, say, fruits and vegetables, and you want to 
organize them into two lists: by type (fruit or vegetable) and by preference (by 
their order in the lists). A drag-and-drop interface makes sense; all the items 
should be draggable (so you can move them around), and both of the lists should 
be droppable. When you drag an item from one list to the other, it is removed 
from the first list and added to the second list. When you drag an item within a 
list, the other items should move out of the way so that the item can be dropped 
in a particular place. This would indeed require a complex chunk of JavaScript in 
the onHover event handler. Fortunately, Script.aculo.us provides built-in primi-
tives for manipulating lists with drag and drop. All that we need to do is to create 
the lists in HTML using the HTML list tags, and then indicate to Script.aculo.us 
which items can be used in which lists and what to do when the lists have been 
changed. When the lists change, it’s our chance to apply Ajax and invoke our 
application on the server, as shown in figure 9.3.

 For this problem, we’ll just inform the user of the first fruit or vegetable that 
they’ve been misplaced. Since we need to pass a relatively complex structure to 

Figure 9.3  
Verifying vegetables

http://lib.ommolketab.ir
http//lib.ommolketab.ir


322 CHAPTER 9 
Drag and drop
the server (two list orderings), we’ll be using DWR to handle the data marshaling. 
Between Script.aculo.us and DWR, we are able to make use of these powerful 
frameworks to concentrate our effort on the server-side Java code. As you’ll see, 
the trickiest part is determining what is a fruit and what is a vegetable.

Problem
You want to provide lists of data that can be modified with drag and drop.

Solution
Like most Ajax applications, our code will be divided into three main pieces: 
HTML, JavaScript, and application code. Since we’re applying DWR and Script 
.aculo.us, our HTML and JavaScript will be fairly simple—essentially registration 
code and event handlers, and our application code will be in Java. Let’s start with 
the HTML (listing 9.3) and build the two lists.

<html>
<head>
<style type="text/css">
li.green {                     
  background-color: #ECF3E1;    
  border:1px solid #C5DEA1;     
  cursor: move;                 
}                               

li.orange {                    
  border:1px solid #E8A400;      
  background-color: #FFF4D8;     
}                                

span.handle {                  
  background-color: #E8A400;     
  color:white;                   
  cursor: move;                  
}                                
</style> 
</head>
<body>

<h3>Sortable Lists</h3>    

<div style="height:200px;" >

<div style="float:left;" >
<h3>Vegetables</h3>

Listing 9.3 List HTML

Specifies vegetable style

Specifies fruit style

Specifies fruit 
handle style

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Drag and drop for Ajax 323
  <ul id="vegetables"                                 
      style="height:150px;width:200px;">                 
    <li class="orange" id="left_Pumpkin">                
      <span class="handle">HANDLE</span> Pumpkin.        
    </li>                                                
    <li class="green" id="left_Carrot">Carrot.</li>   
    <li class="orange" id="left_Orange">                 
      <span class="handle">HANDLE</span> Orange.         
    </li>                                                
  </ul>                                                  
</div>

<div style="float:left;" >
  <h3>Fruits</h3>
  <ul id="fruits" style="height:150px;width:200px;" >   
    <li class="orange" id="right_Apple">                  
      <span class="handle">HANDLE</span> Apple.           
    </li>                                                 
    <li class="orange" id="right_Tomato">                 
      <span class="handle">HANDLE</span> Tomato.</li>     
    <li class="green" id="right_Turnip">Turnip.</li>      
  </ul>                                                   
</div>

<br>

<div style="clear: both; margin-left: 150px;" >
  <span id="plant-error" 
        style="color: red;" ></span>   
</div>

</div>

<script type="text/javascript">
  Sortable.create("vegetables",             
     {dropOnEmpty:true,                       
     containment:["vegetables","fruits"],     
     constraint:false,                        
     onUpdate:handleUpdate});                 
   Sortable.create("fruits",                
     {dropOnEmpty:true,handle:'handle',        
     containment:["vegetables","fruits"],       
     constraint:false,                          
     onUpdate:handleUpdate});                   
</script>

</body>

This gives us our lists of items, a place to show application messages, and 
Script.aculo.us registration calls so that the items can be dragged and dropped. 

Contains left list 
of assorted items

Contains right list 
of assorted items

Specifies application 
message region

Registers 
left list

Registers 
right list

http://lib.ommolketab.ir
http//lib.ommolketab.ir


324 CHAPTER 9 
Drag and drop
Next, we need to apply a layer of DWR to glue all of this to our application on 
the server. We simply need to include the required DWR libraries and imple-
ment the Script.aculo.us callbacks with DWR functions (listing 9.4).

<head>
<script type="text/javascript" src="lib/prototype.js">       
  </script>                                                 
<script type="text/javascript" src="lib/scriptaculous.js">   
  </script>                                                  
<script type="text/javascript" src="dwr/engine.js"></script>   
<script type="text/javascript" src="dwr/util.js"></script>    
<script type="text/javascript" src="dwr/interface/Demo.js"></script>   
                                                       
<script type="text/javascript">
function handleUpdate(list)  {                      
    Demo.checkPlant(                                 
            Sortable.serialize("vegetables")           
            + "&" + Sortable.serialize("fruits"),      
             showPlantMessage);                        
}                                                      

function showPlantMessage(message)  {            
    DWRUtil.setValue("plant-error", message);   
}                                               
</script>
</head>

There are two lists, and either one can change, so b we send the current states of 
both lists to the server upon any change. The server will respond to our list 
update C with a message that we insert into the page with DWRUtil.setValue().

 As can be seen in the DWR script functions, we only have one server-side 
method to implement: based on the content of the two lists, we’ll return a String 
that indicates if there is an error (listing 9.5). 

package aip;

import java.util.HashMap;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;

Listing 9.4 List JavaScript

Listing 9.5 List Java

Loads 
Script.aculo.us 
libraries

Loads DWR 
base libraries

Loads DWR 
application library

Encodes changed 
lists for application

 B

Displays application 
message

 C

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Drag and drop for Ajax 325
public class Demo  {

    Map plants;

    public Demo()  {
        initPlantData();
    }

    private void initPlantData()  {
        plants = new HashMap();
        List fruits = new ArrayList();
        List vegetables = new ArrayList();
        fruits.add("Apple");                    
        fruits.add("Pumpkin");                      
        fruits.add("Orange");                       
        fruits.add("Tomato");                       

        vegetables.add("Carrot");                   
        vegetables.add("Turnip");                   
        
        plants.put("vegetables", vegetables);   
        plants.put("fruits", fruits);               
    }

    public String checkPlant(String listUpdate)  {
        String[] items = listUpdate.split("&");     
        for (int i = 0; i < items.length; i++)  {    
            if ("".equals(items[i]))  {
                continue;
            }
            String[] pair =                  
                items[i].split("\\[\\]=");         
            List plant = (ArrayList) plants.get(pair[0]);
            if (!plant.contains(pair[1]))  {      
                return pair[1] + " isn't a " +   
                pair[0].substring(               
                    0, pair[0].length() - 1) +   
                ".";                             
            }                                    
        }
        return "";
    }
}

Let’s look at the checkPlant() method in more detail because it has very little to 
do with plants but has a lot to do with decoding Script.aculo.us serialized lists. In 
our Script.aculo.us callback handleUpdate(), we append the serialization of the 
second list to the first and send it to the server via DWR. The listUpdate param-
eter might look something like this:

Initializes fruit/
veg expert system

Splits encoded list 
into items

Splits items into 
list/entry

Renders verdict 
on fruit/veg

http://lib.ommolketab.ir
http//lib.ommolketab.ir


326 CHAPTER 9 
Drag and drop
vegetables[]=Pumpkin&vegetables[]=Carrot&vegetables[]=Orange
        &fruits[]=Apple&fruits[]=Tomato&fruits[]=Turnip

Individual items are separated by & (just like HTML form values) and the individ-
ual items are encoded as follows:

listname[]=id

So, to decode them, we split the entire string at each & into items, and then split 
each item into its list name and its id at each []=. The rest of the checkPlant()
method just looks up the items in the database (not a very large database, in this 
case) to find the first error. When it finds an error, the method generates an infor-
mative message based on the data.

Discussion
Script.aculo.us makes it easy to develop an application that lets the user work 
with lists. Unlike with a desktop API, though, the changes to the lists are not 
passed to us as objects. Instead, we receive the current state of the list as a 
sequence of ids. For this reason, it’s important to assign meaningful ids to the list 
elements, and to not merely assign them ids based on their position in the list; 
more specifically, the id we use should uniquely identify the list item in our appli-
cation. There are a variety of possibilities, but you may wish to use a database key 
or an object hash code; it can be anything that can be uniquely resolved once it 
reaches the server (but it should be reasonably short, because the entire list of ids 
will be sent).

 Though Script.aculo.us is an amazing tool, it’s not the only one in our toolbox. 
Let’s next take a look at another popular Ajax framework, ICEfaces, which you 
can use to implement drag-and-drop capabilities in your Ajax applications.

9.2.3 The Ajax shopping cart using ICEfaces 

ICEfaces is an open source toolkit for developing Ajax applications as standard 
JavaServer Faces (JSF) applications (http://www.icefaces.org). The distinguishing 
characteristics of ICEfaces are the development methodology and the natural 
Ajax Push application-initiated update capability. (Ajax Push is closely related to 
“Comet” or “Reverse Ajax” and can be used to implement notifications or mul-
tiuser collaboration features within web applications.) Developing an ICEfaces 
application is just a matter of developing a standard JSF application. The appli-
cation can become an Ajax application with no code changes, thereby preserving 
the strong Model-View-Controller separation emphasized by JSF. To benefit from 
application-initiated updates, a single ICEfaces API method is all that is required; 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Drag and drop for Ajax 327
the application simply calls render() on the server when a page should be 
updated and the ICEfaces framework determines and pushes to the browser the 
minimal page updates required.

 To get an idea of how to develop an application in ICEfaces, let’s use it to 
implement the drag-and-drop shopping cart example that we previously put 
together with JavaScript and Script.aculo.us. It’s a simple application: the user 
can drag any of the three items and the application will update the message 
beside the shopping cart depending on which item they drag and whether they 
drop it in the cart.

Problem
You want to implement a drag-and-drop shopping cart using ICEfaces.

Solution
Take a look at the Ajax shopping cart shown in figure 9.4. If you think it looks and 
feels familiar, you’re right; ICEfaces makes use of the Script.aculo.us libraries to pro-
vide drag and drop—the JavaScript interface to Script.aculo.us is just abstracted for 
the Java developer behind a JSF component model provided by ICEfaces. 

 Our implementation will be in three main sections: a user-interface declara-
tion (which is expressed in listing 9.6 as a JSP document but strongly resembles 
HTML markup), two straightforward JavaBeans, and an XML configuration file 

Figure 9.4  
The drag-and-drop shopping cart, now 
with ICEfaces

http://lib.ommolketab.ir
http//lib.ommolketab.ir


328 CHAPTER 9 
Drag and drop
containing injected application data. Let’s dive into the markup, where we’re 
going to see a small amount of JSF configuration and a CSS style, but mostly 
we’ll devote our attention to configuration of the draggable components. The 
other part to watch for is how the shopping cart message is displayed; it’s so sim-
ple that it’s easy to miss, as it’s nothing more than a text output component 
bound to a JavaBean. ICEfaces takes care of all the Ajax for us; when an item is 
dropped and the message changes, the minimal page update is determined and 
automatically applied. We just need to specify how the parts of our page are 
bound to the data in our model.

<f:view xmlns:f="http://java.sun.com/jsf/core"                  
        xmlns:h="http://java.sun.com/jsf/html"            
        xmlns:ice="http://www.icesoft.com/icefaces/component">
                                                  
 <html>                          
 <head>                                              
    <style type="text/css">                          
      div.cart  {                                    
        z-index:100;                                 
        text-align:center;                           
        height:200px;                                
        padding:10px;                                
        background-color:#abf;                       
      }                                              
    </style>                                         
 </head>                                             
 <body>                                              

  <h3>Ajax Shopping Cart</h3>                        

  <ice:form>      

   <table><tr>   

    <td>
      <ice:panelGroup                        
          style="z-index:500;cursor:move;"  
          draggable="true"   
          dragListener=                           
            "#{dndBean.dragListener}"   
          dragMask=                               
            "dragging,drag_cancel,hover_end"    
          dragOptions=                      
            "#{craneItem.dragOptions}"   
          dragValue="#{craneItem}" >   

Listing 9.6 ICEfaces JSF

Declares  
JSF tag 
namespaces

Contains HTML 
markup and 
CSS style

Specifies form containing 
input components

Defines container for 
draggable book

Indicates draggable
 B

 C

 D

 E

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Drag and drop for Ajax 329
         <img alt="Product1" src="crane_3d.jpg" />   
         <br/>                                       
           Ajax in Action.                           
      </ice:panelGroup>    

    </td>

    <td>
      <ice:panelGroup 
          style="z-index:500; cursor:move;"         
          draggable="true"                            
          dragListener=
            "#{dndBean.dragListener}"                 
          dragMask=
            "dragging,drag_cancel,hover_end"          
          dragOptions=
            "#{blackItem.dragOptions}"                 
          dragValue="#{blackItem}">                    
        <img alt="Product2" src="black_3d.jpg" />       
        <br/>                                           
          Ruby for Rails.                                 
      </ice:panelGroup>                                  
    </td>

    <td>
      <ice:panelGroup 
          style="z-index:500; cursor:move;"     
          draggable="true"                     
          dragListener=                        
            "#{dndBean.dragListener}"          
          dragMask=                            
            "dragging,drag_cancel,hover_end"   
          dragOptions=                         
            "#{rockItem.dragOptions}"          
          dragValue="#{rockItem}">                 
        <img alt="Product3" src="rock.jpg" />     
        <br/>                                     
          An ordinary rock.                       
      </ice:panelGroup>                           
    </td>

   </tr></table>

   <table><tr>
  
    <td width="400px">
      <ice:panelGroup style="z-index:0;"   
          dropTarget="true">               
        <div id="cart" class="cart" >   
            Book Shopping Cart          
        </div>                          

Specifies HTML for 
draggable book

Closes draggable 
container

Specifies second 
draggable book

Specifies 
draggable rock

Specifies HTML for 
cart drop region

Defines drop target

http://lib.ommolketab.ir
http//lib.ommolketab.ir


330 CHAPTER 9 
Drag and drop
      </ice:panelGroup>                                
    </td>
        
    <td width="25">
    </td>

    <td width="50">
      <ice:outputText                        
          value="#{dndBean.dragMessage}"/>     
    </td>

   </tr></table>

  </ice:form>
 </body>
 </html>
</f:view>

dndBean b is the name of the JavaBean modeling our shopping cart application. 
It has a listener method called dragListener() that this binding expression tells 
JSF to call when something interesting happens with this draggable item.

 We’re not interested in every event relating to drag and drop. ICEfaces han-
dles the events on the server C, and we don’t want to send each mouse movement 
from the dragging action to the server, so we use this mask to block the events 
that are not of interest.

 We want the different items to have different dragging behavior (such as 
whether the item should snap back when dropped). By binding this behavior 
to the item bean with an expression D, we can configure it individually for 
each item.

 The dragItem is an actual JavaBean object associated with the draggable item 
that our dragListener() method can operate on when drag and drop occurs. 
This lets our Java application work with objects that are meaningful at the appli-
cation level E.

 Were you able to spot the Ajax in the declaration of the page? It’s intentionally 
invisible—one of the goals of ICEfaces is that Ajax be transparently provided. The 
developer focuses on the application: what components go on the page and how 
those components are bound to the dynamic data model. The low-level aspects of 
how those components are updated over the network using XHR are all abstracted 
and handled by the framework.

 We’ve created a page that declares what components are displayed to the user; 
now we need the executable part of our application. This will be implemented 

Contains message text 
from JavaBean

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Drag and drop for Ajax 331
entirely on the server in JavaBeans. Let’s start with the simplest part of our model: 
the shopping items. ShoppingItem (listing 9.7) is purely data-oriented; it’s just a 
JavaBean capable of containing information about the item. In a more complete 
application, we would also include such things as the price, weight, and availabil-
ity, but for this simple example our item will just contain the messages to show 
when the user drags it and drops it, and the options to use for dragging behavior 
(so just the rock can snap back rather than dropping into the shopping cart).

package aip;

import java.io.Serializable;

public class ShoppingItem implements Serializable  {
    
    String hoverMessage = "";                       

    public void setHoverMessage(String message) {      
        this.hoverMessage = message;                   
    }        

    public String getHoverMessage() {                  
        return this.hoverMessage;                      
    }                                                  

    String dropMessage = "";                        
 
    public void setDropMessage(String message) {   
        this.dropMessage = message;                
    }        
    
    public String getDropMessage(){                
        return this.dropMessage;                   
    }                                              

    String dragOptions = "";                        

    public void setDragOptions(String options) {   
        this.dragOptions = options;                
    }                                              

    public String getDragOptions() {               
        return this.dragOptions;                   
    }                                              
    
}

Listing 9.7 ShoppingItem 

Sets/gets hover 
message

Sets/gets drop 
message

Sets/gets drag 
options

http://lib.ommolketab.ir
http//lib.ommolketab.ir


332 CHAPTER 9 
Drag and drop
It’s easy to see that ShoppingItem can represent the properties of a shopping item 
in our simple application, but how do the individual items get created and how 
do they get configured? An interesting technique is to use the dependency injec-
tion or inversion of control capability with managed beans. In this example (list-
ing 9.8), we’ll use managed beans merely to instantiate and specify the items in 
our application, injecting the beans into the user’s session from the outside (this 
simple application has no meaningful dependencies).

<?xml version='1.0' encoding='UTF-8'?>                            
<!DOCTYPE faces-config PUBLIC                                 
  "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN" 
  "http://java.sun.com/dtd/web-facesconfig_1_1.dtd">          
                                                     
<faces-config>                                                

    <managed-bean>                                               
      <managed-bean-name>dndBean</managed-bean-name>          
      <managed-bean-class>aip.DragDropBean</managed-bean-class> 
      <managed-bean-scope>session</managed-bean-scope>        
    </managed-bean>                                           

    <managed-bean>                                               
      <managed-bean-name>craneItem</managed-bean-name>          
      <managed-bean-class>aip.ShoppingItem</managed-bean-class> 
      <managed-bean-scope>session</managed-bean-scope> 
        <managed-property>                                
            <property-name>hoverMessage</property-name>   
            <value>Good choice.</value>                   
        </managed-property>                               
        <managed-property>                                 
            <property-name>dropMessage</property-name>     
            <value> Thank you for your purchase.</value>   
        </managed-property>                                
        <managed-property>                                 
            <property-name>dragOptions</property-name>     
            <value></value>                                
        </managed-property>                                
    </managed-bean>

    <managed-bean>                                               
      <managed-bean-name>blackItem</managed-bean-name>          
      <managed-bean-class>aip.ShoppingItem</managed-bean-class> 
      <managed-bean-scope>session</managed-bean-scope>          
        <managed-property>                                      
            <property-name>hoverMessage</property-name>         
            <value>Excellent selection.</value>                 
        </managed-property>                                     

Listing 9.8 ICEfaces JSF configuration

Declares 
JSF config 
file

Declares 
drag-and-
drop bean 
in session

Names 
first book 
item

Specifies session scope

Declares item’s 
hover message

 B

Declares item’s 
drop message

Declares item’s 
drag options 
(default)

Declares 
second 
book item

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Drag and drop for Ajax 333
        <managed-property>                               
            <property-name>dropMessage</property-name>        
            <value>You are sure to enjoy.</value>             
        </managed-property>                                   
        <managed-property>                                    
            <property-name>dragOptions</property-name>        
            <value></value>                                   
        </managed-property>                                   
    </managed-bean>                                           
    

    <managed-bean>                                               
      <managed-bean-name>rockItem</managed-bean-name>          
      <managed-bean-class>aip.ShoppingItem</managed-bean-class>
      <managed-bean-scope>session</managed-bean-scope>         
        <managed-property>                                     
            <property-name>hoverMessage</property-name>        
            <value>Put it back.</value>                        
        </managed-property>                                    
        <managed-property>                                     
            <property-name>dropMessage</property-name>         
            <value>You really don't want this one.</value>     
        </managed-property>                                    
        <managed-property>                               
            <property-name>dragOptions</property-name>   
            <value>revert</value>                        
        </managed-property>                              
    </managed-bean>

</faces-config>

The property named hoverMessage corresponds directly to the hoverMessage field 
in the ShoppingItem bean. JSF looks for a method called setHoverMessage() b
and calls it on the bean instance with the value we give here.

 This gives us a user interface and some data, but our application can’t actually 
do anything yet; we haven’t implemented any functions that act on the user 
events. What does our application do? When users drag an item, the message is 
updated depending on what they do. As we saw in the page declaration, our Java-
Bean finds out that an item has been dragged through the dragListener() call-
back. The message is updated by virtue of being a text output component bound 
to the bean (ICEfaces ensures that it is updated in the page when necessary). Let’s 
see how these functions are implemented in the bean (listing 9.9). 

Declares 
second 
book item

Declares 
third item 
(rock)

Declares item’s 
drag options 
(snap back)

http://lib.ommolketab.ir
http//lib.ommolketab.ir


334 CHAPTER 9 
Drag and drop
package aip;

import com.icesoft.faces.component   
       .dragdrop.DragEvent;         
import com.icesoft.faces.component.ext.HtmlPanelGroup;

public class DragDropBean  {
    
    private String dragMessage = "";                

    public void setDragMessage(String message)  {      
        this.dragMessage = message;                    
    }        
    
    public String getDragMessage()  {                  
        return this.dragMessage;                       
    }                                                  
    
    public void dragListener(         
            DragEvent dragEvent)  {   
        ShoppingItem item = (ShoppingItem)    
          ((HtmlPanelGroup)                   
                  dragEvent.getComponent())   
                          .getDragValue();    
      
        if (null != item) {
          if ( dragEvent.getEventType()          
                == dragEvent.HOVER_START )  {      
            this.dragMessage =                     
              item.getHoverMessage();              
          } else if ( dragEvent.getEventType()   
                == dragEvent.DROPPED )  {        
            this.dragMessage =                   
              item.getDropMessage();             
          }
        }

    }
}

The setDragMessage() method b will likely never be called, but it’s stylistically 
preferred to include setter methods for bean properties. If it’s a hover event, we 
extract the hover message from the item. The item is an object that knows what 
should be displayed when it hovers over the shopping cart C. If the item has 
been dropped D, we extract the drop message from the item.

Listing 9.9 DragDropBean

Uses ICEfaces  
drag-and-drop events

Sets/gets 
dragMessage

 B

Handles drag events

Extracts shopping 
item object

Shows hover 
message if hovering

 C

Shows drop 
message if dropped

 D

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Summary 335
Discussion
In terms of philosophy, the main thing to notice is the loose coupling between the 
model and the view. A drag-and-drop event doesn’t directly cause the message 
beside the shopping cart to be changed to a certain value; the event is received by 
the application and the internal state of the application is changed. The designer 
is free to project that internal state into the page view in any way desired, such as 
by displaying a message beside the shopping cart or in a pop-up, but the impor-
tant thing is that the designer doesn’t need to know that dragging an item to the 
shopping cart changes the internal state. The state change, which is in the domain 
of business logic, resides comfortably in the application code.

9.3 Summary

We’ve seen three ways to use drag and drop with Ajax: first, we learned how to 
apply the capability to arbitrary objects; second, we saw a refinement specifically 
for lists; third, we looked at the ICEfaces framework. The only changes with lists 
were that items automatically move out of the way and the convenient serializa-
tion function (which takes into account the position of the list items, not just 
which droppable they lie in). In any case, the key lesson is that JavaScript libraries 
(such as Script.aculo.us or ICEfaces) are available that expose drag and drop with 
high-level events that can be easily glued to Ajax functions. It’s now just a matter 
of using these techniques to surprise desktop users with browser applications that 
are even richer than they expect.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Being user-friendly
This chapter covers
■ Dealing with network latency issues
■ Providing context-sensitive help 
■ Detecting and reporting errors
336

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Being user-friendly 337
Would you rather make your users scream in frustration or purr with pleasure?
 Although this may seem like a silly question (after all, who would want to 

intentionally frustrate their users?), it’s all too easy to create user interfaces that 
are less than friendly. This is especially true on the Web, where our choice of con-
trols is limited to the control set provided by the HTML specification.

 Even with the limitations placed on our web applications, the same principles 
that are applied to their desktop brethren can be applied to our applications, 
despite the fact that the usability challenges faced by web applications differ from 
the challenges faced by desktop programs. Three such major principles that we’ll 
examine in this chapter are

■ Provide feedback—A confused user is a frustrated user. Letting the user 
know what’s going on is one of the most important principles of usability.

■ Provide proactive help—Anticipating what the user needs to know goes a 
long way in reducing the amount of time they sit staring at the screen, 
unsure of what to do.

■ Be intuitive—Make sure that the user is never lost or unsure of what to do 
next. And most of all, never do something unexpected or unusual.

There are, of course, many other usability principles, but these are areas where 
web applications frequently fall flat and that we’ll explore within this chapter. 
You’ll see how using Ajax technologies can help you overcome these common 
stumbling blocks in order to deliver a delightful user experience.

 In this chapter we’ll explore these topics in the guise of the developers of a 
community-based recipe-sharing web application. In the spirit of the so-called 
“Web 2.0,” this site is one in which the members of the community provide the 
bulk of the content, which takes the form of recipes that they share with other 
members. We’ll just be providing the platform on which they will do it.

 Because it is a community-based application, usability is a primary concern. If 
the members are frustrated when they attempt to use our system, contributions 
will suffer. And with a community-based application, contributions are what it’s all 
about. Also, as a community-based system, it is likely to be heavily used by large 
numbers of members. We’ll need to be sure that the user load has minimal impact 
on the members’ experience while using our application.

 So let’s dig in and take a look at some of the usability challenges we face, and 
how, using Ajax, we can meet these challenges.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


338 CHAPTER 10 
Being user-friendly
10.1 Combating latency

Imagine a user pounding on his keyboard while shouting at the screen, “Where’s 
my data!”

 Delays on the Web are inevitable. Whether due to slow connections, slow serv-
ers, inefficient code, or overworked databases, sometimes our users have to wait 
for their data. This can be frustrating, not only because it can waste time but 
because often the user is left wondering, “Is anything really happening?”

 This lag between the time that a request is submitted to our servers and the 
time that the browser receives a response with the result is known as latency and is 
one of the major usability issues for web applications.

10.1.1 Countering latency with feedback
Ajax can help reduce this latency by allowing our applications to make smaller 
requests and receive smaller responses, as opposed to the traditional and cum-
bersome full-page refresh necessary with non-Ajax web applications. While this 
can decrease the latency of the operations in our applications, it can also contrib-
ute to users’ confusion.

 How is that?
 Users of web browsers are accustomed to the visual feedback cues that most 

browsers provide: usually a progress bar of some sort in the status bar, and a 
“throbber” (or other indication) in the toolbar area. Use of Ajax frequently cir-
cumvents these feedback mechanisms. So even if our Ajax applications can 
shorten the latency of operations, such lags cannot be eliminated completely, and 
our users may be left with no feedback during those delays, even if they are shorter.

Problem
Because we cannot completely eliminate latency in our web applications, we want 
to offer the user some sort of visual feedback when an operation that could be 
lengthy is under way.

Solution
Let’s consider a page in our recipe-sharing application in which the user can 
search for a recipe via terms in its title. Remember that this is a community-based 
site, so we are anticipating (or fervently hoping) that the database for this site will 
contain a large number of contributions from its members. That means a search 
operation may take some time to complete.

 Since we are going to be obtaining the search results via an Ajax request, the 
browser’s visual cues may not be operational or sufficient to offer our users 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Combating latency 339
proper feedback, so we need to make sure that they know that our application is 
working hard on their behalf. There are any number of ways we could provide 
such feedback, and we’ll code two examples to show variations in approach: one 
in which a page-level loading banner is displayed, and one in which a localized 
animation provides a feedback cue.

Some setup details
The solutions in this chapter require the services of server-side resources that will 
provide the back-end activity that our application requires. Obviously a true web 
application back end isn’t included, but only a series of servlets and classes that 
provide the “smoke and mirrors” to fake it enough for our purposes.

 See the readme files in this chapter’s downloadable source code at www.man-
ning.com/crane2 for information on setting up the code as a Java web application 
that you can run. Don’t worry if that sounds scary; because the downloaded code 
is already set up as a complete and self-contained web application, it’s easier than 
you might think.

 Because the purpose of these examples is to illustrate client-side usability 
techniques rather than to explore the server-side operations of a community-
based site, we’re not going to focus too much on the back-end operations beyond 
the interface provided to invoke them.

 If you are interested in the back-end component, the source code is available 
in the examples for this chapter and implements a lightweight front controller
employing the Command pattern. See the readme files and source code for 
details if you’d like.

 From the point of view of the client code, all services provided by the back end 
are accessed via a URL of the form

/aip.chap10/command/WhatToDo

In this URL, /aip.chap10 is the context path for this Java web application that was 
set up (if you followed the instructions in the readme files) for this chapter’s code. 
The /command portion is the servlet path that invokes the front controller (as 
defined in the application’s deployment descriptor), and the /WhatToDo is the 
specific command that we want the server to execute on our behalf.

 From our point of view as Ajax page authors, we don’t care much about the 
details. All we care about is that if we want to execute the SearchForRecipes com-
mand, the URL would be

/aip.chap10/command/SearchForRecipes

The server-side code handles the details of invoking the correct command code.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


340 CHAPTER 10 
Being user-friendly
 With that behind us, let’s start setting up the search page, or at least enough of 
it to show the point of the exercise.

Variation 1: displaying a page banner
The HTML portion of our first solution is as simple as you might expect it to be, 
as shown in listing 10.1. This HTML file can be found in the download for this 
chapter in the file solution-10.1.1a.html in the solution-10.1.1 folder.

<html>
  <head>
    <!--script and CSS will go here-->
  </head>
  <body>
    <fieldset>
      <legend>Find Recipes</legend>   

      <form name="searchForm"
            onsubmit="performSearch();return false;">   

        <div>                                           
          <label>Where recipe title contains:</label>
          <input type="text" name="searchTerms"
                 id="searchTermsField"/>
        </div>

        <div>
          <input type="submit" value="Search!"/>
        </div>
      </form>

      <div id="resultsContainer"></div>   

    </fieldset>

    <div id="processingNotice" style="display:none" >   
      Searching! Please wait...
    </div>
  </body>
</html>

A <fieldset> and <legend> element pair that provides easy styling b is used to 
hold the form C containing our controls and a <div> E in which our results will 
be shown.

 The form controls D consist of the expected combination of a label, a text 
field in which to enter the search terms, and a submit button.

Listing 10.1 HTML for “I’m working on it” page banner

Declares fieldset and 
legend element pair

 B

Defines form C

Specifies form 
controls D

Creates results 
container

 E

Specifies initially 
hidden banner

 F

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Combating latency 341
 Also notable is the onsubmit event handler for the form. We use the little trick 
of calling a function to perform our “submission operation” and then return 
false to prevent the form itself from ever being submitted to the server. Since 
we’ll be issuing an Ajax call to the server ourselves in the performSearch() func-
tion, we never want the form to be submitted to its action.

 Outside of the <fieldset>, we defined a <div> element containing the text 
“Searching! Please wait…” that is initially hidden F. Since we are going to apply 
absolute positioning to this element, it really doesn’t matter where we place it in 
the HTML, but it is conventional to place such elements at the end of the markup, 
after all the relatively positioned elements.

 The absolute positioning for that element, along with a few other styling 
rules that give it a “can’t be ignored” appearance, is defined in the style header 
as follows:

#processingNotice {
  position: absolute;
  top: 0px;
  right: 0px;
  background-color: red;
  color: white;
  font-size: 1.2em;
  width: 320px;
  text-align: center;
  padding: 4px;
}

This not only places the element at the top right of the screen, but it also enlarges 
the text and gives it a hard-to-miss red background. During the search operation, 
the page will look as shown in figure 10.1.

 The script portion of our page, defined in the <head> element, is shown in 
listing 10.2.

Figure 10.1  
I’m working here!

http://lib.ommolketab.ir
http//lib.ommolketab.ir


342 CHAPTER 10 
Being user-friendly
<script type="text/javascript">
  function performSearch() {
    $('resultsContainer').innerHTML = '';   
    new Ajax.Request(
      '/aip.chap10/command/SearchForRecipes',   
      {
        onSuccess: showResults,
        onFailure: showResults,
        parameters: $('searchForm').serialize(true)
      }
    );
    Element.show('processingNotice');   
  }

  function showResults(request) {     
    Element.hide('processingNotice');
    $('resultsContainer').innerHTML = request.responseText;
  }
</script>

The performSearch() function, established as the onsubmit event handler for our 
form, performs three operations. First, it clears out any previous results b. Our 
page could be used for many searches, so we remove any results that have already 
been displayed.

 It then initiates the search by making an Ajax request C to the SearchFor-
Recipes command provided by our back end (as described previously) and then 
passing the value of the search terms field. For expediency, our smoke-and-
mirrors server code completely ignores the terms and returns the results for a 
search on “Chicken Pot Pie” regardless of what you type into the field—hardly 
realistic, but good enough for our purposes.

 After sending the request, the hidden banner element named processing-
Notice is displayed D to let the user know that, even though nothing at all may 
appear to be happening, the server is busy searching for all those luscious chicken 
pot pie recipes.

 Both the onSuccess and onFailure handlers are set to the same function: show-
Results(). This function E hides the processing banner and displays the results 
of the search in the <div> element created just for that purpose. In case of an 
error, the error message as formatted by the server will appear in place of the 
results. This isn’t the best possible means to display an error to the user, but it will 
do for now (we’ll address the display of failure messages in upcoming examples). 

Listing 10.2 Script for page-level “I’m working on it” notice

Clears out results B

Initiates search C

Displays banner D

Hides banner and 
shows results

 E

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Combating latency 343
The point is that, regardless of success or failure, the processing banner needs to 
be hidden upon completion of the request.

 After the results have been displayed and the banner removed, the page is as 
shown in figure 10.2.

 Obviously in the real application, we’d want to format the results a bit more 
nicely and probably return more information about the located recipes: perhaps 
ratings, submission date, submitting member, and so on. We’d also make the rec-
ipe names links to the actual recipes, but what we’ve got here is sufficient to make 
our point regarding user feedback.

 The full code for this example can be found in /solution-10.1/solution-10. 
1a.html in the downloadable source code for this chapter.

 It could be argued that putting a banner at the top of the page is distracting as 
it diverts the focus from the main elements. Let’s modify our code to use a more 
localized variation.

Variation 2: localized animation
Flashing a banner, especially a bright red one, in the upper-right corner of the 
screen is sure to attract the notice of the user. That’s good. We want them to notice 
our feedback. But there are times, especially in a longer or more complicated 
page, where drawing the user’s eyes away from where the action is happening 
could be distracting to the point of interruption.

 For such cases, we’d prefer that any feedback appear locally to the area in which 
the user is working, so let’s make some changes to our original page to achieve that.

 This variation requires only a few changes to the source code of our original 
solution, beginning with moving the <div> containing the processing notice. In 
the original recipe, we absolutely positioned that element and so we placed it at 

Figure 10.2  
Done working!

http://lib.ommolketab.ir
http//lib.ommolketab.ir


344 CHAPTER 10 
Being user-friendly
the end of the entire markup. In this variation, it’s going to appear in the normal 
flow with other elements, so we move it to just before the results container. Now, 
when a search is under way, the page appears as shown in figure 10.3. The HTML
file for this example is solution-10.1.1b.html.

 This section of the markup appears in listing 10.3.

    ... 
    <div>
      <input type="submit" value="Search!" id="submitButton"/>
    </div>
  </form>

  <div id="processingNotice" style="display:none" >
    <img src="whirlybug.gif"/>Searching!
  </div>

  <div id="resultsContainer"></div>

</fieldset>

We removed the CSS styling for this element (though note that it is still initially 
hidden), modified the text a bit, and added a small animation to it. The GIF is an 
animated icon that rotates in place, giving the illusion of activity.

 That’s the extent of the necessary changes.

Discussion
In this section we examined two variations on giving the user concrete feedback 
while a potentially lengthy Ajax operation is under way. The use of Ajax reduces 

Listing 10.3 New location of the processing notice

Figure 10.3  
Whirling while we work

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Combating latency 345
the latency of this operation as only the results need to be fetched from the server 
(as opposed to the markup for the entire page), but because we anticipate a large 
database and heavy load, the operation could still take a nontrivial amount of time.

 In the server code for the search command, the operation is artificially 
extended to take 5 seconds—though on first run it might take longer as the servlet 
engine gets up on its feet. That way, we may see the effects of the feedback display.

 In one variation we used a hard-to-ignore, page-level banner, while our sec-
ond variation used an in-place animation. In either case, the user is made aware 
that something is happening on their behalf, which should help keep them from 
wondering if something is really going on. It should also help prevent repeated 
button presses by impatient or bewildered users that might overload our already 
busy database.

 One caveat: be careful with animations, as it’s all too easy to go overboard 
with them. Something subtle like our whirling ball, or a hypnotic barber pole, is 
quite sufficient. You don’t need a hand punching through the page, a construc-
tion worker digging away, or any of the other overused and rather obnoxious 
animations that are prevalent on the Web. As long as you remember the “keep 
it subtle” rule, something thematic for the site might be appropriate—perhaps 
a spinning fork and spoon for our recipe site? But we suggest you avoid a danc-
ing banana.

10.1.2 Showing progress

The variations on the “I’m busy” notice that we explored in the previous section 
are all well and good for letting the user know that something is happening in the 
background. But while they give the user a warm and fuzzy feeling that something
is going on, they do not give the user any indication of where in the process that 
operation is at any time.

 Much of the time, it is quite difficult to predict how long a back-end operation 
might take. But when such information is possible to obtain, a progress bar is a 
good means to give the user feedback regarding the expected completion time of 
an operation.

Problem
We’d like to give users more feedback than just “things are happening.” We want 
to give them an indication of where they are in the progress of the operation.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


346 CHAPTER 10 
Being user-friendly
Solution
In this section we’ll create a progress bar that can indicate what percentage of a 
server-side operation is completed. We’ll consider only the client side of the 
equation here. Instrumenting server-side operations to be able to report this type 
of information is well beyond the scope of this section; in fact, it could consume 
an entire chapter of a book on server-side threading. We’ll simply assume that the 
server is capable of giving us that information whenever we ask for it.

 The previous solution just included the code and elements necessary to dis-
play our processing notification directly in the page markup and code. Since the 
progress bar is a little more involved, we’ll abstract it out of the page into a reus-
able JavaScript class.

 Let’s get right to it.

The ProgressBar class
Factoring the code for the progress bar into its own JavaScript class not only sim-
plifies the page that it will appear on, but ensures that it can be easily used on any 
page, or even multiple times on a single page.

 Because we will be using the Prototype pattern for creating classes, we start our 
ProgressBar.js file with the usual declaration:

ProgressBar = Class.create();

The rest of the declarations are made in the class’s prototype property, including 
the initializer for the constructor, which is defined in listing 10.4.

initialize: function(parent,options) {        
  this.parentElement = $(parent);
  this.options = Object.extend(   
    {
      className: 'progressBar',
      color: 'red',
      interval: 2500
    },
    options
  );
  this.parentElement.innerHTML = '';  
  this.parentElement.style.display = 'none';                     
  this.barContainer = document.createElement('div');    
  this.barContainer.className = this.options.className;
  this.barContainer.style.position = 'relative'; 
  this.bar = document.createElement('div');
  this.bar.style.position = 'absolute';
  this.bar.style.height = '16px';

Listing 10.4 Initializer for the ProgressBar class

Declares initializer with 
constructor signature B

Merges passed 
options with defaults C

Ensures empty 
parent element

 D

Creates progress 
bar elements

 E

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Combating latency 347
  this.bar.style.width = '0%'; 
  this.bar.style.backgroundColor = this.options.color;
  this.barContainer.appendChild(this.bar);
  this.parentElement.appendChild(this.barContainer);
},

The signature for this method b specifies two parameters: one that identifies the 
parent element within which the progress bar will be placed, and a hash of 
options. In typical Prototype fashion, the parent element can be identified by ref-
erence or by id.

 The options passed by the user are merged with a set of defaults that we pro-
vide C. The options are

■ className, the style class name to be applied to the progress bar. If omit-
ted, a default of progressBar is used.

■ color, the color to be used to fill in the progress bar as the operation 
progresses. The default is red.

■ interval, the interval at which the server should be polled for updated 
completion percentage. A default of 2.5 seconds is supplied.

We make sure that the parent element is empty D and hidden, and then proceed 
to create the progress bar elements within it E. Note that we used the innerHTML
property to empty the parent (because it’s easy) and the DOM API to create the 
elements (to avoid building markup in strings).

 The DOM manipulation that we apply here creates the equivalent of the fol-
lowing markup:

<div class="nameFromOptions" style="position:relative;">
  <div style="position:absolute;height:16px;width:0%;
              background-color:fromOptions;">
  </div>
</div>

The outer <div> serves as the progress bar itself and its appearance is controlled 
by the CSS class name in the options set. The inner <div> is the sliding bar filled 
with a color from the options that indicates the percentage of the operation that 
is complete. Its width is initially set to 0%.

 Once a page creates an instance of the progress bar, we’re all set to start it. For 
that, we provide a start() method. Of course, if we allow the page code to start 
the progress bar, we also need to be able to stop it. Both methods are shown in 
listing 10.5.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


348 CHAPTER 10 
Being user-friendly
start: function() {                
  this.bar.style.width = '0%';
  Element.show(this.parentElement);
  this.timer =                                                    
    setInterval(this._tick.bind(this),this.options.interval);
},

stop: function() {   
  clearInterval(this.timer);
  Element.hide(this.parentElement);
},

In the start() method, we set the percentage <div> to a width of 0% just in 
case this is not the first time that the progress bar has been started b, and 
reveal the progress bar by showing its container, which we made sure was hid-
den by the constructor.

 We then start a timer to begin polling the server for the completion per-
centage of the ongoing operation using the setInterval() function. We spec-
ify an internal implementation method as the callback, and set the duration of 
the interval at which it will be invoked to whatever value ended up in the 
options hash.

 We store the handle to the timer in an instance member named timer. We 
need to store this handler since the only way we will be able to later stop the timer 
is by using the handle. Also note that we bind the callback to the object instance. 
If we failed to do this, the context object for the callback would be the window 
rather than our instance of ProgressBar.

 The stop() method cancels the timer by calling clearInterval() on the stored 
timer handle and hides the progress bar C.

 Once the timer is established by start(), the tick() callback will be invoked 
regularly at the specified interval until we stop it. It will be the duty of that call-
back to ask the server for the completion status and to adjust the progress bar dis-
play as appropriate. This method is shown in listing 10.6.

_tick: function() {
  var self = this;
  new Ajax.Request(
    '/aip.chap10/command/GetProgress',
    {

Listing 10.5 Starting and stopping the ProgressBar

Listing 10.6 Tick, tick, tick

Starts progress bar B

Stops progress bar C

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Combating latency 349
      onSuccess: function(request) {
        self.bar.style.width = request.responseText + '%';
      }
    }
  );
}

Each tick of the interval timer created in the start() method results in an invo-
cation of the _tick() method. The leading underscore in the method name is a 
convention that identifies this method as an implementation method for the 
class’s own internal use and that should not be called by external code.

 The method stores a reference to the instance in a variable named self since 
we’ll want to be able to refer to the instance in a closure that will be created later 
in the method. Remember that closures do not include this.

 After that, the method makes an Ajax request back to the GetProgress com-
mand in order to ask the server for the percentage of completion of an operation. 
In an actual implementation, the server would probably require a job ID or other 
identification of the operation to be measured, but since we’re just faking it for 
the purposes of this example, we don’t make any assumptions as to what a real-
world server would require.

 The success handler for this request is a closure that obtains the percentage of 
completion from the response and adjusts the width of the progress bar’s inner 
<div> accordingly.

 That’s it for the ProgressBar implementation; let’s see how we can use it.

Using the ProgressBar on a page
Let’s adjust the code of the second variation of section 10.1.1 to use an instance of 
ProgressBar in place of the simple animation. Because we abstracted the code to 
create and manipulate the progress bar into its own class, the modifications are 
gratifyingly simple.

 Once we’ve finished, when displayed and the search operation is under way, 
the page appears as shown in figure 10.4.

 Of course, we first need to import the class:

<script type="text/javascript" src="ProgressBar.js"></script>

Then, in the performSearch() function, after the request has been created, we 
replace the code to show the processing notice with the following code to create 
and start an instance of ProgressBar.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


350 CHAPTER 10 
Being user-friendly
if (!window.progressBar) {
  window.progressBar = new ProgressBar(
    'progressBarContainer',
    {
      className: 'progressBar',
      color: 'blue',
      interval: 1000
    }
  );
}
window.progressBar.start();

This code fragment checks to see if we’ve created a progress bar yet, and if not, 
instantiates one that will poll every second and use blue as its color. Once we’re 
sure a progress bar exists, it is started.

 The showResults() function is modified to stop the progress bar:

function showResults(request) {
  window.progressBar.stop();
  $('resultsContainer').innerHTML = request.responseText;
}

In the body markup we replace the processing notice with the container to hold 
the progress bar:

...

<div id="progressBarContainer"></div>

<div id="resultsContainer"></div>

Finally, we create a style class for the progress bar:

<style type="text/css">
  .progressBar {
    position: relative;

Figure 10.4  
In progress! 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Combating latency 351
    width: 256px;
    height: 16px;
    border: 1px solid black;
  }
</style>

The complete code for this solution can be found in the files solution-10 
.1.2.html and ProgressBar.js in the solution-10.1.2/ folder in the download-
able code for this chapter.  

Discussion
In this section we’ve provided a means to give the user more precise feedback by 
letting them know exactly where they stand in a long-running process. This is 
superior to the static feedback we explored in the previous section if the percent-
age of completion is available from the server and if it is accurate.

 If the information you are going to get from the server doesn’t reasonably 
reflect the actual situation, it’s better to stay with less information than incorrect
information. In some cases, the completion percentage may be a best guess but 
still close enough to be useful. In these situations, it’s always better to underesti-
mate the portion that is complete rather than to overestimate. 

 Users will be delighted when a process ends earlier than expected, but will just 
think that our application is stupid if it stays pegged at 100% before the process-
ing completes.

 Our ProgressBar class is quite usable as is, but could stand some improvement; 
you might try your hand at these:

■ Show the percentage amount in the middle of the progress bar.
■ Allow the inclusion of a label or other text.
■ Give the page authors more control over the styling of the inner <div>.

The solutions we’ve examined thus far have been focused on letting the user 
know what’s happening now. Let’s take a look at some ways to help the user by 
anticipating their needs.

10.1.3 Timing out Ajax requests

Left to its own devices, an XHR request will not time out. But it’s a real possibil-
ity that network latency may cause requests to take a long time to respond. 
Rather than just letting the request languish, what can we do to detect and stop 
runaway requests?

http://lib.ommolketab.ir
http//lib.ommolketab.ir


352 CHAPTER 10 
Being user-friendly
Problem
We want to stop an Ajax request that’s taking longer than a duration we’ll specify.

Solution
XHR makes no provisions for timing out after a specified period of time. But it 
does have an abort() method that we can call to stop a request dead in its tracks if 
we can just figure out a way to call it at the appropriate moment.

 The JavaScript window object has two methods that could help us here: win-
dow.setTimeout() and window.setInterval(). Although these functions are fairly 
similar, the first establishes a one-shot timer, while the latter establishes a repeat-
ing timer. As we only wish to stop our request once at the end of a specified time-
out period, we’ll use the setTimeout() method.

 Our approach will be to start a timer just after we initiate a request, and if the 
timer expires before the request completes, we cancel the request.

 That sounds fairly straightforward, but there are a few nuances to consider 
with regard to making sure that we have access to the information that we’ll need 
when we need it.

 Let’s revisit the solution in section 10.1.1. In the second variation on that solu-
tion we displayed a little whirling ball and message while a long request was pro-
cessing on the server. Let’s explore how to modify that code to time out if the 
request does not complete in a set period of time—let’s say 3 seconds.

 To accomplish this we’ll start a timer immediately after the request is gener-
ated. That’s easy to do with a call to setTimeout(), but we’ll also need to make 
sure that we can cancel this timer if the request completes before the timeout 
period. We therefore need to store the handle returned by setTimeout() some-
where so that we can access it in the request’s success handler.

 And we want to do so without resorting to global variables.
 The code in listing 10.7 shows the reworked performSearch()and show-

Results() functions from that previous example, with changes and additions 
highlighted in bold. The modified HTML page can be found in the file /solu-
tion-10.1.3/solution-10.1.3.html.

function performSearch() {    
  $('resultsContainer').innerHTML = '';  
  var request = new Ajax.Request(        
    '/aip.chap10/command/SearchForRecipes',
    {

Listing 10.7 Reworked “working” example

Creates and records 
request reference

 B

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Combating latency 353
      onSuccess: function() { showResults(request); },   
      onFailure: function() { showResults(request); },   
      parameters:
        $H({
          terms: $F('searchTermsField')
        }).toQueryString()
    }
  );
  request.timer = setTimeout(   
    function() {
      request.transport.abort();
      Element.hide('processingNotice');
      $('resultsContainer').innerHTML = 'Request timed out!'
    },
    3000
  );
  Element.show('processingNotice');
}

function showResults(request) {   
  clearTimeout(request.timer);       
  Element.hide('processingNotice');
  $('resultsContainer').innerHTML =
    request.transport.responseText;
}

We’ve made four changes to the code in order to institute the timeout timer. The 
major addition to the code is to add a call to setTimeout() immediately after we 
dispatch the Ajax request to the server D, and store the timer handle returned 
from the call in a property named timer on the request object. This eliminates the 
need for a global variable in which to store the timer handle, but it also means 
that we need to add a local variable b that stores the created Ajax.Request 
instance. Since local variables create none of the problems that global variables 
introduce, this is a more-than-acceptable trade-off.

 The callback function for the timer uses the request reference to locate the trans-
port instance (the actual XHR object), and calls its abort() method to cancel the 
request. It then hides the processing notice and informs the user that the request 
has timed out by placing a message to that effect in the results area.

 That takes care of the situation in which the server process will last longer than 
the acceptable timeout value. But what about the case where the process does not 
take too long? When the process completes before the timer expires, we need to 
cancel the timer lest it fire its callback and incorrectly inform the user that the 
process timed out when it actually did not.

Uses closures C

Sets timer D

References request E

Cancels timer F

http://lib.ommolketab.ir
http//lib.ommolketab.ir


354 CHAPTER 10 
Being user-friendly
 The problem we have in this case is that the onSuccess handler is passed a ref-
erence to the XHR instance but has no access to the Ajax.Request instance that is 
holding the timer handle. And we need that to cancel the timer.

 Our first instinct might be to store the timer handle on the transport (XHR) 
instance rather than on the Ajax.Request instance. If we could do that, we’d have 
access to the timer handle in both locations that we need it: the timer callback and
the onSuccess handler. Indeed, that approach would work well in browsers such 
as Safari and Firefox where XHR is implemented as a native JavaScript object. But 
IE 6 implements XHR as an ActiveX object, upon which we are not allowed to cre-
ate properties. 

 Pooh!
 Since we’re stuck tacking the timer handle onto the Ajax.Request instance, 

we need to find a way to make a reference to that instance available to the 
onSuccess handler.

 To do so, we modify the code of the original solution, replacing direct refer-
ences to the showResult() function as shown:

onSuccess: showResults,
onFailure: showResults,

with inline functions C that include the closure containing the request reference 
so that we can pass the request instance to the onSuccess handler:

onSuccess: function() { showResults(request); },
onFailure: function() { showResults(request); },

This means that the Ajax.Request instance is what is passed to the show-
Results() function in place of the XHR instance. This allows us to access the 
stored timer handler as well as the XHR instance in that function E.

 Now, in that function, we cancel the timer F and adjust the reference to the 
transport when obtaining the response text.

Discussion
With this solution, we now have the ability to cancel an Ajax request that’s taking 
longer than we wish to allow for it. And we’ve done so without messing up the 
page with global variables.

 The code for this example was lightweight enough that we didn’t abstract it 
out to its own class as we did with the progress bar code. Small footprint that it 
may have, it’s still more code than we’d be comfortable simply copying from page 
to page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Combating latency 355
 We’ve already taken a small step to integrating this functionality with that of 
Ajax.Request by piggy-backing the timer handle on an instance of that class. So 
an interesting approach to organizing this code could be to fully integrate it into a 
request class.

 Using the knowledge that we gained in chapter 3 on using the Prototype 
mechanism to extend classes, can you figure out a way to extend Ajax.Request 
into a new class that incorporates the timeout feature?

 Imagine a class, perhaps named Ajax.TimedRequest, that we could call 
as follows:

new Ajax.TimedRequest(
  '/aip.chap10/command/SearchForRecipes',
  {
    onSuccess: showResults,
    onFailure: showResults,
    onTimeout: reportTimeout,
    timeoutPeriod: 3000,
    parameters:
      $H({
        terms: $F('searchTermsField')
      }).toQueryString()
  }
);

How cool would that be? Why not give it a try?
 Now we’ll turn our attention to another problem associated with long laten-

cies: the impatient user.

10.1.4 Dealing with multiple clicks

Nothing can kill a server faster than hammering it with too many requests at a 
time. This is always a concern to us as Ajax developers; even though we are mak-
ing smaller requests, we’re probably making many more of them than in a tradi-
tional web application.

 We’ve seen some solutions in this chapter that try to dissuade users from get-
ting impatient and submitting multiple needless requests by keeping them 
informed and aware that processing is occurring on their behalf. But even so, you 
know there are going to be users out there who, though informed and aware, are 
going to be clicking away regardless, screaming “Hurry up!” at the screen.

 And it’s not only the impatient user that we need to contend with. Users are 
also conditioned to double-click on items in desktop applications in order to 
activate them. Granted, most buttons in such applications are invoked using a 
single click, just like in our web applications, but some habits die hard and 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


356 CHAPTER 10 
Being user-friendly
there is going to be a percentage of our user base that will mercilessly double-
click our buttons.

Problem
Users can be impatient, absent-minded, clumsy, or all three. We want a means of 
preventing multiple requests for the same operation from being submitted while 
that operation is already under way.

Solution
The good news is that we can use a fairly simple technique to nip these users in 
the bud: we’ll just disable the source of the clicks—namely, the button—whenever 
we’re already busy processing a first click on it.

 Let’s once again start with the “whirling ball” solution from section 10.1.1 and 
enhance it to prevent multiple clicks. Figure 10.5 shows the finished page while a 
search is under way.

The code shown in listing 10.8 (and available in the file /solution-10.6/solution-
10.6.html) shows the modified fragments of the original solution with the 
changes and additions highlighted in bold.

function performSearch(button) {
  button.disabled = true;         
  $('resultsContainer').innerHTML = '';
  var request = new Ajax.Request(
    '/aip.chap10/command/SearchForRecipes',
    {
      onSuccess: function() { showResults(request); },   
      onFailure: function() { showResults(request); }, 

Listing 10.8 Stop the insanity!

Figure 10.5  
Try to double-click! Just try!

Disables button B

Uses closures to 
pass instance

 C

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Combating latency 357
      parameters: $('searchForm').serialize(true)
      trigger: button   
    }
  );
  Element.show('processingNotice');
}

function showResults(request) {
  request.options.trigger.disabled = false;   
  Element.hide('processingNotice');
  $('resultsContainer').innerHTML =
    request.transport.responseText;
}

...

<form id="searchForm" onsubmit="return false">   

...

<input type="button" value="Search!"      
       onclick="performSearch(this) "/> 

The changes actually start near the bottom of the page where we make a change 
to the button element itself G. Rather than use an input type of submit, we use a 
type of button, which prevents the button from triggering a form submission. We 
use an onclick event handler to trigger the performSearch() function, passing a 
reference to the button.

 This is a technique that we could have applied to previous solutions, but it 
becomes essential now that we’ve added an onclick event handler to the button. 
Otherwise, a click of the button could create a race condition where an onclick
event handler and a form submission are both initiated.

 Because the handler will now be triggered directly by the button, the onsubmit
event handler of the form F is modified to simply return false, which prevents 
accidental form submission (this might occur if the user hits the Enter key while 
in a text field).

 The performSearch() function, which is now passed a reference to the trigger-
ing button, immediately uses that reference to disable the button b before our 
impatient user gets a chance to click it again.

 Were this a traditional web application, that’d be all we need to do. The page 
refresh that would occur when the response was returned would take care of reen-
abling the button. But this is an Ajax application and we’re not going to be 

Stuffs button into options D

Enables button E

Disables form 
submission F

Passes button to handler G

http://lib.ommolketab.ir
http//lib.ommolketab.ir


358 CHAPTER 10 
Being user-friendly
refreshing the page, so we need to make sure that once it’s OK to initiate the 
search again we reenable the button.

 In the onSuccess handler C for the request, we’d like to reenable the button, 
but we don’t have a reference to it. And we don’t want to hard-code it; there may 
be more than one button that could have initiated the action.

 If you remember our most recent solution, we had a similar need to store a 
timer handle, so we tacked it onto the Ajax.Request instance itself and used clo-
sures to make sure that instance was available to the onSuccess handler. We’ll use 
a similar scheme here, but with a slightly more clever twist.

 In the timeout solution, we added the timer handle to the request instance 
after the instance had been created. In this solution, we’ll record the reference to 
the button in the options hash that we pass to Ajax.Request, in a property named 
trigger D.

 What’s that? How can we get away with such shenanigans? Ajax.Request doesn’t 
know beans about any option named trigger.

 The Ajax.Request class handles its options in much the same manner that 
we have handled option hashes in the classes we have created in this chapter: 
by merging the passed object with an internal object containing the default val-
ues. When this merge is complete, the resulting object contains the union of all 
properties in both objects. So any properties that we place on the hash passed 
into Ajax.Request will end up in the final options object and get carried along 
for the ride.

 Since Ajax.Request doesn’t know anything about these extra options, it will 
never try to access them and won’t even know that they’re there. But we’ll be able 
to reference them wherever we have access to the request instance.

 So when the onSuccess handler showResults() is invoked with the request ref-
erence passed as a parameter, we can use the button reference that we stashed 
into the options hash to reenable the button E.

 Look, Ma! No global variables. No hard-coded assumptions.

Discussion
Now that we have figured out a way to prevent multiple clicks that initiate the 
same operation while one is already running, our server can rest easy—can’t it?

 Well, no. We still need to make sure that the server code can handle multiple 
requests, especially in cases where such a repeated request can have catastrophic 
results, such as database operations that delete or add records.

 Remember, even though our users may be impatient or clumsy, they can also 
be clever and malicious. Server-side code must always be on its guard. So while 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Preventing and detecting entry errors 359
a technique such as the one described in this section may not let us be lazy 
when writing the server code, it will help us keep network traffic down for acci-
dental cases.

 We also explored a clever means of avoiding global variables or hard-coded ref-
erences in our handlers by using the options hash passed to Ajax.Request to carry 
the reference to the triggering button. As an exercise, you may want to revisit the 
timeout solution and retrofit that example to use this technique.

10.2 Preventing and detecting entry errors

Another source of user frustration concerns data entry errors.
 Users are going to make mistakes when they enter data. The mistakes may stem 

from anything, from clumsy typing to genuine confusion over what is expected. In 
this section we’ll explore some solutions for dealing with entry errors.

 We’ll begin by looking at a way that we can anticipate the users’ needs and ensure 
that they understand what is expected before they type anything in. Then we’ll see 
how to let them know, in as helpful a way as possible, when entry errors do occur.

10.2.1 Displaying proactive contextual help
Most help systems display their information after the user asks for help on a con-
trol or subject; that is, if the user even knows that help is available. Some applica-
tions bury their help so deep that the users never even realize that it is there.

 Other applications may have help systems that do not provide contextual 
help. Instead of giving help on the task the user is currently occupied with, a 
huge list of available help topics is displayed, leaving the user to hunt around and 
guess which topic might contain useful information.

 In this solution we’ll look at a way to retrieve and display help associated with 
the controls of a form in a proactive and contextual manner.

Problem
We want to retrieve and display help text associated with the controls of a form as 
each control is visited. The help should be proactive and should not interfere with 
the user’s workflow when filling in the form’s data.

Solution
As we did for the previous solution, rather than putting the code for our help sys-
tem on the page, we’ll factor it out into a JavaScript class. That way, not only will 
we keep the level of complexity of the page code down, but we’ll also have a reus-
able component that we can use on many pages. 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


360 CHAPTER 10 
Being user-friendly
 Our class, which we’ll name HelpConveyer, will find all the elements of a 
passed form and instrument them to contact the server for related help text 
whenever the element gains focus.

The HelpConveyer class
As usual, we declare our JavaScript class using the Prototype mechanism as

HelpConveyer = Class.create();

The initializer, which will turn out to be the only method in our class, is defined in 
the prototype property, as shown in listing 10.9.

initialize: function(targetElement,form,url,paramName) {   
  this.target = targetElement;
  this.form = form;
  this.url = url;
  this.paramName = paramName;
  var conveyer = this;                                           
  $A(this.form.elements).each(
    function(control) {          
      if (control.name != undefined && control.name != '') {
        control.onfocus = function() {                   
          var paramHash = {};
          paramHash[conveyer.paramName] = control.name;
          new Ajax.Updater(    
            conveyer.target,
            conveyer.url,
            {
              method: 'get',
              parameters: paramHash
            }
          );
        };
      }
    }
  );
}

This constructor-invoked initializer accepts four required parameters b: a target 
element in which help text will be displayed; a reference to the form whose ele-
ments are to be instrumented; the URL to invoke when asking for help text; and 
the parameter for that URL with which to pass the help topic to be retrieved. For 
our purposes, the name of the field will be used as the help topic.

Listing 10.9 Initializer for the HelpConveyer class

Accepts 
initialization 
parameters B

Iterates over 
form elements

 C

Assigns onfocus 
handler D

Fetches help text E

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Preventing and detecting entry errors 361
 After storing the parameter values in instance members, a local variable 
named conveyer is created, which is assigned a reference to the current instance. 
By now you should recognize this as a sign that closures will be employed later in 
the method.

 Each element in the passed form is iterated over, using Prototype’s each()
method C. If the element has a name attribute that is not blank, a function (and 
its closure) is assigned as the onfocus event handler for the element D.

 This inline event handler function creates an object named paramHash to con-
tain the topic parameter that will be converted to a query string during the cre-
ation of the Ajax request.

 Then the services of Prototype’s Ajax.Updater E is employed to fetch the 
help text from the server and stuff it into the passed target element.

 That’s a big payback for the work of one little initializer. Each element in the 
form now has the ability to fetch and display its own help text. Let’s see how we’d 
use this class on our pages.

Using the HelpConveyer class
Because we abstracted all the hard work into the HelpConveyer class, using the 
class on our pages is a simple matter of instantiating the class with the appropri-
ate parameters.

 Let’s imagine the page in our recipe-sharing application in which our mem-
bers will enter or edit recipes. As you might imagine, there are more than just a 
few fields that need to be filled out. We’ll initially design the form with the fol-
lowing fields:

■ Title
■ Source
■ Minimum number of servings
■ Maximum number of servings
■ Ingredients list
■ Steps

These last two fields are interesting in that they will be implemented using text 
areas. For the list of ingredients, each ingredient should be entered one per line 
in the text area. For the steps, each should be entered in the text area, with a 
blank line separating the individual steps. When displayed, our page looks as 
depicted in figure 10.6.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


362 CHAPTER 10 
Being user-friendly
None of this will be obvious to the members, so our proactive help system should 
prove quite useful for this form, as shown in listing 10.10.

<div id="formControls">
  <form name="recipeForm">
    <div class="line">
      <label>Title:</label>
      <input type="text" name="title" id="titleField"/>
    </div>

    <div class="line">
      <label>Source:</label>
      <input type="text" name="source" id="sourceField"/>
    </div>

    <div class="line">
      <label>Min Servings:</label>
      <input type="text" name="minServings"
             id="minServingsField" />

Listing 10.10 The recipe form

Figure 10.6 The help-enabled recipe form

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Preventing and detecting entry errors 363
      <label id=”maxServingsLabel” >Max Servings:</label>
      <input type="text" name="maxServings"
             id="maxServingsField"/>
    </div>

    <div class="line">
      <label>Ingredients:</label>
      <textarea name="ingredients" id="ingredientsField"
                rows="4"></textarea>
    </div>

    <div class="line">
      <label>Steps:</label>
      <textarea name="steps" id="stepsField"
                rows="4"></textarea>
    </div>

    <div align="center" id="buttonBar">
      <input type="button" value="OK" name="okButton"/>
      <input type="button" value="Cancel" name="cancelButton"/>
    </div>

  </form>
</div>

Each line of the form is enclosed in a <div> element that contains a <label> and 
an <input> element; in one case, two elements with their labels ganged up into a 
single line. CSS rules (defined in the page header) are applied to lay the form out 
in a pleasing manner. 

 We also need someplace to show the help text that is to be associated with 
each field. We define that area as a series of nested <div> elements, as shown in 
listing 10.11, with the innermost <div> being the one in which help text will be 
inserted. The reason for the nesting is so that we can apply some interesting styl-
ing to this construct.

<div id="helpContainer">
  <div id="helpSticky">
    <div id="helpDisplay">
    </div>
  </div>
</div>

Listing 10.11 The help text display area

http://lib.ommolketab.ir
http//lib.ommolketab.ir


364 CHAPTER 10 
Being user-friendly
The form and this help container are placed side by side on the page—form on 
the left, help on the right—so that the user can easily see the help text while 
working on the form. We also want the help text area to stand out from the 
form, so we’ll apply some clever styling and use a simple GIF image in order to 
make it look like a yellow “sticky note” tacked to the page with a pushpin. (Why 
you’d need to use a pushpin to keep a sticky note in place is beyond me, but it 
does look cool.)

 We won’t elaborate on the details of the CSS to accomplish this, but you can 
find it in the downloadable source code for this chapter in the file /solution-
10.3/solution-10.3.html. 

 Note how the help text associated with the Title field has already been dis-
played as a result of that field gaining focus at page load. Let’s see how that 
was accomplished. The onload event handler for this page is defined in list-
ing 10.12.

window.onload = function() {
  new HelpConveyer(           
    'helpDisplay',
    document.recipeForm,
    '/aip.chap10/command/GetHelp',
    'topic'
  );
  document.recipeForm.title.focus();   
}

As it turns out, we didn’t have to do much work at all. We create an instance of the 
HelpConveyer b, identifying the target area that is to display the help text, the rec-
ipe form, a URL that will return the help text, and the parameter expected by the 
resource at that URL to pass the help topic.

 Then we assign focus to the first field (Title) in the form C. The code we set 
up in the HelpConveyer class does all the rest!

 As we tab through the various fields in the form, the help text automatically 
updates with the help text specific to that field. Figure 10.7 shows the page after 
tabbing down to the Ingredients field.

 What could be more user-friendly? 

Listing 10.12 Loading up help in onload

Creates instance 
of HelpConveyer

 B

Assigns focus 
to first field

 C

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Preventing and detecting entry errors 365
Discussion
In this section we’ve set up a technique to display context-sensitive help to the 
user in a proactive manner.

 The user doesn’t need to go through the motion of asking for help, or even 
figure out if help is available and how to get it. This technique is also extremely 
unobtrusive, as users do not have to interrupt their text entry workflow in order 
to receive help.

 For this solution, we used a command URL that accepted the help topic (con-
sisting of the name of the field) as a parameter. This could easily have been set up 
to just look for an HTML file with the topic’s name in the local folder.

 Useful as what we have set up here may be, there’s always room for 
improvement. 

 After entering four or five recipes, our members will probably be old hands at 
using our form, and the help text may become more distracting than helpful. We 
might want to consider implementing some means of letting members turn it off 
once they become experts at using the system.

Figure 10.7 Entering ingredients

http://lib.ommolketab.ir
http//lib.ommolketab.ir


366 CHAPTER 10 
Being user-friendly
 We’ve also made the simple assumption that each help topic can be uniquely 
identified by the name of the field. In anything but the most trivial of applica-
tions, this is likely to lead to naming collisions. Beefing up the manner in which 
topic keys are determined would be an important improvement. Perhaps the 
combination of form name and field name would suffice?

 By providing proactive help, we’ve reduced the number of errors that our 
members will make when filling in the form, but we can’t expect that mistakes will 
never be made. Let’s take a look at checking for them.

10.2.2 Validating form entries

While it is never a good idea to assume that our users are stupid, it’s an equally 
bad idea to assume that they’re not going to make mistakes. Whether it’s because 
they don’t understand what they are supposed to do (the contextual help mecha-
nism of the previous section should help minimize this factor), are distracted, are 
being careless, or are just suffering from “fat fingers syndrome,” invalid entries 
are going to be made in our form fields.

 In a traditional web application, form entry data validation can take place on 
the client in a limited fashion, and should always take place on the server (regard-
less of whether client-side validation was implemented).

 Client-side validation in such applications can only perform simple checks that 
don’t need any context or information that is only available on the server. For 
example, simple JavaScript can be used to verify that required fields aren’t left 
blank or that numeric fields contain valid values. But validation checks such as 
checking zip codes against addresses, checking the validity of credit card numbers, 
or any other check that requires more information than can be made available to 
the client must be performed on the server after the form has been submitted.

 As long as the user is returned to the form without losing any data, and with 
the errors clearly identified, this is not a disaster. But it’s not as friendly as it could 
be, either.

 Wouldn’t it be better to inform the user of entry errors immediately? With 
Ajax, we have the ability to perform server-side checks without having to wait for 
the form submission.

Problem
We want to perform field-by-field server-assisted data validation on form fields. 
We want our solution to be reusable, and we want validation failure messages to 
be presented to the user in a consistent manner regardless of whether a check is 
occurring on the client or server.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Preventing and detecting entry errors 367
 We touched upon form field validation in chapter 5 and again in chapter 6. 
This section presents yet another take on this very important subject.

Solution
In the same way that we used the onfocus event handler of form fields to display 
proactive help to our users in the previous solution, we can use the onblur event 
handler to detect when a user is leaving a field. In cases where the field requires 
validation that can only be performed on the server, we’ll set up a mechanism to 
handle the validation and report errors.

 It’d be easy to just write handler functions that use Ajax on a field-by-field 
basis, but we’re smarter than that. We want our solution to be reusable, and we 
want to make sure that we’re not just cutting and pasting the same code over and 
over again on the pages.

 So let’s dig in, but better hold on to something. This is going to be one of the 
more complicated solutions in this chapter. And when we’re done, we still won’t 
have as robust a validator framework as we’d eventually like to have, but we will
have a solid foundation on which to build that framework.

 Strap in, and let’s go.

The FieldValidator class
We’ll define a class named FieldValidator that is going to meet a rather strident 
set of requirements:

■ An instance of a FieldValidator will be created for each field that requires 
validation, and will handle validation errors in a consistent manner.

■ The validator will operate via plug-in “verifiers” that can be defined as 
either a client- or server-side operation. Users will be unaware of where the 
validation takes place.

■ A handful of common client-side verifiers will be provided. Page authors 
will be able to plug in custom verifiers.

■ Upon a validation error, the appearance of the field will be altered and a 
validation failure message will be presented to the user.

■ When a field is corrected and no longer fails validation, the original field 
appearance will be restored and the failure message removed.

■ All of this will occur in real time triggered as the user leaves the field.

Whew! That’s no small laundry list. Let’s start by defining the constructor, as 
usual, with

FieldValidator = Class.create();

http://lib.ommolketab.ir
http//lib.ommolketab.ir


368 CHAPTER 10 
Being user-friendly
The initializer for the class is shown in listing 10.13.

initialize: function(field,verifier,options) {   
  this.field = $(field);
  this.verifier = verifier;
  this.options = Object.extend(          
    {
      errorContainer: 'errorContainer',
      errorClassName: 'fieldInError',
      paramName: 'value'
    },
    options
  );
  this.errorContainer = $(this.options.errorContainer);   
  this.field.validator = this;                       
  this.field.onblur = function() {  
    this.validator.validate();
  }
},

This initializer accepts three parameters b: the ID or reference to the element to 
be instrumented with the validator, the verifier to be used to validate the field’s 
data, and a hash of options.

 The verifier can be either a JavaScript function that will perform client-side val-
idation, or the URL to a server-side resource to perform the validation. If a Java-
Script function is provided, it will be called at the appropriate time with a 
parameter consisting of a reference to the instrumented field. It is expected that 
this function will return null if the field passes validation, or if validation fails, a 
string containing a message explaining the failure.

 The FieldValidator class includes two built-in client-side verifiers providing 
validation checks that are frequently employed. We’ll talk about those later after 
we’re done discussing the initializer method.

 If the URL of a server-side validation resource is specified as the verifier, an 
Ajax request to the resource is initiated at validation time. The value of the field 
to be validated is passed to the resource using a request parameter whose name is 
provided as an option in the options hash.

 After storing the field reference and verifier in instance members, any options 
passed in by the page author are merged with default values C. The supported 
options are as follows:

Listing 10.13 Initializer for FieldValidator

Declares initializer 
signature B

Merges options 
with defaults C

Refers to 
error message 
container

 D

Refers to field’s 
validator EValidates on 

loss of focus F

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Preventing and detecting entry errors 369
■ errorContainer, the ID or reference to a container where validation failure 
messages are to be displayed

■ errorClassName, the style class name to be applied to fields that fail validation
■ paramName, the request parameter name used to pass the field value to 

server-side validation resources

Once the error message container has been determined, a reference to it is stored 
as a member D for easy reference later.

 A reference to the field’s validator is added to the field element itself E, which 
is used in the function assigned as the onblur event handler for the field F in 
order to call the validate() method when the user tabs out of the field. After ini-
tialization is complete, the field is ready for validation whenever the onblur event 
handler is triggered.

 Earlier we mentioned built-in verifiers. The FieldValidator class provides two, 
as shown in listing 10.14.

FieldValidator.verifier.NotBlank = function(field) {
  if ($F(field) == '') {
    return 'The ' + field.name + ' field cannot be blank';
  }
  else {
    return null;
  }
}

FieldValidator.verifier.IsNumeric = function(field) {
  if ($F(field) == '' || isNaN(new Number($F(field)))) {
    return 'The ' + field.name + ' field must be numeric';
  }
  else {
    return null;
  }
}

The first verifier reports a validation failure if the field’s value is blank, while the 
second ensures that the value, if not blank, is numeric.

 Note that these functions are not declared as part of the class’s prototype
property. Referencing them does not require an instance of FieldValidator, as 
shown in this example setup of a validator instance:

new FieldValidator('someField',FieldValidator.verifier.NotBlank);

Listing 10.14 The built-in verifiers

http://lib.ommolketab.ir
http//lib.ommolketab.ir


370 CHAPTER 10 
Being user-friendly
When the onblur event handler of an instrumented field is invoked, the vali-
date() method is called. The definition of this method, which does most of the 
work of the class, is shown in listing 10.15.

validate: function() {
  this.clearError();    
  if (this.verifier instanceof Function) {
    var message = this.verifier(this.field);   
    if (message != null) this.markInError(message);
  }
  else {
    var validator = this;   
    var paramHash = {};
    paramHash[this.options.paramName] = $F(this.field);
    new Ajax.Request(
      this.verifier,
      {
        parameters: $H(paramHash).toQueryString(),
        method: 'get',
        onSuccess: function(transport) {
          if (transport.responseText != '') {
            validator.markInError(transport.responseText);
          }
        }
      }
    );
  }
},

This method first calls the clearError() method that clears the error b. This is 
done in the case that the field has previously failed validation in order to restore it 
to nonfailure status. More on that in a little while.

 It then performs one of two operations depending on the nature of the veri-
fier. If the verifier is a JavaScript function C, the function is called, and if it 
returns anything other than null (indicating a failure), it calls a method that 
places the field in error status.

 If the verifier is a URL, an Ajax request is initiated to that URL D, passing the 
field’s value. If the response from that request is anything other than the empty 
string (indicating a failure), again the field is placed in error status.

 The markInError() method, shown in listing 10.16, is called whenever a field 
fails validation either by a client-side or by a server-side check. Because the same 

Listing 10.15 The validate() workhorse method

Clears errors B
Verifies JavaScript 
function

 C

Initiates Ajax 
request to URL

 D

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Preventing and detecting entry errors 371
action is taken in either case, users are presented with validation failures in a con-
sistent manner regardless of where the check took place.

markInError: function(message) {
  Element.addClassName(this.field,
                       this.options.errorClassName);
  this.errorMessageElement = document.createElement('div');
  this.errorMessageElement.appendChild(
    document.createTextNode(message));
  this.errorContainer.appendChild(
    this.errorMessageElement);
  Element.show(this.errorContainer);
},

This method performs two operations. First, it adds the style class name (recorded 
in the options) for failed fields to the list of class names for the field. This will cause 
the field to take on whatever appearance the page author determines appropriate 
for fields that have failed validation.

 Second, it adds a <div> element containing the validation failure message to 
the container identified for this purpose. Since the container is initially hidden, it 
also ensures that the container is visible.

 The final method in our class undoes, or clears, the field from error state, as 
shown in listing 10.17. This method removes the error style class from the field, 
and also removes the error message from the message container. 

clearError: function() {
  Element.removeClassName(this.field,
                          this.options.errorClassName);
  if (this.errorMessageElement) {
    this.errorMessageElement.parentNode
      .removeChild(this.errorMessageElement);
  }
}

This class is a good example of why we organize code into classes in the first 
place. Placing this kind of code directly on each and every page that we want to 
use it on would be nothing short of madness!

Listing 10.16 Marking fields as failed

Listing 10.17 Clearing failed fields

http://lib.ommolketab.ir
http//lib.ommolketab.ir


372 CHAPTER 10 
Being user-friendly
 You may have noticed a theme running through the solutions in this chapter, 
as well as elsewhere in the book. That theme is, “Keep the goo off the pages!” 
where “goo” is a precise and scientific term for unnecessary complexity.

 In fact, let’s take a look at how little “goo” needs to be put on a page in order 
to use our field validator.

Using the FieldValidator class
Let’s imagine another form in our recipe-sharing community application, this 
one a simple form presented to visitors who wish to become members of the site. 
This form is set up similar to the recipe entry form of our previous solution, 
including instrumentation with contextual help, but possesses only three fields: 
member name, email address, and age.

 The first two fields are required, with the email field restricted to validly for-
matted email addresses. The age field is optional, but if provided, must be a 
numeric value.

 This example HTML page can be found in the downloadable code for this 
chapter in the file /solution-10.4/solution-10.4.html. When displayed, the 
page looks like figure 10.8 once you tab out of the name field and enter a bogus 

Figure 10.8 Don’t forget your name!

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Preventing and detecting entry errors 373
email address. (Note that in the actual code for this solution, the style class for 
fields in error displays the same yellowish background as the error message box. 
But as that did not show up well in the grayscale screen grabs, a more strident red 
was used to grab the screen shot for the figure.)

 Wishing to use the FieldValidator class to validate these fields as they are 
entered, we add the onload event handler shown in listing 10.18 to our page.

window.onload = function() {
  new FieldValidator('nameField',
                     FieldValidator.verifier.NotBlank);
  new FieldValidator('emailField',
                     '/aip.chap10/command/VerifyEmail');
  new FieldValidator('ageField',
                     FieldValidator.verifier.IsNumeric);
  new HelpConveyer(
    'helpDisplay',
    document.memberForm,
    '/aip.chap10/command/GetHelp',
    'topic'
  );
  document.memberForm.name.focus();
}

In this handler, we set up a validator instance for each field in the form. The 
name and age fields make use of the built-in client-side verifiers, while the email 
field uses a server-side resource to check the format of the email address. 

 That’s all there is to it. The remainder of the event handler sets up a new 
instance of the HelpConveyer class as described in the previous solution, and sets 
the focus to the name field upon page load.

 The only additional task is to add a container in which to display validation 
failure messages. At the top of the form we define it as

<div id="errorContainer" style="display:none;"></div>

We give it the following style to make sure it can’t be missed:

#errorContainer {
  border: 3px outset maroon;
  background-color: #ffffcc;
  padding: 4px;
  color: maroon;
  font-weight: bold;
  margin-bottom: 12px;
}

Listing 10.18 Instrumenting validation for the membership form

http://lib.ommolketab.ir
http//lib.ommolketab.ir


374 CHAPTER 10 
Being user-friendly
Discussion
As we mentioned at the beginning of this section, we’ve laid some good ground-
work for a field validator, but much remains to be done. Primarily, we’d need to 
add the ability to easily find out if there are any fields in error so that we can pre-
vent form submission until all fields validate correctly. 

 We could also add more built-in verifiers. How about one that verifies a 
numeric range?

 It could also be argued that ganging the messages up into one location (we 
used the top of the form) would not work well for longer forms. Contemplate how 
you would change the class to allow validation messages to appear near the field 
that they are describing.

 But perhaps the biggest flaw in what we’ve set up so far is that this class, as well 
as the HelpConveyer of the previous solution, usurps the onblur and onfocus
event handlers exclusively, preventing them from being used for any other pur-
pose by page authors. This is a direct result of using the DOM Level 0 Model 
event handling for simplicity. Using the information that you gathered about the 
DOM Level 2 Event Model in chapter 5, how would you go about changing these 
classes to remove the restrictions?

 We went through a lot of trouble to make sure that validation failures were 
reported in a consistent fashion to the user regardless of whether the check 
occurred on the client or server. That’s good, but we can only do so much. If there 
is a long latency when server-side validation takes place, the user is going to be 
aware of a difference. It could be more disconcerting than helpful if a field gets 
placed into an error state after the user has already tabbed several fields beyond 
it. In cases where network latency makes such progressive validation untenable, it 
might be best to stick with client-side checks until the form is submitted.

 Now that we’ve helped to eliminate confusion stemming from data entry 
issues, let’s take a look at ways that we can nip other sources of confusion in 
the bud.

10.3 Maintaining focus and layering order

We already mentioned that there is little that can frustrate a user as much as con-
fusing them. In this section we’ll examine ways that we can avoid unnecessary 
user confusion and frustration in the face of the dynamic user interfaces that we 
can present to them, now that we have Ajax in our toolbox.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Maintaining focus and layering order 375
10.3.1 Maintaining focus order

In a point-and-click world, focus management may not seem like all that interest-
ing a topic. But in the Ajax world, in which user interfaces can be quite dynamic, 
it may become a critical part of keeping our applications usable.

 Let’s say that for reasons critical to our application, form fields or other user 
interface elements need to be shuffled around, hidden and revealed, or even 
moved about under control of the user. In such cases, the tab order of the input 
elements (the order in which the elements are visited upon a press of the Tab key) 
may get rather badly muddled.

 And when the tab order becomes nonintuitive, our application becomes con-
siderably less usable. This is especially true for those users who, because of phys-
ical restrictions or preference, favor the keyboard over the mouse.

Problem
We want to keep the tab order of user interface elements intuitive, even when 
those elements are moved about.

Solution
In this section, we’re going to use some rather nontraditional user interface ele-
ments: <div> elements with image backgrounds. Normally, our user interface 
elements would be text fields and the like, but there’s not a lot to distinguish one 
text field from the other, so for illustrative purposes we’ll be using something with
a little more texture so that we can readily see the results of our machinations.

 Unfortunately, this means that this is the only example in this chapter that will 
not execute properly in Safari, which currently does not seem to allow <div> ele-
ments to gain focus.

 Our solution page will consist of a series of six elements, each displaying a dif-
ferent image so that we can readily identify them. We’ll allow these elements to be 
rearranged, and see what we need to do in our script to keep the tab order of the 
rearranged elements intuitive. When first displayed, our page looks as depicted 
in figure 10.9.

 Each item depicts an image, along with a number in the upper-left corner 
showing its tab order. When the page was loaded, the tab order of the items was 
assigned 1 through 6, from left to right. The apple initially has focus (we know by 
the dotted line that the browser draws around the element), and if we were to hit 
the Tab key successively, we’d see that the mushrooms, then the carrots, then the 
chiles obtain the focus sequentially, just as we (and more importantly, our users) 
would expect.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


376 CHAPTER 10 
Being user-friendly
We’ve also instrumented each item so that, when it has focus, the left and right 
arrow keys can be used to modify its order. The left arrow will cause the item to be 
swapped with the item to its left, while the right arrow will swap the item with its 
rightmost neighbor. After playing with this feature for a bit, we might end up with 
a display like the one in figure 10.10.

 Now that we’ve moved all the items around, notice that the tab order has gone 
haywire! With focus on the apple, pressing the Tab key brings us back to the 
mushrooms, then skips over the chiles to the carrots, then back to the chiles, then 
way over to the potato, and so on. How confusing!

 It behooves us to change the tab order of the items whenever we move them so 
that the tab order remains in a canonical, and therefore, intuitive sequence. What 
we really want after shuffling our produce around is what’s shown in figure 10.11.

 Now the tab order matches the physical order of the items, and no one should 
be surprised when they hit the Tab key to proceed to the next item (or Shift+Tab 
to revert to the previous item).

Figure 10.9 Delicious items all in order

Figure 10.10 Mixed vegetables!

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Maintaining focus and layering order 377
So how’d all that take place? And how is the tab order manipulated? Let’s take a 
look at the page’s code. It’s easiest to start with the item elements themselves, so 
let’s examine the page’s <body> element as shown in listing 10.19.

<body>
  <div id="container">
    <div id="apple" 
         style="background-image:url('apple.jpg');"></div>
    <div id="mushrooms" 
         style="background-image:url('mushrooms.jpg');"></div>
    <div id="carrots" 
         style="background-image:url('carrots.jpg');"></div>
    <div id="chiles" 
         style="background-image:url('chiles.jpg');"></div>
    <div id="potato" 
         style="background-image:url('potato.jpg');"></div>
    <div id="tomato" 
         style="background-image:url('tomato.jpg');"></div>
  </div>
</body>

The <body> element contains an outer <div> container (used more for styling 
than for anything else) that contains the six tab-able items. Each item is assigned 
a unique id, as well as its background image. Note that we did not assign the tab 
order or the little “tab order indicator” that will appear in each item’s upper-left 
corner. Since we’re going to be arranging them under script control, we’ll set all 
that up in code. Styles applied via CSS to the items give them absolute position-
ing, as shown in listing 10.20.

Listing 10.19 Creating the produce items

Figure 10.11 Mixed but orderly veggies

http://lib.ommolketab.ir
http//lib.ommolketab.ir


378 CHAPTER 10 
Being user-friendly
<style type="text/css">
  #container {
    position: relative;
  }
  #container div {
    position: absolute;
    width: 110px;
    height: 86px;
  }
</style>

Since we’re also going to be moving the items around, their actual location is not 
specified by CSS, but will be set up in script upon page load. Let’s take a look at 
the onload event handler for the page, shown in listing 10.21.

var items = ['apple','mushrooms','carrots','chiles',   
             'potato','tomato'];

window.onload = function() {
  arrange();                  
  items.each(
    function(item,index) {                      
      $(item).onkeydown = move.bind($(item));
    }
  );
  $(items[0]).focus();                                                
}

function arrange() {
  items.each(
    function(image,index) {   
      $(image).style.left = (116 * index) + 'px';
      $(image).tabIndex = index + 1;
      $(image).innerHTML = $(image).tabIndex;
    }
  );
}

First we set up an array with the ids of all the items b. Note this is not the best of 
design decisions. We’ve done it here for expediency and to keep the page cen-
tered on focus management; however, having the list repeated in this array and 
by the items in the <body> element is poor design, as they could easily get out of 

Listing 10.20 Styling the produce

Listing 10.21 The onload handler and friends

Defines array 
of id values B

Arranges items C

Assigns onkeydown 
handlers D

Arranges each 
item in order

 E

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Maintaining focus and layering order 379
sync with each other. A better design would generate the array from the items, or 
generate the items from the array.

 The onload event handler for the page immediately calls the services of the 
appropriately named arrange() function in order to arrange the items C. We’ll 
see how it does that in just a moment.

 It then iterates over each item, assigning it an onkeydown event handler D. 
This handler will be responsible for detecting the arrow keys and for shifting the 
position of the items when appropriate. Finally, we assign the focus to the first 
item at the end of the onload event handler.

 The arrange() function, called when the page loads, will also be called when-
ever the order of the items is shifted. It iterates over the array of item ids E and 
performs three tasks on each:

■ It assigns the item its location. Since each item is 110 pixels wide, assign-
ing multiples of 116 gives them 6 pixels of breathing space between them.

■ It assigns the tab order in the same order as the ids order in the array. 
Since the tab order should start with 1 but array indexes begin with 0, the 
value 1 is added to the array index to compute the tab order value.

■ The innerHTML property of the item is assigned the value of its tabIndex
property, causing the value of the tab index to appear in the upper-left 
corner of the item.

Each item was assigned a key handler when the page loaded. That handler func-
tion is shown in listing 10.22.

function move(event) {                                                 
  if (!event) event = window.event;                                    
  if (event.keyCode == 37) {                           
    moveItem(this,-1)                                                  
  }
  else if (event.keyCode == 39) {              
    moveItem(this,+1)                                                  
  }
}

When this handler is invoked as a result of a keypress while an item has focus, the 
event information is passed to the handler as its parameter—at least in stan-
dards-compliant browsers. Internet Explorer 6, loath to stoop to standards, has 

Listing 10.22 Handling the keys

http://lib.ommolketab.ir
http//lib.ommolketab.ir


380 CHAPTER 10 
Being user-friendly
its own idea of how event handling should occur. To deal with that, we check if the 
parameter was supplied, and if not, grab the event structure from the window 
instance where IE 6 insists on putting it.

 The key code for the key that was pressed is examined, and if it was the left 
arrow (key code 37) a function named moveItem() is called, passing the function 
context (this) and a value that specifies how the item is to be moved—in this case, 
back by one.

 If the key code identifies the right arrow (39), the item is moved one spot 
forward.

 Note that the function context object for this handler is the item itself. This 
was because we had the foresight to use the Prototype bind() function when 
assigning the handler. Without this binding, the function context would have 
been the window.

 The work of moving the item is performed in the moveItem() function, which 
is shown in listing 10.23.

function moveItem(item,by) {
  var oldIndex = item.tabIndex - 1;                                
  var newIndex = (oldIndex + by + items.length) % items.length;
  items[oldIndex] = items[newIndex];
  items[newIndex] = item;
  arrange();                                                       
  item.blur();                                                     
  item.focus();
}

The function in listing 10.23 moves the passed item by shifting its position in the 
items array rather than by physically moving the item itself. Remember, the 
arrange() function takes care of the location and the tab index based on the items
array, so all we need to do is to rearrange the array as we’d like and let arrange()
do all the dirty work for us.

 So, this function swaps the item with its neighbor according to the value of the 
by parameter. Note the use of the modulus operator to allow items at either end 
of the list to wrap around to the other end of the list. Once the array has been 
shuffled, we call arrange(), which physically relocates the items and assigns 
canonical tab indexes to them.

 The final task performed in this function looks rather odd. What we’ve done 
is rearrange the tab order of the elements behind the browser’s back, which 

Listing 10.23 Moving the item

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Maintaining focus and layering order 381
leaves it rather confused. It might be argued that the browsers should be able to 
handle this situation cleanly, but they generally don’t. So we basically force a 
browser to wake up and get its bearings by blurring focus away from the item and 
forcing it back.

Discussion
While pictures of vegetables (OK, apples and tomatoes are fruits) don’t represent 
realistic user interface elements, this solution used them to ensure that we could 
clearly see what happens when focusable items are rearranged on the page.

 We saw that rearranging items without reassigning their tab order can lead to 
disconcerting behavior, and we saw the type of scripting code necessary to read-
just the tabbing order of the elements.

 Although this example didn’t use Ajax per se, its lesson is important in Ajax 
web applications, as dynamic shifting of display elements is often part of a rich 
user interface design.

10.3.2 Managing stacking order

There is likely to come a point in one of our web applications when we must be 
able to layer elements on top of other elements. Whether we are dragging and 
dropping, writing a wizard that has multiple virtual pages, creating floating 
modal dialog boxes, or writing our own window manager in JavaScript, it all boils 
down to the same thing: manipulation of the stacking order. In HTML pages, the 
stacking order is defined by the z-index, which defines how “high up” an element 
is. The higher the value of the z-index, the more “on top” (closer to the user) a 
layer is. Thus, an element with a z-index of 100 will be drawn on top of an ele-
ment with a z-index of 99. When elements have the same z-index, they are 
stacked in the order in which they are syntactically declared in the HTML.

 As with focus management, dealing with stacking order is an important lesson 
for Ajax developers who are creating rich user interfaces, even if it’s not directly 
an Ajax topic.

Problem
We want to learn how to control the stacking order of elements in our rich web 
application pages.

Solution
We’re going to borrow the produce from the veggie drawer again to learn how to 
manipulate the stacking order of page elements via their z-index. Let’s make a 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


382 CHAPTER 10 
Being user-friendly
page similar to the one of our previous solution, except this time instead of laying 
the items out linearly, we’re going to overlap them. And instead of paying atten-
tion to tab index, we’re going to focus on the z-index. Our page initially displays 
as shown in figure 10.12.

 Not only have we changed the arrangement of the items to overlap, we’ve 
added a border around them (to make their area clearer) and the number in the 
upper-left corner of each item represents the z-index of the item. As we can see, 
the higher the z-index, the more “on top” the item is drawn.

 We’ve also added an onclick handler to each item that causes it to become the 
top element by changing its z-index to 6, while readjusting the z-index of the 
remaining elements.

 After clicking the carrot (with an initial z-index of 3), the page appears as 
shown in figure 10.13.

 If we were then to click on the apple, the z-index, and therefore stacking order 
of the items, would rearrange again, resulting in figure 10.14.

 The code to accomplish all of this is similar to the code of the previous solu-
tion—so much so, that we’re not going to inspect it piece by piece. The entire 
code for the page is shown in listing 10.24, and we’ll just point out a few inter-
esting points regarding changes from the tabbing index example of the previ-
ous section.

Figure 10.12  
The tomato is the king of the crisper.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Maintaining focus and layering order 383
Figure 10.13  
The carrot takes control.

Figure 10.14  
The apple asserts its dominance.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


384 CHAPTER 10 
Being user-friendly
<html>
  <head>
    <title>King of the Fridge</title>
    <script type="text/javascript" src="../prototype-1.5.1.js">

       ➥ </script>
    <script type="text/javascript">
      var items = ['apple','mushrooms','carrots','chiles',
                   'potato','tomato'];

      window.onload = function() {
        arrange();
        items.each(
          function(item,index) {
            $(item).onclick = raiseItem.bind($(item));   
          }
        );
        $(items[0]).focus();
      };

      function arrange() {
        items.each(
          function(image,index) {    
            $(image).style.left = (16 + (40 * index)) + 'px';
            $(image).style.top = (16 + (40 * index)) + 'px';
            $(image).style.zIndex = index + 1;
            $(image).innerHTML = $(image).style.zIndex;
          }
        );
      }

      function raiseItem() {    
        var itemIndex = this.style.zIndex - 1;
        var newItems = [];
        items.each(
          function(item,index) {
            if (index != itemIndex) newItems.push(item);
          }
        );
        newItems.push(this);
        items = newItems;
        arrange();
      }
    </script>
    <link rel="stylesheet" type="text/css" href="../styles.css"/>
    <style type="text/css">
      #container {
        position: relative;
      }
      #container div {

Listing 10.24 Controlling the stacking order with z-index

Adjusts z-index 
on mouse click

 B

Positions items C

Raises item to top D

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Maintaining focus and layering order 385
        position: absolute;
        width: 110px;
        height: 86px;
        border: 1px silver solid;   
      }
    </style>
  </head>

  <body>
    <div id="container">
      <div id="apple"
           style="background-image:url('apple.jpg');"></div>
      <div id="mushrooms"
           style="background-image:url('mushrooms.jpg');"></div>
      <div id="carrots"
           style="background-image:url('carrots.jpg');"></div>
      <div id="chiles"
           style="background-image:url('chiles.jpg');"></div>
      <div id="potato"
           style="background-image:url('potato.jpg');"></div>
      <div id="tomato"
           style="background-image:url('tomato.jpg');"></div>
    </div>
  </body>

</html>

The onload event handler of this example assigns each item an onclick event 
handler (rather than a key handler) so that their z-index will be adjusted on a 
click of the mouse b.

 The arrange() function is still used to position the items C, but instead of lay-
ing them out linearly, it overlaps them. It also assigns the z-index of the item (by 
assignment to the style.zIndex property) according to its order in the items
array. Note that the numeral assigned as the content of the item is its z-index.

 The raiseItem() function, established as the onclick event handler for the 
items, reorders the items by creating a new array in which the clicked item is 
placed in the last position after collecting all the other items into the new array 
D. This new array replaces the old, and the arrange() function is called to do its 
thing. The result is that the items are repositioned and drawn with their new 
stacking order.

 The only other change of note is the addition of a style to draw the border 
around the items E.

Adds borders E

http://lib.ommolketab.ir
http//lib.ommolketab.ir


386 CHAPTER 10 
Being user-friendly
Discussion
This solution borrowed liberally from the solution of section 10.3.1 to demon-
strate manipulation of the z-index of items in order to affect their stacking order. 
There’s nothing too complicated to grasp about this concept: higher z-indexes 
mean higher stacking order. At least that’s the theory. There is a common situa-
tion in which IE 6 rears its ornery head to defeat our best-laid plans that involves 
the <select> element.

 Let’s say that we add a <select> element to the end of our page positioned so 
that it overlaps with our items, and that we assign it a z-index of 4. Because it has 
the same z-index as the chiles but is defined afterward, we’d expect it to be drawn 
on top of the chiles. We’d also expect it to be drawn under the potato and the 
tomato, as those items have z-index values higher than 4.

 Indeed, that is what occurs in most well-behaved browsers. As shown in the left 
portion of figure 10.15, the page displays correctly in Safari. IE 6, on the other 
hand, insists on drawing <select> elements on top of everything regardless of 
any z-index values, as shown on the right portion of the figure. IE 6 will also 
exhibit this behavior with any <iframe> elements.

 There are a couple of tactics used to get around this deficiency in IE 6 besides 
rearranging the design of the page such that <select> elements never overlap 
with anything else. One method often employed is to hide select elements (using 

Figure 10.15 Hmm. This could be a problem.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Summary 387
the CSS display rule) when something is to be displayed over it. Another tactic is 
to make the overlapping element an <iframe> element in which the higher lay-
ered elements are displayed.

 Neither of these solutions is very satisfactory, and the latter has a severely inva-
sive effect on the pages as portions of the same logical page need to be segregated 
out into other HTML documents so that they can be loaded into an <iframe>.

 Fortunately, Internet Explorer 7 does not exhibit this particular issue.

10.4 Summary

In this chapter we’ve discussed how the same attention to usability that is custom-
arily applied to desktop applications should also be applied to our web applica-
tions—especially as they become more complex and rich with the addition of 
Ajax to our toolbox.

 Usability can be enhanced with rather minor factors that we just need to be 
mindful of. Keeping the user informed, and presenting interfaces that are intui-
tive and never surprise the user by doing something unexpected, can win most of 
the battle.

 We’ve seen some ways that we can achieve those goals using some simple tech-
niques that Ajax makes possible. These techniques were presented using an 
object-oriented approach that helps to keep the extra code that these techniques 
add to our pages from creating an unmaintainable mess.

 Delighting, rather than frustrating, our users should be a goal of every web 
application developer. With Ajax in our corner, that objective is more attainable 
than ever.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


State management
and caching
This chapter covers
■ Maintaining client state
■ Prefetching server data
■ Saving data locally on the client
388

http://lib.ommolketab.ir
http//lib.ommolketab.ir


State management and caching 389
Ajax applications tend to be more client-based than the previous generation of 
web-based applications. Whereas before state and data would be handled mainly 
by the server through the use of server-based session data and server-side data 
processing and display, the advent of the rich client has led to more and more 
data being managed by the client. Take, for example, Google Mail. This applica-
tion is extremely dependent on the client for its layout and program flow. The 
server acts mainly as a repository for information, and the client maintains the 
data and displays it.

 Precisely because the client is now more involved with the handling of data, we 
need to pay more attention to several things that have changed between the old 
way of doing things (application mainly on the server; data handling mainly on 
the server) and the sparkling new Ajax way (much of the application on the client; 
data handling mainly on the client). Primarily, the way data is loaded is different. 
Previously, the server would load the data from a database, render it, and send 
HTML to the client. Now, data can be loaded separately by the client and can be 
rendered there as well. This can lead to the generation of many small request-
and-response cycles instead of just one big request-render-response cycle. 

 One thing to worry about here is the latency involved with the loading of data 
from the database. Non-Ajax applications would usually cache the data on the 
server; subsequent requests for data could then be answered with cached data
from the server. Clever server-side data caching strategies could be implemented 
because the server knew what the client was about to do next in the application, 
since most of the application was on the server. Now, with the server-side compo-
nent of Ajax applications more stateless and much of the application residing on 
the client, it can be tough to implement clever server-side caching strategies 
because we don’t know what the client can do next. Thus, client-side caching 
becomes increasingly important to reduce the inherent latency in requesting data 
from a server.

 As you might expect, a lot of issues come into play when dealing with client-
side data, all of which need to be rethought when dealing with Ajax applications. 
You, as a web developer, will need to think about 

■ Security
■ Data consistency
■ Performance

Because client-side state management is mainly done for performance reasons, 
we’ll mostly concern ourselves with optimizing our applications for speed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


390 CHAPTER 11 
State management and caching
11.1 Maintaining client state

When dealing with web applications, you may encounter two variations of the 
problem of maintaining user state on the client side. The first involves maintain-
ing the user’s state while they are actively using the application; this problem 
mainly deals with keeping data in memory across the pages in the application. 
The second involves maintaining user state across user sessions.

 The first problem can be easily solved by maintaining a data frame as part of a 
frameset (listing 11.1). Basically, your application runs in two frames. One frame 
is visible and takes up the entire browser; it is the frame in which the user inter-
acts with the application. The second frame is invisible and is only used as a 
repository of data. Why the need for this data frame? Can’t you just keep the data 
in global JavaScript variables? No, you can’t, because when you move away from 
the current page, the variables that you declared on that page disappear. When 
you navigate back to that page, all your JavaScript variables are once again 
squeaky clean. Thus we use the data frame to hold our data between navigations 
in the application. More precisely, global JavaScript variables that point to our 
data are maintained on the data frame. 

 Let’s look at an example of the behavior we are talking about. We’ll quickly 
list the <frameset> declaration (listing 11.1), followed by the frame contents (list-
ings 11.2 and 11.3), before we move on to their discussion.

<html>
<frameset cols="0%, 100%">
  <frame noresize src="data_frame.html" name="data" />
  <frame src="content_frame.html" name="content" />
</frameset>
</html>

<html>
<script type="text/javascript" language="javascript">
 var foo = 'foo';
 
 function getfoo() {
   foo = foo + '1';
   return foo ;
 }

</script>
</html>

Listing 11.1 Frameset declaration

Listing 11.2 Data frame

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Maintaining client state 391
<html>
<body>

<a href="content_frame2.html">foo</a>

<script type="text/javascript" language="javascript">
  alert(parent.data.getfoo());
</script>
</body>

</html>

The content_frame2.html referenced in the content frame is identical to content_ 
frame.html, except that it points back to content_frame.html in the anchor tag. 
Now, as we navigate through the application (this simply swaps between content 
frames 1 and 2) by clicking the links, we’ll see that we keep getting alert boxes, 
claiming something about “foo” appended by an increasing number of 1s. 

 This is obviously a simple example, but it can create some interesting behavior. 
An example that comes immediately to mind is the simple yet powerful “wizard” 
concept. In a wizard application, the user needs to navigate through multiple 
pages of settings. The values of these settings must be retained as you navigate 
through the wizard. The usual way of doing this is to keep sending the data to the 
server as the user navigates through the pages, and then retaining this data in 
memory somehow (in the J2EE world, this would be in the user’s session). Then 
when the user finishes the last wizard page, all the data must be combined into 
some sort of transaction. When we use the data-frame approach, the values 
entered in the wizard are kept in the data frame as the user goes through the steps, 
and are sent to the server only at the final step. This removes some of the com-
plexity of maintaining wizard state from the server and puts it on the client.

 The data-frame approach is not useful if your application resides on a single 
page and uses client-side layout management to handle dynamic content 
updates. In that case, you can just use global JavaScript variables to hold handles 
to your data. In addition, a drawback of the data-frame approach is that it will not 
persist data in JavaScript variables across a refresh of the page. If your users like 
to click the refresh button a lot, they will keep losing their state. You also need to 
keep a security issue in mind: if you are using the data-frame approach, be aware 
that the data stored in these frames is available to all the windows that a browser 

Listing 11.3 Content frame

http://lib.ommolketab.ir
http//lib.ommolketab.ir


392 CHAPTER 11 
State management and caching
may have open. It is possible for malicious persons to craft web pages that can 
trawl through the data retained by the data frames. This data could then be sent 
back to a server of their choice. 

 The second problem we mentioned earlier involves maintaining user state 
when a user logs out of an application and closes the browser. This can be han-
dled on the server side by maintaining all user state data in a database. It can also 
be handled on the client side by somehow persisting the data on the user’s com-
puter. JavaScript applications running on the client side only have one browser-
native way to persist data on the browser side: cookies. Certainly, we could resort 
to ActiveX or Java applets to take care of data persistence on the client side (such 
plug-ins have access to the client’s filesystem), but that would require users to 
install these plug-ins and goes against the notion of a lightweight client-side 
application. The reader is naturally encouraged to explore such methods, and 
we’ll examine one such heavyweight client-side persistence mechanism: AMASS
(Ajax Massive Storage System). The only reason we showcase AMASS is because it 
utilizes the ubiquitous Flash plug-in (according to the AMASS authors, available 
on 95 percent of machines) for storage. In section 11.3 we’ll explore state persis-
tence via cookies and AMASS in greater depth.

 If we would allow non-cross-browser-compatible ways of storing large amounts 
of data on the client side, we could take a look at Internet Explorer’s client-side 
persistence mechanism. A lot of documentation is available from Microsoft at 
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/persistence/
overview.asp. Be careful if you do decide to use Microsoft’s client-side storage 
mechanism, as it is quite limited; only about 640KB of custom storage is available 
per domain and 64KB per page.

11.2 Caching server data

A slow user interface is almost guaranteed to evoke user aggravation. And what is 
a major cause of a slow user interface? It’s the delay incurred when requesting 
data from the server and getting it back. Thus, to provide a snappy client-side 
interface, we must be able to obtain the data to display quickly. There are several 
ways to do this on the server (such as tuning your queries or caching commonly 
requested data), but a request-response overhead is still incurred. The only way to 
get rid of this overhead is to keep your data on the client. This section will explore 
this aspect of Ajax applications: server data caching.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Caching server data 393
 We’ll take a look at how we should store server data on the client side. Natu-
rally, we must still obtain the data to store, and so we’ll also examine how to use 
the prefetching of server data to speed things up even more. 

 You might be wondering how you can cache the data you receive from the 
server. The answer to this question is highly dependent on the type of application 
that you have. Some possibilities for storing data are

■ As JavaScript objects
■ As multiple arrays of data
■ As XML DOM trees, which can be swapped in and out of the client-side DOM

■ Insert your favorite mechanism here

If your data is highly static, it might make sense to prerender them into DOM
trees on the client, and then swap them in and out using the DOM. Multiple 
arrays make sense if you’ll be making several modifications to the data and iter-
ating over them. JavaScript objects can be assembled into a complicated client-
side caching framework, which can intercept events that happen on said objects 
and dispatch these events to certain registered listeners (which can then take 
appropriate actions based on the nature of the events). As you may have deduced, 
it all depends on the nature of your application.

 In this section, we’ll store our data in the form of JavaScript objects and use 
object-oriented JavaScript. Object-oriented JavaScript is becoming prevalent in 
the Ajax world (and is made easy through the use of the excellent Prototype 
library), and it thus behooves the developer to become familiar with it. 

 The first example will build a simple object storage mechanism that reflects 
the rows retrieved from database queries. The second example will then expand 
on the first by including a prefetching mechanism. To showcase the functionality 
of these concepts, we’ll develop a simple customer display application where we 
can page through a list of customers. Let’s get coding!

11.2.1 Exchanging Java class data

In this problem we’ll examine a simple client-side object storage mechanism to 
store rows retrieved from a database. We’ll start off with a small web page that can 
do a few simple things. It will be able to query the server for lists of customer 
information, which it will then store on the client side. It will also be able to page 
through this data. It won’t prefetch anything, nor will it check the server for out-
dated data. We’ll examine those scenarios later on.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


394 CHAPTER 11 
State management and caching
Problem
You need to cache server-side data on 
the client to speed up the interface.

Solution
Let’s develop a class for the customers 
first (see listing 11.4). The end result 
should look like figure 11.1. The class 
will hold some simple attributes such 
as a first and last name, along with a 
customer ID number. This is simply 
the index of the customer in an array 
of customers that we are using to mock 
up a database. If you were using a real 
database, this might be a universally 
unique identifier (UUID) or some 
other identifying field. For exchang-
ing the data in the Java classes, we’ll 
use the JSON libraries to serialize them 
to JavaScript.

 
 

public class Customer 
{

    private String firstName;
    private String lastName;
    private int customerID;

    public Customer(String firstName, String lastName, int customerID) {
        this.firstName = firstName;
        this.lastName = lastName;
        this.customerID = customerID;
    }
    
    public JSONObject toJSON() throws JSONException {   
        JSONObject obj = new JSONObject();                            
        obj.put("firstName", firstName);          
        obj.put("lastName", lastName);
        obj.put("customerID", customerID);

Listing 11.4 Customer class

Figure 11.1 Caching customer data on 
the client

Converts Java 
object to JSON

 B

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Caching server data 395
        return obj;
    }
}

As you can see, we use the JSON Java library (available at www.json.org/) to con-
vert a Java object to its JSON representation b.

 Now that we have a representation of a customer, we need a class that will store 
our customers and is able to query them (see listing 11.5). We also need to create 
some mock data, which this class will also do for us.

public class CustomerManager 
{

  private static CustomerManager instance = new CustomerManager();

  public static CustomerManager getInstance() {
    return instance;
  }

  private CustomerManager() {
    this.customers = new ArrayList<Customer>();   
    createCustomers(100);   
  }

  private List<Customer> customers;            
  private void createCustomers (int total) {
    Random random = new Random();

    String[] firstNames = { "Andrew", "Benjamin", "Chris",
        "Diana", "Elaine", "Fred", "Grizelda", "Helga",
        "Ishmael", "Julia", "Kevin", "Larry", "Mallory" };
    String[] lastNames = { "Andersen", "Benamos", "Costa",
        "Demumbrum", "Evans", "Fitzgerald", "Glen",
        "Harrison", "Ibrahim", "Johnson", "Klerk",
        "Lieberman", "Murakami" };

    for (int id = 0; id < total; id++) {
      String firstName = firstNames[random
          .nextInt(firstNames.length)];
      String lastName = lastNames[random
          .nextInt(lastNames.length)];
      Customer customer = new Customer(firstName, lastName,
          id);
      this.customers.add(id, customer);
    }
  }

Listing 11.5 CustomerManager class

Creates customer 
database

Populates database with 
random customers

Stores customer 
database 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


396 CHAPTER 11 
State management and caching
  public List<Customer> getCustomers() {   
    return this.customers;
  }

}

Now that we have a customer representation and some sort of customer data-
base, we need a way to return the customers stored in the database to our Java-
Script running on the client. The CustomerServlet shown in listing 11.6 will take 
care of this.

public class CustomerServlet extends HttpServlet 
{

  CustomerManager cm = CustomerManager.getInstance();   

  @Override
  protected void doGet(HttpServletRequest req,
      HttpServletResponse res) throws ServletException,
      IOException {
    int start = Integer.parseInt(req.getParameter("start"));  
    int pageSize = Integer.parseInt(req   
        .getParameter("pageSize"));

    List<Customer> customers = cm.getCustomers();

    JSONArray ja = new JSONArray();               
    for (int current = start; current < start + pageSize
        && !(current >= customers.size()); current++) {
      try {
        ja.put(customers.get(current).toJSON());   
      } catch (JSONException e) {
        e.printStackTrace();
        throw new ServletException(e);
      }
    }

    res.getWriter ().write(ja.toString());   
  }
}

Note that we use a JSONArray b to hold a JavaScript representation of all the cus-
tomers we’ll return. We then put a JSON representation of the customer into the 
array C we’ll return to the client.

Listing 11.6 CustomerServlet class

Queries database 
for customers

Obtains customer 
manager

Specifies 
customer 
start index

Specifies total 
customers to return

Creates new 
JSON array

 B

Stores customer C

Writes representation 
to client

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Caching server data 397
 Our application is beginning to take form as all our server-side components 
are ready. All that is left is to create some JavaScript code that can query the 
server for customers and display them on a page. We’ll write a CustomerManager 
class (see listing 11.7) in object-oriented JavaScript with Prototype to handle the 
fetching, caching, and displaying of the customers.

var CustomerManager = Class.create();

CustomerManager.prototype = 
{
  customerData : new Array(),   

  drawCustomerDIV : function(start, pageSize, div, cached) {
    displayString = '<ul>';                                               
    
    for (i = start; 
         i < pageSize + start && i < this.customerData.length;
         i++) {
      customer = this.customerData[i];
      displayString += '<li>';
      displayString += customer.customerID;

      if (cached) {
        displayString += ' (cached) ';   
      }
      displayString += ' -- ';
      displayString += customer.firstName;
      displayString += ' ';
      displayString += customer.lastName;
      
      displayString += '</li>';
    }
  

    displayString += '</ul>';

    div.innerHTML = displayString;   
  },

  cacheCustomerData : function (response) {
    responseArray = response.responseText;                                
    currentCustomerData = 
      eval('(' + responseArray + ')');    
    
    for (i = 0; i < currentCustomerData.length; i++) {
      customerID = 
        currentCustomerData[i].customerID;    

Listing 11.7 Client-side CustomerManager

Holds customer data B

Displays cached notification C

Shows customer data D

Deserializes fetched 
customer data

 E

 F Gets customer ID

http://lib.ommolketab.ir
http//lib.ommolketab.ir


398 CHAPTER 11 
State management and caching
      this.customerData[customerID] = 
        currentCustomerData[i];   
    }
  },

  getCustomerData : function (start, pageSize, div) {
    if (this.customerData.length > start) {
      this.drawCustomerDIV(start,
        ➥ pageSize, div, true);           
    } else {
      manager = this;    
      options = {                                                        
          method: 'get',                                                 
          parameters: 'start=' + start + 
            '&pageSize=' + pageSize,        
          onSuccess: function(response) {                                
            manager.cacheCustomerData(response);                         
            manager.drawCustomerDIV(start, pageSize, div, false);        
            },
          onFailure: function(r) {                                       
              alert('Server Status: ' + response.status + ' - ' +
              response.statusText);
          }       
      };
      
      new Ajax.Request('/ajax/servlet/Customers', options);              
      
    }
  },
  
  initialize : function() {}
}

Let’s take a closer look at our CustomerManager class. First, we create an array 
to cache the customer data b. This array will be used extensively in the subse-
quent code.

 Second, we have our drawCustomerDIV() function, which takes the cached cus-
tomer data and creates a list in the <div> that we specify. The displayString
variable will hold the HTML of the list of customers we’re assembling. Once 
we’ve assembled the contents of the <div>, we can set the content of the <div> to 
the HTML code contained in the displayString variable. The cached parameter 
will be true if we did not fetch the customers we’re displaying from the server; 
instead we’ll rely purely on the cached data in the customerData array. In this 
case, we append a notice that these customers are from the customer cache C. 

Caches customer data G

Draws customer data H

Manages reference 
to self for callback I

Passes proper 
parameters to server

 J

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Caching server data 399
Finally, we set the content of the <div> D we’re using to display the customers to 
the list that we have assembled in the loop.

 Third, we have our cacheCustomerData() function, which is invoked only after 
we’ve fetched customers from the server. It will create JavaScript objects out of the 
JSON array we’ve received from the server and will populate the customerData
array appropriately. It gets the JSON text we’ve received from the server and cre-
ates a JavaScript array out of it E. Then, for each customer object in the array, we 
get its ID F and store it in the cache indexed by its ID G.

 Finally, we create the getCustomerData() function, which is capable of decid-
ing whether the requested range of customers is in the customer cache. If it is 
H, the function will simply output the customer data. If the range is not held 
in the cache, the function will request the customer objects from the server, 
cache them, and then draw them. We also store a reference to the manager I
because later in our onSuccess event handler we reference the manager variable 
instead of the this variable. The reason is that when this callback function is 
invoked, the this variable won’t point to the CustomerManager object and will 
instead point at an object in the Ajax.Request object hierarchy. Thus, we need 
to invoke the manager like this. Because we’re using Prototype’s Ajax.Request 
object to create an asynchronous XHR object, we populate the options object to 
pass several options to Ajax.Request. In the options, we pass a start parame-
ter J, which denotes the index in the database to start at, and a pageSize
parameter, which denotes the number of customers to return. If the request is 
successful, we’ll cache the customers from the response and draw them. The 
last action we perform is to make a request to our data servlet. The path /ajax/
servlet/Customers is where our CustomerServlet is located.

Displaying the customer data
We’re almost done, as we have the server- and client-side code. Figure 11.2 shows 
what it looks like when we receive notification that the currently displayed cus-
tomers are being fetched from the internal customer cache instead of being 
fetched from the server.

 Next up is some HTML (listing 11.8) for displaying the customer data along 
with two JavaScript functions that will allow us to page through the data.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


400 CHAPTER 11 
State management and caching
<html>
<head>
<script type="text/javascript" src="../json.js"></script>                                        

<script type="text/javascript" src="../prototype-1.4.0.js"></script>                             
<script type="text/javascript" src="listings.js"></script>                                       
</head>

<body>
  
  <button onclick="previous();">Previous</button>                         
  <button onclick="next();">Next</button>                                 
  
  <div id="customers"></div>       

  <script type="text/javascript">
  var totalCustomers = 100;                                               
  var currentCustomerIndex = 0;                                           
  var pageSize = 11;                                                      
  
  var manager = new CustomerManager();                                     
  function previous() {                 
    currentCustomerIndex -= pageSize ; 

Listing 11.8 Customer paging HTML

Figure 11.2  
Displaying the cached customers

Contains <div> for 
displaying customer data

Moves to previous 
customer list

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Caching server data 401
    if (currentCustomerIndex < 0) {
      currentCustomerIndex = 0;
    }
    manager.getCustomerData(currentCustomerIndex, pageSize,  
    $('customers'));

   }
  
  function next() {   
    currentCustomerIndex += pageSize; 
    if(currentCustomerIndex >= totalCustomers) {
      currentCustomerIndex = totalCustomers - 1;
    }
    manager.getCustomerData(currentCustomerIndex, pageSize, $('customers'));
  }
  
  manager.getCustomerData(currentCustomerIndex, pageSize, $('customers'));
  </script>
</body>
</html>

A quick note on this code: we need to know how many customers in total are 
returned by our query—in this case, all the customers. We’re hard-coding that 
value in our totalCustomers variable to cut down on the lines of code you need 
to read through. If you were doing this in the real world, you’d assign this vari-
able programmatically based on the total number of customers that are available 
for display.

Discussion
We now have all the components that we need. Let’s skip ahead a few pages with 
the Next button, and then hit the Previous button to go back to the previous list. 
Because we have cached those customers already, we should be informed that 
those customers are being fetched from the cache.

 This section showed a simple example of complex client-side behavior. In the 
real world, things are not this simple. As we mentioned, we hard-coded the num-
ber of customers available for display to cut down on client- and server-side code. 
In the real world, this variable needs to be fetched programmatically when we 
execute a query. 

 Caching previously requested results is a big performance win for both users 
and application providers. Users enjoy the increased performance boost of not 
having to round-trip to the server for information they had already loaded. 
Application providers are able to save on server cycles and bandwidth, as they do 
not incur extra hits for data they had already sent to the client.

Displays 
customers 
in <div>

Moves to next 
customer list

http://lib.ommolketab.ir
http//lib.ommolketab.ir


402 CHAPTER 11 
State management and caching
 We can optimize the experience for the user even more. In the next example, 
we’ll extend our caching behavior to also load the next page that a user can nav-
igate to. This way, the cache will already be warm, and page flips take absolutely 
no time at all.

11.2.2 Prefetching

To provide for an even more responsive user interface, we need to examine the 
topic of prefetching, or precaching. The basic idea is that we know what data
the user is going to look at next, as they have only the option initially of going 
to the next page. Instead of waiting for the user to hit the Next button in 
order to load that data, we load it and cache it before the user does anything. 
Due to the asynchronous behavior, this prefetching takes place in the back-
ground and will not cause the client to experience a lag as the browser is grab-
bing the future data.

Problem
You need to prefetch data from the server to speed up the client.

Solution
We’ll be reusing much of the previous example with a few modifications made in 
the appropriate areas. The server-side code doesn’t need be changed one bit. It 
simply serves our customers; this behavior is no different now than it was before. 
The only place where we need to make modifications is in our client-side Client-
Manager object. Instead of making one request to the server, it will now make 
either two (when we first load up the page and to get the current page and the 
next page) or one (when we hit Next, it needs to get the second-next page). The 
result should look like figure 11.3. Let’s look at the modified ClientManager Java-
Script (listing 11.9).

drawCustomerDIV : function(start, pageSize, div, cached) {
    if (div == null) {   
      return;
    }
    
    displayString = '<ul>';
    
    for (i = start; 
         i < pageSize + start && i < this.customerData.length; 
         i++) {
      customer = this.customerData[i];

Listing 11.9 Client-side JavaScript

Prevents infinite recursion B

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Caching server data 403
      displayString += '<li>';
      
      displayString += customer.customerID;
      if (cached) {
        displayString += ' (cached) ';
      }
      displayString += ' -- ';
      displayString += customer.firstName;
      displayString += ' ';
      displayString += customer.lastName;
      
      displayString += '</li>';
    }
  
    displayString += '</ul>';
    div.innerHTML = displayString;
  }

getCustomerData : function (start, pageSize, div) {
    if (this.customerData.length > start) {
      this.drawCustomerDIV(start, pageSize, div, true);
      if(div != null) {                                
        this.getCustomerData(start + pageSize, pageSize, null);
      }
    } else {
      manager = this;      
      options = {
          method: 'get',
          parameters: 'start=' + start + '&pageSize=' + pageSize,
          onSuccess: function(response) {
            manager.cacheCustomerData(response);
            manager.drawCustomerDIV(start, pageSize, div, false);
            if (div != null) {                      
              manager.getCustomerData(
                ➥ start + pageSize, pageSize, null);   
            }
          },
          onFailure: function(r) {
              alert('Server Status: ' + response.status + ' - ' + 

response.statusText);
          }       
      };
      
      new Ajax.Request('/ajax/servlet/Customers', options);
      
    }
  }

Detects call by UI C

Detects call by UI D
Gets next 
page of data E

http://lib.ommolketab.ir
http//lib.ommolketab.ir


404 CHAPTER 11 
State management and caching
Discussion
We only make one modification to the drawCustomerDIV() function b: if the 
<div> is null, do not do anything. You will see in the next function why that is so.

 We make a few modifications to the getCustomerData() function. If the <div> is 
not null C (meaning we were called directly from the UI), then we get the next 
page of customer data and pass null as the <div>. This is so because we do not 
wish to draw the next page, and because we want to prevent infinite recursion. 
Likewise, if the <div> is not null D, we fetch the next page of data E. We pass 
null as the value for the <div>, because we need to prevent recursion and do not 
wish to draw the prefetched page.

 And that is all. A few small modifications and we are now prefetching the data. 
We expect the first page to not display the cached notification (figure 11.3), but 
any subsequent pages we navigate to should display the notification.

 Now let’s go to the next page (figure 11.4), which should tell us that it used the 
cache for the customer data. Indeed we see that these customers were fetched 
from the cache and not from the server.

Figure 11.3  
Initial screen with non-
prefetched customers

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Caching server data 405
It was quite simple to modify the CustomerManager to prefetch the data: we 
made only three small changes. In return, we are now prefetching the next page 
of customer data in the background while the user is inspecting the current data.

 An interesting problem presents itself: what if the user is paging through the 
application faster than the rate at which we can precache? With the previous solu-
tion, the proper data will still be displayed: as we navigate to the next page, we 
will detect that we do not have the customers in the cache (because they are still 
being fetched), and thus another request to the server is issued for those custom-
ers. This can lead to a situation where we are making multiple requests for the 
same data—most certainly a suboptimal situation. If we were using Java (or any 
other programming language with mutex abilities), we need simply implement a 
locked reader-writer, where the reader will wait on a mutex if the data is not avail-
able and be awoken by the writer once the information is present. Sadly, Java-
Script does not have any such synchronization capabilities, which means we’re out 
of luck. There are certainly ways around the problem; one possible solution is to 
implement a poor man’s threading approximation:

Figure 11.4  
Browser displaying the cached 
notification for prefetched customers

http://lib.ommolketab.ir
http//lib.ommolketab.ir


406 CHAPTER 11 
State management and caching
■ The page forward and page backward capabilities are implemented as com-
mand objects, which are placed on a command queue. They can check if 
the needed data is present. If it is present, we update the UI; if it is not 
present, then we fail. 

■ We use the setInterval() or setTimeout() method to periodically execute 
a command-object executer. The command-object executer would look at 
the command object queue and execute the topmost object. If it succeeds, 
we remove it from the execution stack. If it fails, we leave it alone until the 
next time we enter our execution loop. 

The problem could also be solved on the server side. The server could detect iden-
tical queries and place any duplicate queries in a wait queue. Once the original 
query returns, it could pass the same results to the identical queries. However, this 
way you are still exchanging duplicate data between the server and the client.

 As you can see, it isn’t an easy problem to solve. Is the solution worth the addi-
tional complexity? That depends on the application.

11.3 Persisting client state

The previous section dealt with transient data—that is, data that is not persisted 
on the client across browser restarts and page refreshes. This section explores 
how we can permanently store data locally on the client machine.

 As we discussed earlier, there are two ways to store data locally on the client: 
via cookies and through browser plug-ins that can access the local filesystem. 
We’ll examine both of these mechanisms in the examples that follow.

11.3.1 Storing and retrieving user state with JSON

This example will show you how to store/retrieve a JSON representation of the 
user’s state to/from cookies. We are storing the user state in a tree of JavaScript 
objects and will be using the JSON JavaScript library to serialize and deserialize the 
data. You can find more information about JSON at www.json.org. The JavaScript 
JSON library can be found at www.json.org/js.html. For storing and reading cook-
ies, we are using the Webmonkey cookie library available from www.webmonkey 
.com/webmonkey/reference/javascript_code_library/wm_ckie_lib/. There are about 
12.5 billion cookie libraries out there, so don’t feel obligated to use this one.

Problem
You need to store and retrieve data in a cookie across browser restarts.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Persisting client state 407
Solution
Let’s start this solution off with a mix of JavaScript and HTML (listing 11.10), 
which shows you how to combine JSON data and cookies. Nothing too compli-
cated here; it’s just a simple script that stores the information from a small IP
address wizard in a browser cookie.

<html>
<head>
<script type="text/javascript" src="../json.js"></script>
<script type="text/javascript" src="../cookies.js"></script>
</head>

<script type="text/javascript">
function getState() {            
  mainState = new Object();
  var wizardState = new Object();

  mainState.wizard = wizardState;

  wizardState.ip = '192.168.1.6';
  wizardState.nm = '255.255.255.0';
  wizardState.gw = '192.168.1.1';

  mainState.userName = 'json';
  mainState.password = 'nosj15';
  mainState.style = 'bluesteel';

  return mainState;
}

function storeState(state) {   
  serialized = state.toJSONString();          
  WM_setCookie('state', serialized, 24*100);   
}

function testStateMechanism() 
{
  state = getState();   
  storeState(state);    
}

testStateMechanism();   
</script>
</html>

Listing 11.10 Serializing and storing a state object using JSON and cookies

Gets representation 
of user state

Stores state Converts to a 
JSON string

Sets expiration 
to 100 hours

Gets current state

Stores state in cookie

Tests our mechanism

http://lib.ommolketab.ir
http//lib.ommolketab.ir


408 CHAPTER 11 
State management and caching
When we run listing 11.10, we store the current state in a cookie. Then we close 
the browser, start it back up, and run listing 11.11. Figure 11.5 shows us what we 
get for our trouble.

<html>
<head>
<script type="text/javascript" src="../json.js"></script>
<script type="text/javascript" src="../cookies.js"></script>
</head>

<script type="text/javascript">
function retrieveState() {
  serialized = WM_readCookie('state');   
  return serialized.parseJSON();  
}

function testStateMechanism() 
{
  state2 = retrieveState();
  alert(state2.wizard.ip);
}

testStateMechanism();
</script>
</html>

Discussion
There are a few limitations (as specified in RFC 2109) to using cookies to store 
data across browser restarts. First, cookies are limited to 4KB of data. That’s not a 
whole lot if you wish to store, say, the contents of your customer relationship man-
agement database. Second, you are limited to 20 cookies per domain, so even if 
you were to persist state across multiple cookies, you’re limited to 80KB of data.

 Also, keep in mind that all the data stored in cookies for a particular domain 
will be sent to the server. You must be sure that once you read the user state from 

Listing 11.11 Deserializing a state object using JSON and cookies

Figure 11.5  
Alert box showing our retrieved state

Reads serialized 
data from cookie

Returns 
deserialized data

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Persisting client state 409
a cookie, you remove that cookie from the client; otherwise, each client request 
will send across the contents of the state management cookie. This will certainly 
slow down your applications.

 Finally, a security consideration is that users can easily modify the cookie con-
tents. You must be careful not to store sensitive data in a cookie, such as user-
names, passwords, logged-in status, roles, groups, and so forth. The security 
consideration is twofold: 

■ Users of the same machine could access this data to steal passwords and 
other sensitive information and impersonate the valid user by simply copy-
ing the cookie.

■ If information such as roles and groups are stored in the cookie, users could 
manipulate this data to grant themselves rights that they should not have. 

Therefore, all matters pertaining to login and security should never be stored on 
the client side.

11.3.2 Persisting JSON strings through AMASS

Cookies simply will not do the trick when you wish to store more than 80KB of 
information on the client. What is a web developer to do? AMASS (http://coding-
inparadise.org/projects/storage/) springs into action and comes to the rescue. It 
makes use of the Flash plug-in to store large amounts of data on the client, which 
is saved to local files. You can store a total of 100KB without user permission. Any 
larger amounts require the user to grant permission to Flash to store this 
amount. AMASS works a bit like a hash table: data is stored by a specific key. You 
can save simple text strings, and even JavaScript objects, which are simply con-
verted into a string representation.

Problem
You need to store and retrieve large amounts of data on the client.

Solution
Let’s reimplement the previous example using AMASS (listing 11.12).

<html>
<head>
<script type="text/javascript" src="../json.js"></script> 
<script type="text/javascript" src="x_core.js"></script>
<script type="text/javascript" src="x_dom.js"></script> 

Listing 11.12 Using AMASS

http://lib.ommolketab.ir
http//lib.ommolketab.ir


410 CHAPTER 11 
State management and caching
<script type="text/javascript" src="x_event.js"></script> 
<script type="text/javascript" src="storage.js"></script> 
<script type="text/javascript" language="javascript">
storage.onload(initialize);   
      
function initialize(){
  alert('store is initialized');
}

function storeState(state) {   

  storage.putString('state', state.toJSONString(), statusHandler);
}

function testStateMechanism() {   
  state2 = retrieveState();
  alert(state2.wizard.gw);
}

function retrieveState() {   
  return storage.getString('state').parseJSON();
}

function persistState() {   
  state = getState();
  storeState(state);
}
      
function getState() {   
  mainState = new Object();
  wizardState = new Object();

  mainState.wizard = wizardState;

  wizardState.ip = '192.168.1.6';
  wizardState.nm = '255.255.255.0';
  wizardState.gw = '192.168.1.1';

  mainState.userName = 'json';
  mainState.password = 'nosj15';
  mainState.style = 'bluesteel';
  
  return mainState;
}

function statusHandler(status) {                                          
  if (status != Storage.SUCCESS) {   
    alert(status);
  }
}

Registers event 
handler

Encodes object to 
JSON and stores it

Retrieves state 
and prints info

Retrieves stored state, 
converts to object

Gets application 
state and persists it

Creates mock state 
with nested objects

Alerts if not 
successful

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Persisting client state 411
   </script>
   </head>
   <body>
    <button onclick="persistState();">                                    
       Store State</button> 
    <button onclick="testStateMechanism();">                             
       Test Stored State</button> 
   </body>
</html>

Discussion
As we discussed previously, any in-memory state is 
lost when we navigate away from a page or when we 
refresh the browser. Thus, to test AMASS and show 
its functionality, we’ll load the example page, store 
the state, refresh the page, and test the state. Let’s 
do that.

 First we are greeted with an alert box (figure 11.6) 
stating that the storage system has been initialized. 
This is generated from the callback we passed to storage.onLoad(). We also see the 
main application page with our store and restore buttons (figure 11.7).

 Let’s click the Store State button and refresh the page. This should generate 
another alert box notifying us that the storage system is ready. After dismissing the 
alert box, we then click the Test Stored State button. This should pop up another 
alert box (figure 11.8) notifying us of an element of the persisted state.

 And indeed it does. The value dis-
played in the alert box (192.168.1.1) 
is the value of the gw variable we 
assigned to the wizard state, which was 
then assigned to the global state 
holder. In our test function, we navi-
gated the restored state to the wizard 
object, and then to the gw value, and 
then displayed it in our alert box. As 
you can see, by combining AMASS with 
JSON we can store entire object trees
and load them again when needed.

Figure 11.6 AMASS 
initialization message

Figure 11.7 Storage test

http://lib.ommolketab.ir
http//lib.ommolketab.ir


412 CHAPTER 11 
State management and caching
 You may wonder where the storage variable that 
we used in the previous JavaScript comes from. It is 
actually declared by the storage.js JavaScript library. 
Once you have included the AMASS JavaScript 
library on your page, you can then just refer to it 
anywhere in your JavaScript functions. AMASS also 
has other functions that you may find useful. We’ve 
been using the putString() function to store our 
objects, but AMASS also has a put() method that can 
take any object, not just strings. However, in our testing we’ve noticed that it is 
faster to do the manual JSON encoding first and then use putString() than it is to 
just pass a nonencoded JavaScript object to the put() method. Likewise, get-
String() has an equivalent get() counterpart, which will deserialize objects stored 
with the put() method. But just as JSON + putString() is faster than regular 
put(), JSON + getString() is faster than a regular get(). AMASS also has a func-
tion called hasKey(), which simply returns true or false depending on whether a 
specific key has an associated value. Conspicuously absent is a delete() function! 
When we needed to remove a key, we simply called put() with null as argument; 
this seems to work just as well.

 Like cookies, AMASS stores its data in files on the filesystem. And also like 
cookies, these files are quite easily manipulated by a person with a text or hex edi-
tor and some spare time. The security considerations we’ve mentioned for cook-
ies also apply to using AMASS for your persistent storage. Do not store sensitive 
information using AMASS.

 AMASS is an extremely capable tool when you have a need to persist large 
amounts of information on the client side. For instance, a webmail application 
could store read messages on the client, obviating the need to refetch emails once 
they have been downloaded. A drawback of using client-side persistence is that 
upgrades of your software are not as simple as they previously were. If an appli-
cation is purely on the server, you are able to manipulate data any way you 
choose. Now that a significant amount of data is stored on the client, you lose that 
advantage and you are faced with writing a client-side program that can upgrade 
the data stored on the client. Caveat programmer!

Dirty-checking cached data
One matter that we did not discuss in the previous examples is the dirty-checking
of data held by the client against the data from the server. You will run into situ-
ations where data is updated on the server and your client is holding a cached 

Figure 11.8 Storage test 
success

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Summary 413
copy of the old data. What to do? You could implement complicated caching 
algorithms that ask the server whether any of its data is outdated and that instruct 
the server to send the client any updates. To provide this functionality, the server 
and client need to keep some sort of timestamp or version number for the data 
being cached by the client. This is so that we can compare the timestamp or ver-
sion number with the same information held on the client. Then, the client must 
communicate to the server the timestamp information it has and receive updates 
to any modified data. 

 However, when you check client-side data against the server in order to 
ensure that the data is consistent, a large assumption is made: it is faster to check 
and fetch only updated data than it is to just fetch the server-side data no matter 
what. The validity of this assumption depends on your application. If it takes a 
long time to obtain the latest data, then this method will work for you. If it is just 
as fast to access the latest data as it is to check the data for updates and only 
retrieve those updates, then you may be better off not implementing a compli-
cated version-checking mechanism: it will simplify your application without 
causing a performance hit. In most instances it will be faster to just fetch the new 
data: you are querying the data for their latest timestamps anyway, so you might 
as well just avoid the hassle of writing complicated client- and server-side code. 
You most likely will not achieve performance gains anyway. Thus, if your applica-
tion must display the latest and greatest data at all times, you are probably better 
off not caching anything on the client. On the other hand, if it takes a long time 
to fetch your data and timeliness is not quite important, it is best to cache on the 
client and perhaps refresh the cache periodically; with XHR, this could occur in 
the background without the user being aware of it.

11.4 Summary

In this chapter, you learned how to store transient data (typically database data 
that is updated frequently) and persistent data (for example, user settings and 
application state). We showed you two methods for each: with transient data, you 
can cache server data or use a similar method that involves prefetching; with per-
sistent data, you can persist state to cookies (for small amounts of data) or use the 
AMASS library (for large amounts of data).

 You can—and should—use data caching in your own applications. Using data 
caching will make your applications much faster as a result of decreased network
round-trip and server access time. Using data caching also reduces the load on 
your servers (both application and database) by a substantial amount. 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


414 CHAPTER 11 
State management and caching
 Beware of the security problems with client-side caching. If your users work 
with sensitive data, like credit card or social security numbers, you may want to take 
a good look at how you will employ caching techniques. Your data might be com-
promised if your users’ computers or laptops are stolen—leaving you with some 
explaining to do. The Open Web Application Security Project (www.owasp.org/
index.php/Guide_Table_of_Contents) has quite a lot of things to say on the topic 
of web application security, and you may find the information there quite useful.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Open web APIs and Ajax
This chapter covers
■ Using open web APIs 
■ Creating a cross-server proxy 
■ Using the Yahoo! Maps, Geocoding, and  

Traffic APIs 
■ Using the Google Search API
■ Using Flickr photos APIs
415

http://lib.ommolketab.ir
http//lib.ommolketab.ir


416 CHAPTER 12 
Open web APIs and Ajax
Sometimes you just can’t do it all.
 As web developers, we’re used to writing most of the code that needs to be created 

in order to deliver the specific applications and projects that we take on. But if you 
stop and think about it, in addition to the code that we write ourselves, we rely on 
a vast array of support software that does a lot of work for us. From the web servers 
that deliver our pages, to the browsers and all their supporting software, to the oper-
ating systems that the servers and client browsers themselves run on, all this serves 
as a supporting framework that we depend on when writing our own applications.

 Beyond such enabling technology, there is a dizzying array of frameworks and 
libraries that help us add features to our applications. One of the most exciting of 
these is the area of open APIs, (application programming interfaces) where some 
well-known (and a lot of not-so-well-known) websites expose APIs that allow you to 
integrate the technology that they provide with your own applications.

 Imagine an application where you might wish to incorporate maps, or one in 
which you’d like to search the Web, or one for maintaining and sharing photo 
collections. Each of these features would be a task of Herculean proportions to 
implement on our own. But, to our delight, someone’s already done it, and 
they’re willing to open their functionality to us.

 This is a great advantage to us, the application developers. We can leverage 
the hard work that others have done by accepting the generosity that they show in 
opening their APIs for us to use. Granted, some may look at that generosity with a 
jaded view as a marketing tactic to get developers interested in more capable pro-
fessional services that may not be free, but as long as the providers are up front 
and not deceitful, it’s a fair marketing practice.

 In this chapter we’ll look at code examples that integrate Yahoo! Maps, 
Geocoding, and Traffic; Google Web Search; and Flickr photo services into our 
Ajax-enabled web applications. In doing so, we’ll explore a good cross section of 
techniques for integrating open APIs into web pages using Ajax.

 So let’s dig in and have some fun!

12.1 The Yahoo! Developer Network

The Yahoo! Developer Network (http://developer.yahoo.com/) provides a large 
range of web services, including travel, shopping, jobs, and much, much more. To 
use many of these services, you are required to obtain an application key from 
Yahoo!. This application key is a string of your choosing (much like a username), 
and it is usually passed as a request parameter to any call that you make to the 
Yahoo! web service APIs to identify who is making the call.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Yahoo! Developer Network 417
 Links in the various documents available at the Yahoo! Developer Network 
guide you through obtaining your application key. The URL for the application 
key request page is http://api.search.yahoo.com/webservices/register_application/. 
Note that you must be logged into your Yahoo! account in order to access this page.

 The Yahoo! servers will ensure the uniqueness of each key during registration. 
To be sure that the keys registered are unique, and to make them easy to remem-
ber, you can use a scheme similar to the Java package-naming conventions when 
choosing application keys. Let’s say that you own your own domain: yourlast-
name.org. All Java packages you would create in your projects would begin with 
org.yourlastname.projectname, where projectname is the name chosen for an 
individual project. Similarly, if Yahoo! web services are to be used in that project, 
you would register an application key named org.yourlastname.projectname. 
This will usually guarantee uniqueness unless someone is horning in on your 
package-naming territory!

 Once you’ve registered a key, you’re ready to begin using the Yahoo! web ser-
vices immediately.

12.1.1 Yahoo! Maps
Let’s say that you and a group of your friends are gutsy storm chasers. Every 
spring during tornado season, you load up your gear and head out in hopes of vid-
eotaping exciting footage that you hope may appear on The Weather Channel.

Problem
Your friends have high-end global positioning systems (GPS) that display real-
time maps. Alas, your unit is an old, but trusty, instrument that only gives you lat-
itude and longitude coordinates. You don’t have the extra cash to plunk down for 
a more modern unit, but you do have a laptop that connects to the Internet via 
your mobile phone. You also have programming skills, and you have Ajax!

 So let your friends have their fancy GPS units—we’ll build our own map 
application!

Solution
The Yahoo! Maps (http://developer.yahoo.com/maps/index.html) service pro-
vides a number of API choices, but we’ll stick with the Yahoo! Maps Ajax API to 
leverage our knowledge of JavaScript and DHTML.

 Unlike some other Yahoo! services (which we’ll see other examples of in just a 
bit), the Yahoo! Maps Ajax API wraps the Ajax magic into a ready-built JavaScript 
API. So rather than making the Ajax calls ourselves, we’ll import the Yahoo! Maps 
API and reference the objects and functions that it defines.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


418 CHAPTER 12 
Open web APIs and Ajax
 First, we must import the API from the Yahoo! servers. In the <head> section of 
our document we’ll place the following script import element:

<script
  type="text/javascript" 
  src="http://api.maps.yahoo.com/ajaxymap?v=2.0&appid=YahooDemo">
</script>

We also import Prototype with

<script
  type="text/javascript" src="prototype-1.5.1.js ">
</script>

We’ll obtain the latitude and longitude coordinates from our GPS unit and enter 
them in a form on our application page. Upon entering the data in the form 
(which we will not be submitting to any server), we want to display a map centered 
on those coordinates.

 So let’s set up a little form as follows (making it beautiful is up to you):

<form name="mapForm" onsubmit="showMap();return false;">
  <div>
    Latitude: <input type="text" id="latitude"/>
    Longitude: <input type="text" id="longitude"/>
    <input type="submit"/>
  <div>
</form>

Note that the onsubmit event handler for this form causes a JavaScript function to 
be invoked, and also prevents the form from actually being submitted by return-
ing false.

 In addition to this form, we need someplace for the map itself to be displayed. 
The Yahoo! Maps API will expect us to pass it an element within which it will 
“draw” the map, so in the appropriate place on the page let’s add an initially 
empty container:

<div id="theMap" style="width:600px;height:480px;"></div>

After the document has loaded, we want to create and initialize the map object 
that is central to the API. We do so in the onload event handler of the page since 
the map container element must exist prior to doing so:

var map;
window.onload = function() {  
  map = new YMap($('theMap'));  
  map.addPanControl();  
  map.addZoomLong();
};

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Yahoo! Developer Network 419
This sets up a reusable YMap instance that will draw its map into the passed ele-
ment. We’ve also added optional controls to the map: a panning control and a 
zoom control.

 When our form is submitted (thus invoking the showMap() function), we 
instruct this YMap instance to draw a map centered at the given coordinates by 
creating a YGeoPoint instance and passing it to the YMap’s drawZoomAndCenter()
method. This showMap() function looks like this:   

function showMap() {  var zoomLevel = 4;  
  var latitude = $F('latitude');  
  var longitude = $F('longitude');  
  var point = new YGeoPoint(latitude,longitude);  
  map.drawZoomAndCenter(point,zoomLevel);
}

We chose an arbitrary zoom level of 4, which seems to be a good general starting 
point. Once the map loads, we can affect the zoom level, since we included a 
zoom control on the map. But if we wanted to, we could also add another form 
field to set the initial zoom level to a value other than 4.

 If we were to read latitude and longitude values of 30.27 and -97.74 from our 
GPS unit and enter them into our application, we’d see a display like the one in 
figure 12.1. Our completed document appears in listing 12.1, and can be found 
in the downloadable source code for this chapter at www.manning.com/crane2.

<html>
  <head>
    <title>Where Am I?</title>
    <script
      type="text/javascript"
      src="http://api.maps.yahoo.com/ajaxymap?v=2.0&appid=YahooDemo">
    </script>
    <script type="text/javascript" src="prototype-1.5.1.js"></script>
    <script type="text/javascript">

      var map;

      window.onload = function() {
        map = new YMap($('theMap'));
        map.addPanControl();
        map.addZoomLong();
      }

      function showMap() {
        var zoomLevel = 4;
        var latitude = $F('latitude');
        var longitude = $F('longitude');
        var point = new YGeoPoint(latitude,longitude);

Listing 12.1 Yahoo! Maps Page

http://lib.ommolketab.ir
http//lib.ommolketab.ir


420 CHAPTER 12 
Open web APIs and Ajax
        map.drawZoomAndCenter(point,zoomLevel);
      }
    </script>
  </head>

  <body>

    <div>
      <form name="mapForm" onsubmit="showMap();return false;">
        Latitude: <input type="text" id="latitude"/>
        Longitude: <input type="text" id="longitude"/>
        <input type="submit"/>
      </form>
    </div>

    <div id="theMap" style="width:600px;height:480px"></div>

  </body>

</html>

Figure 12.1 Now we know where we are!

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Yahoo! Developer Network 421
Discussion
Is that not just too cool? Who needs a fancy GPS?

 By just looking at the code on this page, it is not at all clear that there’s any 
Ajax magic going on as the server communication mechanism is hidden behind 
the Yahoo! Maps JavaScript API. But it’s obvious that some server somewhere is 
being contacted to fetch the map data for display.

 Also note that this example did not require the use of our newly obtained 
Yahoo! Developer network application key. But we’ll soon see a service that will.

 Our little page is perfect for displaying maps given the latitude and longitude 
coordinates, but sometimes we might have just a plain old street address to con-
tend with. The Yahoo! Maps YMap API has no means of drawing a map given a 
location address, but we’re not going to let that stop us. Yahoo! also makes a Geo-
coding API available.

12.1.2 The cross-server proxy

The Yahoo! Maps Geocoding REST API (http://developer.yahoo.com/maps/rest/
V1/geocode.html) provides the means to determine latitude and longitude coor-
dinates given an address location. Unlike the main Yahoo! Maps API discussed in 
the previous section, the Geocoding API is a Representational State Transfer
(REST) interface. 

 REST is a simple HTTP interface in which we hit an endpoint URL with appro-
priate request parameters and receive a response consisting of XML, JSON, HTML, 
or even plain text without the need of an additional layer such as SOAP (Simple 
Object Access Protocol).

 Fantastic! What could be easier? So we go ahead and code up an Ajax request 
on our web page that hits the appropriate URL with the required request param-
eters to test it out, anticipating that we’ll receive a response with all sorts of won-
derful information.

 Instead, the browser reaches out and slaps our wrists saying, “Uh, uh, uh! No 
cross-server scripting allowed!”

 What happened?

Problem
What happened is that we ran head-on into the Ajax security sandbox. For security 
purposes, browsers only allow Ajax calls to the same server that sent the page to 
the browser in the first place.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


422 CHAPTER 12 
Open web APIs and Ajax
 Well, dang! That certainly puts a crimp in our plans. If cross-browser script-
ing isn’t allowed, that pretty much slams the door on the use of any REST API
via Ajax.

 Or does it? Remember, we’re clever.
 We know that we can make all the Ajax requests that we want to our own server. 

And once on the server, and outside the realm of the dreaded security sandbox, 
we can make requests to any other server that we please.

 So what we really need is an agent on our own server to act as a proxy on our 
behalf—making requests to the remote servers that are providing the REST
APIs—and to relay the results of those requests back to us.

Solution
We’ll explore a Java-based solution that is appropriate for any web application 
running on servlet containers. The same approach can also be implemented for 
other server-side technologies, be it PHP or good old CGI scripts in Perl, cURL, or 
even simple shell scripts employing wget!

 The idea is to create a proxy agent to which we can make requests and that will 
relay those requests to another server, collect the response from that remote 
server, and finally feed the responses back to us. This will be a generally useful 
utility but it will be particularly valuable to us for circumventing the limitations of 
the Ajax security sandbox.

 Let’s take a look at a few diagrams that can help us envision just what this is all 
about. Consider figure 12.2.

 In step 1, our local server, booboo, receives a request (A) from the client, 
and responds with our HTML page, which the browser loads for display. Upon 
some event on the page, in step 2 an Ajax request (B) is made to a remote 
server named yogi that is providing some useful web service that we want to 
make use of.

 But, no! The browser knows that our page was served from booboo, and 
any attempt to make a request to another server is blocked. Well, we all learned 
at a young age that when Mom says “no,” you go ask Dad! Now consider fig-
ure 12.3.

 In this new scenario, a request and response cycle (A) to load our page into the 
browser takes place in step 1 just as before. But now, when we wish to make an 
Ajax request to the web service on yogi, we make the request (B) back to booboo, 
the originating server, as shown in step 2. This request is directed at our proxy 
agent servlet, and contains information that identifies the server and service that 
we want to contact.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Yahoo! Developer Network 423
In step 3, the proxy agent servlet makes a request (C) to the remote yogi server, 
requesting the designated web service. Since we are out of Mom’s hearing—in 
other words, outside the domain of Ajax sandbox—there is nothing to stand in our 
way, and the remote server returns a response (C) to our request.

 Finally, in step 4, the proxy agent server on booboo returns the response 
received from yogi as its own (B).

 Mom is none the wiser!
 So let’s see what it will take to code up our devious little circumvention trick. 

We could just jumble all the necessary code into a servlet, but upon a moment of 
reflection we realize that, since this facility would be generally useful in many 
environments—command-line programs or daemons, for example, or even in 
Swing applications—that we should create a reusable component.

 So to start off, we’ll create a UI-agnostic class that can be used in any Java pro-
gram to obtain content from a remote server via HTTP.

The content grabber
At this point we are faced with the frequent “build, buy, or borrow” decision. Do 
we use the facilities of the Java networking packages to “roll our own”? Or has 
someone else already done a good portion of the work for us?

Figure 12.2  
Foiled by the Ajax sandbox!

http://lib.ommolketab.ir
http//lib.ommolketab.ir


424 CHAPTER 12 
Open web APIs and Ajax
Figure 12.3  
We’ll just sneak around the 
back way.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Yahoo! Developer Network 425
In this implementation of a content grabber, we are going to decide to leverage the 
work already done in this area by other programmers. After all, isn’t this entire 
chapter about leveraging code generously provided by others?

 We’ll make use of a component of the Apache Jakarta Project named HttpCli-
ent. This is an open source component that makes it easy to emulate the actions 
of an HTTP client—hence its name.

 The project information and download can be found at http://jakarta. 
apache.org/commons/httpclient/. The JAR files necessary to use this component 
are already available as part of the downloadable source code for this chapter.

 Our ContentGrabber class turns out to be fairly simple due to the use of this 
tool. Its implementation is shown in listing 12.2.

package org.bibeault.rest;

import java.util.*;
import org.apache.commons.httpclient.*;           
import org.apache.commons.httpclient.methods.*;  

public class ContentGrabber {

  private String url;               
  private String content;         
  private String contentType;     
  private Integer contentLength;  

  public ContentGrabber(String url,   
                        Map<String,String[]> parameters) {
    this.url = url;
    try {
      HttpMethod method = new GetMethod( url );   
      List<NameValuePair> params = new ArrayList<NameValuePair>();
      for (Map.Entry<String,String[]> entry : parameters.entrySet()) {
        for (String value : entry.getValue()) {
          params.add(new NameValuePair(entry.getKey(), value));
        }
      }
      method.setQueryString(
        params.toArray(new NameValuePair[params.size()]));
      new HttpClient().executeMethod(method);              
      this.content =
        method.getResponseBodyAsString();         
      Header contentTypeHeader =
        method.getResponseHeader("content-type");

Listing 12.2 The ContentGrabber class

Imports HttpClient 
classes

 B

Defines instance 
variables

 C

Defines constructor D

Creates GET E

Executes GET F

Obtains response G

http://lib.ommolketab.ir
http//lib.ommolketab.ir


426 CHAPTER 12 
Open web APIs and Ajax
      Header contentLengthHeader =
        method.getResponseHeader("content-length");
      if (contentTypeHeader != null)
        this.contentType = contentTypeHeader.getValue();
      if (contentLengthHeader != null)
        this.contentLength =
          Integer.parseInt(contentLengthHeader.getValue());
      method.releaseConnection();
    }
    catch (Exception e) {
      e.printStackTrace();
      throw new RuntimeException("Error obtaining content from " +
          this.url + ": " + e, e);
    }
  }

  public String getUrl() { return this.url; }    
  public String getContent() { return this.content; }
  public String getContentType() { return this.contentType; }
  public Integer getContentLength() { return this.contentLength; }
    
  public static void main(String[] args) {                 
    Map<String, String[]> params = new HashMap<String, String[]>();
    params.put("appid", new String[] {"org.bibeault.aip"});
    params.put("location", new String[] {"78701"});
    System.out.println(                              
      new ContentGrabber
        ➥ ("http://api.local.yahoo.com/MapsService/V1/geocode",
                         params)
        .getContent());
  }

}

Our class starts off like any other Java class by importing the external classes that 
we’ll need b. We import the HttpClient classes as well as a handful of collections 
from the java.util package.

 A number of instance variables are defined C to hold the input URL, as well as 
the results of executing the HTTP GET method: the body content, the content 
type, and the content length. Since not every GET response will include the head-
ers for the content type and length, we need to be sure to handle that. Both of the 
contentType and contentLength instance variables are initialized to null and will 
remain null if their corresponding header is not returned. Note that we defined 
the contentLength variable as an Integer, rather than an int, just so that we can 
detect whether or not it has a null value.

Defines accessors H

Tests ContentGrabber 
from command line  I

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Yahoo! Developer Network 427
 The GET request will be fired off within the constructor D given the passed 
URL and the optional set of query parameters. Note that we have used Java 5 
generics to specify that the passed parameter map be composed of String 
instances as keys and String arrays as values. In older Java Development Kits, 
the generics could be removed (but resulting in the loss of the type safety that 
they provide).

 It could certainly be a matter for debate as to whether performing the request 
as part of construction is an optimum design. It is quite possible that there could 
be cases where a delay between construction of the grabber and access to its 
response properties could be desirable. This class could be refactored to perform 
a “lazy load” whenever one of the property accessors is called. But that won’t be 
an issue for our needs, so we’ll just keep things simple for now.

 The primary operation of the class takes place by creating an instance of Get-
Method to represent the HTTP method that we wish to execute E. The created 
instance of GetMethod is constructed with the passed URL and then augmented 
with the query parameters after they have been converted from the parameters
Map to the required array of NameValuePair instances.

 When the method is ready for execution, a new instance of HttpClient is cre-
ated and used to execute the method F. The response is inspected G and its 
body content is recorded in the content instance variable. If the content type and 
length headers were returned, their values are stored in the corresponding 
instance variables, contentType and contentLength.

 The class defines a number of property accessors to allow callers of the class to 
obtain the response results H.

 Finally, the class contains a main() method I that can be used to perform a 
rudimentary test of the class’s function. This main method is not used by callers 
of the class.

 Try it out! Load the class into an IDE, or compile and run it from the com-
mand line. In either case you should see a printout of an XML document 
returned by the service. 

 Now that we have a means to easily grab remote content, let’s put it to work.

The cross-server proxy servlet
With the ContentGrabber class at our disposal, we’re ready to create the actual 
proxy agent for our Ajax requests. Since we’ve already coded all the heavy lifting 
in the content grabber class, the proxy servlet is actually rather simple, as shown 
in listing 12.3.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


428 CHAPTER 12 
Open web APIs and Ajax
package org.bibeault.rest;

import javax.servlet.ServletException;
import javax.servlet.http.*;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

public class CrossServerProxy extends HttpServlet {

  public static final String KEY_SERVICE_URL = ".serviceUrl.";        

  protected void doGet(HttpServletRequest request,           
                       HttpServletResponse response)
          throws ServletException, IOException {
    String serviceUrl = 
      request.getParameter(KEY_SERVICE_URL);       
      if (serviceUrl == null) {
       throw new ServletException
                       ("the " + KEY_SERVICE_URL + 
                        " parameter must be provided");  
    }                             
    Map parameters = new HashMap();
    parameters.putAll(request.getParameterMap());
    parameters.remove(KEY_SERVICE_URL);           
    ContentGrabber grabber =
      new ContentGrabber(serviceUrl, parameters);   
    if (grabber.getContentType() != null)                   
       response.setContentType(grabber.getContextType());
    if (grabber.getContentLength() != null)
      response.setContentLength(grabber.getContentLength());
    response.getWriter ()
      .print(grabber.getContent());   
  }

}

This servlet is shown supporting GET requests b. POST support could be easily 
added via a doPost() method that simply calls the doGet() method to which it 
would pass its request and response parameters.

 The servlet accepts a single required parameter C that is used to provide the 
URL of the request to be proxied. Note that we have chosen a rather unconven-
tional name for the parameter in that it begins and ends with a period character. 
Why did we do that?

Listing 12.3 The CrossServerProxy class

Supports 
GET 
requests

 B

Obtains URL 
service 
parameter

 C

Complains if 
required service 
URL missing

 D

Removes service URL 
from copied map

 E

Constructs instance 
of content grabber

 F

Sets content 
type and 
length  G

Relays content of 
proxied response H

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Yahoo! Developer Network 429
 We don’t know in advance what the request parameters for the proxied request 
will be, so we’ll just add any that we find on the incoming request to the proxied 
request—all, that is, except for the single parameter that we are using to provide 
the base URL.

 That is exactly why we named it with such an odd format. It would be very 
unusual, and highly unlikely, for a web service that we might be interested in using 
to define request parameters that contain the period character. Doing so would 
make HTML DOM elements difficult to reference in JavaScript code as we would be 
unable to use the dot notation and would need to fall back to using the generalized 
de-referencing notation employing the square brackets. So by naming the 
reserved parameter using the periods, we make it unlikely that we would pollute 
the parameter namespace of any web service that we wish to employ.

 We then check that the required service URL parameter has been provided D, 
and complain loudly if it was omitted.

 A copy of the parameters passed to the proxy servlet for passing to the content 
grabber is made E. We first copy the request parameter map and then remove 
the service URL parameter.

 Why make a copy? Why not just use the Map instance returned from the get-
ParameterMap() method? Remember that Map is an interface, and in that inter-
face, the remove() method is an optional method. We have no idea whether or 
not the implementation of Map returned from the getParameterMap() method 
will implement remove(). And in fact, under Tomcat 5.5, the returned Map does 
not implement it.

 By copying the returned Map to a known implementation that implements 
remove(), in this case HashMap, we can guarantee that our call to the remove()
method will be successful.

 An instance of our content grabber is then constructed F, specifying the 
proxy URL and its parameters. This triggers the cross-server call to the proxied 
URL. Once it completes, the content type and length of the response to the prox-
ied request are recorded in our own response G.

 Finally, the content of the proxied response is relayed back as the content of 
our own response H.

Discussion
With this solution we have addressed, at least for Java web applications, the prob-
lem where the security sandbox prevents us from making web service calls from 
our pages using Ajax. As mentioned, a similar approach can be used for other 
server-side environments.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


430 CHAPTER 12 
Open web APIs and Ajax
 As with all other code examples in this chapter, the amount of error checking 
performed in the code is minimal to nonexistent in order to keep the examples 
focused on the subject at hand. In actual production code, further error checking 
should be added to increase the robustness of the code.

 We created a content grabber class that allows us to grab the content from 
another site given a URL and a set of request parameters. This class relies heavily 
on the toolset provided by Jakarta’s HttpClient project. For those of you who’d 
rather roll up your sleeves and do it yourselves, check out the java.net.URL and 
java.net.URLConnection classes as a starting point.

 Be aware that this can become a complicated affair. What if, perhaps, a web 
service that you wish to employ requires cookie handling? That’s a complicated 
affair to add to any handwritten code. HttpClient already contains the tool set 
necessary to extend our content grabber to expand its functionality in this and 
similar areas.

 The cross-server request proxy servlet employs our content grabber to serve as 
an agent for our on-page Ajax requests. Adding it to a web application is quite 
simple. Obviously it needs to be placed in the class path of the application. Also, 
it needs to be declared and mapped in the deployment descriptor (web.xml) with 
two simple elements. The first declares the servlet itself:

  <servlet>
    <servlet-name>CrossServerProxy</servlet-name>
    <servlet-class>org.bibeault.rest.CrossServerProxy</servlet-class>
    <load-on-startup>4</load-on-startup>
  </servlet>

The second declares the URL mapping for the servlet:

  <servlet-mapping>
    <servlet-name>CrossServerProxy</servlet-name>
    <url-pattern>/proxy</url-pattern>
  </servlet-mapping>

In this case, we have decided to use the servlet path: /proxy.
 Our next section puts our proxy agent to good use.

12.1.3 Yahoo! Maps Geocoding

Now that we have a means to invoke web services on remote servers thanks to the 
proxy agent we created in the previous section, we’re ready to enhance our map-
ping solution with the ability to show us a map given either a set of latitude and 
longitude coordinates or a location address.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Yahoo! Developer Network 431
Problem
As pointed out previously, the Yahoo! Maps API requires latitude and longitude 
coordinates in order to draw a map, so if we want to allow location addresses to act 
as input, we need to convert the location address into its coordinate equivalent.

Solution
The Yahoo! Maps Geocoding REST API http://developer.yahoo.com/maps/rest/
V1/geocode.html is the means by which we’ll accomplish this. Unlike the Yahoo! 
Maps API that we employed earlier to display maps given coordinates, the Geo-
coding API is a REST interface. We’ll make a request to the geocoding service 
URL with appropriate request parameters, and the response will be an XML doc-
ument with the requested information. The URL for this service is http://api 
.local.yahoo.com/MapsService/V1/geocode.

 Note that at the time of this writing, it appears that this service is limited to 
U.S. addresses. Please reference the above-mentioned web page for current infor-
mation regarding supported locations.

 We’ll send as parameters the required application key that we registered with 
Yahoo! as well as the location string that we wish to convert to coordinates. The 
service accepts other parameters, but these are the ones that we’ll focus on.

 An example service request might be

http://api.local.yahoo.com/MapsService/V1/geocode?
  appid=your.yahoo.app.id&location=78701

Type that into your browser’s address bar and see what you get. Be sure to provide 
your correct Yahoo! application key. Note that you can provide as little informa-
tion as a zip code and still obtain meaningful results.

 Armed with that knowledge, let’s begin the modifications to our map page. 
First, we need to add a new entry field for the location string. We’re going to make 
this a separate form because we want it to act independently of the existing coor-
dinate form. So before the existing mapForm we add

    <div>
      <form name="geocodeForm"
            onsubmit="findLocation();return false;">
        Location: <input type="text" id="locationField"
                         name="location" style="width:200px;"/>
        <input type="submit"/>
      </form>
    </div>

This adds a longer text field to our page into which we can type the location string. 

http://api.local.yahoo.com/MapsService/V1/geocode
http://api.local.yahoo.com/MapsService/V1/geocode
http://lib.ommolketab.ir
http//lib.ommolketab.ir


432 CHAPTER 12 
Open web APIs and Ajax
 Again, since we are going to employ an Ajax call, we prevent the form from 
actually submitting to the server by returning false in the onsubmit event han-
dler. The call to the function findLocation() is what will trigger the geocod-
ing request:

function findLocation() {
  new Ajax.Request(
    '/aip.chap12/proxy',                                         
    {
      method: 'get',     
      onSuccess: onCoordsObtained,
      parameters: {                       
        '.serviceUrl.':
         'http://api.local.yahoo.com/MapsService/V1/geocode',
        appid: 'org.bibeault.aip',
        location: $F('locationField')
      }
    }
  );
}

In this function we fire off an Ajax request to the Geocoding API, making heavy 
use of the facilities that Prototype provides for us. For a function that consists 
of a single statement, there’s certainly a lot going on! Let’s take a look at the 
various aspects.

 The URL that we pass to the Ajax request is rather simple: /aip.chap12/proxy. 
Remember that we can’t make a direct request to the Yahoo! API, so we route it 
through our proxy servlet. This URL assumes that the web app has been mapped 
to the context path /aip.chap12 and the servlet path /proxy routes the request to 
the proxy servlet.

 In the options parameter to the Ajax request b, we specify an HTTP method of 
GET and tell it to invoke a callback handler function named onCoordsObtained()
upon success. We then provide the query parameters to be passed to the request.

 Because we are using Prototype 1.5.1 in this example, we can pass the param-
eters as a simple object hash C. In earlier versions of Prototype, this hash would 
need to be converted to a query string. (Rather than laboriously creating the 
query string by hand, investigate leveraging the facilities of the Prototype Hash 
class if you are using an earlier version of Prototype.) 

 Let’s take a look at the request parameters that we specified. The .service-
Url. parameter tells the proxy servlet which service to make the request to, the 
appid parameter specifies the Yahoo! Developer Network application key (in this 
case, one that we registered for use by these examples), and the location param-
eter passes the value that was typed into the location field. Note that our oddly 

Contains options 
to Ajax request

 B

Specifies the request 
parameters

 C

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Yahoo! Developer Network 433
named service URL parameter needs to be quoted because of the period charac-
ters within the name.

 If all goes well when this request is made, we specified that the callback han-
dler function onCoordsObtained() be invoked. It is added as

function onCoordsObtained(request) {
  var xml = request.responseXML;
  document.mapForm.latitude.value =
    xml.getElementsByTagName('Latitude').item(0).firstChild.data;
  document.mapForm.longitude.value =
    xml.getElementsByTagName('Longitude').item(0).firstChild.data;
  showMap();
}

In this success handler for our Ajax request, we are passed the instance of XHR
that Prototype created on our behalf. As a successful geocoding request returns a 
small XML document as its response, we obtain and peruse that document in 
order to gather the results of the service request.

 A typical XML document returned from a geocoding request that specified the 
location as simply “78701” would be

<ResultSet xsi:schemaLocation="urn:yahoo:maps
http://api.local.yahoo.com/MapsService/V1/GeocodeResponse.xsd">
  <Result precision="zip">
    <Latitude>30.271</Latitude>
    <Longitude>-97.741</Longitude>
    <Address/>
    <City>AUSTIN</City>
    <State>TX</State>
    <Zip>78701</Zip>
    <Country>US</Country>
  </Result>
</ResultSet>

For the purpose of this example, the only elements that we care about in this doc-
ument are <Latitude> and <Longitude>. Our function locates the data within 
these elements using the XML DOM API and loads them into the latitude and lon-
gitude fields in the mapForm.

 Finally, our handler calls the existing showMap() function to cause the map for 
those coordinates to be displayed.

Discussion
By making use of the Yahoo! Maps Geocoding REST API, we have added the abil-
ity to enter location addresses in addition to coordinates. As a bonus, we display 
the returned coordinate values in the appropriate forms fields as well as display 
the proper map.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


434 CHAPTER 12 
Open web APIs and Ajax
The code could be made more robust. For example, if the service cannot deter-
mine the coordinates for the entered location, it returns a nonsuccess response, 
and as written, our page just silently ignores it. While it at least does not blow up 
in our faces, it could probably be smarter about informing us when errors occur. 
Figure 12.4 shows the revised page.

 The complete code for our extended page, which can be found in the down-
loadable source code for this chapter, is shown in listing 12.4 (with changes and 
additions in bold).

Figure 12.4 Revised page with address location

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Yahoo! Developer Network 435
<html>
  <head>
    <title>Where Am I Now?</title>
    <script type="text/javascript"
      src="http://api.maps.yahoo.com/ajaxymap?v=2.0&appid=YahooDemo">
    </script>
    <script type="text/javascript" src="prototype-1.5.1.js"></script>
    <script type="text/javascript">
      var map;

      window.onload = function() {
        map = new YMap($('theMap'));
        map.addPanControl();
        map.addZoomLong();
      };

      function showMap() {
        var zoomLevel = 4;
        var latitude = $F('latitude');
        var longitude = $F('longitude');
        var point = new YGeoPoint(latitude,longitude);
        map.drawZoomAndCenter(point,zoomLevel);
      }

      function findLocation() {
        new Ajax.Request(
          '/aip.chap12/proxy',
          {
            method: 'get',
            parameters: {
              '.serviceUrl.':
                'http://api.local.yahoo.com/MapsService/V1/geocode',
              appid: 'org.bibeault.aip',
              location: $F('locationField')
            },
            onSuccess: onCoordsObtained
          }
        );
      }

      function onCoordsObtained(request) {
        var xml = request.responseXML;
        document.mapForm.latitude.value =
          xml.getElementsByTagName('Latitude').item(0)
          .firstChild.data;
        document.mapForm.longitude.value =
          xml.getElementsByTagName('Longitude').item(0)
          .firstChild.data;
        showMap();
      }

Listing 12.4 Yahoo! Maps with Geocoding page

http://lib.ommolketab.ir
http//lib.ommolketab.ir


436 CHAPTER 12 
Open web APIs and Ajax
    </script>
  </head>
  <body>
    <div>
      <form name="geocodeForm"
            onsubmit="findLocation();return false;">
        Location: <input type="text" id="locationField"
                         name="location" style="width:200px;"/>
        <input type="submit"/>
      </form>
    </div>

    <div>
      <form name="mapForm" onsubmit="showMap();return false;">
        Latitude: <input type="text" name="latitude"/>
        Longitude: <input type="text" name="longitude"/>
        <input type="submit"/>
      </form>
    </div>
    <div id="theMap" style="width:600px;height:480px;"></div>
  </body>
</html>

12.1.4 Yahoo! Traffic
As intrepid storm chasers, it behooves us to be aware of situations on the roads 
that we are traveling on (with maps courtesy of our previous examples), so we 
want to make one more addition to our Yahoo! Maps page before setting out to 
videotape some incredible storm footage.

Problem
We want to be aware of traffic incidents in the area that we have mapped using the 
page we created in the previous solutions.

Solution
The Yahoo! Traffic API (http://developer.yahoo.com/traffic/index.html) is the per-
fect solution for this problem (assuming that we are storm chasing within the 
United States). Like the Yahoo! Maps Geocoding API, the Traffic API is a REST ser-
vice, so we can employ many of the same techniques that we used in the previous 
solution to convert address locations to latitude and longitude coordinates. The 
URL for this service is http://api.local.yahoo.com/MapsService/V1/trafficData.

 Once again we’ll send as parameters the required application key that we reg-
istered with Yahoo!, as well as the latitude and longitude that we are interested in 
obtaining information about. Similar to the Geocoding API, the traffic service 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Yahoo! Developer Network 437
accepts many other parameters, but all we need for our purposes are the latitude 
and longitude of the current map.

 We’re going to code our page such that once a map has been drawn, we can 
query the service for any traffic incidents that are reported for that area. So, we’ll 
need a button that we’ll add at the bottom of the map display area:

<div>
  <form name="trafficForm" onsubmit="showTraffic();return false;">
      <input type="submit" id="trafficButton" 
             value="Show Traffic Alerts" disabled="disabled"/>
  </form>
</div>

Note that because we don’t want the button to be available until after a map has 
been displayed, we initially disable it. At the end of our showMap() function, we 
add code to enable it once the map has been shown:

$('trafficButton').disabled = false;

Upon the click of the enabled traffic button, the showTraffic() function per-
forms what should be a familiar-looking operation:

function showTraffic() {
  new Ajax.Request(
    '/aip.chap12/proxy',
    {
      method: 'get',
      parameters: {
        '.serviceUrl.':
          'http://api.local.yahoo.com/MapsService/V1/trafficData',
        appid: 'org.bibeault.aip',
        latitude: $F('latitudeField'),
        longitude: $F('longitudeField')
      },
      onSuccess: onTrafficObtained
    }
  );
}

This function makes a request to the Traffic API in the same manner as we made 
the request to the Geocoding API, differing only in the details provided: provid-
ing the service URL for the Traffic API, passing the latitude and longitude values 
as query parameters, and specifying a different callback handler.

 The callback function for this request is quite a bit different from the one we 
coded for the Geocoding service. In the callback for that solution, we simply 
digested the return values and shoved them into the form fields for the latitude 
and longitude values.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


438 CHAPTER 12 
Open web APIs and Ajax
For the traffic response, we want to display any incidents returned directly on the 
page rather than in form elements. Two methods are frequently used to accom-
plish this:

■ We can use the DOM manipulation API to create the element nodes neces-
sary to display our data as we see fit.

■ We can build up some markup in a string buffer and place it into an ele-
ment via its innerHTML property.

We’ll see the first technique in section 12.3.1, so in this one we’ll use the 
innerHTML mechanism. The result of all these additions is shown in figure 12.5.

 In either scenario, we need an element in which to place the new elements, so 
below the traffic button in the page body we add

<div id="trafficAlerts"></div>

Then, we can code our callback function as follows:

function onTrafficObtained(request) {
  var xml = request.responseXML;
  var results =                       
    $A(xml.getElementsByTagName('Result'));
  $('trafficAlerts').innerHTML = '';
  if (results.length > 0) {
    results.each(
      function(result) {        
        $('trafficAlerts').innerHTML += 

Figure 12.5 Traffic conditions added

Obtains  <Result> 
children

 B

Collects <Title> children 
of node, emits info

 C

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Yahoo! Developer Network 439
          result.getElementsByTagName('Title').item(0)
          .firstChild.data +
          '<br/>';
      }
    )
  }
  else {
    $('trafficAlerts').innerHTML = 'No incidents reported';
  }
}

The XML response for this service consists of a <ResultSet> element that contains 
a list of <Result> elements, each of which in turn contains information for a 
reported traffic incident. The child elements include information on the inci-
dent, even the coordinates. But since we’re only interested in a synopsis, we’ll 
grab the contents of the <Title> child element that is present in each <Result>.

 A trimmed version of a response document from the Traffic API is shown here:

<ResultSet xsi:schemaLocation="urn:yahoo:maps 
http://api.local.yahoo.com/MapsService/V1/TrafficDataResponse.xsd">
  <LastUpdateDate>1144350730</LastUpdateDate>

  <Result type="incident">
        <Title>Incident, on E OLTORF ST at BENJAMIN ST</Title>
        <Description>COLLISION PRIVATE PROPERTY J</Description>
        <Latitude>30.231270</Latitude>
        <Longitude>-97.734753</Longitude>
        <Direction>N/A</Direction>
        <Severity>3</Severity>
        <ReportDate>1144350420</ReportDate>
        <UpdateDate>1144350705</UpdateDate>
        <EndDate>1144352505</EndDate>
  </Result>

/* more Result elements removed to save space */

</ResultSet>

The handler operates by obtaining all <Result> children of the document b
(conveniently converting the node list into an array using Prototype’s $A() func-
tion), finds the <Title> children of those nodes C, and uses the content of those 
elements to format the content of the trafficAlerts <div> on our page.

 Styling the output to make it completely beautiful is probably something you’d 
want to do before too much longer.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


440 CHAPTER 12 
Open web APIs and Ajax
Discussion
With the help of the Yahoo! Traffic REST API, we have added the ability to make 
ourselves aware of any traffic conditions in our area that could affect our ability to 
quickly move about—something rather important if a storm ends up chasing us. 

 This solution uses mechanisms similar to that used in the previous Geocoding 
solution, but rather than filling in form elements with the returned information, 
we used the innerHTML property of a <div> element to dynamically add text 
directly to our page. While fairly straightforward and easy, this mechanism isn’t 
always the best choice. 

 The markup we generated is very simple: text strings delimited with <br/>
tags. If we elect to attempt to add more complex markup to embellish the style 
and appearance of our information, we’d quickly discover that creating and 
maintaining markup in text strings is less than pleasant.

 Another mechanism to dynamically add elements to our page under client-
side control is to use the DOM API to directly add elements to the HTML DOM tree 
for our page. Although that involves a lot more code than we saw with the 
innerHTML mechanism, it’s not too arduous and is certainly notationally cleaner 
than building markup in strings. We’ll visit that technique in a later section. The 
complete code for our example, with additions and changes in bold, is shown in 
listing 12.5 and can be found in the downloadable source code for this chapter.

<html>
  <head>
    <title>What's Going On?</title>
    <script type="text/javascript"
    src="http://api.maps.yahoo.com/ajaxymap?v=2.0&appid=YahooDemo">
    </script>
    <script type="text/javascript" src="prototype-1.5.1.js"></script>
    <script type="text/javascript">
      var map;

      window.onload = function() {
        map = new YMap($('theMap'));
        map.addPanControl();
        map.addZoomLong();
      };

      function showMap() {
        var zoomLevel = 4;
        var latitude = $F('latitudeField');
        var longitude = $F('longitudeField');
        var point = new YGeoPoint(latitude,longitude);

Listing 12.5 Revised page with traffic alerts

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Yahoo! Developer Network 441
        map.drawZoomAndCenter(point,zoomLevel);
        $('trafficButton').disabled = false;
      }

      function findLocation() {
        new Ajax.Request(
          '/aip.chap12proxy',
          {
            method: 'get',
            parameters: {
             '.serviceUrl.':
              'http://api.local.yahoo.com/MapsService/V1/geocode',
             appid: 'org.bibeault.aip',
             location: $F('locationField')
            },
            onSuccess: onCoordsObtained
          }
        );
      }

      function onCoordsObtained(request) {
        var xml = request.responseXML;
        document.mapForm.latitude.value =
          xml.getElementsByTagName('Latitude').item(0).
          firstChild.data;
        document.mapForm.longitude.value =
          xml.getElementsByTagName('Longitude').item(0).
          firstChild.data;
        showMap();
      }

      function showTraffic() {
        new Ajax.Request(
          '/aip.chap12/proxy',
          {
            method: 'get',
            parameters: {
             '.serviceUrl.':
               'http://api.local.yahoo.com/' +
               'MapsService/V1/trafficData',
             appid: 'org.bibeault.aip',
             latitude: $F('latitudeField'),
             longitude: $F('longitudeField')
            },
            onSuccess: onTrafficObtained
          }
        );
      }

      function onTrafficObtained(request) {
        var xml = request.responseXML;
        var results = $A(xml.getElementsByTagName('Result'));

http://lib.ommolketab.ir
http//lib.ommolketab.ir


442 CHAPTER 12 
Open web APIs and Ajax
        $('trafficAlerts').innerHTML = '';
        if (results.length > 0) {
          results.each(
            function(result) {
              $('trafficAlerts').innerHTML +=
                result.getElementsByTagName
                  ➥ ('Title').item(0).firstChild.data +
                '<br/>';
            }
          )
        }
        else {
          $('trafficAlerts').innerHTML = 'No incidents reported';
        }
      }
     </script>
  </head>
  <body>
    <div>
      <form name="geoForm" onsubmit="findLocation();return false;">
        Location: <input type="text" id="locationField"
                         name="location" style="width:200px;"/>
        <input type="submit"/>
      </form>
    </div>

    <div>
      <form name="mapForm" onsubmit="showMap();return false;">
        Latitude: <input type="text" id="latitudeField"
                         name="latitude"/>
        Longitude: <input type="text" id="longitudeField"
                          name="longitude"/>
        <input type="submit"/>
      </form>
    </div>

    <div id="theMap" style="width:600px;height:480px;"></div>

    <div>
      <form name="trafficForm" 
            onsubmit="showTraffic();return false;">
          <input type="submit" id="trafficButton"
                 value="Show Traffic Alerts" disabled="disabled"/>
      </form>
    </div>

    <div id="trafficAlerts"></div>

  </body>

</html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Google Search API 443
With that, we’ll leave the rest (pun absolutely intended) of the Yahoo! APIs for you 
to explore on your own. What other cool features could you add to our map page?

 Now let’s turn our attention to another well-known web celebrity.

12.2 The Google Search API

Few people who have ever searched for anything on the Internet would be unfa-
miliar with Google as one of the Web’s preeminent search engines. In this section 
we’ll see how the public API that Google provides can be used to instrument 
search capability into our own pages.

12.2.1 Google search

Many of us maintain blogs or other websites with narrative sections. Frequently 
within those passages of text, we introduce terms and concepts that might be 
unfamiliar to the readers of our sites.

 Let’s suppose, once again donning our storm chaser persona, we are writing 
about weather conditions. Within the text of our passages we might use terms like 
mammatus, rear-flank downdraft, dry line, mesocyclone, or mesoscale convection, which 
may be familiar concepts to other weather aficionados but are not exactly every-
day concepts to most people.

Problem
In our blogs or other online text postings, we’d like to build in the ability for read-
ers to instantly search for terms that they might not be familiar with. We want to 
do so without forcing them to open another browser window, and we certainly 
don’t want them navigating away from our pages. We’ve worked hard to get them 
there in the first place; the last thing we want to do is send them away!

Solution
Before we can instrument our pages with search capabilities, we need to set up a 
means to perform the search. Building our own search engine is obviously out of 
the question, so we’ll leverage the Java Google API to perform the search on our 
(or rather, our reader’s) behalf.

 As with Yahoo!, Google also makes other APIs available, including an old-
fashioned SOAP API. (The rumor mill has it that Google, the company, has been 
striving to get away from SOAP-based web services in order to embrace RESTful 
web services because they are more scalable and easy to use.) But in order to 
present a variety of API types, we’ll be using the Java API in this section.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


444 CHAPTER 12 
Open web APIs and Ajax
 Once we have a Java class that can search for us, it will be an easy matter to cre-
ate a servlet that we can use as an Ajax target on our pages to retrieve search 
results for whatever term we wish.

The simple search engine
The Google Search API is surprisingly simple. There are only four classes that 
we need be concerned with: GoogleSearch, GoogleSearchResult, GoogleSearch-
ResultElement, and the exception class GoogleSearchFault, which is thrown in 
the event of a problem.

 But to begin, we must obtain these Google Search classes, and we must also 
sign up for a Google license key in a similar fashion as was required to use the 
Yahoo! Services. Unlike the Yahoo! application key, which we got to choose, Goo-
gle will assign you a key that they generate on your behalf. You can find instruc-
tions on downloading the development kit and obtaining a license key at www 
.google.com/apis/.

 In the development kit you’ll find a file named googleapi.jar. Place this JAR
file in the WEB-INF/lib folder of your web application, and be sure that it is in the 
class path of your compile-time build.

 With that simple setup in place, we’re ready to write a simple, reusable class to 
perform searches using the Google engine. When we execute this program with 
an input term of, say, outflow boundary, the result will be along these lines (trun-
cated to conserve space)

title: <b>Outflow</b> Technologies
url: http://www.outflow.net/
snippet: Offers web design, web marketing, web hosting, and 
e-commerce services.

title: <b>Outflow</b>: winds flowing outward from thunderstorms
url: http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/svr/dngr/oflow.
rxml
snippet: <b>Outflow</b>. winds flowing outward from thunderstorms.
 Thunderstorm winds also cause<br>  widespread damage and occasion
al fatalities. Thunderstorm &quot;straight-line&quot; <b>...</b>

title: <b>Outflow</b> Phenomena: downbursts
url: http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/svr/comp/out/
home.rxml
snippet: <b>Outflow</b> Phenomena. downbursts. This section is on 
visual identification of<br>  macrobursts, microbursts, gust front
s and other <b>outflow</b> phenomena. <b>...</b>

... more ...

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Google Search API 445
Well, the first result was a bit disappointingly inappropriate, but the remaining 
results are right on target.

 Let’s set up this SimpleGoogleSearch class as shown listing 12.6.

package org.bibeault.aip.search.google;

import com.google.soap.search.*;        

public class SimpleGoogleSearch {

    private GoogleSearch googleSearch;   

    public SimpleGoogleSearch(String clientKey) {   
        this.googleSearch = new GoogleSearch();                         
        this.googleSearch.setKey(clientKey);                          
    }

   public GoogleSearchResultElement[]    
      search(String searchTerm)
            throws GoogleSearchFault {
        this.googleSearch.setQueryString(searchTerm);                 
        GoogleSearchResult googleSearchResult = 
            this.googleSearch.doSearch();                               
        return googleSearchResult.getResultElements();                  
    }
}

Not as many lines of code as you expected, is it?
 After importing the Google Search API b, we declare an instance variable to 

hold the Google search engine instance that this class will wrap C. The construc-
tor D for our simple search class accepts a Google license key (obtained from the 
Google site). This key is an unintelligible string of characters that is impossible to 
remember (at least for us humans) and is generated by Google when you sign up. 
Within the constructor we create and store an instance of the Google search 
engine and give it the passed access key.

 After construction, our class will be ready to perform searches. We designed 
the class in this fashion because the same instance of the Google search engine 
can be used to perform many searches. So we instantiate it once at construction 
time and use it whenever a search is performed.

 Those searches will be executed by the search() method E by passing it a 
search term string, which has similar semantics to a string typed into the Google 
website. The search is conducted by setting the passed search term into the search 

Listing 12.6 The SimpleGoogleSearch class

Imports Google 
Search API 

 B

Records Google 
search engine

 C

Constructs simple 
search class D

Executes search E

http://lib.ommolketab.ir
http//lib.ommolketab.ir


446 CHAPTER 12 
Open web APIs and Ajax
engine instance and calling its doSearch() method, which returns an instance of a 
GoogleSearchResult, a container for the results of the search. As the return value 
of the method, the array of results stored in that container, as instances of 
GoogleSearchResultElement, are fetched. Should anything go awry, an instance 
of GoogleSearchFault is thrown.

 As with the content grabber, we add a main() function that can be used to per-
form a minimal test of the class as follows:

public static void main(String[] args) throws Exception {
    if (args.length == 0)
      throw new Exception("A search term must be provided");
    SimpleGoogleSearch searcher =
      new SimpleGoogleSearch("aApewexQFHItVSrlTMDk2iglRbhB+6AR");
    GoogleSearchResultElement[] results = searcher.search(args[0]);
    for (GoogleSearchResultElement result : results) {
      System.out.println("title: " + result.getTitle());
      System.out.println("url: " + result.getURL());
      System.out.println("snippet: " + result.getSnippet() + '\n');
    }
  }

Go ahead and compile the class and run it as a program as described previously. 
The first parameter on the command line will be used as the search term. 

 Of course, the GoogleSearch class has many more options than we exposed in 
our very simple search class. For example, you can specify the number and offset 
of the returned results to facilitate paging of a long results list, or even set up lan-
guage restrictions. Explore the API of the GoogleSearch object for details.

The simple search servlet
Now that we’re armed with the SimpleGoogleSearch class to do the lion’s share 
of the work necessary to perform the search, writing a servlet to obtain the 
results and return them as a response (to an Ajax request, in our case) should be 
a simple matter.

 Indeed, we’ll discover that the search portion of the servlet is almost trivial. 
What’s going to consume the majority of the servlet code, and our time in devel-
oping it, concerns the matter of the format of the returned data.

 In the previous solutions in this chapter, we return an XML document as the 
response to our Ajax calls as that was what we were given from the APIs we 
employed. In this case, however, we are generating the response ourselves from 
the information that we’ll garner from the GoogleSearchResultElement instances.

 We could create XML and serialize it to the response stream, only to digest it on 
the client. But in this case, as we know that we’ll be digesting the result of our 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Google Search API 447
search request in JavaScript code, we’ll format the response using JSON, which is 
much simpler to deal with on the client side than XML.

 It could be argued that using JSON limits the use of our servlet to JavaScript 
environments. We know that our own use will be limited to JavaScript, and that 
this limitation won’t be a factor for us. Should we want our search servlet to be 
more widely reusable, we could revisit that decision.

 Our response will be a list of results, each with three fields: a title, a URL, and 
a text snippet. In JSON notation, a three-result response with bogus data might be

[
 { title: 'Title 1', url: 'http://url1/', snippet: 'Snippet 1' },
 { title: 'Title 2', url: 'http://url2/', snippet: 'Snippet 2' },
 { title: 'Title 3', url: 'http://url3/', snippet: 'Snippet 3' }
]

The square brackets denote an array, the braces each delimit an object element of 
the array, and the label/value pairs denote the properties and corresponding val-
ues for the objects. Given that, and armed with our simple search class, our search 
servlet is shown in listing 12.7.

package org.bibeault.aip.search.google;

import java.io.IOException;
import javax.servlet.*;
import javax.servlet.http.*;
import com.google.soap.search.*;

public class SimpleGoogleSearchServlet extends HttpServlet {

  public static final String    
    KEY_SEARCH_TERM = "term";  

  protected void doGet(            
    HttpServletRequest request,
    HttpServletResponse response)
        throws ServletException, IOException {
    String searchTerm = request.getParameter(KEY_SEARCH_TERM);
    SimpleGoogleSearch searcher = 
      new SimpleGoogleSearch("aApewexQFHItVSrlTMDk2iglRbhB+6AR");
    try {
      GoogleSearchResultElement[] results =                      
        searcher.search(searchTerm);
      StringBuilder responseBody = new StringBuilder();
      responseBody.append('[');
      for (GoogleSearchResultElement result : results)
        appendResultAsJSON(responseBody, result);

Listing 12.7 The search servlet

Expects term 
parameter

 B

Obtains term 
parameter C

http://lib.ommolketab.ir
http//lib.ommolketab.ir


448 CHAPTER 12 
Open web APIs and Ajax
      responseBody.append(']');
      response.setContentType("text/plain");                   
      response.setContentLength(responseBody.length());
      response.getWriter().print(responseBody.toString());
    } catch (GoogleSearchFault e) {
      e.printStackTrace();
      throw new ServletException("Search error: " + e, e);
    }
  }

  private void appendResultAsJSON(   
      StringBuilder responseBody,
     GoogleSearchResultElement result) {
    responseBody
      .append('{')
      .append("title:'")
      .append(escapeQuotes(result.getTitle())).append("',")
      .append("snippet:'")
      .append(escapeQuotes(result.getSnippet())).append("',")
      .append("url:'").append(escapeQuotes(result.getURL()))
      .append("'")
      .append("},");
  }

  private String escapeQuotes(String text) {                   
    return text.replaceAll("'", "\'");
  }

}

We’ve coded our servlet to expect a single request parameter named term that will 
contain the search term b. Upon receiving a GET request C (POST could also 
easily be supported), the term parameter is obtained. (Some error checking here 
would be nice.)

 An instance of SimpleGoogleSearch is created using a Google license key. Nor-
mally, something such as this license key should never be hard-coded into the 
code in this manner. It should be provided via an external resource—perhaps in a 
properties file, or as a deployment descriptor context parameter.

 Using this search engine instance, the search is performed and the results 
obtained. 

 To format the JSON response to send back to the client, a StringBuilder 
instance is created and the response body is generated with the help of the append-
ResultsAsJSON() implementation method D. Note that another implementation 
method, escapeQuotes(), is employed to ensure that single quotes in the returned 
text won’t foul up our JSON syntax.

Formats JSON 
response 

 D

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Google Search API 449
  The response is configured with a MIME type of plain text and the length of the 
JSON response body. Finally, the JSON results are streamed to the response output.

 Adding the servlet and its mapping to the web.xml deployment descriptor of 
our web application is accomplished with the following:

<servlet>
  <servlet-name>SimpleGoogleSearchServlet</servlet-name>
  <servlet-class>
    org.bibeault.aip.search.google.SimpleGoogleSearchServlet
  </servlet-class>
</servlet>

<servlet-mapping>
  <servlet-name>SimpleGoogleSearchServlet</servlet-name>
  <url-pattern>/search</url-pattern>
</servlet-mapping>

This sets us up to begin writing the pages that will make use of our new 
search facility.

Instrumenting pages for search
Getting back to our original intent, we want to instrument our text passages so 
that users can easily search on unfamiliar terms with a single click. We could make 
these terms, as they appear in our text, anchor tags, and use JavaScript to trigger 
the Ajax request for the search results. But that would make it difficult to apply 
individual styling to differentiate our “automatic search terms” from “real” links. 
Besides, that would also be kind of wordy in the page code.

 Instead, let’s be a little cleverer and hijack the use of the <abbr> tag, a little-
used HTML/XHTML tag that is originally intended to highlight abbreviations in 
HTML pages. With a lot of tongue-in-cheek rationalization, we can justify our use 
of this tag by asserting that the search term is just an “abbreviation” for its results. 
But seriously, if it bothers you to hijack the <abbr> tag, you can also use a <span>
with a style class applied. It can work the same way; it’s just a bit wordier.

 Examine the following text snippet from a page employing the <abbr> tag in 
this manner:

<p>
  I find that the accumulation of 
  <abbr onclick="searchFor(this);">stratocumulus</abbr> and 
  absence of <abbr onclick="searchFor(this);">solar 
  radiation</abbr> presages an increased rate of 
  <abbr onclick="searchFor(this);">condensation</abbr>. We may 
  expect vertical <abbr onclick="searchFor(this);">precipitation
  </abbr> of moisture at any time.
</p>

http://lib.ommolketab.ir
http//lib.ommolketab.ir


450 CHAPTER 12 
Open web APIs and Ajax
Note that we have embedded each term that we want the reader to be able to 
search for in an <abbr> tag whose onclick event handler invokes a JavaScript 
function that passes the <abbr> element as its parameter. That’s pretty easy, but it 
is a bit messy, and it does seem redundant to have to put the same onclick clause 
on each and every term that we want to instrument.

 So let’s automate it by writing a JavaScript class that can handle all of this 
on behalf of our pages. We’ve seen JavaScript classes throughout this book, 
and creating them was extensively covered in chapter 3, so after presenting the 
code for this call in listing 12.8, we’ll gloss over all but the interesting aspects 
of the class.

SearchInstrumenter = Class.create();

SearchInstrumenter.prototype = {

  DEFAULT_ELEMENT_TYPE: 'abbr',
  DEFAULT_RESULTS_CONTAINER: 'resultsContainer',
  SEARCH_URL: '/aip.chap12/search',

  initialize: function(options) {    
    this.options = Object.extend(
      {
        elementType: this.DEFAULT_ELEMENT_TYPE,   
        resultsContainer: this.DEFAULT_RESULTS_CONTAINER
      },
      options
    );
    var self = this;
    $$ (this.options.elementType)
      .each(
        function(element) {        
          element.onclick = function() {
            self.doSearch(element.innerHTML);
          }
        }
      );
  },

  doSearch: function(term) {    
    new Ajax.Request(
      this.SEARCH_URL,
      {
        method: 'get',
        parameters: {term: term},
        onSuccess: this.showResults.bind(this),

Listing 12.8 The SearchInstrumenter class

Instruments each 
element of specified type

 B

Supplies default 
options

 C

Assigns onclick handler 
to each element

 D

Performs search 
upon click

 E

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Google Search API 451
        onFailure: this.showError.bind(this)
      }
    );
    $(this.options.resultsContainer).innerHTML =
      'Searching for ' + term + '...';
  },

  showResults: function(request) {    
    var jsonResponse = request.responseText;
    eval ('(results='+jsonResponse+')');
    $('resultsContainer').innerHTML = '';
    results.each(
      function(result) {
        $('resultsContainer').innerHTML +=
          '<p>Title: <b>' + result.title + '</b><br/>' +
          'Summary: ' + result.summary + '<br/>' +
          'URL: ' + result.url +'</p>';
      }
    );
  },

  showError: function(request) {    
    $(this.options.resultsContainer).innerHTML =
      request.responseText;
  }

}

The constructor for this class b will instrument every instance of a specific type 
of tag in our page. It accepts a single options parameter that allows us to over-
ride the default values provided by the class. The options for this class C are 
elementType and resultsContainer, which have defaults of abbr and results-
Container, respectively. 

 Once the element type to instrument is determined, all instances of that ele-
ment are located and an onclick handler is assigned to each D. This frees us 
from having to add the handler by hand on each and every element to be instru-
mented, as we were required to in the example text shown earlier.

 The onclick event handler assigned to each located element is the doSearch()
method defined by this class. Note the use of the function’s closure to make the 
class instance and the element reference available when this handler triggers. (If 
all that sounded like gobbledegook, review the concept of closures in chapter 3.)

 The doSearch() method used as the onclick handler E makes an Ajax 
request to our search servlet using techniques that we’ve seen in previous solu-
tions in this chapter. Of particular note is the use of an object hash to pass the 

Obtains and displays 
response text

 F

Displays error 
message

 G

http://lib.ommolketab.ir
http//lib.ommolketab.ir


452 CHAPTER 12 
Open web APIs and Ajax
request parameter, and the assignment of other class methods as the success and 
failure handlers for the request.

 The onSuccess event handler showResults() F obtains the response text from 
the XHR instance. As you’ll recall, the search servlet returns a JSON construct con-
taining the search results. We evaluate that response and iterate over the results, 
format some HTML containing the data retrieved, and set it as the content of the 
element recorded as the results container. 

 The final part of our class is the failure handler showError() G. It obtains the 
error message text from the request instance and puts it into the results container 
for all to see.

Testing the search instrumenter
Finally, we’re ready to write a page that uses our handy search capabilities. It can 
be found in the downloadable source code for this chapter, and is shown in list-
ing 12.9. This unimaginative page places the search results in a block under the 
text, as shown in figure 12.6.

Figure 12.6  
All about solar radiation!

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Google Search API 453
<html>
  <head>
    <title>Instrumented Google Search</title>
    <script type="text/javascript" src="prototype.js"></script>
    <script type="text/javascript" src="SearchInstrumenter.js">
    </script>
    <script type="text/javascript">
      window.onload = function () {
        new SearchInstrumenter();
      };
    </script>
    <style type="text/css">
      abbr {
        color: green;
        font-weight: bold;
        text-decoration: underline;
        cursor: pointer;
      }
      #resultsContainer {
        border: 2px ridge maroon;
        background-color: #ffffcc;
        padding: 8px;
      }
    </style>
  </head>

  <body>
    <div>
      <p>
        I find that the accumulation of <abbr>stratocumulus</abbr>
        and absence of <abbr>solar radiation</abbr> presages an
        increased rate of <abbr>condensation</abbr>. We may expect
        vertical <abbr>precipitation</abbr> of moisture at any
        time.
      </p>
    </div>
    <div id="resultsContainer"></div>
  </body>
</html>

This deceptively simple page makes use of all the technology that we’ve set up in 
this section to allow visitors to our page to perform an automatic search on any 
term that we’ve indicated with the <abbr> tag by simply clicking it.

 With just a little more CSS and JavaScript magic, we could do something 
much more creative. For example, we could make the result appear in a floating 

Listing 12.9 What’s a stratocumulus?

http://lib.ommolketab.ir
http//lib.ommolketab.ir


454 CHAPTER 12 
Open web APIs and Ajax
<div> near the original search term. Or we could expand the results element 
inline within the text until dismissed. The possibilities are limited only by 
your imagination.

Discussion
With this solution, we achieved the ability to initiate asynchronous searches on 
any search terms we desire. We developed a way to gather search terms directly 
from the HTML text, and we explored a means of returning dynamic data to the 
page in a format other than XML.

 You could argue that the use of JSON rather than XML to return the data 
might limit our search service to environments capable of consuming JSON. But 
in a servlet environment, it is unlikely that anything other than an HTML page 
would be the consumer of our data. Besides, we could always write a JSON-to-XML
adapter if need be.

 As with the other solutions in this chapter, this example could use a hefty dose 
of error checking and recovery. In fact, while testing it was discovered that the 
Google service returns a “service is temporarily unavailable” error for a nontrivial 
percentage of the requests made to the service. How would you improve our 
search components to handle that?

 Oh, and the URLs in the results? They should probably be links, don’t 
you think?

12.3 Flickr photos

It’s all about sharing the photos.
 Whether you’re a hard-core storm chaser with images of that magnificent 

super-cell thunderstorm, a shutterbug with tons of photos of Texas Spring wild-
flowers, or a doting grandparent with just-too-cute pictures of the grandkids, the 
whole point of photographs is being able to share them.

 One of the fastest-growing photo-sharing sites on the Web is Flickr (www. 
flickr.com), and to our delight it exposes a deep and broad API for developers in a 
multitude of different forms. API kits for everything from Java, .NET, Delphi, and 
Ruby through Perl are available, as well as request-based APIs for SOAP, XML-RPC, 
and REST. As before, we’ll focus on the REST interface, as that is one of the most 
appropriate for use from Ajax-enabled pages.

 Similar to other web APIs, Flickr requires you to register and receive an API key 
that is used to identify the originator of each request. This API key consists of a 
random string of letters and numbers and is easy to obtain by visiting www 
.flickr.com/services/api/misc.api_keys.html.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Flickr photos 455
 Once obtained, we can use it to make requests to the Flickr REST API. All REST
requests to the Flickr service use the base URL www.flickr.com/services/rest/.

 Each request must provide two required query parameters: api_key, which sup-
plies the API key identifying us to the system, and method, which identifies the func-
tion that we wish the service to perform on our behalf. Flickr methods are not to be 
confused with class methods; they are just text strings that are passed to the Flickr 
service to identify the operation to be carried out. Depending on the method iden-
tified, there may be more parameters—some required, some optional.

 Flickr exhibits the concept of public and private photo collections. Either is 
available via the web API, but dealing with private collections, not surprisingly, 
requires a rather complex authentication protocol to be employed. For our pur-
poses here, we’ll avoid all that by focusing on public collections.

12.3.1 Flickr identification

In this section we’ll develop a page that will display the thumbnails of a friend’s 
public photo collection. Each thumbnail can be expanded to a larger version 
when clicked on.

 You might ask, “Why bother?” After all, we can just statically code image tags 
with the URLs to the images, can’t we? 

 We sure could. Flickr doesn’t seem to care if you embed references to their 
hosted photos in your own pages. But isn’t it a bit dated to hand-code references 
in static pages to external resources that could change without our knowing about 
it? References that we’ll need to check often and adjust as they come and go? 
What a bother!

 Instead, by relying on the Flickr APIs, we obtain real-time information about 
available resources and, with our Ajax and DHTML skills, dynamically create a 
page that is never out of date.

Problem
We want to construct a page of active thumbnail images for the public photo col-
lection of a friend. We know the friend’s Flickr username, but as soon as we look 
into the API for the method that returns a list of the friend’s public photos, we dis-
cover a problem. It’s not the friend’s username that we need, but his NSID—an 
internal identifier that is used in most Flicker public methods to identify the tar-
get user.

 This should not be confused with the API key. The API key identifies who 
is making the request. The NSID identifies whose account is being targeted by 
the request.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


456 CHAPTER 12 
Open web APIs and Ajax
 So before we look into a solution for creating our thumbnails page, we need to 
whip one up to obtain a user’s NSID given his or her username.

Solution
Figure 12.7 shows you the finished result of the code featured in this solution.

The Flickr method to obtain an NSID given a username is

flickr.people.findByUsername

All the Flickr methods begin with the string flickr, which is then followed by a 
category name (people, contacts, groups, and so on), and finally the specific ser-
vice being requested.

 As we want to obtain the NSID given a username, we’ll begin our page by cre-
ating a simple form to accept the username string and trigger the request:

<form name="queryForm" onsubmit="findNSID();return false;">
  Find Flickr NSID for:
  <input type="text" name="username"/>
  <input type="submit"/>
</form>

When the user types in a username and clicks the submit button, the findNSID()
function is called:

function findNSID() {
  new Ajax.Request(
    '/aip.chap12/proxy',
    {
      method: 'get',
      parameters: {
        '.serviceUrl.':
          'http://www.flickr.com/services/rest/',

Figure 12.7  
Finding a Flickr NSID

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Flickr photos 457
        api_key: '78eaa5287f3f0b37dfba77ef40c7df03',
        method: 'flickr.people.findByUsername',
        username: $F('username')
      },
      onSuccess: onResultObtained
    }
  );
  $('resultContainer').innerHTML = '';
}

You should find the structure of this function quite familiar at this point. An Ajax 
request is made through our proxy relay agent on the server specifying our Flickr 
API key, the Flickr method to be invoked (not to be confused with the HTTP
method supplied to Prototype), and the username to be looked up.

 The onSuccess event handler for this request is

function onResultObtained(request) {
  var xml = request.responseXML;
  if (xml.getElementsByTagName('rsp')[0].getAttribute('stat') 
        == 'ok') {
    showResults(xml);
  }
  else {
    $('resultContainer').innerHTML = 'Request failed.';
  }
}

The response document for all requests consists of an <rsp> element, which in turn 
contains the information for the response as child elements. An attribute on the 
<rsp> element named stat will specify the value ok or fail, depending on whether 
the request succeeded.

 A failed request would look something like this:

<rsp stat="fail">
  <err code="112" msg="Method &quot;&quot; not found" />
</rsp>

Our handler function tests this attribute to determine whether the request has 
failed or succeeded. If a failure is detected, the results container <div> is set to a 
simple error message. (With a few more lines of JavaScript, we could be a lot 
friendlier and extract the specific error message from the response document.) If 
the request succeeded, the XML response document is passed to a function 
named showResults().

 In our previous solutions, we made liberal use of the innerHTML property to 
dynamically set the content of elements defined in order to display the results of 
our requests. Although that’s an adequate means to accomplish this for simple 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


458 CHAPTER 12 
Open web APIs and Ajax
text or extremely simple markup, it doesn’t scale very well. As soon as the markup 
to be generated gets a bit more complex or lengthy, building that markup in text 
strings becomes rather cumbersome and awkward—not to mention a mainte-
nance headache in the making.

 So in our showResults() function, we’ll use a different means to dynamically 
create the content of our result container: DOM manipulation.

 We’ve used the DOM API to query the content of XML documents that have 
been passed to us, but we can also use that same API to manipulate the DOM of 
the HTML document to our needs.

 The format for a successful response from the Flickr service when the find-
ByUsername method is used is along the lines of

<rsp stat="ok">
  <user id="71711667@N00" nsid="71711667@N00">
    <username>bear.bibeault</username>
  </user>
</rsp>

Given that, we code our showResults() function:

function showResults(xml) {                                             
  var nsid = xml.getElementsByTagName('user')[0]
    .getAttribute('nsid');  
  var p = document.createElement('p');                                  
  p.appendChild(document.createTextNode('The Flickr NSID for ' +        
                document.queryForm.username.value + ' is: '));
  var span = document.createElement('span');                            
  span.style.fontWeight = 'bold';                                       
  span.appendChild(document.createTextNode(nsid));                     
  p.appendChild(span);                                                  
  $('resultContainer').appendChild(p);                                  
}

As you’ll recall, we pass the XML response document to the function, and we know 
that the check for successful requests has already been undertaken.

 After we locate the NSID for the username and record it for later use, we’re 
ready to start building new HTML elements in our document. First, a new para-
graph element (<p>) is created. We want to place some text into that element, so 
we create some text and set it as a child of the paragraph element.

 The NSID is to appear in a bold font, so it will be embedded in a <span> ele-
ment with the appropriate style applied. The bolded <span> element is set as a 
child of the paragraph, and we finish up by adding the paragraph as a child of 
the results container.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Flickr photos 459
Discussion
In this very simple solution, we gave ourselves the ability to obtain the NSID for 
any Flickr user given their username. This NSID is required to make any other 
method calls to the Flickr API in order to identify the target account.

 This NSID is fixed and static for each username, so once obtained, it can be 
recorded and used directly if desired. We’ll see this in our next solution.

 We also explored a different means of populating a container element with 
dynamic results by using DOM manipulation rather than building markup in a 
string and setting it into the container through its innerHTML property.

 Although this technique may at first seem like overkill or overly wordy com-
pared to the innerHTML mechanism, for nontrivial markup it’s easier to maintain 
in the long run and is more robust. One definite advantage that it has over 
innerHTML is that we don’t run into quoting issues and other notational problems 
that inevitably arise when creating markup in text strings.

12.3.2 Flickr photos and thumbnails
Now that we have the NSID for the target account, we’re ready for the fun part: 
getting photos from Flickr.

Problem
We want to construct a page of active thumbnail images for the public photo col-
lection of a friend. Now that we know our friend’s NSID, there’s nothing stop-
ping us.

 When a thumbnail is clicked, we wish to display a larger-sized version of the 
photo. And we want to do all this without hard-coding anything except the NSID
of the target account.

Solution
The Flickr method to obtain the list of public photos for a given NSID is

flickr.people.findPublicPhotos

In addition to the required method and API key parameters, this method requires 
a user_id parameter, which provides the NSID for the target account. Other 
optional parameters affect the type and amount of data returned, but we’ll be 
keeping it simple for now.

 An example of a successful response from this method is

<rsp stat="ok">
  <photos page="1" pages="1" perpage="100" total="3">
    <photo id="128217127" owner="71711667@N00" secret="09e814e0b0"

http://lib.ommolketab.ir
http//lib.ommolketab.ir


460 CHAPTER 12 
Open web APIs and Ajax
      server="51" title="DSC01660" ispublic="1" isfriend="0" 
      isfamily="0" />
    <photo id="128217125" owner="71711667@N00" secret="ef6ad6886d" 
      server="40" title="DSC01476" ispublic="1" isfriend="0" 
      isfamily="0" />
    <photo id="128216010" owner="71711667@N00" secret="ff13ad56b9" 
      server="46" title="DSC01118" ispublic="1" isfriend="0" 
      isfamily="0" />
  </photos>
</rsp>

Believe it or not, this gives us everything we need in order to construct URLs to 
the photos on the Flickr servers.

 Each photo URL served from Flickr is of the format 

http://static.flickr.com/{server}/{id}_{secret}{suffix}.jpg

The server, secret and id values for each photo are taken directly from the 
attributes of the <photo> element in the response XML document, while the suf-
fix specifies the size of the image as follows:

If we wanted to create a URL for a thumbnail of the first photo in the example 
response shown earlier, substituting the server, id, secret, and appropriate suf-
fix gives us a URL of

http://static.flickr.com/51/128217127_09e814e0b0_t.jpg

Using this URL as the source of an image element creates a thumbnail for the 
photo. By simply changing the suffix of the URL, say to _b, we get a URL to a big-
ger version of the same photo.

 With that knowledge fresh in our minds, let’s write our page. First, we want 
the thumbnails to automatically load when the page is displayed. So within the 
<script> element of the page header, we write the following:

window.onload = function() {
  new Ajax.Request(
    '/aip.chap12/proxy',
    {

_s: 75-by-75-pixel square

_t: 100 pixels on longest side

_m: 240 pixels on longest side

(none): 500 pixels on longest side

_b: 1024 pixels on longest side

_o: original image

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Flickr photos 461
      method: 'get',
      parameters: {
        '.serviceUrl.':
          'http://www.flickr.com/services/rest/',
        api_key: '78eaa5287f3f0b37dfba77ef40c7df03',
        method: 'flickr.people.getPublicPhotos',
        user_id: '71711667@N00'
      },
    onSuccess: onInfoObtained
    }
  );
}

This handler kicks off the Ajax request to the findPublicPhotos method. Upon 
success, the handler for this request is

function onInfoObtained(request) {
  var xml = request.responseXML;
  if (xml.getElementsByTagName('rsp')[0].
          getAttribute('stat') == 'ok') {
    showThumbnails(xml);
  }
}

As with our other previous onSuccess handler, it checks the status of the Flickr 
method and if all is OK, the showThumbnails() function is called with the response 
XML document. Note that should anything go awry, nothing at all happens and 
the user will be presented with a blank page. Obviously, there’s room for improve-
ment here.

 The showThumbnails() function is where all the really interesting things go on:

function showThumbnails(xml) {
  var photos = $A(xml.getElementsByTagName('photo'));
  photos.each(
    function(photo) {
      var baseUrl = 'http://static.flickr.com/' +
                    photo.getAttribute('server') + '/' +
                    photo.getAttribute('id') + '_' +
                    photo.getAttribute('secret');
      var thumbUrl = baseUrl + '_t.jpg';
      var photoUrl = baseUrl + '.jpg';
      var thumb = document.createElement('img');
      thumb.src = thumbUrl;
      thumb.style.cursor = 'pointer';
      thumb.onclick = showPhoto;
      thumb.photoUrl = photoUrl;
      $('thumbnailsContainer').appendChild(thumb);
    }
  );
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir


462 CHAPTER 12 
Open web APIs and Ajax
The function is called with the successful XML response document from which 
the list of <photo> elements is retrieved. As each <photo> element is iterated over, 
a base URL (minus the size suffix) is created from the information in the <photo>
element. This base URL is then used to create URLs for the thumbnails and the 
full-sized photo by applying the _t suffix and empty suffix, respectively.

 The DOM API is then used to create an <img> element that will show the thumb-
nail image. The cursor for the image element is set to pointer (the little hand) so 
that users will know that the thumbnail image can be clicked on, and the onclick
handler for the image is set to the showPhoto() function.

 The URL we created to show the medium-sized version of the photo is 
stored in a dynamic property directly on the image element named photoUrl
for later retrieval. Remember, this is JavaScript where we can create our own 
properties on any object on the fly. That even applies to objects in the HTML
DOM. How convenient.

 Finally, the newly created <img> element is added as a child of a container 
<div> with the ID of thumbnailsContainer.

 As a result of triggering this sequence of events, the thumbnails are loaded 
when the page is displayed, and each is armed and ready to display a larger ver-
sion of the photo at a simple click. That operation occurs in the showPhoto()
function that we declared as the onclick event handler of each thumbnail image:

function showPhoto() {
  var photo = $('photoElement');
  if (photo == null) {
    photo = document.createElement('img');
    photo.id = 'photoElement';
    $('photoContainer').appendChild(photo);
  }
  photo.src = this.photoUrl;
}

When the page first loads, we don’t want a “broken image” icon to be displayed, 
so initially we don’t even create an <img> element for the photo. Rather, on its first 
reference the nonexistence of the element is detected and we’ll create the <img>
element on the fly. So in our showPhoto() function we attempt to find the element 
with the ID of photoElement, and if it does not yet exist, it is created.

 Once we have a reference to the element, be it newly created or not, we set 
the src attribute of the <img> element to the photo URL that was generated 
for the thumbnail image in the showThumbnails() function. This works because 
the context object (the object referenced by this) in the event handler is the 
object that triggered the handler—in this case, the thumbnail image.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Flickr photos 463
Finally, we’re ready to write the body of the HTML page. But because we’re pretty 
much generating everything dynamically, it’s surprisingly simple:

<body>
  <div id="thumbnailsContainer"></div>
  <div id="photoContainer"></div>
</body>

The results of all that code (after page load and a click on one of the thumbnails) 
are shown in figure 12.8.

Discussion
In this section we learned how to use the Flickr REST API to dynamically access 
public photos and thumbnails from Flickr accounts—be it our own or anyone 
whose username we know.

 It’s quite obvious that the page we created could use some styling, and the 
usability leaves something to be desired in its initial, rather Spartan, state. But a 
good dose of CSS and a little JavaScript could improve the page in short order. 
The near-nonexistent error checking also needs to be rectified.

Figure 12.8  
Who's that doggie 
in the window?

http://lib.ommolketab.ir
http//lib.ommolketab.ir


464 CHAPTER 12 
Open web APIs and Ajax
 In this solution, we hard-coded the NSID for the user whose account we wished 
to access. Since the NSID for a particular user never changes, this is a safe thing to 
do for users whose NSID we have already determined. If we did not wish to look 
up such NSID values in advance, we could combine this and the previous solution 
to deliver a one-two punch: submit an Ajax request to look up the NSID by user-
name, and then in the success handler for that request, submit a second request 
that obtains the public photo list for the discovered NSID.

 This page could (and probably should) also be enhanced to provide paging 
of long lists of photos using the optional arguments to the Flickr getPublic-
Photos method.

 We also saw a little JavaScript trick: tacking our own property onto an HTML
DOM element for later reference. This is an extremely handy addition to our Java-
Script toolkit when manipulating the DOM and creating dynamic pages.

12.4 But wait! As they say, there’s more...

In this chapter we’ve looked at services exported by Yahoo!, Google, and Flickr to 
add some serious pizzazz to our dynamic web pages by using Ajax to access those 
services. But that’s just the tip of the iceberg!

 From A to Z, there are dozens, if not hundreds, of high-profile sites that pro-
vide APIs for us to use.

12.4.1 Amazon services

Amazon provides a robust set of services through which you can create your own 
applications, storefronts, or portals into the wealth of products offered by Ama-
zon and its partners. Like many other services, Amazon exports a REST interface 
that makes it easy for us to use from Ajax-enabled web applications.

 You can find details on signing up for and using the Amazon API at www.ama-
zon.com/gp/aws/landing.html.

12.4.2 eBay services

Want to create the next great eBay application?
 eBay offers a very broad and deep API to interface to eBay auctions and stores 

for everything from Java, to PHP, to SOAP, and yes, a REST API.
 The REST API seems to be limited, at least at the time of this writing, to searching 

eBay listings. But we could also use any of the other APIs to create server-side agents 
for our Ajax-enabled pages should we wish to develop deeper eBay applications.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Summary 465
 Information about the eBay Developer’s Program can be found at http://
developer.ebay.com/.

12.4.3 MapQuest

Not happy with the maps from Yahoo! or Google? Find out about the MapQuest 
OpenAPI at www.mapquest.com/features/main.adp?page=developer_tools_oapi.

12.4.4 NOAA/National Weather Service

Further interest in the weather? NOAA provides a SOAP-based API to forecasts, 
watches, and warnings. Check it out at www.nws.noaa.gov/forecasts/xml/.

12.4.5 More, more, more...

Search the Web and you’ll find more web services than you could possibly know 
what to do with. A good place to start is the list at ProgrammableWeb at www.pro-
grammableweb.com/apilist.

 Happy hunting!

12.5 Summary

In this chapter we’ve made some great strides. While we examined just a handful 
of the many web services available to us as developers, we explored a number of 
techniques that will be useful in dealing with just about any web service that may 
be available to us.

 We learned how to use JavaScript APIs and how to integrate server-side APIs 
into our web applications. Perhaps most importantly, we learned how to circum-
vent the Ajax security sandbox in order to make requests to web services on serv-
ers other than our own.

 Armed with this knowledge, there’s virtually no end to the ways that we can 
utilize web services that various sites have generously made public for our use.

 And we’re not limited to using just a single service. In the next chapter we’ll 
take a look at how we can combine services from different providers in a single 
web application. 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Mashing it up with Ajax
This chapter covers
■ Just what is a “mashup”?
■ Deciding on data formats
■ Digesting XML data loaded from a server
■ Using open APIs in concert
466

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Introducing the Trip-o-matic application 467
“Mashing it up” doesn’t mean we’ll be heading into the kitchen to make a potato 
dish, nor does it mean we’ll be heading out onto the lighted floor to participate 
in the latest dance craze. As applied to web applications, a mashup is a web page 
that combines content from multiple sources. While the term “mashup” may be 
fairly new, the concept is not. However, the advent of Ajax, along with the 
increasing availability of open APIs (see chapter 12), makes mashups easier than 
ever to create.

 In this chapter we’ll leverage the knowledge you gained about open APIs in 
chapter 12, as well as the Prototype JavaScript library that we examined in chap-
ters 3 and 4 and have used throughout this book, to create a mashup of our own 
using the Yahoo! Maps and Flickr photo services open APIs.

 If you haven’t read chapters 3 and 12 yet, it might be a good idea to go back 
and do so before proceeding with this chapter. In particular, you should read or 
review the sections that discuss Prototype, Yahoo! Maps, and Flickr.

13.1 Introducing the Trip-o-matic application

Half the fun of taking a trip—sometimes even more than half—is bragging about 
it afterward. Often, this bragging is accompanied by a large collection of photos, 
which (depending on the skill of the person behind the camera) can be a spectac-
ular showcase of photographic skill, or an abysmal collection of boring and off-
focus images.

 In either case, the power of the Internet now gives anyone the ability to force 
these photos onto a much larger audience than just family and friends who have 
no choice but to sit helplessly while you drag out the slide projector and screen.

13.1.1 Application purpose

One thing that can help keep trip photos from being an exercise in monotony is 
to give them context. And to help us achieve this context, we’ll write a web appli-
cation that could only be called the Trip-o-matic.

 At this point you might be thinking, “Why not just put the photos up on a 
Flickr account and be done with it?”

 Indeed, we’ll actually be doing just that. But that’s not quite good enough to 
achieve the context we crave. Sure, we could tell visitors where the photos were 
taken by adding photo comments like “Here are the photos from Austin,” “Here 
are the photos from Oklahoma City,” “Here are the photos from Topeka,” 
“Here are the photos from Lincoln,” and “Oh, look! It’s Mount Rushmore!” 

 But we’ll do one better than that: we’ll show maps!

http://lib.ommolketab.ir
http//lib.ommolketab.ir


468 CHAPTER 13 
Mashing it up with Ajax
13.1.2 Application overview and requirements

The Trip-o-matic application, while quite simple, is involved enough to lay the 
foundations for mashup applications that are more complex. The application will 
consist of a single page whose content is entirely driven by a data file that contains 
the information for a particular trip that we have made. Since the same page will be 
used no matter which trip is to be shown, it is imperative that no trip-specific infor-
mation be hard-coded onto the page or into the application code. All trip informa-
tion will be garnered from the data file that the page will read.

 This might remind you of server-side template applications using technolo-
gies such as JSP or PHP. But our application will consist entirely of client-side 
code with one exception: we’ll need to employ the services of the cross-server 
proxy servlet that we developed in section 12.1.2. This proxy will allow us to 
escape the confines of the Ajax security sandbox and make cross-server requests
to the Yahoo! and Flickr Photo Services sites.

 The data file that we’ll feed into this application contains all the information 
we’ll need to know about a specific trip. A short name, a description, and even 
information regarding the access keys to our Yahoo! and Flickr accounts will be 
part of the data provided by this file.

 The trip information will also include a list of points of interest along the path of 
the trip. For each such point, we’ll provide a short name, a longer description, the 
location of the point, and information on how to retrieve the Flickr photos asso-
ciated with that point of interest.

 Upon page display, the application will read the trip information and show a 
list of the short names for the included points of interest. A visitor’s click on an 
entry in this list will cause a map showing the area around the point to be dis-
played. Clicking on the map will display the thumbnails for the photos associ-
ated with the point, and clicking on a thumbnail will show the full-sized photo 
for that thumbnail.

 There’s nothing like making something interactive to help keep it interesting!
 Unlike the shorter examples shown in chapter 12, we’ll be applying a moder-

ate amount of styling to the application page in order to achieve a rudimentary 
level of usability. But like those examples, this application would definitely bene-
fit from the attentions of a professional UI expert, and could certainly use the 
help of a good visual designer.

 Also, in interest of brevity (you’ll be thankful), we’re going to be giving short 
shrift to error checking. If this example at all intrigues you, your first enhance-
ment to it should be to beef up the practically nonexistent error handling.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Trip-o-matic data file 469
 As it stands, this example will be enough to serve as a “proof of concept” and 
cover all of the technical ground we’ll need to get such an application on the road 
(pun intended)!

13.2 The Trip-o-matic data file

Before we write a single line of code, we need to design the data file that we’ll feed 
to the page. This file will reside on the server and will be retrieved via an Ajax 
request upon page load, at which time it will be digested and client-side Java-
Script structures representing the contained information will be created. 

 The specific file to be loaded will be identified via a query parameter that the 
application will expect to have been passed on the URL.

13.2.1 What format should we use?

As you’ve seen in previous chapters, responses to Ajax requests can take the form 
of plain text, HTML fragments, JSON notation, or an XML document. Which 
should we choose as the best format for our trip data?

 Since the trip data is obviously a set of structured information, plain text and 
HTML are dismissed out of hand as the former has no means to represent the 
structure of the data and the latter is a display, not a data, format. This leaves us 
with the choice of JSON or XML.

 JSON is an attractive notation because it is so easy to digest in the client pro-
gram; a simple call to the eval() function transforms the JSON response into the 
corresponding JavaScript structures. JSON is also easy for program code to gen-
erate. But JSON isn’t necessarily the best choice for larger data sets that will be 
hand-coded, as we know our trip data files will be.

 JSON notation is terse and uses simple delimiter characters such as square 
brackets and curly braces to indicate arrays and structures. JSON data that con-
sists of nested information can quickly become confusing and start to look like a 
data stream full of line noise (or that your pet iguana walked across your key-
board). Not only can this be visually difficult to parse, but it also becomes easier to 
introduce unintended errors into the data during revisions or additions.

 XML, on the other hand, requires a bit more client-side work to digest in Java-
Script code, but it is better-suited to hand-coding as its wordier markup nature 
makes it easier for people to mentally inspect the structure of data within the doc-
ument. This makes the data easier to create, maintain, and revise.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


470 CHAPTER 13 
Mashing it up with Ajax
 So, for choices, we are faced with

■ JSON is easy to digest in code, but not so easy to hand-build.
■ XML is more complicated to digest, but easier to hand-build.

Since we are going to write the digesting code once but will potentially be writing 
many trip data files, we’ll make things easy on ourselves and choose XML since it 
simplifies the task that we’ll be performing more often.

 That’s not being lazy. That’s just being smart!
 Besides, we’re going to set things up so that, if we have chosen unwisely, it will 

be easy to back out of this decision.

13.2.2 The trip data format

A trip XML document will contain the information for a single trip. The scalar 
data that we’ll need for each such trip consists of the following:

■ A title for the trip
■ The Flickr API key (see section 12.3)
■ The Flickr NSID for the account holding the trip pictures (also see sec-

tion 12.3.1)
■ A text string to use as a header for the points of interest
■ A description of the trip

The root element of our XML document format will be a <trip> element, and the 
first four scalar data elements will be specified as the attributes of that element. 
Since the description data is likely to be rather long and contain special charac-
ters, and perhaps even HTML markup, we’ll provide it within its own child 
<description> element. The text body of this <description> element can then be 
contained within a CDATA section, when necessary, to allow embedded HTML
markup, which would otherwise cause XML parsing issues.

 A typical <trip> element and its <description> element might look like this:

<trip title="The Trip Title"
      flickrNSID="97545223@N00" 
      flickrKey="78eca5287f3f05397dfba77ef40c7df53"
      poiTitle="Where we went">
  <description>
    <![CDATA[
      This is a descriptive comment for the trip complete with
      <b>some HTML markup</b>.
    ]]>

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Trip-o-matic data file 471
 </description>
    ... <!—- other child nodes go here -->
</trip>

In addition to the <description> element, the <trip> element contains a list of 
child elements, each of which defines one of the trip’s points of interest. The 
information provided for each point of interest (in a <poi> element) will be

■ A short name for the point (used as the text for the on-page list of points)
■ The latitude of the point location
■ The longitude of the point location
■ The Flickr photo set ID for the photos associated with this point
■ A description or comment for this point

All but the description information for a point of interest will be provided by 
attributes to the <poi> element. Because the description information for a point 
of interest can also contain HTML markup, the description of the point will be 
specified by a text or CDATA section in the body of the <poi> element.

 A typical <poi> element could then be

<poi name="Austin, TX" 
     latitude="30.266748" 
     longitude="-97.74176" 
     photoSetId="1151001">
  <![CDATA[
    We started in Austin, TX on May 23, 2006. It was a 
    <i>gorgeous</i> and sunny day. Little did we know what 
    was in store for us...
  ]]>
</poi>

For those who didn’t use a GPS to record the latitude and longitude of each point 
on the trip, conversion from a location string to coordinate values can be 
achieved using the Yahoo! Geocoding API that we examined in section 12.1.3.

 Next, let’s see how to set up our Flickr photos so that the appropriate value for 
the photoSetId attribute can be easily accessed by the Trip-o-matic application.

13.2.3 Setting up Flickr photo sets

One of the reasons that the Flickr photo service has grown so incredibly popular in 
a short period of time is that it’s just so dang easy to use. Signing up for an account 
is simple and quick (if you already have a Yahoo! account, you can even use that), 
and you can start uploading photos right away using their web interface. If you 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


472 CHAPTER 13 
Mashing it up with Ajax
want to make that process even easier, you can download their desktop application 
upload tool (that allows you to easily perform batch uploads), which is available for 
Windows as well as Mac OS X. There are plug-ins for iPhoto or Windows Explorer 
that make it even easier to upload your photos. There’s even a means of uploading 
your photos via email. It doesn’t get much easier than that.

 In the example we worked through in section 12.3 we obtained the informa-
tion for all the public photos uploaded to the target account. That’s clearly not 
what we want to do here. Rather than unleashing a torrent of photographic imag-
ery, we want to limit ourselves to only a subset of the uploaded photos: those we 
took at one of our trip’s points of interest.

 One way that Flickr allows us to organize our photos, and that we’ll take 
advantage of, is the ability to create photo sets and add any of our uploaded photos 
to that set. Since adding a photo to a set does not impact any other uses of the 
photo, or its ability to be added to other sets, we can use the set capability to our 
advantage without fear of adding artificial constraints on the use of our Flickr 
photos for other purposes.

 Creating and managing photo sets is as easy as everything else with Flickr. 
Simply click the Organize tab and take it from there, using Flickr’s Organizer 
interface to create and manage your photos sets. Once your trip photos are 
uploaded, create a photo set for each point of interest in the trip data file, and 
then add the appropriate photos to that set.

 In our application, the Flickr method that we’ll be using to obtain the photo set 
information requires that we reference the set by its ID rather than by name. This 
ID is not exposed on the Flickr website (at least, we couldn’t find a means of dis-
playing it), but the Flickr API provides a method, flickr.photosets.getList, that 
allows us to obtain the information for all our groups, including their ID values.

 Since this isn’t something we’ll be looking up every time, it’s not necessary to 
write any code to obtain this information; just hit the Flickr service with a URL
like the following:

http://www.flickr.com/services/rest/?method=flickr.photosets.getList
&api_key=78eaa5287f3f0b37dfb47def40c7df13&user_id=95355920@N00

and inspect the results for the ID of the photo sets to be referenced. Of course, in 
this URL, be sure to substitute your own values for the API key and NSID of the 
Flickr account to be targeted.

 With that, it’s time to start writing some application code!

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The TripomaticDigester class 473
13.3 The TripomaticDigester class

We have the Prototype toolkit at our disposal, we’ve seen lots of examples of 
advanced JavaScript throughout this book, we’ve set up our Flickr photo sets, and 
we’ve decided on the format for our trip data file. So let’s get down to business!

 One of the first tasks that we’re faced with is digesting the trip data file that we 
defined in the previous section. Rather than just including all the script necessary 
to obtain the XML document, digest it, and create the JavaScript structures that 
will hold the trip data directly on the page, we’ll create a JavaScript object to han-
dle that task.

 In fact, we’re going to keep this task completely separate from the rest of the 
Trip-o-matic application. But why?

 Keeping the data digestion code separate from the application logic will not 
only help keep the code organized, but abstracting this duty completely from the 
rest of the application code decouples the task of reading the data from the task of 
processing the data, and will allow us to revisit the data file format at any time in 
the future. Should we ever want to change the XML format, or even decide that 
XML was a poor choice and that we should have gone the JSON route, only the 
digester class will be affected. This level of abstraction, a teeny-tiny example of 
the concept of separation of concerns, is de rigueur for code written in server-side 
languages, and our client-side JavaScript deserves no less respect.

 We’ll call our digester class TripomaticDigester, and it will be defined in the 
TripomaticDigester.js file. Next, let’s examine each part of the implementation 
of that class.

13.3.1 The dependency check

Have you ever gotten some really cryptic error message from the JavaScript 
engine in your browser only to eventually discover that it was caused by a simple 
missing dependency? We’ve all wasted hours scratching our heads, trying to fig-
ure out what’s wrong with our JavaScript code, and then kicked ourselves for for-
getting to include some .js file that our code depended on.

 Our digester, as well as the rest of the JavaScript code for this application, will 
rely heavily on the Prototype library. Rather than letting the browser issue its typ-
ically cryptic error message in the event that the Prototype library is not loaded 
prior to importing our digester class, we can perform an explicit check and issue 
our own, hopefully clearer, message.

 So at the head of our digester script file, we place the following:

http://lib.ommolketab.ir
http//lib.ommolketab.ir


474 CHAPTER 13 
Mashing it up with Ajax
if (!Prototype) {
  throw new Error(
    "Prototype must be in scope to use Trip-O-Matic");
}

The Prototype library defines an object named Prototype, and we check for its 
existence. If it is not defined, we issue a JavaScript error that will appear on the 
JavaScript console (or in a pop-up window, depending on the browser used), tell-
ing us clearly that we’ve been remiss.

 If we want to be really picky, the Prototype object contains a property that 
declares the version level of the Prototype library, and we could check that prop-
erty as well.

 This is a handy technique that can be used anywhere that dependencies on 
other JavaScript libraries need to be checked.

13.3.2 The TripomaticDigester constructor

The job of the TripomaticDigester constructor is to take the URL of a trip 
data resource, digest the XML document identified by that resource, store the 
digested trip data for later retrieval, and inform the caller when the process 
is complete. This is no small feat, but by taking things one at a time and del-
egating some tasks to implementation functions, we’ll see that it’s not as bad 
as it may sound.

 Because we are using the Prototype library to create our JavaScript class, the 
constructor for the TripomaticDigester consists of creating the class and defining 
an initializer in the class’s prototype property, as shown in listing 13.1. Note that 
this listing is not the complete code for the class. We’ll be looking at the class one 
piece at a time.

TripomaticDigester = Class.create();

TripomaticDigester.prototype = {

  initialize: function(dataUrl,onLoadHandler) {
    this.dataUrl = dataUrl;                     
    this.onLoadHandler = onLoadHandler;
    new Ajax.Request(     
      this.dataUrl,
      {
        onSuccess: this.onDigest.bind(this),    
        onFailure: function() {

Listing 13.1 The TripomaticDigester constructor components

Stores initialization 
parameters

 B

Fetches data file 
contents via Ajax C Binds onSuccess 

handler to instance
 D

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The TripomaticDigester class 475
          throw new Error('failed to load ' + this.dataUrl);
        }
      }
    );
  },

The code doesn’t look too bad, but truth be told, it’s not doing a whole lot of the 
hard work either. The initialize() method accepts the URL of the trip data 
resource and a function reference to serve as a handler to be notified when the 
trip data has finished loading. After storing these values b, the constructor fires 
off an Ajax request to fetch the contents of the specified URL C.

 Note that the onSuccess event handler for this request D is specified using the 
Prototype bind() method to make sure that the context object for the handler 
method onDigest() is the current instance of the TripomaticDigester.

 Refer back to section 3.1.2 if you need to review what context object binding is 
all about and what it has to do with iguanas.

 The real work starts when the onDigest() callback method is invoked.

13.3.3 Digesting the trip data

If the URL supplied to the constructor was valid, and nothing else goes awry, the 
onDigest() method will be called when the XML document has been received 
from the server. The implementation of this method is shown in listing 13.2.

onDigest: function(request) {
  var xmlDoc = request.responseXML;
  var tripElement = xmlDoc.childNodes.item(0);
  if (tripElement.nodeName != 'trip')
    throw new Error( 'root element must be <trip>' );
  this.title = tripElement.getAttribute('title');
  this.flickrNSID = tripElement.getAttribute('flickrNSID');
  this.flickrKey = tripElement.getAttribute('flickrKey');
  this.poiTitle = tripElement.getAttribute('poiTitle');
  this.description = '';
  var self = this;
  var descriptionElements =
    tripElement.getElementsByTagName('description');
  $A(descriptionElements).each(function(descriptionNode) {
   self.description += self.collectText(descriptionNode);
  });
  this.points = new Array();
  var poiElements = tripElement.getElementsByTagName('poi');

Listing 13.2 The TripomaticDigester.onDigest() method

http://lib.ommolketab.ir
http//lib.ommolketab.ir


476 CHAPTER 13 
Mashing it up with Ajax
  $A(poiElements).each(this.loadPoint.bind(this));
  this.onLoadHandler(this);
},

The task performed by this function is important, but it’s a straightforward mat-
ter of digesting XML. The XML document is obtained from the request parame-
ter (an instance of XMLHttpRequest). Its first (and only) child is obtained, and a 
check is made to verify that this root element is a <trip> node as expected.

 If the check succeeds, the attributes of the element are obtained and stored in 
instance variables of the digester object. Then the text content of the <descrip-
tion> child elements is collected and stored by invoking the collectText() imple-
mentation method (which we’ll describe soon). Note that we use the Prototype 
$A() function to convert the NodeList to an Array, and then invoke the each()
method on that Array in order to collect the content of all <description> nodes.

 Wait a minute! Nodes? More than one?
 Yes. We’re going to be lenient here and allow the user to spread the descrip-

tion of the trip over multiple elements if desired. We could be mean and restric-
tive, allowing only a single <description> element—but why not just be nice?

 The <poi> child elements are then collected, again with the assist of the Pro-
totype $A() and each() functions to invoke the loadPoint() method on each <poi>
element (after binding the reference to the digester object instance). This is a 
good example of how the each() method of the Prototype Enumerable class helps 
us keep code manageable by allowing us to easily separate out the complex pro-
cessing for the array elements into another function.

 That method, loadPoint(), is tasked with digesting the <poi> elements. You’ll 
learn more about that method in the next section.

 Finally, the client handler registered with the constructor is invoked, passing 
the instance of the digester to this function. This eliminates any need for that 
handler to hook up to the digester via a global variable or other external means.

 Now let’s move on to the really interesting data: the aptly named points 
of interest!

13.3.4 Loading the points of interest

In the onDigest() method in listing 13.2, we called an iterator method named 
loadPoint()for each <poi> element found nested in the <trip> element. That 
method, bound to the instance of the digester, has the job of creating a JavaScript 
object describing each point of interest by gathering the information in the 
passed element. Its implementation is shown in listing 13.3.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The TripomaticDigester class 477
loadPoint: function(poiElement,index) {
    this.points.push({
      name: poiElement.getAttribute('name'),
      latitude: poiElement.getAttribute('latitude'),
      longitude: poiElement.getAttribute('longitude'),
      photoSetId: poiElement.getAttribute('photoSetId'),
      description: this.collectText(poiElement)
    });
  },

Creating a JavaScript object from the attributes of the passed element is almost 
trivial; the getAttribute() DOM method is called on the element for each value, 
and a correspondingly named property is created in a JavaScript object. The 
newly created object instance is then pushed to the end of the points array 
instance variable for later reference.

 As with the description data for the <trip> element’s <description> child, the 
<poi> element’s description data is collected from the element via the collect-
Text() implementation method.

 What’s all that fuss about?

13.3.5 Collecting element text

Determining the value of an attribute of an element in an XML document is 
almost trivial, as we have seen in the methods that we’ve already created in our 
digester class. Only slightly more involved is obtaining the child elements of any 
particular element. But gathering text data from the body of an element poses 
just a bit more of a challenge.

 Unlike attributes or child elements, there is no one DOM method that gives you 
all of the text that lies within the body of an element. And if you think about it, it’s 
easy to understand why. Consider the following XML document fragment that 
might exist in our document:

<description>
  The quick young cub jumped over the lazy bear.
</description>

This seems fairly straightforward, and most XML parsers would return a single 
text node for the <description> element’s body content. But what about some-
thing like the following?

<description>
  The quick young cub <!-- was he that quick? --> jumped 

Listing 13.3 The TripomaticDigester.loadPoint() method

http://lib.ommolketab.ir
http//lib.ommolketab.ir


478 CHAPTER 13 
Mashing it up with Ajax
  over the lazy bear.
</description>

In the this fragment a comment node has been added, which causes the XML
parser to split the text into (at least) two text nodes separated by a comment node.

 Or what about the following?

<description>
  <![CDATA[
   The <strong>quick</strong> young cub jumped over the
  <i>lazy</i> bear.
  ]]>
</description>

In this fragment the body text has been entered as a CDATA section so that it can 
contain characters that would otherwise introduce syntax errors into the docu-
ment—in this case, HTML markup. CDATA information is delivered in its own 
node type.

 How these issues are dealt with depends on the needs of the application. For 
our example, we’ll collect all text and CDATA elements (ignoring comments) and 
concatenate them into a single text block to serve as the content of the node. This 
will apply to the description of the trip and the point of interest elements.

 To this end, we create the collectText() method, whose implementation is 
shown in listing 13.4.

collectText: function(element) {
  var text = '';
  $A(element.childNodes).each(
    function(child) {
      if ((child.nodeName == '#text') ||
          (child.nodeName == '#cdata-section')) {
        text += child.data;
      }
    }
  );
  return text.strip();
}

Given an element passed as the sole parameter, this method iterates over all 
children of the element looking for text and CDATA nodes, identified with 
node names of #text and #cdata-section, respectively. Any such nodes that we 
find have their content concatenated into a text variable whose trimmed value 

Listing 13.4 The TripomaticDigester.collectText() method

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Tripomatic application class 479
(trimming provided by the Prototype String.strip() method) is returned as 
the value of the method.

 This completes our standalone digester class. Again, defining this process in 
its own class decouples the reading of the data from the rest of the application. 
This gives us the freedom to change the details of the digestion process to include 
the data format, without fear of introducing errors into the application.

13.4 The Tripomatic application class

Now that we’ve got digesting the data out of the way, let’s turn our attention to 
the application itself. We could just code a page, with embedded JavaScript, to be 
our application. But we’re smarter than that. Instead, we’re going to set up a Java-
Script class that implements the application in keeping with the object-oriented 
theme that we’ve endorsed throughout this book.

 This application has a lot to do and a lot to keep track of. There’s going to be 
trip information, points of interest, maps, as well as thumbnails and photos to cre-
ate, manage, and manipulate. But by taking things one step at a time, and using the 
power that object-oriented programming, JavaScript, and the Prototype library 
gives us, we’ll get there.

 The list of things this application needs to do includes

■ Create the DOM elements in which the application content will be dis-
played. This includes elements for
– The trip title
– The trip description
– The points of interest, each of which will be a clickable element
– A header to label the point of interest list
– The map showing a clicked point of interest
– A set of thumbnail images for the photos taken at a point of interest
– A full-sized photo of a clicked thumbnail

■ Assign event handlers so that
– A click on a point of interest displays the corresponding map using 

Yahoo! Maps
– A click on a displayed map fetches and displays the thumbnails images 

in the photo set associated with the map’s point of interest using 
Flickr services

– A click on any thumbnail image displays the full-sized photo for the 
thumbnail, again using the Flickr service

http://lib.ommolketab.ir
http//lib.ommolketab.ir


480 CHAPTER 13 
Mashing it up with Ajax
And all of this needs to be accomplished in an object-oriented fashion without 
the use of global variables or any hard-coded element IDs. Let’s start by setting 
up the Tripomatic class and its constructor.

13.4.1 The Tripomatic class and constructor

To start, we create a file named Tripomatic.js and populate it with the same type 
of dependency checks that we were using in the TripomaticDigester class. Again, 
using the Prototype style of creating classes, we set up the skeleton of the class as 
shown in listing 13.5. This listing is far from the complete definition of the class, 
but we’ll be adding to it throughout this section until we have the complete and 
working application. Subsequent listings in this section will generally not repeat 
code that is already shown; they will depict newly added code.

if (!Prototype) {
  throw new Error(
    "Prototype must be in scope to use Trip-O-Matic");
}

if (!TripomaticDigester) {
  throw new Error(
    "TripomaticDigester must be in scope to use Trip-O-Matic");
}

Tripomatic = Class.create();

Tripomatic.prototype = {
  /* instance methods will go here */
}

As is usual with Prototype-defined classes, the actual construction code will be 
placed in a method named initialize(). The parameters to this method will 
be the URL for the data file containing the trip information, the DOM element 
in which to create the application content, and an options hash for passing any 
optional information. This method is shown in listing 13.6.

initialize: function(dataUrl,container,options) {
  this.container = $(container);
  this.options = Object.extend(
    {

Listing 13.5 Skeleton for the Tripomatic class

Listing 13.6 The Tripomatic.initialize() method

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Tripomatic application class 481
      enablePanAndZoom: false
    }, options
  );
  this.createContent();
  this.digester = new TripomaticDigester(
    dataUrl,
    this.onDataLoaded.bind(this));
  this.map = new YMap(this.mapContainerElement);
  if (this.options.enablePanAndZoom) {
    this.map.addPanControl();
    this.map.addZoomLong();
  }
},

This method is deceptively simple because it delegates all the hard work to another 
method. The passed container is recorded in an instance variable, and the passed 
options are merged with the default options. Note that this class defines but a single 
option, enablePanAndZoom, which specifies whether the pan and zoom controls 
should be added to the Yahoo! Maps map.

 But if we only have a single option, why bother with an object hash? Why not 
just define an optional third parameter? The answer: extensibility. With an appli-
cation of this complexity, the chances that we’ll eventually want to add more 
options are good. And if we were to not use an options hash at this point, when we 
changed the parameter to a hash later in order to accommodate extra options, 
the signature of the constructor would change, thus breaking the code of every-
one who has used the class in their pages prior to the addition. By anticipating 
this need, we can add future options without changes to the constructor signa-
ture, thereby delighting the users of our class by avoiding unnecessary changes.

 The method then calls an implementation method named createContent(). 
This method will create all the elements needed to display the data content of our 
application. We’ll be inspecting it next.

 After the content elements are created, an instance of TripomaticDigester is 
created using the dataUrl that was passed, and this instance is tucked away for 
later reference. A method named onDataLoaded() will be invoked when the 
digester has finished its job. Note how we have bound the function context (this) 
to this callback so that this instance of Tripomatic will also be the function context 
when onDataLoaded() is invoked,

 Finally, the Yahoo! Maps map is created and initialized in a container that, 
presumably, was created by createContent() (which is indeed the case as we’ll 
see shortly).

http://lib.ommolketab.ir
http//lib.ommolketab.ir


482 CHAPTER 13 
Mashing it up with Ajax
 At this point, the application is completely initialized and ready for user inter-
action. But a lot went on behind the scenes in the createContent() and onData-
Loaded() methods. Let’s take a look at just what those methods did for us.

13.4.2 Creating the content elements

Now we come to the “create or attach?” conundrum. We could deal with the content 
of our application in two ways. One way, which we’ve seen used by the Button class 
example of chapter 3, is to have the user define the HTML elements, which our 
class would attach to as part of its initialization.

 This tactic works well when the HTML either is very simple or has too many 
variations for us to guess at creating it ourselves. But in cases where a fairly com-
plex, but predictable, element hierarchy is needed, it’s sometimes better to have 
the script create the elements dynamically.

 This latter strategy is the way that we’ll define our Trip-o-matic application. 
And it does it via the createContent() method that we called from the constructor.

 This method is responsible for creating a DOM hierarchy, nested inside the 
container element that the user passes to us, equivalent to the HTML snippet 
shown here:

<h1></h1>
<h2></h2>
<div class="tripomaticPoiContainer">
  <h3></h3>
  <ul></ul>
</div>
<div class="tripomaticMapContainer"></div>
<div class="tripomaticPoiDescription"></div>
<div class="tripomaticThumbsContainer"></div>
<div class="tripomaticPhotoContainer"></div>

It is into these elements that the data content of our trip will be inserted.
 The <h1> and <h2> elements will be used for the trip title and description, 

respectively. The <div> element containing the <h3> and empty <ul> elements will 
hold the list of points of interest. The string supplied by the poiTitle attribute of 
the <trip> element will be placed in the <h3> element, and the <ul> element will be 
populated with the point-of-interest items.

 Each <div> element is assigned a unique CSS class name (all of which are pre-
fixed with the string tripomatic so as not to pollute the user’s CSS class namespace) 
that not only helps identify the use to which the element will be put, but also 
allows the user to style every element created. This is an important point when 
creating elements on behalf of the user. We must be sure that the user is able to 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Tripomatic application class 483
address each element via a CSS selector. Any element that is not selectable cannot 
be styled by the user. The non-<div> elements do not need the class name treat-
ment as they are unique within the construct and can be addressed using element 
name CSS selectors.

 As it’s usually a good idea to avoid hard-coding strings in code, we want to fac-
tor the strings that represent the class names out of the code and into class-level 
references. As we discussed in chapter 3, we can emulate class-level “constants” by 
assigning them directly as properties of the class. Of course, we know that they’re 
not really constants, but we’ll treat them as if they were. These assignments are 
placed in the Tripomatic.js file between the class and prototype declarations, as 
shown in listing 13.7.

Tripomatic = Class.create();

Tripomatic.CLASS_POI_CONTAINER = 'tripomaticPoiContainer';
Tripomatic.CLASS_MAP_CONTAINER = 'tripomaticMapContainer';
Tripomatic.CLASS_POI_DESCRIPTION = 'tripomaticPoiDescription';
Tripomatic.CLASS_THUMBS_CONTAINER = 'tripomaticThumbsContainer';
Tripomatic.CLASS_PHOTO_CONTAINER = 'tripomaticPhotoContainer';

Tripomatic.prototype = {

With that, we’re ready to examine the method (listing 13.8) that creates the 
DOM elements.

createContent: function() {
  this.container.innerHTML = '';
  this.tripTitleElement = document.createElement('h1');
  this.tripDescriptionElement = document.createElement('h2');
  this.poiContainerElement = document.createElement('div');
  this.poiTitleElement = document.createElement('h3');
  this.poiListElement = document.createElement('ul');
  this.mapContainerElement = document.createElement('div');
  this.poiDescriptionElement = document.createElement('div');
  this.thumbsContainerElement = document.createElement('div');
  this.photoContainerElement = document.createElement('div');
  this.container.appendChild(this.tripTitleElement);
  this.container.appendChild(this.tripDescriptionElement);
  this.container.appendChild(this.poiContainerElement);
  this.container.appendChild(this.mapContainerElement);

Listing 13.7 The class name “constants”

Listing 13.8 The Tripomatic.createContent() method

http://lib.ommolketab.ir
http//lib.ommolketab.ir


484 CHAPTER 13 
Mashing it up with Ajax
  this.container.appendChild(this.poiDescriptionElement);
  this.container.appendChild(this.thumbsContainerElement);
  this.container.appendChild(this.photoContainerElement);
  this.poiContainerElement.appendChild(this.poiTitleElement);
  this.poiContainerElement.appendChild(this.poiListElement);
  this.poiContainerElement.className =
    Tripomatic.CLASS_POI_CONTAINER;
  this.mapContainerElement.className =
    Tripomatic.CLASS_MAP_CONTAINER;
  this.poiDescriptionElement.className =
    Tripomatic.CLASS_POI_DESCRIPTION;
  this.thumbsContainerElement.className =
    Tripomatic.CLASS_THUMBS_CONTAINER;
  this.photoContainerElement.className =
    Tripomatic.CLASS_PHOTO_CONTAINER;
},

The Tripomatic.createContent() method may be a tad on the lengthy side, but it’s 
fairly straightforward. First, the container passed into the constructor by the page 
author is cleared, and then the various elements that will be required by the appli-
cation are created and stored in properties of the instance.

 The method then hooks up the elements into the hierarchy that we depicted 
as HTML earlier in this section, as children of the page author’s container. Finally, 
the CSS class names are assigned to the created elements.

 Well, that wasn’t too bad. But this just creates a set of empty elements devoid of 
any actual trip data. Let’s see how we’ll handle obtaining and filling in the data.

13.4.3 Filling in the trip data

If you recall, one of the steps we took in our initialize() method was to create 
an instance of a TripomaticDigester. We gave it the URL of a trip data file and a 
reference to a method named onDataLoaded() to call when it has digested the 
trip data file.

 We created the digester instance after we created the content elements so that 
when onDataLoaded() is called, we know that it’s safe to assume that the DOM
hierarchy has already been assembled. Let’s take a look at the code for this 
method (listing 13.9).

onDataLoaded: function(digester) {
  this.tripTitleElement.innerHTML = digester.title;
  this.tripDescriptionElement.innerHTML = digester.description;

Listing 13.9 The Tripomatic.onDataLoaded() method

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Tripomatic application class 485
  this.poiTitleElement.innerHTML = digester.poiTitle;
  digester.points.each(this.makePointOfInterest.bind(this));
  this.showPoint(digester.points[0]);
},

The digester helpfully passes a reference to itself to the Tripomatic.onData-
Loaded() method, and we use that reference to obtain the digested data. But even 
if the digester had not been that helpful, we still would have been OK, as this 
method is bound to the current Tripomatic instance, giving us access to the 
digester reference stored as an instance property. Ah, the joys of object orientation! 

 Displaying the trip title and description is a simple matter of setting the 
innerHTML property value of the appropriate content elements (that we set up 
in the createContent() method) with their corresponding values. We then use 
the Prototype each() method on the list of points, specifying the makePointOf-
Interest() method as the iterator function.

 Just before relinquishing control to the page visitor (remember, all this will be 
happening as a result of the page load), we call a method named showPoint()
with a reference to the first entry in the points of interest list. This will cause the 
information for the first point in the list to be displayed, and is the same function 
that will be used to handle a visitor click on any point name. We’ll be looking at its 
implementation in section 13.4.4.

 For each point that the digester loaded, we caused the makePointOfInterest()
method to be invoked as an iterator function. This method is tasked with creating 
an active entry in the list of points that a visitor can click on to load the map for 
that point. This method’s implementation is shown in listing 13.10.

makePointOfInterest: function(point) {
  var pointItem = document.createElement('li');
  pointItem.appendChild(document.createTextNode(point.name));
  pointItem.onclick = this.onPoint.bindAsEventListener(this);
  pointItem.point = point;
  this.poiListElement.appendChild(pointItem);
},

The Tripomatic.makePointOfInterest() method, using the DOM manipulation 
API, creates an <li> element to contain the point entry. An event handler for the 
click event is established as a method named onPoint(), bound as an event lis-
tener to the current instance. So that the point information associated with this 

Listing 13.10 The Tripomatic.makePointOfInterest() method

http://lib.ommolketab.ir
http//lib.ommolketab.ir


486 CHAPTER 13 
Mashing it up with Ajax
item can be easily obtained by the event handler, we tack it onto the <li> element 
as a property named point. The created <li> element is then appended to its 
parent, the <ul> element that we had created earlier during initialization.

 The invocation of this function on the last point of interest completes the 
rather long chain of events that occurs when the page is loaded. When supplied 
with the sample XML data file found in the downloadable source code for this 
chapter at www.manning.com/crane2, the result is displayed to our visitor as 
shown in figure 13.1.

 Note that the title, description, and points of interest have been displayed, 
and the map for the first point has been loaded. The empty areas at the bottom of 

Figure 13.1 We’re in Austin!

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Tripomatic application class 487
the page are where the strip of thumbnails will be loaded, and where a thumbnail 
will be expanded to a full-sized photo upon a click.

 But how did that map get there?

13.4.4 Showing the map
Because of the event handler that we set on the point-of-interest entries, a visitor 
click on one of the point names triggers the onPoint() method. As an event han-
dler, this method is called with an Event instance as its parameter, from which we 
can determine which element was clicked on. As you’ll recall, we set the point 
information on that element in a property named point for easy access by this 
method. The code for this event-handler method is shown in listing 13.11.

onPoint: function(event) {
  this.showPoint(Event.element(event).point);
},

The only action that this handler performs is to locate the point information on 
the event’s target element and pass it to the showPoint() method. The show-
Point() method is what causes the map associated with a point of interest to be 
drawn. It is invoked whenever a user clicks on an entry in the points-of-interest 
list and, as you may recall, when the data is initially loaded. Let’s take a look at its 
implementation in listing 13.12.

showPoint: function(point) {
  this.currentPoint = point;
  var geoPoint = new YGeoPoint(point.latitude,
                               point.longitude);
  this.map.drawZoomAndCenter(geoPoint,4);
  this.mapContainerElement.onclick =
    this.showThumbnails.bindAsEventListener(this);
  this.mapContainerElement.point = point;
  this.poiDescriptionElement.innerHTML = point.description;
  this.thumbsContainerElement.innerHTML = '';
  this.photoContainerElement.innerHTML = '';
},

After recording the point passed to this method as the current point, our 
method creates a YGeoPoint instance and uses it to display the YMap centered 

Listing 13.11 The Tripomatic.onPoint() event-handler method

Listing 13.12 The Tripomatic.showPoint() method

http://lib.ommolketab.ir
http//lib.ommolketab.ir


488 CHAPTER 13 
Mashing it up with Ajax
on the point-of-interest’s location, just as we explored in the example in sec-
tion 12.1.1.

 We then establish a click event handler on the map element that binds a 
method named showThumbnails() as the event handler. We’ll be looking at that 
method next.

 The description of the point is displayed and the containers for the thumb-
nails and photo are cleared to remove any images left over from a previously dis-
played point.

 Now we sit and patiently wait for a visitor to click on the map.

13.4.5 Loading the thumbnails

If a visitor ever figures out that clicking on the map does something interest-
ing—remember, we already stated that this application wasn’t a paragon of 
usability—they’ll be rewarded for their intuitiveness. When the map is clicked, 
we want to fetch the information about the thumbnails stored in our Flickr 
account that we associated, via the photo set ID, with the point of interest whose 
map is currently displayed.

 We’ve made Flickr requests before—check out section 12.3 for a refresher—so 
the code we’ll write to accomplish this should look rather familiar even though 
we’ll be using a different Flickr method when accessing the Flickr REST API.

 Recall that we set up a Flickr photo set to correspond to each point of interest, 
and recorded the IDs of those sets in the trip data file. So rather than using the 
flickr.people.getPublicPhotos Flickr method to retrieve all public photos, we’ll 
use the flickr.photosets.getPhotos method to limit the retrieval information to 
only the photos that we placed in the identified set. Figure 13.2 shows the bottom 
of the page after clicking on the map in order to show the associated thumbnails. 

Figure 13.2 Thumbnails of Austin photos displayed

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Tripomatic application class 489
The event handler that performs this action in response to the click appears in 
listing 13.13.

showThumbnails: function(event) {
    new Ajax.Request(
      '/aip.chap13/proxy',
      {
        onSuccess: this.onPhotosetList.bind(this),
        method: 'get',
        parameters: {
          '.serviceUrl.':
            'http://www.flickr.com/services/rest/',
          api_key: this.digester.flickrKey,
          method: 'flickr.photosets.getPhotos',
          photoset_id: this.currentPoint.photoSetId
        }
      }
    );
  },

In the same manner in which we’ve issued many other Ajax requests, this method 
contacts the Flickr service by way of our server-side proxy agent. Section 12.1.2 
examines the need for, as well as the operation of, this proxy agent.

 Conveniently, and quite deliberately, we stored the information for the cur-
rently loaded point of interest in an instance property named currentPoint. 
This handler can use that property to reference the photoSetId property of the 
current point without the need for global variable references or indexes into 
the point array.

 The onSuccess event handler (listing 13.14) for the request, specified as the 
onPhotosetList() method, is charged with digesting the XML document that 
the Flickr service will send to us in response to the issued request. Let’s take a 
look at its implementation.

onPhotosetList: function(xhr) {
  var doc = xhr.responseXML;
  var status =
    doc.getElementsByTagName('rsp')[0].getAttribute('stat');
  if (status == 'ok') {
    this.thumbsContainerElement.innerHTML = '';
    var photos = doc.getElementsByTagName('photo');
    $A(photos).each(this.makeThumbnail.bind(this));

Listing 13.13 The Tripomatic.showThumbnails() method

Listing 13.14 Digesting the photo set member document

http://lib.ommolketab.ir
http//lib.ommolketab.ir


490 CHAPTER 13 
Mashing it up with Ajax
  } else {
    throw new Error('getPhotos request failed');
  }
},

Despite the fact that we called a different Flickr method than we used in sec-
tion 12.3, the Flickr service returns an XML document of the same format. 
Digesting the document is therefore performed in the same manner.

 First we obtain the response document, and check it to make sure the service 
reported a successful response. If all went well, we clear out any previous thumb-
nails, obtain the list of all <photo> elements in the document, and invoke the 
makeThumbnail() method as the iterator function upon each such element node. 
The makeThumbnail() method, shown in listing 13.15, is where all the heavy lift-
ing to create the thumbnail images takes place. (Note that in the event of a failure 
we throw an Error instance constructed from the entire response text. In reality, 
we’d want to extract only the error message from the response document, but we 
don’t do so here in the interest of brevity. As an exercise, how would you enhance 
this code with better error detection and recovery?)

makeThumbnail: function(photo,index) {
    var baseUrl = 'http://static.flickr.com/' +
                  photo.getAttribute('server') + '/' +
                  photo.getAttribute('id') + '_' +
                  photo.getAttribute('secret');
    var thumbUrl = baseUrl + '_t.jpg';
    var photoUrl = baseUrl + '.jpg';           
    var thumb = document.createElement('img');
    thumb.src = thumbUrl;
    thumb.style.cursor = 'pointer';
    thumb.onclick = this.showPhoto.bindAsEventListener(this);
    thumb.photoUrl = photoUrl;                      
    this.thumbsContainerElement.appendChild(thumb);
  },

As it turns out, all that heavy lifting isn’t so complicated. Just as we did in sec-
tion 12.3.2, we construct the URL to reference the thumbnail image hosted on 
the Flickr site, and then create an HTML <img> element that refers to that URL.

 While we’re generating the URL of the thumbnail image, we also generate the 
URL of the larger version of the photo b that we’ll want to show when the thumb-
nail is clicked, and store that as a property of the thumbnail <img> element C. 

Listing 13.15 The Tripomatic.makeThumbnail() method

Formats photo URL B

Stores URL for 
later reference C

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Tripomatic application class 491
Later, in the showPhoto() method, which we set as the onclick event handler for 
the <img> element, we’ll just use the recorded URL when creating the <img> ele-
ment for the larger photo.

13.4.6 Displaying the photos
It seems like we’ve done a lot of work to get to this point, but finally we’re ready to 
show pictures! The bottom of the page, with a fabulous photo displayed, appears 
in figure 13.3.

 In our makeThumbnail() method of listing 13.15, we specified a method named 
showPhoto() as the click event handler for each thumbnail image element. This 
method (listing 13.16) is very similar to the corresponding function we set up in 
section 12.3.2.

showPhoto: function(event) {
  if (this.photoElement == null) {
    this.photoElement = document.createElement('img');
    this.photoContainerElement.appendChild(this.photoElement);
  }
  this.photoElement.src = Event.element(event).photoUrl;
}

Listing 13.16 The Tripomatic.showPhoto() method

Figure 13.3 The Austin skyline

http://lib.ommolketab.ir
http//lib.ommolketab.ir


492 CHAPTER 13 
Mashing it up with Ajax
Recall that because this function is a click event handler for a thumbnail image 
element, that <img> element will be the event’s target element when the function 
is invoked. Because we wisely preloaded a property on that element that specifies 
the URL of the photo to be shown as a result of clicking on the thumbnail, the 
work that this function needs to do is rather simple: it checks to see if an <img>
element to show photos has already been created and, if not, creates one. After 
the element is either located or newly created, its src property is set to the photo 
to be displayed.

 At this point you may be wondering why we didn’t create the <img> element for 
the full-sized photo in the createContext() method? Why wait until this method?

 At the time that the createContext() method was executing, we had no photo 
URL to display. In fact, we don’t get such a URL until the page visitor clicks on a 
map and then clicks on a thumbnail created as a result of that click. If we were to 
create an <img> element without a src attribute, or with an empty one, some 
browsers would display a “broken image” icon until a valid src attribute value 
would be assigned. That’s something we don’t want displayed on the page.

 And with that, our application class has finally been completed. Now to put it 
on an HTML page.

13.5 The Trip-o-matic application page

By this time you’re probably pleading, “Can we please start writing the page?” 
Your pleas will be heard. It seems we’ve done a lot of work without actually writing 
any HTML for the application page itself. But all that hard work will pay off, and 
you’ll see that, having already dispensed with all the necessary support code, all 
we have to do on the page is write the HTML, CSS, and JavaScript code that is 
focused on creating an instance of the application class.

13.5.1 The Trip-o-matic HTML document

Let’s set up the HTML page for the application. The complete code for the page 
is shown in listing 13.17.

<html>
  <head>                                       
    <title>Trip-o-matic</title>
    <link rel="stylesheet" href="styles.css"/>
    <script type="text/javascript" src="prototype-1.5.1.js">
    </script>

Listing 13.17 The trip-o-matic.html page

Imports styles, 
libraries, and classes B

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Trip-o-matic application page 493
    <script type="text/javascript" src=
      "http://api.maps.yahoo.com/ajaxymap?v=2.0&appid=YahooDemo">
    </script>
    <script type="text/javascript" src="TripomaticDigester.js">
    </script>
    <script type="text/javascript" src="Tripomatic.js">
    </script>
    <script type="text/javascript">
      window.onload = function() {
        var dataUrl = document.URL.toQueryParams().dataUrl;
        if (dataUrl == null)
          throw new Error('the dataUrl parameter must be set');
        new Tripomatic(     
          dataUrl,
          'tripomatic',
          {
            enablePanAndZoom: true
          });
      };
    </script>
  </head>

  <body>
    <div id="tripomatic"></div>   
  </body>

</html>

The <head> element b is filled in with an import for a CSS style sheet that we’ll 
use to apply rudimentary styling to the page, as well as imports for the various 
external JavaScript files that we need: the Prototype library, the Yahoo! Maps
library, the digester class, and the Tripomatic class itself.

 We also include a script element in which we define the onload event handler 
for the page. In this handler function, we obtain the data URL passed to us as the 
dataUrl query parameter, with the help of the Prototype toQueryParams() String 
method. If no such parameter is found, we complain.

 Then an instance of the Tripomatic class is created C, specifying the data 
URL, a reference to the container in which the application elements are to be cre-
ated D, and an object hash of the options we desire.

 In the <body> of the page, we create an empty <div> element in which the 
application will create its elements.

 That’s it. Everything else is handled by the code that we’ve already written. 
How easy is that for the page author?

Creates instance 
of application C

Declares container for 
application elements D

http://lib.ommolketab.ir
http//lib.ommolketab.ir


494 CHAPTER 13 
Mashing it up with Ajax
 At long last, our application page has been completed! But before we head out 
to celebrate, the next section briefly discusses the content of the styles.css file 
that we linked in the header of our page. Take a gander at it if you are interested 
in seeing why the page laid out as it did.

13.5.2 Tripping along with style

The styles.css file that we use to style our page isn’t remarkable by any stretch 
of the imagination. Its purpose is merely to bring the page into the realm of 
at least marginal usability while not complicating our discussion of the page’s 
core functionality. 

 It was not the intent of this example to focus on the elements of good style or 
usability, but to discuss the technical mechanics of creating a mashup application. 
Feel free to use the styles.css file, as well as the HTML of the application page, 
as a springboard to a significantly better styled and more usable application.

 One important thing that this style sheet does point out is that we adequately 
designed the DOM elements that we created for selectability. The page author has 
a lot of control over how the elements appear and lay out on the page as a result.

 That said, the styles.css file is shown in listing 13.18.

body {
  font-family: Arial,Helvetica,sans-serif;
  padding: 8px;
  margin: 0px;
}

#tripomatic h1,h2 {
  text-align: center;
}

#tripomatic h1 {
  font-size: 1.8em;
}

#tripomatic h2 {
  font-size: 1.1em;
  font-weight: normal;
  padding: 0px 32px;
}

.tripomaticPoiContainer {
  float: left;
  border: 2px ridge maroon;

Listing 13.18 The rudimentary style sheet

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The Trip-o-matic application page 495
  background-color: #ffffcc;
  padding: 8px;
  width: 200px;
  height: 480px;
  overflow: auto;
}

.tripomaticPoiContainer li {
  cursor: pointer;
  list-style-type: none;
  margin-bottom: 2px;
  color: maroon;
  text-decoration: underline;
}

.tripomaticPoiContainer ul {
  margin: 0px;
  padding: 0px;
}

.tripomaticMapContainer {
  float: left;
  width: 440px;
  height: 480px;
  border: 2px ridge maroon;
  padding: 8px;
  margin-left: 16px;
  cursor: pointer;
}

.tripomaticPoiDescription {
  clear: both;
  margin: 0px 32px;
  text-align: center;
  padding: 16px 32px;
}

.tripomaticThumbsContainer {
  clear: both;
  border: 1px solid black;
  padding: 8px;
  height: 100px;
  overflow: auto;
  left: 8px;
  right: 8px;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir


496 CHAPTER 13 
Mashing it up with Ajax
13.6 Summary

In this chapter you saw that a mashup is not the result of a multicar collision, but a 
web page or application that combines content gathered from multiple sources. 
We worked through a small example, combining content from Yahoo! Maps and 
Flickr photo services, that demonstrated how the power of Ajax, when combined 
with open APIs, makes such mashup applications fairly easy to create.

 We also created an application that was a self-contained JavaScript class that 
requires no code on any HTML page that plans to use it (beyond that necessary to 
instantiate the class, of course). So did we create an application or a component? In 
fact, since we cleverly used no global variables or element IDs in our application/
component, it would even be possible to include more than one instance of it on a 
page. Although that might not make much sense with this particular component, 
you can apply the techniques used in this chapter to your own components that 
can be used multiple times per page.

 This example brought together a lot of the techniques that have been dis-
cussed throughout this book. We relied heavily on object-oriented techniques, 
leveraged the use of Prototype, made many an Ajax request, used available open 
APIs via our cross-server proxy, and handled lots of events.

 In addition, you saw how the various classes and functions in the Prototype 
library can help you write JavaScript that is more concise, modular, and well orga-
nized. An example that saw heavy use in our Trip-o-matic application was the 
each() method added by Prototype as an extension to JavaScript arrays. Moving 
the array element processing out of the typical for loop and modularizing it to 
iterator functions that accept the individual array elements as their parameter 
not only isolates the element processing code into a concise, easy-to-understand 
function, but it also promotes reuse—the iterator function can be called, passing 
any object of the appropriate type, from code other than loops.

 We again used the Yahoo! Maps API to display our maps. There’s a lot more to 
the Yahoo! Map API, so there’s still more that you can do to make your applica-
tions that employ maps even more interactive.

 You learned more about Flickr photo services, particularly in the area of orga-
nizing groups of photos using photo sets. Again, our discussion only touches the 
high points of the available functionality. Sites or applications wanting to use 
interactive photos can do much more with Flickr than we’ve explored here.

 So look around at all the content that’s available to you on the Web via open 
APIs. You’re sure to find a combination that strikes a chord, prompting you to cre-
ate a mashup of your own.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Summary 497
Late-breaking news!
Recently a new Yahoo! Service named Yahoo! Pipes (http://pipes.yahoo.com) has 
become available and is the quintessential (at least for now) example of what 
mashups can bring to the party! It comes with a web-based graphical mashup 
builder with drag-and-drop that features programming primitives, default data 
sources (Google Base, Yahoo!, and so on), and much more. Check it out!

http://lib.ommolketab.ir
http//lib.ommolketab.ir


 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


index
Symbols

$() 98
in jQuery 243
in Prototype 261

$A() 100, 476
$.ajax() 21
$.each(), in jQuery 246
$F() 99, 127
$H() 102
<abbr> 449
<script> tags 24

A

abort() 14
absolute positioning 377
abstraction 131
Accordion 260

drawbacks 263
Accordion control 259
ActiveX control 4
adapter pattern 137
addEventListener 169, 174
Ajax 4

business perspective 6
canceling 354
deeper issues 4
delivering feedback 338
dialects of 27
disruptive technology 4, 

 235
DOM limitations and 50
form submission 203
history of 4

invisible 330
origin of term 4
progress, showing 345
requests via Dojo 119
requests via jQuery 136
requests via Prototype 125
REST, using 422
security sandbox 421, 468
timing out 351
undo/redo and 300

Ajax Push 326
Ajax wrapper objects 21
Ajax-based

application 8
office suites 6

Ajax-enhanced legacy 
applications 8

Ajax.PeriodicalUpdater 134
Ajax.Request 18, 20, 27, 127

carrying extra data 358
property of Ajax.Requeston-

Complete callback 20
simplifying Ajax 21

AJAXSLT library
limitations of 55

Ajax.Updater 131, 361
Prototype library 24

AMASS 392, 409, 411–413
persistance 409
store and restore 411

Amazon services 464
anchor tags and JavaScript 243
animated icon 344
animation 318

cautions 345

anonymous
function 69
object 84

Apache Axis
.jws files 57
SOAP and 57

Apache Jakarta Project 425
HttpClient 425

Apache XMLBeans 55
application design

data formats 469
data independence 468
decoupling 473
delegation 474
designing for extensibility 481
self-containment 496
Separation of Concerns 473

application marketplace 6
application state and back 

button 276
application workflow logic 34
application, customer 

display 393
application-initiated 

update 326
architectural tiers, impact of 

Ajax 8
Array.partition() 269
arrays 100

associative 102
Prototype extensions 100

asynchronous 70
attachEvent 170
Austin, Texas 419, 491
AxisServlet 57
499

http://lib.ommolketab.ir
http//lib.ommolketab.ir


500 INDEX
B

back button 272
enabling using Ajax 289

backspace key
disabling 275
text elements and 275

bandwidth 401
bar-code scanning 140
Basic Event Model 165
bind() 104
binding expression 330
blogs 443
bookmarking and Ajax 272
bookmarks

hashes 281
logical 280

Boolean expressions 87
Brad Neuberg 283
breadcrumb trails 237
brittleness 30
browser

“throbber” 338
default action 177
detection 129
differences 169
history and Ajax 272
navigation features, working 

with 280
visual cues 338

built-in objects, extending 80
business logic 33–34
business rules 211
button 82, 132

back 280
disabling multiple clicks 356
enabling and disabling 92
forward 280
handlers 72
instrumenting 82

C

cache 388
data 389
fetching from 401
security 414

call() 103
callback

event handler 318
functions 70, 103

handler function 12
mechanism and RSH 

library 295
cancelBubble 177
Cascading Style Sheets (CSS) 5, 

344, 363, 387, 482, 492, 494
namespace pollution 482
run-time modifications 91
shortfalls in Internet 

Explorer 244
Castor 55
categorization 235

breadcrumb trails 237
desktop applications 238
navigation bars 237
scaling 236
sidebars 237

CD object representation 67, 
109

CDATA 470, 478
cinematic effects 313
class constant 80
class methods 81
classification 235

and categorization 236
versus categorization 236

class-level
declarations 79
members 91

click 181
ClientManager 402
client-side

maintenance of application 
history 288

state management 283
undo stack 306
validation security 208

closure 74, 89, 349
code generation 30
collaboration 326
combining HTML and 

JavaScript 263
Comet 326
Command pattern 339
community-based 

application 337
Complete 13
complex structured data 34
component design 496
component model 327
configuration options 20

constant 88
constructor 67, 76, 105

example of 83
prototype property 79
with Prototype 105

content and behavior
separating, in widget 

design 269
Content-Length

header 222
context menu 275

disabling 272, 275, 279
context object 103

pre-binding with Prototype  
104

context path 339
contextual help 359
conventions of code 

generation 30
cookie 392, 406

library 406
limits 408
manipulate 409
security 409

createContextualFragment() 24
Crockford, Doug 42
cross-browser

incompatibility 10
instantiation of XHR 10

cross-field validation 211
cross-server

proxy 468
requests 468

cross-server scripting 421
enabling via server proxy 422

cross-validation group 213
CSS class 138

as structural annotations 267
jQuery and 246

CSS. See Cascading Style Sheets 
(CSS)

CSS selector 137, 243
Ctrl+Y key. See undo
Ctrl+Z key. See undo
cURL 422
custom attributes 205
CustomerManager 397
CustomerServlet 396
customization of browser 

windows 273
customized undo capability 300

http://lib.ommolketab.ir
http//lib.ommolketab.ir


INDEX 501
D

data
arrays 393
caching 392, 394, 402
client-side 389
consistency 412
exchanging 393
frame 391
grid 33
iterating 393
marshaling 322
mock 395
persistence 392
persisting 406
posting 218
sensitive 414
storing across browser 

restarts 406
data entry

errors 359, 366
validation 203

data marshaling
across the HTTP interface 8

Date class 216
decoding the POST body 43
defaulting mechanism 79
degradable JavaScript 263
dependency injection 332
deployment descriptor 151, 

339, 449
deserialize 44
design, separation of view from 

behavior 166
desktop

GUI conventions 240
navigation techniques and 

Ajax 247
programs 337
UI conventions 247

DHTML 97, 125, 417, 455
menu 244

dhtmlHistory object 285
dialects, of Ajax 27
Direct Web Remoting 

(DWR) 150
dirty-checking data 412
disabling

browser history 272
navigation, shortcomings of  

279

Disc object representation  
108

disruptive technology, Ajax as 4
division of responsibility 7
Document Object Model 

(DOM) 5, 86, 98–99, 134, 
137, 477

Ajax limitations and 50
API 440
caching 393
element 21
element references 98
getAttribute() 205
getElementById 98
hierarchy 164
manipulation 9, 29, 347
NodeList 100
XML Ajax responses and 45

document ready handler 139
document/literal-style SOAP  

62
Dojo 21, 118

download location 118
form marashaling 123
making asynchronous 

requests 119
dojo.io.bind() 119, 123
dojo.io.Request 21
dojo.js 119
DOM API 347, 462
DOM Level 0 Event Model 165
DOM Level 2 Event Model 165, 

169
DOM. See Document Object 

Model (DOM)
domain model 16
domain objects

over HTTP 44
DomDocument 53

loading XML into 53
drag and drop 312

desktop 312
events 312
framework 313
handle 322
icons 312
lists 321
options 331
region 315
server communication 315

DragEvent 334

draggable 314
new 316
region 316

draggable content
and back button 272

dragListener 328
dragMask 328
dragOptions 328
dragValue 328
dropdown

dynamic population 126
menus and DHTML 243

droppable 314
add 317

dumb terminal 7
DVD, object representation 111
DWR 150, 322

debug tools 153
download location 151
generated classes 153
remore procedure calling  

151
servlet 151

DWRUtil 324
Dynamic HTML 5, 9

revitalization by Ajax 5

E

each() 101, 361
eBay services 464
Echo2 159
eFridge 140
elements, enabling and 

disabling 92
encapsulation 68, 77
engine.js 324
Enumerable 100

each() 101
iterator function 101

errors
displaying 213

eval() 27, 128, 149, 469
event

bubbling 165
capturing 165
change 185
filter 320
hover 318
models 165
types 180

http://lib.ommolketab.ir
http//lib.ommolketab.ir


502 INDEX
event handler 89
example 164
to trap keyboard input 274
user interface callbacks 20

event handling
advanced 169
basic 165

event models
Basic 165
DOM Level 0 165
DOM Level 2 169
inline technique 166
Internet Explorer 170

Event object 172
browser differences 172

event propagation
canceling actions 177
diagrammed 174
example 176
stopping 177, 275

Event.observe() 278
events

beforeunload 187
blur 182
bubble handlers 174
bubble phase 174, 210
capture handlers 174
capture phase 174
change 185
focus 182
keyboard 182
keydown 182
keyup 182, 209
load 187
mouse events 181
onload versus body 

script 189
page events 186
preventDefault 177
preventing page unload 188
propagation 173
propagation phases 174
returnValue 177
target element 173
target phase 174
unload 187
user interface 314

Event.stop() 278
execution stack 406
extend() 107
extending objects 80

F

F5 key 272
faces-config 332
feedback 203, 337

showing progress 345
via animation 343
via page banner 342

fieldset 340
file browser 312
Firefox 10, 165
firstChild 48
Flash 409

persisting data 392
Flickr 454, 496

API key 454, 470
getting photo URLs 459
NSID 455, 470
obtaining set IDs 472
organizer interface 472
photo services 467
photo sets 471–472
photo sizes 460
REST API 455, 488
secret numbers 460
sets 471, 488
thumbnails 460
uploading 471
URL formats 460

focus, keyboard event 182
for loop 101
form

change detection 227
data marashaling 123
disabled elements 231
element focus 375
POST 223
preventing submission 119, 

418
submission 123
submission hijacking 220
submit 218
validation 203, 366

form elements
name vs. id 99
obtaning value of 99

form submission
preventing 177, 195
via Ajax 195

frame
data 390
invisible 390

framework 18
Ajax 14
caching 393

Front Controller 339
Function 103
function context 70

setting 73
function literal 69
functions 68

as callbacks 70
as first-class objects 68
as literals 69
as method 70
as object properties 70
as references 69
call() method 72–73
Closures 74
context 70
declaring 69
invocation 71
invoking with call() 103
this reference 71

G

Garrett, Jesse James 4
generics 427
Geocoding 430
GET 11

HTTP method 120, 127
GET requests 42
getAllResponseHeaders() 15
getAttribute() 48, 205
getElementsByTagName() 48
getResponseHeader() 15
GIF animation 344
Global Positioning System 

(GPS) 417, 421, 471
global variables, avoiding 359
GMail 4

browser navigation and  
279

Google 443
classification and 236
license key 444, 448
search 443

Google Maps 4
browser navigation and 279

Google Search API 444
Google Suggest 4
googleapi.jar 444

http://lib.ommolketab.ir
http//lib.ommolketab.ir


INDEX 503
GPS. See Global Positioning  
System (GPS)

graphical user interface 
(GUI) 164

toolkit 263
grids 247
GUI. See graphical user  

interface (GUI)

H

hash 84
event 283

Hash class 102
toQueryString() 102

Hello World 16, 27
help 359
helper object 17, 27

encapsulating solutions in 17
hierarchical categories 236
high-level API, to reduce 

coupling 33
history object, JavaScript 280
history state

and Ajax 289
history-aware tree widget 285
hover() method

in jQuery 246
hoverclass 317
HTML 134, 137, 164, 421, 492

button 82
forms, preventing 

submission 418
fragments 24
specification 337
table elements and 

innerHTML 24
tag 449
tree-like structure 267
using custom attributes 205

HTML DOM 86, 99, 440, 458
name versus id 99

HTTP
GET 222
headers 18
method 11, 18
protocol 9
query string 40
requests 9, 218
verbs 20

HttpClient 425, 430

HttpServletRequest.get-
Parameter() 43

hybrid models of 
navigation 259

hyperlinks
forms, and 7
HTML forms and 9

I

ICEfaces 326
id, assign 326
iguana 72, 469
impatient users 345
incremental updates, influence 

on UI design 247
inheritance 80
initialize() 105, 115
innerHTML 21–22, 24, 319, 

347, 379, 438, 457, 485
gotchas 24
issues with 440, 459

insertAdjacentHTML() 24
Insertion objects

Prototype library 24
instance methods 81
Interactive 13
interchange format 34
interface, speeding up 392
Internet Explorer 10, 129

Event Model 165, 170
select drawing issue 386
XHR limitations 354

Internet Explorer 7 387
Internet Explorer Event 

Model 165
inversion of control 332
iPhoto 472
iterator function 101, 485, 490

J

Java 5 generics 427
Java Server Pages 16
Java web application 339
JavaBean 156, 327
java.io.Reader 43
JavaScript 9, 158

arrays 100
complexity 8
constructors 76

degradable 263
dependency checking 473
eval() 128
functions 68
hand-written 31
inheritance 107
JSON and 42
JSON-parsing capabilities 37
methods 77
object 66
object orientation 65
object oriented 76
package naming 417
prototypes 79
scoping rules 75
tiers 8
timers 352
turning off 263
window object 71

JavaScript function, as callback 
to XHR 11

JavaScript object 20
JavaScript Object Notation 

(JSON) 34, 74, 114, 120, 
127, 147, 394–396, 399, 
406–407, 409–412, 421, 
447, 454, 469

advantages 469
array 396, 399
converting Java to 395
curly braces 35
drawbacks 469
example 147
introduction to 34
Java and 42
POST 223
serialization 394
square braces 35
stringify() 36
XML versus 469

JavaServer Faces (JSF) 326
JavaServer Pages (JSP) 120, 

127, 132, 134, 144, 468
jQuery 21, 218, 223, 243–244

$() 137
$.ajax() 149
$.each() 246
$.get() 145, 149
$.getJSON() 146, 149
$.post() 149, 231
Ajax and 140

http://lib.ommolketab.ir
http//lib.ommolketab.ir


504 INDEX
jQuery (continued)
ajaxForm() 225
append() 146
Arrays and 246
browser detection and 246
chaining methods 138
change() 142
class methods 145
CSS classes and 246
document ready handler  

139
documentation location  

140
download location 136
empty() 146
forms plugin 225
get() 148
importing 141
load() 142, 144, 146
making Ajax requests 136
mouseovers 246
noConflict() 140
Prototype and 139
ready handler 230
ready() 139
separation of markup from 

script 141
utility functions 145
val() 143, 145
wrapper class 137

jquery.js 136
JSF. See JavaServer Faces (JSF)
JSON. See JavaScript Object 

Notation (JSON)
json.js library 42
Json-lib 42
JSONObject 44
json.org 36
JSON.parse() 36, 42
JSP. See JavaServer Pages (JSP)
JSP Standard Tag Library 

(JSTL) 128, 132
JSTL. See JSP Standard Tag 

Library (JSTL)
.jws files and Apache Axis 57

K

keyboard shortcuts
capturing 274
trapping 272, 274

keyboard traversal 375
keydown event 275, 279
keypress event 275
key-value pairs 42

L

latency 338, 389
layout management,  

client-side 391
legend 340
line-of-business applications  

6, 254, 259, 270
list, organize 321
listener function 287
logical bookmarks 280
L-systems 244

M

managed beans 332
MapQuest 465
mashup 467, 494
menu 238, 241
merging 107
method 68, 70, 77

class level 81
instance 81

Microsoft Web Outlook 4
migration path 24

from classic web apps to Ajax  
24

MIME type 23, 121, 449
and responseXML 49
setting 15

mistakes, detecting in 
forms 209

MochiKit 21
Model-View-Controller  

326
modifier keys 275
mouse events 91, 312
Mozilla 10, 165
mozXPath.js library 55
multiple clicks 358

eliminating 355
multiple update problem  

33
multiple-document interface  

251, 254
mutex 405

N

National Weather Service  
465

native objects
for SOAP 56

navigation 235
bars 237
controls 280

disabling 272
hotkeys, disabling 279
menu 241
toolbars 272

negative testing 97
.NET 9
netcat 218
Netscape 10
net.sf.json package 43
network round-trip 413
new operator 67, 76, 79
NOAA 465
NodeList 100

converting to array 100, 476

O

object 66
constructor 67
detection 129, 171
fundamentals 66
literal 292
property 66

object orientation 65, 204
class hiearchy example 108
encapsulation 68, 77
extending classes 107
inheritance 80, 107
methods 68
subclassing 208
with Prototype 105

object trees, storing 411
Object-Oriented JavaScript  

66
objects, merging with 

Prototype 107
Observer Pattern 168
onblur 367, 370, 374
onchange 120, 126, 142
onclick 12, 166, 357, 382, 450, 

491
onComplete 20

http://lib.ommolketab.ir
http//lib.ommolketab.ir


INDEX 505
oncontextmenu 275
onDrop 314
onfocus 367, 374
onHover 314
onkeydown 379
onload 139
onmouseover 12
onreadystatechange 13
onsubmit 119, 341, 357, 418
open APIs 467

motivations 416
open source 118
Open Web Application Security 

Project 414
OpenRico 259

Accordion control 259
qooxdoo and 263
UI development 263

Opera 10
operators

dot 67
fetch 67
indexing 67
new 67, 76, 79
square brackets 67

Outlook bar 259

P

page-ranking algorithms 236
parsing

HTTP response 13
JSON on the client 39

partition() 269
patterns

adapter 137
wrapper 137

performance 389
Perl 422
persistence, Microsoft 392
persisting client data

log out 392
refresh 391

phone number, server 
lookup 119

photos 454
public and private 455
sharing 454

PHP 9, 120, 134, 144, 422,  
468

portable 314

POST 11, 203
body 18
emulating 218, 220
faking 208
HTTP method 120
message format 218
method 222
request 42
RPC 223

post generic data 220
pre-Ajax architecture 7
pre-caching 402
pre-fetching 402
prerendering 393
presentation tier 7
proactive help 337, 359
ProgrammableWeb 465
progress bar 345, 351
property 66
Prototype 97, 125, 139, 178, 

204, 266, 397, 432, 467
$$() 200
$() 98, 261
A$() 100
Ajax.PeriodicalUpdater 134
Ajax.Request 125, 127
Ajax.Updater 131
array extensions 100
automatic element 

updating 131
bind() 104
checking for 473
Class class 105
download location 98, 125
each() 101, 485
Enumerable 476
Enumerable class 100
event handling 178
Event namespace API 179
Event.element 179–180
Event.findElement 180
Event.isLeftClick 180
Event.observe 178–179
Event.pointerX 180
Event.pointerY 180
event-registration 

mechanism 278
Event.stop 180
Event.stopObserving 179
Event.unloadCache 179
extend() 107

F$() 99
finding elements by CSS 

selector 200
Hash class 102, 432
importing 126, 132
merging objects 107
periodic element 

updating 134
posting 218
serialize 192, 197
strip() 479
toQueryString() 102
using with jQuery 139

Prototype library 15
including 19

prototype property 79
prototype.js 98, 125–126,  

316
Prototypes array functions  

269
PrototypestopObserving 178
proxy agent 422
Publisher/Subscriber 

Pattern 168

Q

qooxdoo 248, 254
development style 250
initializing 248
OpenRico and 263
QxImage 249, 253, 256
QxTabView 248
QxTabViewButton 248
QxTabViewPage 248
QxToolBar 252
QxToolBarButton 252
QxTree 256
QxTreeFile 256
QxTreeFolder 256
QxWindow 252
root-level container 249
tab view 248
toolbar 250
web design and 250
windows 250

qooxdoo tree widget
building 258
customizing 258

query string 12, 124
from Hash 102

http://lib.ommolketab.ir
http//lib.ommolketab.ir


506 INDEX
R

readyState 13, 18
Really Simple History 272, 283
redo stack 295
refresh 272

avoiding 226
prevention 276

refresh button
and Ajax 272

relational database 21
Remote Procedure Calling 

(RPC) 150
removeEventListener 170
Representational State 

Transfer 421
request

body 20, 219
headers 219
object 320
parameters 23

reserved characters 102
response 132, 136
responseText 14

to read generated 
JavaScript 29

responseXML 14
MIME type, and 49
property of XHR object 48

REST 421, 431, 436, 454
defined 421

reuse 209
Reverse Ajax 326
revert 314
RFID tags 140
Rico 125, 159, 313
Rico Accordion 250, 259

defining structure of 261
Rigby, Nic 244
right-click menu 275
round-trip 39
RPC. See Remote Procedure 

Calling (RPC)
RSS syndication feeds 45
Ruby on Rails 125, 159

suitability for JSON 44

S

Safari 10, 165
and XSLT 50

Safe ActiveX scripting 11
Sajax 159
Sarissa 27, 51, 55, 159

and XHR object 53
scoping rules 75
Scriptaculous 125, 159
script.aculo.us 313

serialized lists 325
scriptaculous.js 316
search engine 443
secure socket

and basic authentication 12
select element, dynamic 

population 126
selectNodes() 54
selectSingleNode() 54
semantic events 177
send() method 12
separation of concerns 473
serialize 44
server

access time 413
date and time display 132
decrease load 413
lag 338
load 136
POST 220
resources, preserving 226
round-trip 401
saving resources 401

server-side
maintenance of application 

history 292
state persistence versus  

client-side 293
undo and server load 309
undo stack 306

servlet 120, 128, 151, 158,  
422

mapping 151
path 339

setInterval() 348
setTimeout() 352
shopping cart 33, 314
sidebars 237
Simple Object Access Protocol 

(SOAP) 45, 56, 421, 443
messages 56
nodes, in JavaScript 62

single-page applications 272
snap back 318

SOAP. See Simple Object Access 
Protocol (SOAP)

SOAP-RPC 56
software, reuse 209
stacking order 381, 386
state

capturing 281
client 390
management 284, 388
server 289

status message 318
status property 14
stopPropagation 177
String object 80
structured data 21
structured objects, communicat-

ing over the network 44
Struts 203
subcategories, in categorization 

schemes 236
subclass 107
success stories of DHTML  

243
superclass 107
Swing and qooxdoo 248
synchronous requests 12

T

tabIndex 379
tabs 238
tagging, as classification 

mechanism 236
text/javascript MIME type 29
The Weather Channel 417
thick client 6

and Ajax 259
architecture 34

ThinkCAP JX 159
this 71, 76, 103

reference 399
threading approximation 405
thumbnail 468, 490
tight coupling 29
timer 348
timestamp 413
Tomcat 429

web server 16
toolbar 247

creating in qooxdoo 253
removing 272

http://lib.ommolketab.ir
http//lib.ommolketab.ir


INDEX 507
Toolkits
Dojo 118
DWR 150
Prototype 125

toQueryString() 102
tree widget 238, 247, 254

Ajax enabling 259
and the Web 254
assembling as HTML 267
enabling back button 284

Trip-o-matic 467

U

undecorated window 274
undefined 79
undo 272

handling 293
stack 295, 300
system 294
when to provide 294

undo actions
bidirectionality of 294

undo/redo
and Ajax 293, 300
filtering out duplicates 298
generic functionality of 295

Uninitialized 13
unnecessary complexity, 

minimizing 372
updateContentFromNode()  

54
URL 11, 123

encoding 102, 123
hash as the bookmark ID 283
servlet mapping 151

usability 337
and Ajax 6
challenges 337
feedback 338, 345
immediate feedback 209
maintaining interest 468
proactive help 359
showing progress 345
stacking order 381
validation 366

user interface feedback 203
user interface mechanisms, for 

categorization 237
user privacy and server-side 

history 293

user sessions, preserving app 
history in 289

util.js 324
UUID. See Universally Unique 

Identifier (UUID) 394

V

validation 158, 190, 366
classical approach 190
client versus server 208, 366
client-side 203
cross-field 211
framework 204, 367
framework implementation  

207
implementing class 207
input 203
instant 209
numeric 208
performance 203
reporting 366
server-assisted 191

variables, global 390
vertical list menu 241
visual feedback 338

W

weather 443
Web 2.0 337
web application

architecture 7
deploy and maintain 6
public perception of 4

web development 
community 97

web latency 338
Web Service Description 

Language 58
Web Services client toolkit 27
Webmonkey 406
web.xml 449

See also deployment descrip-
tor

wget 422
widget structure, defining with 

CSS 267
window object 71

setInterval() 134, 352
setTimeout() 134, 352

window, opening with 
JavaScript 272

window.location.href 282
window.onload 20
window.open() 273

customization 273
wizard 391

IP address 407
workflow 5

and Ajax 6
workflow logic 270
work-wait pattern 5
World Wide Web Consortium 

(W3C) 129, 169
wrapper 137
WS.Call object 62
WS.QName object 62
ws-wsajax library 56

X

XHR object
and Sarissa 53

XHR. See XMLHttpRequest 
(XHR)

XML 15, 44, 421, 469
advantages 469
CDATA 477
collecting body text 477
comments 477
design example 470
digesting 473, 475–476, 490
drawbacks 469
JSON versus 469
parsing issues 470
POST 223

XML document 100, 446
NodeList 100

XMLHttpRequest (XHR) 4, 8, 
44, 50, 52, 56, 121, 127, 
131, 351

abort() method 14
callback functions 11
creating 9
getAllResponseHeaders() 

method 15
getResponseHeader() 

method 15
open() method 11
posting 218
responseXML property 48

http://lib.ommolketab.ir
http//lib.ommolketab.ir


508 INDEX
XMLHttpRequest (XHR) 
(continued)

send() method 12
setRequestHeader() 

method 15
SOAP and 56
status property 14
XML and 44

XML-RPC 45
XPath 50

as replacement for DOM 
methods 50

XSL stylesheet 54

XSLT
and XPath 55
stylesheets 50

XSLTProcessor object 54

Y

Yahoo! and categorization 236
Yahoo! Developer Network 416

application key 416, 432
location 416

Yahoo! Maps 417, 467, 493, 496
Geocoding API 421, 430

importing 418
panning and zooming 419
YGeoPoint 487
YGeoPoint class 419
YMap class 419

Yahoo! Traffic API 436

Z

z-index 381, 386
zip code 431
zvon.org 55

http://lib.ommolketab.ir
http//lib.ommolketab.ir


http://lib.ommolketab.ir
http//lib.ommolketab.ir

	Ajax in Practice
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Part 1 – Fundamentals of Ajax
	Embracing Ajax
	1.1 Ajax as a disruptive technology
	1.1.1 Redefining the user’s workflow
	1.1.2 Redefining web application architecture

	1.2 Ajax in ten minutes
	1.2.1 Introducing XMLHttpRequest
	1.2.2 Instantiating XMLHttpRequest
	1.2.3 Sending a request
	1.2.4 Processing the response
	1.2.5 Other XMLHttpRequest methods and properties

	1.3 Making Ajax simple using frameworks
	1.3.1 Making requests with Prototype’s Ajax.Request object
	1.3.2 Simplifying Ajax responses

	1.4 Summary

	How to talk Ajax
	2.1 Generating server-side JavaScript
	2.1.1 Evaluating server-generated code
	2.1.2 Utilizing good code-generation practices

	2.2 Introducing JSON
	2.2.1 Generating JSON on the server
	2.2.2 Round-tripping data using JSON

	2.3 Using XML and XSLT with Ajax
	2.3.1 Parsing server-generated XML
	2.3.2 Better XML handling with XSLT and XPath

	2.4 Using Ajax with web services
	2.5 Summary

	Object-oriented JavaScript and Prototype
	3.1 Object-oriented JavaScript
	3.1.1 Object fundamentals
	3.1.2 Functions are first class
	3.1.3 Object constructors and methods
	3.1.4 Writing a JavaScript class: a button

	3.2 The Prototype library
	3.2.1 Generally useful functions and extensions
	3.2.2 Array extensions
	3.2.3 The Hash class
	3.2.4 Binding context objects to functions
	3.2.5 Object-oriented Prototype
	3.2.6 Rewriting the Button class with Prototype

	3.3 Summary

	Open source Ajax toolkits
	4.1 The Dojo toolkit
	4.1.1 Asynchronous requests with Dojo
	4.1.2 Automatic form marshaling with Dojo

	4.2 Prototype
	4.2.1 Asynchronous requests with Prototype
	4.2.2 Automatic updating with Prototype
	4.2.3 Periodic updating with Prototype

	4.3 jQuery
	4.3.1 jQuery Basics
	4.3.2 Asynchronous loading with jQuery
	4.3.3 Fetching dynamic data with jQuery

	4.4 DWR
	4.4.1 Direct Web Remoting with DWR

	4.5 Summary


	Part 2 – Ajax Best Practices
	Handling events
	5.1 Event-handling models
	5.1.1 Basic event-handling registration
	5.1.2 Advanced event handling

	5.2 The Event object and event propagation
	5.2.1 The Event object
	5.2.2 Event propagation

	5.3 Using Prototype for event handling
	5.3.1 The Prototype Event API

	5.4 Event types
	5.4.1 Mouse events
	5.4.2 Keyboard events
	5.4.3 The change event
	5.4.4 Page events

	5.5 Putting events into practice
	5.5.1 Validating text fields on the server
	5.5.2 Posting form elements without a page submit
	5.5.3 Submitting only changed elements

	5.6 Summary

	Form validation and submission
	6.1 Client-side validation
	6.1.1 Validating on the client side
	6.1.2 Instant validation
	6.1.3 Cross-field validation

	6.2 Posting data
	6.2.1 Anatomy of a POST
	6.2.2 Posting data to a server
	6.2.3 Posting form data to a server
	6.2.4 Detecting form data changes

	6.3 Summary

	Content navigation
	7.1 Principles of website navigation
	7.1.1 Finding the needle in the haystack
	7.1.2 Making a better needle-finder
	7.1.3 Navigation and Ajax

	7.2 Traditional web-based navigation
	7.2.1 A simple navigation menu
	7.2.2 DHTML menus

	7.3 Borrowing navigational aids from the desktop app
	7.3.1 The qooxdoo tab view
	7.3.2 The qooxdoo toolbar and windows
	7.3.3 The qooxdoo tree widget

	7.4 Between the desktop and the Web
	7.4.1 The OpenRico Accordion control
	7.4.2 Building an HTML-friendly tree control

	7.5 Summary

	Handling back, refresh, and undo
	8.1 Removing access to the browser’s navigation controls
	8.1.1 Removing the toolbars
	8.1.2 Capturing keyboard shortcuts
	8.1.3 Disabling the right-click context menu
	8.1.4 Preventing users from navigating history or refreshing

	8.2 Working with a browser’s navigation controls
	8.2.1 Using the JavaScript history object
	8.2.2 Hashes as bookmarks
	8.2.3 Introducing the Really Simple History (RSH) framework
	8.2.4 Using RSH to maintain state at the client level
	8.2.5 Using RSH to maintain state at the server level

	8.3 Handling undo operations
	8.3.1 When to provide undo capability
	8.3.2 Implementing an undo stack
	8.3.3 Extending the undo stack for more complex actions

	8.4 Summary

	Drag and drop
	9.1 JavaScript drag-and-drop frameworks
	9.2 Drag and drop for Ajax
	9.2.1 Drag-and-drop Ajax shopping cart
	9.2.2 Manipulating data in lists
	9.2.3 The Ajax shopping cart using ICEfaces

	9.3 Summary

	Being user-friendly
	10.1 Combating latency
	10.1.1 Countering latency with feedback
	10.1.2 Showing progress
	10.1.3 Timing out Ajax requests
	10.1.4 Dealing with multiple clicks

	10.2 Preventing and detecting entry errors
	10.2.1 Displaying proactive contextual help
	10.2.2 Validating form entries

	10.3 Maintaining focus and layering order
	10.3.1 Maintaining focus order
	10.3.2 Managing stacking order

	10.4 Summary

	State management and caching
	11.1 Maintaining client state
	11.2 Caching server data
	11.2.1 Exchanging Java class data
	11.2.2 Prefetching

	11.3 Persisting client state
	11.3.1 Storing and retrieving user state with JSON
	11.3.2 Persisting JSON strings through AMASS

	11.4 Summary

	Open web APIs and Ajax
	12.1 The Yahoo! Developer Network
	12.1.1 Yahoo! Maps
	12.1.2 The cross-server proxy
	12.1.3 Yahoo! Maps Geocoding
	12.1.4 Yahoo! Traffic

	12.2 The Google Search API
	12.2.1 Google search

	12.3 Flickr photos
	12.3.1 Flickr identification
	12.3.2 Flickr photos and thumbnails

	12.4 But wait! As they say, there’s more...
	12.4.1 Amazon services
	12.4.2 eBay services
	12.4.3 MapQuest
	12.4.4 NOAA/National Weather Service
	12.4.5 More, more, more...

	12.5 Summary

	Mashing it up with Ajax
	13.1 Introducing the Trip-o-matic application
	13.1.1 Application purpose
	13.1.2 Application overview and requirements

	13.2 The Trip-o-matic data file
	13.2.1 What format should we use?
	13.2.2 The trip data format
	13.2.3 Setting up Flickr photo sets

	13.3 The TripomaticDigester class
	13.3.1 The dependency check
	13.3.2 The TripomaticDigester constructor
	13.3.3 Digesting the trip data
	13.3.4 Loading the points of interest
	13.3.5 Collecting element text

	13.4 The Tripomatic application class
	13.4.1 The Tripomatic class and constructor
	13.4.2 Creating the content elements
	13.4.3 Filling in the trip data
	13.4.4 Showing the map
	13.4.5 Loading the thumbnails
	13.4.6 Displaying the photos

	13.5 The Trip-o-matic application page
	13.5.1 The Trip-o-matic HTML document
	13.5.2 Tripping along with style

	13.6 Summary


	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z





