downloaded from: lib.ommolkefab.ir

Copyright © 2003 O'Rellly & Associates, Inc. All rights reserved.
Printed in the United States of America.
Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Rellly & Associates books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://). For more information contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly &
Associates, Inc. Many of the designations used by manufacturers and sellersto distinguish their products are clamed
as trademarks. Where those designations appear in this book, and O'Rellly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps. The association between the image of an
African crowned crane and the topic of C# language is atrademark of O'Rellly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

downloaded from: lib.ommolkefab.ir

http://

downloaded from: lib.ommolkefab.ir

C# Language Pocket Reference

C# Is a programming language from Microsoft that is designed specifically to target the NET Framework. Microsoft's
NET Framework is aruntime environment and class library that dramatically ssmplifies the development of modern,
component-based applications.

Microsoft has shown an unprecedented degree of openness in C# and the .NET Framework. The key specifications
for the C# language and the .NET platform have been published, reviewed, and ratified by an international standards
organization called the European Computer Manufacturers Association (ECMA). This standardization effort has led
to a Shared Source release of the specification called the Shared Source CLI (http://msdn.microsoft.com/net/sscli/), as
well as to Open Source implementations of .NET called DotGNU Portable .NET (http://www.dotgnu.org) and Mono
(http://www.go-mono.com). All three implementations include support for C#.

Thisbook is a quick-reference manual to the C# language as of version 1.0 of the .NET Framework. It lists a concise
description of language syntax and provides a guide to other areas of the .NET Framework that are of interest to C#
programmers.

The purpose of this quick reference isto aid readers who need to look up some basic detail of C# syntax or usage. It is
not intended to be atutorial or user guide, and at least abasic familiarity with C# is assumed. If you'd like more in-
depth information or a more detailed reference, please see Programming C# by Jesse Liberty and C# in a Nutshell by
Drayton, Albahari, and Neward (both O'Reilly, 2002).

downloaded from: lib.ommolkefab.ir

http://msdn.microsoft.com/net/sscli/
http://www.dotgnu.org
http://www.go-mono.com

downloaded from: lib.ommolkefab.ir

1.1 Identifiers and Keywords

|dentifiers are names programmers choose for their types, methods, variables, etc. An identifier must be a whole word

that is essentially made up of Unicode characters starting with aletter or an underscore, and it may not clash with a
keyword. As a specia case, the @prefix may be used to avoid a clash with a keyword, but is not considered part of

the identifier. For instance, the following two identifiers are equival ent:

Kofn
A oSN

C# identifiers are case-sensitive; however, for compatibility with other languages, you should not differentiate public
or protected identifiers by case alone.

Hereisalist of C# keywords:

abstract as base bool br eak

byt e case cat ch char checked
cl ass const cont i nue deci mal def aul t
del egat e do doubl e el se enum
event explicit extern fal se finally
f1xed fl oat for f or each got o

| f lnmplicit I N | Nt | nterface
| nt er nal | S | ock | ong nanespace
new nul | obj ect oper at or out

overri de par anms private pr ot ect ed publ i c
readonl y r ef return shyt e seal ed
short S| zeof st ackal | oc static string

st ruct sw tch this t hr ow true

try t ypeof ui nt ul ong unchecked
unsaf e ushort usi ng vi rtual voi d
whi | e

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.2 Fundamental Elements

A C# program is best understood in terms of three basic elements:

Functions

Perform an action by executing a series of statements. For example, you may have a function that returns the
distance between two points or afunction that calculates the average of an array of values. A functionisa
way of manipulating data.

Data

Values that functions operate on. For example, you may have data holding the coordinates of a point or data
holding an array of values. Data always has a particular type.

Types

A set of data members and function members. The function members are used to manipulate the data
members. The most common types are classes and structs, which provide atemplate for creating data. Datais
always an instance of atype.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.3 Value and Reference Types

All C# types fall into the following categories:
e Vauetypes (struct, enum)
e Referencetypes (class, array, delegate, interface)

The fundamental difference between the two main categoriesis how they are handled in memory. The following
sections explain the essential differences between value types and reference types.

1.3.1 Value Types

Value types directly contain data, such asthel nt type (which holds an integer) or thebool type (which holds a
t rue orf al se vaue). The key characteristic of avalue typeisacopy made of the value that is assigned to another
value. For example:

usi ng System
cl ass Test {
static void Main () {
lnt X = 3;
Int y =x; // assign Xx toy, y IS now a copy of X
X++; [/ 1ncrenment x to 4
Console. WiteLine (y); // prints 3

}
}

1.3.2 Reference Types

Reference types are a little more complex. A reference type defines two separate entities: an object and a reference to
that object. This example follows the same pattern as our previous example, except that the variable y is updated

here, while y remained unchanged earlier:

usi ng System

usi ng System Text,

cl ass Test {

static void Main () {

StringBuilder x = new StringBuilder ("hello");
StringBuilder y = x,;
X. Append (" there");
Console. WiteLine (y); // prints "hello there”

}
}

Thisisbecausethe St r 1 ngBuli | der typeisareferencetype, whilethel nt typeisavauetype. When we
declared the St r | ngBul | der variable, we were actually doing two different things, which can be separated into
these two lines:

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

StringBull der x;
X = new StringBuilder ("hello");

Thefirst line creates anew variable that can hold areferencetoa St r i ngBui | der object. The second line assigns
anew St ri ngBui | der object tothe variable. Let'slook at the next line:

StringBuilder y = x;

When we assign X toy, we are saying "makey point to the same thing that X pointsto." A reference storesthe

address of an object. (An address is a memory location, stored as a 4-byte number.) We're actually still making a
copy of X, but we're copying this 4-byte number as opposed to the St ri ngBul | der object itsdlf.

Let'slook at thisline:

X. Append (" there");

Thisline actually doestwo things. It first finds the memory location represented by X, and then it tellsthe
StringBui | der object that lies at that memory location to append " t her e" to it. We could achieve exactly the
same effect by appending " t her e" toy, because x andy refer to the same object:

y. Append (" there");

A reference may point to no object by assigning the referenceto nul | . In this code sample, we assign nul | toXx,
but we can still accessthesame St r i ngBui | der object we created viay :

usi ng System
usi ng System Text,;
cl ass Test {
static void Main () {
StringBuil der X;
X = new StringBuilder ("hello");
StringBuilder y = x,;
X = null;
y. Append (" there");
Console. WiteLine (y); // prints "hello there”
}
}

1.3.2.1 Value and reference types side-by-side

A good way to understand the difference between value and reference types is to see them side-by-side. In C#, you
can define your own reference types or your own value types. If you want to define a ssmple type such as a number, it
makes sense to define avalue type, in which efficiency and copy-by-value semantics are desirable. Otherwise, you
should define a reference type. Y ou can define a new value type by declaring a struct, and define a new reference type
by defining a class.

To create avalue-type or reference-type instance, the constructor for the type may be called using the new keyword.

A value-type constructor smply initializes an object. A reference-type constructor creates a new object on the heap
and then initializes the object:

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

/|| Reference-type declaration
class PointR {
public Iint x, vy;
}
[/ Val ue-type decl aration
struct PointV {
public Iint x, vy;
}
cl ass Test {
static void Main() {
PointR a; // reference type
a = new PointR();

PointV b; // value type
b = new PointV();

/;
.

a. X
h. X

}
}

At the end of the method, the local variables a and b go out of scope, but the new instance of a Poi nt R remainsin
memory until the garbage collector determines it is no longer referenced.

Assignment to areference type copies an object reference, while assignment to a value type copies an object value:

PointR C

:a,
PointV d = b;
cC.X = 9;

d.x = 9;

Console. WiteLine(a.x); // Prints 9
Console. WiteLine(b.x); // Prints 7

}
}

As shown in this example, an object on the heap can be pointed to by multiple variables, whereas an object on the
stack or inline can only be accessed viathe variable with which it was declared. Inline means that the variable is part
of alarger object; I.e., It exists as a data member or an array member.

1.3.2.2 Boxing and unboxing value types

So that common operations can be performed on both reference and value types, each value type has a corresponding
hidden reference type. Thisis created when it is assigned to an instance of Syst em (b ect or to an interface.

Thisprocessis called boxing. A value type may be cast to the "object” class (the ultimate base class for all value types
and reference types) or to an interface it implements.

In this example, we box and unbox an | nt value type to and from its corresponding reference type:

cl ass Test {

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

static void Main () {
Int x = 9;
object o = x; // box the iInt
Iint y = (int)o; // unbox the Int
}
}

When avalue type is boxed, a new reference type is created to hold a copy of the value type. Unboxing copies the
value from the reference type back into a value type. Unboxing requires an explicit cast, and a check is made to
ensure that the value type to which you'd like to convert matches the type contained in the reference type. An

| nval | dCast Except | on isthrown if the check fails. Y ou never need to worry about what happens to boxed

objects once you've finished with them: the garbage collector take cares of them for you.

Using collection classes is a good example of boxing and unboxing. In the following code, we use the Queue class
with value types:

usi ng Systemn

usi ng System Col | ecti ons;

cl ass Test {

static void Main () {

Queue g = new Queue ();
g. Enqueue (1); // box an iInt
g. Enqueue (2); // box an I nt
Console. WiteLine ((int)qg. Dequeue()); // unbox an iInt
Console. WiteLine ((int)qg. Dequeue()); // unbox an Int

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.4 Predefined Types

All of C#'s predefined types alias types found in the Sy st emnamespace. For example, thereis only a syntactic
difference between these two statements:

Int 1 = 5;
SystemInt32 1 = 5;

1.4.1 Integral Types

Thistable liststhe integral types and their features:

C#type System type Size Signhed
sbyt e System SByt e 1 byte Yes
short System I nt 16 2 bytes Yes
| nt System | nt 32 4 bytes Yes
| ong System | nt 64 8 bytes Yes
byt e System Byt e 1 byte No
ushort System Ul nt 16 2 bytes No
ui nt System Ul nt 32 4 bytes No
ul ong System Ul nt 64 8 bytes No

For unsigned integers that are n bits wide, possible values range from 0 to 2. For signed integers that are n bits wide,
their possible values range from -2™1 to 2+1-1, Integer literals can use either decimal or hexadecimal notation:

lnt x = 5;
ulong y = 0x1234AF;, // prefix wth Ox for hexadeci nal

When an integral literal isvalid for several possible integral types, the default type that is chosen goes in this order:
| nt,ul nt,l ong, and ul ong. The following suffixes may be used to specify the chosen type explicitly:

U

ul nt orul ong
L

| ong or ul ong
UL

ul ong
1.4.1.1 Integral conversions

An implicit conversion between integral typesis permitted when the type to which you'd like to convert contains

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

every possible value of the type to convert. Otherwise, an explicit conversion is required. For instance, you can
implicitly convertani nt toal ong, but must explicitly convertani nt toashort :

Nt x = 123456:;
long vy = x; // tnplicit, no information | ost
short z = (short)x; // explicit, truncates X

1.4.2 Floating-Point Types

C#type System type Size
f |l oat System Si ngl e 4 bytes
doubl e Syst em Doubl e 8 bytes

A float can hold values from approximately 1.5 X 10-% to approximately 3.4 X 1038 with 7 significant figures.

A double can hold values from approximately 5.0 X 10-324 to approximately 1.7 X 1039 with 15-16 significant
figures.

Floating-point types can hold the special values+0, -0, + ,- , NaN (not a number). These represent the outcome
of mathematical operations such as division by zero.f | oat anddoubl e implement the specification of the |EEE

754 format types, supported by almost all processors, defined by the IEEE at http://www.ieee.org.

Floating-point literals can use decimal or exponential notation. A float literal requires the suffix f or F. A double
literal may choose to add the suffix d or D.

float x = 9. 81f;
doubl e y (E-02; /] 0.07

1.4.2.1 Floating-point conversions

An implicit conversion fromaf | oat toadoubl e loses no information and is permitted, but not vice versa. An
implicit conversion fromani nt ,ui nt,and| ong toaf | oat -and from a | ong toadoubl e - is alowed for
readability:

Int strength = 2;
Il nt offset = 3;
float x = 9.53f * strength - offset;

If this example uses larger values, precision may be lost. However, the possible range of values is not truncated, since
bothaf | oat andadoubl e'slowest and highest possible valuesexceed an i nt , ui nt, or|l ong'slowest or

highest value. All other conversions between integral and floating-point types must be explicit:

float x = 3.53f;
Int offset = (1nt)Xx,

1.4.3 Decimal Type

Thedeci mal typecanhold valuesfrom 1.0 X 10-2 to approximately 7.9 X 1028 with 28-29 significant

downloaded from: lib.ommolkefab.ir

http://www.ieee.org

downloaded from: lib.ommolkefab.ir

figures.

Thedeci nal type holds 28 digits and the position of the decimal point on those digits. Unlike a floating-point

value, It has more precision but a smaller range. It istypically useful in financia calculations, in which the
combination of its high precision and the ability to store a base 10 number without rounding errorsis very vauable.

The number 0.1, for instance, is represented exactly with adecimal, but is represented as arecurring binary number
with afloating-point type. Thereis no concept of +0, -0, + ,- ,and NaN for adecimal.

A decimal literal requires the suffix mor M

deci mal x = 80603.454327m [// hol ds exact val ue
1.4.3.1 Decimal conversions

An implicit conversion from all integral typesto adecimal type is permitted because a decimal type can represent
every possible integer value. A conversion from a decimal to floating type or vice versareguires an explicit
conversion, since floating-point types have abigger range than a decimal and a decimal has more precision than a
floating-point type.

1.4.4 Char Type

C#type System type Size
char Syst em Char 2 bytes

Thechar type represents a Unicode character. A char literal consists of either a character, Unicode format, or
escape character enclosed in single quote marks:

"A" /] sinple character

"\u0041' // Uni code

"\ x0041" // unsigned short hexadeci nal
‘\n'" // escape sequence character

Table1-1 lists the escape sequence characters.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Table 1-1. Escape sequence characters

Char M eaning Value
\' Single quote 0x0027
\ " Double quote 0x0022
\\ Backslash 0x005C
\ O Null 0x0000
\a Alert 0x0007
\'b Backspace 0x0008
\ f Form feed 0x000C
\n New line Ox000A
\r Carriage return 0x000D
\ t Horizontal tab 0x0009
\'v Vertical tab 0x000B

1.4.4.1 Char conversions

An implicit conversion fromachar to most numeric types works-it's dependent upon whether the numeric type
can accommodate an unsigned shor t . If it cannot, an explicit conversion is required.

1.4.5 Bool Type

C#type System type Size
bool Syst em Bool ean 1 byte/2 byte

Thebool typeisalogica valuethat can be assigned thelitera t r ue or f al se.

Although a boolean value requiresonly 1 bit (O or 1), it occupies 1 byte of storage, since thisis the minimum chunk
with which addressing on most processor architectures can work. Each element in a boolean array uses two bytes of
memory.

1.4.5.1 Bool conversions

No conversions can be made from booleans to numeric types or vice versa

1.4.6 Object Type

C#type System type Size
obj ect Syst em (bj ect 0-byte/8-byte overhead

Theob] ect classisthe ultimate base type for both value types and reference types. Value types have no storage
overhead from an object. Reference types, which are stored on the heap, intrinsically require an overhead. In the

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

NET runtime, a reference-type instance has an 8-byte overhead, which stores the object's type as well as its
temporary information, such as its synchronization lock state or whether it has been fixed from movement by the
garbage collector. Note that each reference to areference-type instance uses 4 bytes of storage.

1.4.7 String Type
C#type System type Size
string System String 20-byte minimum
The C# string represents an immutabl e sequence of Unicode characters, and aliasesthe Syst em St r i ng class.

Although st r 1 ng isaclass, itsuse is so ubiquitous in programming that it is given special privileges by both the C#
compiler and the .NET runtime.

Unlike other classes, a new instance can be created usinga st r i ng litera:
string a = "Heat",;

Strings can also be created with verbatim string literals. Verbatim st r 1 ng literals start with @and indicate that the

string should be used verbatim, even if it spans multiple lines or includes escape characters (i.e., \). In this example,
thepairsal and a2 represent the same string, and the pairsb1 and b2 represent the same string:

string al = "\\\\server\\fileshare\\hell oworld.cs";
string a2 = @\\server\flIeshare\hellovvorld cs";
Consol e. WlteLlne(al =a2); // Prints "True"

string bl = "First Line\r\nSecond Line";
string b2 = @First Line
Second Li ne";

Consol e. WiteLine(bl==b2); // Prints "True"

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.5 Arrays

Arraysallow agroup of elements of a particular type to be stored in a contiguous block of memory. An array is
specified by placing square brackets after the element type. For example:

Int[] nums = new int]|2];

nunms|[0] = 100;

nuns|[1] = 200;

char[] vowels = newchar[| {'a,'e,"1',"0","U},;
Consol e. WiteLine(vowels [1]); // Prints "e"

That last line prints” e” because array indexes start at 0. To support other languages, .NET can create arrays based

on arbitrary start indexes, but all the libraries use zero-based indexing. Once an array is created, its length cannot be
changed. However, the Syst em Col | ect | on classes provide dynamically sized arrays, as well as other data

structures, such as associative (key/value) arrays.
1.5.1 Multidimensional Arrays

Multidimensional arrays come in two varieties. rectangular and jagged. Rectangular arrays represent an n-dimensional
block, while jagged arrays are arrays of arrays. In this example we make use of thef or loop, which is explained later
in Section 1.8. Thef or loops here simply iterate through each item in the arrays.

/] rectangul ar
int [,,] matrixR =newint [3, 4, 5]; // creates 1 big

/| cube
/| | agged
int [[[J[] matrixd = newint [3]]][];
for (int 1 =0;, 1 < 3; 1++) {
matrixJ[1] = newint [4]]];
for (Int | =0;] <4, |++)

matri xJ[i][j] = new int [5];

}

[/ assign an el enent
matri xR [1,1,1] = nmatrixd [1][1][1] = 7;

1.5.2 Local Field Array Declarations

For convenience, local and field declarations may omit the array type when assigning a known value, since the typeis
specified in the declaration anyway:

int[,] array = {{1,2},{3, 4}};
1.5.3 Array Length and Rank

Arraysknow their own length. For multidimensional array methods, the array'sGet Lengt h method returns the
number of elements for a given dimension, which isfrom 0 (the outermost) to the array's r ank- 1 (the innermost).

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

/] single di nensional

for(int 1 = 0; I < vowels.Length; 1| ++);
[/ mul ti-di mensi onal
for(int 1 =0; I <matrixR GetLength(2); 1 ++);

1.5.4 Bounds Checking

All array indexing is bounds-checked by the runtime, with | ndexQut OF RangeExcept | on thrown for invalid

Indices. Like Java, this prevents program faults and debugging difficulties while enabling code to execute with
Security restrictions.

1.5.5 Array Conversions

Arrays of reference types may be converted to other arrays, using the same logic you would apply to its element type.
Thisiscalled array covariance . All arraysimplement Syst em Ar r ay, which provides methods to get and set

elements generically regardiess of the array type.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.6 Variables and Parameters

A variable represents atyped storage location. A variable can be alocal variable, parameter, array e ement, instance
field, or static field.

All variables have an associated type, which essentially defines the possible values the variable can have and the
operations that can be performed on that variable. C# is strongly typed, which means the set of operations that can be
performed on atype are enforced at compile time rather than at runtime. In addition, C# is type-safe, which ensures

that a variable can be operated on viathe correct type only with the help of runtime checking (except in unsafe
blocks).

1.6.1 Definite Assignment

All variables in C# must be assigned a value before they are used. A variable is either explicitly assigned avalue or
automatically assigned a default value. Automatic assignment occurs for static fields, class instance fields, and array
elements not explicitly assigned a value. For example:

usi ng System
cl ass Test {

Nt Vv;
[/ Constructors that i1nitalize an I nstance of a Test
public Test() {} // v wll be automatically assigned to
[l O
public Test(int a) { // explicitly assign v a val ue
V = a;

}
static void Main() {

Test|[| tests = new Test [2]; // declare array
Console. WiteLine(tests[1l]); // ok, elenents assignhed

[/ to null
Test t;

Console. WiteLine(t); // error, t not assigned before
/] use
}

}

1.6.2 Default Values

The default value for all primitive (or atomic) typesis zero:

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Type Default value
Numeric types 0
Bool type Fal se
Char type "\ O
Enum types 0
Reference type Nul |

The default value for each field in a complex (or composite) type is one of these aforementioned val ues.

1.6.3 Parameters

A method has a sequence of parameters. Parameters define the set of arguments that must be provided for that
method. In this example, the method FO0 has a single parameter p of typel nt :

static void Foo(int p) {++p;}
static void Main() {

Foo(8) ;
}

1.6.3.1 Passing arguments by value

By default, arguments in C# are passed by value. Thisis by far the most common case and means a copy of the value
IS created when passed to the method:

static void Foo(int p) {++p;}
static void Main() {

Int x = 8;
Foo(x); // make a copy of the val ue-type X
Console. WiteLine(x); // x wll still be 8

}

Assigning p anew value does not change the contents of X, sincep and X reside in different memory locations.

1.6.3.2 Ref modifier

To pass by reference, C# provides the parameter modifier r ef , which allows p and x to refer to the same memory
locations:

static void Foo(ref int p) {++p;}

static void Main () {
lnt x = 8§;
Foo(ref x); // send reference of x to Foo
Console. WiteLine(x); // x 1s now 9

}

Now assigning p a new value changes the contents of X. Thisis usually the reason we want to pass by reference,
though occasionally it is more efficient when passing large structs. Notice how ther ef modifier and the method

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

definition are required in the method call. This makes it very clear what's going on, and clears ambiguity since
parameter modifiers change the signature of a method.

Ther ef modifier is essential when implementing a swap method:

cl ass Test {
static void Swap (ref string a, ref string b) {
string tenp = a;

a = Db;
b = tenp;

}

static void Main () {
string x = "Bush";
string y = "Gore";

Swap(ref x, ref y);
System Console. WiteLine("x 1s {0}, yi1s {1}", X, Vy);
}

}
Qutputs: x Is Gore, y Is Bush

1.6.3.3 The out modifier

C# is alanguage that insists variables be assigned before use. It also providesthe out modifier, which is the natural
complement of ther ef modifier. Whilear ef modifier requires that a variable be assigned a value before being
passed to amethod, the out modifier requires that a variable be assigned a value before returning from a method:

usi ng System
cl ass Test {
static void Split(string nanme, out string firstNanes,
out string | astName) {
Int I = nane. LastlndexOF (' ');
firstNanes = nane. Substring(0, 1);
| ast Nane = nane. Substring(i +1);

}
static void Main() {

string a, b;
Split("Nuno Bettencourt"”, out a, out b);
Console. WiteLine("FirstNane: {0}, LastNane:{1l}", a,

b) ;
}
}

1.6.3.4 The params modifier

Thepar ans parameter modifier may be specified on the |ast parameter of a method so that the method accepts any
number of parameters of a particular type. For example:

usi ng System
cl ass Test {

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

static int Add(parans int[] 1arr) {
Il nt sum = O;
foreach(int I In 1arr)
sum += | ;
return sum
}
static void Main() {
Iint 1 = Add(1, 2, 3, 4),
Console. WiteLine(i); // 10

}

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.7 Expressions and Operators

An expression is a sequence of operators and operands that specifies a computation. C# has unary operators, binary
operators, and one ternary operator. Complex expressions can be built because an operand may itself be an
expression, such asthe operand (1 + 2) shown in the following example:

((1 +2) / 3)
1.7.1 Operator Precedence

When an expression contains multiple operators, the precedence of the operators controls the order in which the
Individual operators are evaluated. When the operators are of the same precedence, their associativity determines the
order. Binary operators (except for assignment operators) are left-associative; i.e., they are evaluated from left to

right. The assignment operators, unary operators, and the conditional operator are right-associative; i.e., they are
evaluated from right to left. For example:

1 +2 + 3 * 4
IS evaluated as:
((1 +2) + (3 * 4))

pecause * has a higher precedence than +, and + is abinary operator that is left-associative. Y ou can insert
parentheses to change the default order of evaluation. C# overloads operators, which means the same operator can
nave different meanings for different types.

Table1-2 lists C#'s operators in order of precedence. Operators in the same box have the same precedence, and
operatorsin italic may be overloaded for custom types.

Table 1-2. Operator precedence table

Category Operators Examples
Grouping: (X)

Member access: X.yY

Struct pointer member access. ->

Method call: f(X)
Indexing: a[x]
Post increment: X++
Primary Post decrement: X- -
Constructor call: new

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Array stack allocation: st ackal | oc
Typeretrieval: t ypeof

Struct sizeretrieval: S| zeof
Arithmetic check on: checked
Arithmetic check off: unchecked
Positive value of (passive): +

Negative value of: -

Not: !

Bitwisecomplement: ~

Unary Preincrement: ++X
Predecrement: - -X
Type cast: (T) X
Value at address; *
Address of value: &
Multiply: *
Multiplicative |Divide: /
Division remainder: %
Add: +
Additive
Subtract: -
Shift bitsleft: <<
Shift
Shift bits right: >>
L ess than: <
Greater than: >
Less than or equal to: <=
Relationd
Greater than or equal to: >=

Typeequality/compatibility: |1 S

Conditional type conversion: |as

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Equals. ==
Equality
Not equals: =

And: &

Logical bitwise Exclusiveor:

Or: |

And: &&

Or: | |
Logical Boolean

Ternary conditional: ?: eg,int x. =a>b ? 2 : 7,

IS equivalent to: Int x; If (a>Db) x =2; else x =7,
Assignment Assign/modify: = *= | = % += -= <<= >>= &= = | =

1.7.2 Arithmetic Overflow Check Operators

The checked operator tells the runtime to generate an Over f | owExcept | on if anintegral expression exceeds the
arithmetic limits of that type. The checked operator affects expressions with the ++, - -, (unary)- , +,-,*,/ , and

explicit conversion operators between integral types. For example:

1000000;
1000000;

| Nt a
Int b

/] Check an expression
Int ¢ = checked(a*b);

/]| Check every expression in a statenent-bl ock
checked {

C = a * b;

}

The checked operator applies only to runtime expressions, since constant expressions are checked during compilation
(though this can be turned off withthe/ checked [+| -] command-line switch). The unchecked operator

disables arithmetic checking at compile time and is seldom useful, but does make expressions such as the following
compile:

const Int signedBit = unchecked((1 nt)0x80000000);

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.8 Statements

Execution in a C# program is specified by a series of statements that execute sequentially in the textual order in which
they appear. All statements in a procedural-based language such as C# are executed for their effect. For instance, a
statement may assign an expression to a variable, repeatedly execute alist of statements, or jump to another statement.

So that multiple statements can be grouped together, zero or more statements may be enclosed in bracesto form a
statement block.

1.8.1 Expression Statements

An expression statement evaluates an expression, either assigning its result to a variable or generating side effects
(1.e.,, method invocation, new, ++, - -). An expression statement ends in a semicolon. For example:

Int x =5+ 6; // assign result
Xx++; [/ side effect
Iint y = Math.Mn(x, 20); // side effect and assign result
Math. M n(x, y); // discards result, but ok, there is a
/] side effect
X ==y, [/ error, has no side effect, and does not assign
/] result

1.8.2 Declaration Statements

A declaration statement declares a new variable, optionally assigning the result of an expression to that variable. A
declaration statement ends in a semicolon:

Int x = 100; // vari able declaration
const int y = 110; // constant declaration

The scope of alocal or constant variable extends to the end of the current block. Y ou cannot declare another local
variable with the same name in the current block or in any nested blocks. For example:

bool a = true;

whi |l e(a) {
lnt x = 5;
T (x==3) {
Int y = 7;
int x =2; // error, x already defined
}
Console. WiteLine(y); // error, y Is out of scope
}
A constant declaration is like avariable declaration, except that the variable cannot be changed after it has been
declared:

const doubl e speedO Light = 2.99792458E08;

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

speedO Li ght +=10; // error

1.8.3 Selection Statements

C# has many ways to control the flow of program execution conditionally. This section covers the ssmplest two
constructs: the | f - el se statement andthesw t ch statement. In addition, C# a so provides the operator and loop
statements that conditionally execute based on a Boolean expression. Finally, C# provides object-oriented ways of
conditionally controlling the flow of execution, namely virtual method invocations and del egate invocations.

1.8.3.1 The if-else statement

Ani f - el se statement executes code depending on whether a Boolean expression istrue. Unlikein C, only a
Boolean expression is permitted. In this example, the Conpar e method returns1 if a isgreater thanb, - 1 if a is
lessthan b, and O if a isequal to b.

Il nt Conpare(int a, 1nt b) {
| f (a>b)
return 1;
else I f (a<b)
return -1;
return O;

}

Itisvery commonto usethe| | , &% and! operatorsto test for AND, OR, and NOT conditions. In this example, our
Cet Unbr el | aNeeded method returns an umbrellaif it's rainy or sunny (to protect us from the rain or the sun), as

long as it's not also windy (since umbrellas are useless in the wind):

Unbrella GetUnbrella (bool rainy, bool sunny, bool w ndy) {
I1f ((rainy || sunny) && ! w ndy)
return unbrell a;
return nul | ;

}

1.8.3.2 The switch statement

SW t ch statementslet you branch program execution based on a selection of possible values a variable may have.
sw t ch statements may result in cleaner code than multiplel f statements, sincesw t ch statements require that

an expression be evaluated only once. For instance:

void Award(int x) {
swtch(x) {

case 1:
Console. WiteLine("Wnner!");
br eak;

case 2.
Consol e. Wi telLi ne("Runner-up");
br eak;

case 3.

case 4.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Consol e. WiteLine("H ghly conmended") ;
br eak;
def aul t:
Console. WiteLine("Don't quit your day job!");
br eak;

}
}

Thesw t ch statement can only evaluate a predefined type (including the string type) or enum, though user-defined
types may provide an implicit conversion to these types.

The end of each case statement must be unreachable. This typically means each case statement ends with ajump
statement. These are the options:

e Usethebr eak statement to jump to the end of theswi t ch statement. (Thisis by far the most common
option.)

e Usethegot o case <constant expression>orgotodefault statementstojump to either
another case statement or to the default case statement.

e Use any other jump statement-namely, the r et ur n,t hr ow, cont | nue, or got o labels.

Unlike in Java and C++, the end of a case statement must explicitly state where to go next. There is no error-prone
"default fall through" behavior; not specifying a break results in the next case statement being executed.

vold Geet(string title) {
swmtch (title) {

case nul | :
Consol e. WiteLine("And you are?");
goto default;

case "King":
Console. WiteLine("Geetings your highness");
[/ error, should specify break, otherw se...

defaul t
Console. WiteLine("How s It hangi ng?"),;
br eak;

}
}

1.8.4 Loop Statements

C# enables a sequence of statements to execute repeatedly withthewhi | e, do whi | e,f or,andf or each
statements.

1.8.4.1 while loops

whi | e loops repeatedly execute a statement block when a Boolean expression istrue. The expression is tested
before the statement block is executed. For example:

Int 1 = O;

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

while (1<3) {
Console. WiteLine (1);

| ++:
}
Qut put :
0]
1
2

1.8.4.2 do-while loops

do- whi | e loopsdiffer fromwhi | e loops only in functionality in that they allow the expression to be tested after
the statement block has executed. In this example, ado- whi | e loop prints8-a whi | e loop would not print
anything. For example;

int | = 8;

do {
Consol e. WiteLine (i);
| ++:

} while (1<5);

Qut put :
8

1.8.4.3 for loops

f or loops can be more convenient than whi | e loops when you need to maintain an iterator value. Asin Javaand C,
f or loops contain three parts. Thefirst part is a statement executed before the loop begins, and by convention it is

used to initialize an iterator variable; the second part is a Boolean expression that, while true, executes the statement
block; and the third part is a statement executed after each iteration of the statement block, in which convention is
used to iterate the iterator variable. For example:

for (int i=0; 1<10; i++)
Consol e. Wi teLine(i);

Any of the three parts of thef or statement may be omitted. One can implement an infinite loop such as the
following (thoughwhi | e (true) may beused instead):

for (;;)
Console. WiteLine("Hell ain't so bad");

1.8.4.4 foreach loops

It isvery common for f or loopsto iterate over a series of elements, so C#, like Visual Basic, hasaf or each
statement.

For instance, instead of doing the following:

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

for (int 1=0; I<dynamte.Length; | ++)
Consol e. WiteLi ne(dynamte [1]);

Y ou can perform this action:

foreach (Stick stick Iin dynamte)
Consol e. WiteLi ne(stick);

Thef or each statement works on any collection (including arrays). Although not strictly necessary, all collections
leverage this functionality by supporting | Enumer abl e and| Enuner at or (seethe"Enumerating a Collection”

topic inthe .NET Framework SDK Documentation). Here is an equivalent way to iterate over our collection:

| Enunerator 1e = dynamte. Get Enunerator();
while (ie. MoveNext()) {

Stick stick = (Stick)ie.Current;

Consol e. WitelLi ne(stick);

}
1.8.5 Jump Statements

The C# jump statementsarebr eak, cont | nue, got o, ret ur n,andt hr ow. All jump statements obey sensible
restrictions imposed by t r y statements (see the later section Section 1.18). First, ajump out of at r y block always
executesthet r y'sf i nal | y block before reaching the target of the jump. Second, ajump cannot be made from the
insideto the outside of af | nal | y block.

1.8.5.1 The break statement

Thebr eak statement transfers execution from the enclosingwhi | e loop, f or loop, or sw t ch statement block
to the next statement block.

Int x = 0;
while (true) {
X++:
| f (Xx>5)
break; // break fromthe | oop
}

1.8.5.2 The continue statement

Thecont | nue statement forgoes the remaining statements in the loop and makes an early start on the next

iteration.
Int x = 0O;
int y = 0O;
whil e (y<100) {
X++:
1T ((xX%) ==0)
continue; // continue wth next 1teration
y++;

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

}

1.8.5.3 The goto statement

Thegot o statement transfers execution to another label within the statement block. A label statement isjust a
placeholder in a method:

Int X = 4;
start:
X++:

| f (x==5)

goto start;

You can use got 0 In acase statement to transfer execution to another case label in a switch block (as explained
earlier in the Section 1.8.3.2 section).

1.8.5.4 The return statement

Ther et ur n statement exits the method and must return an expression of the method's return type if the method is
nonvoid.

Int CalcX(int a) {
Int x = a * 100;
return x; // return to the calling nethod wth val ue

}

1.8.5.5 The throw statement

Thet hr ow statement throws an exception to indicate an abnormal condition has occurred (see the later section
Section 1.18).

1 f (w==null)
t hrow new Argunent Exception("w can't be null");

1.8.5.6 The lock statement

Thel ock statement is actually a syntactic shortcut for calling theEnt er and Exi t methods of the
System Thr eadi ng. Moni t or class

1.8.5.7 The using statement

Many classes encapsulate nonmemory resources, such as file handles, graphics handles, or database connections.
These classes implement Syst em | DI sposabl e, which defines a single parameterless method named

D spose called to clean up these resources. Theusi ng statement provides an elegant syntax for declaring and
then calling the Di spose method of variablesthat implement | Di sposabl e. For example:

using (FileStreamfs =
new FileStream (fil eNane, Fil eMbde. Open))
{

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

}

Thisis precisaly equivalent to:

FileStreamfs = new FileStream (fil eNane, Fil eMdde. Open);
try {

}
finally {

1f (fs !'= null)
((I D spoabl e)fs). D spose();

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.9 Namespaces

These are defined in files, organized by namespaces, compiled into a module, then grouped into an assembly. These
organizational units are cross-cutting. For example, typically a group of namespaces belong to one assembly, but a
single namespace may in fact be spread over multiple assemblies.

1.9.1 Files

File organization is amost of no significance to the C# compiler-awhole project could be merged into one .csfile
and it would still compile (preprocessor statements are the only exception to this). However, it's generally tidy to have
one type in one file, with the filename matching the name of the class and the file's directory matching the name of the
class's namespace.

1.9.2 Using Namespaces

A namespace lets you group related types into a hierarchical categorization. Generally, the first name is the name of
your organization; it gets more specific from there:

nanespace MyConpany. MyPr oduct. Draw ng {
class Point {int x, vy, z;}
del egate voi d Poi nt | nvoker (Poi nt p);

}

1.9.2.1 Nesting namespaces

Y ou may also nest namespaces instead of using dots. This example is semantically identical to the previous example:

nanespace MyConpany {
nanespace M/Product {
nanespace Draw ng {
class Point {int x, vy, z;}
del egat e voi d Poi ntl nvoker (Point p);

}
}
}

1.9.2.2 Using a type with its fully qualified name

To usethe Poi nt from another namespace, you may refer to it with its fully qualified name. The namespace that a
type is within actually becomes part of the type name:

nanespace Test Project {
cl ass Test {
static void Main() {
MyCompany. MyPr oduct . Draw ng. Poi nt Xx;
}

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

}
}

1.9.2.3 The using keyword

Theusi ng keyword is a convenient way to avoid using the fully qualified name of typesin other namespaces. This
example is semantically identical to our previous example:

namespace Test Project {
usi ng MyConpany. MyPr oduct . Dr awm ng;
cl ass Test {
static void Main() {
Poi nt X;
}

}
}

1.9.2.4 Aliasing types and namespaces

Type names must be unique within a namespace. To avoid naming conflicts without having to use fully qualified
names, C# allows you to specify an alias for atype or namespace. Here is an example:

usi ng sys
usi ng txt
cl ass Test {
static void Main() {
txt s = "Hello, Wrld!'",;
sys. Console. WiteLine(s); // Hello, Wrld!
sys. Console. WiteLine(s. GetType()); // System String

}
}

Syst em /| Namespace ali as
System String;, // Type allias

1.9.2.5 Global namespace

The global namespace is the outermost level in which all namespaces and types are implicitly declared. When atype
IS not explicitly declared within a namespace, it may be used without qualification from any other namespace, since it
Isamember of the global namespace. However, apart from the smallest programs, it is always good practice to
organize types within logical namespaces.

In this example, the classExanpl e isdeclared in the global namespace, so it can be used without qualification from
the NOO namespace.

cl ass Test {
public static void Foo () {
System Console. WiteLine ("hello!");

}
}

nanespace Noo {
cl ass Test2 {

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

static void Main() {
Test. Foo();
]

}
}

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.10 Classes

In C#, aprogram is built by defining new types, each with a set of data members and function members. Custom types
should form higher-level building blocks that are easy to use and that closely model your problem space.

In this example, we simulate an astronaut jumping on different planets, using three classes- Pl anet ,
Ast ronaut ,and Test -to test our simulation.

First, let's definethe Pl anet class. By convention, we define the data members of the class at the top of the class
declaration. There are two data members here, the nane andgr avi t y fields, which store the name and gravity of a
planet. We then define a constructor for the planet. Constructors are function members that allow you to initialize an
Instance of your class. We initialize the data members with values fed to the parameters of the constructor. Finally, we

define two more function members, which are properties that allow usto get the "Name" and " Gravity" of a planet.
The Pl anet classlookslikethis:

usi ng System

cl ass Pl anet {
string nane; // field
doubl e gravity; // field
[/ constructor
public Planet (string n, double g) {
nane = n;
gravity = (;
}
/|| property
public string Nane {
get {return nane; }
}

/| property

public double Gavity {
get {return gravity,;}

}

}

Next, we definethe Ast r onaut class. Aswiththe Pl anet class, wefirst define our data members. Here an

astronaut has two fields: the astronaut's fitness and the current planet the astronaut is on. We then provide a
constructor, which initializes the fitness of an astronaut. Next, we definea Cur r ent Pl anet property that allows

us to get or set the planet an astronaut is on. Finally, we define ajump method that outputs how far the astronaut
jumps, based on the fithess of the astronaut and the planet he ison.

usi ng System
cl ass Astronaut {

double fitness: // field
Pl anet currentPlanet: // field

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

[/ constructor

publ i c Astronaut (double f) {
firtness = f:

!

/|| property
public Planet CurrentPl anet {

get {
return currentPl anet

]
set {
current Pl anet = val ue;
}
}
/[met hod
public void Junmp () {
1 f (current Pl anet == nul |)
Console. WiteLine ("Bye Bye!");
el se {
doubl e distance = fitness/currentPl anet. Gavity;
Console. WiteLine ("Junped {0} netres on {1}",
di st ance,
current Pl anet. Nane) ;
}
}

}

Last, we definethe Test class, which usesthe Pl anet and Ast r onaut classes. Here we create two planets,
eart h andnoon, and one astronaut, f or est Gunp. Then we see how far f or est Gunp jumps on each of these
planets:

cl ass Test {
static void Main () {

[/ create a new I nstance of a pl anet
Pl anet earth = new Planet ("earth", 9.8);
/] create another new i nstance of a pl anet
Pl anet noon = new Pl anet ("noon", 1.6);
/] create a new I nstance of an astronaut
Astronaut forest@np = new Astronaut (20);
forest GQunp. Current Pl anet = eart h;
forest Gunp. Junp();
forest Gunp. Current Pl anet = noon;
forest Gunp. Junp();

}

}
Qut put :

Junped 2.04081632653061 netres on earth
Junped 12.5 netres on noon

If you save these to Planet.cs, Astronaut.cs, and Test.cs, you can compile them into Test.exe withthis:

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

csc Test.cs Planet.cs Astronaut.cs

If aclassisdesigned well, it becomes a new higher-level building block that is easy for someone else to use. The user

of aclass seldom cares about the data members or implementation details of another class. . . merely its specification.
TouseaPl anet oran Ast r onaut , al you need to know is how to use their public function members.

In the following section, we look at each kind of type members a class can have, namely fields, constants, properties,
Indexers, methods, operators, constructors, destructors, and nested types.

1.10.1 The this Keyword

Thet hi s keyword denotes a variable that references a class or struct instance and is only accessible from within
nonstatic function members of the class or struct. Thet hi s keyword is aso used by a constructor to call an

overloaded constructor (explained later) or declare or access indexers (also explained later). A common use of the
t hi s variableisto distinguish afield name from a parameter name:

usi ng System
cl ass Dude {
string nane,
public Dude (string nane) {
t hi s. nane = nane;

}
public void Introduce(Dude a) {
1 f (a!=this)
Console. WiteLine("Hello, I'm"+nane);
}
}
1.10.2 Fields

Fieldshold datafor a class or struct:

class MyCl ass {
| Nt X;
float y =1, z = 2;
static readonly Iint MaxSi ze = 10;

}

1.10.2.1 Nonstatic fields

Nonstatic fields are also referred to as instance variables or instance data members. Static variables are also referred
to as static variables or static data members.

1.10.2.2 The readonly modifier

Asthe name suggests, the r eadonl y modifier prevents afield from being modified after it has been assigned. Such
afield istermed aread-only field. A read-only field is aways evaluated at runtime, not at compile time. It must be

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

assigned in its declaration or within the type's constructor for it to compile (see more on constructors later in this
book). On the other hand, non-read-only fields merely generate a warning when left unassigned.

1.10.3 Constants

A const ant isafieldthat isevaluated at compile time and isimplicitly static. The logical consequence of thisis
that a constant may not defer evaluation to a method or constructor, and it may only be one of afew built-in types.
Thesetypesare sbyt e, byt e,short ,ushort,i nt,ui nt,l ong,ul ong,fl oat,doubl e,deci mal ,
bool ,char,string, and enum For example:

public const double PI = 3.14159265358979323846;

The benefit of aconstant isthat it isevaluated at compile time, permitting additional optimization by the compiler.
For instance:

public static double G rcunference(doubl e radius) {
return 2 * Math. Pl * radi us;

}

evaluates to:

public static double G rcunference(doubl e radius) {
return 6.2831853071795862 * radi us;

}

A read-only field would not make this optimization, but it is more versionable. For instance, suppose thereisa
mistake in the calculation of pi. Microsoft releases a patch to their library that contains the Mat h class, whichis

deployed to each client computer. If your software that usesthe Ci r cunt er ence method is already deployed on a
client machine, then the mistake is not fixed until you recompile your application with the latest version of the Vat h
class. With aread-only field, however, this mistake is automatically fixed. Generally, this scenario occurs when a
field value changes because of an upgrade (such as MaxThreads changing from 500 to 1,000), not as aresult of a
mistake.

1.10.4 Properties

Properties can be characterized as object-oriented fields. Properties promote encapsulation by allowing a class or
struct to control access to its data and by hiding the internal representation of the data. For instance:

public class Well {
decimal dollars; // private field
public int Cents {
get { return(int)(dollars * 100); }
set {
[/ value Is an inplicit variable In a set
| f (value>=0) // typical validation code
dollars = (deci nal)val ue/ 100;

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

cl ass Test {
static void Main() {
Wll w = new Wll();
w. Cents = 25; // set
Int x = w. Cents; // get
w. Cents += 10; // get and set(throw a dine in the
[well)

}

Theget accessor returns avalue of the property'stype. Theset accessor has an implicit parameter namedval ue
that is of the property'stype. A property can be read-only if it specifiesonly aget method, and write-only if it
specifiesonly awr | t e method (though rarely desirable).

1.10.5 Indexers

Indexers provide a natural way of indexing elementsin aclass or struct that encapsulate a collection, viaan array's |

| syntax. Indexers are similar to properties, but they are accessed via an index, as opposed to a property name. The
index can be any number of parameters. In the following example, the Scor eLi st class maintainsthe list of scores
given by five judges. Theindexer usesasinglel nt index to get or set a particular judge's score.

public class ScorelList {
Int]] scores = newint [5];
[/ 1 ndexer
public int this[int I ndex] {
get {
return scores|[index]; }
set {
| f (value >= 0 && val ue <= 10)
scores|[index] = val ue;

}

}
[/ property (read-only)

public 1nt Average {
get {
Il nt sum = O;
foreach(int score I n scores)
sum += score;
return sum/ scores. Length;

}
}
}

cl ass Test {
static void Main() {

ScoreList sl = new ScorelList();
sl[0] = 9;

sl[1] = 8;

sl[2] = 7,

sl[3] =sl[4] = sl[1];

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

System Consol e. WitelLi ne(sl. Average);

}
}

A type may declare multiple indexers that take different parameters (or multiple parameters for multidimensional
Indexers). Our example could be extended to return the score by ajudge's name, as opposed to a numeric index.

Indexersarecompiledtoget Item(...)/set Item(...) methods, whichisthe representationin MSIL.

public int get Item(int Iindex) {...}
public void set Item (int 1ndex, int value) {...}

1.10.6 Methods

All C# code executes in amethod or in a special form of a method. Constructors, destructors, and operators are
gpecial types of methods, and properties and indexers are internally implemented withget andset methods.

1.10.6.1 Signatures

A method's signature is characterized by the type and modifier of each parameter in its parameter list. The parameter
modifiersr ef andout allow arguments to be passed by reference, rather than by value. These characteristics are

referred to as a method signature because they uniquely distinguish one method from another.

1.10.6.2 Overloading methods

A type may overload methods (have multiple methods with the same name), as long as the signatures are different!1l

[11 An exception to this rule is that two otherwise identical signatures cannot coexist if one parameter has the r ef modifier
and the other parameter has the OUt modifier.

For example, the following methods can all coexist in the same type:

voli d Foo(int X);

vol d Foo(doubl e x);

void Foo(int x, float y);
void Foo(float x, int y);
voi d Foo(ref Iint Xx);

However, the following pairs of methods cannot coexist in the same type, since the return type and par ans modifier
do not qualify as part of a method's signature.

vol d Foo(int X);

float Foo(int x); // conpile error

void Goo (int[| Xx);

vold Goo (params int|]] x); // conpile error

1.10.7 Instance Constructors

Constructors allow initialization code to perform for a class or struct. A class constructor first creates a new instance

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

of that class on the heap and then performs initialization, while a struct constructor merely performs initialization.

Unlike ordinary methods, a constructor has the same name as the class or struct and has no return type:

cl ass MyCl ass {
public MyC ass() {
[/ 1nitialization code
}

}

A class or struct may overload constructors and may call one of its overloaded constructors before executing its
method body using thet hi s keyword:

usi ng System

cl ass MyCl ass {

oubl1c I nt X;

oublic My ass() : this(5) {}

D

public MyC ass(int v) {
X =V,

}

static void Main() {
MyCl ass nll = new Myd ass();
MyCl ass n2 = new Myd ass(10);
Console. WiteLine(mlL.x); // 5
Console. WiteLine(n2.x); // 10

}
}

If aclass does not define any constructors, an implicit parameter-free constructor is created. A struct cannot define a
parameter-free constructor, since a constructor that initializes each field with a default value (effectively zero) is
aways implicitly defined.

1.10.7.1 Field initialization order

Another useful way to perform initialization isto assign fields an initial value in their declaration:

class Myd ass {

lnt x = 5;
}
Field assignments are performed before the constructor is executed and are initialized in the textual order in which
they appear.

1.10.7.2 Constructor access modifiers

A class or struct may choose any access modifier for a constructor. It is occasionally useful to specify a private

constructor to prevent a class from being constructed. This is appropriate for utility classes made up entirely of static
members, such asthe Syst em Mat h class.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.10.8 Static Constructors

A dtatic constructor allows initialization code to execute before the first instance of a class or struct is created or
before any static member of the class or struct is accessed. A class or struct can define only one static constructor, and
It must be parameter-free and have the same name as the class or struct:

cl ass Test {
static Test() {
Console. WiteLine("Test Initialized");
}

}

1.10.8.1 Static field initialization order

Each static field assignment is made before any of the static constructors are called, and they are initialized in the
textual order in which they appear, which is consistent with instance fields.

cl ass Test {
public static int x = 5;
public static void Foo() {}
static Test() {
Console. WiteLine("Test Initialized"),;
}

}

Accessing either Test . X or Test . FoOo assigns5 tox andthenprintsTest I niti all zed.
1.10.8.2 Nondeterminism of static constructors

Static constructors cannot be called explicitly, and the runtime may invoke them well before they are first used.

Programs should not make any assumptions about the timing of a static constructor's invocation. In this example,
Test I nitiallzed maybeprinted after Test2 Initialized:

cl ass Test 2 {
public static void Foo() {}
static Test2 () {
Console. WiteLine("Test2 Initialized");
}

}

Test . Foo();
Test 2. Foo();

1.10.9 Destructors and Finalizers

Destructors are class-only methods that are used to clean up nonmemory resources just before the garbage collector
reclaims the memory for an object:

cl ass Test {

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

~Test() {
/] destructor code here
!

}

Just as a constructor is called when an object Is created, a destructor is called when an object is destroyed. C#
destructors are very different from C++ destructors, primarily because of the presence of the garbage collector. Firgt,
memory is automatically reclaimed with a garbage collector, so a destructor in C# is used solely for nonmemory
resources. Second, destructor calls are nondeterministic. The garbage collector calls an object's destructor when it

determinesthat it is no longer referenced; however, it may determine this after an undefined period of time has passed
since the last reference to the object disappeared.

1.10.10 Nested Types

A nested type Is declared within the scope of another type. Nesting a type has three benefits:
e A nested type can access all the members of its enclosing type, regardless of a member's access modifier.
e A nested type can be hidden from other types with type-member access modifiers.

e Accessing anested type from outside of its enclosing type reguires specifying the type name. Thisisthe
same principle used for static members.

For example:

usi ng System
class A {
int x = 3; // private nmenber
protected internal class Nested {// choose any access-
/] | evel
public void Foo () {
A a=newA/();
Console. WiteLine (a.x); // can access A's private
/| menbers
}

}
}

class B {
static void Main () {

A. Nested n = new A . Nested (); // Nested Is scoped to A
n. Foo ();
}

}

/] an exanple of using "new' on a type declaration
class C: A {

new public class Nested {} // hide inherited type
[l menber

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.11 Access Modifiers

To promote encapsulation, atype or type member may hide itself from other types or other assemblies by adding one
of the following five access modifiers to the declaration:

public

The type or type member is fully accessible. Thisisthe implicit accessibility for enum members (see the later
section Section 1.14) and interface members (see the later section Section 1.13).

Internal

The type or type member in assembly A is accessible only from within A. Thisisthe default accessibility for
nonnested types, and so it may be omitted.

private

The type member intype T is accessible only from within T. Thisis the default accessibility for class and
struct members, and so it may be omitted.

protected

The type member in class C is accessible from within C or from within a class that derives from C.
protected internal

The type member in class C and assembly A is accessible from within C, from within a class that derives
from C, or from within A. Note that C# has no concept of protected and internal, whereby "atype member in
class C and assembly A is accessible only from within C, or from within a class that both derives from C and
Iswithin A."

Note that atype member may be a nested type. Here is an example of using access modifiers:

/] Assenbl yl. dl |

usi ng System

public class A {

orivate 1 nt x=b;

oubli¢c void Foo() {Console. WiteLine (x);}
orotected static void Goo() {}

orotected I nternal class NestedType {}

}

I nternal class B {
private void Hoo () {
Aal = new A(); /] ok
Console. WiteLine(al.x); // error, A X IS private
A. Nest edType n; // ok, A. NestedType I1s Internal
A.Go(); // error, A's oo Is protected

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

/| Assenbl y2.exe (references Assenblyl.dll)

usi ng System

class C: A{ // Cdefaults to Internal

static void Main() { // NMain defaults to private

A al = new A(); // ok
al. Foo(); [// ok
C.Goo(); // ok, Iinherits A's protected static nenber
new A. NestedType(); // ok, A NestedType Is protected
new B(); // error, Assenbly 1's B i1s Internal
Console. WiteLine(x); // error, As X IS private

}
}

1.11.1 Restrictions on Access Modifiers

A type or type member cannot declare itself to be more accessible than any of the types it uses in the declaration. For
Instance, a class cannot be public if it derives from an internal class, or a method cannot be protected if the type of

one of its parametersisinternal to the assembly. The rationale behind thisrestriction is that whatever is accessible to
another type is actually usable by that type.

In addition, access modifiers cannot be used when they conflict with the purpose of inheritance modifiers. For
example, avirtual (or abstract) member cannot be declared private, since it would be impossible to override.

Similarly, a sealed class cannot define new protected members, since there is no class that could benefit from this
access bility.

Finally, to maintain the contract of a base class, afunction member withtheover r i de modifier must have the
same accessibility as the virtual member it overrides.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.12 Structs

A struct issimilar to aclass, with the following major differences:

e A classisareferencetype, while astruct is avalue type. Consequently, structs are typically used to express
simple types, in which value-type semantics are desirable (e.g., an assignment copies avalue rather than a

reference).

e A classfully supportsinheritance, whereas a struct can inherit only from an object and isimplicitly sealed (in
the runtime, structs actually inherit from Syst em Val ueType). Both classes and structs can implement

Interfaces.
e A classcan have adestructor, and a struct cannot.

e A classcan define a custom parameterless constructor and initialize instance fields, while a struct cannot.
The default parameterless constructor for astruct initializes each field with a default value (effectively zero).
If astruct declares a constructor(s), then all of its fields must be assigned in that constructor call.

Here isasimple struct declaration:

struct Polnt {
public int Xx, vy;
}

To create a struct, you can use the new operator, which will initialize all the struct members to their defaults (zero in
the case of X andy). If you do not use the new operator, you will need to initialize the struct members yourself. Y ou

can also use array declaration syntax to create an array of structs:

Point pl = new Point();
Pol Nt p2;

2. X = p2.y = 0;
Pol nt[] points

new Poi nt[3] ;

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.13 Interfaces

An interfaceis similar to a class, but with the following major differences:

e Aninterface provides a specification rather than an implementation for its members. Thisis similar to a pure
abstract class, which consists only of abstract members.

e A classand struct can implement multiple interfaces, while a class can inherit only from a single class.
e A struct can implement an interface, but a struct cannot inherit from a class.

Polymorphism is described as the ability to perform the same operations on many types, aslong as each type shares a
common subset of characteristics. The purpose of an interface is precisely for defining such a set of characteristics.

An interface is comprised of a set of the following members.

e Method
e Property
e Indexer
e Event

These members are always implicitly public and implicitly abstract (and therefore virtual and nonstatic).
1.13.1 Defining an Interface

An interface declaration is like a class declaration, but it provides no implementation for its members since all its
members are implicitly abstract. These members are intended to be implemented by a class or struct that implements
the interface. Here is avery simple interface that defines a single method:

public interface | Delete {
void Delete();
}

1.13.2 Implementing an Interface

Classes or structs that implement an interface may be said to "fulfill the contract of the interface.” In this example, our
| Del et e interface can be implemented by GUI controls that support the concept of deleting, such asaText Box,
Tr eeVi ew, or your own custom GUI control.

public class TextBox : IDelete {
public void Delete() {...}

}

public class TreeView : IDelete {
public void Delete() {...}

}

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

If aclass inherits from a base class, then each interface implemented must appear after the base class:

public class TextBox : Control, IDelete {...}
public class TreeView : Control, |IDelete {...}

1.13.3 Using an Interface

An interface is useful when you need multiple classes to share characteristics not present in acommon base class. In
addition, an interface is agood way to ensure that these classes provide their own implementation for the interface
member, since interface members are implicitly abstract.

The following example assumes aform containing many GUI controls (including some Text Box and Tr eeVi ew
controls), in which the currently focused control is accessed with the Act | veCont r ol property. When a user
clicks Delete on amenu item or toolbar button, the example tests to see whether Act | veCont r ol implements

| Del et e; if so, theexamplecastsitto | Del et e to cal itsDel et e method:

cl ass MyForm {

void Deletedick() {
I f (ActiveControl 1s |Delete)
PerfornDelete ((IDelete)ActiveControl);

}
}

1.13.4 Extending an Interface

Interfaces may extend other interfaces. For instance:

| SuperDel ete : | Delete {
bool CanDel ete {get; }
event Event Handl er CanDel et eChanged;

}

A control implementsthe CanDel et e property to indicate that it has something to delete and is not read-only, and
it implementsthe CanDel et eChanged event to fire an event whenever its CanDel et e property changes. This
framework allows our application to ghost its Delete menu item and toolbar button when the Act | veCont r ol is

unable to delete.

1.13.5 Explicit Interface Implementation

If there Is a name collision between an interface member and an existing member in the class or struct, C# allows you

to implement an interface member explicitly to resolve the conflict. In this example, we resolve a conflict when
implementing two interfaces that both define a Del et e method:

public Iinterface | DesignTineControl {

Obj ect Delete();

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

public class TextBox : |Delete, |DesignTineControl {

void IDelete.Delete() {}

obj ect | DesignTinmeControl.Delete() {...}

// Note that explicitly iInplenmenting just one of them
// woul d be enough to resolve the conflict

}

Unlike implicit interface implementations, explicit interface implementations can't be declared withabst r act ,
virtual ,overri de, or newmodifiers. In addition, while an implicit implementation requires the use of the
publ I ¢ modifier, an explicit implementation has no access modifier. However, to access the method, the class or

struct must be cast to the appropriate interface first:

Text Box tb = new Text Box(),

| Desi gnTi meControl i1dtc = (I DesignTineControl)tb;
| Delete 1d = (1 Del ete)tb;

I dtc. Delete();

| d. Del ete();

1.13.6 Reimplementing an Interface

If abase class implements an interface member with the virtual (or abstract) modifier, then aderived class can
override it. If not, the derived class must reimplement the interface to override that member:

public class RichTextBox : TextBox, |[Delete {
/] TextBox's |IDelete.Delete Is not virtual
(si nce
[/ explicit Iinterface iInplenentations cannot
/] be virtual)
public void Delete() {}

}

Thisletsususea Rl chText Box asan| Del et e andcallsRl chText Box'sversion of Del et e.

1.13.7 Interface Conversions

A classor struct T may be implicitly cast to an interfacel that T implements. Similarly, an interface X may be
implicitly cast to an interfaceY from which X inherits. An interface may be cast explicitly to any other interface or
nonsealed class. However, an explicit cast from an interface | to asealed class or struct T ispermitted only if itis
possiblethat T could implement I. For example:

Interface IDelete {...}

Il nterface | DesigntineControl {...}

class TextBox : I|IDelete, |DesignTineControl {...}
sealed class Tinmer : |DesignTineControl {...}

Text Box tbl = new TextBox ();
| Delete d = tbl;, // inplicit cast
| Desi gnTi meControl dtc = (I DesignTi neControl)d;

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Text Box tb2 = (Text Box)dtc;
Timer t = (Timer)d; // 1llegal, a Timer can never Inmplenent |Delete

Standard boxing conversions happen when converting between structs and interfaces (see Section 1.3.2.2, earlier in
this book).

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.14 Enums

Enums specify a group of named numeric constants:

public enum D rection {North, East, Wst, Sout h}

Unlike in C, enum members must be used with the enum type name. This resolves naming conflicts and makes code
clearer:

Direction walls = D recti on. East ;

By default, enums are assigned integer constants O, 1, 2, etc. Y ou may optionally specify an alternative numeric type
to base your enum and explicitly specify values for each enum member:

| Fl ags]
public enum D rection : byte {

Nort h=1, East=2, West=4, Sout h=8
}

Direction walls = Direction.North | D rection. Wst;
1f((walls & Direction.North) !'= 0)
System Console. WiteLine("Can't go north!");

The[FlI ags] attributeisoptional and informs the runtime that the values in the enum can be bit-combined and
should be decoded accordingly in the debugger or when outputting text to the console. For example:

Console. WiteLine(walls); // D splays "North, Wst"
Console. WiteLine((int) walls); // D splays "5"

The Syst em Enumtype aso provides many useful static methods for enums that et you determine the underlying

type of an enum, check if a specific value is supported, initialize an enum from a string constant, retrieve alist of the
valid values, and other common operations such as conversions. Here is an example of the usage:

usi ng System
public enum Toggle : byte { Of=0, On=1 }
cl ass Test {
static void Main() {
Type t = Enum CGet Under | yi ngType(typeof (Toggl e)) ;
Console. WiteLine(t); // Prints "Byte"

bool bD med = Enum | sDefi ned(typeof (Toggl e),
"D nmed") ;
Console. WiteLine(bDimed); // Prints "Fal se"

Toggl e tog =(Toggl e) Enum Parse(typeof (Toggle), "On");

Consol e. Wi teLi ne(Enum For nat (t ypeof (Toggl e), toqg,
"D')); // Prints "1"

Consol e. WitelLine(tog); // Prints "On"

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Array oa = Enum Get Val ues(typeof (Toggl e));
foreach(Toggle toggle in oa) // Prints "On=1, O f=0"
Console. WiteLine("{0}={1}", toggle,
Enum For mat (t ypeof (Toggl e),

toggle, "D"));
}
}
1.14.1 Enum Operators
The operators relevant to enums are as follows:
== | = < > <= >= + - N & | ~

= 4= -= ++ -- si zeof
1.14.2 Enum Conversions

Enums may be converted explicitly to other enums. Enums and numeric types may be converted explicitly to one
another. A special caseisthe numeric literal O, which may be implicitly converted to an enum.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.15 Delegates

A delegate is atype defining amethod signature, so that delegate instances can hold and invoke a method or list of
methods that match its signature. A delegate declaration consists of a name and a method signature. For example;

usi ng System
del egate bool Filter (string s);

cl ass Test {
static void Main() {
Filter f = new Filter(FirstHalfO Al phabet);
Di splay(new String [| {"Ant","Lion", "Yak"}, f);
}
static bool FirstHal fO Al phabet (string s) {
return "N'. ConpareTo(s) > O;
}

static void D splay(string[] nanes, Filter f) {
I nt count = O;
foreach(string s 1 n nanes)
1f(f(s)) // 1 nvoke del egate
Console. WiteLine("lItem {0} 1s {1}", count ++,

S) ;

}

Note that the signature of a delegate method includes its return type. It also allows the use of apar ans modifier in

Its parameter list, which expands the list of elements that characterize an ordinary method signature. The actual name
of the target method isirrelevant to the delegate.

1.15.1 Multicast Delegates

Delegates can hold and invoke multiple methods. In this example, we declare avery simple delegate called
Vet hodl nvoker , which we use to hold and then invoke the Foo and Goo methods sequentially. The += method

creates a new delegate by adding the right delegate operand to the left delegate operand:

usi ng System
del egate void Met hodl nvoker();
cl ass Test {
static void Main() {
new Test(); // prints "Foo", " Goo"

}

Test () {
Met hodl nvoker m = nul | :
m += new Met hodl nvoker (Foo) ;
m += new Met hodl nvoker (Goo) ;
m) ;

]

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

voi d Foo() {
Consol e. Wi teLi ne("Foo");
}

voi d Goo() {
Consol e. Wi t eLi ne(" Goo");
}

}

A delegate can also be removed from another delegate using the - = operator:

Test() {
Met hodl nvoker m = nul | ;
m += new Met hodl nvoker (Foo) ;
m - = new Met hodl nvoker (Foo) ;
// mis now nul

}

Delegates are invoked in the order they are added. |If a delegate has a nonvoid return type, then the value of the last
delegate invoked is returned. Note that the += and - = operations on a delegate are not thread-safe. (For more

Information on threads, see " Threading" in the NET Framework SDK Documentation.)

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.16 Events

Event handling is essentially a process in which one object can notify other objects that an event has occurred. This
processislargely encapsulated by multicast delegates, which have this ability built in.

1.16.1 Defining a Delegate for an Event

The .NET Framework provides many event-handling delegates, but you can write your own. For example:

publ i c del egate void MoveEvent Handl er (obj ect source, MyveEvent Args e);

By convention, the delegate's first parameter denotes the source of the event, and the delegate's second parameter
derivesfrom Syst em Event Ar gs and contains data about the event.

1.16.2 Storing Data for an Event with EventArgs

TheEvent Ar gs class may be derived from to include information relevant to a particular event:

usi ng System

public class MveEvent Args : Event Args {

oubl1¢c 1 nt newPosi ti on;

oubl 1 ¢ bool cancel;
0
t

publ 1 ¢ MoveEvent Args(i nt newPosition) {
Nl s. newPosi ti on = newPosi ti on;

}
}

1.16.3 Declaring and Firing an Event

A class or struct can declare an event by applying the event modifier to a delegate field. In this example, the slider
classhasa Posi t | on property that firesalMbve event whenever itsPosi t 1 on changes:

public class Slider {
I nt position;
public event MywveEvent Handl er Move,;
public 1nt Position {
get { return position; }

set {
I f (position !=value) { // 1f position changed
If (Move !'=null) { // 1f invocation |ist not
[l enpty
MoveEvent Args args = new MoveEvent Args(val ue);
Move(this, args); // fire event
| f (args. cancel)
return;
}

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

position = val ue;
}
}

}
}

Theevent keyword promotes encapsulation by ensuring that only the+= and - = operations can be performed on
the delegate. Other classes may act on the event, but only the S| | der can invoke the delegate (fire the event) or
clear the delegate's invocation list.

1.16.4 Acting on an Event with an Event Handler

We are able to act on an event by adding an event handler to it. An event handler is a delegate that wraps the method
we want invoked when the event is fired.

In this example, we want our For mto act on changes madetoa Sl | der 'sPosi t | on. Thisisdone by creating a
MoveEvent Handl er delegatethat wraps our event-handling method (thes| | der Move method). This
delegate is added to the Mbv e event'sexisting list of MoveEvent Handl er s (whichisinitially empty). Changing
the position on the dider firesthe Move event, which invokesour sl | der Mbve method:

usi ng System
class Form {
static void Main() {
Slider slider = new Slider();
/] register wth the Mwve event

sl 1 der. Move += new MoveEvent Handl er (sl | der NMove) ;
slider.Position = 20;
slider.Position = 60;

}

static void slider Move(object source, MyveEvent Args e) {
| f (e. newPosi tion < 50)
Consol e. WitelLi ne("OX");
el se {
e.cancel = true;
Console. WiteLine("Can't go that high!");

}
}
}

Typically, the Sl | der classisextended so that it fires the Vbv e event whenever itsPosi t 1 on ischanged by a
mouse movement, key press, etc.

1.16.5 Event Accessors

abst ract accessorsdon't specify an implementation, so they replace an add/remove
block with a semicolon.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Similar to the way properties provide controlled access to fields, event accessors provide controlled access to an
event. Consider the following field declaration:

public event MyveEvent Handl er Move,;

Except for the underscore prefix added to the field (to avoid a name collision), thisis semantically identical to this:

private MoveEvent Handl er Move;
publ i c event MyveEvent Handl er Move {

add {
_Move += val ue;

}
renove {

_Move -= val ue;
}

}

The ability to specify a custom implementation of add and remove handlers for an event allows a class to proxy an
event generated by another class, thus acting as arelay for an event rather than the generator of that event. Another
advantage of thistechnique isto eliminate the need to store a delegate as afield, which can be costly in terms of
storage space. For instance, a class with 100 event fields stores 100 delegate fields, even though maybe only 4 of
those events are actually assigned. Instead, you can store these delegates in adictionary and add and remove the
delegates from that dictionary (assuming the dictionary holding 4 e ements uses |l ess storage space than 100 delegate
references).

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.17 Operator Overloading

C# lets you overload operators to work with operands that are custom classes or structs using operators. An operator
Is a static method with the keyword oper at or preceding the operator to overload (instead of a method name),

parameters representing the operands, and return types representing the result of an expression. Table1-3 lists the
available overloadable operators.

Table 1-3. Overloadable operators

+ - ! - o

- - * (binary only) / % & (binary only)
| A << >> ==

~= > < >= <=

Literals that also act as overloadable operatorsaret r ue andf al se.

1.17.1 Implementing Value Equality

A pair of references exhibit referential equality when both references point to the same object. By default, the == and
| = operators will compare two reference-type variables by reference. However, it is occasionally more natural for the
—= and! = operatorsto exhibit value equality, whereby the comparison is based on the value of the objects to which

the references point.

Whenever overloading the == and ! = operators, you should always override the virtual EQual s method to route its
functionality to the == operator. This allows a class to be used polymorphically (which is essentia if you want to take
advantage of functionality such as the collection classes). It also provides compatibility with other .NET languages
that don't overload operators.

A good guideline for knowing whether to implement the == and ! = operatorsisto consider
whether it Is natural for the classto overload other operatorstoo, suchas <, >, +, or - ;
otherwise, don't bother-stick with the default implementation of Equals that you inherit
from Syst em Cbj ect . For structs, overloading the== and ! = operators provides a

more efficient implementation than the default one.

usi ng System
cl ass Note {
| nt val ue;
public Note(int semtoneskFromd) {
val ue = sem t oneskr omA,

}

public static bool operator ==(Note x, Note y) {
return x.val ue == y. val ue;

}

public static bool operator !'=(Note x, Note y) {

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

return x.value != y.val ue;
}
public override bool Equal s(object o) {
1f(!'(o 1s Note))
return false;
return this ==(Note)o;
}
public static void Main() {
Note a = new Note(4);
= new Note(4),;
(bj ect c
d

/] To conpare a and b by reference
Console. WiteLine((object)a ==(object)b); // false

// To conpare a and b by val ue:
Console. WiteLine(a == b); // true

// To conpare ¢ and d by reference:
Console. WiteLine(c == d); // false

// To conpare ¢ and d by val ue:
Consol e. Wi teLi ne(c. Equal s(d)); // true

}
}

1.17.2 Logically Paired Operators

The C# compiler enforces operators that are logical pairs to both be defined. These operatorsare == | =, < >, and
<= >z,

1.17.3 Custom Implicit and Explicit Conversions

As explained in the discussion on types, the rationale behind implicit conversions is that they are guaranteed to
succeed and do not lose information during the conversion. Conversely, an explicit conversion is required either when
run-time circumstances determines whether the conversion will succeed or if information may be lost during the
conversion. Y ou should only use a conversion when the outcome of the conversion is unambiguous. Although you

can express a Note as a number (frequency in hertz), some semantic information is lost by allowing this conversion.
It's less ambiguous to expose a property called Fr equency. However, conversions between numeric types are

unambiguous. In this example, we define conversions between aBl gl nt type and an integer:

)}.Cbnvert to I nteger
public static inplicit operator int(Biglnt x) {
return x.tolnteger(); // heavy lifting not shown

}

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

[/ Convert fromint
public static explicit operator Biglnt(int x) {
return new Bi gl nt(x);

}

Bigint n =(Biglnt) 1024; // explicit conversion
int x =n; // 1nplicit conversion

1.17.4 Indirectly Overloadable Operators

The&& and | | operators are automatically evaluated from & and | , so they do not need to be overloaded. The| |
operators can be customized with indexers (see Section 1.10.5). The assignment operator = cannot be overloaded, but
all other assignment operators are automatically evaluated from their corresponding binary operators (e.g., += IS
evaluated from +).

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.18 Try Statements and Exceptions

The purpose of at r y statement isto simplify program execution in exceptional circumstances-typically, an error.

A t ry statement doestwo things. First, it letsthecat ch block catch exceptions thrown during thet r y block's
execution. Second, it ensures that execution cannot leavethe t r y block without first executing thef | nal | y block.
At ry block must befollowed by acat ch block(s), af I nal | y block, or both. The form of at r y block looks

likethis:

try {
[/ exception may be thrown during execution of this

[/ function

}
catch (ExceptionA ex) {

/] react to exception of type Excepti onA
}

catch (ExceptionB ex) {
/] react to exception of type ExceptionB

}

finally {
/] code to always run after try bl ock executes, even if
[/ an exception Is not thrown

}

1.18.1 Exceptions

C# exceptions are objects that contain information representing the occurrence of an exceptional program state. When
an exceptional state occurs (e.g., amethod recelves an illegal value), an exception object may be thrown, and the call-
stack 1s unwound until the exception is caught by an exception-handling block. For example:

usi ng System
publ i c class Wi ght Cal cul at or {
public static float CalcBM (float wei ght Kil os,
float nmetersTall) {
I1f (nmetersTall < 0 || netersTall > 3)
t hrow new Argunent Exception ("I npossible Helght",
"metersTall");
I1f (nmetersTall < 0 || weightKilos > 1000)
t hrow new Argunent Exception ("I npossible Wi ght",
"wel ght Kil 0s");
return weightKilos / (netersTall *metersTall);
}
}

cl ass Test {
static void Main () {
Testlt ();

}

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

static void Testlt () {
try {
float bm = WeightCal culator.CalcBM (100, 5);
Console. WiteLine(bm);
]
cat ch(Argunment Excepti on ex) {
Consol e. WitelLl ne(ex);
}
finally {
Console. WitelLine (
"Thanks for running the progran);
]

Consol e. Read();

}
}

In this example, calling Cal cBM throwsan Ar gunment Except | on indicating that it'simpossible for someone
to be 5 meterstall. Execution leaves Cal ¢cBM and returnsto the calling method, Test | t (which handlesthe

Ar gunent Except | on), and displays the exception to the Console. Next, the f | nal | y method is executed,
which prints " Thanks for running the program" to the Console. Without our t r y statement, the call stack would be
unwound right back to the Mal n method, and the program would terminate.

1.18.2 The catch Clause

A cat ch clause specifies the exception type (including derived types) to catch. An exception must be of type
Syst em Except i on or atypethat derivesfrom Syst em Except | on. Catching Syst em Except i on

provides the widest possible net for catching errors, which is useful if your handling of the error istotally generic,

such as an error-logging mechanism. Otherwise, you should catch a more specific exception type to prevent your
cat ch block from dealing with a circumstance it wasn't designed to handle (e.g., an out-of-memory exception).

1.18.2.1 Omitting the exception variable

Specifying only an exception type without a variable name allows an exception to be caught when we don't need to
use the exception instance and merely knowing its type is enough. The previous example can be written like this:;

cat ch(Argunent Exception) { // don't specify vari able
Console. WiteLine("Couldn't calculate ideal weight!"),;

}

While thisislegitimate syntax, it is troublesome, since it assumes a particular cause without inspecting the actual
exception that was thrown.

1.18.2.2 Omitting the catch expression
You may also entirely omit thecat ch expression. This catches an exception of any type, even types thrown by other

non-CL S-compliant languages that are not derived from Sy st em Except i on. The previous example could be
written like this:

catch {

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Consol e. WiteLine("Couldn't calculate 1deal weight!");
}

This approach Is even more problematic than omitting the exception variable, since it assumes that the calculation is
responsible for any and all exceptions and this may not be the case-for example, an exception may arise from within
the runtime In response to a grave operating-system error.

1.18.2.3 Specifying multiple catch clauses

When declaring multiple cat ch clauses, only thefirst cat ch clause with an exception type that matches the
thrown exception executesits cat ch block. It isillegal for an exception type B to precede an exception typeD if B
Isabase class of D, since it would be unreachable.

try {...}
catch (Null Ref erencekxception) {...}

catch (Argunent Exception) {...}
catch {...}

1.18.3 The finally Block

A f 1 nal | y block isaways executed when control leavesthet ry block. A f 1 nal | y block isexecuted at any of
the following periods:

e Immediately after thet r y block completes

e Immediately after thet r y block prematurely exits with ajump statement (e.g.,r et ur n, got o) and
Immediately before the target of the jump statement

e Immediately after acat ch block executes

f1 nal | y blocks can add determinism to a program's execution by ensuring that the specified code always gets
executed.

In our main example, if the height passed to the calculator isinvalid, an Ar gunent Except | on that executes the
cat ch block isthrown, followed by thef | nal | y block. However, if anything el'se goeswrong, thef i nal | y

block is still executed. This ensures that we say goodbye to our user before exiting the program.

1.18.4 Key Properties of System.Exception

Notable propertiesof Syst em Except | on include the following:
St ackTr ace
A string representing all the methods that are called from the origin of the exception to the cat ch block.

Message

A string with a description of the error.

| nner Excepti on

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

A cascading exception structure that can be particularly useful when debugging. Sometimes it is useful to
catch an exception, then throw a new, more specific exception. For instance, we may catch an

| OExcept 1 on andthenthrow aPr obl entool ngExcept | on that contains more specific
information on what went wrong. In this scenario, the Pr obl enfooi ngExcept | on should include the

| OExcept i on asthel nner Except i on argument in its constructor, which is assigned to the
| nner Except | on property.

Note that in C# all exceptions are runtime exceptions-there i1s no equivalent to Java's
- | compile-time checked exceptions.
L

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.19 Attributes

Attributes are language constructs that can decorate a code e ement (assemblies, modules, types, members, return
values, and parameters) with additional information.

In every language, you specify information associated with the types, methods, parameters, and other elements of

your program. For example, atype can specify alist of interfaces from which it derives, or a parameter can specify
modifiers, such asther ef modifier in C#. The limitation of this approach is that you can associate information with

code elements using only the predefined constructs that the language provides.

Attributes allow programmers to extend the types of information associated with these code el ements. For example,
serialization in the NET Framework uses various serialization attributes applied to types and fields to define how
these code elements are serialized. This approach is more flexible than requiring the language to have special syntax
for serialization.

1.19.1 Attribute Classes

An attribute is defined by a class that inherits (directly or indirectly) from the abstract classSyst em At t ri but e.

When specifying an attribute to an element, the attribute name is the name of the type. By convention, the derived
typenameendsin At t r | but e, although specifying the suffix is not required when specifying the attribute.

In this example, the FOO classis specified as serializable usingthe Ser | al | zabl e attribute:

[Seri al 1 zabl e]
public class Foo {...}

TheSer | al | zabl e attributeis actually atype declared in the Sy st e mnamespace, as follows:
class SerializableAttribute : Attribute {...}
We could also specify the Ser | al 1 zabl e attribute using its fully qualified type name, as follows:

| System Seri al | zabl eAttri but e]
public class Foo {...}

The preceding two examples of usingthe Ser | al 1 zabl e attribute are semantically identical.

The C# language and the FCL include a number of predefined attributes. For more information about the other
attributes included in the FCL and about creating your own attributes, see the "Writing Custom Attributes' topic in
the NET Framework SDK Documentation.

1.19.2 Named and Positional Parameters

Attributes can take parameters, which can specify additional information on the code element beyond the mere
presence of the attribute.

In this example, the class FOO is specified as obsolete using the Gbs ol et e attribute. This attribute allows the
Inclusion of parameters to specify both a message and whether the compiler should treat the use of this class as an

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

error.

| Qbsol ete("Use Bar class Instead", |sError=true)]
public class Foo {...}

Attribute parameters fall into one of two categories: positional and named. In the preceding example, Use Bar
cl ass | nst ead isapositional parameter, and | SEr r or =t r ue isanamed parameter.

The positional parameters for an attribute correspond to the parameters passed to the attribute type's public
constructors. The named parameters for an attribute correspond to the set of public read-write or write-only instance
properties and fields of the attribute type.

When specifying an attribute of an element, positional parameters are mandatory, and named parameters are optional.
Since the parameters used to specify an attribute are evaluated at compile time, they are generally limited to constant
expressions.

1.19.3 Attribute Targets

Implicitly, the target of anattribute is the code element it immediately precedes, as with the attributes we have
covered so far. Sometimes it is necessary to specify explicitly that the attribute applies to particular target.

Hereis an example of using the CLSConmpl | ant attribute to specify the level of CLS compliance for an entire
assembly:

| assenbl y: CLSConmpl 1 ant (true)]

1.19.4 Specifying Multiple Attributes

Multiple attributes can be specified for a single code element. Each attribute can be listed within the same pair of
square brackets (separated by a comma), in separate pairs of sguare brackets, or in any combination of the two.

Consequently, the following three examples are semantically identical:

| Seri ali zabl e, (bsol ete, CLSConpliant(false)]
public class Bar {...}

' Serializabl e]

' (bsol et e]

 CLSConpl i ant (fal se)]
oubl1c class Bar {...}

' Serialilzable, osol ete]
CLSConpl i ant (fal se)]
oubl1c class Bar {...}

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.20 Unsafe Code and Pointers

C# supports direct memory manipulation via pointers within blocks of code marked unsafe and compiled with the
[unsaf e compiler option. Pointer types are primarily useful for interop with C APIs, but may also be used for

accessing memory outside the managed heap or for performance-critical hotspots.

1.20.1 Pointer Basics

For every value type or pointer typeV, there is a corresponding pointer type V*. A pointer instance holds the address
of avalue. Thisis considered to be of type V, but pointer types can be (unsafely) cast to any other pointer type. Table
1-4 lists the main pointer operators.

Table 1-4. Principal pointer operators

Operator Meaning

& The address-of operator returns a pointer to the address of avalue

* The dereference operator returns the value at the address of a pointer

- > The pointer-to-member operator is a syntactic shortcut, in which X- >y isequivalentto(*x) . y

1.20.2 Unsafe Code

By marking atype, type member, or statement block with theunsaf e keyword, you're permitted to use pointer types
and perform C++-style pointer operations on memory within that scope. Here is an example of using pointerswith a
managed object:

unsafe void RedFilter(int[,] bitmap) {
Int |length = bitmp. Lengt h;
fixed (Int* b = bitmap) {
Int* p = b;
for(int 1 =0; I < length; 1++)
*P++ &= OxFF;
}
}

Unsafe code typically runs faster than a corresponding safe implementation, which in this case requires a nested loop
with array indexing and bounds checking. An unsafe C# method may also be faster than calling an external C
function, since there is no overhead associated with leaving the managed execution environment. Y ou must compile
unsafe code with the/ unsaf e compiler switch.

1.20.3 The fixed Statement

Thef | xed statement is required to pin a managed object, such as the bitmap in the previous example. During the
execution of a program, many objects are allocated and deallocated from the heap. In order to avoid unnecessary

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

waste or fragmentation of memory, the garbage collector moves objects around. Pointing to an object isfutileif its
address could change while referencing it, so the f | xed statement tells the garbage collector to "pin" the object and

not move It around. This may have an impact on the efficiency of the runtime, so fixed blocks should be used only
briefly, and heap allocation should be avoided within the fixed block.

C# returns a pointer only from a value type, and never directly from areference type. Syntactically, arrays and strings
are an exception to this, since they actually return a pointer to their first element (which must be avalue type), rather
than the objects themsel ves.

Value types declared inline within reference types require the reference type to be pinned, as follows:

cl ass Test {
| Nt X;
static void Main() {
Test test = new Test ();

unsaf e {
fixed(int* p = &est.x) { // pins test
*p:9;
}

System Consol e. WiteLine(test. X);

}
}
}

1.20.4 The Pointer-to-Member Operator

In addition to the & and * operators, C# aso provides the C++-style - > operator, which can be used on structs:

struct Test {
| Nt X;
unsafe static void Main() {
Test test = new Test();
Test™ p = &t est;
p->X = 9;
System Consol e. WiteLi ne(test. x);

}
1.20.5 The stackalloc Keyword

Memory can be allocated explicitly in ablock on the stack using thest ackal | oc keyword. Sinceit is alocated on

the stack, its lifetimeislimited to the execution of the method, just as with any other local variable. The block may
use|[| indexing, butispurely avalue type with no additional self-describing information or bounds-checking that

an array provides.

unsafe {
Int* a = stackalloc 1nt [10];
for (int 1 =0; 1 < 10; ++)

Console. WiteLine(ali]);, // print raw nenory

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

}

1.20.6 Void*

Rather than pointing to a specific value type, a pointer may make no assumptions about the type of the underlying

data. This approach is useful for functions that deal with raw memory. An implicit conversion exists from any pointer
typetoavol d*. A vol d* cannot be dereferenced, and arithmetic operations cannot be performed on void

pointers. For example:

cl ass Test {
unsafe static void Main () {
short][]] a =1{1,1, 2,3,5,8, 13, 21, 34, 55},
fixed (short* p = a) {
/] sizeof returns size of value-type Iin bytes
Zap (p, a.Length * sizeof (short));

}

foreach (short x 1 n a)
System Console. WiteLine (x); // prints all zeros
}
unsafe static void Zap (void* nenory, 1 nt byteCount) {
byte* b = (byte*)nenory;
for (int 1 =0; 1 < byteCount; 1 ++)
*b++ = O;
}
}

1.20.7 Pointers to Unmanaged Code

Pointers are also useful for accessing data outside the managed heap (such as when interacting with C DLLs or COM)

or when dealing with data not in the main memory (such as graphics memory or a storage medium on an embedded
device).

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.21 Preprocessor Directives

Preprocessor directives supply the compiler with additional information about regions of code. The most common
preprocessor directives are the conditional directives, which provide away to include or exclude regions of code from
compilation. For example:

#def 1 ne DEBUG
usi ng System
cl ass MyCl ass {
static int x = 5;
static void Main() {
1 f DEBUG
Consol e. WiteLine("Testing: x = {0}", X);
endi f
}
}

In this class, the statement in FOO is compiled as conditionally dependent upon the presence of the DEBUG symbol. If
we remove the DEBUG symbol, the statement is not compiled. Preprocessor symbols can be defined within a source
file (as we have done) and can be passed to the compiler with the / def | ne: symbol command-line option.

The#err or and#war ni ng symbols prevent accidental misuse of conditional directives by making the compiler
generate awarning or error when given an undesirable set of compilation symbols. See Table 1-5 for alist of
preprocessor directives and their actions.

Table 1-5. Preprocessor directives

Preprocessor directive Action
#def 1 ne synbol Definessynbol
#undef synbol Undefinessynbol
#1 f synbol [oper at or synbol totest; operat orsare==,! = && and| | , followed by

synbol 2]
#el se

#el 1 f synbol [operat or
synbol 2]

#endi f
#war ni ng t ext

#Herror text

#l 1 ne nunber ["file"]

#regl on nane
#endr egl on

downloaded from: lib.ommolkefab.ir

#el se,#el 1 f,and #endi f
Executes code to subsequent #endi f

Combines#el se branchand #1 f test

Ends conditional directives
t ext of the warning to appear in compiler output

t ext of the error to appear in compiler output

nunber specifiesthelinein sourcecode; f 1 | e isthe filename to appear
IN computer output

Marks the beginning of outline
Ends an outline region

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.22 Framework Class Library Overview

Almost al the capabilities of the NET Framework are exposed via a set of managed types known as the Framework
Class Library (FCL). Because these types are CL S compliant, they are accessible from almost any .NET language.
FCL types are grouped logically by namespace and are exported from a set of assembliesthat are part of the NET
platform. Using these types in a C# application requires you to reference the appropriate assembly when compiling
(most essential assemblies are referenced by default; see Sectionl.23 later in this book). For you to work effectively in
C# onthe .NET platform, it isimportant to understand the general capabilities in the predefined class library.

In this section, we give an overview of the entire FCL (broken down by logical area) and provide references to
relevant types and namespaces so that you can explore their detailsin the .NET Framework SDK on your own.

The specific types and namespaces mentioned in this overview are based on the final released version of the .NET
Framework.

Useful tools for exploring the FCL include the .NET Framework SDK documentation, the Visua Studio .NET
documentation, the WinCV .exe class browser, and the L Dasm.exe disassembler.

1.22.1 Core Types

The core types are contained in the Sy st emnamespace. This namespace is the heart of the FCL and contains
classes, interfaces, and attributes on which all other types depend. The root of the FCL isthetype Obj ect , from
which all other NET types derive. Other fundamental types are Val ueType (the base type for structs), Enum(the
base type for enums), Conver t (used to convert between base types), Except i on (the base type for all
exceptions), and the boxed versions of the predefined value types. Interfaces that are used throughout the FCL (such
as| Cl oneabl e, | Conpar abl e, | Formatt abl e,and| Converti bl e) are dso defined here. Extended
typessuchasDat eTi nme, Ti neSpan, and DBNul | are available aswell. Other classes include support for
delegates (see Section 1.15 earlier in this book), basic math operations, custom attributes (see the earlier section
Section 1.19), and exception handling (see the earlier Section 1.18).

For more information, see the Sy st emnamespace in the NET Framework SDK Documentation.

1.22.2 Text

The FCL providesrich support for text. Important types includethe Syst em St r i ng classfor handling
immutable strings, aSt r 1 ngBui | der classthat provides string-handling operations with support for locale-aware
comparison operations and multiple string-encoding formats (ASCI I, Unicode, UTF-7, and UTF-8), aswell as a set

of classes that provide regular-expression support.

For more information, see the following namespaces in the .NET Framework SDK Documentation.

Syst em Text
System Text . Regul ar Expr essi ons

An important related type in another namespaceis Syst em St ri ng.

1.22.3 Collections

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

The FCL provides a set of genera-purpose data structuressuch as Syst em Array, ArraylLi st , Hasht abl e,
Queue, St ack, Bi t Arr ay, and more. Standardized design patterns using common base types and public

Interfaces allow consistent handling of collections throughout the FCL for both predefined and user-defined collection
types.

For more information, see the following namespaces.

System Col | ecti ons
System Col | ecti ons. Speci al | zed

An important related type in another namespaceisSyst em Arr ay.

1.22.4 Streams and /O

The FCL provides good support for accessing the standard input, output, and error streams. Classes are also provided
for performing binary and text file |/O, registering for notification of filesystem events, and accessing a secure user-
specific storage area known as |solated Storage.

For more information, see the following namespaces.

System | O
System | O | sol at edSt or age

An important related type in another namespaceis Syst em Consol e.

1.22.5 Networking

The FCL provides alayered set of classes for communicating over the network using different levels of abstraction,
iIncluding raw socket access, TCP, UDP, and HT TP protocol support; a high-level request/response mechanism based
on URIs and streams, and pluggable protocol handlers.

For more information, see the following namespaces.

Syst em Net
System Net . Socket s

An important related type in another namespaceisSyst em | O. St r eam

1.22.6 Threading

The FCL provides rich support for building multithreaded applications, including thread and thread-pool
management, thread-synchronization mechanisms (such as monitors, mutexes, events, reader/writer locks, etc.), and
access to such underlying platform features as I/O compl etion ports and system timers.

For more information, see the following namespaces.

System Thr eadi ng
System Ti ners

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Important related types in other namespaces include Syst em Thr ead and
System ThreadStati cAttri bute.

1.22.7 Security

The FCL provides classes for manipulating all elements of the .NET Framework's Code Access Security model,
Including security policies, security principals, permission sets, and evidence. These classes also support
cryptographic algorithms such as DES, 3DES, RC2, RSA, DSig, MD5, SHA1, and Base64 encoding for stream
transformations.

For more information, see the following namespaces.

System Security

System Security. Cryptography

System Security. Cryptography. X509Certifi cates
System Security. Cryptography. Xm

System Security. Perm ssi ons

System Security. Policy

System Security. Princi pal

1.22.8 Reflection and Metadata

The .NET runtime depends heavily on the existence of metadata and the ability to ingpect and manipulate it
dynamically. The FCL exposes this via a set of abstract classes that mirror the significant elements of an application
(assemblies, modules, types, and members) and provide support for creating instances of FCL types and new types on
thefly.

For more information, see the following namespaces:

System Refl ecti on
System Refl ection. Emt

Important related types in other namespacesinclude Syst em Type, Syst em Act 1 vat or and
Syst em AppDonal n.

1.22.9 Assemblies

The FCL provides attributes that tag the metadata on an assembly with information such as target OS and processor,
assembly version, and other information. The FCL also provides classes to manipulate assemblies, modules, and
assembly strong names.

For more information, see the following namespace:

System Refl ecti on

1.22.10 Serialization

The FCL includes support for serializing arbitrary object graphs to and from a stream. This serialization can store and

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

transmit complex data structures viafiles or the network. The default serializers provide binary and XM L-based
formatting but can be extended with user-defined formatters.

For more information, see the following namespaces.

System Runti ne. Seri alization

System Runtine. Serialization. Formatters

System Runtine. Seri alization. Formatters. Soap
System Runtine. Serialization. Formatters. Bi nary

Important related types in other namespacesinclude Syst em NonSeri al 1 zedAttri but e and
System Seri alizabl eAttri bute.

1.22.11 Remoting

Remoting is the cornerstone of a distributed application, and the FCL provides excellent support for making and
receiving remote method calls. Calls may be synchronous or asynchronous, support request/response or one-way
modes, delivered over multiple transports (TCP, HTTP, and SMTP), and serialized in multiple formats (SOAP and
binary). The remoting infrastructure supports multiple activation models, lease-based object lifetimes, distributed
object identity, object marshaling by reference and by value, and message interception. These types can be extended
with user-defined channels, serializers, proxies, and call context.

For more information, see the following namespaces.

System Runt i ne. Renot i ng

System Runt i nme. Renot i ng. Acti vati on
System Runt | me. Renot i ng. Channel s
System Runt i me. Renot i ng. Channel s. H t p
System Runt i me. Renot i ng. Channel s. Tcp
System Runt i nme. Renot | ng. Cont ext s
System Runti ne. Renoting. Lifeti ne
System Runt 1 ne. Renot i ng. Messagi ng
System Runt i ne. Renot i ng. Met adat a
System Runt i ne. Renot i ng. Met adat aSer vi ces
System Runt i ne. Renot i ng. Proxi es
System Runti ne. Renot i ng. Servi ces

Important related types in other namespacesinclude Syst em AppDonal n,
Syst em Cont ext BoundCObj ect,System Context Stati cAttri bute,and
Syst em Mar shal ByRef (bj ect .

1.22.12 Web Services

Logically, web services are simply another form of remoting. In reality, the FCL support for web servicesis
considered part of ASP.NET and is entirely separate from the CLR remoting infrastructure. Classes and attributes
exist for describing and publishing web services, discovering what web services are exposed at a particular endpoint
(URI), and invoking aweb service method.

For more information, see the following namespaces.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

System Web. Ser vi ces

System Web. Servi ces. Configuration
System Web. Servi ces. Descri ption
System Web. Servi ces. D scovery
System Web. Servi ces. Prot ocol s

1.22.13 Data Access

The FCL includes a set of classes that access data sources and manage complex data sets. Known as ADO.NET, these
classes are the managed replacement for ADO under Win32. ADO.NET supports both connected and disconnected
operations, multiple data providers (including nonrelational data sources), and serialization to and from XML.

For more information, see the following namespaces.

Syst em Dat a

Syst em Dat a. Conmon
System Dat a. A eDb
System Dat a. Sgl A 1 ent
System Dat a. Sgl Types

1.22.14 XML

The FCL provides broad support for XML 1.0, XML schemas, XML namespaces with two separate XML parsing
models (a DOM2-based model and a pull-mode variant of SAX?2), and implementations of XSLT, XPath, and SOAP
1.1.

For more information, see the following namespaces.

System Xir
System Xm . Schenma
System Xm . Seri al i zation
System Xm . XPat h

System Xnl . Xs|

1.22.15 Graphics

The FCL includes classes to support working with graphic images. Known as GDI +, these classes are the managed
equivalent of GDI under Win32 and include support for brushes, fonts, bitmaps, text rendering, drawing primitives,
Image conversions, and print-preview capabilities.

For more information, see the following namespaces.

Syst em
System
System
System
System
System

Dr aw ng

Dr awl ng

downloaded from: lib.ommolkefab.ir

Dr aw ng.
Dr awl ng.
Dr aw ng.
Dr awl ng.

Desli gn

Dr aw ng2D
magi ng
Printing

. Text

downloaded from: lib.ommolkefab.ir

1.22.16 Rich Client Applications

The FCL includes support for creating classic GUI applications. This support is known as Windows Forms and
consists of aforms package, a predefined set of GUI components, and a component model suited to RAD designer
tools. These classes provide varying degrees of abstraction from low-level message-loop handler classes to high-level
layout managers and visual inheritance.

For more information, see the following namespaces.

System W ndows. For ns
Syst em W ndows. For ns. Desi gn

1.22.17 Web-Based Applications

The FCL includes support for creating web-based applications. This support is known as Web Forms and consists of a
server-side forms package that generates HTML Ul, a predefined set of HTML-based GUI widgets, and a component
model suited to RAD designer tools. The FCL also includes a set of classes that manage session state, security,
caching, debugging, tracing, localization, configuration, and deployment for web-based applications. Finally, the FCL
Includes the classes and attributes that produce and consume web services, which are described earlier in Section
22.12. Collectively, these capabilities are known as ASP.NET and are a complete replacement for ASP under Win32.

For more information, see the following namespaces.

Syst em Web

Syst em Web. Cachi ng

System Web. Confi guration
System Web. Host i ng

System Web. Mai |

System Web. Security
System Web. Sessi onSt at e
System Web. Ul

System Web. Ul . Desi gn
System Web. Ul . Desi gn. WebControl s
System Web. Ul . Ht nl Control s
System Web. Ul . WebControl s

1.22.18 Globalization

The FCL provides classes that aid globalization by supporting code-page conversions, locale-aware string operations,
date/time conversions, and the use of resource files to centralize localization work.

For more information, see the following namespaces.

System d obal I zat 1 on
Syst em Resour ces

1.22.19 Configuration

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

The FCL provides access to the .NET configuration system, which includes a per-user and per-application
configuration model with inheritance of configuration settings, and a transacted installer framework. Classes exist
both to use the configuration framework and to extend it.

For more information, see the following namespaces:

System Conf i guration
System Confi guration. Assenbl i es
System Configuration.|nstall

1.22.20 Advanced Component Services

The FCL provides support for building on COM+ services such as distributed transactions, JI'T activation, object
pooling, queuing, and events. The FCL also includes types that provide access to reliable, asynchronous, one-way
messaging via an existing Message Queue infrastructure (MSMQ), in addition to classes that provide accessto
existing directory services (Active Directory).

For more information, see the following namespaces.

System Di rectoryServi ces

System EnterpriseServices

System EnterpriseServices. Conpensat | ngResour ceManager
Syst em Messagi ng

1.22.21 Diagnostics and Debugging

The FCL includes classes that provide debug tracing with multilistener support, access to the event log, access to
process, thread, and stack frame information, and the ability to create and consume performance counters.

For more information, see the following namespaces.

System D agnostics
System D agnhosti cs. Synbol St ore

1.22.22 Interoperating with Unmanaged Code

The .NET runtime supports bidirectional interop with unmanaged code via COM, COM+, and native Win32 API
calls. The FCL provides a set of classes and attributes that support this, including precise control of managed object
lifetime and the option of creating user-defined custom marshallers to handle specific interop situations.

For more information, see the following namespaces.

System Runti ne. | nt eropServi ces
System Runti ne. | nt eropSer vi ces. Cust omvar shal er s
System Runti nme. | nt eropServi ces. Expando

An important related type in another namespaceis Sy st em Buf f er .

1.22.23 Compiler and Tool Support

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

In the .NET runtime, components are distinguished from classes by the presence of additional metadata and other
apparatus that facilitate the use of the component forms packages such as Windows Forms and Web Forms. The FCL
provides classes and attributes that support both the creation of components and the creation of tools that consume
components. These classes also include the ability to generate and compile C#, JScript, and VB.NET source code.

For more information, see the following namespaces.

M crosoft. CSharp
M crosoft.JScri pt

M crosoft. Vi sual Basi c
M crosoft. Vsa

Syst em CodeDom

Syst em CodeDom Conpi | er
Syst em Conponent Mbde
Syst em Conponent Model . Desi gn

Syst em Conponent Model . Desi gn. Seri al 1 zat1 on
System Runt 1 ne. Conpi | er Servi ces

1.22.24 Runtime Facilities

The FCL provides classes that can control runtime behavior. The canonical examples are the classes that control the
garbage collector and those that provide strong and weak reference support.

For more information, see the following namespace:
System

An important related type in another namespaceisSyst em Runt i ne. | nt er opSer vi ces. GCHandl e.

1.22.25 Native OS Facilities

The FCL gives support for controlling existing NT services and creating new ones. |t also provides access to certain
native Win32 facilities such as the Windows registry and the Windows Management | nstrumentation (WMI).

For more information, see the following namespaces.

M crosoft. Wn32

Syst em Managenent

System Managenent . I nstrunent ati on
System Servi ceProcess

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.23 Namespaces and Assemblies

Table 1-6 alows you to look up a namespace and determine which assemblies export that namespace. Thisinformation is
constructing the appropriate/ r ef erence :<fil e | I st > command-line option for the C# compiler. However, co

assemblies are referenced by default.

For acomplete list of default assemblies, see the global C# response file, csc.rsp, in

%SystemRoot%\Microsoft. NET\Framework\VERSION , where VERSON is the version number of the framework (the firs

NET isv1.0.3705). You can modify csc.rsp to affect all compilations that run on your machine, or you can create alocal
your current directory. The local response file is processed after the global one. You can usethe/ noconf 1 g switch wi

disable the local and global csc.rsp filesentirely.

Accessli bi |
EnvDTE

Ity

| EHOoSt . Execut e
M crosoft. CLRADmM n

M crosoft. CSharp

M crosoft.

M crosoft.
M crosoft.
M crosoft.

M crosoft.

M crosoft.

M crosoft.
M crosoft.
M crosoft.

M crosoft.

M crosoft.

| E

Table 1-6. Namespace and assembly cross-reference

Namespace

JScri pt
JScript. Vsa
O fice. Core

VI sual Basi ¢

Vi sual Basic. Compatibility. VB6

VI sua
VI sua
VI sua

Vsa

Basi c. Conpi | er Servi ces
Basi c. Vsa
C

Vsa. Vb. CodeDOM

downloaded from: lib.ommolkefab.ir

DLLs
Accessbility.dll
envdte.dl|
| EExecRemote.dl|
mscorcfg.dl
cscompmgd.d|

System.di
|EHost.dI]

||l EHost.dlI
Microsoft.JScript.dll
Microsoft.JScript.dll
office.dll
Microsoft.VisuaBasic.dll

Sysem.dll
Microsoft.VisualBasic.Compatibilit

Microsoft.Visual Basic.Compatibilit
Microsoft.VisualBasic.dll
Microsoft.VisualBasic.Vsa.dll
Microsoft.Visua C.dll
Microsoft.JScript.dl

Microsoft.Vsa.dll
Microsoft.Vsa.Vh.CodeDOM Proce

downloaded from: lib.ommolkefab.ir

System

D aghostics

mscorlib.dll
M crosoft. Wn32
System.dll
M crosoft VsaVb Microsoft Vsavhb.dll
RegCode RegCode.dll
mscorlib.dll
System
System.d
Syst em CodeDom System.c
Syst em CodeDom Conpi | er System.d
System Col | ecti ons mscorlib.dll
System Col | ections. Specialized Sysem.dll
Syst em Conponent Model System.dll
System.Design.dll
Syst em Conponent Model . Desi gn
Sysem.dll
System.Design.dl|
Syst em Conponent Mbdel . Desi gn. Serialization
System.dll
System Confi guration System.dll
System Configuration. Assenbli es mscorlib.dll
System Confi guration.|nstall System.Configuration.Install.dll
Syst em Dat a System.Data.o
Syst em Dat a. Conmon System.Data.c
System Dat a. A eDb System.Data.d
System Dat a. Sgl A 1 ent System.Data.d
System Dat a. Sgl Types System.Data.d
mscorlib.dll

System.Configuration.Install.dl

mscorlib.dll

System D agnostics

System.Configuration.Install.dll
System Di agnosti cs. Desi gn System.Design.dll

| SymWrapper.dll
System Di agnostics. Synbol Store

mscorlib.dll

System

DirectoryServices

System.DirectoryServices.dll

Syst em

Dr aw ng

System.Drawing.dl

System

Dr aw ng. Desi gn

System.Drawing.Design.dl

System.Drawing.o

System Draw ng. Draw ng2D

System.Drawing.c

System

Draw ng. | nagi ng

downloaded from: lib.ommolkefab.ir

System.Drawing.o

downloaded from: lib.ommolkefab.ir

System Draw ng. Printing

System.Drawing.dl

System Dr aw ng. Text

System.Drawing.dl

System Ent er

ori seServi ces

System.EnterpriseServices.c

System Ent er priseServi ces. Conpensat | ngResour ceManager | System.EnterpriseServices.o
System EnterpriseServices. | nternal System.EnterpriseServices.c
System d obal i zat 1 on mscorlib.dll
mscorlib.dl
System | O
System.dl|
System | O I sol at edSt or age mscorlib.dll
Syst em Managenent System.Management.dl|
Syst em Managenent. | nstrunentation System.Management.dl|
System Messagi ng System.Messaging.dll
System.Design.di
Syst em Messagi ng. Desi gn
System.Messaging.dl|
Syst em Net System.dll
Syst em Net. Socket s System.dll
System Refl ecti on mscorlib.c
System Refl ection. Emt mscorlib.o
mscorlib.c
Syst em Resour ces
System.Windows.Forms.dl|
System Runt i me. Conpi | er Servi ces mscorlib.dll
System Runtinme. I nteropServices mscorlib.dll
System Runti ne. | nt eropServi ces. Cust onivar shal ers CustomMarshalers.dl|
System Runti nme. | nt eropServi ces. Expando mscorlib.c
System Runt i me. Renot i ng mscorlib.o
System Runti ne. Renpti ng. Acti vati on mscorlib.c
mscorlib.c
System Runt i nme. Renot i ng. Channel s
System.Runtime.Remoting.c
System Runti ne. Renot i ng. Channel s. Ht t p System.Runtime.Remoting.o
System Runt i ne. Renot i ng. Channel s. Tcp System.Runtime.Remoting.o
System Runt i ne. Renot | ng. Cont ext s mscorlib.c
System Runti ne. Renoting. Lifetine mscorlib.o
System Runt i ne. Renot i ng. Messagi ng mscorlib.o
System Runt i ne. Renot | ng. Met adat a mscorlib.c
System Runt i ne. Renoti ng. Met adat a. WBcXsd2001 mscorlib.o
System Runt i nme. Renot |1 ng. Met adat aSer vi ces System.Runtime.Remoting.dll
System Runt i me. Renot i ng. Pr oxi es mscorlib.dll

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

| | | mscorlib.dll
System Runt | ne. Renot | ng. Servi ces
System.Runtime.Remoting.dll
System Runtinme. Seri al i zati on mscorlib.c
System Runtine. Serialization. Formatters mscorlib.o
System Runtine. Serialization. Formatters. Bi nary mscorlib.o

System Runti ne. Seri a

| zati on. Fornatters. Soap

System.Runtime.Serialization.Form

System Security

IMSCOri10.0

System Security. Cryptography mscorlib.o
mscorlib.d
System Security. Cryptography. X509Certifi cates
System.dl|
System Security. Cryptography. Xm System.Security.dl|
mscorlib.dll
System Security. Perm ssi ons
System.dll
System Security. Policy mscorlib.dll
System Security. Princi pal mscorlib.dll
Syst em Servi ceProcess System.ServiceProcess.dl|
System.Design.dl
Syst em Servi ceProcess. Desi gn
System.ServiceProcess.dl|
Syst em Text mscorlib.dl
Syst em Text . Regul ar Expr essi ons Sysem.dll
mscorlib.dll
Syst em Thr eadi ng
System.dl|
System Ti ners System.dl|
Syst em Web Sysem.Webh.d
Syst em Web. Cachi ng System.Web.c
Syst em Web. Conf i guration System.Web.d
System Web. Handl er s System.Web.o
Syst em Web. Host i ng System.Web.d
System Web. Mai | System.Web.c
Syst em Web. Regul ar Expr essi ons System.Web.RegularExpressions.dl|
System Web. Security System.Web.dll
Syst em Web. Ser vi ces System.Web.Services.c
System Web. Servi ces. Configuration System.Web.Services.c
Syst em Web. Servi ces. Descri ption System.Web.Services.c
System Web. Servi ces. D scovery System.Web.Services.c
System Web. Servi ces. Protocol s System.Web.Services.c
Syst em Web. Sessi onSt at e System.Web.dll

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Syst em Web. Ul System.Web.dll
System Web. Ul . Desi gn System.Design.dll
System Web. Ul . Desi gn. WebControl s System.Design.dll
System Web. Ul . H nl Control s System.Web.d
System Web. Ul . WebControl s System.Web.d
System Web. Ut i | System.Web.d
Syst em W ndows. For ns System.Windows.Forms.dll
System W ndows. For ns. Conponent Model . Con2l nt er op System.Windows.Forms.dll
System.Design.di|
Syst em W ndows. For ns. Desi gn
System.Windows.Forms.dll
System W ndows. Forns. PropertyG i dl nt er nal System.Windows.Forms.dll
System.Data.dll
System Xml
Sysem.XML.c
System Xnl . Schema Sysem.XML.c
System Xm . Serial i zation Sysem.XML.c
System Xnl . XPat h Sysem.XML.c
System Xm . Xsli Sysem. XML.c

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.24 Regular Expressions

Table1-7 through Table 1-16 summarize the regular-expression grammar and syntax supported by the regular-
expression classesin Syst em Text . Regul ar Expr essi ons. (For moreinformation, seethe".NET

Framework Regular Expressions’ topic inthe .NET Framework SDK Documentation.) Each of the modifiers and
gualifiersin the tables can substantially change the behavior of the matching and searching patterns. For further
Information on regular expressions, we recommend the definitive Mastering Regular Expressions by Jeffrey E. F.
Friedl (O'Relilly, 2002).

All the syntax described in the tables should match the Perl5 syntax, with specific exceptions noted.

Table 1-7. Character escapes

Escape code sequence M eaning Hexadecimal equivalent
\ a Bell \ u0007
\ b Backspace \ u0008
\ t Tab \ u0009
\ T Carriage return \ u000D
\ v Vertical tab \ u000B
\ f Form feed \ u000C
\ N Newline \ UOOOA
\ e Escape \u001B
\ 040 ASCII character as octal
\ x20 ASCI| character as hex
\cC ASCII control character
\ u0020 Unicode character as hex
\ non- escape A nonescape character

As a special case: within aregular expression, \ b means word boundary, exceptina| | set, inwhich\ b meansthe

backspace character.
Table 1-8. Substitutions
EXpression M eaning
$gr oup- nunber Substitutes last substring matched by gr oup- nunber
${ gr oup- nane} Substitutes last substring matched by (?<gr oup- nane>)

Substitutions are specified only within areplacement pattern.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Table 1-9. Character sets

EXpression Meaning
Matches any character except \ n
characterlist] 'Matchesasinglecharacterinthelist
~characterl i st] Matchesasingle character not in thelist
char O- char 1] Matches a single character in arange
\'w Matches aword character; ssmeas| a- ZzA- Z 0- 9]
\ W Matches a nonword character
\'S Matches a space character; sameas| \n\r\t\v\f]
\'S Matches a nonspace character
\d Matches a decimal digit; ssmeas| 0- 9]
\D Matches a nondigit
Table 1-10. Positioning assertions
EXpression M eaning
N Beginning of line
$ End of line
\ A Beginning of string
\Z End of line or string
\ Z Exactly the end of string
\ G Where search started
\'b On aword boundary
\B Not on aword boundary

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Table 1-11. Quantifiers

Quantifier Meaning
* 0 or more matches

+ 1 or more matches

? 0 or 1 matches

{ n} Exactly n matches

{n,} At least n matches
{n,nt Atleast n, but no morethan m matches

* _azy *, finds first match that has minimum repeats

+7 _azy +, minimum repeats, but at least 1

?7? |_azy ?, zero or minimum repeats

{n}? _azy {n}, exactly n matches

{n,}? |Lazy {n}, minimum repeats, but at least n

{n, nt? |Lazy {n,m}, minimum repeats, but at |east n, and no more than m

Table 1-12. Grouping constructs

Syntax Meaning
() Capture matched substring
(2<name>) Capture matched substring into group name2l
(?<nanel- Undefine name2, and store interval and current group into namel; if name2 is undefined,
nane2>) matching backtracks; namel isoptional@
(?.) Noncapturing group
i(:rlngzsx) Apply or disable matching options
(?=) Continue matching only if subexpression matches on right
(?!) Continue matching only if subexpression doesn't match on right
(?<=) Continue matching only if subexpression matches on left
(?<!) Continue matching only if subexpression doesn't match on |eft
(?>) Subexpression is matched once, but isn't backtracked

[2] Single quotes may be used instead of angle brackets-for example, (?' hane".

The named capturing group syntax follows a suggestion made by Jeffrey E. F. Friedl in
Mastering Regular Expressions. All other grouping constructs use the Perl5 syntax.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Table 1-13. Back references

Parameter syntax Meaning
\ count Back reference count occurrences
\ k<nane> Named back reference

Table 1-14. Alternation

EXxpression syntax M eaning
| Logical OR

(?(expression)yes| no) Matchesyes if expression matches, elseno; theno isoptional
(?(nane) yes| no) Matchesyes if named string has a match, elseno; the no isoptiona

Table 1-15. Miscellaneous constructs

EXpression Syntax Meaning
(?1 MSsX-1 Mmsx) Set or disable options in midpattern
(?#) Inline comment
[to end of ling] X-mode comment

Table 1-16. Regular-expression options

Option M eaning
| Case-insensitive match
Multiline mode; changes* and $ so they match beginning and end of any line

Capture explicitly named or numbered groups

Single-line mode; changes meaning of "." so it matches every character
Eliminates unescaped whitespace from the pattern

><U')33

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.25 Format Specifiers

Table 1-17 lists the numericformat specifiers supported by the For mat method on the predefined numeric types.

Table 1-17. Numeric format specifiers

Specifier String result Datatype
$XX, XX. XX
d n] Currency
($XX, XXX. XX)
O n] [-] XXXXXXX Decimal

[-] Xo XXXXXXE+X XX

[-] Xo XXXXXXe+X XX
E[n] ore[n] Exponent
[-] Xo XXXXXXE- XXX

[-] Xo XXXXXXe- XXX

F[n] [-] XXXXXXX. XX Fixed point
gn General or scientific General

N[n] [-] XX, XXX, XX Number
X[n] orx[n] Hex representation Hex

This example uses avariety of numeric format specifiers:

usi ng System
cl ass Test Default Formats {
static void Main() {

/] no precision specifiers

int 1 = 654321;

Console. WiteLine("{O0:C", 1); [/l $654,321. 00
Console. WiteLine("{O0:D}", 1); /] 654321
Console. WiteLine("{O:E}", 1); /] 6.543210E+005
Console. WiteLine("{O:F}", 1); [/ 654321. 00
Console. WiteLine("{0:G", 1); // 654321

Console. WiteLine("{O:N", 1); /] 654,321.00
Console. WiteLine("{O0:X}", 1); [/ 9FBF1

Console. WiteLine("{O0:x}", 1); [/ 9fbfl

/] use precision specifiers

| = 123;

Console. WiteLine("{0:C6}", i); // $123.000000
Console. WiteLine("{0:D6}", 1); [// 000123

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Console. WiteLine("{O:E6}", 1); // 1.230000E+002
Console. WiteLine("{0:G}", 1); // 123

Console. WiteLine("{0:Ne}", 1); // 123.000000
Console. WiteLine("{0: X6}", 1); // 0000/B

// use a doubl e val ue

double d = 1. 23;

Console. WiteLine("{0O:Ce6}", d); // $1.230000
Console. WiteLine("{0:E6}", d); // 1.230000E+000
Console. WiteLine("{0:G&G}", d); // 1.23

Console. WiteLine("{0:N6}", d); // 1.230000

}
}

1.25.1 Picture Format Specifiers

Table 1-18 lists the valid picture format specifiers supported by the For nat method on the predefined numeric types
(see Syst em | For mat t abl e inthe .NET Framework SDK Documentation).

Table 1-18. Picture-format specifiers
Specifier String result
0 Zero placeholder
= Digit placeholder
Decimal point
: Group separator or multiplier
% Percent notation
EO, E+O, E-0, e0O, e+0, e-0 Exponent notation
\ Literal character quote
xxt, U xx” Literal string quote
: Section separator
This example uses picture-format specifiers on various values.
usi ng System
cl ass Test | nt eger Cust onfFormat s {
static void Main() {
int 1 = 123;
Console. WiteLine("{0:#0}", 1); [123
Consol e. WiteLine("{0:#0; (#0)}", i); [/ 123
Consol e. WiteLi ne("{0: #0; (#0) ; <zero>}", 1); [/ 123
Console. WiteLine("{O0:#%", 1); [/ 12300%
double d = 1. 23;

Consol e. WiteLine("{0:#. 0O000E+00} ",

downloaded from: lib.ommolkefab.ir

d);

[] 1.230E+00

downloaded from: lib.ommolkefab.ir

Consol e. Wi teLi ne(

"{0: #. 000E+0O0; (#. O00OE+00) }", d); [/ 1.230E+00
Consol e. Wi teLl ne(

"{0: #. O0O0OE+00; (#. O00E+00) ; <zero>}", d); [// 1.230E+00
Console. WiteLine("{0:#%", d); [123%

}
}

1.25.2 DateTime Format Specifiers

Table1-19 liststhevalid format specifiers supported by the For nat method ontheDat e Ti ne type (seethe "Date
and Time Format Strings' topic in the .NET Framework SDK Documentation).

Table 1-19. DateTime format specifiers

Specifier String result
d/yyyy

, MVMW dd, yyyy

, MVW dd, yyyy HH mm

, MMW ad, yyyy HH mm ss

d/ yyyy HH nmm

WM dd/ yyyy HH nm ss

MVIVM dd

Ddd, dd MW yyyy HH :'nmi:'ss ' GMI"
yyyy- Mt dd HH: nm ss

yyyy- M dd HH. mm ss GMITI

HH: nmm

HH: mm ss

yyyy- MMt dd HH. nm ss

dddd, MVWM dd, yyyy HH nm ss

VMW ' yyyy

(@)
(@)
(@)

(@)
(@)
(@)

(@)

(@)

(@)
oNNoNNoNNoRN®)

BG)(Q'I'I_"UQ
2

A<

<|clcldllwn vl =

<

Here's an exampl e that uses these custom format specifiersonaDat eTi ne value:

usi ng System
cl ass Test Dat eTi neFormat s {
static void Main() {

Dat eTi ne dt = new DateTi ne(2000, 10, 11, 15, 32, 14);
[/ Prints "10/11/ 2000 3:32:14 PM
Consol e. WiteLine(dt. ToString());
[/ Prints "10/11/ 2000 3:32:14 PM
Console. WiteLine("{0}", dt),;
/[l Prints "10/11/2000"
Consol e. WiteLine("{0:d}", dt);

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

[/ Prints "Wednesday, Cctober 11, 2000"

Console. WiteLine("{O0:D}", dt);

[/ Prints "Wednesday, Cctober 11, 2000 3: 32 PM

Console. WiteLine("{0O:f}", dt);

[/ Prints "Wednesday, Cctober 11, 2000 3:32:14 PM

Console. WiteLine("{O:F}", dt);

[/ Prints "10/11/ 2000 3: 32 PM

Console. WiteLine("{0:qg}", dt);

[/ Prints "10/11/2000 3:32:14 PM

Console. WiteLine("{0:G", dt);

[/ Prints "QOctober 11"

Console. WiteLine("{0:n}", dt);

[/ Prints "QOctober 11"

Console. WiteLine("{O:M", dt);

[/ Prints "Wed, 11 Cct 2000 22:32:14 QGMVI"

Console. WiteLine("{O:r}", dt);

[/ Prints "Wed, 11 Cct 2000 22:32:14 GV

Console. WiteLine("{O:R}", dt);

/[l Prints "3:32 PM

Console. WiteLine("{0O:t}", dt);

[/ Prints "3:32:14 PM

Console. WiteLine("{0O:T}", dt);

[/l Prints "2000-10-11 15: 32:14Z7"

Console. WiteLine("{O:u}", dt);

[/ Prints "Wednesday, Cctober 11, 2000 10: 32:14 PM

Consol e. WiteLine("{0:U", dt);

[/ Prints "October, 2000"

Console. WiteLine("{0O:y}", dt);

[/ Prints "QOctober, 2000"

Console. WiteLine("{0:VY}", dt);

[/ Prints "Wdnesday the 11 day of October in the year

[2000"

Consol e. Wi teLl ne(
"{0:dddd 'the' d 'day of' MMW 'in the year' yyyy}",
dt) ;

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.26 C# Compiler Options

The C# compiler, csc.exe, compiles C# sources and incorporates resource files and separately compiled modules. It
also allows you to specify conditional compilation options, XML documentation, and path information.

1.26.1 Synopsis

csc [options] files

1.26.2 Examples

csc foo.cs /r:bar.dll /wn32res: foo.res
csc foo.cs /debug /define: TEMP

1.26.3 Options

[?,/help
Displays usage information and exits.
@file
Specifies aresponse file contai ning arguments to csc.exe.

[addrmodul e filel[; file2...]

|mports metadata from one or more named modules (files with the extension .netmodule). To create a
module, use/ t ar get : nodul e.

| baseaddr ess :addr
Specifies the base address at which to load DLLS.
[bugreport file

Generates atext file that contains a bug report. Use this to report a bug in csc.exe.
/| checked[+| -]

If you specify / checked+, causes the runtime to throw an exception when an integer operation resultsin a

value outside the range of the associated datatype. This only affects code that has not been wrapped in a
checked or unchecked block of code. If you specify / checked- , an exception is not thrown.

| codepage i1 d

Specifies the code page to use for all sourcefiles.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

[d[efine] :synbol 1[; synbol 2. ..]
Specify one or more symbolsto define. This has the same effect asthe#def | ne preprocessor directive.
[debug[+| -]

Enables or disables debugging information. Y ou may specify / debug instead of / debug+. The default is
[debug- .

[debug: (ful | | pdbonl y)

Specifies the debug modes that are supported by the generated assembly. The f ul | option isthe default and

allows you to perform source-code debugging when attaching a debugger to the program before or after it is
started. The pdbonl y option only permits source-code debugging if you start the program under control of

the debugger. If you attach the debugger to the program after it is started, it displays only native assembly In
the debugger.

[doc file
Specifiesthe XML documentation file to generate.
[filealign:size

Specifies the size, in bytes, of sections in the output file. Valid sizes are 512, 1024, 2048, 4096, 8192, and
16384.

[ful | pat hs

Use fully qualified filenames in error messages.
[1incr[enmental |[+]-]

Enables or disables incremental compilation. By default, incremental compilation is off.
[libdirl[; dir2...]

Specifies directories to search for assembliesimported with the/ r ef er ence option.
[linkres[ource] file[d]

Specifiesa .NET resource (and optional identifier) to link to the generated assembly. Not valid with
[t ar get : nodul e.

/] aln] type

Specifies the name of the type that contains the entry point. Thisisonly valid for executables. The entry point
method must be named Mai n and must be declared static.

/ noconfi g

Specifies not to use the global or local configuration file (csc.rsp). You can find the global csc.rsp filein
%SystemRoot%\Microsoft. NET\Framework\VERSI ON, in which VERSI ON isaversion of the .NET

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Framework. This file contains default arguments for the C# compiler, including the list of assembliesthat are
Imported by default. If you create afile named csc.rsp in the same directory as your source code, it Is
processed after the global configuration file.

/ nol ogo

Suppresses display of the banner and copyright messages.
[nostdlib[+|-]

With/ nost dl i b+ or/ nost dl | b, causesthe C# compiler to import mscorlib.dll, which defines the
fundamental types used in .NET and most of the System namespace.

[nowar n :nunber 1[; nunber 2. ..]

Specifies alist of warning numbersto ignore. Do not include the alphabetic part of the warning. For example,
to suppress warning CS0169, use/ nowar n: 169.

[o[ptimze][+] -]
Enables or disables compiler optimizations. By default, optimizations are enabled.

[out file

Specifies the output filename.

[recurse W | dcard

Recursively searches directories for source-code files matchingw | dcar d (which may include directory
names).

[r[eference] filel[; file2...]

|mports metadata from one or more named assemblies. Generally used with DLLS, but you may also specify
executables.

[res[ource] file[,)d]
Specifiesa .NET resource (and optional identifier) to embed in the generated assembly.
[t[arget] :format

Specifies the format of the output file. Thevalid formatsarel | br ary (DLL library), nrodul e (alibrary
without an assembly manifest), exe (console application), or Wi nexe (Windows application).

[unsaf e[+| -]

Enables or disables (the default) unsafe code. Unsafe code is enclosed in ablock marked by the unsaf e
keyword.

/ ut f Sout put

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Displays compiler console output using UTF-8 encoding.

/W arn] | evel

Sets the compiler warning level from 0 (no warnings) to 4 (the default, all warnings).

[war naserror| +| -]

Enables or disables (the default) treating warnings as errors (warnings halt compilation).

/win32iconfile

Specifies an icon (.ico) fileto use as the application's icon.

/win32res file

Specifies aWin32 resource (.res) fileto insert in the output file.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.27 Essential .NET Tools

The .NET Framework SDK contains many useful programming tools. Here, in an alphabetical list, are those we have
found most useful or necessary for developing C# applications. Unless otherwise noted, the tools in thislist can be
found either in the \bin directory of your .NET Framework SDK installation or in the

%SystemRoot%\Microsoft. NET\Framework\VERSION directory (replace VERSON with the framework version).
Once the .NET Framework isinstalled, you can access these tools from any directory. To use any of these tools,

Invoke a Command Prompt window, and enter the name of the desired tool. For a complete list of the available
command-line switches for any given tool, enter the tool name (e.g., csc), and press the Return key.

ADepends.exe: assembly dependency list

Displays all assemblies on which a given assembly is dependent to load. Thisisauseful C# program found
among the samples in the \Tool Developers Guide directory beneath the .NET Framework or Visua Studio

NET directory tree. Y ou need to install these samples before you can use them, because they are not
installed by default.

Al.exe: assembly linking utility

Creates an assembly manifest from the modules and resources files you name. Y ou can also include Win32
resources files. Here's an example:

al /out:c.dll a.netnodul e b. net nodul e
CorDbg.exe: runtime debugger

General source-level, command-line debug utility for MSIL programs. Thisisavery useful tool for C#
source debugging. The source for cordbg Is available in the\Tool Developers Guide directory.

Csc.exe: C# compiler

Compiles C# sources and incorporates resource files and separately compiled modules; also allows you to
specify conditional compilation options, XML documentation, and path information. Here are some
examples:

csc foo.cs /r:bar.dll /wn32res: foo.res
csc foo.cs /debug /define: TEMP

DbgClr.exe: GUI debugger

Windows-based, source-level debugger. Thisis avallable in the \GuiDebug directory of the .NET Framework
SDK installation.

GACULtil.exe: global assembly cache utility

Allowsyou to install, uninstall, and list the contents of the global assembly cache. Here's an example:

gacuti!l /1 c.dll
|LAsm.exe: M SIL assembler

Creates MSIL modules and assemblies directly from an MSIL textual representation.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

|LDasm.exe: MSIL disassembler

Disassembles modules and assemblies. The default isto display atree-style representation, but you can also
specify an output file. Here are some examples:

| | dasm b. dl |
| |l dasm b. dl | /out=b.asm

InstallUtil.exe: installer utility

Executes installers and uninstallers contained within the assembly. A log file can be written, and state
Information can be persisted.

Ngen.exe: native image generator

Compiles an assembly to native code and installs a native image in the local assembly cache. That native
Image Is used each time you access the original assembly, even though the original assembly contains MSIL.
If the runtime can't locate the native image, it falls back on J T compilation. Here are some examples:

ngen f 00. exe
ngen foo. dl|

nmake.exe: make utility

Common utility that scripts building of multiple components and source files and tracks rebuild dependency
Information.

PEV erify.exe: portable executable verifier

Verifiesthat your compiler has generated type-safe MSIL. C# will always generate type-safe MSIL. It has
useful interop with ILASM-based programs.

RegAsm.exe: register assembly tool

Registers an assembly in the system registry. This allows COM clients to call managed methods. Y ou can
also use it to generate the registry file for future registration. Here's an example:

regasm/regfile:c.reg c.dll
RegSvcs.exe: register services utility

Registers an assembly to COM+ 1.0 and installs its typelib into an existing application. This can also
generate atypelib. Here's an example:

regsvcs foo.dll /appnane:comapp /tlb:newfoo.tlDb
Sn.exe: shared name utility

Verifies assemblies and their key information; also generates key files. Here's an example:

sn -k nykey. snk
SoapSuds.exe: SoapSuds utility

Creates XML schemas for services in an assembly and creates assemblies from a schema. Y ou can also
reference the schemaviaits URL. Here's an example:

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

soapsuds
-url:http://1ocal host/ nyapp/ app. soap?wsdl
- 0S: app. xm
TIbExp.exe: type library exporter

Exports a COM typelib derived from the public types within the supplied assembly. Differs fromregasm in
that It doesn't perform any registration. Here's an example:

tlbexp /out:c.tlb c.dll
TIblmp.exe: type library importer

Creates a managed assembly from the supplied COM typelib, mapping the type definitionsto .NET types.
Y ou need to import this new assembly into your C# program for use. Here's an example:

tibinmp /out: MO dComdl|l MyComtlb
Wsdl.exe: web services description language tool

Creates service descriptions and generates proxies for ASP.NET web-service methods. Seethe ASP.NET
documentation in the .NET Framework SDK Documentation for more detail on web services.

WINnCV .exe: windowsclassviewer

Searches for matching names within a supplied assembly. If none are supplied, it uses the default libraries.
The namespaces and classes are displayed in alistbox, and the selected type information is displayed in
another window.

Xsd.exe: XML schemadefinition tool

Generates XML schemas from XDR, XML files, or class information. Can also generate DataSet or class
Information from a schema. Here's an example:

xsd f oo. xdr
xsd bar. dl |

downloaded from: lib.ommolkefab.ir

	Copyright
	C# Language Pocket Reference
	Identifiers and Keywords
	Fundamental Elements
	Value and Reference Types
	Predefined Types
	Arrays
	Variables and Parameters
	Expressions and Operators
	Statements
	Namespaces
	Classes
	Access Modifiers
	Structs
	Interfaces
	Enums
	Delegates
	Events
	Operator Overloading
	Try Statements and Exceptions
	Attributes
	Unsafe Code and Pointers
	Preprocessor Directives
	Framework Class Library Overview
	Namespaces and Assemblies
	Regular Expressions
	Format Specifiers
	C# Compiler Options
	Essential .NET Tools

