

Cisco IOS Access Lists

Jeff Sedayao
Publisher: O'Reilly
First Edition June 2001
ISBN: 1-56592-385-5, 272 pages

This book focuses on a critical aspect of the Cisco IOS--access lists, which are central to securing routers and networks. Administrators cannot
implement access control or traffic routing policies without them. The book covers intranets, firewalls, and the Internet. Unlike other Cisco router
titles, it focuses on practical instructions for setting router access policies rather than the details of interfaces and routing protocol settings.

 Cisco IOS Access lists

 Page 2

TABLE OF CONTENTS

Preface..5
Organization..6
Audience ...7
Conventions used in this book ..8
Acknowledgments...9

Chapter 1. Network Policies and Cisco Access Lists ...10

1.1 Policy sets ...11
1.1.1 Characteristics of policy sets ...13
1.1.2 Policy sets in networks...13

1.2 The policy toolkit ..16
1.2.2 Controlling packets passing through a router ..18
1.2.3 Controlling routes accepted and distributed...19
1.2.4 Controlling routes accepted and distributed based on route characteristics...................20
1.2.5 Putting it all together..21

Chapter 2. Access List Basics...22

2.1 Standard access lists..22
2.1.1 The implicit deny ...23
2.1.2 Standard access lists and route filtering...24
2.1.3 Access list wildcard masks ..25
2.1.4 Specifying hosts in a subnet versus specifying a subnet25
2.1.5 Access list wildcard masks versus network masks..26
2.1.6 The implicit wildcard mask ...27
2.1.7 Sequential processing in access lists..28
2.1.8 Standard access lists and packet filtering ..28
2.1.9 Generic format of standard access lists..30

2.2 Extended access lists...31
2.2.1 Some general properties of access lists..34
2.2.2 Matching IP protocols..34
2.2.3 More on matching protocol ports...35
2.2.4 Text substitutes for commonly used ports and masks ...37
2.2.5 Generic format of extended access lists...38

2.3 More on matching ...40
2.3.1 Good numbering practices ...44

2.4 Building and maintaining access lists ...46
2.4.1 Risks of deleting access lists as an update technique ..48
2.4.2 Displaying access lists ...49
2.4.3 Storing and saving configurations ...50
2.4.4 Using the implicit deny for ease of maintenance...51

2.5 Named access lists ..51

Chapter 3. Implementing Security Policies ..52
3.1 Router resource control...52

3.1.1 Controlling login mode ..53
3.1.2 Restricting SNMP access...56
3.1.3 The default access list for router resources..57

 Cisco IOS Access lists

 Page 3

3.2 Packet filtering and firewalls ..58
3.2.1 A simple example of securing a web server ..58
3.2.2 Adding more access to the web server...59
3.2.3 Allowing FTP access to other hosts...60
3.2.4 Allowing FTP access to the server ..61
3.2.5 Passive mode FTP..62
3.2.6 Allowing DNS access ..63
3.2.7 Preventing abuse from the server...64
3.2.8 Direction of packet flow and extended access lists ...66
3.2.9 Using the established keyword to optimize performance....................................68
3.2.10 Exploring the inbound access list ..68
3.2.11 Session filtering using reflexive access lists..75
3.2.12 An expanded example of packet filtering ..79

3.3 Alternatives to access lists ..88
3.3.1 Routing to the null interface ..88
3.3.2 Stopping directed broadcasts ...89
3.3.3 Removing router resources ..89

Chapter 4. Implementing Routing Policies...90

4.1 Fundamentals of route filtering...90
4.1.1 Routing information flow ..90
4.1.2 Elements in a routing update..91
4.1.3 Network robustness..93
4.1.4 Business drivers and route preferences..96

4.2 Implementing routing modularity ...98
4.2.1 Minimizing the impact of local routing errors...99
4.2.2 Managing routing updates to stub networks ..101
4.2.3 Redistributing routing information between routing protocols102
4.2.4 Minimizing routing updates to stub networks using default networks..............103
4.2.5 Filtering routes distributed between routing processes106

4.3 Implementing route preferences ...106
4.3.1 Eliminating undesired routes ...107
4.3.2 Route preferences through offset-list...110
4.3.3 Route preferences through administrative distance ...114

4.4 Alternatives to access lists ..119
4.4.1 Static routing ..119
4.4.2 Denying all route updates in or out of an interface..122

Chapter 5. Debugging Access Lists ...123

5.1 Router resource access control lists ..123
5.1.1 Checking for correctness..124
5.1.2 When access lists don't work ...125
5.1.3 Debugging router resource access lists ..126

5.2 Packet-filtering access control lists...127
5.2.1 Checking for correctness..128
5.2.2 Debugging extended access lists..133

5.3 Route-filtering access control lists..140
5.3.1 Checking for correctness..140
5.3.2 Debugging route-filtering access lists..151

 Cisco IOS Access lists

 Page 4

Chapter 6. Route Maps...155
6.1 Other access list types ...156

6.1.1 Prefix lists ..156
6.1.2 AS-path access lists..159
6.1.3 BGP community attribute ..164

6.2 Generic route map format ...165
6.3 Interior routing protocols and policy routing..168
6.4 BGP...171

6.4.1 Match clauses in BGP..171
6.4.2 Route maps as command qualifiers ...173
6.4.3 Implementing path preferences..174
6.4.4 Propagating route map changes ...185

6.5 Debugging route maps and BGP...186

Chapter 7. Case Studies..189
7.1 A WAN case study..189

7.1.1 Security concerns ...191
7.1.2 Robustness concerns ..191
7.1.3 Business concerns ..191
7.1.4 Site 1 router configurations..191
7.1.5 Site 2 router configurations..194
7.1.6 Site 3 router configurations..196

7.2 A firewall case study...199
7.2.1 Screening router configuration ..201
7.2.2 Choke router configuration ..204

7.3 An Internet routing case study ..207
7.3.1 Robustness concerns ..209
7.3.2 Security concerns ...209
7.3.3 Policy concerns ..209
7.3.4 Router configurations...210

Appendix A. Extended Access List Protocols and Qualifiers219

Appendix B. Binary and Mask Tables ..222

Appendix C. Common Application Ports ...226

Colophon ..227

 Cisco IOS Access lists

 Page 5

Preface
Building and maintaining a network involves more than just making sure that packets can
flow between devices on the network. As a network administrator, you also want to ensure
that only the right people can access resources on your network, and that your network will
continue to run even if parts of that network fail or are configured incorrectly. Your
organization may have directives that you need to implement, like using cheaper network
paths whenever possible. In short, while maintaining connectivity is important, you also need
to implement security, robustness, and business policies with your network.

This book is about network policies and how to implement those policies using Cisco IOS
access lists. I present a way to think about access lists and network policy, describe how
access lists are built, and give examples of how to apply those access lists in different
situations. Along the way, there are a number of sidebars and notes about concepts and
information important to using access lists, and at the end of the book, there are appendixes
with useful reference material.

A brief note about what I cover: the access lists in this book deal only with the Internet
Protocol (IP), though you could probably use many of the same techniques with other
network protocols as well. While all the examples involve Cisco IOS access lists, many of the
concepts are generic and can be applied to other router vendors' equipment. I've tried to make
the examples in this book applicable to as many IOS versions as possible; most examples
should work with Versions 10.* and above. If a feature is only available later or is known to
fail with certain platforms and versions, I try to point that out. Please note, also, that the terms
"access list" and "access control list" are used interchangeably throughout the book.

It is unfortunate that the general policy mechanism for Cisco routers is known as an access
list. The term access connotes that access lists apply only to the area of security, while in fact
access lists are used for a whole range of policies, not just for security concerns. I envision
this book as a guide and reference for implementing network policies with access lists on
Cisco routers.

 Cisco IOS Access lists

 Page 6

Organization

Chapter 1, motivates our discussion of access lists by giving examples of why you need to
implement network policies. It then describes a framework for thinking about access lists and
provides an idea of how we use access lists and the tools for implementing policy.

Chapter 2, describes access list fundamentals: the format of the basic types, masking, and
ways to maintain access lists. It also discusses some tricks and traps of access lists (like the
difference between network masks and access list masks), some common mistakes, and ways
to reduce the number of access list entries and access list changes you may need to make.

Chapter 3, shows how to use access lists to implement security policies. It has examples of
access lists that control access to router resources and to hosts, and discusses the tradeoffs of
different kinds of access lists. The chapter includes explanations of how certain protocols
work and ends with a discussion of access list alternatives.

Chapter 4, describes using access lists to control routing. Network administrators typically
use access lists for routing to make sure that their networks are robust and to implement
business policy decisions; I include a number of examples demonstrating these tasks.

Chapter 5, is about (what else?) debugging access lists. It first goes over how to check that
your access lists are correct, and then shows what to do if you discover that they are wrong.

Chapter 6, describes more advanced forms of access lists, including community lists, AS path
access lists, and route maps. The chapter goes over policy routing and ends with a discussion
of using access lists and routes with BGP, the Border Gateway Protocol.

Chapter 7, concludes the book with some case studies of how different types and applications
of access lists are used together in a variety of scenarios. There are three cases: an example of
routers that connect sites within an organization, a firewall example, and a BGP routing
example.

Appendix A, has a number of tables listing keywords and qualifiers for extended access lists.

Appendix B, contains a decimal/binary conversion chart and a table of prefix lengths and their
corresponding network masks, access list masks, and valid networks.

Appendix C, contains a table of commonly used application ports.

 Cisco IOS Access lists

 Page 7

Audience

This book is designed for network administrators and others who use Cisco routers to
implement policies, whether the policies are for security or to ensure that networks are robust.
Basic knowledge of Cisco routers and TCP/IP is assumed. Those who are relatively new to
using Cisco routers should start with Chapter 1 and work their way through Chapter 5.
Network administrators who need to implement policy-based routing using route maps,
whether with interior routing protocols or with BGP, should read Chapter 6. Chapter 7
contains case studies that readers may find useful.

Administrators who are experienced in using Cisco routers can use this book as a reference
for policy implementation, debugging, and access lists in general. Chapter 2 describes
masking techniques that may reduce access list sizes and reduce the number of necessary
changes. Chapter 3, Chapter 4, Chapter 6, and Chapter 7 have many examples of
implementing basic security, robustness, and business policies. Readers interested in
debugging access list problems should find Chapter 5 useful. The three appendixes contain
helpful reference tables of access list keywords, decimal to binary conversions, and masks
and ports that common applications use. Network administrators may find the table showing
network masks, access list masks, and valid networks for each possible prefix length
particular useful.

 Cisco IOS Access lists

 Page 8

Conventions used in this book

I have used the following formatting conventions in this book:

• Italic is used for router commands (commands that are typed at the router command
prompt, whether in privileged mode or not), as well as for emphasis and the first use
of technical terms.

• Constant width is used for router configurations (configuration commands that are
either typed in while in configuration mode or read in from files loaded over the
network). It is also used for strings and keywords that are part of configuration
commands.

• Constant width italic is used for replaceable text.
• Constant width bold is used for user input.

 Cisco IOS Access lists

 Page 9

Acknowledgments

There are several people and organizations I want to acknowledge. Clinton Wong needs to be
mentioned because he was the person who let me know that O'Reilly was looking for authors
in this area. Several organizations deserve thanks, particularly O'Reilly & Associates for
being interested in my book, Intel for giving me the chance to learn about Cisco routers, and
Cisco for making the routers I am writing about. I'd like to thank my editors—Mike Loukides,
Simon Hayes, and Jim Sumser—for putting up with me through all of these years. Andre
Paree-Huff, Sally Hambridge, Lynne Marchi, and Mark Degner deserve acknowledgment for
providing excellent technical reviews. Finally, I'd like to thank Susan, Stephanie, Kevin, and
Chris for enduring me throughout the writing of this book, and to Mom and Dad for watching
the kids numerous times while I went off writing.

 Cisco IOS Access lists

 Page 10

Chapter 1. Network Policies and Cisco Access Lists
In the best of all possible worlds, network administrators would never need network policies.
Crackers would never break into a router to invade a network, routers would never pass bad
routing information, and packets would never take network paths that network administrators
did not intend. Sadly, we live in a hostile, imperfect world. Consider the following scenarios:

• Crackers penetrate Company A's public web site. The intruders replace the company's
web content with pornography. Company A's management and public relations are
consumed with dealing with the resulting negative publicity, much to the detriment of
the company's core business.

• A network administrator works at Site O, one of many sites within a large,
geographically dispersed intranet. Instead of typing "19", he types "10" ("9" and "0"
are next to each other on the keyboard) when configuring a local router. As a result,
Site O begins to advertise a route to network 10.0.0.0/8 instead of network 19.0.0.0/8.
Since network 10.0.0.0/8 belongs to Site P, users on network 10 are unable to access
the rest of the intranet. Network 19.0.0.0/8 users are also isolated because their route
in Site P is also not getting advertised. Users at Sites O and P can't do any work
requiring access to network resources outside their respective sites.

• A company has two connections to the Internet through different Internet service
providers (ISPs), both at the same bandwidth. This has been implemented to provide
backup routing in case one connection goes down. One of the ISPs has traffic-based
prices while the other has a fixed price. To reduce costs, the company wants to use the
fixed-price ISP unless the line to it goes down, in which case it will use the traffic-
based Internet connection. Because a routing policy has not been implemented to
enforce this preference, all Internet IP traffic passes through the usage-based
connection, forcing the company to incur higher than necessary costs.

What can we conclude by looking at these scenarios? We see that crackers may try to
penetrate networks, router configuration mistakes can happen, and network traffic may not
flow through the path that network administrators intend. We see that these problems can
occur accidentally or intentionally, often despite good intentions. In all these cases, if certain
network policies had been formulated and enforced, costly problems could have been
avoided.

Let's look more closely at these scenarios. The first involves crackers breaking into a web site
and modifying the contents. What kind of policy could prevent this situation? Allowing only
HTTP (web) access to the web server from the Internet can greatly reduce the probability of a
break-in, since such a policy makes it much more difficult for crackers to exploit operating
system weaknesses or application software security holes. Even if someone gains access to
the web server, preventing the use of services such as Telnet or FTP to or from the Internet
would make it difficult to exploit the server as a platform for further attacks. It would also be
difficult to upload pictures or other content to the server.

This first scenario deals with security. A network administrator must worry about the
definitive network security concerns: unauthorized modification of information, denial-of-
service attacks, unauthorized access, and eavesdropping. Throughout this book, you'll learn
how to use Cisco access lists to enforce security policies.

 Cisco IOS Access lists

 Page 11

The intranet scenario describes how a configuration mistake at one site in an enterprise
network can create problems for another site far away. In this case, an intranet Site O
advertised a route for a Site P, causing users in Site O and Site P to be cut off from the rest of
the intranet. Again, why are both cut off? Typos happen. Errors in judgment happen. Even
with injections of bad routing information and the best of intentions, a network should keep
running. Network policies that help retain tight control over routes can minimize the impact
of human error.

This scenario illustrates the robustness problem. This problem is conceptually different from
the first scenario and, in many ways, more difficult to deal with. In the security-oriented
scenario, we are trying protect against hostile attacks. In the intranet scenario, we are trying to
protect against operator mistakes. The difference in intent makes it much harder to anticipate
where a problem can occur. Despite the difficulty, it is important that this type of scenario be
anticipated. As intranets and the Internet become mission critical, configuration errors should
not shut down networks. Configuration errors become more and more common as intranets
and the Internet get bigger—the larger a network is, the more components it has that can fail
in strange ways. Also, as more people are involved with maintaining a network, the greater
the chance that one of them will make a configuration mistake. Access policies can minimize
these risks. Maintaining a healthy and robust network is a major motivation for network
access policies, as we will see repeatedly in future chapters.

In the final scenario, traffic should go to the cheaper path, which is identical to the other path
in every respect except for the way it is billed. In this scenario, security and robustness are not
prime motivations. Instead, nontechnical business factors drive traffic policy. Business drivers
are a third major motivation for network access policies.

So these are the three key concerns that motivate the need for access policies: security,
robustness, and business drivers. It should be mentioned that they are not always easily
separated and distinct. Security is often (and should be) a major business reason for access
policies. Good security also helps with network robustness: preventing denial-of-service
attacks keeps the network up and healthy. Conversely, policies intending to maintain network
robustness—minimizing the impact of accidental misconfiguration and equipment failures—
can also minimize the impact of deliberate sabotage. Having a highly available, robust
network is often a business goal that is key to an organization's effectiveness. Despite some
overlap, I mention our three motivations as separate goals because they are distinct and
important enough to help us focus on why we implement access policies.

1.1 Policy sets

Now that you know why you should have policies, how do you implement them in Cisco
router networks? How are Cisco access lists involved with policy at all? In this section, I
describe a conceptual framework that can help with the design and implementation of
policies. The key concept in this framework is the policy set.

If you think about policies in general (not just network access policy), every policy has two
parts, what and how. "What" designates the objects included in a policy. "How" describes
how those objects are affected by the policy. When a policy is enforced, some set of objects
or is evaluated against whether it is affected by that policy. Let's look at policies in a
department store. The store has a policy on business hours. Employees may come in during a
specific range of hours, and customers are allowed in during another range. How is this policy

 Cisco IOS Access lists

 Page 12

divided into the two parts? The affected objects (the "what") are the store's employees and
customers. The "how" is that employees are allowed in during certain hours, and customers
are permitted to shop during certain hours. Of course, people other than employees, such as
delivery workers, also go into stores. As each person goes in, the policy is enforced, and we
check to see whether they are employees, deliverers, or customers. If they are customers, they
may enter only during certain hours.

Let's look at other policies a store might have. Many stores do not permit customers to bring
in knapsacks or large bags. The "what" in the policy are the knapsacks and large bags brought
by people coming to a store. The "how" is a rule forbidding customers from bringing them
into the store and forcing them to check those items into lockers or drop them off in some
area. Also, stores typically have a policy that only employees may enter certain areas. The
"what" in this policy is employees. The "how" is that only employees are permitted in some
area.

When implementing traffic policies in Cisco router networks, we have to partition them in a
similar way. The "what" of a policy, the set of objects affected, is what I will call the policy
set. Let's look at the policy sets in the department store example. For the business-hours
policy, the policy set consists of the store's customers. For the knapsack policy, the policy set
consists of the knapsacks and large bags that customers bring into the store. For the restricted-
area policy, the policy set is made up of the stores' employees.

Policy sets are defined using a series of policy set entries. These entries include or exclude
objects of interest from a policy set. Let's go back to our department store policies to show
how these policy set entries work. The store may have a policy that only employees who have
undergone cashier training, supervisors, or managers may operate a cash register. In this case,
the policy set is made of employees with the approved characteristics. We define the policy
set with the following policy set entries:

Employees with cashier training
Supervisors
Managers

When an employee tries to operate a cash register, he enters an employee ID number, which is
checked against a database to see whether the employee is in the policy set. Is he an employee
with cashier training? Is he a supervisor? Is he a manager? If any of these conditions apply,
that employee is permitted to operate the cash register. In our knapsack policy example,
knapsacks and large bags are included in our policy set, which is defined with the following
policy set entries:

Knapsacks
Large bags

To enforce this policy, each person coming into the store with a bag is checked. Is the bag a
knapsack? Then it is not permitted. Is the bag very large? Again, it is not permitted. If it is not
one of the choices in the policy set (a purse, say), the policy does not apply, and the customer
may bring the bag into the store.

If the store changes its policy to allow large bags containing merchandise to be returned or
exchanged, the policy set is then defined with the following policy set entries:

 Cisco IOS Access lists

 Page 13

Knapsacks
Exclude large bags with merchandise for exchange or return
Large bags

When this bag policy is enforced, people coming into the store have their bags checked. Do
they have a knapsack? The bag may not be brought in. Does the bag have merchandise to
exchange or return? Then it may be brought in. Is the bag large? If so, it may not be brought
in. Policy set entries, as mentioned earlier, can either include or exclude objects from the
policy set.

1.1.1 Characteristics of policy sets

Notice that we add each entry to the policy set in the order specified. This is important
because objects are compared sequentially against a policy set. As soon as an object matches
a policy set entry, no more matching is done. If we had the policy set entries in the following
order:

Knapsacks
Large bags
Exclude large bags with merchandise for exchange or return

then "Large bags" are matched before excluding large bags with merchandise to be
exchanged, and no exception is made.

Enforcing policies takes up resources and has costs. The longer the policy set, the longer it
takes to enforce the policy, and more resources are required. Using our department store
example, if our policy set spelled out different colors of knapsacks and bags:

Green knapsacks
Purple knapsacks
Red knapsacks
Beige knapsacks
All other knapsacks
Aquamarine bags
Blue bags
Yellow bags
Exclude pink bags with merchandise for exchange or return
Exclude all large bags with merchandise for exchange or return
All other bags

it would obviously take longer for an employee to inspect incoming bags. The number of
points where policies are enforced also has an effect on resources. A store with many
entrances would need to have an employee at each entrance to enforce the bag policy. This is
why many department stores have only one entrance: to minimize the number of employees
needed to enforce such a policy.

1.1.2 Policy sets in networks

In network policies, policy sets are sets of the network objects that pass through or into a
router. The three types of network objects that routers process are host IP addresses, packets,
and routes. Network administrators implement policies by defining policy sets of these
objects and applying rules to them. The policies are enforced as routers check the host IP

 Cisco IOS Access lists

 Page 14

addresses, packets, and network numbers going through them to see if they are members of a
defined policy set. If so, rules are applied to those network objects.

1.1.2.1 Policy sets of host IP addresses

Let's give a few examples to show how network policies and policy sets work. I'll describe a
network policy, then break down each policy into a policy set and its rules. Let's start with the
following policy:

Only hosts in network 192.168.30.0/24 can log into Router A

This is the network analog of the department store policy of allowing only employees into
certain areas. In this case, the policy set is composed of the IP addresses in the network
192.168.30.0/24, which we can define as follows:

Policy Set #1: Hosts with IP addresses in network 192.168.30.0/24

We implement this policy by allowing only hosts in the policy set to log into Router A. The
rule that we apply is the following:

Router logins are permitted only from Policy Set #1

When someone tries to log into the router, the IP address of the host is checked. If the IP
address is in Policy Set #1, the person is permitted to log on. This is one way of limiting who
can make changes to a router.

For convenience, policy sets are labeled with numbers and, in some instances, names. This
permits us to reuse policy sets. Let's add another policy as follows:

Only hosts in network 192.168.30.0/24 may use Router A as an NTP (time)
server

We can then have the following policy setting without redefining a new policy set:

Only hosts in Policy Set #1 may use the NTP Service

1.1.2.2 Policy sets of packets

The previous example showed how sets of host addresses form a policy set. Another type of
network object that can be used to form policy sets is a packet. A security-oriented policy
might state:

Only web traffic is allowed to Host A

Such a policy is designed to prevent scenarios like the one mentioned previously, where a
web server was penetrated and altered. The policy set in this example consists of IP packets
carrying the HTTP protocol (the web protocol) going to Host A:

Policy Set #101: HTTP Packets to Host A

 Cisco IOS Access lists

 Page 15

The policy set is applied against the router interface leading to Host A:

Only packets in Policy Set #101 can pass through the router interface leading
to Host A

Only packets in Policy Set #101 are allowed through the interface to the host. Since web
packets are the only packets defined in Policy Set #101, traffic to Host A is effectively limited
to web traffic.

In addition to host IP addresses and packets, policy sets can be comprised of routes. A policy
might say the following:

Accept only routes to network 192.168.65.0/24 from other routers

A policy like this could be used to send only traffic to network 192.168.65.0/24 through a
given router. It might also be used if we know that only routes to 192.168.65.0/24 arrive at the
router. Any other routes received would be there only because of configuration mistakes
(robustness being the key concern) or intentional attacks (security the key concern). Whatever
our motivation, the policy set would be the following:

Policy Set #2: Network 192.168.65.0/24

How would the policy set be affected? It would be as follows:

Routing protocol: Accept only Policy Set #2

The result would be that network 192.168.65.0/24 is the only route allowed into the router's
routing table.

1.1.2.3 Complex policy sets

As policies get more complex, it can be difficult to separate out a policy set. Take the
following policy:

Network traffic should pass through Organization X only as a last resort

In other words, traffic should not go through Organization X unless no other route is
available. This type of policy deals with scenarios like those discussed previously, where for
business reasons like cost, certain network paths are preferred. How do we specify a policy
set for this? Because traffic will not flow through a router to a given destination unless routing
information exists for that destination, we can implement this policy by defining a policy set
of all the routes going through Organization X:

Policy Set #3: All routes going through Organization X

We can then weight the metrics of the routes from the policy set to make them less appealing
to routing processes and usable only as a last resort:

Routing protocol: Add extra routing metric values to routes in Policy Set #3

 Cisco IOS Access lists

 Page 16

So far, I have focused only on policy sets, so you might be wondering how Cisco access lists
come into the picture. The function of Cisco access lists is to hold the specification of a policy
set. The term "access list" is somewhat deceptive in that it implies only a security function.
Though access lists are indeed used for security functions, they are properly understood as a
general mechanism used by Cisco routers to specify a set of network objects subject to policy.
Access lists are built of access list entries, which directly correspond with policy set entries.

The framework described here is useful because it helps us think about network policies in
ways that are almost directly translatable into Cisco access lists. In future chapters, I will
almost always define network policies in terms of a policy set and a policy imposed upon it.

1.2 The policy toolkit

What do we do with our policy sets once we define them? How can we use those policy sets
to prevent the described scenarios from happening? This section talks about the "policy
toolkit," a set of four "tools" that are general techniques for manipulating policy sets.

As we know, policy sets can be described as the "what" of a policy. The policy tools fit into
our conceptual framework as the "how." Once we define a policy set, we must do something
with it to implement a policy. There are four kinds of tools we can use with policy sets to
implement network policy. These tools control the following:

• Router resources
• Packets passing through the router
• Routes accepted and distributed
• Routes based on characteristics of those routes

It may not be obvious why a network administrator would use these tools. To understand this,
think about the functions that a router performs in a network. First, in many ways, a router
functions like a host in that there are certain services it provides—logins, network time,
SNMP MIB data. These are router resources that a network administrator can control.
Secondly, a router's key function is to forward packets from one network interface to another.
Hence the network administrator can do packet filtering, i.e., can control the packets passing
through the router. The last key function of a router is to accept and distribute routing
information. Thus, there must be a way to control routes that are accepted and distributed. The
most common way to do this is with the routes themselves: by filtering routes based on their
network numbers. A second, more complex way to filter routes is to use another characteristic
of the routes, like last hop or some other arbitrary route attribute. It can be argued that all
route filtering is done based on some route characteristic, be it the network number or some
other attribute, but we keep them in separate categories because route filtering based on route
characteristics tends to be much more complex than filtering using network numbers.
Controlling routes based on route properties also tends to use radically different access list
constructs.

For each of the four policy tools, I describe the typical policy set and provide an example of
how the tool is used. I'll come back to these examples in later chapters when I show how to
build and use access lists.

 Cisco IOS Access lists

 Page 17

1.2.1 Controlling router resources

In the original scenarios, we saw how letting unauthorized people log into a web server
created problems. Similar problems can arise when unauthorized people are allowed to log
into routers. Logins over the Internet can allow the theft of passwords and therefore the
penetration of networks. Problems occur when unqualified people are allowed to make
changes. For these reasons, as well as in a more general sense, network administrators need to
have control over the resources on a router. The main concern here is, of course, security, but
network robustness and business policy also play a large part.

Earlier in this chapter, I mentioned that policy sets are composed of one of three things: host
IP addresses, packets, or network addresses. When we control router resources, the policy set
we use consists of host IP addresses: the IP addresses of systems that can access the resource.
Let's look at a policy that defines which machines can access a certain router, restricting
router logins to the hosts at IP addresses 192.168.30.1 and 192.168.33.5. Figure 1.1 shows
how the network is configured with the router, the two hosts allowed to access it, and other
hosts and networks.

Figure 1.1. A router and hosts that could potentially access it

The first step in defining the access policy is to define the policy set of hosts that can access
the router. We do that as follows:

Policy Set #1: IP address 192.168.30.1

Policy Set #1: IP address 192.168.33.5

Policy Set #1: No other IP addresses

Each of the first two policy set entries adds a specific IP address to the policy set: Policy Set
#1 contains the IP addresses 192.168.30.1 and 192.168.33.5. The third entry explicitly denies
all other IP addresses.

Once the policy set is defined, we apply Policy Set #1 to router logins:

Router logins: Use Policy Set #1

The policy we have just defined says that only hosts with IP addresses 192.168.30.1 and
192.168.33.5 may log into the router.

 Cisco IOS Access lists

 Page 18

1.2.2 Controlling packets passing through a router

On the Internet, high-profile web servers are constantly probed for potential security
vulnerabilities and opportunities for crackers to penetrate a web server and alter its contents.
These web servers can be substantially protected from this and other kinds of attacks by
limiting the type of packet a router passes on to the servers. With this policy tool, also known
as packet filtering, we define in our policy sets the kinds of IP packets that can pass through
router interfaces. Packet filtering with access lists is a very common use of Cisco routers,
particularly as part of firewalls. Although the primary concern here is security, robustness and
business policy are also considerations, since an organization may find that certain kinds of
packets cause problems. It may decide that it doesn't want a certain type of network traffic
passing through, thus conserving bandwidth or reducing costs.

Almost all organizations now have some kind of web presence, so let's use the web server
example to show how to specify a packet-filtering policy.

The policy will limit access to a web server on an interface of a router to the web protocols
HTTP and SSL. Figure 1.2 shows a typical network configuration that a company might use
for this purpose.

Figure 1.2. Restricting packets to a web server

This configuration shows a web server 192.168.35.1 on router interface Ethernet 0. The
interface Ethernet 1 connects to other hosts and network segments with the company, while
the serial line connects directly to the Internet.

First, let's specify the policy set:

Policy Set #101: HTTP packets to the host at 192.168.35.1

Policy Set #101: SSL packets to the host at 192.168.35.1

Policy Set #101: No other packets

The first two policy set entries permit HTTP and SSL. The last entry excludes all other
packets.

 Cisco IOS Access lists

 Page 19

Finally, the policy set is applied to the router interface:

Ethernet interface 0: Apply Policy Set #101 to outgoing packets

The result is that the web server at 192.168.35.1 on interface Ethernet can be accessed only
with web protocols.

1.2.3 Controlling routes accepted and distributed

In a previous scenario, a typographic error by a network administrator at one site causes both
the site's own users and those at a remote site to lose network connectivity. Networks would
function perfectly if routers always distributed routes correctly and with the metrics and
directionality that the network designers intended. But as I said, operator mistakes do happen.
In another scenario, network traffic paths are not optimal to an organization in terms of cost.
Often the desire for traffic between networks to flow in certain paths goes against what would
naturally happen with no intervention. To prevent routing errors from causing problems and
to implement traffic-flow preferences, network implementers use the policy tool called route
filtering. Route-filtering policies specify what routes are accepted into a router and what
routes and routing metric values are distributed from a router. The policy sets used are
composed of network numbers and are applied to routing protocols to indicate what routes are
accepted and distributed from a router or what route metric values those routes should
contain.

The main motivations for using this policy tool are robustness and business policy. A network
administrator wants to make sure that a network operates despite the presence of
configuration mistakes, or a business may decide it wants traffic flowing over some paths
instead of others to make a cost-effective use of bandwidth. Security can also be a motivation
for implementing these policies since one way to attack a network is to inject bad routing
information. Route filtering can effectively stop this attack.

Let's look at a simple but very common application of route filtering. To implement such a
policy, we first need to define what networks we want to accept. We then declare that these
routes are the only routes accepted by a given routing protocol. In this example, we accept
only two routes, 192.168.30.0/24 and 192.168.33.0/24, into an EIGRP routing process 1000.
Figure 1.3 shows this network configuration.

Figure 1.3. A configuration where route acceptance and distribution must be controlled

 Cisco IOS Access lists

 Page 20

The policy set used with route filtering is composed of network numbers. For this example,
we have the following policy set:

Policy Set #2: Network 192.168.30.0/24

Policy Set #2: Network 192.168.33.0/24

Policy Set #2: No other networks

It contains the two networks we specified and excludes all other networks. We then use this
policy set to express the routes accepted for a given routing process:

Routing process EIGRP 1000 accepts only routes in Policy Set #2

Only routes for networks 192.168.30.0/24 and 192.168.33.0/24 are accepted by EIGRP
routing process 1000. All other routes are excluded, so only traffic for the two networks
included will be permitted through the router.

1.2.4 Controlling routes accepted and distributed based on route characteristics

Networks would be much easier to configure and manage if network numbers were the only
criteria we had for route policies, but there are other criteria for making routing decisions,
including route characteristics. For instance, in a previous scenario, a company connecting to
the Internet wants to prefer all routes coming from a particular Internet service provider. An
ISP may want to route traffic depending on preferences that its customers send along with
their route advertisements. In these cases, policy decisions must be made on some route
characteristic other than just the network number. Like the previous policy tool, the policy
sets themselves are still made up of network numbers, but membership in this type of policy
set is based on route characteristics. Although this kind of access policy is typically
implemented when dealing with Internet connectivity using the BGP-4 routing protocol, it can
be done with interior routing protocols as well. The main motivations for using this technique
are business drivers and robustness, but security (e.g., preventing denial-of-service routing
attacks) can also drive its use.

In the next example, we'll see how to control routing based on the properties of routes. In this
case, we route based on the path that routing information has taken. Organization A has a
policy to never route traffic through Organization B. Figure 1.4 shows how network
connectivity might look in this situation.

 Cisco IOS Access lists

 Page 21

Figure 1.4. Organization A restricting traffic based on paths

Organization A connects to other organizations through a number of paths, some that go
through Organization B and some that do not. The policy's goal is to prevent traffic leaving
Organization A from going through Organization B. To do this, Organization A needs to
reject all routes with a path through Organization B. We build a policy set containing only
routes that do not pass through Organization B:

Policy Set #100: Exclude all routes passing through Organization B

Policy Set #100: Include all other routes

Then we apply the policy set to a route process:

BGP Routing process #65001: Accept only routes in Policy Set #100

on the router connecting Organization A to Organization C.

1.2.5 Putting it all together

These four policy tools are the fundamental techniques that network designers use to create
and maintain secure and stable networks. Think of them as four different ways to keep
networks running. When faced with an Internet or intranet network policy issue, you can deal
with it by controlling router resources, packet filtering, or managing route distribution based
on network numbers or route characteristics. We have seen how hosts, packets, and routes are
controlled through access lists. Another way to think about these tools is to picture the router
as a giant filter, taking in service requests from hosts, packets, or routes, and then either
forwarding them, modifying them, or dropping them. When we want to implement a network
policy, we use our four policy tools as different types of filters on the routers. The actual
filters are defined in access lists.

In this book, we'll see how to use access lists to apply these four categories of policy controls,
and will return to these examples in future chapters to demonstrate how access lists are used.

 Cisco IOS Access lists

 Page 22

Chapter 2. Access List Basics
In Chapter 1, I talked about the need for network policies. I also described how to build
policy sets, how policy sets map to access lists, and how to manipulate policy sets. However,
before actually implementing any policies, we must first understand how to create and
manipulate access lists. This chapter covers the two basic access list types and how to build
and maintain them. The first kind of access list is the standard access list, used to build policy
sets of IP addresses or IP networks. In describing the standard access list, we will examine the
basic syntax used in all Cisco access lists, including the basic permit/deny operation for
including or excluding network objects from a policy set, address specification and masking,
and the sequence used in processing access lists. The standard access list cannot cover all the
policies we may wish to specify, particularly when we want to do packet filtering, which
leads us to the second type of access list: the extended access list. This kind of list extends the
format of the standard access list to specify packet filtering policies. Once we have learned to
build the basic access list types, the chapter covers how to optimize, build, and maintain
access lists.

2.1 Standard access lists

Also in Chapter 1, we discussed the motivations for implementing access policies. All three
motivations—security, robustness, and business drivers—are reasons to use the standard
access list. With these reasons in mind, a network administrator typically uses standard access
lists to implement three types of policy controls:

• Access to router resources
• Route distribution
• Packets passing through a router

These policy controls require policy sets of IP addresses or network numbers, so the standard
access list is used to build policy sets of either IP addresses or network numbers. Once policy
sets are defined with standard access lists, the access list can restrict access to network
resources, determine which routes are accepted and distributed, and change routing metrics to
influence traffic behavior. To illustrate how the standard access list is used, let's look again at
the first example from Chapter 1, which deals with controlling router resources. Recall that
Figure 1.1 showed a router that we control and the hosts that are allowed to access its
resources. We defined Policy Set #1, consisting of the hosts allowed to log into the router, as
follows:

Policy Set #1: IP address 192.168.30.1

Policy Set #1: IP address 192.168.33.5

Policy Set #1: No other IP addresses

How does this policy set map to actual access lists? Here is the mapping:

access-list 1 permit 192.168.30.1
access-list 1 permit 192.168.33.5
access-list 1 deny 0.0.0.0 255.255.255.255

 Cisco IOS Access lists

 Page 23

The number after the access-list keyword is the access list number, so in this example, we
define access list 1. The number also specifies what kind of access list it is. Different types of
access lists for different network protocols use different ranges of access list numbers (e.g., IP
uses 1-99 for standard access lists and 100-199 for extended access lists; IPX uses 800-899
for its standard access lists, while DECnet uses 300-399). The first two entries use the
keyword permit, which includes the IP address listed in the entry into our policy set. In this
example, we first include the IP address 192.168.30.1 into our policy set, followed by IP
address 192.168.33.5. The third entry contains the keyword deny, which excludes the IP
addresses following from the policy set. IP address and wildcard mask 0.0.0.0
255.255.255.255 means that we should match all packets. Combined with the deny
keyword, this excludes all other packets (we'll discuss this mask format later in the chapter). It
should be noted that access lists can be entered in the router's configuration only after you
have obtained full privileges on the router and entered global configuration mode.

What do we do with the policy set we have just defined? In the example, we want to control
router login access. The policy set application is summarized as:

Router logins: Only from hosts with IP addresses defined in Policy Set #1

In Cisco router configuration language, this maps to be:

line vty 0 4
access-class 1 in

The first command line states that we are about to define some attributes about virtual
terminal sessions (line vty), the Telnet sessions that allow people to log into the router. In
this command we state that we will have five possible simultaneous sessions, labeled 0 to 4.
The next command line states that the policy set defined by access list 1, our selected set of IP
addresses, is the group of IP addresses that have access to the virtual terminal sessions. Only
Telnet sessions initiated from hosts with those sets of IP addresses will be allowed to use one
of the five available logins. In this way, we have just specified what IP addresses can telnet
into our router. The line command makes all the following options we set apply to all possible
Telnet sessions. We can also apply different access lists for each session.

2.1.1 The implicit deny

Notice that we have used deny to exclude all other IP addresses from our policy set. The
keyword deny is used to specify what is not included in the policy set. For example:

access-list 2 deny 192.168.30.1
access-list 2 permit 192.168.33.5

Access list 2 does not include IP address 192.168.30.1 in the policy set but does include
192.168.33.5. These two access list entries are equivalent to the following single entry:

access-list 2 permit 192.168.33.5

This is because access lists have an implicit deny at the end of them. Everything not explicitly
permitted in the standard access list is denied. Similarly, in access list 1 listed earlier, we
could have used the following as our access list:

 Cisco IOS Access lists

 Page 24

access-list 1 permit 192.168.30.1
access-list 1 permit 192.168.33.5

and omitted the final deny completely.

The implicit deny is a key feature of Cisco access lists. It is a behavior that effects the way
access lists are written, generally making them easier to deal with. We will use this feature
extensively.

2.1.2 Standard access lists and route filtering

Previously, I mentioned that the standard access list is also used in route filtering. This means
that we can use standard access lists to build policy sets of routes. Let's go back to the
example in Chapter 1 that illustrated how to filter routes. The network configuration is shown
in Figure 2.1.

Figure 2.1. A configuration where route acceptance and distribution must be controlled

We want a policy that restricts Router A (in Figure 2.1) so it forwards only traffic destined for
the two networks 192.168.30.0/24 and 192.168.33.0/24 through the line on serial interface 0.
We can implement this by configuring Router A to accept only routing information for these
two networks from over the serial line. Traffic between the networks connected to Router A,
172.18.0.0/16, 172.19.0.0/16, 172.20.0.0/16, and 192.168.10.0/24, should be permitted, along
with any traffic between those networks and the two networks on the other side of the serial
line. All other traffic should be dropped. In addition to preventing the router from carrying
unwanted traffic, this policy also prevents routing problems in case a configuration error (here
or elsewhere) sends other routes to Router A over the serial line. To implement the policy, we
need to configure the router to accept only the routes 192.168.30.0/24 and 192.168.33.0/24.
Here is the policy set specification:

Policy Set #2: Route 192.168.30.0/24

Policy Set #2: Route 192.168.33.0/24

Policy Set #2: No other routes

When translated into standard access list notation, this policy set specification yields:

access-list 2 permit 192.168.30.0
access-list 2 permit 192.168.33.0

 Cisco IOS Access lists

 Page 25

This access list includes the two networks 192.168.30.0/24 and 192.168.33.0/24 in the policy
set. We do not need an access list entry that excludes all other routes because the implicit
deny at the end of access lists takes care of this. With the policy set established, we then apply
it to a routing process. In our route distribution example, we specified this by saying:

Routing process EIGRP #20: Accept only routes in Policy Set #2 inbound from
interface serial

The analogous route configuration commands are:

router eigrp 20
distribute-list 2 in Serial0

The first line specifies the route protocol and EIGRP autonomous system (AS) number
involved. The second line says that for this particular EIGRP routing process, only the routes
in access list 2 from routing protocol updates over serial interface 0 will be accepted.

2.1.3 Access list wildcard masks

An optional wildcard mask can be used to include many addresses in a policy set. For
example:

access-list 3 permit 192.168.30.0 0.0.0.255
access-list 3 permit 192.168.33.5

means that all the hosts on network 192.168.30.0/24 are included in our policy set, as well as
the host with IP address 192.168.33.5. The wildcard mask is interpreted as a bit mask where 1
indicates "match anything" in the corresponding bit in the IP address, and 0 means match the
IP address exactly in that bit position. Making the last octet of a mask all 1's (255) means
match anything in the final octet. Thus every host in the network 192.168.30.0/24 is included
in the policy set. If we apply the list to the virtual terminal lines:

line vty 0 5
 access-class 3 in

all the hosts in the 192.168.30.0/24 network and the host at 192.168.33.5 can log into the
router. Another way to think about this is that a 1 is a wildcard for that particular bit position.
Any value, 0 or 1, in the corresponding bit position is considered a match.

2.1.4 Specifying hosts in a subnet versus specifying a subnet

It is important to distinguish between specifying a network number for inclusion in a policy
set and specifying all of the hosts in a network in a policy set. Using the previous example,
the access list entry:

access-list 3 permit 192.168.30.0 0.0.0.255

includes all of the hosts in network 192.168.30.0/24 in a policy set. This is not the same as:

access-list 4 permit 192.168.30.0

 Cisco IOS Access lists

 Page 26

This access list entry includes the single IP address 192.168.30.0 in a policy set. 192.168.30.0
could be one of two things: a host IP address (a strange one at that, since hosts typically do
not have in the last octet) or a network number. The entry does not include all of the hosts in
network 192.168.30.0/24. If we use access list 4 in an access-class statement such as:

line vty 0 4
 access-class 4 in

only a host with the strange but potentially valid IP address of 192.168.30.0 would be
permitted to have login access to the router. Access list 4 would more typically be used to
build a policy set of a network addresses in a routing context:

router eigrp 100
 distribute-list 4 in Serial0

Here, only the route to network 192.168.30.0 would be permitted into the routing table via the
EIGRP routing protocol.

If we were building a policy set of network addresses, the address/mask pair 192.168.30.0
0.0.0.255 would include the network 192.168.30.0/24. But it would also include networks
like 192.168.30.0/25, 192.168.30.128/25, and 192.168.30.192/26 that have different mask
lengths. In general, it is best to be as specific as possible when defining policy sets. Including
more than necessary can lead to unexpected behavior such as having unanticipated routes in a
policy set.

2.1.5 Access list wildcard masks versus network masks

One of the most commonly used access list wildcard masks specifies all the hosts in a
network or a network subnet, as we saw in the previous example. Let's define a router's
interface Ethernet on network 192.168.30.0/24 with the IP address 192.168.30.1. We use the
following statements in the router:

interface Ethernet 0
ip address 192.168.30.1 mask 255.255.255.0

The network mask (often called a subnet mask) is 255.255.255.0. The leftmost 24 bits have
a value of 1, corresponding to the first three octets of the Ethernet IP address, which define
the network number. They also correspond to the "24" used when we describe the network as
192.168.30.0/24. The remaining eight bits in this network's IP addresses identify the host. To
get all of the hosts in Network 192.168.30.0/24 into a policy set, we use the following access
list entry:

access-list 3 permit 192.168.30.0 0.0.0.255

The access list wildcard mask is 0.0.0.255 (the rightmost eight bits are set to 1). This is a
wildcard mask that matches all the addresses in the network, and it has 0 in the bit positions
where the network mask has 1 and 1 where the mask has 0.

Let's look at another example of network masks and access list wildcard masks that match all
of the addresses in that network. For network 172.28.0.0/16, the network mask is
255.255.0.0. Each of the leftmost 16 bits has the value of 1. These 16 bits correspond to the

 Cisco IOS Access lists

 Page 27

first two octets in the IP address, which define the network number. The remaining 16 bits in
the network's IP addresses identify the host. If we need an access list address and wildcard
mask combination that include all the addresses in 172.28.0.0/16 in a policy set, we would use
172.28.0.0 0.0.255.255. The access list wildcard mask 0.0.255.255 has 1 in the 16
rightmost bits and 0 in the leftmost 16, while the network mask 255.255.0.0 has 0 in the 16
rightmost bits and 1 in the leftmost 16. Note again that the access list wildcard mask has 0 in
the bit positions where the network mask has 1 and 1 where the network mask has 0. A fairly
common mistake is to use a network's network mask when you want to match all of a
network's hosts instead of an access list wildcard mask.

Generally, for a network specified as A.B.C.D/n, the access list wildcard mask that matches
all addresses in a network will have 1's in the 32-n rightmost bits and 0 in the leftmost n bits.
For the network 192.168.32.0/26, the access list wildcard mask that matches all entries is
0.0.0.63 (six 1's in the rightmost column). The network mask on the interface is
255.255.255.192. For a supernet such as 192.168.80.0/22, the access list wildcard mask that
matched all the addresses in it would be 0.0.3.255 while the network mask on the interface
would be 255.255.252.0.

2.1.6 The implicit wildcard mask

Earlier, we saw an IP address and wildcard mask combination of:

0.0.0.0 255.255.255.255

Since each bit is a 1 in this mask, any IP address on any network will be matched. This
construct is very useful, and we'll see this address/mask combination used repeatedly in both
basic access lists and in extended access lists.

We've also seen access lists in which no mask is included. In the first example, we defined a
policy set that included the addresses 192.168.30.1 and 192.168.33.5. The access list evolved
to be the following:

access-list 1 permit 192.168.30.1
access-list 1 permit 192.168.33.5

As I mentioned previously, a 0 in a bit position indicates that there should be a match at
exactly that bit position. Thus, the access list could have been written as:

access-list 1 permit 192.168.30.1 0.0.0.0
access-list 1 permit 192.168.33.5 0.0.0.0

The lack of an explicit wildcard mask implies a default mask of 0.0.0.0.

The same applies to network numbers as well as hosts. The access list:

access-list 2 permit 192.168.30.0
access-list 2 permit 192.168.33.0

includes 192.168.30.0/24 and 192.168.33.0/24 (assuming a typical class C network mask). It
can also be written as:

 Cisco IOS Access lists

 Page 28

access-list 2 permit 192.168.30.0 0.0.0.0
access-list 2 permit 192.168.33.0 0.0.0.0

The implicit wildcard mask is a handy feature that saves typing. We'll be using this feature of
standard access lists repeatedly.

2.1.7 Sequential processing in access lists

You will recall from Chapter 1 that access list entries are processed sequentially in the order
in which they are entered. For each network object a router sees, it starts at the beginning of
the access list with the first entry and checks for a match. If not, it continues down the list of
entries until there is a match or no more entries. However, as soon as a match is found, no
more matches are made, which makes the order of the entries in our list a very important
consideration. Let's look at an example:

access-list 4 permit 192.168.30.0 0.0.0.255
access-list 4 deny 192.168.30.70

Access list 4 includes the IP address 192.168.30.70. This address is included even though
there is an explicit deny of the IP address. If the router controls a resource such as login
access with access list 4, and then a host with 192.168.30.70 requests use of that resource, the
router would see that 192.168.30.70 was in the policy set specified by access list 4 and allow
the request. No more matches are made, and the entry on the second line is never reached.
Access list 4 effectively specifies a policy set composed of all the addresses in network
192.168.30.0/24, including 192.168.30.70.

On the other hand, IP address 192.168.30.70 is not in the policy set specified by access list 5:

access-list 5 deny 192.168.30.70
access-list 5 permit 192.168.30.0 0.0.0.255

When the router checks 192.168.30.70 against access list 5, it matches on the first line. The
address is explicitly excluded. Although both access lists have the same entries, the entries are
in a different order. Access list 5 specifies a policy set of all the IP addresses in network
192.168.30.0/24 except 192.168.30.70.

2.1.8 Standard access lists and packet filtering

At the beginning of this section, I mentioned that standard access lists are also used to control
packets flowing through a router. Network administrators use standard access lists in this
fashion when certain hosts need total access to hosts on a particular subnet. Figure 2.2 shows
a network configuration used to protect a set of hosts that process payroll information.

 Cisco IOS Access lists

 Page 29

Figure 2.2. Using the standard access list for packet filtering

The router shown has two interfaces, Ethernet and Ethernet 1. Network 192.168.33.0/24,
where the payroll hosts live, is on the Ethernet 1 interface while the rest of the network is
reachable through the Ethernet interface. We wish to limit access to the payroll systems on
network 192.168.33.0/24 to the following hosts: 192.168.30.1, 172.28.38.1 (and no other host
on network 172.28.38.0/24), and any remaining host in network 172.28.0.0/16. The hosts that
can send traffic to the payroll hosts on network 192.168.33.0/24 should still be able to send
any kind of IP traffic to that network. No other hosts have any business with the payroll
systems and should have no access whatsoever.

To implement this policy, let's first define a policy set containing the hosts that can access the
payroll machines:

Policy Set #6: host with IP address 192.168.30.1

Policy Set #6: host with IP address 172.28.38.1

Policy Set #6: no other host on subnet 172.28.38.0/24 of network
172.28.0.0/16

Policy Set #6: any remaining hosts in network 172.28.0.0/16 not previously
excluded

This policy set needs to be applied to any packet going out to interface Ethernet 1 where
network 192.168.33.0/24 is attached:

Ethernet interface 1: Apply Policy Set #6 to outgoing packets

Policy Set #6 translates into the following standard access list:

access-list 6 permit 192.168.30.1
access-list 6 permit 172.28.38.1
access-list 6 deny 172.28.38.0 0.0.0.255
access-list 6 permit 172.28.0.0 0.0.255.255

The first line puts the host at IP address 192.168.30.1 into the policy set, and the second line
includes the host at 172.28.38.1. After this, we exclude all other hosts in the subnet
172.28.38.0/24. The fourth and last line includes the remaining hosts in network

 Cisco IOS Access lists

 Page 30

172.28.0.0/16. Note that the sequence of entries is critical. If the second and third lines switch
positions, host 172.28.38.1 is never included in the policy set. If the third and fourth lines are
switched, the hosts in subnet 172.28.38.0/24 are never excluded from the policy set.

The Cisco configuration commands to set our policy are:

interface Ethernet1
 ip access-group 6 out

The first line specifies that we will modify the properties of interface Ethernet 1. The second
line says that we apply the policy set defined by standard access list 6 to all IP traffic going
out through router interface Ethernet 1 from the router.

2.1.9 Generic format of standard access lists

Now that we've seen some examples of the standard access list, we can define its format in
some detail. The generic format of the standard access list entry is:

access-list [list number] [permit | deny] [IP address] [wildcard mask
(optional)]

The arguments are:

list number

Access list number from 1 to 99.

permit | deny

Either permit or deny. permit includes a matching entry in the IP address set; deny
excludes it.

IP address

An IP address used to match and determine the IP addresses that are included in a
policy set.

wildcard mask

Optional wildcard mask that determines what bits of the IP address are significant
when matching.

The first part of the standard access list entry is the keyword access-list, which declares
the line to be an access list entry. The next part is the access list number, which identifies
what access list the entry belongs to. The standard access list for IP uses numbers between 1
and 99, which gives us 99 possible standard access lists, more than enough for typical
configurations. With Cisco routers, access list numbers specifically define an access list's type
and the network protocol it uses. Standard access lists can't use extended access list numbers,
while access lists associated with other network protocol suites (such as DECnet or IPX) can't
use standard or extended IP access list numbers.

 Cisco IOS Access lists

 Page 31

The argument following the list number is a keyword that determines whether an entry is
included or excluded in a policy set. permit means to include all objects matching the entry,
while deny, naturally, means to exclude all objects matching the entry. Another way to think
of this keyword is that it either permits or denies a matching entry into a policy set.

The next part of the entry is the match portion, which consists of an IP address or network
number followed by an optional wildcard mask. The mask is similar to a subnet mask,
marking which parts of a set of IP addresses are constant and which are variable. Like an IP
address, this access list wildcard mask is separated into four parts. Each part has a value from
to 255, representing a one-byte bit mask. A 0 bit in the mask indicates that this bit in an object
must match exactly the same corresponding bit in the IP address, and a 1 bit means that any
bit value matches in that position. Thus a mask of 255.255.255.255 matches all possible IP
addresses, while 0.0.0.0 specifically matches the entire IP address.

2.2 Extended access lists

I mentioned in Chapter 1 that one policy tool network administrators have at their disposal is
control over the type of packets that flow through a router. We looked at examples where it
was necessary to restrict the kinds of packets passing through a router to specific protocols
such as HTTP (web) or SSL packets. To implement this, we need to build a policy set that
includes a variety of different kinds of IP packets. We can't do this with standard access lists
because they deal with only IP addresses, sets of IP addresses, or network numbers, and not
with the nature of the packets themselves. Although we saw how to use standard access lists
to do packet filtering in the last example, there too we could only specify the hosts that are
allowed to send IP traffic through a specific interface. There was no way to narrow down the
kind of packets in a policy set to specific protocols such as TCP or UDP, specific protocol
port numbers, or specific relationships between sets of IP addresses. Standard access lists
allow all or nothing. To do packet filtering at a finer level of granularity, we need a way to
extend the standard access list to include things like protocol, port number, and destination IP
addresses.

Understanding TCP and UDP port numbers
Understanding TCP and UDP port numbers is fundamental to using extended access
lists. To understand port number usage, you have to look at how hosts function
together in networks. In a network environment, client processes on client hosts
make requests to server processes on server hosts, which service the request and
send back a response to the client process. With TCP, a connection is set up with the
request, while with UDP, there is no connection setup. Many different services, such
as Telnet or the Domain Name System (DNS), may reside on the server host. In
order for a client to specify the service it wants to use, it addresses its request to a
previously defined destination port number associated with the desired service. Ports
are specified as 16-bit numbers. For example, the standard port for Telnet service is
23, the port usually used by HTTP (the World Wide Web protocol) is 80, and the
standard port number for DNS service is 53. While there are standard port numbers,
it is important to note that these services can use nonstandard ports. A client
processes can use any of these services on other ports as long as it knows which port
to use.

 Cisco IOS Access lists

 Page 32

This is only half the process of servicing requests. The server needs to send back a
response to the requesting client process. It is easy to identify where to send the
response if all requests come from hosts with different IP addresses. But what if
requests come to the same service from the same host? To deal with this scenario,
the client process picks a unique source port on the client host for the destination of
a particular request. The server sends responses back to the client's source port using
the client source port as the response's destination port. The previously defined port
for the service then becomes the source port for the response. In this way, a set of
four values—source IP address, source port, destination IP address, and destination
port—uniquely identify client/server relationships and enable clients and servers to
talk to each other without confusion.

The port numbers below 1024 are called well known ports. The Internet Assigned
Number Authority (IANA) defines the standard port numbers in this range for
services such as Telnet, HTTP, and DNS (Table A.3 contains a list of the well
known ports for a variety of services). Typically, source ports for both TCP and
UDP are above 1023. This is the most common case, but there are some notable
exceptions to both of these rules of thumb. DNS requests commonly use port 53 for
UDP source and destination ports. In this case, a query ID is used to uniquely
identify service requests. As mentioned previously, services can live on nonstandard
ports as long as both client and server processes agree to use those ports.

One type of access list is designed to build policy sets for that type of control: the extended
access list. This kind of access list extends the standard access list to include the ability to
specify protocol type, protocol port, and destination in a certain direction. Of our three key
motivations for building access policies, the main motivation for using extended access lists is
security. It is often used for firewall purposes—specifying the packets that can pass through a
router between networks of various degrees of trust. Thus, we'll speak in terms of allowing or
denying packets through a router in our discussions of matching extended access lists.

Let's look at some examples to illustrate how the extended access list works. In Chapter 1, the
second example demonstrated how to create a policy that permitted only web protocols to a
web server with IP address 192.168.35.1 on an Ethernet interface of a router. Figure 2.3
shows how the web server and router connect. The web server lives on Ethernet 0. All hosts
routing in through other interfaces (not on the same segment as Ethernet 0) are permitted only
web access to the server.

Figure 2.3. Restricting packets to a web server

 Cisco IOS Access lists

 Page 33

To implement a policy allowing only web packets to the web server, we need to define a
policy set that includes only packets for web protocols. The policy set specification looks like
this:

Policy Set #101: HTTP packets to the host at 192.168.35.1

Policy Set #101: SSL packets to the host at 192.168.35.1

Policy Set #101: No other packets

How does this map into an extended access list? Here is the translation:

access-list 101 permit tcp 0.0.0.0 255.255.255.255 192.168.35.1 0.0.0.0 eq
80
access-list 101 permit tcp 0.0.0.0 255.255.255.255 192.168.35.1 0.0.0.0 eq
443
access-list 101 deny ip 0.0.0.0 255.255.255.255 192.168.35.1 0.0.0.0

Extended access lists begin with the access-list keyword, followed by a list number which
must be between 100 and 199 (unlike standard access lists, which use numbers between 1 and
99). The number is followed by permit or deny, which means the same as it does for
standard lists: either permit or deny packets matching the specification given in the rest of the
line.

The next part is where things get different. After permit or deny, an extended access list
specifies the IP protocol to which the list applies. In this example, we're interested in the
HTTP and SSL protocols, which both use tcp. (The last line in this group denies access for
all packets that haven't been matched previously. To make this as general as possible, we
specify IP itself, rather than a specific IP protocol.)

Next, we have two address/mask pairs (rather than a single pair as we did with standard
access lists). The first pair defines the source address; in this example, 0.0.0.0
255.255.255.255 means "packet coming from any source address," as we'd expect.
192.168.35.1 0.0.0.0 means "packets going to the specific host 192.168.35.1." We thus
allow traffic from any host to the specific host we named.

The access list ends with another protocol specifier: this time, the port number. HTTP uses
port 80, so to allow HTTP access, we place "eq 80" at the end of the line, meaning "allow
packets with the destination port 80." Likewise, we allow SSL access with "eq 443." You can
also specify the port number for the packet source, as I will show later in this chapter. In this
case, we didn't, meaning any source port was okay.

To be accepted into our policy set, a packet must match all parts of an entry. The source IP
address, the destination address, the protocol, and any port or other IP protocol-specific
condition all must match. To use an access list once the policy set is defined, we must apply it
against a router interface. In the previous example, we applied our policy set with the
following:

Ethernet interface 0: Apply Policy Set #101 to outgoing packets

 Cisco IOS Access lists

 Page 34

The Cisco configuration commands to do the equivalent are:

interface Ethernet 0
ip access-group 101 out

The first line specifies that we will apply a policy to interface Ethernet 0. The second line says
that we apply the policy set defined by IP access list 101 to all IP traffic going from the router
out through router interface Ethernet 0. Note that our access list applies only to the IP
protocol suite. If we had defined Ethernet to handle IPX traffic, IPX packets would not be
affected at all by access list 101. Protocols such as IPX and DECnet have their own access list
syntax, which is beyond the scope of this book.

2.2.1 Some general properties of access lists

At this point, it is useful to note the similarities and differences between the standard access
list and the extended access list. While an extended access list entry matches against two IP
addresses as opposed to one IP address for the standard access list, both match each IP
address against an IP address and wildcard masks combination in exactly the same way.
Another syntactic difference is that masks of 0.0.0.0 are not optional with extended access
lists. Remember that a router assumes a mask of 0.0.0.0, meaning to match the address
exactly if a standard access list entry leaves off a mask from an IP address. Even with the
standard access list use of an implied mask, IP address and mask matching is the same for
both kinds of lists.

Another common feature of standard and extended access lists is that both have an implicit
deny at the end. Thus we could have rewritten our access list 101 as:

access-list 101 permit tcp 0.0.0.0 255.255.255.255 192.168.35.1 0.0.0.0 eq
80
access-list 101 permit tcp 0.0.0.0 255.255.255.255 192.168.35.1 0.0.0.0 eq
443

The final access list entry that denied all other IP traffic to the web server is redundant.

IP address and wildcard mask matching and the implicit deny are common to all Cisco access
list structures and are important concepts in understanding access lists. Other access list
structures that we'll see later on use the same concepts.

2.2.2 Matching IP protocols

I mentioned earlier that other IP protocols can be specified in extended access lists. Here is an
extended access list entry for building a policy set for packets of IP type 47 from the host at
192.168.30.5 to the host at 192.168.33.7:

access-list 102 permit 47 192.168.30.5 0.0.0.0 192.168.33.7 0.0.0.0

IP protocol 47 is GRE, the Generic Routing Encapsulation protocol. This protocol is used for
tunneling non-IP protocols such as Novell IPX and AppleTalk through IP and by the PPTP
protocol, a virtual private network protocol. The 0.0.0.0 mask means match the IP address
exactly. Note that there are no "don't care" bit positions (1) in either the source or destination
address wildcard masks. Because tunneling has a unique set of security hazards associated

 Cisco IOS Access lists

 Page 35

with it, it is usually a good idea to make policy sets involving tunneling as narrowly defined
as possible. We will discuss tunneling in further detail in Chapter 7.

The following access list matches all IP packets sent from network 192.168.30.0/24 to host
192.168.33.5:

access-list 101 permit ip 192.168.30.0 0.0.0.255 192.168.33.5 0.0.0.0

The mask of 0.0.0.255 has all 1's in the last octet. This means that all IP packets from hosts
in the network 192.168.30.0 destined for host 192.168.33.5 will be in the policy set. Again,
this is similar to standard access lists except that the 0.0.0.0 wildcard mask is not optional.
Specifying all IP between sets of addresses implies total trust by the destination from the
source—any type of traffic can flow from the source to the destination.

2.2.3 More on matching protocol ports

We have created access list entries that have matched on the destination port of an UDP or
TCP packet. We can also match on the source port. This is useful for preventing fraudulent or
spoofed packets from entering. For example, the Network Time Protocol (NTP) uses UDP
packets with both the source and destination port being 123. Any packet with the destination
port of 123 and a source port of something other than 123 is likely not to be a real NTP
packet. If we want to allow NTP packets to the web server in Figure 2.3, we add the
following entry

access-list 102 permit udp 0.0.0.0 255.255.255.255 eq 123 192.168.35.1
0.0.0.0 eq 123

The source port is placed after the source IP address/mask pair.

So far, our examples have had only a single type of port operator: eq. This keyword forces
matching packets to have a port equal to some value. There are other commonly used
specifications; one of particular interest is gt. With this operator, a matching packet must
have a port greater than some value. This comes up frequently as many UDP- and TCP-based
applications use a source port greater than 1023. The following access list entry matches
packets with source ports greater than 1023 and destination ports equal to 20:

access-list 101 permit tcp 0.0.0.0 255.255.255.255 gt 1023 192.168.35.1
0.0.0.0 eq 20

It includes in a policy set any packets coming from any host (0.0.0.0 255.255.255.255)
with a source port greater than 1023 (gt 1023) going to the FTP server (192.168.35.1
0.0.0.0) with a destination port equal to 20 (eq 20). Because TCP port 20 is a well-known
port used by File Transfer Protocol (FTP), this access list is commonly used when allowing
FTP through a router.

The following access list entry matches packets that have a source port greater than 1023 and
a destination port of 53:

access-list 101 permit udp 0.0.0.0 255.255.255.255 gt 1023 192.168.35.1
0.0.0.0 eq 53

 Cisco IOS Access lists

 Page 36

This access list is commonly used when using the Domain Name System (DNS) protocol
through a router. We'll talk more about these two access list entries when we go into more
detail about using access lists for packet filtering in Chapter 3.

Let's look at a more complex example that demonstrates how to use extended access lists to
tightly control packet flow. For this example, we have a router and hosts in a network
configured as shown in Figure 2.4.

Figure 2.4. A more complex packet filtering example

The host with IP address 192.168.35.1 is used to control medical diagnostic equipment. For
patients' privacy and safety we wish to restrict who can access it and how it is accessed. The
host 192.168.35.1 is isolated on Ethernet 0. All other hosts have routes via Ethernet 1.

We want to restrict access to the host to only those who need it. To do that, we have to look at
what access requirements there are. In the first case, the system administrators of the
diagnostic host access it from network 192.168.30.0/24. Hosts on this network should be
trusted and should have complete TCP access to 192.168.35.1. Next, the host runs an X
Window application displayed on three different consoles. The X windows are displayed to a
host with IP address 192.168.31.1. In addition, doctors and lab technicians need to monitor
the progress of a procedure and get the final results. These doctors and lab technicians use
systems on network 192.168.32.0/24, and they use Telnet to access the host to check on
diagnostic status. Also, since time must be very accurate, the host needs NTP access to an
NTP time server. There are two time servers on the network, at 192.168.50.10 and
192.168.50.11. Finally, we allow hosts on the system administration segment to "ping"
192.168.35.1 to check whether the machine is available. Ping is a utility that uses the ICMP
protocol to send an echo request and expect a reply.

Let's implement an outbound access list that filters traffic from the router through Ethernet to
the segment where the medical diagnostic host resides. With the previously mentioned
requirements, our access looks like the following:

access-list 101 permit tcp 192.168.30.0 0.0.0.255 192.168.35.1 0.0.0.0
access-list 101 permit tcp 192.168.31.1 0.0.0.0 192.168.35.1 0.0.0.0 range
6000 6002
access-list 101 permit tcp 192.168.32.0 0.0.0.255 192.168.35.1 0.0.0.0 eq
23

 Cisco IOS Access lists

 Page 37

access-list 101 permit udp 192.168.50.10 0.0.0.1 eq 123 192.168.35.1
0.0.0.0
eq 123
access-list 101 permit icmp 192.168.30.0 0.0.0.255 192.168.35.1 0.0.0.0
echo

The first line of this access list allows TCP packets from all of network 192.168.30.0/24 to the
medical diagnostic host with IP address 192.168.33.5. The absence of any port operator and
qualifer on either the source or destination IP address/mask pairs means that all TCP ports are
allowed. The second line allows packets from host 192.168.31.1 to host 192.168.35.1 with
destination ports 6000 through 6002. The diagnostic host has three consoles. For each
console, the X Window protocol uses a different destination port, starting with port 6000 and
incrementing for each console. The range option allows specification of a range of port
addresses, cutting down the number of entries we need in our access list. The third line
accepts Telnet packets from network 192.168.32.0/24. The Telnet protocol uses TCP
destination port 23. The fourth line permits NTP packets from hosts 192.168.50.10 and
192.168.50.11. The mask of 0.0.0.1 includes both NTP servers in one IP address/mask pair.
The fifth line allows ICMP echo requests from the system management network,
192.168.32.0/24, to the medical diagnostic host. ICMP doesn't have port numbers like TCP,
but it does have different types of packets, such as echo or echo-reply. Allowing echo
requests means that host 192.168.35.1 can receive ICMP echo requests and respond.

We've seen that extended access lists can be used to filter TCP packets on the basis of their
source and destination ports. The same is true for UDP, which also uses the concept of ports
(see the sidebar Understanding TCP and UDP port numbers earlier in this chapter). The
ICMP protocol, which doesn't use ports, allows you to filter based on packet type; the most
common ICMP packet types are echo and echo-reply. An example access list entry using
echo is in access list 101 described earlier.

2.2.4 Text substitutes for commonly used ports and masks

Certain configurations are so common that Cisco has developed text substitutes instead of
port numbers or address mask pairs. The IP address/mask pair:

0.0.0.0 255.255.255.255

matches any host or network address. It can be replaced with the single term any. The IP
address/wildcard mask pair of the form:

<IP address> 0.0.0.0

can be replaced with the form:

host <IP address>

These text substitutes can be used in both standard and extended access lists.

Certain service ports are well defined and commonly used. In previous examples, we learned
that the well known HTTP port is port 80, the NTP port is 123, and the Telnet port is 23. With
this information, we could have rewritten our web server example as follows:

 Cisco IOS Access lists

 Page 38

access-list 101 permit tcp any host 192.168.35.1 eq http
access-list 101 permit tcp any host 192.168.35.1 eq 443

Similarly, the common types of IP protocols have text values. We have already seen the
common types of TCP, UDP, and ICMP used, but other IP protocols such as GRE have text
values. We can rewrite the access list entry that allows GRE (IP protocol 47) as:

access-list 102 permit gre host 192.168.30.5 host 192.168.33.7

The more complex access list in the medical diagnostic equipment example can be rewritten
as:

access-list 101 permit tcp 192.168.30.0 0.0.0.255 host 192.168.35.1
access-list 101 permit tcp host 192.168.31.1 host 192.168.35.1 range 6000
6002
access-list 101 permit tcp 192.168.32.0 0.0.0.255 host 192.168.33.5 eq
telnet
access-list 101 permit udp 192.168.50.10 0.0.0.1 eq ntp 192.168.33.5 eq ntp
access-list 101 permit icmp 192.168.30.0 0.0.0.255 host 192.168.33.5 echo

Using these text substitutes makes for less typing and more readable access lists.

2.2.5 Generic format of extended access lists

Now that we have looked at a variety of extended access lists, let's define the generic format
of extended access lists as they are typically used. Extended access lists take the following
form:

access-list [list number] [permit | deny] [protocol] [source specification]
[destination specification]
[protocol qualification][logging]

The arguments are:

list number

Access list number from 100 to 199.

permit | deny

Either permit or deny. permit includes a matching entry in the IP address set; deny
excludes it.

protocol

Protocol of packet. This can be ip, tcp, udp, or icmp among other IP protocols, or it
can be an IP protocol number.

source specification

A specification of the form [IP address] [wildcard mask] [port number
specification (only for UDP and TCP)].

 Cisco IOS Access lists

 Page 39

destination specification

A specification of the form [IP address] [wildcard mask] [port number
specification (only for UDP and TCP)].

IP address

An IP address used for matching.

wildcard mask

Optional mask for determining what bits of the IP address are significant in matching.

port number specification

Optional specification determining some range of numbers for ports.

protocol qualifiers

Optional specification defining a more specific instance of the protocol.

logging

The logging keyword. If present, it turns on a log of all packet information every
time the access list entry is matched.

As with standard access lists, the list number specifies an entry's access list number. For
extended access lists, this number is from 100 to 199, allowing up to 100 IP access lists on a
router. protocol is the type of IP protocol being matched. It can also be an IP protocol
number or else one of the more common IP protocols such as icmp, tcp, udp, or ip (for all of
IP). A complete table of the possible protocol values is included in Table A.1. Source and
destination addresses and masks operate in the same way as the standard access list address
and mask: the source address and mask apply to the source IP address of packets. The
optional source port is the source TCP or UDP port of a packet matching against the list.
Obviously, this applies only to UDP or TCP packets. The destination address, mask, and port
function in the same way.

The optional protocol qualifier depends on the type of IP protocol specified. For ICMP, the
protocol qualifier can be echo, echo-reply, or any of the other ICMP packet types. UDP and
TCP typically use the port number specifications instead, but TCP has an additional qualifier
called established. The established qualifier for TCP matches all TCP packets that are
part of a TCP connection that is already set up, regardless of the source or destination port.
This is a very useful qualifier, and we'll talk more about how to use it in Chapter 3. If no
qualifier is specified, all packet types of the designated IP protocol that match the given
source and destination criteria are matched and added to the policy set. Table A.2 includes all
possible ICMP types and codes, while Table A.3 includes all port number qualifiers.

The final part of the extended access list entry is the logging keyword (you can abbreviate
this by just using log). If the logging keyword is present, then every time that the access list
entry is matched, a log entry is produced. This capability is available only with extended

 Cisco IOS Access lists

 Page 40

access lists. It is very useful for producing security alerts and for debugging, as we will see in
Chapter 5.

Clearly, there are many possible values for various parts of extended access lists. Appendix A
contains a number of tables that contain all the possible values for protocols and packet types
used in extended access lists.

2.3 More on matching

Proper use of matching and masks can reduce the number of access list entries that a network
administrator must write. As we discussed before, matching sets of IP addresses, whether for
networks or hosts in standard access lists or for the source and destination definitions for an
extended access list, always involves defining an IP address and a mask. Masks are bit masks
that apply to the corresponding bit of the IP address. Remember that a 1 in a access list
wildcard mask is a wildcard, meaning that the corresponding bit in the IP address is a match
no matter what the value is in the IP address being compared. A 0 indicates that the
corresponding bit must match the IP address exactly.

So far we have used only 1's in the last portion of a mask to match all the hosts in that
network, like this:

192.168.30.0 0.0.0.255

In this and all previous examples, the 1's in a mask were on the right while the 0's were on the
left, but we can mask on other portions of an IP address to consolidate access list entries, as
we'll see here. Let's include four networks in a policy set: 192.168.32.0/24, 192.168.33.0/24,
192.168.34.0/24, and 192.168.35.0/24. The following access list entries accomplish this:

access-list 1 permit 192.168.32.0
access-list 1 permit 192.168.33.0
access-list 1 permit 192.168.34.0
access-list 1 permit 192.168.35.0

We can reduce the number of entries by looking at the network numbers and asking what
these networks have in common. Clearly, the first two octets are the same: 192.168. Let's look
at bit patterns for the third octet of the address in Table 2.1.

Table 2.1. Bit patterns for 32 through 35
Third octet decimal value Binary equivalent
32 00100000
33 00100001
34 00100010
35 00100011

The first six bits are the same (001000), while the last two bit positions vary over the entire
range of possible values (00, 01, 10, and 11) for a pair of bits. Any bit pattern in the two bit
positions will match the mask. Thus we can consider those positions wildcards and use 1 in
the mask at those positions. The bit pattern for the third octet mask is 00000011. This
translates to 3 in decimal. Thus we can then write this access list as only one line:

 Cisco IOS Access lists

 Page 41

access-list 1 permit 192.168.32.0 0.0.3.0

If we need to refer to those four networks again, either in a standard or extended access list,
we can just refer to them as 192.168.32.0 0.0.3.0, a more terse and compact representation.
Grouping networks together in this manner has other benefits as well, which we'll discuss
later in the chapter.

Since the last two bits in the third octet are wildcards, we can use any of the following access
list entries to match the four aggregated networks in addition to the previous entry:

access-list 1 permit 192.168.33.0 0.0.3.0
access-list 1 permit 192.168.34.0 0.0.3.0
access-list 1 permit 192.168.35.0 0.0.3.0

It is best to use our original aggregated entry, with the IP address/mask of 192.168.32.0
0.0.3.0. This is the most intuitive entry, since the block of network starts with network
192.168.32.0/24 and has three more networks in the block. Using the other entries, while
valid, can create confusion and make debugging problems harder because the IP address is
not as intuitive.

Does the following access list entry create the same policy set as the previous aggregated
entry?

access-list 1 permit 192.168.32.0 0.0.3.255

It seems to be equivalent. Networks 192.168.32.0/24, 192.168.33.0/24, 192.168.34.0/24, and
192.168.35.0/24 would be included in the policy set. I don't recommend using this as a mask,
though. While the four networks we want are included, wildcarding the last octet includes
other networks, like 192.168.32.128/25 and 192.168.32.64/26. In general, it is best to make
access lists as specific as possible to prevent surprises like this in the future.

Let's look at another access list example:

access-list 101 permit ip 192.168.34.0 0.0.0.255 host 192.168.33.5
access-list 101 permit ip 192.168.35.0 0.0.0.255 host 192.168.33.5
access-list 101 permit ip 192.168.36.0 0.0.0.255 host 192.168.33.5
access-list 101 permit ip 192.168.37.0 0.0.0.255 host 192.168.33.5

This access list includes all IP packets from all the addresses in four networks going to host
192.168.33.5. As in the previous example, we have four consecutive networks. Each has a
mask that matches all of the addresses in that subnet. Can we condense these entries into a
single statement? No. To see why, let's look at Table 2.2, a mapping of the third octet to
binary.

Table 2.2. Bit patterns for 34 through 37
Third octet value Binary equivalent
34 00100010
35 00100011
36 00100100
37 00100101

 Cisco IOS Access lists

 Page 42

The first address/mask pair that we might try is 192.168.34.0 0.0.3.255. As we saw in the
previous example, an octet value of 3 (00000011) in the mask means that the two rightmost
bit positions in the corresponding octet are wildcards. This implies that the leftmost six bits
have a fixed value, in this case 001000. Since the two rightmost bits are wildcards, they can
take on values from to 3 (00, 01, 10, 11 in binary). Appending these bits to the unchanging
bits leaves the bit patterns 00100000, 00100001, 0010010, and 00100011. These binary
numbers, as we can see from Table 2.1, are 32, 33, 34, and 35. This address/mask pair does
not work. It includes octet values 32 and 33, which we don't want, and excludes 36 and 37,
which we do want.

Another address/mask pair that we might try is 192.168.34.0 0.0.7.255. With the third
octet value being 7, the three rightmost bits are wildcards and thus range from to 7. If we do a
similar analysis to the one we did earlier, we end up with the possible values for the third
octet being 32, 33, 34, 35, 36, 37, 38, and 39. While this includes 36 and 37, we still end up
matching 32, 33, 38, and 39.

What happened here? When the rightmost bits of a mask are wildcards, the following are
always true:

• The number of values matched is a power of 2. There are either 2, 4, 8, 16, 32, 64,
128, or 256 values that can be matched together.

• The starting address matched is a multiple of the number of values matched. If you
match 2 addresses, then the first address matched is a multiple of 2 (even). If you
match 4 addresses, then the starting address is a multiple of 4, and so on.

In the previous example, we tried to make the address/mask pair 192.168.34.0 0.0.3.255
match all the hosts in four networks: 192.168.34.0/24, 192.168.35.0/24, 192.168.36.0/24, and
192.168.37.0/24. This was an attempt to aggregate the numbers 34, 35, 36, and 37 in the third
octet. By the first rule, we have to match a power of 2, in this case 4 since we are trying to
match 4 addresses. The second rule states that the values matched start on a multiple of 4, and
34 is not a multiple of 4. Since the closest multiple of 4 less than 34 is 32, the address/mask
we used matched networks 192.168.32.0/24, 192.168.33.0/24, 192.168.34.0/24, and
192.168.35.0/24 instead of the ones we wanted. We then tried to use the address/mask pair
192.168.34.0 0.0.7.255 to aggregate the four networks. This clearly won't work, as the
three wildcard bits match eight networks instead of four because of the first rule. The second
rule says that the range of values matched must start at a multiple of 8. The nearest multiple
of 8 less than 34 is 32, so the values 32 through 39 are matched, which is more than what we
wanted.

Since 34 is not a multiple of 4, we cannot use a single set of wildcard bits to match 4
consecutive octet values. We can, however, use more than one set of wildcards. While 34 is
not divisible by 4, it is divisible by 2. That means that a mask of 1 with 34 would incorporate
both 34 and 35. The remaining two numbers, 36 and 37, can both also be matched by a mask
of 1, since there are two numbers to match and 36 is divisible by 2. The access list can only be
condensed to the following:

access-list 101 permit ip 192.168.34.0 0.0.1.255 host 192.168.33.5
access-list 101 permit ip 192.168.36.0 0.0.1.255 host 192.168.33.5

Here we have used a mask of 1 (00000001) as the third octet in each mask.

 Cisco IOS Access lists

 Page 43

We have seen that we can use a mask such as 192.168.34.0 0.0.3.255 to match all the
hosts in the networks 192.168.32.0/24, 192.168.33.0/24, 192.168.34.0/24, and
192.168.35.0/24. This mask is deceptive. At first glance, it may seem to match the hosts in
networks 192.168.34.0/24 through 192.168.37.0/24. Starting the address/mask pair with
address 192.168.32.0 is much clearer.

Even if you do start a range with an address in the middle of the range,
the router will store and display that particular access list entry with an
address that starts the range. Using the previous example, the router
would change 192.168.34.0 0.0.0.3.255 to 192.168.32.0
0.0.3.255. This property could cause confusion later when you need to
debug access list problems.

We can learn the following rules from our attempts to reduce our number of access list
entries:

• For clarity, your matching rules should always give the base address of a range,
followed by the mask. While any address within the range will work as the address, it
is much more understandable to start with the base value.

• If you want to match some number of addresses that is not a power of 2 or that doesn't
start at a multiple of a power of 2, you have to write two or more access list entries,
each covering part of the range. An alternative is to include more addresses in the
range, which, as we will see later, is often a good idea.

In general, you can condense a set of IP addresses by looking at the bit positions that would
have fixed values over the entire set of IP addresses and those that could be wildcards. This
can happen in the middle of an octet and not just those on the end. Consider the following
access lists of networks:

access-list 10 permit 192.168.217.0
access-list 10 permit 192.168.221.0

These can be combined into:

access-list 10 permit 192.168.207.0 0.0.4.0

since the bit patterns of 217 and 221 (see Table 2.3) vary only in the sixth bit position. A 1 in
the sixth bit position corresponds to a mask value of 4.

Table 2.3. Bit patterns for 207 and 211
Third octet value Binary equivalent
217 11011001
221 11011101

It should be noted, however, that putting wildcard bits in the middle of octets does not make
for easily readable access lists. Such unintuitive masks can make debugging problems more
difficult. You should use masks like this only when your access-list lines are at a premium or
if you are very sure that the octet values you are matching change very infrequently.

 Cisco IOS Access lists

 Page 44

For your convenience, all possible octet values and their corresponding bit patterns is
included in Table B.1. Table B.2 lists the most commonly used access list wildcard masks and
what values they can match.

Why make access lists shorter?
Performance, stability, and ease of maintenance are the key reasons that access lists
should be as short as possible. Remember, routers process access lists sequentially
when checking to see if an IP address, network address, or packet is a member of a
policy set. On each router interface with an inbound or outbound access list, the
router needs to check each packet passing through the interface against the access
list in each direction. Long access lists that force the router to parse and compare
many entries consume the router's processing resources as the CPU costs increase
with the number of interfaces that require attention.

Access lists can grow to the extent that they threaten a router's stability. If access
lists are so large that the router's configuration no longer fits into flash configuration
memory, only a partial configuration will be used when the router reboots. If the
router crashes for any reason and reloads a partial configuration, the behavior of the
router will be unpredictable. Although using configuration compression can help in
this situation, there is still the risk of instability as a number of Cisco IOS versions
have problems with configuration compression (discussed in Chapter 5).

Long access lists are also much more difficult to maintain. For example, if there is a
problem with a 500-entry access list, a network administrator may have to examine
each of the 500 entries to find the problem. Reducing access list length early on can
save a lot of debugging work later.

In some situations, long access lists may be unavoidable. In later chapters, we'll talk
more about how to deal with long access lists—how to debug them and how to
lessen the impact of long access lists or many access lists.

2.3.1 Good numbering practices

The way that IP addresses are assigned can save a network administrator significant amounts
of time and network resources. Good numbering practices can reduce the number of access
list entries, make the addition of hosts easier, improve performance, and even lessen network
traffic. Factoring policy and access requirements into a network design at the beginning is lot
easier than retrofitting policies later.

If you are assigning IP addresses to hosts and know that they have identical access list
requirements, there are numbering practices that can reduce the number of access list entries
you may need. To begin with, use blocks of addresses or networks in powers of 2. Start
numbering at a multiple of that block size. For example, say that you are numbering four
hosts that need permission to log into a router. You should get a block of four addresses and
start numbering hosts at 4, 8, 12 or some other multiple of 4. That way, the block of IP
addresses or networks can be matched in a single access list entry, in this case, with a mask of
3 in the proper octet. Since the IP addresses of the four hosts that need to access our router are

 Cisco IOS Access lists

 Page 45

192.168.30.4, 192.168.30.5, 192.168.30.6, and 192.168.30.7, you could write the access list
for them as follows:

access-list 1 permit 192.168.30.4
access-list 1 permit 192.168.30.5
access-list 1 permit 192.168.30.6
access-list 1 permit 192.168.30.7

But since we numbered them as we did, we could write a single access list entry for all four
hosts:

access-list 1 permit 192.168.30.4 0.0.0.3

Our numbering work here is similar to how we reduced the number of access list entries by
using masks. In this case, we allocate the numbers to create a mask that enables fewer entries
in our access list.

When you know that you will have to add hosts that function identically to hosts already in
access lists, a variation of this technique can save on future work. Let's say we have a web
server at 192.168.30.16 and know that we may need to add more web servers later. We can
create the access entry:

access-list 101 permit tcp any 192.168.30.16 0.0.0.15 eq http

and then reserve the block of addresses 192.168.30.17 through 192.168.30.31 for future web
servers. That way, when another web server needs to be added, it can be added within the
block of addresses already reserved. No access list changes required! We can add up to 15
more web servers without having to make access list changes. This can really save time,
particularly if an organization allows router changes only during certain change windows.
Although this technique does not efficiently use an address space, it is a tradeoff a network
administrator can make on a case-by-case basis.

Allocating network numbers in a smart way can also improve router performance and even
reduce network traffic. Like the example with hosts, if you have a number of networks that
function similarly and need their routes distributed in identical ways, allocate network
numbers that can be masked together easily. Let's look at a case where we need to advertise
eight routes to the Internet. We could allocate eight consecutive networks that start on a
multiple of 8, such as 192.168.24.0 through 192.168.31.0. This allows us to express the
networks in an access list with one entry instead of eight:

access-list 2 permit 192.168.24.0 0.0.7.0

Some routing protocols such as BGP and EIGRP can aggregate routing information so that a
bigger aggregation of networks leads to smaller route updates and thus less network traffic.
Smaller route updates reduce the amount of memory routers need for routing tables as well as
the router CPU resources needed to manage routing updates.

 Cisco IOS Access lists

 Page 46

2.4 Building and maintaining access lists

So far, we have seen many examples of access lists, but I have not shown how standard and
extended access lists are entered into the router and maintained.

Access lists are part of the router's configuration; they are not some register values that we
can set from the router's command line. That being the case, we enter access lists in the top
level of configuration mode, and must have fully enabled access in order to do so. Access list
entries are appended to the existing list in the order in which they are entered. For example,
here is how to enter the access lists implementing the first example in Chapter 1 on a router
called RouterA:

RouterA# conf term
RouterA(config)# access-list 1 permit 192.168.30.1
RouterA(config)# access-list 1 permit 192.168.33.5

This creates the following access list with two entries:

access-list 1 permit 192.168.30.1
access-list 1 permit 192.168.33.5

If we exit the router's configuration mode and then reenter and type the following access list
entries:

RouterA# conf term
RouterA(config)# access-list 1 permit 192.168.30.2
RouterA(config)# access-list 1 deny 192.168.30.1

we end up with the following access list:

access-list 1 permit 192.168.30.1
access-list 1 permit 192.168.33.5
access-list 1 permit 192.168.30.2
access-list 1 deny 192.168.30.1

It is critical to understand how new access list entries affect an access list. If you want to
delete or change an individual access list entry, you have to delete the entire access list and
reenter it with the changed or deleted access list entry. Again, this is because any new access
list entries are appended to the list. In our example, we entered deny 192.168.30.1 after
permit 192.168.30.1. The deny entry does not "cancel" the permit entry; it only makes
the access list bigger. Moreover, it is never even evaluated. As I mentioned earlier in the
chapter, access lists are evaluated sequentially. The permit entry for host 192.168.30.1 is
always evaluated before the deny entry for host 192.168.30.1. Thus the deny entry is
superflous.

You should note that while access lists may be deleted, references to those access lists do not
disappear. If an access list is deleted and then rebuilt, policy settings that refer to it will use it
in the same way as before. In our first example, we used access list 1 to control login access.
We used the following configuration commands:

line vty 0 4
access-group 1 in

 Cisco IOS Access lists

 Page 47

If we delete access list 1 (using the no access-list 1 configuration command), the reference
to access list 1 still remains. How does a standard access list behave when it is applied to a
vty line or interface but has no entries? You might expect that since access lists have an
implicit deny at the end, an access list without entries would deny everything. In fact, the
opposite is true. The empty access list behavior is to permit everything. For standard access
lists, this becomes:

access-list 1 permit any

Similarly, an extended access list without entries permits everything:

access-list 101 permit ip any any

The easiest way to create and maintain access lists is to keep them all in a single file on a host
and read them in via Trivial File Transfer Protocol, or TFTP. (Most Unix systems have TFTP
implementations, and software to implement a TFTP service is available on operating systems
from Windows 3.1, 95, and NT to VAX/VMS.) To maintain access lists this way, precede
every access list with the statement no access-list n, which deletes list n and allows you to
create a new list from scratch. Here is an example using the access list associated with our
very first example:

no access-list 1
access-list 1 permit 192.168.30.1
access-list 1 permit 192.168.33.5

When this file is read into the router, access list 1 is deleted. A new access list 1 is then
constructed from the entries of access list 1 that follow. With this technique, a network
administrator can edit individual access list entries offline from the router. An entire access
list does not need to be typed in just because a few individual entries were changed. Once
access lists are ready, the configuration file can be loaded in over the network.

Note that this technique, while convenient, can have risks. Under some
versions of IOS, reusing an access list number after deleting it can result
in some or all of the same entries still being there. Test your version of
the IOS for ACL "ghosts" before using this technique.

Another benefit of maintaining access list entries in a file is the ability to insert comments. As
an access list grows in length, inserting comments can make it much easier to read, modify,
and maintain, especially if someone other than yourself needs to change it. Even if you are the
original author of an access list, you may forget why you created a particular entry. Lines in
the configuration file that have an exclamation mark (!) or hash (#) as the first character are
comments. For example, let's document our previous example:

access list 1 - policy set of addresses allowed
to log into router A

! cancel old access list
no access-list 1
! permit Ted's workstation
access-list 1 permit 192.168.30.1
! permit Mary's workstation
access-list 1 permit 192.168.33.5

 Cisco IOS Access lists

 Page 48

The comments make it easier to understand and remember the purpose of access list 1 and its
entries and are ignored by the router.

To load a configuration file over the network, the file has to be placed in an area that is
accessible via TFTP from the router. It needs to be made readable by everyone on the host.
Once the file is ready, we need to configure the router over the network. As an example, let's
configure (we have to be fully enabled) a router from a file called routera-access on a host
with IP address 192.168.30.1:

RouterA# copy tftp://192.168.30.1/routera-access system:running-config
Configure using routea-access from 192.168.30.1? [confirm] y
Loading routera-access from 192.168.30.1 (via Ethernet 0): !!!!!!!
[OK - 12052 / 128975 bytes]
RouterA#

On most implementations of TFTP, a file has to be "world readable" to be read from the
network. This makes your access lists viewable to everyone on the host and potentially
everyone on your network. This is problematic. You do not want to make a cracker's life
easier by giving him your access lists. In addition, you probably do not want to make all the
files on the host accessible to the world either. To avoid these security problems, you can do
the following. First, configure TFTP to limit read access to a specific directory. This prevents
other people on your network from reading files on your host that are not in the directory you
specify for access list configuration. It also does not allow anyone to substitute their version
of access lists into the directory and have those loaded into your routers. Second, configure
your TFTP software to allow only your router access to the configuration files. Third, delete
the configuration file or change its read permissions to not be world-readable after you are
done configuring the router.

Generally, performing the following steps every time you configure a router with TFTP will
greatly reduce security exposure:

1. Make access lists readable only by the router
2. Configure router via TFTP
3. Make access lists unreadable from the network and to other users on the TFTP server

There are many ways to implement Step 3. One of the simplest ways is to delete the access
list file from the TFTP accessible area. Other ways include changing the read permissions on
the access list file or turning off the TFTP service. Whatever you choose, performing these
steps, either through automation or manually, will reduce any potential vulnerability.

2.4.1 Risks of deleting access lists as an update technique

Our approach to maintaining access lists (using no access-list) has its drawbacks. As
mentioned earlier, if we refer to an access list and then that access list is deleted with a no
access-list command, the default behavior is to allow everything. When reading in a
configuration, there is a brief period between the time that the no access-list command is
executed and the first access list entry is accepted. During this period, there is no access list,
and everything is permitted. Once the first entry is accepted, the implicit deny takes effect and
only specifically permitted entries are accepted into a policy set. When you are updating
standard access lists, someone could use a previously restricted resource, or routing
information once controlled could leak. When you are updating extended access lists, packets

 Cisco IOS Access lists

 Page 49

previously stopped could get through during that small window of time. For some denial-of-
service attacks, all that is needed to crash a host is one packet.

Fortunately, the risk is small, and there are ways to mitigate this risk. To find out how, let's
look at this issue in more detail. First, the period of vulnerability is much smaller than a
second. Routing updates have a frequency of 30 seconds for routing protocols such as RIP, 90
seconds for IGRP, and as needed for protocols such as EIGRP and BGP. For any routing
information to leak inadvertently, the window of vulnerability must occur during a routing
update. Second, there are ways to configure a network so that there is always at least one
filtering barrier between potentially hostile areas and a protected area. We will talk about this
in Chapter 7 in a firewall case study.

If the risk is still unacceptable, there are maintenance techniques to eliminate it. Instead of
using no access-list at the start of the configuration file, build any new access list versions
using a different access list number. In our previous example, we build access list 2:

access-list 2 permit 192.168.30.1
access-list 2 permit 192.168.33.5

We then read in access list 2 via TFTP (note that we can define and maintain access lists on a
router even if they are not used). When we are ready to cut in the new access list version, we
use access list 2 as a new access group:

line vty 0 4
access-group 2 in

If you reserve two access list numbers per access list, you can switch back and forth between
access list numbers every time you update the list. This will help conserve access list numbers
in the unlikely event that you are close to running out. It does limit you to 50 different access
lists, and you have to change access list numbers every time you change access lists. Another
method is to reserve at least one access list number for transition purposes. With this
technique, you can load in a new access list with the reserved number and then use the old
access list number as the new reserved number. Also, although the example uses a standard
access list, we can configure interfaces similarly with extended access lists.

2.4.2 Displaying access lists

We have discussed building and entering access lists, but not how to examine the access lists
on a router. To see a router's access list, you can use the command show access-list. This
command shows all of the access lists in the router, both simple and extended. If you follow
the show access-list command with an access list number, you see only an individual access
list. Here is an example listing for a standard access list:

access-list 1
 permit 192.168.30.1
 permit 192.168.33.5

Here is example output for an extended access list:

access-list 101
 permit tcp any host 192.168.30.1 eq www
 permit tcp any host 192.168.35.1 eq 443

 Cisco IOS Access lists

 Page 50

Notice that the output of show access-list has a different syntax from the format used to create
access list entries. The output is not legal syntax for entering access list entries, so cutting and
pasting the entire output of the show access-list command into a file will not produce an
immediately usable configuration. Also, show access-list does not show any comments you
may have created in the configuration file. The router doesn't save comments in its
configuration; they are ignored when the router sees them. You don't need to be fully enabled
in order run the show access-list command.

2.4.3 Storing and saving configurations

If you have been working extensively on access lists by using the configure terminal mode
of the router, the access lists configured on the router may not be synchronized with the
access list stored offline. One way to capture the current access lists is to write them to a file
via TFTP. Here is the router command (which requires fully enabled access) to save your
configuration:

RouterA# copy system:running-confg tftp://192.168.30.1/RouterA-access
Write file RouterA-access on host 192.168.30.1? [confirm] y

Writing RouterA-access !!!!!!!!!!!! [OK]
RouterA#

In this example, we copy the configuration of RouterA to a file called RouterA-access on host
with IP address 192.168.30.1. The file now contains the entire configuration of the router
(stuff other than access lists), but the current access lists can be edited out of the file.

Older versions of the IOS use the command write network instead of
copy.

To save a configuration via TFTP, you have to make an area on your TFTP server available to
the router for writing files. This leaves a potential security vulnerability, especially if you use
the configuration file you have saved to configure this or other routers. A cracker could
potentially overwrite the router configuration with a configuration that suits the cracker's
purposes. If you are not careful about making what you leave writable, the cracker can write
malicious files and programs to the TFTP host. To reduce your risk, the steps you should take
are similar to those for configuring a router by TFTP: limit write access to a specific directory
and configure your software so that only the router can write to that specific directory. After
saving the configuration, move the file out of the directory or change its permissions to be
unwriteable and unreadable. Performing the following steps whenever you save
configurations via TFTP should greatly reduce potential security exposure:

1. Make area writeable by router
2. Save configuration via TFTP
3. Make configuration file unwriteable and unreadable from the network and to other

users on the TFTP server

As mentioned previously, Step 3 can be implemented in many ways, such as changing file
permissions on the configuration file, shutting down the TFTP service, or moving the file to
another directory.

 Cisco IOS Access lists

 Page 51

You can avoid many of the problems of writing configurations over the network by making
all configuration changes in a file. This configuration file gets loaded in over the network
when you need to configure your router. In this case, use the copy tftp command only as a
way to archive router configurations or to check if someone has changed the router's
configuration without your knowledge (by comparing your configuration file with what you
have saved). Another advantage of this approach is that since Cisco routers ignore comments
when reading in configurations over the network, any comments you make will be lost when
you write your configuration via TFTP into a file. Making all of the changes to the router in a
file and then loading that file preserves your comments and keeps your file and configuration
on the router synchronized.

2.4.4 Using the implicit deny for ease of maintenance

Certain practices make maintaining access lists easier. Take advantage of the implicit deny at
the end of access lists, which is particularly useful for standard access lists. If you don't put an
explicit deny at the end of an access list, you can add more IP addresses and routes to that list
quickly by entering them in configuration mode. You don't have to upload a file. This is very
helpful when debugging problems, and it can become critically useful when you are working
on a problem and lose connectivity with the host storing your access list configuration files.
This convenience does come at some cost. Inserting an explicit deny at the end of an access
list serves as a marker for the end of the access list. When used with the logging, it can
determine what traffic is trying to violate an access policy. Also, the explicit deny makes it
harder for network administrators to make rapid changes simply by adding entries. This tends
to reduce the number of hasty, ad hoc, not-well-thought-out changes. Any new entries added
after the explicit deny are ignored.

2.5 Named access lists

In the examples so far, access lists are identified and classified by numbers. I mentioned that
there are limits on the number of standard and extended access lists available for use in a
router configuration. In addition, a number is not a very descriptive way to illustrate an access
list's function, as compared to a generic string like "network-management-hosts" or "valid-
company-routes." To increase the number of access lists available and to provide better, more
descriptive names, more recent versions of the Cisco IOS provide a facility called named
access lists. Named access lists use character strings instead of numbers as identifiers.

Named access lists are usable only under more recent versions of IOS
(11.2 and later), and not under all possible applications of access lists.
Under some versions, using a named ACL will stop forwarding on an
interface. Test your use of named access lists before using them in any
kind of production environment.

They are used exactly the same way as numbered, standard, and extended access lists. For
example, here is a named access list called network-admin-hosts used to restrict router
logins:

line vty 0 4
 access-class network-admin-hosts in

 Cisco IOS Access lists

 Page 52

Here's a named access list called incoming-web-traffic used for packet filtering:

interface Ethernet0
 Ip access-group incoming-web-traffic in

Named access lists differ from numbered access lists in how they are created. When creating a
named access list, you first need to declare the name and type. After that, individual entries
are put in. Unlike numbered access lists, you don't need the access list name with every entry.
Here is an example of a standard access list being configured:

RouterA# conf terminal
RouterA(config)# ip access-list standard network-admin-hosts
RouterA(config-std-nacl)# permit 192.168.30.1
RouterA(config-std-nacl)# permit 192.168.33.5

There are a few key features of named access lists to note here. First, the keyword ip needs to
be used, along with the type of access list, standard or extended. Next, notice that after the
access list name is declared, the configuration prompt changes to RouterA(config-std-
nacl)#, indicating the named access list configuration mode has been entered. Finally, the
access list keyword and access list name are not needed with each access list entry. This
feature of named access lists reduces the size of named access lists compared to numbered
access lists. Converting numbered access lists to named can reduce the storage requirements
of access lists, particularly for long access lists.

Since named access lists are available only on the more recent versions of the Cisco IOS, I
use numbered access lists for most of the examples in this book. Still, they are worth
mentioning, because if you do use an IOS with named access lists, they are a convenient and
useful feature.

Chapter 3. Implementing Security Policies
In Chapter 1, you learned that security, robustness, and business drivers are the primary
motivations for implementing network traffic policies, and in Chapter 2 you learned how to
format, build, and maintain standard and extended access lists. With this background, you are
now ready to implement policies for the first key motivation: security. There are three
sections in this chapter. Since security policies most often use two different tools in the
network administrator's policy tool kit—router resource control and packet filtering—there is
a section on each. These router resources include services on the router, such as Telnet or
SNMP access that should be closely managed by any network administrator. Packet filtering,
or regulating what kind of packets can flow through the router, is commonly used in firewall
applications. Since access lists consume resources on the router, I have included Section 3.3
in this chapter, which describes some alternatives to access lists you might want to consider
when implementing security policies.

3.1 Router resource control

As I have said, creating router resource policies requires building policy sets of host IP
addresses and giving those policy sets permission to use a router resource. The most common
examples, discussed later in this chapter, are policy sets of hosts allowed to log into a router,
but other examples might include controlling SNMP access to router information or

 Cisco IOS Access lists

 Page 53

permission to use the router as a network time server. To implement router resources, we will
create sets of IP addresses using the standard access list described in Chapter 2.

3.1.1 Controlling login mode

As you may know, Cisco routers can have different levels of login access, each with different
security privileges. You can configure the router to have user accounts with different levels of
privilege. The default configuration provides a general restricted login, known as user EXEC
level access, with a specific login password used for initial entry. Once logged in, a user can
look at router statistics, such as routing tables and interface traffic counts, and telnet to other
hosts (if permitted; we'll talk about how to control this later), but he or she can't configure the
router or examine its configuration. Router configuration commands do not exist at that initial
login level of privilege. If someone who has gained login access to the router wants to
configure the router, he must reques t to do so. At that point, another password is required to
gain the necessary privilege level, known as privileged EXEC.

While it may seem that the initial login mode is not particularly useful, this is not true. Having
multiple levels of privilege can be very useful. From basic login access, a network technician
or administrator can still debug problems and monitor key router information, such as
interface statistics, without risking critical services or the security of the router and the
organization and business needs it serves. Particularly in large organizations, this separation
of function and responsibility can be a key component of a smoothly operating network
infrastructure, all the more so when different groups manage different parts of it. This is
shown in Figure 3.1.

Figure 3.1. Different management domains bordering each other

Network administrators from one management domain may give network administrators in
another management domain login access, but not privileged access, to routers. In Figure 3.1,
Domain B may allow Domain A to have login access to Router X. This allows Domain A to
debug problems but not to change the configuration. One real-world example of this is with
Internet service providers (ISPs) and their high-speed leased-line customers. Some ISPs offer
an Internet connectivity service with a router that they manage on the customer's premise.
Customers are given the user EXEC mode password, but they cannot change the router's
configuration because they are not given the privileged EXEC password. In the context of
Figure 3.1, the ISP would be Domain A, and the customer would be Domain B.

As mentioned earlier, login access lets users telnet to other hosts. This is a capability of login
mode that a network administrator may want to control, particularly in situations where login
access is granted to people in other organizations. We'll use access lists to do this shortly.

3.1.1.1 Router login permission

An administrator who has access to the privileged mode password can control the resources
available to the user logins and should pay close attention to how those resources are

 Cisco IOS Access lists

 Page 54

managed. Let's revisit the router access example from Chapter 1 and Chapter 2. Figure 3.2
shows a router and the hosts that can access it.

Figure 3.2. A router and hosts that can potentially access it

We wish to establish a policy that allows logins only from hosts at IP addresses 192.168.30.1
and 192.168.33.5. We first create a policy set with these two addresses:

access-list 1 permit 192.168.30.1
access-list 1 permit 192.168.33.5

Then we configure the login permissions on the router by saying only hosts in the policy set
we just defined can use the virtual terminals of the router:

line vty 0 4
 access-class 1 in

The access-class command does not consider what interface is used to telnet into the router,
so all interfaces are protected by this command. If host 192.168.30.1 or 192.168.33.5 have a
route to the router through interface Ethernet 0, they can continue to use that interface to gain
access to the router. Similarly, the host at 192.168.3.9 cannot telnet to the router no matter
which interface it uses. If the hosts at 192.168.30.1 and 192.168.33.5 have a route to the
router over the Internet, then they can also use that route. This is an important lesson about
router resource controls: although we control what hosts have access, we also need to be
careful about the route taken by packets from those hosts. We can control our router resources
by combining control over routing with resource access lists. I'll talk more about controlling
routes in the next chapter.

To turn off Telnet access to the router from any host, we define an access list of:

access-list 1 deny all

This forces all router logins to take place from the router's console. Alternatively, we can
simply not define any virtual terminals. Defining virtual terminals and then denying access to
them is useful if you need to permit Telnet access at some point in the future. In that case,
Telnet access can be enabled by defining access list 1 to include the proper IP addresses in its
policy set, although leaving the service enabled leaves it vulnerable to potential exploitation.

 Cisco IOS Access lists

 Page 55

3.1.1.2 Addresses reachable from the router

Consider the concerns of Domain A in Figure 3.1. Domain A has access to Router X for
debugging, but Domain A should not be able to use Router X as a platform for probing or
attacking Domain B's network. Although Telnet access to Domain B may seem innocuous, it
really isn't. Since the telnet command on Cisco routers allows users to specify the port they
want to connect to, Telnet access can be used to access any service using TCP, from web
services to electronic mail services, which dramatically increases the security risk to Domain
A.

It is worth noting that restricting outgoing Telnet access does not affect
the other debugging utilities on a router. Utilities such as ping and
traceroute still work despite any constraints on outgoing Telnet.

There are other reasons to restrict the addresses reachable from a router. If a router login
password is compromised, restricting access can trap the intruder and make it impossible for
him to get any further (of course, if the enable password is compromised, the intruder can
simply reconfigure the router to let him through). Also, network administrators may wish to
prevent their user communities and network technicians from using a router as a Telnet proxy
to get around firewalls, and an unscrupulous person could use the router as a way to perform
activities that cannot later be traced by firewall logs.

Let's expand on the management domain example from Figure 3.1 to illustrate how to
implement policies restricting access from a router. Figure 3.3 shows a more detailed picture
of the situation.

Figure 3.3. Controlling Telnet access from routers that share access between organizations

Figure 3.3 again shows two companies, Organization A and Organization B, connected by a
dedicated serial line. Router X is controlled by Organization B. To help Organization A
obtain visibility of the serial line and to aid in debugging when there are problems,
Organization B has given Organization A the login password to Router X. The enable
password is withheld. Organization B carefully chooses what access type of to permit to
Organization A. It does not want anyone from Organization A to use Router X as a point from
which to attack its network.

Keeping in mind these policy goals, how do we implement this? First, we need to identify the
IP addresses that people in Organization A should be able to access. The IP addresses used on
the serial link, 192.168.30.2 and 192.168.30.3, should be accessible from Router X to assist in
debugging line problems. Organization A's network of 172.28.0.0/16 should also be available
from Router X. Everything else should be forbidden. Thus we have IP addresses 192.168.30.2
and 192.168.30.3 in our policy set, along with all of the hosts in network 172.28.0.0/16. The
following access list builds the appropriate policy set:

 Cisco IOS Access lists

 Page 56

access-list 2 permit 172.28.0.0 0.0.255.255
access-list 2 permit 192.168.30.2 0.0.0.1

Once we have defined our policy set, we declare that only those addresses are accessible from
Router X:

line vty 0 4
 access-class 2 out

The first line applies the statements that follow to virtual terminal sessions. The second line
assigns the policy set defined by access list 2 as the IP addresses available from people logged
on to Router X.

As with controlling incoming Telnet using the in qualifier, the access-class command's out
qualifier does not specify the interfaces that outgoing Telnet may use. If there is a route for a
destination IP address through an interface, then outgoing Telnet traffic will go out that
interface. In the next chapter, we'll look into controlling individual routes to and from a
router.

Organization B could completely eliminate all Telnet access from Router X using the
following access list:

access-list 2 deny 0.0.0.0 255.255.255.255

Although limiting Telnet access from a router has security benefits, it also limits the
usefulness of Telnet as a debugging tool. We talk more about using Telnet for debugging in
Chapter 5.

3.1.2 Restricting SNMP access

Because Simple Network Management Protocol (SNMP) is used to manage network
equipment, SNMP and the Management Information Base (MIB) are resources a network
administrator must control carefully. SNMP uses UDP and not TCP for transport, making it a
lightweight way to examine or modify a router's state.

As with Telnet access, security, robustness, and traffic preferences are concerns with SNMP.
And like Telnet access, SNMP has two modes: a read-only mode useful for debugging and a
write-enabled mode that allows changes to the router. Passwords (called community strings in
the SNMP context) for Version 1 of SNMP (the default) are sent in clear text. They are also
designated either read-only, allowing the router's state to be read, or read-write, allowing the
router's state to be both read and modified.

To restrict SNMP access, we include in a policy set all the hosts who can potentially access
the router via SNMP and restrict those hosts to known SNMP network management stations
in our organization. Even hosts that have Telnet access to a router typically do not require
SNMP access unless they are network management systems. Let's say that we have two
network management stations at IP addresses 192.168.57.3 and 192.168.57.18. We then put
these two stations in a policy set:

access-list 5 permit 192.168.57.3
access-list 5 permit 192.168.57.18

 Cisco IOS Access lists

 Page 57

This is applied to SNMP access with:

snmp community string public ro 5

This particular configuration command sets a read-only (ro) community string to public and
restricts access to hosts included in access list 5.

If we want to permit only the host with IP address 192.168.57.3 SNMP read-write access, we
would build a different policy set with only 192.168.57.3 in it:

access-list 6 permit 192.168.57.3

Then we apply access list 6 to the list of hosts with SNMP read-write access:

snmp community string MyRWPass1 rw 6

This configuration command permits only hosts in the policy set defined in access list 6 to
have both read and write access to the router's SNMP MIBs using the community string
MyRWPass1. Again, note that there are no explicit restrictions on the interfaces used for these
transactions.

It's good idea to either disable SNMP or change the default community
strings when you first configure a router.

3.1.3 The default access list for router resources

The generic SNMP command does not require an access list specification, just as the generic
vty definition does not require access list specifications for outgoing or incoming Telnet. As
we mentioned in Chapter 2, Cisco routers have a default access list of:

access-list <access list number> permit any

"Anything and everything" is the default policy set for commands that have optional access
lists arguments, such as snmp community or tftp-server. For example, if the access-group
commands are not specified in the vty definition, the generic access list is the default access
list for both in and out directions. This is important to keep in mind when using these
commands.

I mentioned in Chapter 2 that if you have an access list defined for a router resource, such as
this:

line vty 0 4
 access-class 1 in

and access list 1 has no entries, then the default behavior access list again is:

access-list <access list number> permit any

 Cisco IOS Access lists

 Page 58

An access list that is referenced but has no entries allows everything. This behavior is
counterintuitive, but this is how Cisco routers behave. Do not assume that simply because a
router resource access list is referenced, there is an implicit deny that denies everything.
Using the last SNMP example, if you left access list 6 applied but turned off all SNMP read-
write access with the following:

no access-list 6

you would actually allow all hosts to have read-write SNMP access.

3.2 Packet filtering and firewalls

Firewalls are systems that regulate and monitor services passing between two networks,
usually one that is trusted and the other untrusted. Extended access lists are the typical method
of implementing firewalls with Cisco routers, since they are the preferred mechanism for
filtering packets through the interfaces of two networks. In this section, we start with our
simple example that controls access to a web server by packet filtering with an extended
access list. We then continually expand the example, gradually including functionality and
features to our small firewall to demonstrate how to build robust security policies.

3.2.1 A simple example of securing a web server

The first example of packet filtering demonstrates how to limit access to a web server to
prevent the kinds of attacks described in Chapter 1. Before deciding what access lists are
needed, it is often helpful to draw a diagram of network connectivity. Figure 3.4 shows the
layout of the web server's connectivity.

Figure 3.4. Restricting packets to a web server

We have a serial line to the Internet on the router interface serial 0. The web server lives on
segment 192.168.35.0/24, with IP address 192.168.35.1 and uses the well-known web port,
80, and the well-known SSL port, 443, for delivering web services. Other hosts within the
organization are connected to the router through interface Ethernet 1.

The policy set we need here, as with all extended access lists, contains the type of packets that
can pass through the interface of a router. The policy that needs to be applied in this case
limits access to the web server to just web protocols:

 Cisco IOS Access lists

 Page 59

access-list 101 permit tcp any host 192.168.35.1 eq www
access-list 101 permit tcp any host 192.168.35.1 eq 443

The policy set specified by access list 101 is then applied to the interface Ethernet 2, the
interface used to connect the web server to the router:

int Ethernet 2
 access-group 101 out

Only TCP packets with a destination port of 80 or 443 are allowed "out" onto the Ethernet
interface where the web server is connected. Since the web server uses the well-known web
ports 80 and 443, access to the web server from the Internet and other hosts within the
organization is limited to just the two web protocols.

Recall that with access lists, "out" means out of the router, and "in" means into the router. In
this example, we control access to the web server by filtering packets out of the interface
leading to the web server. We could have implemented the same policy by filtering packets
with an inbound list applied to the other two interfaces of the router, serial and Ethernet 1:

int Ethernet 1
access-group 101 in
int serial 0
access-group 101 in

This assumes that the router needs no other inbound packets on these interfaces to function
correctly. I'll discuss inbound access lists in more detail later in the chapter.

3.2.2 Adding more access to the web server

Access list 101 implements a policy that allows only web protocol access to the server. Some
of the web site users might feel uncomfortable if they can't ping the web server. If we amend
our policy to allow web traffic and ping traffic to the web server, the access list becomes:

access-list 101 permit tcp any host 192.168.35.1 eq www
access-list 101 permit tcp any host 192.168.35.1 eq 443
access-list 101 permit icmp any host 192.168.35.1 echo

This is a very restrictive configuration. Users can reach the server only via the two open web
ports, and they can also ping the server to see if it is alive, but that is it. We want to guard
against what we saw in the first scenario in Chapter 1: a cracker changing the web server's
content.

While a cracker will have a hard time modifying the web server's contents, so will the server's
administrator. With the network access extremely restricted, the administrator must log into
the server's console and change content either by hand-editing it or by bringing in new content
on a physical medium like a tape or CD-ROM. Some administrators may choose to have this
level of control over their Internet web presence. For other administrators, the convenience of
network updates might outweigh any security concerns. If the web server administrator wants
to use the FTP to load content onto the server, there are two ways to update the web server
over the network: with FTP sessions initiated from another host to the web server or from the
server to another host. The first method has the advantage of convenience. Content providers
for the web server can transfer their content from hosts in the network without having to log

 Cisco IOS Access lists

 Page 60

on to the web server console, but this convenience has a price in security since FTP uses
passwords that go over the network in clear text. The second approach initiates FTP from the
web server to hosts in the network. In this case, the web server administrator no longer has to
move content onto physical media for transfer but still has to log on to the server console to
do the operations. From a security standpoint, web server passwords never appear in the clear,
so they cannot be listened for and later reused by an attacker. However, a potential downside
is that now the content hosts' passwords appear in the clear.

Since both methods have their tradeoffs, I'll show how to implement each one. First, let's take
a look at having FTP sessions initiated from the web server. We can define the access policy
as follows:

Allow any host to get web pages from the web server

Allow any host to ping the web server

Allow web server to FTP files from other hosts in the organization's network
(172.16.0.0/16)

We have already implemented the first two policy declarations, so let's focus on implementing
the third.

3.2.3 Allowing FTP access to other hosts

The FTP protocol has a number of unusual properties that complicate writing access lists for
it, as shown in Figure 3.5.

Figure 3.5. Connection setup and port usage with the FTP protocol

When an FTP client connects to an FTP server, it connects to port 21 on the server. This
connection becomes the FTP session's control channel. Commands and command parameters
(like filenames) are sent over this channel. When a data transfer for a directory listing or for
copying a file needs to take place, the FTP client sends the request to the server along with a
destination port greater than 1023 for a data connection. The FTP server then sets up a new
TCP connection from source 20 to the destination port on the client specified by the client.

 Cisco IOS Access lists

 Page 61

Since the web server is acting as an FTP client, we need to allow two types of packets into it:
packets associated with the FTP control connection and packets associated with any data
connections that are needed. FTP control connection packets going to the web server will
have a source port of 21 and a destination port greater than 1023. Data connections will have
a source port of 20 and a destination port greater than 1023. If you look up the protocol
identifiers for TCP ports 20 and 21 in Table A.2, you can see that port 20 is the ftp-data
port, and port 21 is the ftp port. The access list then becomes:

! Allow any host to get web pages from the web server
access-list 101 permit tcp any host 192.168.35.1 eq www
access-list 101 permit tcp any host 192.168.35.1 eq 443
! Allow any host to ping the web server
access-list 101 permit icmp any host 192.168.35.1 echo
! Allow web server to FTP files from other hosts in the company
access-list 101 permit tcp 172.16.0.0 0.0.255.255 eq ftp-data host
192.168.35.1 gt 1023
access-list 101 permit tcp 172.16.0.0 0.0.255.255 eq ftp host 192.168.35.1
gt 1023

And we're done.

3.2.4 Allowing FTP access to the server

Now let's implement the other policy, the one that allows FTP connections to the web server
from any host in the organization's network. The source and destination port information is
switched in this case to allow access to the web server: incoming control connection packets
will have a destination port of 21 with source ports greater than 1023. Incoming data
connection requests use source ports greater than 1023 with a source port of 20. For this
policy, access list 101 would be:

! Allow any host to get web pages from the web server
access-list 101 permit tcp any host 192.168.35.1 eq www
access-list 101 permit tcp any host 192.168.35.1 eq 443
! Allow any host to ping the web server
access-list 101 permit icmp any host 192.168.35.1 echo
! Allow any host to FTP to the web server
access-list 101 permit tcp 172.16.0.0 0.0.255.255 gt 1023 host 192.168.35.1
eq ftp-data
access-list 101 permit tcp 172.16.0.0 0.0.255.255 gt 1023 host 192.168.35.1
eq ftp

This version of access list 101 allows any host in the organization to FTP files from the web
server if they have a valid password. In practice, for the purpose of uploading content to a
web server, we would probably be better off permitting FTP only between specific hosts and
the web server, since we would know in advance which hosts would need to upload content.
If we designate host 172.16.30.1 as a content upload machine, we would change the last two
entries in access list 101 to:

access-list 101 permit tcp host 172.16.30.1 gt 1023 host 192.168.35.1 eq
ftp-data
access-list 101 permit tcp host 172.16.30.1 gt 1023 host 192.168.35.1 eq
ftp

 Cisco IOS Access lists

 Page 62

3.2.5 Passive mode FTP

At some point, we might decide to distribute files via anonymous FTP on the web server,
letting anyone transfer certain files without a password. This is a common way to distribute
files on the Internet. If we choose to do this, we have to deal with a commonly used feature of
FTP called PASV ("passive") mode. When FTP is set to passive mode, the FTP client and
server set up data connections differently, as shown in Figure 3.6.

Figure 3.6. Connection setup and port usage using FTP passive mode

Instead of the data connection set up from the server to the client, the client in PASV mode
sets up the data connection from a source port greater than port 1023 to server port 20. The
access list 101 we built previously:

! Allow any host to get web pages from the web server
access-list 101 permit tcp any host 192.168.35.1 eq www
access-list 101 permit tcp any host 192.168.35.1 eq 443
! Allow any host to ping the web server
access-list 101 permit icmp any host 192.168.35.1 echo
! Allow any host to FTP to the web server
access-list 101 permit tcp any gt 1023 host 192.168.35.1 eq ftp-data
access-list 101 permit tcp any gt 1023 host 192.168.35.1 eq ftp

covers this case. PASV mode has a number of advantages over FTP's standard method for
managing data connections. With PASV mode, all TCP connections are initiated from the
client to the server. The client does not have to permit any connections to it at all. Also, the
destination port for the data connection is fixed at 20. The client does not have to leave open a
large number of ports (ports greater than 1023), as must be done in standard FTP mode.

Unfortunately for network administrators, many web browsers in use today on the Internet do
not implement PASV mode correctly. Figure 3.7 shows how these browsers behave.

 Cisco IOS Access lists

 Page 63

Figure 3.7. PASV mode connection setup and port usage on some web browsers

These browsers, when used as FTP clients, connect to ports greater than 1023 on the server
instead of to port 20. As a result, to allow the web server to function as an anonymous FTP
server in the manner requested by most web browsers, we need to add an additional line to
access list 101:

! Allow any host to get web pages from the web server
access-list 101 permit tcp any host 192.168.35.1 eq www
access-list 101 permit tcp any host 192.168.35.1 eq 443
! Allow any host to ping the web server
access-list 101 permit icmp any host 192.168.35.1 echo
! Allow any host to FTP to the web server
access-list 101 permit tcp any gt 1023 host 192.168.35.1 eq ftp-data
access-list 101 permit tcp any gt 1023 host 192.168.35.1 eq ftp
access-list 101 permit tcp any gt 1023 host 192.168.3.1 gt 1023

This exposes the host providing an anonymous FTP server to many possible attacks on many
ports, but this is a risk associated with providing anonymous FTP service.

3.2.6 Allowing DNS access

If we want our web server to use FTP to transfer files, it's also reasonable to allow DNS
through the router so that the server's administrator can use hostnames instead of IP addresses.
None of the access lists that we have developed so far allow DNS traffic. To allow DNS
through our router, we need to understand the port behavior of DNS. Queries from most DNS
daemons use UDP port 53 as source and destination ports. Queries from DNS tools such as
dig and nslookup use a UDP source port greater than 1023 and a destination port of 53. If the
responses to queries are very large, the DNS client, whether a DNS daemon or a tool, will
initiate a TCP connection to destination port 53. Since having DNS capability will make the
web server administrator's job much easier, we modify the access policy to be the following:

Allow any host to get web pages from the web server
Allow any host to ping the web server
Allow web server to FTP files from other hosts
Allow the web server to do DNS queries

With this policy change, the access list becomes:

 Cisco IOS Access lists

 Page 64

! Allow any host to get web pages from the web server
access-list 101 permit tcp any host 192.168.35.1 eq www
access-list 101 permit tcp any host 192.168.35.1 eq 443
! Allow any host to ping the web server
access-list 101 permit icmp any host 192.168.35.1 echo
! Allow web server to FTP files from other hosts
access-list 101 permit tcp any eq ftp-data host 192.168.35.1 gt 1023
access-list 101 permit tcp any eq ftp host 192.168.35.1 gt 1023
! Allow the web server to do DNS queries
access-list 101 permit udp any eq domain host 192.168.35.1 gt 1023
access-list 101 permit udp any eq domain host 192.168.35.1 eq domain
access-list 101 permit tcp any eq domain host 192.168.35.1 gt 1023

We used the port designator domain for DNS port 53.

3.2.7 Preventing abuse from the server

Now our web server is locked down tightly while still offering many services. But just to be
sure, let's ask: what if a cracker did manage to penetrate the web server? What if the evil or
inept system administrator of the web server decides to attack systems on the Internet or
within the organization? What kind of damage could they do? How can we protect the rest of
the world from our web server machine, as well as protect our machine from the world? With
the current access list, the web server can still be used to generate denial-of-service attacks
that crash systems by sending strangely formatted packets. No return response is necessary, as
would be required if a TCP connection needed to be set up to conduct the attack. One packet-
based denial-of-service attack is called "ping of death." This attack sends peculiarly formatted
ICMP packets that are designed to crash a host. With the access lists like those configured
previously, anybody can launch the ping of death against a machine on the Internet or within
the organization because we have placed no restrictions on what can be sent out through the
serial line or through Ethernet interface 1. While the policy we have been defining and
implementing does not explicitly permit attacks from being launched from the web server, we
have no mechanism in place to enforce that.

To remedy this situation, we first need to define a policy that explicitly deals with potential
attacks from the web server. Keeping this requirement in mind, let's implement the following
policy with the addition of the final line to our previous web server policy:

Allow any host to get web pages from the web server

Allow any host to ping the web server

Allow web server to FTP files from other hosts

Allow the web server to do DNS queries

Disallow any packets from the web server not needed to implement the
allowed services

This policy allows all of the services we have specified so far, but doesn't allow attacks to be
sent from the web server. To implement our policy, we need additional access lists that we
can apply to the outgoing serial line and the other Ethernet connection going to the rest of the
organization (Ethernet interface 1):

 Cisco IOS Access lists

 Page 65

! Allow web server to respond to HTTP requests
access-list 102 permit tcp host 192.168.35.1 any established
! Allow web server to reply to ICMP echo requests
access-list 102 permit icmp host 192.168.35.1 any echo-reply
! Allow web server to FTP files from other hosts
access-list 102 permit tcp host 192.168.35.1 any eq ftp
! Allow the web server to send DNS queries
access-list 102 permit udp host 192.168.35.1 any eq domain
access-list 102 permit tcp host 192.168.35.1 any eq domain
! Disallow any packets from the web server that are not needed
! to implement the services allowed above with implicit deny

The first line with protocol TCP and the established qualifier is used to implement the
policy rule that lets clients in the Internet and within the organization connect to the web
server. The established qualifier matches packets that are part of a TCP connection already
set up between a client and a server. Figure 3.8 shows how the established qualifier works.

Figure 3.8. The established qualifier and TCP connection setup

When a host establishes a TCP connection to another host, it sends a connection set up packet
to that host. The packet has the SYN flag (for synchronize) set in the TCP header, instructing
the second host to synchronize TCP packet sequence numbers for connection set up (sequence
numbers are used to determine if packets arrive out of order and check if the correct amount
of data has been received). If the host can honor the connection request, it responds by
sending a packet with both the SYN and ACK bits set. The ACK bit (for acknowledge) flags
the packet as being part of an established TCP connection. All other packets in the connection
from both hosts have the ACK bit set. The established qualifier matches packets with an
ACK bit set, and thus includes (or excludes) in a policy set packets that are part of an TCP
connection already set up.

How does an access list entry with established enable web traffic to the web server? Since
web service requests use TCP, a connection needs to be set up for each request. Requests go
to the web server through Ethernet 0, where access is controlled by access list 101. Return
packets go out through either serial or Ethernet 1 with their ACK bit set. Since the ACK bits
are set, the established entry includes the packets of requests made to the web server in the
policy set of packets allowed out. Note what the line doesn't include. It doesn't allow
connections to be set up from the web server to systems on the Internet or within the

 Cisco IOS Access lists

 Page 66

organization. Since connection request packets set only the SYN bit and not the ACK bit, the
established access list entry does not include them in the policy set.

Using an established access list entry at the start of an access list has a number of benefits.
First, it allows most packets of a TCP connection to match the first line of the access list. This
can significantly save router CPU because the router doesn't have to process entire access lists
for most of the packets it sees. Second, it spares the access list writer from having to specify
the source ports of return packets of TCP connections for different applications allowed
through an interface. For example, if we added a new service on TCP port 23 of the web
server, we would only need to add a line to access list 101 to permit this service. Return
packets of the TCP connection would match the established line. This can save significant
amounts of time as more and more TCP protocols are allowed through an interface.

Let's look at the rest of access list 102 and see how it implements our policy. The next policy
entry needs to be implemented to allow users to ping the web server. Ping uses ICMP echo
packets coming into the web server. The web server replies with ICMP echo-reply packets.
We explicitly allow only echo-reply ICMP packets out to the Internet and the rest of the
organization. The next line allows the web server to set up FTP connections to other systems
on other hosts. As we mentioned, connection setup packets are not included in the first line
that uses established, so we have to allow it explicitly. Recall that FTP sets up its control
channel to port 21 on the target server host, so we allow TCP connections from the web server
out on port 21. What about FTP's data connection? Do we explicitly need to allow outgoing
connections to port 20? For normal (not PASV) FTP transfers, we do not, because the host
acting as the FTP server initiates the connection from a port greater than 1023 to port 20 on
the web server. Return packets are matched by the first line with established. The final two
lines implement DNS access for the web server. Outgoing DNS requests uses UDP port
destination 53. If the answer to a DNS requests is large, TCP port 53 (going out) needs to be
open. How do we stop all other outgoing services? We will put an access list on interfaces
Ethernet 1 and serial 0; all other services are prohibited by access list 102's implicit deny from
going out.

We apply this access list to the serial interface to the Internet and to the Ethernet interface
leading to the rest of the company with the following:

interface Serial 0
 access-group 102 out
interface Ethernet 1
 access-group 102 out

3.2.8 Direction of packet flow and extended access lists

In the previous example, the decision to tightly control packets flowing both in and out of a
segment resulted in the need for inbound and outbound access lists. For every service we add,
we need to think about the IP protocol used by the service, such as ICMP, UDP, TCP, or
some other IP protocol number, and the source and destination ports (if any) of packets
flowing to and from client and server. To make this easier for you, Table C.1 in Appendix C
lists the source and destination ports for common services you may need to control. Let's look
at a few more examples of working with IP protocols and source and destination to illustrate a
few more important points. Let's require that the web server at 192.168.35.1 be able to get
Network Time Protocol (NTP) service from the Internet. NTP is a protocol used for
synchronizing system clocks over a network. If you look at Table A.3, you can see that NTP

 Cisco IOS Access lists

 Page 67

uses UDP and port 123, which we can specify as port ntp in our access list for both source
and destination. To add NTP packets to the policy sets of packets allowed through to the web
server, we need to add the following access list entries:

access-list 101 permit udp any eq ntp host 192.168.35.1 eq ntp
access-list 102 permit udp host 192.168.35.1 eq ntp any eq ntp

Note that access list 101 filters traffic going to the web server, while access list 102 filters
traffic leaving the web server.

While the following access list entries will also work:

access-list 101 permit udp any host 192.168.35.1 eq ntp
access-list 102 permit udp host 192.168.35.1 any eq ntp

the first set of entries are preferred because they define permissions more narrowly. In
general, it is best to declare permissions as narrowly as possible so you don't permit any
packets or services that aren't needed or that might cause problems. In the previous example,
if you use the following access list entry to allow DNS:

access-list 102 permit udp host 192.168.35.1 any eq domain

you permit potentially damaging packets with source port 123 and destination port 53.
Another problem is with how widely we have allowed NTP access. We have allowed any host
on the Internet to send NTP packets to the web server. While this might be intended as a
public service, if it is not, access should be limited to the Internet NTP hosts you want to use
as servers.

To control TCP-based services, you need to know the direction of the connections that will be
set up between a client host and a server host, and what port numbers will be used. Although
FTP is more complicated, with most other TCP-based services the client sets up a connection
to the server on a set port. So for this example, let's have our web server offer a service for
people on the Telnet port. From Table A.3, you can see that Telnet uses a single connection
with TCP port 23 as the destination port on the server and source ports greater than 1023. If
you add the following access entry:

access-list 101 permit tcp any host 192.168.35.1 eq telnet

Telnet is enabled. What about the packets for this service that need to go from the web server
back to the client? These are taken care of by the access list entry with established in access
list 101 (as I pointed out earlier, the established keyword is very useful in reducing the
number of access list entries needed). Recall that there are a number of TCP services we
permitted that require connections initiated from the web server to hosts on the Internet and
within the organization. If we add the following entry to access list 101:

access-list 101 permit any host 192.168.35.1 established

we can eliminate the access list entries that specifically allow TCP packets back to the web
server after connections have been set up. Access list 101 then becomes:

! Allow any host to get web pages from the web server
access-list 101 permit tcp any host 192.168.35.1 eq www

 Cisco IOS Access lists

 Page 68

access-list 101 permit tcp any host 192.168.35.1 eq 443
! Allow any host to ping the web server
access-list 101 permit icmp any host 192.168.35.1 echo
! Allow the web server to FTP files from other hosts
access-list 101 permit tcp any host 192.168.35.1 established
access-list 101 permit tcp any eq ftp-data host 192.168.35.1 gt 1023
! Allow the web server to do DNS queries
access-list 101 permit udp any eq domain host 192.168.35.1 gt 1023
access-list 101 permit udp any eq domain host 192.168.35.1 eq domain

We have replaced the entries that specifically allowed packets back from FTP sessions and
from DNS queries that required TCP. Since the web server initiates the TCP connections, all
of the packets coming back to the web server are matched by the access list entry that uses
established.

3.2.9 Using the established keyword to optimize performance

The established keyword is also useful in improving packet forwarding performance
through an access list. If you put in an access list entry with established at the start of an
access list (as we did in access list 102), most of the packets checked by the access list will
match the first entry. This is because most packets in FTP and HTTP (web) requests are sent
after a connection is established. To optimize access list 101, move the established access
list entry to the beginning of the list:

! Allow in established connections
access-list 101 permit any host 192.168.35.1 established
! Allow any host to get web pages from the web server
access-list 101 permit tcp any host 192.168.35.1 eq www
access-list 101 permit tcp any host 192.168.35.1 eq 443
! Allow any host to ping the web server
access-list 101 permit icmp any host 192.168.35.1 echo
! Allow web server to FTP files from other hosts
access-list 101 permit tcp any eq ftp-data host 192.168.35.1 gt 1023
! Allow the web serverto do DNS queries
access-list 101 permit udp any eq domain host 192.168.35.1 gt 1023
access-list 101 permit udp any eq domain host 192.168.35.1 eq domain

Most of the valid TCP packets going through interface Ethernet 2 will be matched by the first
entry. We still filter other TCP-based services by permitting only those services we allow to
set up connections with the web server.

3.2.10 Exploring the inbound access list

Before you start using inbound access lists, you need to understand how they work compared
to outbound access lists. When a Cisco router filters packets passing through it, it has two
places where it can filter: at the interface where the packets come into the router or at the
interface where they go out. Cisco routers match packets against an outbound access list when
packets come into one interface of the router and then exit through the interface against which
the outbound extended access list is applied. In the web server example, the router checks
access list 101 when packets come in from either the serial line interface or the Ethernet
interface 1, and are destined for Ethernet interface 0. The router also checks packets against
access list 102 when packets come into the router via one of the Ethernet interfaces and go out
the serial line interface. The important thing to remember here is that an outbound access list
does not filter packets originated by the router. This means that all the packets that might go

 Cisco IOS Access lists

 Page 69

out of an interface and that originate from a router (such as with routing update packets,
outgoing Telnet session packets, NTP service packets, and various broadcast packets such as
ARP requests) cannot be checked against an outgoing access list. This also means that packets
going into a router that are not forwarded are never checked by an outbound access list. It
may seem that inbound access lists must be long and not very useful. Their usefulness comes
from the fact that they do look at everything coming into a specific interface. There are
instances when you want to control such actions as routing updates and packets coming in just
from a specific interface. We'll see this later in the chapter.

3.2.10.1 Implementing a policy with inbound access lists

Let's look at some examples of how to use inbound and outbound access lists together. I'll use
the network configuration in Figure 3.9 for the next example.

Figure 3.9. Network diagram for inbound/outbound access list issues

In this network configuration, Company C wants to share information and do business with
Company A and Company B. To do that, Company A has set up a web server that is
accessible by both Companies A and B. Companies A and B connect into Company C's web
server via serial lines into Router X. The web server lies on an Ethernet connected to Router
X. Company A uses network 192.168.28.0/24, and Company B uses network
192.168.29.0/24.

Company C wants to share certain information with both companies A and B through the web
server. It also wants to run secure business transactions only with Company B. As a result,
Company C wants to allow regular web traffic from both Company A and Company B, but
allow SSL traffic for secure business transactions exclusively from Company B. Both
companies should be able to ping the web server, which uses the standard well-known ports
of HTTP and SSL (TCP ports 80 and 443, respectively). To summarize, Company C needs to
implement the following policy:

Network 192.168.28.0/24 needs HTTP (TCP port 80) access to 192.168.30.2

Network 192.168.28.0/24 needs to be able to ping 192.168.30.2

Network 192.168.29.0/24 needs HTTP (web) access to 192.168.30.2

 Cisco IOS Access lists

 Page 70

Network 192.168.29.0/24 needs SSL access to 192.168.30.2

Network 192.168.29.0/24 needs to be able to ping 192.168.30.2

Let's implement this with inbound and outbound lists applied to the serial lines. First, we need
to permit traffic in HTTP and incoming pings from Company A to the web server:

access-list 101 permit tcp 192.168.28.0 0.0.0.255 host 192.168.30.2 eq www
access-list 101 permit icmp 192.168.28.0 0.0.0.255 host 192.168.30.2 echo

Next, we permit traffic from the web server to Company A for the return packets of HTTP
connections and responses to pings:

access-list 102 permit tcp host 192.168.30.2 192.168.28.0 0.0.0.255
established
access-list 102 permit tcp host 192.168.30.2 192.168.28.0 0.0.0.255 echo-
reply

Access list 103 permits HTTP, SSL, and ping for Company B to the web server:

access-list 103 permit tcp 192.168.29.0 0.0.0.255 host 192.168.30.2 eq www
access-list 103 permit tcp 192.168.29.0 0.0.0.255 host 192.168.30.2 eq 443
access-list 103 permit icmp 192.168.29.0 0.0.0.255 host 192.168.30.2 echo

Access list 104 permits traffic from the web server back to Company B:

access-list 104 permit tcp host 192.168.30.2 192.168.29.0 0.0.0.255
established
access-list 104 permit icmp host 192.168.30.2 192.168.29.0 0.0.0.255 echo-
reply

We apply these access lists against the interfaces as follows:

int serial 0
access-group 101 in
access-group 102 out
int serial 1
access-group 103 in
access-group 104 out

3.2.10.2 Implementing the same policy with outbound access lists

Now we'll implement the policy with only outgoing access lists. First we define the policy set
of packets going to the web server out through the Ethernet interface:

access-list 101 permit tcp 192.168.28.0 0.0.1.255 host 192.168.30.2 eq www
access-list 101 permit tcp 192.168.29.0 0.0.0.255 host 192.168.30.2 eq 443
access-list 101 permit icmp 192.168.28.0 0.0.1.255 host 192.168.30.2 echo

The first access list entry permits HTTP traffic both from Company A's network
192.168.28.0/24 and Company B's network 192.168.29.0/24. The second entry permits SSL
for Company B. The third access list entry allows pings from both companies.

 Cisco IOS Access lists

 Page 71

Next, we'll define the access list for packets going out to Company A and Company B. For
Company A:

access-list 102 permit tcp host 192.168.30.2 192.168.28.0 0.0.0.255
established
access-list 102 permit icmp host 192.168.30.2 192.168.28.0 0.0.0.255 echo-
reply

We allow the return packets for HTTP and the ping replies; we do the same for Company B:

access-list 103 permit tcp host 192.168.30.2 192.168.29.0 0.0.0.255
established
access-list 103 permit icmp host 192.168.30.2 192.168.29.0 0.0.0.255 echo-
reply

All three access lists are applied to interfaces as follows:

int Ethernet 2
access-group 101 out
Int serial 0
access-group 102 out
Int serial 1
access-group 103 out

3.2.10.3 Comparing the inbound and outbound access list implementations

Now that we've implemented the policy two different ways—one using inbound access lists
and another using outbound access lists—let's look at how the implementations differ. Are the
two implementations, one using inbound access lists and one using outbound access lists,
really equivalent from a policy standpoint? Imagine if Company A and Company B, while
seeking to maintain good relations with Company C, are very hostile competitors. Company
A, learning somehow that Company B is doing secure transactions using SSL, tries to slow
down Company B by spoofing TCP packets to the web server's SSL port from Company B's
network 192.168.29.0. This is an attempt to bog down the processing of Company B's
transactions by overwhelming the web server's SSL routines. With the inbound access list
implementation, such an attack would be prevented. Spoofed packets from Company A
posing as Company B's 192.168.29.0/24 packets would be stopped by the implicit deny of
access list 101. With the outbound access list implementation, this attack would be successful.
Since outbound access lists do not differentiate between the interfaces where packets
originate, there is no way to stop the forged packets from coming in.

The inbound access lists consisted of four different access lists and a total of nine access list
entries. The outbound access list consisted of three different access lists and seven access list
entries. Why did the outbound access list have fewer entries and access lists? As I mentioned
earlier in this section, outbound access lists do not need to consider the interface a packet
came in from. In the inbound access list case, we had to have separate rules for allowing in
HTTP and ping traffic for both Company A and Company B. With outbound lists, we used
masking to combine those entries, since networks 192.168.28.0/24 and 192.168.29.0/24 can
be combined as 192.168.28.0 0.0.1.255, and we are filtering traffic going out to the web
server on Ethernet 0. By using outbound access lists exclusively, you can usually have shorter
access list configurations, which really makes a difference if you start to run out of
nonvolatile memory for storing configurations on a router.

 Cisco IOS Access lists

 Page 72

Other differences come into play when considering how the companies would monitor and
maintain their network connectivity. For instance, what happens if Company A or Company
B cannot reach the web server? With the outbound access list implementation, Company A
may ping the serial interface address 192.168.31.3 to see if the serial link is running. If the
interface is down, then Company A can conclude that the reason the web server is
unreachable is that the line is down. If the interface is up, the problem is most likely at
Company C. In a similar fashion, Company B may ping the serial interface 192.168.31.5 and
make similar conclusions about network connectivity. With the inbound access list
implementation, ping will not work. Since the inbound access lists 101 and 103 do not
explicitly allow ICMP echo packets coming in to the interface address, Company A and
Company B lose visibility into the network, since they can't see if the other sides of the serial
lines are up.

Similarly, if Company A or Company B wants to provide routing information to Company C
via a dynamic routing protocol, the outbound access list implementation would allow the
protocol to work while the inbound access list implementation would not. If Company A and
Company B wants to use BGP as the routing protocol, the inbound access list would have to
add the following access list entries:

access-list 101 permit tcp host 192.168.31.2 host 192.168.31.1 eq bgp
access-list 103 permit tcp host 192.168.31.6 host 192.168.31.5 eq bgp

BGP uses TCP, and we have to allow it explicitly on the inbound access lists.

From our explorations of the differences of using inbound and outbound extended access lists,
we can draw some conclusions about what tradeoffs are involved when deciding between
inbound and outbound access lists. Outbound access lists are generally more permissive and
tend to result in fewer access list entries. With outbound access lists, you don't have to worry
about specifically permitting functions like routing updates, ARP, and ping. This results in
less work for the router. Inbound access lists require the access list author to specify many
more entries. Inbound access lists are the router's only defense against packet spoofing.
Outbound access lists cannot stop packet spoofing. I generally recommend using outbound
lists as much as possible, and using inbound lists to stop spoofing and making them as simple
as possible. For our outbound implementation, let's add the following inbound access lists:

access-list 104 permit ip 192.168.28.0 0.0.0.255 host 192.168.30.2
access-list 104 permit icmp 192.168.28.0 0.0.0.255 host 192.168.31.1 echo
access-list 105 permit ip 192.168.29.0 0.0.0.255 host 192.168.30.2
access-list 105 permit icmp 192.168.29.0 0.0.0.255 host 192.168.31.5 echo

These would be applied as follows:

interface serial 0
access-group 104 in
interface serial 1
access-group 105 in

The first line of access list 104 includes only packets from Company A in the policy set of
permitted packets. The first line of access list 105 does the same. We can allow the category
of the protocol to be as broad as IP because we have further filtering being done by outbound
access lists. The second entries in access lists 104 and 105 permit ping requests into the
router. If we need to use BGP between the three companies, we have to add access list entries

 Cisco IOS Access lists

 Page 73

explicitly allowing BGP like we did earlier. We don't have to worry about permitting
responses to pings of the serial interfaces in an access list because we are using outbound
extended access lists, which do not filter the packets of ping responses generated by the router
itself.

3.2.10.4 Using inbound access lists to prevent IP address spoofing

As I mentioned earlier, spoof prevention is an important use of inbound access lists. Many
denial-of-service attacks use source address spoofing as a method of entry. Spoofing often
works because many security mechanisms trust packets that have a source address from a
trusted network. In Chapter 1, I described a scenario where a disgruntled ex-employee caused
damage by sending spoofed packets from the Internet into the network of his former
employer. Such attacks can be stopped with inbound access lists. Figure 3.10 shows how
organizations typically connect to the Internet.

Figure 3.10. Typical Internet connectivity for an organization

In this configuration, we see Organization A with two networks, 172.20.0.0/16 and
192.168.30.0/23. The organization connects to the Internet through serial link 0. The
organization needs to protect against packets from the Internet that have source IP addresses
from its own two networks. Packets originating from networks 172.20.0.0/16 and
192.168.30.0/23 from other interfaces should be okay, but packets using the organization's
networks as source IP addresses through serial 0, the Internet interface, are spoofed addresses
that should be blocked. We can take care of this problem by setting up an inbound access list
on serial 0:

access-list 100 deny ip 172.20.0.0 0.0.255.255 any
access-list 100 deny ip 192.168.30.0 0.0.1.225 any
access-list 100 permit ip any any

This access list is applied against incoming packets on the serial interface to the Internet:

interface serial 0
access-group 100 in

The first two entries in access list 100 stop packets that are forged as being from IP addresses
within the company. The third entry permits any other packet to go inside the company. An
added benefit of using inbound access lists in this way is that as long as the serial interfaces
do not use IP addresses that are inside the company, we do not need an extra entry to allow
routing updates. While permitting all IP traffic in after the two deny entries is very broad, it is
implicit in these access lists that further filtering is done by outbound access lists on other
interfaces.

 Cisco IOS Access lists

 Page 74

Inbound access lists and the address resolution protocol

The Address Resolution Protocol (ARP) is used by hosts on a shared medium such
as Ethernet to determine the MAC address belonging to a particular IP address. The
MAC (Media Access Control) address is a way of specifying the device address at
layer 2 of the network stack. Without some way of learning the MAC address of
other systems, there would be no way that hosts could communicate with each other.
With inbound access lists, you need to be careful to allow ARP into an interface. For
example, if you have a router with interface 192.168.35.1 connected to a network
193.168.35.0/24, the following access list entry allows ARP into the interface:

access-list 101 permit ip 192.168.35.0 0.0.0.255 host 192.168.35.1

You basically need to allow all IP from systems on the network to the interface IP
address. It is unfortunate that there is no narrower way to define access, but that is
the nature of ARP.

An alternative to permitting so broad a range of packets into an interface is to
explicitly define the ARP address of hosts you want to reach into the router. This
technique saves access list lines at the expense of lines of hardcoded ARP entries
and a lack of flexibility. In the previous comparison between inbound access lists,
we assumed that the ARP entries were hardcoded.

3.2.10.5 Making routing protocols go through an inbound access list

I have mentioned that when using inbound access list on an interface, if you want to receive
routing information on that interface, you need to specifically allow packets for those
protocols. In this section, I go through a list of common routing protocols and access list
entries that allow any host to send in routing updates for that protocol through an inbound
access list. For the purpose of these examples, the interface we are filtering and receiving
updates on has IP address 192.168.31.3 and allows updates from hosts on 192.168.31.0/24.
Access list 101 is an incoming access list on this interface.

Here are the access entries for a number of routing protocols:

RIP

RIP uses UDP port 520:

access-list 101 permit udp 192.168.31.0 0.0.0.255 host 192.168.31.3
eq 520

IGRP

IGRP has its own special IP protocol type that needs to be specifically allowed:

access-list 101 permit igrp 192.168.31.0 0.0.0.255 host 192.168.31.3
EIGRP

 Cisco IOS Access lists

 Page 75

EIGRP is notable in that it uses multicast hellos. This means that you have to allow
special multicast addresses into the interface. Like IGRP, it has its own special IP
protocol type:

access-list 101 permit eigrp 192.168.31.0 0.0.0.255 host 224.0.0.10

access-list 101 permit eigrp 192.168.31.0 0.0.0.255 host 192.168.31.3

OSPF

Like EIGRP, OSPF uses multicast hellos and has its own IP protocol type:

access-list 101 permit ospf 192.168.31.0 0.0.0.255 host 224.0.0.4

access-list 101 permit ospf 192.168.31.0 0.0.0.255 host 192.168.31.3

BGP

BGP is straightforward to implement because it uses TCP to a well-known port.
Access to the TCP must be bidirectional for each peer for BGP to function.

access-list 101 permit tcp 192.168.31.0 0.0.0.255 host 192.168.31.3
eq bgp

access-list 101 permit tcp 192.168.31.0 0.0.0.255 eq bgp host
192.168.31.3 gt 1023

3.2.11 Session filtering using reflexive access lists

Reflexive access lists are available on IOS Versions 11.3 and up.

Reflexive access lists can be used to exercise a tight level of control over individual client and
server sessions. Let's look at the network in Figure 3.11 to show how they can be used.

Figure 3.11. A proxy server with Internet access

This network diagram shows a proxy server with Internet access. A proxy server is a system
that makes connections and service requests on behalf of other hosts and forwards the results
back to the requesting hosts. Let's say that this proxy server requires full access on all TCP
ports to the Internet. The following access lists and interface statements implement this
policy:

 Cisco IOS Access lists

 Page 76

! access list out to the proxy server from the Internet
ip access-list extended out-to-server
 permit tcp any host 192.168.35.1 gt 1023
! access list out to the Internet from the proxy server
ip access-list extended out-to-Internet
 permit tcp host 192.168.35.1 any
! interface statements
interface Ethernet 0
ip access-group out-to-server out
interface serial 1
ip access-group out-to-Internet out

While these access lists implement our policy, it leaves the proxy server vulnerable to probes
of ports greater than 1023. A cracker could check these ports for services that can be
exploited. Since a number of proxy services default to ports greater than 1023, an open proxy
port could be used by an intruder to access hosts on the other side of the proxy server or to
attack other systems on the Internet.

Using the established qualifier can help with this problem:

! access list out to the proxy server from the Internet
ip access-list extended out-to-server
 permit tcp any host 192.168.35.1 established
! access list out to the Internet from the proxy server
ip access-list extended out-to-Internet
 permit tcp host 192.168.35.1 any
! interface statements
interface Ethernet 0
ip access-group out-to-server out
interface serial 1
ip access-group out-to-Internet out

Changing the access list out-to-server eliminates the direct probes, but crackers can still
pump in traffic to the proxy server as long as they set the ACK bit on packets.

Reflexive access lists take care of this problem by automatically creating an access list entry
for each TCP connection that is established. We would configure the access list in the
following way:

! access-list out to the Internet
ip access-list extended out-to-server
 permit tcp any host 192.168.35.1
 evaluate tcp-connections
ip access-list in-from-Internet
 permit tcp any any reflect tcp-connections
! interface statements
interface serial 1
 ip access-group out-to-Internet out
 ip access-group in-from-Internet in

The evaluate access list entry in the access list out-to-server says that when a TCP
connection is created, the router creates a reflexive access list entry in the reflexive access list
tcp-connections that specifically allows only traffic for that particular connection. The
reflect entry in the access list in-from-Internet makes the access list compare the packet
against the reflexive access list entries in tcp-connections that are created. As an example,
let's say that the proxy server sets up a TCP connection from source port 3456 to port 80 on

 Cisco IOS Access lists

 Page 77

host 172.30.45.1. In response to this connection, the router would set up the following access
list entry on the reflexive access list:

permit tcp host 172.30.45.1 eq www host 192.168.35.1 eq 3456

The show ip access-list command would yield:

Extended IP access list Out-to-server
 permit tcp host 192.168.35.1 any
 evaluate tcp-connections
Extended IP access-list in-from-Internet
 permit tcp any any reflect tcp-connections
Reflexive IP access list tcp-connections
 permit tcp host 172.30.45.1 eq www host 192.168.31.1 eq 3456 (6 matches)
(time left 119 seconds)

The only way to get packets into the proxy server is to use these specific source and
destination ports and source and destination IP addresses. This access list entry disappears
when the TCP connection is shut down. The router looks for the FIN packets requesting that a
TCP connection be shut down and then removes the entry. If a TCP connection is shut down
before FIN packets can be sent, then the entries disappear after a timeout interval. The default
timeout period is 300 seconds (five minutes), but it can be set with the global configuration
command ip reflexive-list timeout.

Reflexive access lists are created in the opposite direction of the extended access list that
activates it. In our example, the reflexive list was created as an inbound access list of the
serial interface connecting to the Internet. Let's implement the policy with inbound access
lists:

! access-list in from the server
ip access-list extended in-from-server
 permit tcp any host 192.168.35.1 any
 evaluate tcp-connections
ip access-list extended out-to-server
 permit tcp any any reflect tcp-connections
! interface statements
interface Ethernet 0
 ip access-group out-to-server out
 ip access-group in-from-server in

The reflexive access list entries created would be outbound access lists going to the proxy
server. For our previous example, the reflexive access list entry created would have been the
same, only evaluated on an outgoing access list.

UDP client/server sessions can also be filtered with reflexive access lists. Figure 3.12 shows a
server that makes DNS requests and ICMP echo requests to name servers in the Internet.

 Cisco IOS Access lists

 Page 78

Figure 3.12. A server that makes DNS queries

We can limit access to the server with the following access lists:

! access list out to the server from the Internet
ip access-list extended out-to-server
 permit udp any eq 53 host 192.168.35.1 eq 53
 permit udp any eq 53 host 192.168.35.1 gt 1023
 permit icmp any host 192.168.35.1 echo-reply
 permit tcp any any reflect tcp-connections
! access list out to the Internet from the server
ip access-list extended out-to-Internet
 permit udp host 192.168.35.1 gt 1023 any eq 53
 permit udp host 192.168.35.1 eq 53 any eq 53
 permit icmp host 192.168.35.1 any echo
 permit tcp host 192.168.35.1 any eq 53
 evaluate tcp-connections
! interface statements
interface Ethernet 0
ip access-group out-to-server out
interface serial 1
ip access-group out-to-Internet out

While this does limit access to the server, an intruder can still probe for UDP ports over 1023
by using a source port of 53. Since UDP is a connectionless protocol, there is no equivalent to
established for filtering session startup packets. Reflexive access lists can fix this problem:

! access list out to the server from the Internet
ip access-list extended out-to-server
 permit icmp any host 192.168.35.1 echo-reply
 permit tcp any any reflect tcp-connections
 permit udp any any reflect udp-sessions
! access list out to the Internet from the server
ip access-list extended in-from-Internet
 permit udp host 192.168.35.1 gt 1023 any eq 53
 permit udp host 192.168.35.1 eq 53 any eq 53
 permit icmp host 192.168.35.1 any echo
 permit tcp host 192.168.35.1 any eq 53
 evaluate tcp-connections
 evaluate udp-sessions
! interface statements
interface Ethernet 0
 ip access-group out-to-server out
 ip access-group in-from-server in

 Cisco IOS Access lists

 Page 79

Since UDP is connectionless and doesn't have the equivalent of a FIN packet marking the end
of a session, the router maintains the access list entry as long as it sees traffic within the
reflexive access list timeout interval. A query from the name server that uses source port 1234
to host 172.30.45.60 then creates the entry:

permit udp host 172.30.45.60 eq 53 host 192.168.35.1 eq 1234

Reflexive access lists have a number of limitations. You cannot use them on protocols that do
not have source ports, such as ICMP. In the previous entry, we needed to put in specific
entries to allow ICMP echo replies to the server. You cannot use reflexive access lists with
protocols that change ports during a session or that have sessions set up in two directions. A
good example is active mode FTP. A control connection is set up from client to server with a
source port greater than 1023. When a file needs to be copied or a directory listing is needed,
a data connection is set up from the server to the client. If a reflexive access list is used, the
entry created for the control connection prevents the data connection from being set up.
Passive mode FTP would work, however, since data connections are set up in the same
direction. Reflexive access lists also require named access lists. If you are using an older
version of the Cisco IOS that does not support named access lists, then you can't use reflexive
access lists.

3.2.12 An expanded example of packet filtering

Let's look at a more complex example of packet filtering. For this example, I use the
configuration shown in Figure 3.13.

Figure 3.13. A screened subnet firewall

This configuration is known as a screened subnet firewall. The goal of this architecture is to
allow the hosts in Organization X to access and provide Internet services without directly
exposing those hosts to attack. The hosts that we want to protect strongly are connected to
Ethernet 1 in networks 192.168.32.0/24 through 192.168.39.0/24. The Internet is connected to
the serial interface, and all packets from that serial interface are considered potentially hostile.

 Cisco IOS Access lists

 Page 80

Hosts in networks 192.168.32.0/24 through 192.168.39.0/24 do not access the Internet
directly. All contact with the Internet is proxied through hosts in network 192.168.30.0/24.
The combination of protecting a set of hosts while proxying all Internet access through
another subnet makes packet filtering in the screened subnet firewall more complex.

Let's see how proxy access works, and how it affects packet filtering. Hosts in networks
192.168.32.0/24 through 192.168.39.0/24 access web servers outside the Organization X
through the proxy server. Web requests are sent to the proxy on TCP port 911, which gets the
requested web pages and sends them back to the requestor. Incoming and outgoing electronic
mail is relayed through a mail relay. Mail destined for inside Organization X is sent to the
mail relay, which forwards it to Organization X's internal mail servers. Mail from
Organization X to the Internet is sent first to the mail relay, which then forwards it on to its
final destination. Network services that Organization X provides the Internet, like web and
name services, are offered through dedicated web and name servers. Hosts in network
192.168.30.0/24 on do not have full access to Organization X's networks 192.168.32.0/24
through 192.168.39.0/24. They are given only enough access to the internal networks to carry
out their proxy functions.

The network 192.168.30.0/24 is called a DMZ, for De-Militarized Zone. The rationale behind
this design is that hosts we want to protect must not have direct Internet access. All Internet
access is done through hosts in the DMZ, which protects the internal hosts from direct attack.
When a significant security weakness in hosts or software is found, Organization X can
concentrate first on fixing the weakness in DMZ systems (which typically have far fewer
systems). Once the DMZ systems are hardened against the security weakness, crackers on the
Internet cannot exploit the weakness against Organization X. If a DMZ system is
compromised, access into Organization X's internal networks is controlled. An additional
benefit is that Organization X has a central location for tracking its Internet use because all
Internet access is proxied through DMZ systems.

In addition to the goals of the screened subnet architecture, let's make other policy decisions
that will affect how we define the extended access lists. Internet hosts 192.168.10.4 and
192.168.12.5 will be DNS secondaries for Organization X's domains. This means that these
two hosts, existing somewhere out on the Internet, will also provide DNS queries for
Organization X's domain. To make that possible, they must be able to copy all of the DNS
data about Organization X from the name server on the DMZ, a process known as a zone
transfer, so our access lists need to permit zone transfers by only those two nodes. Another
policy decision is that Organization X will give relatively small answers to DNS queries. As
you may recall, a DNS client that receives a large answer to a DNS query starts a TCP
connection to get all of the answer. Keeping DNS answers small eliminates the need for
allowing all Internet hosts TCP port 53 connectivity into its name server and speeds response
time to queries, since fewer packets are sent for each answer, and no TCP connection is
needed. Note that Organization X must implement this policy by being disciplined about the
DNS resource records that it creates. In most cases, there is no reason to have extremely large
DNS resource records. An exception is for large web sites that do load balancing to large
numbers of servers with DNS round robin, a technique that assigns a number of IP addresses
to the hostname of a web server.

What about routing? We know exactly which networks are connected to which interface.
Network 192.168.30.0/24 is on Ethernet 0, networks 192.168.32.0/24 through 192.168.39.0
are on Ethernet 1, and everything else on the Internet is reached through serial 2. It is easy to

 Cisco IOS Access lists

 Page 81

use static, hardcoded routes on the router, so for this example, we won't use dynamic routing
protocols. In firewall designs, you should avoid using dynamic routing protocols as much as
possible, since they add complexity to access lists, and routing updates can also be spoofed.
I'll talk about this in more detail in Chapter 4.

With all the information we have gathered about policy and the screened subnet architecture,
let's define how IP packets should flow through Organization X's router:

Deny packets from the Internet that have a source address within an
organization (prevent spoofing)

All hosts on the screened subnet can be pinged from all networks

DNS queries should be permitted from the name server to the Internet and vice
versa

Internet hosts 192.168.10.4 and 192.168.12.5 should be able to do DNS zone
transfers from name server

Web access is permitted to the web server from all networks

FTP, Telnet, and web access out to the Internet is permitted from the proxy
server

FTP, Telnet, and web proxy access on TCP port 911 from the internal
networks is permitted to the proxy server

The mail relay has SMTP access to all networks and can receive SMTP
connections from all networks

No direct connectivity is permitted between the Internet and the internal
networks

3.2.12.1 Defining what access lists are necessary

The first policy entry states that packets from the Internet with the organization's address as
the source IP address are denied entry. This policy rule is designed to stop source IP address
spoofing, and as I mentioned in a previous section, inbound access lists are the network
administrator's tools for spoof protection. Access list 100, shown below, implements the anti-
spoof policy:

access-list 100 deny ip 192.168.30.0 0.0.0.255 any
access-list 100 deny ip 192.168.32.0 0.0.7.255 any
access-list 100 permit ip any any

Organization A uses networks 192.168.30.0/24 in its DMZ and networks 192.168.32.0/24
through 192.168.39.0/24 in the core of its network. The first entry in access list 100 denies
packets from the Internet that have source addresses of the DMZ network 192.168.30.0/24.
The next line denies packets from internal networks 192.168.32.0/24 through
192.168.39.0/24. We can express this in a single statement by using a network mask. After
spoofing is stopped, everything else is permitted through the interface (outbound access lists

 Cisco IOS Access lists

 Page 82

will be used to do the rest of the filtering). Access list 100 is applied as an inbound access list
to the interface facing the Internet:

interface serial 2
access-group 100 in

Are there any other interfaces that require inbound access lists? Any system that exchanges
packets directly to the Internet is a possible point of compromise. What if a DMZ system,
which does exchange packets directly with the Internet, were compromised by crackers? That
system could be used as a base for launching attacks against other Internet sites or against the
internal networks. To prevent a DMZ from potentially being used for spoofing attacks, we can
create access list 101 that permits only DMZ packets from that segment:

access-list 101 permit ip 192.168.30.0 0.0.0.255 any

The implicit deny of access list 101 stops spoofed packets. This access list is applied to
interface Ethernet with:

interface Ethernet 0
access-group 101 in

You might question whether we need to put an incoming access list on Ethernet 1 to prevent
spoofing attacks from Organization X's employees. Since we are going to prevent the internal
networks from talking directly to the Internet, it may not seem necessary. But attacks by
disgruntled insiders are a real threat. Hosts on the internal network could potentially spoof
packets with addresses from the DMZ in order to get them out onto the Internet. To take care
of spoofing attacks on the DMZ and stop accidental traffic, we can build another very simple
inbound access list 102:

access-list 102 permit ip 192.168.32.0 0.0.7.255 any

which allows packets from the internal networks only into the router. This is then applied
with:

interface Ethernet 1
access-group 102 in

Although we made a decision not to use dynamic routing protocols, the way that I have used
inbound access lists for anti-spoofing purposes in this example allows us to use dynamic
routing protocols on the serial interface without changing our access lists. In other words, as
long as the IP addresses on both ends of the serial link do not use the internal IP addresses or
DMZ addresses, the router allows routing updates into the serial interface. Similarly, as long
as the routers off Ethernet 1 use internal IP addresses, route updates are permitted on that
interface. Using inbound access lists for anti-spoofing purposes gives us this flexibility.

Now that we are done with the inbound access lists, we need to work on the outbound access
lists. Since we have policies applying to networks attached to all three interfaces of the router,
let's define outgoing access list numbers as follows:

• 103—Outgoing access list on interface serial 2 (to the Internet)
• 104—Outgoing access list on Ethernet 0 (to the DMZ)

 Cisco IOS Access lists

 Page 83

• 105—Outgoing access list on Ethernet 1 (to internal networks)

With access list numbers defined, we can start creating access lists entries for each of the
packet-forwarding rules:

Deny packets from the Internet that have a source address within an organization (prevent
spoofing)

We handled this policy with our inbound access lists.

All hosts on the screened subnet can be pinged from all networks

To implement this policy statement, we need to allow ICMP echo-reply packets out to
the Internet and internal user networks. For the outgoing serial interface access list, we
have:

access-list 103 permit icmp 192.168.30.0 0.0.0.255 any echo-reply

We need the same leading into the internal segments:

access-list 105 permit icmp 192.168.30.0 0.0.0.255 192.168.32.0
0.0.7.255 echo-reply

The DMZ segment itself needs to receive ICMP echo requests:

access-list 104 permit icmp any 192.168.30.0 0.0.0.255 echo
DNS queries should be permitted to and from the name server

We need to allow DNS packets in and out of the DMZ segment for DNS queries. As I
mentioned in our web server example, DNS queries come into a name server with a
UDP destination port of 53 and a source port of either 53 or greater than 1023. Large
queries use TCP on destination port 53. With this information, we generate the
following access lists:

! access list out to the Internet (serial 2)
access-list 103 permit udp host 192.168.30.3 eq domain any eq domain
access-list 103 permit udp host 192.168.30.3 gt 1023 any eq domain
access-list 103 permit udp host 192.168.30.3 eq domain any gt 1023
access-list 103 permit tcp host 192.168.30.3 any eq domain
! access list out to the DMZ (Ethernet 0)
access-list 104 permit tcp any host 192.168.30.3 established
access-list 104 permit udp any eq domain host 192.168.30.3 eq domain
access-list 104 permit udp any eq domain host 192.168.30.3 gt 1023
access-list 104 permit udp any gt 1023 host 192.168.30.3 eq domain

The name server at IP address 192.168.30.3 can send any DNS query out to the
Internet because the first line and second lines of access list 103 permit UDP packets
with a destination port of 53 and a source port of 53 or greater than 1023. Should the
name server require TCP to get a large DNS answer, the fourth line of access list 103
permits that type of connection. The first line of access list 104 allows return packets
from that TCP connection, and the second and third lines of access list 104 permit
responses to the name server's queries to go back to the name server.

 Cisco IOS Access lists

 Page 84

The name server also needs to answer queries from the Internet The second and third
lines of access list 104 permit the name server to receive any DNS query. The first and
third lines of access list 103 permit responses to DNS queries. Since we explicitly
decided that all DNS answers about Organization X would be small, connection to
TCP port 53 is not allowed.

Internet hosts 192.168.10.4 and 192.168.12.5 should be able to do DNS zone transfers from
name servers

We implement this policy statement by first setting up an established TCP access list
entry on the outgoing serial interface to the Internet:

access-list 103 permit tcp host 192.168.30.0 0.0.0.255 any
established

We make it generic to all of the DMZ so we can also catch all TCP connections going
out of the DMZ that have already been set up. Hosts 192.168.10.4 and 192.168.12.5
are permitted to do zone transfers from the name server. Zone transfers use TCP port
53. So in the access list going to the DMZ, we have:

access-list 104 permit tcp host 192.168.10.4 host 192.168.30.3 eq
domain
access-list 104 permit tcp host 192.168.12.5 host 192.168.30.3 eq
domain

Since both zone transfers and DNS queries with large answers use TCP port 53, we'll
have to require all DNS answers from those name servers small enough to not require
a TCP connection. Otherwise, there would be no way to allow zone transfers from
only the designated secondary DNS servers as we would have had to allow TCP port
53 to be open to all on the Internet.

Web access is permitted to the web server from all networks

We need to allow web protocols to have access on port 80 into the web server at
192.168.30.2. This is done with:

access-list 104 permit tcp any host 192.168.30.2 eq www

Return packets to the Internet are covered by the established access list entry in list
103. We need a similar entry going into the internal networks (list 105):

access-list 105 permit tcp 192.168.30.0 0.0.0.255 192.168.32.0
0.0.7.255 established

FTP, Telnet, and web access out to the Internet is permitted from the proxy server

We add an established statement to list 104 to handle return traffic on a connection
set up from the proxy server to the Internet. Since the other servers on the DMZ will
be making and receiving connections to the Internet too, it is safe to make the
established connection apply to the rest of the DMZ:

access-list 104 permit tcp any host 192.168.30.0 0.0.0.255
established

 Cisco IOS Access lists

 Page 85

Since web servers can live on a number of ports, we need to add generic TCP access
going out to the Internet from the proxy server:

access-list 103 permit tcp host 192.168.30.1 any

To make FTP work, we need TCP ports greater than 1023 going to the proxy server
from source port 20:

access-list 104 permit tcp any eq ftp-data host 192.168.30.1 gt 1023
FTP, Telnet, and web access from the internal networks is permitted to the proxy server

This is similar to the previous policy statement, but we can be much more specific
about what networks can talk to the proxy server:

access-list 105 permit tcp host 192.168.30.1 eq ftp-data 192.168.32.0
0.0.7.255 gt 1023

We need to permit the proxied services of FTP, Telnet, and Web into the proxy server
from the internal segments:

access-list 104 permit tcp 192.168.32.0 0.0.7.255 host 192.168.30.1
range ftp-data ftp
access-list 104 permit tcp 192.168.32.0 0.0.7.255 host 192.168.30.1
eq telnet
access-list 104 permit tcp 192.168.32.0 0.0.7.255 host 192.168.30.1
eq 911

The mail relay has SMTP access to all networks and can receive SMTP connections from all
networks

SMTP uses port 25 as a destination port. We already have established statements, so
we need the following statements:

access-list 103 permit tcp host 192.168.30.4 any eq smtp
access-list 104 permit tcp any host 192.168.30.4 eq smtp
access-list 105 permit tcp host 192.168.30.4 192.168.32.0 0.0.7.255
eq smtp

No direct connectivity is permitted between the Internet and the internal networks

This is taken care of by the explicit permit entries and implicit deny entry at the end
of the access lists.

3.2.12.2 Optimizing the order of access list entries

We now have a large collection of access list entries. What is the best way to arrange them?
You want to have the most frequently used access list entry at the top, followed by the next
most frequently used entry, and so on. As mentioned earlier, doing this minimizes the impact
that access lists have on a router. The most frequently used access list entry in environments
that use TCP-based services such as HTTP, SMTP, and FTP is the established entry. It is
almost always a good idea to put a very general established entry at the top of a list because
the vast majority of traffic will match the first line of an access list and the router will not
have to process other access list entries. Next, you typically want to use DNS statements since
most Internet services use hostnames and not just IP addresses, thus requiring a DNS lookup.
After DNS access list entries, ICMP echo and echo-reply entries should go next because

 Cisco IOS Access lists

 Page 86

ping is used frequently on the Internet. Finally, the other permit entries for TCP services and
other services should be covered. Bear in mind, these are general guidelines, and utilization of
access list entries may be different, depending on your needs and traffic patterns. Whatever
order you choose, be careful about moving deny entries in an access list or permit statements
ahead of deny entries. This kind of movement in particular can completely change the policy
you are trying to implement, denying entries you did not intend to deny or permitting services
you did.

In this case, the final version of access list 103, the outbound access list going to the Internet,
becomes:

! access list out to Internet through serial interface 0
access-list 103 permit tcp host 192.168.30.0 0.0.0.255 any established
access-list 103 permit udp host 192.168.30.3 eq domain any eq domain
access-list 103 permit udp host 192.168.30.3 gt 1023 any eq domain
access-list 103 permit udp host 192.168.30.3 eq domain any gt 1023
access-list 103 permit tcp host 192.168.30.3 any eq domain
access-list 103 permit icmp 192.168.30.0 0.0.0.255 any echo-reply
access-list 103 permit tcp host 192.168.30.1 any
access-list 103 permit tcp 192.168.32.0 0.0.7.255 host 192.168.30.1
access-list 103 permit tcp host 192.168.30.4 any eq smtp

while access list 104, the access list leading to the DMZ segment, is as follows:

! access list out to DMZ through Ethernet interface 0
access-list 104 permit tcp any 192.168.30.0 0.0.0.255 established
access-list 104 permit udp any eq domain host 192.168.30.3 eq domain
access-list 104 permit udp any eq domain host 192.168.30.3 gt 1023
access-list 104 permit udp any gt 1023 host 192.168.30.3 eq domain
access-list 104 permit icmp any 192.168.30.0 0.0.0.255 echo
access-list 104 permit tcp any host 192.168.30.2 eq www
access-list 104 permit tcp 192.168.32.0 0.0.7.255 host 192.168.30.1 range
ftp-data ftp
access-list 104 permit tcp 192.168.32.0 0.0.7.255 host 192.168.30.1 eq
telnet
access-list 104 permit tcp 192.168.32.0 0.0.7.255 host 192.168.30.1 eq 911
access-list 104 permit tcp any eq ftp-data host 192.168.30.1 gt 1023
access-list 104 permit tcp any host 192.168.30.4 eq smtp
access-list 104 permit tcp host 192.168.10.4 host 192.168.30.3 eq domain
access-list 104 permit tcp host 192.168.12.5 host 192.168.30.5 eq domain

(I have moved the entries that permit zone transfers toward the end since the zone transfer
operations are specific to certain hosts and are not part of the generic DNS functionality
offered to the whole Internet and thus are used less frequently.)

Finally, access list 105, the access list leading to the internal networks, becomes:

! access list to internal networks through Ethernet 1
access-list 105 permit tcp 192.168.30.0 0.0.0.255 192.168.32.0 0.0.7.255
established
access-list 105 permit icmp 192.168.30.0 0.0.0.255 192.168.32.0 0.0.7.255
echo-reply
access-list 105 permit tcp host 192.168.30.1 eq ftp-data 192.168.32.0
0.0.7.255 gt 1023
access-list 105 permit tcp host 192.168.30.4 192.168.32.0 0.0.7.255 eq smtp

 Cisco IOS Access lists

 Page 87

We apply all our access lists (including all inbound lists) as follows:

int serial 0
 access-group 100 in
 access-group 103 out
interface Ethernet 0
 access-group 101 in
 access-group 104 out
interface Ethernet 1
 access-group 102 in
 access-group 105 out

Figure 3.14 shows how the access lists are applied.

Figure 3.14. A screened subnet firewall with access lists

Limitations of packet filtering

While packet filtering with extended access lists can be very useful for
implementing security policies, it has some notable limitations. Static packet
filtering (i.e., not reflexive lists) does not maintain a protocol state. This means that
nonreflexive access lists filter packets without caring whether those packets are
valid in the sequence of a protocol. For example, the access list entry:

access-list 100 permit tcp any host 192.168.35.1 range 20 21

permits packets for an FTP data session (TCP port 20) whether or not the necessary
FTP control session (TCP port 21) has been established. Another example is the
TCP qualifier established. It allows all TCP packets that have flags set for an
established connection, even if the connection has never been established. Some
crackers use this feature to scan hosts behind an access list. They send a TCP FIN
packet to a particular port on a host, which responds in a certain way if there is a
service on that port. While the crackers may not be able to directly exploit any

 Cisco IOS Access lists

 Page 88

services that they find, the information may be of use to them for identifying targets.

Another key limitation of packet filtering, even with reflexive lists, is that it cannot
stop in-protocol attacks. This means that if there are weaknesses that can be
exploited within a protocol, packet filtering cannot stop it. Examples of this are
exploits using HTTP that allow remote users to execute commands on a host simply
by issuing coded HTTP requests. A packet filter can only allow or disallow HTTP
traffic, not check for holes in a server's HTTP implementation.

Another example is a SYN flood attack. An extended access list can allow TCP
SYN packets, but it cannot stop a flood of SYN packets that are designed to disable
a host.

3.3 Alternatives to access lists

The CPU costs incurred by access lists can be quite high. For this reason, Cisco routers offer a
number of alternatives to using access lists for security. I'll discuss them here.

3.3.1 Routing to the null interface

Occasionally, you may encounter a network or a single host that you absolutely do not trust.
In a company, this could be a segment where known outsiders and potentially hostile people
are working, or perhaps a lab network that has different Internet access. It could also be a
DMZ or a system on the DMZ such as a dial-in terminal server, where you may have some
doubts about the security on that network or who is on that system. In any case, the systems
and data that you want to protect may be so sensitive that you don't want to take any chances
with traffic or data flowing to the untrustworthy network or host. One tactic you can use for
absolute certainty is to route all traffic to a null device with a static route. Here, I use a static
route to drop all traffic going to network 192.168.29.0/24:

ip route 192.168.29.0 255.255.255.0 null0

This static route configuration command sends all traffic to network 192.168.29.0 on to a null
device, effectively throwing away all packets going to that network. This is a succinct way to
completely eliminate traffic going to a given network. Dropping all traffic to a host is much
more common. If we were to drop all traffic going to host 192.168.29.1, we would use the
route command:

ip route 192.168.29.1 255.255.255.255 null0

You need to be careful of a number of things when using the null route as an access list
replacement. All of the router is affected by such a command, not just particular interfaces.
With this technique, you can't drop traffic from some hosts or network to the hosts while
permitting others; all traffic going out of the router to this host is dropped. Also, just because
you can't send traffic to a network or a host doesn't mean they can't send traffic to you.

 Cisco IOS Access lists

 Page 89

3.3.2 Stopping directed broadcasts

It is possible to send a broadcast directed at a specific network through a router without being
on that network. For example, a Network Time Protocol (NTP) server can send a directed
broadcast to update the clocks used by the hosts on a given segment. This could be done with
a single packet, resulting in considerably less traffic than the typical polling used by NTP.
While the directed broadcast can be useful, it is very dangerous. Directed broadcasts are the
basis of a number of denial-of-service attacks. A cracker on the Internet sends a packet into a
corporation's network broadcast address with a spoofed source address. All the machines on
that network reply to the broadcast by sending packets to the attacked host, which crashes
under the load. Typically, ICMP is used, since many hosts respond to it.

You can explicitly permit or deny directed broadcasts with extended access lists. To match a
directed broadcast into network 192.168.30.0/24, you can use an entry like this:

access-list 101 deny ip any 192.168.30.255 0.0.0.0

A directed broadcast has all 1's in the host portion of the address, which is in this case 255.
This particular entry denies all directed broadcasts because it uses ip as the protocol, but you
can specify individual IP protocols like UDP if you prefer. However, in firewall situations,
you should turn off any directed broadcasts for which you don't need to use an access list,
since you can do this on an interface basis with the command no ip directed-broadcast. For
example, if you want to turn off directed broadcasts going out of interface Ethernet 0, use the
following:

interface Ethernet 0
no ip directed-broadcast

This saves you from having to worry about adding an extra entry to the outgoing access list
on that interface or inbound access lists on other interfaces and also reduces the size of the
router's configuration.

3.3.3 Removing router resources

To manage a router, a network administrator must log in through an untrusted network.
Figure 3.15 shows a diagram of this kind of situation.

Figure 3.15. Managing a router through untrusted networks

One possible scenario is when a network administrator at a network trade show logs into one
of his routers through an untrusted network. Since Telnet sessions into routers are
unencrypted, the administrator's password is stolen. There are less dramatic instances in
which this situation comes up: managing a router reachable only through DMZ segments, for
example, where you know machines are exposed to attack from the Internet, or segments

 Cisco IOS Access lists

 Page 90

populated by people you do not trust, such as a segment with hosts run by multiple
organizations.

If the situation depicted in Figure 3.15 applies to you, and you still maintain physical security
of your router, you can manage the router from the console and simply not define any router
resources like SNMP and virtual terminal lines, as opposed to dealing with access lists. This
may seem extremely obvious, but sometimes you may forget about router configurations like
virtual terminal lines that you may have added in the past to make configuration easier. Since
you have physical security with your router, managing the router from the console is
extremely secure and doesn't expose any passwords to anyone who may be eavesdropping. A
variation of this strategy is to put a terminal server on the console port of the router and make
the terminal server accessible only from trusted networks. This is a good solution if you
manage routers connected to a DMZ.

Chapter 4. Implementing Routing Policies
A key policy decision that network administrators need to make is how to route packets.
Application performance, security, and cost can all be affected by these decisions. Routers, in
addition to forwarding and receiving data packets, send routing messages that describe where
to send those packets. Network administrators use two policy tools to manipulate these
routing messages: route filtering and filtering based on characteristics of routes. The first
section of this chapter talks about the general issues of implementing routing policies—how
filtering the routes distributed by routing protocols can affect network stability and business
goals, and the following section goes into the details of making networks robust. After that,
we discuss how to implement traffic preferences according to specific objectives and look at
the costs incurred when implementing routing policies. Finally, we briefly examine some
alternatives to using access lists. This chapter focuses mainly on routing within smaller
networks and intranets, but the concepts discussed here are applicable to routing in the
Internet and in very large networks, which we'll talk about in Chapter 6.

4.1 Fundamentals of route filtering

In Chapter 3, we saw how access lists can be used to filter packets moving through a router.
Packets are not the only types of information that can be monitored by access lists. Routing
information, which instructs routers how to forward data packets to their proper destination,
are often critical to control. Let's talk a little about routing basics and the reasons for building
router filtering policies for our networks and organizations, which will prepare us for
implementing access lists to control the flow of routing information later in the chapter.

4.1.1 Routing information flow

When networks grow past a certain size, there is no way that administrators can manually
update every router with information about the best way to route packets. Network links
change capacity, routers go up and down, and traffic conditions vary. To ensure that all of the
routers in a network know about changing network conditions, routers pass routing
information between each other in a series of packets called routing updates or route
advertisements. Routing updates provide information about the paths going to individual
networks so that routers can decide how to forward packets to those networks. Routing
information can include the number of router hops to a network, path delay, network

 Cisco IOS Access lists

 Page 91

congestion, or other information such as flags that routers attached to the routing information.
With this information, routers make decisions about the best path to a given network.

In a similar manner to the control of packets we examined in Chapter 3, a router can forward
and filter routing information, as shown in Figure 4.1.

Figure 4.1. Routing information is forwarded and filtered through a router

Routing information comes into the router from several different interfaces, using a routing
protocol with a single metric whose values are shown. Routing updates about Networks 1 and
2 come into Interfaces 1 and 2. The updates from Interface 1 have c as the value of the metric
for both networks. The updates coming into interface 2 have the metric for Network 1 as a
and the metric for X as b. Interface 3 sees routing information that gives Network 1 a metric
of a, Network 2 a metric of d, and Network 3 a metric of e, while Interface 4 sees that
Network 4 has a metric of f. The router then distributes routing information about the
networks that it received. Network 1 is then advertised out of Interfaces 2 and 4 with a metric
of g, but it is advertised out of Interface 3 with a metric of j and not advertised at all out of
Interface 1. Network 2 is advertised with a metric of g out of Interfaces 2, 3, and 4. Network 3
is advertised with a metric of h out of Interfaces 1, 2, and 4, while Network 4 is advertised
with a metric of i out of Interfaces 1 and 2 and advertised with a metric of k out of Interface
3.

As you can see, there are similarities to the flow of information to packet control. Routing
information flow differs from packet information flow most significantly in that the router can
substantially change the contents of routing information flowing through it.

4.1.2 Elements in a routing update

Let's talk more about routing information itself. Let's look at the key elements in any routing
information update:

 Cisco IOS Access lists

 Page 92

Network number and mask

The network number and mask determine what network the route information applies.
It is also the part of the routing information most commonly used to determine
whether a routing update is included in a policy set for further processing.

Routing protocol and version

The routing protocol is another key piece of information about routing updates. There
are a number of different routing protocols for IP, and a router can be configured to
listen to more than one. Dealing with different routing protocols and distributing
routing information between them is a common thing that network administrators
must deal with, and it is one of the most common uses of access lists.

Next hop

The next key piece of information, next hop, is the IP address where the router is
advised to send packets bound for the network advertised. If the router accepts the
routing update as the best path to that network, all packets destined to that network are
sent to the next hop IP address.

Source of routing information

Closely related to next hop is the source of routing information. This is the IP address
of the router sending the routing update. This router is usually (but not always) the
next hop. A network administrator may choose to add routes to a policy set based on
next hop information or on the source of routing information. This is an instance of the
last network administrator tool mentioned in Chapter 1: controlling routes based on a
characteristic of those routes.

Metric information

Metric information is the information used by a routing protocol to determine the
optimal route. There can be a single numerical value, or there can be a series of other
values used as metrics, not all of them numeric. Metric information can be used as
criteria for placement into a policy set. Once a policy set of routes has been
established, a network administrator can manipulate the metric values of the routes in
the policy set.

Other information

Other information is nonmetric information that is in a routing update for the purpose
of setting routing policies. Some routing protocols do not have this kind of
information. I will talk more about using other information in routing updates in the
Chapter 6, when we talk about route maps and the BGP-4 routing protocol.

It is important to keep these elements separate and distinct when thinking about routing
updates. Filtering a route to Network A (the network number) is different from filtering routes
from routers on Network A (the source of routing information). You can receive routes to
Network A from routers that are not directly connected to Network A. In particular, the

 Cisco IOS Access lists

 Page 93

network number of a route described in a routing update should not be mistaken for any other
elements.

Once the policy sets you build based on the elements above are established, a network
administrator can program routers to act on them through four actions. First, the administrator
can choose to reject routing updates in a policy set so the router ignores the information from
those updates. Second, the router can be programmed not to forward the routing updates in a
policy set. In this case, the router knows how to send packets to the networks specified, but it
does not let other routers know this information. Third, a router can change any of the
elements contained in incoming routing updates, so that its own routing table differs from the
routing information that it receives. Finally, the router can send out routing information that is
different from the routing information in its own routing table.

4.1.3 Network robustness

A desirable property of a network is robustness. A problem in one part of the network
shouldn't affect all of the network, and the network as a whole should keep running even if
parts of it are broken. Maintaining network robustness is about modularity and problem
isolation. As networks scale in size, different parts of the network are usually run by different
organizations. Those parts should be modular: self-contained and thought of and managed as
a unit. Breaking down a large network into smaller self-contained units makes a network
much more manageable. Once a network has become organized into smaller units, a routing
problem or misconfiguration in one unit should not impact everyone in the network, as the
problem will be more easily isolated to one modular unit. Let's look at an example. Figure 4.2
shows a network made of different sites connected through a single router.

Figure 4.2. Network robustness in a multi-domain/organization network

In this network, the router in the center connects four different sites. Site L, connected
through Interface 1, uses Networks 1, 2, and 3. Site M, connected through Interface 2, uses
Networks 4 and 5. Site N, connected through Interface 3, uses Networks 6, 7, and 8, while
Site O, connected through Interface 4, uses Networks 9 and 10.

The network administrator managing the router wants to make sure that a routing problem in
one site doesn't impact the other sites. For example, if Site O started advertising routes to Site
L's Networks 1, 2, and 3, the router should not accept these routes and should not forward
traffic bound for Site L's networks to Site O. To provide some modularity in routing and make

 Cisco IOS Access lists

 Page 94

the network more robust in the case of misconfiguration, the router should only accept a site's
designated routes. Routes for 1, 2, and 3 should be accepted only through Interface 1. Routes
4 and 5 from Site M should only be accepted through Interface 2. Similarly, routes 6, 7, and 8
from Site N should only be accepted through Interface 3, and routes 9 and 10 from Site O
only through Interface 4. In this way, sites can advertise any routes they want, but only their
designated routes are accepted.

4.1.3.1 Static routes do not scale

In the previous example, we knew what routes were expected from each site, and that enabled
us to make the network much more robust. You might argue that since we had that
knowledge, we could have set up static routes to each of the sites, eliminated the use of
dynamic routing protocols, and avoided route filtering entirely. Static routing is the practice
of explicitly configuring how a router sends traffic. Once the routing is set, the router
forwards traffic according to those rules no matter how a network might change. Indeed,
static routing is an alternative for simple networks, and I will talk about this alternative later
in this chapter. Still, there are reasons you might want to use static routing with dynamic route
filtering. If Site L had problems and Networks 1, 2, and 3 became totally unavailable, Site L
would signal that problem by not advertising these routes. Traffic for network a would cause a
network unreachable message to be sent from the central router instead of being forwarded
into Site L, as would be done with static routes. In addition, pure static routing becomes
difficult to maintain when a network becomes more complex. Take, for example, a version of
the network shown in Figure 4.3.

Figure 4.3. Network robustness in a more complex network

In the network shown in Figure 4.2, one central router forwards all traffic between all four
sites, and thus the router itself becomes a critical point of failure. If the router fails, no traffic
can be sent between any sites. The network in Figure 4.3 solves this problem, because there
are multiple paths between sites. If one router fails, then the site attached to it is cut off from
the others, but the rest of the sites can still communicate between each other. Similarly, if one
path between routers fails, there are alternate paths that can route traffic. If static routing is
used, each of the four routers need to have explicit knowledge about all the paths from that
router to each of the networks. That's a lot of data to manage, and dynamic routing protocols
are designed to learn and manage this kind of information automatically.

 Cisco IOS Access lists

 Page 95

4.1.3.2 Implementing network robustness through route filtering

No matter how complex your organization, with dynamic routing protocols, we make
networks robust in the same manner. For instance, in the case of Figure 4.3, we know what
networks should be advertised from each site into Interface 1 on the site's adjacent router.
Router WW should allow in route updates only for Networks 1, 2, and 3; Router XX should
allow updates only for 4 and 5; Router YY should only allow in updates for Networks 6, 7,
and 8; and Router ZZ should only allow in updates for Networks 9 and 10. If any one of the
sites advertises a network that it does not own, the bad routing information is not propagated
across the network.

So far, I have only talked about filtering incoming routing updates, where the router listening
for route updates takes responsibility for making sure the correct routing information is
received, accepted, or dropped as necessary. However, senders of routing information can
also take responsibility for making sure the proper routing information is distributed. Cisco
routers, for example, have the ability to restrict the routes that they send out. Let's look at an
example coming from the network in Figure 4.3. Consider the situation if all of the sites
connected to the network of routers via serial lines and Routers WW, XX, YY, and ZZ are
managed by different groups than any of the sites they connect. Each site connects to the
central network of routers with a configuration similar to that shown in Figure 4.4.

Figure 4.4. Connecting a site to wide area network

Here's the problem: Site L knows that it should only send routes to Router WW for Networks
1, 2, and 3. If someone makes a configuration error within Site L, routes other than those for
Networks 1, 2, and 3 could be sent to Router WW. Since a different organization maintains
Router WW, Site L's network staff has no assurances that Router WW correctly filters routes.
With a situation like this, Site L should restrict route updates sent to Router WW to include
only Networks 1, 2, and 3. If Router WW accepts only these routes from Site L, routing still
functions properly. If Site L makes a mistake and tries to propagate a route to a network that it
doesn't own, and if for some reason Router WW doesn't filter incoming route updates, the
outgoing route filter will stop the bad route from being advertised. Although it may seem
redundant that Site L is ready for the worst from Router WW while Router WW is ready for
the worst from Site L, mistakes do happen. Rather than have network traffic totally disrupted
if a route is advertised incorrectly, a little paranoia can go a long way to making sure a
network stays up and running.

To summarize, the key to ensuring network robustness is to enforce what you know about
how routing updates should take place with routing filtering. Don't accept routes you know
you should not accept. Don't send out routes that you know that you should not send. Don't
assume that the router you are listening to or sending route updates to will do the right thing,
especially if that router is controlled by another organization. I'll show examples later in this
chapter that demonstrate how to use access lists to implement routing policies that will help
make your network fault-tolerant.

 Cisco IOS Access lists

 Page 96

4.1.4 Business drivers and route preferences

Left alone, routing protocols decide what the best path network traffic will take based on
network topology metrics such as bandwidth and router hops. But organizations often want to
have more control over the path the traffic takes to get its final destination. In this section,
we'll talk about implementing route preferences driven by an organization's business goals.

Why would an organization choose traffic preferences different from the ones selected by
routing metrics? I discussed a number of the reasons in the scenarios described in Chapter 1.
Some paths are more secure than others. Paths over internal networks tend to be more secure
than paths over the open Internet. Some paths may be cheaper than others, while some may
have more bandwidth and better performance. Whatever the reason, path selection and
failover preferences are completely up to the organization, and it falls on network
administrators to enforce those policies.

You can picture the general problem of route preferences and business goals as a path
selection problem. Figure 4.5 shows two networks, Network 1 and Network 2. There are
several ways to get between the two networks through a mesh of routers—Path A is one way,
Path B is another, and so on.

Figure 4.5. Path selection and business goals

While routing metrics may indicate that traffic between Network 1 and Network 2 should use
one path, an organization may prefer that traffic go in another direction. For example, let's say
that routing metrics prefer that traffic from Network 1 to Network 2 go through Path A. If
Path A is unavailable, traffic will go through Path B. If Path B is unavailable, traffic will go
through Path C, and so on for Paths D and E. The failover sequence is (A, B, C, D, E).
Alternatively, the organization may prefer traffic from Network 1 and Network 2 to flow
through Path B. It may prefer that the failover sequence be (A, C, D, E, B) or even (B, D, E),
which does not allow Paths A or C to be used at all. The organization, in its wisdom, may
even decide that no traffic whatsoever should pass between Networks 1 and 2.

I mentioned earlier in the chapter that routers have four possible actions to control routing
information: reject routing information, accept but not forward routing information, modify
incoming routing information, or modify outgoing routing information. Route preferences are
most commonly implemented by rejecting routes or modifying incoming or outgoing routing
information.

 Cisco IOS Access lists

 Page 97

I'll start with the first method, rejecting routing information. As in our previous example, we
want to specify how traffic flows between Network 2 to Network 1. Figure 4.6 shows routing
information for Network 1 coming into a router with a path to Network 2.

Figure 4.6. Rejecting routes to implement traffic preferences

There are five possible paths, A, B, C, D, and E, from Router X to Network 1. We want traffic
to go over Path A, C, or E, but not B or D. To do this, Router X rejects routing information
about routes going over Paths B and D. Router X will have no information about Paths B and
D at all.

The next two options for route preferences modify routing information after it reaches the
router. We can do this as routing information comes in or goes out. Figure 4.7 shows how to
do this by modifying incoming route information.

Figure 4.7. Modifying incoming routing information

Here, we are trying to control the path that traffic from Network 2 takes to Network 1. In our
example, routing metrics in all of the incoming routing updates, before we modify them in
Router X, are numerical value a. This indicates that the path from Router X to Network 1 can
take either Path A, B, or C with equal preference. We want to change the path selection
preference so that traffic to Network 1 first goes through Path A. If Path A is unavailable,
traffic should go through Path B, and then if B is unavailable, through Path C.

 Cisco IOS Access lists

 Page 98

To make this happen, we alter the routing metric values of each routing update after each
comes into Router X. The metric for the route to Path B is increased by 1. The metric for the
route to Path C is increased by 2. Since the original unaltered metrics for the three routes were
equal, the metric for the route through A is the lowest, followed by the metric for the route via
B and finally by the metric for the route through C. Since routing protocols take the path with
the lowest metric, the most preferred Path is A, followed by B and then C.

Similarly, we can alter routing metrics as they go out of the router. This is shown in Figure
4.8.

Figure 4.8. Modifying outgoing route information

In this figure, we manipulate Routers L, M, and N, and not Router X. As in Figure 4.7, the
metrics advertised to Router X for the path to Network 1 are the same for Paths A, B, and C.
We want to make traffic prefer routes in the order A, B, then C. To do this, we add 1 to the
routing metric of the routing updates from router M, which has Path B to Network 1. We add
2 to the routing metric of the routing updates from router N, which has Path C to Network 1.
When the routing information to Network 1 arrive at router X, the path through A has the
lowest metric, followed by B then C. Traffic to Network 1 then prefers Path A, B, and then C.

When should you use these different techniques for implementing route preferences? It
usually depends on what you want to achieve and what routers you administer. The technique
of rejecting incoming routes is best used when you want to completely reject some routes and
allow others. It does not allow for explicitly picking failover preferences. Modifying route
information must be done when you have to set up a specific order of preferences for route
failover. For instance, you would modify incoming routing information when you have
control over a router receiving routing updates. On the other hand, if you only have control
over the routers' advertising paths, then you need to modify routing information that is sent
out.

4.2 Implementing routing modularity

So far, we have been looking at the concepts of implementing routing policies. In this section,
we'll start implementing real routing policies using access lists, focusing on routing policies
that implement routing modularity.

 Cisco IOS Access lists

 Page 99

4.2.1 Minimizing the impact of local routing errors

Let's revisit the scenario we saw in the first chapter, where a typographical error caused a
route to be incorrectly advertised, making two sites unreachable on an organization's intranet.
Figure 4.9 shows a network topology for that scenario.

Figure 4.9. Routing modularity in a large intranet

In Figure 4.9, we see a network where four sites, L, N, O, and P, connect to each other
through a central hub Site M. Network 19.0.0.0/8 belongs to Site O, and network site
10.0.0.0/8 belongs to Site P. Network 172.28.0.0/16 belongs to Site M. In our failure scenario,
a typographical error causes Site O to advertise a route to network 10.0.0.0/8 from Router 1
instead of network 19.0.0.0/8. (This is an easy typo to make since the number 9 is close to the
number on the computer keyboard.) The typo causes Sites L, M, and N to see two routes to
network 10.0.0.0/8 and no routes to network 19.0.0.0/8. Just to make things interesting, let's
also say that the serial link between Routers 1 and 3 has much greater bandwidth than the
serial link between Routers 4 and 6. That makes the route from Router 3 to Site O the
preferred route to network 10.0.0.0/8 for Sites L, M, and O because of the more favorable
network.

This scenario is a problem because network 19.0.0.0/8 is no longer advertised in the intranet,
and no one in Sites L, M, N, or P can reach Site O. Conversely, no one in Site O can use the
services of any other network since the return packets for a connection (or for server
responses) have no route back to Site O. In addition, since the preferred route to Site P's
network 10.0.0.0/8 goes to Site O, no packets ever reach Site P either.

How can we minimize the impact of this kind of typographical error? We know which routes
should be sent from each site and which should be received. If we enforce a policy that says
that only the well known and previously agreed upon routes should be sent and received from
each site, then a route mistakenly advertised from a site will not get propagated. Let's spell out
the policy so we can translate it into access lists:

Only network 19.0.0.0/8 should be accepted from Site O

To implement this policy with access lists, we build a policy set with network 19.0.0.0/8 in it,
and then accept only the routes in that policy set from Site D. Here is the access list:

access-list 1 permit 19.0.0.0

For this example, let's say that Router 3 is connected to Site O via serial interface 1, and the
routing protocol used is EIGRP. We then apply access list 1 on Router 3 with the following:

router eigrp 1000

 Cisco IOS Access lists

 Page 100

 distribute-list 1 in Serial 1

This first line says that we will modify the EIGRP routing protocol for Autonomous System
1000. The second line says that only the routes defined in access list 1 will be permitted in
from serial 1.

How does this access list deal with our typographical error scenario? When Site O broadcasts
a route to network 10.0.0.0/8 instead of a route to network 19.0.0.0/8, the route will be
rejected by Router 3 and not propagated to the rest of the network. While the route to network
19.0.0.0/8 has disappeared, the route going to Site P's network 10.0.0.0/8 is unaffected. In this
way, routing problems in Site O affect only Site O. We have gained routing modularity
because bad route advertisements by Site O will not propagate across the intranet.

Since Site M cannot control what routes Site O broadcasts to it, Site M needs to limit the
routes it hears from Site O. Although we have just implemented a policy that permits only
routes in from Site O that belong to O, we cannot depend on that policy because Site M may
be administered by a different organization than Site O, or because of any of the other reasons
discussed before. To make sure that bad routes do not propagate, Site O should filter outgoing
route updates to ensure that inappropriate routes, whether caused by typographical errors or
other reasons, do not propagate. On Router 1, we build a policy set of Site O's routes:

access-list 2 permit 19.0.0.0

If we say that Router 1's connection to Site M is through serial interface 0, we apply the
access list on Router 1 as follows:

router eigrp 1000
distribute-list 2 out Serial0

The distribute-list out command allows only the routes defined in access list 2 to be sent
out of the serial interface going to Site M.

Site P and Site M have a relationship similar to the relationship between Site O and Site M.
We can make routing robust between the sites in the same way. Let's say that Routers 4 and 6
both use serial interface 2 to talk to each other. Since Site E uses network 10.0.0.0/8, we
would set up the following on Router 4:

access-list 4 permit 10.0.0.0
! routing process section
router eigrp 1000
 distribute-list 4 in Serial 2

This configuration fragment permits only the route to 10.0.0.0 in through serial interface 2 of
Router 4, thus permitting only network 10.0.0.0/8 to come in from Site O. Router 6 should
have the following:

access-list 5 permit 10.0.0.0
! routing process section
router eigrp 1000
 distribute-list 5 out Serial 2

 Cisco IOS Access lists

 Page 101

This fragment of router configuration prevents Site P from advertising any route other than
network 10.0.0.0/8. Put together, these two applications of access lists make it much more
unlikely that a bad route will escape from Site P.

4.2.2 Managing routing updates to stub networks

Intranets typically have what are called stub networks. These are networks or administrative
domains that send all traffic not destined for a host on that network out through a single router
or small set of routers. There is no transit traffic through these networks; any traffic that is on
the network is either to or from the network. External traffic typically goes to some central
network that has connectivity to all other networks on that intranet.

The host segments shown in Figure 4.10 are stub networks, and the router connecting them to
the backbone segment is a stub router. The stub router has several Ethernet segments with
hosts connected to it and one connection to a fast Ethernet backbone segment. The function of
the router is to connect the hosts to the backbone segment. The host segments do not need to
hear routing updates because no other routers are on the segments. Hosts can easily be
configured to default all traffic not bound for their segment to the router. At the same time, no
routing updates should be accepted from the host segments. Any routing updates heard on the
segment must be from misconfigured hosts or another router that has been mistakenly
connected to one of the host segments.

Figure 4.10. A router with a single backbone connection

To reduce unnecessary traffic on the segments and to prevent any spurious routing updates
from injecting bad routing information, we need to enforce the policy:

Do not send routing updates to the host segments

Do not accept routing updates from the host segments

Advertise on the backbone segment only the routes for the networks connected
to the router

To implement the policy, we need an access list with no routes in it:

access-list 1 deny all

This access list permits nothing into a policy set and can be used to deny all routes. We will
use this kind of access list for the first and second policy statements. To implement the third
policy statement, we will build an access list of the networks connected to the router:

 Cisco IOS Access lists

 Page 102

access-list 2 permit 192.168.29.0
access-list 2 permit 192.168.30.0 0.0.1.0

The access lists are then used to define the routes sent out of specific interfaces. Let's say we
are using the routing protocol EIGRP in this network:

router eigrp 10
 network 192.168.20.0
 network 192.168.29.0
 network 192.168.30.0
 network 192.168.31.0
! no routes to the host segments
 distribute-list 1 out Ethernet 1/0
 distribute-list 1 out Ethernet 1/1
 distribute-list 1 out Ethernet 1/2
! no routes from the host segments
 distribute-list 1 in Ethernet 1/0
 distribute-list 1 in Ethernet 1/1
 distribute-list 1 in Ethernet 1/2
! advertise only connected routes
 distribute-list 2 out fast 0/0

The policy implementation takes place in the distribute-list commands. The first three
distribute-list out statements stop any routes from being advertised to the host segments.
The next three statements stop the router from believing any route updates form the host
segments. The last distribute list prevents the router from distributing anything but the three
networks directly connected to it.

4.2.3 Redistributing routing information between routing protocols

Another key border where routing policies often need to be enforced is the interface where
routing information is redistributed from one routing protocol or routing protocol
administrative system to another. Each routing protocol has its own unique properties that
network administrators want to either take advantage of or avoid. Let's look at an example
where we send routing information in a certain routing protocol but refuse to listen to it.

In Figure 4.11, three routers are connected via their Ethernet 1 interface to an Ethernet
segment containing a number of hosts. The routers also have a serial line (serial interface 0)
connecting them to other networks. The routers broadcast RIP updates to the hosts, so they
know which router to use for the best path to whatever networks the routers know about. Note
that although most host systems come configured to understand only RIP, RIP has many
limitations as a routing protocol, so the routers actually talk to each other using IGRP. So in
this case, we want to make sure that we send out RIP routing updates (from the routers to the
hosts) but have the routers ignore all RIP information received.

 Cisco IOS Access lists

 Page 103

Figure 4.11. Sending but not accepting routing protocol updates

To implement this, we use the deny all access list defined in the previous example:

access-list 1 deny all

We use this access list to get an empty policy set, which is the set of all the routes we accept
in via RIP. Next, let's define the RIP routing process:

router rip
network 192.168.10.0
redistribute igrp 10
distribute-list 1 in

The network statement here says that we broadcast RIP on all interfaces connected to network
192.168.10.0/8. The next statement says that we will redistribute all routes learned from IGRP
process 10 into RIP. The final distribute-list statement restricts what routes are accepted
in by RIP. Since no interface is specified, all RIP routing updates accepted by the router must
be in the policy set defined by access list 1. Since access list 1 denies all routes, all routes
advertised via RIP are ignored, regardless of what interface they come in on.

4.2.4 Minimizing routing updates to stub networks using default networks

In Figure 4.9, all the sites except for Site M are stub networks. Since Site M uses network
172.28.0.0/16, any traffic going between sites needs to go through that network first, making
the network an ideal default network. A default network is a destination where a router sends
all packets that have no explicitly defined routes in its routing table. For example, if a router
has only network 10.0.0.0/8 and default network 172.28.0.0/16 in its routing table, and it was
asked to forward a packet to network 198.168.30.0/8, the router forwards the packet to the
same path as to 172.28.0.0/16, the default network. Note that a default network is different
from a default route. A default route is where a router sends a packet if it does not have
explicit routing information for the packet's destination. It is a route as opposed to a network,
although the route to the default network becomes the default route.

Default networks are very useful in reducing the load and complexity of routing and route
filtering. They reduce the router resource impact by reducing the number of routes that routers
need to know about. In some cases, such as the interface between the Internet and an intranet,
using a default network can spare routers from having to process tens of thousands of routes.

 Cisco IOS Access lists

 Page 104

Let's look in detail at Figure 4.9, the interface between Site O and Site M. This is shown in
Figure 4.12.

Figure 4.12. A stub network and its default network

Router 1 only accepts traffic for network 19.0.0.0/8 since Site O is a stub network and does
not transit traffic through it. We can reduce the number of networks that Site O has to see and
propagate within itself by using the following configuration in Router 1:

default-network 172.28.0.0
access-list 1 permit 172.28.0.0
router rip
 distribute-list 1 in Serial 0

The first statement declares that network 172.28.0.0/16 is the default network. Access list 1
defines a policy set consisting only of the default network. The next two statements define the
properties of the RIP routing process, saying that only the default network 172.28.0.0 is
allowed into Router 1 (and thus Site O) because only the routes in the policy set defined by
access list 1 are accepted in through serial interface 0.

How does this reduce the processing of routing updates in Site O's network? Since we accept
only one route, to network 172.28.0.0/16 as the default network to other networks, Router 1
doesn't have to accept route 10.0.0.0/8 from Site O or any other route from other sites within
the intranet. Because only one route is accepted, Site O has fewer routes to broadcast within
its internal routing updates, which reduces the size of routing updates sent and the amount of
network bandwidth used by those routing updates within Site O. Recall that Site O can have
its own internal network structure with routing updates; as a stub network it doesn't transit
traffic from other sites. Fewer routes also means that routers within Site O have fewer routes
to examine when using routing access lists and building routing tables, thus reducing the CPU
load.

Using default networks can also reduce the bandwidth used for routing updates on the serial
line between Site M and Site O. If the administrator of Site M knows that all other sites use
172.28.0.0/16 as a default network, Routers 3, 4, and 5 can send only the default network to
other sites during routing updates (see Figure 4.9). For example, Router 3 would use a
configuration like this:

access-list 2 permit 172.28.0.0
router rip
 distribute-list 2 out Serial 1

 Cisco IOS Access lists

 Page 105

to limit the routing updates sent to Site O. In this way, more bandwidth is reserved for user
data.

The costs of using access lists for route filtering

Using access lists for route filtering consumes critical resources on routers. Overuse
can slow the flow of packets or even cause some of them to be dropped. You need to
understand the costs of using route filtering in order to weigh the benefits against
decreased router performance.

To gain this insight, you need to understand how routers handle tasks. A router has
different switching modes for different tasks. Packet switching can be done through
what is called optimum switching, or through modes like netflow switching or fast
switching. The fastest switching modes are done by a number of specialized
processors in the router. The slowest mode, process switching, is done by the
router's central CPU. A router typically has only one CPU available for process
switching at a time. General router "housekeeping" chores are done with process
switching: handling interactive logins, answering SNMP requests, and managing
router resource access control.

Handling of route updates and processing routing filter lists is also done with
process switching. Since there is usually only one CPU doing process switching, this
can easily bog down the entire router if you are not careful. For instance, protocols
such as IGRP and RIP regularly broadcast entire routing tables, meaning that every
30 or 90 seconds respectively (or whatever interval you set), a router may be
required to process through the access lists of the entire routing table of several
other machines. Although small access lists are usually not a problem, when the
CPU requirements of an access list are multiplied by processing large numbers of
routes from a large number of routers, CPU loading can have a significant impact on
router performance. When this happens, interactive sessions on the router itself
become slow to unusable. Other system tasks, such as answering SNMP requests,
also slow down.

How can we avoid having access lists for routing negatively affect router CPU? The
key factors we need to look at are the access list length, the number of routes
received in an update, and the number of updates received. Reducing any of these
will reduce the CPU impact of router access lists. Another method is to use access
list alternatives. I'll talk about how to reduce the impact of routing access lists and
alternatives later in the chapter.

Default networks do have some tradeoffs that must be acknowledged. Traffic to networks not
defined anywhere within an intranet will travel to a default network before getting dropped by
a router on the default network. That means the bad traffic ends up taking more resources
because more time goes by before they are rejected. In considering this tradeoff, you have to
consider how much traffic will be sent to unreachable networks and how much of that you
want to tolerate.

 Cisco IOS Access lists

 Page 106

4.2.5 Filtering routes distributed between routing processes

So far, I have only shown how to filter routes sent out of interfaces, but Cisco routers have
another option for filtering routes that allow network administrators to reduce the impact of
route filtering. In the previous example, we filtered routes going out of Router 3 and all of the
routes learned by the RIP routing protocol were compared to an access list every time a
routing update was sent from Router 3's serial interface, creating a potentially dangerous CPU
load.

Even if we used the IGRP routing protocol with AS 5 instead of RIP, where the configuration
on Router 3 would look something like this:

access-list 2 permit 172.28.0.0
! igrp definition
router igrp 5
network 172.28.0.0
! rip definitions
router rip
redistribute igrp 5
distribute-list 2 out Serial 1

the CPU load problem would remain because the chief difference in the RIP routing definition
is the redistribute igrp 5 line, which serves only to send all of the routes in IGRP 5 into
RIP.

An option of the distribute-list statement that lets us reduce the impact of filtering routes
when they are distributed from one routing process to another. If we specify a routing process
instead of an interface, routes are received only when they are updated by that routing
process. We can rewrite the example as follows:

access-list 2 permit 172.28.0.0
router igrp 5
network 172.28.0.0
! rip definition
router rip
distribute-list 2 out igrp 5
redistribute igrp 5

Routes are filtered and sent to the RIP process every time the IGRP routing protocol sends
updates. This happens every 90 seconds (the IGRP default). Since the RIP process receives
the default route only when IGRP is updated, it does not need to filter routes when it sends
routing updates, and the router needs to filter the route only every 90 seconds, as opposed to
every 30 seconds with RIP. If there were many interfaces the router needed to send RIP
updates out from, the CPU savings would be substantial. Generally, when filtering routes
directly from one route process into another, it is best to send routes from the least frequently
updated process into the more frequently updated routing process. This saves the most CPU
by conserving processing time.

4.3 Implementing route preferences

Earlier in this chapter, I talked about the strategy of implementing route preferences. In this
section, I discuss and show examples of how to implement them. I start with the basic
example of simply eliminating routes and move on to more complex examples of using

 Cisco IOS Access lists

 Page 107

offset-list statements to alter routing metrics and altering route administrative distances
based on the sources of routing updates.

4.3.1 Eliminating undesired routes

The simplest way to prefer routes is to prevent the routes that are not preferred from being
accepted by a router at all. Let's look at Figure 4.13 for an example.

Figure 4.13. Ignoring routes through an unencrypted path

In this part of an intranet, Routers 1 and 2 send routing updates for the networks
172.18.0.0/16, 172.19.0.0/16, and 10.0.0.0/8 to Router 3 through Router 3's serial interfaces 0
and 1. Both Router 1 and Router 2 have routes to network 10.0.0.0/8, Router 1 via Path A and
Router 2 via Path B. In this intranet, the network administrators try to encrypt all of the serial
links between networks wherever they can to safeguard their intranet from eavesdropping.
They generally succeed except for the paths leading to network 172.18.0.0/16, such as Path A,
which is in one of a number of countries where encryption is heavily controlled. The network
administrators accept this fact by setting the following policy:

Only traffic to and from 172.18.0.0/16 should go through Router 1

Traffic between networks 10.0.0.0/8 and 172.20.0.0/16 should not go through Router 1.
Traffic between network 10.0.0.0/8 and network 172.19.0.0/16 (in case Path B goes down)
also should not go through Router 1. What are the implications for Router 3? Router 3 needs
to make sure that traffic to networks 10.0.0.0/8 and 172.19.0.0/16 does not go over the
unencrypted Path A. Thus, traffic from Router 3 to network 10.0.0.0/8 should use Path B, and
traffic to network 172.19.0.0/16 should never go out of serial 0.

We can implement this policy on Router 3 by making sure that it never learns a route to
network 10.0.0.0/8 via Router 1. Since routing updates from Router 1 come in through serial
interface 0, we can build a policy set of everything except networks 10.0.0.0/8 and
172.19.0.0/16 and apply it to serial interface 0. Access list 1 creates such a policy set:

access-list 1 deny 10.0.0.0
access-list 1 deny 172.19.0.0
access-list 1 permit any

 Cisco IOS Access lists

 Page 108

However, we can shorten this particular access list since we know that only traffic to
172.18.0.0/16 should go through serial 0:

access-list 1 permit 172.18.0.0

Traffic to networks 10.0.0.0/8, 172.18.0.0/16, and 172.19.0.0/16 are acceptable through serial
1. Access list 2 defines the appropriate policy set:

access-list 2 permit 10.0.0.0
access-list 2 permit 172.18.0.0 0.1.0.0

We then apply both access lists with the following, assuming we are using routing protocol
EIGRP with autonomous system 10:

router eigrp 10
distribute-list 1 in Serial 0
distribute-list 2 in Serial 1

With this configuration, traffic between networks connected to Router 3 and network 10 never
travel over unencrypted paths. We achieved this by ignoring routing updates leading to the
path that we did not prefer, accepting only updates for routes using the preferred path. Our
usage of distribute-list statements is similar to how we implemented routing modularity
earlier but differs in that we received routing updates for network 10 through serial 0. This is
not incorrect; we have simply set up an arbitrary policy that prevents all traffic flowing that
way.

Local and global distribute-list interactions

I have shown examples of the local distribute-list statement, one that is
assigned to a specific interface, and the global distribute-list statement, one that
is used for all routing updates. You may wonder how global and local distribute-
list statements interact if both are defined. They are applied sequentially, with the
local distribute-list applied first and the global applied after. That means that if
a network is in a policy set defined by a local distribute-list statement, it also
needs to be in the policy set defined by the global distribute-list before it is
accepted by the routing process. As an example, consider the following
configuration:

access-list 1 permit 192.168.10.0
access-list 1 permit 192.168.13.0
access-list 2 permit 192.168.10.0
router rip
distribute-list 1 in Ethernet 0
distribute-list 2 in

Routes for network 192.168.10.0/24 would be accepted in Ethernet because it is in
each of the policy sets defined by access lists 1 and 2. Routes for 192.168.13.0/24
would be rejected, since although it is in the local distribute-list policy set, it is
not in the global one.

 Cisco IOS Access lists

 Page 109

 Cisco IOS Access lists

 Page 110

4.3.2 Route preferences through offset-list

Often, a network administrator wants to prefer certain routes but not eliminate the possible
use of the less-preferred routes. One technique for doing this uses the offset-list
statement. In this section, I'll discuss why using distribute-list statements can be
problematic for implementing certain kinds route preferences, followed by sections on how
you can use offset-list statements to prefer routes and how to select the metric offsets.

4.3.2.1 Limitations of using distribute-list for preferring routes

Using distribute-list to prefer routes has limitations. Figure 4.14 shows an example of
this.

Figure 4.14. Preferring routes without eliminating routes

In this figure, there are two paths between network 172.20.0.0/16 and network 10.0.0.0/8.
One path goes directly between the two networks over a 56 kilobits per second (Kb) link. The
second path has one router hop through Router 1 but goes over two 1.544 megabits per
second (Mb) links. In this network, the RIP routing protocol is used. RIP uses one metric for
routing: router hops. Given this particular property of RIP, the routers calculate that the
routing metric through the 56-Kb path is 1 (one router hop away) while the path through the
1.544-Mb link has a routing metric of 2 (two router hops away). The router then decides that
the best path between network 172.20.0.0/16 and network 10.0.0.0/8 is the 56-Kb link, even
though the other path has 30 times the bandwidth. A reasonable policy for this intranet might
be the following:

Prefer the 1.544-Mb path first.

If the 1.544-Mb path is down, use the 56-Kb path as a backup link.

Let's first try to implement this policy with distribute-list statements, as we did in the
previous section. On Router 2, we define three access lists, two with only one network in it,
and one that has no networks in it:

access-list 1 permit 10.0.0.0
access-list 2 permit 172.20.0.0
access-list 3 deny any

We use the policy sets defined to accept only network 10.0.0.0/8 in through serial 1 and
advertise only network 172.20.0.0/16. We then refuse to advertise or accept routes out of
serial interface 0, so traffic isn't sent through that interface:

 Cisco IOS Access lists

 Page 111

router rip
 distribute-list 1 in Serial 1
 distribute-list 2 out Serial 1
 distribute-list 3 in Serial 0
 distribute-list 3 out Serial 0

Since no routing advertisements for network 172.20.0.0/16 are sent over the 56-Kb path, no
traffic from network 10.0.0.0/8 to network 172.20.0.0/16 is sent out that way. Since no route
advertisements for network 10.0.0.0/8 are received over the 56-Kb path, no traffic from
network 172.20.0.0/16 to network 10.0.0.0/8 is sent through that path. Routes are sent and
received only through serial interface 1, so all traffic between the two networks goes only
over the higher-speed path.

This implements the first part of the policy, but what happens if the 1.544-Mb path goes
down? Since there are no route updates through the slow path, traffic will not go over that link
if the faster path goes down. Using distribute-list for route preference only allows or
disallows routes. There is no way to specify a sequence of preferences: Path A preferred first,
then Path B, then Path C.

4.3.2.2 Using offset-list statements to prefer routes

In the previous section on routing theory, I showed that the way to implement routing
preferences is by changing the metrics in routing updates coming in or out of the router. One
way that Cisco routers can do this is through offset-list statements. These statements
modify the value of routing metrics for some policy set of routes when routers send or receive
route updates. Let's see how we would use them in our example. First, let's define a policy set
with network 10.0.0.0/8 and another with network 172.20.0.0/8 in it:

access-list 1 permit 10.0.0.0
access-list 2 permit 172.20.0.0

We then use offset-list in the following way:

router rip
offset-list 1 in 3 Serial0
offset-list 2 out 3 Serial0

The first offset-list statement says that when updates for the routes in the policy set
defined by access list 1 are heard through serial interface 0, 3 will be added to the metric of
those routes. When routing updates for network 10.0.0.0/8 come into Router 2 over the 56-Kb
link, the route metric to network 10.0.0.0/8 over that path becomes 4. Since the route metric
coming in over serial interface 1 remains 2, the "best" path for the packets becomes the 1.544-
Mb path, since it has the lower routing metric. Now if the 1.544-Mb path fails for some
reason, routing updates are still being received through the other path, so traffic to network
10.0.0.0/8 can go that way.

The second offset-list statement takes care of traffic in the other direction, from network
10.0.0.0/8 to network 172.20.0.0/16. Routing updates for network 172.20.0.0/16 get 3 added
to them, so network 10.0.0.0/8 sees that the route metric for the path to 172.20.0.0/16 over the
56-Kb link is 4. The route metric over the 1.544-Mb path remains 2, so that path becomes
preferred. If the higher bandwidth path is unavailable, traffic from 172.20.0.0/16 to 10.0.0.0/8
will go over the 56-Kb link.

 Cisco IOS Access lists

 Page 112

offset-list statements are useful with default networks in implementing the preferred order
of default paths. Figure 4.15 shows a stub network with a number of possible routes to a
default network.

Figure 4.15. Stub network with multiple paths to a default network

Network 10.0.0.0/8 is a stub network that sends all of its traffic to other networks through a
default network of 172.20.0.0/16. The three paths between the two networks have equal
routing metric values, and the network uses the IGRP routing protocol in AS 172. Network
administrators want network 10.0.0.0/8 offsite traffic to first go through Router 1, then Router
2, and then Router 3. To implement this, let's build policy sets that contain each route:

access-list 1 permit 10.0.0.0
access-list 2 permit 172.20.0.0

On Router 1, which is the most preferred, we can define the routing as follows:

default-network 172.20.0.0
router igrp 172

The first statement defines the default network. For the IGRP process, since Router 1 is on the
preferred path, we don't have to add any bias to routing metrics.

On Router 2, we define routing with the following:

! build policy sets
access-list 1 permit 10.0.0.0
access-list 2 permit 172.20.0.0
default-network 172.20.0.0
! router definition
router igrp 172
offset-list 2 out 1000 Serial 0
offset-list 1 out 1000 Ethernet 1

The first offset-list adds a bias of 1000 to the route advertisements for network
172.20.0.0/16. The second offset-list statement adds 1000 to the route advertisements for
network 10.0.0.0/8, making it less attractive then the path through 1. In this way, we make the
path through Router 2 to and from network 10.0.0.0/8 less attractive then the path through
Router 1. Note that with IGRP, the possible range of metric values is much larger than with
RIP, so we have used the larger offset of 1000 here. I will talk more about selecting offset
values later.

 Cisco IOS Access lists

 Page 113

On Router 3, we define routing as follows:

! build policy sets
access-list 1 permit 10.0.0.0
access-list 2 permit 172.20.0.0
default-network 172.20.0.0
! router definition
router igrp 172
offset-list 2 out 2000 Serial 0
offset-list 1 out 2000 Ethernet 1

The biases added with these offset-list statements are bigger than the biases added on
Router 2. That makes the path through Router 3 less preferred than the one through Router 2,
and even less preferred than the one through Router 1.

4.3.2.3 Selecting metric offsets

While extremely useful, offset-list statements need to be applied with care. It is easy to
make networks unreachable if you select metric offsets that are too large. What would happen
if, to be extra certain that traffic uses the faster path, we added an even bigger bias to the
example in Figure 4.14, like this:

router rip
 offset-list 1 in 15 Serial 0
 offset-list 2 out 15 Serial 0

The effect of this application of offset-list would be to make the 56-Kb path unused even
if they the 1.544-Mb line went down. Why? RIP has a maximum metric size of 15. If you add
15 to the metric value, it exceeds the maximum metric limit, and any routes with a metric like
this is considered unreachable. In general, you have to make sure that the bias value you
select is not so large that it makes the route unreachable in parts of the network. For this
example, using an offset of 8 would be okay as long as there are no more than seven router
hops in network 172.20.0.0/16 and other networks using RIP. In the example we used with
Figure 4.15, we cannot use a metric greater than 65536, since the maximum metric size in
IGRP is 65536. Table 4.1 contains a list of some routing protocols and the maximum possible
values of their routing metrics.

Table 4.1. Routing protocols and their maximum metric values
Routing protocol Maximum metric value
RIP 15
IGRP 65535
EIGRP 4294967295

The dynamic nature of routing protocols needs to be considered when you use offset-list
statements. A topology change can make the route you are trying to have preferred become
unpreferred. Let's look again at Figure 4.15. Router 1 connects to network 10.0.0.0/8 at some
point in that network, but at a different point than Router 2 or Router 3. If there is a network
topology change so the route within network 10.0.0.0/8 to Router 1's connection point
becomes much longer, then the path through Router 1 may no longer be the most preferred
path. This kind of problem can happen when you add biases to route advertisements you send
into organizations you don't control. Some routing protocols, like IGRP and EIGRP, change
routing metrics based on network delays and bandwidth utilization. Transient changes in

 Cisco IOS Access lists

 Page 114

traffic can affect routing metrics to the point where any biases you place may be overcome, so
you need to make sure that any bias you use is high enough to override any increases in
metrics caused by any possible change in network topology or traffic flow.

Routing policies and OSPF

You may have noticed that there are no examples of using the distribute-list,
offset-list, or distance statements with the OSPF routing protocol. In general,
these commands are intended for distance vector routing protocols such as RIP,
IGRP, and EIGRP and not for Shortest Path First protocols such as OSPF. You can
use distribute-list statements to filter routes between OSPF areas (on Area
Border Routers, or ABRs), between different OSPF autonomous systems (on
Autonomous System Border Routers, or ASBRs), or when redistributing routes
between OSPF and other routing protocols. Using the distribute-list statement
within an OSPF area will not work, and the other policy statements should not be
used. Instead, use the access list alternatives described at the end of the chapter.

4.3.3 Route preferences through administrative distance

So far, offset-list and distribute-list statements have allowed us to implement all of
the policies that we have proposed so far. Let's see how these commands fare with the
network shown in Figure 4.16.

Figure 4.16. Preferring routes from a particular router

In this network, the paths through Router A are more reliable than the routes through Router
B or C. The network administrator for this network knows that this is the situation, so despite
the fact that some routes from Routers B and C have better metrics, he wants the following
policy on Router D:

Use routes through Router A unless Router A is down

If Router A is down, use routes through Router B

If Router A and B are down, use routes through Router C

Can we use distribute-list statements to implement this? We cannot, since there is no
way to prefer route updates from a single router among many from the same interface with

 Cisco IOS Access lists

 Page 115

distribute-list. Can we use offset-list to implement this policy? Again, offset-list
statements can only build policy sets of routes mentioned in routing updates. To implement
this policy, we need a way to build a policy set that is not based on the network numbers in
routing updates, but on some other feature of a route update, in this case the next hop or
source of the routing update.

This leads us to a whole new category of policy tools that I have not yet covered: controlling
routes based on characteristics of routes. All of the previous policies that we have looked at
built policy sets based on the destination networks. With this set of tools, we will build policy
sets based on characteristics of routes.

So how do we implement the policy preferring traffic through Router A? First, we need a way
to prefer routes based on their source of routing updates. To do that, we use the concept of
administrative distance. In Cisco routers, all routing updates have an additional metric
assigned to them called administrative distance. Each routing source has a default
administrative distance, as shown in Table 4.2.

Table 4.2. Default administrative distance for routing protocols
Routing protocol Default distance
Connected Interface 0
Static Route 1
EIGRP Summary 5
EIGRP Internal 90
IGRP 100
OSPF 110
RIP 120
EIGRP External 170
Unknown 255

When a router gets routing information about a route from different sources, the router uses
the routing information from the source with the lowest administrative distance. This means
that static routes take precedence over EIGRP routes if a route has been statically routed and
also learned from EIGRP. Another way to think of administrative distance is to consider it
another metric assigned to route updates. This metric takes priority over any other metric that
the route updates may have. Like other metrics, the lowest value is preferred. An
administrative distance of 255, the maximum distance possible, means that a route is
unreachable.

How do we use administrative distance to prefer routes from a particular routing source? The
distance directive for routing protocols can change the administrative distance for particular
routing updates. Here is how we would use distance to implement the policy defined
previously:

router rip
network 192.168.14.0
distance 121 192.168.14.2 0.0.0.0
distance 122 192.168.14.3 0.0.0.0

The first number after the distance keyword is the new administrative distance for the IP
address and mask that follow. The IP address and mask used in the distance statements have

 Cisco IOS Access lists

 Page 116

the same format and behavior as the IP address mask used in access lists. The first distance
directive in this example sets all routing updates from 192.168.14.2 (Router B) to an
administrative distance of 121. The second distance directive sets all routing updates from
192.168.14.3 (Router C) to an administrative distance of 122. Since RIP protocol updates
have a default administrative distance of 120, all routes from Router A will have a lower
administrative distance of 120. Thus Router D will prefer routes from Router A for any route
heard from each of Routers A, B, and C. If Router A does not send out a route update for a
particular network but Router B does, then Router D will use the routes from Router B unless
it hears a routing update from another source with a lower administrative distance.

The distance directive allows tremendous flexibility in implementing routing preferences.
Let's implement a variation of the policy that we defined earlier:

Use routes through Router A unless Router A is down

If Router A is down, use routes through Router B or Router C

This policy differs from the former in that there is no preference between routes through B or
C. We implement this policy as follows:

router rip
network 192.168.14.0
distance 121 192.168.14.2 0.0.0.1

Since route updates from Router A have the RIP default administrative distance of 120, they
are preferred first. If Router A is down, both Router B and C's updates have distance 121, so
that Router D uses the route from the two routers that has the best metrics.

Let's implement the following policy on Router D with distance:

Use routes through Router A unless Router A is down

If Router A is down, use routes through Router B

Never use routes through Router C

We can implement this with the following configuration:

router rip
network 192.168.14.0
distance 121 192.168.14.2 0.0.0.0
distance 255 192.168.14.3 0.0.0.0

As in the previous example, route updates from Router A get the default RIP distance of 120.
Route updates from Router B get a distance of 121, making them less preferred than the route
updates from A. Route updates from Router C receive the distance of 255. Routes with an
administrative distance of 255 are considered unreachable and are thus ignored.

Here is another way to implement the policy:

router rip
network 192.168.14.0

 Cisco IOS Access lists

 Page 117

distance 255
distance 120 192.168.14.1 0.0.0.0
distance 121 192.168.14.2 0.0.0.0

The first distance statement sets the default administrative distance for RIP to 255. That
means that all routing updates from routers that do not have an explicitly set administrative
distance are ignored. The next distance statement sets the administrative distance of Router
A's routes to 120 while the final distance statement sets Router B's routes to a distance of
121. This configuration works because Router A has the lowest administrative distance,
followed by Router B. All other routing updates are considered unreachable.

Using distance 255 in this manner has a number of tradeoffs that you need to consider. By
ignoring all updates without explicitly set distances, the router will also ignore updates from a
router that is put on the network without authorization or notification to the network
administrators. This can be a good thing, since a network administrator will not have to worry
about some rogue router being put on the network and suddenly accepting traffic. It can also
be an annoyance, though, as the network administrator needs to explicitly define a distance
for every subnet or router that sends routing updates.

So far, I've set all routing updates from a source to have the same administrative distance.
You can also set specific routes from a source to have specific administrative distances. In
Figure 4.17, network 192.168.18.0/16 contains servers dedicated to an application critical to
users on networks 10.0.0.0/8 and 172.28.0.0/16.

Figure 4.17. Dedicating bandwidth to an application

The application is so critical that the path leading to network 192.168.18.0/24, from Router 1
via Router 3 to Router 4, should be dedicated to traffic to and from 192.168.18.0/24 in order
to maximize the application's performance. Transit traffic between networks 10.0.0.0/8 and
172.28.0.0/16 should not slow down the application. The only time that traffic between these
networks should use the dedicated bandwidth is if another path between the networks through
Router 2 is unavailable. Let's summarize the policy that we need to implement:

The connections to Router 3 should only see traffic to and from network
192.168.18.0 unless the path through Router 2 is unavailable

 Cisco IOS Access lists

 Page 118

We implement this policy by making the routes for 192.168.18.0/24 from Router 3 have a
lower administrative distance than any other routes that it advertises. On Router 1, we use the
following configuration fragment:

access-list 1 permit 192.168.18.0
access-list 2 permit any
router rip
 network 192.168.11.0
 network 192.168.12.0
 distance 119 192.168.12.1 1
 distance 121 192.168.12.1 2

Access list 1 creates a policy set with the application server's network, 192.168.18.0/24. The
first distance statement sets the routes in the policy set defined by access list 1 (the server
network) that are advertised from Router 3 to an administrative distance of 119. The second
distance statement sets all other routes from Router 3 to an administrative distance of 121.
Route advertisements for the networks other than the application network are preferred
through Router 2. Route advertisements for the application server network have a distance set
lower than the default. If a route to 192.168.18.0/24 is heard from another router, the route via
Router 3 is the preferred route unless the direct link to Router 3 is down.

The configuration on Router 4 is very similar:

access-list 1 permit 192.168.18.0
access-list 2 permit any
router rip
 network 192.168.13.0
 network 192.168.14.0
 distance 119 192.168.14.1 1
 distance 121 192.168.14.1 2

The IP address for the serial link to Router 3 and the connected networks are different, but the
use of distance is the same.

You may have noticed that we could have implemented the routing policy by using offset-
list statements instead of distance. We could have used the following on Router 3:

access-list 1 deny 192.168.18.0
access-list 1 permit any
router rip
network 192.168.12.0
network 192.168.14.0
network 192.168.18.0
offset-list 1 out Serial 0 2
offset-list 1 out Serial 1 2

This configuration works because we add a metric bias to everything but the application
server network to our route advertisements, making advertisements for those routes look
better through paths other than through Router 3.

Since I've shown two different ways to implement this policy, you may be wondering when
you should use offset-list and when to use distance. To know which technique is most
appropriate, you need to know about the strengths and weaknesses of each technique. I have
talked about the limitations of offset-list statements already, so let's talk about the

 Cisco IOS Access lists

 Page 119

tradeoffs of using the distance statement. As you may have already noticed, distance
works only on incoming route advertisements. You cannot send another router the distance
you want them to use when considering routes. If you want to influence the route preferences
of routers to which you send updates, you need to use offset-list statements.

One important characteristic about administrative distance is that it overrides any other metric
values that a route update may have. Let's say that in our previous example we were using
EIGRP instead of RIP. Remember that routing protocols such as EIGRP take into
consideration factors like bandwidth and network loading to calculate routing metrics. If you
use the offset-list approach to implement policy, a change in network traffic could change
routing metrics so drastically that your policy could become undone. You could also set bias
values so high that the networks you advertise are advertised as unreachable. Manipulating
administrative distance, in contrast, works no matter the value of routing metrics, instead
working by affecting the order in which you consider route updates for inclusion into the
routing table.

4.4 Alternatives to access lists

As I have mentioned, the CPU costs imposed by access lists can be significant. In addition,
access lists take time to administer. Some alternatives to access lists can reduce CPU costs,
while others simply limit the number of access lists you need to manage. I cover these
alternatives in this section.

4.4.1 Static routing

One common technique for replacing access lists is to use static routes. You can set route
preferences on routers that you administer by explicitly configuring routes. Since static routes
by default have a more preferable administrative distance than any dynamic routing protocol,
configuring a static route to a network can cause a router to ignore any dynamic routing
protocol's routing update to that network.

The simplest way to eliminate access lists for routing policies is to completely remove the
dynamic routing protocols and use static routes everywhere. This may be possible in simple
networks like the one shown in Figure 4.2. You can configure static routes on the central
router and define fixed routes to all of the networks in a central location. Static routes
explicitly define routing policies, so you do not need to use access lists to filter routing
updates.

As a network becomes more complex, a purely static routed network might become difficult
to manage. Still, to reduce the use of access lists a combination of dynamic and static routes is
possible. With stub networks, for example, connections between the stub networks and the
transit or default network can be static routed, eliminating the need for dynamic routing
protocols and routing access lists. Let's revisit Figure 4.9 and see how we can use static routes
instead of access lists. Recall that a key issue in this network was making sure the site
networks did not advertise a network they did not own. To see how this occurs with static
routes, let's say that Router 1's serial interface uses IP address 192.168.12.1 and Router 3's
serial interface has IP address 192.168.12.2. Router 4's serial interface to Site E has IP address
192.168.13.1, and Router 6's serial interface has IP address 192.168.13.2. Router 1 would use
the following configuration to define its routing:

 Cisco IOS Access lists

 Page 120

default-network 172.28.0.0 192.168.12.2
ip route 172.28.0.0 255.255.0.0
router rip
network 19.0.0.0
redistribute static

Since 172.28.0.0/16 is the central transit network for this intranet, we define it as the default
network and set up a default route to Router 3. We then redistribute our default network
within Site D. We define network 19.0.0.0 in the routing statement, but not network
192.168.12.0/24. This causes the RIP routing process to send and listen to RIP routing
updates only on interfaces that are on network 19.0.0.0. Therefore, Router 1 does not send
routing updates out of its serial link to Router 3 or listen to any updates on that interface. This
configuration saves considerable CPU resources on the router, since there are fewer router
updates to process, and no route filtering to be done.

Router 3 would use the following configuration:

ip route 19.0.0.0 255.0.0.0 192.168.12.1
router rip
network 172.28.0.0
redistribute static

The route to network 19.0.0.0 is hardcoded into the router's configuration, so no route update
can change it. As with Router 1, there is no network 192.168.12.0 statement. This means
that Router 3 does not send updates out of its serial interface to Site D or listen to any updates
from it. Our policy to maintain network robustness is enforced by the static routes and careful
redistribution, instead of an access list and a distribute-list statement.

Continuing with our example, Router 6 has a configuration very similar to Router 1:

default-network 172.28.0.0
ip route 172.28.0.0 255.255.0.0 192.168.13.1
router rip
network 10.0.0.0
redistribute static

while Router 4 is configured like Router 3, with a static route replacing the access list and
distribute-list statement:

ip route 10.0.0.0 255.0.0.0 192.168.13.2
router rip
network 172.28.0.0
redistribute static

4.4.1.1 Implementing route preference with static routes

We can also use static routes to implement routing preferences through route elimination. In
the example associated with Figure 4.14, we used distribute-list statements and an
access list to force traffic between network 10.0.0.0/8 and 172.20.0.0/16 over an encrypted
path. If the serial interface on Router 2 connecting to Router 3 uses IP address 192.168.10.2,
then the following static route on Router 3 will force traffic to network 10.0.0.0/8 over the
encrypted network path:

ip route 10.0.0.0 255.0.0.0 192.168.10.2

 Cisco IOS Access lists

 Page 121

We would also have to put in a similar static route from Router 1 to Router 2 for the traffic
from network 10.0.0.0/8 to use the encrypted path. Note that this use of static routes to
implement a routing policy only works if we have administrative control or influence over
Router 1 and Router 3. If we can't have Router 1 configured with a static route, we'll have to
use distribute-list statements as we did originally.

4.4.1.2 Floating static routes

You can change the administrative distance of a static route to create what is called a floating
static route. Floating static routes can be used to define a backup route and thus to implement
routing preferences. Let's revisit Figure 4.14. In this figure, we prefer that traffic between
network 10.0.0.0/8 and 172.20.0.0/16 go through the larger bandwidth path. Let's say that the
56-Kb serial line between networks 10.0.0.0/8 and 172.20.0.0/16 has IP addresses
192.168.15.2 at the network 10.0.0.0/8 side and 192.168.15.3 at Router 2. The IP address of
serial 1 on Router 2 is 192.168.16.3, and the IP address of the serial interface on Router 1
leading to Router 2 is 192.168.11.2. We can define the following static route and router
configuration on Router 2:

ip route 172.20.0.0 255.255.0.0 192.168.15.2 121
router rip
network 192.168.16.0

The static route is set to have an administrative distance of 121. Only network 192.168.16.0 is
defined to send and receive RIP routing updates. The result is that Router 2 will hear a route
to network 10.0.0.0/8 via RIP only through the higher bandwidth path. Since we set
administrative distance of the static route to be higher than that of default RIP updates, the
RIP update takes precedence. If the 1.544-Mb line goes down, then the static route over the
smaller bandwidth path is used. To take care of traffic in the other direction, from network
10.0.0.0/8 to network 172.28.0.0/16, a similar setup needs to be done on the router connecting
network 10.0.0.0/8 to Router 1.

Compared to our earlier policy implementation, the floating static route is much simpler. So
why would we use the first implementation? Again, the issue is administrative control. The
first implementation works if the network administrator of Router 2 does not have
administrative control over network 10.0.0.0/8 routers. The floating static route technique
works only if a floating static route is set up at network 10.0.0.0/8.

4.4.1.3 Static routes to the null device

Another simple way to deny routing updates from a given network is to route the network to
the null interface. For example, if we wanted to deny all routing updates to network
192.168.30.0/24, we could set up the following static route:

ip route 192.168.30.0 255.255.255.0 Null0

Using this technique can conserve router resources since the router no longer needs to use
access lists to filter route updates containing this network.

You have to be careful about redistributing the static route for a network routed to Null0.
You can easily advertise a route that will cause all of the traffic to a network to be dropped.

 Cisco IOS Access lists

 Page 122

For if we redistributed the previous static route into another routing protocol, all packets
destined for network 192.168.30.0/24 could get sent to a router that would simply drop them.

4.4.2 Denying all route updates in or out of an interface

Denying all routing updates through an interface is such a common operation that there are
Cisco configuration commands designed to provide these functions.

Often you may not want to send routing updates out of an interface. This may be because
there are no systems that need to listen to your routing broadcasts, or you may not want
routers on that interface to send traffic through. Whatever the reason, you can use the
passive-interface command to stop sending routing updates out of a specific interface.
Let's look once again at the network in Figure 4.10. In this network, we don't need to
broadcast routing updates on the host segments. In the original policy implementation, I
created a policy set with nothing in it and used that policy set to stop route advertisements.
passive-interface can have the same effect:

access-list 1 deny any
access-list 2 permit 192.168.29.0
access-list 2 permit 192.168.30.0 0.0.1.0
!
router eigrp 10
 network 192.168.20.0
 network 192.168.29.0
 network 192.168.30.0
 network 192.168.31.0
! no routes to the host segments
 passive-interface Ethernet 1/0
 passive-interface Ethernet 1/1
 passive-interface Ethernet 1/2
! no routes from the host segments
 distribute-list 1 in Ethernet 1/0
 distribute-list 1 in Ethernet 1/1
 distribute-list 1 in Ethernet 1/2
! advertise only connected routes
 distribute-list 2 out fast 0/0

The passive-interface command saves significant CPU resources when compared with the
way I previously implemented this policy. Instead of examining all of the routes it knows
about and then not sending any of them out, the router simply doesn't try to send any routes
out of the three Ethernet interfaces at all.

4.4.2.1 Using distance to ignore updates

In this example, we also do not want to receive any updates from the host segments. A more
elegant way to do that is to use the distance statement. If we set the administrative distance
of any routing update from the host segments to 255, then any routing update from those
segments is ignored. The complete configuration then becomes:

access-list 2 permit 192.168.29.0
access-list 2 permit 192.168.30.0 0.0.1.0
!
router eigrp 10
network 192.168.20.0
network 192.168.29.0

 Cisco IOS Access lists

 Page 123

network 192.168.30.0
network 192.168.31.0
! no routes to the host segments
passive-interface Ethernet 1/0
passive-interface Ethernet 1/1
passive-interface Ethernet 1/2
! no routes from the host segments
distance 192.168.29.0 0.0.0.0 255
distance 192.168.30.0 0.0.0.1 255
! advertise only connected routes
distribute-list 2 out fast 0/0

Using distance doesn't save as much CPU as the previous change. If there are route updates
from the host segments, the router still must look at them in order to assign the administrative
distance of 255. It does simplify and reduce the size of the configuration, however, which can
be a significant improvement in some situations.

4.4.2.2 Omitting network statements

Notice that we don't want to send or receive routing updates from the host segments. For
segments like these, there is one more access list alternative that is more elegant and can save
even more router CPU cycles. Recall that in a routing process definition, the network
statement is used to indicate which interfaces will send and receive routing updates. Since we
don't want any routing update activity on the host segments, we can omit the network
statements of host segments:

access-list 2 permit 192.168.29.0
access-list 2 permit 192.168.30.0 0.0.1.0
router eigrp 10
network 192.168.20.0
! advertise only connected routes
distribute-list 2 out fast 0/0

Omitting the network statements saves the router a lot of processing because the interfaces
for the host segments are not involved in routing activity at all.

Chapter 5. Debugging Access Lists
Once you've formatted access lists and used them to implement policies, how do you know if
your access lists are correct? How can you find problems with them? We'll look at these
questions in this chapter, first verifying that your access lists are working correctly in the
areas of router resource control, packet filtering, and route filtering. More generally, I will
talk about how access lists can go wrong and what are the typical failure modes of access
lists. Finally, we'll look at some tips and tricks for debugging access lists in detail.

5.1 Router resource access control lists

In this section, I discuss how to debug router resource access lists. The first part describes
how to check them for correctness since it doesn't make sense to debug a list that is
configured properly. The second part discusses what generally happens when access lists go
wrong, and the last part goes over specifically how to debug router resource access lists.

 Cisco IOS Access lists

 Page 124

5.1.1 Checking for correctness

In Chapter 3 we configured the router to control resources such as Telnet and time services.
The approach to verifying if these access lists function correctly is very basic: test if access
works correctly for those who are permitted, and test if access does not work for those who
are not permitted. Let's look at one of our early examples of router resource policies and look
at how we can test it. In the first example in Chapter 2, we had a policy like the following:

Only the hosts at IP addresses 192.168.30.1 and 192.168.33.5 may telnet into
the router

The access list that defines the policy set for this policy is:

access-list 1 permit 192.168.30.1
access-list 1 permit 192.168.33.5

We use the policy set as follows:

line vty 0 4
 access-class 1 in

In order to verify that the access list actually implements the policy, we need to check that
what we defined in the policy set matches what is in the policy definition. There are two ways
to do this. The first is by inspection: we manually check whether the access list matches our
policy. While this method can work for small access lists, it becomes much more difficult as
access lists grow in size and really isn't a particularly reliable way to verify that an access list
is correct. The second way is to test whether access lists actually function as desired. In this
instance, we would attempt to telnet to the router from the hosts at 192.168.30.1 and
192.168.33.5. If we succeed in getting a prompt from the router, we know that the access list
is allowing the correct host to connect to the router.

We should also make sure that forbidden hosts do not have access. If for some reason we
forgot to apply an access list (not putting in the access-class statement, for example), the
default policy set permits everything, giving us the same results as the test we did earlier.
When we telnet to the router from the host at 192.168.3.59, the router should refuse the
connection and not provide a login prompt. In general, the following algorithm is useful for
verifying a policy against the access lists you implemented:

Make sure what hosts that are permitted have access to the resource

Make sure that the hosts that are not permitted do not have access to the
resource

You will not always be able to completely test all cases (as access lists grow, you will not be
able to test every entry), but being reasonably sure that the above two conditions are true is
how to verify correctness.

5.1.1.1 Manual tests of masks

Testing for both what is permitted and what is denied is particularly useful when you use
masks in a policy. Let's look at the following policy and its implementation:

 Cisco IOS Access lists

 Page 125

Only the hosts at IP addresses 192.168.30.4 through 192.168.30.7 and IP
address 192.168.33.5 may telnet into the router

We define the appropriate policy set and apply it as follows:

access-list 1 permit 192.168.30.4 0.0.0.3
access-list 1 permit 192.168.33.5
! line definition
line vty 0 4
access-class 1 in

Notice that the first access list entry has a mask, as we covered in Chapter 2. When you use a
mask like this, in addition to testing that the hosts in the mask range have access to the
resource being controlled, make sure that the hosts just outside of the mask range (hosts at IP
addresses 192.168.30.3 and 192.168.30.8) do not. What happens if you specify a mask that is
too large, as in the following list?

access-list 1 permit 192.168.30.4 0.0.0.7
access-list 1 permit 192.168.33.5

Testing only the permitted hosts will miss the fact that you also included hosts 192.168.30.1,
192.168.30.2, and 192.168.30.3 in the policy set. Testing the hosts just outside the range
permitted by the mask catches this problem.

5.1.2 When access lists don't work

I have talked about making sure that access lists are functioning properly by implementing the
policies that you intend. But what happens if your access lists do not function as expected?
This section describes how an access list can do other than what you intend and how you can
use the various tools available on a Cisco router to find where you made a mistake. I will first
go over ways that access lists can go wrong. After that, I will cover how to debug router
resource access lists, extended access lists, and router filtering access lists.

There are typically a number of ways access lists can go wrong. First, they can be applied
incorrectly, meaning that you have either applied the wrong access list to a router resource,
interface, or distribute list; applied the correct access list but with the wrong directionality
(inbound instead of outbound or the reverse); or forgotten to apply one altogether. This should
be the first thing you check.

If you are applying an access list correctly, and your policy is still not being implemented
properly, then one of two things is happening. Either something you want to include into a
policy set was excluded, or something you want excluded from a policy set was included. In
the first case, you need to check whether some statement in the access list is excluding the IP
addresses or packet types that you want in the policy set. (If you are certain that nothing is
excluding the items desired, then the only other explanation is that you have forgotten to
include it.) In the second case, you have included something in your policy set that you do not
want, so to fix your access list, you need to find the permissive entry. These are the
fundamental problems that can occur, and when I talk about debugging specific kinds of
access lists in the following sections, I go over how to find bad or missing access list entries.

 Cisco IOS Access lists

 Page 126

There is one final category of access list problems that you may encounter. If you are
implementing security policies and routing policies, you have to be careful about their
interaction. For instance, if an application does not work through an extended access list, it
doesn't always mean there's a problem with the access lists; it could be a communication
problem between the two systems you are routing. If you encounter what seems to be a
routing problem with routing, there could be packet filtering that is disrupting route
advertisements. I will also talk about this category of problems in later sections on debugging.

5.1.3 Debugging router resource access lists

If you find that your router resource access lists are not working, typically one of two things is
happening. Either something that needs access to a router resource does not have access, or
something that should not have access to the resource does. I'll go over each case and what to
look for when trying to find what the problem is.

If a host or router that should have access cannot access a resource on a router you control, the
first thing to check is whether there is network connectivity between the host in question and
the router. The easiest way to do this is to use the ping command. The format of ping is the
command ping followed by the name or IP address of the host you want to check on. Let's say
that we want to check on connectivity to a host at 10.1.1.2, and the route to 10.1.1.2 goes
through an Ethernet interface with IP address 192.168.3.2. We would use the following
command, which can be executed from user EXEC mode or privileged EXEC mode:

ping 10.1.1.2

If there is a functioning route to IP address 10.1.1.2 and a route from the host 10.1.1.2 back to
the router interface with IP address 192.168.3.2, we would see output like this:

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.1.1.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms

If either the transmit and return path between 10.1.1.2 and 192.168.3.2 is unavailable, the
ping will not be successful:

Router1# ping 10.1.1.2

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.1.1.2, timeout is 2 seconds:
.....
Success rate is 0 percent (0/5)

If the ping attempt is not successful, there is either a route missing at the target host for the
router, a route missing at the router for the host, or some other packet filter along the path
getting in the way. Let's put off a discussion of packet filtering extended access lists until the
next section and assume that the problem is with a missing route. Check the routing on the
host or the router. If the route is missing, and there is no default route, then you need to make
sure that the route is there and again check if the resource access works. If the route is there, it
implies that the problem may be with a packet filter along the way. I will talk about finding
problematic packet filters in later sections.

 Cisco IOS Access lists

 Page 127

If the ping attempt is successful, the problem is with your access list. You either excluded
some IP addresses from your policy set or forgot to include an appropriate entry.

Looking at an example will illustrate this better. Let's say we have the following policy for a
router:

All of the hosts with IP addresses 192.168.32.32 through 192.168.32.63 except
192.168.32.40 through 192.168.32.43 can have SNMP read access

and implement it as follows:

access-list 1 deny 192.168.40.0 0.0.0.7
access-list 1 permit 192.168.32.0 0.0.0.31
snmp community string public ro 1

We notice that host 192.168.32.44 does not have SNMP access. We can ping 192.168.32.44
from the router, so routing is not an issue. On examination, we see that the initial deny mask
is too large. Access list 1 should be defined as:

access-list 1 deny 192.168.40.0 0.0.0.3
access-list 1 permit 192.168.32.0 0.0.0.31

The other way that router resource access lists can go wrong is if something that should not
have permission does have permission. This means that somehow you have inadvertently
allowed something in a policy set you shouldn't have, and again a previous example illustrates
this well. Recall that we have a policy for a router as follows:

Only the hosts at IP addresses 192.168.30.4 through 192.168.30.7 and IP
address 192.168.33.5 may telnet into the router

We define the appropriate policy set and apply it as follows:

access-list 1 permit 192.168.30.4 0.0.0.7
access-list 1 permit 192.168.33.5
! line definition
line vty 0 4
access-class 1 in

After testing, we notice that host 192.168.30.8 has Telnet access to the router. We made the
mask on the first entry of access list 1 too large. Access list 1 should be :

access-list 1 permit 192.168.30.4 0.0.0.3
access-list 1 permit 192.168.33.5

5.2 Packet-filtering access control lists

Here I talk about debugging the packet filters that you implement with access control lists.
Like the previous section, I first talk about how to verify that your access lists are correct,
followed by a section about how to find the problems in the access lists that you find to be
wrong.

 Cisco IOS Access lists

 Page 128

5.2.1 Checking for correctness

One of the first things you want to do is make sure that your access lists are applied to the
interfaces you intended. You or another network administrator may have removed access lists
or applied other access lists in order to debug problems or temporarily enable certain
functionality for a variety of reasons, such as host installations or debugging. One way to do
that is to show the running configuration with the show running-confg command. If you have
a large configuration, this command may take a while, and it is easy to miss the interface you
want to look at when many of them are scrolling by.

5.2.1.1 Using show ip interface to display applied access lists

A better way is to use the show ip interface command. This command yields output that looks
like the following:

Serial 0 is up, line protocol is up
 Internet address is 192.168.1.2/24
 Broadcast address is 192.168.1.255
 Address determined by non-volatile memory
 MTU is 1500 bytes
 Helper address is not set
 Directed broadcast forwarding is enabled
 Outbound access list is 102
 Inbound access list is 101
 Proxy ARP is enabled
 Security level is default
 Split horizon is enabled
 ICMP redirects are always sent
 ICMP unreachables are always sent
 ICMP mask replies are never sent
 IP fast switching is enabled
 IP fast switching on the same interface is enabled
 IP Optimum switching is disabled IP
 Flow switching is enabled IP
 CEF switching is enabled IP
 Distributed switching is enabled
 IP LES Flow switching turbo vector IP
 Flow CEF switching turbo vector
 IP multicast fast switching is disabled
 IP multicast distributed fast switching is disabled
 Router Discovery is disabled
 IP output packet accounting is enabled
 IP access violation accounting is disabled
 TCP/IP header compression is disabled
 Probe proxy name replies are disabled
 Gateway Discovery is disabled
 Policy routing is disabled
 Web Cache Redirect is disabled
 BGP Policy Mapping is enabled (source ip-prec-map)

The show ip interface command displays what IP configurations are applied relative to an
interface. On this serial interface, we can see that it has an Inbound access list of 101 and
an Outbound access list of 102. Further down the listing, we can see that IP output
packet accounting is enabled, while IP access violation accounting is disabled.
Though I'll talk about these last two features later, you can see that this command shows the

 Cisco IOS Access lists

 Page 129

access lists applied to a particular interface, allowing you to verify that you used access lists
correctly.

The show ip interface command followed by an interface shows the IP configuration for just
that interface. Without the interface specification, the command shows the IP configuration
for all interfaces.

5.2.1.2 Testing the functionality of packet filters

Once you know that your access lists are properly applied, the most direct way of checking
packet filtering access lists is the same method as for router resource access lists: test if what
you permit is allowed and what is denied is not allowed through your router. Let's look at
some of the extended access lists to see how we can verify access list correctness. Recall our
first example of extended access lists, which implemented the following policy:

HTTP and SSL packets only to the host at 192.168.35.1

We created a policy using the following access list:

access-list 101 permit any host 192.168.35.1 eq http
access-list 101 permit any host 192.168.35.1 eq 443

and applied it with:

interface ethernet 0
access-group 101 out

The host with IP address 192.168.35.1 lies on Ethernet 0.

How do you verify that the access list fulfills the policy? As with verifying access lists for
router resource restriction, you can manually check if the applications that use these protocols
are working. Since the default access list permits everything (recall that an access list that is
applied but has no entries permits everything), you also need to check that blocked
applications do not work. For this example, you might start the web server on host
192.168.35.1, open a web browser on a host on a different segment, and then see if you can
access the web server and do SSL transactions. If web access and SSL transactions work, you
then check to see if other applications do not work. An easy way to test this is to make sure
that a Telnet connection attempt to the host times out. Telnet is particularly convenient
because Telnet clients are easily available. You would type the following on the test host:

telnet 192.168.35.1

If the access list functions correctly, the connection attempt should time out. If you do
manage to connect or receive a connection refused message (meaning that the web server
does not run Telnet service on the standard Telnet port), the access list is not functioning as
intended.

5.2.1.3 TCP port probing using Telnet

As a network administrator, you will not always have the luxury of testing the applications
that you permit or deny through a router. In that case, there are a number of ways to check

 Cisco IOS Access lists

 Page 130

that your access lists are working correctly. These methods are not as reliable as actually
testing the applications—they cannot show that your access list is absolutely right—but they
can let you know if you did something wrong. As an example of this, let's look at how we can
verify the correctness of our current example if we don't have access to a web browser. The
network is shown in Figure 5.1.

Figure 5.1. Checking extended access list correctness without application access

After implementing access list 101 on Ethernet 0 of Router 1, we need to verify that the list
functions correctly—meaning it implements our policy, assuming host 192.168.33.1 lacks a
web browser and we only have access to Router 2, which also lacks a web browser. How can
we verify correctness in either scenario?

One simple technique you can use is port probing. The telnet command makes it easy to
probe if TCP-based services are accessible. From either the host at 192.168.33.1 or Router 2,
we can see which ports on the web server are accessible through Router 1. If the access list is
working correctly, when we execute the following commands on either the host or the router:

telnet 192.168.35.1 80
telnet 192.168.35.1 443

we should get a connection setup confirmation or a connection refused message.

The first command attempts to connect to the web server's HTTP port. The second command
attempts to connect to the web server's SSL port. Since access list 101 allows any host to
access these two ports on the web server, connecting to either port should evoke a response
from the web server. If the connection attempt times out, and we know that the web server is
operational, then our access list must be incorrect. As in previous examples, we also need to
check whether the access list is blocking other protocols with:

telnet 192.168.35.1

The result of this particular telnet command should be a timeout; in other words, connections
should not be achieved or refused.

You can specify which interface you want to telnet from a router using the global
configuration command ip telnet source-interface followed by an interface. This
command is useful when you want to test the path through a particular interface of a router.

 Cisco IOS Access lists

 Page 131

Using telnet to probe ports is convenient. You can use any host or router to run tests like this.
A network administrator implementing access lists is much more likely to have access to a
router than to a host running the permitted application, since the administrator often has
access only to network equipment while hosts are commonly run by other organizations. The
Telnet technique does have its limitations. It can be time-consuming to check large numbers
of ports.

Only TCP ports can be probed in this manner. To check both UDP and
TCP port availability, port scanning software is available. These
scanning packages check every UDP and TCP port that is accessible on
a network that you can define. While automated and much more
thorough than manual port checks, this software typically can only be
run from a host and is generally not available on routers.

5.2.1.4 Access list entry accounting

Another way to verify if your access lists are correct is to see which access list entries are
being used. When an application sends traffic through a router and that traffic gets filtered
through an access list, then the Cisco router doing the packet filtering logs which entries of
the access list are used. The show access-list command not only shows the entries an access
list has, but also how many times a particular access list entry has been used. For our simple
example, the command show access-list 101 should yield something like this:

access-list 101
 permit any host 192.168.35.1 eq www (10 matches)
 permit any host 192.168.35.1 eq 443 (1 match)

An access list entry that functions properly should generate matches when users use the
application that the entry tries to control. If there is successful www (web) access to the web
server at 192.168.35.1, then the entry allowing web access to the server should have matches.
If there are no matches when application traffic is generated, then there is something wrong
with the access list.

This method is not sufficient to prove that all of a router's access lists are correct. For
example, if we have an access list blocking traffic from the web server to certain clients (on
Ethernet 1 in this case) but not others, we could have www matches to the web server on
access list entries, but our policy could still not be implemented correctly. Though not a
sufficient condition for verifying correctness, access list entry matches are a necessary
condition for correctness and can be a useful indicator of problems.

5.2.1.5 IP accounting

The IP accounting facility is another way to check if extended access lists are correct. IP
accounting lets you keep track of the source and destination IP addresses of transit packets
(packets that go out of an interface and come in through an interface, possibly the same
interface). It also allows you to track the source and destination IP addresses of packets that
violate access lists—packets that are not accepted into the policy set of packets allowed
through an interface. There are two ways you can use this capability. Transit packet IP
accounting shows you what packets have successfully made it through an access list on a
given interface, while access violation IP accounting tracks the packets that have been denied.

 Cisco IOS Access lists

 Page 132

Let's turn on IP accounting for our web server example and see how we can use it. These tools
are enabled with the following configuration fragment:

interface ethernet 0
 ip accounting output-packets
 ip accounting access-violations
interface ethernet 1
 ip accounting output-packets
 ip accounting access-violations

The ip accounting interface statement without a keyword turns on IP accounting for transit
packets. Like outgoing access lists, IP accounting does not capture packets generated from the
router, such as NTP queries or Telnet sessions originated from the router, so don't expect
those types of traffic to be recorded by IP accounting. Once we have configured IP accounting
for output packets and access violations, we need to look at the contents of the accounting
database. We do this with the show ip accounting command. For our web server example, this
yields:

Source Destination Packets Bytes
192.168.31.2 192.168.35.1 9 13052
192.168.35.1 192.168.31.2 10 957200
192.168.35.1 192.168.70.2 6 8572
192.168.70.2 192.168.35.1 8 1303

Accounting data age is 10

Here you can see what traffic is going through the router, in particular, traffic going to and
from the web server. Packets with a destination of 192.168.35.1 (the web server IP address)
have made it through the access lists. Return traffic (with a source IP address of the web
server) has also been recorded. Each accounting table entry shows the number of packets and
bytes sent from one source IP address to a destination IP address. The final line tells you how
many minutes have passed since the accounting table has been turned on or cleared. If you see
traffic to and from some other host (perhaps 192.168.35.2), then you know you have a
problem with your access lists.

To see if your access lists are rejecting what they should accept, use the show ip accounting
access-violations command. For our example, it should yield this:

Source Destination Packets Bytes ACL
192.168.75.2 192.168.35.2 65 36943 101
192.168.30.1 192.168.35.3 24 16115 101
192.168.152.26 192.168.35.1 8 818 101

Accounting data age is 3

You can see that attempts to reach host 192.168.35.2 fail because access to this host is not
permitted. This is correct and functioning as we intended. What about the last line? Didn't we
allow access to host 192.168.35.1? We did, but only for web and SSL, and we verified earlier
that web and SSL traffic could get through. If someone tried to connect to 192.168.35.1 with a
protocol other than SSL or HTTP, then this would also show up as an access violation.

 Cisco IOS Access lists

 Page 133

Managing the IP accounting database

One database is used for storing both transit accounting and access list violation
information. This single database is limited in size, and accounting information is
lost when the database is full and no new entries can be entered. You can see when
the database is full if you see a message like:

Accounting threshold exceeded for 13475 packets violating access
list(s)

at the end of show ip accounting output. There are several ways to deal with this. To
make the table bigger, you can use the ip accounting-threshold configuration
directive, followed by the size of the database you want. The default size is 512
entries. Keep in mind, though, that the accounting table takes up router memory. If
memory becomes an issue, you may not be able to increase the size of the
accounting table as much as you may like.

While both the access list violation information and the transit information are
stored in the same database, you can define how many entries are dedicated to each.
The directive ip accounting transits, followed by the number of entries you
want, lets you set the number of entries in the accounting table that are dedicated to
storing IP packet transit info.

You can limit what entries go into the IP accounting table using the ip
accounting-list statement followed by an IP address and an optional mask. For
example, the following configuration commands:

ip accounting-list 192.168.30.1
ip accounting-list 10.0.0.0 0.255.255.255

allow only packets originating from or destined for host 192.168.30.1 or network
10.0.0.0/8 into the IP accounting database. Keep in mind, however, that this can be
yet another access list that you may need to debug! Finally, another way to deal with
a lot of accounting information is to periodically clear the database. The command
clear ip accounting can be used to empty the IP accounting table. You also may
want to use this command after making access list changes.

Keep in mind that when using IP accounting, as with access list entry accounting,
correct behavior as seen from this tool is a necessary but not sufficient condition of
correct implementation. IP accounting does not provide any information about ports
or protocols used, so the packets you see in the database may not be the ones you
expect.

5.2.2 Debugging extended access lists

As with router resource access lists, extended access lists used for packet filtering have two
failure modes: some application or utility that should be permitted is denied or something that
should be denied is permitted. For the first case, as with router resource access lists, you need
to verify routing in order to find the problem. However, using ping may or may not work this

 Cisco IOS Access lists

 Page 134

time because of the packet filters you are setting up. In any case, you have to ensure that the
end points of an application, the client and server, have routes to each other. If you have
verified the routing, and your application still does not work, you have to find where and how
you inadvertently excluded packets from your target policy, which I'll describe shortly.

One common way to break applications with extended access lists is not to take into account
packet flow in both directions: from client to server and from server to client. As an example,
let's say we are trying to permit FTP from everywhere to an FTP server host set up as in
Figure 5.2.

Figure 5.2. An FTP server

Since ports 20 and 21 are used on the server, let's set up our router as follows:

access-list 101 permit tcp any host 192.168.35.1 range 20 21
access-list 102 permit tcp host 192.168.35.1 any established
interface ethernet 0
access-group 101 out
access-group 102 in

FTP will not work with this configuration. Why? While FTP servers do use ports 20 and 21
during an FTP transfer, the data connection is usually initiated from the FTP server with port
20 as a source port. Since only packets from already established connections are permitted
from the FTP servers, clients can set FTP control sessions but can't do any data transfers. The
following access lists take into account the packet flow of FTP:

access-list 101 permit tcp any host 192.168.35.1 range 20 21
access-list 102 permit tcp host 192.168.35.1 range 20 21 any gt 1023

In addition to not setting up connections in the direction you think (as in the previous
example), there are other common instances in which applications do not behave the way that
you think they will. In particular, the application may demand different source or destination
ports than those you anticipated in your access lists. One way to check on actual port usage is
to watch how an application actually behaves with the netstat command, available on most
Unix and Windows systems. netstat prints TCP connection information, including the port
numbers used for the TCP connections currently running on the box. For example, if you
want to examine the port behavior of the Simple Mail Transport Protocol (SMTP), you could
run netstat on a mail server. On a host called host1, netstat would yield something like this:

 Cisco IOS Access lists

 Page 135

Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 0 host1.smtp host2.1042
ESTABLISHED
tcp 0 0 host1.smtp host3.4374
ESTABLISHED
tcp 0 0 host1.smtp host4.1301
ESTABLISHED
tcp 0 0 host1.1252 host4.smtp SYN_SENT
tcp 0 0 host1.smtp host5.1249
ESTABLISHED
tcp 0 0 host1.1260 host4.smtp
ESTABLISHED
tcp 0 0 host1.smtp host6.37688
ESTABLISHED
tcp 0 0 host1.1242 host7.smtp SYN_SENT

The first column is the protocol. (In this excerpt, only the TCP connections are shown.) The
next two columns show how many bytes of data have been queued for the connection either
from the other host or to it. The next column contains the hostname of the local host, followed
by the port number of that connection. If the port is assigned to a known protocol, the
protocol is displayed. The next column contains the name of the host on the far end of the
connection, followed by port number or protocol if the port is known. The final column
describes the state of the connection; ESTABLISHED means the TCP has been set up and is
ready to accept data across it. In this example, we see the state SYN_SENT. This means that the
host is trying to set up a connection to the far host; it has sent a SYN packet to set up the
connection, but it has not yet received an acknowledgement. A complete table of the possible
values of the connection state and their meaning is in Table 5.1.

Table 5.1. Netstat TCP connection states and their relevance to packet filters
Connection
state Meaning

SYN_SENT
System that initiates a TCP connection has sent SYN packet but has not received an
acknowledgment. If a connection persists in this state, it means that either the remote host is
down or that a packet filter is blocking the path to the remote end.

SYN_RECV

System has received a SYN packet for TCP setup and has sent an acknowledgment, but has not
received a confirmation from the initiating system. If a connection persists in this state, it
means that the remote system initiating the connection has gone down, or a packet filter is
blocking return packets.

ESTABLISHED TCP connection has been established. A packet filter is not blocking this connection.

FIN_WAIT1 Socket is closed, and connection is shutting down. Since this is part of the connection
shutdown procedure, this means that packet filter did not block this connection.

FIN_WAIT2
Connection is shut down, and socket is waiting for shutdown from remote end. Since this is
part of the connection shutdown procedure, this means that packet filter did not block the setup
of this connection.

LAST_ACK
The remote end shut down, the socket is closed, and the host is waiting for acknowledgement.
Since this is part of the connection shutdown procedure, this means that packet filter did not
block the setup of this connection.

CLOSE_WAIT
System has received a FIN packet to terminate the connection. Since this is part of the
connection shutdown procedure, this means that packet filter did not block the setup of this
connection.

TIME_WAIT
TCP connection has closed, but the system waits for an interval before releasing the local port
used. Since this is part of the connection shutdown procedure, this means that packet filter did
not block the setup of this connection.

 Cisco IOS Access lists

 Page 136

We wanted to be sure of SMTP's port behavior. The netstat output shows that SMTP goes
from a high port (greater than 1023) on the system initiating the SMTP connection to a low
port (less than or equal to 1023) on the SMTP port of the system it connects to. If a host must
send and receive mail, you must permit access to the SMTP port going out and let systems
connect to its SMTP port.

It is not always possible to get access to every host when debugging extended access lists. But
if you can, running netstat and using the connection state information can be very helpful in
tracking why a TCP-based application may not be running. On the application server, if you
see that SYN packets have arrived and are acknowledged (the SYN_RECEIVED state), but no
connections are in the ESTABLISHED state, then the application is not working because
response packets cannot return to the client. From the client host, if you see that the
connections to the application server are always in SYN_SENT mode, that means that either
return packets are not coming back or SYN packets are not getting to the server.

Let's look at an example of how netstat can be used in this fashion. Recall from the last
example that bad access lists prevented FTP services; netstat could have been used to find the
problem, yielding the following output:

Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 0 server.ftp client.1042
ESTABLISHED
tcp 0 0 server.ftpdata client.1043 SYN_SENT

The FTP control connection is established, but the attempted TCP connection from the server
to the client is not succeeding because it is stuck in the SYN_SENT state. This points toward the
problem with setting up the data connection we identified.

5.2.2.1 Access list entry accounting

Access list entry accounting doesn't work with certain switching modes.
Test this feature with your version of the IOS and the switch mode you
want to use before you decide to rely on it for debugging.

There are a number of facilities on Cisco routers that allow you to gather more information to
find where you may have allowed too much or too little into your packet filtering policy set.
The first is one I discussed when talking about verifying correctness: access list entry
accounting. Since Cisco routers count the number of times that extended access lists entries
are used, you can use this feature to see why an access list may not be working. Consider a
policy that says:

Disallow all FTP, Telnet, and SSH access to a host but allow SMTP access

The SSH protocol typically uses port 22, which means the forbidden ports are adjacent. Let's
say we yielded to temptation and implemented an outgoing access list to the host with the
following:

access-list 101 deny tcp any host 192.168.35.1 range 20 25
access-list 101 permit tcp any host 192.168.35.1 eq SMTP
interface ethernet 0

 Cisco IOS Access lists

 Page 137

 access-group 101 out

However, after access list 101 is implemented, we find that SMTP to the host does not work.
Access list accounting can help us find the problem. The command show access-list 101
yields something like this:

access-list 101
 deny tcp any host 192.168.35.1 range 20 25 (100 matches)
 permit tcp any host 192.168.35.1 eq smtp

The entry permitting SMTP has no matches, but the entry denying the range has many
matches. This indicates that the first entry is matching all of the SMTP packets, so we know
our problem is that the range of TCP ports is too large on our first entry. Access list 1 should
be:

access-list 101 deny tcp any host 192.168.35.1 range 20 23
access-list 101 permit tcp any host 192.168.35.1 eq smtp

Access list accounting can show which entries are executed and which are not, indicating
where an overly permissive or restrictive entry may lie.

Sometimes when using access list accounting, you may want to reset all
of the matches to 0. This can be useful, particularly when the counts
become very high and it gets hard to remember if the counts changed.
The command clear access list counters resets all of the match counts
on all access lists to 0. When followed by an access list number or
name, it clears only that particular access list.

5.2.2.2 IP accounting

Another facility useful for debugging is IP accounting. Looking at the access violation
database can help you figure out exactly what is getting rejected and where in an access list
this might be happening. It is particularly useful when there is a problem with IP address
masking. In our FTP server example, let's add Telnet access to the FTP server from hosts
192.168.30.4 and 192.168.30.5. Let's say we implemented access lists as follows:

access-list 101 permit tcp any host 192.168.35.1 range 20 21
access-list 101 permit tcp host 192.168.30.5 host 192.168.35.1 eq telnet
access-list 102 permit tcp host 192.168.35.1 any established
access-list 102 permit tcp host 192.168.35.1 eq 20 any gt 1023
!
interface Ethernet0
 access-group 101 out
 access-group 102 in

Telnet to the FTP server doesn't work from 192.168.30.4 but does from 192.168.30.5. To
debug the problem, we can turn on IP accounting for access list violations:

interface Ethernet 0
ip accounting access-violation

After trying to telnet, the output of show ip accounting access-violation is:

 Cisco IOS Access lists

 Page 138

Source Destination Packets Bytes ACL
192.168.30.4 192.168.35.1 5 4343 101

This output shows that something is blocking 192.168.30.4 but not 192.168.30.5. A look at
access list 101 shows that 192.168.30.4 is not in any entry or included in any mask, so there
must be a problem in the entry allowing Telnet. Sure enough, the entry does not include
192.168.30.4. The correct access lists are:

access-list 101 permit tcp any host 192.168.35.1 range 20 21
access-list 101 permit tcp 192.168.30.4 0.0.0.1 host 192.168.35.1 eq telnet
access-list 102 permit tcp host 192.168.35.1 any established
access-list 102 permit tcp host 192.168.35.1 eq 20 any gt 1023

This example shows us how to find why packets that should be permitted are denied. The
access violation database is also helpful in the opposite case, finding out why something is
being permitted instead of denied. Let's say we implemented the previous Telnet policy with
the following:

access-list 101 permit tcp any host 192.168.35.1 range 20 21
access-list 101 permit tcp 192.168.30.4 0.0.0.3 host 192.168.35.1 eq telnet
access-list 102 permit tcp host 192.168.35.1 any established
access-list 102 permit tcp host 192.168.35.1 eq 20 any gt 1023

To turn on transit packet accounting, we use the ip accounting command:

interface Ethernet0
 ip accounting output-packets
interface Ethernet1
 ip accounting output-packets

IP accounting is turned on for both interfaces so we can capture the traffic to and from the
FTP server. The output of show ip accounting might look like this:

Source Destination Packets
Bytes
192.168.30.4 192.168.35.1 9
9052
192.168.30.5 192.168.35.1 8
8304
192.168.30.7 192.168.35.1 6
6572
192.168.35.1 192.168.30.4 10
12200
192.168.35.1 192.168.30.5 9
11206
192.168.35.1 192.168.30.7 8
10208

In addition to 192.168.30.4 and 192.168.30.5, host 192.168.30.7 has access. Since it is not
much farther from the hosts we intended, the implication is that there is a bad mask. Indeed,
that is the problem: the mask for access list 101's Telnet entry is too inclusive.

Like access list entry accounting, IP accounting doesn't work with
certain switching modes. With some versions of the IOS on certain
h d l f i IP i di bl k

 Cisco IOS Access lists

 Page 139

hardware platforms, turning on IP accounting can even disable packet
forwarding! Test before using this feature.

5.2.2.3 Access list entry logging

The last debugging technique we'll discuss uses the router's logging capability. An extended
access entry that ends in the keyword log sends information about the packet that matched
the entry to the router's log. Recall the example in which we denied a number of TCP-based
services to a host but allowed SMTP to it. Our original configuration had a problem with the
first entry. To find the problem, we could enable logging with the following configuration:

access-list 101 deny tcp any host 192.168.35.1 range 20 25 log
access-list 101 permit tcp any host 192.168.35.1 eq SMTP
logging buffered
interface ethernet 0
access-group 101 out

The first line of access list 101 contains the keyword log at the end. This means that the
information on each packet that matches this line is sent to the router's log. The configuration
entry logging buffered instructs the router to send the output to the router's logging buffer.
An alternative here is to substitute buffered with the IP address of a host that will receive the
logging output through the syslog protocol. For example, the global configuration command
logging 192.168.33.2 sends logging information to host 192.168.33.2 via syslog. The host
receives syslog information at the debug information level.

When SMTP traffic goes through the router, it matches the first line of access list 101, and
detailed information about the packets is sent to the router's log. The command show logging
prints the router's log, in this case producing the following:

%SEC-6-IPACCESSLOGP: list 101 denied tcp 172.28.178.207 (1129) ->
192.168.35.1(25), 1 packet
%SEC-6-IPACCESSLOGP: list 101 denied tcp 172.28.178.207 (1130) ->
192.168.35.1(25), 1 packets

Logging output shows the source IP address, source port, destination IP address, and
destination port for each packet. In this case, the output shows that SMTP traffic is getting
blocked and immediately lets you know where the problem entry is.

You can systematically move the location of the logging entry from the start of an access list
to the end to find where a given packet matches. If you are looking to see why packets are
denied and no entry in a list generates a log output, then you are not permitting anywhere the
packets you are testing (hitting the implicit deny).

A few notes about using the logging facility are important. If you use the router's logging
buffer to store log output, it can fill up. You can clear it by issuing the command no logging
buffered to turn logging off and then on again. Also, logging many events puts a load on the
router that you need to monitor. If you are logging via syslog to a remote host, realize that the
syslog input also puts a load on the host. If many logged events are coming in very quickly,
there is the potential for the remote host doing syslog to lose events. Still, when used
carefully, the logging facility can be a powerful tool for finding problems with extended
access lists.

 Cisco IOS Access lists

 Page 140

5.3 Route-filtering access control lists

As in previous sections, I start with a discussion of verifying route-filtering access control
lists for correctness and then talk about debugging.

5.3.1 Checking for correctness

When checking the correctness of route filtering access control lists, you cannot rely on the
technique we used previously (making sure that applications run correctly). Applications can
run correctly even when taking a route that does not match the policy you are trying to
implement. To make sure that route filtering access lists are correct, you need to use various
diagnostic tools implemented in routers and hosts. The first tool is an examination of the
routing table. The command show ip route displays a Cisco router's routing table. For routing
policies that affect incoming routing updates, the show ip route command can verify that your
routing policy implementation is correct.

Let's look at one of our previous routing policy implementations to see how we can use show
ip route to verify an implementation's correctness. The first example in Chapter 4 deals with
the network shown in Figure 5.3.

Figure 5.3. Restricting routes sent and received

Router 3, located in Site B, seeks to restrict the routes it receives from Site D. Since Site D
uses only network 19.0.0.0/8 and does not transit any traffic from any other sites, Site B
should hear about network 19.0.0.0/8 only in the routing updates it gets from Router 1. We
implement the policy with the following:

access-list 1 permit 19.0.0.0
router eigrp 1000
network 192.168.3.0
distribute-list 1 in serial 1

How can we use show ip route to verify that this is correct? We have to make sure that
network 19.0.0.0/8 is the only network learned from Router 1. Here is the relevant output
from executing show ip route on Router 3:

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate
default
 U - per-user static route, o - ODR

 Cisco IOS Access lists

 Page 141

Gateway of last resort is 172.28.1.5 to network 172.28.0.0
D EX 19.0.0.0/8 [170/2202624] via 192.168.3.2, 3w5d, Serial1
D EX 10.0.0.0/8 [170/2239232] via 172.28.1.5, 3w5d, FastEthernet0/0
D EX 192.168.4.0/24 [100/2174464] via 172.28.1.5, 3w5d, FastEthernet0/0
D EX 198.175.107.0/24 [100/2239232] via 143.183.152.251, 3w5d,
FastEthernet1/0
C 192.168.1.0/24 is directly connected, Serial1
172.28.0.0/16 is variably subnetted, 226 subnets, 4 masks
C 172.28.1.0/26 is directly connected, FastEthernet1/0

The first part of this output explains the different codes used in the routing table output. For
example, the code in front of a route describes how the route was learned. The first line of the
entry with network 19.0.0.0/8 begins with a D, meaning that a route has been learned via
EIGRP. Table 5.2 contains a summary of possible codes and what they mean. The next part of
the output describes default routing—where the router sends packets to networks not in its
routing table. I'll describe this in detail later.

Table 5.2. Routing protocols and their meanings
Route code Meaning
C Network is directly connected to the router
S Route was statically configured
I Route was learned via IGRP
R Route was learned via RIP
M Route was learned by the mobile IP protocol
B Route was learned by BGP
D Route was learned by EIGRP
EX Route is an EIGRP external route
O Route was learned by OSPF
N1 Route is an OSPF NSSA external route type 1
N2 Route is an OSPF NSSA external route type 2
E1 Route is an OSPF external route type 1
E2 Route is an OSPF external route type 2
E Route was learned by EGP
i IS-IS
L1 IS-IS level-1
L2 IS-IS level-2
* Route is a candidate default route
U Route is a per-user static route
o Route is an on demand route

The last part is a series of lines that list the contents of the routing table. Each line describes
the path to each distinct network in the routing table, and each is composed of a number of
distinct parts. The routing protocol used to learn the path to that network appears before the
network number. The next part of each line, within the brackets, is the administrative distance
and the routing protocol metric. In this example, you can see that the networks 19.0.0.0/8 and
10.0.0.0/8 have an external EIGRP administrative distance of 170. If a network is directly
connected to the router, then the administrative distance/metrics section is omitted (connected
networks have an administrative distance of 0). Next is the next hop, where the router
forwards packets bound for that network. You can see that packets bound for network
19.0.0.0/8 should be forwarded to 192.168.3.2. Packets for network 10.0.0.0/8 should be

 Cisco IOS Access lists

 Page 142

forwarded to the router with IP address 172.28.1.5. Directly connected networks list the
interface that the networks are connected to instead of an IP address. After the next hop is a
string indicating how long the router has known the route. Routing protocols such as IGRP
and RIP broadcast their routes only periodically, so this number is usually pretty low. EIGRP
and BGP, routing protocols that send out routing updates only when network topologies
change, have large values here, possibly days or weeks. Static routes and connected routes do
not list the time since these routes are not learned dynamically. The last part of the routing
table entry description is additional route information. Some routing protocols list what router
interface the packets for the network will take. For example, packets bound for network
19.0.0.0/8 will travel out through interface serial 1.

How we can use this input to check on our policy implementation? First, let's look at the
routing information for network 19.0.0.0/8. Our policy requires that this is the only route
learned from Site D. In looking at the show ip route output, note that the only route learned
via EIGRP from Site D's Router 1 is 19.0.0.0/8, and the next hop for the network is
192.168.3.2, the serial interface of Router 1. It seems that our implementation is correct. Is it
really? If Router 1 advertised only the route 19.0.0.0/8, the output would be the same whether
or not access list 1 was defined and applied with a distribute-list command. To be more
certain, you need to make sure that the access lists are really used, with the show ip interface
command or by checking the router's configuration.

5.3.1.1 Limiting routing output

The command show ip route can produce a lot of output, depending on the size of the router's
routing table. There are a number of command qualifiers that can limit the output to what a
network administrator finds useful. For instance, show ip route followed by a network number
provides detailed routing information for that network. For example, typing:

show ip route 19.0.0.0

produces output like this:

Routing entry for 19.0.0.0/8
 Known via "eigrp 1000", distance 170, metric 2202624, type external
 Redistributing via eigrp 1000
 Last update from 192.168.3.2 on Serial0, 3w5d ago
 Routing Descriptor Blocks:
 * 192.168.3.2, from 192.168.3.2, 3w5d ago, via Serial1
 Route metric is 2202624, traffic share count is 1
 Total delay is 22470 microseconds, minimum bandwidth is 1544 Kbit
 Reliability 1/255, minimum MTU 1500 bytes
 Loading 255/255, Hops 6

As you can see, detailed routing information about the network 19.0.0.0 route table entry is
displayed. Information about how the route is redistributed and the components that make up
the route metrics (such as delay, bandwidth, reliability, and loading) is also included.

Filtering router output

Commands such as show access-list or show ip route can generate so much output
that they can be difficult to use for debugging. Versions of the Cisco IOS starting
12.0(1) T allow an administrator to include or exclude the output containing a

 Cisco IOS Access lists

 Page 143

specific string. The output modifier "|", when followed by the keywords inc, exc, or
begin, plus a string, can be used to modify the output. For example, the command
show ip route | inc 172.28 displays all the lines of show ip route that contain the
string 172.28. If we use the command show ip route | exc 172.28, the lines that do
not have 172.28 are be shown, while show ip route | inc begin 172.28 shows the
lines that begin with 172.28. show ip access-list | inc match shows all of the access
list entries that have a match. Other uses for these output modifiers include
displaying the routes to all the subnets of a particular network, showing all of the
access list entries that affect traffic to a specific destination, and displaying data in
the IP accounting database that pertains to a specific IP address.

We can also display only the routes learned by a specific routing protocol. For example, the
following command:

show ip route eigrp

shows all of the routes learned by EIGRP:

D EX 19.0.0.0/8 [170/2202624] via 192.168.3.2, 3w5d, Serial1
D EX 10.0.0.0/8 [170/2239232] via 172.28.1.5, 3w5d, FastEthernet0/0
D EX 192.168.4.0/24 [100/2174464] via 172.28.1.5, 3w5d, FastEthernet0/0

Typing the following:

show ip route connected

produces:

C 192.168.1.0/24 is directly connected, Serial0
172.28.0.0/16 is variably subnetted, 226 subnets, 4 masks
C 172.28.1.0/26 is directly connected, FastEthernet0/0

Default gateway information and an explanation of routing codes are not displayed when the
routing protocol is added.

In Chapter 4, I showed how you could use the default route to limit the number of routes that
need to be accepted. In our example (see Figure 4.12), we limited incoming routes to default
network 172.28.0.0 with an access list and distribute-list on Router 1:

default-network 172.28.0.0
access-list 1 permit 172.28.0.0
router eigrp 1000
network 192.168.3.0
distribute-list 1 in serial 0

In this case, the default network information is very useful for verifying the correctness of the
policy implementation. A correct implementation of the policy yields show ip route output
such as the following:

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

 Cisco IOS Access lists

 Page 144

 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate
default
 U - per-user static route, o - ODR

Gateway of last resort is 192.168.3.3 to network 172.28.0.0
D*EX 172.28.0.0/16 [170/2202624] via 192.168.3.3, 3w5d, Serial0
C 192.168.3.0/24 is directly connected, Serial0
19.0.0.0/8 is variably subnetted, 200 subnets, 2 masks
C 19.1.1.0/24 is directly connected, FastEthernet0/0

The default network 172.28.0.0/16 has been learned from Router 3's 192.168.3.3 interface.
We can see that it is properly handled because it's the only network learned from Router 3. It
is listed as the default network in the default routing information section, and we can also see
that it is the default network because its routing table entry has been flagged with an asterisk.
With this information, we can conclude that the policy implementation is correct.

5.3.1.2 Verifying the correctness of access lists in outbound distribute-list statements

So far, we have only looked at verifying the correctness of access lists referenced by inbound
distribute-list statements. How would you check for the correctness of access lists used
in outbound distribute-list statements? One way is to look at the routing table of a router
receiving the filtered routes. In Chapter 4, I showed an example of Site D filtering the routes
it distributes in order to prevent any routing problems within Site D from spreading to other
sites. Only network 19.0.0.0/8 should be advertised from Site D, so I configured the following
on Router 1:

access-list 2 permit 19.0.0.0
router eigrp 1000
network 192.168.3.0
distribute-list 2 out serial 0

How would you verify that this configuration implements our policy? Looking at Router 1's
routing table does no good since it doesn't listen to its own updates. The routing table we need
to look at is on Router 3. If we disable the inbound distribute-list on serial 1 of Router 3,
we can look at its routing table to see if 19.0.0.0 is the only route sent from Router 1. For
verifying policies using outbound distribute-lists, examining the routing tables of the
routers receiving the route updates is a good technique. Another method is to use the debug
facility and watch routing updates sent from the router to make sure the proper routes are
being advertised. I'll talk about using debug later in this chapter.

5.3.1.3 Verifying that hosts receive correct routing information

This technique also applies to hosts receiving routing updates. If you are filtering routes sent
to hosts, checking the hosts routing table enables you to see if your policy implementation is
correct. To look at a host's routing table, do the following command:

netstat -rn

To demonstrate this command, let's say we advertise routes via RIP to the hosts on segment
172.28.1.0/24.

For a host on that segment, netstat would produce output like the following:

 Cisco IOS Access lists

 Page 145

Routing tables

Internet:
Destination Gateway Flags Refs Use Interface
default 172.28.1.5 UGS 0 1519419 de0
10 172.28.1.5 UG 0 429 de0
192.168.3.0 172.28.1.5 UG 0 5 de0
192.168.4.0 172.28.1.6 UG 0 12 de0
19 172.28.1.6 UG 0 123543 de0
172.28.1.0 172.28.1.10 UG 0 2386 de0

The first column lists networks or hosts, and the second column shows the next hop or
gateway to reach the host or network from the first column. Thus the route to network
10.0.0.0/8 goes through the router at 172.28.1.5, and the route for 19.0.0.0/8 goes out through
the router at 172.28.1.6. Traffic to subnet 172.28.1.0 is local, so the gateway is listed as the
host's own IP address, 172.28.1.10. The third column contains various flags associated with
the route. This column is important. When only the UG flag is listed, it means that the host
has learned routes from routing protocols. The presence of a capital "S" means that the route
has been statically assigned. Like static routes on routers, static routes on hosts are not learned
dynamically.

5.3.1.4 Traceroute

The technique of looking at adjacent routing tables has limitations. Although a particular
route for a network may not be present in a routing table, that does not necessarily mean it is
not being advertised. A route with a better metric may be advertised from elsewhere, and only
when that second route goes away does the first route appear. Applying this potential trap to
our situation, let's say that for some reason, Router 1 also advertises network 10.0.0.0/8, and
Router 3 hears this advertisement. If Router 3 hears an advertisement with a better metric for
network 10.0.0.0/8, the route to 10.0.0.0/8 through Router 1 does not appear in the routing
table. Only when the second advertisement goes away for some reason is the bad
advertisement noticed. In general, the technique of looking at routing tables is a necessary but
not sufficient condition for correctness.

Another limitation of this technique is that we've been assuming we have access to
neighboring routers. In situations where routers under your control border routers under
someone else's administrative control, this can often be a problem since the other network
administrators may be unwilling or unable to grant you SNMP read access, Telnet access, or
the passwords to these routers. In that case, you have to resort to other tools like traceroute,
which shows the path of a packet to its destination. Traceroutes are initiated with the trace
command, followed by the hostname or IP address of the host or router to which you want the
path to go. Recall that the example network we've been working with is part of a larger
network, shown in Figure 5.4.

 Cisco IOS Access lists

 Page 146

Figure 5.4. A corporate network

Let's say that an interface of Router 6 has an IP address of 10.1.1.2 and that the Router 1
interface going to Site B has an IP address of 192.168.3.2. If we wanted to traceroute from
Router 1 to Router 6, we issue the following command:

trace 10.1.1.2

which produces the following output:

Type escape sequence to abort.
Tracing the route to router6-e0.somecompany.com (10.1.1.2)

 1 router3-s1.somecompany.com (192.168.3.3) 4 msec 3 msec 2 msec
 2 router4-e0.somecompany.com (172.28.1.6) 4 msec 6 msec 5 msec
 3 router6-s0.somecompany.com (192.168.4.2) 20 msec * 16 msec

The first hop from Router 1 is to Router 3, at IP address 192.168.3.3. The next hop goes to an
interface of Router 4, at IP address 172.28.1.6. The final hop is to the serial 0 interface of
destination Router 6, at 192.168.4.2. The three items listed after the IP address of each hop
describe the time taken for each traceroute probe packet to get a response. If no response is
reached, an asterisk is printed.

Running traceroute on hosts

Most Unix and Windows systems either have the traceroute command or can run it.
From Unix systems with traceroute, use the traceroute command followed by the
host name or IP address. On Windows 95, 98, or NT, use the command tracert
followed by the hostname or IP address. If you tracert from host 172.28.1.11 to
10.1.1.2, you should see output like the following:

Tracing route to router6-e0.somecompany.com [10.1.1.2] over a
maximum of 30 hops:

 1 1 ms 0 ms 0 ms router4-e0.somecompany.com
[172.28.1.6]
 2 18 ms 19 ms 17 ms router6-s0.somecompany.com
[172.28.1.6]

This version of traceroute differs in that the response times are listed before the
hostname. This version also uses ICMP from probe packets instead of UDP.

Traceroute is useful for verifying a number of routing policy implementations. For outbound
distribute-list and outbound offset-list statements, doing a traceroute from a remote

 Cisco IOS Access lists

 Page 147

network to an IP address in a network you are advertising can show you if the policy you are
implementing for the network is working properly. You can see whether the packets to a
network are taking the path your policy dictates. If you don't have access to a host or a router
in a remote network to do a traceroute back to the network, you can have someone in another
organization do the traceroute for you. On the Internet, there are a number of publicly
available traceroute servers that allow you to traceroute back to your own network or to other
networks. For an inbound distribute-list or offset-list, doing a traceroute to a
network you have a policy about can show you whether the next hop is appropriate.

Let's see how we can use traceroute to verify the correctness of some of our policies. Recall
that we defined a policy that limits networks advertised out of Site D (on Router 1) to network
19.0.0.0/8 and a policy that limits routes received from Site D (on Router 3). The network
administrators of Site D could ask someone at another site, such as Site B or Site E, to do a
traceroute to a host in network 19.0.0.0/8. If the traceroute goes through Router 1, then Site D
knows that Router 1's route filters have not accidentally filtered out its network 19.0.0.0/8
advertisements and that Router 3 has also properly filtered incoming advertisements.

When you execute the command trace with no arguments from enable mode, you have access
to a number of useful options. In particular, you can choose the source IP address of the
traceroute probes. Since traceroute responses are sent back to the source address (see the
upcoming sidebar Traceroute: How it functions and how to filter it), you can use this option
to determine if a destination has a route back to the network the source address belongs to.
The source address must be an interface of the router sending the traceroute. We can use this
to see whether Site B can reach Site E's network 10.0.0.0/8 and whether Site E has a route
back to Site B's network 19.0.0.0/8. We should use traceroute from Router 1 as follows:

Traceroute: How it functions and how to filter it

Traceroute is a very useful tool for debugging route filtering. It is easy to stop it
from functioning with packet filters, however. Traceroute works by sending out a
number of UDP or ICMP packets (the default is typically 3, although this can be set)
with increasing Time To Live (TTL) parameters. To learn the first hop, the host or
router doing traceroute sends out a packet with a TTL of 1. When this packet arrives
at the first router hop, the TTL has expired, so the first hop router sends back an
ICMP TTL Exceeded packet back to the sender. Thus the sender learns the identity
of the first hop. The sender then sends out a packet with a TTL of 2. The packet
expires at the second hop, so the second hop router sends an ICMP TTL Exceeded
packet back to the sender. This process continues until the destination is reached.

From this description, you can see that the sender needs to send out UDP or ICMP
(depending on the implementation) in order for traceroute to function. If the sender
uses UDP, those ports must be permitted. Usually, the destination port used can be
set, and the source port is usually above 1023. The sender must also be able to
receive ICMP time-exceeded packets. In addition, since the packets with increasing
TTL have a source address of the interface of the router or system used, be careful
that the IP address of the particular interface used to send packets has permission to
send out and receive those packets. For example, if we say that access list 101 is
assigned to filter incoming packets to a router interface leading to a host at
192.168.35.1, that host will do traceroute, and that access list 102 is assigned to
filter outgoing packets, then the following extended access list entries will allow

 Cisco IOS Access lists

 Page 148

traceroute from any host:

access-list 101 permit udp host 192.168.35.1 any
access-list 102 permit icmp any host 192.168.35.1 ttl-exceeded

This assumes we use UDP for the increasing TTL packets.

Letting out all UDP is very broad, and you may want to narrow the number of UDP
ports allowed out. The default UDP port that traceroute starts with is 33434. Some
traceroute implementations increase the destination port number with each set of
probes, so the following two access list entries should work:

access-list 101 permit udp host 192.168.35.1 ge 33434
access-list 102 permit icmp any host 192.168.35.1 ttl-exceeded
Router1# trace
Protocol [ip]:
Target IP address: 10.1.1.2
Source address: 19.1.1.1
Numeric display [n]:
Timeout in seconds [3]:
Probe count [3]:
Minimum Time to Live [1]:
Maximum Time to Live [30]:
Port Number [33434]:
Loose, Strict, Record, Timestamp, Verbose[none]:
Type escape sequence to abort.

You can see the many options possible with traceroute. We can set the port number used,
probe count, and a number of different options. In this example, we only use the option for
setting a source address. We traceroute from interface IP address 19.1.1.1 on Site B to address
10.1.1.2 on Site E. If we see output like the following:

Tracing the route to router6-e0.somecompany.com (10.1.1.2)

 1 router3-s1.somecompany.com (192.168.3.3) 4 msec 3 msec 2 msec
 2 router4-e0.somecompany.com (172.28.1.6) 4 msec 6 msec 5 msec
 3 router6-s0.somecompany.com (192.168.4.2) 20 msec * 16 msec

we know that Site B can reach Site E and vice versa.

5.3.1.5 Debugging routing policies with access list accounting

One of the more difficult routing policy implementations to verify is route preference. Let's
look at a policy we implemented in Chapter 4. As a reminder, Figure 5.5 shows a network
where we prefer that traffic use one path and then another if the first is down.

 Cisco IOS Access lists

 Page 149

Figure 5.5. A network with a preferred routing scheme

This network uses RIP as its routing protocol. The preferred path between network 10.0.0.0/8
is through Router 1, but if that path is down, traffic should go the 56-Kb path. In this example,
the only router that we control is Router 2. In Chapter 4, I implemented the policy as follows:

access-list 1 permit 10.0.0.0
access-list 2 permit 172.20.0.0
!
router rip
 network 192.168.1.0
 network 192.168.2.0
 network 172.20.0.0
 offset-list 1 in 3 serial 0
 offset-list 2 out 3 serial 0

How can we test this implementation of routing preferences? If we can find a time when
network downtime is tolerated, one way is to use the methods described previously to verify
that there is the proper connectivity between the two networks. Once the preferred path is
known to work, you can break the connectivity on the path through Router 1 and test if traffic
uses the next preferred path.

Unfortunately for most network administrators, the opportunity to have some network
downtime for testing is not readily available. In this example, we have access only over
Router 2. How would we verify that we have implemented the proper policy? Fortunately for
us, there are a number of facilities on Cisco routers that can help. Since we have access only
to Router 2, we need to verify that our changes to routing advertisements are being properly
acted upon. Traffic between networks 10.0.0.0/8 and 172.20.0.0/16 should be coming in and
out of serial 1. Looking at our routing table verifies that traffic from network 172.20.0.0/16 to
network 10.0.0.0/8 is going the right way. We need to verify that traffic goes from network
10.0.0.0/8 to network 172.20.0.0/16.

One way we can do this is with an incoming extended access list combined with access list
accounting. We use an access list to monitor if traffic is coming into the interface with the
following configuration commands:

access-list 101 permit ip 10.0.0.0 0.0.0.255 172.20.0.0 0.0.255.255
access-list 101 permit ip any any
!
int serial 1
 access-group 101 in

 Cisco IOS Access lists

 Page 150

If traffic is coming into serial interface 1 from network 10.0.0.0/8 bound for network
172.20.0.0/16, the fact that the traffic has gone through is recorded by access list accounting.
The command show ip access-list 101 yields:

access-list 101
 permit ip 10.0.0.0 0.255.255.255 172.20.0.0 0.0.255.255 (100 matches)
 permit ip any any (10 matches)

You can see that traffic is coming in the way we intended. The access list does not interfere
with traffic moving through the interface, as it lets all packets through but counts traffic going
by. You could put a similar access list on serial interface 0 to verify that traffic from network
10.0.0.0/8 to network 172.20.0.0/8 is not going in through that interface.

5.3.1.6 Verifying routing protocol activity using debug

The previous access list technique lets us know if incoming traffic is okay, as it goes into the
interface preferred by the policy. What about our implementation of backup routing? We need
to make sure that our route advertisements are okay. To do that, we use the debug feature of
the Cisco router, which allows us to see key events and data. To see debug output, we first
need to issue the command terminal monitor if we are not using the router's system console
port. This command sends debug output to our terminal session. Debug output is also sent to
the router's console by default.

To see the debug output, we have to turn on routing debug output. Since we are using RIP as
a routing protocol, we use the command debug ip rip, which limits debugging output to only
that concerning RIP. When we issue this command, we start to see output like this:

RIP: received update from 192.168.2.1 on Serial0
 network 10.0.0.0 in 1 hops
 network 192.168.3.0 in 1 hops
RIP: received update from 192.168.1.1 on Serial1
 network 10.0.0.0 in 2 hops
 network 192.168.3.0 in 1 hops
RIP: sending update to 192.168.2.255 via Serial0 (192.168.2.2)
 network 172.20.0.0, metric 4
 network 192.168.1.0, metric 1
 network 192.168.3.0 metric 2
RIP: sending update to 192.168.1.255 via Serial1 (192.168.1.2)
 subnet 172.20.0.0, metric 1
 network 192.168.2.0, metric 2

The debug output shows that Router 2 is sending the correct output out through serial
interface 0. Network 172.20.0.0/16 is advertised with a metric of 4, demonstrating that the
offset of 3 is being added to the route metric as intended. Advertisements of network
10.0.0.0/8 are coming in with a metric of 1 through serial interface 0 and with a metric of 2
through serial interface 1. Since you see the correct advertisements coming in, you are
reasonably sure that your router can use the path out through serial as a backup. The offset-
lists take care of increasing the metric to make the path through Router 1 the preferred
route. This can be verified by looking at the route table and seeing the route to network
10.0.0.0/8.

To turn off debugging, use the undebug command. In this case, you invoke it with undebug ip
rip. You could also use undebug all to turn off all debugging. If you don't want to receive

 Cisco IOS Access lists

 Page 151

debug output while using a terminal, use the command terminal no monitor. It is a good idea
to make sure that all debugging output is off when you invoke the terminal no monitor
command.

There are two important caveats of the debug command. First, don't overdo it with debug
information. Too much information can be impossible to process meaningfully. A router with
multiple interfaces sending and receiving periodic routing updates can scroll information so
fast that you cannot see it unless you are recording your terminal session. Second, debug
output is process-switched, so it places a burden on the router's main processor. Too much
debug output can cripple a router and render it unusable.

5.3.1.7 Viewing routing topology

Using debug to see metric values works well for routing protocols such as RIP and IGRP that
send out periodic updates of all of its routing information, but how would you verify routing
preferences for a routing protocol such as EIGRP that only sends routing updates when
conditions change? Recall that the routing table only contains the most preferred route, not
any other routing information. Fortunately, these protocols typically have commands
associated with them that display the topology learned by the routing protocol. For EIGRP,
the command is show ip eigrp topology, so if you use EIGRP instead of RIP in the previous
example, the show ip eigrp topology command produces output like this:

P 10.0.0.0 255.0.0.0, 2 successors, FD is 2236672
 via 192.168.2.1 (2236672/2234624), Serial1
 via 192.168.1.1 (2237184/2234624), Serial0
P 192.168.3.0 255.255.255.0, 2 successors, FD is 2236672
 via 192.168.2.1 (2236672/2234624), Serial1
 via 192.168.1.1 (2237184/2234624), Serial0

Unlike with the show ip route command, you can see the different paths to each network and
the metrics (the first number within the parentheses) for each path. The path through Router 1
(via 192.168.2.1) is preferred, since it has a lower metric of 2236672. You can also see the
backup paths over the 56-Kb link have a higher metric of 2237184. In this way, you verify
that the preferred and the backup path advertisements are coming as intended. show ip eigrp
topology has the limitation of being able to look only at incoming route updates, but it is still
useful, as it gives you visibility into the route preferences. Other routing protocols such as
OSPF have similar commands.

5.3.2 Debugging route-filtering access lists

Like router resource access lists and extended access lists, a route-filtering access list can go
wrong in two ways: the access list denies a route that should be permitted, or it permits a
route that should be denied. Just as router resource access lists and extended access lists can
seem to fail because of routing problems, route filtering access lists can seem to fail because
of other issues, such as packet filtering extended access lists. In this section, I discuss how to
find problems with router filtering access lists. I also talk extensively about how factors other
than actual route-filtering access list errors can make it look like there are problems.

In this section, I focus on the more complex debugging case in which a route you want is
missing in a routing table. When a route is not present, there may be either no path or the

 Cisco IOS Access lists

 Page 152

wrong path to a given network. Let's look at the example shown in Figure 5.5. What if the
routing table of Router 2 looked like the following?

C 172.20.0.0/16 is directly connected, Ethernet0

Network 10.0.0.0/8 is not in the routing table at all, so clearly something went wrong. What
could have happened? Before concluding there is an access list error, you need to rule out
several other possibilities. The connectivity to network 10.0.0.0/8 could be down. If the serial
lines connecting to interfaces serial and serial 1 are down, no routing information can be
learned through them. In this case, the show interface command would show the following for
these two interfaces:

Serial0 is down, line protocol is down
 Hardware is HD64570
 Description: To network 10 via 56Kbit path
 Internet address is 192.168.1.2/24
 MTU 1500 bytes, BW 56 Kbit, DLY 20000 usec, rely 255/255, load 1/255
 Last input 03:25:35, output 03:25:35, output hang never
 Last clearing of "show interface" counters never
 Queueing strategy: fifo
 Output queue 0/80, 0 drops; input queue 0/100, 0 drops
 5 minute input rate 0 bits/sec, 0 packets/sec
 5 minute output rate 0 bits/sec, 0 packets/sec
 3976767 packets input, 371394120 bytes, 0 no buffer
 Received 732003 broadcasts, 120 runts, 0 giants, 0 throttles
 1235 input errors, 2 CRC, 680 frame, 0 overrun, 0 ignored, 0 abort
 0 input packets with dribble condition detected
 3586981 packets output, 1378381771 bytes, 0 underruns
 2 output errors, 0 collisions, 615 interface resets
 0 babbles, 0 late collision, 0 deferred
 0 lost carrier, 0 no carrier
 0 output buffer failures, 0 output buffers swapped out
Serial1 is administratively down, line protocol is down
 Hardware is HD64570
 Description: To network 10 via T1 path
 Internet address is 192.168.2.2/24
 MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec, rely 255/255, load 1/255
 Encapsulation HDLC, loopback not set, keepalive set (10 sec)
 Last input 03:26:05, output 03:26:05, output hang never
 Last clearing of "show interface" counters never
 Queueing strategy: fifo
 Output queue 0/80, 0 drops; input queue 0/100, 0 drops
 5 minute input rate 0 bits/sec, 0 packets/sec
 5 minute output rate 0 bits/sec, 0 packets/sec
 89764824 packets input, 4874394145 bytes, 0 no buffer
 Received 752342 broadcasts, 75 runts, 0 giants, 0 throttles
 52 input errors, 1 CRC, 20 frame, 0 overrun, 0 ignored, 0 abort
 0 input packets with dribble condition detected
 53586321 packets output, 61278388290 bytes, 0 underruns
 6 output errors, 0 collisions, 2 interface resets
 0 babbles, 0 late collision, 0 deferred
 0 lost carrier, 0 no carrier
 0 output buffer failures, 0 output buffers swapped out

The show interface command generates a lot of output, but I'll mention only key parts that are
relevant to debugging route-filtering access list problems. The first line of output for each
interface is usually the most important. It tells you the interface name, whether it is up or
down, and whether the line connected to the interface is down. Often, if the line protocol is

 Cisco IOS Access lists

 Page 153

down, the interface will be listed as down as well. In the previous example, both interfaces are
down. Serial interface 1 is said to be administratively down. This means that the interface
was manually shut down. The line beginning with Description: displays whatever the
person who configured the router decided to mention about the interface. It is often useful for
determining the function of the interface and what it connects to.

Below the description is the interface's IP address and mask. Underneath is an important line
that describes key properties of the line connected to the interface. These properties, such as
bandwidth (BW) and delay, are used by some routing protocols as part of metric calculations.
In the example, this line shows which interface has the 56-Kb line and which has the 1.544-
Mb line. Two lines below that line are times listing the last input and output. This line is
useful for listing when an interface or the line connected to it goes down.

The show interface command output reveals that what at first appeared to be a routing
problem was actually caused by interfaces being down. Another clue that the interfaces are
down is that the directly connected networks, 192.168.1.0/24 and 192.168.2.0/24, are not
listed in the route table. If the interfaces were up, then the two networks would have been
listed in the routing table.

5.3.2.1 When the wrong route is present

Another possibility is that the wrong route might be present. The show ip route command
yields the following:

C 172.20.0.0/16 is directly connected, Ethernet0
C 192.168.1.0/24 is directly connected, Serial0
R 10.0.0.0/8 [120/1] via 192.168.1.1, 0:29, Serial0

There is a route to 10.0.0.0/8, but it uses the backup path through serial instead of the path
through serial 1. What could have happened? In this case, it is possible that the line connected
to interface serial 1 is down, and show interface serial1 would show the following:

Serial1 is down, line protocol is down

Let's now say that serial interface 1 is down, so the route to network 10.0.0.0/8 uses serial
interface 0. Network 192.168.2.0/24 is not in the route table. This is additional evidence of
serial interface 1 being down.

What if 192.168.2.0/24 did appear in the route table yet the route was still wrong? We'd then
see the following:

C 172.20.0.0/16 is directly connected, Ethernet0
C 192.168.1.0/24 is directly connected, Serial0
C 192.168.2.0/24 is directly connected, Serial1
R 10.0.0.0/8 [120/4] via 192.168.1.1, 0:29, Serial0

Here, both serial interfaces must be up, since the directly connected networks on both
interfaces are listed in the route table. However, this does not necessarily mean there are
problems with our access list. Notice that the metric for network 10.0.0.0/8 is 4, which is what
it should be after we increase its value with the offset-list command. This implies that the
routing information coming into the serial interface is being handled correctly, so it could be
that the router on the other side of the 1.544-Mb line is down. We can confirm this by doing a

 Cisco IOS Access lists

 Page 154

ping of router 1's 192.168.2.1 interface. If ping reveals that it is down, then this problem has
prevented the preferred route from entering Router 2's routing table.

If ping reveals the interface at 192.168.2.1 is up, then there are a number of possibilities why
the correct route is still not there. Router 1's connectivity to network 10 might be down. Also,
Router 1's administrators may have accidentally turned off sending routes to Router 2,
through the passive-interface statement. Strange as it may seem, that actually does happen
occasionally and can be detected using the debug command. You would notice that Router 1
seems to send no routing updates even though it is up.

5.3.2.2 Stopping routing updates with extended access lists

Make sure that you don't cause problems yourself. One way that routing updates can be
ignored is with an overzealous incoming packet filter. If Router 2 makes the following
attempt at anti-spoofing:

access-list 101 deny ip 172.20.0.0 0.0.255.255 any
access-list 101 deny ip 192.168.2.0 0.0.0.255 any
access-list 101 permit ip any any
interface serial 1
access-group 101 in

then all incoming routing updates are suppressed. At other times you might forget static
routes you have set previously. If show ip route produces the following:

C 172.20.0.0/16 is directly connected, Ethernet0
C 192.168.1.0/24 is directly connected, Serial0
C 192.168.2.0/24 is directly connected, Serial1
S 10.0.0.0/8 [1/1] via 192.168.1.1, Serial0

a static route excludes any routing advertisement of network 10.0.0.0 since static routes have
a higher administrative distance then any dynamic routing protocol.

If all else fails

You may encounter a situation where your access lists don't work even though there
is no obvious reason. It may seem that your access lists are being totally ignored, or
that your access list stops all traffic through an interface despite clearly permitting
certain types of traffic. When you encounter this type of error, there may be a
problem with your particular IOS. After you have exhausted all other debugging
possibilities, check the Cisco web site for bugs in your IOS.There are IOS versions
in which access lists do not function correctly. The Cisco Bug Navigator™ can
point out the IOS versions that have problems and the ones that have fixed those
problems. If you don't find your problem, open up a case with the Cisco Technical
Assistance Center (TAC). They should be able to help. Note that both of these
options require a support contract, which I strongly recommend if you depend on
Cisco access lists for mission critical applications.

5.3.2.3 When access lists are used incorrectly

 Cisco IOS Access lists

 Page 155

Sometimes, access lists are correct but not used correctly. If you implement the access lists
like this:

access-list 1 permit 10.0.0.0
access-list 2 permit 172.20.0.0
router rip
network 192.168.1.0
network 192.168.2.0
offset-list 1 in 1 serial 0
offset-list 2 out 1 serial 0

show ip route reveals the following:

C 172.20.0.0/16 is directly connected, Ethernet0
C 192.168.1.0/24 is directly connected, Serial0
C 192.168.2.0/24 is directly connected, Serial1
R 192.168.3.0/24 [120/1] via 192.168.2.1, 00:23, Serial1
R 10.0.0.0/8 [120/2] via 192.168.1.1, 00:23, Serial0
 10.0.0.0/8 [120/2] via 192.168.2.1, 00:23, Serial1

Notice that there are two routes associated with network 10.0.0.0/8, one for each of two
possible paths, and they both have the same route metric. This is an indication that the offset
used in the offset-list line is not high enough. Since the metrics to both paths are the
same, the router installs both routes.

5.3.2.4 When route-filtering access lists are wrong

I have shown how different problems can make you think there are access lists problems
when there are not. Let's look at a situation where there actually are problems with the access
lists themselves. If we implement our policy in the following way:

access-list 1 permit 19.0.0.0
access-list 2 permit 172.20.0.0
router rip
network 192.168.1.0
network 192.168.2.0
offset-list 1 in 3 serial 0
offset-list 2 out 3 serial 0

show ip route reveals the following:

C 172.20.0.0/16 is directly connected, Ethernet0
C 192.168.1.0/24 is directly connected, Serial0
C 192.168.2.0/24 is directly connected, Serial1
R 192.168.3.0/24 [120/1] via 192.168.2.1, 00:23, Serial1
R 10.0.0.0/8 [120/1] via 192.168.1.1, 00:23, Serial0

The path to network 10.0.0.0/8 goes through serial 0, yet its metric is only 1. It looks like
access list 1 has not put network 10.0.0.0 into its policy set of routes that will have its route
metrics increased. A look at access list 1 reveals that network 19.0.0.0/8 is in the only entry
instead of network 10.0.0.0/8. Once corrected, the proper route should be installed in the
routing table.

Chapter 6. Route Maps

 Cisco IOS Access lists

 Page 156

For more advanced network policies, Cisco routers have a policy structure called route maps.
Route maps combine policy set definition with policy application, using the access list
formats discussed in previous chapters. In this chapter I talk about using route maps for
intranet routing policies and for routing policies in the Internet. Along the way, I cover some
new access list types, key BGP (Border Gateway Protocol, the routing protocol used on the
Internet) concepts, and how to implement commonly used Internet routing policies, focusing
on the needs of multihomed organizations, not ISPs.

6.1 Other access list types

For most configurations, standard and extended access lists are enough to specify which sets
of IP addresses or networks you want to influence with a policy. When you want to set
policies with BGP or manipulate sets of networks based on their prefix length (the number of
bits in the network mask), these types of access lists fall short. BGP is an Exterior Gateway
Protocol (EGP) routing protocol. EGPs are designed for sending routing updates between
large administrative domains. As a result, BGP routes carry a lot of information. Unlike
Interior Gateway Protocols (IGP) such as OSPF or EIGRP, BGP routing updates carry
complete path information. The routing updates can also carry flags added by network
administrators called community attributes. Both paths and communities are often the basis of
Internet routing policies. In this section, I talk about three new types of access lists: the prefix
lists, the AS-path list, and the community list. Understanding these types of access lists is a
prerequisite to using route maps, particularly with BGP.

6.1.1 Prefix lists

When working with networks of different prefix lengths, there are a number of situations
where using standard access lists don't work. Let's say that you wanted to set up an access list
that includes network 172.28.0.0/16 but doesn't include 172.28.0.0/24. Although you might
try the following access list:

access-list 1 permit 172.28.0.0 0.0.0.0.0
access-list 1 deny 172.28.0.0 0.0.0.0.255

172.28.0.0/24 will still be included in the policy set in the first entry.

In general, standard access lists are unwieldy (if at all workable) when you want to include
and exclude networks based on prefix length into a policy set. Let's say you want to include
network 192.168.32.0/19 and all possible prefixes that are a part of it, i.e., all prefix lengths of
network 192.168.32.0/19 equal to or greater than 19. We would have to implement this by
denying shorter length prefixes and including everything else:

access-list 2 deny 192.168.64.0 0.0.192.0
access-list 2 permit 192.168.32.0 0.0.31.255

The prefix-list access list makes policies much easier to express, and as shown in our first
example, makes them possible. To create a policy of the network 172.28.0.0/16 and not
172.28.0.0/24, we would use the following:

ip prefix-list Class-B-Only seq 5 permit 172.28.0.0/16
ip prefix-list Class-B-Only seq 10 deny 172.28.0.0/24

 Cisco IOS Access lists

 Page 157

Like standard and extended access lists, entries are matched in sequence. In the case of prefix
lists, the sequence number determines the order of matching, starting with the entry with the
lowest sequence number and then going to the next largest sequence number until all entries
have been compared. Prefix lists also have an implicit deny all at the end of the list, so for this
policy, we could just say:

ip prefix-list Class-B-Only seq 5 permit 172.28.0.0/16

For our second example, one entry is all we need:

ip prefix-list Slash19-and-longer seq 10 permit 192.168.32.0/19 ge 19

Let's look at the format of the prefix list. After the required literal ip prefix-list, it takes a
name that can be composed of letters, numbers, and other characters such as dashes. After the
name there is the optional literal seq, followed by a sequence number. This sequence number
is used to sort the sequence in which prefixes are evaluated in the list. If you don't enter a
sequence number, one is created for you, with an increasing sequence by 5 (adding 5 to the
last sequence number). The use of sequence numbers also allows a network administrator to
change a line in a prefix list without deleting the whole list and reentering it with the
modifications. After the sequence number, there is either a permit or deny literal, followed
by a CIDR network specification (the prefix and prefix length separated by a slash). The last
parts are optional sections specifying conditions on the length of prefixes. If no conditions are
included regarding prefix length, a route must exactly match the specified network, including
the prefix length.

In general, the format of the prefix list can be expressed as:

ip prefix-list name [seq sequence-number] {permit|deny} prefix/prefix-
length [ge
greater-equal-to-value] [le less-equal-to-value]

Prefix lists are easier to manipulate then standard access lists. Since they have sequence
numbers, you can delete specific entries with the following configuration command when in
ip prefix-list configuration mode:

no ip prefix-list prefix-list-name seq sequence-number

where prefix-list-name is the name of the prefix list and sequence-number is the
sequence number of the entry you wish to delete. Omitting the seq keyword and sequence
number deletes the entire prefix list. If you wish to insert an entry in the middle of a prefix
list, you can create an entry number with a sequence number between the sequence numbers
of the entries that are before and after the new entries.

You can turn off automatic sequencing with the command:

no ip prefix-list sequence-number

Otherwise, the router will add five to the last sequence number to generate the next sequence
number.

 Cisco IOS Access lists

 Page 158

Prefix lists are viewed with the show ip prefix-list command. Similar to the show access-list
command, when this command is given without a prefix list argument, all prefix lists are
shown, but with an argument of a prefix list name, only that specific prefix list is shown. show
ip prefix-list detail provides more information, such as the number of times individual entries
are accessed, while show ip prefix-list summary shows only a summary of prefix lists and
does not show individual entries.

Here are some examples using a prefix list called Net10-prefixes. The command show ip
prefix-list Net10-prefixes shows the following:

RouterX# show ip prefix-list Net-10-prefixes
ip prefix-list Net-10-prefixes: 4 entries
 seq 5 permit 10.204.23.0/24
 seq 10 permit 10.204.28.0/24
 seq 15 deny 10.204.0.0/16
 seq 20 permit 10.0.0.0/8

This prefix list allows the prefixes 10.204.23.0/24, 10.204.28.0/24, but no other prefixes of
10.204.0.0/16. All other prefixes of 10.0.0.0/8 are allowed. The command show ip prefix-list
detail shows detailed information about the prefix list. In the following example, you can see
the number of entries (count), the number of entries with range statements, the range of
sequence numbers (sequences), and the number of times the list is used in policy settings
(refcount) for all access lists, plus the last prefix list modified:

RouterX# show ip prefix-list detail
Prefix-list with the last deletion/insertion: Net10-prefixes:
ip prefix-list Net10-prefixes:
count 1, range entries: 0, sequences 5 - 20, refcount: 1
 seq 5 permit 10.204.23.0/24 (hit count: 3, refcount: 1)
 seq 10 permit 10.204.28.0/24 (hit count: 0, refcount: 1)
 seq 15 permit 10.204.0.0/16 (hit count: 0, refcount: 1)
 seq 20 permit 10.0.0.0/8 (hit count: 0, refcount: 1)

The show ip prefix-list detail command shows matches (hit count) for each entry. These
entry counters can be cleared with clear ip prefix-list followed by a prefix list name.

The prefix list can be used in BGP routing processes in the same way as standard access lists
in distribute-list statements. Let's say we wanted to accept only the class B 172.28.0.0/16
and no longer accept prefixes of 172.28.0.0/16 from a BGP neighbor at 198.168.35.1 and AS
65351. We would use the following configuration:

ip prefix-list ClassB-only-172-28 seq 10 permit 172.28.0.0/16
!
router bgp 65350
 neighbor 192.168.35.1 remote-as 65351
 neighbor 192.168.35 1 prefix-list ClassB-only-172-28 in

The neighbor statement says that the only routes that exactly match the prefix list ClassB-
only-172-28 are accepted from BGP neighbor 192.168.35.1.

Another policy that we might implement with prefix lists is the following:

 Cisco IOS Access lists

 Page 159

Send only prefixes of network 10.0.0.0/8 with length smaller than /20 to BGP
neighbor 192.168.35.1

Policies like this can reduce the number of routes that the receiver of the routes needs to
process. This policy can be expressed as:

ip prefix-list Class10-Routes-19 seq 10 permit 10.0.0.0/19 le 19
router bgp 65000
neighbor 192.168.35.1 remote-as 65001
neighbor 192.168.35.1 prefix-list Class10-Routes-19 out

6.1.2 AS-path access lists

A key BGP concept is the autonomous system (AS). It is difficult if not impossible to set
useful policies in BGP without understanding how ASes function, so I'll spend some time on
this subject before talking about building policy sets based on AS-path information. In BGP,
routing updates contain AS-path information. Autonomous systems are collections of
networks governed by an organization—a single administrative domain. Typically, BGP
routing information on the Internet has the originating organization's AS number, the ISP's
AS number, and any other AS number on the route to the end network.

Routing policies are often set based on AS-path information. That implies that in route map
construction, there is a mechanism to match against an AS path. I have shown how a standard
access list can be used to match based on network address. Cisco routers also have an
analogous construct for building policy sets called an AS-path access list. To use AS-path
access lists, you first need to know how AS paths are stored in routing tables. AS paths are
stored as a series of AS numbers such as this:

3 2 1 5 4
3 2 1
1 2 3

As routing updates pass through different administrative domains, each forwarding AS adds
itself in front of the AS path. For example, the AS path from AS 1 is directly connected to AS
2. If AS 2 propagates a route inside AS 1 through BGP to another AS, the AS path to that
network in the routing update is:

2 1

An autonomous system has the option of adding additional hops. Using the previous example,
AS 1 and AS 2 can add extra hops in front (this is often done to influence the choice of
routes—more on this later). Thus routes out of AS 1 passing through AS 2 could look like:

2 2 1
2 1 1
2 1 1 1

or even:

2 2 1 1

 Cisco IOS Access lists

 Page 160

AS numbers are expressed as 16-bit numbers and stored as 16-bit values in routing updates.
Thus AS numbers in BGP range from 1 to 65535. Certain numbers within this range are
reserved for exclusive use within organizations, just as the TCP/IP protocol suite allows a
certain set of IP addresses to be used exclusively within an organization. Hosts within an
organization's private IP space cannot talk over the Internet to another organization. Similarly,
there is a private AS number space. These AS numbers are dedicated for use within an
autonomous system. AS paths circulated within the Internet between organizations cannot
have AS hops in this space. AS numbers between 64512 and 65535 are considered private.
They are typically used inside what is called a BGP confederation. A BGP confederation is a
set of autonomous systems that talk to each other using BGP and private AS numbers, but
when talking to AS outside of the confederation, hide their private AS numbers and paths and
present a single public AS number. When private AS numbers are used inside of a BGP
confederation, the private AS numbers are listed within parentheses. An AS path within a
confederation might appear like this:

(65000 65001) 2 1

When a route with this path is distributed to a public AS, the part within parenthesis
disappears:

2 1

AS paths are matched into policy sets with AS-path access list entries. Each entry has the
following format:

as-path access-list name {permit|deny} {regular expression}

name can be a number or a name. These names and numbers can be the same as already
configured standard or extended access lists since they are used and applied differently.
regular expression is in the regular expression format commonly used in Unix and Perl—
an expression that matches some set of one or more strings. Table 6.1 shows special
characters used in Cisco regular expressions.

Table 6.1. Characters used in Cisco regular expressions
Special character Meaning
. Match individual character
* Match any number of preceding expression
+ Match at least one of preceding expression
^ Beginning of line
$ End of line
(Start including next expressions as one unit until a matching parenthesis is reached
) Include previous expressions, starting with a (as a single unit
_ Beginning of line, end of line, left or right parentheses, left or right bracket, or whitespace

The character . matches any one individual character in a string. A * means match 0 or more
of the preceding expressions, while + means match 1 or more of the preceding expressions.
Thus, the expression 2.* matches the strings "2", "23", "244", and "25555", but 2.+ does not
match the string "2". A ^ means match at the start of the line, while a $ means match at the
end of the line. In addition, Cisco defines an operator particular to Cisco routers, the
underscore (_). The underscore matches the beginning of a line, the end of a line, left or right

 Cisco IOS Access lists

 Page 161

parentheses, left or right bracket, or any whitespace. It is typically used for delimiting
individual AS numbers in a path.

Table 6.2 lists some regular expressions commonly used within AS-path matching.

Table 6.2. Commonly used regular expressions for AS-path matching
Expression Meaning
x+ 1 or more occurrences of x
x* 0 or more occurrences of x
^x Expression that starts with x
x$ Expression that ends with x
xy x followed by y
(xy) x followed by y, taken together as a unit

Here are some examples of how AS-path matching works. The following AS-path access list
only includes routes with an AS path of 1 in the policy set. This is typically used when
building a policy set of all routes originating from a neighboring AS.

as-path access-list 5 permit ^1$

The following AS-path access list:

as-path access-list 6 permit _2_.*$

matches any AS path with AS 2 inside of it. Any route that transits AS 2 is included in the
policy set. This particular regular expression is used when you are concerned with routes that
transit a particular AS.

The AS-path access list entry:

as-path access-list 7 permit (_3)+$

includes all routes that originate with 3 and includes any number of prepends of 3. You would
use an entry like this when you have a neighboring AS that may choose to do AS-path
prepending.

Like other access lists, chains of individual entries can be created. These are matched in the
sequence that they are entered, just like standard and extended access lists. For example, the
AS-path access list:

as-path access-list 1 deny ^1$
as-path access-list 1 permit _1_.*$
as-path access-list 1 permit _2_.*$

does the following:

• Denies all routes directly from and originating in AS 1
• Permits all routes that transit through AS 1
• Permits all routes that transit through AS 2

 Cisco IOS Access lists

 Page 162

AS-path access lists are usable by themselves and not just as part of route maps. A network
administrator can apply AS path access list filtering directly to incoming and outgoing routes
without using route maps. Consider the following example:

as-path access-list 1 permit ^1$
as-path access-list 1 permit _2_.*$
as-path access-list 2 permit _2_3$

AS-path list 1 includes routes directly from AS 1 with no transit ASes and all routes transiting
through AS 2. AS path list 2 includes all routes that originate from AS 3 that pass through 2.

In a BGP route process definition, we can use AS-path access lists to control which routes are
accepted based on the AS path. Using the AS-path access lists described earlier, consider the
following:

router bgp 4
neighbor 192.168.30.1 remote-as 5
neighbor 192.168.30.2 remote-as 6
neighbor 192.168.30.1 as-path 1 in
neighbor 192.168.31.2 as-path 2 out

This example shows a route process accepting all routes from AS 5 that meet the stipulation
of AS-path list 1—routes transiting through AS 2 or bound for AS 1. Only routes originating
from AS 3 and transiting through AS 2 are allowed to pass on to AS 6. Since no AS path
access list is applied to the incoming routes from AS 6, all routes are accepted from AS 6.
Similarly, since no AS path access list is applied to the outgoing routes to AS 5, all routes are
distributed to AS 5.

How do you learn the AS path associated with a route and verify if your AS-path access lists
are correct? How can you find problems in AS path access lists? The show ip bgp command
can help you verify the correctness and find problems with AS path access lists. Show ip bgp
generates a list of all of the routes learned by BGP from the router's BGP peers and the AS
path associated with each possible path. Here is sample output:

Router1# show ip bgp
BGP table version is 28690299, local router ID is 192.168.128.129
Status codes: s suppressed, d damped, h history, * valid, > best, i -
internal
Origin codes: i - IGP, e - EGP, ? - incomplete

 Network Next Hop Metric LocPrf Weight Path
*> 10.0.0.0/8 192.168.128.138 0 2 1 i
* 192.168.128.139 0 3 1 i
*> 10.5.5.4/30 192.168.128.138 0 2 5 i
*> 172.24.0.0/16 192.168.128.136 0 (65001) i
* 192.168.128.137 0 (65002 65001) i
*> 192.168.32.3 192.168.128.136 0 (65001) i

There are multiple paths for some networks in the previous BGP table excerpt. The path
preferred by the router has a greater-than sign (>) in front of it. The network number and
prefix length are in the first column, followed by the next hop in the second. Since no metric
or local preference has been set, the defaults are not shown. The default weight value of is
shown, however.

 Cisco IOS Access lists

 Page 163

If there are many networks learned by BGP, the output can be very long. For a router taking
in full Internet routes, this could be tens of thousands of lines long. show ip bgp followed by a
network produces BGP routing information pertaining to a single network. For example, show
ip bgp 12.13.84.0 might produce output like this:

router1# show ip bgp 12.13.84.0
BGP routing table entry for 12.13.84.0/24, version 28270198
Paths: (2 available, best #2)
 7806, (aggregated by 7806 12.13.84.3)
 192.168.128.137 (metric 10) from 192.168.128.137
 Origin IGP, localpref 100, valid, external
 Community: 7806:100
 7806, (aggregated by 7806 12.13.84.2)
 192.168.128.136 (metric 6) from 192.168.128.136
 Origin IGP, localpref 100, valid, external, best
 Community: 7806:100

This output shows two paths to network 12.13.84.0/24, one through the router at
192.168.128.136 and the other from the router at 192.168.128.137. Values of route attributes
such as local preferences, metrics, and communities are shown in the output. I will talk about
these later.

If you wish to see which routes in your routing table will be included by a particular regular
expression, the command show ip bgp regexp followed by a regular expression shows all
routes that match. For example, show ip bgp regex ^\ (66000\)$ produces the following:

Router1# show ip bgp regex ^\(66000\)$
BGP table version is 8413446, local router ID is 192.168.129.133
Status codes: s suppressed, d damped, h history, * valid, > best, i -
internal
Origin codes: i - IGP, e - EGP, ? - incomplete

 Network Next Hop Metric LocPrf Weight Path
*> 172.15.0.0/16 192.168.248.252 0 (66000)
i
*> 172.18.0.0/16 192.168.248.252 10 (66000)
i
*> 192.168.72.0/24 192.168.248.252 0 (66000)
i
*> 172.20.0.0/16 192.168.248.252 0 (66000)
i

In this example, we can see that one network, 172.18.0.0/16, has a weight different from the
other networks. A particularly useful version of this command shows the routes are originated
from a router:

Router1#show ip bgp regex ^$
BGP table version is 67829, local router ID is 172.15.11.3
Status codes: s suppressed, d damped, h history, * valid, > best, i -
internal
Origin codes: i - IGP, e - EGP, ? - incomplete

 Network Next Hop Metric LocPrf Weight Path
*> 172.16.0.0 172.15.10.3 271 32768 i
*> 192.168.30.0 172.15.10.3 138 32768 i
*> 10.0.3.0/24 172.15.10.3 128 32768 i

 Cisco IOS Access lists

 Page 164

You can see how routes have different values for different metrics. Locally originated routes
have a default weight of 32768, while other routes have a zero weight. Other metrics, like
"Metric," have different values for each route.

To test entire AS-path access lists, use the command show ip bgp filter-list. If you define an
AS-path access list as follows:

as-path access-list 5 permit ^1_
as-path access-list 5 permit ^2$

capturing in a policy set all of the routes coming through AS 1 plus all the routes that
originate from AS 2, the command show ip bgp filter-list 5 produces the following output:

Router1# show ip bgp filter-list 5
BGP table version is 23029, local router ID is 192.168.18.100
Status codes: s suppressed, d damped, h history, * valid, > best, i -
internal
Origin codes: i - IGP, e - EGP, ? - incomplete

 Network Next Hop Metric LocPrf Weight Path
*> 4.0.0.0/8 192.168.18.136 0 1 2 i
*> 192.168.18.138 0 2 i
*> 172.23.0.0/16 192.168.18.136 0 1 3 i
* 192.168.18.137 0 1 4 i
*> 172.24.0.0/16 192.168.18.138 0 2 i
*> 192.168.10/24 192.168.18.136 0 1 i

6.1.3 BGP community attribute

A very important attribute of routes in BGP is the community attribute, and as you might
expect, there is a type of access list for building policy sets of them. Communities are four-
byte numbers assigned to routes that flag routes for special processing by other routers.
Routers can watch for communities on route advertisements and then take action on them.
The uppermost bytes are an AS number, and the lower bytes are a number chosen by a
network administrator.

Let's look at how community lists are constructed and how matching works. The community
access list entry has the following format:

ip community-list {community list number} {permit|deny} string1 string2 ..
string n

After the list number and permit/deny arguments, there are a series of communities. If any
community of a route matches any of the communities on the entry, the route is added to a
policy set. Here is an example:

ip community-list 100 permit 65000:1 65000:2 65000:3
ip community-list 100 permit 65001:1 65001:2 65001:3

Communities have two formats: an older format that is a long number (the Cisco default) and
a newer format that divides the number into two numbers separated by a colon. Communities
are 16-bit numbers and can range from 1 to 65535. The new format allows some structure to
the community string in the form a:b. The first number (a) corresponds to the first (leftmost)

 Cisco IOS Access lists

 Page 165

32 bits of the community string. The second number (b) corresponds to the second (rightmost)
16 bits of the string. ISPs often put their own AS as the first number to denote communities
that relate to their infrastructure. To convert from the new format to the old format, use the
following formula:

old format community string = a * 65536 + b

To convert to a new format from an old format string, convert the community string to a 32-
bit binary number. The first number (a) is the decimal value of the leftmost 16 bits. The
decimal equivalent of the rightmost 16 bits is the second number (b). For example, the new
format community string 701:1 would convert to 701 65536 + 1 or 45940737. The new
format of the old format community string 45940738 would be 701:2. In the older format, the
previous example would be the following:

ip community-list 100 permit 4559840001 4559840002 4559840003
ip community-list 100 permit 4559905537 4559905538 4559905539

The configuration directive ip bgp-community new-format automatically converts the old
format to the new format.

There are a few special predefined communities. The Local-AS community string instructs
BGP not to send a route tagged with this string outside of the local AS. No-export prevents a
route from being advertised to an external peer, while No-advertise tells BGP not to
advertise the route from any peer. Internet communities means advertise the route to the
Internet community.

Like AS-path access lists, the show ip bgp command can take community list entries or
community lists as arguments to show only routes that match the community list entry or
community list. The router command show ip bgp community followed by a community string
shows all routes with that community:

Routerx# show ip bgp community 65000:1
BGP table version is 4953083, local router ID is 10.117.56.120
Status codes: s suppressed, d damped, h history, * valid, > best, i -
internal
Origin codes: i - IGP, e - EGP, ? - incomplete

 Network Next Hop Metric LocPrf Weight Path
*>i10.0.0.0 10.117.56.174 4294967294 100 0 (65001) i
*>i172.20.48.0/20 10.117.56.174 4294967294 100 0 (65001) i
* i172.20.6.0/24 10.177.56.241 4294967294 100 0 (65002) i
* 172.21.7.0/24 10.177.56.241 4294967294 100 0 (65002) i
* i172.21.94.0/23 10.177.56.241 4294967294 100 0(65002) i
* 172.24.125.0/24 10.177.56.241 4294967294 100 0 (65002) i
* i172.25.252.0/23 10.177.56.174 4294967294 100 0 (65001) i
* i172.26.92.0/24 10.177.56.241 4294967294 100 0 (65001) i

If you add the literal exact, only the routes with that community string are displayed. Similar
to AS-path access lists, the command show ip bgp community-list followed by a community
list name shows all routes that match that community list.

6.2 Generic route map format

 Cisco IOS Access lists

 Page 166

To create generic policies for routing, we need two things: a way to identify routes to be
affected by a policy and a way to set policies once those routes have been identified. Route
maps are a series of entries that have exactly those two sets of elements. The name "route
map" is entirely appropriate: routes are identified and mapped to a policy setting.

Each route map entry has the following format:

route-map route-map-name {permit|deny} {sequence number}
match clauses
policy settings

The sequence number determines the sequence in which route maps are evaluated. Entries
with lower sequence numbers are evaluated before blocks with higher sequence numbers with
the same route map name. Match clauses are policy set definitions, usually some kind of
access list reference intended to match route characteristics. There can be multiple match
clauses, and a route has to match all of the clauses in order to match the entry. permit and
deny are the two possible keywords for route map entries. A permit says that a route with the
match clause characteristics will have the policy settings applied to it. A deny says that a
route that matches a match clause will no longer be evaluated by the route map, and further
comparisons to other route map entries will stop. No route attributes are changed when a deny
is encountered.

Here is an example of a route map:

route-map ROUTES-IN permit 10
 match ip address 5 6
 set local-preference 110

route-map ROUTES-IN deny 20
 match ip address 7

route-map ROUTES-IN permit 30
 match ip address 8
 set local-preference 90

access-list 5 permit 192.168.30.0
access-list 6 permit 192.168.31.0
access-list 7 permit 192.168.32.0
access-list 8 permit 192.168.33.0

The route map ROUTES-IN has three entries. Every route that is passed through ROUTES-IN
first goes through the entry with sequence number 10. If the destination network in the route
matches access list 5 or access list 6, then the route's local preference (I explain local
preference later in the chapter) is set to 110. If not, the route is checked if it matches the route-
map entry with sequence 20. If it matches access list 7, then no further matching is done
because the entry is a deny route map entry. The route is effectively ignored and not used or
redistributed by the route map. If the route matches access list 8, then it has its local
preference set to 90. If the route matches neither entry 10, 20, or 30, then the route's
characteristics are left alone, and it is basically ignored.

In the previous example we matched against the network addresses to set route characteristics.
You don't necessarily need both a match clause and a policy setting, but you need at least one
of them. The lack of a match clause implies that all routes will match. The lack of policy

 Cisco IOS Access lists

 Page 167

setting means that no changes are made to any matching routes. In later sections, I will
describe how to match against other parts of BGP routes, such as AS paths and communities.

 Cisco IOS Access lists

 Page 168

6.3 Interior routing protocols and policy routing

A typical use of route maps involves redistributing routes. While you can use the
distribute-list router configuration and standard access lists to implement policies, route
maps can do things that you cannot do easily with access lists alone. As an example, let's say
we want to redistribute static routes to an EIGRP routing process with the following policy:

Distribute all static routes to networks 172.16.20.0/24 172.16.25.0/24,
172.16.52.0/24, 192.168.56.0/24, 192.168.57.0/24, and 192.168.59.0/24 to the
routing process EIGRP 100

In EIGRP 100, distribute only the certain static routes (172.16.20.0/24
172.16.25.0/24, and 192.168.59.0/24) out of Fast Ethernet 1/0

We could implement this with:

ip access-list standard some-static-routes
 permit 172.16.20.0
 permit 172.16.25.0
 permit 172.16.52.0
 permit 192.168.56.0 0.0.1.0
 permit 192.168.59.0
ip access-list standard statics-for-Fast-1-0
 permit 172.16.20.0
 permit 172.16.25.0
 permit 192.168.59.0
router eigrp 100
 redistribute static
 distribute-list some-static-routes out static
 distribute-list statics-for-Fast-1-0 out FastEthernet 1/0

Note that every time we add static routes that would be distributed out of FastEthernet 1/0, we
have to update two access lists. We can get around this problem by using route maps:

ip access-list standard statics-not-for-Fast-1-0
 permit 172.16.52.0
 permit 192.168.56.0 0.0.1.0
ip access-list standard statics-for-Fast-1-0
 permit 172.16.20.0
 permit 172.16.25.0
 permit 192.168.59.0
route-map statics-in-map permit 10
 match ip address statics-not-for-Fast-1-0
route-map statics-in-map permit 20
 match ip address statics-for-Fast-1-0
router eigrp 100
 redistribute static route-map statics-in-map
 distribute-list statics-for-Fast-1-0 out FastEthernet 1/0

In this example, route maps make it easier to maintain the router configuration because they
let us combine two separate access lists for one policy application.

Route maps also allow us to set different metrics for incoming routes. Let's say we add the
following to our policy:

 Cisco IOS Access lists

 Page 169

Set the metric for static routes redistributed through interface fast Ethernet 1/0
to 1, while setting the metric for all other redistributed static routes to 3000

We can implement this new policy addition by changing static-in-map to the following
map:

route-map statics-in-map permit 10
 match ip address statics-not-for-Fast-1-0
 set metric 3000
route-map statics-in-map permit 20
 match ip address statics-for-Fast-1-0
 set metric 1

The metric used in EIGRP is set depending on the static route.

Another use of route maps is routing based on the characteristics of incoming packets.
Ordinarily, all of the packets coming into a router, regardless of their characteristics, are
forwarded according to the route table. Policy routing allows us to route packets differently,
depending on some characteristic of incoming packets that we may choose. Consider the
router shown in Figure 6.1.

Figure 6.1. A router requiring policy routing

Let's say that we want to implement the following policy:

All traffic coming in from Ethernet 0/0 should go out of Serial 1/0

All traffic coming in from Ethernet 0/1 should go out of Serial 1/1

This policy cannot be implemented with any of the techniques covered so far. All of the
routing done to this point has been based on filtering that's based on the destination address,
not the origin. Cisco routers implement the following:

interface ethernet 0/0
 ip policy route FROM-ETHERNET-0-0
interface Ethernet0/1
 ip policy route FROM-ETHERET-0-0

route-map FROM-ETHERNET-0-0 permit 10
 match interface 0/0
 set next-hop Serial1/0
route-map FROM-ETHERNET-0-1 permit 10
 match interface Ethernet0/1
 set next-hop Serial1/1

 Cisco IOS Access lists

 Page 170

In this example, we match the interface that traffic is coming in on using the match interface
clause and set the next hop as the interface where we want traffic to go.

We can also use extended access lists as a way to build a policy set for policy routing. This
allows us to implement much finer-grained control over how traffic flows. Let's say for the
network in Figure 6.1, we have the following policy:

All SSL traffic (port 443) coming into the two Ethernet interfaces will go out
of Serial 1/0

All other traffic will go out via Serial 1/1

We implement this policy with the following:

interface Ethernet0/0
 ip policy route FROM-ETHERNETS
interface ethernet 0/1
 ip policy route FROM-ETHERNETS

access-list 100 permit tcp any eq 443 any
access-list 100 permit tcp any any eq 443
access-list 101 permit ip any any

route-map FROM-ETHERNETS permit 10
 match ip address 100
 set next-hop Serial 1/0

route-map FROM-ETHERNETS permit 20
 match ip address 101
 set next-hop Serial 1/1

The route map FROM-ETHERNETS is applied to all traffic coming from the Ethernet segments.
All SSL traffic (having port 443 as either source or destination) is given the next hop of Serial
1/0. All other traffic is sent out of Serial 1/1.

The command show route-map shows route maps along with how many packets have
matched each clause. As an example, here is the output from a show route-map command
used in policy routing:

Router1>show route-map FROM-ETHERNETS
route-map FROM-ETHERNETS, permit, sequence 10
 Match clauses:
 ip address (access-lists): 100
 Set clauses:
 next-hop Serial 1/0
 Policy routing matches: 823 packets, 426466 bytes
route-map FROM-ETHERNETS, permit, sequence 20
 Match clauses:
 ip address (access-lists): 101
 Set clauses:
 next-hop Serial 1/1
 Policy routing matches: 340 packets, 2123458 bytes

 Cisco IOS Access lists

 Page 171

Only route maps used for this policy routing produce packet and byte counts. You can employ
show route-map to show route maps used with routing protocols, but the packet counters do
not increment.

6.4 BGP

This section shows how to use route maps and implement useful BGP routing policies. First, I
use different kinds of match clauses to build policy sets. Then I relate different ways that
route maps and other kinds of access lists can be used.

6.4.1 Match clauses in BGP

At the start of this chapter, I went over different kinds of access lists. In this section, I'll show
how to use them to build policy sets that are part of match clauses in route maps.

Prefix lists are matched with the following format:

match ip address prefix-list {prefix-list name}

where prefix-list name is the name of the prefix list. Let's say we wanted to set prefixes of
172.28.0.0/16 that are less than or equal to /19 to have a local preference of 110 (we'll talk
more about local preference later). We define a route map and prefix list with the following:

ip prefix-list prefixes-19-and-shorter seq 5 172.28.0.0/16 le 19

route-map VALID-INCOMING-ROUTES permit 10
 match ip address prefix-list prefixes-19-and-shorter
 set local-preference 110

and then apply this route map to a BGP neighbor. The prefix list prefixes-19-and-shorter
defines a policy set, and in the route map, we take this policy set and apply a local preference
of 110 to it.

Similarly, we can do the same with AS-path access lists:

as-path access-list 3 permit ^\(65001(_.*)*\).*$
as-path access-list 4 permit ^\(65002(_.*)*\).*$
access-list 3 permit any

route-map INCOMING-ROUTES permit 10
 match as-path 3
 set as-path prepend 65001

route-map INCOMING-ROUTES permit 20
 match as-path 4
 set as-path prepend 65002

route-map INCOMING-ROUTES permit 30
 match ip address 3

router bgp 65000
network 172.28.0.0
neighbor 192.168.30.1 route-map INCOMING-ROUTES in
neighbor 192.168.31.2 route-map INCOMING-ROUTES in

 Cisco IOS Access lists

 Page 172

AS-path access list 3 builds a policy set of all routes originating from AS 65001. AS path
access list 4 matches all routes coming directly from AS 65002. The route map INCOMING-
ROUTES prepends an extra AS hop from all routes from neighboring AS 65001. It appends AS
65002 to all routes coming from AS 65002. All other routes are left alone. What is the result
of this policy when we apply the route map to incoming routes? Routes from AS 65001 and
AS 65002 have longer AS paths and are thus less preferred compared to routes from other
autonomous systems. All other routes match the standard access list 3 in the last route map
entry. Since there is no policy setting in this entry, routes with AS patterns that don't match
the AS-path access lists are unaffected. Less traffic will go out through AS 65001 and AS
65002.

If you want to have a default behavior for routes (even if the default
behavior is to do nothing), don't forget to put in a route map entry that
matches everything. Otherwise, routes that don't match any route map
entry are not included when you apply the route map.

To match a community string, use the route map command:

match community {community list number} [exact-match]

The community list number is the number of the community string access list. If a route has
a community string that matches the community list (specified by the community list
number), then the route map entry takes effect. If the optional keyword exact-match is
present, the route's communities must exactly match the community list, not just have one
community string that matches.

How do you use a community string? One option is to allow downstream autonomous
systems to express route preferences. Take the route map:

route-map PREFERENCE-BY-COMMUNITY permit 10
 match community 1

set local preference 110
 route map PREFERENCE-BY-COMMUNITY permit 20
 match community 2
set local preference 100

route-map PREFERENCE-BY-COMMUNITY permit 30
 match community 3
 set local preference 90
ip community-list 1 permit 100
ip community-list 2 permit 200
ip community-list 3 permit 300

An autonomous system's network administrator who wishes to implement traffic preferences
through local preference within an AS with the above route map can do so by setting
communities. Local preference is a way of specifying how an AS will treat routes. All routes
without an explicit local preference have a local preference of 100. Routes with higher local
preferences are preferred over routes with lower local preferences. Some ISPs use this
technique to allow multihomed customers to do preferential routing. The ISPs that provide
this option apply a similar route map to routing updates from their customers.

 Cisco IOS Access lists

 Page 173

6.4.2 Route maps as command qualifiers

Like standard access lists, route maps and AS path access lists can be qualifiers to route
statements. Just as some routing protocol commands take an access list as an optional
argument, some BGP4 directives take route maps or AS-path access lists as options. Let's
look at some of these commands.

The BGP4 command weight can take the form:

neighbor [IP address] Weight [weight value]

weight is similar to administrative distance settings in that it can be used to determine the best
path selection within a router. It is different in that the higher weight is preferred. An example
use of weight is the following:

neighbor 192.168.50.3 weight 10

But we can specify which routes get that weight with a standard access list as a policy set:

access-list 1 permit 192.168.50.0
access-list 1 permit 172.28.0.0

router bgp 65004

 neighbor 192.168.50.1 distribute-list 1 weight 100

We can also filter based on an AS-path access list:

as-path access-list 1 permit ^65000$
router bgp 65004
 neighbor 192.168.50.1 filter-list 1 weight 100

The default path filter is an access list that permits all. By adding AS-path filters, we control
the weight that we assign routes based on the routes' AS paths.

The aggregate-address command in BGP4 has several ways to use route maps to adjust what
routes get aggregated. It has the following options that take a route map as a way of
specifying the policy set that aggregation applies to:

• suppress-map
• unsuppress-map
• advertise-map
• attribute-map

Let's look at some of these options to see how route maps can be used as command
arguments. The suppress-map option designates a route map that describes what addresses in
an address block to advertise after aggregating. For example, let's aggregate all addresses in
block 192.168.32.0 through 192.168.63.0 but continue to advertise address blocks
192.168.40.0 through 192.168.47.0. We would set up the following route map:

access-list 2 permit 192.168.40.0 0.0.7.0
route-map SUPPRESS-ADDRESSES permit 10
 match ip address 2

 Cisco IOS Access lists

 Page 174

This route map is used in the following way:

router bgp 65000
 aggregate-address 192.168.32.0 0.0.31.0 suppress-map SUPPRESS-ADDRESSES

Unlike some other instances of route maps, this particular use of routes has no policy settings
on each entry. In this case, it is used purely to build a policy set of routes that are not to be
aggregated.

The attribute-map option lets us change the attributes of an aggregated route. For example,
the following aggregate address command and route map:

route-map AGGREGATE-ATTRIBUTES permit 10
 set metric 10
 set community 701:1
router bgp 65000
aggregate-address 192.168.32.0 0.0.31.0 attribute-map AGGREGATE-ATTRIBUTES

sets a route metric of 10 and adds a community attribute of 701:1 to the route aggregation. In
this case, the route-map AGGREGATE-ATTRIBUTES has no match clause, meaning all routes
match this entry.

"Flapping" networks—networks that appear and disappear—are a threat to routing stability,
as large-scale route flapping can slow down routers. Networks that flap can be dampened, i.e.,
taken out of the routing table until a certain time period. Since this can be a severe penalty,
there is a route map argument to the dampening command that allows a network administrator
to declare what routes can be dampened. As an example, let's say that all routes tagged with
the community string 700 are particularly troublesome routes and deserving of dampening.
We would set up the following route map:

ip community-list permit 700
 route-map DAMPENED-ADDRESSES permit 10
 match ip community 700

and then use the following dampening statement:

router bgp 65000
 bgp dampening route-map DAMPENED-ADDRESSES

6.4.3 Implementing path preferences

A common application of route maps with BGP is the implementation of traffic preference
policies. To implement route preferences in BGP, you first need to understand how BGP
selects routes for placement in the routing table. BGP routes carry a set of attributes that are
used to make routing decisions. Some of these attributes are changeable, functioning as
administrative knobs that allow a network administrator to affect route selection while other
attributes cannot be changed. Table 6.3 shows BGP route attributes in order of preference for
deciding routes .

 Cisco IOS Access lists

 Page 175

Table 6.3. BGP route attributes in order of preference

Attribute Most preferred Settable for
individual route? Default (if any)

Prefix length Longer prefix length (more
specific route) Yes

Connection to next hop Do not consider if next hop
is not reachable No

Synchronization
Do not consider if BGP path
is not synchronized and
synchronization is enabled

Yes (turn
synchronization on or
off)

Synchronization
on

Weight Higher Yes 0
Local preference Higher Yes 100

Originated by router
Yes (by originating
with a network
statement)

AS path Shorter Yes

Origin code (where route originated) IGP < EGP < incomplete No Depends on origin
of route

Multi-Exit Discriminator Lower Yes
Prefer external (EBGP) over internal
route (IBGP). Note that routes through
confederations are considered internal

Prefer route that goes through closest
IGP neighbor Yes (by manipulating

IGP metrics)

If maximum-paths is enabled, install
route if the best route and this route are
external and from the same neighboring
AS number

If maximum-paths is not on, prefer the
route with the lowest IP address value
for Router ID

Lower Yes

When the BGP routing process sees multiple paths to a network, it looks for the most specific
route, i.e., the route with the longest prefix. If a routing decision must be made for a
destination IP address, the route with the more specific part of a network is used. For
example, if BGP needs to decide how to route a packet to 192.168.32.5, and there are two
routes that could match, one to 192.168.0.0/16 and another to 192.168.32.0/24, the route to
192.168.32.0/24 is used. If the next hop for a route is not available, the route is not
considered. This may seem rather odd, but the next hop in a BGP route may not necessarily
be the IP address of the router that sent the update, unlike IGP routing protocols such as RIP.
BGP then looks at synchronization to decide whether to consider the route. If synchronization
is turned on, and the route is learned via IBGP, the route is not considered if there is no IGP
route for the network.

Next, BGP prefers the route with the highest weight. If weights are equal, the router installs
the route with the highest local preference. If local preferences are the same, then the route
that was originated by the router is used (originated with the network statement). Then, the
route with the shortest AS path is chosen. If AS paths are the same, then the route with the
lowest origin code is used. The origin code declares how the route originated. If a BGP
routing process explicitly declares that a network is connected to it with a network statement,
the origin is incomplete. If the path is learned via BGP from another AS, the origin code is

 Cisco IOS Access lists

 Page 176

EGP. If the route is learned via an IGP and redistributed into BGP (inadvisable but possible),
the origin is IGP. BGP prefers explicitly declared networks over networks learned via BGP.
Routes learned via an IGP are the least preferred.

If two or more routes have the same local preference, and AS paths are identical (not just the
same length), then the route with the lowest Multi-Exit Discriminator is chosen. Next,
external BGP routes are preferred over internal BGP. Note that routes from peers in a
confederation are considered internal BGP routes. Next, the route preferred through the
closest neighbor (via IGP metrics) is chosen. If multiple paths are enabled, any route that is
external and comes from the same neighboring AS as the best route is installed. The last
tiebreaker is the Originating Router ID. If everything is the same, the route with the lowest
originator IP address is chosen. This may seem like an odd tiebreaker (what does the order of
IP addresses have to do with route selection?), but it is the last-resort rule when a tiebreaker is
needed.

It's worth noting network attributes that BGP does not consider. BGP has no notion of using
current network conditions of bandwidth, delay, or congestion for making routing decisions.
BGP may prefer a route that is more congested, has a smaller bandwidth, or has more latency.
Network administrators can manipulate only the settable attributes listed previously to affect
routing decisions.

To use these attributes effectively, you have to know to which direction these attributes apply,
and the scope that changes to the attributes can propagate. Some of the BGP knobs that you
can tune apply only to incoming route updates. Some apply to outgoing route updates, and
others apply in both directions. Regarding scope, some changes apply only to the router where
the attribute is applied (e.g., weight). Some attribute changes apply only within the local AS,
and others apply everywhere. Table 6.4 describes BGP attributes that you can affect and the
scope of where those changes take affect.

Table 6.4. Directionality and scope of adjustable BGP attributes
Attributes Direction of influence Scope
Weight Inbound routing updates Local router
Local preference Inbound routing updates Local AS
MED Inbound and outbound routing updates Adjacent AS (only within the same AS)
AS-path Inbound and outbound routing updates Everywhere
Communities Inbound and outbound routing updates Everywhere (although scope can be set)
Originator IP Outbound routing updates Everywhere (but often changed downstream)

All of these attributes of a route can be examined with variations of the show ip bgp command
as shown previously.

6.4.3.1 The weight attribute

Note that weight is a Cisco proprietary feature of BGP, so you won't
find it on other vendors' routers.

For a first example, lets revisit the scenario where an organization prefers to use a line that
has a higher bandwidth for Internet access. A diagram of the situation is shown in Figure 6.2.

 Cisco IOS Access lists

 Page 177

Figure 6.2. Preferring a higher bandwidth line using BGP

The line connecting the organization with AS 1 to AS 2 has a bandwidth 45 Mb. The line
between AS 1 and AS 3 has a bandwidth of 6 Mb. Because of this difference, AS 1 wants to
implement the following routing policy:

Traffic to and from networks in AS 3 should go over the 6-Mb line unless the
line is down. In that case, AS 3/ AS 1 traffic should use the 45-Mb line.

All other traffic to and from the Internet should use the 45-Mb line unless the
line is down. If the 45-Mb line is down, traffic should go through the 6-Mb
line.

This policy lets most Internet traffic use the higher bandwidth link except for traffic between
AS 1 and AS 3. This traffic uses the line directly between the two ASes. If a line is down,
traffic uses the other line to get in and out of AS 1. AS 1 then gets what seems to be the best
possible network performance while having failover if a link goes down.

There are many ways to implement this policy. Let's start by using the weight attribute for
incoming route updates. Setting policy for incoming route updates directs traffic going out
from AS 1:

! define AS path access lists and standard access lists to build policy
sets
as-path access-list 5 permit ^3$
access-list 5 permit any
! build route map
route-map INCOMING-UPDATES-6Mbit-LINE permit 10
 match as-path 5
 set weight 30
route-map INCOMING-UPDATES-6Mbit-LINE permit 20
 match ip address 5

The route map INCOMING-UPDATES-6Mbit-LINE is used by BGP as follows:

router bgp 1
 network 172.28.0.0
 network 192.168.10.0
!
 neighbor 192.168.30.1 remote-as 2
 neighbor 192.168.30.1 weight 20
!
 neighbor 192.168.31.1 remote-as 3
 neighbor 192.168.31.1 route-map INCOMING-UPDATES-6Mbit-LINE in

 Cisco IOS Access lists

 Page 178

In this example, I implement a route map entry that creates a policy set of all routes
originating from AS 3. The AS-path access list 5 includes all these routes, which are given a
weight of 30. All other routes from AS 3 do not get a weight (their default weight is 0). All
the routes from AS 2 are given a weight of 20. As a result, all the routes from AS 2 have a
higher weight except for those originating from AS 3. You can see the results of this policy
using the show ip bgp command:

Router1# show ip bgp
BGP table version is 730292, local router ID is 192.168.31.2
Status codes: s suppressed, d damped, h history, * valid, > best, i -
internal
Origin codes: i - IGP, e - EGP, ? - incomplete

 Network Next Hop Metric LocPrf Weight Path
*> 10.0.0.0/8 192.168.30.1 20 2 5 i
* 192.168.31.1 0 3 5 i
*> 172.23.0.0/16 192.168.30.1 20 2 i
* 192.168.31.1 0 3 2 i
* 172.24.0.0/16 192.168.30.1 20 2 3 i
*> 192.168.31.1 30 3 i
*> 172.28.0.0/16 192.168.10.1 32768 i
*> 192.168.10/24 192.168.10.1 32768 i

Routes from AS 2 to networks like 10.0.0.0/8 and 172.23.0.0/16 that do not originate in AS 3
get a weight of 20. The same routes from AS 3 get a weight of 0. Thus traffic to 10.0.0.0/8
and 172.23.0.0/16 uses the 45-Mb link. Since network 172.24.0.0/16 originates in AS 3, the
route for it from AS 3 gets a weight of 30, while the route from AS 2 gets a weight of 20.
Thus traffic for network 172.24.0.0 would use the 6-Mb line.

6.4.3.2 AS-path prepending

We now have made outgoing traffic conform to our policy. What about incoming traffic? To
influence inbound traffic we must make routes advertised out through AS 2 look better than
those through 3 but not bad enough to make traffic from 2 to 1 go via 3. Can we use weight
here? Weight will not work because it only works on incoming routes and does not propagate
past a single router. One way for AS 1 to influence incoming traffic is to add AS path hops to
the less preferred route. The following route map implements this extra hop by adding a hop
to the AS path:

! define route map
route-map TO-AS-3 permit 10
set as-path prepend 1
! router
router bgp 1
 network 172.28.0.0
 network 192.168.10.0
!
 neighbor 192.168.30.1 remote-as 2
 neighbor 192.168.30.1 weight 30
!
 neighbor 192.168.31.1 remote-as 3
 neighbor 192.168.31.1 route-map INCOMING-UPDATES-6Mbit-LINE in
 neighbor 192.168.31.1 route-map TO-AS-3 out

The AS paths that routers on the Internet see to AS 1 networks via AS 2 should be:

 Cisco IOS Access lists

 Page 179

2 1

The path to AS 1 via AS 3 is:

3 1 1

From the Internet, the path through 2 is preferred, assuming that other autonomous systems
apply no policies of their own. Thus the 45-Mb line is used for traffic coming in from the
Internet to AS 1's networks, 172.28.0.0/16 and 192.168.10.0/24. Traffic from AS 3 uses the 6-
Mb line since AS 3 sees the following path to 1 from the 6-Mb line:

1 1

The other path to AS 1's networks through AS 2 looks like this:

[other AS] 2 1

AS 3 should then send traffic to networks 172.28.0.0/24 and 192.168.10.0/24 via the direct 6-
Mb line.

Let's say that the network topology we have been assuming is actually slightly different, such
as in Figure 6.3. Instead of connecting to AS 3 and AS 2 through a single router, the paths to
AS 2 and AS 3 go through a separate router.

Figure 6.3. AS 1 connects to AS 2 and AS 3 through two routers (a variation of Figure 6.2)

Using weight to bias incoming routes doesn't work for setting preferences among incoming
route updates. This is because the weight attribute does not propagate beyond the router
where the weights are set. To deal with this situation, we have to find a BGP route attribute
that can propagate to incoming routes and manipulate it appropriately. From Table 6.3, we
can see that local preference affects incoming routes across an AS. We configure the
following on Router 2:

! define AS path access lists and standard access lists to build policy
sets
as-path access-list 5 permit ^3$
access-list 5 permit any
! build route map
route-map INCOMING-UPDATES-6Mbit-LINE permit 10
 match as-path 5
 set local-preference 100
route-map INCOMING-UPDATES-6Mbit-LINE permit 20

 Cisco IOS Access lists

 Page 180

 match ip address 5
 set local-preference 80

Routes that live in AS 3 have a local preference of 100, but all other routes from AS 3 have a
local preference of 80. Thus, traffic bound for AS 3 goes there directly through the 6-Mb line
while all other traffic goes out the 45-Mb line. If the 45-Mb line goes down, traffic to the
Internet will fail through the 6-Mb link.

AS path prepending can also be used in a similar way to manipulate traffic bound for the
Internet. The following route map applied on Router 2 to the peering session with AS 3 can
have the same effect:

! define AS path access lists and standard access lists to build policy
sets
as-path access-list 5 permit ^3$
access-list 5 permit any
! build route map
route-map INCOMING-UPDATES-6Mbit-LINE permit 10
match as-path 5
route-map INCOMING-UPDATES-6Mbit-LINE permit 20
match ip address 5
set as-path prepend 3

This route map adds an extra AS hop to all routes coming in from AS 3 except for those
routes originating in AS 3. Since AS-path changes propagate throughout an AS and even
beyond it, this will work.

6.4.3.3 Communities

Communities can be another way to set traffic preferences. Some ISPs use community string
settings in routes as a way to allow their customers to set routing. Let's say that the ISP
running AS 3 has a policy that all routes received from its customers with community string
3:1 will have one AS hop of 3 prepended to the routes' AS path when the routes are advertised
to the rest of the Internet. This would make traffic to the routes with the string stay within AS
3 (since they are only one hop away) but would make routes through AS 3 less preferred to
the rest of the Internet. Customers of the ISP would not see the extra hop, only the ISP's peers
and other autonomous systems getting routes from them. Let's also say that the ISP running
AS 3 tags all of the routes originating from AS 3 and its directly connected customers with
the community string 3:1000. This way, a multihomed customer of the 3 ISP, like AS 1, can
know who is connected to 3, a few short hops away. With these community string settings,
the following route maps applied to the AS 1 border routers could achieve the policy results
we have been seeking:

! define AS path access lists and standard access lists to build policy
sets
ip community-list 5 permit 3:1000
access-list 5 permit any
! build route map
route-map INCOMING-UPDATES-6Mbit-LINE permit 10
 match community 5
 set local-preference 100
route-map INCOMING-UPDATES-6Mbit-LINE permit 20
 match ip address 5
 set local-preference 80
! outgoing route map

 Cisco IOS Access lists

 Page 181

route-map TO-AS-3 permit 10
 set community 3:1

AS 3 customers can connect directly to AS 1 using the 6-Mb line and not the longer path
through AS 2.

There are a few things you need to know about using communities. If you are going to pass
on communities, you need to use a BGP router command called send-community. Otherwise,
your communities will not be passed on to neighboring ASes. Also, if you use the new
community string format, you need to explicitly enable its use with the ip bgp-community
new-format configuration command. In this example, we would use the BGP configuration
command:

ip bgp-community new-format
router bgp 1
 network 172.28.0.0
 network 192.168.10.0
 neighbor 192.168.30.1 remote-as 2
!
 neighbor 192.168.31.1 remote-as 3
!
 neighbor 192.168.31.1 route-map INCOMING-UPDATES-6Mbit-LINE in
 neighbor 192.168.31.1 route-map TO-AS-3 out
 neighbor 192.168.31.1 send-community

Also, note that the set community command replaces whatever communities a route may have
had previously. If you want to add a community string to those already in a route, use the
keyword additive following the community string. Typically, a non-ISP organization does
not need this setting, but if your organization has to transit another organization's traffic (and
communities), this setting may be necessary.

6.4.3.4 Multi-Exit Discriminators

Another common scenario with multihomed organizations is having two or more lines to the
Internet through the same ISP. The organization faces the same choices as in the previous set
of examples: which lines to use for which networks. Having connections to the same ISP,
however, allows for different choices in setting BGP metrics. A typical situation looks like the
network in the Figure 6.4.

Figure 6.4. An organization multihomed into the same ISP

AS 1 connects to the Internet through AS 2 via two different lines. As an example policy, let's
say the following:

 Cisco IOS Access lists

 Page 182

Traffic for network 172.28.0.0/16 should use the lines between Router 1 and
AS 2

Traffic for network 192.168.10.0/24 should use the line between Router 2 and
AS 2

If one of these lines is down, then traffic should flow across the other line

There are a number of ways to implement this policy. We can use AS path preferences or, if
available, communities. With AS path preferences, the route maps on the routers would be:

! Router 1 route map
access-list 1 permit 172.28.0.0
access-list 2 permit 192.168.10.0
!
route-map ROUTES-OUT permit 10
 match ip address 1
route-map ROUTES-OUT permit 20
 match ip address 2
 set as-path prepend 1
!
router bgp 1
 network 172.28.0.0
 network 192.168.10.0
 neighbor 192.168.30.1 remote-as 2
 neighbor 192.168.30.1 route-map ROUTES-OUT out
!
! Router 2 route map
access-list 1 permit 172.28.0.0
access-list 2 permit 192.168.10.0
!
route-map ROUTES-OUT permit 10
match ip address 2
route-map ROUTES-OUT permit 20
match ip address 1
set as-path prepend 1
!
router bgp 1
 network 172.28.0.0
 network 192.168.10.0
 neighbor 192.168.30.1 remote-as 2
 neighbor 192.168.30.1 route-map ROUTES-OUT out

These route maps make the backup path to AS 2 less preferred with an additional AS hop. AS
path prepending is not the only way to implement this policy. Since AS 1 connects to the
Internet via the same AS for both links, it can use the Multi-Exit Discriminator (MED) metric
to let AS 2 know which link is preferred for which network. The MED functions pretty much
like its name; if there are multiple exits out of an AS to a network, it lets an AS discriminate
between which exit is preferred. Like a routing metric, the lower MED is preferred. If we use
MEDs to implement our policy, the route maps are as follows:

! Router 1 route map
access-list 1 permit 172.28.0.0
access-list 2 permit 192.168.10.0
!
route-map ROUTES-OUT permit 10
 match ip address 1

 Cisco IOS Access lists

 Page 183

 set metric 10
route-map ROUTES-OUT permit 20
 match ip address 2
 set metric 20
!
! Router 2 route map
access-list 1 permit 172.28.0.0
access-list 2 permit 192.168.10.0
!
route-map ROUTES-OUT permit 10
 match ip address 2
 set metric 10
route-map ROUTES-OUT permit 20
 match ip address 1
 set metric 20

In the two route maps, the preferred route through the link has a metric of 10, and the route
that uses the link as backup has a metric of 20. The router at 192.168.30.1 sees the following
in its BGP table:

Router1# show ip bgp regex ^1_
BGP table version is 7022, local router ID is 192.168.30.1
Status codes: s suppressed, d damped, h history, * valid, > best, i -
internal

Origin codes: i - IGP, e - EGP, ? - incomplete

 Network Next Hop Metric LocPrf Weight Path
*> 172.28.0.0 192.198.30.2 10 0 1 i
i 192.198.31.2 20 0 1 i
* 192.168.10.0 192.168.30.2 20 0 1 i
i> 192.168.31.2 10 0 1 i

You can see that traffic to network 172.28.0.0/24 is preferred out through the line to Router 1
because of its lower metric. The router at 192.168.31.1 has the following in its table:

Router1# show ip bgp regex ^1_
BGP table version is 70222, local router ID is 192.168.31.1
Status codes: s suppressed, d damped, h history, * valid, > best, i -
internal

Origin codes: i - IGP, e - EGP, ? - incomplete

 Network Next Hop Metric LocPrf Weight Path
* 172.28.0.0 192.198.30.2 10 0 1 i
i> 192.198.31.2 20 0 1 i
*> 192.168.10.0 192.168.30.2 20 0 1 i
i 192.168.31.2 10 0 1 i

If Router 1 and Router 2 learn the paths to networks 172.28.0.0/16 and 192.168.10.0/24 via an
IGP, there is a way to use a route map to set the MED to the value of the IGP metric. Using an
IGP metric as an MED sends traffic to the link closest to that network (as determined by the
IGP metric value). The following implementation of our routing policy uses this technique,
assuming that 172.28.0.0/16 is closer to Router 1 than Router 2 and 192.168.10.0/24 is closer
to Router 2 than Router 1:

access-list 1 permit 172.28.0.0

 Cisco IOS Access lists

 Page 184

access-list 1 permit 192.168.10.0
route-map ROUTES-OUT permit 10
 match ip address 1
 set metric internal

Using MEDs in this way simplifies the route map and allows the same route map to be used
on both routers. This technique can be very useful when you have many connections to
another AS and wish to have a simpler and standard route map for outbound route
advertisements. If the internal topology of AS 1 changed and a network became closer (in
terms of route metrics) to a particular gateway, the MED automatically reflects that and
routing changes appropriately.

Peer groups

Each BGP neighbor typically requires at least one neighbor statement for a remote
AS. When you add route map, path, and prefix filters, each neighbor may require
three or more neighbor statements. To save time and make it easier to set policies
on groups of neighbors, Cisco routers have an access list type of structure called
peer group. You can define BGP neighbors as being members of a peer group, and
then apply policy settings to that peer group (thus applying the settings to all of the
neighbors). For example, let's say we wish to apply identical policies to BGP
neighbors 172.28.3.5, 172.28.3.6, and 172.28.3.7, which are all in AS 65001.
Instead of typing the same policy settings again and again for each neighbor, peer
groups allow us do use the following:

router bgp 65000
 neighbor neighbors-group1 remote-as 65001
 neighbor neighbors-group1 route-map ROUTES-OUT-MAP out
 neighbor neighbors-group1 route-map ROUTES-IN-MAP in
 neighbor neighbors-group1 filter-list 1 in
 neighbor neighbors-group1 prefix-list nets-in in
 neighbor neighbors-group1 prefix-list nets-out out
 neighbor 172.28.3.5 peer-group neighbors-group1
 neighbor 172.28.3.6 peer-group neighbors-group1
 neighbor 172.28.3.7 peer-group neighbors-group1

This configuration saves 18 neighbor statements by applying policy to the peer
group neighbors-group1. It also makes it easy to add definitions for a new
neighbor with the same policy or change a policy setting for all of the neighbors in a
peer group.

Note that you can use peer groups for just the settings that are identical. If in our
previous example, all the neighbors are in different AS, we can still use peer groups
to save statements with the following configuration:

router bgp 65000
 neighbor neighbors-group1 route-map ROUTES-OUT-MAP out
 neighbor neighbors-group1 route-map ROUTES-IN-MAP in
 neighbor neighbors-group1 filter-list 1 in
 neighbor neighbors-group1 prefix-list nets-in in
 neighbor neighbors-group1 prefix-list nets-out out
 neighbor 172.28.3.5 peer-group neighbors-group1
 neighbor 172.28.3.6 peer-group neighbors-group1
 neighbor 172.28.3.7 peer-group neighbors-group1

 Cisco IOS Access lists

 Page 185

 neighbor 172.28.3.5 remote-as 65001
 neighbor 172.28.3.6 remote-as 65002
 neighbor 172.28.3.7 remote-as 65003

Each of the neighbors is in a different AS, but we still can use a peer group for all of
the other settings, saving 15 neighbor statements.

6.4.4 Propagating route map changes

Once you have made changes in a route map, the changes do not take place until you force
your BGP process (or your neighbor's BGP process) to recognize the changes. To do that, you
need to use the clear ip bgp command. This command clears all of the BGP learned routes
from the routing table, reads in all the routes from designated peers, and sends out any routes
that need to be sent to those peers. When routes are read in or sent out, they are processed
through any route map or AS-path access lists you may have modified. The command clear ip
bgp * clears all the BGP sessions with all a router's BGP peers. You can reset the session with
a specific peer by using an IP address instead an asterisk. For example, clear ip bgp
192.168.72.3 clears the BGP session with peer 192.168.72.3.

Resetting BGP sessions can have a large impact on CPU utilization, especially if you are
pulling in the full routing tables from the Internet or have many peers. To minimize this
impact, I suggest that you clear BGP sessions one peer at a time. This will minimize the
number of routes dropped during any one reset. To reduce impact even further, use the soft
reconfiguration settings. You first need to configure each neighbor to use soft reconfiguration
in the direction of the routing updates you want. For example, let's configure soft
reconfiguration for both inbound and outbound routing updates and have a route map
ROUTES-IN for inbound processing:

! route map in
route-map ROUTES-IN permit 10
 set local-preference 100
! route map out
access-list 1 permit any
route-map ROUTES-OUT permit 10
 match ip address 1
!
router bgp 1
 network 172.28.0.0
 network 192.168.10.0
 neighbor 192.168.30.1 remote-as 2
 neighbor 192.168.30.1 route-map ROUTES-IN in
 neighbor 192.168.30.1 route-map ROUTES-OUT out
 neighbor 192.168.30.1 soft-reconfiguration in
 neighbor 192.168.30.1 soft-reconfiguration out

Once this is set up, you can propagate policy changes with the clear ip bgp soft command.
Note that route maps ROUTES-IN and ROUTES-OUT don't really do anything, since local-
preference already has a default of 100. If we change ROUTES-IN, we can affect all
incoming routes (and incoming routes only) by resetting the BGP session with clear ip bgp
192.168.30.1 soft in. Likewise, if we change ROUTES-OUT, we can affect only outgoing routes
with clear ip bgp 192.168.30.1 soft out.

 Cisco IOS Access lists

 Page 186

6.5 Debugging route maps and BGP

Debugging route maps is very similar to debugging access lists for routing policies since both
deal with manipulating routes. For the most part, the same techniques I covered with routing
access lists can be used to find problems with route maps. There are, however, some problems
and commands unique to working with route maps, and I discuss these in this section.

First of all, you need to know the most convenient way to see the contents of route maps and
AS-path access lists. While showing the running configuration shows you all your route
maps, this may be time-consuming if you have a long configuration. The show route-map
command prints out all your route maps. When followed by a route map name, a specific
route map is displayed. Recall the route map I created called ROUTES-OUT:

route-map ROUTES-OUT permit 10
 match ip address 1
 set metric 10
route-map ROUTES-OUT permit 20
 match ip address 2
 set metric 20

The show route-map output of this route map looks like this:

Router1>show route-map ROUTES-OUT
route-map ROUTES-OUT, permit, sequence 10
 Match clauses:
 ip address (access-lists): 1
 Set clauses:
 Metric 10
 Policy routing matches: 0 packets, 0 bytes
route-map ROUTES-OUT, permit, sequence 20
 Match clauses:
 ip address (access-lists): 2
 Set clauses:
 Metric 20
 Policy routing matches: 0 packets, 0 bytes

The output divides each route map entry into match and set clauses. The policy route
matches should be ignored when looking at route maps for BGP.

AS-path access lists are treated similarly to access lists. The show ip as-path command,
followed by an optional access list number, displays AS-path access lists. The AS-path access
list below:

as-path access-list 5 permit ^3$

appears as:

Router1>show ip as-path 5
AS path access list 5
 permit ^3$

One problem you may encounter is that despite extensive work on your route maps and
associated access lists, the routing policy you have been trying to change may not be any
different than when you started. The first reason to consider is that you may have forgotten to

 Cisco IOS Access lists

 Page 187

force your peers to recognize the change, either through a soft reconfiguration or a hard reset.
A good way to check this is with the show ip bgp command. Output from this command
shows a version ID for BGP:

Router1# show ip bgp
BGP table version is 23029, local router ID is 192.168.18.100
Status codes: s suppressed, d damped, h history, * valid, > best, i -
internal
Origin codes: i - IGP, e - EGP, ? - incomplete

The BGP table version should increase after a change. Another way to check is with the show
ip bgp summary command. This command will show you how long each BGP session for
each of a router's peers has been up, and this information tells you the last time each session
was reset or how long it has been down:

Router1# show ip bgp summary
BGP table version is 10302748, main routing table version 1030748
61505 network entries (182249/244040 paths) using 14333788 bytes of memory
25192 BGP path attribute entries using 2952896 bytes of memory
12170 BGP route-map cache entries using 194720 bytes of memory
0 BGP filter-list cache entries using 0 bytes of memory

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State
192.168.30.1 4 2 2713633 103161 1030743 0 0 2w2d
192.168.31.1 4 3 123449 103186 1030743 0 0 2w2d

In this example, you can see that this router connects to AS 2 and AS 3, and that each BGP
connection has been running for more than two weeks. This is a better way to see if a reset
has occurred.

The nature of the BGP route selection process creates a whole new set of ways to make a
mistake. Often a route map change does not change actual policy because another route
attribute was set that takes precedence over the changes you made. As an example, let's revisit
the network in Figure 6.2. Let's say we want the 6-Mb line to be used only for backup. To
affect the policy, we use the following:

! define AS path access lists and standard access lists to build policy
sets
as-path access-list 5 permit^3$
access-list 5 permit any
!
! build route map
route-map INCOMING-UPDATES-6Mbit-LINE permit 10
 match ip address 5
 set as-path prepend 3 3
!
! define route map
route-map TO-AS-3 permit 10
 set as-path prepend 1 1
!
router bgp 1
 network 172.28.0.0
 network 192.168.10.0
 neighbor 192.168.30.1 remote-as 2
!
 neighbor 192.168.31.1 remote-as 3
 neighbor 192.168.31.1 route-map INCOMING-UPDATES-6Mbit-LINE in

 Cisco IOS Access lists

 Page 188

 neighbor 192.168.31.1 route-map TO-AS-3 out
 neighbor 192.168.31.1 weight 15

AS-path prepending is used as a way to make the path through the 6-Mb line appear less
preferred. Despite the route maps, however, traffic will still go out through 6-Mb line. Why?
The path through the 192.168.31.1 has a higher weight than the other path through
192.168.30.1. Weight takes precedence over AS hops, and the BGP router configuration line
that sets the weight needs to be deleted in order for the intended policy to work.

The directionality and scope of attribute changes is another potential problem. We may try to
implement our previous policy using local preferences as shown:

! define AS path access lists and standard access lists to build policy
sets
access-list 5 permit any
! build route map
route-map INCOMING-UPDATES-6Mbit-LINE permit 10
 match ip address 5
 set local-preference 80
! define route map
route-map TO-AS-3 permit 10
 set local-preference 80
!
router bgp 1
 network 172.28.0.0
 network 192.168.10.0
 neighbor 192.168.30.1 remote-as 2
 neighbor 192.168.31.1 remote-as 3
 neighbor 192.168.31.1 route-map INCOMING-UPDATES-6Mbit-LINE in
 neighbor 192.168.31.1 route-map TO-AS-3 out

While traffic does not go out of the 6-Mb line from AS 1, it still uses the 6-Mb line to AS 1.
The route map TO-AS-3 does not work because local preference applies only to incoming
routes. AS path prepending or communities (if supported by AS 3) are the only solutions for
the route map TO-AS-3.

Another key attribute to look out for is prefix length. Remember that BGP uses the most
specific route (longest prefix) to make a routing decision. Let's say that we had the following
configuration for Router 1 for the network in Figure 6.4:

! Router 1 route map
access-list 1 permit 172.28.0.0
access-list 2 permit any
access-list 3 permit 172.28.35.0
!
route-map ROUTES-OUT permit 10
 match ip address 1
 set metric 10
route-map ROUTES-OUT permit 20
 match ip address 2
 set metric 20
!
route-map SUPPRESS-172-28 permit 10
 match ip addess 3
! bgp
router bgp 1
 network 172.28.10.0

 Cisco IOS Access lists

 Page 189

 network 172.28.11.0
 network 172.28.23.0
 network 172.28.24.0
 network 172.28.25.0
 network 172.28.35.0
 network 12.28.36.0
 aggregate-address 172.28.0.0 255.255.0.0 suppress-map SUPPRESS-172-28
 network 192.168.10.0
 neighbor 192.168.30.1 remote-as 2
 neighbor 192.168.30.1 route-map ROUTES-OUT out

Recall that we want to route traffic for 172.28.0.0 through AS 2 and network 192.168.10.0
through AS 3. We use only a few networks in network 172.28.0.0/16, but we aggregate all of
them together as a /16 network. The routing policy we intend will not work, however, for
traffic going to 172.28.35.0/24. Since we suppressed aggregation for this part of
172.28.0.0/16, it is treated differently from the 172.28.0.0/16 aggregate. Removing the
suppress-map clause or adding the access list entry:

access-list 1 permit 172.28.35.0

fixes the problem. You might wonder how such a suppress-map got left on. At one point, a
network administrator may have had a separate routing policy for that route map and forgot to
take it off at one point. Outdated configurations can be another source of problems, especially
if you have to change policies quickly and often.

Many ISPs have a maximum length prefix length for a given IP address range that they
accept. ISPs that you purchase transit from are usually more generous in terms of allowing a
longer prefix length. If you are advertising networks to multiple ISPs outside of the traditional
class B and class C spaces, I suggest that you advertise routes to be a /19 or shorter.
Otherwise you may find that some ISPs reject routes with longer prefixes. This can result in
unpredictable behavior, such as some sites on the Internet being unreachable from particular
networks while others are reachable.

Chapter 7. Case Studies
In this chapter, I present three case studies that use access lists in common scenarios. These
case studies show how different types of access lists can be used together in situations you
may encounter. They also illustrate how the three key concerns we talked about—security,
robustness, and business policy—are implemented in realistic situations. The first example
deals with a single organization's intranet connected by a wide area network (WAN). I show
how to use access lists to implement a secure and stable WAN. The second example goes
over a common firewall configuration called the screened subnet architecture. Here, I use
access lists to secure an organization's perimeter. The final case study covers how an
organization connects to the Internet. This example shows how to use access lists to
implement route preferences while still maintaining security.

7.1 A WAN case study

In this case study, we'll see how to use access lists in routers that make up a wide area
network in the network shown in Figure 7.1. Like many large organizations, different
departments control and manage different parts of this network. Site 1's network is run by a

 Cisco IOS Access lists

 Page 190

different organization from Site 2, neither of which run Site 3's network. Each of these three
sites have separate address spaces, and each site runs a different routing protocol. The routers
that connect the three sites, Routers A through F, are run by a separate organization, which
uses yet another routing protocol. For our case study, I show the configurations of each of the
WAN routers.

Figure 7.1. Network for WAN case study

A few other facts are relevant to this example. Each WAN router connects to two different
site networks. Routers A, C, and E use 2 in the last octet of each of these two networks. For
example, Router A has interfaces 172.20.0.2 and 172.20.1.2. Similarly, Routers B, D, and F
have 3 in the last octet. As an example, Router B has interfaces 172.20.0.3 and 172.20.1.3.
The WAN network administrators manage the WAN from hosts in network 172.25.100.0/24.

 Cisco IOS Access lists

 Page 191

7.1.1 Security concerns

The WAN administrators do not allow local site network administrators to log in, so Telnet
access needs to be limited to their administrative segment. We will also allow logins from the
neighboring WAN router via the site network. This is useful for reaching WAN routers during
cases when routing protocols are broken. In case the sites do manage to log on to a WAN
router, we limit outgoing Telnet access to prevent the router from being used to stage attacks.
To provide some visibility to the site network administrators, we allow read-only SNMP
access to the sites, but read and write SNMP access is available only to the WAN
administrative segment. Another security concern is that we do not want any spoofing of IP
addresses. One site should not be able to mount attacks based on spoofing. A final concern is
that we wish to harden our routers against attack by eliminating vulnerable services on them.

7.1.2 Robustness concerns

In a network environment like this, WAN administrators need to make sure that bad
addressing information is not sent into the sites. In addition, WAN routers must not accept
routes for inappropriate networks from their sites. Since the sites are stub networks, they only
need to advertise their own network. Also, the WAN routers should be the only source of
EIGRP 200 routing information from the local network.

7.1.3 Business concerns

In this organization's network, critical operations go on between Sites 2 and 3 and also
between Sites 1 and 3. The link between Sites 2 and 3 is not used for failover if the link
between Sites 1 and 2 goes down. If this link does go down, a business decision has been
made that loss of connectivity between Sites 1 and 2 is less important than the application
performance obtained by having bandwidth dedicated between 2 and 3. The organization's
management has decided that the link between Sites 2 and 3 can be used, however, if the link
between Sites 1 and 3 goes down, since that traffic is also deemed critical.

7.1.4 Site 1 router configurations

Here are the relevant parts of the configuration for Router A:

! limit points of vulnerability on router
no service tcp-small-servers
no service udp-small-servers
no service finger
!
ip subnet zero
! interfaces definitions
interface Ethernet0
 description site 1 LAN interface
 ip address 172.20.0.2 255.255.255.0
 ip access-group 100 in
interface Ethernet1
 description site 1 LAN interface
 ip address 172.20.1.2 255.255.255.0
 ip access-group 100 in
interface Serial 0
 description serial interface to WAN
 ip address 192.168.32.1 255.255.255.252
 ip access-group 101 out

 Cisco IOS Access lists

 Page 192

 ip access-group 102 in
! routing processes
router igrp 100
 network 172.20.0.0
 distribute-list 3 in Ethernet 0
 distribute-list 3 in Ethernet 1
 redistribute eigrp 200
!
router eigrp 200
 network 192.168.32.0 mask 255.255.255.248
 network 172.20.0.0
 redistribute igrp 100
 distance 90 192.168.32.2
 distance 90 172.20.0.3 0.0.1.0
 distance 255
! telnet access from management segment
access-list 1 permit 172.25.100.0 0.0.0.255
! telnet access from other WAN routers serial interfaces
access-list 1 permit 192.168.32.0 0.0.0.7
access-list 1 permit 192.168.32.8 0.0.0.3
! telnet access from other WAN routers Ethernet interfaces
access-list 1 permit 172.20.0.2 0.1.1.1
access-list 1 permt 172.24.0.2 0.1.1.1
! telnet access out on list 2 - limit to WAN routers
access-list 2 permit 172.20.0.2 0.1.1.1
access-list 2 permit 192.168.32.0 0.0.0.7
access-list 2 permit 192.168.32.8 0.0.0.3
! access-list for route distribution
access-list 3 permit 172.20.0.0 0.1.0.0
! SNMP access lists
! read write access for management segment
access-list 4 permit 172.25.100.0 0.0.0.255
! read only access for local site
access-list 5 permit 172.20.0.0 0.1.255.255
! limit incoming traffic to traffic from site
access-list 100 permit ip 172.20.0.0 0.1.255.255 any
! clobber traffic between site 1 and 2 on serial link
access-list 101 deny ip 172.20.0.0 0.1.255.255 192.168.16.0 0.0.15.255
access-list 101 permit ip any any
access-list 102 deny ip 192.168.16.0 0.0.15.255 172.20.0.0 0.1.255.255
access-list 102 permit ip any any
!
! SNMP access declarations
snmp community netman17225 rw 4
snmp community 172.20public ro 5
! line definitions
line vty 0 4
 access-class 1 in
 access-class 2 out

For security, we limit incoming Telnet sessions to the WAN routers and the management
segment, 172.20.100.0/24 through access list 1. Outgoing Telnet is limited to the WAN
routers with access list 2. If a WAN router login password is compromised, that router cannot
be used to stage attacks into the sites. Services on the router are limited with the no service
command. Access lists 4 and 5 limit SNMP access into the routers. To prevent spoofing
attacks from one site to another, access list 100 limits packets only from Site 1 addresses to be
distributed to the rest of organization.

 Cisco IOS Access lists

 Page 193

For robustness, routes coming in from the site are filtered through access list 3, allowing on-
the-site networks in. Also, we only listen to EIGRP 200 routing updates from the neighboring
WAN routers. This policy is implemented with distance statements that set all routing updates
from the WAN routers to distance 90 and set routing updates from all other routes to distance
255. To implement our business policy, we stop packets from Site 1 from going to Site 2 via
Site 3. Note that this can be done in a number of places, but filtering the packets close to their
source reduces the total amount of traffic on the WAN.

Router B has a similar configuration, differing only in the interface addresses:

! limit points of vulnerability on router
no service tcp-small-servers
no service udp-small-servers
no service finger
!
ip subnet zero
! interfaces definitions
interface Ethernet0
 description site 1 LAN interface
 ip address 172.20.0.3 255.255.255.0
 ip access group 100 in
interface Ethernet1
 description site 1 LAN interface
 ip address 172.20.1.3 255.255.255.0
 ip access-group 100 in
interface Serial 0
 ip address 192.168.32.5 255.255.255.252
 description serial interface to WAN
! routing processes
router igrp 100
 network 172.20.0.0
 distribute-list 3 in Ethernet0
 distribute-list 3 in Ethernet1
 redistribute eigrp 200
!
router eigrp 200
 network 192.168.32.4 mask 255.255.255.252
 network 172.20.0.0
 redistribute igrp 100
 distance 90 192.168.32.6
 distance 90 172.20.0.2 0.0.1.0
 distance 255
! telnet access from management segment
access-list 1 permit 172.25.100.0 0.0.0.255
! telnet access from other WAN routers serial interfaces
access-list 1 permit 192.168.32.0 0.0.0.7
access-list 1 permit 192.168.32.8 0.0.0.3
! telnet access from other WAN routers Ethernet interfaces
access-list 1 permit 172.20.0.2 0.1.1.1
access-list 1 permt 172.24.0.2 0.1.1.1
! telnet access out on list 2 - limit to WAN routers
access-list 2 permit 172.20.0.2 0.1.1.1
access-list 2 permit 192.168.32.0 0.0.0.7
access-list 2 permit 192.168.32.8 0.0.0.3
! access-list for route distribution
access-list 3 permit 172.20.0.0 0.1.0.0
! SNMP access lists
! read write access for management segment
access-list 4 permit 172.25.100.0 0.0.0.255

 Cisco IOS Access lists

 Page 194

! read only access for local site
access-list 5 permit 172.20.0.0 0.1.255.255
! limit incoming traffic to traffic from site
access-list 100 permit ip 172.20.0.0 0.1.255.255 any
!
! SNMP access declarations
snmp community netman17225 rw 4
snmp community 172.20public ro 5
! line definitions
line vty 0 4
 access-class 1 in
 access-class 2 out

7.1.5 Site 2 router configurations

Router C has a configuration similar to Routers A and B. It differs in the networks filtered,
interface numbers, and routing protocols used:

! limit points of vulnerability on router
no service tcp-small-servers
no service udp-small-servers
no service finger
!
ip subnet zero
! interfaces definitions
interface Ethernet0
 description site 2 LAN interface
 ip address 192.168.16.3 255.255.255.0
 ip access-group 100 in
interface Ethernet1
 description site 2 LAN interface
 ip address 192.168.17.3 255.255.255.0
 ip access-group 100 in
interface Serial 0
 description serial interface to WAN
 ip address 192.168.32.6 255.255.255.252
! routing processes
router rip
 network 192.168.16.0
 network 192.168.17.0
 distribute-list 3 in Ethernet 0
 distribute-list 3 in Ethernet 1
 redistribute eigrp 200
!
router eigrp 200
 network 192.168.16.0
 network 192.168.17.0
 network 192.168.32.4 mask 255.255.255.252
 distance 90 192.168.32.5
 distance 90 192.168.16.3 0.0.1.0
 distance 255
redistribute rip
! telnet access from management segment
access-list 1 permit 172.25.100.0 0.0.0.255
! telnet access from other WAN routers serial interfaces
access-list 1 permit 192.168.32.0 0.0.0.7
access-list 1 permit 192.168.32.8 0.0.0.3
! telnet access from other WAN routers Ethernet interfaces
access-list 1 permit 172.20.0.2 0.1.1.1
access-list 1 permt 172.24.0.2 0.1.1.1

 Cisco IOS Access lists

 Page 195

! telnet access out on list 2 - limit to WAN routers
access-list 2 permit 192.168.16.0 0.0.1.1
access-list 2 permit 192.168.32.0 0.0.0.7
access-list 2 permit 192.168.32.8 0.0.0.3
! access-list for route distribution
access-list 3 permit 192.168.16.0 0.0.15.0
! SNMP access lists
! read write access for management segment
access-list 4 permit 172.25.100.0 0.0.0.255
! read only access for local site
access-list 5 permit 192.168.16.0 0.15.255.255
! limit incoming traffic to traffic from site
access-list 100 permit ip 192.168.16.0 0.15.255.255 any
!
! SNMP access declarations
snmp community netman17225 rw 4
snmp community 172.20public ro 5
! line definitions
line vty 0 4
 access-class 1 in
 access-class 2 out

Router D has some differences from Router C (other than just interface addresses) because we
need to implement our routing policy that says that the link between Sites 2 and 3 will not be
used for failover between Sites 1 and 2. There is no way to implement this policy using
distribute-list statements, so we need to filter packets between Sites 2 and 3 to prevent
traffic from Sites 1 and 2 from using the link. Although we filtered the packets leaving Site 1
bound for Site in Router A, we do the same in case we make a mistake in Router A:

! limit points of vulnerability on router
no service tcp-small-servers
no service udp-small-servers
no service finger
!
ip subnet zero
! interfaces definitions
interface Ethernet 0
 description site 2 LAN interface
 ip address 192.168.16.3 255.255.255.0
 ip access-group 100 in
interface Ethernet 1
 description site 2 LAN interface
 ip address 192.168.17.3 255.255.255.0
 ip access-group 100 in
interface Serial 0
 description serial interface to WAN
 ip address 192.168.32.9 255.255.255.252
 ip access-group 101 in
 ip access-group 102 out
! routing processes
router rip
 network 192.168.16.0
 network 192.168.17.0
 distribute-list 3 in Ethernet 0
 distribute-list 3 in Ethernet 1
 redistribute eigrp 200
!
router eigrp 200
 network 192.168.16.0

 Cisco IOS Access lists

 Page 196

 network 192.168.17.0
 network 192.168.32.8 mask 255.255.255.252
 redistribute rip
 distance 90 192.168.32.5
 distance 90 192.168.16.3 0.0.1.0
 distance 255
! telnet access from management segment
access-list 1 permit 172.25.100.0 0.0.0.255
! telnet access from other WAN routers serial interfaces
access-list 1 permit 192.168.32.0 0.0.0.7
access-list 1 permit 192.168.32.8 0.0.0.3
! telnet access from other WAN routers Ethernet interfaces
access-list 1 permit 172.20.0.2 0.1.1.1
access-list 1 permt 172.24.0.2 0.1.1.1
! telnet access out on list 2 - limit to WAN routers
access-list 2 permit 192.168.16.2 0.0.1.1
access-list 2 permit 192.168.32.0 0.0.0.7
access-list 2 permit 192.168.32.8 0.0.0.3
! access-list for route distribution
access-list 3 permit 192.168.16.0 0.0.15.0
! SNMP access lists
! read write access for management segment
access-list 4 permit 172.25.100.0 0.0.0.255
! read only access for local site
access-list 5 permit 192.168.16.0 0.15.255.255
access-list 6 deny 172.20.0.0 0.1.0.0
access-list 6 permit any
access-list
! limit incoming traffic to traffic from site
access-list 100 permit ip 192.168.16.0 0.15.255.255 any
! clobber traffic between site 1 and 2 on serial link
access-list 101 deny ip 172.20.0.0 0.1.255.255 192.168.16.0 0.0.15.255
access-list 101 permit ip any any
access-list 102 deny ip 192.168.16.0 0.0.15.255 172.20.0.0 0.1.255.255
access-list 102 permit ip any any
access
!
! SNMP access declarations
snmp community netman17225 rw 4
snmp community 172.20public ro 5
! line definitions
line vty 0 4
 access-class 1 in
 access-class 2 out

7.1.6 Site 3 router configurations

The configurations for Routers E and F are similar to the previous examples, except that they
filter Site 1 and 2 packets in different directions and have different interface addresses and
local routing protocols. Here's the configuration for Router E:

! limit points of vulnerability on router
no service tcp-small-servers
no service udp-small-servers
no service finger
!
ip subnet zero
! interfaces definitions
interface Ethernet 0
 description site 3 LAN interface

 Cisco IOS Access lists

 Page 197

 ip address 172.24.0.2 255.255.255.0
 ip access-group 100 in
interface Ethernet 1
 description site 3 LAN interface
 ip address 172.24.1.2 255.255.255.0
 ip access-group 100 in
interface Serial 0
 description serial interface to WAN
 ip address 192.168.32.2 255.255.255.252
 ip access-group 101 in
 ip access-group 102 out
! routing processes
router ospf 70
 network 172.24.1.0 mask 0.0.0.255 area 0
 network 172.25.0.0 mask 0.0.0.255 area 0
!
router eigrp 200
 network 172.24.0.0
 network 172.25.0.0
 network 192.168.32.0 mask 255.255.255.252
 distance 90 192.168.32.1
 distance 90 172.24.0.0 0.0.1.3
 distance 255
 redistribute ospf 70
! telnet access from management segment
access-list 1 permit 172.25.100.0 0.0.0.255
! telnet access from other WAN routers serial interfaces
access-list 1 permit 192.168.32.0 0.0.0.7
access-list 1 permit 192.168.32.8 0.0.0.3
! telnet access from other WAN routers Ethernet interfaces
access-list 1 permit 172.20.0.2 0.1.1.1
access-list 1 permt 172.24.0.2 0.1.1.1
! telnet access out on list 2 - limit to WAN routers
access-list 2 permit 172.24.0.2 0.1.1.1
access-list 2 permit 192.168.32.0 0.0.0.7
access-list 2 permit 192.168.32.8 0.0.0.3
! access-list for route distribution
access-list 3 permit 192.168.16.0 0.0.15.0
! SNMP access lists
! read write access for management segment
access-list 4 permit 172.25.100.0 0.0.0.255
! read only access for local site
access-list 5 permit 172.24.0.0 0.1.255.255
! limit incoming traffic to traffic from site
access-list 100 permit ip 172.24.0.0 0.1.255.255 any
! clobber traffic between site 1 and 2 on serial link
access-list 101 deny ip 172.20.0.0 0.1.255.255 192.168.16.0 0.0.15.255
access-list 101 permit ip any any
access-list 102 deny ip 192.168.16.0 0.0.15.255 172.20.0.0 0.1.255.255
access-list 102 permit ip any any
!
! SNMP access declarations
snmp community netman17225 rw 4
snmp community 172.20public ro 5
! line definitions
line vty 0 4
 access-class 1 in
 access-class 2 out

Finally, here is the configuration for Router F:

 Cisco IOS Access lists

 Page 198

! limit points of vulnerability on router
no service tcp-small-servers
no service udp-small-servers
no service finger
!
ip subnet zero
! interfaces definitions
interface Ethernet0
 ip address 172.24.0.2 255.255.255.0
 ip access-group 100 in
interface Ethernet1
 ip address 172.24.1.2 255.255.255.0
 ip access-group 100 in
interface Serial 0
 ip address 192.168.32.2 255.255.255.252
 ip access-group 101 in
 ip access-group 102 out
! routing processes
router ospf 70
 network 172.24.1.0 mask 0.0.0.255 area 0
 network 172.25.0.0 mask 0.0.0.255 area 0
 redistribute eigrp 200
!
router eigrp 200
 network 172.24.0.0
 network 172.25.0.0
 network 192.168.32.0 mask 255.255.255.252
 redistribute ospf 70
 distance 90 192.168.32.9
 distance 90 172.24.0.0 0.0.1.2
 distance 255
! telnet access from management segment
access-list 1 permit 172.25.100.0 0.0.0.255
! telnet access from other WAN routers serial interfaces
access-list 1 permit 192.168.32.0 0.0.0.7
access-list 1 permit 192.168.32.8 0.0.0.3
! telnet access from other WAN routers Ethernet interfaces
access-list 1 permit 172.20.0.2 0.1.1.1
access-list 1 permt 172.24.0.2 0.1.1.1
! telnet access out on list 2 - limit to WAN routers
access-list 2 permit 172.24.0.2 0.1.1.1
access-list 2 permit 192.168.32.0 0.0.0.7
access-list 2 permit 192.168.32.8 0.0.0.3
! access-list for route distribution
access-list 3 permit 192.168.16.0 0.0.15.0
! SNMP access lists
! read write access for management segment
access-list 4 permit 172.25.100.0 0.0.0.255
! read only access for local site
access-list 5 permit 172.24.0.0 0.1.255.255
! limit incoming traffic to traffic from site
access-list 100 permit ip 172.24.0.0 0.1.255.255 any
! clobber traffic between site 1 and 2 on serial link
access-list 101 deny ip 172.20.0.0 0.1.255.255 192.168.16.0 0.0.15.255
access-list 101 permit ip any any
access-list 102 deny ip 192.168.16.0 0.0.15.255 172.20.0.0 0.1.255.255
access-list 102 permit ip any any
!
! SNMP access declarations
snmp community netman17225 rw 4
snmp community 172.20public ro 5

 Cisco IOS Access lists

 Page 199

! line definitions
line vty 0 4
 access-class 1 in
 access-class 2 out

7.2 A firewall case study

The next case study covers a firewall implementation. Cisco routers packet filter traffic
between bastion hosts and the Internet and between the bastion hosts and an organization's
internal network. The main concern here is security. We want to make sure our bastion hosts
are not exposed to wide ranges of problems and attacks, and also that if some of those hosts
are compromised, they are not used as a launch point to attack the rest of the network. We
also want to make sure that our own access to the router is reasonably secure. Other concerns
are scalability and ease of management.

What are the key elements of this firewall complex? The firewall network has to support the
following components:

• A general proxy supporting the socks protocol
• An SMTP mail relay
• A web caching proxy server listening on port 81
• A web server using standard HTTP
• A web server for secure transactions for serving SSL
• A remote access device for access into the internal network

All the routers and servers need to be administered, of course. To do this, we should consider
the following rules:

• Network 172.28.32.0 has workstations for administration and for maintaining the
proxy relay segments.

• Network 172.28.30.0/24 has workstations and servers for updating the web servers.
• The routers need to be administered with TACACS+ protocol for authentication, in

addition to TFTP and Telnet. A compromise of a host in the firewall should not allow
promiscuous snooping.

• Remote access uses an address pool of 172.28.64.0/24.
• Systems and routers use two NTP servers at 172.28.1.100 and 172.28.1.101.
• Routers use a TACACS+ server at 172.28.32.20.
• The organization connects to the Internet through a High Speed Serial Interface

(HSSI) with IP address 192.168.33.2.

There are a few other things to consider:

• Design should be scalable : it should be easy to add servers without a major impact.
• In this environment, we control what systems go on segments: no hosts are put on a

segment without our approval.
• Advertise only one network for ease of routing.
• There must be problem isolation: a problem with one segment shouldn't affect others.

Given these requirements and design considerations, the network shown in Figure 7.2 has
been designed.

 Cisco IOS Access lists

 Page 200

Figure 7.2. Network for firewall case study

There are two routers and four DMZs in this design. DMZ stands for demilitarized zone, an
area between an insecure area (the Internet) and a secured area (the internal area of the
organization). The screening router filters (screens) packets going to the DMZs and provides
a measure of protection to the hosts in the DMZs. The choke router restricts access (chokes)
by DMZ hosts into the internal organization. Should a DMZ host be compromised, the choke
router restricts its access to prevent further penetration. The first DMZ is dedicated to proxy
services. The second DMZ is used for web services presented to the Internet. Servers
accessible to the Internet are divided in this way for a number of reasons. Two different
groups administer the web servers and the proxy systems. We don't want a compromise in one
segment to allow attacks on other segments. While the ultimate extreme of this logic is to put
each server on its own segment, this consumes a lot of address space and router interfaces, so
we use a /26 for segments with hosts on them.

Another feature is a segment with no hosts on it, designed for maintaining the screening
router. Telnet, TACACS+, and TFTP packets needed for router maintenance pass through the
segment without being snooped on. Since we control the segment, we can ensure that no hosts
will reside on it. This gives the design an added measure of security.

For the remote access segment, we use a small /30 network allowing in VPN connections.
Users on the Internet connect to a tunnel server on this segment. The tunnel uses a pool

 Cisco IOS Access lists

 Page 201

address of 172.28.6.128/25, making incoming remote clients look like they are from this
address range. The same people administering the proxy servers administer the remote access
system. The VPN box requires Netbios and other related ports for administration.

7.2.1 Screening router configuration

Given this network, I've constructed the following access list for the screening router:

! limit points of vulnerability on router
no service tcp-small-servers
no service udp-small-servers
no service finger
!
ip classless
ip subnet zero
! NTP definitions
ntp update-calendar
ntp server 172.28.1.100
ntp server 172.28.1.101
ntp access-group query-only 12
! tacacs
aaa new-model
aaa authentication login default tacacs+ line
aaa authentication enable default tacacs+ enable
aaa authorization exec default tacacs+ none
aaa accounting exec default start-stop tacacs+
aaa accounting connection default start-stop tacacs+
aaa accounting system default start-stop tacacs+
! interfaces definitions
! proxy segment
interface etheret 1/0
 description interface to proxies
 ip address 204.148.40.61 255.255.255.192
 ip access-group 105 out
 ip access-group 106 in
 no ip directed-broadcast
! web server segment
interface Ethernet1/1
 description interface to web server segment
 ip address 204.148.40.125 255.255.255.192
 ip access-group 107 out
 ip access-group 108 in
 no ip directed-broadcast
! pass through segment
interface Ethennet1/2
 description pass through segment
 ip address 204.148.40.253 255.255.255.248
 ip access-group 103 out
 ip access-group 104 in
 no ip directed-broadcast
! tunnel
interface Ethernet1/3
 description tunnel segment
 ip address 204.148.40.249 255.255.255.252
 ip access-group 110 out
 ip access-group 109 in
 no ip directed-broadcast
interface hssi 2/0
 description HSSI interfce to Internet
 ip address 192.168.33.2 255.255.255.252

 Cisco IOS Access lists

 Page 202

 ip access-group 102 out
 ip access-group 101 in
 no ip directed-broadcast
! routing processes
! vty access
access-list 10 permit 172.28.32.0 0.0.0.255
access-list 11 deny any
! NTP access
access-list 12 permit 172.28.1.100 0.0.0.1
! preventing spoofing - starting with private addresses
access-list 101 deny ip 172.16.0.0 0.15.255.255 any
access-list 101 deny ip 192.168.0.0 0.0.255.255 any
access-list 101 deny ip 10.0.0.0 0.255.255.255.255 any
! deny multicast
access-list 101 deny ip 224.0.0.0 0.255.255.255.255
! deny our own net from coming in
access-list 101 deny ip 204.148.40.0
! Let everything else in
access-list 101 permit ip any 204.148.40.0 0.0.0.25
! general outbound trafic - permit only our traffic (no spoofing from us)
access-list 102 permit ip 204.148.40.0 .0.0.0.255 any
! rules for Pass thru DMZ
! no transit through this segment (outbound)
access-list 103 deny any any
! into pass through interface
! tacacs+
access-list 104 permit tcp 172.28.32.20 0.0.0.255 eq tacacs host
204.148.40.253 eq tacacs
! telnet access
access-list 104 permit tcp 172.28.32.0 0.0.0.255 host 204.148.40.253 eq
telnet
access-list 104 permit tcp host 204.148.40.252 host 204.148.40.253 eq
telnet
! TFTP
access-list 104 permit tcp host 172.28.32.0 0.0.0.255 gt 1023 host
204.148.40.253 eq 69
! ping
access-list 104 permit icmp 172.28.32.0 0.0.0.255 host 204.148.40.253 echo
!
! to generic proxy segment
! established and echo first
access-list 105 permit any 204.148.40.0 0.0.0.63 established
access-list 105 permit icmp any 204.148.40.0 0.0.0.63 echo
access-list 105 permit icmp any 204.148.40.0 0.0.0.63 echo-reply
! to generic FTP proxy in
! deny access to socks port
access-list 105 deny any 204.148.40.0 0.0.0.63 eq 1080
! FTP data connection
access-list 105 permit tcp any eq 20 204.148.40.20 0.0.0.3 gt 1023
! DNS
access-list 105 permit udp any eq domain 204.148.40.0 0.0.0.63 eq domain
access-list 105 permit udp any eq domain 204.148.40.0 0.0.0.63 gt 1023
! mail relays
access-list 105 permit tcp any 204.148.40.16 0.0.0.3 eq smtp
! other icmp
access-list 105 permit icmp any 204.148.40.0 0.0.0.63 host-unreachable
!
! from generic proxy segment (inbound list)
! established
access-list 106 permit tcp 204.14.35.0 0.0.0.63 any established
! DNS

 Cisco IOS Access lists

 Page 203

access-list 106 permit udp 204.148.40.0 0.0.0.63 any eq domain
access-list 106 permit tcp 204.148.40.0 0.0.0.63 any eq domain
! proxy access
access-list 106 permit tcp 204.148.40.20 0.0.0.3 any
! web proxy access
access-list 106 permit tcp 204.148.40.0 0.0.0.15 any
! mail
access-list 106 permit tcp 204.148.40.16 0.0.0.3 any eq smtp
! icmp
access-list 106 permit tcp 204.148.40.0 0.0.0.63 echo-reply
access-list 106 permit tcp 204.148.40.0 0.0.0.63 echo
!
! to web server segment
access-list 107 permit tcp any 204.148.40.64 0.0.0.63 established
access-list 107 permit icmp any 204.148.40.64 0.0.0.63 echo
access-list 107 permit tcp any 204.148.40.64 0.0.0.15 eq www
access-list 107 permit tcp any 204.148.40.80 0.0.0.15 eq 443
! FTP server
access-list 107 permit tcp any 204.148.40.112 0.0.0.7 range 20 21
access-list 107 permit tcp any eq 20 204.148.40.112 0.0.0.7 gt 1023
access-list 107 permit tcp any gt 1023 204.148.40.112 0.0.0.7 gt 1023
!
! from web server segment
access-list 108 permit 204.148.40.64 0.0.0.63 any established
! for FTP servers
access-list 108 permit 204.148.40.112 0.0.0.7 eq 20 any gt 1023
access-list 108 permit 204.148.40.64 0.0.0.63 any echo-reply
!
! to tunnel
access-list 109 permit gre any host 204.148.40.250
access-list 109 permit icmp any host 204.148.40.250 any
!
! from tunnel
access-list 110 permit gre host 204.148.40.250 any
access-list 110 permit icmp any host 204.148.40.250 any
! all routing via statics - no routing protocols run here
! route back into organizations' internal network
ip route 172.28.0.0 255.255.0.0 204.148.40.254
! default route to Internet
ip route 0.0.0.0 0.0.0.0 255.255.255.255 192.168.33.2
! snmp access
snmp community MyString ro 10
!
tacacs-server host 172.28.32.20
tacacs-server key MyKey123
! line access
line vty 0 4
 access-class 10 in
 access-class 11 out

To deal with possible spoofing of IP addresses, access lists 101 and 102 prevent spoofed
packets from coming in from and going out to the Internet, respectively. In addition, the
incoming and outgoing access lists prevent hosts on different subnets from sending out
spoofed packets. Since there are incoming and outgoing access lists on each interface, the
access list for each segment can be managed independently. Also, access to web service or
proxy service is open to a range of IP addresses. This allows servers to be added without
changes to access lists. On the proxy server segment, we block incoming attempts to the
standard SOCKS proxy port. This is to prevent people on the Internet from using the proxy to
attack other hosts or disguise their identities.

 Cisco IOS Access lists

 Page 204

Notice that I have implemented some commands that reduce the number of access lists
needed. The static route to 172.28.0.0/16 through the maintenance segment eliminates the
need for routing protocols, which of course eliminates the need for routing access lists. The
no service tcp-small-servers, no service udp-small-servers, and no service finger commands
turn off router services. no ip directed broadcast eliminates the need for specific access list
entries to filter broadcast attacks .

7.2.2 Choke router configuration

The choke router is configured as follows:

! limit points of vulnerability on router
no service tcp-small-servers
no service udp-small-servers
no service finger
!
ip classless
ip subnet zero
! NTP definitions
ntp update-calendar
ntp server 172.28.1.100
ntp server 172.28.1.101
ntp access-group query-only 12
! tacacs
aaa new-model
aaa authentication login default tacacs+ line
aaa authentication enable default tacacs+ enable
aaa authorization exec default tacacs+ none
aaa accounting exec default start-stop tacacs+
aaa accounting connection default start-stop tacacs+
aaa accounting system default start-stop tacacs+
! interfaces definitions
! proxy segment
interface Ethernet 1/0
 description interface to proxy segment
 ip address 204.148.40.62 255.255.255.192
 ip access-group 102 out
 ip access-group 103 in
 no ip directed-broadcast
! web server segment
interface Ethernet 1/1
 description interface to web server segment
 ip address 204.148.40.126 255.255.255.192
 ip access-group 104 out
 ip access-group 105 in
 no ip directed-broadcast
! pass through segment
interface Ethernet 1/2
 description pass through segment
 ip address 204.148.40.254 255.255.255.248
 ip access-group 106 out
 ip access-group 107 in
 no ip directed-broadcast
! tunnel
interface Ethernet 1/3
 description tunnel segment
 ip address 172.28.6.2 255.255.255.252
 ip access-group 108 out
 ip access-group 109 in

 Cisco IOS Access lists

 Page 205

 no ip directed-broadcast
interface FastEthernet 2/0
 description interface to internal network
 ip address 172.28.1.253 255.255.255.0
 ip access-group 101 out
 ip access-group 100 in
 no ip directed-broadcast
! routing processes
! vty access
access-list 10 permit 172.28.32.0 0.0.0.255
access-list 11 deny any
! preventing spoofing from internal net
access-list 100 permit ip 172.28.0.0 0.0.255.255 any
! permit only traffic from DMZs
access-list 101 permit ip 204.148.40.0 0.0.0.255 172.28.0.0 0.0.255.255
access-list 101 permit ip 172.28.64.0 0.0.0.255 172.28.0.0 0.0.255.255
! Access to proxy segment
! start with established
access-list 102 permit tcp 172.28.0.0 0.0.255.255 204.148.40.0 0.0.0.63
established
! to proxy server port
access-list 102 permit tcp 172.28.0.0 0.0.255.255 204.148.40.0 0.0.0.15 eq
81
! mail
access-list 102 permit tcp 172.28.0.0 0.0.255.255 204.148.40.16 0.0.0.3 eq
smtp
! generic socks proxy
access-list 102 permit tcp 172.28.0.0 0.0.255.255 192.168.3.20 0.0.0.3 eq
1080
access-list 102 permit icmp 172.28.0.0 0.0.255.255 204.148.40.0 0.0.0.63
echo
access-list 102 permit icmp 172.28.0.0 0.0.255.255 204.148.40.0 0.0.0.63
echo-
reply
! DNS
access-list 102 permit udp 172.28.0.0 0.0.255.255 eq domain 204.148.40.16
0.0.0.3
eq domain
access-list 102 permit udp 172.28.0.0 0.0.255.255 eq domain 204.148.40.16
0.0.0.3
gt 1023
! ssh access
access-list 102 permit tcp 172.28.0.0 0.0.255.255 204.148.40.20 0.0.0.3 eq
22
! from proxy segment
access-list 103 permit tcp 204.148.40.0 0.0.0.63 172.28.0.0 0.0.255.255
established
! mail in
access-list 103 permit tcp 204.148.40.16 0.0.0.3 172.28.0.0 0.0.255.255 eq
smtp
! icmp
access-list 103 permit icmp 204.148.40.0 0.0.0.63 172.28.0.0 0.0.255.255
echo
access-list 103 permit icmp 204.148.40.0 0.0.0.63 172.28.0.0 0.0.255.255
echo-
reply
! DNS for SMTP boxes
access-list 103 permit udp 204.148.40.16 0.0.0.3 eq domain 172.28.0.0
0.0.255.255
eq domain

 Cisco IOS Access lists

 Page 206

access-list 103 permit udp 204.148.40.16 0.0.0.3 gt 1023 172.28.0.0
0.0.255.255
eq domain
! to web server segment
access-list 104 permit tcp 172.28.0.0 0.0.255.255 204.148.40.64 0.0.0.63
established
! access to web servers
access-list 104 permit tcp 172.28.0.0 0.0.255.255 204.148.40.64 0.0.0.63 eq
www
access-list 104 permit tcp 172.28.0.0 0.0.255.255 204.148.40.64 0.0.0.63 eq
443
access-list 104 permit tcp 172.28.0.0 0.0.255.255 204.148.40.64 0.0.0.63
range
ftp-date ftp
! icmp
access-list 104 permit icmp 172.28.0.0 0.0.255.255 204.148.40.64 0.0.0.63
echo
! Netbios access
access-list 104 permit tcp 172.38.30.0 0.0.255.255 204.148.40.64 0.0.0.63
eq 139
access-list 104 permit udp 172.38.30.0 0.0.255.255 204.148.40.64 0.0.0.63
range netbios-dgm netbios-ns
! from web segment
access-list 105 permit tcp 204.148.40.64 0.0.0.63 172.28.0.0 0.0.255.255
established
! FTP data connection
access-list 105 permit tcp 204.148.40.112 0.0.0.7 eq ftp-data 172.28.0.0
0.0.255.
255 gt 1023
! icmp
access-list 105 permit icmp 204.148.40.64 0.0.0.63 172.28.0.0 0.0.255.255
echo-
reply
! ntp
access-list 105 permit udp 204.148.40.64 0.0.0.63 eq ntp 172.28.1.100
0.0.0.1
eq ntp
! pass thru segment access
! telnet and tacacs and tftp
access-list 106 permit tcp 172.28.32.0 0.0.0.255 host 204.148.40.253 eq
telnet
access-list 106 permit tcp 172.28.32.20 0.0.0.255 eq tacacs host
204.148.40.253
eq tacacs
access-list 106 permit udp 172.28.32.0 0.0.0.255 host 204.148.40.253 gt
1023
access-list 106 permit udp 172.28.32.0 0.0.0.255 eq 69 host 204.148.40.253
eq 69
! ntp
access-list 106 permit udp 172.28.1.100 0.0.0.1 eq ntp host 204.148.40.253
eq ntp
access-list 106 permit udp 172.28.1.100 0.0.0.1 gt 1023 host 204.148.40.253
eq ntp
! icmp
access-list 106 permit icmp 172.28.100.0 0.0.0.255 host 204.148.40.253 echo
! from pass through
! telnet back
access-list 107 permit tcp host 204.148.40.253 eq telnet 172.28.100.0
0.0.0.255
gt 1023
! tacacs

 Cisco IOS Access lists

 Page 207

access-list 107 permit tcp host 204.148.40.253 eq tacacs 172.28.100.0
0.0.0.255
eq tacacs
! tftp
access-list 107 permit udp host 204.148.40.253 eq 69 172.28.100.0 0.0.0.255
eq 69
access-list 107 permit udp host 204.148.40.253 gt 1023 172.28.100.0
0.0.0.255
! ntp
access-list 107 permit udp host 204.148.40.253 eq ntp 172.28.1.100 0.0.0.1
eq ntp
access-list 107 permit udp host 204.148.40.253 eq ntp 172.28.1.100 0.0.0.1
gt 1023
! icmp
access-list 107 permit icmp host 204.148.40.253 172.28.100.0 0.0.0.255
echo-
reply
! to tunnel
access-list 108 permit ip 172.28.0.0 0.0.255.255 172.28.6.64 0.0.0.63
! NT services access for maintenance
access-list 108 permit tcp 172.28.30.0 0.0.0.255 host 172.28.6.5 eq 139
access-list 108 permit udp 172.28.30.0 0.0.0.255 host 172.28.6.5 range
netbios-
dgm netbios-ns
! from tunnel
access-list 109 permit ip 172.28.6.64 0.0.0.63 172.28.0.0 0.0.255.255
access-list 109 permit tcp host 172.28.6.5 eq 139 172.28.30 0.0.0.255 gt
1023
access-list 109 permit tcp host 172.28.6.5 range netbios-dgm netbios-ns
172.28.
30.0 0.0.0.255 range netbios-dgm netbios-ns
! all routing via statics - no routing protocols run here
! route back into internal network
ip route 172.28.0.0.255.255.0.0 FastEthernet 2/0
! default route to Internet
ip route 0.0.0.0 0.0.0.0 255.255.255.255 192.168.33.2
! snmp access
snmp community MyString ro 10
!
tacacs-server host 172.28.32.20
tacacs-server key MyKey123
! line access
line vty 0 4
 access-class 10 in
 access-class 11 out

For segments like maintenance that have few TCP services, there's no need to put in an TCP
established entry, since it doesn't save any lines and reduces total exposure.

7.3 An Internet routing case study

In this example, I show the use of access lists with Internet routing. Figure 7.3 shows a
network diagram of an organization doing web hosting.

 Cisco IOS Access lists

 Page 208

Figure 7.3. Network for an Internet routing case study

The organization has two sites, Site 1 and Site 2, each connected to two ISPs, A and B. ISP A
has usage-based pricing while ISP B charges a flat rate. There are two sets of web servers,
one on network 198.6.224.128/25 and another on 204.148.40.0/24. We want to get the best
possible performance for the web hosts on 198.6.224.128/25. Traffic to and from
204.148.40.0/24 is a lower priority.

To ensure higher availability, two routers connect the web servers in Site 1 to the Internet.
Using Cisco's Hot Standby Routing Protocol (HSRP), we have a path to and from the Internet
even if one router is unavailable. We also have two different networks between the routers in
front of the web servers and ISP routers. If one of the networks goes down, the other is still
available to pass traffic to the Internet. Note also that both ISP routers are managed by their
respective ISPs and not by the organization.

Site 2 contains some web servers as well as proxy servers for general use by that site. Of
greatest interest is the fact that it is connected Site 1 and has connections to the same ISPs as
Site 1.

Let's articulate the policies we wish to implement. In this example, I describe only the policies
for Site 1.

 Cisco IOS Access lists

 Page 209

7.3.1 Robustness concerns

The main robustness concerns center around making sure that improper routes are not
accepted or distributed. Those concerns can be distilled into the following statements:

Only networks 204.148.40.0/24 and 198.6.224.128/25 should be distributed
out of the organization by Routers 1 and 2

Local networks, the private IP networks, and multicast networks should not be
accepted from the Internet

7.3.2 Security concerns

The main security concerns are to allow only what is necessary to the web servers and routers.
This includes allowing only valid web traffic to the web servers and only appropriate routing
traffic into the routers. These rules can be summarized as follows:

BGP traffic allowed between loopbacks of the ISP routers and Routers 1 and 2

EIGRP between all of the routers

SNMP and Telnet access only from a management console (192.168.59.3/24)
connected to fast Ethernet 3/0 (not shown on the diagram).

Web and SSL access only to the web servers

HSRP from the interfaces on the web servers segment

Web servers should be able to ping the router interface on their segment

The routers cannot be used or queried as time servers

These policies are implemented with packet-filtering lists and resource access lists.

7.3.3 Policy concerns

Good performance for the web servers on network 198.6.224.128/25 is a much higher priority
than the performance of the web servers on segment 204.148.40.0/24. ISP B is on a pay-per-
usage basis, so we wish to have the following policy to get good performance from the
important web servers yet save money:

Hosts in 198.6.224.128/25 will use both ISP A and B

Hosts in 204.148.40.0 will use ISP A only

We also want to have traffic flow into the Internet gateway nearest the web servers. To do
this, we implement the following policy:

If ISP A is unavailable in Site 1, then traffic for 198.6.224.128/25 should use
ISP B in Site 1. Traffic should not come in via Site 2's ISP A connection

 Cisco IOS Access lists

 Page 210

If ISP B is unavailable in Site 1, then traffic for 198.6.224.128/25 should use
ISP A in Site 1. Traffic should not come in via Site 2's ISP B connection

If ISP A and B are unavailable in Site 1, then traffic should come in through
Site 2's ISP connections

To help set routing policies, ISP B allows its customers to set communities to affect how a
route is advertised. Table 7.1 describes each community and how it affects advertisements.

Table 7.1. ISP B's communities and their effects
Communities Effect on route advertisement
ISPB:80 Local Preference is set to 80 (default is 100), so route is used as a last resort.
ISPB:120 Local Preference is set to 120 (default is 100), so route is preferred above all others.
ISPB:1 Prepend one of ISP B's AS numbers when route is advertised to ISP B's peers.
ISPB:2 Prepend two of ISP B's AS numbers when route is advertised to ISP B's peers.
ISPB:3 Prepend three of ISP B's AS numbers when route is advertised to ISP B's peers.

Note that ISP A has no such community settings. ISP A does, however, listen to MED
settings on routes it hears from its customers.

7.3.4 Router configurations

In this section, I list the configurations for Routers 1 and 2. In the following example, named
access lists are used. Here is the configuration for Router 1:

! limit points of vulnerability on router
no service tcp-small-servers
no service udp-small-servers
no service finger
!
ip classless
ip subnet zero
! interfaces definitions
! ISP Segment 1
interface FastEthernet1/0
 description ISP Segment 1
 ip address 192.168.64.8 255.255.255.224
 ip access-group ANTI-SPOOF-OUT out
 ip access-group ANTI-SPOOF-IN in
 no ip directed-broadcast
! ISP Segment 2
interface FastEthernet1/2
 description ISP Segment 1
 ip address 192.168.64.40 255.255.255.224
 ip access-group ANTI-SPOOF-OUT out
 ip access-group ANTI-SPOOF-IN in
 no ip directed-broadcast
! high priority web segment
interface FastEthernet2/0
 description high priority web segment
 ip address 198.6.224.252 255.255.255.128
 ip access-group TO-HIGH-PRIORITY-WEB-SEGMENT out
 ip access-group FROM-HIGH-PRIORITY-WEB-SEGMENT in

 no ip directed-broadcast

 Cisco IOS Access lists

 Page 211

 standby 192 priority 200
 standby 192 preempt
 standby 192 ip 198.6.224.251
! lower priority web segment
interface FastEthernet2/1
 description low priority web segment
 ip address 204.148.40.252 255.255.255.0
 ip access-group TO-HIGH-PRIORITY-LOW-PRIORITY-WEB-SEGMENT out
 ip access-group FROM-LOW-PRIORITY-WEB-SEGMENT in
 ip policy route FROM-LOW-PRIORITY-WEB-SERVERS
 no ip directed-broadcast
 standby 172 priority 100
 standby 172 preempt
 standby 172 ip 204.148.40.251
! to management console
interface FastEthernet3/0
 description management segment
 ip address 192.168.59.252 255.255.255.0
 ip access-group TO-MANAGEMENT-SEGMENT out
 ip access-group FROM-MANAGEMENT-SEGMENT in
 no ip directed-broadcast
int Loopback0
 description loopback interface
 ip address 192.168.64.97 255.255.255.252
!
ip standard access-list DENY-ALL-OUT
 deny any
!
ip access-list standard DENY-ALL-ROUTES
 deny any
!
ip access-list standard HIGH-PRIORITY-WEB-SEGMENT
 permit 198.6.224.128
!
ip access-list standard HIGH-PRIORITY-WEB-SERVERS
 permit 198.6.224.128 0.0.0.127
!
ip access-list standard LOOPBACKS-IN
 permit 192.168.64.0 0.0.0.63
!
ip access-list standard LOW-PRIORITY-WEB-SEGMENT
 permit 204.148.40.0
!
ip access-list standard LOW-PRIORITY-WEB-SERVERS
 permit 204.148.40.0 0.0.0.255
!
ip access-list standard MANAGEMENT-SERVER
 permit 192.168.59.3 0.0.0.0
!
ip access-list standard PERMIT-ALL-ROUTES
 permit any
!
ip access-list standard VALID-ROUTES-IN
! deny private addresses
 deny 172.16.0.0 0.15.255.255
 deny 192.168.0.0 0.0.255.255 any
 deny 10.0.0.0 0.255.255.255.255 any
! deny multicast
 deny 224.0.0.0 0.255.255.255.255
! deny our own nets from coming in
 deny 198.6.224.128

 Cisco IOS Access lists

 Page 212

 deny 204.148.40.0
 permit any
!
ip access-list standard VALID-ROUTES-OUT
 permit 192.168.64.0 0.0.0.255
 permit 198.6.224.128
 permit 204.148.40.0
!
! preventing spoofing in - starting with private addresses
ip access-list extended ANTI-SPOOF-IN
! Let in EIGRP
 permit eigrp 192.168.64.0 0.0.0.31 host 224.0.0.10
 permit eigrp 192.168.64.32 0.0.0.31 192.168.64.0 0.0.0.61
! Let in BGP
 permit tcp host 192.168.64.69 host 192.168.64.97 eq bgp
! Deny other private networks
 deny ip 172.16.0.0 0.15.255.255 any
 deny ip 192.168.0.0 0.0.255.255 any
 deny ip 10.0.0.0 0.255.255.255.255 any
! deny multicast
 deny ip 224.0.0.0 0.255.255.255.255
! deny our own nets from coming in
 deny ip 192.168.64.0 0.0.0.255 any
 deny ip 198.6.224.0 0.0.0.127 any
 deny ip 204.148.40.0 0.0.0.255 any
! Let everything else in
 permit ip any 204.148.40.0 0.0.0.255
 permit ip any 198.6.224.0 0.0.0.127
!
! general outbound trafic - permit only our traffic (no spoofing from us)
ip access-list extended ANTI-SPOOF-OUT
 permit ip 198.6.224.128 0.0.0.255 any
 permit ip 204.148.40.0 0.0.0.255 any
!
! from web server segment
ip access-list extended FROM-HIGH-PRIORITY-WEB-SEGMENT
! allow in ip for ARP and HSRP
 permit ip 198.6.224.128 0.0.0.127 host 192.168.64.251
 permit ip 198.6.224.128 0.0.0.127 host 192.168.64.252
! web traffic
 permit tcp 198.6.224.128 0.0.0.1 27 eq www any gt 1023
 permit tcp 198.6.224.128 0.0.0.127 eq 443 any gt 1023
! permit ping of router interfaces
 permit icmp 198.6.224.128 0.0.0.127 host 198.6.224.251 echo
 permit icmp 198.6.224.128 0.0.0.127 198.6.224.252 0.0.0.1 echo
!
! from web server segment
ip access-list extended FROM-LOW-PRIORITY-WEB-SEGMENT
! allow in ip for ARP and HSRP
 permit ip 204.148.40.0 0.0.0.255 host 204.148.40.251
 permit ip 204.148.40.0 0.0.0.255 host 204.148.40.252
! web traffic
 permit tcp 204.148.40.0 0.0.0.255 eq www any gt 1023
 permit tcp 204.148.40.0 0.0.0.255 eq 443 any gt 1023
! ping from servers to local interface
 permit icmp 204.148.40.0 0.0.0.255 host 204.148.40.251 echo
 permit icmp 204.148.40.0 0.0.0.255 204.148.40.251.252 0.0.0.1 echo
!
ip access-list extended FROM-MANAGEMENT-SEGMENT
! telnet access
 permit tcp host 192.168.59.3 host 192.168.59.252 eq telnet

 Cisco IOS Access lists

 Page 213

 permit tcp host 192.168.59.3 host 192.168.59.252 eq telnet
! TFTP
 permit tcp host 192.168.59.3 gt 1023 host 192.168.59.252 eq 69
! tacacs
 permit tcp host 192.168.59.3 eq tacacs host 192.168.59.252 eq tacacs
! ping
 permit icmp host 192.168.59.3 host 192.168.59.252 echo
!
ip access-list extended TO-HIGH-PRIORITY-WEB-SEGMENT
 permit tcp any 198.6.224.128 0.0.0.127 eq www
 permit tcp any 198.6.224.128 0.0.0.127 eq 443
! ping from servers
 permit icmp any 198.6.224.128 0.0.0.127 echo
!
ip access-list extended TO-LOW-PRIORITY-WEB-SEGMENT
 permit tcp any 204.148.40.0 0.0.0.255 eq www
 permit tcp any 204.148.40.0 0.0.0.255 eq 443
!
! to management segment
ip access-list extended TO-MANAGEMENT-SEGMENT
! no transit through this segment (outbound)
 deny any any
!
route-map FROM-LOW-PRIORITY-WEB-SERVERS permit 10
 match fast 2/0
 set ip next-hop 192.168.64.73
!
route-map INCOMING-ROUTES-FROM-SITE2 permit 10
 match ip PERMIT-ALL-ROUTES
 set local-preference 80
!
route-map ROUTES-OUT-TO-ISPA-SITE1 permit 10
 match ip HIGH-PRIORITY-WEB-SEGMENT
!
route-map ROUTES-OUT-TO-ISPA-SITE2 permit 10
 match ip HIGH-PRIORITY-WEB-SEGMENT
 set as-path prepend 1321 1321 1321
!
route-map ROUTES-OUT-TO-ISPB-SITE1 permit 10
 match ip HIGH-PRIORITY-WEB-SEGMENT
route-map ROUTES-OUT-TO-ISPB-SITE1 permit 20
 match ip LOW-PRIORITY-WEB-SEGMENT
!
route-map ROUTES-OUT-TO-ISPB-SITE2 permit 10
 match ip HIGH-PRIORITY-WEB-SEGMENT
 set community ISPB:80
route-map ROUTES-OUT-TO-ISPB-SITE2 permit 20
 match ip LOW-PRIORITY-WEB-SEGMEN2
 set community ISPB:80
!
! routing statements
router eigrp 800
 network 192.168.64.0 mask 255.255.255.224
 network 192.168.64.32 mask 255.255.255.224
 distribute-list DENY-ALL-ROUTES in fast 2/0
 distribute-list DENY-ALL-ROUTES in fast 2/1
 distribute-list LOOPBACKS-IN in fast 1/0
 distribute-list LOOPBACKS-IN in fast 1/1
 distribute-list VALID-ROUTES-OUT out
!
router bgp 1321

 Cisco IOS Access lists

 Page 214

 no synchronization
 network 198.6.224.128 mask 255.255.255.128
 network 204.148.40.0
!
 neighbor external-peers ebgp-multihop 6
 neighbor external-peers update-source Loopback0
 neighbor external-peers next-hop-self
 neighbor external-peers distribute-list VALID-ROUTES-OUT out
 neighbor external-peers distribute-list VALID-ROUTES-IN in
 neighbor external-peers soft-reconfiguration in
 neighbor external-peers soft-reconfiguration out
 neighbor 192.168.64.69 peer-group external-peers
 neighbor 192.168.64.73 peer-group external-peers
 neighbor 192.168.65.69 peer-group external-peers
 neighbor 192.168.65.73 peer-group external-peers
!
 neighbor 192.168.64.69 remote-as 65000
 neighbor 192.168.64.69 route-map ROUTES-OUT-TO-ISPBA-SITE1 out
!
 neighbor 192.168.64.73 remote-as 65001
 neighbor 192.168.64.73 route-map ROUTES-OUT-TO-ISPB-SITE1 out
!
 neighbor 192.168.65.69 remote-as 65000
 neighbor 192.168.65.69 route-map ROUTES-OUT-TO-ISPBA-SITE2 out
 neighbor 192.168.65.69 route-map INCOMING-ROUTES-FROM-SITE2 in
!
 neighbor 192.168.65.73 remote-as 65001
 neighbor 192.168.65.73 route-map ROUTES-OUT-TO-ISPB-SITE2 out
 neighbor 192.168.65.73 route-map INCOMING-ROUTES-FROM-SITE2 in
! snmp access
snmp community MyString ro MANAGEMENT-SERVER
! line access
line vty 0 4
 access-class MANAGEMENT-SERVER in
 access-class DENY-ALL-OUT out

To deal with network robustness issues, we allow only our specific routes to be distributed out
via EIGRP and BGP. Access list VALID-ROUTES-OUT restricts what is advertised via routing
protocols. Only the loopback networks are accepted via EIGRP, which are restricted by the
access list LOOPBACKS-IN. Our own networks, private addresses, and multicast networks are
rejected by access list VALID-ROUTES-IN.

Several other access lists maintain security. The access list MANAGEMENT-SERVER restricts
SNMP and Telnet access to the management console. The standard access list DENY-ALL-OUT
prevents those with login access from attacking other sites on the web from the management
console. Access list ANTI-SPOOF-IN prevents spoofed packets from entering the network,
while ANTI-SPOOF-OUT prevents a compromised web server from becoming a source of
spoofed packets. ANTI-SPOOF-IN has specific entries for allowing incoming EIGRP and BGP
packets. There are incoming and outgoing access lists on the interfaces leading to the web
servers. This allows the access lists for the high- and low-priority web servers to be managed
independently—a change on one will not affect the others. The incoming access lists let in
HSRP broadcasts. Only web traffic is permitted to the web servers. The no ip directed-
broadcast command on the interfaces prevent the routers and servers from being used for
broadcast-based attack, and TCP and UDP services are turned off with no service commands.

 Cisco IOS Access lists

 Page 215

The traffic routing policy is implemented with route maps. Policy route map FROM-LOW-
PRIORITY-WEB-SERVERS directs traffic from the low priority web servers to ISP B. The route
map ROUTES-TO-ISPB-SITE2 sets the community string ISPB:80 on the routes from the low-
priority web server network. This community makes the route to the low-priority servers less
preferred through Site 2 and is used only if there is no path through ISP B in Site 1. It should
be noted, however, that because of the policy route map on the low-priority web site segment,
the next hop statement has to be manually changed to point to ISP B in Site 2 in order to
completely fail over the low-priority segment. The route maps ROUTES-TO-ISPA-SITE1 and
ROUTES-TO-ISPA-SITE2 do not include the low-priority network, so this network is never
routed over ISP A in either site. To ensure that Site 2 is the last resort for the high-priority
network, we prepend AS 1321 onto routes ISP A receives in Site 2 for the high-priority
network. As a result, ISP B is used in Site 1 if ISP A goes down. For outgoing traffic, the
route map INCOMING-ROUTES-FROM-SITE2 makes all routes form ISP A and B in Site 2 a
local preference of 80. This makes outgoing traffic go out Site 1 unless both ISPs there are
down.

Note that we use peer-group in the BGP neighbor definitions to reduce the number of
statements and simplify the configuration. Several commands, including two distribute-
list statements for incoming and outgoing routes are repeated for each neighbor, and peer-
group saves us from repeatedly entering them into the configuration.

The following configuration for Router 2 is added for completeness:

! limit points of vulnerability on router
no service tcp-small-servers
no service udp-small-servers
no service finger
!
ip classless
ip subnet zero
! interfaces definitions
! ISP Segment 1
interface FastEthernet1/0
 description ISP Segment 1
 ip address 192.168.64.9 255.255.255.224
 ip access-group ANTI-SPOOF-OUT out
 ip access-group ANTI-SPOOF-IN in
 no ip directed-broadcast
! ISP Segment 2
interface FastEthernet1/2
 description ISP Segment 1
 ip address 192.168.64.41 255.255.255.224
 ip access-group ANTI-SPOOF-OUT out
 ip access-group ANTI-SPOOF-IN in
 no ip directed-broadcast
! high priority web segment
interface FastEthernet2/0
 description high priority web segment
 ip address 198.6.224.253 255.255.255.128
 ip access-group TO-HIGH-PRIORITY-WEB-SEGMENT out
 ip access-group FROM-HIGH-PRIORITY-WEB-SEGMENT in

 no ip directed-broadcast
 standby 192 priority 200
 standby 192 preempt
 standby 192 ip 198.6.224.251

 Cisco IOS Access lists

 Page 216

! lower priority web segment
interface FastEthernet2/1
 description low priority web segment
 ip address 204.148.40.253 255.255.255.0
 ip access-group TO-HIGH-PRIORITY-LOW-PRIORITY-WEB-SEGMENT out
 ip access-group FROM-LOW-PRIORITY-WEB-SEGMENT in
 ip policy route FROM-LOW-PRIORITY-WEB-SERVERS
 no ip directed-broadcast
 standby 172 priority 100
 standby 172 preempt
 standby 172 ip 204.148.40.251
! to management console
interface FastEthernet3/0
 description management segment
 ip address 192.168.59.253 255.255.255.0
 ip access-group TO-MANAGEMENT-SEGMENT out
 ip access-group FROM-MANAGEMENT-SEGMENT in
 no ip directed-broadcast
int Loopback0
 description loopback interface
 ip address 192.168.64.101 255.255.255.252
!
ip standard access-list DENY-ALL-OUT
 deny any
!
ip access-list standard DENY-ALL-ROUTES
 deny any
!
ip access-list standard HIGH-PRIORITY-WEB-SEGMENT
 permit 198.6.224.128
!
ip access-list standard HIGH-PRIORITY-WEB-SERVERS
 permit 198.6.224.128 0.0.0.127
!
ip access-list standard LOOPBACKS-IN
 permit 192.168.64.0 0.0.0.63
!
ip access-list standard LOW-PRIORITY-WEB-SEGMENT
 permit 204.148.40.0
!
ip access-list standard LOW-PRIORITY-WEB-SERVERS
 permit 204.148.40.0 0.0.0.255
!
ip access-list standard MANAGEMENT-SERVER
 permit 192.168.59.3 0.0.0.0
!
ip access-list standard PERMIT-ALL-ROUTES
 permit any
!
ip access-list standard VALID-ROUTES-IN
! deny private addresses
 deny 172.16.0.0 0.15.255.255
 deny 192.168.0.0 0.0.255.255 any
 deny 10.0.0.0 0.255.255.255.255 any
! deny multicast
 deny 224.0.0.0 0.255.255.255.255
! deny our own nets from coming in
 deny 198.6.224.128
 deny 204.148.40.0
 permit any
!

 Cisco IOS Access lists

 Page 217

ip access-list standard VALID-ROUTES-OUT
 permit 192.168.64.0 0.0.0.255
 permit 198.6.224.128
 permit 204.148.40.0
!
! preventing spoofing in - starting with private addresses
ip access-list extended ANTI-SPOOF-IN
! Let in EIGRP
 permit eigrp 192.168.64.0 0.0.0.31 host 224.0.0.10
 permit eigrp 192.168.64.32 0.0.0.31 192.168.64.0 0.0.0.61
! Let in BGP
 permit tcp host 192.168.64.69 host 192.168.64.97 eq bgp
! Deny other private networks
 deny ip 172.16.0.0 0.15.255.255 any
 deny ip 192.168.0.0 0.0.255.255 any
 deny ip 10.0.0.0 0.255.255.255.255 any
! deny multicast
 deny ip 224.0.0.0 0.255.255.255.255
! deny our own nets from coming in
 deny ip 192.168.64.0 0.0.0.255 any
 deny ip 198.6.224.0 0.0.0.127 any
 deny ip 204.148.40.0 0.0.0.255 any
! Let everything else in
 permit ip any 204.148.40.0 0.0.0.255
 permit ip any 198.6.224.0 0.0.0.127
!
! general outbound trafic - permit only our traffic (no spoofing from us)
ip access-list extended ANTI-SPOOF-OUT
 permit ip 198.6.224.128 0.0.0.255 any
 permit ip 204.148.40.0 0.0.0.255 any
!
! from web server segment
ip access-list extended FROM-HIGH-PRIORITY-WEB-SEGMENT
! allow in ip for ARP and HSRP
 permit ip 198.6.224.128 0.0.0.127 host 192.168.64.251
 permit ip 198.6.224.128 0.0.0.127 host 192.168.64.252
! web traffic
 permit tcp 198.6.224.128 0.0.0.1 27 eq www any gt 1023
 permit tcp 198.6.224.128 0.0.0.127 eq 443 any gt 1023
! permit ping of router interfaces
 permit icmp 198.6.224.128 0.0.0.127 host 198.6.224.251 echo
 permit icmp 198.6.224.128 0.0.0.127 198.6.224.252 0.0.0.1 echo
!
! from web server segment
ip access-list extended FROM-LOW-PRIORITY-WEB-SEGMENT
! allow in ip for ARP and HSRP
 permit ip 204.148.40.0 0.0.0.255 host 204.148.40.251
 permit ip 204.148.40.0 0.0.0.255 host 204.148.40.252
! web traffic
 permit tcp 204.148.40.0 0.0.0.255 eq www any gt 1023
 permit tcp 204.148.40.0 0.0.0.255 eq 443 any gt 1023
! ping from servers to local interface
 permit icmp 204.148.40.0 0.0.0.255 host 192.168.64.251 echo
! ping from servers to local interface
 permit icmp 204.148.40.0 0.0.0.255 host 204.148.40.251 echo
 permit icmp 204.148.40.0 0.0.0.255 204.148.40.251.252 0.0.0.1 echo
!
ip access-list extended FROM-MANAGEMENT-SEGMENT
! telnet access
 permit tcp host 192.168.59.3 host 192.168.59.252 eq telnet
 permit tcp host 192.168.59.3 host 192.168.59.252 eq telnet

 Cisco IOS Access lists

 Page 218

! TFTP
 permit tcp host 192.168.59.3 gt 1023 host 192.168.59.252 eq 69
! tacacs
 permit tcp host 192.168.59.3 eq tacacs host 192.168.59.252 eq tacacs
! ping
 permit icmp host 192.168.59.3 host 192.168.59.252 echo
!
ip access-list extended TO-HIGH-PRIORITY-WEB-SEGMENT
 permit tcp any 198.6.224.128 0.0.0.127 eq www
 permit tcp any 198.6.224.128 0.0.0.127 eq 443
! ping from servers
 permit icmp any 198.6.224.128 0.0.0.127 echo
!
ip access-list extended TO-LOW-PRIORITY-WEB-SEGMENT
 permit tcp any 204.148.40.0 0.0.0.255 eq www
 permit tcp any 204.148.40.0 0.0.0.255 eq 443
!
! to management segment
ip access-list extended TO-MANAGEMENT-SEGMENT
! no transit through this segment (outbound)
 deny any any
!
route-map FROM-LOW-PRIORITY-WEB-SERVERS permit 10
 match fast 2/0
 set ip next-hop 192.168.64.73
!
route-map INCOMING-ROUTES-FROM-SITE2 permit 10
 match ip PERMIT-ALL-ROUTES
 set local-preference 80
!
route-map ROUTES-OUT-TO-ISPA-SITE1 permit 10
 match ip HIGH-PRIORITY-WEB-SEGMENT
!
route-map ROUTES-OUT-TO-ISPA-SITE2 permit 10
 match ip HIGH-PRIORITY-WEB-SEGMENT
 set as-path prepend 1321 1321 1321
!
route-map ROUTES-OUT-TO-ISPB-SITE1 permit 10
 match ip HIGH-PRIORITY-WEB-SEGMENT
route-map ROUTES-OUT-TO-ISPB-SITE1 permit 20
 match ip LOW-PRIORITY-WEB-SEGMENT
!
route-map ROUTES-OUT-TO-ISPB-SITE2 permit 10
 match ip HIGH-PRIORITY-WEB-SEGMENT
 set community ISPB:80
route-map ROUTES-OUT-TO-ISPB-SITE2 permit 20
 match ip LOW-PRIORITY-WEB-SEGMEN2
 set community ISPB:80
!
! routing statements
router eigrp 800
 network 192.168.64.0 mask 255.255.255.224
 network 192.168.64.32 mask 255.255.255.224
 distribute-list DENY-ALL-ROUTES in fast 2/0
 distribute-list DENY-ALL-ROUTES in fast 2/1
 distribute-list LOOPBACKS-IN in fast 1/0
 distribute-list LOOPBACKS-IN in fast 1/1
 distribute-list VALID-ROUTES-OUT out
!
router bgp 1321
 no synchronization

 Cisco IOS Access lists

 Page 219

 network 198.6.224.128 mask 255.255.255.128
 network 204.148.40.0
!
 neighbor external-peers ebgp-multihop 6
 neighbor external-peers update-source Loopback0
 neighbor external-peers next-hop-self
 neighbor external-peers distribute-list VALID-ROUTES-OUT out
 neighbor external-peers distribute-list VALID-ROUTES-IN in
 neighbor external-peers soft-reconfiguration in
 neighbor external-peers soft-reconfiguration out
 neighbor 192.168.64.69 peer-group external-peers
 neighbor 192.168.64.73 peer-group external-peers
 neighbor 192.168.65.69 peer-group external-peers
 neighbor 192.168.65.73 peer-group external-peers
!
 neighbor 192.168.64.69 remote-as 65000
 neighbor 192.168.64.69 route-map ROUTES-OUT-TO-ISPBA-SITE1 out
!
 neighbor 192.168.64.73 remote-as 65001
 neighbor 192.168.64.73 route-map ROUTES-OUT-TO-ISPB-SITE1 out
!
 neighbor 192.168.65.69 remote-as 65000
 neighbor 192.168.65.69 route-map ROUTES-OUT-TO-ISPBA-SITE2 out
 neighbor 192.168.65.69 route-map INCOMING-ROUTES-FROM-SITE2 in
!
 neighbor 192.168.65.73 remote-as 65001
 neighbor 192.168.65.73 route-map ROUTES-OUT-TO-ISPB-SITE2 out
 neighbor 192.168.65.73 route-map INCOMING-ROUTES-FROM-SITE2 in
! snmp access
snmp community MyString ro MANAGEMENT-SERVER
! line access
line vty 0 4
 access-class MANAGEMENT-SERVER in
 access-class DENY-ALL-OUT out

Appendix A. Extended Access List Protocols and Qualifiers

Table A.1. IP protocols
Protocol name IP protocol number
AH 51
EIGRP 88
ESP 50
GRE 47
ICMP 1
IGMP 2
IGRP 9
IP 0-255
IPINIP 94
NOS 4
OSPF 89
TCP 6
UDP 17

 Cisco IOS Access lists

 Page 220

Table A.2. Qualifiers for ICMP
Type or code
administratively-prohibited

alternate-address

conversion-error

dod-host-prohibited

dod-net-prohibited

echo

echo-reply

general-parameter-problem

host-isolated

host-precedence-unreachable

host-redirect host-tos-redirect

host-tos-unreachable

host-unknown

host-unreachable

information-reply

information-request

mask-reply

mask-request
mobile-redirect

net-redirect

net-tos-redirect

net-tos-unreachable

net-unreachable

network-unknown

no-room-for-option

option-missing

packet-too-big

parameter-problem

port-unreachable

precedence-unreachable

protocol-unreachable

reassembly-timeout

redirect

router-advertisement

router-solicitation

source-quench

source-route-failed

time-exceeded

timestamp-reply

timestamp-request

traceroute

ttl-exceeded

unreachable

 Cisco IOS Access lists

 Page 221

Table A.3. TCP and UDP qualifers
IP Protocol Qualifer Port number (if any)
UDP biff 512
UDP bootpc 68
UDP bootps 67
UDP discard 9
UDP domain 53
UDP dnsix 90
UDP echo 7
UDP mobile-ip 434
UDP nameserver 42
UDP netbios-dgm 137
UDP netbios-ns 138
UDP ntp 123
UDP rip 520
UDP snmp 161
UDP snmptrap 162
UDP sunrpc 111
UDP syslog 514
UDP tacacs-ds 49
UDP talk 517
UDP tftp 69
UDP time 37
UDP who 513
UDP xdmcp 177
TCP bgp 179
TCP chargen 19
TCP daytime 13
TCP discard 9
TCP domain 53
TCP echo 7
TCP finger 79
TCP ftp 21
TCP ftp-data 20
TCP gopher 70
TCP hostname 101
TCP irc 194
TCP klogin 543
TCP kshell 544
TCP lpd 515
TCP nntp 119
TCP pop2 109
TCP pop3 110
TCP smtp 25
TCP sunrpc 111
TCP syslog 514
TCP tacacs-ds 65

 Cisco IOS Access lists

 Page 222

TCP talk 517
TCP telnet 23
TCP time 37
TCP uucp 540
TCP whois 43
TCP www 80
Table A.4. Common application ports and directionality

Service Protocol Source port (on client
unless specified)

Destination port (on server
unless specified)

FTP (control connection) TCP > 1023 21
FTP (data connection) TCP 20 (from server) > 1023 (to client)
FTP PASV data connection TCP > 1023 20
FTP PASV data connection as implemented
by many browsers TCP > 1023 > 1023

Secure Shell (SSH) TCP > 1023 22
Telnet TCP > 1023 23
SMTP TCP > 1023 25
TACACS UDP 49 49

DNS UDP
53

> 1023
53

DNS (for zone transfers and for large queries
in presence of large packet loss) TCP > 1023 53

TFTP UDP > 1023 69
POP3 TCP > 1023 110
IDENT (often used by mailers) TCP > 1023 113
NNTP (News) TCP > 1023 119
NTP (Network Time Protocol) UDP 123 123
Netbios services UDP 137, 138 > 1023 137, 138
Netbios file sharing TCP > 1023 139
SNMP UDP > 1023 161
SSL TCP > 1023 443
REXEC TCP > 1023 512
RLOGIN TCP < 1024 513
RSH TCP < 1024 514
SOCKS TCP > 1023 1080
Squid Proxy TCP > 1023 3128
Syslog UDP > 1023 514

Appendix B. Binary and Mask Tables
Table B.1. 8-bit binary/decimal conversion chart from 0 to 255
Decimal Binary Decimal Binary Decimal Binary Decimal Binary
0 00000000 64 01000000 128 10000000 192 11000000
1 00000001 65 01000001 129 10000001 193 11000001
2 00000010 66 01000010 130 10000010 194 11000010
3 00000011 67 01000011 131 10000011 195 11000011

 Cisco IOS Access lists

 Page 223

4 00000100 68 01000100 132 10000100 196 11000100
5 00000101 69 01000101 133 10000101 197 11000101
6 00000110 70 01000110 134 10000110 198 11000110
7 00000111 71 01000111 135 10000111 199 11000111
8 00001000 72 01001000 136 10001000 200 11001000
9 00001001 73 01001001 137 10001001 201 11001001
10 00001010 74 01001010 138 10001010 202 11001010
11 00001011 75 01001011 139 10001011 203 11001011
12 00001100 76 01001100 140 10001100 204 11001100
13 00001101 77 01001101 141 10001101 205 11001101
14 00001110 78 01001110 142 10001110 206 11001110
15 00001111 79 01001111 143 10001111 207 11001111
16 00010000 80 01010000 144 10010000 208 11010000
17 00010001 81 01010001 145 10010001 209 11010001
18 00010010 82 01010010 146 10010010 210 11010010
19 00010011 83 01010011 147 10010011 211 11010011
20 00010100 84 01010100 148 10010100 212 11010100
21 00010101 85 01010101 149 10010101 213 11010101
22 00010110 86 01010110 150 10010110 214 11010110
23 00010111 87 01010111 151 10010111 215 11010111
24 00011000 88 01011000 152 10011000 216 11011000
25 00011001 89 01011001 153 10011001 217 11011001
26 00011010 90 01011010 154 10011010 218 11011010
27 00011011 91 01011011 155 10011011 219 11011011
28 00011100 92 01011100 156 10011100 220 11011100
29 00011101 93 01011101 157 10011101 221 11011101
30 00011110 94 01011110 158 10011110 222 11011110
31 00011111 95 01011111 159 10011111 223 11011111
32 00100000 96 01100000 160 10100000 224 11100000
33 00100001 97 01100001 161 10100001 225 11100001
34 00100010 98 01100010 162 10100010 226 11100010
35 00100011 99 01100011 163 10100011 227 11100011
36 00100100 100 01100100 164 10100100 228 11100100
37 00100101 101 01100101 165 10100101 229 11100101
38 00100110 102 01100110 166 10100110 230 11100110
39 00100111 103 01100111 167 10100111 231 11100111
40 00101000 104 01101000 168 10101000 232 11101000
41 00101001 105 01101001 169 10101001 233 11101001
42 00101010 106 01101010 170 10101010 234 11101010
43 00101011 107 01101011 171 10101011 235 11101011
44 00101100 108 01101100 172 10101100 236 11101100
45 00101101 109 01101101 173 10101101 237 11101101
46 00101110 110 01101110 174 10101110 238 11101110
47 00101111 111 01101111 175 10101111 239 11101111
48 00110000 112 01110000 176 10110000 240 11110000
49 00110001 113 01110001 177 10110001 241 11110001
50 00110010 114 01110010 178 10110010 242 11110010
51 00110011 115 01110011 179 10110011 243 11110011

 Cisco IOS Access lists

 Page 224

52 00110100 116 01110100 180 10110100 244 11110100
53 00110101 117 01110101 181 10110101 245 11110101
54 00110110 118 01110110 182 10110110 246 11110110
55 00110111 119 01110111 183 10110111 247 11110111
56 00111000 120 01111000 184 10111000 248 11111000
57 00111001 121 01111001 185 10111001 249 11111001
58 00111010 122 01111010 186 10111010 250 11111010
59 00111011 123 01111011 187 10111011 251 11111011
60 00111100 124 01111100 188 10111100 252 11111100
61 00111101 125 01111101 189 10111101 253 11111101
62 00111110 126 01111110 190 10111110 254 11111110
63 00111111 127 01111111 191 10111111 255 11111111
Table B.2. Subnet masks and wildcard mask per prefix lengths
Prefix
length

Subnet mask in dotted
quad notation

Access list mask that
matches all hosts Valid networks with this prefix length

/8 255.0.0.0 0.255.255.255 {1-126,128-223}.0.0.0
/9 255.128.0.0 0.127.255.255 {1-126,128-223}.{0,128}.0.0
/10 255.192.0.0 0.63.255.255 {1-126,128-223}.{0,64,128,192}.0.0

/11 255.224.0.0 0.31.255.255 {1-126,128-
223}.{0,32,64,96,128,160,192,224}.0.0

/12 255.240.0.0 0.15.255.255

{1-126,128-223}.{0,16,32,48,64,80,96,102}.0.0

{1-126,128-
223}.{128,144,160,176,192,208,224,240}.0.0

/13 255.248.0.0 0.7.255.255

{1-126,128-223}.{0,8,16,24,32,40,48,56}.0.0

{1-126,128-
223}.{64,72,80,88,96,104,112,120}.0.0

{1-126,128-
223}.{128,136,144,152,160,168,176,184}.0.0

{1-126,128-
223}.{192,200,208,216,224,232,240,248}.0.0

/14 255.252.0.0 0.3.255.255 {1-126,128-223}.{0,4,8...248,252}.0.0
/15 255.254.0.0 0.1.255.255 {1-126,128-223}.{0,2,4...252,254}.0.0
/16 255.255.0.0 0.0.255.255 {1-126,128-223}.{0-255}.0.0
/17 255.255.128.0 0.0.127.255 {1-126,128-223}.{0-255}.{0,128}.0
/18 255.255.192.0 0.0.63.255 {1-126,128-223}.{0-255}{0,64,128,192}.0

/19 255.255.224.0 0.0.31.255
{1-126,128-223}.{0-255}{0,32,64,96}.0

{1-126,128-223}.{0-255}{128,160,192,224}.0

/20 255.255.240.0 0.0.15.255

{1-126,128-223}.{0-255}.{0,16,32,48 }.0

{1-126,128-223}.{0-255}.{64,80,96,102}.0

{1-126,128-223}.{0-255}.{128,144,160,176}.0

{1-126,128-223}.{0-255}.{192,208,224,240}.0

/21 255.255.248.0 0.0.7.255
{1-126,128-223}.{0-255}.{0,8,16,24}.0

 Cisco IOS Access lists

 Page 225

{1-126,128-223}.{0-255}.{32,40,48,56}.0

{1-126,128-223}.{0-255}.{64,72,80,88 }.0

{1-126,128-223}.{0-255}.{96,104,112,120}.0

{1-126,128-223}.{0-255}.{128,136,144,152}.0

{1-126,128-223}.{0-255}.{160,168,176,184}.0

{1-126,128-223}.{0-255}.{192,200,208,216}.0

{1-126,128-223}.{0-255}.{224,232,240,248}.0
/22 255.255.252.0 0.0.3.255 {1-126,128-223}.{0-255}.{0,4,8...248,252}.0
/23 255.255.254.0 0.0.1.255 {1-126,128-223}.{0-255}.{0,2,4...252,254}.0
/24 255.255.255.0 0.0.0.255 {1-126,128-223}.{0-255}.{0-255}.0
/25 255.255.128.0 0.0.0.127 {1-126,128-223}.{0-255}.{0-255}.{0,128}

/26 255.255.192.0 0.0.0.63 {1-126,128-223}.{0-255}.{0-
255}.{0,64,128,192}

/27 255.255.224.0 0.0.0.31

{1-126,128-223}.{0-255}.{0-255}.{0,32,64,96}

{1-126,128-223}.{0-255}.{0-
255}.{128,160,192,224}

/28 255.255.240.0 0.0.0.15

{1-126,128-223}.{0-255}.{0-255}.{0,16,32,48 }

{1-126,128-223}.{0-255}.{0-
255}.{64,80,96,102}

{1-126,128-223}.{0-255}.{0-
255}.{128,144,160,176}

{1-126,128-223}.{0-255}.{0-
255}.{192,208,224,240}

/29 255.255.248.0 0.0.0.7

{1-126,128-223}.{0-255}.{0-255}.{0,8,16,24}

{1-126,128-223}.{0-255}.{0-255}.{32,40,48,56}

{1-126,128-223}.{0-255}.{0-255}.{64,72,80,88 }

{1-126,128-223}.{0-255}.{0-
255}.{96,104,112,120}

{1-126,128-223}.{0-255}.{0-
255}.{128,136,144,152}

{1-126,128-223}.{0-255}.{0-
255}.{160,168,176,184}

{1-126,128-223}.{0-255}.{0-255}.{192,200}

{1-126,128-223}.{0-255}.{0-255}.{208,216}

{1-126,128-223}.{0-255}.{0-255}.{224,232}

 Cisco IOS Access lists

 Page 226

{1-126,128-223}.{0-255}.{0-255}.{240,248}

/30 255.255.252.0 0.0.0.3 {1-126,128-223}.{0-255}.{0-
255}.{0,4,8...248,252}

/31 255.255.254.0 0.0.0.1 {1-126,128-223}.{0-255}.{0-
255}.{0,2,4...252,254}

/32 255.255.255.255 0.0.0.0 {1-126,128-223}.{0-255}.{0-255}.{0-254}

Appendix C. Common Application Ports
Table C.1. Common application source and destination ports

Service Protocol Source port (on client
unless specified)

Destination port (on server
unless specified)

DNS UDP
53

> 1023
53

DNS (for zone transfers and for large queries
in presence of large packet loss) TCP > 1023 53

FTP (control connection) TCP > 1023 21
FTP (data connection) TCP 20 (from server) > 1023 (to client)
FTP PASV data connection TCP > 1023 20
FTP PASV data connection as implemented
by many browsers TCP > 1023 > 1023

IDENT (often used by mailers) TCP > 1023 113

Netbios name service UDP
137

> 1023
137

Netbios datagram service UDP
138

> 1023
138

Netbios file sharing TCP > 1023 139
NNTP (News) TCP > 1023 119
NTP (Network Time Protocol) UDP 123 123
POP3 TCP > 1023 110
REXEC TCP > 1023 512
RLOGIN TCP < 1024 513
RSH TCP < 1024 514
SMTP TCP > 1023 25
SNMP UDP > 1023 161
SOCKS TCP > 1023 1080
Squid Proxy TCP > 1023 3128
SSH (Secure Shell) TCP > 1023 22
SSL TCP > 1023 443
Syslog UDP > 1023 514
TACACS UDP 49 49
Telnet TCP > 1023 23
TFTP UDP > 1023 69

 Cisco IOS Access lists

 Page 227

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Cisco IOS Access Lists is a burro. "Burro" is, more or less, just
another word for donkey, but it is also used specifically to mean a type of small feral donkey
found in the southwestern United States and in Mexico.

Donkeys (Equus asinus) are descended from the African wild ass. They stand three to five
feet tall at the shoulder, have a short mane, tufted tail, and big ears, and live for about 25
years. They were domesticated over 5,000 years ago, and they are still often used as pack
animals, due to their surefootedness on rough terrain. Donkeys can be mated with horses, but
the offspring of these matings are usually sterile. A female donkey (called a jennet or jinny)
mated with a male horse produces an animals called a hinny. The offspring of a male donkey
(jackass) and a female horse is a mule.

The feral burros of the southwestern U.S. and Mexico are the descendants of escaped and
freed pack animals. Some believe the large feral burro population is driving desert bighorn
sheep into extinction, by competing with them—successfully, it would seem—for scarce
desert resources.

Emily Quill was the production editor, Matt Hutchinson was the copyeditor, and Mary Anne
Weeks Mayo was the proofreader for Cisco IOS Access Lists. Colleen Gorman and Catherine
Morris performed quality control reviews, and Edith Shapiro provided production assistance.
Lucie Haskins wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie
Freedman. The cover image is a 19th-century engraving from Old-Fashioned Animal Cuts.
Emma Colby produced the cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond
font.

The illustrations that appear in the book were produced by Robert Romano and Jessamyn
Read using Macromedia Freehand 9 and Adobe Photoshop 6. This colophon was written by
Leanne Soylemez.

