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Preface 
Building and maintaining a network involves more than just making sure that packets can 
flow between devices on the network. As a network administrator, you also want to ensure 
that only the right people can access resources on your network, and that your network will 
continue to run even if parts of that network fail or are configured incorrectly. Your 
organization may have directives that you need to implement, like using cheaper network 
paths whenever possible. In short, while maintaining connectivity is important, you also need 
to implement security, robustness, and business policies with your network. 

This book is about network policies and how to implement those policies using Cisco IOS 
access lists. I present a way to think about access lists and network policy, describe how 
access lists are built, and give examples of how to apply those access lists in different 
situations. Along the way, there are a number of sidebars and notes about concepts and 
information important to using access lists, and at the end of the book, there are appendixes 
with useful reference material. 

A brief note about what I cover: the access lists in this book deal only with the Internet 
Protocol (IP), though you could probably use many of the same techniques with other 
network protocols as well. While all the examples involve Cisco IOS access lists, many of the 
concepts are generic and can be applied to other router vendors' equipment. I've tried to make 
the examples in this book applicable to as many IOS versions as possible; most examples 
should work with Versions 10.* and above. If a feature is only available later or is known to 
fail with certain platforms and versions, I try to point that out. Please note, also, that the terms 
"access list" and "access control list" are used interchangeably throughout the book. 

It is unfortunate that the general policy mechanism for Cisco routers is known as an access 
list. The term access connotes that access lists apply only to the area of security, while in fact 
access lists are used for a whole range of policies, not just for security concerns. I envision 
this book as a guide and reference for implementing network policies with access lists on 
Cisco routers.  



  Cisco IOS Access lists 

  Page 6 

Organization 

Chapter 1, motivates our discussion of access lists by giving examples of why you need to 
implement network policies. It then describes a framework for thinking about access lists and 
provides an idea of how we use access lists and the tools for implementing policy. 

Chapter 2, describes access list fundamentals: the format of the basic types, masking, and 
ways to maintain access lists. It also discusses some tricks and traps of access lists (like the 
difference between network masks and access list masks), some common mistakes, and ways 
to reduce the number of access list entries and access list changes you may need to make. 

Chapter 3, shows how to use access lists to implement security policies. It has examples of 
access lists that control access to router resources and to hosts, and discusses the tradeoffs of 
different kinds of access lists. The chapter includes explanations of how certain protocols 
work and ends with a discussion of access list alternatives. 

Chapter 4, describes using access lists to control routing. Network administrators typically 
use access lists for routing to make sure that their networks are robust and to implement 
business policy decisions; I include a number of examples demonstrating these tasks. 

Chapter 5, is about (what else?) debugging access lists. It first goes over how to check that 
your access lists are correct, and then shows what to do if you discover that they are wrong. 

Chapter 6, describes more advanced forms of access lists, including community lists, AS path 
access lists, and route maps. The chapter goes over policy routing and ends with a discussion 
of using access lists and routes with BGP, the Border Gateway Protocol. 

Chapter 7, concludes the book with some case studies of how different types and applications 
of access lists are used together in a variety of scenarios. There are three cases: an example of 
routers that connect sites within an organization, a firewall example, and a BGP routing 
example. 

Appendix A, has a number of tables listing keywords and qualifiers for extended access lists. 

Appendix B, contains a decimal/binary conversion chart and a table of prefix lengths and their 
corresponding network masks, access list masks, and valid networks. 

Appendix C, contains a table of commonly used application ports. 
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Audience 

This book is designed for network administrators and others who use Cisco routers to 
implement policies, whether the policies are for security or to ensure that networks are robust. 
Basic knowledge of Cisco routers and TCP/IP is assumed. Those who are relatively new to 
using Cisco routers should start with Chapter 1 and work their way through Chapter 5. 
Network administrators who need to implement policy-based routing using route maps, 
whether with interior routing protocols or with BGP, should read Chapter 6. Chapter 7 
contains case studies that readers may find useful. 

Administrators who are experienced in using Cisco routers can use this book as a reference 
for policy implementation, debugging, and access lists in general. Chapter 2 describes 
masking techniques that may reduce access list sizes and reduce the number of necessary 
changes. Chapter 3, Chapter 4, Chapter 6, and Chapter 7 have many examples of 
implementing basic security, robustness, and business policies. Readers interested in 
debugging access list problems should find Chapter 5 useful. The three appendixes contain 
helpful reference tables of access list keywords, decimal to binary conversions, and masks 
and ports that common applications use. Network administrators may find the table showing 
network masks, access list masks, and valid networks for each possible prefix length 
particular useful. 
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Conventions used in this book 

I have used the following formatting conventions in this book: 

• Italic is used for router commands (commands that are typed at the router command 
prompt, whether in privileged mode or not), as well as for emphasis and the first use 
of technical terms. 

• Constant width is used for router configurations (configuration commands that are 
either typed in while in configuration mode or read in from files loaded over the 
network). It is also used for strings and keywords that are part of configuration 
commands. 

• Constant width italic is used for replaceable text. 
• Constant width bold is used for user input. 
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Chapter 1. Network Policies and Cisco Access Lists 
In the best of all possible worlds, network administrators would never need network policies. 
Crackers would never break into a router to invade a network, routers would never pass bad 
routing information, and packets would never take network paths that network administrators 
did not intend. Sadly, we live in a hostile, imperfect world. Consider the following scenarios: 

• Crackers penetrate Company A's public web site. The intruders replace the company's 
web content with pornography. Company A's management and public relations are 
consumed with dealing with the resulting negative publicity, much to the detriment of 
the company's core business. 

• A network administrator works at Site O, one of many sites within a large, 
geographically dispersed intranet. Instead of typing "19", he types "10" ("9" and "0" 
are next to each other on the keyboard) when configuring a local router. As a result, 
Site O begins to advertise a route to network 10.0.0.0/8 instead of network 19.0.0.0/8. 
Since network 10.0.0.0/8 belongs to Site P, users on network 10 are unable to access 
the rest of the intranet. Network 19.0.0.0/8 users are also isolated because their route 
in Site P is also not getting advertised. Users at Sites O and P can't do any work 
requiring access to network resources outside their respective sites. 

• A company has two connections to the Internet through different Internet service 
providers (ISPs), both at the same bandwidth. This has been implemented to provide 
backup routing in case one connection goes down. One of the ISPs has traffic-based 
prices while the other has a fixed price. To reduce costs, the company wants to use the 
fixed-price ISP unless the line to it goes down, in which case it will use the traffic-
based Internet connection. Because a routing policy has not been implemented to 
enforce this preference, all Internet IP traffic passes through the usage-based 
connection, forcing the company to incur higher than necessary costs. 

What can we conclude by looking at these scenarios? We see that crackers may try to 
penetrate networks, router configuration mistakes can happen, and network traffic may not 
flow through the path that network administrators intend. We see that these problems can 
occur accidentally or intentionally, often despite good intentions. In all these cases, if certain 
network policies had been formulated and enforced, costly problems could have been 
avoided. 

Let's look more closely at these scenarios. The first involves crackers breaking into a web site 
and modifying the contents. What kind of policy could prevent this situation? Allowing only 
HTTP (web) access to the web server from the Internet can greatly reduce the probability of a 
break-in, since such a policy makes it much more difficult for crackers to exploit operating 
system weaknesses or application software security holes. Even if someone gains access to 
the web server, preventing the use of services such as Telnet or FTP to or from the Internet 
would make it difficult to exploit the server as a platform for further attacks. It would also be 
difficult to upload pictures or other content to the server. 

This first scenario deals with security. A network administrator must worry about the 
definitive network security concerns: unauthorized modification of information, denial-of-
service attacks, unauthorized access, and eavesdropping. Throughout this book, you'll learn 
how to use Cisco access lists to enforce security policies. 
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The intranet scenario describes how a configuration mistake at one site in an enterprise 
network can create problems for another site far away. In this case, an intranet Site O 
advertised a route for a Site P, causing users in Site O and Site P to be cut off from the rest of 
the intranet. Again, why are both cut off? Typos happen. Errors in judgment happen. Even 
with injections of bad routing information and the best of intentions, a network should keep 
running. Network policies that help retain tight control over routes can minimize the impact 
of human error. 

This scenario illustrates the robustness problem. This problem is conceptually different from 
the first scenario and, in many ways, more difficult to deal with. In the security-oriented 
scenario, we are trying protect against hostile attacks. In the intranet scenario, we are trying to 
protect against operator mistakes. The difference in intent makes it much harder to anticipate 
where a problem can occur. Despite the difficulty, it is important that this type of scenario be 
anticipated. As intranets and the Internet become mission critical, configuration errors should 
not shut down networks. Configuration errors become more and more common as intranets 
and the Internet get bigger—the larger a network is, the more components it has that can fail 
in strange ways. Also, as more people are involved with maintaining a network, the greater 
the chance that one of them will make a configuration mistake. Access policies can minimize 
these risks. Maintaining a healthy and robust network is a major motivation for network 
access policies, as we will see repeatedly in future chapters. 

In the final scenario, traffic should go to the cheaper path, which is identical to the other path 
in every respect except for the way it is billed. In this scenario, security and robustness are not 
prime motivations. Instead, nontechnical business factors drive traffic policy. Business drivers 
are a third major motivation for network access policies. 

So these are the three key concerns that motivate the need for access policies: security, 
robustness, and business drivers. It should be mentioned that they are not always easily 
separated and distinct. Security is often (and should be) a major business reason for access 
policies. Good security also helps with network robustness: preventing denial-of-service 
attacks keeps the network up and healthy. Conversely, policies intending to maintain network 
robustness—minimizing the impact of accidental misconfiguration and equipment failures—
can also minimize the impact of deliberate sabotage. Having a highly available, robust 
network is often a business goal that is key to an organization's effectiveness. Despite some 
overlap, I mention our three motivations as separate goals because they are distinct and 
important enough to help us focus on why we implement access policies. 

1.1 Policy sets 

Now that you know why you should have policies, how do you implement them in Cisco 
router networks? How are Cisco access lists involved with policy at all? In this section, I 
describe a conceptual framework that can help with the design and implementation of 
policies. The key concept in this framework is the policy set. 

If you think about policies in general (not just network access policy), every policy has two 
parts, what and how. "What" designates the objects included in a policy. "How" describes 
how those objects are affected by the policy. When a policy is enforced, some set of objects 
or is evaluated against whether it is affected by that policy. Let's look at policies in a 
department store. The store has a policy on business hours. Employees may come in during a 
specific range of hours, and customers are allowed in during another range. How is this policy 
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divided into the two parts? The affected objects (the "what") are the store's employees and 
customers. The "how" is that employees are allowed in during certain hours, and customers 
are permitted to shop during certain hours. Of course, people other than employees, such as 
delivery workers, also go into stores. As each person goes in, the policy is enforced, and we 
check to see whether they are employees, deliverers, or customers. If they are customers, they 
may enter only during certain hours. 

Let's look at other policies a store might have. Many stores do not permit customers to bring 
in knapsacks or large bags. The "what" in the policy are the knapsacks and large bags brought 
by people coming to a store. The "how" is a rule forbidding customers from bringing them 
into the store and forcing them to check those items into lockers or drop them off in some 
area. Also, stores typically have a policy that only employees may enter certain areas. The 
"what" in this policy is employees. The "how" is that only employees are permitted in some 
area. 

When implementing traffic policies in Cisco router networks, we have to partition them in a 
similar way. The "what" of a policy, the set of objects affected, is what I will call the policy 
set. Let's look at the policy sets in the department store example. For the business-hours 
policy, the policy set consists of the store's customers. For the knapsack policy, the policy set 
consists of the knapsacks and large bags that customers bring into the store. For the restricted-
area policy, the policy set is made up of the stores' employees. 

Policy sets are defined using a series of policy set entries. These entries include or exclude 
objects of interest from a policy set. Let's go back to our department store policies to show 
how these policy set entries work. The store may have a policy that only employees who have 
undergone cashier training, supervisors, or managers may operate a cash register. In this case, 
the policy set is made of employees with the approved characteristics. We define the policy 
set with the following policy set entries:  
 
Employees with cashier training 
Supervisors 
Managers 

When an employee tries to operate a cash register, he enters an employee ID number, which is 
checked against a database to see whether the employee is in the policy set. Is he an employee 
with cashier training? Is he a supervisor? Is he a manager? If any of these conditions apply, 
that employee is permitted to operate the cash register. In our knapsack policy example, 
knapsacks and large bags are included in our policy set, which is defined with the following 
policy set entries: 

Knapsacks 
Large bags 

To enforce this policy, each person coming into the store with a bag is checked. Is the bag a 
knapsack? Then it is not permitted. Is the bag very large? Again, it is not permitted. If it is not 
one of the choices in the policy set (a purse, say), the policy does not apply, and the customer 
may bring the bag into the store. 

If the store changes its policy to allow large bags containing merchandise to be returned or 
exchanged, the policy set is then defined with the following policy set entries: 
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Knapsacks 
Exclude large bags with merchandise for exchange or return 
Large bags 

When this bag policy is enforced, people coming into the store have their bags checked. Do 
they have a knapsack? The bag may not be brought in. Does the bag have merchandise to 
exchange or return? Then it may be brought in. Is the bag large? If so, it may not be brought 
in. Policy set entries, as mentioned earlier, can either include or exclude objects from the 
policy set. 

1.1.1 Characteristics of policy sets 

Notice that we add each entry to the policy set in the order specified. This is important 
because objects are compared sequentially against a policy set. As soon as an object matches 
a policy set entry, no more matching is done. If we had the policy set entries in the following 
order: 

Knapsacks 
Large bags  
Exclude large bags with merchandise for exchange or return 

then "Large bags" are matched before excluding large bags with merchandise to be 
exchanged, and no exception is made. 

Enforcing policies takes up resources and has costs. The longer the policy set, the longer it 
takes to enforce the policy, and more resources are required. Using our department store 
example, if our policy set spelled out different colors of knapsacks and bags: 

Green knapsacks 
Purple knapsacks 
Red knapsacks 
Beige knapsacks 
All other knapsacks 
Aquamarine bags 
Blue bags 
Yellow bags 
Exclude pink bags with merchandise for exchange or return 
Exclude all large bags with merchandise for exchange or return 
All other bags 

it would obviously take longer for an employee to inspect incoming bags. The number of 
points where policies are enforced also has an effect on resources. A store with many 
entrances would need to have an employee at each entrance to enforce the bag policy. This is 
why many department stores have only one entrance: to minimize the number of employees 
needed to enforce such a policy. 

1.1.2 Policy sets in networks 

In network policies, policy sets are sets of the network objects that pass through or into a 
router. The three types of network objects that routers process are host IP addresses, packets, 
and routes. Network administrators implement policies by defining policy sets of these 
objects and applying rules to them. The policies are enforced as routers check the host IP 
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addresses, packets, and network numbers going through them to see if they are members of a 
defined policy set. If so, rules are applied to those network objects. 

1.1.2.1 Policy sets of host IP addresses 

Let's give a few examples to show how network policies and policy sets work. I'll describe a 
network policy, then break down each policy into a policy set and its rules. Let's start with the 
following policy: 

Only hosts in network 192.168.30.0/24 can log into Router A 

This is the network analog of the department store policy of allowing only employees into 
certain areas. In this case, the policy set is composed of the IP addresses in the network 
192.168.30.0/24, which we can define as follows: 

Policy Set #1: Hosts with IP addresses in network 192.168.30.0/24 

We implement this policy by allowing only hosts in the policy set to log into Router A. The 
rule that we apply is the following: 

Router logins are permitted only from Policy Set #1 

When someone tries to log into the router, the IP address of the host is checked. If the IP 
address is in Policy Set #1, the person is permitted to log on. This is one way of limiting who 
can make changes to a router. 

For convenience, policy sets are labeled with numbers and, in some instances, names. This 
permits us to reuse policy sets. Let's add another policy as follows: 

Only hosts in network 192.168.30.0/24 may use Router A as an NTP (time) 
server 

We can then have the following policy setting without redefining a new policy set: 

Only hosts in Policy Set #1 may use the NTP Service 

1.1.2.2 Policy sets of packets 

The previous example showed how sets of host addresses form a policy set. Another type of 
network object that can be used to form policy sets is a packet. A security-oriented policy 
might state: 

Only web traffic is allowed to Host A 

Such a policy is designed to prevent scenarios like the one mentioned previously, where a 
web server was penetrated and altered. The policy set in this example consists of IP packets 
carrying the HTTP protocol (the web protocol) going to Host A: 

Policy Set #101: HTTP Packets to Host A 
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The policy set is applied against the router interface leading to Host A: 

Only packets in Policy Set #101 can pass through the router interface leading 
to Host A 

Only packets in Policy Set #101 are allowed through the interface to the host. Since web 
packets are the only packets defined in Policy Set #101, traffic to Host A is effectively limited 
to web traffic. 

In addition to host IP addresses and packets, policy sets can be comprised of routes. A policy 
might say the following: 

Accept only routes to network 192.168.65.0/24 from other routers 

A policy like this could be used to send only traffic to network 192.168.65.0/24 through a 
given router. It might also be used if we know that only routes to 192.168.65.0/24 arrive at the 
router. Any other routes received would be there only because of configuration mistakes 
(robustness being the key concern) or intentional attacks (security the key concern). Whatever 
our motivation, the policy set would be the following: 

Policy Set #2: Network 192.168.65.0/24 

How would the policy set be affected? It would be as follows: 

Routing protocol: Accept only Policy Set #2 

The result would be that network 192.168.65.0/24 is the only route allowed into the router's 
routing table. 

1.1.2.3 Complex policy sets 

As policies get more complex, it can be difficult to separate out a policy set. Take the 
following policy: 

Network traffic should pass through Organization X only as a last resort 

In other words, traffic should not go through Organization X unless no other route is 
available. This type of policy deals with scenarios like those discussed previously, where for 
business reasons like cost, certain network paths are preferred. How do we specify a policy 
set for this? Because traffic will not flow through a router to a given destination unless routing 
information exists for that destination, we can implement this policy by defining a policy set 
of all the routes going through Organization X: 

Policy Set #3: All routes going through Organization X 

We can then weight the metrics of the routes from the policy set to make them less appealing 
to routing processes and usable only as a last resort: 

Routing protocol: Add extra routing metric values to routes in Policy Set #3 
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So far, I have focused only on policy sets, so you might be wondering how Cisco access lists 
come into the picture. The function of Cisco access lists is to hold the specification of a policy 
set. The term "access list" is somewhat deceptive in that it implies only a security function. 
Though access lists are indeed used for security functions, they are properly understood as a 
general mechanism used by Cisco routers to specify a set of network objects subject to policy. 
Access lists are built of access list entries, which directly correspond with policy set entries. 

The framework described here is useful because it helps us think about network policies in 
ways that are almost directly translatable into Cisco access lists. In future chapters, I will 
almost always define network policies in terms of a policy set and a policy imposed upon it. 

1.2 The policy toolkit 

What do we do with our policy sets once we define them? How can we use those policy sets 
to prevent the described scenarios from happening? This section talks about the "policy 
toolkit," a set of four "tools" that are general techniques for manipulating policy sets. 

As we know, policy sets can be described as the "what" of a policy. The policy tools fit into 
our conceptual framework as the "how." Once we define a policy set, we must do something 
with it to implement a policy. There are four kinds of tools we can use with policy sets to 
implement network policy. These tools control the following: 

• Router resources 
• Packets passing through the router 
• Routes accepted and distributed 
• Routes based on characteristics of those routes 

It may not be obvious why a network administrator would use these tools. To understand this, 
think about the functions that a router performs in a network. First, in many ways, a router 
functions like a host in that there are certain services it provides—logins, network time, 
SNMP MIB data. These are router resources that a network administrator can control. 
Secondly, a router's key function is to forward packets from one network interface to another. 
Hence the network administrator can do packet filtering, i.e., can control the packets passing 
through the router. The last key function of a router is to accept and distribute routing 
information. Thus, there must be a way to control routes that are accepted and distributed. The 
most common way to do this is with the routes themselves: by filtering routes based on their 
network numbers. A second, more complex way to filter routes is to use another characteristic 
of the routes, like last hop or some other arbitrary route attribute. It can be argued that all 
route filtering is done based on some route characteristic, be it the network number or some 
other attribute, but we keep them in separate categories because route filtering based on route 
characteristics tends to be much more complex than filtering using network numbers. 
Controlling routes based on route properties also tends to use radically different access list 
constructs. 

For each of the four policy tools, I describe the typical policy set and provide an example of 
how the tool is used. I'll come back to these examples in later chapters when I show how to 
build and use access lists. 
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1.2.1 Controlling router resources 

In the original scenarios, we saw how letting unauthorized people log into a web server 
created problems. Similar problems can arise when unauthorized people are allowed to log 
into routers. Logins over the Internet can allow the theft of passwords and therefore the 
penetration of networks. Problems occur when unqualified people are allowed to make 
changes. For these reasons, as well as in a more general sense, network administrators need to 
have control over the resources on a router. The main concern here is, of course, security, but 
network robustness and business policy also play a large part. 

Earlier in this chapter, I mentioned that policy sets are composed of one of three things: host 
IP addresses, packets, or network addresses. When we control router resources, the policy set 
we use consists of host IP addresses: the IP addresses of systems that can access the resource. 
Let's look at a policy that defines which machines can access a certain router, restricting 
router logins to the hosts at IP addresses 192.168.30.1 and 192.168.33.5. Figure 1.1 shows 
how the network is configured with the router, the two hosts allowed to access it, and other 
hosts and networks. 

Figure 1.1. A router and hosts that could potentially access it 

 

The first step in defining the access policy is to define the policy set of hosts that can access 
the router. We do that as follows: 

Policy Set #1: IP address 192.168.30.1 

Policy Set #1: IP address 192.168.33.5 

Policy Set #1: No other IP addresses 

Each of the first two policy set entries adds a specific IP address to the policy set: Policy Set 
#1 contains the IP addresses 192.168.30.1 and 192.168.33.5. The third entry explicitly denies 
all other IP addresses. 

Once the policy set is defined, we apply Policy Set #1 to router logins: 

Router logins: Use Policy Set #1 

The policy we have just defined says that only hosts with IP addresses 192.168.30.1 and 
192.168.33.5 may log into the router. 
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1.2.2 Controlling packets passing through a router 

On the Internet, high-profile web servers are constantly probed for potential security 
vulnerabilities and opportunities for crackers to penetrate a web server and alter its contents. 
These web servers can be substantially protected from this and other kinds of attacks by 
limiting the type of packet a router passes on to the servers. With this policy tool, also known 
as packet filtering, we define in our policy sets the kinds of IP packets that can pass through 
router interfaces. Packet filtering with access lists is a very common use of Cisco routers, 
particularly as part of firewalls. Although the primary concern here is security, robustness and 
business policy are also considerations, since an organization may find that certain kinds of 
packets cause problems. It may decide that it doesn't want a certain type of network traffic 
passing through, thus conserving bandwidth or reducing costs. 

Almost all organizations now have some kind of web presence, so let's use the web server 
example to show how to specify a packet-filtering policy. 

The policy will limit access to a web server on an interface of a router to the web protocols 
HTTP and SSL. Figure 1.2 shows a typical network configuration that a company might use 
for this purpose. 

Figure 1.2. Restricting packets to a web server 

 

This configuration shows a web server 192.168.35.1 on router interface Ethernet 0. The 
interface Ethernet 1 connects to other hosts and network segments with the company, while 
the serial line connects directly to the Internet. 

First, let's specify the policy set: 

Policy Set #101: HTTP packets to the host at 192.168.35.1 

Policy Set #101: SSL packets to the host at 192.168.35.1 

Policy Set #101: No other packets 

The first two policy set entries permit HTTP and SSL. The last entry excludes all other 
packets. 
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Finally, the policy set is applied to the router interface: 

Ethernet interface 0: Apply Policy Set #101 to outgoing packets 

The result is that the web server at 192.168.35.1 on interface Ethernet can be accessed only 
with web protocols. 

1.2.3 Controlling routes accepted and distributed 

In a previous scenario, a typographic error by a network administrator at one site causes both 
the site's own users and those at a remote site to lose network connectivity. Networks would 
function perfectly if routers always distributed routes correctly and with the metrics and 
directionality that the network designers intended. But as I said, operator mistakes do happen. 
In another scenario, network traffic paths are not optimal to an organization in terms of cost. 
Often the desire for traffic between networks to flow in certain paths goes against what would 
naturally happen with no intervention. To prevent routing errors from causing problems and 
to implement traffic-flow preferences, network implementers use the policy tool called route 
filtering. Route-filtering policies specify what routes are accepted into a router and what 
routes and routing metric values are distributed from a router. The policy sets used are 
composed of network numbers and are applied to routing protocols to indicate what routes are 
accepted and distributed from a router or what route metric values those routes should 
contain. 

The main motivations for using this policy tool are robustness and business policy. A network 
administrator wants to make sure that a network operates despite the presence of 
configuration mistakes, or a business may decide it wants traffic flowing over some paths 
instead of others to make a cost-effective use of bandwidth. Security can also be a motivation 
for implementing these policies since one way to attack a network is to inject bad routing 
information. Route filtering can effectively stop this attack. 

Let's look at a simple but very common application of route filtering. To implement such a 
policy, we first need to define what networks we want to accept. We then declare that these 
routes are the only routes accepted by a given routing protocol. In this example, we accept 
only two routes, 192.168.30.0/24 and 192.168.33.0/24, into an EIGRP routing process 1000. 
Figure 1.3 shows this network configuration. 

Figure 1.3. A configuration where route acceptance and distribution must be controlled 
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The policy set used with route filtering is composed of network numbers. For this example, 
we have the following policy set: 

Policy Set #2: Network 192.168.30.0/24 

Policy Set #2: Network 192.168.33.0/24 

Policy Set #2: No other networks 

It contains the two networks we specified and excludes all other networks. We then use this 
policy set to express the routes accepted for a given routing process: 

Routing process EIGRP 1000 accepts only routes in Policy Set #2 

Only routes for networks 192.168.30.0/24 and 192.168.33.0/24 are accepted by EIGRP 
routing process 1000. All other routes are excluded, so only traffic for the two networks 
included will be permitted through the router. 

1.2.4 Controlling routes accepted and distributed based on route characteristics  

Networks would be much easier to configure and manage if network numbers were the only 
criteria we had for route policies, but there are other criteria for making routing decisions, 
including route characteristics. For instance, in a previous scenario, a company connecting to 
the Internet wants to prefer all routes coming from a particular Internet service provider. An 
ISP may want to route traffic depending on preferences that its customers send along with 
their route advertisements. In these cases, policy decisions must be made on some route 
characteristic other than just the network number. Like the previous policy tool, the policy 
sets themselves are still made up of network numbers, but membership in this type of policy 
set is based on route characteristics. Although this kind of access policy is typically 
implemented when dealing with Internet connectivity using the BGP-4 routing protocol, it can 
be done with interior routing protocols as well. The main motivations for using this technique 
are business drivers and robustness, but security (e.g., preventing denial-of-service routing 
attacks) can also drive its use. 

In the next example, we'll see how to control routing based on the properties of routes. In this 
case, we route based on the path that routing information has taken. Organization A has a 
policy to never route traffic through Organization B. Figure 1.4 shows how network 
connectivity might look in this situation. 
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Figure 1.4. Organization A restricting traffic based on paths 

 

Organization A connects to other organizations through a number of paths, some that go 
through Organization B and some that do not. The policy's goal is to prevent traffic leaving 
Organization A from going through Organization B. To do this, Organization A needs to 
reject all routes with a path through Organization B. We build a policy set containing only 
routes that do not pass through Organization B: 

Policy Set #100: Exclude all routes passing through Organization B 

Policy Set #100: Include all other routes 

Then we apply the policy set to a route process: 

BGP Routing process #65001: Accept only routes in Policy Set #100 

on the router connecting Organization A to Organization C. 

1.2.5 Putting it all together 

These four policy tools are the fundamental techniques that network designers use to create 
and maintain secure and stable networks. Think of them as four different ways to keep 
networks running. When faced with an Internet or intranet network policy issue, you can deal 
with it by controlling router resources, packet filtering, or managing route distribution based 
on network numbers or route characteristics. We have seen how hosts, packets, and routes are 
controlled through access lists. Another way to think about these tools is to picture the router 
as a giant filter, taking in service requests from hosts, packets, or routes, and then either 
forwarding them, modifying them, or dropping them. When we want to implement a network 
policy, we use our four policy tools as different types of filters on the routers. The actual 
filters are defined in access lists.  

In this book, we'll see how to use access lists to apply these four categories of policy controls, 
and will return to these examples in future chapters to demonstrate how access lists are used. 
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Chapter 2. Access List Basics 
In Chapter 1, I talked about the need for network policies. I also described how to build 
policy sets, how policy sets map to access lists, and how to manipulate policy sets. However, 
before actually implementing any policies, we must first understand how to create and 
manipulate access lists. This chapter covers the two basic access list types and how to build 
and maintain them. The first kind of access list is the standard access list, used to build policy 
sets of IP addresses or IP networks. In describing the standard access list, we will examine the 
basic syntax used in all Cisco access lists, including the basic permit/deny operation for 
including or excluding network objects from a policy set, address specification and masking, 
and the sequence used in processing access lists. The standard access list cannot cover all the 
policies we may wish to specify, particularly when we want to do packet filtering, which 
leads us to the second type of access list: the extended access list. This kind of list extends the 
format of the standard access list to specify packet filtering policies. Once we have learned to 
build the basic access list types, the chapter covers how to optimize, build, and maintain 
access lists. 

2.1 Standard access lists 

Also in Chapter 1, we discussed the motivations for implementing access policies. All three 
motivations—security, robustness, and business drivers—are reasons to use the standard 
access list. With these reasons in mind, a network administrator typically uses standard access 
lists to implement three types of policy controls:  

• Access to router resources 
• Route distribution 
• Packets passing through a router 

These policy controls require policy sets of IP addresses or network numbers, so the standard 
access list is used to build policy sets of either IP addresses or network numbers. Once policy 
sets are defined with standard access lists, the access list can restrict access to network 
resources, determine which routes are accepted and distributed, and change routing metrics to 
influence traffic behavior. To illustrate how the standard access list is used, let's look again at 
the first example from Chapter 1, which deals with controlling router resources. Recall that 
Figure 1.1 showed a router that we control and the hosts that are allowed to access its 
resources. We defined Policy Set #1, consisting of the hosts allowed to log into the router, as 
follows: 

Policy Set #1: IP address 192.168.30.1 

Policy Set #1: IP address 192.168.33.5 

Policy Set #1: No other IP addresses 

How does this policy set map to actual access lists? Here is the mapping: 

access-list 1 permit 192.168.30.1 
access-list 1 permit 192.168.33.5 
access-list 1 deny 0.0.0.0 255.255.255.255 
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The number after the access-list keyword is the access list number, so in this example, we 
define access list 1. The number also specifies what kind of access list it is. Different types of 
access lists for different network protocols use different ranges of access list numbers (e.g., IP 
uses 1-99 for standard access lists and 100-199 for extended access lists; IPX uses 800-899 
for its standard access lists, while DECnet uses 300-399). The first two entries use the 
keyword permit, which includes the IP address listed in the entry into our policy set. In this 
example, we first include the IP address 192.168.30.1 into our policy set, followed by IP 
address 192.168.33.5. The third entry contains the keyword deny, which excludes the IP 
addresses following from the policy set. IP address and wildcard mask 0.0.0.0 
255.255.255.255 means that we should match all packets. Combined with the deny 
keyword, this excludes all other packets (we'll discuss this mask format later in the chapter). It 
should be noted that access lists can be entered in the router's configuration only after you 
have obtained full privileges on the router and entered global configuration mode. 

What do we do with the policy set we have just defined? In the example, we want to control 
router login access. The policy set application is summarized as: 

Router logins: Only from hosts with IP addresses defined in Policy Set #1 

In Cisco router configuration language, this maps to be: 

line vty 0 4 
access-class 1 in 

The first command line states that we are about to define some attributes about virtual 
terminal sessions (line vty), the Telnet sessions that allow people to log into the router. In 
this command we state that we will have five possible simultaneous sessions, labeled 0 to 4. 
The next command line states that the policy set defined by access list 1, our selected set of IP 
addresses, is the group of IP addresses that have access to the virtual terminal sessions. Only 
Telnet sessions initiated from hosts with those sets of IP addresses will be allowed to use one 
of the five available logins. In this way, we have just specified what IP addresses can telnet 
into our router. The line command makes all the following options we set apply to all possible 
Telnet sessions. We can also apply different access lists for each session. 

2.1.1 The implicit deny 

Notice that we have used deny to exclude all other IP addresses from our policy set. The 
keyword deny is used to specify what is not included in the policy set. For example: 

access-list 2 deny 192.168.30.1 
access-list 2 permit 192.168.33.5 

Access list 2 does not include IP address 192.168.30.1 in the policy set but does include 
192.168.33.5. These two access list entries are equivalent to the following single entry: 

access-list 2 permit 192.168.33.5 

This is because access lists have an implicit deny at the end of them. Everything not explicitly 
permitted in the standard access list is denied. Similarly, in access list 1 listed earlier, we 
could have used the following as our access list: 
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access-list 1 permit 192.168.30.1 
access-list 1 permit 192.168.33.5 

and omitted the final deny completely. 

The implicit deny is a key feature of Cisco access lists. It is a behavior that effects the way 
access lists are written, generally making them easier to deal with. We will use this feature 
extensively. 

2.1.2 Standard access lists and route filtering 

Previously, I mentioned that the standard access list is also used in route filtering. This means 
that we can use standard access lists to build policy sets of routes. Let's go back to the 
example in Chapter 1 that illustrated how to filter routes. The network configuration is shown 
in Figure 2.1. 

Figure 2.1. A configuration where route acceptance and distribution must be controlled 

 

We want a policy that restricts Router A (in Figure 2.1) so it forwards only traffic destined for 
the two networks 192.168.30.0/24 and 192.168.33.0/24 through the line on serial interface 0. 
We can implement this by configuring Router A to accept only routing information for these 
two networks from over the serial line. Traffic between the networks connected to Router A, 
172.18.0.0/16, 172.19.0.0/16, 172.20.0.0/16, and 192.168.10.0/24, should be permitted, along 
with any traffic between those networks and the two networks on the other side of the serial 
line. All other traffic should be dropped. In addition to preventing the router from carrying 
unwanted traffic, this policy also prevents routing problems in case a configuration error (here 
or elsewhere) sends other routes to Router A over the serial line. To implement the policy, we 
need to configure the router to accept only the routes 192.168.30.0/24 and 192.168.33.0/24. 
Here is the policy set specification: 

Policy Set #2: Route 192.168.30.0/24 

Policy Set #2: Route 192.168.33.0/24 

Policy Set #2: No other routes 

When translated into standard access list notation, this policy set specification yields: 

access-list 2 permit 192.168.30.0 
access-list 2 permit 192.168.33.0 
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This access list includes the two networks 192.168.30.0/24 and 192.168.33.0/24 in the policy 
set. We do not need an access list entry that excludes all other routes because the implicit 
deny at the end of access lists takes care of this. With the policy set established, we then apply 
it to a routing process. In our route distribution example, we specified this by saying: 

Routing process EIGRP #20: Accept only routes in Policy Set #2 inbound from 
interface serial 

The analogous route configuration commands are: 

router eigrp 20 
distribute-list 2 in Serial0 

The first line specifies the route protocol and EIGRP autonomous system (AS) number 
involved. The second line says that for this particular EIGRP routing process, only the routes 
in access list 2 from routing protocol updates over serial interface 0 will be accepted. 

2.1.3 Access list wildcard masks 

An optional wildcard mask can be used to include many addresses in a policy set. For 
example: 

access-list 3 permit 192.168.30.0 0.0.0.255 
access-list 3 permit 192.168.33.5 

means that all the hosts on network 192.168.30.0/24 are included in our policy set, as well as 
the host with IP address 192.168.33.5. The wildcard mask is interpreted as a bit mask where 1 
indicates "match anything" in the corresponding bit in the IP address, and 0 means match the 
IP address exactly in that bit position. Making the last octet of a mask all 1's (255) means 
match anything in the final octet. Thus every host in the network 192.168.30.0/24 is included 
in the policy set. If we apply the list to the virtual terminal lines: 

line vty 0 5 
 access-class 3 in 

all the hosts in the 192.168.30.0/24 network and the host at 192.168.33.5 can log into the 
router. Another way to think about this is that a 1 is a wildcard for that particular bit position. 
Any value, 0 or 1, in the corresponding bit position is considered a match. 

2.1.4 Specifying hosts in a subnet versus specifying a subnet 

It is important to distinguish between specifying a network number for inclusion in a policy 
set and specifying all of the hosts in a network in a policy set. Using the previous example, 
the access list entry: 

access-list 3 permit 192.168.30.0 0.0.0.255 

includes all of the hosts in network 192.168.30.0/24 in a policy set. This is not the same as: 

access-list 4 permit 192.168.30.0 
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This access list entry includes the single IP address 192.168.30.0 in a policy set. 192.168.30.0 
could be one of two things: a host IP address (a strange one at that, since hosts typically do 
not have in the last octet) or a network number. The entry does not include all of the hosts in 
network 192.168.30.0/24. If we use access list 4 in an access-class statement such as: 

line vty 0 4 
 access-class 4 in 

only a host with the strange but potentially valid IP address of 192.168.30.0 would be 
permitted to have login access to the router. Access list 4 would more typically be used to 
build a policy set of a network addresses in a routing context: 

router eigrp 100 
 distribute-list 4 in Serial0 

Here, only the route to network 192.168.30.0 would be permitted into the routing table via the 
EIGRP routing protocol. 

If we were building a policy set of network addresses, the address/mask pair 192.168.30.0 
0.0.0.255 would include the network 192.168.30.0/24. But it would also include networks 
like 192.168.30.0/25, 192.168.30.128/25, and 192.168.30.192/26 that have different mask 
lengths. In general, it is best to be as specific as possible when defining policy sets. Including 
more than necessary can lead to unexpected behavior such as having unanticipated routes in a 
policy set. 

2.1.5 Access list wildcard masks versus network masks 

One of the most commonly used access list wildcard masks specifies all the hosts in a 
network or a network subnet, as we saw in the previous example. Let's define a router's 
interface Ethernet on network 192.168.30.0/24 with the IP address 192.168.30.1. We use the 
following statements in the router: 

interface Ethernet 0 
ip address 192.168.30.1 mask 255.255.255.0 

The network mask (often called a subnet mask) is 255.255.255.0. The leftmost 24 bits have 
a value of 1, corresponding to the first three octets of the Ethernet IP address, which define 
the network number. They also correspond to the "24" used when we describe the network as 
192.168.30.0/24. The remaining eight bits in this network's IP addresses identify the host. To 
get all of the hosts in Network 192.168.30.0/24 into a policy set, we use the following access 
list entry: 

access-list 3 permit 192.168.30.0 0.0.0.255 

The access list wildcard mask is 0.0.0.255 (the rightmost eight bits are set to 1). This is a 
wildcard mask that matches all the addresses in the network, and it has 0 in the bit positions 
where the network mask has 1 and 1 where the mask has 0. 

Let's look at another example of network masks and access list wildcard masks that match all 
of the addresses in that network. For network 172.28.0.0/16, the network mask is 
255.255.0.0. Each of the leftmost 16 bits has the value of 1. These 16 bits correspond to the 
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first two octets in the IP address, which define the network number. The remaining 16 bits in 
the network's IP addresses identify the host. If we need an access list address and wildcard 
mask combination that include all the addresses in 172.28.0.0/16 in a policy set, we would use 
172.28.0.0 0.0.255.255. The access list wildcard mask 0.0.255.255 has 1 in the 16 
rightmost bits and 0 in the leftmost 16, while the network mask 255.255.0.0 has 0 in the 16 
rightmost bits and 1 in the leftmost 16. Note again that the access list wildcard mask has 0 in 
the bit positions where the network mask has 1 and 1 where the network mask has 0. A fairly 
common mistake is to use a network's network mask when you want to match all of a 
network's hosts instead of an access list wildcard mask. 

Generally, for a network specified as A.B.C.D/n, the access list wildcard mask that matches 
all addresses in a network will have 1's in the 32-n rightmost bits and 0 in the leftmost n bits. 
For the network 192.168.32.0/26, the access list wildcard mask that matches all entries is 
0.0.0.63 (six 1's in the rightmost column). The network mask on the interface is 
255.255.255.192. For a supernet such as 192.168.80.0/22, the access list wildcard mask that 
matched all the addresses in it would be 0.0.3.255 while the network mask on the interface 
would be 255.255.252.0. 

2.1.6 The implicit wildcard mask 

Earlier, we saw an IP address and wildcard mask combination of: 

0.0.0.0 255.255.255.255 

Since each bit is a 1 in this mask, any IP address on any network will be matched. This 
construct is very useful, and we'll see this address/mask combination used repeatedly in both 
basic access lists and in extended access lists. 

We've also seen access lists in which no mask is included. In the first example, we defined a 
policy set that included the addresses 192.168.30.1 and 192.168.33.5. The access list evolved 
to be the following: 

access-list 1 permit 192.168.30.1 
access-list 1 permit 192.168.33.5 

As I mentioned previously, a 0 in a bit position indicates that there should be a match at 
exactly that bit position. Thus, the access list could have been written as: 

access-list 1 permit 192.168.30.1 0.0.0.0 
access-list 1 permit 192.168.33.5 0.0.0.0 

The lack of an explicit wildcard mask implies a default mask of 0.0.0.0. 

The same applies to network numbers as well as hosts. The access list: 

access-list 2 permit 192.168.30.0 
access-list 2 permit 192.168.33.0 

includes 192.168.30.0/24 and 192.168.33.0/24 (assuming a typical class C network mask). It 
can also be written as: 
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access-list 2 permit 192.168.30.0 0.0.0.0 
access-list 2 permit 192.168.33.0 0.0.0.0 

The implicit wildcard mask is a handy feature that saves typing. We'll be using this feature of 
standard access lists repeatedly. 

2.1.7 Sequential processing in access lists 

You will recall from Chapter 1 that access list entries are processed sequentially in the order 
in which they are entered. For each network object a router sees, it starts at the beginning of 
the access list with the first entry and checks for a match. If not, it continues down the list of 
entries until there is a match or no more entries. However, as soon as a match is found, no 
more matches are made, which makes the order of the entries in our list a very important 
consideration. Let's look at an example: 

access-list 4 permit 192.168.30.0 0.0.0.255 
access-list 4 deny 192.168.30.70 

Access list 4 includes the IP address 192.168.30.70. This address is included even though 
there is an explicit deny of the IP address. If the router controls a resource such as login 
access with access list 4, and then a host with 192.168.30.70 requests use of that resource, the 
router would see that 192.168.30.70 was in the policy set specified by access list 4 and allow 
the request. No more matches are made, and the entry on the second line is never reached. 
Access list 4 effectively specifies a policy set composed of all the addresses in network 
192.168.30.0/24, including 192.168.30.70. 

On the other hand, IP address 192.168.30.70 is not in the policy set specified by access list 5: 

access-list 5 deny 192.168.30.70 
access-list 5 permit 192.168.30.0 0.0.0.255 

When the router checks 192.168.30.70 against access list 5, it matches on the first line. The 
address is explicitly excluded. Although both access lists have the same entries, the entries are 
in a different order. Access list 5 specifies a policy set of all the IP addresses in network 
192.168.30.0/24 except 192.168.30.70. 

2.1.8 Standard access lists and packet filtering 

At the beginning of this section, I mentioned that standard access lists are also used to control 
packets flowing through a router. Network administrators use standard access lists in this 
fashion when certain hosts need total access to hosts on a particular subnet. Figure 2.2 shows 
a network configuration used to protect a set of hosts that process payroll information. 
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Figure 2.2. Using the standard access list for packet filtering 

 

The router shown has two interfaces, Ethernet and Ethernet 1. Network 192.168.33.0/24, 
where the payroll hosts live, is on the Ethernet 1 interface while the rest of the network is 
reachable through the Ethernet interface. We wish to limit access to the payroll systems on 
network 192.168.33.0/24 to the following hosts: 192.168.30.1, 172.28.38.1 (and no other host 
on network 172.28.38.0/24), and any remaining host in network 172.28.0.0/16. The hosts that 
can send traffic to the payroll hosts on network 192.168.33.0/24 should still be able to send 
any kind of IP traffic to that network. No other hosts have any business with the payroll 
systems and should have no access whatsoever. 

To implement this policy, let's first define a policy set containing the hosts that can access the 
payroll machines: 

Policy Set #6: host with IP address 192.168.30.1 

Policy Set #6: host with IP address 172.28.38.1 

Policy Set #6: no other host on subnet 172.28.38.0/24 of network 
172.28.0.0/16 

Policy Set #6: any remaining hosts in network 172.28.0.0/16 not previously 
excluded 

This policy set needs to be applied to any packet going out to interface Ethernet 1 where 
network 192.168.33.0/24 is attached: 

Ethernet interface 1: Apply Policy Set #6 to outgoing packets 

Policy Set #6 translates into the following standard access list: 

access-list 6 permit 192.168.30.1 
access-list 6 permit 172.28.38.1 
access-list 6 deny 172.28.38.0 0.0.0.255 
access-list 6 permit 172.28.0.0 0.0.255.255 

The first line puts the host at IP address 192.168.30.1 into the policy set, and the second line 
includes the host at 172.28.38.1. After this, we exclude all other hosts in the subnet 
172.28.38.0/24. The fourth and last line includes the remaining hosts in network 
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172.28.0.0/16. Note that the sequence of entries is critical. If the second and third lines switch 
positions, host 172.28.38.1 is never included in the policy set. If the third and fourth lines are 
switched, the hosts in subnet 172.28.38.0/24 are never excluded from the policy set. 

The Cisco configuration commands to set our policy are: 

interface Ethernet1 
  ip access-group 6 out 

The first line specifies that we will modify the properties of interface Ethernet 1. The second 
line says that we apply the policy set defined by standard access list 6 to all IP traffic going 
out through router interface Ethernet 1 from the router. 

2.1.9 Generic format of standard access lists 

Now that we've seen some examples of the standard access list, we can define its format in 
some detail. The generic format of the standard access list entry is: 

access-list [list number] [permit | deny] [IP address] [wildcard mask 
(optional)] 

The arguments are: 

list number  

Access list number from 1 to 99. 

permit | deny  

Either permit or deny. permit includes a matching entry in the IP address set; deny 
excludes it. 

IP address  

An IP address used to match and determine the IP addresses that are included in a 
policy set. 

wildcard mask  

Optional wildcard mask that determines what bits of the IP address are significant 
when matching. 

The first part of the standard access list entry is the keyword access-list, which declares 
the line to be an access list entry. The next part is the access list number, which identifies 
what access list the entry belongs to. The standard access list for IP uses numbers between 1 
and 99, which gives us 99 possible standard access lists, more than enough for typical 
configurations. With Cisco routers, access list numbers specifically define an access list's type 
and the network protocol it uses. Standard access lists can't use extended access list numbers, 
while access lists associated with other network protocol suites (such as DECnet or IPX) can't 
use standard or extended IP access list numbers. 
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The argument following the list number is a keyword that determines whether an entry is 
included or excluded in a policy set. permit means to include all objects matching the entry, 
while deny, naturally, means to exclude all objects matching the entry. Another way to think 
of this keyword is that it either permits or denies a matching entry into a policy set. 

The next part of the entry is the match portion, which consists of an IP address or network 
number followed by an optional wildcard mask. The mask is similar to a subnet mask, 
marking which parts of a set of IP addresses are constant and which are variable. Like an IP 
address, this access list wildcard mask is separated into four parts. Each part has a value from 
to 255, representing a one-byte bit mask. A 0 bit in the mask indicates that this bit in an object 
must match exactly the same corresponding bit in the IP address, and a 1 bit means that any 
bit value matches in that position. Thus a mask of 255.255.255.255 matches all possible IP 
addresses, while 0.0.0.0 specifically matches the entire IP address. 

2.2 Extended access lists 

I mentioned in Chapter 1 that one policy tool network administrators have at their disposal is 
control over the type of packets that flow through a router. We looked at examples where it 
was necessary to restrict the kinds of packets passing through a router to specific protocols 
such as HTTP (web) or SSL packets. To implement this, we need to build a policy set that 
includes a variety of different kinds of IP packets. We can't do this with standard access lists 
because they deal with only IP addresses, sets of IP addresses, or network numbers, and not 
with the nature of the packets themselves. Although we saw how to use standard access lists 
to do packet filtering in the last example, there too we could only specify the hosts that are 
allowed to send IP traffic through a specific interface. There was no way to narrow down the 
kind of packets in a policy set to specific protocols such as TCP or UDP, specific protocol 
port numbers, or specific relationships between sets of IP addresses. Standard access lists 
allow all or nothing. To do packet filtering at a finer level of granularity, we need a way to 
extend the standard access list to include things like protocol, port number, and destination IP 
addresses. 

Understanding TCP and UDP port numbers 
Understanding TCP and UDP port numbers is fundamental to using extended access 
lists. To understand port number usage, you have to look at how hosts function 
together in networks. In a network environment, client processes on client hosts 
make requests to server processes on server hosts, which service the request and 
send back a response to the client process. With TCP, a connection is set up with the 
request, while with UDP, there is no connection setup. Many different services, such 
as Telnet or the Domain Name System (DNS), may reside on the server host. In 
order for a client to specify the service it wants to use, it addresses its request to a 
previously defined destination port number associated with the desired service. Ports 
are specified as 16-bit numbers. For example, the standard port for Telnet service is 
23, the port usually used by HTTP (the World Wide Web protocol) is 80, and the 
standard port number for DNS service is 53. While there are standard port numbers, 
it is important to note that these services can use nonstandard ports. A client 
processes can use any of these services on other ports as long as it knows which port 
to use. 
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This is only half the process of servicing requests. The server needs to send back a 
response to the requesting client process. It is easy to identify where to send the 
response if all requests come from hosts with different IP addresses. But what if 
requests come to the same service from the same host? To deal with this scenario, 
the client process picks a unique source port on the client host for the destination of 
a particular request. The server sends responses back to the client's source port using 
the client source port as the response's destination port. The previously defined port 
for the service then becomes the source port for the response. In this way, a set of 
four values—source IP address, source port, destination IP address, and destination 
port—uniquely identify client/server relationships and enable clients and servers to 
talk to each other without confusion. 

The port numbers below 1024 are called well known ports. The Internet Assigned 
Number Authority (IANA) defines the standard port numbers in this range for 
services such as Telnet, HTTP, and DNS (Table A.3 contains a list of the well 
known ports for a variety of services). Typically, source ports for both TCP and 
UDP are above 1023. This is the most common case, but there are some notable 
exceptions to both of these rules of thumb. DNS requests commonly use port 53 for 
UDP source and destination ports. In this case, a query ID is used to uniquely 
identify service requests. As mentioned previously, services can live on nonstandard 
ports as long as both client and server processes agree to use those ports. 

One type of access list is designed to build policy sets for that type of control: the extended 
access list. This kind of access list extends the standard access list to include the ability to 
specify protocol type, protocol port, and destination in a certain direction. Of our three key 
motivations for building access policies, the main motivation for using extended access lists is 
security. It is often used for firewall purposes—specifying the packets that can pass through a 
router between networks of various degrees of trust. Thus, we'll speak in terms of allowing or 
denying packets through a router in our discussions of matching extended access lists. 

Let's look at some examples to illustrate how the extended access list works. In Chapter 1, the 
second example demonstrated how to create a policy that permitted only web protocols to a 
web server with IP address 192.168.35.1 on an Ethernet interface of a router. Figure 2.3 
shows how the web server and router connect. The web server lives on Ethernet 0. All hosts 
routing in through other interfaces (not on the same segment as Ethernet 0) are permitted only 
web access to the server. 

Figure 2.3. Restricting packets to a web server 
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To implement a policy allowing only web packets to the web server, we need to define a 
policy set that includes only packets for web protocols. The policy set specification looks like 
this: 

Policy Set #101: HTTP packets to the host at 192.168.35.1 

Policy Set #101: SSL packets to the host at 192.168.35.1 

Policy Set #101: No other packets 

How does this map into an extended access list? Here is the translation: 

access-list 101 permit tcp 0.0.0.0 255.255.255.255 192.168.35.1 0.0.0.0 eq 
80 
access-list 101 permit tcp 0.0.0.0 255.255.255.255 192.168.35.1 0.0.0.0 eq 
443 
access-list 101 deny ip 0.0.0.0 255.255.255.255 192.168.35.1 0.0.0.0 

Extended access lists begin with the access-list keyword, followed by a list number which 
must be between 100 and 199 (unlike standard access lists, which use numbers between 1 and 
99). The number is followed by permit or deny, which means the same as it does for 
standard lists: either permit or deny packets matching the specification given in the rest of the 
line. 

The next part is where things get different. After permit or deny, an extended access list 
specifies the IP protocol to which the list applies. In this example, we're interested in the 
HTTP and SSL protocols, which both use tcp. (The last line in this group denies access for 
all packets that haven't been matched previously. To make this as general as possible, we 
specify IP itself, rather than a specific IP protocol.) 

Next, we have two address/mask pairs (rather than a single pair as we did with standard 
access lists). The first pair defines the source address; in this example, 0.0.0.0 
255.255.255.255 means "packet coming from any source address," as we'd expect. 
192.168.35.1 0.0.0.0 means "packets going to the specific host 192.168.35.1." We thus 
allow traffic from any host to the specific host we named. 

The access list ends with another protocol specifier: this time, the port number. HTTP uses 
port 80, so to allow HTTP access, we place "eq 80" at the end of the line, meaning "allow 
packets with the destination port 80." Likewise, we allow SSL access with "eq 443." You can 
also specify the port number for the packet source, as I will show later in this chapter. In this 
case, we didn't, meaning any source port was okay. 

To be accepted into our policy set, a packet must match all parts of an entry. The source IP 
address, the destination address, the protocol, and any port or other IP protocol-specific 
condition all must match. To use an access list once the policy set is defined, we must apply it 
against a router interface. In the previous example, we applied our policy set with the 
following: 

Ethernet interface 0: Apply Policy Set #101 to outgoing packets 
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The Cisco configuration commands to do the equivalent are: 

interface Ethernet 0 
ip access-group 101 out 

The first line specifies that we will apply a policy to interface Ethernet 0. The second line says 
that we apply the policy set defined by IP access list 101 to all IP traffic going from the router 
out through router interface Ethernet 0. Note that our access list applies only to the IP 
protocol suite. If we had defined Ethernet to handle IPX traffic, IPX packets would not be 
affected at all by access list 101. Protocols such as IPX and DECnet have their own access list 
syntax, which is beyond the scope of this book. 

2.2.1 Some general properties of access lists 

At this point, it is useful to note the similarities and differences between the standard access 
list and the extended access list. While an extended access list entry matches against two IP 
addresses as opposed to one IP address for the standard access list, both match each IP 
address against an IP address and wildcard masks combination in exactly the same way. 
Another syntactic difference is that masks of 0.0.0.0 are not optional with extended access 
lists. Remember that a router assumes a mask of 0.0.0.0, meaning to match the address 
exactly if a standard access list entry leaves off a mask from an IP address. Even with the 
standard access list use of an implied mask, IP address and mask matching is the same for 
both kinds of lists. 

Another common feature of standard and extended access lists is that both have an implicit 
deny at the end. Thus we could have rewritten our access list 101 as: 

access-list 101 permit tcp 0.0.0.0 255.255.255.255 192.168.35.1 0.0.0.0 eq 
80 
access-list 101 permit tcp 0.0.0.0 255.255.255.255 192.168.35.1 0.0.0.0 eq 
443 

The final access list entry that denied all other IP traffic to the web server is redundant. 

IP address and wildcard mask matching and the implicit deny are common to all Cisco access 
list structures and are important concepts in understanding access lists. Other access list 
structures that we'll see later on use the same concepts. 

2.2.2 Matching IP protocols 

I mentioned earlier that other IP protocols can be specified in extended access lists. Here is an 
extended access list entry for building a policy set for packets of IP type 47 from the host at 
192.168.30.5 to the host at 192.168.33.7: 

access-list 102 permit 47 192.168.30.5 0.0.0.0 192.168.33.7 0.0.0.0 

IP protocol 47 is GRE, the Generic Routing Encapsulation protocol. This protocol is used for 
tunneling non-IP protocols such as Novell IPX and AppleTalk through IP and by the PPTP 
protocol, a virtual private network protocol. The 0.0.0.0 mask means match the IP address 
exactly. Note that there are no "don't care" bit positions (1) in either the source or destination 
address wildcard masks. Because tunneling has a unique set of security hazards associated 
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with it, it is usually a good idea to make policy sets involving tunneling as narrowly defined 
as possible. We will discuss tunneling in further detail in Chapter 7. 

The following access list matches all IP packets sent from network 192.168.30.0/24 to host 
192.168.33.5: 

access-list 101 permit ip 192.168.30.0 0.0.0.255 192.168.33.5 0.0.0.0 

The mask of 0.0.0.255 has all 1's in the last octet. This means that all IP packets from hosts 
in the network 192.168.30.0 destined for host 192.168.33.5 will be in the policy set. Again, 
this is similar to standard access lists except that the 0.0.0.0 wildcard mask is not optional. 
Specifying all IP between sets of addresses implies total trust by the destination from the 
source—any type of traffic can flow from the source to the destination. 

2.2.3 More on matching protocol ports 

We have created access list entries that have matched on the destination port of an UDP or 
TCP packet. We can also match on the source port. This is useful for preventing fraudulent or 
spoofed packets from entering. For example, the Network Time Protocol (NTP) uses UDP 
packets with both the source and destination port being 123. Any packet with the destination 
port of 123 and a source port of something other than 123 is likely not to be a real NTP 
packet. If we want to allow NTP packets to the web server in Figure 2.3, we add the 
following entry 

access-list 102 permit udp 0.0.0.0 255.255.255.255 eq 123 192.168.35.1 
0.0.0.0 eq 123 

The source port is placed after the source IP address/mask pair. 

So far, our examples have had only a single type of port operator: eq. This keyword forces 
matching packets to have a port equal to some value. There are other commonly used 
specifications; one of particular interest is gt. With this operator, a matching packet must 
have a port greater than some value. This comes up frequently as many UDP- and TCP-based 
applications use a source port greater than 1023. The following access list entry matches 
packets with source ports greater than 1023 and destination ports equal to 20: 

access-list 101 permit tcp 0.0.0.0 255.255.255.255 gt 1023 192.168.35.1 
0.0.0.0 eq 20 

It includes in a policy set any packets coming from any host (0.0.0.0 255.255.255.255) 
with a source port greater than 1023 (gt 1023) going to the FTP server (192.168.35.1 
0.0.0.0) with a destination port equal to 20 (eq 20). Because TCP port 20 is a well-known 
port used by File Transfer Protocol (FTP), this access list is commonly used when allowing 
FTP through a router. 

The following access list entry matches packets that have a source port greater than 1023 and 
a destination port of 53: 

access-list 101 permit udp 0.0.0.0 255.255.255.255 gt 1023 192.168.35.1 
0.0.0.0 eq 53 
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This access list is commonly used when using the Domain Name System (DNS) protocol 
through a router. We'll talk more about these two access list entries when we go into more 
detail about using access lists for packet filtering in Chapter 3. 

Let's look at a more complex example that demonstrates how to use extended access lists to 
tightly control packet flow. For this example, we have a router and hosts in a network 
configured as shown in Figure 2.4. 

Figure 2.4. A more complex packet filtering example 

 

The host with IP address 192.168.35.1 is used to control medical diagnostic equipment. For 
patients' privacy and safety we wish to restrict who can access it and how it is accessed. The 
host 192.168.35.1 is isolated on Ethernet 0. All other hosts have routes via Ethernet 1. 

We want to restrict access to the host to only those who need it. To do that, we have to look at 
what access requirements there are. In the first case, the system administrators of the 
diagnostic host access it from network 192.168.30.0/24. Hosts on this network should be 
trusted and should have complete TCP access to 192.168.35.1. Next, the host runs an X 
Window application displayed on three different consoles. The X windows are displayed to a 
host with IP address 192.168.31.1. In addition, doctors and lab technicians need to monitor 
the progress of a procedure and get the final results. These doctors and lab technicians use 
systems on network 192.168.32.0/24, and they use Telnet to access the host to check on 
diagnostic status. Also, since time must be very accurate, the host needs NTP access to an 
NTP time server. There are two time servers on the network, at 192.168.50.10 and 
192.168.50.11. Finally, we allow hosts on the system administration segment to "ping" 
192.168.35.1 to check whether the machine is available. Ping is a utility that uses the ICMP 
protocol to send an echo request and expect a reply. 

Let's implement an outbound access list that filters traffic from the router through Ethernet to 
the segment where the medical diagnostic host resides. With the previously mentioned 
requirements, our access looks like the following: 

access-list 101 permit tcp 192.168.30.0 0.0.0.255 192.168.35.1 0.0.0.0 
access-list 101 permit tcp 192.168.31.1 0.0.0.0 192.168.35.1 0.0.0.0 range 
6000 6002 
access-list 101 permit tcp 192.168.32.0 0.0.0.255 192.168.35.1 0.0.0.0 eq 
23 
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access-list 101 permit udp 192.168.50.10 0.0.0.1 eq 123 192.168.35.1 
0.0.0.0 
eq 123 
access-list 101 permit icmp 192.168.30.0 0.0.0.255 192.168.35.1 0.0.0.0 
echo 

The first line of this access list allows TCP packets from all of network 192.168.30.0/24 to the 
medical diagnostic host with IP address 192.168.33.5. The absence of any port operator and 
qualifer on either the source or destination IP address/mask pairs means that all TCP ports are 
allowed. The second line allows packets from host 192.168.31.1 to host 192.168.35.1 with 
destination ports 6000 through 6002. The diagnostic host has three consoles. For each 
console, the X Window protocol uses a different destination port, starting with port 6000 and 
incrementing for each console. The range option allows specification of a range of port 
addresses, cutting down the number of entries we need in our access list. The third line 
accepts Telnet packets from network 192.168.32.0/24. The Telnet protocol uses TCP 
destination port 23. The fourth line permits NTP packets from hosts 192.168.50.10 and 
192.168.50.11. The mask of 0.0.0.1 includes both NTP servers in one IP address/mask pair. 
The fifth line allows ICMP echo requests from the system management network, 
192.168.32.0/24, to the medical diagnostic host. ICMP doesn't have port numbers like TCP, 
but it does have different types of packets, such as echo or echo-reply. Allowing echo 
requests means that host 192.168.35.1 can receive ICMP echo requests and respond.  

We've seen that extended access lists can be used to filter TCP packets on the basis of their 
source and destination ports. The same is true for UDP, which also uses the concept of ports 
(see the sidebar Understanding TCP and UDP port numbers earlier in this chapter). The 
ICMP protocol, which doesn't use ports, allows you to filter based on packet type; the most 
common ICMP packet types are echo and echo-reply. An example access list entry using 
echo is in access list 101 described earlier. 

2.2.4 Text substitutes for commonly used ports and masks 

Certain configurations are so common that Cisco has developed text substitutes instead of 
port numbers or address mask pairs. The IP address/mask pair: 

0.0.0.0 255.255.255.255 

matches any host or network address. It can be replaced with the single term any. The IP 
address/wildcard mask pair of the form: 

<IP address> 0.0.0.0 

can be replaced with the form: 

host <IP address> 

These text substitutes can be used in both standard and extended access lists. 

Certain service ports are well defined and commonly used. In previous examples, we learned 
that the well known HTTP port is port 80, the NTP port is 123, and the Telnet port is 23. With 
this information, we could have rewritten our web server example as follows: 
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access-list 101 permit tcp any host 192.168.35.1 eq http 
access-list 101 permit tcp any host 192.168.35.1 eq 443 

Similarly, the common types of IP protocols have text values. We have already seen the 
common types of TCP, UDP, and ICMP used, but other IP protocols such as GRE have text 
values. We can rewrite the access list entry that allows GRE (IP protocol 47) as: 

access-list 102 permit gre host 192.168.30.5 host 192.168.33.7 

The more complex access list in the medical diagnostic equipment example can be rewritten 
as: 

access-list 101 permit tcp 192.168.30.0 0.0.0.255 host 192.168.35.1 
access-list 101 permit tcp host 192.168.31.1 host 192.168.35.1 range 6000 
6002 
access-list 101 permit tcp 192.168.32.0 0.0.0.255 host 192.168.33.5 eq 
telnet 
access-list 101 permit udp 192.168.50.10 0.0.0.1 eq ntp 192.168.33.5 eq ntp 
access-list 101 permit icmp 192.168.30.0 0.0.0.255 host 192.168.33.5 echo 

Using these text substitutes makes for less typing and more readable access lists. 

2.2.5 Generic format of extended access lists 

Now that we have looked at a variety of extended access lists, let's define the generic format 
of extended access lists as they are typically used. Extended access lists take the following 
form: 

access-list [list number] [permit | deny] [protocol] [source specification] 
[destination specification]  
[protocol qualification][logging] 

The arguments are: 

list number  

Access list number from 100 to 199. 

permit | deny  

Either permit or deny. permit includes a matching entry in the IP address set; deny 
excludes it. 

protocol  

Protocol of packet. This can be ip, tcp, udp, or icmp among other IP protocols, or it 
can be an IP protocol number. 

source specification  

A specification of the form [IP address] [wildcard mask] [port number 
specification (only for UDP and TCP)]. 
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destination specification  

A specification of the form [IP address] [wildcard mask] [port number 
specification (only for UDP and TCP)]. 

IP address  

An IP address used for matching. 

wildcard mask  

Optional mask for determining what bits of the IP address are significant in matching. 

port number specification  

Optional specification determining some range of numbers for ports. 

protocol qualifiers  

Optional specification defining a more specific instance of the protocol. 

logging  

The logging keyword. If present, it turns on a log of all packet information every 
time the access list entry is matched. 

As with standard access lists, the list number specifies an entry's access list number. For 
extended access lists, this number is from 100 to 199, allowing up to 100 IP access lists on a 
router. protocol is the type of IP protocol being matched. It can also be an IP protocol 
number or else one of the more common IP protocols such as icmp, tcp, udp, or ip (for all of 
IP). A complete table of the possible protocol values is included in Table A.1. Source and 
destination addresses and masks operate in the same way as the standard access list address 
and mask: the source address and mask apply to the source IP address of packets. The 
optional source port is the source TCP or UDP port of a packet matching against the list. 
Obviously, this applies only to UDP or TCP packets. The destination address, mask, and port 
function in the same way. 

The optional protocol qualifier depends on the type of IP protocol specified. For ICMP, the 
protocol qualifier can be echo, echo-reply, or any of the other ICMP packet types. UDP and 
TCP typically use the port number specifications instead, but TCP has an additional qualifier 
called established. The established qualifier for TCP matches all TCP packets that are 
part of a TCP connection that is already set up, regardless of the source or destination port. 
This is a very useful qualifier, and we'll talk more about how to use it in Chapter 3. If no 
qualifier is specified, all packet types of the designated IP protocol that match the given 
source and destination criteria are matched and added to the policy set. Table A.2 includes all 
possible ICMP types and codes, while Table A.3 includes all port number qualifiers. 

The final part of the extended access list entry is the logging keyword (you can abbreviate 
this by just using log). If the logging keyword is present, then every time that the access list 
entry is matched, a log entry is produced. This capability is available only with extended 
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access lists. It is very useful for producing security alerts and for debugging, as we will see in 
Chapter 5. 

Clearly, there are many possible values for various parts of extended access lists. Appendix A 
contains a number of tables that contain all the possible values for protocols and packet types 
used in extended access lists. 

2.3 More on matching 

Proper use of matching and masks can reduce the number of access list entries that a network 
administrator must write. As we discussed before, matching sets of IP addresses, whether for 
networks or hosts in standard access lists or for the source and destination definitions for an 
extended access list, always involves defining an IP address and a mask. Masks are bit masks 
that apply to the corresponding bit of the IP address. Remember that a 1 in a access list 
wildcard mask is a wildcard, meaning that the corresponding bit in the IP address is a match 
no matter what the value is in the IP address being compared. A 0 indicates that the 
corresponding bit must match the IP address exactly. 

So far we have used only 1's in the last portion of a mask to match all the hosts in that 
network, like this: 

192.168.30.0 0.0.0.255 

In this and all previous examples, the 1's in a mask were on the right while the 0's were on the 
left, but we can mask on other portions of an IP address to consolidate access list entries, as 
we'll see here. Let's include four networks in a policy set: 192.168.32.0/24, 192.168.33.0/24, 
192.168.34.0/24, and 192.168.35.0/24. The following access list entries accomplish this: 

access-list 1 permit 192.168.32.0 
access-list 1 permit 192.168.33.0  
access-list 1 permit 192.168.34.0  
access-list 1 permit 192.168.35.0 

We can reduce the number of entries by looking at the network numbers and asking what 
these networks have in common. Clearly, the first two octets are the same: 192.168. Let's look 
at bit patterns for the third octet of the address in Table 2.1. 

Table 2.1. Bit patterns for 32 through 35  
Third octet decimal value Binary equivalent 
32 00100000 
33 00100001 
34 00100010 
35 00100011 

The first six bits are the same (001000), while the last two bit positions vary over the entire 
range of possible values (00, 01, 10, and 11) for a pair of bits. Any bit pattern in the two bit 
positions will match the mask. Thus we can consider those positions wildcards and use 1 in 
the mask at those positions. The bit pattern for the third octet mask is 00000011. This 
translates to 3 in decimal. Thus we can then write this access list as only one line: 
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access-list 1 permit 192.168.32.0 0.0.3.0 

If we need to refer to those four networks again, either in a standard or extended access list, 
we can just refer to them as 192.168.32.0 0.0.3.0, a more terse and compact representation. 
Grouping networks together in this manner has other benefits as well, which we'll discuss 
later in the chapter. 

Since the last two bits in the third octet are wildcards, we can use any of the following access 
list entries to match the four aggregated networks in addition to the previous entry: 

access-list 1 permit 192.168.33.0 0.0.3.0 
access-list 1 permit 192.168.34.0 0.0.3.0 
access-list 1 permit 192.168.35.0 0.0.3.0 

It is best to use our original aggregated entry, with the IP address/mask of 192.168.32.0 
0.0.3.0. This is the most intuitive entry, since the block of network starts with network 
192.168.32.0/24 and has three more networks in the block. Using the other entries, while 
valid, can create confusion and make debugging problems harder because the IP address is 
not as intuitive. 

Does the following access list entry create the same policy set as the previous aggregated 
entry? 

access-list 1 permit 192.168.32.0 0.0.3.255 

It seems to be equivalent. Networks 192.168.32.0/24, 192.168.33.0/24, 192.168.34.0/24, and 
192.168.35.0/24 would be included in the policy set. I don't recommend using this as a mask, 
though. While the four networks we want are included, wildcarding the last octet includes 
other networks, like 192.168.32.128/25 and 192.168.32.64/26. In general, it is best to make 
access lists as specific as possible to prevent surprises like this in the future. 

Let's look at another access list example: 

access-list 101 permit ip 192.168.34.0 0.0.0.255 host 192.168.33.5 
access-list 101 permit ip 192.168.35.0 0.0.0.255 host 192.168.33.5 
access-list 101 permit ip 192.168.36.0 0.0.0.255 host 192.168.33.5 
access-list 101 permit ip 192.168.37.0 0.0.0.255 host 192.168.33.5 

This access list includes all IP packets from all the addresses in four networks going to host 
192.168.33.5. As in the previous example, we have four consecutive networks. Each has a 
mask that matches all of the addresses in that subnet. Can we condense these entries into a 
single statement? No. To see why, let's look at Table 2.2, a mapping of the third octet to 
binary. 

Table 2.2. Bit patterns for 34 through 37  
Third octet value Binary equivalent 
34 00100010 
35 00100011 
36 00100100 
37 00100101 
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The first address/mask pair that we might try is 192.168.34.0 0.0.3.255. As we saw in the 
previous example, an octet value of 3 (00000011) in the mask means that the two rightmost 
bit positions in the corresponding octet are wildcards. This implies that the leftmost six bits 
have a fixed value, in this case 001000. Since the two rightmost bits are wildcards, they can 
take on values from to 3 (00, 01, 10, 11 in binary). Appending these bits to the unchanging 
bits leaves the bit patterns 00100000, 00100001, 0010010, and 00100011. These binary 
numbers, as we can see from Table 2.1, are 32, 33, 34, and 35. This address/mask pair does 
not work. It includes octet values 32 and 33, which we don't want, and excludes 36 and 37, 
which we do want. 

Another address/mask pair that we might try is 192.168.34.0 0.0.7.255. With the third 
octet value being 7, the three rightmost bits are wildcards and thus range from to 7. If we do a 
similar analysis to the one we did earlier, we end up with the possible values for the third 
octet being 32, 33, 34, 35, 36, 37, 38, and 39. While this includes 36 and 37, we still end up 
matching 32, 33, 38, and 39. 

What happened here? When the rightmost bits of a mask are wildcards, the following are 
always true: 

• The number of values matched is a power of 2. There are either 2, 4, 8, 16, 32, 64, 
128, or 256 values that can be matched together. 

• The starting address matched is a multiple of the number of values matched. If you 
match 2 addresses, then the first address matched is a multiple of 2 (even). If you 
match 4 addresses, then the starting address is a multiple of 4, and so on. 

In the previous example, we tried to make the address/mask pair 192.168.34.0 0.0.3.255 
match all the hosts in four networks: 192.168.34.0/24, 192.168.35.0/24, 192.168.36.0/24, and 
192.168.37.0/24. This was an attempt to aggregate the numbers 34, 35, 36, and 37 in the third 
octet. By the first rule, we have to match a power of 2, in this case 4 since we are trying to 
match 4 addresses. The second rule states that the values matched start on a multiple of 4, and 
34 is not a multiple of 4. Since the closest multiple of 4 less than 34 is 32, the address/mask 
we used matched networks 192.168.32.0/24, 192.168.33.0/24, 192.168.34.0/24, and 
192.168.35.0/24 instead of the ones we wanted. We then tried to use the address/mask pair 
192.168.34.0 0.0.7.255 to aggregate the four networks. This clearly won't work, as the 
three wildcard bits match eight networks instead of four because of the first rule. The second 
rule says that the range of values matched must start at a multiple of 8. The nearest multiple 
of 8 less than 34 is 32, so the values 32 through 39 are matched, which is more than what we 
wanted. 

Since 34 is not a multiple of 4, we cannot use a single set of wildcard bits to match 4 
consecutive octet values. We can, however, use more than one set of wildcards. While 34 is 
not divisible by 4, it is divisible by 2. That means that a mask of 1 with 34 would incorporate 
both 34 and 35. The remaining two numbers, 36 and 37, can both also be matched by a mask 
of 1, since there are two numbers to match and 36 is divisible by 2. The access list can only be 
condensed to the following: 

access-list 101 permit ip 192.168.34.0 0.0.1.255 host 192.168.33.5 
access-list 101 permit ip 192.168.36.0 0.0.1.255 host 192.168.33.5 

Here we have used a mask of 1 (00000001) as the third octet in each mask. 
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We have seen that we can use a mask such as 192.168.34.0 0.0.3.255 to match all the 
hosts in the networks 192.168.32.0/24, 192.168.33.0/24, 192.168.34.0/24, and 
192.168.35.0/24. This mask is deceptive. At first glance, it may seem to match the hosts in 
networks 192.168.34.0/24 through 192.168.37.0/24. Starting the address/mask pair with 
address 192.168.32.0 is much clearer. 

 
Even if you do start a range with an address in the middle of the range, 
the router will store and display that particular access list entry with an 
address that starts the range. Using the previous example, the router 
would change 192.168.34.0 0.0.0.3.255 to 192.168.32.0 
0.0.3.255. This property could cause confusion later when you need to 
debug access list problems.  

We can learn the following rules from our attempts to reduce our number of access list 
entries: 

• For clarity, your matching rules should always give the base address of a range, 
followed by the mask. While any address within the range will work as the address, it 
is much more understandable to start with the base value. 

• If you want to match some number of addresses that is not a power of 2 or that doesn't 
start at a multiple of a power of 2, you have to write two or more access list entries, 
each covering part of the range. An alternative is to include more addresses in the 
range, which, as we will see later, is often a good idea. 

In general, you can condense a set of IP addresses by looking at the bit positions that would 
have fixed values over the entire set of IP addresses and those that could be wildcards. This 
can happen in the middle of an octet and not just those on the end. Consider the following 
access lists of networks: 

access-list 10 permit 192.168.217.0 
access-list 10 permit 192.168.221.0 

These can be combined into: 

access-list 10 permit 192.168.207.0 0.0.4.0 

since the bit patterns of 217 and 221 (see Table 2.3) vary only in the sixth bit position. A 1 in 
the sixth bit position corresponds to a mask value of 4. 

Table 2.3. Bit patterns for 207 and 211  
Third octet value Binary equivalent 
217 11011001 
221 11011101 

It should be noted, however, that putting wildcard bits in the middle of octets does not make 
for easily readable access lists. Such unintuitive masks can make debugging problems more 
difficult. You should use masks like this only when your access-list lines are at a premium or 
if you are very sure that the octet values you are matching change very infrequently. 
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For your convenience, all possible octet values and their corresponding bit patterns is 
included in Table B.1. Table B.2 lists the most commonly used access list wildcard masks and 
what values they can match. 

Why make access lists shorter? 
Performance, stability, and ease of maintenance are the key reasons that access lists 
should be as short as possible. Remember, routers process access lists sequentially 
when checking to see if an IP address, network address, or packet is a member of a 
policy set. On each router interface with an inbound or outbound access list, the 
router needs to check each packet passing through the interface against the access 
list in each direction. Long access lists that force the router to parse and compare 
many entries consume the router's processing resources as the CPU costs increase 
with the number of interfaces that require attention. 

Access lists can grow to the extent that they threaten a router's stability. If access 
lists are so large that the router's configuration no longer fits into flash configuration 
memory, only a partial configuration will be used when the router reboots. If the 
router crashes for any reason and reloads a partial configuration, the behavior of the 
router will be unpredictable. Although using configuration compression can help in 
this situation, there is still the risk of instability as a number of Cisco IOS versions 
have problems with configuration compression (discussed in Chapter 5). 

Long access lists are also much more difficult to maintain. For example, if there is a 
problem with a 500-entry access list, a network administrator may have to examine 
each of the 500 entries to find the problem. Reducing access list length early on can 
save a lot of debugging work later. 

In some situations, long access lists may be unavoidable. In later chapters, we'll talk 
more about how to deal with long access lists—how to debug them and how to 
lessen the impact of long access lists or many access lists. 

2.3.1 Good numbering practices 

The way that IP addresses are assigned can save a network administrator significant amounts 
of time and network resources. Good numbering practices can reduce the number of access 
list entries, make the addition of hosts easier, improve performance, and even lessen network 
traffic. Factoring policy and access requirements into a network design at the beginning is lot 
easier than retrofitting policies later. 

If you are assigning IP addresses to hosts and know that they have identical access list 
requirements, there are numbering practices that can reduce the number of access list entries 
you may need. To begin with, use blocks of addresses or networks in powers of 2. Start 
numbering at a multiple of that block size. For example, say that you are numbering four 
hosts that need permission to log into a router. You should get a block of four addresses and 
start numbering hosts at 4, 8, 12 or some other multiple of 4. That way, the block of IP 
addresses or networks can be matched in a single access list entry, in this case, with a mask of 
3 in the proper octet. Since the IP addresses of the four hosts that need to access our router are 
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192.168.30.4, 192.168.30.5, 192.168.30.6, and 192.168.30.7, you could write the access list 
for them as follows: 

access-list 1 permit 192.168.30.4 
access-list 1 permit 192.168.30.5 
access-list 1 permit 192.168.30.6 
access-list 1 permit 192.168.30.7 

But since we numbered them as we did, we could write a single access list entry for all four 
hosts: 

access-list 1 permit 192.168.30.4 0.0.0.3 

Our numbering work here is similar to how we reduced the number of access list entries by 
using masks. In this case, we allocate the numbers to create a mask that enables fewer entries 
in our access list. 

When you know that you will have to add hosts that function identically to hosts already in 
access lists, a variation of this technique can save on future work. Let's say we have a web 
server at 192.168.30.16 and know that we may need to add more web servers later. We can 
create the access entry: 

access-list 101 permit tcp any 192.168.30.16 0.0.0.15 eq http 

and then reserve the block of addresses 192.168.30.17 through 192.168.30.31 for future web 
servers. That way, when another web server needs to be added, it can be added within the 
block of addresses already reserved. No access list changes required! We can add up to 15 
more web servers without having to make access list changes. This can really save time, 
particularly if an organization allows router changes only during certain change windows. 
Although this technique does not efficiently use an address space, it is a tradeoff a network 
administrator can make on a case-by-case basis. 

Allocating network numbers in a smart way can also improve router performance and even 
reduce network traffic. Like the example with hosts, if you have a number of networks that 
function similarly and need their routes distributed in identical ways, allocate network 
numbers that can be masked together easily. Let's look at a case where we need to advertise 
eight routes to the Internet. We could allocate eight consecutive networks that start on a 
multiple of 8, such as 192.168.24.0 through 192.168.31.0. This allows us to express the 
networks in an access list with one entry instead of eight: 

access-list 2 permit 192.168.24.0 0.0.7.0 

Some routing protocols such as BGP and EIGRP can aggregate routing information so that a 
bigger aggregation of networks leads to smaller route updates and thus less network traffic. 
Smaller route updates reduce the amount of memory routers need for routing tables as well as 
the router CPU resources needed to manage routing updates. 
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2.4 Building and maintaining access lists 

So far, we have seen many examples of access lists, but I have not shown how standard and 
extended access lists are entered into the router and maintained. 

Access lists are part of the router's configuration; they are not some register values that we 
can set from the router's command line. That being the case, we enter access lists in the top 
level of configuration mode, and must have fully enabled access in order to do so. Access list 
entries are appended to the existing list in the order in which they are entered. For example, 
here is how to enter the access lists implementing the first example in Chapter 1 on a router 
called RouterA: 

RouterA# conf term 
RouterA(config)# access-list 1 permit 192.168.30.1 
RouterA(config)# access-list 1 permit 192.168.33.5 

This creates the following access list with two entries: 

access-list 1 permit 192.168.30.1 
access-list 1 permit 192.168.33.5 

If we exit the router's configuration mode and then reenter and type the following access list 
entries: 

RouterA# conf term 
RouterA(config)# access-list 1 permit 192.168.30.2 
RouterA(config)# access-list 1 deny 192.168.30.1 

we end up with the following access list: 

access-list 1 permit 192.168.30.1 
access-list 1 permit 192.168.33.5 
access-list 1 permit 192.168.30.2 
access-list 1 deny 192.168.30.1 

It is critical to understand how new access list entries affect an access list. If you want to 
delete or change an individual access list entry, you have to delete the entire access list and 
reenter it with the changed or deleted access list entry. Again, this is because any new access 
list entries are appended to the list. In our example, we entered deny 192.168.30.1 after 
permit 192.168.30.1. The deny entry does not "cancel" the permit entry; it only makes 
the access list bigger. Moreover, it is never even evaluated. As I mentioned earlier in the 
chapter, access lists are evaluated sequentially. The permit entry for host 192.168.30.1 is 
always evaluated before the deny entry for host 192.168.30.1. Thus the deny entry is 
superflous. 

You should note that while access lists may be deleted, references to those access lists do not 
disappear. If an access list is deleted and then rebuilt, policy settings that refer to it will use it 
in the same way as before. In our first example, we used access list 1 to control login access. 
We used the following configuration commands: 

line vty 0 4 
access-group 1 in 
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If we delete access list 1 (using the no access-list 1 configuration command), the reference 
to access list 1 still remains. How does a standard access list behave when it is applied to a 
vty line or interface but has no entries? You might expect that since access lists have an 
implicit deny at the end, an access list without entries would deny everything. In fact, the 
opposite is true. The empty access list behavior is to permit everything. For standard access 
lists, this becomes: 

access-list 1 permit any 

Similarly, an extended access list without entries permits everything: 

access-list 101 permit ip any any 

The easiest way to create and maintain access lists is to keep them all in a single file on a host 
and read them in via Trivial File Transfer Protocol, or TFTP. (Most Unix systems have TFTP 
implementations, and software to implement a TFTP service is available on operating systems 
from Windows 3.1, 95, and NT to VAX/VMS.) To maintain access lists this way, precede 
every access list with the statement no access-list n, which deletes list n and allows you to 
create a new list from scratch. Here is an example using the access list associated with our 
very first example: 

no access-list 1 
access-list 1 permit 192.168.30.1 
access-list 1 permit 192.168.33.5 

When this file is read into the router, access list 1 is deleted. A new access list 1 is then 
constructed from the entries of access list 1 that follow. With this technique, a network 
administrator can edit individual access list entries offline from the router. An entire access 
list does not need to be typed in just because a few individual entries were changed. Once 
access lists are ready, the configuration file can be loaded in over the network. 

 
Note that this technique, while convenient, can have risks. Under some 
versions of IOS, reusing an access list number after deleting it can result 
in some or all of the same entries still being there. Test your version of 
the IOS for ACL "ghosts" before using this technique.  

Another benefit of maintaining access list entries in a file is the ability to insert comments. As 
an access list grows in length, inserting comments can make it much easier to read, modify, 
and maintain, especially if someone other than yourself needs to change it. Even if you are the 
original author of an access list, you may forget why you created a particular entry. Lines in 
the configuration file that have an exclamation mark (!) or hash (#) as the first character are 
comments. For example, let's document our previous example: 

# access list 1 - policy set of addresses allowed 
# to log into router A  
# 
! cancel old access list 
no access-list 1 
! permit Ted's workstation  
access-list 1 permit 192.168.30.1 
! permit Mary's workstation 
access-list 1 permit 192.168.33.5 
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The comments make it easier to understand and remember the purpose of access list 1 and its 
entries and are ignored by the router. 

To load a configuration file over the network, the file has to be placed in an area that is 
accessible via TFTP from the router. It needs to be made readable by everyone on the host. 
Once the file is ready, we need to configure the router over the network. As an example, let's 
configure (we have to be fully enabled) a router from a file called routera-access on a host 
with IP address 192.168.30.1: 

RouterA# copy tftp://192.168.30.1/routera-access system:running-config 
Configure using routea-access from 192.168.30.1? [confirm] y 
Loading routera-access from 192.168.30.1 (via Ethernet 0): !!!!!!! 
[OK - 12052 / 128975 bytes] 
RouterA# 

On most implementations of TFTP, a file has to be "world readable" to be read from the 
network. This makes your access lists viewable to everyone on the host and potentially 
everyone on your network. This is problematic. You do not want to make a cracker's life 
easier by giving him your access lists. In addition, you probably do not want to make all the 
files on the host accessible to the world either. To avoid these security problems, you can do 
the following. First, configure TFTP to limit read access to a specific directory. This prevents 
other people on your network from reading files on your host that are not in the directory you 
specify for access list configuration. It also does not allow anyone to substitute their version 
of access lists into the directory and have those loaded into your routers. Second, configure 
your TFTP software to allow only your router access to the configuration files. Third, delete 
the configuration file or change its read permissions to not be world-readable after you are 
done configuring the router. 

Generally, performing the following steps every time you configure a router with TFTP will 
greatly reduce security exposure: 

1. Make access lists readable only by the router 
2. Configure router via TFTP 
3. Make access lists unreadable from the network and to other users on the TFTP server 

There are many ways to implement Step 3. One of the simplest ways is to delete the access 
list file from the TFTP accessible area. Other ways include changing the read permissions on 
the access list file or turning off the TFTP service. Whatever you choose, performing these 
steps, either through automation or manually, will reduce any potential vulnerability. 

2.4.1 Risks of deleting access lists as an update technique 

Our approach to maintaining access lists (using no access-list) has its drawbacks. As 
mentioned earlier, if we refer to an access list and then that access list is deleted with a no 
access-list command, the default behavior is to allow everything. When reading in a 
configuration, there is a brief period between the time that the no access-list command is 
executed and the first access list entry is accepted. During this period, there is no access list, 
and everything is permitted. Once the first entry is accepted, the implicit deny takes effect and 
only specifically permitted entries are accepted into a policy set. When you are updating 
standard access lists, someone could use a previously restricted resource, or routing 
information once controlled could leak. When you are updating extended access lists, packets 
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previously stopped could get through during that small window of time. For some denial-of-
service attacks, all that is needed to crash a host is one packet. 

Fortunately, the risk is small, and there are ways to mitigate this risk. To find out how, let's 
look at this issue in more detail. First, the period of vulnerability is much smaller than a 
second. Routing updates have a frequency of 30 seconds for routing protocols such as RIP, 90 
seconds for IGRP, and as needed for protocols such as EIGRP and BGP. For any routing 
information to leak inadvertently, the window of vulnerability must occur during a routing 
update. Second, there are ways to configure a network so that there is always at least one 
filtering barrier between potentially hostile areas and a protected area. We will talk about this 
in Chapter 7 in a firewall case study. 

If the risk is still unacceptable, there are maintenance techniques to eliminate it. Instead of 
using no access-list at the start of the configuration file, build any new access list versions 
using a different access list number. In our previous example, we build access list 2: 

access-list 2 permit 192.168.30.1 
access-list 2 permit 192.168.33.5 

We then read in access list 2 via TFTP (note that we can define and maintain access lists on a 
router even if they are not used). When we are ready to cut in the new access list version, we 
use access list 2 as a new access group: 

line vty 0 4 
access-group 2 in 

If you reserve two access list numbers per access list, you can switch back and forth between 
access list numbers every time you update the list. This will help conserve access list numbers 
in the unlikely event that you are close to running out. It does limit you to 50 different access 
lists, and you have to change access list numbers every time you change access lists. Another 
method is to reserve at least one access list number for transition purposes. With this 
technique, you can load in a new access list with the reserved number and then use the old 
access list number as the new reserved number. Also, although the example uses a standard 
access list, we can configure interfaces similarly with extended access lists. 

2.4.2 Displaying access lists 

We have discussed building and entering access lists, but not how to examine the access lists 
on a router. To see a router's access list, you can use the command show access-list. This 
command shows all of the access lists in the router, both simple and extended. If you follow 
the show access-list command with an access list number, you see only an individual access 
list. Here is an example listing for a standard access list: 

access-list 1 
    permit 192.168.30.1 
    permit 192.168.33.5 

Here is example output for an extended access list: 

access-list 101 
    permit tcp any host 192.168.30.1 eq www 
    permit tcp any host 192.168.35.1 eq 443 
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Notice that the output of show access-list has a different syntax from the format used to create 
access list entries. The output is not legal syntax for entering access list entries, so cutting and 
pasting the entire output of the show access-list command into a file will not produce an 
immediately usable configuration. Also, show access-list does not show any comments you 
may have created in the configuration file. The router doesn't save comments in its 
configuration; they are ignored when the router sees them. You don't need to be fully enabled 
in order run the show access-list command. 

2.4.3 Storing and saving configurations 

If you have been working extensively on access lists by using the configure terminal mode 
of the router, the access lists configured on the router may not be synchronized with the 
access list stored offline. One way to capture the current access lists is to write them to a file 
via TFTP. Here is the router command (which requires fully enabled access) to save your 
configuration: 

RouterA# copy system:running-confg tftp://192.168.30.1/RouterA-access 
Write file RouterA-access on host 192.168.30.1? [confirm] y 
 
Writing RouterA-access !!!!!!!!!!!! [OK] 
RouterA# 

In this example, we copy the configuration of RouterA to a file called RouterA-access on host 
with IP address 192.168.30.1. The file now contains the entire configuration of the router 
(stuff other than access lists), but the current access lists can be edited out of the file. 

 

Older versions of the IOS use the command write network instead of 
copy. 

 

To save a configuration via TFTP, you have to make an area on your TFTP server available to 
the router for writing files. This leaves a potential security vulnerability, especially if you use 
the configuration file you have saved to configure this or other routers. A cracker could 
potentially overwrite the router configuration with a configuration that suits the cracker's 
purposes. If you are not careful about making what you leave writable, the cracker can write 
malicious files and programs to the TFTP host. To reduce your risk, the steps you should take 
are similar to those for configuring a router by TFTP: limit write access to a specific directory 
and configure your software so that only the router can write to that specific directory. After 
saving the configuration, move the file out of the directory or change its permissions to be 
unwriteable and unreadable. Performing the following steps whenever you save 
configurations via TFTP should greatly reduce potential security exposure: 

1. Make area writeable by router 
2. Save configuration via TFTP 
3. Make configuration file unwriteable and unreadable from the network and to other 

users on the TFTP server 

As mentioned previously, Step 3 can be implemented in many ways, such as changing file 
permissions on the configuration file, shutting down the TFTP service, or moving the file to 
another directory. 
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You can avoid many of the problems of writing configurations over the network by making 
all configuration changes in a file. This configuration file gets loaded in over the network 
when you need to configure your router. In this case, use the copy tftp command only as a 
way to archive router configurations or to check if someone has changed the router's 
configuration without your knowledge (by comparing your configuration file with what you 
have saved). Another advantage of this approach is that since Cisco routers ignore comments 
when reading in configurations over the network, any comments you make will be lost when 
you write your configuration via TFTP into a file. Making all of the changes to the router in a 
file and then loading that file preserves your comments and keeps your file and configuration 
on the router synchronized. 

2.4.4 Using the implicit deny for ease of maintenance 

Certain practices make maintaining access lists easier. Take advantage of the implicit deny at 
the end of access lists, which is particularly useful for standard access lists. If you don't put an 
explicit deny at the end of an access list, you can add more IP addresses and routes to that list 
quickly by entering them in configuration mode. You don't have to upload a file. This is very 
helpful when debugging problems, and it can become critically useful when you are working 
on a problem and lose connectivity with the host storing your access list configuration files. 
This convenience does come at some cost. Inserting an explicit deny at the end of an access 
list serves as a marker for the end of the access list. When used with the logging, it can 
determine what traffic is trying to violate an access policy. Also, the explicit deny makes it 
harder for network administrators to make rapid changes simply by adding entries. This tends 
to reduce the number of hasty, ad hoc, not-well-thought-out changes. Any new entries added 
after the explicit deny are ignored.  

2.5 Named access lists 

In the examples so far, access lists are identified and classified by numbers. I mentioned that 
there are limits on the number of standard and extended access lists available for use in a 
router configuration. In addition, a number is not a very descriptive way to illustrate an access 
list's function, as compared to a generic string like "network-management-hosts" or "valid-
company-routes." To increase the number of access lists available and to provide better, more 
descriptive names, more recent versions of the Cisco IOS provide a facility called named 
access lists. Named access lists use character strings instead of numbers as identifiers. 

 
Named access lists are usable only under more recent versions of IOS 
(11.2 and later), and not under all possible applications of access lists. 
Under some versions, using a named ACL will stop forwarding on an 
interface. Test your use of named access lists before using them in any 
kind of production environment.  

They are used exactly the same way as numbered, standard, and extended access lists. For 
example, here is a named access list called network-admin-hosts used to restrict router 
logins: 

line vty 0 4 
 access-class network-admin-hosts in 
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Here's a named access list called incoming-web-traffic used for packet filtering: 

interface Ethernet0 
 Ip access-group incoming-web-traffic in 

Named access lists differ from numbered access lists in how they are created. When creating a 
named access list, you first need to declare the name and type. After that, individual entries 
are put in. Unlike numbered access lists, you don't need the access list name with every entry. 
Here is an example of a standard access list being configured: 

RouterA# conf terminal 
RouterA(config)#  ip access-list standard network-admin-hosts  
RouterA(config-std-nacl)#  permit 192.168.30.1 
RouterA(config-std-nacl)#  permit 192.168.33.5 

There are a few key features of named access lists to note here. First, the keyword ip needs to 
be used, along with the type of access list, standard or extended. Next, notice that after the 
access list name is declared, the configuration prompt changes to RouterA(config-std-
nacl)#, indicating the named access list configuration mode has been entered. Finally, the 
access list keyword and access list name are not needed with each access list entry. This 
feature of named access lists reduces the size of named access lists compared to numbered 
access lists. Converting numbered access lists to named can reduce the storage requirements 
of access lists, particularly for long access lists. 

Since named access lists are available only on the more recent versions of the Cisco IOS, I 
use numbered access lists for most of the examples in this book. Still, they are worth 
mentioning, because if you do use an IOS with named access lists, they are a convenient and 
useful feature. 

Chapter 3. Implementing Security Policies  
In Chapter 1, you learned that security, robustness, and business drivers are the primary 
motivations for implementing network traffic policies, and in Chapter 2 you learned how to 
format, build, and maintain standard and extended access lists. With this background, you are 
now ready to implement policies for the first key motivation: security. There are three 
sections in this chapter. Since security policies most often use two different tools in the 
network administrator's policy tool kit—router resource control and packet filtering—there is 
a section on each. These router resources include services on the router, such as Telnet or 
SNMP access that should be closely managed by any network administrator. Packet filtering, 
or regulating what kind of packets can flow through the router, is commonly used in firewall 
applications. Since access lists consume resources on the router, I have included Section 3.3 
in this chapter, which describes some alternatives to access lists you might want to consider 
when implementing security policies. 

3.1 Router resource control 

As I have said, creating router resource policies requires building policy sets of host IP 
addresses and giving those policy sets permission to use a router resource. The most common 
examples, discussed later in this chapter, are policy sets of hosts allowed to log into a router, 
but other examples might include controlling SNMP access to router information or 
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permission to use the router as a network time server. To implement router resources, we will 
create sets of IP addresses using the standard access list described in Chapter 2. 

3.1.1 Controlling login mode 

As you may know, Cisco routers can have different levels of login access, each with different 
security privileges. You can configure the router to have user accounts with different levels of 
privilege. The default configuration provides a general restricted login, known as user EXEC 
level access, with a specific login password used for initial entry. Once logged in, a user can 
look at router statistics, such as routing tables and interface traffic counts, and telnet to other 
hosts (if permitted; we'll talk about how to control this later), but he or she can't configure the 
router or examine its configuration. Router configuration commands do not exist at that initial 
login level of privilege. If someone who has gained login access to the router wants to 
configure the router, he must reques t to do so. At that point, another password is required to 
gain the necessary privilege level, known as privileged EXEC. 

While it may seem that the initial login mode is not particularly useful, this is not true. Having 
multiple levels of privilege can be very useful. From basic login access, a network technician 
or administrator can still debug problems and monitor key router information, such as 
interface statistics, without risking critical services or the security of the router and the 
organization and business needs it serves. Particularly in large organizations, this separation 
of function and responsibility can be a key component of a smoothly operating network 
infrastructure, all the more so when different groups manage different parts of it. This is 
shown in Figure 3.1. 

Figure 3.1. Different management domains bordering each other 

 

Network administrators from one management domain may give network administrators in 
another management domain login access, but not privileged access, to routers. In Figure 3.1, 
Domain B may allow Domain A to have login access to Router X. This allows Domain A to 
debug problems but not to change the configuration. One real-world example of this is with 
Internet service providers (ISPs) and their high-speed leased-line customers. Some ISPs offer 
an Internet connectivity service with a router that they manage on the customer's premise. 
Customers are given the user EXEC mode password, but they cannot change the router's 
configuration because they are not given the privileged EXEC password. In the context of 
Figure 3.1, the ISP would be Domain A, and the customer would be Domain B. 

As mentioned earlier, login access lets users telnet to other hosts. This is a capability of login 
mode that a network administrator may want to control, particularly in situations where login 
access is granted to people in other organizations. We'll use access lists to do this shortly. 

3.1.1.1 Router login permission 

An administrator who has access to the privileged mode password can control the resources 
available to the user logins and should pay close attention to how those resources are 
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managed. Let's revisit the router access example from Chapter 1 and Chapter 2. Figure 3.2 
shows a router and the hosts that can access it. 

Figure 3.2. A router and hosts that can potentially access it 

 

We wish to establish a policy that allows logins only from hosts at IP addresses 192.168.30.1 
and 192.168.33.5. We first create a policy set with these two addresses: 

access-list 1 permit 192.168.30.1 
access-list 1 permit 192.168.33.5 

Then we configure the login permissions on the router by saying only hosts in the policy set 
we just defined can use the virtual terminals of the router: 

line vty 0 4 
 access-class 1 in 

The access-class command does not consider what interface is used to telnet into the router, 
so all interfaces are protected by this command. If host 192.168.30.1 or 192.168.33.5 have a 
route to the router through interface Ethernet 0, they can continue to use that interface to gain 
access to the router. Similarly, the host at 192.168.3.9 cannot telnet to the router no matter 
which interface it uses. If the hosts at 192.168.30.1 and 192.168.33.5 have a route to the 
router over the Internet, then they can also use that route. This is an important lesson about 
router resource controls: although we control what hosts have access, we also need to be 
careful about the route taken by packets from those hosts. We can control our router resources 
by combining control over routing with resource access lists. I'll talk more about controlling 
routes in the next chapter. 

To turn off Telnet access to the router from any host, we define an access list of: 

access-list 1 deny all 

This forces all router logins to take place from the router's console. Alternatively, we can 
simply not define any virtual terminals. Defining virtual terminals and then denying access to 
them is useful if you need to permit Telnet access at some point in the future. In that case, 
Telnet access can be enabled by defining access list 1 to include the proper IP addresses in its 
policy set, although leaving the service enabled leaves it vulnerable to potential exploitation. 
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3.1.1.2 Addresses reachable from the router 

Consider the concerns of Domain A in Figure 3.1. Domain A has access to Router X for 
debugging, but Domain A should not be able to use Router X as a platform for probing or 
attacking Domain B's network. Although Telnet access to Domain B may seem innocuous, it 
really isn't. Since the telnet command on Cisco routers allows users to specify the port they 
want to connect to, Telnet access can be used to access any service using TCP, from web 
services to electronic mail services, which dramatically increases the security risk to Domain 
A. 

 

It is worth noting that restricting outgoing Telnet access does not affect 
the other debugging utilities on a router. Utilities such as ping and 
traceroute still work despite any constraints on outgoing Telnet.  

There are other reasons to restrict the addresses reachable from a router. If a router login 
password is compromised, restricting access can trap the intruder and make it impossible for 
him to get any further (of course, if the enable password is compromised, the intruder can 
simply reconfigure the router to let him through). Also, network administrators may wish to 
prevent their user communities and network technicians from using a router as a Telnet proxy 
to get around firewalls, and an unscrupulous person could use the router as a way to perform 
activities that cannot later be traced by firewall logs. 

Let's expand on the management domain example from Figure 3.1 to illustrate how to 
implement policies restricting access from a router. Figure 3.3 shows a more detailed picture 
of the situation. 

Figure 3.3. Controlling Telnet access from routers that share access between organizations 

 

Figure 3.3 again shows two companies, Organization A and Organization B, connected by a 
dedicated serial line. Router X is controlled by Organization B. To help Organization A 
obtain visibility of the serial line and to aid in debugging when there are problems, 
Organization B has given Organization A the login password to Router X. The enable 
password is withheld. Organization B carefully chooses what access type of to permit to 
Organization A. It does not want anyone from Organization A to use Router X as a point from 
which to attack its network. 

Keeping in mind these policy goals, how do we implement this? First, we need to identify the 
IP addresses that people in Organization A should be able to access. The IP addresses used on 
the serial link, 192.168.30.2 and 192.168.30.3, should be accessible from Router X to assist in 
debugging line problems. Organization A's network of 172.28.0.0/16 should also be available 
from Router X. Everything else should be forbidden. Thus we have IP addresses 192.168.30.2 
and 192.168.30.3 in our policy set, along with all of the hosts in network 172.28.0.0/16. The 
following access list builds the appropriate policy set: 
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access-list 2 permit 172.28.0.0 0.0.255.255 
access-list 2 permit 192.168.30.2 0.0.0.1 

Once we have defined our policy set, we declare that only those addresses are accessible from 
Router X: 

line vty 0 4 
 access-class 2 out 

The first line applies the statements that follow to virtual terminal sessions. The second line 
assigns the policy set defined by access list 2 as the IP addresses available from people logged 
on to Router X. 

As with controlling incoming Telnet using the in qualifier, the access-class command's out 
qualifier does not specify the interfaces that outgoing Telnet may use. If there is a route for a 
destination IP address through an interface, then outgoing Telnet traffic will go out that 
interface. In the next chapter, we'll look into controlling individual routes to and from a 
router. 

Organization B could completely eliminate all Telnet access from Router X using the 
following access list: 

access-list 2 deny 0.0.0.0 255.255.255.255 

Although limiting Telnet access from a router has security benefits, it also limits the 
usefulness of Telnet as a debugging tool. We talk more about using Telnet for debugging in 
Chapter 5.  

3.1.2 Restricting SNMP access 

Because Simple Network Management Protocol (SNMP) is used to manage network 
equipment, SNMP and the Management Information Base (MIB) are resources a network 
administrator must control carefully. SNMP uses UDP and not TCP for transport, making it a 
lightweight way to examine or modify a router's state. 

As with Telnet access, security, robustness, and traffic preferences are concerns with SNMP. 
And like Telnet access, SNMP has two modes: a read-only mode useful for debugging and a 
write-enabled mode that allows changes to the router. Passwords (called community strings in 
the SNMP context) for Version 1 of SNMP (the default) are sent in clear text. They are also 
designated either read-only, allowing the router's state to be read, or read-write, allowing the 
router's state to be both read and modified. 

To restrict SNMP access, we include in a policy set all the hosts who can potentially access 
the router via SNMP and restrict those hosts to known SNMP network management stations 
in our organization. Even hosts that have Telnet access to a router typically do not require 
SNMP access unless they are network management systems. Let's say that we have two 
network management stations at IP addresses 192.168.57.3 and 192.168.57.18. We then put 
these two stations in a policy set: 

access-list 5 permit 192.168.57.3 
access-list 5 permit 192.168.57.18 
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This is applied to SNMP access with: 

snmp community string public ro 5 

This particular configuration command sets a read-only (ro) community string to public and 
restricts access to hosts included in access list 5. 

If we want to permit only the host with IP address 192.168.57.3 SNMP read-write access, we 
would build a different policy set with only 192.168.57.3 in it: 

access-list 6 permit 192.168.57.3 

Then we apply access list 6 to the list of hosts with SNMP read-write access: 

snmp community string MyRWPass1 rw 6 

This configuration command permits only hosts in the policy set defined in access list 6 to 
have both read and write access to the router's SNMP MIBs using the community string 
MyRWPass1. Again, note that there are no explicit restrictions on the interfaces used for these 
transactions. 

 

It's good idea to either disable SNMP or change the default community 
strings when you first configure a router. 

 

3.1.3 The default access list for router resources 

The generic SNMP command does not require an access list specification, just as the generic 
vty definition does not require access list specifications for outgoing or incoming Telnet. As 
we mentioned in Chapter 2, Cisco routers have a default access list of: 

access-list <access list number> permit any 

"Anything and everything" is the default policy set for commands that have optional access 
lists arguments, such as snmp community or tftp-server. For example, if the access-group 
commands are not specified in the vty definition, the generic access list is the default access 
list for both in and out directions. This is important to keep in mind when using these 
commands. 

I mentioned in Chapter 2 that if you have an access list defined for a router resource, such as 
this: 

line vty 0 4 
  access-class 1 in 

and access list 1 has no entries, then the default behavior access list again is: 

access-list <access list number> permit any 
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An access list that is referenced but has no entries allows everything. This behavior is 
counterintuitive, but this is how Cisco routers behave. Do not assume that simply because a 
router resource access list is referenced, there is an implicit deny that denies everything. 
Using the last SNMP example, if you left access list 6 applied but turned off all SNMP read-
write access with the following: 

no access-list 6 

you would actually allow all hosts to have read-write SNMP access. 

3.2 Packet filtering and firewalls 

Firewalls are systems that regulate and monitor services passing between two networks, 
usually one that is trusted and the other untrusted. Extended access lists are the typical method 
of implementing firewalls with Cisco routers, since they are the preferred mechanism for 
filtering packets through the interfaces of two networks. In this section, we start with our 
simple example that controls access to a web server by packet filtering with an extended 
access list. We then continually expand the example, gradually including functionality and 
features to our small firewall to demonstrate how to build robust security policies. 

3.2.1 A simple example of securing a web server 

The first example of packet filtering demonstrates how to limit access to a web server to 
prevent the kinds of attacks described in Chapter 1. Before deciding what access lists are 
needed, it is often helpful to draw a diagram of network connectivity. Figure 3.4 shows the 
layout of the web server's connectivity. 

Figure 3.4. Restricting packets to a web server 

 

We have a serial line to the Internet on the router interface serial 0. The web server lives on 
segment 192.168.35.0/24, with IP address 192.168.35.1 and uses the well-known web port, 
80, and the well-known SSL port, 443, for delivering web services. Other hosts within the 
organization are connected to the router through interface Ethernet 1. 

The policy set we need here, as with all extended access lists, contains the type of packets that 
can pass through the interface of a router. The policy that needs to be applied in this case 
limits access to the web server to just web protocols: 
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access-list 101 permit tcp any host 192.168.35.1 eq www 
access-list 101 permit tcp any host 192.168.35.1 eq 443 

The policy set specified by access list 101 is then applied to the interface Ethernet 2, the 
interface used to connect the web server to the router: 

int Ethernet 2 
 access-group 101 out 

Only TCP packets with a destination port of 80 or 443 are allowed "out" onto the Ethernet 
interface where the web server is connected. Since the web server uses the well-known web 
ports 80 and 443, access to the web server from the Internet and other hosts within the 
organization is limited to just the two web protocols. 

Recall that with access lists, "out" means out of the router, and "in" means into the router. In 
this example, we control access to the web server by filtering packets out of the interface 
leading to the web server. We could have implemented the same policy by filtering packets 
with an inbound list applied to the other two interfaces of the router, serial and Ethernet 1: 

int Ethernet 1 
access-group 101 in 
int serial 0  
access-group 101 in 

This assumes that the router needs no other inbound packets on these interfaces to function 
correctly. I'll discuss inbound access lists in more detail later in the chapter. 

3.2.2 Adding more access to the web server 

Access list 101 implements a policy that allows only web protocol access to the server. Some 
of the web site users might feel uncomfortable if they can't ping the web server. If we amend 
our policy to allow web traffic and ping traffic to the web server, the access list becomes: 

access-list 101 permit tcp any host 192.168.35.1 eq www 
access-list 101 permit tcp any host 192.168.35.1 eq 443 
access-list 101 permit icmp any host 192.168.35.1 echo 

This is a very restrictive configuration. Users can reach the server only via the two open web 
ports, and they can also ping the server to see if it is alive, but that is it. We want to guard 
against what we saw in the first scenario in Chapter 1: a cracker changing the web server's 
content. 

While a cracker will have a hard time modifying the web server's contents, so will the server's 
administrator. With the network access extremely restricted, the administrator must log into 
the server's console and change content either by hand-editing it or by bringing in new content 
on a physical medium like a tape or CD-ROM. Some administrators may choose to have this 
level of control over their Internet web presence. For other administrators, the convenience of 
network updates might outweigh any security concerns. If the web server administrator wants 
to use the FTP to load content onto the server, there are two ways to update the web server 
over the network: with FTP sessions initiated from another host to the web server or from the 
server to another host. The first method has the advantage of convenience. Content providers 
for the web server can transfer their content from hosts in the network without having to log 
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on to the web server console, but this convenience has a price in security since FTP uses 
passwords that go over the network in clear text. The second approach initiates FTP from the 
web server to hosts in the network. In this case, the web server administrator no longer has to 
move content onto physical media for transfer but still has to log on to the server console to 
do the operations. From a security standpoint, web server passwords never appear in the clear, 
so they cannot be listened for and later reused by an attacker. However, a potential downside 
is that now the content hosts' passwords appear in the clear. 

Since both methods have their tradeoffs, I'll show how to implement each one. First, let's take 
a look at having FTP sessions initiated from the web server. We can define the access policy 
as follows: 

Allow any host to get web pages from the web server 

Allow any host to ping the web server 

Allow web server to FTP files from other hosts in the organization's network 
(172.16.0.0/16) 

We have already implemented the first two policy declarations, so let's focus on implementing 
the third. 

3.2.3 Allowing FTP access to other hosts  

The FTP protocol has a number of unusual properties that complicate writing access lists for 
it, as shown in Figure 3.5. 

Figure 3.5. Connection setup and port usage with the FTP protocol 

 

When an FTP client connects to an FTP server, it connects to port 21 on the server. This 
connection becomes the FTP session's control channel. Commands and command parameters 
(like filenames) are sent over this channel. When a data transfer for a directory listing or for 
copying a file needs to take place, the FTP client sends the request to the server along with a 
destination port greater than 1023 for a data connection. The FTP server then sets up a new 
TCP connection from source 20 to the destination port on the client specified by the client. 
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Since the web server is acting as an FTP client, we need to allow two types of packets into it: 
packets associated with the FTP control connection and packets associated with any data 
connections that are needed. FTP control connection packets going to the web server will 
have a source port of 21 and a destination port greater than 1023. Data connections will have 
a source port of 20 and a destination port greater than 1023. If you look up the protocol 
identifiers for TCP ports 20 and 21 in Table A.2, you can see that port 20 is the ftp-data 
port, and port 21 is the ftp port. The access list then becomes: 

! Allow any host to get web pages from the web server 
access-list 101 permit tcp any host 192.168.35.1 eq www 
access-list 101 permit tcp any host 192.168.35.1 eq 443 
! Allow any host to ping the web server 
access-list 101 permit icmp any host 192.168.35.1 echo 
! Allow web server to FTP files from other hosts in the company 
access-list 101 permit tcp 172.16.0.0 0.0.255.255 eq ftp-data host 
192.168.35.1 gt 1023 
access-list 101 permit tcp 172.16.0.0 0.0.255.255 eq ftp host 192.168.35.1 
gt 1023 

And we're done. 

3.2.4 Allowing FTP access to the server 

Now let's implement the other policy, the one that allows FTP connections to the web server 
from any host in the organization's network. The source and destination port information is 
switched in this case to allow access to the web server: incoming control connection packets 
will have a destination port of 21 with source ports greater than 1023. Incoming data 
connection requests use source ports greater than 1023 with a source port of 20. For this 
policy, access list 101 would be: 

! Allow any host to get web pages from the web server  
access-list 101 permit tcp any host 192.168.35.1 eq www 
access-list 101 permit tcp any host 192.168.35.1 eq 443 
! Allow any host to ping the web server  
access-list 101 permit icmp any host 192.168.35.1 echo 
! Allow any host to FTP to the web server 
access-list 101 permit tcp 172.16.0.0 0.0.255.255 gt 1023 host 192.168.35.1 
eq ftp-data 
access-list 101 permit tcp 172.16.0.0 0.0.255.255 gt 1023 host 192.168.35.1 
eq ftp 

This version of access list 101 allows any host in the organization to FTP files from the web 
server if they have a valid password. In practice, for the purpose of uploading content to a 
web server, we would probably be better off permitting FTP only between specific hosts and 
the web server, since we would know in advance which hosts would need to upload content. 
If we designate host 172.16.30.1 as a content upload machine, we would change the last two 
entries in access list 101 to: 

access-list 101 permit tcp host 172.16.30.1 gt 1023 host 192.168.35.1 eq 
ftp-data 
access-list 101 permit tcp host 172.16.30.1 gt 1023 host 192.168.35.1 eq 
ftp 
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3.2.5 Passive mode FTP 

At some point, we might decide to distribute files via anonymous FTP on the web server, 
letting anyone transfer certain files without a password. This is a common way to distribute 
files on the Internet. If we choose to do this, we have to deal with a commonly used feature of 
FTP called PASV ("passive") mode. When FTP is set to passive mode, the FTP client and 
server set up data connections differently, as shown in Figure 3.6. 

Figure 3.6. Connection setup and port usage using FTP passive mode 

 

Instead of the data connection set up from the server to the client, the client in PASV mode 
sets up the data connection from a source port greater than port 1023 to server port 20. The 
access list 101 we built previously: 

! Allow any host to get web pages from the web server  
access-list 101 permit tcp any host 192.168.35.1 eq www 
access-list 101 permit tcp any host 192.168.35.1 eq 443 
! Allow any host to ping the web server  
access-list 101 permit icmp any host 192.168.35.1 echo 
! Allow any host to FTP to the web server 
access-list 101 permit tcp any gt 1023 host 192.168.35.1 eq ftp-data 
access-list 101 permit tcp any gt 1023 host 192.168.35.1 eq ftp 

covers this case. PASV mode has a number of advantages over FTP's standard method for 
managing data connections. With PASV mode, all TCP connections are initiated from the 
client to the server. The client does not have to permit any connections to it at all. Also, the 
destination port for the data connection is fixed at 20. The client does not have to leave open a 
large number of ports (ports greater than 1023), as must be done in standard FTP mode. 

Unfortunately for network administrators, many web browsers in use today on the Internet do 
not implement PASV mode correctly. Figure 3.7 shows how these browsers behave. 
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Figure 3.7. PASV mode connection setup and port usage on some web browsers 

 

These browsers, when used as FTP clients, connect to ports greater than 1023 on the server 
instead of to port 20. As a result, to allow the web server to function as an anonymous FTP 
server in the manner requested by most web browsers, we need to add an additional line to 
access list 101: 

! Allow any host to get web pages from the web server  
access-list 101 permit tcp any host 192.168.35.1 eq www 
access-list 101 permit tcp any host 192.168.35.1 eq 443 
! Allow any host to ping the web server 
access-list 101 permit icmp any host 192.168.35.1 echo 
! Allow any host to FTP to the web server 
access-list 101 permit tcp any gt 1023 host 192.168.35.1 eq ftp-data 
access-list 101 permit tcp any gt 1023 host 192.168.35.1 eq ftp 
access-list 101 permit tcp any gt 1023 host 192.168.3.1 gt 1023 

This exposes the host providing an anonymous FTP server to many possible attacks on many 
ports, but this is a risk associated with providing anonymous FTP service. 

3.2.6 Allowing DNS access  

If we want our web server to use FTP to transfer files, it's also reasonable to allow DNS 
through the router so that the server's administrator can use hostnames instead of IP addresses. 
None of the access lists that we have developed so far allow DNS traffic. To allow DNS 
through our router, we need to understand the port behavior of DNS. Queries from most DNS 
daemons use UDP port 53 as source and destination ports. Queries from DNS tools such as 
dig and nslookup use a UDP source port greater than 1023 and a destination port of 53. If the 
responses to queries are very large, the DNS client, whether a DNS daemon or a tool, will 
initiate a TCP connection to destination port 53. Since having DNS capability will make the 
web server administrator's job much easier, we modify the access policy to be the following: 

Allow any host to get web pages from the web server 
Allow any host to ping the web server 
Allow web server to FTP files from other hosts 
Allow the web server to do DNS queries 

With this policy change, the access list becomes: 
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! Allow any host to get web pages from the web server 
access-list 101 permit tcp any host 192.168.35.1 eq www 
access-list 101 permit tcp any host 192.168.35.1 eq 443 
! Allow any host to ping the web server 
access-list 101 permit icmp any host 192.168.35.1 echo 
! Allow web server to FTP files from other hosts 
access-list 101 permit tcp any eq ftp-data host 192.168.35.1 gt 1023 
access-list 101 permit tcp any eq ftp host 192.168.35.1 gt 1023 
! Allow the web server to do DNS queries 
access-list 101 permit udp any eq domain host 192.168.35.1 gt 1023 
access-list 101 permit udp any eq domain host 192.168.35.1 eq domain 
access-list 101 permit tcp any eq domain host 192.168.35.1 gt 1023 

We used the port designator domain for DNS port 53. 

3.2.7 Preventing abuse from the server 

Now our web server is locked down tightly while still offering many services. But just to be 
sure, let's ask: what if a cracker did manage to penetrate the web server? What if the evil or 
inept system administrator of the web server decides to attack systems on the Internet or 
within the organization? What kind of damage could they do? How can we protect the rest of 
the world from our web server machine, as well as protect our machine from the world? With 
the current access list, the web server can still be used to generate denial-of-service attacks 
that crash systems by sending strangely formatted packets. No return response is necessary, as 
would be required if a TCP connection needed to be set up to conduct the attack. One packet-
based denial-of-service attack is called "ping of death." This attack sends peculiarly formatted 
ICMP packets that are designed to crash a host. With the access lists like those configured 
previously, anybody can launch the ping of death against a machine on the Internet or within 
the organization because we have placed no restrictions on what can be sent out through the 
serial line or through Ethernet interface 1. While the policy we have been defining and 
implementing does not explicitly permit attacks from being launched from the web server, we 
have no mechanism in place to enforce that. 

To remedy this situation, we first need to define a policy that explicitly deals with potential 
attacks from the web server. Keeping this requirement in mind, let's implement the following 
policy with the addition of the final line to our previous web server policy: 

Allow any host to get web pages from the web server 

Allow any host to ping the web server 

Allow web server to FTP files from other hosts 

Allow the web server to do DNS queries 

Disallow any packets from the web server not needed to implement the 
allowed services 

This policy allows all of the services we have specified so far, but doesn't allow attacks to be 
sent from the web server. To implement our policy, we need additional access lists that we 
can apply to the outgoing serial line and the other Ethernet connection going to the rest of the 
organization (Ethernet interface 1): 
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! Allow web server to respond to HTTP requests 
access-list 102 permit tcp host 192.168.35.1 any established 
! Allow web server to reply to ICMP echo requests 
access-list 102 permit icmp host 192.168.35.1 any echo-reply 
! Allow web server to FTP files from other hosts 
access-list 102 permit tcp host 192.168.35.1 any eq ftp 
! Allow the web server to send DNS queries 
access-list 102 permit udp host 192.168.35.1 any eq domain 
access-list 102 permit tcp host 192.168.35.1 any eq domain 
! Disallow any packets from the web server that are not needed 
! to implement the services allowed above with implicit deny 

The first line with protocol TCP and the established qualifier is used to implement the 
policy rule that lets clients in the Internet and within the organization connect to the web 
server. The established qualifier matches packets that are part of a TCP connection already 
set up between a client and a server. Figure 3.8 shows how the established qualifier works. 

Figure 3.8. The established qualifier and TCP connection setup 

 

When a host establishes a TCP connection to another host, it sends a connection set up packet 
to that host. The packet has the SYN flag (for synchronize) set in the TCP header, instructing 
the second host to synchronize TCP packet sequence numbers for connection set up (sequence 
numbers are used to determine if packets arrive out of order and check if the correct amount 
of data has been received). If the host can honor the connection request, it responds by 
sending a packet with both the SYN and ACK bits set. The ACK bit (for acknowledge) flags 
the packet as being part of an established TCP connection. All other packets in the connection 
from both hosts have the ACK bit set. The established qualifier matches packets with an 
ACK bit set, and thus includes (or excludes) in a policy set packets that are part of an TCP 
connection already set up. 

How does an access list entry with established enable web traffic to the web server? Since 
web service requests use TCP, a connection needs to be set up for each request. Requests go 
to the web server through Ethernet 0, where access is controlled by access list 101. Return 
packets go out through either serial or Ethernet 1 with their ACK bit set. Since the ACK bits 
are set, the established entry includes the packets of requests made to the web server in the 
policy set of packets allowed out. Note what the line doesn't include. It doesn't allow 
connections to be set up from the web server to systems on the Internet or within the 
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organization. Since connection request packets set only the SYN bit and not the ACK bit, the 
established access list entry does not include them in the policy set. 

Using an established access list entry at the start of an access list has a number of benefits. 
First, it allows most packets of a TCP connection to match the first line of the access list. This 
can significantly save router CPU because the router doesn't have to process entire access lists 
for most of the packets it sees. Second, it spares the access list writer from having to specify 
the source ports of return packets of TCP connections for different applications allowed 
through an interface. For example, if we added a new service on TCP port 23 of the web 
server, we would only need to add a line to access list 101 to permit this service. Return 
packets of the TCP connection would match the established line. This can save significant 
amounts of time as more and more TCP protocols are allowed through an interface. 

Let's look at the rest of access list 102 and see how it implements our policy. The next policy 
entry needs to be implemented to allow users to ping the web server. Ping uses ICMP echo 
packets coming into the web server. The web server replies with ICMP echo-reply packets. 
We explicitly allow only echo-reply ICMP packets out to the Internet and the rest of the 
organization. The next line allows the web server to set up FTP connections to other systems 
on other hosts. As we mentioned, connection setup packets are not included in the first line 
that uses established, so we have to allow it explicitly. Recall that FTP sets up its control 
channel to port 21 on the target server host, so we allow TCP connections from the web server 
out on port 21. What about FTP's data connection? Do we explicitly need to allow outgoing 
connections to port 20? For normal (not PASV) FTP transfers, we do not, because the host 
acting as the FTP server initiates the connection from a port greater than 1023 to port 20 on 
the web server. Return packets are matched by the first line with established. The final two 
lines implement DNS access for the web server. Outgoing DNS requests uses UDP port 
destination 53. If the answer to a DNS requests is large, TCP port 53 (going out) needs to be 
open. How do we stop all other outgoing services? We will put an access list on interfaces 
Ethernet 1 and serial 0; all other services are prohibited by access list 102's implicit deny from 
going out. 

We apply this access list to the serial interface to the Internet and to the Ethernet interface 
leading to the rest of the company with the following: 

interface Serial 0 
  access-group 102 out 
interface Ethernet 1 
  access-group 102 out 

3.2.8 Direction of packet flow and extended access lists 

In the previous example, the decision to tightly control packets flowing both in and out of a 
segment resulted in the need for inbound and outbound access lists. For every service we add, 
we need to think about the IP protocol used by the service, such as ICMP, UDP, TCP, or 
some other IP protocol number, and the source and destination ports (if any) of packets 
flowing to and from client and server. To make this easier for you, Table C.1 in Appendix C 
lists the source and destination ports for common services you may need to control. Let's look 
at a few more examples of working with IP protocols and source and destination to illustrate a 
few more important points. Let's require that the web server at 192.168.35.1 be able to get 
Network Time Protocol (NTP) service from the Internet. NTP is a protocol used for 
synchronizing system clocks over a network. If you look at Table A.3, you can see that NTP 
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uses UDP and port 123, which we can specify as port ntp in our access list for both source 
and destination. To add NTP packets to the policy sets of packets allowed through to the web 
server, we need to add the following access list entries: 

access-list 101 permit udp any eq ntp host 192.168.35.1 eq ntp 
access-list 102 permit udp host 192.168.35.1 eq ntp any eq ntp 

Note that access list 101 filters traffic going to the web server, while access list 102 filters 
traffic leaving the web server. 

While the following access list entries will also work: 

access-list 101 permit udp any host 192.168.35.1 eq ntp 
access-list 102 permit udp host 192.168.35.1 any eq ntp 

the first set of entries are preferred because they define permissions more narrowly. In 
general, it is best to declare permissions as narrowly as possible so you don't permit any 
packets or services that aren't needed or that might cause problems. In the previous example, 
if you use the following access list entry to allow DNS: 

access-list 102 permit udp host 192.168.35.1 any eq domain 

you permit potentially damaging packets with source port 123 and destination port 53. 
Another problem is with how widely we have allowed NTP access. We have allowed any host 
on the Internet to send NTP packets to the web server. While this might be intended as a 
public service, if it is not, access should be limited to the Internet NTP hosts you want to use 
as servers. 

To control TCP-based services, you need to know the direction of the connections that will be 
set up between a client host and a server host, and what port numbers will be used. Although 
FTP is more complicated, with most other TCP-based services the client sets up a connection 
to the server on a set port. So for this example, let's have our web server offer a service for 
people on the Telnet port. From Table A.3, you can see that Telnet uses a single connection 
with TCP port 23 as the destination port on the server and source ports greater than 1023. If 
you add the following access entry: 

access-list 101 permit tcp any host 192.168.35.1 eq telnet 

Telnet is enabled. What about the packets for this service that need to go from the web server 
back to the client? These are taken care of by the access list entry with established in access 
list 101 (as I pointed out earlier, the established keyword is very useful in reducing the 
number of access list entries needed). Recall that there are a number of TCP services we 
permitted that require connections initiated from the web server to hosts on the Internet and 
within the organization. If we add the following entry to access list 101: 

access-list 101 permit any host 192.168.35.1 established 

we can eliminate the access list entries that specifically allow TCP packets back to the web 
server after connections have been set up. Access list 101 then becomes: 

! Allow any host to get web pages from the web server 
access-list 101 permit tcp any host 192.168.35.1 eq www 
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access-list 101 permit tcp any host 192.168.35.1 eq 443 
! Allow any host to ping the web server 
access-list 101 permit icmp any host 192.168.35.1 echo 
! Allow the web server to FTP files from other hosts 
access-list 101 permit tcp any host 192.168.35.1 established 
access-list 101 permit tcp any eq ftp-data host 192.168.35.1 gt 1023 
! Allow the web server to do DNS queries 
access-list 101 permit udp any eq domain host 192.168.35.1 gt 1023 
access-list 101 permit udp any eq domain host 192.168.35.1 eq domain 

We have replaced the entries that specifically allowed packets back from FTP sessions and 
from DNS queries that required TCP. Since the web server initiates the TCP connections, all 
of the packets coming back to the web server are matched by the access list entry that uses 
established. 

3.2.9 Using the established keyword to optimize performance 

The established keyword is also useful in improving packet forwarding performance 
through an access list. If you put in an access list entry with established at the start of an 
access list (as we did in access list 102), most of the packets checked by the access list will 
match the first entry. This is because most packets in FTP and HTTP (web) requests are sent 
after a connection is established. To optimize access list 101, move the established access 
list entry to the beginning of the list: 

! Allow in established connections 
access-list 101 permit any host 192.168.35.1 established 
! Allow any host to get web pages from the web server 
access-list 101 permit tcp any host 192.168.35.1 eq www 
access-list 101 permit tcp any host 192.168.35.1 eq 443 
! Allow any host to ping the web server 
access-list 101 permit icmp any host 192.168.35.1 echo 
! Allow web server to FTP files from other hosts 
access-list 101 permit tcp any eq ftp-data host 192.168.35.1 gt 1023 
! Allow the web serverto do DNS queries 
access-list 101 permit udp any eq domain host 192.168.35.1 gt 1023 
access-list 101 permit udp any eq domain host 192.168.35.1 eq domain 

Most of the valid TCP packets going through interface Ethernet 2 will be matched by the first 
entry. We still filter other TCP-based services by permitting only those services we allow to 
set up connections with the web server. 

3.2.10 Exploring the inbound access list 

Before you start using inbound access lists, you need to understand how they work compared 
to outbound access lists. When a Cisco router filters packets passing through it, it has two 
places where it can filter: at the interface where the packets come into the router or at the 
interface where they go out. Cisco routers match packets against an outbound access list when 
packets come into one interface of the router and then exit through the interface against which 
the outbound extended access list is applied. In the web server example, the router checks 
access list 101 when packets come in from either the serial line interface or the Ethernet 
interface 1, and are destined for Ethernet interface 0. The router also checks packets against 
access list 102 when packets come into the router via one of the Ethernet interfaces and go out 
the serial line interface. The important thing to remember here is that an outbound access list 
does not filter packets originated by the router. This means that all the packets that might go 
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out of an interface and that originate from a router (such as with routing update packets, 
outgoing Telnet session packets, NTP service packets, and various broadcast packets such as 
ARP requests) cannot be checked against an outgoing access list. This also means that packets 
going into a router that are not forwarded are never checked by an outbound access list. It 
may seem that inbound access lists must be long and not very useful. Their usefulness comes 
from the fact that they do look at everything coming into a specific interface. There are 
instances when you want to control such actions as routing updates and packets coming in just 
from a specific interface. We'll see this later in the chapter. 

3.2.10.1 Implementing a policy with inbound access lists 

Let's look at some examples of how to use inbound and outbound access lists together. I'll use 
the network configuration in Figure 3.9 for the next example. 

Figure 3.9. Network diagram for inbound/outbound access list issues 

 

In this network configuration, Company C wants to share information and do business with 
Company A and Company B. To do that, Company A has set up a web server that is 
accessible by both Companies A and B. Companies A and B connect into Company C's web 
server via serial lines into Router X. The web server lies on an Ethernet connected to Router 
X. Company A uses network 192.168.28.0/24, and Company B uses network 
192.168.29.0/24. 

Company C wants to share certain information with both companies A and B through the web 
server. It also wants to run secure business transactions only with Company B. As a result, 
Company C wants to allow regular web traffic from both Company A and Company B, but 
allow SSL traffic for secure business transactions exclusively from Company B. Both 
companies should be able to ping the web server, which uses the standard well-known ports 
of HTTP and SSL (TCP ports 80 and 443, respectively). To summarize, Company C needs to 
implement the following policy: 

Network 192.168.28.0/24 needs HTTP (TCP port 80) access to 192.168.30.2 

Network 192.168.28.0/24 needs to be able to ping 192.168.30.2 

Network 192.168.29.0/24 needs HTTP (web) access to 192.168.30.2 
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Network 192.168.29.0/24 needs SSL access to 192.168.30.2 

Network 192.168.29.0/24 needs to be able to ping 192.168.30.2 

Let's implement this with inbound and outbound lists applied to the serial lines. First, we need 
to permit traffic in HTTP and incoming pings from Company A to the web server: 

access-list 101 permit tcp 192.168.28.0 0.0.0.255 host 192.168.30.2 eq www 
access-list 101 permit icmp 192.168.28.0 0.0.0.255 host 192.168.30.2 echo 

Next, we permit traffic from the web server to Company A for the return packets of HTTP 
connections and responses to pings: 

access-list 102 permit tcp host 192.168.30.2 192.168.28.0 0.0.0.255 
established 
access-list 102 permit tcp host 192.168.30.2 192.168.28.0 0.0.0.255 echo-
reply 

Access list 103 permits HTTP, SSL, and ping for Company B to the web server: 

access-list 103 permit tcp 192.168.29.0 0.0.0.255 host 192.168.30.2 eq www 
access-list 103 permit tcp 192.168.29.0 0.0.0.255 host 192.168.30.2 eq 443 
access-list 103 permit icmp 192.168.29.0 0.0.0.255 host 192.168.30.2 echo 

Access list 104 permits traffic from the web server back to Company B: 

access-list 104 permit tcp host 192.168.30.2 192.168.29.0 0.0.0.255 
established 
access-list 104 permit icmp host 192.168.30.2 192.168.29.0 0.0.0.255 echo-
reply 

We apply these access lists against the interfaces as follows: 

int serial 0 
access-group 101 in 
access-group 102 out 
int serial 1 
access-group 103 in 
access-group 104 out 

3.2.10.2 Implementing the same policy with outbound access lists 

Now we'll implement the policy with only outgoing access lists. First we define the policy set 
of packets going to the web server out through the Ethernet interface: 

access-list 101 permit tcp 192.168.28.0 0.0.1.255 host 192.168.30.2 eq www 
access-list 101 permit tcp 192.168.29.0 0.0.0.255 host 192.168.30.2 eq 443 
access-list 101 permit icmp 192.168.28.0 0.0.1.255 host 192.168.30.2 echo 

The first access list entry permits HTTP traffic both from Company A's network 
192.168.28.0/24 and Company B's network 192.168.29.0/24. The second entry permits SSL 
for Company B. The third access list entry allows pings from both companies. 
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Next, we'll define the access list for packets going out to Company A and Company B. For 
Company A: 

access-list 102 permit tcp host 192.168.30.2 192.168.28.0 0.0.0.255 
established 
access-list 102 permit icmp host 192.168.30.2 192.168.28.0 0.0.0.255 echo-
reply 

We allow the return packets for HTTP and the ping replies; we do the same for Company B: 

access-list 103 permit tcp host 192.168.30.2 192.168.29.0 0.0.0.255 
established 
access-list 103 permit icmp host 192.168.30.2 192.168.29.0 0.0.0.255 echo-
reply 

All three access lists are applied to interfaces as follows: 

int Ethernet 2  
access-group 101 out 
Int serial 0 
access-group 102 out 
Int serial 1 
access-group 103 out 

3.2.10.3 Comparing the inbound and outbound access list implementations 

Now that we've implemented the policy two different ways—one using inbound access lists 
and another using outbound access lists—let's look at how the implementations differ. Are the 
two implementations, one using inbound access lists and one using outbound access lists, 
really equivalent from a policy standpoint? Imagine if Company A and Company B, while 
seeking to maintain good relations with Company C, are very hostile competitors. Company 
A, learning somehow that Company B is doing secure transactions using SSL, tries to slow 
down Company B by spoofing TCP packets to the web server's SSL port from Company B's 
network 192.168.29.0. This is an attempt to bog down the processing of Company B's 
transactions by overwhelming the web server's SSL routines. With the inbound access list 
implementation, such an attack would be prevented. Spoofed packets from Company A 
posing as Company B's 192.168.29.0/24 packets would be stopped by the implicit deny of 
access list 101. With the outbound access list implementation, this attack would be successful. 
Since outbound access lists do not differentiate between the interfaces where packets 
originate, there is no way to stop the forged packets from coming in. 

The inbound access lists consisted of four different access lists and a total of nine access list 
entries. The outbound access list consisted of three different access lists and seven access list 
entries. Why did the outbound access list have fewer entries and access lists? As I mentioned 
earlier in this section, outbound access lists do not need to consider the interface a packet 
came in from. In the inbound access list case, we had to have separate rules for allowing in 
HTTP and ping traffic for both Company A and Company B. With outbound lists, we used 
masking to combine those entries, since networks 192.168.28.0/24 and 192.168.29.0/24 can 
be combined as 192.168.28.0 0.0.1.255, and we are filtering traffic going out to the web 
server on Ethernet 0. By using outbound access lists exclusively, you can usually have shorter 
access list configurations, which really makes a difference if you start to run out of 
nonvolatile memory for storing configurations on a router. 
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Other differences come into play when considering how the companies would monitor and 
maintain their network connectivity. For instance, what happens if Company A or Company 
B cannot reach the web server? With the outbound access list implementation, Company A 
may ping the serial interface address 192.168.31.3 to see if the serial link is running. If the 
interface is down, then Company A can conclude that the reason the web server is 
unreachable is that the line is down. If the interface is up, the problem is most likely at 
Company C. In a similar fashion, Company B may ping the serial interface 192.168.31.5 and 
make similar conclusions about network connectivity. With the inbound access list 
implementation, ping will not work. Since the inbound access lists 101 and 103 do not 
explicitly allow ICMP echo packets coming in to the interface address, Company A and 
Company B lose visibility into the network, since they can't see if the other sides of the serial 
lines are up. 

Similarly, if Company A or Company B wants to provide routing information to Company C 
via a dynamic routing protocol, the outbound access list implementation would allow the 
protocol to work while the inbound access list implementation would not. If Company A and 
Company B wants to use BGP as the routing protocol, the inbound access list would have to 
add the following access list entries: 

access-list 101 permit tcp host 192.168.31.2 host 192.168.31.1 eq bgp 
access-list 103 permit tcp host 192.168.31.6 host 192.168.31.5 eq bgp 

BGP uses TCP, and we have to allow it explicitly on the inbound access lists. 

From our explorations of the differences of using inbound and outbound extended access lists, 
we can draw some conclusions about what tradeoffs are involved when deciding between 
inbound and outbound access lists. Outbound access lists are generally more permissive and 
tend to result in fewer access list entries. With outbound access lists, you don't have to worry 
about specifically permitting functions like routing updates, ARP, and ping. This results in 
less work for the router. Inbound access lists require the access list author to specify many 
more entries. Inbound access lists are the router's only defense against packet spoofing. 
Outbound access lists cannot stop packet spoofing. I generally recommend using outbound 
lists as much as possible, and using inbound lists to stop spoofing and making them as simple 
as possible. For our outbound implementation, let's add the following inbound access lists: 

access-list 104 permit ip 192.168.28.0 0.0.0.255 host 192.168.30.2 
access-list 104 permit icmp 192.168.28.0 0.0.0.255 host 192.168.31.1 echo 
access-list 105 permit ip 192.168.29.0 0.0.0.255 host 192.168.30.2 
access-list 105 permit icmp 192.168.29.0 0.0.0.255 host 192.168.31.5 echo 

These would be applied as follows: 

interface serial 0 
access-group 104 in 
interface serial 1 
access-group 105 in 

The first line of access list 104 includes only packets from Company A in the policy set of 
permitted packets. The first line of access list 105 does the same. We can allow the category 
of the protocol to be as broad as IP because we have further filtering being done by outbound 
access lists. The second entries in access lists 104 and 105 permit ping requests into the 
router. If we need to use BGP between the three companies, we have to add access list entries 
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explicitly allowing BGP like we did earlier. We don't have to worry about permitting 
responses to pings of the serial interfaces in an access list because we are using outbound 
extended access lists, which do not filter the packets of ping responses generated by the router 
itself. 

3.2.10.4 Using inbound access lists to prevent IP address spoofing 

As I mentioned earlier, spoof prevention is an important use of inbound access lists. Many 
denial-of-service attacks use source address spoofing as a method of entry. Spoofing often 
works because many security mechanisms trust packets that have a source address from a 
trusted network. In Chapter 1, I described a scenario where a disgruntled ex-employee caused 
damage by sending spoofed packets from the Internet into the network of his former 
employer. Such attacks can be stopped with inbound access lists. Figure 3.10 shows how 
organizations typically connect to the Internet. 

Figure 3.10. Typical Internet connectivity for an organization 

 

In this configuration, we see Organization A with two networks, 172.20.0.0/16 and 
192.168.30.0/23. The organization connects to the Internet through serial link 0. The 
organization needs to protect against packets from the Internet that have source IP addresses 
from its own two networks. Packets originating from networks 172.20.0.0/16 and 
192.168.30.0/23 from other interfaces should be okay, but packets using the organization's 
networks as source IP addresses through serial 0, the Internet interface, are spoofed addresses 
that should be blocked. We can take care of this problem by setting up an inbound access list 
on serial 0: 

access-list 100 deny ip 172.20.0.0 0.0.255.255 any 
access-list 100 deny ip 192.168.30.0 0.0.1.225 any 
access-list 100 permit ip any any 

This access list is applied against incoming packets on the serial interface to the Internet: 

interface serial 0 
access-group 100 in 

The first two entries in access list 100 stop packets that are forged as being from IP addresses 
within the company. The third entry permits any other packet to go inside the company. An 
added benefit of using inbound access lists in this way is that as long as the serial interfaces 
do not use IP addresses that are inside the company, we do not need an extra entry to allow 
routing updates. While permitting all IP traffic in after the two deny entries is very broad, it is 
implicit in these access lists that further filtering is done by outbound access lists on other 
interfaces. 
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Inbound access lists and the address resolution protocol 

The Address Resolution Protocol (ARP) is used by hosts on a shared medium such 
as Ethernet to determine the MAC address belonging to a particular IP address. The 
MAC (Media Access Control) address is a way of specifying the device address at 
layer 2 of the network stack. Without some way of learning the MAC address of 
other systems, there would be no way that hosts could communicate with each other. 
With inbound access lists, you need to be careful to allow ARP into an interface. For 
example, if you have a router with interface 192.168.35.1 connected to a network 
193.168.35.0/24, the following access list entry allows ARP into the interface: 

access-list 101 permit ip 192.168.35.0 0.0.0.255 host 192.168.35.1 

You basically need to allow all IP from systems on the network to the interface IP 
address. It is unfortunate that there is no narrower way to define access, but that is 
the nature of ARP. 

An alternative to permitting so broad a range of packets into an interface is to 
explicitly define the ARP address of hosts you want to reach into the router. This 
technique saves access list lines at the expense of lines of hardcoded ARP entries 
and a lack of flexibility. In the previous comparison between inbound access lists, 
we assumed that the ARP entries were hardcoded. 

3.2.10.5 Making routing protocols go through an inbound access list 

I have mentioned that when using inbound access list on an interface, if you want to receive 
routing information on that interface, you need to specifically allow packets for those 
protocols. In this section, I go through a list of common routing protocols and access list 
entries that allow any host to send in routing updates for that protocol through an inbound 
access list. For the purpose of these examples, the interface we are filtering and receiving 
updates on has IP address 192.168.31.3 and allows updates from hosts on 192.168.31.0/24. 
Access list 101 is an incoming access list on this interface. 

Here are the access entries for a number of routing protocols: 

RIP  

RIP uses UDP port 520: 

access-list 101 permit udp 192.168.31.0 0.0.0.255 host 192.168.31.3 
eq 520 

IGRP  

IGRP has its own special IP protocol type that needs to be specifically allowed: 

access-list 101 permit igrp 192.168.31.0 0.0.0.255 host 192.168.31.3 
EIGRP  
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EIGRP is notable in that it uses multicast hellos. This means that you have to allow 
special multicast addresses into the interface. Like IGRP, it has its own special IP 
protocol type: 

access-list 101 permit eigrp 192.168.31.0 0.0.0.255 host 224.0.0.10 
 
access-list 101 permit eigrp 192.168.31.0 0.0.0.255 host 192.168.31.3 

OSPF  

Like EIGRP, OSPF uses multicast hellos and has its own IP protocol type: 

access-list 101 permit ospf 192.168.31.0 0.0.0.255 host 224.0.0.4 
 
access-list 101 permit ospf 192.168.31.0 0.0.0.255 host 192.168.31.3 

BGP  

BGP is straightforward to implement because it uses TCP to a well-known port. 
Access to the TCP must be bidirectional for each peer for BGP to function. 

access-list 101 permit tcp 192.168.31.0 0.0.0.255 host 192.168.31.3 
eq bgp 
 
access-list 101 permit tcp 192.168.31.0 0.0.0.255 eq bgp host 
192.168.31.3 gt 1023 

3.2.11 Session filtering using reflexive access lists  

 

Reflexive access lists are available on IOS Versions 11.3 and up. 

 

Reflexive access lists can be used to exercise a tight level of control over individual client and 
server sessions. Let's look at the network in Figure 3.11 to show how they can be used. 

Figure 3.11. A proxy server with Internet access 

 

This network diagram shows a proxy server with Internet access. A proxy server is a system 
that makes connections and service requests on behalf of other hosts and forwards the results 
back to the requesting hosts. Let's say that this proxy server requires full access on all TCP 
ports to the Internet. The following access lists and interface statements implement this 
policy: 
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! access list out to the proxy server from the Internet 
ip access-list extended out-to-server 
  permit tcp any host 192.168.35.1 gt 1023 
! access list out to the Internet from the proxy server 
ip access-list extended out-to-Internet 
  permit tcp host 192.168.35.1 any 
! interface statements 
interface Ethernet 0 
ip access-group out-to-server out 
interface serial 1 
ip access-group out-to-Internet out 

While these access lists implement our policy, it leaves the proxy server vulnerable to probes 
of ports greater than 1023. A cracker could check these ports for services that can be 
exploited. Since a number of proxy services default to ports greater than 1023, an open proxy 
port could be used by an intruder to access hosts on the other side of the proxy server or to 
attack other systems on the Internet. 

Using the established qualifier can help with this problem: 

! access list out to the proxy server from the Internet 
ip access-list extended out-to-server 
  permit tcp any host 192.168.35.1 established 
! access list out to the Internet from the proxy server 
ip access-list extended out-to-Internet  
  permit tcp host 192.168.35.1 any 
! interface statements 
interface Ethernet 0 
ip access-group out-to-server out 
interface serial 1 
ip access-group out-to-Internet out 

Changing the access list out-to-server eliminates the direct probes, but crackers can still 
pump in traffic to the proxy server as long as they set the ACK bit on packets. 

Reflexive access lists take care of this problem by automatically creating an access list entry 
for each TCP connection that is established. We would configure the access list in the 
following way: 

! access-list out to the Internet 
ip access-list extended out-to-server 
  permit tcp any host 192.168.35.1 
  evaluate tcp-connections 
ip access-list in-from-Internet 
  permit tcp any any reflect tcp-connections 
! interface statements 
interface serial 1 
  ip access-group out-to-Internet out 
  ip access-group in-from-Internet in 

The evaluate access list entry in the access list out-to-server says that when a TCP 
connection is created, the router creates a reflexive access list entry in the reflexive access list 
tcp-connections that specifically allows only traffic for that particular connection. The 
reflect entry in the access list in-from-Internet makes the access list compare the packet 
against the reflexive access list entries in tcp-connections that are created. As an example, 
let's say that the proxy server sets up a TCP connection from source port 3456 to port 80 on 
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host 172.30.45.1. In response to this connection, the router would set up the following access 
list entry on the reflexive access list: 

permit tcp host 172.30.45.1 eq www host 192.168.35.1 eq 3456 

The show ip access-list command would yield: 

Extended IP access list Out-to-server 
  permit tcp host 192.168.35.1 any 
  evaluate tcp-connections 
Extended IP access-list in-from-Internet 
  permit tcp any any reflect tcp-connections 
Reflexive IP access list tcp-connections 
  permit tcp host 172.30.45.1 eq www host 192.168.31.1 eq 3456 (6 matches)  
(time left 119 seconds) 

The only way to get packets into the proxy server is to use these specific source and 
destination ports and source and destination IP addresses. This access list entry disappears 
when the TCP connection is shut down. The router looks for the FIN packets requesting that a 
TCP connection be shut down and then removes the entry. If a TCP connection is shut down 
before FIN packets can be sent, then the entries disappear after a timeout interval. The default 
timeout period is 300 seconds (five minutes), but it can be set with the global configuration 
command ip reflexive-list timeout. 

Reflexive access lists are created in the opposite direction of the extended access list that 
activates it. In our example, the reflexive list was created as an inbound access list of the 
serial interface connecting to the Internet. Let's implement the policy with inbound access 
lists: 

! access-list in from the server 
ip access-list extended in-from-server 
  permit tcp any host 192.168.35.1 any 
  evaluate tcp-connections 
ip access-list extended out-to-server 
  permit tcp any any reflect tcp-connections 
! interface statements 
interface Ethernet 0 
  ip access-group out-to-server out 
  ip access-group in-from-server in 

The reflexive access list entries created would be outbound access lists going to the proxy 
server. For our previous example, the reflexive access list entry created would have been the 
same, only evaluated on an outgoing access list. 

UDP client/server sessions can also be filtered with reflexive access lists. Figure 3.12 shows a 
server that makes DNS requests and ICMP echo requests to name servers in the Internet. 
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Figure 3.12. A server that makes DNS queries 

 

We can limit access to the server with the following access lists: 

! access list out to the server from the Internet 
ip access-list extended out-to-server 
  permit udp any eq 53 host 192.168.35.1 eq 53 
  permit udp any eq 53 host 192.168.35.1 gt 1023 
  permit icmp any host 192.168.35.1 echo-reply 
  permit tcp any any reflect tcp-connections 
! access list out to the Internet from the server 
ip access-list extended out-to-Internet  
  permit udp host 192.168.35.1 gt 1023 any eq 53 
  permit udp host 192.168.35.1 eq 53 any eq 53 
  permit icmp host 192.168.35.1 any echo 
  permit tcp host 192.168.35.1 any eq 53 
  evaluate tcp-connections 
! interface statements 
interface Ethernet 0 
ip access-group out-to-server out 
interface serial 1 
ip access-group out-to-Internet out 

While this does limit access to the server, an intruder can still probe for UDP ports over 1023 
by using a source port of 53. Since UDP is a connectionless protocol, there is no equivalent to 
established for filtering session startup packets. Reflexive access lists can fix this problem: 

! access list out to the server from the Internet 
ip access-list extended out-to-server 
  permit icmp any host 192.168.35.1 echo-reply 
  permit tcp any any reflect tcp-connections 
  permit udp any any reflect udp-sessions 
! access list out to the Internet from the server 
ip access-list extended in-from-Internet  
  permit udp host 192.168.35.1 gt 1023 any eq 53 
  permit udp host 192.168.35.1 eq 53 any eq 53 
  permit icmp host 192.168.35.1 any echo 
  permit tcp host 192.168.35.1 any eq 53 
  evaluate tcp-connections  
  evaluate udp-sessions 
! interface statements 
interface Ethernet 0 
  ip access-group out-to-server out 
  ip access-group in-from-server in 
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Since UDP is connectionless and doesn't have the equivalent of a FIN packet marking the end 
of a session, the router maintains the access list entry as long as it sees traffic within the 
reflexive access list timeout interval. A query from the name server that uses source port 1234 
to host 172.30.45.60 then creates the entry: 

permit udp host 172.30.45.60 eq 53 host 192.168.35.1 eq 1234 

Reflexive access lists have a number of limitations. You cannot use them on protocols that do 
not have source ports, such as ICMP. In the previous entry, we needed to put in specific 
entries to allow ICMP echo replies to the server. You cannot use reflexive access lists with 
protocols that change ports during a session or that have sessions set up in two directions. A 
good example is active mode FTP. A control connection is set up from client to server with a 
source port greater than 1023. When a file needs to be copied or a directory listing is needed, 
a data connection is set up from the server to the client. If a reflexive access list is used, the 
entry created for the control connection prevents the data connection from being set up. 
Passive mode FTP would work, however, since data connections are set up in the same 
direction. Reflexive access lists also require named access lists. If you are using an older 
version of the Cisco IOS that does not support named access lists, then you can't use reflexive 
access lists.  

3.2.12 An expanded example of packet filtering 

Let's look at a more complex example of packet filtering. For this example, I use the 
configuration shown in Figure 3.13. 

Figure 3.13. A screened subnet firewall 

 

This configuration is known as a screened subnet firewall. The goal of this architecture is to 
allow the hosts in Organization X to access and provide Internet services without directly 
exposing those hosts to attack. The hosts that we want to protect strongly are connected to 
Ethernet 1 in networks 192.168.32.0/24 through 192.168.39.0/24. The Internet is connected to 
the serial interface, and all packets from that serial interface are considered potentially hostile. 
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Hosts in networks 192.168.32.0/24 through 192.168.39.0/24 do not access the Internet 
directly. All contact with the Internet is proxied through hosts in network 192.168.30.0/24. 
The combination of protecting a set of hosts while proxying all Internet access through 
another subnet makes packet filtering in the screened subnet firewall more complex. 

Let's see how proxy access works, and how it affects packet filtering. Hosts in networks 
192.168.32.0/24 through 192.168.39.0/24 access web servers outside the Organization X 
through the proxy server. Web requests are sent to the proxy on TCP port 911, which gets the 
requested web pages and sends them back to the requestor. Incoming and outgoing electronic 
mail is relayed through a mail relay. Mail destined for inside Organization X is sent to the 
mail relay, which forwards it to Organization X's internal mail servers. Mail from 
Organization X to the Internet is sent first to the mail relay, which then forwards it on to its 
final destination. Network services that Organization X provides the Internet, like web and 
name services, are offered through dedicated web and name servers. Hosts in network 
192.168.30.0/24 on do not have full access to Organization X's networks 192.168.32.0/24 
through 192.168.39.0/24. They are given only enough access to the internal networks to carry 
out their proxy functions. 

The network 192.168.30.0/24 is called a DMZ, for De-Militarized Zone. The rationale behind 
this design is that hosts we want to protect must not have direct Internet access. All Internet 
access is done through hosts in the DMZ, which protects the internal hosts from direct attack. 
When a significant security weakness in hosts or software is found, Organization X can 
concentrate first on fixing the weakness in DMZ systems (which typically have far fewer 
systems). Once the DMZ systems are hardened against the security weakness, crackers on the 
Internet cannot exploit the weakness against Organization X. If a DMZ system is 
compromised, access into Organization X's internal networks is controlled. An additional 
benefit is that Organization X has a central location for tracking its Internet use because all 
Internet access is proxied through DMZ systems. 

In addition to the goals of the screened subnet architecture, let's make other policy decisions 
that will affect how we define the extended access lists. Internet hosts 192.168.10.4 and 
192.168.12.5 will be DNS secondaries for Organization X's domains. This means that these 
two hosts, existing somewhere out on the Internet, will also provide DNS queries for 
Organization X's domain. To make that possible, they must be able to copy all of the DNS 
data about Organization X from the name server on the DMZ, a process known as a zone 
transfer, so our access lists need to permit zone transfers by only those two nodes. Another 
policy decision is that Organization X will give relatively small answers to DNS queries. As 
you may recall, a DNS client that receives a large answer to a DNS query starts a TCP 
connection to get all of the answer. Keeping DNS answers small eliminates the need for 
allowing all Internet hosts TCP port 53 connectivity into its name server and speeds response 
time to queries, since fewer packets are sent for each answer, and no TCP connection is 
needed. Note that Organization X must implement this policy by being disciplined about the 
DNS resource records that it creates. In most cases, there is no reason to have extremely large 
DNS resource records. An exception is for large web sites that do load balancing to large 
numbers of servers with DNS round robin, a technique that assigns a number of IP addresses 
to the hostname of a web server. 

What about routing? We know exactly which networks are connected to which interface. 
Network 192.168.30.0/24 is on Ethernet 0, networks 192.168.32.0/24 through 192.168.39.0 
are on Ethernet 1, and everything else on the Internet is reached through serial 2. It is easy to 
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use static, hardcoded routes on the router, so for this example, we won't use dynamic routing 
protocols. In firewall designs, you should avoid using dynamic routing protocols as much as 
possible, since they add complexity to access lists, and routing updates can also be spoofed. 
I'll talk about this in more detail in Chapter 4. 

With all the information we have gathered about policy and the screened subnet architecture, 
let's define how IP packets should flow through Organization X's router: 

Deny packets from the Internet that have a source address within an 
organization (prevent spoofing) 

All hosts on the screened subnet can be pinged from all networks 

DNS queries should be permitted from the name server to the Internet and vice 
versa 

Internet hosts 192.168.10.4 and 192.168.12.5 should be able to do DNS zone 
transfers from name server 

Web access is permitted to the web server from all networks 

FTP, Telnet, and web access out to the Internet is permitted from the proxy 
server 

FTP, Telnet, and web proxy access on TCP port 911 from the internal 
networks is permitted to the proxy server 

The mail relay has SMTP access to all networks and can receive SMTP 
connections from all networks 

No direct connectivity is permitted between the Internet and the internal 
networks 

3.2.12.1 Defining what access lists are necessary 

The first policy entry states that packets from the Internet with the organization's address as 
the source IP address are denied entry. This policy rule is designed to stop source IP address 
spoofing, and as I mentioned in a previous section, inbound access lists are the network 
administrator's tools for spoof protection. Access list 100, shown below, implements the anti-
spoof policy: 

access-list 100 deny ip 192.168.30.0 0.0.0.255 any 
access-list 100 deny ip 192.168.32.0 0.0.7.255 any 
access-list 100 permit ip any any 

Organization A uses networks 192.168.30.0/24 in its DMZ and networks 192.168.32.0/24 
through 192.168.39.0/24 in the core of its network. The first entry in access list 100 denies 
packets from the Internet that have source addresses of the DMZ network 192.168.30.0/24. 
The next line denies packets from internal networks 192.168.32.0/24 through 
192.168.39.0/24. We can express this in a single statement by using a network mask. After 
spoofing is stopped, everything else is permitted through the interface (outbound access lists 
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will be used to do the rest of the filtering). Access list 100 is applied as an inbound access list 
to the interface facing the Internet: 

interface serial 2 
access-group 100 in 

Are there any other interfaces that require inbound access lists? Any system that exchanges 
packets directly to the Internet is a possible point of compromise. What if a DMZ system, 
which does exchange packets directly with the Internet, were compromised by crackers? That 
system could be used as a base for launching attacks against other Internet sites or against the 
internal networks. To prevent a DMZ from potentially being used for spoofing attacks, we can 
create access list 101 that permits only DMZ packets from that segment: 

access-list 101 permit ip 192.168.30.0 0.0.0.255 any 

The implicit deny of access list 101 stops spoofed packets. This access list is applied to 
interface Ethernet with: 

interface Ethernet 0 
access-group 101 in 

You might question whether we need to put an incoming access list on Ethernet 1 to prevent 
spoofing attacks from Organization X's employees. Since we are going to prevent the internal 
networks from talking directly to the Internet, it may not seem necessary. But attacks by 
disgruntled insiders are a real threat. Hosts on the internal network could potentially spoof 
packets with addresses from the DMZ in order to get them out onto the Internet. To take care 
of spoofing attacks on the DMZ and stop accidental traffic, we can build another very simple 
inbound access list 102: 

access-list 102 permit ip 192.168.32.0 0.0.7.255 any 

which allows packets from the internal networks only into the router. This is then applied 
with: 

interface Ethernet 1 
access-group 102 in 

Although we made a decision not to use dynamic routing protocols, the way that I have used 
inbound access lists for anti-spoofing purposes in this example allows us to use dynamic 
routing protocols on the serial interface without changing our access lists. In other words, as 
long as the IP addresses on both ends of the serial link do not use the internal IP addresses or 
DMZ addresses, the router allows routing updates into the serial interface. Similarly, as long 
as the routers off Ethernet 1 use internal IP addresses, route updates are permitted on that 
interface. Using inbound access lists for anti-spoofing purposes gives us this flexibility. 

Now that we are done with the inbound access lists, we need to work on the outbound access 
lists. Since we have policies applying to networks attached to all three interfaces of the router, 
let's define outgoing access list numbers as follows: 

• 103—Outgoing access list on interface serial 2 (to the Internet) 
• 104—Outgoing access list on Ethernet 0 (to the DMZ) 
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• 105—Outgoing access list on Ethernet 1 (to internal networks) 

With access list numbers defined, we can start creating access lists entries for each of the 
packet-forwarding rules: 

Deny packets from the Internet that have a source address within an organization (prevent 
spoofing)  

We handled this policy with our inbound access lists. 

All hosts on the screened subnet can be pinged from all networks  

To implement this policy statement, we need to allow ICMP echo-reply packets out to 
the Internet and internal user networks. For the outgoing serial interface access list, we 
have: 

access-list 103 permit icmp 192.168.30.0 0.0.0.255 any echo-reply 

We need the same leading into the internal segments: 

access-list 105 permit icmp 192.168.30.0 0.0.0.255 192.168.32.0 
0.0.7.255 echo-reply 

The DMZ segment itself needs to receive ICMP echo requests: 

access-list 104 permit icmp any 192.168.30.0 0.0.0.255 echo 
DNS queries should be permitted to and from the name server  

We need to allow DNS packets in and out of the DMZ segment for DNS queries. As I 
mentioned in our web server example, DNS queries come into a name server with a 
UDP destination port of 53 and a source port of either 53 or greater than 1023. Large 
queries use TCP on destination port 53. With this information, we generate the 
following access lists: 

! access list out to the Internet (serial 2) 
access-list 103 permit udp host 192.168.30.3 eq domain any eq domain 
access-list 103 permit udp host 192.168.30.3 gt 1023 any eq domain 
access-list 103 permit udp host 192.168.30.3 eq domain any gt 1023 
access-list 103 permit tcp host 192.168.30.3 any eq domain 
! access list out to the DMZ (Ethernet 0) 
access-list 104 permit tcp any host 192.168.30.3 established 
access-list 104 permit udp any eq domain host 192.168.30.3 eq domain 
access-list 104 permit udp any eq domain host 192.168.30.3 gt 1023 
access-list 104 permit udp any gt 1023 host 192.168.30.3 eq domain 

The name server at IP address 192.168.30.3 can send any DNS query out to the 
Internet because the first line and second lines of access list 103 permit UDP packets 
with a destination port of 53 and a source port of 53 or greater than 1023. Should the 
name server require TCP to get a large DNS answer, the fourth line of access list 103 
permits that type of connection. The first line of access list 104 allows return packets 
from that TCP connection, and the second and third lines of access list 104 permit 
responses to the name server's queries to go back to the name server. 
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The name server also needs to answer queries from the Internet The second and third 
lines of access list 104 permit the name server to receive any DNS query. The first and 
third lines of access list 103 permit responses to DNS queries. Since we explicitly 
decided that all DNS answers about Organization X would be small, connection to 
TCP port 53 is not allowed. 

Internet hosts 192.168.10.4 and 192.168.12.5 should be able to do DNS zone transfers from 
name servers  

We implement this policy statement by first setting up an established TCP access list 
entry on the outgoing serial interface to the Internet: 

access-list 103 permit tcp host 192.168.30.0 0.0.0.255 any 
established 

We make it generic to all of the DMZ so we can also catch all TCP connections going 
out of the DMZ that have already been set up. Hosts 192.168.10.4 and 192.168.12.5 
are permitted to do zone transfers from the name server. Zone transfers use TCP port 
53. So in the access list going to the DMZ, we have: 

access-list 104 permit tcp host 192.168.10.4 host 192.168.30.3 eq 
domain 
access-list 104 permit tcp host 192.168.12.5 host 192.168.30.3 eq 
domain 

Since both zone transfers and DNS queries with large answers use TCP port 53, we'll 
have to require all DNS answers from those name servers small enough to not require 
a TCP connection. Otherwise, there would be no way to allow zone transfers from 
only the designated secondary DNS servers as we would have had to allow TCP port 
53 to be open to all on the Internet. 

Web access is permitted to the web server from all networks  

We need to allow web protocols to have access on port 80 into the web server at 
192.168.30.2. This is done with: 

access-list 104 permit tcp any host 192.168.30.2 eq www 

Return packets to the Internet are covered by the established access list entry in list 
103. We need a similar entry going into the internal networks (list 105): 

access-list 105 permit tcp 192.168.30.0 0.0.0.255 192.168.32.0 
0.0.7.255 established 

FTP, Telnet, and web access out to the Internet is permitted from the proxy server  

We add an established statement to list 104 to handle return traffic on a connection 
set up from the proxy server to the Internet. Since the other servers on the DMZ will 
be making and receiving connections to the Internet too, it is safe to make the 
established connection apply to the rest of the DMZ: 

access-list 104 permit tcp any host 192.168.30.0 0.0.0.255 
established 
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Since web servers can live on a number of ports, we need to add generic TCP access 
going out to the Internet from the proxy server: 

access-list 103 permit tcp host 192.168.30.1 any 

To make FTP work, we need TCP ports greater than 1023 going to the proxy server 
from source port 20: 

access-list 104 permit tcp any eq ftp-data host 192.168.30.1 gt 1023 
FTP, Telnet, and web access from the internal networks is permitted to the proxy server  

This is similar to the previous policy statement, but we can be much more specific 
about what networks can talk to the proxy server: 

access-list 105 permit tcp host 192.168.30.1 eq ftp-data 192.168.32.0 
0.0.7.255 gt 1023 

We need to permit the proxied services of FTP, Telnet, and Web into the proxy server 
from the internal segments: 

access-list 104 permit tcp 192.168.32.0 0.0.7.255 host 192.168.30.1 
range ftp-data ftp 
access-list 104 permit tcp 192.168.32.0 0.0.7.255 host 192.168.30.1 
eq telnet 
access-list 104 permit tcp 192.168.32.0 0.0.7.255 host 192.168.30.1 
eq 911 

The mail relay has SMTP access to all networks and can receive SMTP connections from all 
networks  

SMTP uses port 25 as a destination port. We already have established statements, so 
we need the following statements: 

access-list 103 permit tcp host 192.168.30.4 any eq smtp 
access-list 104 permit tcp any host 192.168.30.4 eq smtp 
access-list 105 permit tcp host 192.168.30.4 192.168.32.0 0.0.7.255 
eq smtp 

No direct connectivity is permitted between the Internet and the internal networks  

This is taken care of by the explicit permit entries and implicit deny entry at the end 
of the access lists. 

3.2.12.2 Optimizing the order of access list entries 

We now have a large collection of access list entries. What is the best way to arrange them? 
You want to have the most frequently used access list entry at the top, followed by the next 
most frequently used entry, and so on. As mentioned earlier, doing this minimizes the impact 
that access lists have on a router. The most frequently used access list entry in environments 
that use TCP-based services such as HTTP, SMTP, and FTP is the established entry. It is 
almost always a good idea to put a very general established entry at the top of a list because 
the vast majority of traffic will match the first line of an access list and the router will not 
have to process other access list entries. Next, you typically want to use DNS statements since 
most Internet services use hostnames and not just IP addresses, thus requiring a DNS lookup. 
After DNS access list entries, ICMP echo and echo-reply entries should go next because 
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ping is used frequently on the Internet. Finally, the other permit entries for TCP services and 
other services should be covered. Bear in mind, these are general guidelines, and utilization of 
access list entries may be different, depending on your needs and traffic patterns. Whatever 
order you choose, be careful about moving deny entries in an access list or permit statements 
ahead of deny entries. This kind of movement in particular can completely change the policy 
you are trying to implement, denying entries you did not intend to deny or permitting services 
you did. 

In this case, the final version of access list 103, the outbound access list going to the Internet, 
becomes: 

! access list out to Internet through serial interface 0 
access-list 103 permit tcp host 192.168.30.0 0.0.0.255 any established 
access-list 103 permit udp host 192.168.30.3 eq domain any eq domain 
access-list 103 permit udp host 192.168.30.3 gt 1023 any eq domain 
access-list 103 permit udp host 192.168.30.3 eq domain any gt 1023 
access-list 103 permit tcp host 192.168.30.3 any eq domain 
access-list 103 permit icmp 192.168.30.0 0.0.0.255 any echo-reply 
access-list 103 permit tcp host 192.168.30.1 any 
access-list 103 permit tcp 192.168.32.0 0.0.7.255 host 192.168.30.1 
access-list 103 permit tcp host 192.168.30.4 any eq smtp 

while access list 104, the access list leading to the DMZ segment, is as follows: 

! access list out to DMZ through Ethernet interface 0 
access-list 104 permit tcp any 192.168.30.0 0.0.0.255 established 
access-list 104 permit udp any eq domain host 192.168.30.3 eq domain 
access-list 104 permit udp any eq domain host 192.168.30.3 gt 1023 
access-list 104 permit udp any gt 1023 host 192.168.30.3 eq domain 
access-list 104 permit icmp any 192.168.30.0 0.0.0.255 echo 
access-list 104 permit tcp any host 192.168.30.2 eq www 
access-list 104 permit tcp 192.168.32.0 0.0.7.255 host 192.168.30.1 range 
ftp-data ftp 
access-list 104 permit tcp 192.168.32.0 0.0.7.255 host 192.168.30.1 eq 
telnet 
access-list 104 permit tcp 192.168.32.0 0.0.7.255 host 192.168.30.1 eq 911 
access-list 104 permit tcp any eq ftp-data host 192.168.30.1 gt 1023 
access-list 104 permit tcp any host 192.168.30.4 eq smtp 
access-list 104 permit tcp host 192.168.10.4 host 192.168.30.3 eq domain 
access-list 104 permit tcp host 192.168.12.5 host 192.168.30.5 eq domain 

(I have moved the entries that permit zone transfers toward the end since the zone transfer 
operations are specific to certain hosts and are not part of the generic DNS functionality 
offered to the whole Internet and thus are used less frequently.) 

Finally, access list 105, the access list leading to the internal networks, becomes: 

! access list to internal networks through Ethernet 1 
access-list 105 permit tcp 192.168.30.0 0.0.0.255 192.168.32.0 0.0.7.255 
established 
access-list 105 permit icmp 192.168.30.0 0.0.0.255 192.168.32.0 0.0.7.255 
echo-reply 
access-list 105 permit tcp host 192.168.30.1 eq ftp-data 192.168.32.0 
0.0.7.255 gt 1023 
access-list 105 permit tcp host 192.168.30.4 192.168.32.0 0.0.7.255 eq smtp 
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We apply all our access lists (including all inbound lists) as follows:  

int serial 0 
 access-group 100 in 
 access-group 103 out 
interface Ethernet 0 
 access-group 101 in 
 access-group 104 out 
interface Ethernet 1 
 access-group 102 in 
 access-group 105 out 

Figure 3.14 shows how the access lists are applied. 

Figure 3.14. A screened subnet firewall with access lists 

 
Limitations of packet filtering 

While packet filtering with extended access lists can be very useful for 
implementing security policies, it has some notable limitations. Static packet 
filtering (i.e., not reflexive lists) does not maintain a protocol state. This means that 
nonreflexive access lists filter packets without caring whether those packets are 
valid in the sequence of a protocol. For example, the access list entry: 

access-list 100 permit tcp any host 192.168.35.1 range 20 21 

permits packets for an FTP data session (TCP port 20) whether or not the necessary 
FTP control session (TCP port 21) has been established. Another example is the 
TCP qualifier established. It allows all TCP packets that have flags set for an 
established connection, even if the connection has never been established. Some 
crackers use this feature to scan hosts behind an access list. They send a TCP FIN 
packet to a particular port on a host, which responds in a certain way if there is a 
service on that port. While the crackers may not be able to directly exploit any 
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services that they find, the information may be of use to them for identifying targets. 

Another key limitation of packet filtering, even with reflexive lists, is that it cannot 
stop in-protocol attacks. This means that if there are weaknesses that can be 
exploited within a protocol, packet filtering cannot stop it. Examples of this are 
exploits using HTTP that allow remote users to execute commands on a host simply 
by issuing coded HTTP requests. A packet filter can only allow or disallow HTTP 
traffic, not check for holes in a server's HTTP implementation. 

Another example is a SYN flood attack. An extended access list can allow TCP 
SYN packets, but it cannot stop a flood of SYN packets that are designed to disable 
a host. 
 

3.3 Alternatives to access lists 

The CPU costs incurred by access lists can be quite high. For this reason, Cisco routers offer a 
number of alternatives to using access lists for security. I'll discuss them here. 

3.3.1 Routing to the null interface 

Occasionally, you may encounter a network or a single host that you absolutely do not trust. 
In a company, this could be a segment where known outsiders and potentially hostile people 
are working, or perhaps a lab network that has different Internet access. It could also be a 
DMZ or a system on the DMZ such as a dial-in terminal server, where you may have some 
doubts about the security on that network or who is on that system. In any case, the systems 
and data that you want to protect may be so sensitive that you don't want to take any chances 
with traffic or data flowing to the untrustworthy network or host. One tactic you can use for 
absolute certainty is to route all traffic to a null device with a static route. Here, I use a static 
route to drop all traffic going to network 192.168.29.0/24: 

ip route 192.168.29.0 255.255.255.0 null0 

This static route configuration command sends all traffic to network 192.168.29.0 on to a null 
device, effectively throwing away all packets going to that network. This is a succinct way to 
completely eliminate traffic going to a given network. Dropping all traffic to a host is much 
more common. If we were to drop all traffic going to host 192.168.29.1, we would use the 
route command: 

ip route 192.168.29.1 255.255.255.255 null0 

You need to be careful of a number of things when using the null route as an access list 
replacement. All of the router is affected by such a command, not just particular interfaces. 
With this technique, you can't drop traffic from some hosts or network to the hosts while 
permitting others; all traffic going out of the router to this host is dropped. Also, just because 
you can't send traffic to a network or a host doesn't mean they can't send traffic to you. 
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3.3.2 Stopping directed broadcasts 

It is possible to send a broadcast directed at a specific network through a router without being 
on that network. For example, a Network Time Protocol (NTP) server can send a directed 
broadcast to update the clocks used by the hosts on a given segment. This could be done with 
a single packet, resulting in considerably less traffic than the typical polling used by NTP. 
While the directed broadcast can be useful, it is very dangerous. Directed broadcasts are the 
basis of a number of denial-of-service attacks. A cracker on the Internet sends a packet into a 
corporation's network broadcast address with a spoofed source address. All the machines on 
that network reply to the broadcast by sending packets to the attacked host, which crashes 
under the load. Typically, ICMP is used, since many hosts respond to it. 

You can explicitly permit or deny directed broadcasts with extended access lists. To match a 
directed broadcast into network 192.168.30.0/24, you can use an entry like this: 

access-list 101 deny ip any 192.168.30.255 0.0.0.0 

A directed broadcast has all 1's in the host portion of the address, which is in this case 255. 
This particular entry denies all directed broadcasts because it uses ip as the protocol, but you 
can specify individual IP protocols like UDP if you prefer. However, in firewall situations, 
you should turn off any directed broadcasts for which you don't need to use an access list, 
since you can do this on an interface basis with the command no ip directed-broadcast. For 
example, if you want to turn off directed broadcasts going out of interface Ethernet 0, use the 
following: 

interface Ethernet 0 
no ip directed-broadcast 

This saves you from having to worry about adding an extra entry to the outgoing access list 
on that interface or inbound access lists on other interfaces and also reduces the size of the 
router's configuration. 

3.3.3 Removing router resources 

To manage a router, a network administrator must log in through an untrusted network. 
Figure 3.15 shows a diagram of this kind of situation. 

Figure 3.15. Managing a router through untrusted networks 

 

One possible scenario is when a network administrator at a network trade show logs into one 
of his routers through an untrusted network. Since Telnet sessions into routers are 
unencrypted, the administrator's password is stolen. There are less dramatic instances in 
which this situation comes up: managing a router reachable only through DMZ segments, for 
example, where you know machines are exposed to attack from the Internet, or segments 
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populated by people you do not trust, such as a segment with hosts run by multiple 
organizations. 

If the situation depicted in Figure 3.15 applies to you, and you still maintain physical security 
of your router, you can manage the router from the console and simply not define any router 
resources like SNMP and virtual terminal lines, as opposed to dealing with access lists. This 
may seem extremely obvious, but sometimes you may forget about router configurations like 
virtual terminal lines that you may have added in the past to make configuration easier. Since 
you have physical security with your router, managing the router from the console is 
extremely secure and doesn't expose any passwords to anyone who may be eavesdropping. A 
variation of this strategy is to put a terminal server on the console port of the router and make 
the terminal server accessible only from trusted networks. This is a good solution if you 
manage routers connected to a DMZ. 

Chapter 4. Implementing Routing Policies 
A key policy decision that network administrators need to make is how to route packets. 
Application performance, security, and cost can all be affected by these decisions. Routers, in 
addition to forwarding and receiving data packets, send routing messages that describe where 
to send those packets. Network administrators use two policy tools to manipulate these 
routing messages: route filtering and filtering based on characteristics of routes. The first 
section of this chapter talks about the general issues of implementing routing policies—how 
filtering the routes distributed by routing protocols can affect network stability and business 
goals, and the following section goes into the details of making networks robust. After that, 
we discuss how to implement traffic preferences according to specific objectives and look at 
the costs incurred when implementing routing policies. Finally, we briefly examine some 
alternatives to using access lists. This chapter focuses mainly on routing within smaller 
networks and intranets, but the concepts discussed here are applicable to routing in the 
Internet and in very large networks, which we'll talk about in Chapter 6. 

4.1 Fundamentals of route filtering 

In Chapter 3, we saw how access lists can be used to filter packets moving through a router. 
Packets are not the only types of information that can be monitored by access lists. Routing 
information, which instructs routers how to forward data packets to their proper destination, 
are often critical to control. Let's talk a little about routing basics and the reasons for building 
router filtering policies for our networks and organizations, which will prepare us for 
implementing access lists to control the flow of routing information later in the chapter. 

4.1.1 Routing information flow 

When networks grow past a certain size, there is no way that administrators can manually 
update every router with information about the best way to route packets. Network links 
change capacity, routers go up and down, and traffic conditions vary. To ensure that all of the 
routers in a network know about changing network conditions, routers pass routing 
information between each other in a series of packets called routing updates or route 
advertisements. Routing updates provide information about the paths going to individual 
networks so that routers can decide how to forward packets to those networks. Routing 
information can include the number of router hops to a network, path delay, network 



  Cisco IOS Access lists 

  Page 91 

congestion, or other information such as flags that routers attached to the routing information. 
With this information, routers make decisions about the best path to a given network. 

In a similar manner to the control of packets we examined in Chapter 3, a router can forward 
and filter routing information, as shown in Figure 4.1. 

Figure 4.1. Routing information is forwarded and filtered through a router 

 

Routing information comes into the router from several different interfaces, using a routing 
protocol with a single metric whose values are shown. Routing updates about Networks 1 and 
2 come into Interfaces 1 and 2. The updates from Interface 1 have c as the value of the metric 
for both networks. The updates coming into interface 2 have the metric for Network 1 as a 
and the metric for X as b. Interface 3 sees routing information that gives Network 1 a metric 
of a, Network 2 a metric of d, and Network 3 a metric of e, while Interface 4 sees that 
Network 4 has a metric of f. The router then distributes routing information about the 
networks that it received. Network 1 is then advertised out of Interfaces 2 and 4 with a metric 
of g, but it is advertised out of Interface 3 with a metric of j and not advertised at all out of 
Interface 1. Network 2 is advertised with a metric of g out of Interfaces 2, 3, and 4. Network 3 
is advertised with a metric of h out of Interfaces 1, 2, and 4, while Network 4 is advertised 
with a metric of i out of Interfaces 1 and 2 and advertised with a metric of k out of Interface 
3. 

As you can see, there are similarities to the flow of information to packet control. Routing 
information flow differs from packet information flow most significantly in that the router can 
substantially change the contents of routing information flowing through it. 

4.1.2 Elements in a routing update 

Let's talk more about routing information itself. Let's look at the key elements in any routing 
information update: 
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Network number and mask  

The network number and mask determine what network the route information applies. 
It is also the part of the routing information most commonly used to determine 
whether a routing update is included in a policy set for further processing. 

Routing protocol and version  

The routing protocol is another key piece of information about routing updates. There 
are a number of different routing protocols for IP, and a router can be configured to 
listen to more than one. Dealing with different routing protocols and distributing 
routing information between them is a common thing that network administrators 
must deal with, and it is one of the most common uses of access lists. 

Next hop  

The next key piece of information, next hop, is the IP address where the router is 
advised to send packets bound for the network advertised. If the router accepts the 
routing update as the best path to that network, all packets destined to that network are 
sent to the next hop IP address. 

Source of routing information  

Closely related to next hop is the source of routing information. This is the IP address 
of the router sending the routing update. This router is usually (but not always) the 
next hop. A network administrator may choose to add routes to a policy set based on 
next hop information or on the source of routing information. This is an instance of the 
last network administrator tool mentioned in Chapter 1: controlling routes based on a 
characteristic of those routes. 

Metric information  

Metric information is the information used by a routing protocol to determine the 
optimal route. There can be a single numerical value, or there can be a series of other 
values used as metrics, not all of them numeric. Metric information can be used as 
criteria for placement into a policy set. Once a policy set of routes has been 
established, a network administrator can manipulate the metric values of the routes in 
the policy set. 

Other information  

Other information is nonmetric information that is in a routing update for the purpose 
of setting routing policies. Some routing protocols do not have this kind of 
information. I will talk more about using other information in routing updates in the 
Chapter 6, when we talk about route maps and the BGP-4 routing protocol. 

It is important to keep these elements separate and distinct when thinking about routing 
updates. Filtering a route to Network A (the network number) is different from filtering routes 
from routers on Network A (the source of routing information). You can receive routes to 
Network A from routers that are not directly connected to Network A. In particular, the 
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network number of a route described in a routing update should not be mistaken for any other 
elements. 

Once the policy sets you build based on the elements above are established, a network 
administrator can program routers to act on them through four actions. First, the administrator 
can choose to reject routing updates in a policy set so the router ignores the information from 
those updates. Second, the router can be programmed not to forward the routing updates in a 
policy set. In this case, the router knows how to send packets to the networks specified, but it 
does not let other routers know this information. Third, a router can change any of the 
elements contained in incoming routing updates, so that its own routing table differs from the 
routing information that it receives. Finally, the router can send out routing information that is 
different from the routing information in its own routing table. 

4.1.3 Network robustness 

A desirable property of a network is robustness. A problem in one part of the network 
shouldn't affect all of the network, and the network as a whole should keep running even if 
parts of it are broken. Maintaining network robustness is about modularity and problem 
isolation. As networks scale in size, different parts of the network are usually run by different 
organizations. Those parts should be modular: self-contained and thought of and managed as 
a unit. Breaking down a large network into smaller self-contained units makes a network 
much more manageable. Once a network has become organized into smaller units, a routing 
problem or misconfiguration in one unit should not impact everyone in the network, as the 
problem will be more easily isolated to one modular unit. Let's look at an example. Figure 4.2 
shows a network made of different sites connected through a single router. 

Figure 4.2. Network robustness in a multi-domain/organization network 

 

In this network, the router in the center connects four different sites. Site L, connected 
through Interface 1, uses Networks 1, 2, and 3. Site M, connected through Interface 2, uses 
Networks 4 and 5. Site N, connected through Interface 3, uses Networks 6, 7, and 8, while 
Site O, connected through Interface 4, uses Networks 9 and 10. 

The network administrator managing the router wants to make sure that a routing problem in 
one site doesn't impact the other sites. For example, if Site O started advertising routes to Site 
L's Networks 1, 2, and 3, the router should not accept these routes and should not forward 
traffic bound for Site L's networks to Site O. To provide some modularity in routing and make 
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the network more robust in the case of misconfiguration, the router should only accept a site's 
designated routes. Routes for 1, 2, and 3 should be accepted only through Interface 1. Routes 
4 and 5 from Site M should only be accepted through Interface 2. Similarly, routes 6, 7, and 8 
from Site N should only be accepted through Interface 3, and routes 9 and 10 from Site O 
only through Interface 4. In this way, sites can advertise any routes they want, but only their 
designated routes are accepted. 

4.1.3.1 Static routes do not scale 

In the previous example, we knew what routes were expected from each site, and that enabled 
us to make the network much more robust. You might argue that since we had that 
knowledge, we could have set up static routes to each of the sites, eliminated the use of 
dynamic routing protocols, and avoided route filtering entirely. Static routing is the practice 
of explicitly configuring how a router sends traffic. Once the routing is set, the router 
forwards traffic according to those rules no matter how a network might change. Indeed, 
static routing is an alternative for simple networks, and I will talk about this alternative later 
in this chapter. Still, there are reasons you might want to use static routing with dynamic route 
filtering. If Site L had problems and Networks 1, 2, and 3 became totally unavailable, Site L 
would signal that problem by not advertising these routes. Traffic for network a would cause a 
network unreachable message to be sent from the central router instead of being forwarded 
into Site L, as would be done with static routes. In addition, pure static routing becomes 
difficult to maintain when a network becomes more complex. Take, for example, a version of 
the network shown in Figure 4.3. 

Figure 4.3. Network robustness in a more complex network 

 

In the network shown in Figure 4.2, one central router forwards all traffic between all four 
sites, and thus the router itself becomes a critical point of failure. If the router fails, no traffic 
can be sent between any sites. The network in Figure 4.3 solves this problem, because there 
are multiple paths between sites. If one router fails, then the site attached to it is cut off from 
the others, but the rest of the sites can still communicate between each other. Similarly, if one 
path between routers fails, there are alternate paths that can route traffic. If static routing is 
used, each of the four routers need to have explicit knowledge about all the paths from that 
router to each of the networks. That's a lot of data to manage, and dynamic routing protocols 
are designed to learn and manage this kind of information automatically. 
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4.1.3.2 Implementing network robustness through route filtering 

No matter how complex your organization, with dynamic routing protocols, we make 
networks robust in the same manner. For instance, in the case of Figure 4.3, we know what 
networks should be advertised from each site into Interface 1 on the site's adjacent router. 
Router WW should allow in route updates only for Networks 1, 2, and 3; Router XX should 
allow updates only for 4 and 5; Router YY should only allow in updates for Networks 6, 7, 
and 8; and Router ZZ should only allow in updates for Networks 9 and 10. If any one of the 
sites advertises a network that it does not own, the bad routing information is not propagated 
across the network. 

So far, I have only talked about filtering incoming routing updates, where the router listening 
for route updates takes responsibility for making sure the correct routing information is 
received, accepted, or dropped as necessary. However, senders of routing information can 
also take responsibility for making sure the proper routing information is distributed. Cisco 
routers, for example, have the ability to restrict the routes that they send out. Let's look at an 
example coming from the network in Figure 4.3. Consider the situation if all of the sites 
connected to the network of routers via serial lines and Routers WW, XX, YY, and ZZ are 
managed by different groups than any of the sites they connect. Each site connects to the 
central network of routers with a configuration similar to that shown in Figure 4.4. 

Figure 4.4. Connecting a site to wide area network 

 

Here's the problem: Site L knows that it should only send routes to Router WW for Networks 
1, 2, and 3. If someone makes a configuration error within Site L, routes other than those for 
Networks 1, 2, and 3 could be sent to Router WW. Since a different organization maintains 
Router WW, Site L's network staff has no assurances that Router WW correctly filters routes. 
With a situation like this, Site L should restrict route updates sent to Router WW to include 
only Networks 1, 2, and 3. If Router WW accepts only these routes from Site L, routing still 
functions properly. If Site L makes a mistake and tries to propagate a route to a network that it 
doesn't own, and if for some reason Router WW doesn't filter incoming route updates, the 
outgoing route filter will stop the bad route from being advertised. Although it may seem 
redundant that Site L is ready for the worst from Router WW while Router WW is ready for 
the worst from Site L, mistakes do happen. Rather than have network traffic totally disrupted 
if a route is advertised incorrectly, a little paranoia can go a long way to making sure a 
network stays up and running. 

To summarize, the key to ensuring network robustness is to enforce what you know about 
how routing updates should take place with routing filtering. Don't accept routes you know 
you should not accept. Don't send out routes that you know that you should not send. Don't 
assume that the router you are listening to or sending route updates to will do the right thing, 
especially if that router is controlled by another organization. I'll show examples later in this 
chapter that demonstrate how to use access lists to implement routing policies that will help 
make your network fault-tolerant.  
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4.1.4 Business drivers and route preferences 

Left alone, routing protocols decide what the best path network traffic will take based on 
network topology metrics such as bandwidth and router hops. But organizations often want to 
have more control over the path the traffic takes to get its final destination. In this section, 
we'll talk about implementing route preferences driven by an organization's business goals. 

Why would an organization choose traffic preferences different from the ones selected by 
routing metrics? I discussed a number of the reasons in the scenarios described in Chapter 1. 
Some paths are more secure than others. Paths over internal networks tend to be more secure 
than paths over the open Internet. Some paths may be cheaper than others, while some may 
have more bandwidth and better performance. Whatever the reason, path selection and 
failover preferences are completely up to the organization, and it falls on network 
administrators to enforce those policies. 

You can picture the general problem of route preferences and business goals as a path 
selection problem. Figure 4.5 shows two networks, Network 1 and Network 2. There are 
several ways to get between the two networks through a mesh of routers—Path A is one way, 
Path B is another, and so on. 

Figure 4.5. Path selection and business goals 

 

While routing metrics may indicate that traffic between Network 1 and Network 2 should use 
one path, an organization may prefer that traffic go in another direction. For example, let's say 
that routing metrics prefer that traffic from Network 1 to Network 2 go through Path A. If 
Path A is unavailable, traffic will go through Path B. If Path B is unavailable, traffic will go 
through Path C, and so on for Paths D and E. The failover sequence is (A, B, C, D, E). 
Alternatively, the organization may prefer traffic from Network 1 and Network 2 to flow 
through Path B. It may prefer that the failover sequence be (A, C, D, E, B) or even (B, D, E), 
which does not allow Paths A or C to be used at all. The organization, in its wisdom, may 
even decide that no traffic whatsoever should pass between Networks 1 and 2. 

I mentioned earlier in the chapter that routers have four possible actions to control routing 
information: reject routing information, accept but not forward routing information, modify 
incoming routing information, or modify outgoing routing information. Route preferences are 
most commonly implemented by rejecting routes or modifying incoming or outgoing routing 
information. 



  Cisco IOS Access lists 

  Page 97 

I'll start with the first method, rejecting routing information. As in our previous example, we 
want to specify how traffic flows between Network 2 to Network 1. Figure 4.6 shows routing 
information for Network 1 coming into a router with a path to Network 2. 

Figure 4.6. Rejecting routes to implement traffic preferences 

 

There are five possible paths, A, B, C, D, and E, from Router X to Network 1. We want traffic 
to go over Path A, C, or E, but not B or D. To do this, Router X rejects routing information 
about routes going over Paths B and D. Router X will have no information about Paths B and 
D at all. 

The next two options for route preferences modify routing information after it reaches the 
router. We can do this as routing information comes in or goes out. Figure 4.7 shows how to 
do this by modifying incoming route information. 

Figure 4.7. Modifying incoming routing information 

 

Here, we are trying to control the path that traffic from Network 2 takes to Network 1. In our 
example, routing metrics in all of the incoming routing updates, before we modify them in 
Router X, are numerical value a. This indicates that the path from Router X to Network 1 can 
take either Path A, B, or C with equal preference. We want to change the path selection 
preference so that traffic to Network 1 first goes through Path A. If Path A is unavailable, 
traffic should go through Path B, and then if B is unavailable, through Path C. 
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To make this happen, we alter the routing metric values of each routing update after each 
comes into Router X. The metric for the route to Path B is increased by 1. The metric for the 
route to Path C is increased by 2. Since the original unaltered metrics for the three routes were 
equal, the metric for the route through A is the lowest, followed by the metric for the route via 
B and finally by the metric for the route through C. Since routing protocols take the path with 
the lowest metric, the most preferred Path is A, followed by B and then C. 

Similarly, we can alter routing metrics as they go out of the router. This is shown in Figure 
4.8. 

Figure 4.8. Modifying outgoing route information 

 

In this figure, we manipulate Routers L, M, and N, and not Router X. As in Figure 4.7, the 
metrics advertised to Router X for the path to Network 1 are the same for Paths A, B, and C. 
We want to make traffic prefer routes in the order A, B, then C. To do this, we add 1 to the 
routing metric of the routing updates from router M, which has Path B to Network 1. We add 
2 to the routing metric of the routing updates from router N, which has Path C to Network 1. 
When the routing information to Network 1 arrive at router X, the path through A has the 
lowest metric, followed by B then C. Traffic to Network 1 then prefers Path A, B, and then C. 

When should you use these different techniques for implementing route preferences? It 
usually depends on what you want to achieve and what routers you administer. The technique 
of rejecting incoming routes is best used when you want to completely reject some routes and 
allow others. It does not allow for explicitly picking failover preferences. Modifying route 
information must be done when you have to set up a specific order of preferences for route 
failover. For instance, you would modify incoming routing information when you have 
control over a router receiving routing updates. On the other hand, if you only have control 
over the routers' advertising paths, then you need to modify routing information that is sent 
out. 

4.2 Implementing routing modularity 

So far, we have been looking at the concepts of implementing routing policies. In this section, 
we'll start implementing real routing policies using access lists, focusing on routing policies 
that implement routing modularity. 
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4.2.1 Minimizing the impact of local routing errors 

Let's revisit the scenario we saw in the first chapter, where a typographical error caused a 
route to be incorrectly advertised, making two sites unreachable on an organization's intranet. 
Figure 4.9 shows a network topology for that scenario. 

Figure 4.9. Routing modularity in a large intranet 

 

In Figure 4.9, we see a network where four sites, L, N, O, and P, connect to each other 
through a central hub Site M. Network 19.0.0.0/8 belongs to Site O, and network site 
10.0.0.0/8 belongs to Site P. Network 172.28.0.0/16 belongs to Site M. In our failure scenario, 
a typographical error causes Site O to advertise a route to network 10.0.0.0/8 from Router 1 
instead of network 19.0.0.0/8. (This is an easy typo to make since the number 9 is close to the 
number on the computer keyboard.) The typo causes Sites L, M, and N to see two routes to 
network 10.0.0.0/8 and no routes to network 19.0.0.0/8. Just to make things interesting, let's 
also say that the serial link between Routers 1 and 3 has much greater bandwidth than the 
serial link between Routers 4 and 6. That makes the route from Router 3 to Site O the 
preferred route to network 10.0.0.0/8 for Sites L, M, and O because of the more favorable 
network. 

This scenario is a problem because network 19.0.0.0/8 is no longer advertised in the intranet, 
and no one in Sites L, M, N, or P can reach Site O. Conversely, no one in Site O can use the 
services of any other network since the return packets for a connection (or for server 
responses) have no route back to Site O. In addition, since the preferred route to Site P's 
network 10.0.0.0/8 goes to Site O, no packets ever reach Site P either. 

How can we minimize the impact of this kind of typographical error? We know which routes 
should be sent from each site and which should be received. If we enforce a policy that says 
that only the well known and previously agreed upon routes should be sent and received from 
each site, then a route mistakenly advertised from a site will not get propagated. Let's spell out 
the policy so we can translate it into access lists: 

Only network 19.0.0.0/8 should be accepted from Site O 

To implement this policy with access lists, we build a policy set with network 19.0.0.0/8 in it, 
and then accept only the routes in that policy set from Site D. Here is the access list: 

access-list 1 permit 19.0.0.0 

For this example, let's say that Router 3 is connected to Site O via serial interface 1, and the 
routing protocol used is EIGRP. We then apply access list 1 on Router 3 with the following: 

router eigrp 1000 
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 distribute-list 1 in Serial 1 

This first line says that we will modify the EIGRP routing protocol for Autonomous System 
1000. The second line says that only the routes defined in access list 1 will be permitted in 
from serial 1. 

How does this access list deal with our typographical error scenario? When Site O broadcasts 
a route to network 10.0.0.0/8 instead of a route to network 19.0.0.0/8, the route will be 
rejected by Router 3 and not propagated to the rest of the network. While the route to network 
19.0.0.0/8 has disappeared, the route going to Site P's network 10.0.0.0/8 is unaffected. In this 
way, routing problems in Site O affect only Site O. We have gained routing modularity 
because bad route advertisements by Site O will not propagate across the intranet. 

Since Site M cannot control what routes Site O broadcasts to it, Site M needs to limit the 
routes it hears from Site O. Although we have just implemented a policy that permits only 
routes in from Site O that belong to O, we cannot depend on that policy because Site M may 
be administered by a different organization than Site O, or because of any of the other reasons 
discussed before. To make sure that bad routes do not propagate, Site O should filter outgoing 
route updates to ensure that inappropriate routes, whether caused by typographical errors or 
other reasons, do not propagate. On Router 1, we build a policy set of Site O's routes: 

access-list 2 permit 19.0.0.0 

If we say that Router 1's connection to Site M is through serial interface 0, we apply the 
access list on Router 1 as follows: 

router eigrp 1000 
distribute-list 2 out Serial0 

The distribute-list out command allows only the routes defined in access list 2 to be sent 
out of the serial interface going to Site M. 

Site P and Site M have a relationship similar to the relationship between Site O and Site M. 
We can make routing robust between the sites in the same way. Let's say that Routers 4 and 6 
both use serial interface 2 to talk to each other. Since Site E uses network 10.0.0.0/8, we 
would set up the following on Router 4: 

access-list 4 permit 10.0.0.0 
! routing process section 
router eigrp 1000 
 distribute-list 4 in Serial 2 

This configuration fragment permits only the route to 10.0.0.0 in through serial interface 2 of 
Router 4, thus permitting only network 10.0.0.0/8 to come in from Site O. Router 6 should 
have the following: 

access-list 5 permit 10.0.0.0 
! routing process section 
router eigrp 1000 
 distribute-list 5 out Serial 2 
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This fragment of router configuration prevents Site P from advertising any route other than 
network 10.0.0.0/8. Put together, these two applications of access lists make it much more 
unlikely that a bad route will escape from Site P.  

4.2.2 Managing routing updates to stub networks 

Intranets typically have what are called stub networks. These are networks or administrative 
domains that send all traffic not destined for a host on that network out through a single router 
or small set of routers. There is no transit traffic through these networks; any traffic that is on 
the network is either to or from the network. External traffic typically goes to some central 
network that has connectivity to all other networks on that intranet. 

The host segments shown in Figure 4.10 are stub networks, and the router connecting them to 
the backbone segment is a stub router. The stub router has several Ethernet segments with 
hosts connected to it and one connection to a fast Ethernet backbone segment. The function of 
the router is to connect the hosts to the backbone segment. The host segments do not need to 
hear routing updates because no other routers are on the segments. Hosts can easily be 
configured to default all traffic not bound for their segment to the router. At the same time, no 
routing updates should be accepted from the host segments. Any routing updates heard on the 
segment must be from misconfigured hosts or another router that has been mistakenly 
connected to one of the host segments. 

Figure 4.10. A router with a single backbone connection 

 

To reduce unnecessary traffic on the segments and to prevent any spurious routing updates 
from injecting bad routing information, we need to enforce the policy: 

Do not send routing updates to the host segments 

Do not accept routing updates from the host segments 

Advertise on the backbone segment only the routes for the networks connected 
to the router 

To implement the policy, we need an access list with no routes in it: 

access-list 1 deny all 

This access list permits nothing into a policy set and can be used to deny all routes. We will 
use this kind of access list for the first and second policy statements. To implement the third 
policy statement, we will build an access list of the networks connected to the router: 
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access-list 2 permit 192.168.29.0 
access-list 2 permit 192.168.30.0 0.0.1.0 

The access lists are then used to define the routes sent out of specific interfaces. Let's say we 
are using the routing protocol EIGRP in this network: 

router eigrp 10 
 network 192.168.20.0 
 network 192.168.29.0 
 network 192.168.30.0 
 network 192.168.31.0 
! no routes to the host segments 
 distribute-list 1 out Ethernet 1/0 
 distribute-list 1 out Ethernet 1/1 
 distribute-list 1 out Ethernet 1/2 
! no routes from the host segments 
 distribute-list 1 in Ethernet 1/0 
 distribute-list 1 in Ethernet 1/1 
 distribute-list 1 in Ethernet 1/2 
! advertise only connected routes  
 distribute-list 2 out fast 0/0 

The policy implementation takes place in the distribute-list commands. The first three 
distribute-list out statements stop any routes from being advertised to the host segments. 
The next three statements stop the router from believing any route updates form the host 
segments. The last distribute list prevents the router from distributing anything but the three 
networks directly connected to it. 

4.2.3 Redistributing routing information between routing protocols 

Another key border where routing policies often need to be enforced is the interface where 
routing information is redistributed from one routing protocol or routing protocol 
administrative system to another. Each routing protocol has its own unique properties that 
network administrators want to either take advantage of or avoid. Let's look at an example 
where we send routing information in a certain routing protocol but refuse to listen to it. 

In Figure 4.11, three routers are connected via their Ethernet 1 interface to an Ethernet 
segment containing a number of hosts. The routers also have a serial line (serial interface 0) 
connecting them to other networks. The routers broadcast RIP updates to the hosts, so they 
know which router to use for the best path to whatever networks the routers know about. Note 
that although most host systems come configured to understand only RIP, RIP has many 
limitations as a routing protocol, so the routers actually talk to each other using IGRP. So in 
this case, we want to make sure that we send out RIP routing updates (from the routers to the 
hosts) but have the routers ignore all RIP information received. 
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Figure 4.11. Sending but not accepting routing protocol updates 

 

To implement this, we use the deny all access list defined in the previous example: 

access-list 1 deny all 

We use this access list to get an empty policy set, which is the set of all the routes we accept 
in via RIP. Next, let's define the RIP routing process: 

router rip  
network 192.168.10.0 
redistribute igrp 10 
distribute-list 1 in 

The network statement here says that we broadcast RIP on all interfaces connected to network 
192.168.10.0/8. The next statement says that we will redistribute all routes learned from IGRP 
process 10 into RIP. The final distribute-list statement restricts what routes are accepted 
in by RIP. Since no interface is specified, all RIP routing updates accepted by the router must 
be in the policy set defined by access list 1. Since access list 1 denies all routes, all routes 
advertised via RIP are ignored, regardless of what interface they come in on. 

4.2.4 Minimizing routing updates to stub networks using default networks 

In Figure 4.9, all the sites except for Site M are stub networks. Since Site M uses network 
172.28.0.0/16, any traffic going between sites needs to go through that network first, making 
the network an ideal default network. A default network is a destination where a router sends 
all packets that have no explicitly defined routes in its routing table. For example, if a router 
has only network 10.0.0.0/8 and default network 172.28.0.0/16 in its routing table, and it was 
asked to forward a packet to network 198.168.30.0/8, the router forwards the packet to the 
same path as to 172.28.0.0/16, the default network. Note that a default network is different 
from a default route. A default route is where a router sends a packet if it does not have 
explicit routing information for the packet's destination. It is a route as opposed to a network, 
although the route to the default network becomes the default route. 

Default networks are very useful in reducing the load and complexity of routing and route 
filtering. They reduce the router resource impact by reducing the number of routes that routers 
need to know about. In some cases, such as the interface between the Internet and an intranet, 
using a default network can spare routers from having to process tens of thousands of routes. 
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Let's look in detail at Figure 4.9, the interface between Site O and Site M. This is shown in 
Figure 4.12. 

Figure 4.12. A stub network and its default network 

 

Router 1 only accepts traffic for network 19.0.0.0/8 since Site O is a stub network and does 
not transit traffic through it. We can reduce the number of networks that Site O has to see and 
propagate within itself by using the following configuration in Router 1: 

default-network 172.28.0.0 
access-list 1 permit 172.28.0.0 
router rip  
 distribute-list 1 in Serial 0 

The first statement declares that network 172.28.0.0/16 is the default network. Access list 1 
defines a policy set consisting only of the default network. The next two statements define the 
properties of the RIP routing process, saying that only the default network 172.28.0.0 is 
allowed into Router 1 (and thus Site O) because only the routes in the policy set defined by 
access list 1 are accepted in through serial interface 0. 

How does this reduce the processing of routing updates in Site O's network? Since we accept 
only one route, to network 172.28.0.0/16 as the default network to other networks, Router 1 
doesn't have to accept route 10.0.0.0/8 from Site O or any other route from other sites within 
the intranet. Because only one route is accepted, Site O has fewer routes to broadcast within 
its internal routing updates, which reduces the size of routing updates sent and the amount of 
network bandwidth used by those routing updates within Site O. Recall that Site O can have 
its own internal network structure with routing updates; as a stub network it doesn't transit 
traffic from other sites. Fewer routes also means that routers within Site O have fewer routes 
to examine when using routing access lists and building routing tables, thus reducing the CPU 
load. 

Using default networks can also reduce the bandwidth used for routing updates on the serial 
line between Site M and Site O. If the administrator of Site M knows that all other sites use 
172.28.0.0/16 as a default network, Routers 3, 4, and 5 can send only the default network to 
other sites during routing updates (see Figure 4.9). For example, Router 3 would use a 
configuration like this: 

access-list 2 permit 172.28.0.0 
router rip 
 distribute-list 2 out Serial 1 
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to limit the routing updates sent to Site O. In this way, more bandwidth is reserved for user 
data. 

The costs of using access lists for route filtering 

Using access lists for route filtering consumes critical resources on routers. Overuse 
can slow the flow of packets or even cause some of them to be dropped. You need to 
understand the costs of using route filtering in order to weigh the benefits against 
decreased router performance. 

To gain this insight, you need to understand how routers handle tasks. A router has 
different switching modes for different tasks. Packet switching can be done through 
what is called optimum switching, or through modes like netflow switching or fast 
switching. The fastest switching modes are done by a number of specialized 
processors in the router. The slowest mode, process switching, is done by the 
router's central CPU. A router typically has only one CPU available for process 
switching at a time. General router "housekeeping" chores are done with process 
switching: handling interactive logins, answering SNMP requests, and managing 
router resource access control. 

Handling of route updates and processing routing filter lists is also done with 
process switching. Since there is usually only one CPU doing process switching, this 
can easily bog down the entire router if you are not careful. For instance, protocols 
such as IGRP and RIP regularly broadcast entire routing tables, meaning that every 
30 or 90 seconds respectively (or whatever interval you set), a router may be 
required to process through the access lists of the entire routing table of several 
other machines. Although small access lists are usually not a problem, when the 
CPU requirements of an access list are multiplied by processing large numbers of 
routes from a large number of routers, CPU loading can have a significant impact on 
router performance. When this happens, interactive sessions on the router itself 
become slow to unusable. Other system tasks, such as answering SNMP requests, 
also slow down. 

How can we avoid having access lists for routing negatively affect router CPU? The 
key factors we need to look at are the access list length, the number of routes 
received in an update, and the number of updates received. Reducing any of these 
will reduce the CPU impact of router access lists. Another method is to use access 
list alternatives. I'll talk about how to reduce the impact of routing access lists and 
alternatives later in the chapter. 

Default networks do have some tradeoffs that must be acknowledged. Traffic to networks not 
defined anywhere within an intranet will travel to a default network before getting dropped by 
a router on the default network. That means the bad traffic ends up taking more resources 
because more time goes by before they are rejected. In considering this tradeoff, you have to 
consider how much traffic will be sent to unreachable networks and how much of that you 
want to tolerate. 
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4.2.5 Filtering routes distributed between routing processes 

So far, I have only shown how to filter routes sent out of interfaces, but Cisco routers have 
another option for filtering routes that allow network administrators to reduce the impact of 
route filtering. In the previous example, we filtered routes going out of Router 3 and all of the 
routes learned by the RIP routing protocol were compared to an access list every time a 
routing update was sent from Router 3's serial interface, creating a potentially dangerous CPU 
load. 

Even if we used the IGRP routing protocol with AS 5 instead of RIP, where the configuration 
on Router 3 would look something like this: 

access-list 2 permit 172.28.0.0 
! igrp definition 
router igrp 5 
network 172.28.0.0 
! rip definitions 
router rip 
redistribute igrp 5 
distribute-list 2 out Serial 1 

the CPU load problem would remain because the chief difference in the RIP routing definition 
is the redistribute igrp 5 line, which serves only to send all of the routes in IGRP 5 into 
RIP. 

An option of the distribute-list statement that lets us reduce the impact of filtering routes 
when they are distributed from one routing process to another. If we specify a routing process 
instead of an interface, routes are received only when they are updated by that routing 
process. We can rewrite the example as follows: 

access-list 2 permit 172.28.0.0 
router igrp 5 
network 172.28.0.0 
! rip definition 
router rip 
distribute-list 2 out igrp 5 
redistribute igrp 5 

Routes are filtered and sent to the RIP process every time the IGRP routing protocol sends 
updates. This happens every 90 seconds (the IGRP default). Since the RIP process receives 
the default route only when IGRP is updated, it does not need to filter routes when it sends 
routing updates, and the router needs to filter the route only every 90 seconds, as opposed to 
every 30 seconds with RIP. If there were many interfaces the router needed to send RIP 
updates out from, the CPU savings would be substantial. Generally, when filtering routes 
directly from one route process into another, it is best to send routes from the least frequently 
updated process into the more frequently updated routing process. This saves the most CPU 
by conserving processing time.  

4.3 Implementing route preferences 

Earlier in this chapter, I talked about the strategy of implementing route preferences. In this 
section, I discuss and show examples of how to implement them. I start with the basic 
example of simply eliminating routes and move on to more complex examples of using 
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offset-list statements to alter routing metrics and altering route administrative distances 
based on the sources of routing updates. 

4.3.1 Eliminating undesired routes 

The simplest way to prefer routes is to prevent the routes that are not preferred from being 
accepted by a router at all. Let's look at Figure 4.13 for an example. 

Figure 4.13. Ignoring routes through an unencrypted path 

 

In this part of an intranet, Routers 1 and 2 send routing updates for the networks 
172.18.0.0/16, 172.19.0.0/16, and 10.0.0.0/8 to Router 3 through Router 3's serial interfaces 0 
and 1. Both Router 1 and Router 2 have routes to network 10.0.0.0/8, Router 1 via Path A and 
Router 2 via Path B. In this intranet, the network administrators try to encrypt all of the serial 
links between networks wherever they can to safeguard their intranet from eavesdropping. 
They generally succeed except for the paths leading to network 172.18.0.0/16, such as Path A, 
which is in one of a number of countries where encryption is heavily controlled. The network 
administrators accept this fact by setting the following policy: 

Only traffic to and from 172.18.0.0/16 should go through Router 1 

Traffic between networks 10.0.0.0/8 and 172.20.0.0/16 should not go through Router 1. 
Traffic between network 10.0.0.0/8 and network 172.19.0.0/16 (in case Path B goes down) 
also should not go through Router 1. What are the implications for Router 3? Router 3 needs 
to make sure that traffic to networks 10.0.0.0/8 and 172.19.0.0/16 does not go over the 
unencrypted Path A. Thus, traffic from Router 3 to network 10.0.0.0/8 should use Path B, and 
traffic to network 172.19.0.0/16 should never go out of serial 0. 

We can implement this policy on Router 3 by making sure that it never learns a route to 
network 10.0.0.0/8 via Router 1. Since routing updates from Router 1 come in through serial 
interface 0, we can build a policy set of everything except networks 10.0.0.0/8 and 
172.19.0.0/16 and apply it to serial interface 0. Access list 1 creates such a policy set: 

access-list 1 deny 10.0.0.0 
access-list 1 deny 172.19.0.0 
access-list 1 permit any 
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However, we can shorten this particular access list since we know that only traffic to 
172.18.0.0/16 should go through serial 0: 

access-list 1 permit 172.18.0.0 

Traffic to networks 10.0.0.0/8, 172.18.0.0/16, and 172.19.0.0/16 are acceptable through serial 
1. Access list 2 defines the appropriate policy set: 

access-list 2 permit 10.0.0.0 
access-list 2 permit 172.18.0.0 0.1.0.0 

We then apply both access lists with the following, assuming we are using routing protocol 
EIGRP with autonomous system 10: 

router eigrp 10 
distribute-list 1 in Serial 0 
distribute-list 2 in Serial 1 

With this configuration, traffic between networks connected to Router 3 and network 10 never 
travel over unencrypted paths. We achieved this by ignoring routing updates leading to the 
path that we did not prefer, accepting only updates for routes using the preferred path. Our 
usage of distribute-list statements is similar to how we implemented routing modularity 
earlier but differs in that we received routing updates for network 10 through serial 0. This is 
not incorrect; we have simply set up an arbitrary policy that prevents all traffic flowing that 
way. 

Local and global distribute-list interactions 

I have shown examples of the local distribute-list statement, one that is 
assigned to a specific interface, and the global distribute-list statement, one that 
is used for all routing updates. You may wonder how global and local distribute-
list statements interact if both are defined. They are applied sequentially, with the 
local distribute-list applied first and the global applied after. That means that if 
a network is in a policy set defined by a local distribute-list statement, it also 
needs to be in the policy set defined by the global distribute-list before it is 
accepted by the routing process. As an example, consider the following 
configuration: 

access-list 1 permit 192.168.10.0 
access-list 1 permit 192.168.13.0 
access-list 2 permit 192.168.10.0 
router rip 
distribute-list 1 in Ethernet 0 
distribute-list 2 in 

Routes for network 192.168.10.0/24 would be accepted in Ethernet because it is in 
each of the policy sets defined by access lists 1 and 2. Routes for 192.168.13.0/24 
would be rejected, since although it is in the local distribute-list policy set, it is 
not in the global one. 
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4.3.2 Route preferences through offset-list 

Often, a network administrator wants to prefer certain routes but not eliminate the possible 
use of the less-preferred routes. One technique for doing this uses the offset-list 
statement. In this section, I'll discuss why using distribute-list statements can be 
problematic for implementing certain kinds route preferences, followed by sections on how 
you can use offset-list statements to prefer routes and how to select the metric offsets. 

4.3.2.1 Limitations of using distribute-list for preferring routes 

Using distribute-list to prefer routes has limitations. Figure 4.14 shows an example of 
this. 

Figure 4.14. Preferring routes without eliminating routes 

 

In this figure, there are two paths between network 172.20.0.0/16 and network 10.0.0.0/8. 
One path goes directly between the two networks over a 56 kilobits per second (Kb) link. The 
second path has one router hop through Router 1 but goes over two 1.544 megabits per 
second (Mb) links. In this network, the RIP routing protocol is used. RIP uses one metric for 
routing: router hops. Given this particular property of RIP, the routers calculate that the 
routing metric through the 56-Kb path is 1 (one router hop away) while the path through the 
1.544-Mb link has a routing metric of 2 (two router hops away). The router then decides that 
the best path between network 172.20.0.0/16 and network 10.0.0.0/8 is the 56-Kb link, even 
though the other path has 30 times the bandwidth. A reasonable policy for this intranet might 
be the following: 

Prefer the 1.544-Mb path first. 

If the 1.544-Mb path is down, use the 56-Kb path as a backup link. 

Let's first try to implement this policy with distribute-list statements, as we did in the 
previous section. On Router 2, we define three access lists, two with only one network in it, 
and one that has no networks in it: 

access-list 1 permit 10.0.0.0 
access-list 2 permit 172.20.0.0 
access-list 3 deny any 

We use the policy sets defined to accept only network 10.0.0.0/8 in through serial 1 and 
advertise only network 172.20.0.0/16. We then refuse to advertise or accept routes out of 
serial interface 0, so traffic isn't sent through that interface: 
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router rip 
 distribute-list 1 in Serial 1 
 distribute-list 2 out Serial 1 
 distribute-list 3 in Serial 0 
 distribute-list 3 out Serial 0 

Since no routing advertisements for network 172.20.0.0/16 are sent over the 56-Kb path, no 
traffic from network 10.0.0.0/8 to network 172.20.0.0/16 is sent out that way. Since no route 
advertisements for network 10.0.0.0/8 are received over the 56-Kb path, no traffic from 
network 172.20.0.0/16 to network 10.0.0.0/8 is sent through that path. Routes are sent and 
received only through serial interface 1, so all traffic between the two networks goes only 
over the higher-speed path. 

This implements the first part of the policy, but what happens if the 1.544-Mb path goes 
down? Since there are no route updates through the slow path, traffic will not go over that link 
if the faster path goes down. Using distribute-list for route preference only allows or 
disallows routes. There is no way to specify a sequence of preferences: Path A preferred first, 
then Path B, then Path C. 

4.3.2.2 Using offset-list statements to prefer routes 

In the previous section on routing theory, I showed that the way to implement routing 
preferences is by changing the metrics in routing updates coming in or out of the router. One 
way that Cisco routers can do this is through offset-list statements. These statements 
modify the value of routing metrics for some policy set of routes when routers send or receive 
route updates. Let's see how we would use them in our example. First, let's define a policy set 
with network 10.0.0.0/8 and another with network 172.20.0.0/8 in it: 

access-list 1 permit 10.0.0.0 
access-list 2 permit 172.20.0.0 

We then use offset-list in the following way: 

router rip 
offset-list 1 in 3 Serial0  
offset-list 2 out 3 Serial0 

The first offset-list statement says that when updates for the routes in the policy set 
defined by access list 1 are heard through serial interface 0, 3 will be added to the metric of 
those routes. When routing updates for network 10.0.0.0/8 come into Router 2 over the 56-Kb 
link, the route metric to network 10.0.0.0/8 over that path becomes 4. Since the route metric 
coming in over serial interface 1 remains 2, the "best" path for the packets becomes the 1.544-
Mb path, since it has the lower routing metric. Now if the 1.544-Mb path fails for some 
reason, routing updates are still being received through the other path, so traffic to network 
10.0.0.0/8 can go that way. 

The second offset-list statement takes care of traffic in the other direction, from network 
10.0.0.0/8 to network 172.20.0.0/16. Routing updates for network 172.20.0.0/16 get 3 added 
to them, so network 10.0.0.0/8 sees that the route metric for the path to 172.20.0.0/16 over the 
56-Kb link is 4. The route metric over the 1.544-Mb path remains 2, so that path becomes 
preferred. If the higher bandwidth path is unavailable, traffic from 172.20.0.0/16 to 10.0.0.0/8 
will go over the 56-Kb link. 
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offset-list statements are useful with default networks in implementing the preferred order 
of default paths. Figure 4.15 shows a stub network with a number of possible routes to a 
default network. 

Figure 4.15. Stub network with multiple paths to a default network 

 

Network 10.0.0.0/8 is a stub network that sends all of its traffic to other networks through a 
default network of 172.20.0.0/16. The three paths between the two networks have equal 
routing metric values, and the network uses the IGRP routing protocol in AS 172. Network 
administrators want network 10.0.0.0/8 offsite traffic to first go through Router 1, then Router 
2, and then Router 3. To implement this, let's build policy sets that contain each route: 

access-list 1 permit 10.0.0.0 
access-list 2 permit 172.20.0.0 

On Router 1, which is the most preferred, we can define the routing as follows: 

default-network 172.20.0.0 
router igrp 172 

The first statement defines the default network. For the IGRP process, since Router 1 is on the 
preferred path, we don't have to add any bias to routing metrics. 

On Router 2, we define routing with the following: 

! build policy sets 
access-list 1 permit 10.0.0.0 
access-list 2 permit 172.20.0.0 
default-network 172.20.0.0 
! router definition 
router igrp 172 
offset-list 2 out 1000 Serial 0 
offset-list 1 out 1000 Ethernet 1 

The first offset-list adds a bias of 1000 to the route advertisements for network 
172.20.0.0/16. The second offset-list statement adds 1000 to the route advertisements for 
network 10.0.0.0/8, making it less attractive then the path through 1. In this way, we make the 
path through Router 2 to and from network 10.0.0.0/8 less attractive then the path through 
Router 1. Note that with IGRP, the possible range of metric values is much larger than with 
RIP, so we have used the larger offset of 1000 here. I will talk more about selecting offset 
values later. 
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On Router 3, we define routing as follows: 

! build policy sets  
access-list 1 permit 10.0.0.0 
access-list 2 permit 172.20.0.0 
default-network 172.20.0.0 
! router definition 
router igrp 172 
offset-list 2 out 2000 Serial 0 
offset-list 1 out 2000 Ethernet 1 

The biases added with these offset-list statements are bigger than the biases added on 
Router 2. That makes the path through Router 3 less preferred than the one through Router 2, 
and even less preferred than the one through Router 1. 

4.3.2.3 Selecting metric offsets 

While extremely useful, offset-list statements need to be applied with care. It is easy to 
make networks unreachable if you select metric offsets that are too large. What would happen 
if, to be extra certain that traffic uses the faster path, we added an even bigger bias to the 
example in Figure 4.14, like this: 

router rip 
 offset-list 1 in 15 Serial 0  
 offset-list 2 out 15 Serial 0 

The effect of this application of offset-list would be to make the 56-Kb path unused even 
if they the 1.544-Mb line went down. Why? RIP has a maximum metric size of 15. If you add 
15 to the metric value, it exceeds the maximum metric limit, and any routes with a metric like 
this is considered unreachable. In general, you have to make sure that the bias value you 
select is not so large that it makes the route unreachable in parts of the network. For this 
example, using an offset of 8 would be okay as long as there are no more than seven router 
hops in network 172.20.0.0/16 and other networks using RIP. In the example we used with 
Figure 4.15, we cannot use a metric greater than 65536, since the maximum metric size in 
IGRP is 65536. Table 4.1 contains a list of some routing protocols and the maximum possible 
values of their routing metrics. 

Table 4.1. Routing protocols and their maximum metric values  
Routing protocol Maximum metric value 
RIP 15 
IGRP 65535 
EIGRP 4294967295 

The dynamic nature of routing protocols needs to be considered when you use offset-list 
statements. A topology change can make the route you are trying to have preferred become 
unpreferred. Let's look again at Figure 4.15. Router 1 connects to network 10.0.0.0/8 at some 
point in that network, but at a different point than Router 2 or Router 3. If there is a network 
topology change so the route within network 10.0.0.0/8 to Router 1's connection point 
becomes much longer, then the path through Router 1 may no longer be the most preferred 
path. This kind of problem can happen when you add biases to route advertisements you send 
into organizations you don't control. Some routing protocols, like IGRP and EIGRP, change 
routing metrics based on network delays and bandwidth utilization. Transient changes in 
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traffic can affect routing metrics to the point where any biases you place may be overcome, so 
you need to make sure that any bias you use is high enough to override any increases in 
metrics caused by any possible change in network topology or traffic flow. 

Routing policies and OSPF 

You may have noticed that there are no examples of using the distribute-list, 
offset-list, or distance statements with the OSPF routing protocol. In general, 
these commands are intended for distance vector routing protocols such as RIP, 
IGRP, and EIGRP and not for Shortest Path First protocols such as OSPF. You can 
use distribute-list statements to filter routes between OSPF areas (on Area 
Border Routers, or ABRs), between different OSPF autonomous systems (on 
Autonomous System Border Routers, or ASBRs), or when redistributing routes 
between OSPF and other routing protocols. Using the distribute-list statement 
within an OSPF area will not work, and the other policy statements should not be 
used. Instead, use the access list alternatives described at the end of the chapter. 

4.3.3 Route preferences through administrative distance 

So far, offset-list and distribute-list statements have allowed us to implement all of 
the policies that we have proposed so far. Let's see how these commands fare with the 
network shown in Figure 4.16. 

Figure 4.16. Preferring routes from a particular router 

 

In this network, the paths through Router A are more reliable than the routes through Router 
B or C. The network administrator for this network knows that this is the situation, so despite 
the fact that some routes from Routers B and C have better metrics, he wants the following 
policy on Router D: 

Use routes through Router A unless Router A is down 

If Router A is down, use routes through Router B 

If Router A and B are down, use routes through Router C 

Can we use distribute-list statements to implement this? We cannot, since there is no 
way to prefer route updates from a single router among many from the same interface with 
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distribute-list. Can we use offset-list to implement this policy? Again, offset-list 
statements can only build policy sets of routes mentioned in routing updates. To implement 
this policy, we need a way to build a policy set that is not based on the network numbers in 
routing updates, but on some other feature of a route update, in this case the next hop or 
source of the routing update. 

This leads us to a whole new category of policy tools that I have not yet covered: controlling 
routes based on characteristics of routes. All of the previous policies that we have looked at 
built policy sets based on the destination networks. With this set of tools, we will build policy 
sets based on characteristics of routes. 

So how do we implement the policy preferring traffic through Router A? First, we need a way 
to prefer routes based on their source of routing updates. To do that, we use the concept of 
administrative distance. In Cisco routers, all routing updates have an additional metric 
assigned to them called administrative distance. Each routing source has a default 
administrative distance, as shown in Table 4.2. 

Table 4.2. Default administrative distance for routing protocols  
Routing protocol Default distance 
Connected Interface 0 
Static Route 1 
EIGRP Summary 5 
EIGRP Internal 90 
IGRP 100 
OSPF 110 
RIP 120 
EIGRP External 170 
Unknown 255 

When a router gets routing information about a route from different sources, the router uses 
the routing information from the source with the lowest administrative distance. This means 
that static routes take precedence over EIGRP routes if a route has been statically routed and 
also learned from EIGRP. Another way to think of administrative distance is to consider it 
another metric assigned to route updates. This metric takes priority over any other metric that 
the route updates may have. Like other metrics, the lowest value is preferred. An 
administrative distance of 255, the maximum distance possible, means that a route is 
unreachable. 

How do we use administrative distance to prefer routes from a particular routing source? The 
distance directive for routing protocols can change the administrative distance for particular 
routing updates. Here is how we would use distance to implement the policy defined 
previously: 

router rip 
network 192.168.14.0 
distance 121 192.168.14.2 0.0.0.0 
distance 122 192.168.14.3 0.0.0.0 

The first number after the distance keyword is the new administrative distance for the IP 
address and mask that follow. The IP address and mask used in the distance statements have 
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the same format and behavior as the IP address mask used in access lists. The first distance 
directive in this example sets all routing updates from 192.168.14.2 (Router B) to an 
administrative distance of 121. The second distance directive sets all routing updates from 
192.168.14.3 (Router C) to an administrative distance of 122. Since RIP protocol updates 
have a default administrative distance of 120, all routes from Router A will have a lower 
administrative distance of 120. Thus Router D will prefer routes from Router A for any route 
heard from each of Routers A, B, and C. If Router A does not send out a route update for a 
particular network but Router B does, then Router D will use the routes from Router B unless 
it hears a routing update from another source with a lower administrative distance. 

The distance directive allows tremendous flexibility in implementing routing preferences. 
Let's implement a variation of the policy that we defined earlier: 

Use routes through Router A unless Router A is down 

If Router A is down, use routes through Router B or Router C 

This policy differs from the former in that there is no preference between routes through B or 
C. We implement this policy as follows: 

router rip 
network 192.168.14.0 
distance 121 192.168.14.2 0.0.0.1 

Since route updates from Router A have the RIP default administrative distance of 120, they 
are preferred first. If Router A is down, both Router B and C's updates have distance 121, so 
that Router D uses the route from the two routers that has the best metrics. 

Let's implement the following policy on Router D with distance: 

Use routes through Router A unless Router A is down 

If Router A is down, use routes through Router B 

Never use routes through Router C 

We can implement this with the following configuration: 

router rip 
network 192.168.14.0 
distance 121 192.168.14.2 0.0.0.0 
distance 255 192.168.14.3 0.0.0.0 

As in the previous example, route updates from Router A get the default RIP distance of 120. 
Route updates from Router B get a distance of 121, making them less preferred than the route 
updates from A. Route updates from Router C receive the distance of 255. Routes with an 
administrative distance of 255 are considered unreachable and are thus ignored. 

Here is another way to implement the policy: 

router rip 
network 192.168.14.0 
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distance 255 
distance 120 192.168.14.1 0.0.0.0 
distance 121 192.168.14.2 0.0.0.0 

The first distance statement sets the default administrative distance for RIP to 255. That 
means that all routing updates from routers that do not have an explicitly set administrative 
distance are ignored. The next distance statement sets the administrative distance of Router 
A's routes to 120 while the final distance statement sets Router B's routes to a distance of 
121. This configuration works because Router A has the lowest administrative distance, 
followed by Router B. All other routing updates are considered unreachable. 

Using distance 255 in this manner has a number of tradeoffs that you need to consider. By 
ignoring all updates without explicitly set distances, the router will also ignore updates from a 
router that is put on the network without authorization or notification to the network 
administrators. This can be a good thing, since a network administrator will not have to worry 
about some rogue router being put on the network and suddenly accepting traffic. It can also 
be an annoyance, though, as the network administrator needs to explicitly define a distance 
for every subnet or router that sends routing updates. 

So far, I've set all routing updates from a source to have the same administrative distance. 
You can also set specific routes from a source to have specific administrative distances. In 
Figure 4.17, network 192.168.18.0/16 contains servers dedicated to an application critical to 
users on networks 10.0.0.0/8 and 172.28.0.0/16. 

Figure 4.17. Dedicating bandwidth to an application 

 

The application is so critical that the path leading to network 192.168.18.0/24, from Router 1 
via Router 3 to Router 4, should be dedicated to traffic to and from 192.168.18.0/24 in order 
to maximize the application's performance. Transit traffic between networks 10.0.0.0/8 and 
172.28.0.0/16 should not slow down the application. The only time that traffic between these 
networks should use the dedicated bandwidth is if another path between the networks through 
Router 2 is unavailable. Let's summarize the policy that we need to implement: 

The connections to Router 3 should only see traffic to and from network 
192.168.18.0 unless the path through Router 2 is unavailable 
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We implement this policy by making the routes for 192.168.18.0/24 from Router 3 have a 
lower administrative distance than any other routes that it advertises. On Router 1, we use the 
following configuration fragment: 

access-list 1 permit 192.168.18.0 
access-list 2 permit any 
router rip 
 network 192.168.11.0 
 network 192.168.12.0 
 distance 119 192.168.12.1 1 
 distance 121 192.168.12.1 2 

Access list 1 creates a policy set with the application server's network, 192.168.18.0/24. The 
first distance statement sets the routes in the policy set defined by access list 1 (the server 
network) that are advertised from Router 3 to an administrative distance of 119. The second 
distance statement sets all other routes from Router 3 to an administrative distance of 121. 
Route advertisements for the networks other than the application network are preferred 
through Router 2. Route advertisements for the application server network have a distance set 
lower than the default. If a route to 192.168.18.0/24 is heard from another router, the route via 
Router 3 is the preferred route unless the direct link to Router 3 is down. 

The configuration on Router 4 is very similar: 

access-list 1 permit 192.168.18.0 
access-list 2 permit any 
router rip 
 network 192.168.13.0 
 network 192.168.14.0 
 distance 119 192.168.14.1 1 
 distance 121 192.168.14.1 2 

The IP address for the serial link to Router 3 and the connected networks are different, but the 
use of distance is the same. 

You may have noticed that we could have implemented the routing policy by using offset-
list statements instead of distance. We could have used the following on Router 3: 

access-list 1 deny 192.168.18.0 
access-list 1 permit any 
router rip 
network 192.168.12.0 
network 192.168.14.0 
network 192.168.18.0 
offset-list 1 out Serial 0 2 
offset-list 1 out Serial 1 2 

This configuration works because we add a metric bias to everything but the application 
server network to our route advertisements, making advertisements for those routes look 
better through paths other than through Router 3. 

Since I've shown two different ways to implement this policy, you may be wondering when 
you should use offset-list and when to use distance. To know which technique is most 
appropriate, you need to know about the strengths and weaknesses of each technique. I have 
talked about the limitations of offset-list statements already, so let's talk about the 
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tradeoffs of using the distance statement. As you may have already noticed, distance 
works only on incoming route advertisements. You cannot send another router the distance 
you want them to use when considering routes. If you want to influence the route preferences 
of routers to which you send updates, you need to use offset-list statements. 

One important characteristic about administrative distance is that it overrides any other metric 
values that a route update may have. Let's say that in our previous example we were using 
EIGRP instead of RIP. Remember that routing protocols such as EIGRP take into 
consideration factors like bandwidth and network loading to calculate routing metrics. If you 
use the offset-list approach to implement policy, a change in network traffic could change 
routing metrics so drastically that your policy could become undone. You could also set bias 
values so high that the networks you advertise are advertised as unreachable. Manipulating 
administrative distance, in contrast, works no matter the value of routing metrics, instead 
working by affecting the order in which you consider route updates for inclusion into the 
routing table. 

4.4 Alternatives to access lists 

As I have mentioned, the CPU costs imposed by access lists can be significant. In addition, 
access lists take time to administer. Some alternatives to access lists can reduce CPU costs, 
while others simply limit the number of access lists you need to manage. I cover these 
alternatives in this section. 

4.4.1 Static routing 

One common technique for replacing access lists is to use static routes. You can set route 
preferences on routers that you administer by explicitly configuring routes. Since static routes 
by default have a more preferable administrative distance than any dynamic routing protocol, 
configuring a static route to a network can cause a router to ignore any dynamic routing 
protocol's routing update to that network. 

The simplest way to eliminate access lists for routing policies is to completely remove the 
dynamic routing protocols and use static routes everywhere. This may be possible in simple 
networks like the one shown in Figure 4.2. You can configure static routes on the central 
router and define fixed routes to all of the networks in a central location. Static routes 
explicitly define routing policies, so you do not need to use access lists to filter routing 
updates. 

As a network becomes more complex, a purely static routed network might become difficult 
to manage. Still, to reduce the use of access lists a combination of dynamic and static routes is 
possible. With stub networks, for example, connections between the stub networks and the 
transit or default network can be static routed, eliminating the need for dynamic routing 
protocols and routing access lists. Let's revisit Figure 4.9 and see how we can use static routes 
instead of access lists. Recall that a key issue in this network was making sure the site 
networks did not advertise a network they did not own. To see how this occurs with static 
routes, let's say that Router 1's serial interface uses IP address 192.168.12.1 and Router 3's 
serial interface has IP address 192.168.12.2. Router 4's serial interface to Site E has IP address 
192.168.13.1, and Router 6's serial interface has IP address 192.168.13.2. Router 1 would use 
the following configuration to define its routing: 
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default-network 172.28.0.0 192.168.12.2 
ip route 172.28.0.0 255.255.0.0 
router rip  
network 19.0.0.0 
redistribute static 

Since 172.28.0.0/16 is the central transit network for this intranet, we define it as the default 
network and set up a default route to Router 3. We then redistribute our default network 
within Site D. We define network 19.0.0.0 in the routing statement, but not network 
192.168.12.0/24. This causes the RIP routing process to send and listen to RIP routing 
updates only on interfaces that are on network 19.0.0.0. Therefore, Router 1 does not send 
routing updates out of its serial link to Router 3 or listen to any updates on that interface. This 
configuration saves considerable CPU resources on the router, since there are fewer router 
updates to process, and no route filtering to be done. 

Router 3 would use the following configuration: 

ip route 19.0.0.0 255.0.0.0 192.168.12.1 
router rip 
network 172.28.0.0 
redistribute static 

The route to network 19.0.0.0 is hardcoded into the router's configuration, so no route update 
can change it. As with Router 1, there is no network 192.168.12.0 statement. This means 
that Router 3 does not send updates out of its serial interface to Site D or listen to any updates 
from it. Our policy to maintain network robustness is enforced by the static routes and careful 
redistribution, instead of an access list and a distribute-list statement. 

Continuing with our example, Router 6 has a configuration very similar to Router 1: 

default-network 172.28.0.0  
ip route 172.28.0.0 255.255.0.0 192.168.13.1 
router rip  
network 10.0.0.0 
redistribute static 

while Router 4 is configured like Router 3, with a static route replacing the access list and 
distribute-list statement: 

ip route 10.0.0.0 255.0.0.0 192.168.13.2 
router rip 
network 172.28.0.0 
redistribute static 

4.4.1.1 Implementing route preference with static routes  

We can also use static routes to implement routing preferences through route elimination. In 
the example associated with Figure 4.14, we used distribute-list statements and an 
access list to force traffic between network 10.0.0.0/8 and 172.20.0.0/16 over an encrypted 
path. If the serial interface on Router 2 connecting to Router 3 uses IP address 192.168.10.2, 
then the following static route on Router 3 will force traffic to network 10.0.0.0/8 over the 
encrypted network path: 

ip route 10.0.0.0 255.0.0.0 192.168.10.2 
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We would also have to put in a similar static route from Router 1 to Router 2 for the traffic 
from network 10.0.0.0/8 to use the encrypted path. Note that this use of static routes to 
implement a routing policy only works if we have administrative control or influence over 
Router 1 and Router 3. If we can't have Router 1 configured with a static route, we'll have to 
use distribute-list statements as we did originally. 

4.4.1.2 Floating static routes 

You can change the administrative distance of a static route to create what is called a floating 
static route. Floating static routes can be used to define a backup route and thus to implement 
routing preferences. Let's revisit Figure 4.14. In this figure, we prefer that traffic between 
network 10.0.0.0/8 and 172.20.0.0/16 go through the larger bandwidth path. Let's say that the 
56-Kb serial line between networks 10.0.0.0/8 and 172.20.0.0/16 has IP addresses 
192.168.15.2 at the network 10.0.0.0/8 side and 192.168.15.3 at Router 2. The IP address of 
serial 1 on Router 2 is 192.168.16.3, and the IP address of the serial interface on Router 1 
leading to Router 2 is 192.168.11.2. We can define the following static route and router 
configuration on Router 2: 

ip route 172.20.0.0 255.255.0.0 192.168.15.2 121 
router rip 
network 192.168.16.0 

The static route is set to have an administrative distance of 121. Only network 192.168.16.0 is 
defined to send and receive RIP routing updates. The result is that Router 2 will hear a route 
to network 10.0.0.0/8 via RIP only through the higher bandwidth path. Since we set 
administrative distance of the static route to be higher than that of default RIP updates, the 
RIP update takes precedence. If the 1.544-Mb line goes down, then the static route over the 
smaller bandwidth path is used. To take care of traffic in the other direction, from network 
10.0.0.0/8 to network 172.28.0.0/16, a similar setup needs to be done on the router connecting 
network 10.0.0.0/8 to Router 1. 

Compared to our earlier policy implementation, the floating static route is much simpler. So 
why would we use the first implementation? Again, the issue is administrative control. The 
first implementation works if the network administrator of Router 2 does not have 
administrative control over network 10.0.0.0/8 routers. The floating static route technique 
works only if a floating static route is set up at network 10.0.0.0/8. 

4.4.1.3 Static routes to the null device 

Another simple way to deny routing updates from a given network is to route the network to 
the null interface. For example, if we wanted to deny all routing updates to network 
192.168.30.0/24, we could set up the following static route: 

ip route 192.168.30.0 255.255.255.0 Null0 

Using this technique can conserve router resources since the router no longer needs to use 
access lists to filter route updates containing this network. 

You have to be careful about redistributing the static route for a network routed to Null0. 
You can easily advertise a route that will cause all of the traffic to a network to be dropped. 
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For if we redistributed the previous static route into another routing protocol, all packets 
destined for network 192.168.30.0/24 could get sent to a router that would simply drop them. 

4.4.2 Denying all route updates in or out of an interface 

Denying all routing updates through an interface is such a common operation that there are 
Cisco configuration commands designed to provide these functions. 

Often you may not want to send routing updates out of an interface. This may be because 
there are no systems that need to listen to your routing broadcasts, or you may not want 
routers on that interface to send traffic through. Whatever the reason, you can use the 
passive-interface command to stop sending routing updates out of a specific interface. 
Let's look once again at the network in Figure 4.10. In this network, we don't need to 
broadcast routing updates on the host segments. In the original policy implementation, I 
created a policy set with nothing in it and used that policy set to stop route advertisements. 
passive-interface can have the same effect: 

access-list 1 deny any 
access-list 2 permit 192.168.29.0 
access-list 2 permit 192.168.30.0 0.0.1.0 
! 
router eigrp 10 
 network 192.168.20.0 
 network 192.168.29.0 
 network 192.168.30.0 
 network 192.168.31.0 
! no routes to the host segments 
 passive-interface Ethernet 1/0 
 passive-interface Ethernet 1/1 
 passive-interface Ethernet 1/2 
! no routes from the host segments 
 distribute-list 1 in Ethernet 1/0 
 distribute-list 1 in Ethernet 1/1 
 distribute-list 1 in Ethernet 1/2 
! advertise only connected routes  
 distribute-list 2 out fast 0/0 

The passive-interface command saves significant CPU resources when compared with the 
way I previously implemented this policy. Instead of examining all of the routes it knows 
about and then not sending any of them out, the router simply doesn't try to send any routes 
out of the three Ethernet interfaces at all. 

4.4.2.1 Using distance to ignore updates 

In this example, we also do not want to receive any updates from the host segments. A more 
elegant way to do that is to use the distance statement. If we set the administrative distance 
of any routing update from the host segments to 255, then any routing update from those 
segments is ignored. The complete configuration then becomes: 

access-list 2 permit 192.168.29.0 
access-list 2 permit 192.168.30.0 0.0.1.0 
! 
router eigrp 10 
network 192.168.20.0 
network 192.168.29.0 
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network 192.168.30.0 
network 192.168.31.0 
! no routes to the host segments 
passive-interface Ethernet 1/0 
passive-interface Ethernet 1/1 
passive-interface Ethernet 1/2 
! no routes from the host segments 
distance 192.168.29.0 0.0.0.0 255 
distance 192.168.30.0 0.0.0.1 255 
! advertise only connected routes  
distribute-list 2 out fast 0/0 

Using distance doesn't save as much CPU as the previous change. If there are route updates 
from the host segments, the router still must look at them in order to assign the administrative 
distance of 255. It does simplify and reduce the size of the configuration, however, which can 
be a significant improvement in some situations. 

4.4.2.2 Omitting network statements 

Notice that we don't want to send or receive routing updates from the host segments. For 
segments like these, there is one more access list alternative that is more elegant and can save 
even more router CPU cycles. Recall that in a routing process definition, the network 
statement is used to indicate which interfaces will send and receive routing updates. Since we 
don't want any routing update activity on the host segments, we can omit the network 
statements of host segments: 

access-list 2 permit 192.168.29.0 
access-list 2 permit 192.168.30.0 0.0.1.0 
router eigrp 10 
network 192.168.20.0 
! advertise only connected routes  
distribute-list 2 out fast 0/0 

Omitting the network statements saves the router a lot of processing because the interfaces 
for the host segments are not involved in routing activity at all. 

Chapter 5. Debugging Access Lists 
Once you've formatted access lists and used them to implement policies, how do you know if 
your access lists are correct? How can you find problems with them? We'll look at these 
questions in this chapter, first verifying that your access lists are working correctly in the 
areas of router resource control, packet filtering, and route filtering. More generally, I will 
talk about how access lists can go wrong and what are the typical failure modes of access 
lists. Finally, we'll look at some tips and tricks for debugging access lists in detail. 

5.1 Router resource access control lists 

In this section, I discuss how to debug router resource access lists. The first part describes 
how to check them for correctness since it doesn't make sense to debug a list that is 
configured properly. The second part discusses what generally happens when access lists go 
wrong, and the last part goes over specifically how to debug router resource access lists. 
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5.1.1 Checking for correctness 

In Chapter 3 we configured the router to control resources such as Telnet and time services. 
The approach to verifying if these access lists function correctly is very basic: test if access 
works correctly for those who are permitted, and test if access does not work for those who 
are not permitted. Let's look at one of our early examples of router resource policies and look 
at how we can test it. In the first example in Chapter 2, we had a policy like the following: 

Only the hosts at IP addresses 192.168.30.1 and 192.168.33.5 may telnet into 
the router 

The access list that defines the policy set for this policy is: 

access-list 1 permit 192.168.30.1 
access-list 1 permit 192.168.33.5 

We use the policy set as follows: 

line vty 0 4 
 access-class 1 in 

In order to verify that the access list actually implements the policy, we need to check that 
what we defined in the policy set matches what is in the policy definition. There are two ways 
to do this. The first is by inspection: we manually check whether the access list matches our 
policy. While this method can work for small access lists, it becomes much more difficult as 
access lists grow in size and really isn't a particularly reliable way to verify that an access list 
is correct. The second way is to test whether access lists actually function as desired. In this 
instance, we would attempt to telnet to the router from the hosts at 192.168.30.1 and 
192.168.33.5. If we succeed in getting a prompt from the router, we know that the access list 
is allowing the correct host to connect to the router. 

We should also make sure that forbidden hosts do not have access. If for some reason we 
forgot to apply an access list (not putting in the access-class statement, for example), the 
default policy set permits everything, giving us the same results as the test we did earlier. 
When we telnet to the router from the host at 192.168.3.59, the router should refuse the 
connection and not provide a login prompt. In general, the following algorithm is useful for 
verifying a policy against the access lists you implemented: 

Make sure what hosts that are permitted have access to the resource 

Make sure that the hosts that are not permitted do not have access to the 
resource 

You will not always be able to completely test all cases (as access lists grow, you will not be 
able to test every entry), but being reasonably sure that the above two conditions are true is 
how to verify correctness. 

5.1.1.1 Manual tests of masks 

Testing for both what is permitted and what is denied is particularly useful when you use 
masks in a policy. Let's look at the following policy and its implementation: 
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Only the hosts at IP addresses 192.168.30.4 through 192.168.30.7 and IP 
address 192.168.33.5 may telnet into the router 

We define the appropriate policy set and apply it as follows: 

access-list 1 permit 192.168.30.4 0.0.0.3 
access-list 1 permit 192.168.33.5 
! line definition 
line vty 0 4 
access-class 1 in 

Notice that the first access list entry has a mask, as we covered in Chapter 2. When you use a 
mask like this, in addition to testing that the hosts in the mask range have access to the 
resource being controlled, make sure that the hosts just outside of the mask range (hosts at IP 
addresses 192.168.30.3 and 192.168.30.8) do not. What happens if you specify a mask that is 
too large, as in the following list? 

access-list 1 permit 192.168.30.4 0.0.0.7 
access-list 1 permit 192.168.33.5 

Testing only the permitted hosts will miss the fact that you also included hosts 192.168.30.1, 
192.168.30.2, and 192.168.30.3 in the policy set. Testing the hosts just outside the range 
permitted by the mask catches this problem. 

5.1.2 When access lists don't work 

I have talked about making sure that access lists are functioning properly by implementing the 
policies that you intend. But what happens if your access lists do not function as expected? 
This section describes how an access list can do other than what you intend and how you can 
use the various tools available on a Cisco router to find where you made a mistake. I will first 
go over ways that access lists can go wrong. After that, I will cover how to debug router 
resource access lists, extended access lists, and router filtering access lists. 

There are typically a number of ways access lists can go wrong. First, they can be applied 
incorrectly, meaning that you have either applied the wrong access list to a router resource, 
interface, or distribute list; applied the correct access list but with the wrong directionality 
(inbound instead of outbound or the reverse); or forgotten to apply one altogether. This should 
be the first thing you check. 

If you are applying an access list correctly, and your policy is still not being implemented 
properly, then one of two things is happening. Either something you want to include into a 
policy set was excluded, or something you want excluded from a policy set was included. In 
the first case, you need to check whether some statement in the access list is excluding the IP 
addresses or packet types that you want in the policy set. (If you are certain that nothing is 
excluding the items desired, then the only other explanation is that you have forgotten to 
include it.) In the second case, you have included something in your policy set that you do not 
want, so to fix your access list, you need to find the permissive entry. These are the 
fundamental problems that can occur, and when I talk about debugging specific kinds of 
access lists in the following sections, I go over how to find bad or missing access list entries. 
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There is one final category of access list problems that you may encounter. If you are 
implementing security policies and routing policies, you have to be careful about their 
interaction. For instance, if an application does not work through an extended access list, it 
doesn't always mean there's a problem with the access lists; it could be a communication 
problem between the two systems you are routing. If you encounter what seems to be a 
routing problem with routing, there could be packet filtering that is disrupting route 
advertisements. I will also talk about this category of problems in later sections on debugging. 

5.1.3 Debugging router resource access lists 

If you find that your router resource access lists are not working, typically one of two things is 
happening. Either something that needs access to a router resource does not have access, or 
something that should not have access to the resource does. I'll go over each case and what to 
look for when trying to find what the problem is. 

If a host or router that should have access cannot access a resource on a router you control, the 
first thing to check is whether there is network connectivity between the host in question and 
the router. The easiest way to do this is to use the ping command. The format of ping is the 
command ping followed by the name or IP address of the host you want to check on. Let's say 
that we want to check on connectivity to a host at 10.1.1.2, and the route to 10.1.1.2 goes 
through an Ethernet interface with IP address 192.168.3.2. We would use the following 
command, which can be executed from user EXEC mode or privileged EXEC mode: 

ping 10.1.1.2 

If there is a functioning route to IP address 10.1.1.2 and a route from the host 10.1.1.2 back to 
the router interface with IP address 192.168.3.2, we would see output like this: 

Type escape sequence to abort. 
Sending 5, 100-byte ICMP Echos to 10.1.1.2, timeout is 2 seconds: 
!!!!! 
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms 

If either the transmit and return path between 10.1.1.2 and 192.168.3.2 is unavailable, the 
ping will not be successful: 

Router1# ping 10.1.1.2 
 
Type escape sequence to abort. 
Sending 5, 100-byte ICMP Echos to 10.1.1.2, timeout is 2 seconds: 
..... 
Success rate is 0 percent (0/5) 

If the ping attempt is not successful, there is either a route missing at the target host for the 
router, a route missing at the router for the host, or some other packet filter along the path 
getting in the way. Let's put off a discussion of packet filtering extended access lists until the 
next section and assume that the problem is with a missing route. Check the routing on the 
host or the router. If the route is missing, and there is no default route, then you need to make 
sure that the route is there and again check if the resource access works. If the route is there, it 
implies that the problem may be with a packet filter along the way. I will talk about finding 
problematic packet filters in later sections. 
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If the ping attempt is successful, the problem is with your access list. You either excluded 
some IP addresses from your policy set or forgot to include an appropriate entry. 

Looking at an example will illustrate this better. Let's say we have the following policy for a 
router: 

All of the hosts with IP addresses 192.168.32.32 through 192.168.32.63 except 
192.168.32.40 through 192.168.32.43 can have SNMP read access 

and implement it as follows: 

access-list 1 deny 192.168.40.0 0.0.0.7 
access-list 1 permit 192.168.32.0 0.0.0.31 
snmp community string public ro 1 

We notice that host 192.168.32.44 does not have SNMP access. We can ping 192.168.32.44 
from the router, so routing is not an issue. On examination, we see that the initial deny mask 
is too large. Access list 1 should be defined as: 

access-list 1 deny 192.168.40.0 0.0.0.3 
access-list 1 permit 192.168.32.0 0.0.0.31 

The other way that router resource access lists can go wrong is if something that should not 
have permission does have permission. This means that somehow you have inadvertently 
allowed something in a policy set you shouldn't have, and again a previous example illustrates 
this well. Recall that we have a policy for a router as follows: 

Only the hosts at IP addresses 192.168.30.4 through 192.168.30.7 and IP 
address 192.168.33.5 may telnet into the router 

We define the appropriate policy set and apply it as follows: 

access-list 1 permit 192.168.30.4 0.0.0.7 
access-list 1 permit 192.168.33.5 
! line definition 
line vty 0 4 
access-class 1 in 

After testing, we notice that host 192.168.30.8 has Telnet access to the router. We made the 
mask on the first entry of access list 1 too large. Access list 1 should be : 

access-list 1 permit 192.168.30.4 0.0.0.3 
access-list 1 permit 192.168.33.5 
 

5.2 Packet-filtering access control lists 

Here I talk about debugging the packet filters that you implement with access control lists. 
Like the previous section, I first talk about how to verify that your access lists are correct, 
followed by a section about how to find the problems in the access lists that you find to be 
wrong. 
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5.2.1 Checking for correctness 

One of the first things you want to do is make sure that your access lists are applied to the 
interfaces you intended. You or another network administrator may have removed access lists 
or applied other access lists in order to debug problems or temporarily enable certain 
functionality for a variety of reasons, such as host installations or debugging. One way to do 
that is to show the running configuration with the show running-confg command. If you have 
a large configuration, this command may take a while, and it is easy to miss the interface you 
want to look at when many of them are scrolling by. 

5.2.1.1 Using show ip interface to display applied access lists 

A better way is to use the show ip interface command. This command yields output that looks 
like the following: 

Serial 0 is up, line protocol is up  
 Internet address is 192.168.1.2/24  
 Broadcast address is 192.168.1.255  
 Address determined by non-volatile memory  
 MTU is 1500 bytes  
 Helper address is not set  
 Directed broadcast forwarding is enabled 
 Outbound access list is 102  
 Inbound access list is 101  
 Proxy ARP is enabled  
 Security level is default  
 Split horizon is enabled  
 ICMP redirects are always sent  
 ICMP unreachables are always sent  
 ICMP mask replies are never sent  
 IP fast switching is enabled  
 IP fast switching on the same interface is enabled  
 IP Optimum switching is disabled IP  
 Flow switching is enabled IP  
 CEF switching is enabled IP  
 Distributed switching is enabled  
 IP LES Flow switching turbo vector IP  
 Flow CEF switching turbo vector  
 IP multicast fast switching is disabled  
 IP multicast distributed fast switching is disabled  
 Router Discovery is disabled  
 IP output packet accounting is enabled  
 IP access violation accounting is disabled  
 TCP/IP header compression is disabled  
 Probe proxy name replies are disabled  
 Gateway Discovery is disabled  
 Policy routing is disabled  
 Web Cache Redirect is disabled  
 BGP Policy Mapping is enabled (source ip-prec-map) 

The show ip interface command displays what IP configurations are applied relative to an 
interface. On this serial interface, we can see that it has an Inbound access list of 101 and 
an Outbound access list of 102. Further down the listing, we can see that IP output 
packet accounting is enabled, while IP access violation accounting is disabled. 
Though I'll talk about these last two features later, you can see that this command shows the 
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access lists applied to a particular interface, allowing you to verify that you used access lists 
correctly. 

The show ip interface command followed by an interface shows the IP configuration for just 
that interface. Without the interface specification, the command shows the IP configuration 
for all interfaces. 

5.2.1.2 Testing the functionality of packet filters 

Once you know that your access lists are properly applied, the most direct way of checking 
packet filtering access lists is the same method as for router resource access lists: test if what 
you permit is allowed and what is denied is not allowed through your router. Let's look at 
some of the extended access lists to see how we can verify access list correctness. Recall our 
first example of extended access lists, which implemented the following policy: 

HTTP and SSL packets only to the host at 192.168.35.1 

We created a policy using the following access list: 

access-list 101 permit any host 192.168.35.1 eq http 
access-list 101 permit any host 192.168.35.1 eq 443 

and applied it with: 

interface ethernet 0 
access-group 101 out 

The host with IP address 192.168.35.1 lies on Ethernet 0. 

How do you verify that the access list fulfills the policy? As with verifying access lists for 
router resource restriction, you can manually check if the applications that use these protocols 
are working. Since the default access list permits everything (recall that an access list that is 
applied but has no entries permits everything), you also need to check that blocked 
applications do not work. For this example, you might start the web server on host 
192.168.35.1, open a web browser on a host on a different segment, and then see if you can 
access the web server and do SSL transactions. If web access and SSL transactions work, you 
then check to see if other applications do not work. An easy way to test this is to make sure 
that a Telnet connection attempt to the host times out. Telnet is particularly convenient 
because Telnet clients are easily available. You would type the following on the test host: 

telnet 192.168.35.1 

If the access list functions correctly, the connection attempt should time out. If you do 
manage to connect or receive a connection refused message (meaning that the web server 
does not run Telnet service on the standard Telnet port), the access list is not functioning as 
intended. 

5.2.1.3 TCP port probing using Telnet 

As a network administrator, you will not always have the luxury of testing the applications 
that you permit or deny through a router. In that case, there are a number of ways to check 
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that your access lists are working correctly. These methods are not as reliable as actually 
testing the applications—they cannot show that your access list is absolutely right—but they 
can let you know if you did something wrong. As an example of this, let's look at how we can 
verify the correctness of our current example if we don't have access to a web browser. The 
network is shown in Figure 5.1. 

Figure 5.1. Checking extended access list correctness without application access  

 

After implementing access list 101 on Ethernet 0 of Router 1, we need to verify that the list 
functions correctly—meaning it implements our policy, assuming host 192.168.33.1 lacks a 
web browser and we only have access to Router 2, which also lacks a web browser. How can 
we verify correctness in either scenario? 

One simple technique you can use is port probing. The telnet command makes it easy to 
probe if TCP-based services are accessible. From either the host at 192.168.33.1 or Router 2, 
we can see which ports on the web server are accessible through Router 1. If the access list is 
working correctly, when we execute the following commands on either the host or the router: 

telnet 192.168.35.1 80 
telnet 192.168.35.1 443 

we should get a connection setup confirmation or a connection refused message. 

The first command attempts to connect to the web server's HTTP port. The second command 
attempts to connect to the web server's SSL port. Since access list 101 allows any host to 
access these two ports on the web server, connecting to either port should evoke a response 
from the web server. If the connection attempt times out, and we know that the web server is 
operational, then our access list must be incorrect. As in previous examples, we also need to 
check whether the access list is blocking other protocols with: 

telnet 192.168.35.1  

The result of this particular telnet command should be a timeout; in other words, connections 
should not be achieved or refused. 

You can specify which interface you want to telnet from a router using the global 
configuration command ip telnet source-interface followed by an interface. This 
command is useful when you want to test the path through a particular interface of a router. 
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Using telnet to probe ports is convenient. You can use any host or router to run tests like this. 
A network administrator implementing access lists is much more likely to have access to a 
router than to a host running the permitted application, since the administrator often has 
access only to network equipment while hosts are commonly run by other organizations. The 
Telnet technique does have its limitations. It can be time-consuming to check large numbers 
of ports.  

 

Only TCP ports can be probed in this manner. To check both UDP and 
TCP port availability, port scanning software is available. These 
scanning packages check every UDP and TCP port that is accessible on 
a network that you can define. While automated and much more 
thorough than manual port checks, this software typically can only be 
run from a host and is generally not available on routers.  

5.2.1.4 Access list entry accounting 

Another way to verify if your access lists are correct is to see which access list entries are 
being used. When an application sends traffic through a router and that traffic gets filtered 
through an access list, then the Cisco router doing the packet filtering logs which entries of 
the access list are used. The show access-list command not only shows the entries an access 
list has, but also how many times a particular access list entry has been used. For our simple 
example, the command show access-list 101 should yield something like this: 

access-list 101 
      permit any host 192.168.35.1 eq www (10 matches) 
      permit any host 192.168.35.1 eq 443 (1 match) 

An access list entry that functions properly should generate matches when users use the 
application that the entry tries to control. If there is successful www (web) access to the web 
server at 192.168.35.1, then the entry allowing web access to the server should have matches. 
If there are no matches when application traffic is generated, then there is something wrong 
with the access list. 

This method is not sufficient to prove that all of a router's access lists are correct. For 
example, if we have an access list blocking traffic from the web server to certain clients (on 
Ethernet 1 in this case) but not others, we could have www matches to the web server on 
access list entries, but our policy could still not be implemented correctly. Though not a 
sufficient condition for verifying correctness, access list entry matches are a necessary 
condition for correctness and can be a useful indicator of problems. 

5.2.1.5 IP accounting 

The IP accounting facility is another way to check if extended access lists are correct. IP 
accounting lets you keep track of the source and destination IP addresses of transit packets 
(packets that go out of an interface and come in through an interface, possibly the same 
interface). It also allows you to track the source and destination IP addresses of packets that 
violate access lists—packets that are not accepted into the policy set of packets allowed 
through an interface. There are two ways you can use this capability. Transit packet IP 
accounting shows you what packets have successfully made it through an access list on a 
given interface, while access violation IP accounting tracks the packets that have been denied. 
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Let's turn on IP accounting for our web server example and see how we can use it. These tools 
are enabled with the following configuration fragment: 

interface ethernet 0 
 ip accounting output-packets 
 ip accounting access-violations 
interface ethernet 1 
 ip accounting output-packets 
 ip accounting access-violations 

The ip accounting interface statement without a keyword turns on IP accounting for transit 
packets. Like outgoing access lists, IP accounting does not capture packets generated from the 
router, such as NTP queries or Telnet sessions originated from the router, so don't expect 
those types of traffic to be recorded by IP accounting. Once we have configured IP accounting 
for output packets and access violations, we need to look at the contents of the accounting 
database. We do this with the show ip accounting command. For our web server example, this 
yields: 

Source           Destination        Packets       Bytes 
192.168.31.2     192.168.35.1             9       13052 
192.168.35.1     192.168.31.2            10      957200 
192.168.35.1     192.168.70.2             6        8572 
192.168.70.2     192.168.35.1             8        1303 
 
Accounting data age is 10 

Here you can see what traffic is going through the router, in particular, traffic going to and 
from the web server. Packets with a destination of 192.168.35.1 (the web server IP address) 
have made it through the access lists. Return traffic (with a source IP address of the web 
server) has also been recorded. Each accounting table entry shows the number of packets and 
bytes sent from one source IP address to a destination IP address. The final line tells you how 
many minutes have passed since the accounting table has been turned on or cleared. If you see 
traffic to and from some other host (perhaps 192.168.35.2), then you know you have a 
problem with your access lists. 

To see if your access lists are rejecting what they should accept, use the show ip accounting 
access-violations command. For our example, it should yield this: 

Source            Destination              Packets               Bytes ACL 
192.168.75.2      192.168.35.2                  65               36943 101 
192.168.30.1      192.168.35.3                  24               16115 101 
192.168.152.26    192.168.35.1                   8                 818 101 
 
Accounting data age is 3 

You can see that attempts to reach host 192.168.35.2 fail because access to this host is not 
permitted. This is correct and functioning as we intended. What about the last line? Didn't we 
allow access to host 192.168.35.1? We did, but only for web and SSL, and we verified earlier 
that web and SSL traffic could get through. If someone tried to connect to 192.168.35.1 with a 
protocol other than SSL or HTTP, then this would also show up as an access violation. 
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Managing the IP accounting database 

One database is used for storing both transit accounting and access list violation 
information. This single database is limited in size, and accounting information is 
lost when the database is full and no new entries can be entered. You can see when 
the database is full if you see a message like: 

Accounting threshold exceeded for 13475 packets violating access 
list(s) 

at the end of show ip accounting output. There are several ways to deal with this. To 
make the table bigger, you can use the ip accounting-threshold configuration 
directive, followed by the size of the database you want. The default size is 512 
entries. Keep in mind, though, that the accounting table takes up router memory. If 
memory becomes an issue, you may not be able to increase the size of the 
accounting table as much as you may like. 

While both the access list violation information and the transit information are 
stored in the same database, you can define how many entries are dedicated to each. 
The directive ip accounting transits, followed by the number of entries you 
want, lets you set the number of entries in the accounting table that are dedicated to 
storing IP packet transit info. 

You can limit what entries go into the IP accounting table using the ip 
accounting-list statement followed by an IP address and an optional mask. For 
example, the following configuration commands: 

ip accounting-list 192.168.30.1 
ip accounting-list 10.0.0.0 0.255.255.255 

allow only packets originating from or destined for host 192.168.30.1 or network 
10.0.0.0/8 into the IP accounting database. Keep in mind, however, that this can be 
yet another access list that you may need to debug! Finally, another way to deal with 
a lot of accounting information is to periodically clear the database. The command 
clear ip accounting can be used to empty the IP accounting table. You also may 
want to use this command after making access list changes. 

Keep in mind that when using IP accounting, as with access list entry accounting, 
correct behavior as seen from this tool is a necessary but not sufficient condition of 
correct implementation. IP accounting does not provide any information about ports 
or protocols used, so the packets you see in the database may not be the ones you 
expect. 

5.2.2 Debugging extended access lists 

As with router resource access lists, extended access lists used for packet filtering have two 
failure modes: some application or utility that should be permitted is denied or something that 
should be denied is permitted. For the first case, as with router resource access lists, you need 
to verify routing in order to find the problem. However, using ping may or may not work this 
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time because of the packet filters you are setting up. In any case, you have to ensure that the 
end points of an application, the client and server, have routes to each other. If you have 
verified the routing, and your application still does not work, you have to find where and how 
you inadvertently excluded packets from your target policy, which I'll describe shortly. 

One common way to break applications with extended access lists is not to take into account 
packet flow in both directions: from client to server and from server to client. As an example, 
let's say we are trying to permit FTP from everywhere to an FTP server host set up as in 
Figure 5.2. 

Figure 5.2. An FTP server 

 

Since ports 20 and 21 are used on the server, let's set up our router as follows: 

access-list 101 permit tcp any host 192.168.35.1 range 20 21 
access-list 102 permit tcp host 192.168.35.1 any established 
interface ethernet 0 
access-group 101 out 
access-group 102 in 

FTP will not work with this configuration. Why? While FTP servers do use ports 20 and 21 
during an FTP transfer, the data connection is usually initiated from the FTP server with port 
20 as a source port. Since only packets from already established connections are permitted 
from the FTP servers, clients can set FTP control sessions but can't do any data transfers. The 
following access lists take into account the packet flow of FTP: 

access-list 101 permit tcp any host 192.168.35.1 range 20 21 
access-list 102 permit tcp host 192.168.35.1 range 20 21 any gt 1023 

In addition to not setting up connections in the direction you think (as in the previous 
example), there are other common instances in which applications do not behave the way that 
you think they will. In particular, the application may demand different source or destination 
ports than those you anticipated in your access lists. One way to check on actual port usage is 
to watch how an application actually behaves with the netstat command, available on most 
Unix and Windows systems. netstat prints TCP connection information, including the port 
numbers used for the TCP connections currently running on the box. For example, if you 
want to examine the port behavior of the Simple Mail Transport Protocol (SMTP), you could 
run netstat on a mail server. On a host called host1, netstat would yield something like this: 
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Active Internet connections 
Proto Recv-Q Send-Q  Local Address         Foreign Address        (state) 
tcp        0      0  host1.smtp            host2.1042            
ESTABLISHED 
tcp        0      0  host1.smtp            host3.4374            
ESTABLISHED 
tcp        0      0  host1.smtp            host4.1301            
ESTABLISHED 
tcp        0      0  host1.1252            host4.smtp             SYN_SENT 
tcp        0      0  host1.smtp            host5.1249            
ESTABLISHED 
tcp        0      0  host1.1260            host4.smtp            
ESTABLISHED 
tcp        0      0  host1.smtp            host6.37688            
ESTABLISHED 
tcp        0      0  host1.1242            host7.smtp             SYN_SENT 

The first column is the protocol. (In this excerpt, only the TCP connections are shown.) The 
next two columns show how many bytes of data have been queued for the connection either 
from the other host or to it. The next column contains the hostname of the local host, followed 
by the port number of that connection. If the port is assigned to a known protocol, the 
protocol is displayed. The next column contains the name of the host on the far end of the 
connection, followed by port number or protocol if the port is known. The final column 
describes the state of the connection; ESTABLISHED means the TCP has been set up and is 
ready to accept data across it. In this example, we see the state SYN_SENT. This means that the 
host is trying to set up a connection to the far host; it has sent a SYN packet to set up the 
connection, but it has not yet received an acknowledgement. A complete table of the possible 
values of the connection state and their meaning is in Table 5.1.  

Table 5.1. Netstat TCP connection states and their relevance to packet filters  
Connection 
state Meaning 

SYN_SENT 
System that initiates a TCP connection has sent SYN packet but has not received an 
acknowledgment. If a connection persists in this state, it means that either the remote host is 
down or that a packet filter is blocking the path to the remote end. 

SYN_RECV 

System has received a SYN packet for TCP setup and has sent an acknowledgment, but has not 
received a confirmation from the initiating system. If a connection persists in this state, it 
means that the remote system initiating the connection has gone down, or a packet filter is 
blocking return packets. 

ESTABLISHED TCP connection has been established. A packet filter is not blocking this connection. 

FIN_WAIT1 Socket is closed, and connection is shutting down. Since this is part of the connection 
shutdown procedure, this means that packet filter did not block this connection. 

FIN_WAIT2 
Connection is shut down, and socket is waiting for shutdown from remote end. Since this is 
part of the connection shutdown procedure, this means that packet filter did not block the setup 
of this connection. 

LAST_ACK 
The remote end shut down, the socket is closed, and the host is waiting for acknowledgement. 
Since this is part of the connection shutdown procedure, this means that packet filter did not 
block the setup of this connection. 

CLOSE_WAIT 
System has received a FIN packet to terminate the connection. Since this is part of the 
connection shutdown procedure, this means that packet filter did not block the setup of this 
connection. 

TIME_WAIT 
TCP connection has closed, but the system waits for an interval before releasing the local port 
used. Since this is part of the connection shutdown procedure, this means that packet filter did 
not block the setup of this connection. 
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We wanted to be sure of SMTP's port behavior. The netstat output shows that SMTP goes 
from a high port (greater than 1023) on the system initiating the SMTP connection to a low 
port (less than or equal to 1023) on the SMTP port of the system it connects to. If a host must 
send and receive mail, you must permit access to the SMTP port going out and let systems 
connect to its SMTP port. 

It is not always possible to get access to every host when debugging extended access lists. But 
if you can, running netstat and using the connection state information can be very helpful in 
tracking why a TCP-based application may not be running. On the application server, if you 
see that SYN packets have arrived and are acknowledged (the SYN_RECEIVED state), but no 
connections are in the ESTABLISHED state, then the application is not working because 
response packets cannot return to the client. From the client host, if you see that the 
connections to the application server are always in SYN_SENT mode, that means that either 
return packets are not coming back or SYN packets are not getting to the server. 

Let's look at an example of how netstat can be used in this fashion. Recall from the last 
example that bad access lists prevented FTP services; netstat could have been used to find the 
problem, yielding the following output: 

Active Internet connections 
Proto Recv-Q Send-Q  Local Address         Foreign Address        (state) 
tcp        0      0  server.ftp            client.1042           
ESTABLISHED 
tcp        0      0  server.ftpdata        client.1043           SYN_SENT 

The FTP control connection is established, but the attempted TCP connection from the server 
to the client is not succeeding because it is stuck in the SYN_SENT state. This points toward the 
problem with setting up the data connection we identified. 

5.2.2.1 Access list entry accounting 

 
Access list entry accounting doesn't work with certain switching modes. 
Test this feature with your version of the IOS and the switch mode you 
want to use before you decide to rely on it for debugging.  

There are a number of facilities on Cisco routers that allow you to gather more information to 
find where you may have allowed too much or too little into your packet filtering policy set. 
The first is one I discussed when talking about verifying correctness: access list entry 
accounting. Since Cisco routers count the number of times that extended access lists entries 
are used, you can use this feature to see why an access list may not be working. Consider a 
policy that says: 

Disallow all FTP, Telnet, and SSH access to a host but allow SMTP access 

The SSH protocol typically uses port 22, which means the forbidden ports are adjacent. Let's 
say we yielded to temptation and implemented an outgoing access list to the host with the 
following: 

access-list 101 deny tcp any host 192.168.35.1 range 20 25 
access-list 101 permit tcp any host 192.168.35.1 eq SMTP 
interface ethernet 0 
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 access-group 101 out 

However, after access list 101 is implemented, we find that SMTP to the host does not work. 
Access list accounting can help us find the problem. The command show access-list 101 
yields something like this: 

access-list 101 
       deny tcp any host 192.168.35.1 range 20 25 (100 matches) 
       permit tcp any host 192.168.35.1 eq smtp 

The entry permitting SMTP has no matches, but the entry denying the range has many 
matches. This indicates that the first entry is matching all of the SMTP packets, so we know 
our problem is that the range of TCP ports is too large on our first entry. Access list 1 should 
be: 

access-list 101 deny tcp any host 192.168.35.1 range 20 23 
access-list 101 permit tcp any host 192.168.35.1 eq smtp 

Access list accounting can show which entries are executed and which are not, indicating 
where an overly permissive or restrictive entry may lie. 

 

Sometimes when using access list accounting, you may want to reset all 
of the matches to 0. This can be useful, particularly when the counts 
become very high and it gets hard to remember if the counts changed. 
The command clear access list counters resets all of the match counts 
on all access lists to 0. When followed by an access list number or 
name, it clears only that particular access list.  

5.2.2.2 IP accounting 

Another facility useful for debugging is IP accounting. Looking at the access violation 
database can help you figure out exactly what is getting rejected and where in an access list 
this might be happening. It is particularly useful when there is a problem with IP address 
masking. In our FTP server example, let's add Telnet access to the FTP server from hosts 
192.168.30.4 and 192.168.30.5. Let's say we implemented access lists as follows: 

access-list 101 permit tcp any host 192.168.35.1 range 20 21 
access-list 101 permit tcp host 192.168.30.5 host 192.168.35.1 eq telnet 
access-list 102 permit tcp host 192.168.35.1 any established 
access-list 102 permit tcp host 192.168.35.1 eq 20 any gt 1023 
! 
interface Ethernet0 
 access-group 101 out 
 access-group 102 in 

Telnet to the FTP server doesn't work from 192.168.30.4 but does from 192.168.30.5. To 
debug the problem, we can turn on IP accounting for access list violations: 

interface Ethernet 0 
ip accounting access-violation 

After trying to telnet, the output of show ip accounting access-violation is: 
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Source            Destination              Packets               Bytes ACL 
192.168.30.4      192.168.35.1                   5               4343  101 

This output shows that something is blocking 192.168.30.4 but not 192.168.30.5. A look at 
access list 101 shows that 192.168.30.4 is not in any entry or included in any mask, so there 
must be a problem in the entry allowing Telnet. Sure enough, the entry does not include 
192.168.30.4. The correct access lists are: 

access-list 101 permit tcp any host 192.168.35.1 range 20 21 
access-list 101 permit tcp 192.168.30.4 0.0.0.1 host 192.168.35.1 eq telnet 
access-list 102 permit tcp host 192.168.35.1 any established 
access-list 102 permit tcp host 192.168.35.1 eq 20 any gt 1023 

This example shows us how to find why packets that should be permitted are denied. The 
access violation database is also helpful in the opposite case, finding out why something is 
being permitted instead of denied. Let's say we implemented the previous Telnet policy with 
the following: 

access-list 101 permit tcp any host 192.168.35.1 range 20 21 
access-list 101 permit tcp 192.168.30.4 0.0.0.3 host 192.168.35.1 eq telnet 
access-list 102 permit tcp host 192.168.35.1 any established 
access-list 102 permit tcp host 192.168.35.1 eq 20 any gt 1023 

To turn on transit packet accounting, we use the ip accounting command: 

interface Ethernet0 
 ip accounting output-packets 
interface Ethernet1 
 ip accounting output-packets 

IP accounting is turned on for both interfaces so we can capture the traffic to and from the 
FTP server. The output of show ip accounting might look like this: 

Source                     Destination               Packets            
Bytes 
192.168.30.4           192.168.35.1                    9            
9052 
192.168.30.5           192.168.35.1                    8            
8304 
192.168.30.7           192.168.35.1                    6            
6572 
192.168.35.1           192.168.30.4                   10            
12200 
192.168.35.1           192.168.30.5                    9            
11206 
192.168.35.1           192.168.30.7                    8            
10208 

In addition to 192.168.30.4 and 192.168.30.5, host 192.168.30.7 has access. Since it is not 
much farther from the hosts we intended, the implication is that there is a bad mask. Indeed, 
that is the problem: the mask for access list 101's Telnet entry is too inclusive. 

 
Like access list entry accounting, IP accounting doesn't work with 
certain switching modes. With some versions of the IOS on certain 
h d l f i IP i di bl k
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hardware platforms, turning on IP accounting can even disable packet 
forwarding! Test before using this feature.  

5.2.2.3 Access list entry logging 

The last debugging technique we'll discuss uses the router's logging capability. An extended 
access entry that ends in the keyword log sends information about the packet that matched 
the entry to the router's log. Recall the example in which we denied a number of TCP-based 
services to a host but allowed SMTP to it. Our original configuration had a problem with the 
first entry. To find the problem, we could enable logging with the following configuration: 

access-list 101 deny tcp any host 192.168.35.1 range 20 25 log 
access-list 101 permit tcp any host 192.168.35.1 eq SMTP 
logging buffered 
interface ethernet 0 
access-group 101 out 

The first line of access list 101 contains the keyword log at the end. This means that the 
information on each packet that matches this line is sent to the router's log. The configuration 
entry logging buffered instructs the router to send the output to the router's logging buffer. 
An alternative here is to substitute buffered with the IP address of a host that will receive the 
logging output through the syslog protocol. For example, the global configuration command 
logging 192.168.33.2 sends logging information to host 192.168.33.2 via syslog. The host 
receives syslog information at the debug information level. 

When SMTP traffic goes through the router, it matches the first line of access list 101, and 
detailed information about the packets is sent to the router's log. The command show logging 
prints the router's log, in this case producing the following: 

%SEC-6-IPACCESSLOGP: list 101 denied tcp 172.28.178.207 (1129) -> 
192.168.35.1(25), 1 packet 
%SEC-6-IPACCESSLOGP: list 101 denied tcp 172.28.178.207 (1130) -> 
192.168.35.1(25), 1 packets 

Logging output shows the source IP address, source port, destination IP address, and 
destination port for each packet. In this case, the output shows that SMTP traffic is getting 
blocked and immediately lets you know where the problem entry is. 

You can systematically move the location of the logging entry from the start of an access list 
to the end to find where a given packet matches. If you are looking to see why packets are 
denied and no entry in a list generates a log output, then you are not permitting anywhere the 
packets you are testing (hitting the implicit deny). 

A few notes about using the logging facility are important. If you use the router's logging 
buffer to store log output, it can fill up. You can clear it by issuing the command no logging 
buffered to turn logging off and then on again. Also, logging many events puts a load on the 
router that you need to monitor. If you are logging via syslog to a remote host, realize that the 
syslog input also puts a load on the host. If many logged events are coming in very quickly, 
there is the potential for the remote host doing syslog to lose events. Still, when used 
carefully, the logging facility can be a powerful tool for finding problems with extended 
access lists. 
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5.3 Route-filtering access control lists 

As in previous sections, I start with a discussion of verifying route-filtering access control 
lists for correctness and then talk about debugging. 

5.3.1 Checking for correctness 

When checking the correctness of route filtering access control lists, you cannot rely on the 
technique we used previously (making sure that applications run correctly). Applications can 
run correctly even when taking a route that does not match the policy you are trying to 
implement. To make sure that route filtering access lists are correct, you need to use various 
diagnostic tools implemented in routers and hosts. The first tool is an examination of the 
routing table. The command show ip route displays a Cisco router's routing table. For routing 
policies that affect incoming routing updates, the show ip route command can verify that your 
routing policy implementation is correct. 

Let's look at one of our previous routing policy implementations to see how we can use show 
ip route to verify an implementation's correctness. The first example in Chapter 4 deals with 
the network shown in Figure 5.3. 

Figure 5.3. Restricting routes sent and received 

 

Router 3, located in Site B, seeks to restrict the routes it receives from Site D. Since Site D 
uses only network 19.0.0.0/8 and does not transit any traffic from any other sites, Site B 
should hear about network 19.0.0.0/8 only in the routing updates it gets from Router 1. We 
implement the policy with the following: 

access-list 1 permit 19.0.0.0 
router eigrp 1000 
network 192.168.3.0 
distribute-list 1 in serial 1 

How can we use show ip route to verify that this is correct? We have to make sure that 
network 19.0.0.0/8 is the only network learned from Router 1. Here is the relevant output 
from executing show ip route on Router 3: 

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP 
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area 
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP 
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate 
default 
       U - per-user static route, o - ODR 
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Gateway of last resort is 172.28.1.5 to network 172.28.0.0 
D EX 19.0.0.0/8 [170/2202624] via 192.168.3.2, 3w5d, Serial1 
D EX 10.0.0.0/8 [170/2239232] via 172.28.1.5, 3w5d, FastEthernet0/0 
D EX 192.168.4.0/24 [100/2174464] via 172.28.1.5, 3w5d, FastEthernet0/0 
D EX 198.175.107.0/24 [100/2239232] via 143.183.152.251, 3w5d, 
FastEthernet1/0 
C    192.168.1.0/24 is directly connected, Serial1 
172.28.0.0/16 is variably subnetted, 226 subnets, 4 masks 
C       172.28.1.0/26 is directly connected, FastEthernet1/0 

The first part of this output explains the different codes used in the routing table output. For 
example, the code in front of a route describes how the route was learned. The first line of the 
entry with network 19.0.0.0/8 begins with a D, meaning that a route has been learned via 
EIGRP. Table 5.2 contains a summary of possible codes and what they mean. The next part of 
the output describes default routing—where the router sends packets to networks not in its 
routing table. I'll describe this in detail later. 

Table 5.2. Routing protocols and their meanings 
Route code Meaning 
C Network is directly connected to the router 
S Route was statically configured 
I Route was learned via IGRP 
R Route was learned via RIP 
M Route was learned by the mobile IP protocol 
B Route was learned by BGP 
D Route was learned by EIGRP 
EX Route is an EIGRP external route 
O Route was learned by OSPF 
N1 Route is an OSPF NSSA external route type 1 
N2 Route is an OSPF NSSA external route type 2 
E1 Route is an OSPF external route type 1 
E2 Route is an OSPF external route type 2 
E Route was learned by EGP 
i IS-IS 
L1 IS-IS level-1 
L2 IS-IS level-2 
* Route is a candidate default route 
U Route is a per-user static route 
o Route is an on demand route 

The last part is a series of lines that list the contents of the routing table. Each line describes 
the path to each distinct network in the routing table, and each is composed of a number of 
distinct parts. The routing protocol used to learn the path to that network appears before the 
network number. The next part of each line, within the brackets, is the administrative distance 
and the routing protocol metric. In this example, you can see that the networks 19.0.0.0/8 and 
10.0.0.0/8 have an external EIGRP administrative distance of 170. If a network is directly 
connected to the router, then the administrative distance/metrics section is omitted (connected 
networks have an administrative distance of 0). Next is the next hop, where the router 
forwards packets bound for that network. You can see that packets bound for network 
19.0.0.0/8 should be forwarded to 192.168.3.2. Packets for network 10.0.0.0/8 should be 
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forwarded to the router with IP address 172.28.1.5. Directly connected networks list the 
interface that the networks are connected to instead of an IP address. After the next hop is a 
string indicating how long the router has known the route. Routing protocols such as IGRP 
and RIP broadcast their routes only periodically, so this number is usually pretty low. EIGRP 
and BGP, routing protocols that send out routing updates only when network topologies 
change, have large values here, possibly days or weeks. Static routes and connected routes do 
not list the time since these routes are not learned dynamically. The last part of the routing 
table entry description is additional route information. Some routing protocols list what router 
interface the packets for the network will take. For example, packets bound for network 
19.0.0.0/8 will travel out through interface serial 1. 

How we can use this input to check on our policy implementation? First, let's look at the 
routing information for network 19.0.0.0/8. Our policy requires that this is the only route 
learned from Site D. In looking at the show ip route output, note that the only route learned 
via EIGRP from Site D's Router 1 is 19.0.0.0/8, and the next hop for the network is 
192.168.3.2, the serial interface of Router 1. It seems that our implementation is correct. Is it 
really? If Router 1 advertised only the route 19.0.0.0/8, the output would be the same whether 
or not access list 1 was defined and applied with a distribute-list command. To be more 
certain, you need to make sure that the access lists are really used, with the show ip interface 
command or by checking the router's configuration. 

5.3.1.1 Limiting routing output 

The command show ip route can produce a lot of output, depending on the size of the router's 
routing table. There are a number of command qualifiers that can limit the output to what a 
network administrator finds useful. For instance, show ip route followed by a network number 
provides detailed routing information for that network. For example, typing: 

show ip route 19.0.0.0 

produces output like this: 

Routing entry for 19.0.0.0/8 
  Known via "eigrp 1000", distance 170, metric 2202624, type external 
  Redistributing via eigrp 1000 
  Last update from 192.168.3.2 on Serial0, 3w5d ago 
  Routing Descriptor Blocks: 
  * 192.168.3.2, from 192.168.3.2, 3w5d ago, via Serial1 
      Route metric is 2202624, traffic share count is 1 
      Total delay is 22470 microseconds, minimum bandwidth is 1544 Kbit 
      Reliability 1/255, minimum MTU 1500 bytes 
      Loading 255/255, Hops 6 

As you can see, detailed routing information about the network 19.0.0.0 route table entry is 
displayed. Information about how the route is redistributed and the components that make up 
the route metrics (such as delay, bandwidth, reliability, and loading) is also included. 

Filtering router output 

Commands such as show access-list or show ip route can generate so much output 
that they can be difficult to use for debugging. Versions of the Cisco IOS starting 
12.0(1) T allow an administrator to include or exclude the output containing a 
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specific string. The output modifier "|", when followed by the keywords inc, exc, or 
begin, plus a string, can be used to modify the output. For example, the command 
show ip route | inc 172.28 displays all the lines of show ip route that contain the 
string 172.28. If we use the command show ip route | exc 172.28, the lines that do 
not have 172.28 are be shown, while show ip route | inc begin 172.28 shows the 
lines that begin with 172.28. show ip access-list | inc match shows all of the access 
list entries that have a match. Other uses for these output modifiers include 
displaying the routes to all the subnets of a particular network, showing all of the 
access list entries that affect traffic to a specific destination, and displaying data in 
the IP accounting database that pertains to a specific IP address. 

We can also display only the routes learned by a specific routing protocol. For example, the 
following command: 

show ip route eigrp 

shows all of the routes learned by EIGRP: 

D EX 19.0.0.0/8 [170/2202624] via 192.168.3.2, 3w5d, Serial1 
D EX 10.0.0.0/8 [170/2239232] via 172.28.1.5, 3w5d, FastEthernet0/0 
D EX 192.168.4.0/24 [100/2174464] via 172.28.1.5, 3w5d, FastEthernet0/0 

Typing the following: 

show ip route connected 

produces: 

C    192.168.1.0/24 is directly connected, Serial0 
172.28.0.0/16 is variably subnetted, 226 subnets, 4 masks 
C       172.28.1.0/26 is directly connected, FastEthernet0/0 

Default gateway information and an explanation of routing codes are not displayed when the 
routing protocol is added. 

In Chapter 4, I showed how you could use the default route to limit the number of routes that 
need to be accepted. In our example (see Figure 4.12), we limited incoming routes to default 
network 172.28.0.0 with an access list and distribute-list on Router 1: 

default-network 172.28.0.0 
access-list 1 permit 172.28.0.0 
router eigrp 1000 
network 192.168.3.0 
distribute-list 1 in serial 0 

In this case, the default network information is very useful for verifying the correctness of the 
policy implementation. A correct implementation of the policy yields show ip route output 
such as the following: 

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP 
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area 
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP 
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       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate 
default 
       U - per-user static route, o - ODR 
 
Gateway of last resort is 192.168.3.3 to network 172.28.0.0 
D*EX 172.28.0.0/16 [170/2202624] via 192.168.3.3, 3w5d, Serial0 
C    192.168.3.0/24 is directly connected, Serial0 
19.0.0.0/8 is variably subnetted, 200 subnets, 2 masks 
C       19.1.1.0/24 is directly connected, FastEthernet0/0 

The default network 172.28.0.0/16 has been learned from Router 3's 192.168.3.3 interface. 
We can see that it is properly handled because it's the only network learned from Router 3. It 
is listed as the default network in the default routing information section, and we can also see 
that it is the default network because its routing table entry has been flagged with an asterisk. 
With this information, we can conclude that the policy implementation is correct. 

5.3.1.2 Verifying the correctness of access lists in outbound distribute-list statements 

So far, we have only looked at verifying the correctness of access lists referenced by inbound 
distribute-list statements. How would you check for the correctness of access lists used 
in outbound distribute-list statements? One way is to look at the routing table of a router 
receiving the filtered routes. In Chapter 4, I showed an example of Site D filtering the routes 
it distributes in order to prevent any routing problems within Site D from spreading to other 
sites. Only network 19.0.0.0/8 should be advertised from Site D, so I configured the following 
on Router 1: 

access-list 2 permit 19.0.0.0 
router eigrp 1000 
network 192.168.3.0 
distribute-list 2 out serial 0 

How would you verify that this configuration implements our policy? Looking at Router 1's 
routing table does no good since it doesn't listen to its own updates. The routing table we need 
to look at is on Router 3. If we disable the inbound distribute-list on serial 1 of Router 3, 
we can look at its routing table to see if 19.0.0.0 is the only route sent from Router 1. For 
verifying policies using outbound distribute-lists, examining the routing tables of the 
routers receiving the route updates is a good technique. Another method is to use the debug 
facility and watch routing updates sent from the router to make sure the proper routes are 
being advertised. I'll talk about using debug later in this chapter. 

5.3.1.3 Verifying that hosts receive correct routing information 

This technique also applies to hosts receiving routing updates. If you are filtering routes sent 
to hosts, checking the hosts routing table enables you to see if your policy implementation is 
correct. To look at a host's routing table, do the following command: 

netstat -rn 

To demonstrate this command, let's say we advertise routes via RIP to the hosts on segment 
172.28.1.0/24. 

For a host on that segment, netstat would produce output like the following: 
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Routing tables 
 
Internet: 
Destination         Gateway            Flags    Refs      Use  Interface 
default             172.28.1.5         UGS         0  1519419  de0 
10                  172.28.1.5         UG          0      429  de0 
192.168.3.0         172.28.1.5         UG          0        5  de0 
192.168.4.0         172.28.1.6         UG          0       12  de0 
19                  172.28.1.6         UG          0   123543  de0 
172.28.1.0          172.28.1.10        UG          0     2386  de0 

The first column lists networks or hosts, and the second column shows the next hop or 
gateway to reach the host or network from the first column. Thus the route to network 
10.0.0.0/8 goes through the router at 172.28.1.5, and the route for 19.0.0.0/8 goes out through 
the router at 172.28.1.6. Traffic to subnet 172.28.1.0 is local, so the gateway is listed as the 
host's own IP address, 172.28.1.10. The third column contains various flags associated with 
the route. This column is important. When only the UG flag is listed, it means that the host 
has learned routes from routing protocols. The presence of a capital "S" means that the route 
has been statically assigned. Like static routes on routers, static routes on hosts are not learned 
dynamically. 

5.3.1.4 Traceroute 

The technique of looking at adjacent routing tables has limitations. Although a particular 
route for a network may not be present in a routing table, that does not necessarily mean it is 
not being advertised. A route with a better metric may be advertised from elsewhere, and only 
when that second route goes away does the first route appear. Applying this potential trap to 
our situation, let's say that for some reason, Router 1 also advertises network 10.0.0.0/8, and 
Router 3 hears this advertisement. If Router 3 hears an advertisement with a better metric for 
network 10.0.0.0/8, the route to 10.0.0.0/8 through Router 1 does not appear in the routing 
table. Only when the second advertisement goes away for some reason is the bad 
advertisement noticed. In general, the technique of looking at routing tables is a necessary but 
not sufficient condition for correctness. 

Another limitation of this technique is that we've been assuming we have access to 
neighboring routers. In situations where routers under your control border routers under 
someone else's administrative control, this can often be a problem since the other network 
administrators may be unwilling or unable to grant you SNMP read access, Telnet access, or 
the passwords to these routers. In that case, you have to resort to other tools like traceroute, 
which shows the path of a packet to its destination. Traceroutes are initiated with the trace 
command, followed by the hostname or IP address of the host or router to which you want the 
path to go. Recall that the example network we've been working with is part of a larger 
network, shown in Figure 5.4. 
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Figure 5.4. A corporate network 

 

Let's say that an interface of Router 6 has an IP address of 10.1.1.2 and that the Router 1 
interface going to Site B has an IP address of 192.168.3.2. If we wanted to traceroute from 
Router 1 to Router 6, we issue the following command: 

trace 10.1.1.2 

which produces the following output: 

Type escape sequence to abort. 
Tracing the route to router6-e0.somecompany.com (10.1.1.2) 
 
  1 router3-s1.somecompany.com (192.168.3.3) 4 msec 3 msec 2 msec 
  2 router4-e0.somecompany.com (172.28.1.6) 4 msec 6 msec 5 msec 
  3 router6-s0.somecompany.com (192.168.4.2) 20 msec * 16 msec 

The first hop from Router 1 is to Router 3, at IP address 192.168.3.3. The next hop goes to an 
interface of Router 4, at IP address 172.28.1.6. The final hop is to the serial 0 interface of 
destination Router 6, at 192.168.4.2. The three items listed after the IP address of each hop 
describe the time taken for each traceroute probe packet to get a response. If no response is 
reached, an asterisk is printed. 

Running traceroute on hosts 

Most Unix and Windows systems either have the traceroute command or can run it. 
From Unix systems with traceroute, use the traceroute command followed by the 
host name or IP address. On Windows 95, 98, or NT, use the command tracert 
followed by the hostname or IP address. If you tracert from host 172.28.1.11 to 
10.1.1.2, you should see output like the following: 

Tracing route to router6-e0.somecompany.com [10.1.1.2] over a 
maximum of 30 hops: 
 
  1     1 ms      0 ms      0 ms  router4-e0.somecompany.com 
[172.28.1.6] 
  2    18 ms     19 ms    17 ms  router6-s0.somecompany.com 
[172.28.1.6] 

This version of traceroute differs in that the response times are listed before the 
hostname. This version also uses ICMP from probe packets instead of UDP. 

Traceroute is useful for verifying a number of routing policy implementations. For outbound 
distribute-list and outbound offset-list statements, doing a traceroute from a remote 
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network to an IP address in a network you are advertising can show you if the policy you are 
implementing for the network is working properly. You can see whether the packets to a 
network are taking the path your policy dictates. If you don't have access to a host or a router 
in a remote network to do a traceroute back to the network, you can have someone in another 
organization do the traceroute for you. On the Internet, there are a number of publicly 
available traceroute servers that allow you to traceroute back to your own network or to other 
networks. For an inbound distribute-list or offset-list, doing a traceroute to a 
network you have a policy about can show you whether the next hop is appropriate. 

Let's see how we can use traceroute to verify the correctness of some of our policies. Recall 
that we defined a policy that limits networks advertised out of Site D (on Router 1) to network 
19.0.0.0/8 and a policy that limits routes received from Site D (on Router 3). The network 
administrators of Site D could ask someone at another site, such as Site B or Site E, to do a 
traceroute to a host in network 19.0.0.0/8. If the traceroute goes through Router 1, then Site D 
knows that Router 1's route filters have not accidentally filtered out its network 19.0.0.0/8 
advertisements and that Router 3 has also properly filtered incoming advertisements. 

When you execute the command trace with no arguments from enable mode, you have access 
to a number of useful options. In particular, you can choose the source IP address of the 
traceroute probes. Since traceroute responses are sent back to the source address (see the 
upcoming sidebar Traceroute: How it functions and how to filter it), you can use this option 
to determine if a destination has a route back to the network the source address belongs to. 
The source address must be an interface of the router sending the traceroute. We can use this 
to see whether Site B can reach Site E's network 10.0.0.0/8 and whether Site E has a route 
back to Site B's network 19.0.0.0/8. We should use traceroute from Router 1 as follows: 

Traceroute: How it functions and how to filter it 

Traceroute is a very useful tool for debugging route filtering. It is easy to stop it 
from functioning with packet filters, however. Traceroute works by sending out a 
number of UDP or ICMP packets (the default is typically 3, although this can be set) 
with increasing Time To Live (TTL) parameters. To learn the first hop, the host or 
router doing traceroute sends out a packet with a TTL of 1. When this packet arrives 
at the first router hop, the TTL has expired, so the first hop router sends back an 
ICMP TTL Exceeded packet back to the sender. Thus the sender learns the identity 
of the first hop. The sender then sends out a packet with a TTL of 2. The packet 
expires at the second hop, so the second hop router sends an ICMP TTL Exceeded 
packet back to the sender. This process continues until the destination is reached. 

From this description, you can see that the sender needs to send out UDP or ICMP 
(depending on the implementation) in order for traceroute to function. If the sender 
uses UDP, those ports must be permitted. Usually, the destination port used can be 
set, and the source port is usually above 1023. The sender must also be able to 
receive ICMP time-exceeded packets. In addition, since the packets with increasing 
TTL have a source address of the interface of the router or system used, be careful 
that the IP address of the particular interface used to send packets has permission to 
send out and receive those packets. For example, if we say that access list 101 is 
assigned to filter incoming packets to a router interface leading to a host at 
192.168.35.1, that host will do traceroute, and that access list 102 is assigned to 
filter outgoing packets, then the following extended access list entries will allow 
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traceroute from any host: 

access-list 101 permit udp host 192.168.35.1 any 
access-list 102 permit icmp any host 192.168.35.1 ttl-exceeded 

This assumes we use UDP for the increasing TTL packets. 

Letting out all UDP is very broad, and you may want to narrow the number of UDP 
ports allowed out. The default UDP port that traceroute starts with is 33434. Some 
traceroute implementations increase the destination port number with each set of 
probes, so the following two access list entries should work: 

access-list 101 permit udp host 192.168.35.1 ge 33434 
access-list 102 permit icmp any host 192.168.35.1 ttl-exceeded 
Router1# trace 
Protocol [ip]: 
Target IP address: 10.1.1.2 
Source address: 19.1.1.1 
Numeric display [n]: 
Timeout in seconds [3]: 
Probe count [3]: 
Minimum Time to Live [1]: 
Maximum Time to Live [30]: 
Port Number [33434]: 
Loose, Strict, Record, Timestamp, Verbose[none]: 
Type escape sequence to abort. 

You can see the many options possible with traceroute. We can set the port number used, 
probe count, and a number of different options. In this example, we only use the option for 
setting a source address. We traceroute from interface IP address 19.1.1.1 on Site B to address 
10.1.1.2 on Site E. If we see output like the following: 

Tracing the route to router6-e0.somecompany.com (10.1.1.2) 
 
  1 router3-s1.somecompany.com (192.168.3.3) 4 msec 3 msec 2 msec 
  2 router4-e0.somecompany.com (172.28.1.6) 4 msec 6 msec 5 msec 
  3 router6-s0.somecompany.com (192.168.4.2) 20 msec * 16 msec 

we know that Site B can reach Site E and vice versa. 

5.3.1.5 Debugging routing policies with access list accounting 

One of the more difficult routing policy implementations to verify is route preference. Let's 
look at a policy we implemented in Chapter 4. As a reminder, Figure 5.5 shows a network 
where we prefer that traffic use one path and then another if the first is down. 
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Figure 5.5. A network with a preferred routing scheme 

 

This network uses RIP as its routing protocol. The preferred path between network 10.0.0.0/8 
is through Router 1, but if that path is down, traffic should go the 56-Kb path. In this example, 
the only router that we control is Router 2. In Chapter 4, I implemented the policy as follows: 

access-list 1 permit 10.0.0.0 
access-list 2 permit 172.20.0.0 
! 
router rip 
 network 192.168.1.0 
 network 192.168.2.0 
 network 172.20.0.0 
 offset-list 1 in 3 serial 0 
 offset-list 2 out 3 serial 0 

How can we test this implementation of routing preferences? If we can find a time when 
network downtime is tolerated, one way is to use the methods described previously to verify 
that there is the proper connectivity between the two networks. Once the preferred path is 
known to work, you can break the connectivity on the path through Router 1 and test if traffic 
uses the next preferred path. 

Unfortunately for most network administrators, the opportunity to have some network 
downtime for testing is not readily available. In this example, we have access only over 
Router 2. How would we verify that we have implemented the proper policy? Fortunately for 
us, there are a number of facilities on Cisco routers that can help. Since we have access only 
to Router 2, we need to verify that our changes to routing advertisements are being properly 
acted upon. Traffic between networks 10.0.0.0/8 and 172.20.0.0/16 should be coming in and 
out of serial 1. Looking at our routing table verifies that traffic from network 172.20.0.0/16 to 
network 10.0.0.0/8 is going the right way. We need to verify that traffic goes from network 
10.0.0.0/8 to network 172.20.0.0/16. 

One way we can do this is with an incoming extended access list combined with access list 
accounting. We use an access list to monitor if traffic is coming into the interface with the 
following configuration commands: 

access-list 101 permit ip 10.0.0.0 0.0.0.255 172.20.0.0 0.0.255.255 
access-list 101 permit ip any any 
! 
int serial 1 
 access-group 101 in 
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If traffic is coming into serial interface 1 from network 10.0.0.0/8 bound for network 
172.20.0.0/16, the fact that the traffic has gone through is recorded by access list accounting. 
The command show ip access-list 101 yields: 

access-list 101 
     permit ip 10.0.0.0 0.255.255.255 172.20.0.0 0.0.255.255 (100 matches) 
     permit ip any any (10 matches) 

You can see that traffic is coming in the way we intended. The access list does not interfere 
with traffic moving through the interface, as it lets all packets through but counts traffic going 
by. You could put a similar access list on serial interface 0 to verify that traffic from network 
10.0.0.0/8 to network 172.20.0.0/8 is not going in through that interface. 

5.3.1.6 Verifying routing protocol activity using debug 

The previous access list technique lets us know if incoming traffic is okay, as it goes into the 
interface preferred by the policy. What about our implementation of backup routing? We need 
to make sure that our route advertisements are okay. To do that, we use the debug feature of 
the Cisco router, which allows us to see key events and data. To see debug output, we first 
need to issue the command terminal monitor if we are not using the router's system console 
port. This command sends debug output to our terminal session. Debug output is also sent to 
the router's console by default. 

To see the debug output, we have to turn on routing debug output. Since we are using RIP as 
a routing protocol, we use the command debug ip rip, which limits debugging output to only 
that concerning RIP. When we issue this command, we start to see output like this: 

RIP: received update from 192.168.2.1 on Serial0 
     network 10.0.0.0 in 1 hops 
     network 192.168.3.0 in 1 hops 
RIP: received update from 192.168.1.1 on Serial1 
     network 10.0.0.0 in 2 hops 
     network 192.168.3.0 in 1 hops 
RIP: sending update to 192.168.2.255 via Serial0 (192.168.2.2) 
     network 172.20.0.0, metric 4 
     network 192.168.1.0, metric 1 
     network 192.168.3.0 metric 2 
RIP: sending update to 192.168.1.255 via Serial1 (192.168.1.2) 
     subnet 172.20.0.0, metric 1 
     network 192.168.2.0, metric 2 

The debug output shows that Router 2 is sending the correct output out through serial 
interface 0. Network 172.20.0.0/16 is advertised with a metric of 4, demonstrating that the 
offset of 3 is being added to the route metric as intended. Advertisements of network 
10.0.0.0/8 are coming in with a metric of 1 through serial interface 0 and with a metric of 2 
through serial interface 1. Since you see the correct advertisements coming in, you are 
reasonably sure that your router can use the path out through serial as a backup. The offset-
lists take care of increasing the metric to make the path through Router 1 the preferred 
route. This can be verified by looking at the route table and seeing the route to network 
10.0.0.0/8. 

To turn off debugging, use the undebug command. In this case, you invoke it with undebug ip 
rip. You could also use undebug all to turn off all debugging. If you don't want to receive 
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debug output while using a terminal, use the command terminal no monitor. It is a good idea 
to make sure that all debugging output is off when you invoke the terminal no monitor 
command. 

There are two important caveats of the debug command. First, don't overdo it with debug 
information. Too much information can be impossible to process meaningfully. A router with 
multiple interfaces sending and receiving periodic routing updates can scroll information so 
fast that you cannot see it unless you are recording your terminal session. Second, debug 
output is process-switched, so it places a burden on the router's main processor. Too much 
debug output can cripple a router and render it unusable. 

5.3.1.7 Viewing routing topology 

Using debug to see metric values works well for routing protocols such as RIP and IGRP that 
send out periodic updates of all of its routing information, but how would you verify routing 
preferences for a routing protocol such as EIGRP that only sends routing updates when 
conditions change? Recall that the routing table only contains the most preferred route, not 
any other routing information. Fortunately, these protocols typically have commands 
associated with them that display the topology learned by the routing protocol. For EIGRP, 
the command is show ip eigrp topology, so if you use EIGRP instead of RIP in the previous 
example, the show ip eigrp topology command produces output like this: 

P 10.0.0.0 255.0.0.0, 2 successors, FD is 2236672 
         via 192.168.2.1 (2236672/2234624), Serial1 
         via 192.168.1.1 (2237184/2234624), Serial0 
P 192.168.3.0 255.255.255.0, 2 successors, FD is 2236672 
         via 192.168.2.1 (2236672/2234624), Serial1 
         via 192.168.1.1 (2237184/2234624), Serial0 

Unlike with the show ip route command, you can see the different paths to each network and 
the metrics (the first number within the parentheses) for each path. The path through Router 1 
(via 192.168.2.1) is preferred, since it has a lower metric of 2236672. You can also see the 
backup paths over the 56-Kb link have a higher metric of 2237184. In this way, you verify 
that the preferred and the backup path advertisements are coming as intended. show ip eigrp 
topology has the limitation of being able to look only at incoming route updates, but it is still 
useful, as it gives you visibility into the route preferences. Other routing protocols such as 
OSPF have similar commands. 

5.3.2 Debugging route-filtering access lists 

Like router resource access lists and extended access lists, a route-filtering access list can go 
wrong in two ways: the access list denies a route that should be permitted, or it permits a 
route that should be denied. Just as router resource access lists and extended access lists can 
seem to fail because of routing problems, route filtering access lists can seem to fail because 
of other issues, such as packet filtering extended access lists. In this section, I discuss how to 
find problems with router filtering access lists. I also talk extensively about how factors other 
than actual route-filtering access list errors can make it look like there are problems. 

In this section, I focus on the more complex debugging case in which a route you want is 
missing in a routing table. When a route is not present, there may be either no path or the 
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wrong path to a given network. Let's look at the example shown in Figure 5.5. What if the 
routing table of Router 2 looked like the following? 

C 172.20.0.0/16 is directly connected, Ethernet0 

Network 10.0.0.0/8 is not in the routing table at all, so clearly something went wrong. What 
could have happened? Before concluding there is an access list error, you need to rule out 
several other possibilities. The connectivity to network 10.0.0.0/8 could be down. If the serial 
lines connecting to interfaces serial and serial 1 are down, no routing information can be 
learned through them. In this case, the show interface command would show the following for 
these two interfaces: 

Serial0 is down, line protocol is down 
  Hardware is HD64570 
  Description: To network 10 via 56Kbit path 
  Internet address is 192.168.1.2/24 
  MTU 1500 bytes, BW 56 Kbit, DLY 20000 usec, rely 255/255, load 1/255 
  Last input 03:25:35, output 03:25:35, output hang never 
  Last clearing of "show interface" counters never 
  Queueing strategy: fifo 
  Output queue 0/80, 0 drops; input queue 0/100, 0 drops 
  5 minute input rate 0 bits/sec, 0 packets/sec 
  5 minute output rate 0 bits/sec, 0 packets/sec 
     3976767 packets input, 371394120 bytes, 0 no buffer 
     Received 732003 broadcasts, 120 runts, 0 giants, 0 throttles 
     1235 input errors, 2 CRC, 680 frame, 0 overrun, 0 ignored, 0 abort 
     0 input packets with dribble condition detected 
     3586981 packets output, 1378381771 bytes, 0 underruns 
     2 output errors, 0 collisions, 615 interface resets 
     0 babbles, 0 late collision, 0 deferred 
     0 lost carrier, 0 no carrier 
     0 output buffer failures, 0 output buffers swapped out 
Serial1 is administratively down, line protocol is down 
  Hardware is HD64570 
  Description: To network 10 via T1 path 
  Internet address is 192.168.2.2/24 
  MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec, rely 255/255, load 1/255 
  Encapsulation HDLC, loopback not set, keepalive set (10 sec) 
  Last input 03:26:05, output 03:26:05, output hang never 
  Last clearing of "show interface" counters never 
  Queueing strategy: fifo 
  Output queue 0/80, 0 drops; input queue 0/100, 0 drops 
  5 minute input rate 0 bits/sec, 0 packets/sec 
  5 minute output rate 0 bits/sec, 0 packets/sec 
     89764824 packets input, 4874394145 bytes, 0 no buffer 
     Received 752342 broadcasts, 75 runts, 0 giants, 0 throttles 
     52 input errors, 1 CRC, 20 frame, 0 overrun, 0 ignored, 0 abort 
     0 input packets with dribble condition detected 
     53586321 packets output, 61278388290 bytes, 0 underruns 
     6 output errors, 0 collisions, 2 interface resets 
     0 babbles, 0 late collision, 0 deferred 
     0 lost carrier, 0 no carrier 
     0 output buffer failures, 0 output buffers swapped out 

The show interface command generates a lot of output, but I'll mention only key parts that are 
relevant to debugging route-filtering access list problems. The first line of output for each 
interface is usually the most important. It tells you the interface name, whether it is up or 
down, and whether the line connected to the interface is down. Often, if the line protocol is 
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down, the interface will be listed as down as well. In the previous example, both interfaces are 
down. Serial interface 1 is said to be administratively down. This means that the interface 
was manually shut down. The line beginning with Description: displays whatever the 
person who configured the router decided to mention about the interface. It is often useful for 
determining the function of the interface and what it connects to. 

Below the description is the interface's IP address and mask. Underneath is an important line 
that describes key properties of the line connected to the interface. These properties, such as 
bandwidth (BW) and delay, are used by some routing protocols as part of metric calculations. 
In the example, this line shows which interface has the 56-Kb line and which has the 1.544-
Mb line. Two lines below that line are times listing the last input and output. This line is 
useful for listing when an interface or the line connected to it goes down. 

The show interface command output reveals that what at first appeared to be a routing 
problem was actually caused by interfaces being down. Another clue that the interfaces are 
down is that the directly connected networks, 192.168.1.0/24 and 192.168.2.0/24, are not 
listed in the route table. If the interfaces were up, then the two networks would have been 
listed in the routing table. 

5.3.2.1 When the wrong route is present 

Another possibility is that the wrong route might be present. The show ip route command 
yields the following: 

C 172.20.0.0/16 is directly connected, Ethernet0 
C 192.168.1.0/24 is directly connected, Serial0 
R 10.0.0.0/8 [120/1] via 192.168.1.1, 0:29, Serial0 

There is a route to 10.0.0.0/8, but it uses the backup path through serial instead of the path 
through serial 1. What could have happened? In this case, it is possible that the line connected 
to interface serial 1 is down, and show interface serial1 would show the following: 

Serial1 is down, line protocol is down 

Let's now say that serial interface 1 is down, so the route to network 10.0.0.0/8 uses serial 
interface 0. Network 192.168.2.0/24 is not in the route table. This is additional evidence of 
serial interface 1 being down. 

What if 192.168.2.0/24 did appear in the route table yet the route was still wrong? We'd then 
see the following: 

C 172.20.0.0/16 is directly connected, Ethernet0 
C 192.168.1.0/24 is directly connected, Serial0 
C 192.168.2.0/24 is directly connected, Serial1 
R 10.0.0.0/8 [120/4] via 192.168.1.1, 0:29, Serial0 

Here, both serial interfaces must be up, since the directly connected networks on both 
interfaces are listed in the route table. However, this does not necessarily mean there are 
problems with our access list. Notice that the metric for network 10.0.0.0/8 is 4, which is what 
it should be after we increase its value with the offset-list command. This implies that the 
routing information coming into the serial interface is being handled correctly, so it could be 
that the router on the other side of the 1.544-Mb line is down. We can confirm this by doing a 
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ping of router 1's 192.168.2.1 interface. If ping reveals that it is down, then this problem has 
prevented the preferred route from entering Router 2's routing table. 

If ping reveals the interface at 192.168.2.1 is up, then there are a number of possibilities why 
the correct route is still not there. Router 1's connectivity to network 10 might be down. Also, 
Router 1's administrators may have accidentally turned off sending routes to Router 2, 
through the passive-interface statement. Strange as it may seem, that actually does happen 
occasionally and can be detected using the debug command. You would notice that Router 1 
seems to send no routing updates even though it is up. 

5.3.2.2 Stopping routing updates with extended access lists 

Make sure that you don't cause problems yourself. One way that routing updates can be 
ignored is with an overzealous incoming packet filter. If Router 2 makes the following 
attempt at anti-spoofing: 

access-list 101 deny ip 172.20.0.0 0.0.255.255 any 
access-list 101 deny ip 192.168.2.0 0.0.0.255 any 
access-list 101 permit ip any any 
interface serial 1 
access-group 101 in 

then all incoming routing updates are suppressed. At other times you might forget static 
routes you have set previously. If show ip route produces the following: 

C 172.20.0.0/16 is directly connected, Ethernet0 
C 192.168.1.0/24 is directly connected, Serial0 
C 192.168.2.0/24 is directly connected, Serial1 
S 10.0.0.0/8 [1/1] via 192.168.1.1, Serial0 

a static route excludes any routing advertisement of network 10.0.0.0 since static routes have 
a higher administrative distance then any dynamic routing protocol. 

If all else fails 

You may encounter a situation where your access lists don't work even though there 
is no obvious reason. It may seem that your access lists are being totally ignored, or 
that your access list stops all traffic through an interface despite clearly permitting 
certain types of traffic. When you encounter this type of error, there may be a 
problem with your particular IOS. After you have exhausted all other debugging 
possibilities, check the Cisco web site for bugs in your IOS.There are IOS versions 
in which access lists do not function correctly. The Cisco Bug Navigator™ can 
point out the IOS versions that have problems and the ones that have fixed those 
problems. If you don't find your problem, open up a case with the Cisco Technical 
Assistance Center (TAC). They should be able to help. Note that both of these 
options require a support contract, which I strongly recommend if you depend on 
Cisco access lists for mission critical applications. 

5.3.2.3 When access lists are used incorrectly 
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Sometimes, access lists are correct but not used correctly. If you implement the access lists 
like this: 

access-list 1 permit 10.0.0.0 
access-list 2 permit 172.20.0.0 
router rip 
network 192.168.1.0 
network 192.168.2.0 
offset-list 1 in 1 serial 0 
offset-list 2 out 1 serial 0 

show ip route reveals the following: 

C 172.20.0.0/16 is directly connected, Ethernet0 
C 192.168.1.0/24 is directly connected, Serial0 
C 192.168.2.0/24 is directly connected, Serial1 
R 192.168.3.0/24 [120/1] via 192.168.2.1, 00:23, Serial1 
R 10.0.0.0/8 [120/2] via 192.168.1.1, 00:23, Serial0 
  10.0.0.0/8 [120/2] via 192.168.2.1, 00:23, Serial1 

Notice that there are two routes associated with network 10.0.0.0/8, one for each of two 
possible paths, and they both have the same route metric. This is an indication that the offset 
used in the offset-list line is not high enough. Since the metrics to both paths are the 
same, the router installs both routes. 

5.3.2.4 When route-filtering access lists are wrong 

I have shown how different problems can make you think there are access lists problems 
when there are not. Let's look at a situation where there actually are problems with the access 
lists themselves. If we implement our policy in the following way: 

access-list 1 permit 19.0.0.0 
access-list 2 permit 172.20.0.0 
router rip 
network 192.168.1.0 
network 192.168.2.0 
offset-list 1 in 3 serial 0 
offset-list 2 out 3 serial 0 

show ip route reveals the following: 

C 172.20.0.0/16 is directly connected, Ethernet0 
C 192.168.1.0/24 is directly connected, Serial0 
C 192.168.2.0/24 is directly connected, Serial1 
R 192.168.3.0/24 [120/1] via 192.168.2.1, 00:23, Serial1 
R 10.0.0.0/8 [120/1] via 192.168.1.1, 00:23, Serial0 

The path to network 10.0.0.0/8 goes through serial 0, yet its metric is only 1. It looks like 
access list 1 has not put network 10.0.0.0 into its policy set of routes that will have its route 
metrics increased. A look at access list 1 reveals that network 19.0.0.0/8 is in the only entry 
instead of network 10.0.0.0/8. Once corrected, the proper route should be installed in the 
routing table. 

Chapter 6. Route Maps 
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For more advanced network policies, Cisco routers have a policy structure called route maps. 
Route maps combine policy set definition with policy application, using the access list 
formats discussed in previous chapters. In this chapter I talk about using route maps for 
intranet routing policies and for routing policies in the Internet. Along the way, I cover some 
new access list types, key BGP (Border Gateway Protocol, the routing protocol used on the 
Internet) concepts, and how to implement commonly used Internet routing policies, focusing 
on the needs of multihomed organizations, not ISPs. 

6.1 Other access list types 

For most configurations, standard and extended access lists are enough to specify which sets 
of IP addresses or networks you want to influence with a policy. When you want to set 
policies with BGP or manipulate sets of networks based on their prefix length (the number of 
bits in the network mask), these types of access lists fall short. BGP is an Exterior Gateway 
Protocol (EGP) routing protocol. EGPs are designed for sending routing updates between 
large administrative domains. As a result, BGP routes carry a lot of information. Unlike 
Interior Gateway Protocols (IGP) such as OSPF or EIGRP, BGP routing updates carry 
complete path information. The routing updates can also carry flags added by network 
administrators called community attributes. Both paths and communities are often the basis of 
Internet routing policies. In this section, I talk about three new types of access lists: the prefix 
lists, the AS-path list, and the community list. Understanding these types of access lists is a 
prerequisite to using route maps, particularly with BGP. 

6.1.1 Prefix lists 

When working with networks of different prefix lengths, there are a number of situations 
where using standard access lists don't work. Let's say that you wanted to set up an access list 
that includes network 172.28.0.0/16 but doesn't include 172.28.0.0/24. Although you might 
try the following access list: 

access-list 1 permit 172.28.0.0 0.0.0.0.0 
access-list 1 deny 172.28.0.0 0.0.0.0.255 

172.28.0.0/24 will still be included in the policy set in the first entry. 

In general, standard access lists are unwieldy (if at all workable) when you want to include 
and exclude networks based on prefix length into a policy set. Let's say you want to include 
network 192.168.32.0/19 and all possible prefixes that are a part of it, i.e., all prefix lengths of 
network 192.168.32.0/19 equal to or greater than 19. We would have to implement this by 
denying shorter length prefixes and including everything else: 

access-list 2 deny 192.168.64.0 0.0.192.0 
access-list 2 permit 192.168.32.0 0.0.31.255 

The prefix-list access list makes policies much easier to express, and as shown in our first 
example, makes them possible. To create a policy of the network 172.28.0.0/16 and not 
172.28.0.0/24, we would use the following: 

ip prefix-list Class-B-Only seq 5 permit 172.28.0.0/16 
ip prefix-list Class-B-Only seq 10 deny 172.28.0.0/24 
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Like standard and extended access lists, entries are matched in sequence. In the case of prefix 
lists, the sequence number determines the order of matching, starting with the entry with the 
lowest sequence number and then going to the next largest sequence number until all entries 
have been compared. Prefix lists also have an implicit deny all at the end of the list, so for this 
policy, we could just say: 

ip prefix-list Class-B-Only seq 5 permit 172.28.0.0/16 

For our second example, one entry is all we need: 

ip prefix-list Slash19-and-longer seq 10 permit 192.168.32.0/19 ge 19 

Let's look at the format of the prefix list. After the required literal ip prefix-list, it takes a 
name that can be composed of letters, numbers, and other characters such as dashes. After the 
name there is the optional literal seq, followed by a sequence number. This sequence number 
is used to sort the sequence in which prefixes are evaluated in the list. If you don't enter a 
sequence number, one is created for you, with an increasing sequence by 5 (adding 5 to the 
last sequence number). The use of sequence numbers also allows a network administrator to 
change a line in a prefix list without deleting the whole list and reentering it with the 
modifications. After the sequence number, there is either a permit or deny literal, followed 
by a CIDR network specification (the prefix and prefix length separated by a slash). The last 
parts are optional sections specifying conditions on the length of prefixes. If no conditions are 
included regarding prefix length, a route must exactly match the specified network, including 
the prefix length. 

In general, the format of the prefix list can be expressed as: 

ip prefix-list name [seq sequence-number] {permit|deny} prefix/prefix-
length [ge  
greater-equal-to-value] [le less-equal-to-value] 

Prefix lists are easier to manipulate then standard access lists. Since they have sequence 
numbers, you can delete specific entries with the following configuration command when in 
ip prefix-list configuration mode: 

no ip prefix-list prefix-list-name seq sequence-number 

where prefix-list-name is the name of the prefix list and sequence-number is the 
sequence number of the entry you wish to delete. Omitting the seq keyword and sequence 
number deletes the entire prefix list. If you wish to insert an entry in the middle of a prefix 
list, you can create an entry number with a sequence number between the sequence numbers 
of the entries that are before and after the new entries. 

You can turn off automatic sequencing with the command: 

no ip prefix-list sequence-number 

Otherwise, the router will add five to the last sequence number to generate the next sequence 
number. 
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Prefix lists are viewed with the show ip prefix-list command. Similar to the show access-list 
command, when this command is given without a prefix list argument, all prefix lists are 
shown, but with an argument of a prefix list name, only that specific prefix list is shown. show 
ip prefix-list detail provides more information, such as the number of times individual entries 
are accessed, while show ip prefix-list summary shows only a summary of prefix lists and 
does not show individual entries. 

Here are some examples using a prefix list called Net10-prefixes. The command show ip 
prefix-list Net10-prefixes shows the following: 

RouterX# show ip prefix-list Net-10-prefixes 
ip prefix-list Net-10-prefixes:  4 entries 
   seq 5 permit 10.204.23.0/24 
   seq 10 permit 10.204.28.0/24 
   seq 15 deny 10.204.0.0/16 
   seq 20 permit 10.0.0.0/8 

This prefix list allows the prefixes 10.204.23.0/24, 10.204.28.0/24, but no other prefixes of 
10.204.0.0/16. All other prefixes of 10.0.0.0/8 are allowed. The command show ip prefix-list 
detail shows detailed information about the prefix list. In the following example, you can see 
the number of entries (count), the number of entries with range statements, the range of 
sequence numbers (sequences), and the number of times the list is used in policy settings 
(refcount) for all access lists, plus the last prefix list modified: 

RouterX# show ip prefix-list detail 
Prefix-list with the last deletion/insertion: Net10-prefixes: 
ip prefix-list Net10-prefixes: 
count 1, range entries: 0, sequences 5 - 20, refcount: 1 
   seq 5 permit 10.204.23.0/24 (hit count: 3, refcount: 1) 
   seq 10 permit 10.204.28.0/24 (hit count: 0, refcount: 1) 
   seq 15 permit 10.204.0.0/16 (hit count: 0, refcount: 1) 
   seq 20 permit 10.0.0.0/8 (hit count: 0, refcount: 1) 

The show ip prefix-list detail command shows matches (hit count) for each entry. These 
entry counters can be cleared with clear ip prefix-list followed by a prefix list name. 

The prefix list can be used in BGP routing processes in the same way as standard access lists 
in distribute-list statements. Let's say we wanted to accept only the class B 172.28.0.0/16 
and no longer accept prefixes of 172.28.0.0/16 from a BGP neighbor at 198.168.35.1 and AS 
65351. We would use the following configuration: 

ip prefix-list ClassB-only-172-28 seq 10 permit 172.28.0.0/16 
! 
router bgp 65350 
 neighbor 192.168.35.1 remote-as 65351 
 neighbor 192.168.35 1 prefix-list ClassB-only-172-28 in 

The neighbor statement says that the only routes that exactly match the prefix list ClassB-
only-172-28 are accepted from BGP neighbor 192.168.35.1. 

Another policy that we might implement with prefix lists is the following: 
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Send only prefixes of network 10.0.0.0/8 with length smaller than /20 to BGP 
neighbor 192.168.35.1 

Policies like this can reduce the number of routes that the receiver of the routes needs to 
process. This policy can be expressed as: 

ip prefix-list Class10-Routes-19 seq 10 permit 10.0.0.0/19 le 19 
router bgp 65000 
neighbor 192.168.35.1 remote-as 65001 
neighbor 192.168.35.1 prefix-list Class10-Routes-19 out 

6.1.2 AS-path access lists 

A key BGP concept is the autonomous system (AS). It is difficult if not impossible to set 
useful policies in BGP without understanding how ASes function, so I'll spend some time on 
this subject before talking about building policy sets based on AS-path information. In BGP, 
routing updates contain AS-path information. Autonomous systems are collections of 
networks governed by an organization—a single administrative domain. Typically, BGP 
routing information on the Internet has the originating organization's AS number, the ISP's 
AS number, and any other AS number on the route to the end network. 

Routing policies are often set based on AS-path information. That implies that in route map 
construction, there is a mechanism to match against an AS path. I have shown how a standard 
access list can be used to match based on network address. Cisco routers also have an 
analogous construct for building policy sets called an AS-path access list. To use AS-path 
access lists, you first need to know how AS paths are stored in routing tables. AS paths are 
stored as a series of AS numbers such as this: 

3 2 1 5 4 
3 2 1 
1 2 3 

As routing updates pass through different administrative domains, each forwarding AS adds 
itself in front of the AS path. For example, the AS path from AS 1 is directly connected to AS 
2. If AS 2 propagates a route inside AS 1 through BGP to another AS, the AS path to that 
network in the routing update is: 

2 1 

An autonomous system has the option of adding additional hops. Using the previous example, 
AS 1 and AS 2 can add extra hops in front (this is often done to influence the choice of 
routes—more on this later). Thus routes out of AS 1 passing through AS 2 could look like: 

2 2 1 
2 1 1 
2 1 1 1 

or even: 

2 2 1 1 
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AS numbers are expressed as 16-bit numbers and stored as 16-bit values in routing updates. 
Thus AS numbers in BGP range from 1 to 65535. Certain numbers within this range are 
reserved for exclusive use within organizations, just as the TCP/IP protocol suite allows a 
certain set of IP addresses to be used exclusively within an organization. Hosts within an 
organization's private IP space cannot talk over the Internet to another organization. Similarly, 
there is a private AS number space. These AS numbers are dedicated for use within an 
autonomous system. AS paths circulated within the Internet between organizations cannot 
have AS hops in this space. AS numbers between 64512 and 65535 are considered private. 
They are typically used inside what is called a BGP confederation. A BGP confederation is a 
set of autonomous systems that talk to each other using BGP and private AS numbers, but 
when talking to AS outside of the confederation, hide their private AS numbers and paths and 
present a single public AS number. When private AS numbers are used inside of a BGP 
confederation, the private AS numbers are listed within parentheses. An AS path within a 
confederation might appear like this: 

(65000 65001) 2 1 

When a route with this path is distributed to a public AS, the part within parenthesis 
disappears: 

2 1 

AS paths are matched into policy sets with AS-path access list entries. Each entry has the 
following format: 

as-path access-list name {permit|deny} {regular expression} 

name can be a number or a name. These names and numbers can be the same as already 
configured standard or extended access lists since they are used and applied differently. 
regular expression is in the regular expression format commonly used in Unix and Perl—
an expression that matches some set of one or more strings. Table 6.1 shows special 
characters used in Cisco regular expressions. 

Table 6.1. Characters used in Cisco regular expressions  
Special character Meaning 
. Match individual character 
* Match any number of preceding expression 
+ Match at least one of preceding expression 
^ Beginning of line 
$ End of line 
( Start including next expressions as one unit until a matching parenthesis is reached 
) Include previous expressions, starting with a ( as a single unit 
_ Beginning of line, end of line, left or right parentheses, left or right bracket, or whitespace 

The character . matches any one individual character in a string. A * means match 0 or more 
of the preceding expressions, while + means match 1 or more of the preceding expressions. 
Thus, the expression 2.* matches the strings "2", "23", "244", and "25555", but 2.+ does not 
match the string "2". A ^ means match at the start of the line, while a $ means match at the 
end of the line. In addition, Cisco defines an operator particular to Cisco routers, the 
underscore ( _ ). The underscore matches the beginning of a line, the end of a line, left or right 
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parentheses, left or right bracket, or any whitespace. It is typically used for delimiting 
individual AS numbers in a path. 

Table 6.2 lists some regular expressions commonly used within AS-path matching. 

Table 6.2. Commonly used regular expressions for AS-path matching  
Expression Meaning 
x+ 1 or more occurrences of x 
x* 0 or more occurrences of x 
^x Expression that starts with x 
x$ Expression that ends with x 
xy x followed by y 
(xy) x followed by y, taken together as a unit 

Here are some examples of how AS-path matching works. The following AS-path access list 
only includes routes with an AS path of 1 in the policy set. This is typically used when 
building a policy set of all routes originating from a neighboring AS. 

as-path access-list 5 permit ^1$ 

The following AS-path access list: 

as-path access-list 6 permit _2_.*$ 

matches any AS path with AS 2 inside of it. Any route that transits AS 2 is included in the 
policy set. This particular regular expression is used when you are concerned with routes that 
transit a particular AS. 

The AS-path access list entry: 

as-path access-list 7 permit (_3)+$ 

includes all routes that originate with 3 and includes any number of prepends of 3. You would 
use an entry like this when you have a neighboring AS that may choose to do AS-path 
prepending. 

Like other access lists, chains of individual entries can be created. These are matched in the 
sequence that they are entered, just like standard and extended access lists. For example, the 
AS-path access list: 

as-path access-list 1 deny ^1$ 
as-path access-list 1 permit _1_.*$ 
as-path access-list 1 permit _2_.*$ 

does the following: 

• Denies all routes directly from and originating in AS 1 
• Permits all routes that transit through AS 1 
• Permits all routes that transit through AS 2 
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AS-path access lists are usable by themselves and not just as part of route maps. A network 
administrator can apply AS path access list filtering directly to incoming and outgoing routes 
without using route maps. Consider the following example: 

as-path access-list 1 permit ^1$ 
as-path access-list 1 permit _2_.*$ 
as-path access-list 2 permit _2_3$ 

AS-path list 1 includes routes directly from AS 1 with no transit ASes and all routes transiting 
through AS 2. AS path list 2 includes all routes that originate from AS 3 that pass through 2. 

In a BGP route process definition, we can use AS-path access lists to control which routes are 
accepted based on the AS path. Using the AS-path access lists described earlier, consider the 
following: 

router bgp 4 
neighbor 192.168.30.1 remote-as 5 
neighbor 192.168.30.2 remote-as 6 
neighbor 192.168.30.1 as-path 1 in 
neighbor 192.168.31.2 as-path 2 out 

This example shows a route process accepting all routes from AS 5 that meet the stipulation 
of AS-path list 1—routes transiting through AS 2 or bound for AS 1. Only routes originating 
from AS 3 and transiting through AS 2 are allowed to pass on to AS 6. Since no AS path 
access list is applied to the incoming routes from AS 6, all routes are accepted from AS 6. 
Similarly, since no AS path access list is applied to the outgoing routes to AS 5, all routes are 
distributed to AS 5. 

How do you learn the AS path associated with a route and verify if your AS-path access lists 
are correct? How can you find problems in AS path access lists? The show ip bgp command 
can help you verify the correctness and find problems with AS path access lists. Show ip bgp 
generates a list of all of the routes learned by BGP from the router's BGP peers and the AS 
path associated with each possible path. Here is sample output: 

Router1# show ip bgp 
BGP table version is 28690299, local router ID is 192.168.128.129 
Status codes: s suppressed, d damped, h history, * valid, > best, i - 
internal 
Origin codes: i - IGP, e - EGP, ? - incomplete 
 
   Network          Next Hop          Metric LocPrf Weight Path 
*> 10.0.0.0/8    192.168.128.138                         0 2 1 i 
*                192.168.128.139                         0 3 1 i 
*> 10.5.5.4/30   192.168.128.138                         0 2 5 i 
*> 172.24.0.0/16 192.168.128.136                         0 (65001) i 
*                192.168.128.137                         0 (65002 65001) i 
*> 192.168.32.3  192.168.128.136                         0 (65001) i 

There are multiple paths for some networks in the previous BGP table excerpt. The path 
preferred by the router has a greater-than sign (>) in front of it. The network number and 
prefix length are in the first column, followed by the next hop in the second. Since no metric 
or local preference has been set, the defaults are not shown. The default weight value of is 
shown, however. 
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If there are many networks learned by BGP, the output can be very long. For a router taking 
in full Internet routes, this could be tens of thousands of lines long. show ip bgp followed by a 
network produces BGP routing information pertaining to a single network. For example, show 
ip bgp 12.13.84.0 might produce output like this: 

router1# show ip bgp 12.13.84.0 
BGP routing table entry for 12.13.84.0/24, version 28270198 
Paths: (2 available, best #2) 
   7806, (aggregated by 7806 12.13.84.3) 
    192.168.128.137 (metric 10) from 192.168.128.137 
      Origin IGP, localpref 100, valid, external 
      Community: 7806:100  
  7806, (aggregated by 7806 12.13.84.2) 
    192.168.128.136 (metric 6) from 192.168.128.136 
      Origin IGP, localpref 100, valid, external, best 
      Community: 7806:100 

This output shows two paths to network 12.13.84.0/24, one through the router at 
192.168.128.136 and the other from the router at 192.168.128.137. Values of route attributes 
such as local preferences, metrics, and communities are shown in the output. I will talk about 
these later. 

If you wish to see which routes in your routing table will be included by a particular regular 
expression, the command show ip bgp regexp followed by a regular expression shows all 
routes that match. For example, show ip bgp regex ^\ (66000\)$ produces the following: 

Router1# show ip bgp regex ^\(66000\)$ 
BGP table version is 8413446, local router ID is 192.168.129.133 
Status codes: s suppressed, d damped, h history, * valid, > best, i - 
internal 
Origin codes: i - IGP, e - EGP, ? - incomplete 
 
   Network                   Next Hop          Metric LocPrf Weight Path 
*> 172.15.0.0/16       192.168.248.252                           0 (66000) 
i 
*> 172.18.0.0/16       192.168.248.252                          10 (66000) 
i 
*> 192.168.72.0/24     192.168.248.252                           0 (66000) 
i 
*> 172.20.0.0/16       192.168.248.252                           0 (66000) 
i 

In this example, we can see that one network, 172.18.0.0/16, has a weight different from the 
other networks. A particularly useful version of this command shows the routes are originated 
from a router: 

Router1#show ip bgp regex ^$ 
BGP table version is 67829, local router ID is 172.15.11.3 
Status codes: s suppressed, d damped, h history, * valid, > best, i - 
internal 
Origin codes: i - IGP, e - EGP, ? - incomplete 
 
   Network            Next Hop          Metric LocPrf Weight Path 
*> 172.16.0.0       172.15.10.3           271          32768 i 
*> 192.168.30.0     172.15.10.3           138          32768 i 
*> 10.0.3.0/24      172.15.10.3           128          32768 i 
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You can see how routes have different values for different metrics. Locally originated routes 
have a default weight of 32768, while other routes have a zero weight. Other metrics, like 
"Metric," have different values for each route. 

To test entire AS-path access lists, use the command show ip bgp filter-list. If you define an 
AS-path access list as follows: 

as-path access-list 5 permit ^1_ 
as-path access-list 5 permit ^2$ 

capturing in a policy set all of the routes coming through AS 1 plus all the routes that 
originate from AS 2, the command show ip bgp filter-list 5 produces the following output: 

Router1# show ip bgp filter-list 5 
BGP table version is 23029, local router ID is 192.168.18.100 
Status codes: s suppressed, d damped, h history, * valid, > best, i - 
internal 
Origin codes: i - IGP, e - EGP, ? - incomplete 
 
   Network          Next Hop          Metric LocPrf Weight Path 
*> 4.0.0.0/8     192.168.18.136                          0 1 2 i 
*>               192.168.18.138                          0 2 i 
*> 172.23.0.0/16 192.168.18.136                          0 1 3 i 
*                192.168.18.137                          0 1 4 i 
*> 172.24.0.0/16 192.168.18.138                          0 2 i 
*> 192.168.10/24 192.168.18.136                          0 1 i 

6.1.3 BGP community attribute 

A very important attribute of routes in BGP is the community attribute, and as you might 
expect, there is a type of access list for building policy sets of them. Communities are four-
byte numbers assigned to routes that flag routes for special processing by other routers. 
Routers can watch for communities on route advertisements and then take action on them. 
The uppermost bytes are an AS number, and the lower bytes are a number chosen by a 
network administrator. 

Let's look at how community lists are constructed and how matching works. The community 
access list entry has the following format: 

ip community-list {community list number} {permit|deny} string1 string2 .. 
string n 

After the list number and permit/deny arguments, there are a series of communities. If any 
community of a route matches any of the communities on the entry, the route is added to a 
policy set. Here is an example: 

ip community-list 100 permit 65000:1 65000:2 65000:3 
ip community-list 100 permit 65001:1 65001:2 65001:3 

Communities have two formats: an older format that is a long number (the Cisco default) and 
a newer format that divides the number into two numbers separated by a colon. Communities 
are 16-bit numbers and can range from 1 to 65535. The new format allows some structure to 
the community string in the form a:b. The first number (a) corresponds to the first (leftmost) 
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32 bits of the community string. The second number (b) corresponds to the second (rightmost) 
16 bits of the string. ISPs often put their own AS as the first number to denote communities 
that relate to their infrastructure. To convert from the new format to the old format, use the 
following formula: 

old format community string = a * 65536 + b 

To convert to a new format from an old format string, convert the community string to a 32-
bit binary number. The first number (a) is the decimal value of the leftmost 16 bits. The 
decimal equivalent of the rightmost 16 bits is the second number (b). For example, the new 
format community string 701:1 would convert to 701 65536 + 1 or 45940737. The new 
format of the old format community string 45940738 would be 701:2. In the older format, the 
previous example would be the following: 

ip community-list 100 permit 4559840001 4559840002 4559840003 
ip community-list 100 permit 4559905537 4559905538 4559905539 

The configuration directive ip bgp-community new-format automatically converts the old 
format to the new format. 

There are a few special predefined communities. The Local-AS community string instructs 
BGP not to send a route tagged with this string outside of the local AS. No-export prevents a 
route from being advertised to an external peer, while No-advertise tells BGP not to 
advertise the route from any peer. Internet communities means advertise the route to the 
Internet community. 

Like AS-path access lists, the show ip bgp command can take community list entries or 
community lists as arguments to show only routes that match the community list entry or 
community list. The router command show ip bgp community followed by a community string 
shows all routes with that community: 

Routerx# show ip bgp community 65000:1 
BGP table version is 4953083, local router ID is 10.117.56.120 
Status codes: s suppressed, d damped, h history, * valid, > best, i - 
internal 
Origin codes: i - IGP, e - EGP, ? - incomplete 
 
 Network Next Hop Metric LocPrf Weight Path 
*>i10.0.0.0 10.117.56.174 4294967294 100 0 (65001) i  
*>i172.20.48.0/20 10.117.56.174 4294967294 100 0 (65001) i 
* i172.20.6.0/24 10.177.56.241 4294967294 100 0 (65002) i 
*  172.21.7.0/24 10.177.56.241 4294967294 100 0 (65002) i  
* i172.21.94.0/23 10.177.56.241 4294967294 100 0(65002) i 
*  172.24.125.0/24 10.177.56.241 4294967294 100 0 (65002) i 
* i172.25.252.0/23 10.177.56.174 4294967294 100 0 (65001) i 
* i172.26.92.0/24 10.177.56.241 4294967294 100 0 (65001) i 

If you add the literal exact, only the routes with that community string are displayed. Similar 
to AS-path access lists, the command show ip bgp community-list followed by a community 
list name shows all routes that match that community list. 

6.2 Generic route map format 
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To create generic policies for routing, we need two things: a way to identify routes to be 
affected by a policy and a way to set policies once those routes have been identified. Route 
maps are a series of entries that have exactly those two sets of elements. The name "route 
map" is entirely appropriate: routes are identified and mapped to a policy setting. 

Each route map entry has the following format: 

route-map route-map-name {permit|deny} {sequence number} 
match clauses  
policy settings 

The sequence number determines the sequence in which route maps are evaluated. Entries 
with lower sequence numbers are evaluated before blocks with higher sequence numbers with 
the same route map name. Match clauses are policy set definitions, usually some kind of 
access list reference intended to match route characteristics. There can be multiple match 
clauses, and a route has to match all of the clauses in order to match the entry. permit and 
deny are the two possible keywords for route map entries. A permit says that a route with the 
match clause characteristics will have the policy settings applied to it. A deny says that a 
route that matches a match clause will no longer be evaluated by the route map, and further 
comparisons to other route map entries will stop. No route attributes are changed when a deny 
is encountered. 

Here is an example of a route map: 

route-map ROUTES-IN permit 10 
 match ip address 5 6 
 set local-preference 110 
 
route-map ROUTES-IN deny 20 
 match ip address 7 
 
route-map ROUTES-IN permit 30 
 match ip address 8 
 set local-preference 90 
 
access-list 5 permit 192.168.30.0 
access-list 6 permit 192.168.31.0 
access-list 7 permit 192.168.32.0 
access-list 8 permit 192.168.33.0 

The route map ROUTES-IN has three entries. Every route that is passed through ROUTES-IN 
first goes through the entry with sequence number 10. If the destination network in the route 
matches access list 5 or access list 6, then the route's local preference (I explain local 
preference later in the chapter) is set to 110. If not, the route is checked if it matches the route-
map entry with sequence 20. If it matches access list 7, then no further matching is done 
because the entry is a deny route map entry. The route is effectively ignored and not used or 
redistributed by the route map. If the route matches access list 8, then it has its local 
preference set to 90. If the route matches neither entry 10, 20, or 30, then the route's 
characteristics are left alone, and it is basically ignored. 

In the previous example we matched against the network addresses to set route characteristics. 
You don't necessarily need both a match clause and a policy setting, but you need at least one 
of them. The lack of a match clause implies that all routes will match. The lack of policy 
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setting means that no changes are made to any matching routes. In later sections, I will 
describe how to match against other parts of BGP routes, such as AS paths and communities. 
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6.3 Interior routing protocols and policy routing 

A typical use of route maps involves redistributing routes. While you can use the 
distribute-list router configuration and standard access lists to implement policies, route 
maps can do things that you cannot do easily with access lists alone. As an example, let's say 
we want to redistribute static routes to an EIGRP routing process with the following policy: 

Distribute all static routes to networks 172.16.20.0/24 172.16.25.0/24, 
172.16.52.0/24, 192.168.56.0/24, 192.168.57.0/24, and 192.168.59.0/24 to the 
routing process EIGRP 100 

In EIGRP 100, distribute only the certain static routes (172.16.20.0/24 
172.16.25.0/24, and 192.168.59.0/24) out of Fast Ethernet 1/0 

We could implement this with: 

ip access-list standard some-static-routes 
 permit 172.16.20.0 
 permit 172.16.25.0 
 permit 172.16.52.0 
 permit 192.168.56.0 0.0.1.0 
 permit 192.168.59.0 
ip access-list standard statics-for-Fast-1-0 
 permit 172.16.20.0 
 permit 172.16.25.0 
 permit 192.168.59.0 
router eigrp 100 
 redistribute static 
 distribute-list some-static-routes out static 
 distribute-list statics-for-Fast-1-0 out FastEthernet 1/0 

Note that every time we add static routes that would be distributed out of FastEthernet 1/0, we 
have to update two access lists. We can get around this problem by using route maps: 

ip access-list standard statics-not-for-Fast-1-0 
 permit 172.16.52.0 
 permit 192.168.56.0 0.0.1.0 
ip access-list standard statics-for-Fast-1-0 
 permit 172.16.20.0 
 permit 172.16.25.0 
 permit 192.168.59.0 
route-map statics-in-map permit 10 
 match ip address statics-not-for-Fast-1-0 
route-map statics-in-map permit 20 
 match ip address statics-for-Fast-1-0 
router eigrp 100 
 redistribute static route-map statics-in-map 
 distribute-list statics-for-Fast-1-0 out FastEthernet 1/0 

In this example, route maps make it easier to maintain the router configuration because they 
let us combine two separate access lists for one policy application. 

Route maps also allow us to set different metrics for incoming routes. Let's say we add the 
following to our policy: 
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Set the metric for static routes redistributed through interface fast Ethernet 1/0 
to 1, while setting the metric for all other redistributed static routes to 3000 

We can implement this new policy addition by changing static-in-map to the following 
map: 

route-map statics-in-map permit 10 
  match ip address statics-not-for-Fast-1-0 
  set metric 3000 
route-map statics-in-map permit 20 
  match ip address statics-for-Fast-1-0 
  set metric 1 

The metric used in EIGRP is set depending on the static route. 

Another use of route maps is routing based on the characteristics of incoming packets. 
Ordinarily, all of the packets coming into a router, regardless of their characteristics, are 
forwarded according to the route table. Policy routing allows us to route packets differently, 
depending on some characteristic of incoming packets that we may choose. Consider the 
router shown in Figure 6.1. 

Figure 6.1. A router requiring policy routing 

 

Let's say that we want to implement the following policy: 

All traffic coming in from Ethernet 0/0 should go out of Serial 1/0 

All traffic coming in from Ethernet 0/1 should go out of Serial 1/1 

This policy cannot be implemented with any of the techniques covered so far. All of the 
routing done to this point has been based on filtering that's based on the destination address, 
not the origin. Cisco routers implement the following: 

interface ethernet 0/0 
 ip policy route FROM-ETHERNET-0-0 
interface Ethernet0/1 
 ip policy route FROM-ETHERET-0-0 
 
route-map FROM-ETHERNET-0-0 permit 10 
 match interface 0/0 
 set next-hop Serial1/0 
route-map FROM-ETHERNET-0-1 permit 10 
 match interface Ethernet0/1 
 set next-hop Serial1/1 
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In this example, we match the interface that traffic is coming in on using the match interface 
clause and set the next hop as the interface where we want traffic to go. 

We can also use extended access lists as a way to build a policy set for policy routing. This 
allows us to implement much finer-grained control over how traffic flows. Let's say for the 
network in Figure 6.1, we have the following policy: 

All SSL traffic (port 443) coming into the two Ethernet interfaces will go out 
of Serial 1/0 

All other traffic will go out via Serial 1/1 

We implement this policy with the following: 

interface Ethernet0/0 
 ip policy route FROM-ETHERNETS 
interface ethernet 0/1 
 ip policy route FROM-ETHERNETS 
 
access-list 100 permit tcp any eq 443 any 
access-list 100 permit tcp any any eq 443 
access-list 101 permit ip any any 
 
route-map FROM-ETHERNETS permit 10 
 match ip address 100 
 set next-hop Serial 1/0 
 
route-map FROM-ETHERNETS permit 20 
 match ip address 101 
 set next-hop Serial 1/1 

The route map FROM-ETHERNETS is applied to all traffic coming from the Ethernet segments. 
All SSL traffic (having port 443 as either source or destination) is given the next hop of Serial 
1/0. All other traffic is sent out of Serial 1/1. 

The command show route-map shows route maps along with how many packets have 
matched each clause. As an example, here is the output from a show route-map command 
used in policy routing: 

Router1>show route-map FROM-ETHERNETS 
route-map FROM-ETHERNETS, permit, sequence 10 
  Match clauses: 
    ip address (access-lists): 100 
  Set clauses: 
    next-hop Serial 1/0 
  Policy routing matches: 823 packets, 426466 bytes 
route-map FROM-ETHERNETS, permit, sequence 20 
  Match clauses: 
    ip address (access-lists): 101 
  Set clauses: 
    next-hop Serial 1/1 
  Policy routing matches: 340 packets, 2123458 bytes 
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Only route maps used for this policy routing produce packet and byte counts. You can employ 
show route-map to show route maps used with routing protocols, but the packet counters do 
not increment. 

6.4 BGP 

This section shows how to use route maps and implement useful BGP routing policies. First, I 
use different kinds of match clauses to build policy sets. Then I relate different ways that 
route maps and other kinds of access lists can be used. 

6.4.1 Match clauses in BGP 

At the start of this chapter, I went over different kinds of access lists. In this section, I'll show 
how to use them to build policy sets that are part of match clauses in route maps. 

Prefix lists are matched with the following format: 

match ip address prefix-list {prefix-list name} 

where prefix-list name is the name of the prefix list. Let's say we wanted to set prefixes of 
172.28.0.0/16 that are less than or equal to /19 to have a local preference of 110 (we'll talk 
more about local preference later). We define a route map and prefix list with the following: 

ip prefix-list prefixes-19-and-shorter seq 5 172.28.0.0/16 le 19 
 
route-map VALID-INCOMING-ROUTES permit 10 
  match ip address prefix-list prefixes-19-and-shorter 
  set local-preference 110 

and then apply this route map to a BGP neighbor. The prefix list prefixes-19-and-shorter 
defines a policy set, and in the route map, we take this policy set and apply a local preference 
of 110 to it. 

Similarly, we can do the same with AS-path access lists: 

as-path access-list 3 permit ^\(65001(_.*)*\).*$ 
as-path access-list 4 permit ^\(65002(_.*)*\).*$ 
access-list 3 permit any 
 
route-map INCOMING-ROUTES permit 10 
 match as-path 3 
 set as-path prepend 65001 
 
route-map INCOMING-ROUTES permit 20 
 match as-path 4 
 set as-path prepend 65002 
 
route-map INCOMING-ROUTES permit 30 
 match ip address 3 
 
router bgp 65000 
network 172.28.0.0 
neighbor 192.168.30.1 route-map INCOMING-ROUTES in 
neighbor 192.168.31.2 route-map INCOMING-ROUTES in 
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AS-path access list 3 builds a policy set of all routes originating from AS 65001. AS path 
access list 4 matches all routes coming directly from AS 65002. The route map INCOMING-
ROUTES prepends an extra AS hop from all routes from neighboring AS 65001. It appends AS 
65002 to all routes coming from AS 65002. All other routes are left alone. What is the result 
of this policy when we apply the route map to incoming routes? Routes from AS 65001 and 
AS 65002 have longer AS paths and are thus less preferred compared to routes from other 
autonomous systems. All other routes match the standard access list 3 in the last route map 
entry. Since there is no policy setting in this entry, routes with AS patterns that don't match 
the AS-path access lists are unaffected. Less traffic will go out through AS 65001 and AS 
65002. 

 
If you want to have a default behavior for routes (even if the default 
behavior is to do nothing), don't forget to put in a route map entry that 
matches everything. Otherwise, routes that don't match any route map 
entry are not included when you apply the route map.  

To match a community string, use the route map command: 

match community {community list number} [exact-match] 

The community list number is the number of the community string access list. If a route has 
a community string that matches the community list (specified by the community list 
number), then the route map entry takes effect. If the optional keyword exact-match is 
present, the route's communities must exactly match the community list, not just have one 
community string that matches. 

How do you use a community string? One option is to allow downstream autonomous 
systems to express route preferences. Take the route map: 

route-map PREFERENCE-BY-COMMUNITY permit 10 
 match community 1  
 
set local preference 110 
 route map PREFERENCE-BY-COMMUNITY permit 20 
 match community 2 
set local preference 100 
 
route-map PREFERENCE-BY-COMMUNITY permit 30 
 match community 3 
 set local preference 90 
ip community-list 1 permit 100 
ip community-list 2 permit 200 
ip community-list 3 permit 300 

An autonomous system's network administrator who wishes to implement traffic preferences 
through local preference within an AS with the above route map can do so by setting 
communities. Local preference is a way of specifying how an AS will treat routes. All routes 
without an explicit local preference have a local preference of 100. Routes with higher local 
preferences are preferred over routes with lower local preferences. Some ISPs use this 
technique to allow multihomed customers to do preferential routing. The ISPs that provide 
this option apply a similar route map to routing updates from their customers. 
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6.4.2 Route maps as command qualifiers 

Like standard access lists, route maps and AS path access lists can be qualifiers to route 
statements. Just as some routing protocol commands take an access list as an optional 
argument, some BGP4 directives take route maps or AS-path access lists as options. Let's 
look at some of these commands. 

The BGP4 command weight can take the form: 

neighbor [IP address] Weight [weight value] 

weight is similar to administrative distance settings in that it can be used to determine the best 
path selection within a router. It is different in that the higher weight is preferred. An example 
use of weight is the following: 

neighbor 192.168.50.3 weight 10 

But we can specify which routes get that weight with a standard access list as a policy set: 

access-list 1 permit 192.168.50.0 
access-list 1 permit 172.28.0.0 
 
router bgp 65004 
 
 neighbor 192.168.50.1 distribute-list 1 weight 100 

We can also filter based on an AS-path access list: 

as-path access-list 1 permit ^65000$ 
router bgp 65004 
 neighbor 192.168.50.1 filter-list 1 weight 100 

The default path filter is an access list that permits all. By adding AS-path filters, we control 
the weight that we assign routes based on the routes' AS paths. 

The aggregate-address command in BGP4 has several ways to use route maps to adjust what 
routes get aggregated. It has the following options that take a route map as a way of 
specifying the policy set that aggregation applies to: 

• suppress-map 
• unsuppress-map 
• advertise-map 
• attribute-map 

Let's look at some of these options to see how route maps can be used as command 
arguments. The suppress-map option designates a route map that describes what addresses in 
an address block to advertise after aggregating. For example, let's aggregate all addresses in 
block 192.168.32.0 through 192.168.63.0 but continue to advertise address blocks 
192.168.40.0 through 192.168.47.0. We would set up the following route map: 

access-list 2 permit 192.168.40.0 0.0.7.0 
route-map SUPPRESS-ADDRESSES permit 10 
 match ip address 2 
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This route map is used in the following way: 

router bgp 65000 
 aggregate-address 192.168.32.0 0.0.31.0 suppress-map SUPPRESS-ADDRESSES 

Unlike some other instances of route maps, this particular use of routes has no policy settings 
on each entry. In this case, it is used purely to build a policy set of routes that are not to be 
aggregated. 

The attribute-map option lets us change the attributes of an aggregated route. For example, 
the following aggregate address command and route map: 

route-map AGGREGATE-ATTRIBUTES permit 10 
 set metric 10 
 set community 701:1 
router bgp 65000 
aggregate-address 192.168.32.0 0.0.31.0 attribute-map AGGREGATE-ATTRIBUTES 

sets a route metric of 10 and adds a community attribute of 701:1 to the route aggregation. In 
this case, the route-map AGGREGATE-ATTRIBUTES has no match clause, meaning all routes 
match this entry. 

"Flapping" networks—networks that appear and disappear—are a threat to routing stability, 
as large-scale route flapping can slow down routers. Networks that flap can be dampened, i.e., 
taken out of the routing table until a certain time period. Since this can be a severe penalty, 
there is a route map argument to the dampening command that allows a network administrator 
to declare what routes can be dampened. As an example, let's say that all routes tagged with 
the community string 700 are particularly troublesome routes and deserving of dampening. 
We would set up the following route map: 

ip community-list permit 700 
 route-map DAMPENED-ADDRESSES permit 10 
 match ip community 700 

and then use the following dampening statement: 

router bgp 65000 
 bgp dampening route-map DAMPENED-ADDRESSES 

6.4.3 Implementing path preferences 

A common application of route maps with BGP is the implementation of traffic preference 
policies. To implement route preferences in BGP, you first need to understand how BGP 
selects routes for placement in the routing table. BGP routes carry a set of attributes that are 
used to make routing decisions. Some of these attributes are changeable, functioning as 
administrative knobs that allow a network administrator to affect route selection while other 
attributes cannot be changed. Table 6.3 shows BGP route attributes in order of preference for 
deciding routes . 
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Table 6.3. BGP route attributes in order of preference  

Attribute Most preferred Settable for 
individual route? Default (if any) 

Prefix length Longer prefix length (more 
specific route) Yes   

Connection to next hop Do not consider if next hop 
is not reachable No   

Synchronization 
Do not consider if BGP path 
is not synchronized and 
synchronization is enabled 

Yes (turn 
synchronization on or 
off) 

Synchronization 
on 

Weight Higher Yes 0 
Local preference Higher Yes 100 

Originated by router   
Yes (by originating 
with a network 
statement) 

  

AS path Shorter Yes   

Origin code (where route originated) IGP < EGP < incomplete No Depends on origin 
of route 

Multi-Exit Discriminator Lower Yes   
Prefer external (EBGP) over internal 
route (IBGP). Note that routes through 
confederations are considered internal 

      

Prefer route that goes through closest 
IGP neighbor   Yes (by manipulating 

IGP metrics)   

If maximum-paths is enabled, install 
route if the best route and this route are 
external and from the same neighboring 
AS number 

      

If maximum-paths is not on, prefer the 
route with the lowest IP address value 
for Router ID 

Lower Yes   

When the BGP routing process sees multiple paths to a network, it looks for the most specific 
route, i.e., the route with the longest prefix. If a routing decision must be made for a 
destination IP address, the route with the more specific part of a network is used. For 
example, if BGP needs to decide how to route a packet to 192.168.32.5, and there are two 
routes that could match, one to 192.168.0.0/16 and another to 192.168.32.0/24, the route to 
192.168.32.0/24 is used. If the next hop for a route is not available, the route is not 
considered. This may seem rather odd, but the next hop in a BGP route may not necessarily 
be the IP address of the router that sent the update, unlike IGP routing protocols such as RIP. 
BGP then looks at synchronization to decide whether to consider the route. If synchronization 
is turned on, and the route is learned via IBGP, the route is not considered if there is no IGP 
route for the network. 

Next, BGP prefers the route with the highest weight. If weights are equal, the router installs 
the route with the highest local preference. If local preferences are the same, then the route 
that was originated by the router is used (originated with the network statement). Then, the 
route with the shortest AS path is chosen. If AS paths are the same, then the route with the 
lowest origin code is used. The origin code declares how the route originated. If a BGP 
routing process explicitly declares that a network is connected to it with a network statement, 
the origin is incomplete. If the path is learned via BGP from another AS, the origin code is 
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EGP. If the route is learned via an IGP and redistributed into BGP (inadvisable but possible), 
the origin is IGP. BGP prefers explicitly declared networks over networks learned via BGP. 
Routes learned via an IGP are the least preferred. 

If two or more routes have the same local preference, and AS paths are identical (not just the 
same length), then the route with the lowest Multi-Exit Discriminator is chosen. Next, 
external BGP routes are preferred over internal BGP. Note that routes from peers in a 
confederation are considered internal BGP routes. Next, the route preferred through the 
closest neighbor (via IGP metrics) is chosen. If multiple paths are enabled, any route that is 
external and comes from the same neighboring AS as the best route is installed. The last 
tiebreaker is the Originating Router ID. If everything is the same, the route with the lowest 
originator IP address is chosen. This may seem like an odd tiebreaker (what does the order of 
IP addresses have to do with route selection?), but it is the last-resort rule when a tiebreaker is 
needed. 

It's worth noting network attributes that BGP does not consider. BGP has no notion of using 
current network conditions of bandwidth, delay, or congestion for making routing decisions. 
BGP may prefer a route that is more congested, has a smaller bandwidth, or has more latency. 
Network administrators can manipulate only the settable attributes listed previously to affect 
routing decisions. 

To use these attributes effectively, you have to know to which direction these attributes apply, 
and the scope that changes to the attributes can propagate. Some of the BGP knobs that you 
can tune apply only to incoming route updates. Some apply to outgoing route updates, and 
others apply in both directions. Regarding scope, some changes apply only to the router where 
the attribute is applied (e.g., weight). Some attribute changes apply only within the local AS, 
and others apply everywhere. Table 6.4 describes BGP attributes that you can affect and the 
scope of where those changes take affect. 

Table 6.4. Directionality and scope of adjustable BGP attributes  
Attributes Direction of influence Scope 
Weight Inbound routing updates Local router 
Local preference Inbound routing updates Local AS 
MED Inbound and outbound routing updates Adjacent AS (only within the same AS) 
AS-path Inbound and outbound routing updates Everywhere 
Communities Inbound and outbound routing updates Everywhere (although scope can be set) 
Originator IP Outbound routing updates Everywhere (but often changed downstream) 

All of these attributes of a route can be examined with variations of the show ip bgp command 
as shown previously. 

6.4.3.1 The weight attribute 

 

Note that weight is a Cisco proprietary feature of BGP, so you won't 
find it on other vendors' routers. 

 

For a first example, lets revisit the scenario where an organization prefers to use a line that 
has a higher bandwidth for Internet access. A diagram of the situation is shown in Figure 6.2. 
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Figure 6.2. Preferring a higher bandwidth line using BGP 

 

The line connecting the organization with AS 1 to AS 2 has a bandwidth 45 Mb. The line 
between AS 1 and AS 3 has a bandwidth of 6 Mb. Because of this difference, AS 1 wants to 
implement the following routing policy: 

Traffic to and from networks in AS 3 should go over the 6-Mb line unless the 
line is down. In that case, AS 3/ AS 1 traffic should use the 45-Mb line. 

All other traffic to and from the Internet should use the 45-Mb line unless the 
line is down. If the 45-Mb line is down, traffic should go through the 6-Mb 
line. 

This policy lets most Internet traffic use the higher bandwidth link except for traffic between 
AS 1 and AS 3. This traffic uses the line directly between the two ASes. If a line is down, 
traffic uses the other line to get in and out of AS 1. AS 1 then gets what seems to be the best 
possible network performance while having failover if a link goes down. 

There are many ways to implement this policy. Let's start by using the weight attribute for 
incoming route updates. Setting policy for incoming route updates directs traffic going out 
from AS 1: 

! define AS path access lists and standard access lists to build policy 
sets 
as-path access-list 5 permit ^3$ 
access-list 5 permit any 
! build route map 
route-map INCOMING-UPDATES-6Mbit-LINE permit 10 
 match as-path 5 
 set weight 30 
route-map INCOMING-UPDATES-6Mbit-LINE permit 20 
 match ip address 5 

The route map INCOMING-UPDATES-6Mbit-LINE is used by BGP as follows: 

router bgp 1 
 network 172.28.0.0 
 network 192.168.10.0 
! 
 neighbor 192.168.30.1 remote-as 2 
 neighbor 192.168.30.1 weight 20 
! 
 neighbor 192.168.31.1 remote-as 3 
 neighbor 192.168.31.1 route-map INCOMING-UPDATES-6Mbit-LINE in 
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In this example, I implement a route map entry that creates a policy set of all routes 
originating from AS 3. The AS-path access list 5 includes all these routes, which are given a 
weight of 30. All other routes from AS 3 do not get a weight (their default weight is 0). All 
the routes from AS 2 are given a weight of 20. As a result, all the routes from AS 2 have a 
higher weight except for those originating from AS 3. You can see the results of this policy 
using the show ip bgp command: 

Router1# show ip bgp  
BGP table version is 730292, local router ID is 192.168.31.2 
Status codes: s suppressed, d damped, h history, * valid, > best, i - 
internal 
Origin codes: i - IGP, e - EGP, ? - incomplete 
 
   Network          Next Hop          Metric LocPrf Weight Path 
*> 10.0.0.0/8    192.168.30.1                        20   2 5 i 
*                192.168.31.1                         0   3 5 i 
*> 172.23.0.0/16 192.168.30.1                        20   2 i 
*                192.168.31.1                         0   3 2 i 
*  172.24.0.0/16 192.168.30.1                        20   2 3 i 
*>               192.168.31.1                        30   3 i 
*> 172.28.0.0/16 192.168.10.1                     32768   i 
*> 192.168.10/24 192.168.10.1                     32768   i 

Routes from AS 2 to networks like 10.0.0.0/8 and 172.23.0.0/16 that do not originate in AS 3 
get a weight of 20. The same routes from AS 3 get a weight of 0. Thus traffic to 10.0.0.0/8 
and 172.23.0.0/16 uses the 45-Mb link. Since network 172.24.0.0/16 originates in AS 3, the 
route for it from AS 3 gets a weight of 30, while the route from AS 2 gets a weight of 20. 
Thus traffic for network 172.24.0.0 would use the 6-Mb line. 

6.4.3.2 AS-path prepending  

We now have made outgoing traffic conform to our policy. What about incoming traffic? To 
influence inbound traffic we must make routes advertised out through AS 2 look better than 
those through 3 but not bad enough to make traffic from 2 to 1 go via 3. Can we use weight 
here? Weight will not work because it only works on incoming routes and does not propagate 
past a single router. One way for AS 1 to influence incoming traffic is to add AS path hops to 
the less preferred route. The following route map implements this extra hop by adding a hop 
to the AS path: 

! define route map 
route-map TO-AS-3 permit 10 
set as-path prepend 1 
! router 
router bgp 1 
 network 172.28.0.0 
 network 192.168.10.0 
! 
 neighbor 192.168.30.1 remote-as 2 
 neighbor 192.168.30.1 weight 30 
! 
 neighbor 192.168.31.1 remote-as 3 
 neighbor 192.168.31.1 route-map INCOMING-UPDATES-6Mbit-LINE in 
 neighbor 192.168.31.1 route-map TO-AS-3 out 

The AS paths that routers on the Internet see to AS 1 networks via AS 2 should be: 
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2 1 

The path to AS 1 via AS 3 is: 

3 1 1 

From the Internet, the path through 2 is preferred, assuming that other autonomous systems 
apply no policies of their own. Thus the 45-Mb line is used for traffic coming in from the 
Internet to AS 1's networks, 172.28.0.0/16 and 192.168.10.0/24. Traffic from AS 3 uses the 6-
Mb line since AS 3 sees the following path to 1 from the 6-Mb line: 

1 1 

The other path to AS 1's networks through AS 2 looks like this: 

[other AS] 2 1 

AS 3 should then send traffic to networks 172.28.0.0/24 and 192.168.10.0/24 via the direct 6-
Mb line. 

Let's say that the network topology we have been assuming is actually slightly different, such 
as in Figure 6.3. Instead of connecting to AS 3 and AS 2 through a single router, the paths to 
AS 2 and AS 3 go through a separate router. 

Figure 6.3. AS 1 connects to AS 2 and AS 3 through two routers (a variation of Figure 6.2)  

 

Using weight to bias incoming routes doesn't work for setting preferences among incoming 
route updates. This is because the weight attribute does not propagate beyond the router 
where the weights are set. To deal with this situation, we have to find a BGP route attribute 
that can propagate to incoming routes and manipulate it appropriately. From Table 6.3, we 
can see that local preference affects incoming routes across an AS. We configure the 
following on Router 2: 

! define AS path access lists and standard access lists to build policy 
sets 
as-path access-list 5 permit ^3$ 
access-list 5 permit any 
! build route map 
route-map INCOMING-UPDATES-6Mbit-LINE permit 10 
  match as-path 5 
  set local-preference 100 
route-map INCOMING-UPDATES-6Mbit-LINE permit 20 
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  match ip address 5 
  set local-preference 80 

Routes that live in AS 3 have a local preference of 100, but all other routes from AS 3 have a 
local preference of 80. Thus, traffic bound for AS 3 goes there directly through the 6-Mb line 
while all other traffic goes out the 45-Mb line. If the 45-Mb line goes down, traffic to the 
Internet will fail through the 6-Mb link. 

AS path prepending can also be used in a similar way to manipulate traffic bound for the 
Internet. The following route map applied on Router 2 to the peering session with AS 3 can 
have the same effect: 

! define AS path access lists and standard access lists to build policy 
sets 
as-path access-list 5 permit ^3$ 
access-list 5 permit any 
! build route map 
route-map INCOMING-UPDATES-6Mbit-LINE permit 10 
match as-path 5 
route-map INCOMING-UPDATES-6Mbit-LINE permit 20 
match ip address 5 
set as-path prepend 3 

This route map adds an extra AS hop to all routes coming in from AS 3 except for those 
routes originating in AS 3. Since AS-path changes propagate throughout an AS and even 
beyond it, this will work. 

6.4.3.3 Communities 

Communities can be another way to set traffic preferences. Some ISPs use community string 
settings in routes as a way to allow their customers to set routing. Let's say that the ISP 
running AS 3 has a policy that all routes received from its customers with community string 
3:1 will have one AS hop of 3 prepended to the routes' AS path when the routes are advertised 
to the rest of the Internet. This would make traffic to the routes with the string stay within AS 
3 (since they are only one hop away) but would make routes through AS 3 less preferred to 
the rest of the Internet. Customers of the ISP would not see the extra hop, only the ISP's peers 
and other autonomous systems getting routes from them. Let's also say that the ISP running 
AS 3 tags all of the routes originating from AS 3 and its directly connected customers with 
the community string 3:1000. This way, a multihomed customer of the 3 ISP, like AS 1, can 
know who is connected to 3, a few short hops away. With these community string settings, 
the following route maps applied to the AS 1 border routers could achieve the policy results 
we have been seeking: 

! define AS path access lists and standard access lists to build policy 
sets 
ip community-list 5 permit 3:1000 
access-list 5 permit any 
! build route map 
route-map INCOMING-UPDATES-6Mbit-LINE permit 10 
 match community 5 
 set local-preference 100 
route-map INCOMING-UPDATES-6Mbit-LINE permit 20 
 match ip address 5 
 set local-preference 80 
! outgoing route map 
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route-map TO-AS-3 permit 10 
 set community 3:1 

AS 3 customers can connect directly to AS 1 using the 6-Mb line and not the longer path 
through AS 2. 

There are a few things you need to know about using communities. If you are going to pass 
on communities, you need to use a BGP router command called send-community. Otherwise, 
your communities will not be passed on to neighboring ASes. Also, if you use the new 
community string format, you need to explicitly enable its use with the ip bgp-community 
new-format configuration command. In this example, we would use the BGP configuration 
command: 

ip bgp-community new-format 
router bgp 1 
 network 172.28.0.0 
 network 192.168.10.0 
 neighbor 192.168.30.1 remote-as 2 
! 
 neighbor 192.168.31.1 remote-as 3 
! 
 neighbor 192.168.31.1 route-map INCOMING-UPDATES-6Mbit-LINE in 
 neighbor 192.168.31.1 route-map TO-AS-3 out 
 neighbor 192.168.31.1 send-community 

Also, note that the set community command replaces whatever communities a route may have 
had previously. If you want to add a community string to those already in a route, use the 
keyword additive following the community string. Typically, a non-ISP organization does 
not need this setting, but if your organization has to transit another organization's traffic (and 
communities), this setting may be necessary. 

6.4.3.4 Multi-Exit Discriminators 

Another common scenario with multihomed organizations is having two or more lines to the 
Internet through the same ISP. The organization faces the same choices as in the previous set 
of examples: which lines to use for which networks. Having connections to the same ISP, 
however, allows for different choices in setting BGP metrics. A typical situation looks like the 
network in the Figure 6.4. 

Figure 6.4. An organization multihomed into the same ISP 

 

AS 1 connects to the Internet through AS 2 via two different lines. As an example policy, let's 
say the following: 
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Traffic for network 172.28.0.0/16 should use the lines between Router 1 and 
AS 2 

Traffic for network 192.168.10.0/24 should use the line between Router 2 and 
AS 2 

If one of these lines is down, then traffic should flow across the other line 

There are a number of ways to implement this policy. We can use AS path preferences or, if 
available, communities. With AS path preferences, the route maps on the routers would be: 

! Router 1 route map 
access-list 1 permit 172.28.0.0 
access-list 2 permit 192.168.10.0 
! 
route-map ROUTES-OUT permit 10 
 match ip address 1 
route-map ROUTES-OUT permit 20 
 match ip address 2 
 set as-path prepend 1 
! 
router bgp 1 
 network 172.28.0.0 
 network 192.168.10.0 
 neighbor 192.168.30.1 remote-as 2 
 neighbor 192.168.30.1 route-map ROUTES-OUT out 
! 
! Router 2 route map 
access-list 1 permit 172.28.0.0 
access-list 2 permit 192.168.10.0 
! 
route-map ROUTES-OUT permit 10 
match ip address 2 
route-map ROUTES-OUT permit 20 
match ip address 1 
set as-path prepend 1 
! 
router bgp 1 
 network 172.28.0.0 
 network 192.168.10.0 
 neighbor 192.168.30.1 remote-as 2 
 neighbor 192.168.30.1 route-map ROUTES-OUT out 

These route maps make the backup path to AS 2 less preferred with an additional AS hop. AS 
path prepending is not the only way to implement this policy. Since AS 1 connects to the 
Internet via the same AS for both links, it can use the Multi-Exit Discriminator (MED) metric 
to let AS 2 know which link is preferred for which network. The MED functions pretty much 
like its name; if there are multiple exits out of an AS to a network, it lets an AS discriminate 
between which exit is preferred. Like a routing metric, the lower MED is preferred. If we use 
MEDs to implement our policy, the route maps are as follows: 

! Router 1 route map 
access-list 1 permit 172.28.0.0 
access-list 2 permit 192.168.10.0 
! 
route-map ROUTES-OUT permit 10 
 match ip address 1 
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 set metric 10 
route-map ROUTES-OUT permit 20 
 match ip address 2 
 set metric 20 
! 
! Router 2 route map 
access-list 1 permit 172.28.0.0 
access-list 2 permit 192.168.10.0 
! 
route-map ROUTES-OUT permit 10 
 match ip address 2 
 set metric 10 
route-map ROUTES-OUT permit 20 
 match ip address 1 
 set metric 20 

In the two route maps, the preferred route through the link has a metric of 10, and the route 
that uses the link as backup has a metric of 20. The router at 192.168.30.1 sees the following 
in its BGP table: 

Router1# show ip bgp regex ^1_ 
BGP table version is 7022, local router ID is 192.168.30.1 
Status codes: s suppressed, d damped, h history, * valid, > best, i - 
internal 
 
Origin codes: i - IGP, e - EGP, ? - incomplete 
 
   Network            Next Hop          Metric LocPrf Weight Path 
*> 172.28.0.0       192.198.30.2          10               0 1 i 
i                   192.198.31.2          20               0 1 i  
*  192.168.10.0     192.168.30.2          20               0 1 i 
i>                  192.168.31.2          10               0 1 i 

You can see that traffic to network 172.28.0.0/24 is preferred out through the line to Router 1 
because of its lower metric. The router at 192.168.31.1 has the following in its table: 

Router1# show ip bgp regex ^1_ 
BGP table version is 70222, local router ID is 192.168.31.1 
Status codes: s suppressed, d damped, h history, * valid, > best, i - 
internal 
 
Origin codes: i - IGP, e - EGP, ? - incomplete 
 
   Network            Next Hop          Metric LocPrf Weight Path 
* 172.28.0.0        192.198.30.2          10               0 1 i 
i>                  192.198.31.2          20               0 1 i  
*> 192.168.10.0     192.168.30.2          20               0 1 i 
i                   192.168.31.2          10               0 1 i 

If Router 1 and Router 2 learn the paths to networks 172.28.0.0/16 and 192.168.10.0/24 via an 
IGP, there is a way to use a route map to set the MED to the value of the IGP metric. Using an 
IGP metric as an MED sends traffic to the link closest to that network (as determined by the 
IGP metric value). The following implementation of our routing policy uses this technique, 
assuming that 172.28.0.0/16 is closer to Router 1 than Router 2 and 192.168.10.0/24 is closer 
to Router 2 than Router 1: 

access-list 1 permit 172.28.0.0 



  Cisco IOS Access lists 

  Page 184 

access-list 1 permit 192.168.10.0 
route-map ROUTES-OUT permit 10 
 match ip address 1 
 set metric internal 

Using MEDs in this way simplifies the route map and allows the same route map to be used 
on both routers. This technique can be very useful when you have many connections to 
another AS and wish to have a simpler and standard route map for outbound route 
advertisements. If the internal topology of AS 1 changed and a network became closer (in 
terms of route metrics) to a particular gateway, the MED automatically reflects that and 
routing changes appropriately. 

Peer groups 

Each BGP neighbor typically requires at least one neighbor statement for a remote 
AS. When you add route map, path, and prefix filters, each neighbor may require 
three or more neighbor statements. To save time and make it easier to set policies 
on groups of neighbors, Cisco routers have an access list type of structure called 
peer group. You can define BGP neighbors as being members of a peer group, and 
then apply policy settings to that peer group (thus applying the settings to all of the 
neighbors). For example, let's say we wish to apply identical policies to BGP 
neighbors 172.28.3.5, 172.28.3.6, and 172.28.3.7, which are all in AS 65001. 
Instead of typing the same policy settings again and again for each neighbor, peer 
groups allow us do use the following: 

router bgp 65000 
  neighbor neighbors-group1 remote-as 65001 
  neighbor neighbors-group1 route-map ROUTES-OUT-MAP out 
  neighbor neighbors-group1 route-map ROUTES-IN-MAP in 
  neighbor neighbors-group1 filter-list 1 in 
  neighbor neighbors-group1 prefix-list nets-in in 
  neighbor neighbors-group1 prefix-list nets-out out 
  neighbor 172.28.3.5 peer-group neighbors-group1 
  neighbor 172.28.3.6 peer-group neighbors-group1 
  neighbor 172.28.3.7 peer-group neighbors-group1 

This configuration saves 18 neighbor statements by applying policy to the peer 
group neighbors-group1. It also makes it easy to add definitions for a new 
neighbor with the same policy or change a policy setting for all of the neighbors in a 
peer group. 

Note that you can use peer groups for just the settings that are identical. If in our 
previous example, all the neighbors are in different AS, we can still use peer groups 
to save statements with the following configuration: 

router bgp 65000 
  neighbor neighbors-group1 route-map ROUTES-OUT-MAP out 
  neighbor neighbors-group1 route-map ROUTES-IN-MAP in 
  neighbor neighbors-group1 filter-list 1 in 
  neighbor neighbors-group1 prefix-list nets-in in 
  neighbor neighbors-group1 prefix-list nets-out out 
  neighbor 172.28.3.5 peer-group neighbors-group1 
  neighbor 172.28.3.6 peer-group neighbors-group1 
  neighbor 172.28.3.7 peer-group neighbors-group1 
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  neighbor 172.28.3.5 remote-as 65001 
  neighbor 172.28.3.6 remote-as 65002 
  neighbor 172.28.3.7 remote-as 65003 

Each of the neighbors is in a different AS, but we still can use a peer group for all of 
the other settings, saving 15 neighbor statements. 

6.4.4 Propagating route map changes 

Once you have made changes in a route map, the changes do not take place until you force 
your BGP process (or your neighbor's BGP process) to recognize the changes. To do that, you 
need to use the clear ip bgp command. This command clears all of the BGP learned routes 
from the routing table, reads in all the routes from designated peers, and sends out any routes 
that need to be sent to those peers. When routes are read in or sent out, they are processed 
through any route map or AS-path access lists you may have modified. The command clear ip 
bgp * clears all the BGP sessions with all a router's BGP peers. You can reset the session with 
a specific peer by using an IP address instead an asterisk. For example, clear ip bgp 
192.168.72.3 clears the BGP session with peer 192.168.72.3. 

Resetting BGP sessions can have a large impact on CPU utilization, especially if you are 
pulling in the full routing tables from the Internet or have many peers. To minimize this 
impact, I suggest that you clear BGP sessions one peer at a time. This will minimize the 
number of routes dropped during any one reset. To reduce impact even further, use the soft 
reconfiguration settings. You first need to configure each neighbor to use soft reconfiguration 
in the direction of the routing updates you want. For example, let's configure soft 
reconfiguration for both inbound and outbound routing updates and have a route map 
ROUTES-IN for inbound processing: 

! route map in 
route-map ROUTES-IN permit 10 
 set local-preference 100 
! route map out 
access-list 1 permit any 
route-map ROUTES-OUT permit 10 
 match ip address 1 
! 
router bgp 1 
 network 172.28.0.0 
 network 192.168.10.0 
 neighbor 192.168.30.1 remote-as 2 
 neighbor 192.168.30.1 route-map ROUTES-IN in 
 neighbor 192.168.30.1 route-map ROUTES-OUT out 
 neighbor 192.168.30.1 soft-reconfiguration in 
 neighbor 192.168.30.1 soft-reconfiguration out 

Once this is set up, you can propagate policy changes with the clear ip bgp soft command. 
Note that route maps ROUTES-IN and ROUTES-OUT don't really do anything, since local-
preference already has a default of 100. If we change ROUTES-IN, we can affect all 
incoming routes (and incoming routes only) by resetting the BGP session with clear ip bgp 
192.168.30.1 soft in. Likewise, if we change ROUTES-OUT, we can affect only outgoing routes 
with clear ip bgp 192.168.30.1 soft out. 
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6.5 Debugging route maps and BGP 

Debugging route maps is very similar to debugging access lists for routing policies since both 
deal with manipulating routes. For the most part, the same techniques I covered with routing 
access lists can be used to find problems with route maps. There are, however, some problems 
and commands unique to working with route maps, and I discuss these in this section. 

First of all, you need to know the most convenient way to see the contents of route maps and 
AS-path access lists. While showing the running configuration shows you all your route 
maps, this may be time-consuming if you have a long configuration. The show route-map 
command prints out all your route maps. When followed by a route map name, a specific 
route map is displayed. Recall the route map I created called ROUTES-OUT: 

route-map ROUTES-OUT permit 10 
 match ip address 1 
 set metric 10 
route-map ROUTES-OUT permit 20 
 match ip address 2 
 set metric 20 

The show route-map output of this route map looks like this: 

Router1>show route-map ROUTES-OUT 
route-map ROUTES-OUT, permit, sequence 10 
  Match clauses: 
    ip address (access-lists): 1 
  Set clauses: 
    Metric 10 
  Policy routing matches: 0 packets, 0 bytes 
route-map ROUTES-OUT, permit, sequence 20 
  Match clauses: 
    ip address (access-lists): 2 
  Set clauses: 
    Metric 20 
  Policy routing matches: 0 packets, 0 bytes 

The output divides each route map entry into match and set clauses. The policy route 
matches should be ignored when looking at route maps for BGP. 

AS-path access lists are treated similarly to access lists. The show ip as-path command, 
followed by an optional access list number, displays AS-path access lists. The AS-path access 
list below: 

as-path access-list 5 permit ^3$ 

appears as: 

Router1>show ip as-path 5 
AS path access list 5 
    permit ^3$ 

One problem you may encounter is that despite extensive work on your route maps and 
associated access lists, the routing policy you have been trying to change may not be any 
different than when you started. The first reason to consider is that you may have forgotten to 
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force your peers to recognize the change, either through a soft reconfiguration or a hard reset. 
A good way to check this is with the show ip bgp command. Output from this command 
shows a version ID for BGP: 

Router1# show ip bgp 
BGP table version is 23029, local router ID is 192.168.18.100 
Status codes: s suppressed, d damped, h history, * valid, > best, i - 
internal 
Origin codes: i - IGP, e - EGP, ? - incomplete 

The BGP table version should increase after a change. Another way to check is with the show 
ip bgp summary command. This command will show you how long each BGP session for 
each of a router's peers has been up, and this information tells you the last time each session 
was reset or how long it has been down: 

Router1# show ip bgp summary 
BGP table version is 10302748, main routing table version 1030748 
61505 network entries (182249/244040 paths) using 14333788 bytes of memory 
25192 BGP path attribute entries using 2952896 bytes of memory 
12170 BGP route-map cache entries using 194720 bytes of memory 
0 BGP filter-list cache entries using 0 bytes of memory 
 
Neighbor        V    AS MsgRcvd MsgSent   TblVer  InQ OutQ Up/Down  State 
192.168.30.1    4     2 2713633  103161 1030743     0    0 2w2d 
192.168.31.1    4     3  123449  103186 1030743     0    0 2w2d 

In this example, you can see that this router connects to AS 2 and AS 3, and that each BGP 
connection has been running for more than two weeks. This is a better way to see if a reset 
has occurred. 

The nature of the BGP route selection process creates a whole new set of ways to make a 
mistake. Often a route map change does not change actual policy because another route 
attribute was set that takes precedence over the changes you made. As an example, let's revisit 
the network in Figure 6.2. Let's say we want the 6-Mb line to be used only for backup. To 
affect the policy, we use the following: 

! define AS path access lists and standard access lists to build policy 
sets 
as-path access-list 5 permit^3$ 
access-list 5 permit any 
! 
! build route map 
route-map INCOMING-UPDATES-6Mbit-LINE permit 10 
 match ip address 5 
 set as-path prepend 3 3 
! 
! define route map 
route-map TO-AS-3 permit 10 
 set as-path prepend 1 1 
!  
router bgp 1 
 network 172.28.0.0 
 network 192.168.10.0 
 neighbor 192.168.30.1 remote-as 2 
! 
 neighbor 192.168.31.1 remote-as 3 
 neighbor 192.168.31.1 route-map INCOMING-UPDATES-6Mbit-LINE in 
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 neighbor 192.168.31.1 route-map TO-AS-3 out 
 neighbor 192.168.31.1 weight 15 

AS-path prepending is used as a way to make the path through the 6-Mb line appear less 
preferred. Despite the route maps, however, traffic will still go out through 6-Mb line. Why? 
The path through the 192.168.31.1 has a higher weight than the other path through 
192.168.30.1. Weight takes precedence over AS hops, and the BGP router configuration line 
that sets the weight needs to be deleted in order for the intended policy to work. 

The directionality and scope of attribute changes is another potential problem. We may try to 
implement our previous policy using local preferences as shown: 

! define AS path access lists and standard access lists to build policy 
sets 
access-list 5 permit any 
! build route map 
route-map INCOMING-UPDATES-6Mbit-LINE permit 10 
 match ip address 5 
 set local-preference 80 
! define route map 
route-map TO-AS-3 permit 10 
 set local-preference 80 
!  
router bgp 1 
 network 172.28.0.0 
 network 192.168.10.0 
 neighbor 192.168.30.1 remote-as 2 
    neighbor 192.168.31.1 remote-as 3 
 neighbor 192.168.31.1 route-map INCOMING-UPDATES-6Mbit-LINE in 
 neighbor 192.168.31.1 route-map TO-AS-3 out 

While traffic does not go out of the 6-Mb line from AS 1, it still uses the 6-Mb line to AS 1. 
The route map TO-AS-3 does not work because local preference applies only to incoming 
routes. AS path prepending or communities (if supported by AS 3) are the only solutions for 
the route map TO-AS-3. 

Another key attribute to look out for is prefix length. Remember that BGP uses the most 
specific route (longest prefix) to make a routing decision. Let's say that we had the following 
configuration for Router 1 for the network in Figure 6.4: 

! Router 1 route map 
access-list 1 permit 172.28.0.0 
access-list 2 permit any 
access-list 3 permit 172.28.35.0 
! 
route-map ROUTES-OUT permit 10 
 match ip address 1 
 set metric 10 
route-map ROUTES-OUT permit 20 
 match ip address 2 
 set metric 20 
! 
route-map SUPPRESS-172-28 permit 10 
 match ip addess 3 
! bgp  
router bgp 1 
 network 172.28.10.0 
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 network 172.28.11.0 
 network 172.28.23.0 
 network 172.28.24.0 
 network 172.28.25.0 
 network 172.28.35.0 
 network 12.28.36.0 
 aggregate-address 172.28.0.0 255.255.0.0 suppress-map SUPPRESS-172-28 
 network 192.168.10.0 
 neighbor 192.168.30.1 remote-as 2 
 neighbor 192.168.30.1 route-map ROUTES-OUT out 

Recall that we want to route traffic for 172.28.0.0 through AS 2 and network 192.168.10.0 
through AS 3. We use only a few networks in network 172.28.0.0/16, but we aggregate all of 
them together as a /16 network. The routing policy we intend will not work, however, for 
traffic going to 172.28.35.0/24. Since we suppressed aggregation for this part of 
172.28.0.0/16, it is treated differently from the 172.28.0.0/16 aggregate. Removing the 
suppress-map clause or adding the access list entry: 

access-list 1 permit 172.28.35.0 

fixes the problem. You might wonder how such a suppress-map got left on. At one point, a 
network administrator may have had a separate routing policy for that route map and forgot to 
take it off at one point. Outdated configurations can be another source of problems, especially 
if you have to change policies quickly and often. 

Many ISPs have a maximum length prefix length for a given IP address range that they 
accept. ISPs that you purchase transit from are usually more generous in terms of allowing a 
longer prefix length. If you are advertising networks to multiple ISPs outside of the traditional 
class B and class C spaces, I suggest that you advertise routes to be a /19 or shorter. 
Otherwise you may find that some ISPs reject routes with longer prefixes. This can result in 
unpredictable behavior, such as some sites on the Internet being unreachable from particular 
networks while others are reachable. 

Chapter 7. Case Studies 
In this chapter, I present three case studies that use access lists in common scenarios. These 
case studies show how different types of access lists can be used together in situations you 
may encounter. They also illustrate how the three key concerns we talked about—security, 
robustness, and business policy—are implemented in realistic situations. The first example 
deals with a single organization's intranet connected by a wide area network (WAN). I show 
how to use access lists to implement a secure and stable WAN. The second example goes 
over a common firewall configuration called the screened subnet architecture. Here, I use 
access lists to secure an organization's perimeter. The final case study covers how an 
organization connects to the Internet. This example shows how to use access lists to 
implement route preferences while still maintaining security. 

7.1 A WAN case study 

In this case study, we'll see how to use access lists in routers that make up a wide area 
network in the network shown in Figure 7.1. Like many large organizations, different 
departments control and manage different parts of this network. Site 1's network is run by a 
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different organization from Site 2, neither of which run Site 3's network. Each of these three 
sites have separate address spaces, and each site runs a different routing protocol. The routers 
that connect the three sites, Routers A through F, are run by a separate organization, which 
uses yet another routing protocol. For our case study, I show the configurations of each of the 
WAN routers. 

Figure 7.1. Network for WAN case study 

 

A few other facts are relevant to this example. Each WAN router connects to two different 
site networks. Routers A, C, and E use 2 in the last octet of each of these two networks. For 
example, Router A has interfaces 172.20.0.2 and 172.20.1.2. Similarly, Routers B, D, and F 
have 3 in the last octet. As an example, Router B has interfaces 172.20.0.3 and 172.20.1.3. 
The WAN network administrators manage the WAN from hosts in network 172.25.100.0/24. 
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7.1.1 Security concerns 

The WAN administrators do not allow local site network administrators to log in, so Telnet 
access needs to be limited to their administrative segment. We will also allow logins from the 
neighboring WAN router via the site network. This is useful for reaching WAN routers during 
cases when routing protocols are broken. In case the sites do manage to log on to a WAN 
router, we limit outgoing Telnet access to prevent the router from being used to stage attacks. 
To provide some visibility to the site network administrators, we allow read-only SNMP 
access to the sites, but read and write SNMP access is available only to the WAN 
administrative segment. Another security concern is that we do not want any spoofing of IP 
addresses. One site should not be able to mount attacks based on spoofing. A final concern is 
that we wish to harden our routers against attack by eliminating vulnerable services on them. 

7.1.2 Robustness concerns 

In a network environment like this, WAN administrators need to make sure that bad 
addressing information is not sent into the sites. In addition, WAN routers must not accept 
routes for inappropriate networks from their sites. Since the sites are stub networks, they only 
need to advertise their own network. Also, the WAN routers should be the only source of 
EIGRP 200 routing information from the local network. 

7.1.3 Business concerns 

In this organization's network, critical operations go on between Sites 2 and 3 and also 
between Sites 1 and 3. The link between Sites 2 and 3 is not used for failover if the link 
between Sites 1 and 2 goes down. If this link does go down, a business decision has been 
made that loss of connectivity between Sites 1 and 2 is less important than the application 
performance obtained by having bandwidth dedicated between 2 and 3. The organization's 
management has decided that the link between Sites 2 and 3 can be used, however, if the link 
between Sites 1 and 3 goes down, since that traffic is also deemed critical. 

7.1.4 Site 1 router configurations 

Here are the relevant parts of the configuration for Router A: 

! limit points of vulnerability on router 
no service tcp-small-servers 
no service udp-small-servers 
no service finger 
! 
ip subnet zero 
! interfaces definitions 
interface Ethernet0 
 description  site 1 LAN interface  
 ip address 172.20.0.2 255.255.255.0 
 ip access-group 100 in 
interface Ethernet1 
 description  site 1 LAN interface  
 ip address 172.20.1.2 255.255.255.0 
 ip access-group 100 in 
interface Serial 0 
 description  serial interface to WAN 
 ip address 192.168.32.1 255.255.255.252 
 ip access-group 101 out 
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 ip access-group 102 in 
! routing processes 
router igrp 100 
 network 172.20.0.0 
 distribute-list 3 in Ethernet 0 
 distribute-list 3 in Ethernet 1 
 redistribute eigrp 200 
! 
router eigrp 200 
 network 192.168.32.0 mask 255.255.255.248 
 network 172.20.0.0 
 redistribute igrp 100 
 distance 90 192.168.32.2 
 distance 90 172.20.0.3 0.0.1.0 
 distance 255 
! telnet access from management segment 
access-list 1 permit 172.25.100.0 0.0.0.255 
! telnet access from other WAN routers serial interfaces 
access-list 1 permit 192.168.32.0 0.0.0.7 
access-list 1 permit 192.168.32.8 0.0.0.3 
! telnet access from other WAN routers Ethernet interfaces 
access-list 1 permit 172.20.0.2 0.1.1.1 
access-list 1 permt 172.24.0.2 0.1.1.1 
! telnet access out on list 2 - limit to WAN routers 
access-list 2 permit 172.20.0.2 0.1.1.1 
access-list 2 permit 192.168.32.0 0.0.0.7 
access-list 2 permit 192.168.32.8 0.0.0.3 
! access-list for route distribution 
access-list 3 permit 172.20.0.0 0.1.0.0 
! SNMP access lists  
! read write access for management segment 
access-list 4 permit 172.25.100.0 0.0.0.255 
! read only access for local site 
access-list 5 permit 172.20.0.0 0.1.255.255 
! limit incoming traffic to traffic from site 
access-list 100 permit ip 172.20.0.0 0.1.255.255 any 
! clobber traffic between site 1 and 2 on serial link 
access-list 101 deny ip 172.20.0.0 0.1.255.255 192.168.16.0 0.0.15.255 
access-list 101 permit ip any any 
access-list 102 deny ip 192.168.16.0 0.0.15.255 172.20.0.0 0.1.255.255 
access-list 102 permit ip any any 
!  
! SNMP access declarations 
snmp community netman17225 rw 4 
snmp community 172.20public ro 5 
! line definitions 
line vty 0 4 
 access-class 1 in 
 access-class 2 out 

For security, we limit incoming Telnet sessions to the WAN routers and the management 
segment, 172.20.100.0/24 through access list 1. Outgoing Telnet is limited to the WAN 
routers with access list 2. If a WAN router login password is compromised, that router cannot 
be used to stage attacks into the sites. Services on the router are limited with the no service 
command. Access lists 4 and 5 limit SNMP access into the routers. To prevent spoofing 
attacks from one site to another, access list 100 limits packets only from Site 1 addresses to be 
distributed to the rest of organization. 



  Cisco IOS Access lists 

  Page 193 

For robustness, routes coming in from the site are filtered through access list 3, allowing on-
the-site networks in. Also, we only listen to EIGRP 200 routing updates from the neighboring 
WAN routers. This policy is implemented with distance statements that set all routing updates 
from the WAN routers to distance 90 and set routing updates from all other routes to distance 
255. To implement our business policy, we stop packets from Site 1 from going to Site 2 via 
Site 3. Note that this can be done in a number of places, but filtering the packets close to their 
source reduces the total amount of traffic on the WAN. 

Router B has a similar configuration, differing only in the interface addresses: 

! limit points of vulnerability on router 
no service tcp-small-servers 
no service udp-small-servers 
no service finger 
! 
ip subnet zero 
! interfaces definitions 
interface Ethernet0 
 description  site 1 LAN interface 
 ip address 172.20.0.3 255.255.255.0 
 ip access group 100 in 
interface Ethernet1 
 description  site 1 LAN interface 
 ip address 172.20.1.3 255.255.255.0 
 ip access-group 100 in 
interface Serial 0 
 ip address 192.168.32.5 255.255.255.252 
 description  serial interface to WAN 
! routing processes 
router igrp 100 
 network 172.20.0.0 
 distribute-list 3 in Ethernet0 
 distribute-list 3 in Ethernet1 
 redistribute eigrp 200 
! 
router eigrp 200 
 network 192.168.32.4 mask 255.255.255.252 
 network 172.20.0.0 
 redistribute igrp 100 
 distance 90 192.168.32.6 
 distance 90 172.20.0.2 0.0.1.0 
 distance 255 
! telnet access from management segment 
access-list 1 permit 172.25.100.0 0.0.0.255 
! telnet access from other WAN routers serial interfaces 
access-list 1 permit 192.168.32.0 0.0.0.7 
access-list 1 permit 192.168.32.8 0.0.0.3 
! telnet access from other WAN routers Ethernet interfaces 
access-list 1 permit 172.20.0.2 0.1.1.1 
access-list 1 permt 172.24.0.2 0.1.1.1 
! telnet access out on list 2 - limit to WAN routers 
access-list 2 permit 172.20.0.2 0.1.1.1 
access-list 2 permit 192.168.32.0 0.0.0.7 
access-list 2 permit 192.168.32.8 0.0.0.3 
! access-list for route distribution 
access-list 3 permit 172.20.0.0 0.1.0.0 
! SNMP access lists  
! read write access for management segment 
access-list 4 permit 172.25.100.0 0.0.0.255 
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! read only access for local site 
access-list 5 permit 172.20.0.0 0.1.255.255 
! limit incoming traffic to traffic from site 
access-list 100 permit ip 172.20.0.0 0.1.255.255 any 
!  
! SNMP access declarations 
snmp community netman17225 rw 4 
snmp community 172.20public ro 5 
! line definitions 
line vty 0 4 
 access-class 1 in 
 access-class 2 out 

7.1.5 Site 2 router configurations 

Router C has a configuration similar to Routers A and B. It differs in the networks filtered, 
interface numbers, and routing protocols used: 

! limit points of vulnerability on router 
no service tcp-small-servers 
no service udp-small-servers 
no service finger 
! 
ip subnet zero 
! interfaces definitions 
interface Ethernet0 
 description  site 2 LAN interface 
 ip address 192.168.16.3 255.255.255.0 
 ip access-group 100 in 
interface Ethernet1 
 description  site 2 LAN interface 
 ip address 192.168.17.3 255.255.255.0 
 ip access-group 100 in 
interface Serial 0 
 description  serial interface to WAN 
 ip address 192.168.32.6 255.255.255.252 
! routing processes 
router rip 
 network 192.168.16.0 
 network 192.168.17.0 
 distribute-list 3 in Ethernet 0 
 distribute-list 3 in Ethernet 1 
 redistribute eigrp 200 
! 
router eigrp 200 
 network 192.168.16.0 
 network 192.168.17.0 
 network 192.168.32.4 mask 255.255.255.252 
 distance 90 192.168.32.5 
 distance 90 192.168.16.3 0.0.1.0 
 distance 255 
redistribute rip 
! telnet access from management segment 
access-list 1 permit 172.25.100.0 0.0.0.255 
! telnet access from other WAN routers serial interfaces 
access-list 1 permit 192.168.32.0 0.0.0.7 
access-list 1 permit 192.168.32.8 0.0.0.3 
! telnet access from other WAN routers Ethernet interfaces 
access-list 1 permit 172.20.0.2 0.1.1.1 
access-list 1 permt 172.24.0.2 0.1.1.1 
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! telnet access out on list 2 - limit to WAN routers 
access-list 2 permit 192.168.16.0 0.0.1.1 
access-list 2 permit 192.168.32.0 0.0.0.7 
access-list 2 permit 192.168.32.8 0.0.0.3 
! access-list for route distribution 
access-list 3 permit 192.168.16.0 0.0.15.0 
! SNMP access lists  
! read write access for management segment 
access-list 4 permit 172.25.100.0 0.0.0.255 
! read only access for local site 
access-list 5 permit 192.168.16.0 0.15.255.255 
! limit incoming traffic to traffic from site 
access-list 100 permit ip 192.168.16.0 0.15.255.255 any 
!  
! SNMP access declarations 
snmp community netman17225 rw 4 
snmp community 172.20public ro 5 
! line definitions 
line vty 0 4 
 access-class 1 in 
 access-class 2 out 

Router D has some differences from Router C (other than just interface addresses) because we 
need to implement our routing policy that says that the link between Sites 2 and 3 will not be 
used for failover between Sites 1 and 2. There is no way to implement this policy using 
distribute-list statements, so we need to filter packets between Sites 2 and 3 to prevent 
traffic from Sites 1 and 2 from using the link. Although we filtered the packets leaving Site 1 
bound for Site in Router A, we do the same in case we make a mistake in Router A: 

! limit points of vulnerability on router 
no service tcp-small-servers 
no service udp-small-servers 
no service finger 
! 
ip subnet zero 
! interfaces definitions 
interface Ethernet 0 
 description  site 2 LAN interface 
 ip address 192.168.16.3 255.255.255.0 
 ip access-group 100 in 
interface Ethernet 1 
 description  site 2 LAN interface 
 ip address 192.168.17.3 255.255.255.0 
 ip access-group 100 in 
interface Serial 0 
 description  serial interface to WAN 
 ip address 192.168.32.9 255.255.255.252 
 ip access-group 101 in 
 ip access-group 102 out 
! routing processes 
router rip 
 network 192.168.16.0 
 network 192.168.17.0 
 distribute-list 3 in Ethernet 0 
 distribute-list 3 in Ethernet 1 
 redistribute eigrp 200 
! 
router eigrp 200 
 network 192.168.16.0 
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 network 192.168.17.0 
 network 192.168.32.8 mask 255.255.255.252 
 redistribute rip 
 distance 90 192.168.32.5 
 distance 90 192.168.16.3 0.0.1.0 
 distance 255 
! telnet access from management segment 
access-list 1 permit 172.25.100.0 0.0.0.255 
! telnet access from other WAN routers serial interfaces 
access-list 1 permit 192.168.32.0 0.0.0.7 
access-list 1 permit 192.168.32.8 0.0.0.3 
! telnet access from other WAN routers Ethernet interfaces 
access-list 1 permit 172.20.0.2 0.1.1.1 
access-list 1 permt 172.24.0.2 0.1.1.1 
! telnet access out on list 2 - limit to WAN routers 
access-list 2 permit 192.168.16.2 0.0.1.1 
access-list 2 permit 192.168.32.0 0.0.0.7 
access-list 2 permit 192.168.32.8 0.0.0.3 
! access-list for route distribution 
access-list 3 permit 192.168.16.0 0.0.15.0 
! SNMP access lists  
! read write access for management segment 
access-list 4 permit 172.25.100.0 0.0.0.255 
! read only access for local site 
access-list 5 permit 192.168.16.0 0.15.255.255 
access-list 6 deny 172.20.0.0 0.1.0.0 
access-list 6 permit any 
access-list  
! limit incoming traffic to traffic from site 
access-list 100 permit ip 192.168.16.0 0.15.255.255 any 
! clobber traffic between site 1 and 2 on serial link 
access-list 101 deny ip 172.20.0.0 0.1.255.255 192.168.16.0 0.0.15.255 
access-list 101 permit ip any any 
access-list 102 deny ip 192.168.16.0 0.0.15.255 172.20.0.0 0.1.255.255 
access-list 102 permit ip any any 
access 
!  
! SNMP access declarations 
snmp community netman17225 rw 4 
snmp community 172.20public ro 5 
! line definitions 
line vty 0 4 
 access-class 1 in 
 access-class 2 out 

7.1.6 Site 3 router configurations 

The configurations for Routers E and F are similar to the previous examples, except that they 
filter Site 1 and 2 packets in different directions and have different interface addresses and 
local routing protocols. Here's the configuration for Router E: 

! limit points of vulnerability on router 
no service tcp-small-servers 
no service udp-small-servers 
no service finger 
! 
ip subnet zero 
! interfaces definitions 
interface Ethernet 0 
 description  site 3 LAN interface 
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 ip address 172.24.0.2 255.255.255.0 
 ip access-group 100 in 
interface Ethernet 1 
 description  site 3 LAN interface 
 ip address 172.24.1.2 255.255.255.0 
 ip access-group 100 in 
interface Serial 0 
 description  serial interface to WAN 
 ip address 192.168.32.2 255.255.255.252 
 ip access-group 101 in 
 ip access-group 102 out 
! routing processes 
router ospf 70 
 network 172.24.1.0 mask 0.0.0.255 area 0 
 network 172.25.0.0 mask 0.0.0.255 area 0 
! 
router eigrp 200 
 network 172.24.0.0  
 network 172.25.0.0 
 network 192.168.32.0 mask 255.255.255.252 
 distance 90 192.168.32.1 
 distance 90 172.24.0.0 0.0.1.3 
 distance 255 
 redistribute ospf 70 
! telnet access from management segment 
access-list 1 permit 172.25.100.0 0.0.0.255 
! telnet access from other WAN routers serial interfaces 
access-list 1 permit 192.168.32.0 0.0.0.7 
access-list 1 permit 192.168.32.8 0.0.0.3 
! telnet access from other WAN routers Ethernet interfaces 
access-list 1 permit 172.20.0.2 0.1.1.1 
access-list 1 permt 172.24.0.2 0.1.1.1 
! telnet access out on list 2 - limit to WAN routers 
access-list 2 permit 172.24.0.2 0.1.1.1 
access-list 2 permit 192.168.32.0 0.0.0.7 
access-list 2 permit 192.168.32.8 0.0.0.3 
! access-list for route distribution 
access-list 3 permit 192.168.16.0 0.0.15.0 
! SNMP access lists  
! read write access for management segment 
access-list 4 permit 172.25.100.0 0.0.0.255 
! read only access for local site 
access-list 5 permit 172.24.0.0 0.1.255.255  
! limit incoming traffic to traffic from site 
access-list 100 permit ip 172.24.0.0 0.1.255.255 any 
! clobber traffic between site 1 and 2 on serial link 
access-list 101 deny ip 172.20.0.0 0.1.255.255 192.168.16.0 0.0.15.255 
access-list 101 permit ip any any 
access-list 102 deny ip 192.168.16.0 0.0.15.255 172.20.0.0 0.1.255.255 
access-list 102 permit ip any any 
!  
! SNMP access declarations 
snmp community netman17225 rw 4 
snmp community 172.20public ro 5 
! line definitions 
line vty 0 4 
 access-class 1 in 
 access-class 2 out 

Finally, here is the configuration for Router F: 
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! limit points of vulnerability on router 
no service tcp-small-servers 
no service udp-small-servers 
no service finger 
! 
ip subnet zero 
! interfaces definitions 
interface Ethernet0 
 ip address 172.24.0.2 255.255.255.0 
 ip access-group 100 in 
interface Ethernet1 
 ip address 172.24.1.2 255.255.255.0 
 ip access-group 100 in 
interface Serial 0 
 ip address 192.168.32.2 255.255.255.252 
 ip access-group 101 in 
 ip access-group 102 out 
! routing processes 
router ospf 70 
 network 172.24.1.0 mask 0.0.0.255 area 0 
 network 172.25.0.0 mask 0.0.0.255 area 0 
    redistribute eigrp 200 
! 
router eigrp 200 
 network 172.24.0.0  
 network 172.25.0.0 
 network 192.168.32.0 mask 255.255.255.252 
 redistribute ospf 70 
 distance 90 192.168.32.9 
 distance 90 172.24.0.0 0.0.1.2 
 distance 255 
! telnet access from management segment 
access-list 1 permit 172.25.100.0 0.0.0.255 
! telnet access from other WAN routers serial interfaces 
access-list 1 permit 192.168.32.0 0.0.0.7 
access-list 1 permit 192.168.32.8 0.0.0.3 
! telnet access from other WAN routers Ethernet interfaces 
access-list 1 permit 172.20.0.2 0.1.1.1 
access-list 1 permt 172.24.0.2 0.1.1.1 
! telnet access out on list 2 - limit to WAN routers 
access-list 2 permit 172.24.0.2 0.1.1.1 
access-list 2 permit 192.168.32.0 0.0.0.7 
access-list 2 permit 192.168.32.8 0.0.0.3 
! access-list for route distribution 
access-list 3 permit 192.168.16.0 0.0.15.0 
! SNMP access lists  
! read write access for management segment 
access-list 4 permit 172.25.100.0 0.0.0.255 
! read only access for local site 
access-list 5 permit 172.24.0.0 0.1.255.255  
! limit incoming traffic to traffic from site 
access-list 100 permit ip 172.24.0.0 0.1.255.255 any 
! clobber traffic between site 1 and 2 on serial link 
access-list 101 deny ip 172.20.0.0 0.1.255.255 192.168.16.0 0.0.15.255 
access-list 101 permit ip any any 
access-list 102 deny ip 192.168.16.0 0.0.15.255 172.20.0.0 0.1.255.255 
access-list 102 permit ip any any 
!  
! SNMP access declarations 
snmp community netman17225 rw 4 
snmp community 172.20public ro 5 



  Cisco IOS Access lists 

  Page 199 

! line definitions 
line vty 0 4 
 access-class 1 in 
 access-class 2 out 

7.2 A firewall case study 

The next case study covers a firewall implementation. Cisco routers packet filter traffic 
between bastion hosts and the Internet and between the bastion hosts and an organization's 
internal network. The main concern here is security. We want to make sure our bastion hosts 
are not exposed to wide ranges of problems and attacks, and also that if some of those hosts 
are compromised, they are not used as a launch point to attack the rest of the network. We 
also want to make sure that our own access to the router is reasonably secure. Other concerns 
are scalability and ease of management. 

What are the key elements of this firewall complex? The firewall network has to support the 
following components: 

• A general proxy supporting the socks protocol 
• An SMTP mail relay 
• A web caching proxy server listening on port 81 
• A web server using standard HTTP 
• A web server for secure transactions for serving SSL 
• A remote access device for access into the internal network 

All the routers and servers need to be administered, of course. To do this, we should consider 
the following rules: 

• Network 172.28.32.0 has workstations for administration and for maintaining the 
proxy relay segments. 

• Network 172.28.30.0/24 has workstations and servers for updating the web servers. 
• The routers need to be administered with TACACS+ protocol for authentication, in 

addition to TFTP and Telnet. A compromise of a host in the firewall should not allow 
promiscuous snooping. 

• Remote access uses an address pool of 172.28.64.0/24. 
• Systems and routers use two NTP servers at 172.28.1.100 and 172.28.1.101. 
• Routers use a TACACS+ server at 172.28.32.20. 
• The organization connects to the Internet through a High Speed Serial Interface 

(HSSI) with IP address 192.168.33.2. 

There are a few other things to consider: 

• Design should be scalable : it should be easy to add servers without a major impact. 
• In this environment, we control what systems go on segments: no hosts are put on a 

segment without our approval. 
• Advertise only one network for ease of routing. 
• There must be problem isolation: a problem with one segment shouldn't affect others. 

Given these requirements and design considerations, the network shown in Figure 7.2 has 
been designed. 
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Figure 7.2. Network for firewall case study 

 

There are two routers and four DMZs in this design. DMZ stands for demilitarized zone, an 
area between an insecure area (the Internet) and a secured area (the internal area of the 
organization). The screening router filters (screens) packets going to the DMZs and provides 
a measure of protection to the hosts in the DMZs. The choke router restricts access (chokes) 
by DMZ hosts into the internal organization. Should a DMZ host be compromised, the choke 
router restricts its access to prevent further penetration. The first DMZ is dedicated to proxy 
services. The second DMZ is used for web services presented to the Internet. Servers 
accessible to the Internet are divided in this way for a number of reasons. Two different 
groups administer the web servers and the proxy systems. We don't want a compromise in one 
segment to allow attacks on other segments. While the ultimate extreme of this logic is to put 
each server on its own segment, this consumes a lot of address space and router interfaces, so 
we use a /26 for segments with hosts on them. 

Another feature is a segment with no hosts on it, designed for maintaining the screening 
router. Telnet, TACACS+, and TFTP packets needed for router maintenance pass through the 
segment without being snooped on. Since we control the segment, we can ensure that no hosts 
will reside on it. This gives the design an added measure of security. 

For the remote access segment, we use a small /30 network allowing in VPN connections. 
Users on the Internet connect to a tunnel server on this segment. The tunnel uses a pool 
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address of 172.28.6.128/25, making incoming remote clients look like they are from this 
address range. The same people administering the proxy servers administer the remote access 
system. The VPN box requires Netbios and other related ports for administration. 

7.2.1 Screening router configuration 

Given this network, I've constructed the following access list for the screening router: 

! limit points of vulnerability on router 
no service tcp-small-servers 
no service udp-small-servers 
no service finger 
! 
ip classless 
ip subnet zero 
! NTP definitions 
ntp update-calendar 
ntp server 172.28.1.100 
ntp server 172.28.1.101 
ntp access-group query-only 12 
! tacacs 
aaa new-model 
aaa authentication login default tacacs+ line 
aaa authentication enable default tacacs+ enable 
aaa authorization exec default tacacs+ none 
aaa accounting exec default start-stop tacacs+ 
aaa accounting connection default start-stop tacacs+ 
aaa accounting system default start-stop tacacs+ 
! interfaces definitions 
! proxy segment 
interface etheret 1/0 
 description interface to proxies 
 ip address 204.148.40.61 255.255.255.192 
 ip access-group 105 out 
 ip access-group 106 in 
 no ip directed-broadcast 
! web server segment 
interface Ethernet1/1 
 description interface to web server segment 
 ip address 204.148.40.125 255.255.255.192 
 ip access-group 107 out 
 ip access-group 108 in 
 no ip directed-broadcast 
! pass through segment 
interface Ethennet1/2 
 description pass through segment 
 ip address 204.148.40.253 255.255.255.248 
 ip access-group 103 out  
 ip access-group 104 in 
 no ip directed-broadcast 
! tunnel 
interface Ethernet1/3 
 description tunnel segment 
 ip address 204.148.40.249 255.255.255.252 
 ip access-group 110 out  
 ip access-group 109 in 
 no ip directed-broadcast 
interface hssi 2/0 
 description HSSI interfce to Internet 
 ip address 192.168.33.2 255.255.255.252 
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 ip access-group 102 out  
 ip access-group 101 in 
 no ip directed-broadcast 
! routing processes 
! vty access 
access-list 10 permit 172.28.32.0 0.0.0.255 
access-list 11 deny any  
! NTP access 
access-list 12 permit 172.28.1.100 0.0.0.1 
! preventing spoofing - starting with private addresses 
access-list 101 deny ip 172.16.0.0 0.15.255.255 any 
access-list 101 deny ip 192.168.0.0 0.0.255.255 any 
access-list 101 deny ip 10.0.0.0 0.255.255.255.255 any 
! deny multicast 
access-list 101 deny ip 224.0.0.0 0.255.255.255.255 
! deny our own net from coming in 
access-list 101 deny ip 204.148.40.0 
! Let everything else in 
access-list 101 permit ip any 204.148.40.0 0.0.0.25 
! general outbound trafic - permit only our traffic  (no spoofing from us) 
access-list 102 permit ip 204.148.40.0 .0.0.0.255 any 
! rules for Pass thru DMZ 
! no transit through this segment (outbound) 
access-list 103 deny any any 
! into pass through interface 
! tacacs+ 
access-list 104 permit tcp 172.28.32.20 0.0.0.255 eq tacacs host 
204.148.40.253 eq tacacs 
! telnet access 
access-list 104 permit tcp 172.28.32.0 0.0.0.255 host 204.148.40.253 eq 
telnet 
access-list 104 permit tcp host 204.148.40.252 host 204.148.40.253 eq 
telnet 
! TFTP 
access-list 104 permit tcp host 172.28.32.0 0.0.0.255 gt 1023 host 
204.148.40.253 eq 69 
! ping 
access-list 104 permit icmp 172.28.32.0 0.0.0.255 host 204.148.40.253 echo 
! 
! to generic proxy segment 
! established and echo first 
access-list 105 permit any 204.148.40.0 0.0.0.63 established 
access-list 105 permit icmp any 204.148.40.0 0.0.0.63 echo 
access-list 105 permit icmp any 204.148.40.0 0.0.0.63 echo-reply 
! to generic FTP proxy in 
! deny access to socks port 
access-list 105 deny any 204.148.40.0 0.0.0.63 eq 1080 
! FTP data connection 
access-list 105 permit tcp any eq 20 204.148.40.20 0.0.0.3 gt 1023 
! DNS 
access-list 105 permit udp any eq domain 204.148.40.0 0.0.0.63 eq domain 
access-list 105 permit udp any eq domain 204.148.40.0 0.0.0.63 gt 1023 
! mail relays 
access-list 105 permit tcp any 204.148.40.16 0.0.0.3 eq smtp 
! other icmp 
access-list 105 permit icmp any 204.148.40.0 0.0.0.63 host-unreachable 
! 
! from generic proxy segment (inbound list) 
! established 
access-list 106 permit tcp 204.14.35.0 0.0.0.63 any established 
! DNS 
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access-list 106 permit udp 204.148.40.0 0.0.0.63 any eq domain 
access-list 106 permit tcp 204.148.40.0 0.0.0.63 any eq domain 
! proxy access 
access-list 106 permit tcp 204.148.40.20 0.0.0.3 any 
! web proxy access 
access-list 106 permit tcp 204.148.40.0 0.0.0.15 any 
! mail 
access-list 106 permit tcp 204.148.40.16 0.0.0.3 any eq smtp 
! icmp 
access-list 106 permit tcp 204.148.40.0 0.0.0.63 echo-reply 
access-list 106 permit tcp 204.148.40.0 0.0.0.63 echo 
! 
! to web server segment 
access-list 107 permit tcp any 204.148.40.64 0.0.0.63 established 
access-list 107 permit icmp any 204.148.40.64 0.0.0.63 echo 
access-list 107 permit tcp any 204.148.40.64 0.0.0.15 eq www 
access-list 107 permit tcp any 204.148.40.80 0.0.0.15 eq 443 
! FTP server 
access-list 107 permit tcp any 204.148.40.112 0.0.0.7 range 20 21 
access-list 107 permit tcp any eq 20 204.148.40.112 0.0.0.7 gt 1023 
access-list 107 permit tcp any gt 1023 204.148.40.112 0.0.0.7 gt 1023 
! 
! from web server segment 
access-list 108 permit 204.148.40.64 0.0.0.63 any established 
! for FTP servers 
access-list 108 permit 204.148.40.112 0.0.0.7 eq 20 any gt 1023 
access-list 108 permit 204.148.40.64 0.0.0.63 any echo-reply 
! 
! to tunnel 
access-list 109 permit gre any host 204.148.40.250 
access-list 109 permit icmp any host 204.148.40.250 any 
! 
! from tunnel 
access-list 110 permit gre host 204.148.40.250 any 
access-list 110 permit icmp any host 204.148.40.250 any 
! all routing via statics - no routing protocols run here 
! route back into organizations' internal network 
ip route 172.28.0.0 255.255.0.0 204.148.40.254 
! default route to Internet 
ip route 0.0.0.0 0.0.0.0 255.255.255.255 192.168.33.2 
! snmp access 
snmp community MyString ro 10 
! 
tacacs-server host 172.28.32.20 
tacacs-server key MyKey123 
! line access 
line vty 0 4 
 access-class 10 in 
 access-class 11 out 

To deal with possible spoofing of IP addresses, access lists 101 and 102 prevent spoofed 
packets from coming in from and going out to the Internet, respectively. In addition, the 
incoming and outgoing access lists prevent hosts on different subnets from sending out 
spoofed packets. Since there are incoming and outgoing access lists on each interface, the 
access list for each segment can be managed independently. Also, access to web service or 
proxy service is open to a range of IP addresses. This allows servers to be added without 
changes to access lists. On the proxy server segment, we block incoming attempts to the 
standard SOCKS proxy port. This is to prevent people on the Internet from using the proxy to 
attack other hosts or disguise their identities. 
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Notice that I have implemented some commands that reduce the number of access lists 
needed. The static route to 172.28.0.0/16 through the maintenance segment eliminates the 
need for routing protocols, which of course eliminates the need for routing access lists. The 
no service tcp-small-servers, no service udp-small-servers, and no service finger commands 
turn off router services. no ip directed broadcast eliminates the need for specific access list 
entries to filter broadcast attacks . 

7.2.2 Choke router configuration 

The choke router is configured as follows: 

! limit points of vulnerability on router 
no service tcp-small-servers 
no service udp-small-servers 
no service finger 
! 
ip classless 
ip subnet zero 
! NTP definitions 
ntp update-calendar 
ntp server 172.28.1.100 
ntp server 172.28.1.101 
ntp access-group query-only 12 
! tacacs 
aaa new-model 
aaa authentication login default tacacs+ line 
aaa authentication enable default tacacs+ enable 
aaa authorization exec default tacacs+ none 
aaa accounting exec default start-stop tacacs+ 
aaa accounting connection default start-stop tacacs+ 
aaa accounting system default start-stop tacacs+ 
! interfaces definitions 
! proxy segment 
interface Ethernet 1/0 
 description interface to proxy segment 
 ip address 204.148.40.62 255.255.255.192 
 ip access-group 102 out 
 ip access-group 103 in 
 no ip directed-broadcast 
! web server segment 
interface Ethernet 1/1 
 description interface to web server segment 
 ip address 204.148.40.126 255.255.255.192 
 ip access-group 104 out 
 ip access-group 105 in 
 no ip directed-broadcast 
! pass through segment 
interface Ethernet 1/2 
 description pass through segment 
 ip address 204.148.40.254 255.255.255.248 
 ip access-group 106 out  
 ip access-group 107 in 
 no ip directed-broadcast 
! tunnel 
interface Ethernet 1/3 
 description tunnel segment 
 ip address 172.28.6.2 255.255.255.252 
 ip access-group 108 out 
 ip access-group 109 in 
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 no ip directed-broadcast 
interface FastEthernet 2/0 
 description interface to internal network 
 ip address 172.28.1.253 255.255.255.0 
 ip access-group 101 out 
 ip access-group 100 in 
 no ip directed-broadcast 
! routing processes 
! vty access 
access-list 10 permit 172.28.32.0 0.0.0.255 
access-list 11 deny any  
! preventing spoofing from internal net 
access-list 100 permit ip 172.28.0.0 0.0.255.255 any 
! permit only traffic from DMZs  
access-list 101 permit ip 204.148.40.0 0.0.0.255 172.28.0.0 0.0.255.255 
access-list 101 permit ip 172.28.64.0 0.0.0.255 172.28.0.0 0.0.255.255 
! Access to proxy segment 
! start with established 
access-list 102 permit tcp 172.28.0.0 0.0.255.255 204.148.40.0 0.0.0.63  
established 
! to proxy server port 
access-list 102 permit tcp 172.28.0.0 0.0.255.255 204.148.40.0 0.0.0.15 eq 
81 
! mail 
access-list 102 permit tcp 172.28.0.0 0.0.255.255 204.148.40.16 0.0.0.3 eq 
smtp 
! generic socks proxy 
access-list 102 permit tcp 172.28.0.0 0.0.255.255 192.168.3.20 0.0.0.3 eq 
1080 
access-list 102 permit icmp 172.28.0.0 0.0.255.255 204.148.40.0 0.0.0.63 
echo 
access-list 102 permit icmp 172.28.0.0 0.0.255.255 204.148.40.0 0.0.0.63 
echo- 
reply 
! DNS 
access-list 102 permit udp 172.28.0.0 0.0.255.255 eq domain 204.148.40.16 
0.0.0.3  
eq domain 
access-list 102 permit udp 172.28.0.0 0.0.255.255 eq domain 204.148.40.16 
0.0.0.3  
gt 1023 
! ssh access 
access-list 102 permit tcp 172.28.0.0 0.0.255.255 204.148.40.20 0.0.0.3 eq 
22  
! from proxy segment 
access-list 103 permit tcp 204.148.40.0 0.0.0.63 172.28.0.0 0.0.255.255  
established 
! mail in 
access-list 103 permit tcp 204.148.40.16 0.0.0.3 172.28.0.0 0.0.255.255 eq 
smtp 
! icmp 
access-list 103 permit icmp 204.148.40.0 0.0.0.63 172.28.0.0 0.0.255.255 
echo 
access-list 103 permit icmp 204.148.40.0 0.0.0.63 172.28.0.0 0.0.255.255 
echo- 
reply 
! DNS for SMTP boxes 
access-list 103 permit udp 204.148.40.16 0.0.0.3 eq domain 172.28.0.0 
0.0.255.255  
eq domain 
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access-list 103 permit udp 204.148.40.16 0.0.0.3 gt 1023 172.28.0.0 
0.0.255.255 
eq domain 
! to web server segment 
access-list 104 permit tcp 172.28.0.0 0.0.255.255 204.148.40.64 0.0.0.63  
established 
! access to web servers 
access-list 104 permit tcp 172.28.0.0 0.0.255.255 204.148.40.64 0.0.0.63 eq 
www 
access-list 104 permit tcp 172.28.0.0 0.0.255.255 204.148.40.64 0.0.0.63 eq 
443 
access-list 104 permit tcp 172.28.0.0 0.0.255.255 204.148.40.64 0.0.0.63 
range  
ftp-date ftp 
! icmp  
access-list 104 permit icmp 172.28.0.0 0.0.255.255 204.148.40.64 0.0.0.63 
echo 
! Netbios access 
access-list 104 permit tcp 172.38.30.0 0.0.255.255 204.148.40.64 0.0.0.63  
eq 139 
access-list 104 permit udp 172.38.30.0 0.0.255.255 204.148.40.64 0.0.0.63  
range netbios-dgm netbios-ns 
! from web segment 
access-list 105 permit tcp 204.148.40.64 0.0.0.63 172.28.0.0 0.0.255.255  
established 
! FTP data connection 
access-list 105 permit tcp 204.148.40.112 0.0.0.7 eq ftp-data 172.28.0.0 
0.0.255. 
255 gt 1023  
! icmp 
access-list 105 permit icmp 204.148.40.64 0.0.0.63 172.28.0.0 0.0.255.255 
echo- 
reply 
! ntp 
access-list 105 permit udp 204.148.40.64 0.0.0.63 eq ntp 172.28.1.100 
0.0.0.1  
eq ntp 
! pass thru segment access 
! telnet and tacacs and tftp 
access-list 106 permit tcp 172.28.32.0 0.0.0.255 host 204.148.40.253 eq 
telnet 
access-list 106 permit tcp 172.28.32.20 0.0.0.255 eq tacacs host 
204.148.40.253 
eq tacacs 
access-list 106 permit udp 172.28.32.0 0.0.0.255 host 204.148.40.253 gt 
1023 
access-list 106 permit udp 172.28.32.0 0.0.0.255 eq 69 host 204.148.40.253  
eq 69 
! ntp 
access-list 106 permit udp 172.28.1.100 0.0.0.1 eq ntp host 204.148.40.253  
eq ntp 
access-list 106 permit udp 172.28.1.100 0.0.0.1 gt 1023 host 204.148.40.253  
eq ntp 
! icmp 
access-list 106 permit icmp 172.28.100.0 0.0.0.255 host 204.148.40.253 echo 
! from pass through 
! telnet back 
access-list 107 permit tcp host 204.148.40.253 eq telnet 172.28.100.0 
0.0.0.255 
gt 1023 
! tacacs 
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access-list 107 permit tcp host 204.148.40.253 eq tacacs 172.28.100.0 
0.0.0.255 
eq tacacs 
! tftp 
access-list 107 permit udp host 204.148.40.253 eq 69 172.28.100.0 0.0.0.255  
eq 69 
access-list 107 permit udp host 204.148.40.253 gt 1023 172.28.100.0 
0.0.0.255 
! ntp 
access-list 107 permit udp host 204.148.40.253 eq ntp 172.28.1.100 0.0.0.1  
eq ntp 
access-list 107 permit udp host 204.148.40.253 eq ntp 172.28.1.100 0.0.0.1  
gt 1023 
! icmp 
access-list 107 permit icmp host 204.148.40.253 172.28.100.0 0.0.0.255 
echo- 
reply 
! to tunnel 
access-list 108 permit ip 172.28.0.0 0.0.255.255 172.28.6.64 0.0.0.63 
! NT services access for maintenance 
access-list 108 permit tcp 172.28.30.0 0.0.0.255 host 172.28.6.5 eq 139 
access-list 108 permit udp 172.28.30.0 0.0.0.255 host 172.28.6.5 range 
netbios- 
dgm netbios-ns 
! from tunnel 
access-list 109 permit ip 172.28.6.64 0.0.0.63 172.28.0.0 0.0.255.255 
access-list 109 permit tcp host 172.28.6.5 eq 139 172.28.30 0.0.0.255 gt 
1023 
access-list 109 permit tcp host 172.28.6.5 range netbios-dgm netbios-ns 
172.28. 
30.0 0.0.0.255 range netbios-dgm netbios-ns 
! all routing via statics - no routing protocols run here 
! route back into internal network 
ip route 172.28.0.0.255.255.0.0 FastEthernet 2/0 
! default route to Internet 
ip route 0.0.0.0 0.0.0.0 255.255.255.255 192.168.33.2 
! snmp access 
snmp community MyString ro 10 
! 
tacacs-server host 172.28.32.20 
tacacs-server key MyKey123 
! line access 
line vty 0 4 
 access-class 10 in 
 access-class 11 out 

For segments like maintenance that have few TCP services, there's no need to put in an TCP 
established entry, since it doesn't save any lines and reduces total exposure. 

7.3 An Internet routing case study 

In this example, I show the use of access lists with Internet routing. Figure 7.3 shows a 
network diagram of an organization doing web hosting. 
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Figure 7.3. Network for an Internet routing case study 

 

The organization has two sites, Site 1 and Site 2, each connected to two ISPs, A and B. ISP A 
has usage-based pricing while ISP B charges a flat rate. There are two sets of web servers, 
one on network 198.6.224.128/25 and another on 204.148.40.0/24. We want to get the best 
possible performance for the web hosts on 198.6.224.128/25. Traffic to and from 
204.148.40.0/24 is a lower priority. 

To ensure higher availability, two routers connect the web servers in Site 1 to the Internet. 
Using Cisco's Hot Standby Routing Protocol (HSRP), we have a path to and from the Internet 
even if one router is unavailable. We also have two different networks between the routers in 
front of the web servers and ISP routers. If one of the networks goes down, the other is still 
available to pass traffic to the Internet. Note also that both ISP routers are managed by their 
respective ISPs and not by the organization. 

Site 2 contains some web servers as well as proxy servers for general use by that site. Of 
greatest interest is the fact that it is connected Site 1 and has connections to the same ISPs as 
Site 1. 

Let's articulate the policies we wish to implement. In this example, I describe only the policies 
for Site 1. 
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7.3.1 Robustness concerns 

The main robustness concerns center around making sure that improper routes are not 
accepted or distributed. Those concerns can be distilled into the following statements: 

Only networks 204.148.40.0/24 and 198.6.224.128/25 should be distributed 
out of the organization by Routers 1 and 2 

Local networks, the private IP networks, and multicast networks should not be 
accepted from the Internet 

7.3.2 Security concerns 

The main security concerns are to allow only what is necessary to the web servers and routers. 
This includes allowing only valid web traffic to the web servers and only appropriate routing 
traffic into the routers. These rules can be summarized as follows: 

BGP traffic allowed between loopbacks of the ISP routers and Routers 1 and 2 

EIGRP between all of the routers 

SNMP and Telnet access only from a management console (192.168.59.3/24) 
connected to fast Ethernet 3/0 (not shown on the diagram). 

Web and SSL access only to the web servers 

HSRP from the interfaces on the web servers segment 

Web servers should be able to ping the router interface on their segment 

The routers cannot be used or queried as time servers 

These policies are implemented with packet-filtering lists and resource access lists. 

7.3.3 Policy concerns 

Good performance for the web servers on network 198.6.224.128/25 is a much higher priority 
than the performance of the web servers on segment 204.148.40.0/24. ISP B is on a pay-per-
usage basis, so we wish to have the following policy to get good performance from the 
important web servers yet save money: 

Hosts in 198.6.224.128/25 will use both ISP A and B 

Hosts in 204.148.40.0 will use ISP A only 

We also want to have traffic flow into the Internet gateway nearest the web servers. To do 
this, we implement the following policy: 

If ISP A is unavailable in Site 1, then traffic for 198.6.224.128/25 should use 
ISP B in Site 1. Traffic should not come in via Site 2's ISP A connection 
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If ISP B is unavailable in Site 1, then traffic for 198.6.224.128/25 should use 
ISP A in Site 1. Traffic should not come in via Site 2's ISP B connection 

If ISP A and B are unavailable in Site 1, then traffic should come in through 
Site 2's ISP connections 

To help set routing policies, ISP B allows its customers to set communities to affect how a 
route is advertised. Table 7.1 describes each community and how it affects advertisements. 

Table 7.1. ISP B's communities and their effects  
Communities Effect on route advertisement 
ISPB:80 Local Preference is set to 80 (default is 100), so route is used as a last resort. 
ISPB:120 Local Preference is set to 120 (default is 100), so route is preferred above all others. 
ISPB:1 Prepend one of ISP B's AS numbers when route is advertised to ISP B's peers. 
ISPB:2 Prepend two of ISP B's AS numbers when route is advertised to ISP B's peers. 
ISPB:3 Prepend three of ISP B's AS numbers when route is advertised to ISP B's peers. 

Note that ISP A has no such community settings. ISP A does, however, listen to MED 
settings on routes it hears from its customers. 

7.3.4 Router configurations 

In this section, I list the configurations for Routers 1 and 2. In the following example, named 
access lists are used. Here is the configuration for Router 1: 

! limit points of vulnerability on router 
no service tcp-small-servers 
no service udp-small-servers 
no service finger 
! 
ip classless 
ip subnet zero 
! interfaces definitions 
! ISP Segment 1 
interface FastEthernet1/0 
 description ISP Segment 1  
 ip address 192.168.64.8 255.255.255.224 
 ip access-group ANTI-SPOOF-OUT out 
 ip access-group ANTI-SPOOF-IN in 
 no ip directed-broadcast 
! ISP Segment 2 
interface FastEthernet1/2 
 description ISP Segment 1 
 ip address 192.168.64.40 255.255.255.224 
 ip access-group ANTI-SPOOF-OUT out 
 ip access-group ANTI-SPOOF-IN in 
 no ip directed-broadcast 
! high priority web segment 
interface FastEthernet2/0 
 description high priority web segment 
 ip address 198.6.224.252 255.255.255.128 
 ip access-group TO-HIGH-PRIORITY-WEB-SEGMENT out 
 ip access-group FROM-HIGH-PRIORITY-WEB-SEGMENT in 
 
 no ip directed-broadcast 
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 standby 192 priority 200 
 standby 192 preempt 
 standby 192 ip 198.6.224.251 
! lower priority web segment 
interface FastEthernet2/1 
 description low priority web segment 
 ip address 204.148.40.252 255.255.255.0 
 ip access-group TO-HIGH-PRIORITY-LOW-PRIORITY-WEB-SEGMENT out 
 ip access-group FROM-LOW-PRIORITY-WEB-SEGMENT in 
 ip policy route FROM-LOW-PRIORITY-WEB-SERVERS 
 no ip directed-broadcast 
 standby 172 priority 100 
 standby 172 preempt 
 standby 172 ip 204.148.40.251 
! to management console 
interface FastEthernet3/0 
 description management segment 
 ip address 192.168.59.252 255.255.255.0 
 ip access-group TO-MANAGEMENT-SEGMENT out  
 ip access-group FROM-MANAGEMENT-SEGMENT in 
 no ip directed-broadcast 
int Loopback0 
 description loopback interface 
 ip address 192.168.64.97 255.255.255.252 
! 
ip standard access-list DENY-ALL-OUT 
 deny any  
! 
ip access-list standard DENY-ALL-ROUTES 
 deny any 
! 
ip access-list standard HIGH-PRIORITY-WEB-SEGMENT 
 permit 198.6.224.128 
! 
ip access-list standard HIGH-PRIORITY-WEB-SERVERS 
 permit 198.6.224.128 0.0.0.127 
! 
ip access-list standard LOOPBACKS-IN 
 permit 192.168.64.0 0.0.0.63 
! 
ip access-list standard LOW-PRIORITY-WEB-SEGMENT 
 permit 204.148.40.0 
! 
ip access-list standard LOW-PRIORITY-WEB-SERVERS 
 permit 204.148.40.0 0.0.0.255  
! 
ip access-list standard MANAGEMENT-SERVER 
 permit 192.168.59.3 0.0.0.0 
! 
ip access-list standard PERMIT-ALL-ROUTES 
 permit any 
! 
ip access-list standard VALID-ROUTES-IN 
! deny private addresses 
 deny 172.16.0.0 0.15.255.255  
 deny 192.168.0.0 0.0.255.255 any 
 deny 10.0.0.0 0.255.255.255.255 any 
! deny multicast 
 deny 224.0.0.0 0.255.255.255.255 
! deny our own nets from coming in 
 deny 198.6.224.128 
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 deny 204.148.40.0 
 permit any 
! 
ip access-list standard VALID-ROUTES-OUT 
 permit 192.168.64.0 0.0.0.255 
 permit 198.6.224.128 
 permit 204.148.40.0 
! 
! preventing spoofing in - starting with private addresses 
ip access-list extended ANTI-SPOOF-IN 
! Let in EIGRP 
 permit eigrp 192.168.64.0 0.0.0.31 host 224.0.0.10 
 permit eigrp 192.168.64.32 0.0.0.31 192.168.64.0 0.0.0.61 
! Let in BGP 
 permit tcp host 192.168.64.69 host 192.168.64.97 eq bgp 
! Deny other private networks 
 deny ip 172.16.0.0 0.15.255.255 any 
 deny ip 192.168.0.0 0.0.255.255 any 
 deny ip 10.0.0.0 0.255.255.255.255 any 
! deny multicast 
 deny ip 224.0.0.0 0.255.255.255.255 
! deny our own nets from coming in 
 deny ip 192.168.64.0 0.0.0.255 any 
 deny ip 198.6.224.0 0.0.0.127 any 
 deny ip 204.148.40.0 0.0.0.255 any 
! Let everything else in 
 permit ip any 204.148.40.0 0.0.0.255 
 permit ip any 198.6.224.0 0.0.0.127 
! 
! general outbound trafic - permit only our traffic  (no spoofing from us) 
ip access-list extended ANTI-SPOOF-OUT 
 permit ip 198.6.224.128 0.0.0.255 any 
 permit ip 204.148.40.0 0.0.0.255 any 
! 
! from web server segment 
ip access-list extended FROM-HIGH-PRIORITY-WEB-SEGMENT 
! allow in ip for ARP and HSRP 
 permit ip 198.6.224.128 0.0.0.127 host 192.168.64.251 
 permit ip 198.6.224.128 0.0.0.127 host 192.168.64.252 
! web traffic   
 permit tcp 198.6.224.128 0.0.0.1 27 eq www any gt 1023 
 permit tcp 198.6.224.128 0.0.0.127 eq 443 any gt 1023 
! permit ping of router interfaces 
 permit icmp 198.6.224.128 0.0.0.127 host 198.6.224.251 echo 
 permit icmp 198.6.224.128 0.0.0.127 198.6.224.252 0.0.0.1 echo 
! 
! from web server segment 
ip access-list extended FROM-LOW-PRIORITY-WEB-SEGMENT 
! allow in ip for ARP and HSRP 
 permit ip 204.148.40.0 0.0.0.255 host 204.148.40.251 
 permit ip 204.148.40.0 0.0.0.255 host 204.148.40.252 
! web traffic 
 permit tcp 204.148.40.0 0.0.0.255 eq www any gt 1023 
 permit tcp 204.148.40.0 0.0.0.255 eq 443 any gt 1023 
! ping from servers to local interface 
 permit icmp 204.148.40.0 0.0.0.255 host 204.148.40.251 echo 
 permit icmp 204.148.40.0 0.0.0.255 204.148.40.251.252 0.0.0.1 echo 
! 
ip access-list extended FROM-MANAGEMENT-SEGMENT 
! telnet access 
 permit tcp host 192.168.59.3 host 192.168.59.252 eq telnet 
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 permit tcp host 192.168.59.3 host 192.168.59.252 eq telnet 
! TFTP 
 permit tcp host 192.168.59.3 gt 1023 host 192.168.59.252 eq 69 
! tacacs 
 permit tcp host 192.168.59.3 eq tacacs host 192.168.59.252 eq tacacs 
! ping 
 permit icmp host 192.168.59.3 host 192.168.59.252 echo 
! 
ip access-list extended TO-HIGH-PRIORITY-WEB-SEGMENT 
 permit tcp any 198.6.224.128 0.0.0.127 eq www 
 permit tcp any 198.6.224.128 0.0.0.127 eq 443 
! ping from servers 
 permit icmp any 198.6.224.128 0.0.0.127 echo 
! 
ip access-list extended TO-LOW-PRIORITY-WEB-SEGMENT 
 permit tcp any 204.148.40.0 0.0.0.255 eq www 
 permit tcp any 204.148.40.0 0.0.0.255 eq 443 
! 
! to management segment 
ip access-list extended TO-MANAGEMENT-SEGMENT 
! no transit through this segment (outbound) 
 deny any any 
! 
route-map FROM-LOW-PRIORITY-WEB-SERVERS permit 10 
 match fast 2/0 
 set ip next-hop 192.168.64.73  
! 
route-map INCOMING-ROUTES-FROM-SITE2 permit 10 
 match ip PERMIT-ALL-ROUTES 
 set local-preference 80 
! 
route-map ROUTES-OUT-TO-ISPA-SITE1 permit 10 
 match ip HIGH-PRIORITY-WEB-SEGMENT 
! 
route-map ROUTES-OUT-TO-ISPA-SITE2 permit 10 
 match ip HIGH-PRIORITY-WEB-SEGMENT 
 set as-path prepend 1321 1321 1321 
! 
route-map ROUTES-OUT-TO-ISPB-SITE1 permit 10 
 match ip HIGH-PRIORITY-WEB-SEGMENT 
route-map ROUTES-OUT-TO-ISPB-SITE1 permit 20 
 match ip LOW-PRIORITY-WEB-SEGMENT 
! 
route-map ROUTES-OUT-TO-ISPB-SITE2 permit 10 
 match ip HIGH-PRIORITY-WEB-SEGMENT 
 set community ISPB:80 
route-map ROUTES-OUT-TO-ISPB-SITE2 permit 20 
 match ip LOW-PRIORITY-WEB-SEGMEN2 
 set community ISPB:80 
! 
! routing statements 
router eigrp 800 
 network 192.168.64.0 mask 255.255.255.224 
 network 192.168.64.32 mask 255.255.255.224 
 distribute-list DENY-ALL-ROUTES in fast 2/0 
 distribute-list DENY-ALL-ROUTES in fast 2/1 
 distribute-list LOOPBACKS-IN in fast 1/0 
 distribute-list LOOPBACKS-IN in fast 1/1 
 distribute-list VALID-ROUTES-OUT out 
! 
router bgp 1321 
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 no synchronization 
 network 198.6.224.128 mask 255.255.255.128 
 network 204.148.40.0 
! 
 neighbor external-peers ebgp-multihop 6 
 neighbor external-peers update-source Loopback0 
 neighbor external-peers next-hop-self 
 neighbor external-peers distribute-list VALID-ROUTES-OUT out 
 neighbor external-peers distribute-list VALID-ROUTES-IN in 
 neighbor external-peers soft-reconfiguration in 
 neighbor external-peers soft-reconfiguration out 
 neighbor 192.168.64.69 peer-group external-peers 
 neighbor 192.168.64.73 peer-group external-peers 
 neighbor 192.168.65.69 peer-group external-peers 
 neighbor 192.168.65.73 peer-group external-peers 
! 
 neighbor 192.168.64.69 remote-as 65000 
 neighbor 192.168.64.69 route-map ROUTES-OUT-TO-ISPBA-SITE1 out 
! 
 neighbor 192.168.64.73 remote-as 65001 
 neighbor 192.168.64.73 route-map ROUTES-OUT-TO-ISPB-SITE1 out 
! 
 neighbor 192.168.65.69 remote-as 65000 
 neighbor 192.168.65.69 route-map ROUTES-OUT-TO-ISPBA-SITE2 out 
 neighbor 192.168.65.69 route-map INCOMING-ROUTES-FROM-SITE2 in 
! 
 neighbor 192.168.65.73 remote-as 65001 
 neighbor 192.168.65.73 route-map ROUTES-OUT-TO-ISPB-SITE2 out 
 neighbor 192.168.65.73 route-map INCOMING-ROUTES-FROM-SITE2 in 
! snmp access 
snmp community MyString ro MANAGEMENT-SERVER 
! line access 
line vty 0 4 
 access-class MANAGEMENT-SERVER in 
 access-class DENY-ALL-OUT out 

To deal with network robustness issues, we allow only our specific routes to be distributed out 
via EIGRP and BGP. Access list VALID-ROUTES-OUT restricts what is advertised via routing 
protocols. Only the loopback networks are accepted via EIGRP, which are restricted by the 
access list LOOPBACKS-IN. Our own networks, private addresses, and multicast networks are 
rejected by access list VALID-ROUTES-IN. 

Several other access lists maintain security. The access list MANAGEMENT-SERVER restricts 
SNMP and Telnet access to the management console. The standard access list DENY-ALL-OUT 
prevents those with login access from attacking other sites on the web from the management 
console. Access list ANTI-SPOOF-IN prevents spoofed packets from entering the network, 
while ANTI-SPOOF-OUT prevents a compromised web server from becoming a source of 
spoofed packets. ANTI-SPOOF-IN has specific entries for allowing incoming EIGRP and BGP 
packets. There are incoming and outgoing access lists on the interfaces leading to the web 
servers. This allows the access lists for the high- and low-priority web servers to be managed 
independently—a change on one will not affect the others. The incoming access lists let in 
HSRP broadcasts. Only web traffic is permitted to the web servers. The no ip directed-
broadcast command on the interfaces prevent the routers and servers from being used for 
broadcast-based attack, and TCP and UDP services are turned off with no service commands. 
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The traffic routing policy is implemented with route maps. Policy route map FROM-LOW-
PRIORITY-WEB-SERVERS directs traffic from the low priority web servers to ISP B. The route 
map ROUTES-TO-ISPB-SITE2 sets the community string ISPB:80 on the routes from the low-
priority web server network. This community makes the route to the low-priority servers less 
preferred through Site 2 and is used only if there is no path through ISP B in Site 1. It should 
be noted, however, that because of the policy route map on the low-priority web site segment, 
the next hop statement has to be manually changed to point to ISP B in Site 2 in order to 
completely fail over the low-priority segment. The route maps ROUTES-TO-ISPA-SITE1 and 
ROUTES-TO-ISPA-SITE2 do not include the low-priority network, so this network is never 
routed over ISP A in either site. To ensure that Site 2 is the last resort for the high-priority 
network, we prepend AS 1321 onto routes ISP A receives in Site 2 for the high-priority 
network. As a result, ISP B is used in Site 1 if ISP A goes down. For outgoing traffic, the 
route map INCOMING-ROUTES-FROM-SITE2 makes all routes form ISP A and B in Site 2 a 
local preference of 80. This makes outgoing traffic go out Site 1 unless both ISPs there are 
down. 

Note that we use peer-group in the BGP neighbor definitions to reduce the number of 
statements and simplify the configuration. Several commands, including two distribute-
list statements for incoming and outgoing routes are repeated for each neighbor, and peer-
group saves us from repeatedly entering them into the configuration. 

The following configuration for Router 2 is added for completeness: 

! limit points of vulnerability on router 
no service tcp-small-servers 
no service udp-small-servers 
no service finger 
! 
ip classless 
ip subnet zero 
! interfaces definitions 
! ISP Segment 1 
interface FastEthernet1/0 
 description ISP Segment 1  
 ip address 192.168.64.9 255.255.255.224 
 ip access-group ANTI-SPOOF-OUT out 
 ip access-group ANTI-SPOOF-IN in 
 no ip directed-broadcast 
! ISP Segment 2 
interface FastEthernet1/2 
 description ISP Segment 1 
 ip address 192.168.64.41 255.255.255.224 
 ip access-group ANTI-SPOOF-OUT out 
 ip access-group ANTI-SPOOF-IN in 
 no ip directed-broadcast 
! high priority web segment 
interface FastEthernet2/0 
 description high priority web segment 
 ip address 198.6.224.253 255.255.255.128 
 ip access-group TO-HIGH-PRIORITY-WEB-SEGMENT out 
 ip access-group FROM-HIGH-PRIORITY-WEB-SEGMENT in 
 
 no ip directed-broadcast 
 standby 192 priority 200 
 standby 192 preempt 
 standby 192 ip 198.6.224.251 
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! lower priority web segment 
interface FastEthernet2/1 
 description low priority web segment 
 ip address 204.148.40.253 255.255.255.0 
 ip access-group TO-HIGH-PRIORITY-LOW-PRIORITY-WEB-SEGMENT out 
 ip access-group FROM-LOW-PRIORITY-WEB-SEGMENT in 
 ip policy route FROM-LOW-PRIORITY-WEB-SERVERS 
 no ip directed-broadcast 
 standby 172 priority 100 
 standby 172 preempt 
 standby 172 ip 204.148.40.251 
! to management console 
interface FastEthernet3/0 
 description management segment 
 ip address 192.168.59.253 255.255.255.0 
 ip access-group TO-MANAGEMENT-SEGMENT out  
 ip access-group FROM-MANAGEMENT-SEGMENT in 
 no ip directed-broadcast 
int Loopback0 
 description loopback interface 
 ip address 192.168.64.101 255.255.255.252 
! 
ip standard access-list DENY-ALL-OUT 
 deny any  
! 
ip access-list standard DENY-ALL-ROUTES 
 deny any 
! 
ip access-list standard HIGH-PRIORITY-WEB-SEGMENT 
 permit 198.6.224.128 
! 
ip access-list standard HIGH-PRIORITY-WEB-SERVERS 
 permit 198.6.224.128 0.0.0.127 
! 
ip access-list standard LOOPBACKS-IN 
 permit 192.168.64.0 0.0.0.63 
! 
ip access-list standard LOW-PRIORITY-WEB-SEGMENT 
 permit 204.148.40.0 
! 
ip access-list standard LOW-PRIORITY-WEB-SERVERS 
 permit 204.148.40.0 0.0.0.255  
! 
ip access-list standard MANAGEMENT-SERVER 
 permit 192.168.59.3 0.0.0.0 
! 
ip access-list standard PERMIT-ALL-ROUTES 
 permit any 
! 
ip access-list standard VALID-ROUTES-IN 
! deny private addresses 
 deny 172.16.0.0 0.15.255.255  
 deny 192.168.0.0 0.0.255.255 any 
 deny 10.0.0.0 0.255.255.255.255 any 
! deny multicast 
 deny 224.0.0.0 0.255.255.255.255 
! deny our own nets from coming in 
 deny 198.6.224.128 
 deny 204.148.40.0 
 permit any 
! 
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ip access-list standard VALID-ROUTES-OUT 
 permit 192.168.64.0 0.0.0.255 
 permit 198.6.224.128 
 permit 204.148.40.0 
! 
! preventing spoofing in - starting with private addresses 
ip access-list extended ANTI-SPOOF-IN 
! Let in EIGRP 
 permit eigrp 192.168.64.0 0.0.0.31 host 224.0.0.10 
 permit eigrp 192.168.64.32 0.0.0.31 192.168.64.0 0.0.0.61 
! Let in BGP 
 permit tcp host 192.168.64.69 host 192.168.64.97 eq bgp 
! Deny other private networks 
 deny ip 172.16.0.0 0.15.255.255 any 
 deny ip 192.168.0.0 0.0.255.255 any 
 deny ip 10.0.0.0 0.255.255.255.255 any 
! deny multicast 
 deny ip 224.0.0.0 0.255.255.255.255 
! deny our own nets from coming in 
 deny ip 192.168.64.0 0.0.0.255 any 
 deny ip 198.6.224.0 0.0.0.127 any 
 deny ip 204.148.40.0 0.0.0.255 any 
! Let everything else in 
 permit ip any 204.148.40.0 0.0.0.255 
 permit ip any 198.6.224.0 0.0.0.127 
! 
! general outbound trafic - permit only our traffic  (no spoofing from us) 
ip access-list extended ANTI-SPOOF-OUT 
 permit ip 198.6.224.128 0.0.0.255 any 
 permit ip 204.148.40.0 0.0.0.255 any 
! 
! from web server segment 
ip access-list extended FROM-HIGH-PRIORITY-WEB-SEGMENT 
! allow in ip for ARP and HSRP 
 permit ip 198.6.224.128 0.0.0.127 host 192.168.64.251 
 permit ip 198.6.224.128 0.0.0.127 host 192.168.64.252 
! web traffic   
 permit tcp 198.6.224.128 0.0.0.1 27 eq www any gt 1023 
 permit tcp 198.6.224.128 0.0.0.127 eq 443 any gt 1023 
! permit ping of router interfaces 
 permit icmp 198.6.224.128 0.0.0.127 host 198.6.224.251 echo 
 permit icmp 198.6.224.128 0.0.0.127 198.6.224.252 0.0.0.1 echo 
! 
! from web server segment 
ip access-list extended FROM-LOW-PRIORITY-WEB-SEGMENT 
! allow in ip for ARP and HSRP 
 permit ip 204.148.40.0 0.0.0.255 host 204.148.40.251 
 permit ip 204.148.40.0 0.0.0.255 host 204.148.40.252 
! web traffic 
 permit tcp 204.148.40.0 0.0.0.255 eq www any gt 1023 
 permit tcp 204.148.40.0 0.0.0.255 eq 443 any gt 1023 
! ping from servers to local interface 
 permit icmp 204.148.40.0 0.0.0.255 host 192.168.64.251 echo 
! ping from servers to local interface 
 permit icmp 204.148.40.0 0.0.0.255 host 204.148.40.251 echo 
 permit icmp 204.148.40.0 0.0.0.255 204.148.40.251.252 0.0.0.1 echo 
! 
ip access-list extended FROM-MANAGEMENT-SEGMENT 
! telnet access 
 permit tcp host 192.168.59.3 host 192.168.59.252 eq telnet 
 permit tcp host 192.168.59.3 host 192.168.59.252 eq telnet 
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! TFTP 
 permit tcp host 192.168.59.3 gt 1023 host 192.168.59.252 eq 69 
! tacacs 
 permit tcp host 192.168.59.3 eq tacacs host 192.168.59.252 eq tacacs 
! ping 
 permit icmp host 192.168.59.3 host 192.168.59.252 echo 
! 
ip access-list extended TO-HIGH-PRIORITY-WEB-SEGMENT 
 permit tcp any 198.6.224.128 0.0.0.127 eq www 
 permit tcp any 198.6.224.128 0.0.0.127 eq 443 
! ping from servers 
 permit icmp any 198.6.224.128 0.0.0.127 echo 
! 
ip access-list extended TO-LOW-PRIORITY-WEB-SEGMENT 
 permit tcp any 204.148.40.0 0.0.0.255 eq www 
 permit tcp any 204.148.40.0 0.0.0.255 eq 443 
! 
! to management segment 
ip access-list extended TO-MANAGEMENT-SEGMENT 
! no transit through this segment (outbound) 
 deny any any 
! 
route-map FROM-LOW-PRIORITY-WEB-SERVERS permit 10 
 match fast 2/0 
 set ip next-hop 192.168.64.73  
! 
route-map INCOMING-ROUTES-FROM-SITE2 permit 10 
 match ip PERMIT-ALL-ROUTES 
 set local-preference 80 
! 
route-map ROUTES-OUT-TO-ISPA-SITE1 permit 10 
 match ip HIGH-PRIORITY-WEB-SEGMENT 
! 
route-map ROUTES-OUT-TO-ISPA-SITE2 permit 10 
 match ip HIGH-PRIORITY-WEB-SEGMENT 
 set as-path prepend 1321 1321 1321 
! 
route-map ROUTES-OUT-TO-ISPB-SITE1 permit 10 
 match ip HIGH-PRIORITY-WEB-SEGMENT 
route-map ROUTES-OUT-TO-ISPB-SITE1 permit 20 
 match ip LOW-PRIORITY-WEB-SEGMENT 
! 
route-map ROUTES-OUT-TO-ISPB-SITE2 permit 10 
 match ip HIGH-PRIORITY-WEB-SEGMENT 
 set community ISPB:80 
route-map ROUTES-OUT-TO-ISPB-SITE2 permit 20 
 match ip LOW-PRIORITY-WEB-SEGMEN2 
 set community ISPB:80 
! 
! routing statements 
router eigrp 800 
 network 192.168.64.0 mask 255.255.255.224 
 network 192.168.64.32 mask 255.255.255.224 
 distribute-list DENY-ALL-ROUTES in fast 2/0 
 distribute-list DENY-ALL-ROUTES in fast 2/1 
 distribute-list LOOPBACKS-IN in fast 1/0 
 distribute-list LOOPBACKS-IN in fast 1/1 
 distribute-list VALID-ROUTES-OUT out 
! 
router bgp 1321 
 no synchronization 
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 network 198.6.224.128 mask 255.255.255.128 
 network 204.148.40.0 
! 
 neighbor external-peers ebgp-multihop 6 
 neighbor external-peers update-source Loopback0 
 neighbor external-peers next-hop-self 
 neighbor external-peers distribute-list VALID-ROUTES-OUT out 
 neighbor external-peers distribute-list VALID-ROUTES-IN in 
 neighbor external-peers soft-reconfiguration in 
 neighbor external-peers soft-reconfiguration out 
 neighbor 192.168.64.69 peer-group external-peers 
 neighbor 192.168.64.73 peer-group external-peers 
 neighbor 192.168.65.69 peer-group external-peers 
 neighbor 192.168.65.73 peer-group external-peers 
! 
 neighbor 192.168.64.69 remote-as 65000 
 neighbor 192.168.64.69 route-map ROUTES-OUT-TO-ISPBA-SITE1 out 
! 
 neighbor 192.168.64.73 remote-as 65001 
 neighbor 192.168.64.73 route-map ROUTES-OUT-TO-ISPB-SITE1 out 
! 
 neighbor 192.168.65.69 remote-as 65000 
 neighbor 192.168.65.69 route-map ROUTES-OUT-TO-ISPBA-SITE2 out 
 neighbor 192.168.65.69 route-map INCOMING-ROUTES-FROM-SITE2 in 
! 
 neighbor 192.168.65.73 remote-as 65001 
 neighbor 192.168.65.73 route-map ROUTES-OUT-TO-ISPB-SITE2 out 
 neighbor 192.168.65.73 route-map INCOMING-ROUTES-FROM-SITE2 in 
! snmp access 
snmp community MyString ro MANAGEMENT-SERVER 
! line access 
line vty 0 4 
 access-class MANAGEMENT-SERVER in 
 access-class DENY-ALL-OUT out 
 

Appendix A. Extended Access List Protocols and Qualifiers 

Table A.1. IP protocols  
Protocol name IP protocol number 
AH 51 
EIGRP 88 
ESP 50 
GRE 47 
ICMP 1 
IGMP 2 
IGRP 9 
IP 0-255 
IPINIP 94 
NOS 4 
OSPF 89 
TCP 6 
UDP 17 
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Table A.2. Qualifiers for ICMP  
Type or code   
administratively-prohibited  

alternate-address  

conversion-error  

dod-host-prohibited  

dod-net-prohibited  

echo  

echo-reply  

general-parameter-problem 

host-isolated 

host-precedence-unreachable 

host-redirect host-tos-redirect 

host-tos-unreachable 

host-unknown 

host-unreachable 

information-reply 

information-request 

mask-reply 

mask-request 
mobile-redirect 

net-redirect 

net-tos-redirect 

net-tos-unreachable 

net-unreachable 

network-unknown 

no-room-for-option 

option-missing 

packet-too-big 

parameter-problem 

port-unreachable 

precedence-unreachable 

protocol-unreachable 

reassembly-timeout 

redirect 

router-advertisement 

router-solicitation 

source-quench 

source-route-failed 

time-exceeded 

timestamp-reply 

timestamp-request 

traceroute 

ttl-exceeded 

unreachable 
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Table A.3. TCP and UDP qualifers  
IP Protocol Qualifer Port number (if any) 
UDP biff  512 
UDP bootpc  68 
UDP bootps  67 
UDP discard  9 
UDP domain 53 
UDP dnsix  90 
UDP echo  7 
UDP mobile-ip  434 
UDP nameserver  42 
UDP netbios-dgm  137 
UDP netbios-ns  138 
UDP ntp  123 
UDP rip  520 
UDP snmp  161 
UDP snmptrap  162 
UDP sunrpc  111 
UDP syslog 514 
UDP tacacs-ds  49 
UDP talk  517 
UDP tftp  69 
UDP time  37 
UDP who  513 
UDP xdmcp 177 
TCP bgp 179 
TCP chargen  19 
TCP daytime  13 
TCP discard  9 
TCP domain  53 
TCP echo  7 
TCP finger  79 
TCP ftp  21 
TCP ftp-data  20 
TCP gopher  70 
TCP hostname  101 
TCP irc  194 
TCP klogin  543 
TCP kshell  544 
TCP lpd  515 
TCP nntp  119 
TCP pop2  109 
TCP pop3  110 
TCP smtp  25 
TCP sunrpc  111 
TCP syslog  514 
TCP tacacs-ds  65 
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TCP talk  517 
TCP telnet  23 
TCP time  37 
TCP uucp  540 
TCP whois  43 
TCP www 80 
Table A.4. Common application ports and directionality  

Service Protocol Source port (on client 
unless specified) 

Destination port (on server 
unless specified) 

FTP (control connection) TCP > 1023 21 
FTP (data connection) TCP 20 (from server) > 1023 (to client) 
FTP PASV data connection TCP > 1023 20 
FTP PASV data connection as implemented 
by many browsers TCP > 1023 > 1023 

Secure Shell (SSH) TCP > 1023 22 
Telnet TCP > 1023 23 
SMTP TCP > 1023 25 
TACACS UDP 49 49 

DNS UDP 
53 

> 1023 
53 

DNS (for zone transfers and for large queries 
in presence of large packet loss) TCP > 1023 53 

TFTP UDP > 1023 69 
POP3 TCP > 1023 110 
IDENT (often used by mailers) TCP > 1023 113 
NNTP (News) TCP > 1023 119 
NTP (Network Time Protocol) UDP 123 123 
Netbios services UDP 137, 138 > 1023 137, 138 
Netbios file sharing TCP > 1023 139 
SNMP UDP > 1023 161 
SSL TCP > 1023 443 
REXEC TCP > 1023 512 
RLOGIN TCP < 1024 513 
RSH TCP < 1024 514 
SOCKS TCP > 1023 1080 
Squid Proxy TCP > 1023 3128 
Syslog UDP > 1023 514 
 

Appendix B. Binary and Mask Tables 
Table B.1. 8-bit binary/decimal conversion chart from 0 to 255  
Decimal Binary Decimal Binary Decimal Binary Decimal Binary 
0 00000000 64 01000000 128 10000000 192 11000000 
1 00000001 65 01000001 129 10000001 193 11000001 
2 00000010 66 01000010 130 10000010 194 11000010 
3 00000011 67 01000011 131 10000011 195 11000011 



  Cisco IOS Access lists 

  Page 223 

4 00000100 68 01000100 132 10000100 196 11000100 
5 00000101 69 01000101 133 10000101 197 11000101 
6 00000110 70 01000110 134 10000110 198 11000110 
7 00000111 71 01000111 135 10000111 199 11000111 
8 00001000 72 01001000 136 10001000 200 11001000 
9 00001001 73 01001001 137 10001001 201 11001001 
10 00001010 74 01001010 138 10001010 202 11001010 
11 00001011 75 01001011 139 10001011 203 11001011 
12 00001100 76 01001100 140 10001100 204 11001100 
13 00001101 77 01001101 141 10001101 205 11001101 
14 00001110 78 01001110 142 10001110 206 11001110 
15 00001111 79 01001111 143 10001111 207 11001111 
16 00010000 80 01010000 144 10010000 208 11010000 
17 00010001 81 01010001 145 10010001 209 11010001 
18 00010010 82 01010010 146 10010010 210 11010010 
19 00010011 83 01010011 147 10010011 211 11010011 
20 00010100 84 01010100 148 10010100 212 11010100 
21 00010101 85 01010101 149 10010101 213 11010101 
22 00010110 86 01010110 150 10010110 214 11010110 
23 00010111 87 01010111 151 10010111 215 11010111 
24 00011000 88 01011000 152 10011000 216 11011000 
25 00011001 89 01011001 153 10011001 217 11011001 
26 00011010 90 01011010 154 10011010 218 11011010 
27 00011011 91 01011011 155 10011011 219 11011011 
28 00011100 92 01011100 156 10011100 220 11011100 
29 00011101 93 01011101 157 10011101 221 11011101 
30 00011110 94 01011110 158 10011110 222 11011110 
31 00011111 95 01011111 159 10011111 223 11011111 
32 00100000 96 01100000 160 10100000 224 11100000 
33 00100001 97 01100001 161 10100001 225 11100001 
34 00100010 98 01100010 162 10100010 226 11100010 
35 00100011 99 01100011 163 10100011 227 11100011 
36 00100100 100 01100100 164 10100100 228 11100100 
37 00100101 101 01100101 165 10100101 229 11100101 
38 00100110 102 01100110 166 10100110 230 11100110 
39 00100111 103 01100111 167 10100111 231 11100111 
40 00101000 104 01101000 168 10101000 232 11101000 
41 00101001 105 01101001 169 10101001 233 11101001 
42 00101010 106 01101010 170 10101010 234 11101010 
43 00101011 107 01101011 171 10101011 235 11101011 
44 00101100 108 01101100 172 10101100 236 11101100 
45 00101101 109 01101101 173 10101101 237 11101101 
46 00101110 110 01101110 174 10101110 238 11101110 
47 00101111 111 01101111 175 10101111 239 11101111 
48 00110000 112 01110000 176 10110000 240 11110000 
49 00110001 113 01110001 177 10110001 241 11110001 
50 00110010 114 01110010 178 10110010 242 11110010 
51 00110011 115 01110011 179 10110011 243 11110011 
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52 00110100 116 01110100 180 10110100 244 11110100 
53 00110101 117 01110101 181 10110101 245 11110101 
54 00110110 118 01110110 182 10110110 246 11110110 
55 00110111 119 01110111 183 10110111 247 11110111 
56 00111000 120 01111000 184 10111000 248 11111000 
57 00111001 121 01111001 185 10111001 249 11111001 
58 00111010 122 01111010 186 10111010 250 11111010 
59 00111011 123 01111011 187 10111011 251 11111011 
60 00111100 124 01111100 188 10111100 252 11111100 
61 00111101 125 01111101 189 10111101 253 11111101 
62 00111110 126 01111110 190 10111110 254 11111110 
63 00111111 127 01111111 191 10111111 255 11111111 
Table B.2. Subnet masks and wildcard mask per prefix lengths  
Prefix 
length 

Subnet mask in dotted 
quad notation 

Access list mask that 
matches all hosts Valid networks with this prefix length 

/8 255.0.0.0 0.255.255.255 {1-126,128-223}.0.0.0 
/9 255.128.0.0 0.127.255.255 {1-126,128-223}.{0,128}.0.0 
/10 255.192.0.0 0.63.255.255 {1-126,128-223}.{0,64,128,192}.0.0 

/11 255.224.0.0 0.31.255.255 {1-126,128-
223}.{0,32,64,96,128,160,192,224}.0.0 

/12 255.240.0.0 0.15.255.255 

{1-126,128-223}.{0,16,32,48,64,80,96,102}.0.0 

{1-126,128-
223}.{128,144,160,176,192,208,224,240}.0.0 

/13 255.248.0.0 0.7.255.255 

{1-126,128-223}.{0,8,16,24,32,40,48,56}.0.0 

{1-126,128-
223}.{64,72,80,88,96,104,112,120}.0.0 

{1-126,128-
223}.{128,136,144,152,160,168,176,184}.0.0 

{1-126,128-
223}.{192,200,208,216,224,232,240,248}.0.0 

/14 255.252.0.0 0.3.255.255 {1-126,128-223}.{0,4,8...248,252}.0.0 
/15 255.254.0.0 0.1.255.255 {1-126,128-223}.{0,2,4...252,254}.0.0 
/16 255.255.0.0 0.0.255.255 {1-126,128-223}.{0-255}.0.0 
/17 255.255.128.0 0.0.127.255 {1-126,128-223}.{0-255}.{0,128}.0 
/18 255.255.192.0 0.0.63.255 {1-126,128-223}.{0-255}{0,64,128,192}.0 

/19 255.255.224.0 0.0.31.255 
{1-126,128-223}.{0-255}{0,32,64,96}.0 

{1-126,128-223}.{0-255}{128,160,192,224}.0 

/20 255.255.240.0 0.0.15.255 

{1-126,128-223}.{0-255}.{0,16,32,48 }.0 

{1-126,128-223}.{0-255}.{64,80,96,102}.0 

{1-126,128-223}.{0-255}.{128,144,160,176}.0 

{1-126,128-223}.{0-255}.{192,208,224,240}.0 

/21 255.255.248.0 0.0.7.255 
{1-126,128-223}.{0-255}.{0,8,16,24}.0 
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{1-126,128-223}.{0-255}.{32,40,48,56}.0 

{1-126,128-223}.{0-255}.{64,72,80,88 }.0 

{1-126,128-223}.{0-255}.{96,104,112,120}.0 

{1-126,128-223}.{0-255}.{128,136,144,152}.0 

{1-126,128-223}.{0-255}.{160,168,176,184}.0 

{1-126,128-223}.{0-255}.{192,200,208,216}.0 

{1-126,128-223}.{0-255}.{224,232,240,248}.0 
/22 255.255.252.0 0.0.3.255 {1-126,128-223}.{0-255}.{0,4,8...248,252}.0 
/23 255.255.254.0 0.0.1.255 {1-126,128-223}.{0-255}.{0,2,4...252,254}.0 
/24 255.255.255.0 0.0.0.255 {1-126,128-223}.{0-255}.{0-255}.0 
/25 255.255.128.0 0.0.0.127 {1-126,128-223}.{0-255}.{0-255}.{0,128} 

/26 255.255.192.0 0.0.0.63 {1-126,128-223}.{0-255}.{0-
255}.{0,64,128,192} 

/27 255.255.224.0 0.0.0.31 

{1-126,128-223}.{0-255}.{0-255}.{0,32,64,96} 

{1-126,128-223}.{0-255}.{0-
255}.{128,160,192,224} 

/28 255.255.240.0 0.0.0.15 

{1-126,128-223}.{0-255}.{0-255}.{0,16,32,48 } 

{1-126,128-223}.{0-255}.{0-
255}.{64,80,96,102} 

{1-126,128-223}.{0-255}.{0-
255}.{128,144,160,176} 

{1-126,128-223}.{0-255}.{0-
255}.{192,208,224,240} 

/29 255.255.248.0 0.0.0.7 

{1-126,128-223}.{0-255}.{0-255}.{0,8,16,24} 

{1-126,128-223}.{0-255}.{0-255}.{32,40,48,56} 

{1-126,128-223}.{0-255}.{0-255}.{64,72,80,88 } 

{1-126,128-223}.{0-255}.{0-
255}.{96,104,112,120} 

{1-126,128-223}.{0-255}.{0-
255}.{128,136,144,152} 

{1-126,128-223}.{0-255}.{0-
255}.{160,168,176,184} 

{1-126,128-223}.{0-255}.{0-255}.{192,200} 

{1-126,128-223}.{0-255}.{0-255}.{208,216} 

{1-126,128-223}.{0-255}.{0-255}.{224,232} 



  Cisco IOS Access lists 

  Page 226 

{1-126,128-223}.{0-255}.{0-255}.{240,248} 

/30 255.255.252.0 0.0.0.3 {1-126,128-223}.{0-255}.{0-
255}.{0,4,8...248,252} 

/31 255.255.254.0 0.0.0.1 {1-126,128-223}.{0-255}.{0-
255}.{0,2,4...252,254} 

/32 255.255.255.255 0.0.0.0 {1-126,128-223}.{0-255}.{0-255}.{0-254} 
 

Appendix C. Common Application Ports 
Table C.1. Common application source and destination ports  

Service Protocol Source port (on client 
unless specified) 

Destination port (on server 
unless specified) 

DNS UDP 
53 

> 1023 
53 

DNS (for zone transfers and for large queries 
in presence of large packet loss) TCP > 1023 53 

FTP (control connection) TCP > 1023 21 
FTP (data connection) TCP 20 (from server) > 1023 (to client) 
FTP PASV data connection TCP > 1023 20 
FTP PASV data connection as implemented 
by many browsers TCP > 1023 > 1023 

IDENT (often used by mailers) TCP > 1023 113 

Netbios name service UDP 
137 

> 1023 
137 

Netbios datagram service UDP 
138 

> 1023 
138 

Netbios file sharing TCP > 1023 139 
NNTP (News) TCP > 1023 119 
NTP (Network Time Protocol) UDP 123 123 
POP3 TCP > 1023 110 
REXEC TCP > 1023 512 
RLOGIN TCP < 1024 513 
RSH TCP < 1024 514 
SMTP TCP > 1023 25 
SNMP UDP > 1023 161 
SOCKS TCP > 1023 1080 
Squid Proxy TCP > 1023 3128 
SSH (Secure Shell) TCP > 1023 22 
SSL TCP > 1023 443 
Syslog UDP > 1023 514 
TACACS UDP 49 49 
Telnet TCP > 1023 23 
TFTP UDP > 1023 69 
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found in the southwestern United States and in Mexico. 

Donkeys (Equus asinus) are descended from the African wild ass. They stand three to five 
feet tall at the shoulder, have a short mane, tufted tail, and big ears, and live for about 25 
years. They were domesticated over 5,000 years ago, and they are still often used as pack 
animals, due to their surefootedness on rough terrain. Donkeys can be mated with horses, but 
the offspring of these matings are usually sterile. A female donkey (called a jennet or jinny) 
mated with a male horse produces an animals called a hinny. The offspring of a male donkey 
(jackass) and a female horse is a mule. 

The feral burros of the southwestern U.S. and Mexico are the descendants of escaped and 
freed pack animals. Some believe the large feral burro population is driving desert bighorn 
sheep into extinction, by competing with them—successfully, it would seem—for scarce 
desert resources. 
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