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Preface

W
elcome to Computer Science Illuminated! This book provides a broad
and thorough exploration of computer systems within a computer
science context. Although this is classified as a CS-0 book, we realize

that the term CS-0 means different things to different people.
Independently, both of us have written successful textbooks on various

topics, but this book represents our first opportunity for such a
comprehensive exploration of computing. We're thrilled to join forces to offer
this book.

We take pedagogy seriously—and we know you do, too. 

This book is designed as a breadth-first introduction to the field of
computer science, providing a comprehensive and rigorous exploration of a
variety of topics. It provides a general understanding of computers in all their
aspects, and it lays a solid foundation to support further study. Therefore,
this book is appropriate both for computer science majors beginning their
studies and for non-majors seeking a broad but complete overview.

Choice of Topics
We used many sources in putting together the outline of topics for this text.
We looked at course catalogue descriptions and book outlines, and
administered a questionnaire designed to find out what you, our colleagues,
thought should be included in such a course. We answered the following three
questions and asked you to do the same.

• What topics should students master in a CS-0 course if it is the only
computer science course they will take during their college experience?

• What topics should students have mastered before entering your CS-1
course?

Preface xxi
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• What additional topics should your CS-1 students be familiar with?

The strong consensus that emerged from the intersections of these sources
formed the working outline for this book. Students who master this material
before taking CS-1 have a strong foundation upon which to continue in computer
science. Although our intention was to write a CS-0 text, our reviewers have
pointed out that the material also forms a strong breadth-first background that
can serve as a companion to a programming-language introduction to computer
science.

Organization
In Chapter 1, we set the stage with the analogy that a computing system is
like an onion that has evolved layer by layer over time. The history of
hardware and software is presented beginning with the computer and
machine language, the heart of the onion. Higher level languages such as
FORTRAN, Lisp, Pascal, C, C++, and Java followed, along with the ever-
increasing understanding of the programming process using such tools as
top-down design and object-oriented design. The operating system with its
resource-management techniques developed to surround and manage these
languages and the programs written in them.

Sophisticated general-purpose and special-purpose software systems that
allowed non-computer people to solve problems were developed to form another
layer. These powerful programs were stimulated by parallel theoretical work in
computer science, which made such programs possible. The final layer is made
up of networks and software—all the tools needed for computers to communicate
with one another. The Internet and the World Wide Web put the finishing touches
on this layer. 

Through our teaching experience we have discovered that complex
concepts are easier to understand if handled one layer at a time rather than
in one big bite. Thus, the book is organized into the following sections:

• Information Layer

• Hardware Layer

• Programming Layer

• Operating Systems Layer

• Applications Layer

• Communications Layer

These layers, taken in this order, examine a computer system from the
inside out. Research has shown that students understand concrete examples
more easily than abstract ones even when the students themselves are abstract
thinkers. Thus, we begin with the concrete machine, and add one layer at a
time, each abstracting the details of the previous level, so that other aspects
of computing can be explored. We believe that a thorough understanding
of one layer makes the transition to the next abstraction easier for students.

xxii Preface
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Individual chapters within each layer focus on particular aspects of that
layer. The next section provides a synopsis of each chapter.

The design of this book is extremely modular. The layered view of a
computing system provides flexibility to instructors who may choose to
emphasize topics differently or place them in a different order. We revisit the
onion analogy at the opening of each chapter, showing how the current
discussion fits into the big picture.

Synopsis
The first and last chapters of the book form bookends: Chapter 1 describes

what a computing system is and Chapter 17 explores what computing systems
cannot do. The chapters in between look in depth at the layers that make
up a computing system and explain, one step at a time, how a computer does
what it does.

Chapter 1 lays the groundwork for the rest of the book, establishing
terminology and explaining the history of computing. The evolution of the
hardware and software levels that make up the history of computing systems
form much of the underlying structure of the layers explored throughout the
book.

Chapters 2 and 3 examine a layer that is largely conceptual, yet
permeates all other aspects of computer processing. We call this layer the
information layer, and it reflects how information is represented in the
computer. Chapter 2 covers the binary number system and its relationship
to other number systems (such as decimal, the one we humans use on a daily
basis). Chapter 3 investigates how we take the myriad types of information
we manage—numbers, text, images, audio, and video—and represent them
in a binary format.

Chapters 4 and 5 explore the hardware layer. Chapter 4 describes gates
and circuits, which control the flow of electricity in fundamental ways. This
core electronic circuitry gives rise to the discussion in Chapter 5 of specialized
hardware components such as the Central Processing Unit (CPU) and
memory, including how they interact within a von Neumann architecture.

Chapters 6 through 9 cover aspects of the programming layer. Chapter
6 examines the problem-solving process, both human and computer related.
George Polya's human problem-solving strategies guide the discussion.
Examples of both top-down design and object-oriented design are presented.
Chapter 7 covers the concepts of both machine language and assembly
language using Pep/7, a simulated computer. Chapter 8 covers the concepts
of high-level programming languages. The concepts are illustrated in brief
examples from four programming languages: Ada, Visual Basic .NET, C++,
and Java. Chapter 9 emphasizes the role of abstract data types and data
structures in the programming process.
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Chapters 10 and 11 cover the operating systems layer. Chapter 10
discusses the resource-management responsibilities of the operating system
and presents some of the basic algorithms used to implement those tasks.
Chapter 11 deals with file systems, including what they are and how they are
managed by the operating system.

Chapters 12 through 14 cover the applications layer. This layer is
made up of the general-purpose and specialized application programs that
are available for public use to solve problems. We divide this layer into the
sub-disciplines of computer science upon which these programs are based.
Chapter 12 examines information systems, Chapter 13 examines artificial
intelligence, and Chapter 14 examines simulation, computer-aided design,
and embedded systems.

Chapters 15 and 16 cover the communications layer. Chapter 15
discusses various aspects of computer networks, including how they evolved
and how they manage the transmission of data. Chapter 16 explores the
World Wide Web and some of the technologies that give it the impact it has
today.

Chapter 17 concludes with a discussion of the inherent limitations of
computer hardware, software, and the problems that can and cannot be
solved using a computer. Big-O notation is presented as a way to talk about
the efficiency of algorithms so that the categories of algorithms can be
discussed. The Halting problem is presented to show that some problems are
unsolvable.

Language Issues
Note that the programming layer of this book deals with various aspects of
programming without going into detail on any one language. In fact, we
deliberately present high-level programming constructs in several languages
for students to see a variety of syntax, and to reinforce that the underlying
conceptual ideas are far more important than the particular language used
to implement them.

A more detailed introduction to two high-level programming languages,
Java and C++, are provided on this book’s web site. Any instructor wanting
to expose their students to the details of a language may use these chapters
to supplement the book.

Special Features
We have included three special features in this text in order to emphasize the
history and breadth of computing as well as the moral obligations that come
with new technology. Each chapter includes a Short Biography of someone
who has made a significant contribution to computing. The people honored
in these sections range from those who have contributed to the information

xxiv Preface
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layer, such as George Boole and Ada
Lovelace, to those who have contributed to
the communications layer, such as Doug
Engelbart and Tim Berners-Lee. These
biographies are designed to give the reader
some historical perspective and awareness
of the men and women who contributed
and are contributing today to the world of
computing.

Our second feature, Callouts, are side-
bar sections that include interesting tidbits
of information about the past, present, and
future. They are garnered from history,
from today’s newspapers, and from the
authors’ experiences. These little vignettes
are designed to amuse, to inspire, and to
intrigue.

Our third feature is the Ethical Issues
section included in each chapter. These
sections are designed to illustrate that along
with the advantages of computing comes
responsibility. Privacy, hacking, viruses, and
free speech are among the topics discussed.
At the end of each chapter’s exercises we
include a selection of Thought Questions.
Among the questions presented here are
questions relating to the ethical issue
presented in the chapter.

Color and Typography are Sign-

posts
The layers into which the book is divided
are color coded within the text. The color
of the outside layer of the onion pictured on
each chapter opener corresponds to the
layer of that chapter. The same color is
repeated in bars across the top of the pages
of the layer. For each chapter, the slide on
the side of the chapter opener shows where

Preface xxv

was doubling each year. This observation became known as Moore’s
law.” 3

Transistors also were used for memory construction. Each transistor
represented one bit of information. Integrated-circuit technology allowed
memory boards to be built using transistors. Auxiliary storage devices
were still needed because transistor memory was volatile; that is, the infor-
mation went away when the power was turned off.

The terminal, an input/output device with a keyboard and screen, was
introduced during this generation. The keyboard gave the user direct
access to the computer, and the screen provided immediate response.

Fourth Generation (1971–?)

Large-scale integration characterizes the fourth generation. From several
thousand transistors to a silicon chip in the early 1970s, we moved to a
whole microcomputer on a chip by the middle of the decade. Main
memory devices are still made almost exclusively out of chip technology.
Over the previous 40 years, each generation of computer hardware had
become more powerful in a smaller package at lower cost. Moore’s law
was modified to say that chip density was doubling every 18 months.

By the late 1970s, the phrase personal computer (PC) had entered the
vocabulary. Microcomputers had become so cheap that almost anyone
could have one. And a generation of kids grew up playing PacMan.

The fourth generation found some new names entering the commercial
market. Apple, Tandy/Radio Shack, Atari, Commodore, and Sun joined the
big companies of earlier generations—IBM, Remington
Rand, NCR, DEC, Hewlett Packard, Control Data, and
Burroughs. The best-known success story of the
personal computer revolution is that of the Apple. Steve
Wozniak, an engineer, and Steve Jobs, a high-school
student, created a personal computer kit and marketed it
out of a garage. This was the beginning of Apple
Computer, a multibillion-dollar company.

The IBM PC was introduced in 1981 and soon was
followed by compatible machines manufactured by many
other companies. For example, Dell and Compaq were
successful in making PCs that were compatible with IBM
PCs. Apple introduced its very popular Macintosh micro-
computer line in 1984.

From a garage to the Fortune 500

Boyhood friends Steve Jobs and Steve Wozniak
sold their respective Volkswagen van and
programmable calculator to raise the money to
finance their new computer company. Their first
sale was 50 Apple Is, the computer that they had
designed and built in a garage. In six short
years Apple was listed in the Fortune 500, the
youngest firm on this prestigious list. W
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From 1943 until her death on New Year’s
Day in 1992, Admiral Grace Murray
Hopper was intimately involved with
computing.  In 1991, she was awarded the
National Medal of Technology “for her
pioneering accomplishments in the develop-
ment of computer programming languages
that simplified computer technology and
opened the door to a significantly larger
universe of users.”

Admiral Hopper was born Grace Brew-
ster Murray in New York City on December 9, 1906.
She attended Vassar and received a Ph.D. in mathe-
matics from Yale.  For the next 10 years, she taught
mathematics at Vassar.

In 1943, Admiral Hopper joined the U.S. Navy and
was assigned to the Bureau of Ordnance Computation
Project at Harvard University as a programmer on the
Mark I.  After the war, she remained at Harvard as a
faculty member and continued work on the Navy‘s
Mark II and Mark III computers.  In 1949, she joined
Eckert-Mauchly Computer Corporation and worked on
the UNIVAC I.  It was there that she made a legendary
contribution to computing: She discovered the first
computer “bug”—a moth caught in the hardware.

Admiral Hopper had a working compiler in 1952,
a time when the conventional wisdom was that
computers could do only arithmetic.  Although not on
the committee that designed the computer language
COBOL, she was active in its design, implementation,
and use.  COBOL (which stands for Common Busi-
ness-Oriented Language) was developed in the early
1960s and is still widely used in the business data
processing.

Admiral Hopper retired from the Navy in 1966,

only to be recalled within a year to full-
time active duty.  Her mission was to
oversee the Navy’s efforts to maintain
uniformity in programming languages.  It
has been said that just as Admiral Hyman
Rickover was the father of the nuclear
navy, Rear Admiral Hopper was the
mother of computerized data automation
in the Navy.  She served with the Naval
Data Automation Command until she
retired again in 1986 with the rank of Rear

Admiral.  At the time of her death, she was a senior
consultant at Digital Equipment Corporation.  

During her lifetime, Admiral Hopper received
honorary degrees from more than 40 colleges and
universities.  She was honored by her peers on
several occasions, including the first Computer
Sciences Man of the Year award given by the Data
Processing Management Association, and the
Contributors to Computer Science Education Award
given by the Special Interest Group for Computer
Science Education, which is part of the ACM (Associ-
ation for Computing Machinery).  

Admiral Hopper loved young people and enjoyed
giving talks on college and university campuses.  She
often handed out colored wires, which she called
nanoseconds because they were cut to a length of
about one foot—the distance that light travels in a
nanosecond (billionth of a second).  Her advice to the
young was, “You manage things, you lead people.
We went overboard on management and forgot
about the leadership.” 

When asked which of her many accomplishments
she was most proud of, she answered, “All the young
people I have trained over the years.”

Grace Murray Hopper

1970s had half words (2 bytes or 16 bits), full words (4 bytes), and double
words (8 bytes).

Modern computers are often 32-bit machines (such as Intel’s Pentium III
processor) or 64-bit machines (such as Compaq’s Alpha processors and
Intel’s Itanium processor). However, some microprocessors that are used in
applications such as pagers are 8-bit machines. The computing machine you
are using, whatever it is, is ultimately supported by the binary number system.

We have more to explore about the relationship between computers and
binary numbers. In the next chapter we examine many kinds of data and44
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Summary

Computers are multimedia devices that manipulate data varying in form
from numbers to graphics to video. Because a computer can only manipu-
late binary values, all forms of data must be represented in binary form.
Data is classified as being continuous (analog) or discrete (digital).

Integer values are represented by their binary equivalent, using one of
several techniques for representing negative numbers, such a sign magni-
tude or one’s complement. Real numbers are represented by a triple made
up of the sign, the digits in the number, and an exponent that specifies the
radix point.

A character set is a list of alphanumeric characters and the codes that
represent each one. The most common character set is Unicode (16 bits for
each character), which has ASCII as a subset. The 8-bit ASCII set is suffi-
cient for English but not for other (or multiple) languages. There are
various ways for compressing text so that it takes less space to store it or
less time to transmit it from one machine to another.

Audio information is represented as digitized sound waves. Color is
represented by three values that represent the contribution of each of red,
blue, and green. There are two basic techniques for representing pictures,
bitmaps and vector graphics. Video is broken up into a series of still
images, each of which is represented as a picture.

Napster
In 1999, Shawn Fanning launched a file-sharing program that took the

music industry by storm, rapidly gaining the praise of millions and the

criticism of many. Nineteen-year-old Shawn had only recently dropped

out of his first year at Northeastern University to pursue a solution to

the difficulty of downloading and exchanging music over the Net. With

the support of his uncle, Shawn tackled this problem with dedication

and ingenuity and, in a few months, developed an answer. Shawn wrote

source code that wove together a search engine, file sharing, and

Internet Relay Chat, making it possible for anyone to easily access and

trade music files. Napster was born, and with it a fresh controversy

over intellectual property rights and privileges.
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the chapter is within the layer. We have said
that the first and last chapters form bookends.
Although they are not part of the layers of the
computing onion, we have given each a color
that shows up in the onion, the slide, and the
color bar. Open the book anywhere and you
can immediately tell where you are within the
layers of computing.

We use different fonts for algorithms, in-
cluding identifiers in running text, and program
code, to visually separate the abstract from the
concrete in the programming layer. You know
at a glance whether the discussion is at the
logical (algorithmic) level or at the pro-
gramming language level. We color addresses in
red in order to clarify visually the distinction
between an address and the contents of an
address.

Color is especially useful in Chapter 7, Low-
Level Programming Languages. Instructions are
color coded to differentiate the parts of an
instruction. The operation code is green, the
register designation is clear, and the addressing

mode specifier is blue. Operands are shaded gray. As in other chapters,
addresses are in red.

Web site
A web site, http://csilluminated.jbpub.com, includes a wealth of

additional information. Additional biographies, more information about
some of the callouts, and updates that relate to ethical issues are all available
on the text’s web site. 

Available for download are introductory chapters on Java and C++ and
the Pep/7 virtual machine.

A number of interactive exercises have been developed to enhance the
reader’s learning experience. Please refer to the two-page web site walk
through for a complete description of these activities.
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The Big Picture

Chapter 1

This book is a tour through the world of computing. We explore

how computers work—what they do and how they do it, from

bottom to top, inside and out. Like an orchestra, a computer

system is a collection of many different elements, combined to

form a whole that is far more than the sum of its parts. This

chapter provides the big picture, giving an overview of the pieces

that we slowly dissect throughout the book and putting those

pieces into historical perspective.

Most of you have grown up during the age of the personal

computer. Hardware, software, programming, web surfing, and

e-mail are probably familiar terms to you. Some of you can define

these and many more computer-related terms explicitly, whereas

others may have only a vague, intuitive understanding of them.

This chapter gets everyone on relatively equal footing by estab-

lishing common terminology and forming the platform from which

we will dive into our exploration of computing.

3
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Computing system

Computer hardware,
software, and data,
which interact to solve
problems

Computer hardware

The physical elements of
a computing system

Computer software

The programs that
provide the instructions
that a computer executes

4 Chapter 1 The Big Picture

Goals
After studying this chapter, you should be able to:

� describe the layers of a computer system.
� describe the concept of abstraction and its relationship to computing.
� describe the history of computer hardware and software.
� describe the changing role of the computer user.
� distinguish between systems programmers and applications programmers.
� distinguish between computing as a tool and computing as a discipline.

1.1 Computing Systems

In this book we explore various aspects of computing systems. Note that we
use the term computing system, not just computer. A computer is a device.
A computing system, on the other hand, is a dynamic entity, used to solve
problems and interact with its environment. A computing system is
composed of hardware, software, and the data that they manage. Computer

hardware is the collection of physical elements that make up the machine
and its related pieces: boxes, circuit boards, chips, wires, disk drives,
keyboards, monitors, printers, and so on. Computer software is the collec-
tion of programs that provide the instructions that a computer carries out.
And at the very heart of a computer system is the information that it
manages. Without data, the hardware and software are essentially useless.

The general goals of this book are threefold:

� To give you a solid, broad understanding of how a computing
system works

� To develop an appreciation for and understanding of the evolution
of modern computing systems

� To give you enough information about computing for you to decide
whether you wish to pursue the subject further

The rest of this section explains how computer systems can be divided into
abstract layers and how each layer plays a role. The next section puts the
development of computing hardware and software into historical context.
This chapter concludes with a discussion about computing as both a tool
and as a discipline of study.

Layers of a Computing System
A computing system is like an onion, made up of many layers. Each layer
plays a specific role in the overall design of the system. These layers are
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1.1 Computing Systems 5

Information

Hardware

Programming

Operating system

Application

Communication

Figure 1.1 The layers of a
computing system

pictured in Figure 1.1 and form the general organization of this book. This
is the “big picture” that we continually come back to as we explore
different aspects of computing systems.

You rarely, if ever, take a bite out of an onion as you would an apple.
Rather, you separate the onion into concentric rings. Likewise, in this
book we explore aspects of computing one layer at a time. We peel each
layer separately and explore it by itself. Each layer, in itself, is not that
complicated. In fact, we point out that a computer actually only does very
simple tasks. It just does them so blindingly fast that many simple tasks
can be combined to do larger, more complicated tasks. When the various
computer layers are all brought together, each playing its own role,
amazing things result from the combination of these basic ideas.

Let’s discuss each of these layers briefly, and identify where in this book
these ideas are explored in more detail. We essentially work our way from
the inside out, which is sometimes referred to as a bottom-up approach.

The innermost layer, information, reflects the way we represent infor-
mation on a computer. In many ways this is a purely conceptual level.
Information on a computer is managed using binary digits, 1 and 0. So to
understand computer processing we must first understand the binary
number system and its relationship to other number systems (such as
decimal, the one we humans use on a daily basis). Then we can turn our
attention to how we take the myriad types of information we manage—
numbers, text, images, audio, and video—and represent them in a binary
format. Chapters 2 and 3 explore these issues.

The next layer, hardware, consists of the physical hardware of a
computer system. Computer hardware includes devices such as gates and
circuits, which control the flow of electricity in fundamental ways. This
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6 Chapter 1 The Big Picture

core electronic circuitry gives rise to specialized hardware components
such as the computer’s Central Processing Unit (CPU) and memory. Chap-
ters 4 and 5 of the book discuss these topics in detail.

The programming layer deals with software, the instructions used to
accomplish computations and manage data. Programs can take many
forms, be performed at many levels, and be implemented in many
languages. Yet despite the variety of programming issues, the goal remains
the same: to solve problems. Chapters 6 through 9 explore many issues
related to programming and the management of data.

Every computer has an Operating System (OS) to help manage the
computer’s resources. Operating systems, such as Windows 2000, Linux,
or the Mac OS, help us interact with the computer system and manage the
way hardware devices, programs, and data interact. Knowing what an
operating system does for us is key to understanding the computer in
general. These issues are discussed in Chapters 10 and 11.

These previous (inner) layers focus on making a computer system work.
The application layer, on the other hand, focuses on using the computer to
solve specific real-world problems. We run application programs to make
use of the computer’s abilities in other domains, such as helping us design
a building or play a game. The spectrum of domain-specific computer soft-
ware tools is far-reaching, and involves specific subdisciplines of
computing such as information systems, artificial intelligence, and simula-
tion. Application systems are discussed in Chapters 12, 13, and 14.

Computers no longer exist in isolation on someone’s desktop. We use
computer technology to communicate, and that communication is a funda-
mental layer at which computing systems operate. Computers are
connected into networks to share information and resources. The Internet
evolved into a global network so that there is almost no place on Earth
that you cannot communicate with via computing technology. The World
Wide Web makes that communication relatively easy. It has revolutionized
computer use and made it accessible to the general public. Chapters 15 and
16 discuss these important issues of computing communication.

Most of this book is about what a computer can do, and how it does it.
We conclude with a discussion of what a computer cannot do, or at least
cannot do well. Computers have inherent limitations on their ability to
represent information, and they are only as good as their programming
makes them. Furthermore, it turns out that some problems cannot be
solved at all. Chapter 17 examines these limitations of computers.

Sometimes it is easy to get so caught up in the details that we lose
perspective on the big picture. Try to keep that in mind as you progress
through the information in this book. Each chapter’s opening page
reminds you of where we are in the various layers of a computing
system. The details all contribute a specific part to a larger whole. Take
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Abstraction A mental
model that removes
complex details

1.1 Computing Systems 7

each step in turn and you will be amazed at how well it all falls into
place.

Abstraction
The levels of a computing system that we just examined are examples of
abstraction. An abstraction is a mental model, a way to think about some-
thing, which removes or hides complex details. An abstraction leaves only
the information necessary to accomplish our goal. When we are dealing
with a computer on one layer, we don’t need to be thinking about the
details of the other layers. For example, when we are writing a program,
we don’t have to concern ourselves with how the hardware carries out the
instructions. Likewise, when we are running an application program, we
don’t have to be concerned with how that program was written.

Numerous experiments have shown that a human being can actively
manage about seven (plus or minus two, depending on the person) pieces
of information in short-term memory at one time. This is called Miller’s
law, based on the psychologist who first investigated it.1 Other pieces of
information are available to us when we need it, but when we focus on a
new piece, something else falls back into secondary status.

This concept is similar to the number of balls a juggler can keep in the
air at one time. Human beings can mentally juggle about seven balls at
once, and when we pick up a new one, we have to drop another. Seven may
seem like a small number, but the key is that each ball can represent an
abstraction, or a chunk of information. That is, each ball we are juggling
can represent a complex topic as long as we can think about it as one idea.

We rely on abstractions every day of our lives. For example, we don’t
need to know how a car works in order to drive to the store. That is, we
don’t really need to know how the engine works in detail. You need to
know only some basics about how to interact with the car: how the pedals
and knobs and steering wheel work. And we don’t even have to be
thinking about all of those at the same time. See Figure 1.2.

Even if we do know how an engine works, we don’t have to think about
it while driving. Imagine if, while driving, we had to constantly think
about how the spark plugs ignite the fuel that drives the pistons that turn
the crankshaft. We’d never get anywhere! A car is much too complicated
for us to deal with all at once. All the technical details would be too many
balls to juggle at the same time. But once we’ve abstracted the car down to
the way we interact with it, we can deal with it as one entity. The irrele-
vant details are ignored, at least for the moment.

Abstract art, as the name implies, is another example of abstraction. An
abstract painting represents something, but doesn’t get bogged down in the
details of reality. Consider the painting shown in Figure 1.3, entitled Nude
Descending a Staircase. You can see only the basic hint of the woman or
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8 Chapter 1 The Big Picture

Figure 1.2 A car engine
and the abstraction that
allows us to use it

Figure 1.3 The abstract
painting Nude
Descending a Staircase,
No. 2, Copyright © 2002

Artists Rights Society (ARS),

New York/ADAGP,

Paris/Estate of Marcel

Duchamp

Oil dip stick

Oil filler cap

Battery

Windshield washer tank

Brake fluid reservoir

Fuse box

Radiator

Alternator

Air cleaner

Power steering reservoir
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1.2 The History of Computing 9

the staircase, because the artist is not interested in the details of exactly
how the woman or the staircase look. Those details are irrelevant to the
impact the artist is trying to create. In fact, the realistic details would get in
the way of the issues that the artist thinks are important.

Abstraction is the key to computing. The layers of a computing
system embody the idea of abstraction. And abstractions keep
appearing within individual layers in various ways as well. In fact,
abstraction can be seen throughout the entire evolution of computing
systems, as we explore in the next section.

1.2 The History of Computing

The historical foundation of computing goes a long way toward explaining
why computing systems today are designed as they are. Think of this
section as a story whose characters and events have led to the place we are
now and form the foundation of the exciting future to come. We examine
the history of computing hardware and software separately because they
each have their own impact on how computing systems evolved into the
layered model we use as the outline for this book.

This history is written as a narrative, with no intent to formally define
the concepts discussed. In subsequent chapters, we return to these concepts
and explore them in more detail.

A Brief History of Computing Hardware
The devices that assist humans in various forms of computation have their
roots in the ancient past and have continued to evolve throughout the present
day. Let’s take a brief tour through the history of computing hardware.

Early History
Many people believe that Stonehenge, the famous collection of rock
monoliths in Great Britain, is an early form of calendar or astrological
calculator. The abacus, which appeared in the sixteenth century, was
developed as an instrument to record numeric values and on which a
human can perform basic arithmetic.

In the middle of the seventeenth century, Blaise Pascal, a French mathe-
matician, built and sold gear-driven mechanical machines, which
performed whole-number addition and subtraction. Later in the seven-
teenth century, a German mathematician, Gottfried Wilhelm von Leibniz,
built the first mechanical device designed to do all four whole-number
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Stonehenge, a Neolithic stone struc-
ture that rises majestically out of the
Salisbury Plain in England, has fasci-
nated man for centuries. It is believed
that Stonehenge was erected over
several centuries beginning in about
2180 B.C.. Its purpose is still a
mystery, although theories abound. At
the summer solstice, the rising sun
appears behind one of the main stones, giving the
illusion that the sun is balancing on the stone. This

has led to the early theory that Stone-
henge was a temple. Another theory,
first suggested in the middle of the
20th century, is that Stonehenge
could have been used as an astro-
nomical calendar, marking lunar and
solar alignments. And yet a third
theory is that Stonehenge was used to
predict eclipses. Regardless of why it

was built, there is a mystical quality about the place
that defies explanation.

Stonehenge Is Still a Mystery

operations: addition, subtraction, multiplication, and division. Unfortu-
nately, the state of mechanical gears and levers at that time was such that
the Leibniz machine was not very reliable.

In the late eighteenth century, Joseph Jacquard developed what became
known as Jacquard’s Loom, used for weaving cloth. The loom used a
series of cards with holes punched in them to specify the use of specific
colored thread and therefore dictate the design that was woven into the
cloth. Though not a computing device, Jacquard’s Loom was the first to
make use of an important form of input: the punched card.

It wasn’t until the nineteenth century that the next major step was
taken, this time by a British mathematician. Charles Babbage designed
what he called his analytical engine. His design was too complex for him
to build with the technology of his day, so it was never implemented. His
vision, however, included many of the important components of today’s
computers. His design was the first to include a memory so that interme-
diate values did not have to be re-entered. His design also included the
input of both numbers and mechanical steps, making use of punched cards
similar to those used in Jacquard’s Loom.

Ada Augusta, Countess of Lovelace, was a most romantic figure in the
history of computing. Ada, the daughter of Lord Byron (the English poet),
was a skilled mathematician. She became interested in Babbage’s work on
the analytical engine and extended his ideas (as well as correcting some of
his errors). Ada is credited with being the first programmer. The concept
of the loop—a series of instructions that repeat—is attributed to her. The
programming language Ada, used largely by the United States Department
of Defense, is named for her.

During the later part of the nineteenth century and the beginning of the
twentieth century computing advances were made rapidly. William
Burroughs produced and sold a mechanical adding machine. Dr. Herman

Courtesy of Scott Barrett
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On December 10, 1815 (the same year that
George Boole was born), a daughter—
Augusta Ada Byron—was born to Anna
Isabella (Annabella) Byron and George
Gordon, Lord Byron. At that time in England
Byron’s fame derived not only from his
poetry but also from his wild and scandalous
behavior. The marriage was strained from
the beginning, and Annabella left Byron
shortly after Ada’s birth. By April of 1816,
the two had signed separation papers. Byron
left England, never to return. Throughout the rest of his
life he regretted that he was unable to see his
daughter. At one point he wrote of her,

I see thee not. I hear thee not.
But none can be so wrapt in thee.

Before he died in Greece, at age 36, he exclaimed,

Oh my poor dear child! My dear Ada!
My God, could I but have seen her!

Meanwhile, Annabella, who eventually was to become
a baroness in her own right, and who was educated as
both a mathematician and a poet, carried on with
Ada’s upbringing and education. Annabella gave Ada
her first instruction in mathematics, but it soon became
clear that Ada was gifted in the subject and should
receive more extensive tutoring. Ada received further
training from Augustus DeMorgan, today famous for
one of the basic theorems of Boolean algebra. By age
eight, Ada had demonstrated an interest in mechanical
devices and was building detailed model boats.

When she was 18, Ada visited the Mechanics
Institute to hear Dr. Dionysius Lardner’s lectures on the
“Difference Engine,” a mechanical calculating
machine being built by Charles Babbage. She
became so interested in the device that she arranged
to be introduced to Babbage. It was said that, upon
seeing Babbage’s machine, Ada was the only person
in the room to understand immediately how it worked
and to recognize its significance. Ada and Charles
Babbage became lifelong friends. She worked with
him, helping to document his designs, translating writ-
ings about his work, and developing programs for his
machines. In fact, Ada today is recognized as the first
computer programmer in history.

When Babbage designed his Analytical
Engine, Ada foresaw that it could go
beyond arithmetic computations and
become a general manipulator of symbols,
and thus would have far-reaching capabil-
ities. She even suggested that such a
device eventually could be programmed
with rules of harmony and composition so
that it could be produce “scientific” music.
In effect, Ada foresaw the field of artificial
intelligence more than 150 years ago.

In 1842, Babbage gave a series of lectures in Turin,
Italy, on his Analytical Engine. One of the attendees
was Luigi Menabrea, who was so impressed that he
wrote an account of Babbage’s lectures. At age 27,
Ada decided to translate the account into English,
with the intent to add a few of her own notes about
the machine. In the end, her notes were twice as long
as the original material, and the document, “The
Sketch of the Analytical Engine,” became the defini-
tive work on the subject.

It is obvious from Ada’s letters that her “notes”
were entirely her own and that Babbage was acting
as a sometimes unappreciated editor. At one point,
Ada wrote to him,

I am much annoyed at your having altered my
Note. You know I am always willing to make any
required alterations myself, but that I cannot
endure another person to meddle with my
sentences.

Ada gained the title Countess of Lovelace when
she married Lord William Lovelace. The couple had
three children, whose upbringing was left to Ada’s
mother while Ada pursued her work in mathematics.
Her husband was supportive of her work, but for a
woman of that day such behavior was considered
almost as scandalous as some of her father’s exploits.

Ada died in 1852, just one year before a working
Difference Engine was built in Sweden from one of
Babbage’s designs. Like her father, Ada lived only to
age 36, and even though they led very different lives,
she undoubtedly admired him and took inspiration
from his unconventional and rebellious nature. In the
end, Ada asked to be buried beside him at the
family’s estate.

Ada Augusta, the First Programmer2
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Figure 1.4 The ENIAC, a
World War II-era computer
U.S. Army Photo

Hollerith developed the first electro-mechanical tabulator, which read
information from a punched card. His device revolutionized the census
taken every ten years in the United States. Dr. Hollerith later formed a
company that is known today as IBM.

In 1936 a theoretical development took place that had nothing to do with
hardware per se but profoundly influenced the field of Computer Science.
Alan M. Turing, another British mathematician, invented an abstract mathe-
matical model called a Turing machine, laying the foundation for a major
area of computing theory. The most prestigious award given in Computer
Science (equivalent to the Fielding Medal in Mathematics or a Nobel Prize in
other sciences) is the Turing Award, named for Alan Turing. A recent
Broadway play deals with his life. Analysis of the capabilities of Turing
machines is a part of the theoretical studies of all Computer Science students.

By the outbreak of World War II, several computers were under design
and construction. The Harvard Mark I and the ENIAC are two of the
more famous machines of the era. The ENIAC is pictured in Figure 1.4.
John von Neumann, who had been a consultant on the ENIAC project,
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started work on another machine known as EDVAC, which was
completed in 1950. In 1951 the first commercial computer, UNIVAC I,
was delivered to the Bureau of the Census. The UNIVAC I was the first
computer used to predict the outcome of a presidential election.

The early history that began with the abacus ended with the delivery of
the UNIVAC I. With the delivery of that machine, the dream of a device
that could rapidly manipulate numbers was realized; the search was ended.
Or was it? Some experts predicted at that time that a small number of
computers would be able to handle the computational needs of mankind.
What they didn’t realize was that the ability to perform fast calculations on
large amounts of data would radically change the very nature of fields such
as mathematics, physics, engineering, and economics. That is, computers
made those experts’ assessment of what needed to be calculated entirely
invalid.3

After 1951 the story becomes one of the ever-expanding use of
computers to solve problems in all areas. From that point, the search has
focused not only on building faster, bigger devices, but also on the devel-
opment of tools to allow us to use these devices more productively. The
history of computing hardware from this point on is categorized into
several “generations” based on the technology they employed.

First Generation (1951–1959)
Commercial computers in the first generation (from approximately
1951–1959) were built using vacuum tubes to store information. A vacuum
tube, shown in Figure 1.5, generated a great deal of heat and was not very reli-
able. The machines that used them required heavy-duty air-conditioning and
frequent maintenance. They also required very large, specially built rooms.

The primary memory device of this first generation of computers was a
magnetic drum that rotated under a read/write head. When the memory
cell that was being accessed rotated under the read/write head, the data
was written to or read from that place.

The input device was a card reader that read the holes punched in an
IBM card (a descendant of the Hollerith card). The output device was
either a punched card or a line printer. By the end of this generation,
magnetic tape drives had been developed that were much faster than
card readers. Magnetic tapes are sequential storage devices, meaning that
the data on the tape must be accessed one after another in a linear
fashion.

Storage devices external to the computer memory are called auxiliary
storage devices. The magnetic tape was the first of these devices. Collec-
tively, input devices, output devices, and auxiliary storage devices became
known as peripheral devices.

Figure 1.5 A vacuum tube
Reproduced by permission of

University of Calgary
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Figure 1.6

A transistor, replacing the
vacuum tube Courtesy of Dr.

Andrew Wylie

Second Generation (1959–1965)
The advent of the transistor (for which John Bardeen, Walter H. Brattain,
and William B. Shockley won a Nobel Prize) ushered in the second genera-
tion of commercial computers. The transistor replaced the vacuum tube as
the main component in the hardware. The transistor was smaller, more
reliable, faster, more durable, and cheaper, as shown in Figure 1.6.

The second generation also witnessed the advent of immediate-access
memory. When accessing information from a drum, the CPU had to wait
for the proper place to rotate under the read/write head. The second gener-
ation used memory made from magnetic cores, tiny doughnut-shaped
devices, each capable of storing one bit of information. These cores were
strung together with wires to form cells, and cells were combined into a
memory unit. Because the device was motionless and was accessed elec-
tronically, information was available instantly.

The magnetic disk, a new auxiliary storage device, was also developed
during the second generation. The magnetic disk is faster than magnetic
tape because each data item can be accessed directly by referring to its
location on the disk. Unlike a tape, which cannot access a piece of data
without accessing everything on the tape that comes before it, a disk is
organized so that each piece of data has its own location identifier called
an address. The read-write heads of a magnetic disk can be sent directly
to the specific location on the disk where the desired information is
stored.

Third Generation (1965–1971)
In the second generation, transistors and other components for the
computer were assembled by hand on printed circuit boards. The third
generation is characterized by integrated circuits (IC), solid pieces of
silicon that contained the transistors, other components, and their
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connections. Integrated circuits were much smaller, cheaper, faster, and
more reliable than printed circuit boards. Gordon Moore, one of the
cofounders of Intel, noted that from the time of the invention of the IC,
the number of circuits that could be placed on a single integrated circuit
was doubling each year. This observation became known as Moore’s
law.” 4

Transistors also were used for memory construction. Each transistor
represented one bit of information. Integrated-circuit technology allowed
memory boards to be built using transistors. Auxiliary storage devices
were still needed because transistor memory was volatile; that is, the infor-
mation went away when the power was turned off.

The terminal, an input/output device with a keyboard and screen, was
introduced during this generation. The keyboard gave the user direct
access to the computer, and the screen provided immediate response.

Fourth Generation (1971–?)
Large-scale integration characterizes the fourth generation. From several
thousand transistors to a silicon chip in the early 1970s, we moved to a
whole microcomputer on a chip by the middle of the decade. Main
memory devices are still made almost exclusively out of chip technology.
Over the previous 40 years, each generation of computer hardware had
become more powerful in a smaller package at lower cost. Moore’s law
was modified to say that chip density was doubling every 18 months.

By the late 1970s, the phrase personal computer (PC) had entered the
vocabulary. Microcomputers had become so cheap that almost anyone
could have one. And a generation of kids grew up playing PacMan.

The fourth generation found some new names entering the commercial
market. Apple, Tandy/Radio Shack, Atari, Commodore, and Sun joined the
big companies of earlier generations—IBM, Remington
Rand, NCR, DEC, Hewlett Packard, Control Data, and
Burroughs. The best-known success story of the
personal computer revolution is that of the Apple. Steve
Wozniak, an engineer, and Steve Jobs, a high-school
student, created a personal computer kit and marketed it
out of a garage. This was the beginning of Apple
Computer, a multibillion-dollar company.

The IBM PC was introduced in 1981 and soon was
followed by compatible machines manufactured by many
other companies. For example, Dell and Compaq were
successful in making PCs that were compatible with IBM
PCs. Apple introduced its very popular Macintosh micro-
computer line in 1984.

From a garage to the Fortune 500
Boyhood friends Steve Jobs and Steve Wozniak
sold their respective Volkswagen van and
programmable calculator to raise the money to
finance their new computer company. Their first
sale was 50 Apple Is, the computer that they had
designed and built in a garage. In six short
years Apple was listed in the Fortune 500, the
youngest firm on this prestigious list. W

WW
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In the mid–1980s, larger, more powerful machines were created, and
they were referred to as workstations. Workstations were generally for busi-
ness, not personal, use. The idea was for each employee to have his or her
own workstation on the desktop. These workstations were connected by
cables, or networked, so that they could interact with one another. Work-
stations were made more powerful by the introduction of the RISC
(reduced-instruction-set computer) architecture. Each computer was
designed to understand a set of instructions, called its machine language.
Conventional machines such as the IBM 370/168 had an instruction set of
over 200 instructions. Instructions were fast and memory access was slow,
so specialized instructions made sense. As memory access got faster and
faster, using a reduced set of instructions became attractive. SUN Microsys-
tems introduced a workstation with a RISC chip in 1987. Its popularity
proved the feasibility of the RISC chip. These workstations were often
called UNIX workstations because they used the UNIX operating system.

Because computers are still being made using circuit boards, we cannot
mark the end of this generation. However, several things have occurred
that so impact how we use machines that they certainly have brought in a
new era. Moore’s law was once again restated in the following form:
“Computers will either double in power at the same price or halve in cost
for the same power every 18 months.” 5

Parallel Computing
Though computers that use a single primary processing unit continue to
flourish, radically new machine architectures began appearing in the late
eighties. Computers that use these parallel architectures rely on a set of
interconnected central processing units.

One class of parallel machines is organized so that the processors all share
the same memory unit. In another, each central processor has its own local
memory and communicates with the others over a very fast internal network.

Parallel architectures offer several ways to increase the speed of execu-
tion. For example, a given step in a program can be separated into multiple
pieces, and those pieces can be executed simultaneously on several indi-
vidual processors. These machines are called SIMD (single-instruction,
multiple-data-stream) computers. A second class of machines can work on
different parts of a program simultaneously. These machines are called
MIMD (multiple-instruction, multiple-data stream) computers.

The potential of hundreds or even thousands of processors combined in
one machine is enormous. And the challenge to programming is equally
enormous. Software designed for parallel machines is different from soft-
ware designed for sequential machines. Programmers have to rethink the
ways in which they approach problem solving and programming in order
to exploit parallelism.
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Networking
In the 1980s, the concept of a large machine with many users gave way to
a network of smaller machines connected in order to share resources such
as printers, software, and data. The Ethernet, invented by Robert Metcalfe
and David Boggs in 1973, was a cheap coaxial cable connecting the
machines and a set of protocols that allowed the machines to communicate
with one another. By 1979, DEC (Digital Equipment Corporation), Intel,
and Xerox joined to establish Ethernet as a standard.

Workstations were designed for networking, but networking personal
computers didn’t become practical until a more advanced Intel chip was
introduced in 1985. By 1989, Novell’s Netware connected PCs together
with a file server, a PC with generous mass storage and good input/output
capability. Locating data and office automation soft-
ware on the server rather than each PC having its own
copy allowed for a measure of central control while
giving each machine a measure of autonomy. Worksta-
tions or personal computers networked together became
known as LANs (local area networks).

The Internet as we know it today is descended from
the ARPANET, a government-sponsored network
begun in the late 1960s, consisting of 11 nodes concen-
trated mainly in the Los Angeles and Boston areas. Like
ARPANET and LANs, the Internet uses packet
switching, a way for messages to share lines. The
Internet, however, is made up of many different
networks across the world that communicate by using a common
protocol, TCP/IP (transmission-control protocol/internet protocol).

Paul E. Ceruzzi, in A History of Modern Computing, comments on the
relationship between Ethernet and the Internet as follows:

“If the Internet of the 1990s became the Information Superhighway,
then Ethernet became the equally important network of local roads
to feed it. As a descendent of ARPA research, the global networks we
now call the Internet came into existence before the local Ethernet
was invented at Xerox. But Ethernet transformed the nature of office
and personal computing before the Internet had a significant
effect.” 6

A Brief History of Computing Software
The hardware of a computer can be turned on, but it does nothing until
directed by the programs that make up the computer’s software. The
manner in which software evolved is crucial to understanding how soft-
ware works in a modern computing system.

What is a protocol?
The dictionary defines a protocol as a code
prescribing strict adherence to correct etiquette
and procedure (as in a diplomatic exchange).
Computing terminology has borrowed the word
to describe the correct etiquette for computers to
use when communicating with one another.
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Assembly
language Machine language

Figure 1.7 Layers of
languages at the end of the
first generation

First-Generation Software (1951–1959)
The first programs were written using machine language, the instructions
built into the electrical circuitry of a particular computer. Even the small task
of adding two numbers together used three instructions written in binary (1s
and 0s), and the programmer had to remember which combination of binary
digits means what. Programmers using machine language had to be very
good with numbers and very detail-oriented. It’s not surprising that the first
programmers were mathematicians and engineers. Nevertheless, program-
ming in machine language is both time-consuming and prone to errors.

Because writing in machine code is so tedious, some programmers took
the time to develop tools to help with the programming process. Thus the
first artificial programming languages were developed. These languages,
called assembly languages, used mnemonic codes to represent each
machine-language instruction.

Because every program that is executed on a computer eventually must
be in the form of the computer’s machine language, the developers of
assembly language also created software translators to translate programs
written in assembly language into machine code. A program called an
assembler reads each of the program’s instructions in mnemonic form and
translates it into the machine-language equivalent. These mnemonics are
abbreviated and sometimes difficult to read, but they are much easier to
use than long strings of binary digits.

Those programmers who wrote tools to make programming easier for
others were the first systems programmers. So, even in first-generation
software, there was the division between those programmers who wrote
tools and those programmers who used the tools. The assembly language
acted as a buffer between the programmer and the machine hardware. See
Figure 1.7. Sometimes, when efficient code is essential, programs today
may be written in assembly language. Chapter 7 explores an example of
machine code and a corresponding assembly language in detail.

Second-Generation Software (1959–1965)
As hardware became more powerful, more powerful tools were needed to
use it effectively. Assembly languages were certainly a step in the right
direction, but the programmer still was forced to think in terms of indi-
vidual machine instructions. The second generation saw more powerful
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languages developed. These high-level languages allowed the programmer
to write instructions using more English-like statements.

Two of the languages developed during the second generation are still
used today. They are FORTRAN (a language designed for numerical appli-
cations) and COBOL (a language designed for business applications).
FORTRAN and COBOL developed quite differently. FORTRAN started
out as a simple language and grew with additional features added to it
over the years. In contrast, COBOL was designed first, and then imple-
mented. It has changed little over time.

Another language that was designed during this period that is still in use
today is Lisp. Lisp differs markedly from FORTRAN and COBOL and
was not widely accepted. Lisp was used mainly in artificial intelligence
applications and research. Dialects of Lisp are among the languages of
choice today in artificial intelligence. Scheme, a dialect of Lisp, is used at
some schools as an introductory programming language.

The introduction of high-level languages provided a vehicle for
running the same program on more than one computer. Each high-level
language has a translating program that goes with it, a program that
takes statements written in the high-level language and converts them to
the equivalent machine-code instructions. In the earliest days, the high-
level language statements were often translated into an assembly
language and then the assembly-language statements were translated into
machine code. A program written in FORTRAN or COBOL can be
translated and run on any machine that has a translating program called
a compiler.

At the end of the second generation, the role of the systems
programmer was becoming more distinct. Systems programmers wrote
tools like assemblers and compilers; those people who used the tools to
write programs were called application programmers. The application
programmer was becoming even more insulated from the computer hard-
ware. The software surrounding the hardware had become more sophisti-
cated. See Figure 1.8.

Figure 1.8

Layers of language at 
the end of the second 
generation

Assembly
language

High-level language

Machine language
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Third-Generation Software (1965–1971)
During the third generation of commercial computers, it became apparent
that the human was slowing down the computing process. Computers were
sitting idle while waiting for the computer operator to prepare the next job.
The solution was to put the computer resources under the control of the
computer, that is, to write a program that would determine which programs
were run when. This kind of program is called an operating system.

During the first two generations, utility programs had been written to
handle often-needed tasks. Loaders loaded programs into memory and linkers
linked pieces of large programs together. In the third generation, these utility
programs were refined and put under the direction of the operating system.
This group of utility programs, the operating system, and the language trans-
lators (assemblers and compilers) became known as systems software.

The introduction of computer terminals as input/output devices gave the
user ready access to the computer, and advances in systems software gave
the machine the ability to work much faster. However, inputting and
outputting data from keyboards and screens was a slow process, much
slower than carrying out instructions in memory. The problem was how to
make use of the machine’s greater capabilities and speed. The solution was
time sharing—many different users, each at a terminal, communicating
(inputting and outputting) with a single computer all at the same time.
Controlling the process was an operating system that organized and sched-
uled the different jobs.

For the users, time sharing is much like having their own machine. Each
user is assigned a small slice of central processing time and then is put on
hold while another user is serviced. Users generally aren’t even aware that
there are other users. However, if too many people try to use the system at
the same time, there can be a noticeable wait for a job to be completed.

During the third generation, general-purpose application programs were
being written. One example was the Statistical Package for the Social
Sciences (SPSS) written in FORTRAN. SPSS had a special language, and
users wrote instructions in that language as input to the program. This
language allowed the user, who was often not a programmer, to describe
some data and the statistics to be computed on that data.

At the beginning, the computer user and the programmer were one in
the same. By the end of the first generation, programmers emerged who
wrote tools for other programmers to use, giving rise to the distinction
between systems programmers and applications programmers. However,
the programmer was still the user. In the third generation, systems
programmers were writing programs—software tools—for others to use.
Suddenly there were computer users who were not programmers in the
traditional sense.
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Figure 1.9

The layers of software
surrounding the hardware
continue to grow

The separation between the user and the hardware was growing
wider. The hardware had become only a small part of the picture. A
computer system—a combination of hardware, software, and the data
managed by them—had emerged. See Figure 1.9. Although the layers of
languages kept getting deeper, programmers continued (and still
continue) to use some of the very inner layers. If a small segment of code
must run as quickly as possible and take up as few memory locations as
possible, it may still be programmed in an assembly language or even
machine code today.

Fourth Generation (1971–1989)
The 1970s saw the introduction of better programming techniques called
structured programming, a logical, disciplined approach to programming.
The languages Pascal and Modula-2 were built on the principles of struc-
tured programming. And BASIC, a language introduced for third-genera-
tion machines, was refined and upgraded to more-structured versions. C, a
language that allows the user to intersperse assembly-language statements,
was also introduced. C++, a structured language that also allows the user
access to low-level statements, became the language of choice in industry.

Better and more powerful operating systems also were being developed.
UNIX, developed at AT&T as a research tool, has become standard in
many university settings. PC-DOS, developed for IBM PC, and MS-DOS,
developed for compatibles, became standards for personal computers. The
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operating system for the Macintosh introduced the concept of the mouse
and the point-and-click graphical interface, thus changing user/computer
interaction drastically.

High-quality, reasonably priced applications software packages became
available at neighborhood stores. These programs allow the user with no
computer experience to do a specific task. Three typical kinds of applica-
tion packages are spreadsheets, word processors, and database manage-
ment systems. Lotus 1-2-3 was the first commercially successful
spreadsheet that allowed a novice user to enter and analyze all kinds of
data. WordPerfect was one of the first real-word processors, and dBase IV
was a system that let the user store, organize, and retrieve data.

Fifth Generation (1990–present)
The fifth generation is notable for three major events: the rise of Microsoft
as a dominant player in computer software; object-oriented design and
programming; and the World Wide Web.

Microsoft’s Windows operating system became dominant in the PC
market during this period. Although WordPerfect continued to improve,
Microsoft’s Word became the most used word processing program. In the
mid–90s word processors, spreadsheet programs, database programs, and
other application programs were bundled together into super packages
called office suites.

Object-oriented design became the design of choice for large program-
ming projects. Whereas structured design is based on a hierarchy of tasks,
object-oriented design is based on a hierarchy of data objects. Java, a
language designed by Sun Microsystems for object-oriented programming,
began to rival C++.

The World Wide Web made it easy to use the Internet to share informa-
tion around the world. A browser is a program that allows a user to access
information from web sites worldwide. See Figure 1.10. There are two
giants in the browser market: Netscape Navigator and Microsoft’s Internet
Explorer. Microsoft’s bundling of Internet Explorer with the Windows
operating system led to an antitrust suit being filed against them.

The 1980s and 1990s must be characterized most of all by the changing
profile of the user. The first user was the programmer who wrote programs to
solve specific problems, his or her own or someone else’s. Then the systems
programmer emerged who wrote more and more complex tools for other
programmers. By the early 1970s, applications programmers were using these
complex tools to write applications programs for nonprogrammers to use.
With the advent of the personal computer, computer games, educational
programs, and user-friendly software packages, many people became
computer users. With the advent of the World Wide Web, web surfing has
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Figure 1.10

Sharing information on the
World Wide Web

become the recreation of choice, so even more people have become computer
users. The user is a first-grade child learning to read, a teenager downloading
music, a college student writing a paper, a homemaker planning a budget, a
banker looking up a customer’s loan record. The user is all of us.

In our brief history of hardware and software, we have focused our atten-
tion on traditional computers and computing systems. Paralleling this history
is the use of integrated circuits, or chips, to run or regulate everything from
toasters, to cars, to intensive care monitors, to satellites. Such computing
technology is called an embedded system. Although these chips are not actu-
ally computers in the sense that we are going to study in this book, they are
certainly a product of the technology revolution of the last 50 years.

Predictions
We end this brief history of computing with a few predictions about
computers that didn’t come true:7

“I think there is a world market for maybe five computers.”—Thomas
Watson, chair of IBM, 1943.

“Where . . . the ENIAC is equipped with 18,000 vacuum tubes and
weighs 30 tons, computers in the future may have only 1,000 vacuum
tubes and weigh only 1.5 tons.”—Popular Mechanics, 1949.

“Folks, the Mac platform is through—totally.”—John C. Dvorak,
PC Magazine, 1998.
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“There is no reason anyone would want a computer in their home.”
—Ken Olson, president, chairman, and founder of Digital Equipment
Corp., 1977.

“I predict the Internet . . . will go spectacularly supernova and in 1996
catastrophically collapse.”—Bob Metcalfe, 3Com founder and inventor,
1995.

1.3 Computing as a Tool and a Discipline

In the previous section on the history of computer software, we pointed
out the ever-changing role of the user. At the end of the first generation,
the user split into two groups: the systems programmer who developed
tools to make programming easier and the applications programmer who
used the tools. Later applications programmers built large domain-specific
programs such as statistical packages, word processors, spreadsheets, intel-
ligent browsers, virtual environments, and medical diagnosis applications
on top of the traditional language tools. These application programs were
in turn used by practitioners with no computer background.

So who is using the computer as a tool? Everyone, except for those who
are creating the tools for others. For these toolmakers, either computing is
a discipline (low-level tools) or the discipline of computing has made their
tools possible (applications built upon applications).

The dictionary defines discipline as a field of study. Peter Denning
defines the discipline of computer science as “the body of knowledge and
practices used by computing professionals in their work. . . .  This discipline
is also called computer science and engineering, computing, and infor-
matics.” 8 He continues, “The body of knowledge of computing is
frequently described as the systematic study of algorithmic processes that
describe and transform information: their theory, analysis, design, effi-
ciency, implementation, and application. The fundamental question under-
lying all of computing is, What can be (efficiently) automated?”

Denning states that each practitioner must be skilled in four areas: algo-
rithmic thinking, in which one is able to express problems in terms of step-
by-step procedures to solve them, representation, in which one is able to
store data in a way that it can be processed efficiently, programming, in
which one is able to combine algorithmic thinking and representation into
computer software, and design, in which the software serves a useful
purpose.

A debate has long raged about whether computing is a mathematical
discipline, a scientific discipline, or an engineering discipline. Computing
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certainly has roots in mathematical logic. The theorems of Turing tell us
that certain problems cannot be solved, Boolean algebra describes
computer circuits, and numerical analysis plays an important role in
scientific computing. Scientific disciplines attempt to understand how
their systems work. The natural sciences exist to “fill in the instruction
book that God forgot to leave us.” 9 Thus, computing is a scientific disci-
pline as we build and test models of natural phenomena. As we design
and build larger and larger computing systems, we are using techniques
from engineering.

In 1989, a task force of computer science educators proposed a
curriculum model that covered the subareas of computing from the three
perspectives represented in our history: theory (mathematics); experimen-
tation, called abstraction by computer scientists (sciences); and design
(engineering).10 Theory refers to the building of conceptual frameworks
and notations for understanding relationships among objects in a
domain. Experimentation (abstraction) refers to exploring models of
systems and architectures within different application domains and deter-
mining whether the models predict new behaviors. Design refers to
constructing computer systems that support work in different application
domains.

The following table shows the subareas outlined by the task force plus
three areas that have emerged since that time.

Of the 12 subject subareas, six relate to understanding and building
computing tools in general: algorithms and data structures, programming

Subareas of Computer Science

Algorithms and data structures
Programming languages
Architecture
Numerical and symbolic computation
Operating systems
Software methodology and engineering
Databases and information retrieval
Artificial intelligence and robotics
Human–computer communication
Graphics
Organizational informatics
Bioinformatics
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languages, (computer) architecture, operating systems, software method-
ology and engineering, and human-computer communication. Not surpris-
ingly, these are called systems areas. Six of the subareas relate to the
computer’s use as a tool: numerical and symbolic computation, databases
and informational retrieval, artificial intelligence and robotics, graphics,
organizational informatics, and bioinformatics. These areas are called
applications areas.

Research is ongoing in both systems and applications. Systems research
produces better general tools; applications research produces better tools
for the domain-specific applications. There is no doubt that the relation-
ships between the people who investigate computing topics as a discipline
directly affect those who use computers as a tool. Computing research
fuels the applications people use daily, and the turnaround for the tech-
nology is amazingly fast. This symbiotic relationship is more dynamic in
computing than in any other discipline.

In this book we explain, at an introductory level, the ideas underlying
computing as a discipline. This book does not exist to make you better
users of a computer, though it should undoubtedly have that side effect.
Instead, we want you to walk away with a thorough underlying knowledge
of how computer systems work, where they are now, and where they may
go in the future. For this reason, we examine both systems and applications.

Summary

This book is a broad study of computer systems, including the hardware
that makes up the devices, the software programs executed by the
machine, and the data managed and manipulated by both. Computing
systems can be divided into layers, and our organization of this book
follows those layers from the inside out.

The history of computing gives us the roots from which modern computing
systems grew. The history of computing spans four generations, each charac-
terized by the components used to build the hardware and the software tools
developed to allow the programmer to make more productive use of the hard-
ware. These tools have formed layers of software around the hardware.

Throughout the rest of this book, we examine the different layers that
make up a computing system, beginning with the information layer and
ending with the communication layer. Our goal is to give you an apprecia-
tion and understanding of all aspects of computing systems.

You may go on to study computer science in depth and contribute to
the future of computing systems. Or you may go on to be application
specialists within other disciplines, using the computer as a tool. Whatever
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your future holds, with computing systems as prevalent as they are, a
fundamental understanding of how they work is imperative.

Microsoft Anti-Trust Case
In 1975, Bill Gates and Paul Allen formed a partnership and named it

Microsoft. They created the business in anticipation of a future where

software would be in high demand as personal computers became stan-

dard household commodities. Their vision came true, and the company

that began in a Harvard University dorm room has become the world’s

leader in the software industry. Today, over 90% of all personal

computers use Microsoft’s Windows as their operating system.

Microsoft’s efforts to dominate the market have led the company

into a critical period that will greatly impact its future. In the early

90s, Microsoft felt that advancements made in Internet technology

threatened their dominance. With the advent of the web, personal

computers no longer needed to rely on their independent systems.

Internet browsers were the wave of the future and Microsoft believed

that the company controlling the browser market would control the

industry. Shortly after Netscape introduced Navigator, an easy-to-use

browser, Microsoft launched Internet Explorer. Microsoft had already

licensed its software to many manufacturers; the company now

attempted to prevent customers from using other browsers by threat-

ening them with the loss of their Windows license.

In 1990, the Federal Trade Commission targeted Microsoft for

possibly working with IBM to monopolize the software market. When

IBM was dropped from the investigation in 1991, the focus centered

on Microsoft, and in 1993 the Department of Justice took over the

investigation. On July 16, 1994 an agreement was made between

Microsoft and the Department of Justice in which they signed a

consent decree. This decree prevented Microsoft from requiring

computer manufacturers who license Windows to license Internet

Explorer. Microsoft was not, however, prohibited from “integrating”

products within its operating system. It was this distinction that would

later become an important argument for Microsoft in the antitrust suit

set against them.

W
WW
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The Justice Department sued Microsoft on October 20, 1997 for

violating the 1994 consent decree. The Department of Justice accused

Microsoft of bundling Internet Explorer with their operating system, but

Microsoft denied anti-competition intentions and claimed that Internet

Explorer was an integrated component of Windows. Microsoft’s

contention was that the packaged deal did not hurt consumers or their

competition. The company stated that the browser could not be

removed from the operating system without compromising its quality.

The argument against Microsoft asserted that the company acted in

violation of antitrust laws, which were established to protect competi-

tion. Microsoft’s opponents saw the bundling of Internet Explorer as an

attempt to monopolize the market by eliminating competition.

In April of 2000, the court ruled that Microsoft was indeed a

monopoly, and that its bundling of Internet Explorer was in violation of

antitrust laws. At that time, Judge Thomas Jackson ordered the breakup

of Microsoft. Microsoft appealed the ruling and Judge Jackson’s ethical

conduct was investigated. It was determined that he was a biased judge.

While his ruling that Microsoft is a monopoly stands, the order to split

the company was thrown out. Whether the case moves to an appeals

court or the Supreme Court, Microsoft’s problems are far from over. In

the meantime, other operating systems are struggling to obtain their

share of the software market. Linux, a stable and reliable operating

system, has challenged the widespread use of Windows by making its

source code free and accessible. The outcome of Microsoft’s antitrust

case will have a great impact on the future operating systems.

Key Terms
Abstraction  pg. 7

Computer hardware  pg. 4

Computer software  pg. 4

Computing system  pg. 4

Exercises
1. What French mathematician built and sold the first gear-driven

mechanical machine that did addition and subtraction?

2. Leibniz made a improvement on the machine in Exercise 1. What was
the improvement?

3. Describe Babbage’s contribution to the history of computers.
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4. Who was considered the first programmer? Describe her contributions
to the history of computers.

5. What company did Dr. Hollerith form?

6. How is data represented in an IBM card?

7. For whom is the Turing Award in computing named?

8. a. What was the first commercial computer?
b. Who bought it?
c. When was it sold?

9. What was the first computer used to predict the outcome of an election?

10. Some experts made early predictions that a small number of com-
puters would handle all of mankinds computational needs. Why was
this prediction faulty?

11. a. List four important facts about the first generation of hardware.
b. List three important facts about the second generation of hardware.
c. List three important facts about the third generation of hardware.

12. The following companies were giants in the field of computer hard-
ware in early generations: IBM, Remington Rand, NCR, DEC,
Hewlett Packard, Control Data, Burroughs, Intel, and Xerox.
a. Which of these companies are still in business today under the

same name?
b. Which of these companies are still in business under another name?
c. Which of these companies are no longer in business?

13. The following names were prominent in the early part of the fourth
generation of computer hardware: Apple, Tandy/Radio Shack, Atari,
Commodore, and Sun.
a. Which of these companies are still in business today under the

same name?
b. Which of these companies are still in business under another name?
c. Which of these companies are no longer in business?

14. Define SIMD and MIMD.

15. What is Ethernet?

16. What does the acronym LAN stand for?

17. Define the word protocol and explain how it is used in computing.

18. Distinguish between machine language and assembly language.

19. Distinguish between assembly language and high-level languages.

20. FORTRAN and COBOL were two high-level languages defined
during the second generation of computer software. Compare and
contrast these languages in terms of their history and their purpose.

21. Distinguish between an assembler and a compiler.
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22. Distinguish between a systems programmer and an applications
programmer.

23. What was the rationale behind the development of operating systems?

24. What constituted systems software?

25. What do the following pieces of software do?
a. Loader
b. Linker
c. Editor

26. How was the program SPSS different from the programs that came
before it?

27. Name five languages that were prominent during the fourth genera-
tion of computer software.

28. Name several typical types of fourth-generation application software.

29. Name two design techniques.

30. What do we mean by the statement that the 1980s and 1990s must be
characterized by the changing profile of the user?

31. Distinguish between computing as a tool and computing as a discipline.

32. Is computing a mathematical discipline, a scientific discipline, or an
engineering discipline? Explain.

33. Distinguish between systems areas and applications areas in
computing as a discipline.

34. Define the word abstraction and relate it to the drawing in Figure 1.3.

35. Name four skills that each practitioner should master (according to
Peter Denning).

36. Name the six subject subareas of computer science called systems
areas that relate to understanding and building computing tools in
general.

37. Name the six subject subareas of computer science called applications
areas that relate to the computer’s use as a tool.

38. What does SIMD stand for?

39. What does MIMD stand for?

40. What is the fundamental question underlying all of computing
(according to Peter Denning)?

41. What do Joseph Jacquard and Herman Hollerith have in common?

http://lib.ommolketab.ir
http//lib.ommolketab.ir


42. Why was Ada Lovelace called the first programmer?

43. To what English poet was Ada Lovelace related?

Thought Questions

1. Identify five abstractions in your school environment. Indicate what
details are hidden by the abstraction and how the abstraction helps
manage complexity.

2. Explain the statement “The history of computing can be traced
through the ever-changing definition of the user.”

3. Did you have a computer in the home as you were growing up? If so,
how did it influence your education to this point? If not, how did the
lack of one influence your education to this point?

4. In 1969 an antitrust action was filed against IBM. What was the basis
of the case? How was it resolved?

5. Compare the 1969 antitrust action against IBM with the 1990s action
against Microsoft.

6. Is it in the interest of the computer user that curbs be placed on multi-
billion-dollar corporations like Microsoft and IBM?

?

Thought Questions 31
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Binary Values and 
Number Systems

Chapter 2

Now that we’ve established some common terminology in Chapter

1, our exploration of computing technology can begin in earnest.

This chapter describes binary values—the way in which computer

hardware represents and manages information. This chapter also

puts binary values in the context of all number systems, reminding

us of grade school principles that we now take for granted. You

probably already know many of the concepts about binary

numbers described in this chapter, but you might not realize that

you know them! The rules of all number systems are the same; it’s

just a matter of going back to those underlying concepts and

applying them in a new base. By making sure we have an under-

standing of binary values, we pave the way to understanding how

computing systems use the binary number system to accomplish

their tasks.

33
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Number A unit of an
abstract mathematical
system subject to the
laws of arithmetic

Natural number The
number 0 and any
number obtained by
repeatedly adding 1 to it

Negative number A
value less than 0, with a
sign opposite to its posi-
tive counterpart

Integer A natural
number, a negative of a
natural number, or zero

Rational number An
integer or the quotient of
two integers (division by
zero excluded)

34 Chapter 2 Binary Values and Number Systems

Goals
After studying this chapter, you should be able to:

� distinguish among categories of numbers.
� describe positional notation.
� convert numbers in other bases to base ten.
� convert base-ten numbers to numbers in other bases.
� describe the relationship between bases 2, 8, and 16.
� explain the importance to computing of bases that are powers of 2.

2.1 Number Categories

Numbers come in all sorts of categories. There are natural numbers, nega-
tive numbers, rational numbers, irrational numbers, and many others that
are important in mathematics but not to the understanding of computing.
Let’s review the relevant category definitions briefly.

First, let’s define the general concept of a number: A number is a unit
belonging to an abstract mathematical system and subject to specified laws
of succession, addition, and multiplication. That is, a number is a represen-
tation of a value, and certain arithmetic operations can be consistently
applied to such values.

Now let’s separate numbers into categories. A natural number is the
number 0 or any number obtained by repeatedly adding 1 to this number.
Natural numbers are the ones we use in counting. A negative number is
less than zero, and is opposite in sign to a positive number. An integer is
any of the natural numbers or any of the negatives of these numbers. A
rational number is an integer or the quotient of two integers—that is, any
value that can be expressed as a fraction.

In this chapter we focus on natural numbers and how they are repre-
sented in various number systems. As part of that discussion we establish
how all number systems relate to each other. In Chapter 3 we examine the
computer representation of negative and rational numbers.

Some of the material in this chapter may be familiar to you. Certainly
some of the underlying ideas should be. You probably take for granted
some basic principles of numbers and arithmetic because you’ve become so
used to them. Part of our goal in this chapter is to remind you of those
underlying principles and show you that those principles apply to all
number systems. Then, the idea that a computer uses binary values, 1s and
0s, to represent information should be less mysterious.
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Positional notation

A system of expressing
numbers in which the
digits are arranged in
succession, the position
of each digit has a place
value, and the number is
equal to the sum of the
products of each digit by
its place value1

Base The foundational
value of a number
system, which dictates
the number of digits and
the value of digit posi-
tions

2.2 Natural Numbers 35

2.2 Natural Numbers

How many ones are there in 943? That is, how many actual things does the
number 943 represent? Well, in grade school terms you might say there are
9 hundreds plus 4 tens plus 3 ones. Or, said another way, there are 900 ones
plus 40 ones plus 3 ones. So how many ones are there in 754? 700 ones plus
50 ones plus 4 ones. Right? Well, maybe. The answer depends on the base
of the number system you are using. This answer is correct in the base-10,
or decimal, number system, which is the number system we humans use
every day. But that answer is not correct in other number system.

The base of a number system specifies the number of digits used in the
system. The digits always begin with 0 and continue through one less than
the base. For example, there are 2 digits in base 2: 0 and 1. There are 8
digits in base 8: 0 through 7. There are 10 digits in base 10: 0 through 9.
The base also determines what the position of digits mean. When you add
1 to the last digit in the number system, you have a carry to the digit posi-
tion to the left.

Positional Notation
Numbers are written using positional notation. The rightmost digit repre-
sents its value times the base to the zeroth power. The digit to the left of
that one represents its value times the base to the first power. The next
digit represents its value times the base to the second power. The next digit
represents its value times the base to the third power, and so on. You are
so familiar with positional notation that you probably don’t think about it.
We used it instinctively to calculate the number of ones in 943.

9 * 102 = 9 * 100 = 900
+ 4 * 101 = 4 * 10 = 40
+ 3 * 100 = 3 * 1 =    3

943

A more formal way of defining positional notation is that the value is
represented as a polynomial in the base of the number system. But what is
a polynomial? A polynomial is a sum of two or more algebraic terms, each
of which consists of a constant multiplied by one or more variables raised
to a nonnegative integral power. When defining positional notation, the
variable is the base of the number system. 943 is represented as a polyno-
mial as follows, with x acting as the base.

9 * x2 + 4 * x1 + 3 * x0
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Let’s express this idea formally. If a number in the base-R number system
has n digits, it is represented as follows, where di represents the digit in the
ith position in the number.

dn * Rn�1 + dn�1 * Rn�2 + . . . + d2 * R + d1

Look complicated? Let’s look at a concrete example:
63578 in base 10. n is 5 (the number has 5 digits), and
R is 10 (the base). The formula says that the fifth digit
(last digit on the left) is multiplied by the base to the
fourth power; the fourth digit is multiplied by the base
to the third power; the third digit is multiplied by the
base to the second power; the second digit is multiplied
by the base to the first power; and the first digit is not
multiplied by anything.

6 * 104 + 3 * 103 + 5 * 102 + 7 * 101 + 8

In the previous calculation, we have assumed that
the number base is ten. This is a logical assumption
since our number system is base ten. However, there
is nothing about the number 943 that says it couldn’t
be representing a value in base 13. If so, to determine
the number of ones, we would have to convert it to
base 10.

9 * 132 = 9 * 169 = 1521
+ 4 * 131 = 4 * 13 = 52
+ 3 * 130 = 3 * 1 =      3

1576

Therefore, 943 in base 13 is equal to 1576 in base 10. Keep in mind that
these two numbers have an equivalent value. That is, they both represent the
same number of things. If a bag contains 943 (base 13) beans, and another
bag contains 1576 (base 10) beans, both bags contain the exact same number
of beans. Number systems just allow us to represent values in various ways.

Why would anyone want to represent values in base 13? It isn’t done
very often, granted, but it is sometimes helpful to understand how it
works. For example, there is a computing technique called hashing that
takes numbers and scrambles them, and one way to scramble numbers is
to interpret them in a different base.

Other bases, such as base 2 (binary), are particularly important in
computer processing. Let’s explore these bases in more detail.

The Importance of Zero
It is interesting to note that positional notation is
only possible because of the concept of zero.
Zero, which we usually take for granted, was the
fundamental concept at the intersection of all
branches of modern mathematics. As Georges
Ifrah noted in his book, The Universal History of
Computing: “To sum up, the vital discovery of
zero gave the human mind an extraordinarily
powerful potential. No other human creation has
exercised such an influence on the development
of mankind’s intelligence.” 2
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In our brief history of computing in Chapter 1, we
mentioned the abacus as an early computing device.
More specifically, the abacus is a device that uses
positional notation to represent a decimal number.
The beads in any one column represent the digit in
that column. All columns combined represent a
complete number.

The beads above the middle bar represent units of 5
and the beads below the bar each represent 1. Beads
pushed away from the middle bar do not contribute to
the number. The following diagram shows the number
27,091 represented on an abacus:

The user performs calculations by moving the beads
in specific ways to reflect the basic arithmetic opera-

tions of addition, subtraction, multiplication, and divi-
sion.

Though ancient, the abacus is still used today in
many Asian cultures. In stores, a checkout clerk might
use an abacus instead of an electronic cash register.
Although lacking some of the advantages of electronic
devices, the abacus is more than sufficient for the kinds
of calculations needed for basic business transactions.
And skilled users of an abacus can rival anyone with a
calculator in terms of both speed and accuracy.

Children in these cultures learn rote operations on
the abacus, much as you were drilled in your multipli-
cation tables. To perform an operation on a number,
the user executes a series of movements using only the
thumb, pointing finger, and middle finger of one
hand. These movements correspond to individual
digits and depend on the operation being performed.
For example, to add the digit 7 to the digit 5 already
showing on the abacus, the user clears the five
marker (pushes it to the top), pushes 2 onto the bar
from below, and increments 1 in the next column.
Though this move corresponds to the basic addition
operation we do on paper, the abacus user is not
thinking about the mathematics. The user is condi-
tioned to execute a specific movement when specific
digits are encountered for a specific operation. When
the calculation is complete, the user reads the result as
shown on the abacus.

Photo courtesy of Theresa DiDonato

Photo courtesy of Theresa DiDonato

The console of the IBM 650, a popular commercial
computer in the late 1950s, allowed the operator to
read the contents of memory using the bi-quinary
system. This number representation system uses seven
lights to represent the 10 decimal digits.

Each digit is represented by two lights, one of the
top two and one of the bottom five. If the upper-left
light is on, the five other lights represent 0, 1, 2, 3,

and 4, respectively, from top to bottom. If the upper-
right light is on, the five other lights represent 5, 6, 7,
8, and 9. The following configuration represents the
number 7:

The International Business Machine (IBM) 650 was
called the Ford Tri-Motor of computers: Like the Ford
Tri-Motor, old IBM 650s were shipped to Latin
America where they enjoyed an extended life.

0
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8

Photo courtesy of IBM Corporate Archives

The Abacus

Bi-Quinary Number Representation
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Binary, Octal, and Hexadecimal
The base-2 (binary) number system is important in computing. It is also
helpful to be familiar with number systems that are powers of 2, such as
base 8 (octal), and base 16 (hexadecimal). Remember that the base value
specifies the number of digits in the number system. Base 10 has ten digits
(0–9), base 2 has two digits (0–1), and base 8 has eight digits (0–7). There-
fore, the number 943 could not represent a value in any base less than base
10, because the digit 9 doesn’t exist in those bases. It is, however, a valid
number in base 10 or any base higher than that. Likewise, the number
2074 is a valid number in base 8 or higher, but it simply does not exist
(because it uses the digit 7) in any base lower than that.

What are the digits in bases higher than 10? We need symbols to repre-
sent the digits that correspond to the decimal values 10 and beyond. In
bases higher than 10, we use letters as digits. We use the letter A to repre-
sent the number 10, B to represent 11, C to represent 12, etc. Therefore,
the 16 digits in base 16 are:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F

Let’s look at values in octal, hexadecimal, and binary to see what they
represent in base 10. For example, let’s calculate the decimal equivalent of
754 in octal (base 8). As before, we just expand the number in its polyno-
mial form and add up the numbers.

7 * 82 = 7 * 64 = 448
+ 5 * 81 = 5 * 8 = 40
+ 4 * 80 = 4 * 1 =    4

492

Let’s convert the hexadecimal number ABC to decimal:

A * 162 = 10 * 256 = 2560
+ B * 161 = 11 * 16 = 176
+ C * 160 = 12 * 1 =    12

2748

Note that we perform the exact same calculation to convert the number to
base 10. We just use a base value of 16 this time, and we have to
remember what the letter digits represent. After a little practice you won’t
find the use of letters as digits that strange.

Finally, let’s convert a binary (base-2) number 1010110 to decimal. Once
again, we perform the same steps; only the base value changes:
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1 * 26 = 1 * 64 = 64
+ 0 * 25 = 0 * 32 = 0
+ 1 * 24 = 1 * 16 = 16
+ 0 * 23 = 0 * 8 = 0
+ 1 * 22 = 1 * 4 = 4
+ 1 * 21 = 1 * 2 = 2
+ 0 * 20 = 0 * 1 =  0

86
Recall that the digits in any number system go up to one less than the base
value. To represent the base value in that base, you need two digits. In any
base, a 0 in the rightmost position and a 1 in the second position represent
the value of the base itself. So 10 is ten in base 10 and 10 is eight in base 8
and 10 is sixteen in base 16. Think about it. The consistency of number
systems is actually quite elegant.

Addition and subtraction of numbers in other bases are performed
exactly like they are on decimal numbers.

Arithmetic in Other Bases
Recall the basic idea of arithmetic in decimal. 0 + 1 is 1, 1 + 1 is 2, 2 + 1 is
3, and so on. Things get interesting when you try to add two numbers
whose sum is equal to or larger than the base value. For example: 1 + 9.
Because there isn’t a symbol for 10, we reuse the same digits and rely on
position. The rightmost digit reverts to 0, and there is a carry into the next
position to the left. Thus 1 + 9 equals 10 in base 10.

The rules of binary arithmetic are analogous, but we run out of digits
much sooner. 0 + 1 is 1, and 1 + 1 is 0 with a carry. Then the same rule is
applied to every column in a larger number, and the process continues
until there are no more digits to add. The example below adds the binary
values 101110 and 11011. The carry value is marked above each column
in color.

11111 ← carry
101110

+    11011
1001001

We can convince ourselves that this answer is correct by converting both
operands to base 10, adding them, and comparing the result. 101110 is 46,
11011 is 27, and the sum is 73. 101001 is 73 in base 10.
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Binary Octal Decimal

000
001
010
011
100
101
110
111

1000
1001
1010

0
1
2
3
4
5
6
7

10
11
12

0
1
2
3
4
5
6
7
8
9

10
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The subtraction facts that you learned in grade school were that 9 � 1
is 8, 8 � 1 is 7, and so on until you try to subtract a larger digit from a
smaller one, such as 0 � 1. To accomplish this, you have to “borrow one”
from the next left digit of the number from which you are subtracting.
More precisely, you borrow one power of the base. So in base 10, when
you borrow, you borrow 10. The same logic applies to binary subtraction.
Every time you borrow in a binary subtraction, you borrow 2. Here is an
example with the borrowed values marked above.

1
02/ 2 ← borrow

111001
�       110

110011

Once again, you can check the calculation by converting all values to base
10 and subtract to see if the answers correspond.

Power of Two Number Systems
Binary and octal numbers have a very special relationship to one another:
Given a number in binary, you can read it off in octal and given a number in
octal, you can read it off in binary. For example, take the octal number 754.
If you replace each digit with the binary representation of that digit, you
have 754 in binary. That is, 7 in octal is 111 in binary, 5 in octal is 101 in
binary, 4 in octal is 100 in binary, so 754 in octal is 111101100 in binary.

To facilitate this type of conversion, the table below shows counting in
binary from 0 through 10 with their octal and decimal equivalents.
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To convert from binary to octal, you start at the rightmost binary digit
and mark the digits in groups of threes. Then you convert each group of
three to its octal value.

111 101 100
7 5 4

Let’s convert the binary number 1010110 to octal, and then convert that
octal value to decimal. The answer should be the equivalent of 1010110 in
decimal, or 86.

1 010 110
1 2 6

1 * 82 = 1 * 64 = 64
+ 2 * 81 = 2 * 8 = 16
+ 6 * 80 = 6 * 1 =  6

86

The reason that binary can be immediately converted to octal and octal to
binary is that 8 is a power of 2. There is a similar relationship between
binary and hexadecimal. Every hexadecimal digit can be represented in
four binary digits. Let’s take the binary number 1010110 and convert it to
hexadecimal by marking of the digits from right to left in groups of four.

101 0110
5 6

5 * 161 = 5 * 16 = 80
+ 6 * 160 = 6 * 1 =  6

86

Now let’s convert ABC in hexadecimal to binary. It takes four binary
digits to represent each hex digit. A in hexadecimal is 10 in decimal and
therefore is 1010 in binary. Likewise, B in hexadecimal is 1011 in binary,
and C in hexadecimal is 1100 in binary. Therefore, ABC in hexadecimal is
101010111100 in binary.

Rather than confirming that 10001001010 is 2748 in decimal directly,
let’s mark it off in octal and convert the octal.

101 010 111 100
5 2 7 4

5274 in octal is 2748 in decimal.
In the next section, we show how to convert base-10 numbers to the

equivalent number in another base.
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Converting from Base 10 to Other Bases
The rules for converting base-10 numbers involve dividing by the base into
which you are converting the number. From this division, you get a
quotient and a remainder. The remainder becomes the next digit in the
new number (from right to left), and the quotient replaces the number to
be converted. The process continues until the quotient is zero. Let’s write
the rules in a different form.

These rules form an algorithm for converting from base 10 to another
base. An algorithm is a logical sequence of steps that solves a problem. We
have much more to say about algorithms in later chapters. Here we show
one way of describing an algorithm and show how we can apply it to
perform the conversions.

The first line of the algorithm tells us to repeat the next three lines until
the quotient from our division becomes zero. Let’s convert the decimal
number 2748 to hexadecimal. As we’ve seen in previous examples, the
answer should be ABC.

While the quotient is not zero

Divide the decimal number by the new base

Make the remainder the next digit to the left in the answer

Replace the decimal number with the quotient

Invented in 1617 by Scotsman
John Napier, Napier’s Bones was
a set of rectangular bones (tiles)
marked off with numbers at the top
of the face and multiples of that
number down the face of the tile.
Each tile (bone) represented the
multiplication table for a single
digit. These bones could be lined
up beside one another in a way

that allowed the user to do one-
digit multiplication using only addi-
tion.

John Napier also invented the
slide rule and is given credit for
discovering the binary number
system. For more on Napier and
how to use his bones, see our Web
site.

Napier’s Bones, An Early Calculation Aid

Reproduced by permission of University of
Calgary
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Binary digit A digit in
the binary number
system; a 0 or a 1

Bit Short for binary
digit

Byte Eight binary
digits

Word A group of one
or more bytes; the
number of bits in a word
is the word length of the
computer.
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171 ← quotient
16)2748

16
114
112

28
16
12 ← remainder

The remainder (12) is the first digit in the hexadecimal answer, represented
by the digit C. So the answer so far is C. Since the quotient is not zero, we
divide it (171) by the new base.

10     ← quotient
16)171

16
11 ← remainder

The remainder (11) is the next digit to the left in the answer, which is
represented by the digit B. Now the answer so far is BC. Since the quotient
is not zero, we divide it (10) by the new base.

0      ← quotient
16)10

0
10     ← remainder

The remainder (10) is the next digit to the left in the answer, which is
represented by the digit A. Now the answer is ABC. The quotient is zero,
so we are finished, and the final answer is ABC.

Binary Values and Computers
Although some of the early computers were decimal machines, modern
computers are binary machines. That is, numbers within the computer are
represented in binary form. In fact, all information is somehow represented
using binary values. The reason is that each storage location within a
computer either contains a low-voltage signal or a high-voltage signal.
Because each location can have one of two states, it is logical to equate those
states to 0 and 1. A low-voltage signal is equated with a 0, and a high-
voltage signal is equated with a 1. In fact, you can forget about voltages and
think of each storage location as containing either a 0 or a 1. Note that a
storage location cannot be empty: It must contain either a 0 or a 1.

Each storage unit is called a binary digit or bit for short. Bits are
grouped together into bytes (8 bits), and bytes are grouped together into
units called words. The number of bits in a word is known as the word
length of the computer. For example, IBM 370 architecture in the late
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From 1943 until her death on New Year’s
Day in 1992, Admiral Grace Murray
Hopper was intimately involved with
computing.  In 1991, she was awarded the
National Medal of Technology “for her
pioneering accomplishments in the develop-
ment of computer programming languages
that simplified computer technology and
opened the door to a significantly larger
universe of users.”

Admiral Hopper was born Grace Brew-
ster Murray in New York City on December 9, 1906.
She attended Vassar and received a Ph.D. in mathe-
matics from Yale.  For the next 10 years, she taught
mathematics at Vassar.

In 1943, Admiral Hopper joined the U.S. Navy and
was assigned to the Bureau of Ordnance Computation
Project at Harvard University as a programmer on the
Mark I.  After the war, she remained at Harvard as a
faculty member and continued work on the Navy‘s
Mark II and Mark III computers.  In 1949, she joined
Eckert-Mauchly Computer Corporation and worked on
the UNIVAC I.  It was there that she made a legendary
contribution to computing: She discovered the first
computer “bug”— a moth caught in the hardware.

Admiral Hopper had a working compiler in 1952,
a time when the conventional wisdom was that
computers could do only arithmetic.  Although not on
the committee that designed the computer language
COBOL, she was active in its design, implementation,
and use.  COBOL (which stands for Common Busi-
ness-Oriented Language) was developed in the early
1960s and is still widely used in the business data
processing.

Admiral Hopper retired from the Navy in 1966,

only to be recalled within a year to full-
time active duty.  Her mission was to
oversee the Navy’s efforts to maintain
uniformity in programming languages.  It
has been said that just as Admiral Hyman
Rickover was the father of the nuclear
navy, Rear Admiral Hopper was the
mother of computerized data automation
in the Navy.  She served with the Naval
Data Automation Command until she
retired again in 1986 with the rank of Rear

Admiral.  At the time of her death, she was a senior
consultant at Digital Equipment Corporation.  

During her lifetime, Admiral Hopper received
honorary degrees from more than 40 colleges and
universities.  She was honored by her peers on
several occasions, including the first Computer
Sciences Man of the Year award given by the Data
Processing Management Association, and the
Contributors to Computer Science Education Award
given by the Special Interest Group for Computer
Science Education, which is part of the ACM (Associ-
ation for Computing Machinery).  

Admiral Hopper loved young people and enjoyed
giving talks on college and university campuses.  She
often handed out colored wires, which she called
nanoseconds because they were cut to a length of
about one foot—the distance that light travels in a
nanosecond (billionth of a second).  Her advice to the
young was, “You manage things, you lead people.
We went overboard on management and forgot
about the leadership.” 

When asked which of her many accomplishments
she was most proud of, she answered, “All the young
people I have trained over the years.”

Grace Murray Hopper

1970s had half words (2 bytes or 16 bits), full words (4 bytes), and double
words (8 bytes).

Modern computers are often 32-bit machines (such as Intel’s Pentium III
processor) or 64-bit machines (such as Compaq’s Alpha processors and
Intel’s Itanium processor). However, some microprocessors that are used in
applications such as pagers are 8-bit machines. The computing machine you
are using, whatever it is, is ultimately supported by the binary number system.

We have more to explore about the relationship between computers and
binary numbers. In the next chapter we examine many kinds of data and44
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see how they are represented in a computer. In Chapter 4 we see how to
control electrical signals that represent binary values. And in Chapter 7 we
see how binary numbers are used to represent program commands that the
computer executes.

Summary

Numbers are written using positional notation, in which the digits are
arranged in succession, the position of each digit has a place value, and the
number is equal to the sum of the products of each digit by its place value.
The place values are powers of the base of the number system. Thus, in the
decimal number system, the place values are powers of 10; in the binary
number system, the place values are powers of 2.

Arithmetic can be performed on numbers in any base represented in
positional notation. The same number facts apply to other bases as they do
to base 10. Adding 1 to the largest digit in the base causes a carry into the
next position.

Base 2, base 8, and base 16 are all related because the bases are powers of
2. This relationship provides a quick way to convert between numbers in
these bases. Computer hardware is designed using numbers in base 2. A low-
voltage signal is equated with 0 and a high-voltage signal is equated with 1.

The Digital Divide
Over the past few years, society’s dependence on computer technology

has increased dramatically. The ability to communicate via e-mail and

to access the Internet has become an essential part of every day life for

many Americans. The U.S. Department of Commerce says that over

half of U.S. households were reported to have Internet access in the

year 2000. This means that the other half lack access to the Internet

and/or the technological skills to use it. The term digital divide has

come to represent this disparity between the Information Age “haves”

and “have-nots.”

This gap is of growing social concern. Rural communities, minority

households, low-income families, and people with disabilities do not

have the same Internet access as the more advantaged. In terms of educa-

tion, the quantity and quality of computers and web connections in

Ethical Issues 45
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schools varies greatly across demographic regions. Furthermore, it is not

enough to have the necessary hardware; teachers must have the training

to use the technology and the understanding of it can enhance student

learning. Programs such as the federally supported E-Rate Program,

established in 1996, are responding to these inequalities within schools

and libraries by providing financial discounts to needy schools.

From a global perspective, the digital divide illustrates an additional

challenge that developing nations must face as they make their way

into the international community. Without the necessary telecommuni-

cation infrastructures to support Internet access, emerging countries

are at a serious disadvantage. Only 16 percent of the world’s popula-

tion utilizes 90 percent of its Internet host computers—clear evidence

of this disparity. Indeed, the entire continent of Africa has fewer

Internet connections than New York City. International organizations

are making the technological gap between countries a top priority. The

turn of the millennium saw the creation of the Digital Opportunity

Task force (DOT force), an initiative designed to expand global access

to computer technology. Similarly, in 2001, the UN’s Task Force on

Information and Communications Technology (ICT) was established

to confront the digital divide and bridge the gap between nations.

The digital divide brings to light the serious impact that computer

technology has on society, both domestic and global. It is an issue that

the world will undoubtedly continue to address throughout the 21st

century and into the next.

Key Terms
Base  pg. 35

Binary digit  pg. 43

Bit  pg. 43

Byte  pg. 43

Integer  pg. 34

Natural number  pg. 34

Negative number  pg. 34

Number  pg. 34

Positional notation  pg. 35

Rational number  pg. 34

Word  pg. 43

Exercises
1. Distinguish between a natural number and a negative number.

2. Distinguish between a natural number and a rational number.

3. Label the following numbers as natural, negative, or rational.
a. 1.333333 d. 2/5
b. �1/3 e. 6.2
c. 1066 f. π(pi)
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4. How many ones are there in 891 if it is a number in each of the
following bases?
a. base 10 d. base 13
b. base 8 e. base 16
c. base 12

5. Express 891 as a polynomial in each of the bases in Exercise 4.

6. Convert the following numbers from the base shown to base 10.
a. 111 (base 2) d. 777 (base 16)
b. 777 (base 8) e. 111 (base 8)
c. FEC (base 16)

7. Explain how base 2 and base 8 are related.

8. Explain how base 8 and base 16 are related.

9. Expand the table on page 40 to include the decimal numbers from 11
through 16.

10. Expand the table in Exercise 9 to include hexadecimal numbers.

11. Convert the following octal numbers to binary.
a. 766 d. 142
b. 101 e. 889
c. 202

12. Convert the following binary numbers to octal.
a. 111110110 d. 1100010
b. 1000001 e. 111000111
c. 010000010

13. Convert the following binary numbers to hexadecimal.
a. 111110110
b. 1000001
c. 010000010
d. 1100010
e. 111000111

14. Convert the following octal numbers to hexadecimal.
a. 777
b. 605
c. 443
d. 521
e. 1

15. Convert the following decimal numbers to octal.
a. 901
b. 321
c. 1492
d. 1066
e. 2001
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16. Convert the following decimal numbers to binary.
a. 45
b. 69
c. 1066
d. 99
e. 1

17. Convert the following decimal numbers to hexadecimal.
a. 1066
b. 1939
c. 1
d. 998
e. 43

18. If you were going to represent numbers in base 18, what symbols
might you use to represent the decimal numbers 10 through 17 other
than letters?

19. Convert the following decimal numbers to base 18 using the symbols
you suggested in Exercise 18.
a. 1066
b. 99099
c. 1

20. Perform the following binary additions.
a. 1110011 + 11001
b. 1111111 + 11111
c. 1010101 + 10101

21. Perform the following octal additions.
a. 770 + 665
b. 101 + 707
c. 202 + 667

22. Perform the following hexadecimal additions.
a. 19AB6 + 43
b. AE9 + F
c. 1066 + ABCD

23. Perform the following binary subtractions.
a. 1100111 � 111
b. 1010110 � 101
c. 1111111 � 111

24. Perform the following octal subtractions.
a. 1066 � 776
b. 1234 � 765
c. 7766 � 5544
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25. Perform the following hexadecimal subtractions.
a. ABC � 111
b. 9988 � AB
c. A9F8 � 1492

26. Why are binary numbers important in computing?

27. A byte contains how many bits?

28. How many bytes are there in one word of a 64-bit machine?

29. Why do microprocessors such as pagers have only 8-bit words?

30. Why is important to study how to manipulate fixed-sized numbers?

Thought Questions
1. Exercise 3 asked you to classify π as one of the options. π does not

belong in any of the categories named; π (and e) are transcendental
numbers. Look up transcendental numbers in the dictionary or in an
old math book and give the definition in your own words.

2. Complex numbers are another category of numbers that are not
discussed in this chapter. Look up complex numbers in a dictionary or
an old math book and give the definition in your own words.

3. Many everyday occurrences can be represented as a binary bit. For
example, a door is open or not open, the stove is on or off, the dog is
asleep or awake. Could relationships be represented as a binary value?
Discuss the question giving examples.

4. The digital divide puts those that have access to technology on one
side and those that do not on the other. Do you feel that it is the right
of everyone to have access to technology?

5. It will cost a great deal of money to erase the digital divide. Who do
you think should be responsible for paying the cost?

6. Having access to technology is not enough; people must be taught to
use the technology they have. How would you define computer
literacy for each of the following groups of people?

• high school students in an industrialized country

• kindergarten teachers in an industrialized country

• college graduates in an industrialized country

• students in sub-Saharan Africa

• college graduates in sub-Saharan Africa

• government officials in the Andes

?

http://lib.ommolketab.ir
http//lib.ommolketab.ir


3  Data Representation

The Information Layer

Laying the Groundwork

1  The Big Picture

The Information Layer

2  Binary Values and Number Systems

3  Data Representation

The Hardware layer

4  Gates and Circuits

5  Computing Components

The Programming Layer

6  Problem Solving and Algorithm Design

7  Low-Level Programming Languages

8  High-Level Programming Languages

9  Abstract Data Types and Algorithms

The Operating Systems Layer

10  Operating Systems

11  File Systems and Directories

The Applications Layer

12  Information Systems

13  Artificial Intelligence

14  Simulation and Other Applications

The Communications Layer

15  Networks

16  The World Wide Web

In Conclusion

17  Limitations of Computing

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Data Representation

Chapter 3

When you go on a trip, you probably follow a road map. The map

is not the land over which you travel; it is a representation of that

land. The map has captured the essential information needed to

accomplish the goal of getting from one place to another.

Likewise, the data we need to store and manage on a computer

must be represented in a way that captures the essence of the infor-

mation, and it must do so in a form convenient for computer

processing. Building on the fundamental concepts of the binary

number system established in Chapter 2, this chapter explores how

we represent and store the various kinds of information a

computer manages.

51
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Multimedia Several
different media types

Data compression

Reducing the amount of
space needed to store a
piece of data

Bandwidth The
number of bits or bytes
that can be transmitted
from one place to
another in a fixed
amount of time
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Goals
After studying this chapter, you should be able to:

� distinguish between analog and digital information.
� explain data compression and calculate compression ratios.
� explain the binary formats for negative and floating-point values.
� describe the characteristics of the ASCII and Unicode character sets.
� perform various types of text compression.
� explain the nature of sound and its representation.
� explain how RGB values define a color.
� distinguish between raster and vector graphics.
� explain temporal and spatial video compression.

3.1 Data and Computers

Without data, computers would be useless. Every task a computer under-
takes deals with managing data in some way. Therefore, our need to repre-
sent and organize that data in appropriate ways is paramount.

In the not-so-distant past, computers dealt almost exclusively with
numeric and textual data, but now computers are truly multimedia

devices, dealing with a vast array of information categories. Computers
store, present, and help us modify many different types of data, including:

� Numbers

� Text

� Audio

� Images and graphics

� Video

Ultimately, all of this data is stored as binary digits. Each document,
picture, and sound bite is somehow represented as strings of 1s and 0s.
This chapter explores each of these types of data in turn and discusses the
basic ideas behind the ways in which we represent these types of data on a
computer.

We can’t discuss data representation without also talking about data

compression—reducing the amount of space needed to store a piece of
data. In the past we needed to keep data small because of storage limita-
tions. Today, computer storage is relatively cheap; but now we have an
even more pressing reason to shrink our data: the need to share it with
others. The Web and its underlying networks have inherent bandwidth
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Compression ratio The
size of the compressed
data divided by the size
of the uncompressed
data

Lossless compression

A technique in which
there is no loss of infor-
mation

Lossy compression

A technique in which
there is loss of informa-
tion

Analog data Informa-
tion represented in a
continuous form

Digital data

Information represented
in a discrete form
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restrictions that define the maximum number of bits or bytes that can be
transmitted from one place to another in a fixed amount of time.

The compression ratio gives an indication of how much compression
occurs. The compression ratio is the size of the compressed data divided by
the size of the original data. The values could be in bits or characters or
whatever is appropriate as long as both values are measuring the same
thing. The ratio should result in a number between 0 and 1. The closer the
ratio is to zero, the tighter the compression.

A data compression technique can be lossless, which means the data
can be retrieved without losing any of the original information. Or it can
be lossy, in which case some information is lost in the process of
compaction. Although we never want to lose information, in some cases
the loss is acceptable. When dealing with data representation and compres-
sion, we always face a tradeoff between accuracy and size.

Analog and Digital Information
The natural world, for the most part, is continuous and infinite. A number
line is continuous, with values growing infinitely large and small. That is,
you can always come up with a number larger or smaller than any given
number. And the numeric space between two integers is infinite. For
instance, any number can be divided in half. But the world is not just infi-
nite in a mathematical sense. The spectrum of colors is a continuous
rainbow of infinite shades. Objects in the real world move through contin-
uous and infinite space. Theoretically, you could always close the distance
between you and a wall by half, and you would never actually reach the
wall.

Computers, on the other hand, are finite. Computer memory and other
hardware devices have only so much room to store and manipulate a
certain amount of data. We always fail in our attempt to represent an infi-
nite world on a finite machine. The goal, then, is to represent enough of
the world to satisfy our computational needs and our senses of sight and
sound. We want to make our representations good enough to get the job
done, whatever that job might be.

Information can be represented in one of two ways: analog or digital.
Analog data is a continuous representation, analogous to the actual infor-
mation it represents. Digital data is a discrete representation, breaking the
information up into separate elements.

A mercury thermometer is an analog device. The mercury rises in a
continuous flow in the tube in direct proportion to the temperature. We
calibrate and mark the tube so that we can read the current temperature,
usually as an integer such as 75 degrees Fahrenheit. However, a mercury
thermometer is actually rising in a continuous manner between degrees.
So at some point in time the temperature is actually 74.568 degrees
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Digitize The act of
breaking information
down into discrete pieces

54 Chapter 3 Data Representation

73°

75°

74°

76°

77°

78°

Figure 3.1

A mercury thermometer
continually rises in direct
proportion to the tempera-
ture

Fahrenheit, and the mercury is accurately indicating that, even if our
markings are not fine enough to note such small changes. See Figure 3.1.

Analog information is directly proportional to the continuous, infinite
world around us. Computers, therefore, cannot work well with analog
information. So instead, we digitize information by breaking it into pieces
and representing those pieces separately. Each of the representations we
discuss in this chapter has found an appropriate way to take a continuous
entity and separate it into discrete elements. Those discrete elements are
then individually represented using binary digits.

But why do we use binary? We know from Chapter 2 that binary is just
one of many equivalent number systems. Couldn’t we use, say, the decimal
number system, with which we are already more familiar? We could. In
fact, it’s been done. Computers have been built that are based on other
number systems. However, modern computers are designed to use and
manage binary values because the devices that store and manage the data
are far less expensive and far more reliable if they only have to represent
one of two possible values.

Also, electronic signals are far easier to maintain if they transfer only
binary data. An analog signal continually fluctuates in voltage up and
down. But a digital signal has only a high or low state, corresponding to
the two binary digits. See Figure 3.2.

All electronic signals (both analog and digital) degrade as they move
down a line. That is, the voltage of the signal fluctuates due to environ-
mental effects. The trouble is that as soon as an analog signal degrades,
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Pulse-code modulation

Variation in a signal that
jumps sharply between
two extremes

Reclock The act of
reasserting an original
digital signal before too
much degradation
occurs
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Figure 3.2

An analog and a digital
signal

Threshhold

Figure 3.3

Degradation of analog and
digital signals

information is lost. Since any voltage level within the range is valid, it’s
impossible to know what the original signal state was or even that it
changed at all.

Digital signals, on the other hand, jump sharply between two extremes.
This is referred to as pulse-code modulation (PCM). A digital signal can
degrade quite a bit before any information is lost, because any voltage
value above a certain threshold is considered a high value, and any value
below that threshold is considered a low value. Periodically, a digital signal
is reclocked to regain its original shape. As long as it is reclocked before
too much degradation occurs, no information is lost. Figure 3.3 shows the
degradation effects of analog and digital signals.

Binary Representations
As we undertake the details of representing particular types of data, it’s
important to remember the inherent nature of using binary. One bit can be
either 0 or 1. There are no other possibilities. Therefore, one bit can repre-
sent only two things. For example, if we wanted to classify a food as being
either sweet or sour, we would need only one bit to do it. We could say
that if the bit is 0, the food is sweet, and if the bit is 1, the food is sour. But
if we want to have additional classifications (such as spicy), one bit is not
sufficient.

To represent more than two things, we need multiple bits. Two bits can
represent four things because there are four combinations of 0 and 1 that
can be made from two bits: 00, 01, 10, and 11. So, for instance, if we want
to represent which of four possible gears a car is in (park, drive, reverse, or
neutral), we need only two bits. Park could be represented by 00, drive by
01, reverse by 10, and neutral by 11. The actual mapping between bit
combinations and the thing each combination represents is sometimes
irrelevant (00 could be used to represent reverse, if you prefer), though
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Figure 3.4

Bit combinations

1 Bit

0
1

2 Bits

00
01
10
11

3 Bits

000
001
010
011
100
101
110
111

4 Bits

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

5 Bits

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

sometimes the mapping can be meaningful and important, as we discuss in
later sections of this chapter.

If we want to represent more than four things, we need more than two
bits. Three bits can represent eight things because there are eight combina-
tions of 0 and 1 that can be made from three bits. Likewise, four bits can
represent 16 things, five bits can represent 32 things, and so on. See Figure
3.4. Note that the bit combinations are simply counting in binary as you
move down a column.
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Sign-magnitude repre-

sentation Number
representation in which
the sign represents the
ordering of the number
(negative and positive)
and the value represents
the magnitude
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In general, n bits can represent 2n things because there are 2n combina-
tions of 0 and 1 that can be made from n bits. Note that every time we
increase the number of available bits by 1, we double the number of things
we can represent.

Let’s turn the question around. How many bits do you need to repre-
sent, say, 25 unique things? Well, four bits wouldn’t be enough because
four bits can represent only 16 things. We would have to use at least five
bits, which would allow us to represent 32 things. Since we only need to
represent 25 things, some of the bit combinations would not have a valid
interpretation.

Keep in mind that even though we may technically need only a certain
minimum number of bits to represent a set of items, we may allocate more
than that for the storage of that data. There is a minimum number of bits
that a computer architecture can address and move around at one time,
and it is usually a power of two, such as 8, 16, or 32 bits. Therefore, the
minimum amount of storage given to any type of data is in multiples of
that value.

3.2 Representing Numeric Data

Numeric values are the most prevalent type of data used in a computer
system. Unlike other types of data, there may seem to be no need to come
up with a clever mapping between binary codes and numeric data. Since
binary is a number system, there is a natural relationship between the
numeric information and the binary values that we store to represent them.
This is true, in general, for positive integer data. The basic issues regarding
integer conversions were covered in Chapter 2 in the general discussion of
the binary system and its equivalence to other bases. However, there are
other issues regarding the representation of numeric information to consider
at this point. Integers are just the beginning in terms of numeric data. This
section discusses the representation of negative and noninteger values.

Representing Negative Values
Aren’t negative numbers just numbers with a minus sign in front? Perhaps.
That is certainly one valid way to think about them. Let’s explore the issue
of negative numbers, and discuss appropriate ways to represent them on a
computer.

Signed-Magnitude Representation
You have used the signed-magnitude representation of numbers since
you first learned about negative numbers in grade school. In the traditional
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decimal system, a sign (+ or �) is placed before a number’s value, though
the positive sign is often assumed. The sign represents the ordering, and
the digits represent the magnitude of the number. The classic number line
looks something like this, in which a negative sign meant that the number
was to the left of zero and the positive number was to the right of zero.

Performing addition and subtraction with signed integer numbers can be
described as moving a certain number of units in one direction or another.
To add two numbers you find the first number on the scale and move in
the direction of the sign of the second as many units as specified. Subtrac-
tion was done in a similar way, moving along the number line as dictated
by the sign and the operation. In grade school you soon graduated to
doing addition and subtraction without using the number line.

There is a problem with the sign-magnitude representation: There are
two representations of zero. There is plus zero and minus zero. The idea of
a negative zero doesn’t necessarily bother us; we just ignore negative zero
entirely. However, two representations of zero within a computer can
cause unnecessary complexity, so other representations of negative
numbers are used. Let’s examine another alternative.

Fixed-Sized Numbers
If we allow only a fixed number of values, we can represent numbers as
just integer values, where half of them represent negative numbers. The
sign is determined by the magnitude of the number. For example, if the
maximum number of decimal digits we can represent is two, we can let 1
through 49 be the positive numbers 1 through 49 and let 50 through 99
represent the negative numbers �50 through �1. Let’s take the number
line and number the negative values on the top according to this scheme:

To perform addition within this scheme, you just add the numbers
together and discard any carry. Adding positive numbers should be ok;

–50 –49 –3 –2 –1 0 1 2 3 4948

50 51 ... 97 98 99 0 1 2 3 ... 4948

–6 –5 –4 –3

– Negative

–2 –1 0 1 2 3 4

+ Positive (sign usually omitted)

5 6
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let’s try adding a positive number and a negative number, a negative
number and a positive number, and two negative numbers. These are
shown below in sign-magnitude and in this scheme. (Note that the
carries are discarded.)

What about subtraction, using this scheme for representing negative
numbers? The key is in the relationship between addition and subtraction:
A � B = A + (�B). We can subtract one number from another by adding
the negative of the second to the first.

In this example, we have assumed a fixed size of 100 values, and kept our
numbers small enough to use the number line to calculate the negative
representation of a number. However, there is a formula that you can use
to compute the negative representation.

Negative(I) = 10k
� I, where k is the number of digits

This representation of negative numbers is called the ten’s complement.
Although humans tend to think in terms of sign and magnitude to repre-
sent numbers, the complement strategy is actually easier in some ways
when it comes to electronic calculations. And since we store everything in
a modern computer in binary, we use the binary equivalent of the ten’s
complement, called the two’s complement.

Sign – Magnitude

–5
–   3

–8

New Scheme

95
–   3

Add Negative

95
+   97

92

Sign-Magnitude New Scheme

5
+ – 6

– 1

– 4
+  6

 2

– 2
+ – 4

– 6

5
+ 94

99

96
+  6

 2

98
+ 96

94

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Overflow A situation
where a calculated value
cannot fit into the
number of digits
reserved for it

60 Chapter 3 Data Representation

Two’s Complement
Let’s assume that a number must be represented in eight bits. To make it
easier to look at long binary numbers, we make the number line vertical:

Addition and subtraction are accomplished the same way as in 10’s
complement arithmetic:

– 127 10000001
+  1 00000001
– 126 10000010

Notice that with this representation, the leftmost bit in a negative number
is always a 1. Therefore, you can tell immediately whether a binary
number in two’s complement is negative or positive.

Number Overflow
Overflow occurs when the value that we compute cannot fit into the
number of bits we have allocated for the result. For example, if each value
is stored using eight bits, adding 127 to 3 would overflow:

XXXXXXXX

X=====X=

X======X

X=======

XXXXXXX=

=XXXXXXX

=XXXXXX=

======X=

=======X

========

\X

\X"—

\X"e

\X"l

\"

X"e

X"—

"

X

=

o

o

o

o

o

o

o

o

o

o

o

o

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Radix point The dot
that separates the whole
part from the fractional
part in a real number in
any base

Floating point A
representation of a real
number that keeps track
of the sign, mantissa,
and exponent

3.2 Representing Numeric Data 61

01111111
+ 00000011

10000010

100000010 in our scheme represents �126, not +130. If, however, we
were not representing negative numbers, the result would be correct.

Overflow is a classic example of the type of problems we encounter by
mapping an infinite world onto a finite machine. No matter how many bits
we allocate for a number, there is always the potential need to represent a
number that doesn’t fit. How overflow problems are handled varies by
computer hardware and by the differences in programming languages.

Representing Real Numbers
In computing, we call all noninteger values (that can be represented) real
values. For our purposes here, we define a real number as a value with a
potential fractional part. That is, real numbers have a whole part and a
fractional part, either of which may be zero. For example, some real
numbers in base 10 are 104.32, 0.999999, 357.0, and 3.14159.

As we explored in Chapter 2, the digits represent values according to
their position, and those position values are relative to the base. To the left
of the decimal point, in base 10, we have the 1s position, the 10s position,
the 100s position, etc. These position values come from raising the base
value to increasing powers (moving from the decimal point to the left). The
positions to the right of the decimal point work the same way, except the
powers are negative. So the positions to the right of the decimal point are
the tenths position (10�1 or one tenth), the hundredths position (10�2 or
one hundredth), etc.

In binary, the same rules apply but the base value is 2. Since we are not
working in base 10, the decimal point is referred to as a radix point, a term
that can be used in any base. The positions to the right of the radix point
in binary are the halves position (2�1 or one half), the quarters position
(2�2 or one quarter), etc.

So how do we represent a real value in a computer? We store the value
as an integer and include information showing where the radix point is.
That is, any real value can be described by three properties: the sign (posi-
tive or negative one), the mantissa, which is made up of the digits in the
value with the radix point assumed to be to the right, and the exponent,
which determines how the radix point is shifted relative to the mantissa. A
real value in base 10 can therefore be defined by the following formula:

sign * mantissa * 10exp

The representation is called floating point because the number of digits is
fixed but the radix point floats. When a value is in floating-point form, a
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Table 3.1 Values in decimal notation and floating-point notation 

(five digits)

Real Value Floating-Point Value

12001.00
–120.01
0.12000
–123.1

1555555555

12001*
–12001*
    1200*
–12310*
15555*

100

103

102

10–5

10–2
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positive exponent shifts the decimal point to the right, and a negative
exponent shifts the decimal point to the left.

Let’s look at how to convert a real number expressed in our usual
decimal notation into floating point. For example, consider the number
148.69. The sign is positive, and there are two digits to the right of the
decimal point. Thus, the exponent is �2, giving us 14869 * 10�2. Table
3.1 shows other examples. For the sake of this discussion, we assume that
only five digits can be represented.

How do we convert a value in floating-point form back into decimal
notation? The exponent on the base tells us how many positions to move
the radix point. If the exponent is negative, we move the radix point to the
left. If the exponent is positive, we move the radix point to the right. Apply
this scheme to the floating-point values in Table 3.1.

Notice that in the last example in Table 3.1, we lose information. Since
we are only storing five digits to represent the significant digits (the
mantissa), the whole part of the value is not accurately represented in
floating-point notation.

Likewise, a binary floating-point value is defined by the following formula:

sign * mantissa * 2exp

Note that only the base value has changed. Of course, the mantissa would
only contain binary digits. To store a floating-point number in binary on a
computer, we can store the three values that define it. For example,
according to a common standard, if we devote 64 bits to the storage of a
floating-point value, we use 1 bit for the sign, 11 bits for the exponent,
and 52 bits for the mantissa. Internally, this format is taken into account
any time the value is used in a calculation or is displayed.

Scientific notation is a term with which you may already be familiar, so
we mention it here. Scientific notation is a form of floating-point represen-
tation in which the decimal point is kept to the right of the leftmost digit.
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That is, there is one whole number. In many programming languages, if
you print out a large real value without specifying how to print it, the
value is printed in scientific notation. Because exponents could not be
printed in early machines, an “E” was used instead. For example,
12001.32708 would be written as 1.200132708E+4 in scientific notation.

3.3 Representing Text

A text document can be decomposed into paragraphs, sentences, words,
and ultimately individual characters. To represent a text document in
digital form, we simply need to be able to represent every possible char-
acter that may appear. The document is the continuous (analog) entity,
and the separate characters are the discrete (digital) elements that we need
to represent and store in computer memory.

We should distinguish at this point between the basic idea of repre-
senting text and the more involved concept of word processing. When we
create a document in a word processing program such as Microsoft Word,
we can specify all kinds of formatting: fonts, margins, tabs, color, and so
on. Many word processors also let us add art, equations, and other
elements. This extra information is stored with the rest of the text so that
the document can be displayed and printed the way you want it. The core
issue, however, is the way we represent the characters themselves; there-
fore, those techniques remain our focus at this point.

There are a finite number of characters to represent. So the general
approach for representing characters is to list them all and assign each a
binary string. To store a particular letter, we store the appropriate bit string.

So what characters do we have to worry about? There are the 26 letters
in the English language. But uppercase and lowercase letters have to be
treated separately, so that’s really 52 unique characters. Various punctua-
tion characters also have to be represented, as do the numeric digits (the
actual characters ‘0’, ‘1’, through ‘9’). Even the space character must have a
representation. And what about languages other than English? The list of
characters we may want to represent starts to grow quickly once you begin
to think about it. Keep in mind that, as we discussed earlier in this chapter,
the number of unique things (characters in this case) we want to represent
determines how many bits we’ll need to represent any one of them.

A character set is simply a list of characters and the codes used to repre-
sent each one. There have been several character sets used over the years,
though a few have dominated. By agreeing to use a particular character set,
computer manufacturers have made the processing of text data easier. We
explore two character sets in the following sections: ASCII and Unicode.
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Right ASCII

Left Digit

Digit(s)

0 1 2 3 4 5 6 7 8 9

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT

1 LF VT FF CR SO SI DLE DC1 DC2 DC3

2 DC4 NAK SYN ETB CAN EM SUB ESC FS GS

3 RS US ! “ # $ % & ´

4 ( ) * + , – . / 0 1

5 2 3 4 5 6 7 8 9 : ;

6 < = > ? @ A B C D E

7 F G H I J K L M N O

8 P Q R S T U V W X Y

9 Z [ \ ] ^ _ ` a b c

10 d e f g h i j k l m

11 n o p q r s t u v w

12 x y z { | } ~ DEL

Figure 3.5 The ASCII character set

The ASCII Character Set
ASCII stands for American Standard Code for Information Interchange.
The ASCII character set originally used seven bits to represent each char-
acter, allowing for 128 unique characters. The eighth bit in each character
byte was originally used as a check bit, which helped ensure proper data
transmission. Later ASCII evolved so that all eight bits were used to repre-
sent a character. This eight-bit version is formally called the Latin–1
Extended ASCII character set. The extended ASCII set allows for 256 char-
acters and includes accented letters as well as several additional special
symbols. The entire extended ASCII character set is shown in Figure 3.5.

The codes in this chart are expressed as decimal numbers, but these
values get translated to their binary equivalent for storage. Note that the
ASCII characters have a distinct order based on the codes used to store
them. Each character has a relative position (before or after) every other
character. This property is helpful in various ways. For example, note that
both the uppercase and lowercase letters are in order. Therefore, we can
use the character codes to help us put a list of words into alphabetical
order.
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Also note that the first 32 characters in the ASCII character chart do not
have a simple character representation that you could print to the screen.
These characters are reserved for special purposes such as carriage return
and tab. These characters are usually interpreted in special ways by what-
ever program is processing the information.

The Unicode Character Set
The extended version of the ASCII character set provides 256 characters,
which is enough for English but not enough for international use. This
limitation gave rise to the Unicode character set, which has a much
stronger international influence.

The goal of the people who created Unicode is nothing less than to
represent every character in every language used in the entire world,
including all of the Asian ideograms. It also represents many additional
special-purpose characters such as scientific symbols.

To accomplish this, the Unicode character set uses 16 bits per character.
Therefore, the Unicode character set can represent 216, or over 65 thou-
sand, characters. Compare that to the 256 characters represented in the
extended ASCII set.

The Unicode character set is gaining popularity and is used by many
programming languages and computer systems today. However, the char-
acter set itself is still evolving. Not all of the available codes have been
assigned to particular characters. Figure 3.6 shows a few select characters
currently represented in the Unicode character set.

For consistency, Unicode was designed to be a superset of ASCII. That
is, the first 256 characters in the Unicode character set correspond exactly

Character SourceCode (Hex)

0041

042F

OE09

13EA

211E

21CC

282F

345F

English (Latin)

Russian (Cyrillic)

Thai

Cherokee

Letterlike Symbols

Arrows

Braille

A

R

Chinese/Japanese/
Korean (Common)

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Keyword encoding

Substituting a frequently
used word with a single
character

66 Chapter 3 Data Representation

to the extended ASCII character set, including the codes used to represent
them. Therefore, programs that assume ASCII values are unaffected even if
the underlying system embraces the Unicode approach.

Text Compression
Alphabetic information (text) is a fundamental type of data. Therefore, it
is important that we find ways to store text efficiently and transmit text
efficiently between one computer and another. The following sections
examine three types of text compression:

� keyword encoding

� run-length encoding

� Huffman encoding

As we discuss later in this chapter, some of the underlying ideas of these
text compression techniques come into play when dealing with other types
of data as well.

Keyword Encoding
Consider how often you use words such as “the,” “and,” “which,” “that,”
and “what.” If these words took up less space (that is, had fewer charac-
ters), our documents would shrink in size. Even though the savings on each
word would be small, they are used so often in a typical document that the
combined savings would add up quickly.

One fairly straightforward method of text compression is called
keyword encoding, in which frequently used words are replaced with a
single character. To decompress the document, you reverse the process:
replace the single characters with the appropriate full word.

For example, suppose we used the following chart to encode a few
words:

Word Symbol

as
the
and
that
must
well

those

^
~
+
$
&
%
#
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Let’s encode the following paragraph:

The human body is composed of many independent systems, such as
the circulatory system, the respiratory system, and the reproductive
system. Not only must all systems work independently, they must
interact and cooperate as well. Overall health is a function of the
well-being of separate systems, as well as how these separate systems
work in concert.

The encoded paragraph is:

The human body is composed of many independent systems, such 
^ ~ circulatory system, ~ respiratory system, + ~ reproductive system.
Not only & each system work independently, they & interact +
cooperate ^ %. Overall health is a function of ~ %-being of separate
systems, ^ % ^ how # separate systems work in concert.

There are a total of 349 characters in the original paragraph including
spaces and punctuation. The encoded paragraph contains 314 characters,
resulting in a savings of 35 characters. The compression ratio for this
example is 314/349 or approximately 0.9.

There are several limitations to keyword encoding. First, note that the
characters we use to encode the keywords cannot be part of the original
text. If, for example, the ‘$’ was part of the original paragraph, the
resulting encoding would be ambiguous. We wouldn’t know whether a ‘$’
represented the word “that” or if it was the actual dollar-sign character.
This limits the number of words we can encode as well as the nature of the
text that we are encoding.

Also, note that the word “The” in the example is not encoded by the ‘~’
character because the word “The” and the word “the” contain different
letters. Remember, the uppercase and lowercase versions of the same letter
are different characters when it comes to storing them on a computer. A
separate symbol for “The” would have to be used if we wanted to encode it.

Finally, note that we would not gain anything to encode words such as
“a” and “I” because it would simply be replacing one character for
another. The longer the word, the more compression we get per word.
Unfortunately, the most frequently used words are often short. On the
other hand, some documents use certain words more frequently than
others depending on the subject matter. For example, we would have some
nice savings if we had chosen to encode the word “system” in our
example, but it might not be worth encoding in a general situation.

An extension of keyword encoding is to replace specific patterns of text
with special characters. The encoded patterns are generally not complete
words, but rather parts of words such as common prefixes and suffixes—
“ex”, “ing”, and “tion,” for instance. An advantage of this approach is
that patterns being encoded generally appear more often than whole words
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(because they appear in many different words). A disadvantage, as before,
is that they are generally short patterns and the replacement savings per
word is small.

Run-Length Encoding
In some situations, a single character may be repeated over and over again
in a long sequence. This type of repetition doesn’t generally take place in
English text, but often occurs in large data streams, such as DNA
sequences. A text compression technique called run-length encoding capi-
talizes on these situations. Run-length encoding is sometimes called recur-
rence coding.

In run-length encoding, a sequence of repeated characters is replaced by
a flag character, followed by the repeated character, followed by a single
digit that indicates how many times the character is repeated. For example,
consider the following string of seven repeated ‘A’ characters:

AAAAAAA

If we use the ‘*’ character as our flag, this string would be encoded as:

*A7

The flag character is the indication that the series of three characters
(including the flag) should be decoded into the appropriate repetitious
string. All other text is treated regularly. Therefore, the following encoded
string:

*n5*x9ccc*h6 some other text *k8eee

would be decoded into the following original text:

nnnnnxxxxxxxxxccchhhhhh some other text kkkkkkkkeee

The original text contains 51 characters, and the encoded string contains
35 characters, giving us a compression ratio in this example of 35/51 or
approximately 0.68.

Note that in this example the three repeated ‘c’ characters and the three
repeated ‘e’ characters are not encoded. Since it takes three characters to
encode a repetition sequence, it is not worth it to encode strings of two or
three. In fact, in the case of two repeated characters, encoding would actu-
ally make the string longer!

Since we are using one character for the repetition count, it seems that
we can’t encode repetition lengths greater than nine. However, keep in
mind that each character is represented by a series of bits based on some
character set. For example, the character ‘5’ is represented as ASCII value
53, which in an eight-bit binary string is 00110101. So, instead of inter-

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Huffman encoding

Using a variable-length
binary string to represent
a character so that
frequently used charac-
ters have short codes

3.3 Representing Text 69

preting the count character as an ASCII digit, we could interpret it as a
binary number. If we do that, we can have repetition counts between 0 and
255, or even between 4 and 259 since runs of three or less are not repre-
sented.

Huffman Encoding
Another text compression technique, called Huffman encoding, is named
after its creator, Dr. David Huffman. Why should the character “X”,
which is seldom used in text, take up the same number of bits as the blank,
which is used very frequently? Huffman codes address this question by
using variable-length bit strings to represent each character. That is, a few
characters may be represented by five bits, and another few by six bits, and
yet another few by seven bits, and so forth. This approach is contrary to
the idea of a character set, in which each character is represented by a
fixed-length bit string (such as 8 or 16).

The idea behind this approach is that if we use only a few bits to repre-
sent characters that appear often and reserve longer bit strings for charac-
ters that don’t appear often, the overall size of the document being
represented is small.

For example, suppose we use the following Huffman encoding to repre-
sent a few characters:

Then the word DOORBELL would be encoded in binary as:

1011110110111101001100100

If we used a fixed-size bit string to represent each character (say, 8 bits),
then the binary form of the original string would be 8 characters times 8
bits or 64 bits. The Huffman encoding for that string is 25 bits long, giving
a compression ratio of 25/64, or approximately 0.39.

Huffman Code Character

00
01

100
110
111

1010
1011

A
E
L
O
R
B
D
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What about the decoding process? When we use character sets, we just
take the bits in chunks of 8 or 16 bits to see what character it represents.
In Huffman encoding, with its variable length codes, it seems like we might
get confused trying to decode a string because we don’t know how many
bits we should include for each character. But that potential confusion has
been eliminated by the way the codes are created.

An important characteristic of any Huffman encoding is that no bit
string used to represent a character is the prefix of any other bit string used
to represent a character. Therefore, as we scan left to right across a bit
string, when we find a string that corresponds to a character, that must be
the character it represents. It can’t be part of a larger bit string.

Therefore, if the following bit string is created with the previous table:

1010110001111011

it must be decoded into the word BOARD. There is no other possibility.
So how is a particular set of Huffman codes created to begin with?

Well, the details of that process are a bit beyond the scope of this book,
but let’s discuss the underlying issue. Since Huffman codes use the shortest
bit strings for the most common characters, we start with a table that lists
the frequency of the characters we want to encode. Frequencies may come
from counting characters in a particular document (352 E’s, 248 S’s, and
so on) or from counting characters in a sample of text from a particular
content area. A frequency table may also come from a general idea of how
frequently letters occur in a particular language such as English. Using
those values, we can construct a structure from which the binary codes can
be read. The way the structure is created ensures that the most frequently
used characters get the shortest bit strings.

3.4 Representing Audio Information

We perceive sound when a series of air compressions vibrate a membrane in
our ear, which sends signals to our brain. Thus a sound is defined in nature
by the wave of air that interacts with our eardrum. See Figure 3.7. To repre-
sent a sound, we must somehow represent the appropriate sound wave.

A stereo sends an electrical signal to a speaker to produce sound. This
signal is an analog representation of the sound wave. The voltage in the
signal varies in direct proportion to the sound wave. The speaker receives
the signal and causes a membrane to vibrate, which in turn vibrates the air
(creating a sound wave), which in turn vibrates the eardrum. The created
sound wave is hopefully identical to the one that was captured initially, or
at least good enough to please the listener.

To represent audio information on a computer, we must digitize the
sound wave, somehow breaking it into discrete, manageable pieces. One

http://lib.ommolketab.ir
http//lib.ommolketab.ir


3.4 Representing Audio Information 71

this peak value is lost

Figure 3.8

Sampling an audio signal

Figure 3.7

A sound wave vibrates our
eardrums

way to accomplish this is to actually digitize the analog representation of
the sound. That is, take the electric signal that represents the sound wave
and represent it as a series of discrete numeric values.

An analog signal varies in voltage continuously. To digitize the signal we
periodically measure the voltage of the signal and record the appropriate
numeric value. This process is called sampling. Instead of a continuous signal,
we end up with a series of numbers representing distinct voltage levels.

To reproduce the sound, the stored voltage values are used to create a
new continuous electronic signal. The assumption is that the voltage levels
in the original signal changed evenly between one stored voltage value and
the next. If enough samples are taken in a short period of time, that
assumption is reasonable. But certainly the process of sampling can lose
information, as shown in Figure 3.8.

In general, a sampling rate of around 40,000 times per second is enough
to create a reasonable sound reproduction. If the sampling rate is much
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CD surface

laser receptor

Figure 3.9

A CD player reading binary
information

lower than that, the human ear begins to hear distortions. A higher
sampling rate produces better quality sound, but after a certain point the
extra data is irrelevant because the human ear can’t hear the difference.
The overall result is affected by many factors, including the quality of the
equipment, the type of sound, and the human listening.

A vinyl record album is an analog representation of the sound wave.
The needle of a record player (turntable) rides up and down in the spiral
groove of the album. The rise and fall of the needle is analogous to the
voltage changes of the signal that represents the sound.

A compact disc (CD), on the other hand, stores audio information digi-
tally. On the surface of the CD are microscopic pits that represent binary
digits. A low intensity laser is pointed at the disc. The laser light reflects
strongly if the surface is smooth and reflects poorly if the surface is pitted.
A receptor analyzes the reflection and produces the appropriate string of
binary data, which represents the numeric voltage values that were stored
when the signal was digitized. The signal is reproduced and sent to the
speaker. This process is shown in Figure 3.9.

Audio Formats
Over the past few years there have been several popular formats for audio
information, including WAV, AU, AIFF, VQF, and MP3. All of these are
based on the storage of voltage values sampled from analog signals, but all
format the details of the information in different ways and all use various
compression techniques to one extent or another.
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Currently, the dominant format for compressing audio data is MP3. The
popularity of MP3 resulted mostly from a stronger compression ratio than
others available at the time. Other formats may prove more efficient in the
future, but for now MP3 is the general favorite. In mid–1999 the term
“MP3” was searched for more than any other term and is still going strong
today. Let’s look at the details of the MP3 format a little more closely.

The MP3 Audio Format
MP3 is short for MPEG–2, audio layer 3 file. MPEG is an acronym for the
Moving Picture Experts Group, which is an international committee that
develops standards for digital audio and video compression.

MP3 employs both lossy and lossless compression. First it analyzes the
frequency spread and compares it to mathematical models of human
psychoacoustics (the study of the interrelation between the ear and the
brain), then it discards information that can’t be heard by humans. Then
the bit stream is compressed using a form of Huffman encoding to achieve
additional compression.

There are many software tools available on the Web to help you create
MP3 files. These tools generally require that the recording be stored in
some other common format, such as WAV, before that data is converted
into MP3 format, significantly reducing the file size.

3.5 Representing Images and Graphics

Images such as photographs and graphics such as line drawings have
common issues when it comes to their representation and compression. We
first look at the general idea of representing color, then turn to the various
techniques for digitizing and representing visual information.

Representing Color
Color is our perception of the various frequencies of light that reach the
retinas of our eyes. Our retinas have three types of color photoreceptor
cone cells that respond to different sets of frequencies. These photore-
ceptor categories correspond to the colors of red, green, and blue. All other
colors perceptible by the human eye can be made by combining various
amounts of these three colors.

Therefore, color is often expressed in a computer as an RGB (red-green-
blue) value, which is actually three numbers that indicate the relative
contribution of each of these three primary colors. If each number in the
triple is given on a scale of 0 to 255, then 0 means no contribution of that
color, and 255 means full contribution of that color. For example, an RGB
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Red

Black

Green Cyan

Yellow

Blue

White

Magenta

Figure 3.10

Three-dimensional color
space

value of (255, 255, 0) maximizes the contribution of red and green, and
minimizes the contribution of blue, which results in a bright yellow.

The concept of RGB values gives rise to a three-dimensional “color
space.” One way to display such a color space is shown in Figure 3.10.

The amount of data that is used to represent a color is called the color
depth. It is usually expressed in terms of the number of bits that are used
to represent its color. HiColor is a term that indicates a 16-bit color depth.
Five bits are used for each number in an RGB value and the extra bit is
sometimes used to represent transparency. TrueColor indicates a 24-bit
color depth. Therefore, each number in an RGB value gets eight bits,
which gives the range of 0 to 255 for each. This results in the ability to
represent over 16.7 million unique colors.

The following chart shows a few TrueColor RGB values and the colors
they represent:

Keep in mind that 24-bit TrueColor provides more colors than the human
eye can distinguish. To reduce file sizes, a technique called indexed color is

Blue
Actual Color

0
255
0

255
0
82
0

Green
RGB Value

0
255
255
130
81
95
0

Red
0

255
255
255
146
157
140

black
white
yellow
pink

brown
purple

maroon
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Bob Bemer has been a fixture in computing
circles since 1945. His resume reads like a
list of the influential computing companies
of the last half-century. He worked for
Douglas Aircraft, RKO Radio Pictures, the
Rand Corporation, Lockheed Aircraft,
Marquardt Aircraft, Lockheed Missiles and
Space, IBM, Univac Division of Sperry
Rand, Bull General Electric (Paris), GTE,
Honeywell, and finally his own software
company, Bob Bemer Software.

The predominance of aircraft manufacturers on
Bemer’s resume is not surprising because he studied
mathematics and holds a Certificate in Aeronautical
Engineering from Curtiss-Wright Technical Institute
(1941). In the early days of computing, aircraft
manufacturers were pioneers in using computers in
industry.

During his career Bemer was active in program-
ming language development. He developed
FORTRANSET, an early FORTRAN compiler. He was
actively involved in the development of the COBOL
language and the CODASYL language, an early
approach to data base modeling and management.
In addition, he was responsible for authorizing
funding for the development of SIMULA, a simulation
language that introduced many object-oriented
features.

Bemer was also an active participant in committees
formed to bring universal standards into the new
computing industry. He was U.S. representative on
the IFIP Computer Vocabulary Committee, Chairman
of ISO/TC97/SC5 on Common Programming Lan-

guages, and Chairman of X3/SPARC
Study Group on Text Processing.

However, Bemer is best known for his
work on the ASCII computer code, which is
the standard internal code for 8-bit PCs
today. Early on Bemer recognized that if
computers were going to communicate
with each other, they needed a standard
code for transmitting textual information.
Bemer made and published a survey of
over 60 different computer codes, thus

demonstrating a need for a standard code. He
created the program of work for the standards
committee, forced the U.S. standard code to corre-
spond to the international code, wrote the bulk of the
articles published about the code, and pushed for a
formal registry of ASCII-alternate symbol and control
sets to accommodate other languages.

Perhaps Bemer’s most important contribution is the
concept of an escape character. The escape character
alerts the system processing the characters that the
character(s) following the escape character change
the standard meaning of the characters to follow. For
example, ESC (N alerts the system that the following
characters are in the Cyrillic equivalent of ASCII.

The first version of a 16-bit code called Unicode
was published in October 1991. Two factors drove
the need for an enlarged code: 16-bit computer
architecture was becoming popular, and the expan-
sion of the Internet and the WWW drove the need for
a code that could directly include the world’s alpha-
bets. ASCII, however, has not gone away; it remains
a subset of Unicode.

Bob Bemer

often used. That is, a particular application such as a browser may support
only a certain number of specific colors, creating a palette from which to
choose. The palette color closest to the actual color is displayed by the
browser. For example, Figure 3.11 shows the Netscape Navigator’s color
palette.
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Pixels Individual dots
used to represent a
picture; stands for
picture elements

Resolution The
number of pixels used to
represent a picture

Raster-graphics format

Storing image informa-
tion pixel by pixel
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Figure 3.12 A digitized picture composed of many individual pixels Courtesy of Amy Rose

Figure 3.11

The Netscape color palette

Digitized Images and Graphics
A photograph is an analog representation of an image. It is continuous
across its surface, with shades of one color blending into another. Digi-
tizing a picture is the act of representing it as a collection of individual dots
called pixels, a term that stands for picture elements. Each pixel is
composed of a single color. The number of pixels used to represent a
picture is called the resolution. If enough pixels are used (high resolution),
and are then presented in the proper order side by side, the human eye can
be fooled into thinking it’s viewing a continuous picture.

Figure 3.12 shows a digitized picture, with a small portion of it magni-
fied to show the individual pixels.

The storage of image information on a pixel-by-pixel basis is called a
raster-graphics format. There are several popular raster file formats in
use, including bitmap (BMP), GIF, and JPEG.

A bitmap file is one of the most straightforward graphic representa-
tions. In addition to a few administrative details, a bitmap file contains the
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Vector graphics

Representation of an
image in terms of lines
and shapes
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pixel color values of the image from left to right and top to bottom. A
bitmap file supports 24-bit TrueColor, though usually the color depth can
be specified to reduce the file size. A bitmap file may be compressed using
run-length encoding as described earlier in this chapter.

The GIF format (Graphics Interchange Format), developed by
CompuServe in 1987, uses indexed color exclusively to reduce file size,
which limits the number of available colors to 256. If even fewer colors are
required, the color depth can usually be specified to fewer bits. GIF files are
best used for graphics and images with few colors, and are therefore
considered optimal for line art.

The JPEG format is designed to exploit the nature of our eyes. Humans
are more sensitive to gradual changes of brightness and color over distance
than we are to rapid changes. Therefore, the data that the JPEG format
stores averages out the color hues over short distances. The JPEG format is
considered superior for photographic color images. A fairly complicated
compression scheme significantly reduced file sizes.

Vector Representation of Graphics
Vector graphics is another technique for representing images. Instead of
assigning colors to pixels as we do in raster graphics, a vector-graphics
format describes an image in terms of lines and geometric shapes. A vector
graphic is a series of commands that describe a line’s direction, thickness,
and color. The file sizes for these formats tend to be small because every
pixel does not have to be accounted for. The
complexity of the image, such as the number of items
in the picture, determines the file size.

A raster graphic such as a GIF must be encoded
multiple times for different sizes and proportions.
Vector graphics can be resized mathematically, and
these changes can be calculated dynamically as needed.

However, vector graphics is not good for repre-
senting real-world images. JPEG images are far supe-
rior in that regard, but vector graphics is good for line
art and cartoon-style drawings.

The most popular vector format used on the Web
today is called Flash. Flash images are stored in a
binary format and require a special editor to create. A
new vector format, called Scalable Vector Graphics (SVG), is under devel-
opment. SVG is expressed in plain text. When the SVG format is finalized,
it is likely to make vector graphics a popular approach for web-based
imaging.

Einstein describes the telegraph
“You see, wire telegraph is a kind of very, very
long cat,” explained Albert Einstein. “You pull its
tail in New York and his head is meowing in Los
Angeles . . .And radio operates exactly the same
way: you send signals here, they receive them
there. The only difference is that there is no cat.”

How do you think he would describe a
computer?
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Video codec Methods
used to shrink the size of
a movie

Temporal compression

Movie compression tech-
nique based on differ-
ences between
consecutive frames

Spatial compression

Movie compression tech-
nique based on the same
compression techniques
used for still images
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3.6 Representing Video

Video information is one of the most complex types of information to
capture and compress to get a result that makes sense to the human eye.
Video clips contain the equivalent of many still images, each of which must
be compressed. The Web is full of video clips that are choppy and hard to
follow. This situation will likely improve over the next few years,
depending on the evolving sophistication of video compression techniques,
which are referred to as video codecs.

Video Codecs
Codec stand for COmpressor/DECompressor. A video codec refers to the
methods used to shrink the size of a movie to allow it to be played on a
computer or over a network. Almost all video codecs use lossy compres-
sion to minimize the huge amounts of data associated with video. The goal
therefore is not to lose information that affects the viewer’s senses.

Most codecs are block oriented, meaning that each frame of a video is
divided into rectangular blocks. The codecs differ in how the blocks are
encoded. Some video codecs are accomplished completely in software,
while others require special hardware.

Video codecs employ two types of compression: temporal and spatial.
Temporal compression looks for differences between consecutive frames.
If most of an image in two frames hasn’t changed, why should we waste
space to duplicate all of the similar information? A keyframe is chosen as
the basis to compare the differences, and its entire image is stored. For
consecutive images, only the changes (called delta frames) are stored.
Temporal compression is effective in video that changes little from frame
to frame, such as a scene that contains little movement.

Spatial compression removes redundant information within a frame.
This problem is essentially the same as that faced when compressing still
images. Spatial video compression often groups pixels into blocks (rectan-
gular areas) that have the same color, such as a portion of a clear blue sky.
Instead of storing each pixel, the color and the coordinates of the area are
stored instead. This idea is similar to run-length encoding described earlier
in this chapter.

Various video codecs are popular today, including Sorenson, Cinepak,
MPEG, and Real Video. The details of how these codecs work are beyond
the scope of this book.
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Summary

Computers are multimedia devices that manipulate data varying in form
from numbers to graphics to video. Because a computer can only manipu-
late binary values, all forms of data must be represented in binary form.
Data is classified as being continuous (analog) or discrete (digital).

Integer values are represented by their binary equivalent, using one of
several techniques for representing negative numbers, such a sign magni-
tude or one’s complement. Real numbers are represented by a triple made
up of the sign, the digits in the number, and an exponent that specifies the
radix point.

A character set is a list of alphanumeric characters and the codes that
represent each one. The most common character set is Unicode (16 bits for
each character), which has ASCII as a subset. The 8-bit ASCII set is suffi-
cient for English but not for other (or multiple) languages. There are
various ways for compressing text so that it takes less space to store it or
less time to transmit it from one machine to another.

Audio information is represented as digitized sound waves. Color is
represented by three values that represent the contribution of each of red,
blue, and green. There are two basic techniques for representing pictures,
bitmaps and vector graphics. Video is broken up into a series of still
images, each of which is represented as a picture.

Napster
In 1999, Shawn Fanning launched a file-sharing program that took the

music industry by storm, rapidly gaining the praise of millions and the

criticism of many. Nineteen-year-old Shawn had only recently dropped

out of his first year at Northeastern University to pursue a solution to

the difficulty of downloading and exchanging music over the Net. With

the support of his uncle, Shawn tackled this problem with dedication

and ingenuity and, in a few months, developed an answer. Shawn wrote

source code that wove together a search engine, file sharing, and

Internet Relay Chat, making it possible for anyone to easily access and

trade music files. Napster was born, and with it a fresh controversy

over intellectual property rights and privileges.
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Napster worked through the direct exchange of files from one

computer to another. This peer-to-peer sharing allows users to bypass a

central server, access music files from computers located all over the

world, and download those files. The ease of this application led to its

immediate popularity, especially among college students, who used

Napster more than any other age group. An additional factor in the

appeal of Napster was that the user did not pay for the music. The

music industry’s objection to Napster stemmed from the fact that this

property changes hands at no charge. Artists and labels collected no

royalties when their music was copied through Napster, and they might

lose prospective customers. Opponents argued that Napster infringed

on copyrights and that the file-swapping service should be shut down.

Napster disagreed, asserting that the music files are personal files and

therefore are not the responsibility of the company.

There are some artists who supported Napster, believing that getting

their music out and having people listen to it was more important than the

money they could earn from it. Like many musicians, Dave Matthews,

from the Dave Matthews Band, saw Napster as a new and exciting means

of communicating. He said, “It is the future, in my opinion.” Other musi-

cians felt that Napster did not hurt sales, but rather helped introduce their

music to people who will then buy the CDs. Still others felt strongly that

Napster threatened the protection of their name and creativity. Many

artists were not opposed to the idea behind Napster, but felt that Napster

should obtain their permission before including their music.

The legal case that confronted Napster’s facilitation of unautho-

rized copying has resulted in filtering and blocking programs that

make certain music unavailable to users. A subscription fee to use

Napster, as well as more advanced filtering technology, are among

possible solutions to the Napster case. The future of music and the

Internet is full of possibilities, and the resolution of this case will no

doubt greatly impact what that future will hold.
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Exercises
1. What is data compression and why is it an important topic today?

2. What is the difference between lossless and lossy data compression?

3. Why do computers have difficulty with analog information?

4. Is a clock with a sweeping second hand an analog or a digital device?
Explain.

5. What does it mean to digitize something?

6. What is pulse-code modulation?

7. How many things can be represented with:
a. four bits.
b. five bits.
c. six bits.
d. seven bits.

8. Although you have been computing simple arithmetic operations since
the second grade, take the following small test to confirm that you
thoroughly understand operations on signed integers.

Evaluate the following expressions, where W is 17, X is 28, Y is �29,
and Z is �13.
a. X + Y b. X + W c. Z + W d. Y + Z
e. W � Z f. X � W g. Y � W h. Z � Y

9. Use the base-ten number line to prove the solutions to the following
operations, where A is 5 and B is �7.
a. A + B
b. A � B
c. B + A
d. B � A

10. Given a fixed-sized number scheme, where k in the formula for the
ten’s complement is 6 (see page 59), answer the following questions.
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a. How many positive integers can be represented?
b. How many negative integers can be represented?
c. Draw the number line showing the three smallest and largest positive

numbers, the three smallest and largest negative numbers, and zero.

11. Use the number line on page 58 to calculate the following expressions,
where A is �499999 and B is 3.
a. A + B
b. A � B
c. B + A
d. B � A

12. Use the formula for the ten’s complement to calculate the following
numbers in the scheme described in on page 59.
a. 35768
b. �35768
c. �4455
d. �12345

13. In calculating the ten’s complement in Exercise 12, did you have
trouble borrowing from so many zeros? Such calculations are error
prone. There is a trick that you can use that makes the calculation
easier and thus less prone to errors: Subtract from all 9’s and then add
1. A number subtracted from all 9’s is called the nine’s complement of
the number.
a. Prove that the nine’s complement of a number plus 1 is equal to the

ten’s complement of the same number.
b. Use the nine’s complement plus one to calculate the values in Exer-

cise 12 b, c, and d.
c. Which did you find easier to use, the direct calculation of the ten’s

complement or the nine’s complement plus 1? Justify your answer.

14. Evaluate the following expressions, where A is 00110011 and B is
01010101
a. A + B
b. A � B
c. B � A
d. �B
e. �(�A)

15. Is the two’s complement of a number always a negative number? Explain.

16. The one’s complement of a number is analogous to the nine’s comple-
ment of a decimal number. Use the scheme outlined in Exercise 13 to
calculate the results of Exercise 14, using the one’s complement rather
than the two’s complement.
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17. How is a real value stored in a computer?

18. Convert the rules for subtraction in a sign-magnitude system to the
algorithm format.

19. How many bits would be needed to represent a character set
containing 45 characters? Why?

20. How can the decimal number 175.23 be represented as a sign,
mantissa, and exponent?

21. What is the main difference between the ASCII and Unicode character
sets?

22. Create a keyword encoding table that contains a few simple words.
Rewrite a paragraph of your choosing using this encoding scheme.
Compute the compression ratio you achieve.

23. How would the following string of characters be represented using
run-length encoding?

AAAABBBCCCCCCCCDDDD hi there EEEEEEEEEFF

24. Given the following Huffman encoding table, decipher the bit strings
below.

a. XX=XXX===X=XX

b. =XX=X=X=X=X==X=X=XXXXX===

c. X=X==X==X=X====X===X====X=X==XX=XX=

d. X=X===X==X=X=X===X===XXX=X===X===XX

Huffman Code Character

==

XX

=X=

=XX=

=XXX

X===

X=XX

X==X=

X==XX

X=X===

X=X==X

X=X=X=

X=X=XX

A
E
T
C
L
S
R
O
I
N
F
H
D
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25. How do humans perceive sound?

26. Is a stereo speaker an analog or a digital device? Explain.

27. What is an RGB value?

28. What does color depth indicate?

29. How does pixel resolution affect the visual impact of an image?

30. Explain temporal video compression.

31. Describe a situation in which spatial video compression would be
effective.

32. Define sampling as it relates to digitizing sound waves.

33. Which produces better sound quality, higher sampling rates or lower
sampling rates?

34. What is the sampling rate per second that is enough to create reason-
able sound reproduction?

35. Do vinyl record albums and compact discs record sound the same
way?

36. What does an RGB value of (130, 0, 255) mean?

37. What color does an RGB value of (255, 255, 255) represent?

38. What is resolution?

39. The GIF format uses what technique?   

40. What are GIF files best for?

41. How are the various video codecs alike?  

42. How are the various video codecs different?

43. Name two types of video compression.

44. What do we call the perception of the various frequencies of light that
reach the retinas of our eyes?

45. What is the best format for photographic color images?

46. What are the techniques called that shrink the sizes of movies?

47. What is the technique in which an application supports only a certain
number of specific colors, creating a palette from which to choose?

48. What is the format that describes an image in terms of lines and
geometric shapes?

49. What format stores information on a pixel-by-pixel basis?

50. What is the difference between HiColor and TrueColor?
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Thought Questions

1. Devise a number system based on base 11.
a. Draw the number line.
b. Show examples of addition and subtraction.
c. Develop a representation of negative numbers based on eleven’s

complement.

2. Technology is changing rapidly. What changes have occurred in data
compression since this book was written?

3. What are the arguments for allowing music to be shared freely over
the Internet?

4. What are the arguments against allowing music to be freely shared
over the Internet?

5. What is the state of music sharing over the Internet at the time you are
reading this question?

6. If you were an artist, which side of the argument would you take?

?
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Gates and Circuits

Chapter 4

Computers are electronic devices; the most fundamental hardware

elements of a computer control the flow of electricity. In a very

primitive sense, we use technology to harness the power of a light-

ning bolt, bending it to our will so that we can perform calcula-

tions and make decisions. This chapter dances the fine line

between computer science and electrical engineering, examining

the most basic hardware elements in a computer.

In Chapter 2, we looked at number systems in general and at

the binary number system in particular. And, as we saw in Chapter

3, the binary number system is of special interest because it is used

to represent information in a computer. In this chapter, we explore

how computers use electric signals to represent and manipulate

those binary values.
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Gate A device that
performs a basic opera-
tion on electrical signals,
accepting one or more
input signals and
producing a single
output signal

Circuit A combination
of interacting gates
designed to accomplish
a specific logical function
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Goals
After studying this chapter, you should be able to:

� identify the basic gates and describe the behavior of each.
� describe how gates are implemented using transistors.
� combine basic gates into circuits.
� describe the behavior of a gate or circuit using Boolean expressions, truth

tables, and logic diagrams.
� compare and contrast a half adder and a full adder.
� describe how a multiplexer works.
� explain how an S-R latch operates.
� describe the characteristics of the four generations of integrated circuits.

4.1 Computers and Electricity

Any given electronic signal has a level of voltage. As we mentioned in the
last chapter, we distinguish between the two values of interest (binary 0
and 1) by the voltage level of a signal. In general, a voltage level in the
range of 0 to 2 volts is considered “low” and is interpreted as a binary 0.
A signal in the 2- to 5-volt range is considered “high” and is interpreted as
a binary 1. Signals in a computer are constrained to be within one range or
the other.

A gate is a device that performs a basic operation on electrical signals.
A gate accepts one or more input signals, and produces a single output
signal. There are several specific types of gates; we examine the six most
fundamental types in this chapter. Each type of gate performs a particular
logical function.

Gates are combined into circuits to perform more complicated tasks.
For example, circuits can be designed to perform arithmetic and to store
values. In a circuit, the output value of one gate often serves as an input
value for one or more other gates. The flow of electricity through a circuit
is controlled by the carefully designed logic of the interacting gates.

There are three different, but equally powerful, notational methods for
describing the behavior of gates and circuits:

� Boolean expressions

� logic diagrams

� truth tables
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Boolean algebra A
mathematical notation
for expressing two-
valued logical functions

Logic diagram A
graphical representation
of a circuit; each type of
gate has its own symbol.

Boolean algebra is named for its inventor,
English mathematician George Boole, born
in 1815. His father, a tradesman, began
teaching him mathematics at an early age.
But Boole was initially more interested in
classical literature, languages, and religion—
interests he maintained throughout his life. By
the time he was 20, he had taught himself
French, German, and Italian. He was well versed in the
writings of Aristotle, Spinoza, Cicero, and Dante, and
wrote several philosophical papers himself.

At 16 he took a position as a teaching assistant in
a private school to help support his family. His work
there plus a second teaching job left him little time to
study. A few years later, he opened a school and
began to learn higher mathematics on his own. In
spite of his lack of formal training, his first scholarly
paper was published in the Cambridge Mathematical
Journal when he was just 24. In 1849, he was
appointed professor of mathematics at Queen’s
College in Cork, Ireland. He became chair of mathe-
matics and spent the rest of his career there. Boole
went on the publish over 50 papers and several
major works before he died in 1864, at the peak of
his career.

Boole’s The Mathematical Analysis of Logic was
published in 1847. It would eventually form the basis
for the development of digital computers. In the book,

Boole set forth the formal axioms of logic
(much like the axioms of geometry) on
which the field of symbolic logic is built.
Boole drew on the symbols and operations
of algebra in creating his system of logic.
He associated the value 1 with the uni-
versal set (the set representing everything
in the universe) and the value 0 with the

empty set, and restricted his system to these quanti-
ties. He then defined operations that are analogous to
subtraction, addition, and multiplication.

In 1854, Boole published An Investigation of the
Laws of Thought, on Which Are Founded the Mathe-
matical Theories of Logic and Probabilities. This book
described theorems built on his axioms of logic and
extended the algebra to show how probabilities could
be computed in a logical system. Five years later,
Boole published Treatise on Differential Equations,
followed by Treaties on the Calculus of Finite Differ-
ences. The latter is one of the cornerstones of numer-
ical analysis, which deals with the accuracy of
computations.

Boole received little recognition and few honors for
his work. Given the importance of Boolean algebra in
modern technology, it is hard to believe that his
system of logic was not taken seriously until the early
twentieth century. George Boole was truly one of the
founders of computer science.

George Boole1

We examine all three types of representation during our discussion of gates
and circuits.

An English mathematician named George Boole invented a form of
algebra in which variables and functions take on only one of two values (0
and 1). This algebra is appropriately called Boolean algebra. Expressions
in this algebraic notation are an elegant and powerful way to demonstrate
the activity of electrical circuits. Specific operations and properties in
Boolean algebra allow us to define and manipulate circuit logic using a
mathematical notation. Boolean expressions come up again in our discus-
sions of high-level programming languages in Chapter 8.

A logic diagram is a graphical representation of a circuit. Each type of
gate is represented by a specific graphical symbol. By connecting those
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associated output values

90 Chapter 4 Gates and Circuits

symbols in various ways we can visually represent the logic of an entire
circuit.

A truth table defines the function of a gate by listing all possible input
combinations that the gate could encounter, and the corresponding output.
We can design more complex truth tables with sufficient rows and
columns to show how entire circuits perform for any set of input values.

4.2 Gates

The gates in a computer are sometimes referred to as logic gates because
they each perform one logical function. Each gate accepts one or more

input values and produces a single output value. Since
we are dealing with binary information, each input and
output value is either 0, corresponding to a low-voltage
signal, or 1, corresponding to a high-voltage signal.
The type of gate and the input values determine the
output value.

Let’s examine the processing of the following six
types of gates. After we have done so, we show how
they can be combined into circuits to perform arith-
metic operations.

� NOT

� AND

� OR

� XOR

� NAND

� NOR

There is one important note to keep in mind as you
examine these gates. In this book we have colorized the
logic diagram symbols for each gate to help you keep
track of the various types. When we examine full

circuits with many gates, the colors help you distinguish among them.
Typically, however, logic diagrams are black and white, and the gates are
distinguished only by their shape.

NOT Gate
A NOT gate accepts one input value and produces one output value.
Figure 4.1 shows a NOT gate represented in three ways: as a Boolean
expression, as its logical diagram symbol, and using a truth table. In each
representation, the variable A represents the input signal, which is either 0

What is nanoscience?
Nanoscience is the study of materials smaller

than 100 nanometers—or 1/100th the width of
a human hair strand. Scientists expect
nanoscience to eventually lead to new materials
that are stronger, lighter, and cheaper to make.
Two nanotubes—each 10 atoms wide—have
been used to create a simple circuit. “They’re the
only thing in the world that right now has some
potential of making a switch to process informa-
tion that’s faster than the fastest silicon tran-
sistor,” said IBM’s worldwide director of physical
science research Tom Theis.

“If nanotechnology has the impact we think it
might have, it may well cause social and indus-
trial rearrangements not unlike the original
Industrial Revolution,” said Richard W. Siegel,
director of Rensselaer Nanotechnology Center in
Troy, New York.2 W
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Figure 4.1 Various representations of a NOT gate

Logic Diagram SymbolBoolean Expression Truth Table

A X
0
1

1
0

A X
X = \"

or 1. The variable X represents the output signal, whose value (also 0 or 1)
is determined by the value of A.

By definition, if the input value for a NOT gate is 0, the output value is
1, and if the input value is 1, the output is 0. A NOT gate is sometimes
referred to as an inverter because it inverts the input value.

In Boolean expressions, the NOT operation is represented by the " mark
after the value being negated. Sometimes this operation is shown as a hori-
zontal bar over the value being negated. In the Boolean expression in
Figure 4.1, X is assigned the value determined by applying the NOT opera-
tion to input value A. This is an example of an assignment statement, in
which the variable on the left of the equal sign takes on the value of the
expression on the right-hand side. Assignment statements are discussed
further in Chapter 8 on high-level programming languages.

The logic diagram symbol for a NOT gate is a triangle with a tiny circle
(called an inversion bubble) on the end. The input and output are shown
as lines flowing into and out of the gate. Sometimes these lines are labeled,
though not always.

The truth table in Figure 4.1 shows all possible input values for a NOT
gate, as well as the corresponding output values. Since there is only one
input signal to a NOT gate, and that signal can only be a 0 or a 1, those
are the only two possibilities for the column labeled A in the truth table.
The column labeled X shows the output of the gate, which is the inverse of
the input. Note that of all three representations, only the truth table actu-
ally defines the behavior of the gate for all situations.

Keep in mind that these three notations are just different ways of repre-
senting the same thing. For example, the result of the Boolean expression

0'

is always 1, and the result of the Boolean expression

1'

is always 0. This behavior is consistent with the values shown in the
truth table.
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Figure 4.2 Various representations of an AND gate

Logic Diagram SymbolBoolean Expression Truth Table

X = \ — e

AA

B

X B
0
0
1
1

0
1
0
1

X
0
0
0
1

AND Gate
An AND gate is shown in Figure 4.2. Unlike a NOT gate, which accepts one
input signal, an AND gate accepts two input signals. The values of both
input signals determine what the output signal will be. If the two input values
for an AND gate are both 1, the output is 1; otherwise, the output is 0.

The AND operation in Boolean algebra is expressed using a single dot
(⋅). Sometimes an asterisk (*) is used to represent this operator. And often
the operator itself is assumed. For example A⋅B is often written AB.

Because there are two inputs, and two possible values for each input,
there are four possible combinations of 1 and 0 that can be provided as
input to an AND gate. Therefore, there are four possible situations that
can occur using the AND operator in a Boolean expression:

0 ⋅ 0 equals 0
0 ⋅ 1 equals 0
1 ⋅ 0 equals 0
1 ⋅ 1 equals 1

Likewise, the truth table showing the behavior of the AND gate has four
rows, showing all four possible input combinations. The output column of
the truth table is consistent with results of these Boolean expressions.

OR Gate
An OR gate is shown in Figure 4.3. Like the AND gate, there are two
inputs to an OR gate. If the two input values are both 0, the output value
is 0; otherwise, the output is 1.

The Boolean algebra OR operation is expressed using a plus sign (+).
The OR gate has two inputs, each of which can be one of two values, so as
with an AND gate there are four input combinations and therefore four
rows in the truth table.
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Figure 4.3 Various representations of an OR gate

Logic Diagram SymbolBoolean Expression Truth Table

X = \ l e

A B
0
0
1
1

0
1
0
1

X
0
1
1
1

A

B

X

Figure 4.4 Various representations of an XOR gate

Logic Diagram SymbolBoolean Expression Truth Table

X = \ ⊕ e
A B
0
0
1
1

0
1
0
1

X
0
1
1
0

A

B

X

XOR Gate
The XOR, or exclusive OR, gate is shown in Figure 4.4. An XOR gate
produces 0 if its two inputs are the same, and a 1 otherwise. Note the
difference between the XOR gate and the OR gate; they differ only in one
input situation. When both input signals are 1, the OR gate produces a 1
and the XOR produces a 0.

Sometimes the regular OR gate is referred to as the inclusive OR,
because it produces a 1 if either or both of its inputs is a 1. The XOR
produces a 1 only if its inputs are mixed, one 1 and one 0. Think of XOR
gate as saying, “When I say or, I mean one or the other, not both.”

The Boolean algebra symbol ⊕ is sometimes used to express the XOR
operation. However, the XOR operation can also be expressed using the
other operators; we leave that as an exercise.

Note that the logic diagram symbol for the XOR gate is just like the
symbol for an OR gate except that it has an extra curved line connecting
its input signals.
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Figure 4.5 Various representations of a NAND gate

Logic Diagram SymbolBoolean Expression Truth Table

X = o\ — eE"

AA

B

X B
0
0
1
1

0
1
0
1

X
1
1
1
0

Figure 4.6 Various representations of a NOR gate

Logic Diagram SymbolBoolean Expression Truth Table

X = o\ l eE"

A B
0
0
1
1

0
1
0
1

X
1
0
0
0

A

B

X

NAND and NOR Gates
The NAND gate is shown in Figure 4.5 and the NOR gate is shown in
Figure 4.6. They each accept two input values. The NAND and NOR gates
are essentially the opposite of the AND and OR gates, respectively. That
is, the output of a NAND gate is the same as if you took the output of an
AND gate and put it through an inverter (a NOT gate).

There are typically no specific symbols used to express the NAND and
NOR operations in Boolean algebra. Instead, we rely on their definitions
to express the concepts. That is, the Boolean algebra expression for NAND
is the negation of an AND operation. Likewise, the Boolean algebra
expression for NOR is the negation of an OR operation.

The logic diagram symbols for the NAND and NOR are the same as
those for the AND and OR except that the NAND and NOR symbols
have the inversion bubble (to indicate the negation). Compare the output
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columns for the truth tables for the AND and NAND gates. They are
opposite, row by row. The same is true for the OR and NOR gates.

Review of Gate Processing
We’ve looked at six specific types of gates. It may seem to be a difficult
task to keep them straight and remember how they all work. Well, that
probably depends on how you think about it. We definitely don’t
encourage you to try to memorize truth tables. The processing of these
gates can be described briefly in general terms. If you think of them that
way, you can produce the appropriate truth table any time you need it.

Let’s review the processing of each gate. Some of these descriptions are
in terms of what input values cause the gate to produce a 1 as output; in
any other case, it produces a 0.

� A NOT gate inverts its single input value.

� An AND gate produces 1 if both input values are 1.

� An OR gate produces 1 if one or the other or both input values are 1.

� An XOR gate produces 1 if one or the other (but not both) input
values are 1.

� A NAND gate produces the opposite results of an AND gate.

� A NOR gate produces the opposite results of an OR gate.

Once you keep these general processing rules in mind, all that’s left is to
remember the Boolean operators and the logic diagram symbols. Keep in
mind that several of the logic diagram symbols are variations of each
other. Also, remember that the coloring of the gates that we use in this
book is to help you to keep track of the various gate types; traditionally,
they are simply black and white diagrams.

Gates with More Inputs
Gates can be designed to accept three or more input values. A three-input
AND gate, for example, produces an output of 1 only if all input values
are 1. A three-input OR gate produces an output of 1 if any input value is
1. These definitions are consistent with the two-input versions of these
gates. Figure 4.7 shows an AND gate with three input signals.

Note that there are 23 or 8 possible input combinations for a gate with
three inputs. Recall from Chapter 3 that there are 2n combinations of 1
and 0 for n distinct input values. This determines how many rows are
needed in a truth table.

For the logic diagram symbol, we simply add a third input signal to the
original symbol. For a Boolean expression, however, we repeat the AND
operation to represent the third value.
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Figure 4.7 Various representations of a three-input AND gate

Logic Diagram SymbolBoolean Expression Truth Table

X = \ — e — <

A B
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

C
0
1
0
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0
1
0
1

X
0
0
0
0
0
0
0
1

A
B

C

X

4.3 Constructing Gates

Before we examine how gates are connected to form circuits, let’s examine,
at an even more basic level, how a gate is constructed to control the flow
of electricity.

Transistors
A gate uses one or more transistors to establish how the input values map
to the output value. A transistor is a device that acts, depending on the
voltage level of an input signal, either as a wire that conducts electricity or
as a resistor that blocks the flow of electricity. A transistor has no moving
parts, yet acts like a switch. It is made of a semiconductor material, which
is neither a particularly good conductor of electricity, such as copper, nor a
particularly good insulator, such as rubber. Usually silicon is used to create
transistors.

In Chapter 1, we mentioned that the invention of transistors, in 1947 at
Bell Labs, changed the face of technology, ushering in the second genera-
tion of computer hardware. Before transistors, digital circuits used vacuum
tubes, which dissipated a great deal of heat and often failed, requiring
replacement. Transistors are much smaller than vacuum tubes and require
less energy to operate. They can switch states in a few nanoseconds.
Computing, as we know it today, is largely due to the invention of the
transistor.
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Figure 4.8

The connections of a
transistorGround

Source

Output

Base

Before tackling the details of transistors, let’s discuss some basic prin-
ciples of electricity. An electrical signal has a source, such as a battery or
an outlet in your wall. If the electrical signal is grounded, it is allowed to
flow through an alternative route to the ground (literally) where it can
do no harm. A grounded electrical signal is pulled down, or reduced, to
0 volts.

A transistor has three terminals: a source, a base, and an emitter. The
emitter is typically connected to a ground wire, as shown in Figure 4.8. For
computers, the source produces a high value, approximately 5 volts. The
base value regulates a gate that determines whether the connection
between the source and ground is made. If the source signal is grounded, it
is pulled down to 0 volts. If the base does not ground the source signal, it
stays high.

An output line is usually connected to the source line. If the source
signal is pulled to the ground by the transistor, that output signal is low,
representing a binary 0. If the source signal remains high, so is that output
signal, representing a binary 1.

The transistor is either on, producing a high output signal, or off,
producing a low output signal. This is determined by the base electrical
signal. If the base signal is high (close to a +5 voltage), the source signal is
grounded, which turns the transistor off. If the base signal is low (close to
a 0 voltage), the source signal stays high, and the transistor is on.

Now let’s see how a transistor is used to create various types of gates. It
turns out that, because the way a transistor works, the easiest gates to
create are the NOT, NAND, and NOR gates. Figure 4.9 contains diagrams
that show how these gates can be constructed using transistors.

The diagram for the NOT gate is essentially the same as our original
transistor diagram. It only takes one transistor to create a NOT gate. The
signal Vin represents the input signal to the NOT gate. If it is high, the
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Figure 4.9 Constructing gates using transistors

Source

Ground Ground

Source

Ground

V1

V1

V2

V2

Source

NOR gateNAND gateNOT gate

Ground

Vin

Vout

Vout

Vout

source is grounded, and the output signal Vout is low. If Vin is low, the
source is not grounded, and Vout is high. Thus the input signal is inverted,
which is exactly what a NOT gate does.

The NAND gate requires two transistors. The input signals V1 and V2

represent the input to the NAND gate. If both input signals are high, the
source is grounded and the output Vout is low. But if either input signal is
low, one transistor or the other keep the source signal from being
grounded and the output is high. Therefore, if V1, or V2, or both, carry a
low signal (binary 0), the output is a 1. This is consistent with the
processing of a NAND gate.

The construction of a NOR gate also requires two transistors. Once
again, V1 and V2 represent the input to the gate. This time, however, the
transistors are not connected in series. The source connects to each tran-
sistor separately. If either transistor allows the source signal to be grounded,
the output is 0. Therefore, the output is high (binary 1) only when both V1

and V2 are low (binary 0), which is what we want for a NOR gate.
An AND gate, as we pointed out earlier in this chapter, produces output

that is exactly opposite of the NAND gate. Therefore, to construct an
AND gate we simply pass the output of a NAND gate through an inverter
(or NOT gate). That’s why AND gates are more complicated to construct
than NAND gates: They require three transistors, two for the NAND and
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one for the NOT. The same reasoning can be made for the relationship
between NOR and OR gates.

4.4 Circuits

Now that we know how individual gates work, and how they are actually
constructed, let’s examine how we combine gates into circuits. Circuits can
be separated into two general categories. In a combinational circuit, the
input values explicitly determine the output. In a sequential circuit, the
output is a function of the input values as well as the existing state of the
circuit. Thus, sequential circuits usually involve the storage of information.

Most of the circuits we examine in this chapter are combinational
circuits, though we briefly mention sequential memory circuits as well.

Keep in mind that, as with gates, we can describe the operations of entire
circuits using three notations: Boolean expressions, logic diagrams, and truth
tables. They are different, but equally powerful, representation techniques.

Combinational Circuits
Gates are combined into circuits by using the output of one gate as the input
for another. For example, consider the following logic diagram of a circuit:

The output of the two AND gates is used as the input to the OR gate.
Note that the input value A is used as input to both AND gates. The dot
indicates that two lines are connected. If the intersection of two crossing
lines does not have a dot, you should think of one as “jumping over” the
other without affecting each other.

What does the logic diagram mean? Well, let’s work backwards to see
what it takes to get a particular result. For the final output X to be 1,
either D must be 1 or E must be 1. For D to be 1, A and B must both be 1.
For E to be 1, both A and C must be 1. Both E and D may be 1, but that
isn’t necessary. Examine this circuit diagram carefully; make sure that this
reasoning is consistent with your understanding of the types of gates used.

A
D

E

XB

C
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Now let’s represent the processing of this entire circuit using a truth table:

Because there are three inputs to this circuit, eight rows are required to
describe all possible input combinations. Intermediate columns are used to
show the intermediate values (D and E) in the circuit.

Finally, let’s express this same circuit using Boolean algebra. A circuit is a
collection of interacting gates, so a Boolean expression to represent a circuit
is a combination of the appropriate Boolean operations. We just have to put
the operations together in the proper form to create a valid Boolean algebra
expression. In this circuit, there are two AND expressions. The output of
each AND is input to the OR operation. Thus, this circuit is represented by
the following Boolean expression (in which the AND operator is assumed):

(AB + AC)

When we write truth tables it is often better to label columns using these
kinds of Boolean expressions, rather than arbitrary variables such as D, E,
and X. That makes it more clear what each column represents. In fact, we
can use Boolean expressions to label our logic diagrams as well, elimi-
nating the need for intermediate variables altogether.

Now let’s go the other way; let’s take a Boolean expression and draw
the corresponding logic diagram and truth table. Consider the following
Boolean expression:

A(B + C)

In this expression, the OR operation is applied to input values B and C. The
result of that operation is used as input, along with A, to an AND operation,
producing the final result. The corresponding circuit diagram is therefore:

A

B
C

B + C

A(B + C)

A

0
0
0
0
1
1
1
1

B

0
0
1
1
0
0
1
1

C

0
1
0
1
0
1
0
1

D

0
0
0
0
0
0
1
1

E

0
0
0
0
0
1
0
1

X

0
0
0
0
0
1
1
1

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Circuit equivalence

The same output for each
corresponding input-
value combination for
two circuits

4.4 Circuits 101

And once again, let’s complete our series of representations by expressing
this circuit as a truth table. Like the previous example, since there are three
input values there are eight rows in the truth table:

Pick a row from this truth table and follow the logic of the circuit diagram
to make sure the final results are consistent. Try it with a few rows to get
comfortable with tracing the logic of a circuit.

Now compare the final result column in this truth table to the truth
table for the previous example. They are identical. We have therefore just
demonstrated circuit equivalence. That is, both circuits produce the exact
same output for each input value combination.

In fact, this situation specifically demonstrates an important property of
Boolean algebra called the distributive law:

A(B+C)  =  AB + AC

That’s the beauty of Boolean algebra: It allows us to apply provable math-
ematical principles to help us design logical circuits. The following chart
shows a few of the properties of Boolean algebra:

A

0
0
0
0
1
1
1
1

B

0
0
1
1
0
0
1
1

C

0
1
0
1
0
1
0
1

B + C

0
1
1
1
0
1
1
1

A(B+C)

0
0
0
0
0
1
1
1

Property AND

Commutative
Associative
Distributive
Identity
Complement
DeMorgan's law
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These properties are consistent with our understanding of gate
processing, and with the truth table and logic diagram representations.
For instance, the commutative property, in plain English, says that the
order of the input signals doesn’t matter, which is true. (Verify it using
the truth tables of individual gates.) The complement property says that
if we put a signal and its inverse through an AND gate, we are guaran-
teed to get 0, but if we put a signal and its inverse through an OR gate,
we are guaranteed to get 1.

There is one very famous—and useful—theorem in Boolean algebra called
DeMorgan’s law. This law states that the NOT operator applied to the AND
of two variables is equal to the NOT applied to each of the two variables with

an OR between. That is, inverting the output of an
AND gate is equivalent to inverting the individual
signals first, then passing them through an OR gate:

(AB)� = A� OR B�

The second part of the law is that the NOT operator
applied to the OR of two variables is equal to the
NOT applied to each of the two variables with an
AND between. Again, expressed in circuit terms:
inverting the output of an OR gate is equivalent to
inverting both signals first, then passing them
through an AND gate:

(A + B)� = A�B�

DeMorgan’s law and other Boolean algebra proper-
ties provide a formal mechanism for defining,
managing, and evaluating logical circuit designs.

Adders
Perhaps the most basic operation a computer can perform is to add two
numbers together. At the digital logic level, this addition is performed in
binary. Chapter 2 contains a discussion of this process. These types of
addition operations are carried out by special circuits called, appropriately,
adders.

Like addition in any base, the result of adding two binary digits could
produce a carry value. Recall that 1 + 1 = 10 in base two. A circuit that
computes the sum of two bits and produces the correct carry bit is called a
half adder.

Let’s consider all possibilities when adding two binary digits A and B: If
both A and B are 0, the sum is 0 and the carry is 0. If A is 0 and B is 1, the
sum is 1 and the carry is 0. If A is 1 and B is 0, the sum is 1 and the carry

DeMorgan’s law, named for
Augustus DeMorgan

DeMorgan, a contemporary of George Boole,
was the first professor of mathematics to the
University of London in 1828, where he
continued to teach for 30 years. He wrote
elementary texts on arithmetic, algebra,
trigonometry, and calculus as well as papers on
the possibility of establishing a logical calculus
and the fundamental problem of expressing
thought by means of symbols. DeMorgan did not
discover the laws bearing his name, but he is
credited with formally stating them as they are
known today. W
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is 0. If both A and B are 1, the sum is 0 and the carry is 1. This yields the
following truth table:

Note that in this case we are actually looking for two output results, the
sum and the carry. So our circuit has two output lines.

If you compare the sum and carry columns to the output of the various
gates, you see that the sum corresponds to the XOR gate and the carry
corresponds to the AND gate. Thus, the following circuit diagram repre-
sents a half adder:

Test this diagram by assigning various combinations of input values and
determining what two output values will be produced. Do the results
follow the rules of binary arithmetic? They should. Now compare your
results to the corresponding truth table. They should match there also.

What about the Boolean expression for this circuit? Since the circuit
produces two distinct output values, we represent it using two Boolean
expressions:

sum = A ⊕ B
carry = AB

Note that a half adder does not take into account a possible carry value
into the calculation (carry-in). That is, a half adder is fine for adding two
single digits, but it cannot be used as is to compute the sum of two binary
values with multiple digits each. A circuit called a full adder takes the
carry-in value into account.

We can use two half adders to make a full adder. How? Well, the input
to the sum must be the carry-in and the sum from adding the two input

Sum

Carry

A

B

A

0
0
1
1

B

0
1
0
1

Sum

0
1
1
0

Carry

0
0
0
1
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Figure 4.10 A full adder
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values. That is, we add the sum from the half adder to the carry-in. Both
of these additions have a carry out. Is it possible for both of these carry-
outs to be 1, thus having a further carry? Fortunately, no. Look at the
truth table for the half adder. There is no case where the sum and carry are
both 1.

The logic diagram and the truth table for the full adder are shown in
Figure 4.10. Keep in mind that there are three inputs to this circuit: the
original two digits (A and B) and the carry-in value. Thus the truth table
has eight rows. We leave the corresponding Boolean expression as an
exercise.

To add two eight-bit values, we can duplicate a full-adder circuit eight
times. The carry-out from one place value is used as the carry-in to the
next highest place value. The value of the carry-in for the rightmost bit
position is assumed to be zero, and the carry-out of the leftmost bit posi-
tion is discarded (potentially creating an overflow error).

There are various ways to improve on the design of these adder circuits,
but we do not explore them in any more detail in this text.

Multiplexers
A multiplexer (often referred to as a mux) is a general circuit that
produces a single output signal. The output is equal to one of several input
signals to the circuit. The multiplexer selects which input signal is used as
an output signal based on the value represented by a few more input
signals, called select signals or select control lines.
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Figure 4. 11

A block diagram of a multi-
plexer with three select
control lines

D0

S0

S1 F

S2

D1 D2 D3 D4 D5 D6 D7D0

S0

S1 F

S2

D1 D2 D3 D4 D5 D6 D7

Let’s look at an example. A block diagram of a mux is shown in Figure
4.11. The control lines S0, S1, and S2 determine which of eight other input
lines (D0 through D7) are routed to the output (F).

The values of the three control lines, taken together, are interpreted as a
binary number, which determines which input line to route to the output.
Recall from Chapter 2 that three binary digits can represent eight different
values: 000, 001, 010, 011, 100, 101, 110, and 111. Note that these values
simply count in binary from 0 to 7, which correspond to our output values
D0 through D7. So if S0, S1, and S2 are all 0, the input line D0 would be
the output from the mux. If S0 is 1, S1 is 0, and S2 is 1, then D5 would be
output from the mux.

The following truth table shows how the input control lines determine
the output for this multiplexer:

The block diagram in Figure 4.11 hides a fairly complicated circuit to
carry out the logic of a multiplexer. Such a circuit could be shown using
eight three-input AND gates and one eight-input OR gate. We won’t get
into the details of the circuit in this book.

A multiplexer can be designed with various numbers of input lines and
corresponding control lines. In general, the binary values on n input control
lines are used to determine which of 2n other data lines are selected for output.
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An S-R latch
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A circuit called a demultiplexer (or demux) performs the opposite oper-
ation. That is, it takes a single input and routes it to one of 2n outputs,
depending on the values of the n control lines.

4.5 Circuits as Memory

Another important role of digital circuits is that they can be used to store
information. These circuits form a sequential circuit, because the output of
the circuit is also used as input to the circuit. That is, the existing state of
the circuit is used in part to determine the next state.

Many types of memory circuits have been designed. We examine only
one type in this book: the S-R latch. An S-R latch stores a single binary
digit (1 or 0). There are several ways an S-R latch circuit could be designed
using various kinds of gates. One such circuit, using NAND gates, is
pictured in Figure 4.12.

The design of this circuit guarantees that the two outputs X and Y are
always complements of each other. That is, when X is 0, Y is 1, and vice
versa. The value of X at any point in time is considered to be the current
state of the circuit. Therefore, if X is 1, the circuit is storing a 1; if X is 0,
the circuit is storing a 0.

Recall that a NAND gate produces an output of 1 unless both of its
input values are 1. Each gate in this circuit has one external input (S or R)
and one input coming from the output of the other gate. Suppose the
current state of the circuit is storing a 1 (that is, X is 1). And suppose both
S and R are 1. Then Y remains 0 and X remains 1. Now suppose that the
circuit is currently storing a 0 (X is 0), and that R and S are again 1. Then
Y remains 1 and X remains 0. Therefore, no matter which value is
currently being stored, if both input values S and R are 1, the circuit keeps
its existing state.

This explanation demonstrates that the S-R latch maintains its value as
long as S and R are 1. How does a value get stored in the first place? We
set the S-R latch to 1 by momentarily setting S to 0 while keeping R at 1. If
S is 0, X becomes 1. As long as S is returned to 1 immediately, the S-R
latch remains in a state of 1. We set the latch to 0 by momentarily setting
R to 0 while keeping S at 1. If R is 0, Y becomes 0, so X becomes 0. As
long as R is immediately reset to 1, the circuit state remains 0.

Therefore, by carefully controlling the values of S and R, the circuit can
be made to store either value. By scaling this idea to larger circuits,
memory devices with larger capacities can be designed.
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Figure 4.13

An SSI chip containing
independent NAND gates

Power

Ground

14 13 12 11 10 9 8

6 74 52 31

4.6 Integrated Circuits

An integrated circuit (also called a chip) is a piece of silicon on which
multiple gates have been embedded. These silicon pieces are mounted on a
plastic or ceramic package with pins along the edges that can be soldered
onto circuit boards or inserted into appropriate sockets. Each pin connects
to the input or output of a gate, or to power or ground.

Integrated circuits (IC) are classified by the number of gates contained
in them. These classifications also reflect the historical development of IC
technology:

An SSI chip has a few independent gates, such as the one shown in Figure
4.13. This chip has 14 pins: eight for inputs to gates, four for output of the
gates, one for ground, and one for power. Similar chips can be made with
different gates.

How can a chip have more than 100,000 gates on it? That would imply
the need for 300,000 pins! The key is that the gates on a VLSI chip are not
independent as they are in small-scale integration. VLSI chips embed

Abbreviation Name

SSI
MSI
LSI
VLSI

Small-Scale Integration
Medium-Scale Integration
Large-Scale Integration
Very-Large-Scale Integration

Number of Gates

1 to 10
10 to 100
100 to 100,000
more than 100,000
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circuits with a high gate-to-pin ratio. That is, many gates are combined to
create complex circuits that require only a few input and output values.
Multiplexers are an example of this type of circuit.

4.7 CPU Chips

The most important integrated circuit in any computer is the Central
Processing Unit, or CPU. The processing of a CPU is discussed in the next
chapter, but it is important to recognize at this point that the CPU is, in
one sense, merely an advanced circuit with input and output lines.

Each CPU chip has a large number of pins through which essentially all
communication in a computer system occurs. This communication
connects the CPU to memory and I/O devices, which are themselves, at
fundamental levels, advanced circuits.

The explanation of CPU processing and its interaction with other
devices take us to another level of computer processing, sometimes referred
to as component architecture. Though still primarily focused on hardware,
computer component architecture applies the principle of abstraction once
again, allowing us to temporarily ignore the details of the gates and
circuits we’ve discussed in this chapter and bring us ever closer to a
complete understanding of computer processing.

Summary

We’ve discussed in this chapter how a computer operates at its lowest
level by controlling the flow of electricity. Since we are dealing with
digital computers that use binary information, we concern ourselves only
with two voltage ranges that we interpret as binary 1 or 0. The flow of
electricity is guided by electronic devices called gates, which perform
basic logical operations such as NOT, AND, and OR. A gate is created
using one or more transistors, an invention which revolutionized
computing.

Gates can be combined into circuits, in which the output of one gate
serves as an input to another. By designing these circuits carefully, we
create devices that perform more complex tasks such as adding, multi-
plexing, and storing data. Collections of gates, or complete circuits, are
often embedded into a single integrated circuit, or chip, which leads to the
concept of a Central Processing Unit (CPU).
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E-mail Privacy
Have you ever written an important message, submitted your

resume, or complained about your roommate over e-mail? Would you

have handled it differently if you knew that strangers, administrators, or

your roommate could read your message? Once a tool for only the most

computer literate, today e-mail is a standard means of communication

for millions of people. Many users, however, incorrectly assume that

only those who are intended to read their correspondence have access to

its content. With an illusion of privacy, people e-mail personal letters

that they would never want anyone else to read, or send confidential

information that could be compromising if it fell into the wrong hands.

On its path from sender to recipient, e-mail travels from server to server

and can be read more easily than a postcard. E-mail security has become

the center of many debates that search for a common ground between

individual rights, corporate rights, and computer technology.

Many companies who rely on e-mail for much of their communication

now have policies that outline where e-mail privacy ends and e-mail

monitoring begins. Supporters of e-mail monitoring state that all corre-

spondence through a company’s server belongs to the company and

therefore the company has the right to access it at will. They argue that

surveillance prevents employees from abusing their e-mail access and

allows the employer more control over correspondences for which the

company could be held liable. Opponents explain that e-mail monitoring

creates an atmosphere of mistrust and disrespect, and that surveillance is

an unnecessary obstruction of employee autonomy.

The privacy issues that surround e-mail extend beyond company

policies. For example, in July of 2000 the United Kingdom passed the

Regulation of Investigatory Powers bill, giving the government access

to all Internet correspondence. Internet Service Providers must route all

e-mail through governmental headquarters, and government officials

have access to all encryption keys that are used to protect and secure

e-mails.

Even after an e-mail has reached its destination an unintended

audience can read its contents. The forwarding feature provided by

most e-mail services gives the recipient the ability to pass on e-mail

without the author’s knowledge. Research shows that people
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110 Chapter 4 Gates and Circuits

consider reading someone else’s e-mail as less of an invasion of

privacy than reading someone’s ordinary mail. This belief, along with

eavesdropping and monitoring, compromises the security of e-mail

correspondence.

Key Terms
Adder  pg. 102

Boolean algebra  pg. 89

Circuit  pg. 88

Circuit equivalence  pg. 101

Combinational circuit  pg. 99

Full adder  pg. 103

Gate  pg. 88

Half adder  pg. 102

Integrated circuit (also chip)    
pg. 107

Logic diagram  pg. 89

Multiplexer  pg. 104

Semiconductor  pg. 96

Sequential circuit  pg. 99

Transistor  pg. 96

Truth table  pg. 90

Exercises

1. How is voltage level used to distinguish between binary digits?

2. Distinguish between a gate and a circuit.

3. What are the three notational methods for describing the behavior of
gates and circuits?

4. Characterize the notations asked for in Exercise 3.

5. How many input signals can a gate receive and how many output
signals can a gate produce?

6. Name six types of gates.

7. Give the three representations of a NOT gate and say in words what
NOT means.

8. Give the three representations of an AND gate and say in words what
AND means.

9. Give the three representations of an OR gate and say in words what
OR means.

10. Give the three representations of an XOR gate and say in words what
XOR means.

11. Give the three representations of a NAND gate and say in words what
NAND means.
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12. Give the three representations of a NOR gate and say in words what
NOR means.

13. Why are there no logic diagram symbols for the NAND and NOR
gates?

14. Draw and label the symbol for a three-input AND gate; then show its
behavior with a truth table.

15. Draw and label the symbol for a three-input OR gate; then show its
behavior with a truth table.

16. What is used in a gate to establish how the input values map to the
output value?

17. How does a transistor behave?

18. Of what is a transistor usually made?

19. What happens when an electric signal is grounded?

20. What are the three terminals in a transistor and how do they operate
to produce an output?

21. How many transistors does it take for each of these gates?
a. NOT
b. AND
c. NOR
d. OR
e. XOR

22. Draw a transistor diagram for an AND gate. Explain the processing.

23. Draw a transistor diagram for an OR gate. Explain the processing.

24. How can gates be combined into circuits?

25. What are the two general categories of circuits and how do they
differ? 

26. Draw a circuit diagram corresponding to the following Boolean
expression:

(A + B)(B + C)

27. Draw a circuit diagram corresponding to the following Boolean
expression:

(AB + C)D

28. Draw a circuit diagram corresponding to the following Boolean
expression:

A�B + (B+C)�
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29. Draw a circuit diagram corresponding to the following Boolean
expression:

(AB)� + (CD)�

30. Show the behavior of the following circuit with a truth table:

31. Show the behavior of the following circuit with a truth table:

32. Show the behavior of the following circuit with a truth table:

33. Show the behavior of the following circuit with a truth table:

34. What is circuit equivalence?

A

B

C

A

C

B

A

B

A

B
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35. Name six properties of Boolean algebra and explain what each means.

36. Differentiate between a half adder and a full adder.

37. What is the Boolean expression for a full adder?

38. What is a multiplexer?

39. a. Circuits used for memory are which type of circuits?
b. How many digits does an S-R latch store?
c. The design for an S-R latch shown in Figure 4.12 guarantees what

about the outputs X and Y?

40. What is an integrated circuit or chip?

41. Define the abbreviations SSI, MSI, LSI, and VLSI.

42. In the chip shown in Figure 4.13, what are the pins used for?

43. Draw a circuit using two full adders that adds two two-bit binary
values. 

44. How can the XOR operation be expressed using other operators?

Thought Questions

1. Throughout this chapter we have used Boolean expressions, truth
tables, and logic diagrams to describe the same behavior. Is the rela-
tionship among these notational methods clear to you? Which do you
find is the most intuitive? Which do you find the least intuitive?

2. There are many situations that can be described by the ideas in this
chapter, for example, the operation of a single light switch or a light
that has two switches. Can you think of other everyday occurrences
that can be described by the notational methods presented in this
chapter?

3. Have you ever sent e-mail to someone only to regret it immediately?
Do you find that you would say something in e-mail that you would
never say in person? Consider the premise “E-mail has lowered the
civility of personal discourse.” Do you agree or disagree?

4. If a person sends e-mail from a school computer or a business
computer, should that message be considered private? Does the insti-
tution or person that owns the computer from which e-mail is sent
have a right to inspect the message?

5. Do you consider reading someone else’s e-mail as less of an invasion
of privacy than reading someone’s ordinary mail?

?
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Computing Components

Chapter 5

Chapter 2 described the binary number system in which all infor-

mation is represented on a computer. Chapter 4 described how we

control electricity at a fundamental level to manage binary values.

Now we can describe the primary components of a computer,

which capitalize on these technologies. These primary components

are like Lego pieces; they can be combined to build a variety of

different computers, just as Legos can form a variety of buildings.

Although these components, such as main memory and the

Central Processing Unit, are often thought of as the most funda-

mental parts of a computer, we know that they are abstractions of

even more fundamental concepts.
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Goals
After studying this chapter, you should be able to:

� read an ad for a computer and understand the jargon.
� list the components and their function in a von Neumann machine.
� describe the fetch-decode-execute cycle of the von Neumann machine.
� describe how computer memory is organized and accessed.
� name and describe different auxiliary storage devices.
� define three alternative parallel computer configurations.

5.1 Individual Computer Components

Computing, more than most fields, has its own special jargon and
acronyms. We begin this chapter by translating an ad for a desktop
computer. We then examine the components of a computer as a logical
whole before looking at each component in some detail.

Consider the following ad for a desktop computer, as if it were real.

There are two important and interesting things about this ad: The average
person hasn’t the foggiest idea what it all means, and by the time you are
reading it, the machine that it describes will be obsolete. In this chapter,
we try to interpret the acronyms; we can’t do anything about the speed at
which computer hardware and software change.

Dell™ Dimension 8100™ Series
The Advanced Performance, Smart Value Desktop

• Intel® Pentium® IV Processor at 866 MHz
• 128MB SDRAM at 1.4 GHz
• 40GB Ultra ATA-100 Hard Drive (7200 RPM)
• 17" (16.0" vis, .28dpi) E770 Monitor
• 16MB ATI Range™ 128 Pro Graphics
• 48X Max CD-ROM Drive
• FREE 8X/4X/32X CD-RW Drive
• SB Live! Value Digital

• FREE 8X/4X/32X CD-RW Drive
• SB Live! Value Digital
• Altec Lansing® ACS-340™ 
   Speakers with Subwoofer
• V.90 56K Capable PCI Telephony 
   Model for Windows®

• MS® Works Suite 2001 
   MS® Windows® Me
• 3-Yr Limited Warranty 
  1-Yr-at Home Service
• 1 Year of Dellnet™ by MSN®

   Internet Access Included
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Before we go on to describe computer components in the abstract, let’s
go through this ad and decipher the acronyms. After this exercise, we go
through all of the material again in more depth, so don’t be concerned if
the terms seem confusing. You’ll see all of them defined again later.

The first line describes the central processor inside the computer. This
description tells you how powerful the computer is. The central processor
is an Intel Pentium IV processor. We mentioned in the last chapter that this
is a common 32-bit processor. The 1.4 GHz tells how fast the processor is.
The abbreviation G is short for Giga, which in computer terms stands for
109. Hz stands for hertz, a unit of frequency equal to one cycle per second,
named for Heinrich R. Hertz. Therefore, the speed of this processor is
1,400,000,000 cycles per second. (Faster is better.)

The next line describes the memory that comes with the machine, called
the main memory. 128MB tells you how much memory comes with the
computer: 128,000,000 bytes. SDRAM stands for static dynamic random-
access memory. Random access means that each word of memory can be
directly accessed, rather than having to begin at the beginning and access
each word in turn until you get to the one you want. 133 MHz says that
memory can be accessed at 133,000,000 cycles per second. A quote attrib-
uted to Bill Gates, Microsoft chair, in 1981 did not prove to be very accu-
rate: “640K ought to be enough for anybody.”1 (Faster is better.)

The next line describes the hard disk drive, which is the common
name for the disk that is a secondary (also called auxiliary) storage
device. The disk drive is installed within the box housing everything but
the screen, keyboard, and mouse. 40GB specifies the number of bytes of
storage, (the G stands for Giga, which is 109.) so this machine has
40,000,000,000 bytes of storage. Ultra ATA-100 is the name of the
drive’s manufacturer. 7,200 RPM specifies how fast the disk revolves.
The speed of accessing a particular location in main memory is measured
in MHz; the access speed of a hard disk is measured in terms of revolu-
tions per minute. As you can guess from the numbers, accessing main
memory is much, much faster than accessing information on a disk.
(Faster is better.)

The next line describes the monitor. E770 is the kind of monitor; 17� is
the diagonal measurement of the screen. Parenthetically, it states that the
visible part of the screen is 16.0�, with a dp (dot pitch) of .28. The dot
pitch refers to the size of the dots on the screen. (Smaller is better.) The
next line describes a special video adapter to improve the graphics capa-
bility of the machine.

A CD-ROM drive comes with the machine. CD-ROM stands for
compact disk, read-only memory. Read-only means that you can read from
disks in the drive, but you cannot change any of the information on the
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disk. The compact disks look just like any CD in your music collection.
And, in fact, if you have this drive, you can play any of your CDs on the
computer. 48X Max is a measure of how fast information can be accessed
on the drive. The X stands for the speed of a standard audio CD player.

As an added bonus with this machine, a free CD-RW drive is installed.
A CD-RW is a CD disk drive that also allows you to write information on
the disk as well as read information from it. 8X/4X/32X is a measure of
the read/write speed on the disk. (Bigger is better.)

The next two lines describe the sound system that is installed within the
computer. If you are into computer music, the sound card and the speakers
are important. For some people, a computer is as much an audio system as
it is a computing device. There is also usually a small internal speaker built
into the computer for basic audio beeps and pings.

The modem is described next. The modem is one type of device that
allows you to connect to the Internet. V.90 is an International Standards
technical specification. 56K Capable means that the modem is capable of
processing 56,000 bytes per second. (K stands for kilo: 103.) A footnote in
the ad (not shown) states that the download speeds are limited to 53K per
second and upload speeds are about 30K per second and that these speeds
vary by manufacturer and line conditions. Download means information

coming from the Internet to your computer; upload
means information going from your computer to the
Internet. PCI Telephony Modem for Windows means
that the modem is configured to work with the
Windows Operating System.

The next two lines describe the software that comes
installed with the system and the warranty. MS Works
Suite 2001 stands for a collection of programs from
Microsoft that include a word processor, a spreadsheet
program, a data management program, and a display
presentation program. The last line says that one year
of Internet access is provided by MSN, an Internet
service provider.

Within this ad, there are eleven trademarked names:
eight marked with an  and three marked with a TM.
Intel and Pentium are registered trademarks of the Intel
Corporation. MS, Microsoft, MSN, and Windows are
registered trademarks of Microsoft Corporation.

Within this ad, three size measures that are powers
of ten have been used. Let’s summarize the prefixes
that refer to powers of ten that are used frequently in
computing.

Putting sizes in perspective
Admiral Grace Murray Hopper demonstrated
the relative sizes of computer jargon by
displaying a coil of wire nearly 1,000 feet long,
a short piece of wire about as long as your
forearm, and a bag containing grains of pepper.
She would point out that the wire coil was the
distance traveled by an electron along the wire
in the space of a microsecond. The short piece of
wire was the distance traveled by an electron
along the wire in the space of a nanosecond.
The grains of pepper represented the distance
traveled by an electron in a picosecond. She
would admonish the members of her audience to
remember their nanoseconds.
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We now move from the specific to the general. In the next several
sections we look at each of the pieces of hardware that make up a
computer from the logical level, rather than from a specific computer
configuration.

5.2 Stored-Program Concept

A major defining point in the history of computing was
the realization in 1944–45 that data and instructions to
manipulate the data are logically the same and could
be stored in the same place. The computer design built
around this principle, which became known as the von
Neumann architecture, is still the basis for computers
today. Although the name honors John von Neumann,
a brilliant mathematician who worked on the construc-
tion of the atomic bomb, the idea probably originated
with J. Presper Eckert and John Mauchly, two other
early pioneers who worked on the ENIAC at the
Moore School at the University of Pennsylvania during
the same time period.

von Neumann Architecture
Another major characteristic of the von Neumann
architecture is that the units that process information
are separate from the units that store information. This
characteristic leads to the following five components of
the von Neumann architecture, shown in Figure 5.1.

� The memory unit that holds both data and
instructions

Abbreviation Derivation
p
n
µ
m
K
M
G
T

Prefix
pico
nano
micro
milli
kilo
mega
giga
tera

Multiple of ten
10–12

10–9

10–6

10–3

103

106

109

1012

Spanish for little
Greek for dwarf
Greek for small
Latin for thousand
Greek for thousandth
Greek for large
Greek for giant
Greek for monster

Does it matter who was the father of
the modern computer?

All of the people involved in the research and
development of electronic computing devices in
the late 1930s and 1940s undoubtedly
contributed to the computer as we know it. This
list includes John Atanasoff, Clifford Berry, and
Konrad Zuse, in addition to von Neumann,
Eckert, and Mauchly.

In 1951 Sperry Rand bought the patent for the
ENIAC and its underlying concepts and began
charging royalties to other computer manufac-
turers. Not wanting to pay royalties, Honeywell
researched the history of modern computers and
presented evidence that the work of John Atana-
soff at Iowa State College had directly influenced
Mauchley and Eckert. Because of this evidence,
the patent for the ENIAC was invalidated in
1973. See the web site for more information.

W
WW

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Addressability The
number of bits stored in
each addressable loca-
tion in memory

Figure 5.1 The von
Neumann architecture

Input
device

Output
device

Auxiliary
storage
device

Memory unit

Arithmetic/logic unit

Control unit

Central Processing Unit

� The arithmetic/logic unit that is capable of performing arithmetic and
logic operations on data

� The input unit that moves data from the outside world into the
computer

� The output unit that moves results from inside the computer to the
outside world

� The control unit that acts as the stage manager to ensure that all the
other components act in concert

Memory
Recall from the discussion of number systems that each storage unit, called
a bit, is capable of holding a one or a zero and that these bits are grouped
together into bytes (8 bits) and that bytes are grouped together into words.
Memory is a collection of cells, each with a unique physical address. We
use the generic word cell here rather than byte or word, because the
number of bits in each addressable location, called the memory’s address-

ability, varies from one machine to another. However, most computers are
byte-addressable today.

The ad in the previous section describes a memory of 128,000,000
bytes. This means that each of the 128M bytes is uniquely addressable.
Therefore, the addressability of the machine is 8 bits. The machine being
described could have as many as 4,294,967,296 bytes of memory, but only
128MB are being provided. Where did that figure of possible number of
bytes come from? It is 232. The Pentium IV processor mentioned in the ad
is a 32-bit machine. This means that the processor can distinguish 232
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John Vincent Atanasoff was born in
Hamilton, New York, on October 4, 1903,
one of nine children. When he was about
ten, his father bought a new slide rule. After
reading the instructions, John Vincent
became more interested in the mathematics
involved than in the slide rule itself. His
mother picked up on his interest and helped
him study his father’s old college algebra
book. He continued his interest in mathe-
matics and science and graduated from high school
in two years. His family moved to Old Chicara,
Florida where John Vincent graduated from the
University of Florida in 1925 with a degree in elec-
trical engineering because the university didn’t offer a
degree in theoretical physics. A year later, he
received a Master’s degree in mathematics from Iowa
State College. In 1930, after receiving his Ph.D. in
theoretical physics, he returned to Iowa State College
as an assistant professor in mathematics and physics.

Dr. Atanasoff became interested in finding a
machine that could do the complex mathematical work
he and his graduate students were doing. He examined
computational devices in existence at that time, including
the Monroe calculator and the IBM tabulator. Upon
concluding that these machines were too slow and inac-
curate, he became obsessed with finding a solution. He
said that at night in a tavern after a drink of bourbon he
began generating ideas of how to build this computing
device. It would be electronically operated and would
compute by direct logical action rather than enumera-
tion, as in analog devices. It would use binary numbers
rather than decimal numbers, condensers for memory,
and a regenerative process to avoid lapses due to
leakage of power.

In 1939, with a $650 grant from the school and a
new graduate assistant named Clifford Berry, Dr.
Atanasoff began work on the first prototype of the
Atanasoff Berry Computer (ABC) in the basement of
the physics building. The first working prototype was
demonstrated that year.

In 1941, John Mauchly, a physicist at Ursinus
College whom Dr. Atanasoff had met at a conference,

came to Iowa State to visit the Atanasoffs
and see a demonstration of the ABC
machine. After extensive discussions,
Mauchly left with papers describing its
design. Mauchly and J. Presper Eckert
continued their work on a computation
device at the Moore School of Electrical
Engineering at the University of Pennsyl-
vania. Their machine, the ENIAC,
completed in 1945, became known as the

first computer.
Dr. Atanasoff went to Washington in 1942 to

become director of the Underwater Acoustics Program
at the Naval Ordnance Laboratory, leaving the patent
application for the ABC computer in the hands of the
Iowa State attorneys. The patent application was
never filed and the ABC was eventually dismantled
without either Atanasoff or Berry being notified. After
the war, Dr. Atanasoff was chief scientist for the Army
Field Forces and director of the Navy Fuse program at
the Naval Ordnance Laboratory.

In 1952, Dr. Atanasoff established The Ordnance
Engineering Corporation, a research and engineering
firm, which was later sold to Aerojet General Corpo-
ration. He continued to work for Aerojet until he
retired in 1961.

Meanwhile, in 1947 Mauchly and Eckert applied
for the patent on their ENIAC computer. Sperry Rand
bought the patent, and when it was issued in 1964,
began to collect royalties. Honeywell declined to pay
and Sperry Rand brought suit. The subsequent trial
lasted 135 working days and filled more than 20,000
pages of transcript from the testimony of 77 witnesses,
including Dr. Atanasoff. Judge Larson found that
Mauchly and Eckert “did not themselves first invent the
automatic electronic digital computer, but instead
derived that subject matter from one Dr. John Vincent
Atanasoff.”

In 1990 President George Bush acknowledged Dr.
Atanasoff’s pioneering work by awarding him the
National Medal of Technology. Dr. Atanasoff died on
June 15, 1995.

John Vincent Atanasoff
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Arithmetic/logic unit

The computer component
that performs arithmetic
operations (addition,
subtraction, multiplica-
tion, division) and
logical operations
(comparison of two
values)
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different memory addresses. Notice the relationship between the bits in the
processor and the number of different addresses: n bits can address 2n

different locations.
The cells in memory are numbered consecutively beginning with 0. For

example, if the addressability is 8, and there are 256 cells of memory, the
cells would be addressed as follows:

What are the contents of address 11111110? The bit pattern stored at that
location is 10101010. What does it mean? We can’t answer that question
in the abstract. Does location 11111110 contain an instruction? A integer
with a sign? A two’s complement value? Part of an image? Without
knowing what the contents represent, we cannot determine what it means:
It is just a bit pattern. We must apply an interpretation on any bit pattern
to determine the information it represents.

When referring to the bits in a byte or word, the bits are numbered from
right to left beginning with zero. The bits in address 11111110 above are
numbered as follows:

Arithmetic/Logic Unit
The arithmetic/logic unit (ALU) is capable of performing basic arithmetic
operations such as adding, subtracting, multiplying, and dividing two
numbers. This unit is also capable of performing logical operations such as
AND, OR, and NOT. The ALU operates on words; thus the word length
of a computer is the size of the quantities processed by the ALU. The word
length of the Pentium IV is 32 bits or 4 bytes.
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Register A small
storage area in the CPU
used to store interme-
diate values or special
data

Input unit A device
that accepts data to be
stored in memory

Output unit A device
that prints or otherwise
displays data stored in
memory or makes a
permanent copy of infor-
mation stored in memory
or another device

In 1889 the United States
Census Bureau realized that
unless they found a better way
to count the 1890 census, the
results might not be tabulated
before the next required census
in 1900. Herman Hollerith had
designed a method of counting
based on cards with holes

punched in them. This method
was used for tabulating the
census and the cards became
known as Hollerith cards.
Hollerith’s electrical tabulating
system led to the founding of
the company known today as
IBM. See the book’s Web site
for more information.

Who Was Herman Hollerith?

Most modern ALUs have a small amount of special storage units called
registers. These registers contain one word and are used to store informa-
tion that is needed again immediately. For example, in the calculation of

One * (Two + Three)

Two is first added to Three and the result is then multiplied by One.
Rather than storing the result of adding Two and Three in memory and
then retrieving it to multiply it by One, the result is left in a register and
the contents of the register is multiplied by One. Access to registers is
much faster than access to memory locations.

Input/Output Units
All of the computing power in the world wouldn’t be useful if we couldn’t
input values into the calculations from outside or report to the outside the
results of the calculations. Input and output units are the channels through
which the computer communicates with the outside world.

An input unit is a device through which data and programs from the
outside world are entered into the computer. The first input units inter-
preted holes punched on paper tape or cards. Modern-day input devices
include the terminal keyboard, the mouse, and scanning devices used at
supermarkets.

An output unit is a device through which results stored in the computer
memory are made available to the outside world. The most common
output devices are printers and video display terminals.

Courtesy of Douglas W. Jones at the University of Iowa
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Control unit The
computer component
that controls the actions
of the other components
in order to execute
instructions in sequence

Instruction register

(IR) The register that
contains the instruction
currently being executed

Program counter (PC)

The register that contains
the address of the next
instruction to be
executed

CPU A combination of
the arithmetic/logic unit
and the control unit; the
“brain” of a computer
that interprets and
executes instructions.

Bus A set of wires that
connect all major
sections of a machine
through which data flows

Motherboard The main
circuit board of a
personal computer
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Figure 5.2

Data flow through a von
Neumann machine

Bus

Input
devices CPU Main

memory
Output
devices

Control Unit
The control unit is the organizing force in the computer, for it is in charge
of the fetch-execute cycle, discussed in the next section. There are two
registers in the control unit. The instruction register (IR) contains the
instruction that is being executed, and the program counter (PC) contains
the address of the next instruction to be executed.

Because the ALU and the control unit work so closely together, they are
often thought of as one unit called the Central Processing Unit, or CPU.

Figure 5.2 shows the flow of information through the parts of a von
Neumann machine. The parts are connected to one another by a collection
of wires called a bus through which data travels within the computer. You
can think of a bus as a highway through which data flows. The data may
flow in different ways, but this is a common example.

In a personal computer, the components in a von Neumann machine
reside physically in a printed circuit board called the motherboard. The
motherboard also has connections for attaching other devices to the bus,
such as a mouse, a keyboard, or additional storage devices. (See the section
on Secondary Storage Devices later in the chapter.)

The Fetch-Execute Cycle
Before looking at how a computer does what it does, let’s look at what it
can do. The definition of a computer outlines its capabilities: A computer
is a device that can store, retrieve, and process data. Therefore, the instruc-
tions that we give to the computer all relate to storing, retrieving, and
processing data. In Chapter 8, we look at various languages that we can
use to give instructions to the computer. For our examples here, we use
simple English-like instructions.

Recall the principal of the von Neumann machine: Data and instruc-
tions are stored in memory and treated alike. This means that instructions
and data are both addressable. Instructions are stored in contiguous
memory locations; data to be manipulated are stored together in a
different part of memory. To start the fetch-execute cycle, the address of
the first instruction is loaded into the program counter.
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The steps in the processing cycle are:

� Fetch the next instruction.

� Decode the instruction.

� Get data if needed.

� Execute the instruction.

Let’s look at each of these steps in more detail. The process starts with the
address in memory of the first instruction being stored in the program
counter.

Fetch the Next Instruction
The program counter (PC) contains the address of the next instruction to
be executed, so the control unit goes to the address in memory specified in
the PC, makes a copy of the contents, and places the copy in the instruc-
tion register. At this point the instruction register contains the instruction
to be executed. Before going on to the next step in the cycle, the program
counter must be updated to hold the address of the next instruction to be
executed when the current instruction has been completed. Because the
instructions are stored contiguously in memory, adding 1 to the program
counter should put the address of the next instruction into the PC. So the
control unit increments the program counter. It is possible that the PC may
be changed later by the instruction being executed.

Accessing memory takes one cycle. The computer in the ad at the
beginning of this chapter can access memory at 133,000,000 cycles per
second, so one access takes 7.5 nanoseconds or 7.5 billionths of a second.
Is that fast?

Decode the Instruction
In order to execute the instruction in the instruction register, the control
unit has to determine what instruction it is. It might be an instruction to
access data from an input device, to send data to an output device, or to
perform some operation on a data value. At this phase, the instruction is
decoded into control signals. That is, the logic of the circuitry in the CPU
determines which operation is to be executed. This step shows why a
computer can only execute instructions that are expressed in its own
machine language. The instructions themselves are literally built into the
circuits.

Get Data If Needed
It may be that the instruction to be executed requires additional memory
accesses in order to complete its task. For example, if the instruction says
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Figure 5.3

The fetch-execute cycle

Control
unit

(2) Decode instruction

FETCH CYCLE
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EXECUTION CYCLE

(4) Execute the instruction

Main Memory
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to add the contents of a memory location to a register, the control unit
must get the contents of the memory location.

Execute the Instruction
Once an instruction has been decoded and any operands (data) fetched, the
control unit is ready to execute the instruction. Execution involves sending
signals to the arithmetic/logic unit to carry out the processing. In the case
of adding a number to a register, the operand is sent to the ALU and added
to the contents of the register.

When the execution is complete, the cycle begins again. If the last
instruction was to add a value to the contents of a register, the next
instruction probably says to store the results into a place in memory.
However, the next instruction might be a control instruction: an instruc-
tion that asks a question about the result of the last instruction and
perhaps changes the contents of the program counter.

Figure 5.3 summarizes the fetch-execute cycle.
Hardware has changed dramatically in the last half-century, yet the von

Neumann machine is still the basis of most computers today. As Alan
Perlis, a well-known computer scientist, said in 1981, “Sometimes I think
the only universal in the computing field is the fetch-execute cycle.” 2 This
statement is still true today, 20 years later.

RAM and ROM
We said previously that RAM stands for Random Access Memory. RAM
is memory in which each cell (usually byte) can be directly accessed.
Inherent in the idea of being able to access each location is the ability to
change the contents of each location. That is, storing something else into
that place can change the bit pattern in each cell.
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Recall that data and instructions reside in main memory and are
treated alike. This means that an instruction could be changed while a
program is executing. How can this happen? There could be an instruc-
tion to take the contents of the location that contains an instruction, add
or subtract a value from it, and return it to the same location. There are
times that you might actually want to do this. However, inadvertently
changing a program can be very costly. ROM memory solves this
problem.

ROM stands for Read Only Memory. The contents in locations in
ROM cannot be changed. Their contents are permanent and cannot be
changed by a stored operation. Placing the bit pattern in ROM is called
burning. The bit pattern is burned either at the time the ROM is manufac-
tured or at the time the computer parts are assembled.

RAM and ROM are differentiated by another very basic property.
RAM is volatile; ROM is not. This means that RAM does not retain its bit
configuration when the power is turned off, but ROM does. The bit
patterns within ROM are permanent. Because ROM is stable and cannot
be changed, it is used to store the instructions that the computer needs to
start itself. Frequently used software is also stored in ROM to keep from
having to read the software in each time the machine is turned on.

Main memory usually contains some ROM along with the general
purpose RAM. Note that ROM is also random access. It has been
suggested that RAM be called RWM for read/write memory, because all
main memory is random access, but the term is already in common use.

Secondary Storage Devices
The von Neumann architecture that we have just examined is hypothet-
ical. We have described the five parts that any computer built using this
design must have. An input device is the means by which data and
programs are entered into the computer and stored into memory. An
output device is the means by which results are sent back to the user.
Because most of main memory is volatile and limited, it is essential that
there be other types of storage devices where programs and data can be
stored when they are no longer being processed or the machine is not
turned on. These other types of storage devices (other than main memory)
are called secondary or auxiliary storage devices. Because data must be
read from them and written to them, each secondary storage device is also
an input and an output device.

Secondary storage devices can be installed within the computer box at the
factory or added later as needed. Because these storage devices can store large
quantities of data, they are also known as mass storage devices. For example,
the hard disk drive that comes with the computer in the ad can store
40,000,000,000 bytes as opposed to 133,000,000 bytes in main memory.

In the next sections we look at several secondary storage devices.
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Figure 5.4

A magnetic tape
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Magnetic Tape
We mentioned card readers and card punches as very early input/output
devices. Paper tape readers were the next input/output devices. Although
paper tapes, like cards, are permanent, they do not contain much data. The
first truly mass auxiliary storage device was the magnetic tape drive. A
magnetic tape drive is like a tape recorder and is most often used to back
up (make a copy of) the data on a disk in case the disk is ever damaged.
Tapes come in several varieties, from small streaming-tape cartridges to
large reel-to-reel models.

Tape drives have one serious drawback: In order to access data in the
middle of the tape, all the data before the one you want must be accessed
and discarded. Although the modern streaming-tape systems have the
capability of skipping over segments of tape, the tape must physically
move through the read/write heads. Any physical movement of this type is
time-consuming. See Figure 5.4.

Magnetic Disks
A disk drive is a cross between a compact disk player and a tape recorder.
A read/write head (similar to the record/playback head in a tape recorder)
travels across a spinning magnetic disk, retrieving or recording data. Like a
compact disk, the heads travel directly to the information desired, and like
a tape, the information is stored magnetically.
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Track A concentric
circle on the surface of a
disk

Sector A section of a
track

Block The information
stored in a sector
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Figure 5.5 The organization of a magnetic disk

Disks come in several varieties, but they all use a thin disk made out of
magnetic material. The surface of each disk is logically organized into
tracks and sectors. Tracks are concentric circles around the surface of the
disk. Each track is divided into sectors. Each sector holds a block of infor-
mation as a continuous sequence of bits. (See Figure 5.5.) Although the
tracks nearer the center look smaller, each track has the same number of
sectors, and each sector has the same number of bits. The blocks of data
nearer the center are just more densely packed. The actual number of
tracks per surface and the number of sectors per track vary, but 512 bytes
or 1024 bytes are common. (The power of two strikes again.) The location
of the tracks and sectors are marked magnetically when a disk is
formatted; they are not physically part of the disk.

The read/write head in a disk drive is positioned on an arm that moves
from one track to another. An input/output instruction specifies the track
and sector. When the read/write head is over the proper track, it waits
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Seek time The time it
takes for the read/write
head to get positioned
over the specified track

Latency The time it
takes for the specified
sector to be in position
under the read/write
head

Access time The time
it takes for a block to
start being read; the sum
of seek time and latency.

Transfer rate The rate
at which data moves
from the disk to memory

Cylinder The set of
concentric tracks on all
surfaces
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until the appropriate sector is beneath the head and the block of informa-
tion in the sector is then accessed. This process gives rise to four measures
of a disk drive’s efficiency: seek time, latency, access time, and transfer

rate. Seek time is the time it takes for the read/write head to get positioned
over the specified track. Latency is the time it takes for the specified sector
to spin to the read/write head. The average latency is one-half the time for
a full rotation of the disk. For this reason, latency is also called rotation
delay. Access time is the sum of seek time and latency. Transfer rate is the
rate at which data is transferred from the disk to memory.

Now, let’s look at some of the varieties of disks. One classification of
disk is hard versus floppy. These terms refer to the flexibility of the disk
itself. The original floppy disk, introduced in the 1970s, was 8� in diameter
and very floppy. By the time of the rise in personal computers in the late
1970s, the floppy disk had been reduced in size to 5–1/2� in diameter.
Today’s generic “floppy” disks are 3–1/2� in diameter, encased in a hard
plastic cover, and capable of storing 1.44 MB of data. Newer machines do
not automatically have built-in drives for these disks as they did a few years
ago, but they are still popular and drives for them can be added. There are
newer specialized disks available today, such as the Zip disk and its associ-
ated drive. A Zip disk stores up to several hundred MB on a single hard
disk, but is much more expensive.

Hard disks, the disks on the hard drive that comes with the computer,
consist of several disks—this sounds strange, so let’s explain. Let’s call the
individual disks platters. Hard disks consist of several platters attached to a
spindle that rotates. Each platter has its own read/write head. All of the
tracks that line up under one another are called a cylinder, which is also
shown in Figure 5.5. An address in a hard drive is the cylinder number, the
surface number, and the sector. Hard drives rotate at a much higher speed
than floppy drives, and the read/write heads don’t actually touch the surface
of the platters but, rather, float above them. The advertisement that we
examined at the beginning of the chapter specified that the hard drive disk
rotated 7,200 revolutions per minute. Compare this speed to the average
floppy disk drive, which revolves the floppy disk at a tenth of that speed. For
this reason, we talk about hard disk transfer rates using megabytes per
second and floppy disk transfer rates using kilobytes per seconds.

Compact Disks
The world of compact disks and their drivers looks like acronym soup. The
ad we examined used two acronyms: CD-ROM and CD-RW. In addition,
we have to decipher CD-DA, CD-WORM, and DVD. And we are sure that
by the time you are done reading this book, there will be many more.
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Let’s look for a moment at the acronym CD. CD, of course, stands for
compact disk—you probably have a collection of them with recorded music.
A CD drive uses a laser to read information stored optically on a plastic
disk. Rather than having concentric tracks, there is one track that spirals
from the inside out. Like other disks, the track is broken into sectors. Unlike
magnetic disks where the tracks near the center are more densely packed, a
CD has the data evenly packed over the whole disk, thus more information
is stored in the track on the outer edges and read in a single revolution. In
order to make the transfer rate consistent throughout the disk, the rotation
speed varies depending on the position of the laser beam.

The other letters attached to CD refer to various
properties of the disk, such as formatting, and whether
or not the information on them can be changed. CD-DA
is the format used in audio recordings: CD-DA stands
for Compact Disk-Digital Audio. Certain fields in the
format are used for timing information. A sector in a
CD-DA contains 1/75 of a second of music.

CD-ROM is the same as CD-DA but the disk is
formatted differently. Data is stored in the sectors
reserved for timing information in CD-DA. ROM
stands for Read-Only Memory. As we said when we
described the CD-ROM that was in the ad, read-only
memory means that the data is permanent on the disk
and cannot be changed. A sector on a CD-ROM
contains 2KB of data. The CD-ROM drive described in
the ad gave the transfer rate, but did not give the capacity of a disk read by
the drive. However, the capacity is in the neighborhood of 600 MB.

DVD is a newer technology that can store up to 10 GB. DVD, which stands
for Digital Versatile Disk, can store multi-media presentations that combine
audio and video. As you probably know, movies are now available on DVDs.

The acronym CD-WORM stands for Write Once, Read Many. This
technology allows a CD to be recorded after its manufacture. This format
is used typically for archiving data, where the data is not to be changed
after being recorded. Then, finally, the acronyms RW or RAM mean that
the disk can be both read from and written to.

5.3 Non-von Neumann Architectures

The linear fetch-execute cycle of the von Neumann architecture still domi-
nates the technology today. However, since 1990, alternative parallel-

NASA Backup Computers
In the early days of manned space flights, NASA
used a backup system composed of three main-
frame computers, each of which calculated
exactly the same thing. If one computer failed,
there were still two computers carrying out the
necessary calculations. If two computers failed,
there was still one computer left to do the neces-
sary processing. If three computers failed—well,
fortunately that never happened.
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Synchronous

processing Multiple
processors apply the
same program in lock-
step to multiple data sets

Pipelining processing

Multiple processors
arranged in tandem,
where each contributes
one part of an overall
computation
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processing systems have entered the marketplace. They have the potential
to process much more data at much higher speeds.

One approach to parallelism is to have multiple processors apply the
same program to multiple data sets. In this approach, processors often
execute the same instructions at the same time; that is, a common program
is run at each processor. This approach is called synchronous processing

and is effective when the same process needs to be applied to many data
sets. See Figure 5.6. This approach is similar to that of the NASA backup
system in which three computers do the same thing as a security measure.
However, here there are multiple processors applying the same process to
different data sets in parallel.

Another configuration arranges processors in tandem, where each
processor contributes one part to an overall computation. This approach is
called pipelining, and is reminiscent of an assembly line. When this organi-
zation is applied to data, the first processor does the first task. Then the
second processor starts working on the output from the first processor,
while the first processor applies its computation to the next data set. Even-
tually, each processor is working on one phase of the job, each getting
material or data from the previous stage of processing, and each in turn
handing over its work to the next stage. See Figure 5.7.
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Shared memory

Multiple processors
share a global memory
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Figure 5.8
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In the first example, each processor is doing the same thing to a
different data set. For example, each processor might be computing the
grades for a different class. In the second example, each processor is
contributing to the grade for the same class. The third approach is to
have different processors doing different things with different data. This
configuration allows processors to work independently much of the time,
but introduces problems of coordination among the processors. This
leads to a configuration where the processors each have a local memory
and a shared memory. The processors use the shared memory for
communication, and the configuration is thus called a shared-memory

configuration. See Figure 5.8.

5.4 Interpreting Ads

Walter S. Mossberg, a columnist for The Wall Street Journal, listed items
to watch out for when shopping for a personal computer.3 Here are a few
of his points that are relevant to the jargon in computer ads.

Increased processor speed does not necessarily mean better performance
in tasks such as web surfing, e-mail, and word processing as long as the
machine has sufficient memory. That is, the more memory you have, the
less powerful the processor needs to be. Be aware, however, that the total
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memory that comes with a computer may not be avail-
able to the user. In lower-priced machines, memory
may be siphoned off to power the video processor. For
example, in a 64MB shared-memory machine, only 54
to 60MB may be available for programs.

The X used in rating CD-ROMs stands for the
speed of a standard audio CD player. When evaluating
the CD-ROM, be aware that the higher speeds listed
for CD-ROMs are usually attainable only when
retrieving data from certain parts of the CD. The speed
stated is not an average. Therefore, faster may not be
better in terms of the added cost.

Summary

The components that make up a computer cover a wide range of devices.
They each have characteristics that dictate how fast, large, and or efficient
they are. Furthermore, they each play an integral role in the overall
processing of the machine.

The world of computing is filled with jargon and acronyms. The speed
of a processor is specified in GHz (gigahertz), the amount of memory is
specified in MB (megabytes), external storage devices are specified in GB
(gigabytes), and a monitor is specified in db (dot pitch). Intel and Pentium
are registered trademarks of Intel Corporation; MS, Microsoft, MSN, and
Windows are registered trademarks of Microsoft Corporation.

The von Neumann architecture is the underlying architecture of most of the
computers today. It has five main parts: memory, the arithmetic/logic (ALU)
unit, input devices, output devices, and the control unit. The fetch-execute
cycle, under the direction of the control unit, is the heart of the processing. In
this cycle, instructions are fetched from memory, decoded, and executed.

RAM and ROM are acronyms for two types of computer memory.
RAM stands for random-access memory; ROM stands for read-only
memory. The values stored in RAM can be changed; those in ROM cannot.

Secondary storage devices are essential to a computer system. These
devices save data when the computer is not running. Magnetic tape and
magnetic disk are two common types of secondary storage.

Although von Neumann machines are by far the most common, there
are other architectures. For example, there are machines with more than
one processor so that calculations can be done in parallel, thus speeding up
the processing.

Text messaging popular in Europe
Go to Rome or Stockholm and you will see people
walking down the street sending text messages on
their mobile phones. In most parts of the world,
sending text messages is cheaper than making
voice calls. 47% of Swedes and 39% of Italians
use text messaging, compared with only 2% of
North Americans. In contrast, handheld
computers are far more popular in North
America than anywhere else in the world.
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Facial Recognition/Privacy
Forgot your password? Not a problem! Lost your ID? No need to

worry! Soon, your face may be the only key you need to access ATMs,

enter secure buildings, or log on to your e-mail. Facial recognition

technology, until recently relegated to the realm of science fiction, is

now becoming a central security feature for companies and organiza-

tions all over the world.

Facial recognition is an identity verification technique that matches

the structure of a person’s face to his/her picture with over 99% accu-

racy. While only recently gaining the public’s attention, facial recogni-

tion technology has been in development for well over a decade and

has been used for commercial purposes since 1997. It is a branch of

biometrics, an increasingly popular method of identity verification that

is more reliable than traditional codes, pictures, and passwords.

Biometric technology takes unique physical characteristics, such as

fingerprints, eyes, ears, or faces, and compares them with a database

developed for identification purposes. Unlike handprints and iris scans,

“faceprints” are obtained in a nonintrusive manner, and the scanning

and matching system is less expensive than other techniques.

To obtain a faceprint, cameras scan the peaks and valleys of

features, called nodal points. The face contains over 80 nodal points,

but only 14 to 22 stable nodal points are needed for a successful

match. Stable nodal points are those that do not fluctuate with weight

or expression, such as eye socket depth. Once a faceprint is obtained, it

is compared to a database of images.

Because of its speed and accuracy, facial recognition software has

become popular in casinos as a means to identify known cardsharps. The

technology has also been used as a security precaution to spot known

terrorists in international airports. Tampa, Florida is one of the first cities

to use facial recognition in a public setting in an effort to reduce crime

rates. In the 2001 Super Bowl, Tampa officials scanned the faces of the

100,000 spectators and compared each with its database of known felons.

Was this an invasion of privacy? Football fans did not give

permission for their faces to be scanned, but proponents of the use of

these techniques note that permission is not obtained by stores and

malls who use video surveillance cameras for similar purposes either.

Opponents feel that this surveillance technique violates individual

W
WW
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rights to privacy. These critics oppose both clandestine capture (the

scanning of faces without consent) and tracking (the use of this tech-

nology to monitor a person’s movements). Privacy advocates, such as

the Electronic Privacy Information Center, are concerned that this Big

Brother technology takes away an individual’s right to anonymity

and an individual’s control over his/her personal information. Users

of these techniques, however, assert that only public offenders and

missing children, whose photographs are in the databases, are

affected.
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Access time  pg. 130

Addressability  pg. 120
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Exercises
1. Define the following terms.

a. Pentium III processor
b. hertz
c. random-access memory

2. What is the word length in the Pentium IV processor?

3. What does it mean to say that a processor is 1.4 GHz?

4. What does it mean to say that memory is 133 MHz?

5. How many bytes of memory are in the following machines?
a. 128MB machine
b. 256MB machine
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6. Define RPM and discuss what it means in terms of speed of access to
a disk.

7. Define the following terms and give their abbreviation.
a. pico
b. nano
c. micro
d. milli

8. Define the following terms and give their abbreviation.
a. kilo
b. mega
c. giga
d. tera

9. Give the derivation of the terms in Exercises 7 and 8.

10. What is the stored-program concept and why is it important?

11. What does “units that process information are separate from the units
that store information” mean in terms of a computer architecture?

12. Name the components of a von Neumann machine.

13. What is the addressability of an 8-bit machine?

14. What is the function of the ALU?

15. Which component in the von Neumann architecture acts as the stage
manager. Explain.

16. Punched cards and paper tape were early input/output mediums.
Discuss their advantages and disadvantages.

17. What is an instruction register? What is its function?

18. What is a program counter? What is its function?

19. List the steps in the fetch-execute cycle.

20. Explain what is meant by “fetch an instruction.”

21. Explain what is meant by “decode and instruction.”

22. Explain what is meant by “execute an instruction.”

23. Compare and contrast RAM and ROM memory.

24. What is a secondary storage device? Why are such devices important?

25. Discuss the pros and cons of using magnetic tape as a storage medium.

26. Draw one surface of a disk showing the tracks and sectors.

27. Define what is meant by a block of data.

28. What is a cylinder?

29. Define the steps that a hard disk drive goes through to transfer a block
of data from the disk to memory.
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30. Distinguish between a compact disk and a magnetic disk.

31. Define the following acronyms.
a. CD
b. CD-ROM
c. CD-DA
d. CD-RW
e. DVD

32. Compare the transfer rates of a hard disk and a floppy disk.

33. Compare the storage capacity of a hard drive and a floppy disk.

34. Compare the storage capacity of a generic floppy disk and a zip disk.

35. Look in your local newspaper for an ad for a desktop computer. How
many acronyms did you recognize? How many did you not recognize?

36. Call the manufacturer of the computer that was advertised in Exercise
35 and get the definitions of the acronyms that you did not recognize.

37. Describe a parallel architecture that uses synchronous processing.

38. Describe a parallel architecture that uses pipeline processing.

39. How does a shared-memory parallel configuration work?

40. How many different memory locations can a 16-bit processor access?

41. In discussing the computer ad, we used the expression “Faster is
better” three times. Explain what it means in each case.

42. In discussing the computer ad, we used the expression “Smaller is
better” in relation to the monitor. Explain.

43. In discussing the computer ad, we used the expression “Bigger is
better” in relation to the compact disk. Explain.

44. Keep a diary for a week of how many times the terms hardware and
software appear in television commercials.

45. Take a current ad for a desktop computer and compare that ad with
the one shown at the beginning of this chapter.

46. What is the common name for the disk that is a secondary storage
device?

47. To what does the expression dot pitch refer?

48. What is a modem?

49. Which are faster, download seeds or upload speeds?

50. What is included in MS Works Suite 2001?
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Thought Questions
1. Would octal or hexadecimal be a better way to refer to the addresses

in a 16-bit processor? Justify your answer.

2. Relate the concept of a program to the fetch/execute cycle of the von
Neumann machine.

3. Personal computers originally came equipped with one, then two
floppy drives. After that, floppy drives became optional as CD drives
became standard. What do you think will be the standard personal
computer of the future?

4. After the September 11 hijackings and subsequent suicide attacks,
there was talk of using biometric technology for airport screening.
What do you think of this use of biometrics? Would it make air travel
more secure?

5. Must citizens give up privacy for security? What are the pros and cons
of this issue?

?
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Problem Solving and 
Algorithm Design

Chapter 6

Chapter 6 is the first chapter in the programming layer. In Chap-

ters 2 and 3 we have covered the basic information necessary for

understanding a computing system, including number systems and

how to represent different types of information in a computer. In

Chapters 4 and 5 we have covered the hardware components of a

computer. Now the emphasis changes from what a computer

system is to how to use one.

In this chapter we examine ways to solve problems and how to

write the solutions (algorithms) in a shorthand called pseudocode.

These pseudocode solutions are like recipes. Just as a recipe is a set

of instructions for cooking a particular food dish, a pseudocode

algorithm is a set of instructions for how to solve a particular

problem. In subsequent chapters in this layer, we cover translating

a pseudocode solution into a programming language that can be

run on a computer.
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Problem solving The
act of finding a solution
to a perplexing question
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Goals
After studying this chapter, you should be able to

� determine whether a problem is suitable for a computer solution.
� describe the computer problem-solving process and relate it to Polya’s

How to Solve It list.
� distinguish between following an algorithm and developing one.
� apply top-down design methodology to develop an algorithm to solve a

problem.
� define the key terms in object-oriented design.
� apply object-oriented design methodology to develop a collection of inter-

acting objects to solve a problem.
� discuss the following threads as they relate to problem solving: informa-

tion hiding, abstraction, naming things, and testing.

6.1 Problem Solving

What do the words problem solving mean to you? Do they evoke images
of a child drearily working on a photocopied math worksheet? Of a farmer
trying to get his hay in before the storm comes? Of your mother trying to
make the budget balance with the increase in college tuition? Of Albert
Einstein wrestling with the theory of relativity? Of you trying to get the
seven people you asked to the game into your four-seater car? Of your girl-
friend or boyfriend who seems to be drifting away? Of the address list that
you promised to organize for your club yesterday? Of the troubles in
Northern Ireland? Of India and Pakistan?

A dictionary defines a problem as a question raised for inquiry, considera-
tion, or solution. In mathematics, a problem is usually a situation to resolve
with well-defined mathematical principles. Another definition says that a
problem is an intricate unsettled question or a source of perplexity, distress,
or vexation. Solving is defined as finding a solution for something such as a
problem. Putting these definitions together, problem solving is the act of
finding a solution to a perplexing, distressing, vexing, or unsettled question.

Certainly, all of the problems in the first paragraph meet this definition.
However, only some of them are of interest in the context of computing.
The computer cannot be used, at least directly, to help the farmer with his
hay, the squeezing of additional people into a car, the girl with the drifting
boyfriend, the centuries-old conflict between Catholics and Protestants in
Northern Ireland, or the religious and territorial conflicts between India

http://lib.ommolketab.ir
http//lib.ommolketab.ir
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and Pakistan. The computer cannot be used to solve problems involving
physical activity or emotions.

Furthermore, the computer can do nothing without being told what to
do. A computer is not intelligent. It cannot analyze a problem and come up
with a solution. A human (the programmer) must analyze the problem,
develop the instructions for solving the problem (the program), and then
have the computer carry out the instructions.

What’s the advantage of using a computer if it can’t solve problems? Well,
once we have written a solution for the computer, the computer can repeat
the solution very quickly and consistently, again and again, for different situ-
ations and data. The computer frees people from repetitive and boring tasks.

The computer can be used to make the math worksheet more interesting
(and less dreary) by letting the student interact with a computer-based
worksheet. The student can see the worksheet on the screen and enter the
solutions. The program can check the answers and give feedback to the
student. The computer can be used to help your mother with her budget by
taking over the time-consuming task of keeping track of the finances. There
are many commercial software packages available to provide this help.

Who knows how much time would have been saved if Einstein had had
access to one of today’s supercomputers with enhanced mathematical capabil-
ities. What about your address list? There are many packages available to help
with organizing information such as address lists. In addition, it is a relatively
simple task to write a program to handle a specific address list. Any second-
year computer science student could write a simple version within a week.

How to Solve Problems
In 1945, G. Polya wrote a little book entitled How to Solve It: A New Aspect
of Mathematical Method.1 Although this book was written over 50 years ago
when computers were only experimental—it remains the classic description
of the problem-solving process. The process is summarized in Figure 6.1.

What has made Polya’s book a classic is that his How to Solve It list is
quite general. Although it was written in the context of solving mathemat-
ical problems, we can replace the words unknown with problem, data with
information, and theorem with solution, and the list becomes applicable to
all types of problems. Of course, it is the second step—finding the connec-
tion between the information and the solution—that is at the heart of
problem solving. Let’s look at several strategies suggested by Polya’s list.

Ask Questions
If you are given a problem or task verbally, you typically ask questions
until what you are to do is clear. You ask when, why, and where until
your task is completely specified. If your instructions are written, you
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First.
You have to understand the problem.

Second.
Find the connection between the 

data and the unknown.  You may be 
obliged to consider auxiliary 

problems if an immediate connection 
cannot be found.  You should obtain 

eventually a plan of the solution.

Third.
Carry out your plan.

Fourth.
Examine the solution obtained.

HOW TO SOLVE IT

UNDERSTANDING THE PROBLEM
What is the unknown?  What are the data?  What is the condition?
Is it possible to satisfy the condition?  Is the condition sufficient to determine the 
unknown?  Or is it insufficient?  Or redundant?  Or contradictory?
Draw a figure.  Introduce suitable notation.
Separate the various parts of the condition.  Can you write them down?

DEVISING A PLAN
Have you seen it before?  Or have you seen the same problem in a slightly 
different form?
Do you know a related problem?  Do you know a theorem that could be useful?
Look at the unknown!  And try to think of a familiar problem having the same or 
a similar unknown.
Here is a problem related to yours and solved before.  Could you use it?  Could 
you use its result?  Could you use its method?  Should you introduce some 
auxiliary element in order to make its use possible?  Could you restate the 
problem?  Could you restate it still differently?  Go back to definitions.
If you cannot solve the proposed problem, try to solve first some related 
problem.  Could you imagine a more accessible related problem?  A more 
general problem?  A more special problem?  An analogous problem?  Could you 
solve a part of the problem?  Keep only a part of the condition, drop the other 
part; how far is the unknown then determined; how can it vary?  Could you 
derive something useful from the data?  Could you think of other data 
appropriate to determine the unknown?  Could you change the unknown or the 
data, or both if necessary, so that the new unknown and the new data are nearer 
to each other? Did you use all the data?  Did you use the whole condition?  
Have you taken into account all essential notions involved in the problem?

CARRYING OUT THE PLAN
Carrying out your plan of the solution, check each step.  Can you see clearly 
that the step is correct?  Can you prove that it is correct?

LOOKING BACK
Can you check the result?  Can you check the argument?  Can you derive the 
result differently?  Can you see it at a glance?  Can you use the result, or the 
method, for some other problem?

might put question marks in the margin, underline a word, a group of
words, or a sentence, or in some other way indicate the parts of the task
that are not clear. Perhaps your questions may be answered in a later para-
graph, or you might have to discuss them with the person giving you the
task. If the task is one that you set for yourself, this sort of questioning
might not be verbal, but instead takes place on the subconscious level.

Figure 6.1 Polya’s How to Solve It list. Polya, George; How to Solve it. Copyright © 1945 renewed 1973 by Princeton University Press.

Reprinted by permission of Princeton University Press.
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George Polya was born in Budapest on
December 13, 1887. Although he be-
came known as a world famous mathe-
matician, he did not show an early
interest in mathematics. His lack of
interest might be explained by his
memory of three high school mathematics
teachers: “two were despicable and one
was good.”

In 1905, Polya entered the University
of Budapest, where he studied law at the
insistence of his mother. After one very
boring semester, he decided to study languages and
literature. He earned a teaching certificate in Latin
and Hungarian—and never used it. He became
interested in philosophy and took courses in math
and physics as part of his philosophy studies. He
settled on mathematics, commenting that “I am too
good for philosophy and not good enough for
physics. Mathematics is in between.” He received his
Ph.D. in mathematics in 1912, which launched his
career.

Polya did research and taught at the University of
Göttingen, the University of Paris, and the Swiss
Federation of Technology in Zurich. While in Zurich
he interacted with John von Neumann, about whom
he said, “Johnny was the only student I was ever
afraid of. If, in the course of a lecture, I stated an
unsolved problem, the chances were he’d come to
me as soon as the lecture was over, with the
complete solution in a few scribbles on a slip of
paper.”

Like many Europeans of that era, he moved to the
United States in 1940 because of the political situa-
tion in Germany. After teaching at Brown University
for two years, he moved to Palo Alto to teach at
Stanford, where he remained for the rest of his
career.

Polya’s research and publications
encompassed many areas of mathe-
matics, including number theory, combi-
natorics, astronomy, probability, integral
functions, and boundary value problems
for partial differential equations. The
George Polya Prize is given in his honor
for notable application of combinatorial
theory.

Yet, for all George Polya’s contribu-
tions to mathematics, it is his contribution
to mathematics education for which he

was the most proud and for which he will be the most
remembered. His book, How to Solve It, published in
1945, sold over a million copies and was translated
into 17 languages. In this book, Polya outlines a
problem-solving strategy designed for mathematical
problems. The generality of the strategy makes it
applicable to all problem solving, however. Polya’s
strategy is the basis of the computer problem-solving
strategy outlined in this text. Mathematics and Plau-
sible Reasoning, published in 1954, was another
book dedicated to mathematics education. He not
only wrote about mathematics education, but also
took an active interest in the teaching of mathe-
matics. He was a regular visitor to the schools in the
Bay Area and visited most of the colleges in the
western states. The Math Center at the University of
Idaho is named for him.

On September 7, 1985, George Polya died in
Palo Alto at the age of 97.

George Polya
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Some typical questions you should be asking are as follows:

� What do I know about the problem?

� What is the information that I have to process in order the find the
solution?

� What does the solution look like?

� What sort of special cases exist?

� How will I recognize that I have found the solution?

Look for Familiar Things
You should never reinvent the wheel. If a solution exists, use it. If you’ve
solved the same or a similar problem before, just repeat the successful solu-
tion. We usually don’t consciously think, “I have seen this before, and I
know what to do,” we just do it. Humans are good at recognizing similar
situations. We don’t have to learn how to go to the store to buy milk, then
to buy eggs, then to buy candy. We know that going to the store is always
the same and only what we buy is different.

Recognizing familiar situations is particularly useful in computing. In
computing, you see certain problems again and again in different guises. A
good programmer sees a task, or perhaps part of a task (a subtask), that
has been solved before and plugs in the solution. For example, finding the
daily high and low temperatures in a list of temperatures is exactly the
same problem as finding the highest and lowest grades in a list of test
scores. You want the largest and smallest values in a set of numbers.

Divide and Conquer
We constantly break up a large problem into smaller units that we can
handle. The task of cleaning the house or apartment may seem over-
whelming. The task composed of cleaning the living room, the dining
room, the kitchen, the bedrooms, and the bathroom seems more manage-
able. This principle is especially relevant to computing. We break up a
large problem into smaller pieces that we can solve individually.

This approach applies the concept of abstraction that we discussed in
Chapter 1—cleaning the house is a large, abstract problem made up of the
subtasks defined by cleaning the individual rooms. Cleaning a room can
also be thought of as an abstraction of the details of straightening the
dresser, making the bed, vacuuming the floor, and so on. Tasks are divided
into subtasks, which can be divided further into sub-subtasks and so forth.
The divide-and-conquer approach can be applied over and over again until
each subtask is manageable.
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Applying These Strategies
Now let’s apply these strategies (called heuristics) to a specific problem:
How do we get to the party next Saturday at Sally’s house?

Questions: Where is Sally’s house? Where are we coming from? What is
the weather like (or likely to be like)? Will we be walking? Driving a car?
Taking a bus? Once these questions have been answered, you can begin to
plan the solution.

If it is raining, the car is in the shop, and the busses have stopped, the
best solution might be to call a taxi and give the driver Sally’s address.

If we are driving, we look at a map and see that Sally’s address is six
blocks west of the building where we work, so the first part of the solution
might be to repeat what we do each morning to get to work (providing we
are leaving from home). The next part would be to turn west and go six
blocks. If we have trouble remembering how many blocks we have driven,
we might take a pencil and make a hash mark on a piece of paper each
time we cross a street. Though hash marking might be stretching the
human solution a little too much, this is a technique used frequently in a
computer solution. To repeat a process ten times, we have to write the
instructions to count each time the process is done and check to see when
the count reaches 10. In computing, this process is called repetition or
looping.

If we need to write the directions for other people, some of whom
would be leaving from one place and some from another, we would have
to write two sets of directions prefaced by a question: Where are you
coming from? If you are coming from place A, follow the first set of direc-
tions; otherwise, follow the second set of directions. In computing, this
process is called conditional processing.

Coming up with a step-by-step procedure for solving a particular
problem is not always cut and dried. In fact, it is usually a trial-and-error
process requiring several attempts and refinements. We test each attempt to
see if it truly solves the problem. If it does, fine. If it doesn’t, we try again.

Algorithms
The last sentence in the second step in Polya’s list says that you should
eventually obtain a plan of the solution. In computing, the plan is called an
algorithm. An algorithm is set of instructions for solving a problem or
subproblem in a finite amount of time using a finite amount of data.
Implicit in this definition is that the instructions are unambiguous. In
computing, we must make certain conditions explicit that are implicit in
human solutions. For example, in everyday life we would not consider a
solution that takes forever to be much of a solution. We would also reject
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 Algorithm Development Phase
Analyze Understand (define) the problem.
Propose algorithm Develop a logical sequence of steps to be used to solve the problem.
Test algorithm Follow the steps as outlined to see if the solution truly solves the problem.

  Implementation Phase
Code Translate the algorithm (the general solution) into a programming language.
Test Have the computer follow the instructions.  Check the results and make

 corrections until the answers are correct.
  Maintenance Phase

Use Use the program.
Maintain Modify the program to meet chaining requirements or to correct any errors.

Figure 6.2 The computer problem-solving process

a solution that requires us to process more information than we are
capable of processing. These constraints must be explicit in a computer
solution, so the definition of an algorithm includes them.

The third step in Polya’s list is to carry out the plan, that is, to test the
solution to see if it solves the problem. The fourth step is to examine the
solution for future applicability.

Computer Problem-Solving
In computing, there are three phases in the problem-solving process: the
algorithm development phase, the implementation phase, and the mainte-
nance phase. See Figure 6.2. The output from the algorithm development
phase is a plan for a general solution to the problem. The output from the
second phase is a working computer program that implements the algo-
rithm, that is, a specific solution to the problem. There is no output from
the third phase, unless errors are detected or changes need to be made. If
so, these errors or changes are sent back either to the first phase or second
phase, whichever is appropriate. See Figure 6.3.

Notice that all of Polya’s phases are included in this outline of how we
solve problems using the computer. The first step is always to understand
the problem. You cannot write a computer solution to a problem you
don’t understand. The next step is to develop a plan—an algorithm—for
the solution. There are various techniques for expressing algorithms. We
introduced one, shown in the box on the next page, when we were
describing how to convert numbers from base 10 to other bases.
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Problem-Solving Phase Implementation Phase

Specific Solution
(Program)

TestTest

General Solution
(Algorithm)

Analyze

Maintenance Figure 6.3

The interaction between
problem-solving phases

This form for presenting algorithms, called pseudocode, uses a mixture of
English and formatting to make the steps in the solution explicit. Whatever
form you use for your algorithm, you must test it by examining it carefully
to be sure that it does solve the problem.

The next step is to implement the plan in a way that the computer can
execute it and test the results. In Polya’s list, the human executes the plan
and evaluates the results. In a computer solution, a program is written
expressing the plan in a language that the computer can execute. But it is
the human who takes the results of the computer program and checks
them to be sure that they are correct. The maintenance phase maps to
Polya’s last stage, where the results are examined and perhaps modified.

Following an Algorithm
Although you work with algorithms all the time, most of your experience
with them is in the context of following them. You follow an algorithm
every time you follow a recipe, play a game, assemble a toy, or take medi-
cine. Let’s look at a recipe and see how this fits the description of an algo-
rithm. See Figure 6.4.2

While (the quotient is not zero)

Divide the decimal number by the new base

Make the remainder the next digit to the left in the answer

Replace the original decimal number with the quotient
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To be an algorithm, the steps must solve a problem. In this case the
problem is preparing a Hollandaise sauce, a wonderful mayonnaise-type
sauce used on steak or for Eggs Benedict. Are the directions in a step-by-
step fashion that someone can follow? Is there a finite amount of data—
ingredients, in this case? Can it be made in a finite amount of time?
Provided that the stove is working, the butter will eventually bubble. So
we can answer yes to all three questions. This is definitely an algorithm.
Of course, it is easier to follow an algorithm than it is to devise one.

Let’s reorganize this recipe and present it in the algorithm format we
used previously.

Put butter in a pot

Turn on burner

Put pot on the burner

While (NOT bubbling)

Leave pot on the burner

Put other ingredients in the blender

Turn on blender

While (more butter)

Pour butter into blender in slow stream

Turn off blender

Never-Fail Blender Hollandaise

Heat butter until bubbling.  Combine all other ingredients in blender.  
With blender turned on, pour butter into yolk mixture in slow stream 
until all is added.  Turn blender off.  Keeps well in refrigerator for 
several days.  When reheating, heat over hot, not  boiling, water in 
double boiler.  Makes about 1-1/4 cups sauce.

1 cup butter
4 egg yolks
1/4 teaspoon salt
1/4 teaspoon sugar

1/4 teaspoon Tabasco
1/4 teaspoon dry mustard
2 tablespoons lemon juice

Figure 6.4

A recipe for Hollandaise
sauce
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As we said in Chapter 5, computing has its jargon; so does cooking. Repeat
and While are terms that have meaning within the context of programming.
Bubbling is a term that any cook recognizes.

In our recipe analogy, someone else undertook the algorithm develop-
ment phase and, hopefully, the implementation phase, including the
testing. When we make the Hollandaise sauce, we are in the maintenance
phase. We are using a recipe that someone else developed and tested.

Developing an Algorithm
We looked briefly at developing an algorithm when we looked at applying
the problem-solving strategies to the problem of giving directions. We
asked questions and looked at several alternatives. Humans are involved in
the problem-solving process every day. In fact, we do it so often that it has
become instinctive. We go from one step to the next in Polya’s list every
day without being conscious of it. It is only when we have a big problem
to solve that we take time to examine what we are doing and become
aware of the transition between stages.

In computing, the implementation phase involves translating the plan
into a form that the computer can use to execute it. In order to make this
translation, the plan must be in a suitable form. Therefore, we must
develop a methodology that begins with the problem statement and hope-
fully ends with the plan—an algorithm—in a form that can be translated.
We talk about the process of converting the algorithm into a program, the
form that the computer can execute, in a later chapter. Here we are inter-
ested in outlining a reliable process.

There are two methodologies that are currently used: top-down design
(also called functional decomposition) and object-oriented design (OOD).
We introduce top-down design first because it mirrors how we solve prob-
lems in general. We cover object-oriented design, a newer methodology,
later in the chapter. In recent years OOD has become very popular in the
computing world. Both of these methodologies are based on the divide-
and-conquer strategy.

6.2 Top-Down Design

The top-down design process starts by breaking the problem into a set of
subproblems. Then, each subproblem is divided into subproblems. This
process continues until each subproblem is defined at a level basic enough
so that further decomposition is not necessary. We are creating a hierar-
chical structure, also known as a tree structure, of problems and subprob-
lems, called modules. Modules at one level can call on the services of
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Figure 6.5 An example of top-down design

Main module
(Main program)

Level 1

Level 0

Level 3

Level 2

Abstract

Particular

Top

Bottom

modules at a lower level. These modules are the basic building blocks of
our algorithm.

The goal of dividing our problem into subproblems, modules, or
segments is to be able to solve each module fairly independently of the
others. In a computing context, one module could read data values,
another could sum the values, another could print the sum, while still
another compares the sum to the previous week’s totals.

The design tree contains successive levels of refinement (see Figure 6.5).
The top, or level 0, is our functional description of the problem; the lower
levels are our successive refinements. So how do we divide the problem
into modules?

Well, let’s think for a moment how humans usually approach any big
problem. We spend some time thinking about the problem in an overall
sort of way, then we jot down the major steps. We then examine each of
the major steps, filling in the details. If we don’t know how to accomplish
a specific task, we go to the next one, planning to come back and take care
of the one we skipped later when we have more information. What are we
doing? We are dividing the problem into subproblems; we are using the
divide-and-conquer strategy.

This is exactly the process you should be using in designing an algo-
rithm. Write down the major steps. This then becomes your main module.
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algorithmic step for
which some details
remain unspecified
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Begin to develop the details of the major steps as level 1 modules. If you
don’t know how to do something, or feel overwhelmed by details, give the
task a name and go on. The name can be expanded later as a lower
module.

This process continues for as many levels as it takes to expand every
task to the smallest details. A step that needs to be expanded is an abstract

step. A step that does not need to be expanded is a concrete step. If a
task is cumbersome or difficult, defer its details to a lower level. This
process can be applied to the troublesome subtasks. Eventually, the whole
problem is broken up into manageable units.

Writing a top-down design is similar to writing an outline for an
English paper. The domain of computing is new, but the process is one you
have done all your life.

A General Example
Let’s apply this top-down design process to the pleasant task of planning a
large party. A little thought reveals that there are two main tasks: inviting
the people and preparing the food. (We ignore cleaning the house in this
example.)

One approach to inviting the people would be to reach for the phone
book and start calling our friends. However, we would soon be confused as
to whom we had reached, whose line was busy, whose answering machines
we left messages on, and who had said what. A much better approach would
be to make a list of those we wished to invite, then put the list aside and
check it over the next day to see which of our best friends we had forgotten.

Then with the list in hand we can go through and fill in the telephone
numbers. Now we begin to call and mark down the messages left and the
responses. It may take a while to reach everyone, but we know where we
stand. By the time we have an estimate of numbers, we can start planning
the food.

Heaven help us if we just run in and start cooking! Without prior plan-
ning the job would be overwhelming. Instead, let’s break down this task
into planning the menu and preparing the food.

We can save a lot of time and effort in this task if we take advantage of
what others have done and look at suggested menus in cookbooks. (In
computing, we would look in the literature to see if algorithms already
exist to solve this subproblem.) As we choose a menu, we can put off a
careful examination of the recipes until later. The time to do that is when
we are preparing the shopping list. Our goal is to defer details until the
appropriate time to handle them.

The tree diagram in Figure 6.6 shows the process we have broken down
so far. Note that a module at each level expands a task or step at the level
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above. As humans we could probably take the level 2 modules and do
them from this description. In computing, we would have to break them
down into much finer detail. For example, Write down names would have to
be at the following level of detail:

Our top-down design for giving a party might be quite different. If we had
a great little delicatessen down the block, we could let them cater the
party. Then the main module would be:

Invite the people

Call the delicatessen

Do you have paper?

No, get paper.

Do you have a pen?

No, get a pen.

Pick up pen.

Put pen to paper.

etc.

Main module

Prepare foodInvite people

Make list Call people Plan menu

Get phone numbers
While more to call
Call
Mark list

Get cook books
Look for suggestions
Decide on food

Write down names
Wait a day
Check list
Add to list

Make a list
Call the people

Plan the menu
Shop for food
Cook the food

Invite the people
Prepare the food

Level
0

1

2

Figure 6.6 Subdividing the party planning
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To summarize, the main module specifies the names of tasks. Each name
of a task needs to be expanded at a lower level unless the task is
completely specified. This is true of each level. There are as many modules
at level 1 as there are names of tasks at level 0 that are not completely
specified, and so on for each successive level.

A Computer Example
Let’s leave the social analogy now and look at the process applied to a
problem whose solution can be implemented in a computer. We can use
English sentences or pseudocode to express our algorithms. The algorithm
format that we have used is an example of pseudocode. As we go along we
introduce certain English words that have special meaning in our
pseudocode. For example, we used the words While and Repeat to express
that certain statements were to be repeated. We use the word If to indicate
that we are asking a question and only one of two statements or groups of
statements will be used.

We said previously that the computer could be used to help with an
address list. Let’s collect all the scraps of paper and business cards that are
stuck in various places and create a list of names, addresses, telephone
numbers, and e-mail addresses, in alphabetical order by last name. The
first step is to formulate the problem statement.

Problem: Create an address list that includes each person’s name,
address, telephone number, and e-mail address. This list should then be
printed in alphabetical order. The names to be included in the list are on
scraps of paper and business cards.

Surprisingly, the starting point in solving a computer problem is to
ask how we would do the task by hand. Why? Because if we cannot do
the task by hand, we do not understand it well enough to begin writing
the algorithm. In this case, the first step would be to round up all the
scraps of paper and cards from various pockets and wallets and sit down
at a desk.

The next step in the by-hand solution is to take a writing tablet and jot
down each name. If the address, telephone number, and/or e-mail are with
the name, add this information to the list. Once we have recorded all the
information we have, we can look up the missing information. Once all of
the information is on our tablet, we put the names into alphabetical order.
As often happens, our by-hand solution serves as a model for the
computer solution. Instead of using a tablet, we enter the information into
a list kept in the computer. After the list of information is entered, the
computer goes through it and finds where information is missing and
requests that missing information be entered. When all the data is
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complete, the list is sorted. We can now write our main module, substi-
tuting list for tablet.

Now we must further specify the first task: Enter names into list. As we
indicated, the human must gather the information beforehand. The process
of entering the names involves the human keying in the names. This can be
done in an interactive fashion, where the computer gives a prompt for
information (data) to be entered and the user keys in the information as
prompted, or the data can be entered beforehand and the computer just
reads it from disk. Let’s have this algorithm enter the data interactively.
Note that we have talked about using shorthand for entering the names
and the associated data.

In the last paragraph, we used the words information and data. These are
common words, and we’ve used them interchangeably until now. But let’s
take a detour before we go on to the next module and define them more
precisely in the computing context. There are various definitions in the
literature, but these are the ones we use in this text: Information is any
knowledge that can be communicated; data is information in a form that a
computer can use. So in the context of this algorithm, we gather the infor-
mation together and enter the data.

We now have a choice: We can decompose the second task at level 0 or
the first task at level 1. Let’s continue working down the tree rather than
across the tree. That is, let’s finish with entering the names before we start
looking at inputting the missing information. Prompting for and entering
names involves telling the person entering the data exactly how to input
each piece of data. We also need to indicate what to do if there is no infor-
mation about one of the fields. For example, if an address is not known at
this time, what should be entered? Let’s tell the person entering the data to

Enter names into list Level 1

Prompt for and enter names           includes other data as well

Insert names into list

Main Level 0

Enter names into list

Fill in missing data

Put list into alphabetical order

Print the list

http://lib.ommolketab.ir
http//lib.ommolketab.ir


6.2 Top-Down Design 157

just press the return key if there is no data for an item. We need to enclose
these instructions within a loop.

Determining when there are more names to enter is easy in a by-hand algo-
rithm: The stack of papers and cards is empty. Determining how to do it in
a computer algorithm is more difficult. Let’s assume that the level of detail
is sufficient.

What do Write and Read mean? These are special words that we use with
algorithms to stand for “put information on the screen” and “get the data
that the user has entered.” Remember from the discussion of von Neumann
machines that there are input devices, which allow us to enter data from the
outside world into memory, and there are output devices, which allow us to
display data so that the world outside the computer can see it.

We have used some shorthand in this subalgorithm that needs clarifying.
We have called the information about a person name. Name is actually a
collection of four pieces of data, called fields. We use the following names
for these fields: lastFirst for the name itself, street for the street address,
cityState for the city and state, telephone for the 10-digit telephone number,
and eMail for the e-mail address. These names are called identifiers. In the
next two chapters, we describe how these fields become associated with
memory locations and how the input data becomes the contents of these
places. For the moment, you can defer these details until later.

Now that we have the names and associated data, we can insert the data
into the list. Do we need to further refine the Insert names into list module?
The answer can be either no or yes, depending on the language into which

Prompt for and enter names Level 2

Write “To any of the prompts below, if the information is not known, just 

press return.”

While (more names)

Write “Enter the last name, a comma, a blank, and the first name; 

press return.”

Read lastFirst

Write “Enter street number and name; press return.”

Read street

Write “Enter city, a comma, a blank, and state; press return.”

Read cityState

Write “Enter area code and 7-digit number; press return.”

Read telephone

Write “Enter e-mail; press return.”

Read eMail
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we are going to translate the algorithm. We discuss the languages into
which algorithms are translated in the next chapter. For this example, let’s
assume that the level of detail is sufficient for this module.

So now, we go back to the second level 0 module: Fill in missing data.
The algorithm must go through each of the names and determine whether
any data is missing. If data is missing, the user must be prompted to enter
the missing data. We express this process by using the word If with an
expression in parentheses. If the expression is true, the indented process is
carried out; if the expression is not true, the indented process is skipped.
So we must check each of the four data items to see if data is missing.
How does the algorithm determine if a data item is missing? That’s not
our problem at this level. We can defer these details to a later refinement.
We can also defer until later how we access each item in the list. Here we
just say to get a name from the list.

The next module to be specified is Put list in alphabetical order. In
computing terms, alphabetizing a list is called sorting the list. If the
contents of the list are numbers, they are put into numeric order. If the
contents of the list are strings, as they are in this case, they are put in
alphabetic order. Sorting algorithms abound in the literature, so we can
just use one of them. We do have to specify what field we want to use for
the sort key. If the data that we want to sort is made up of more than one
field, the sort key is the field on which we want to order the list. In our
case, the sort key is the person’s name, which we call lastFirst.

Fill in missing data Level 1

Write “To any of the prompts below, if the information is still not known, 

just press return.”

Get a name from the list

While there are more names

Get a lastFirst

Write lastFirst

If (street is missing)

Write “Enter street number and name; press return.”

Read street

If (telephone is missing)

Write “Enter area code and 7-digit number; press return.”

Read telephone

If (eMail is missing)

Write “Enter e-mail; press return.”

Get a name from the list

http://lib.ommolketab.ir
http//lib.ommolketab.ir


6.2 Top-Down Design 159

The last module is Print the list. This task requires us to loop through the
list, printing each item.

Here is the tree structure for this algorithm. The tasks in blue need to be
further specified in a module at a lower level.

Enter name into list
Fill missing data
Put list into alphabetical order
Print the list

Write...
Get...
While...

Prompt for and enter names
Insert names into list

Put...

While more names
Write...
Read...

Write
Read

..

Print the list

Write “The list of names, addresses, telephone numbers, and e-mail

addresses follows:”

Get a name from the list

While (there are more names)

Write lastFirst

Write street

Write cityState

Write e-Mail

Write a blank line

Get a name from the list

Put list in alphabetical order Level 3

Sort list on lastFirst field
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Summary of Methodology
The top-down methodology can be broken down into four major steps:

1. Analyze the Problem
Understand the problem! List the information you have to work with. This
information is probably going to be the data in the problem. Specify what
the solution is to look like. If it is a report, specify the format. List any
assumptions that you are making about the problem or the information.
Think. How would you solve the problem by hand? Develop an overall
algorithm or general plan of attack.

2. Write the Main Module
Use English or pseudocode to restate the problem in the main module. Use
module names to divide the problem into functional areas. If the main
module is too long, you are including too much detail for this level. Intro-
duce any control structures that are needed at this point. Re-sequence logi-
cally, if needed. Postpone details to lower levels.

Don’t worry if you don’t know how to solve an unwritten module at
this point. Just pretend you have a “smart friend” who has the answer and
postpone thinking about it until later. All you have to do in the main
module is to give the names of lower-level modules that solve certain tasks.
Use meaningful identifiers.

3. Write the Remaining Modules
There is no fixed number of levels. Modules at one level can specify more
modules at lower levels. Each module must be complete although it refer-
ences unwritten modules. Do successive refinements through each module
until each statement is a concrete step.

4. Re-Sequence and Revise as Necessary
Plan for change. Don’t be afraid to start over. Several attempts and refine-
ments may be necessary. Try to maintain clarity. Express yourself simply
and directly.

Testing the Algorithm
Both Polya’s list and the model of computer problem solving have testing as
an integral part. Of course, Polya doesn’t use the word test; his list talks
about checking the results. The goal of mathematical problem solving is to
produce a specific answer to a problem, so checking the results is the equiv-
alent of testing the process by which the answer was derived. If the answer is
correct, the process is correct. However, the goal of computer problem
solving is the process. The program that embodies the process is used again
and again with different data, so the process itself must be tested or verified.

Testing occurs in all phases of computer problem solving. Testing at the
algorithm development phase involves looking at each level of the top-
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down design and saying, “If the levels below this are correct, does this
level do what needs to be done?” Let’s apply this strategy to test the
address list solution. Here is the problem statement: Create an address list
that includes each person’s name, address, telephone number, and e-mail
address. This list should then be printed in alphabetical order. The names
to be included in the list are on scraps of paper and business cards.

The main module consists of four steps: entering the names, filling in the
missing data, putting the list into alphabetical order, and printing the list. We
make the assumption that each of the four tasks is correctly carried out, and
ask the question: Does the correct completion of these four tasks solve the
problem? The names are entered in the first task, so all of the names are
present. The second module fills in all the missing data, so the list is
complete. The third module sorts the names into alphabetical order. The
fourth module prints the names. Because the third sorts the names, the fourth
task prints them in alphabetical order. At the completion of the fourth task,
we have an alphabetical listing of the names and associated information.

Now we must repeat the process with the next level modules. Entering
names into the list is broken down into two steps: prompting for and entering
names and inserting the names into the list. We make the assumption that
these tasks are correctly carried out and ask the question: Does the correct
completion of these two tasks correctly solve the first step in the main module?
If the names are correctly entered into the machine and then correctly put in
the list, the names are in the list. We now have a choice of going down into the
tree structure or across the same level. Let’s verify that the names are properly
prompted for and entered. This is a longer module, so it is repeated below.

Prompt for and enter names Level 2

Write “To any of the prompts below, if the information is not known, just 

press return.”

While (there are more names)

Write “Enter the last name, a comma, a blank, and the first name; 

press return.”

Read lastFirst

Write “Enter street number and name; press return.”

Read street

Write “Enter city, a comma, a blank, and state; press return.”

Read cityState

Write “Enter area code and 7-digit number; press return.”

Read telephone

Write “Enter e-mail; press return.”

Read eMail
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The first step tells us what to do if there is missing data. The next sets up a
looping situation that continues as long as there is more data to be read.
The first step in the loop describes how the name is to be entered; the next
step reads the data. We assume that the user enters the data correctly and
that the read executes correctly; therefore, the name is stored in the
lastFirst part of the name. The same logic can be applied to the next three
pairs of statements. The first specifies how the user is to input the data; the
second reads the data. We have now verified this module. We ask you to
finish verifying this design in the exercises.

The process we have used is a top-down testing. We assume that lower
modules are correct and verify the main module. Then we take each first-
level module and repeat the process. Then we take each second-level module
and repeat the process. Alternately, we can take one first-level module and
verify it and all its submodules before going to the second first-level module.
This continues until all the modules have been verified. An alternative
approach is bottom-up testing. Bottom-up testing starts by verifying the
lowest-level modules first, and working toward the top of the design tree.

This process that we used to verify this design is called desk checking.
We sit at a desk with a pencil and paper and work through the design. It is
useful to take actual data values and trace what happens to them as we
reason about the design. For example, we can take a few names, some with
all the information and some with only partial values, and follow the
design by hand.

Teams of programmers develop most professional computer programs.
A verification method analogous to desk checking that is used by teams is
a walk-through. A walk-through is a manual simulation of the design by
the team members. They take sample data values and simulate the design
using the sample data. Another team-oriented technique is an inspection.
In this technique, the design is handed out in advance, and one person (not
the designer) reads the design line by line while the others point out errors.
These activities are carried out in as nonthreatening a manner as possible.
The goal is not to criticize the design or the designer, but to remove defects
in the product. Sometimes it is difficult to remove the natural human
emotion of pride from this process, but the best teams adopt a policy of
egoless programming.

6.3 Object-Oriented Design

We said that we were going to cover top-down design first because it
mirrors more the way humans solve problems. As you can see, a top-down

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Object An entity or
thing that is relevant in
the context of a problem

Object class or class

A description of a group
of objects with similar
properties and behaviors

Fields Named items in
a class; can be data or
subprograms

Method A named
algorithm that defines
one aspect of the
behavior of a class

Containment A mech-
anism whereby one class
contains an object of
another class as a field

Inheritance A mecha-
nism by which one class
acquires the properties—
data fields and
methods—of another
class

6.3 Object-Oriented Design 163

solution produces a hierarchy of tasks. Object-oriented design is a
problem-solving methodology that produces a solution to a problem in
terms of self-contained entities called objects, which are composed of both
data and operations that manipulate the data. Object-oriented design
focuses on the objects and their interactions within a problem.

Object Orientation
Data and the algorithms that manipulate the data are bundled together in
the object-oriented view, thus making each object responsible for its own
manipulation (behavior). Underlying object-oriented design (OOD) are the
concepts of classes and objects.

An object is a thing or entity that makes sense within the context of the
problem. For example, if the problem relates to information about
students, a student would be a reasonable object in the solution. A group
of similar objects is described by an object class, or class for short.
Although no two students are identical, students do have properties and
behaviors in common. Students are male or female humans who attend
courses at a school (at least most of the time). Therefore, students would be
a class. The word class refers to the idea of classifying objects into related
groups and describing their common characteristics. Therefore, a class
describes the properties and behaviors that objects of the class exhibit. Any
particular object is an instance (concrete example) of the class.

Object-oriented problem solving involves isolating the classes within the
problem. Objects communicate with each other by sending messages
(invoking each other’s subprograms). A class contains fields that represent
the properties and behaviors of the class. A field can contain data value(s)
and/or methods (subprograms). A method is a named algorithm that
manipulates the data values in the object. A class in the general sense is a
pattern for what an object looks like (data) and how it behaves (methods).

Relationships between Classes
Object classes can relate to one another in three ways. The first relation-
ship is that a class can contain an instance of another class as a field. This
relationship is called containment. This is a “part-of” or “contains” rela-
tionship. An address class may be part of the definition of a student class;
therefore, a student object may contain an address object.

A second relationship is that a class can inherit from another class.
Inheritance is a property of object-oriented design in which classes can
inherit data and behavior from other classes. This relationship is an “is-a”
relationship. A super class is a class being inherited from; a derived class is
a class doing the inheriting. Classes form an inheritance hierarchy. In the
hierarchy, objects become more specialized the lower in the hierarchy we
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Figure 6.7

An example of inheritance

Animal

Mammal

Dog

go. Classes lower down in the hierarchy inherit all the behaviors and data
of their parent superclass.

For example, Maggie, the brown pet, is an instance of the class
Labrador. A Labrador is a dog, a dog is a mammal, and a mammal is an
animal. Therefore, Maggie inherits all the characteristics of animals,
mammals, dogs, and Labradors: She is an affectionate, big brown animal
that nursed her puppies. See Figure 6.7. Another example would be a
student. A student is a person, so he or she can inherit all the properties of
people and add the behavior of going to school.

The third way that classes can relate to one another is through collabo-
ration. One class can call upon another class to provide information or a
service. A student class can call on the services of a library class to check
out a book. Note that all classes can collaborate with one another, even
those that are related through containment or inheritance.

Top-down design is a problem-solving methodology based on breaking
a problem into successively smaller tasks until each task is a concrete step
that can be coded in a programming language. This structured design view
sees each module as a step in the overall process. Thus, top-down design
decomposes the problem into algorithmic steps. Object-oriented design is
based on looking for the objects in the problem rather than tasks to be
solved. Thus, object-oriented design decomposes the problem according to
the key abstractions in the problem domain.

Object-Oriented Design Methodology
There are four stages to the decomposition process that we present. Brain-
storming is the stage in which we make a first pass at determining the
classes in the problem. Filtering is the stage in which we go back over the
proposed classes determined in the brainstorming stage to see if any can be
combined or if any are missing. Each class that survives the filtering stage
is recorded on a 5-by-8 card with appropriate headings, called a CRC
card.
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Scenarios is the stage in which the behavior of each
class is determined. Because each class is responsible
for its own behavior, we call the behaviors responsibil-
ities. In this stage, “what if” questions are explored to
be sure that all situations are examined. When all of
the responsibilities of each class have been determined,
they are recorded on the class’s CRC card, along with
the names of any other classes with which it must
collaborate (interact) to complete its responsibility.
Responsibility algorithms, the last stage, is where the
algorithms are written for each of the responsibilities
outlined on the CRC cards. Now you can see where
the term CRC comes from: Class, Responsibility, and
Collaboration.

Let’s look at each of these stages in a little more detail.

Brainstorming
What is brainstorming? The dictionary defines it as a group problem-solving
technique that involves the spontaneous contribution of ideas from all
members of the group.4 Brainstorming brings to mind a movie or TV show
where a group of bright young people tosses around ideas about an adver-
tising slogan for the latest revolutionary product. This picture seems at odds
with the traditional picture of a computer analyst working alone in a closed,
windowless office for days who finally jumps up shouting “Ah ha!” As
computers have gotten more powerful, the problems that can be solved have
gotten more and more complex, and the picture of the genius locked in a
windowless room has become obsolete. Solutions to complex problems need
new and innovative solutions based on collective “Ah ha!”s.

Origin of CRC cards
CRC cards were first introduced by Kent Beck
and Ward Cunningham at a conference on
“Object-Oriented Systems, Languages and
Applications” in 1989. This simple card tech-
nique has now been endorsed by many promi-
nent software developers as a means of getting
started analyzing the problem domain. These
advocates include Grady Booch, Ed Yourdon,
Rebecca Wirfs-Brock, and Adele Goldberg.3

Class Name: Superclass: Subclasses:

Responsibilities Collaborations

W
WW
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Belin and Simone list four principles of successful brainstorming.5 First
and foremost, all ideas are potential good ideas. It is imperative that the
members of the group don’t censor their own ideas or make judgments out
of hand on others’ ideas. The next principle relates to pace: Think fast and
furiously first, and ponder later. The faster the pace at first, the better the
creative juices flow. Thirdly, give every voice a turn. To slow down those
predisposed to hog the conversation and spur those reluctant to talk, use a
rotation. Continue the pattern until team members are truly forced to
“pass” because they are out of ideas. Lastly, a little humor can be a
powerful force. Humor helps convert a random group into a cohesive team.

In the context of object-oriented problem solving, brainstorming is a
group activity designed to produce a list of candidate classes to be used to
solve a particular problem. Belin and Simone point out that although each
project is different and each team has a different personality, the following
four steps are a good general approach.

Step 1 is to review brainstorming principles at the beginning of the meeting
to remind everyone that this is a group activity and personal style should be
put aside. Step 2 is to state specific session objectives such as: “Today we
want to come up with a list of candidate classes for the student project,” or
“Today we want to determine the classes that are active during the registra-
tion phase.” Step 3 is to use a round-robin technique to allow the group to
proceed at an even tempo but give people enough time to think. Each person
should contribute a possible object class to the list. A facilitator should keep
the discussion on target, and a scribe should take notes. The brainstorming
stops when each person in the group has to “pass” because he or she cannot
think of another class to suggest. Step 4 of Belin and Simone’s process is to
discuss the classes and select the final list of classes. We prefer to think of this
stage as separate from brainstorming and discuss it in the next section.

Just as the people brainstorming for an advertising slogan know some-
thing of the product before the session, brainstorming for classes requires
that the participants know something about the problem. Each participant
should be familiar with the requirements document and any correspon-
dence relating to the technical aspects of the project. If there seem to be
ambiguities, participants should conduct interviews to clarify these points
before the brainstorming sessions. Each team member should enter the
brainstorming sessions with a clear understanding of the problem to be
solved. No doubt during the preparation, each team member will have
generated his/her own preliminary list of classes.

Filtering
The brainstorming session produces a tentative list of classes. The next
phase is to take the tentative list of classes and determine which are the
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core classes in the problem solution. There may be two classes on the list
that are actually the same thing. These duplicate classes usually arise
because people within different parts of an organization use different
names for the same concept or entity. There may be two classes in the list
that have many common attributes and behaviors. The common parts
should be gathered together into a superclass with the two classes inher-
iting the common properties and adding the properties that are different.

There may be classes that really don’t belong in the problem solution.
For example, if we are simulating a calculator, we might list the user as a
possible class. However, the user is not within the simulation as a class; the
user is an entity outside the problem that provides input to the simulation.
Another possible class might be the on button. However, a little thought
shows that the on button is not part of the simulation; it is what starts the
simulation program running.

As the filtering is completed, CRC cards should be written for each of
the classes that have survived to this stage.

Scenarios
The goal of this phase is to assign responsibilities to each class. What are
responsibilities? They are the tasks that each class must perform. Responsi-
bilities are eventually implemented as subprograms. At this stage we are
interested only in what the tasks are, not in how they might be carried out.

There are two types of responsibilities: what a class must know about
itself (knowledge) and what a class must be able to do (behavior). A class
encapsulates its data (knowledge); objects in one class cannot directly
access data in another class. Encapsulation is the bundling of data and
actions in such a way that the logical properties of the data and actions are
separated from the implementation details. Encapsulation is a key to
abstraction. However, each class has the responsibility of making data
(knowledge) available to other classes that need it. Therefore, each class
has responsibility for knowing the things about itself that others need to
know. For example, a student class should “know” its name and address.
The responsibilities for this knowledge might be called know name and
know address. Whether the address is kept in the student class or whether
the student class must ask some other class to access the address is irrele-
vant at this stage. The important fact is that the student class knows its
own address.

The responsibilities for behavior look more like the tasks we described in
top-down design. For example, a responsibility might be for the student class
to calculate its grade point average gpa. In top-down design, we would say
that a task is to calculate the gpa given the data. In object-oriented design,
we say that the student class is responsible for calculating its own gpa. The

http://lib.ommolketab.ir
http//lib.ommolketab.ir


168 Chapter 6 Problem Solving and Algorithm Design

Figure 6.8

A scenario walk-through in
progress

distinction is both subtle and profound. The final code for the calculation
may look the same, but it is executed in different ways. In a program based
on a top-down design, the program calls the subprogram that calculates the
gpa, passing the student object as a parameter. In an object-oriented
program, a message is sent to the object of the class to calculate its gpa.
There are no parameters because the object to which the message is sent
knows its own data.

The name for this phase gives a clue as to how to go about assigning
responsibilities to classes. The team uses play acting to test different
scenarios. Each member of the team plays the role of one of the classes.
Scenarios are “what if” scripts that allow participants to act out different
situations. When a class has been sent a message, the actor holds up the CRC
card and responds to the message, sending messages to others as needed. As
the scripts are being acted out, missing responsibilities are unearthed and
unneeded responsibilities are detected. Sometimes the need for new classes
surfaces. Although waving cards in the air when “you” are active may be a
little embarrassing at first, team members quickly get into the spirit of the
action when they see how effective the technique is. See Figure 6.8.

The output from this phase is a set of CRC cards representing the core
classes in the problem solution. The responsibilities for each class are listed on
the card, along with the classes with which a responsibility must collaborate.

Responsibility Algorithms
Eventually, the algorithms must be written for the responsibilities. Because
of the process of focusing on data rather than actions in the object-
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oriented view of design, the algorithms for carrying out responsibilities
tend to be fairly short. For example, the knowledge responsibilities usually
just return the contents of one of an object’s variables, or send a message
to another object to retrieve it. Action responsibilities are a little more
complicated, often involving calculations. Thus, the top-down method of
designing an algorithm is usually appropriate for designing responsibility
algorithms.

Final Word
To summarize, top-down design methods focus on the process of trans-
forming the input into the output, resulting in a hierarchy of tasks. Object-
oriented design focuses on the data objects that are to be transformed,
resulting in a hierarchy of objects. Grady Booch puts it this way: “Read
the specification of the software you want to build. Underline the verbs if
you are after procedural code, the nouns if you aim for an object-oriented
program.” 6

We propose that you circle the nouns and underline the verbs. The
nouns become objects; the verbs become operations. In a top-down design,
the verbs are the primary focus; in an object-oriented design, the nouns are
the primary focus.

General Example
We first applied the top-down process to planning a big party. Let’s now
reevaluate the party problem with our object-oriented process using our
four-stage methodology.

Brainstorming and Filtering
It is a little difficult to brainstorm with one person or even two, so we
must simulate brainstorming and filtering with words. What are the
possible objects? There must be the host or hostess, the guests, the menu,
and the food. Where is the party going to be? We need an address object.
Are the invitations to be done by phone or by invitation? Let’s assume by
written invitation, so we have invitation objects.

If we are going to send invitations, we need a list of people to which to
send them. A list would be a container object: an object that contains other
objects. In order to prepare the food, we need to know how many people
are coming. This means that we need two containers: one for the list of
those to whom invitations are sent and one for those who are coming.

Can we combine any of these objects into one class? A host or hostess is
no different from the guests except he/she starts the process by inserting
names into the invitation list. Can we combine them into one class? Let’s
assume that there is a person class of which the host or hostess and the
guests are objects. For the moment let’s assume that there is one list class
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Class Name:  Host/Hostess Superclass:  Person Subclasses:

Responsibilities Collaborations

Send invitations Invitation, Person, List

with two objects: one for the invitation list and one for the guest list. Here
is the list of possible classes at this stage.

Scenarios
What are the scenarios that occur? Let’s begin with sending the invitations.
Whose responsibility is it to send the invitations? The host or hostess. So
send invitations must be added as a responsibility to the person class. No,
that’s not right. It isn’t reasonable for all people to have this responsibility.
Let’s make the host/hostess be an object of a class that is derived from the
person class with the added responsibility of sending the invitations. With
what classes must the host/hostess class interact (collaborate)? The invita-
tion class, the person class, and the list class. The CRC for the host/hostess
class looks like this so far.

Another scenario would involve the person class responding to an invita-
tion. How would we simulate a person responding to an invitation? A
message would be sent to the person asking him or her to respond if free on
a certain date. Thus, the responsibility would be to respond if free with a
parameter that represents the date. Oops, this scenario shows that we
forgot the date object. How can a person carry out this responsibility? A
person object must look at its calendar. . . .  Each person needs to collabo-
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Class Name:  Guest Superclass:  Person Subclasses:

Responsibilities Collaborations

Respond to invitation OdateB Date, calendar

rate with a calendar object, so we need a calendar class. Should every
person have this responsibility? No, probably not. Let’s derive another
class from person called guest.

We leave this general example at this stage and go on to a more
concrete example.

Computer Example
Once again, let’s repeat the problem-solving process for a previous example,
except this time using an object-oriented approach. To refresh your memory:

Problem: Create an address list that includes each person’s name,
address, telephone number, and e-mail address. This list should then be
printed in alphabetical order. The names to be included in the list are on
scraps of paper and business cards.

Brainstorming and Filtering
Let’s try circling the nouns and underlining the verbs.

Create an address list that includes each person's name, address,

telephone number, and e-mail address.  This list should then be printed

in alphabetical order.  The names to be included in the list are on

scraps of paper and business cards.
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The first pass at a list of classes would include the following:

Three of these classes are the same: the two references to list and one refer-
ence to address list. The two references to address are not the same. There
is an address class with street, city, and so forth, and an e-mail address.
Order is a noun, but what is an order class? This is actually describing
how the list class should print its items. Therefore, we discard it as a class.
Name and names should be combined into one class. Scraps, paper, and
cards describe objects that contain the data in the real world. They have no
counterpart within the design. Our filtered list is shown below.

The verbs in the problem statement give us a head start on the responsibili-
ties: create, print, and include. Like scraps, paper, and cards, include is an
instruction to someone preparing the data and has no counterpart within
the design. However, this does indicate that we must have an object that
inputs the information to be put on the list. Exactly what is this informa-
tion? It is the name, address, telephone, and e-mail address of each person
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Class Name:  Person Superclass:  Subclasses:

Responsibilities Collaborations

Initiali.e itselC Ona*e, address, telepxone, e:*ailB

Print

Na*e, Address, Telepxone, E:*ail

Na*e, Address, Telepxone, E:*ail

on the list. But this train of thought leads to the discovery that we have
missed a major clue in the problem statement. A possessive adjective,
person’s, actually names a major class; name, address, telephone, and
e-mail are classes that help define (are contained within) a person class.

Now we have a design choice. Should the person class use the input
object(s) to initialize itself or should the input object create the person object
with the appropriate data? Let’s let the person class be responsible for initial-
izing itself. The person class must also be responsible for printing itself.

Does the person class collaborate with any other class? This depends on
how we decide to represent the data in the person class. Do we represent
name, address, telephone, and e-mail as simple data items within person or
do we represent each as a class? Let’s temporarily represent each as a class.
We may rethink this when we implement the design in a programming
language. Let’s make each class responsible for initializing and printing itself.

Class Name:  Na*e Superclass:  Subclasses:

Responsibilities Collaborations

Initiali.e itselC Ona*eB

Print itselC

Strin1

Strin1
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Class Name:  Address Superclass:  Subclasses:

Responsibilities Collaborations

Initiali.e itselC Ostreet, cit2, stateB

Print itselC

Strin1

Strin1

Class Name:  Telepxone Superclass:  Subclasses:

Responsibilities Collaborations

Initiali.e itselC Onu*<erB

Print itselC

Strin1

Strin1

Class Name:  E:*ail Superclass:  Subclasses:

Responsibilities Collaborations

Initiali.e itselC Oe:*ailB

Print itselC

Strin1

Strin1
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Class Name:
SortedList OCro* li<rar2B

Superclass:  Subclasses:

Responsibilities Collaborations

Insert OpersonB

Print

Person

Person

What about the list object? Should the list keep the items in alphabetical
order or should the list sort the items before printing them? Each language
in which we might implement this design has a library of container classes
available for use. Let’s use one of these, which keeps the list in alphabetic
order. This library class should also print the list. We can create a CRC
card for this class, but mark that it most likely will be implemented using a
library class.

Responsibility Algorithms
Person class There are two responsibilities to be decomposed: initialize
and print. Because each of the fields of the class is a class, we can just let
each initialize and print itself.

Print

name.Print()

address.Print()

telephone.Print()

email.Print()

Initialize

name.Initialize()

address.Initialize()

telephone.Initialize()

email.Initialize()
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Name class This class has the same two responsibilities: initialize and
print; however, the algorithms are different. For Initialize, the user must be
prompted to enter the name and the algorithm must read the name. For
Print, the first and last names must be output with appropriate labels.

Address, Telephone, and E-mail classes The algorithms for the responsi-
bilities for these classes are mirror images of the algorithms for class Name.

We stop the design at this point. Go back to the beginning of Chapter 6
and look at the top-down design for the same problem. The designs are quite
different. Is one better than the other? Well, the object-oriented design has
created several classes that might be useful in other contexts. Reusability is
one of the great advantages of an object-oriented design. Classes designed for
one problem can be used in another, because each class is self-contained; that
is, each class is responsible for its own behavior.

6.4 Important Threads

In this chapter, we have mentioned several topics in passing that are
important not only in problem-solving but in computing in general. Let’s
review some of the common threads discussed in this chapter.

Information Hiding
Several times we have used the idea of deferring the details. We have used
it in the context of giving a name to a task and not worrying about how
the task is to be implemented until later. The details of the implementation
are deferred to a later time. Deferring the details in a design has distinct
advantages. The details of a design are hidden from the higher levels. The
designer sees just the details that are relevant at a particular level of the

Print

Print line “First name: ” + firstName

Print line “Last name: ” + lastName

Initialize

“Enter the first name.”

Read a string into firstName

“Enter the last name.”

Read a string into lastName
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design. This practice, called information hiding, makes the details at a
lower level inaccessible during the design of the higher levels.

This practice must seem very strange! Why shouldn’t the details be
accessible while the algorithm is being designed? Shouldn’t the designer
know everything? No. If the designer knows the low-level details of a
module, he/she is more likely to base the module’s algorithm on these
details. And it is these low-level details that are more likely to change. If
they do, then the entire module has to be rewritten.

The advantage of using information hiding when writing algorithms
becomes more evident when we look at translating the algorithm into a
computer language, so we return to this thread later.

Abstraction
Abstraction and information hiding are two sides of the same coin. Infor-
mation hiding is the practice of hiding details; abstraction is the result with
the details hidden. As we said in Chapter 1, an abstraction is a model of a
complex system that includes only the details essential to the viewer. Take,
for example, Daisy, the English Spaniel. To her owner she is the household
pet, to a hunter she is a bird dog, and to the vet she is a mammal. Her
owner sees her wagging tail, hears her yelp when she gets left outside, and
see the hair she leaves everywhere. The hunter sees a finely trained helper
who knows her job and does it well. The vet sees all of the organs, flesh,
and bones of which she is composed. See Figure 6.9.

Figure 6.9

Different views of the same
concept
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separation of the logical
view of data from its
implementation

Procedural abstraction

The separation of the
logical view of an action
from its implementation

Control abstraction

The separation of the
logical view of a control
structure from its imple-
mentation

Control structure A
statement used to alter
the normally sequential
flow of control
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In algorithm design, a module at a higher level is an abstraction of those
modules underneath it. We see later when we examine translating an algo-
rithm that there are two major kinds of abstraction in computing. Data

abstraction refers to the view of data; it is the separation of the logical
view of data from its implementation. For example, your bank’s computer
may represent numbers in 2’s complement or 1’s complement, but this
distinction is of no concern to you as long as your bank statements are
accurate. Procedural abstraction refers to the view of actions; it is the
separation of the logical view of an action from its implementation. For
example, when you hit the brakes of your car, the car stops (hopefully).
How pressing the brake makes the car stop is immaterial to you—as long
as you stop.

There is a third kind of abstraction in computing, called control

abstraction. Control abstraction refers to the view of a control structure; it
is the separation of the logical view of a control structure from its imple-
mentation. We have used several control structures in our algorithms. For
example, While and If are control structures. While lets us indicate that we
want to repeat an action; If let’s us indicate that we want to make a choice.
In an algorithm the steps flow sequentially. We follow the first step, the
second step, and so forth. A control structure lets us alter this sequential
flow of control. How these control structures are implemented in the
languages into which we might translate an algorithm is immaterial to the
design of the algorithms.

Abstraction is the most powerful tool people have for managing
complexity. This statement is true in computing as well as real life.

Naming Things
When we write algorithms, we use shorthand to stand for the tasks and
information with which we are dealing. We give names to data
and processes. These names are called identifiers. For example, we used
lastFirst to stand for the last name, comma, first name. We used street to
stand for street name and number. We also gave names to tasks. For
example, we said Get a name from the list, which stands for accessing a
name and all the information associated with that name.

When we get to the stage where we translate an algorithm into a
program in a language that a computer can execute, we may have to
modify the identifiers. Each language has its own rules about forming iden-
tifiers. So there is a two-stage process: Data and actions are given names in
the algorithm, then these names are translated into identifiers that meet the
rules of the computer language. Notice that giving identifiers to informa-
tion and actions is a form of abstraction.
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A set of rules, symbols,
and special words used
to construct a program—
that is, to express a
sequence of instructions
for a computer

Program A sequence
of instructions written to
perform a specified task

Syntax The formal
rules governing the
construction of valid
instructions

Semantics The set of
rules that gives the
meaning of instructions
in a language
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Programming Languages
We have used the expression “a language that a computer can execute”
several times. Let’s be more precise. We know from our discussion of the
von Neumann machine that the CPU takes instructions one at a time and
executes them. The instructions that a computer can execute directly are
those that are built into the hardware. However, instructions written in a
programming language can be translated into the instructions that a
computer can execute directly. A programming language is an artificial
language, made up of symbols, special words, and a set of rules, used to
construct a program—that is, to express a meaningful sequence of instruc-
tions for a computer.

Programming languages come in many forms and many levels of
complexity, but they all are made up of two parts: syntax, the part that
says how the instructions of the language can be put together, and seman-

tics, the part that says what the instructions mean.
In this chapter we have looked at problem solving and algorithm design;

in the next chapter we look at implementing an algorithm in a program.
The process of translating an algorithm into a program is called coding.

Testing
We have demonstrated testing at the algorithm phase. Testing at the imple-
mentation phase involves running the program with various data designed
to test all parts of the program. We discuss the theory of testing at these
stages in later chapters. However, everything we have said about testing at
the design phase is applicable at all the other stages.

Summary

Polya in his classic How to Solve It outlined a problem-solving strategy for
mathematical problems. This strategy can be applied to all problems
including those for which a computer program is to be written. These
strategies include asking questions, looking for familiar things, and
dividing and conquering; when these are applied, they should lead to a plan
for solving a problem. In computing, such a plan is called an algorithm.

Humans have more experience following algorithms (plans) than
designing them. In this chapter, the top-down design methodology is
outlined and applied to a general problem and to a problem for which a
computer program is to be written. This methodology is based on breaking
a task into smaller and smaller subtasks until the implementation of each
subtask is obvious. Testing must be applied at each stage of the process to
ensure that the results are correct.
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Object-oriented design focuses on determining the objects within a
problem, and abstracting (grouping) the objects into classes based on like
properties and behaviors. Classes and objects can relate to each other in
three ways: containment, inheritance, and collaboration. Containment is a
has a relationship, where a class contains an object of another class. Inheri-
tance is an is a relationship, where one class inherits the properties and
behaviors of another class. Collaboration is a works with relationship,
where one class calls upon another class for information or a service.

There are four stages to object-oriented decomposition:

• Brainstorming, in which we make a first pass at determining the
classes in the problem

• Filtering, in which we review the proposed classes

• Scenarios, in which the responsibilities of each class are determined

• Responsibility algorithms, in which the algorithms are written for
each of the responsibilities

There are four major threads presented in this chapter that permeate
computing: information hiding, abstraction, naming things, and testing.
Information hiding is the process of hiding details of a subtask. Abstraction
is the result of hiding the details. For example, we hide the details of a car
under the body, and the body is the abstraction for the car. We give names
to data and tasks so that we can talk about them. The names become the
abstractions for the data and tasks. When we solve non-computer-related
problems, we carry out the solution ourselves and thus know whether we
have solved the problem or not. If the result of the problem solving is a
computer program, we must test each algorithm thoroughly to be sure that
the program gives the correct answer when (and each time) it is executed.

Plagiarism
Plagiarism is by no means a new ethical concern in the academic

world. Since the advent of term papers, students have successfully (and

not so successfully) handed in well-researched papers written by

someone else. Students have purchased papers from friends, recycled

old essays, and copied directly from articles and encyclopedias. Profes-

sors have always faced the challenge of discriminating between orig-

inal compositions and plagiarized work, but today they are confronted

with an additional obstacle. Students today have access to the Web;

W
WW
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and with the Web, these students have millions upon millions of term

papers available for their use with a simple click of a mouse.

Web sites such as fastpapers.com and planetpapers.com serve as

online paper mills, where students can download documents and

submit them as their own. This form of cyber cheating has revolution-

ized plagiarism, and professors are struggling to keep up. Studies show

that on any given assignment, approximately 30% of all students

plagiarize. It is natural and appropriate, of course, for students to

quote from and cite outside sources in their academic papers. Plagia-

rism occurs when a student uses another person’s intellectual property

improperly and fails to give credit to the original author. Most schools

have severe consequences for students who plagiarize, violating honor

codes, and compromising their own integrity.

Digital plagiarism is particularly difficult to detect since there is no

visible difference between papers that have been downloaded and

printed and those that were typed and printed. Furthermore, the wide

selection of online papers allows students to select works on specific

topics that are written at the appropriate intellectual level. Still, profes-

sors have developed ways to uncover web-based plagiarism. Some enter

key phrases into search engines when they suspect that a student has

handed in a paper that was not his or her own work. Others use sites like

plagiarism.org, which takes an uploaded portion of text and compares it

to thousands of papers that exist online. Students also cut and paste

portions of different scholarly works to piece together a paper, but

search engines are useful in detecting these copyright violations as well.

While digital plagiarism is a growing concern at schools around the

world, the Web also fosters plagiarism that extends beyond the academic

world. For example, lifting graphics and images from one page and

including them in another site without seeking permission violates copy-

right laws. The ethics are less clear on issues such as copying someone’s

HTML source code and using that code to define the layout of the

content of another web page without prior permission. In the future,

copyright laws will have to be clarified to take into consideration situa-

tions brought about by the growing popularity of the Web.
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Exercises
1. List the four steps in Polya’s How-To-Solve-It list.

2. Describe the four steps listed in Exercise 1 in your own words.

3. List the problem-solving strategies discussed in this chapter.

4. Apply the problem-solving strategies to the following situations.
a. Buying a toy for your four-year-old cousin
b. Organizing an awards banquet for your soccer team
c. Buying a dress or suit for an awards banquet at which you are

being honored

5. Examine the solutions in Exercise 4 and determine three things they
have in common.

6. What is an algorithm?

7. Write an algorithm for the following tasks.
a. Making a peanut butter and jelly sandwich
b. Getting up in the morning
c. Doing your homework
d. Driving home in the afternoon

8. List the three phases of the computer problem-solving model.

9. How does the computer problem-solving model differ from Polya’s?

10. Describe the steps in the algorithm development phase.

11. Describe the steps in the implementation phase.

12. Describe the steps in the maintenance phase.

13. Look up a recipe for chocolate brownies in a cookbook and answer
the following questions.
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a. Is the recipe an algorithm? Justify your answer.
b. Organize the recipe as an algorithm, using pseudocode.
c. List the words that have meaning in computing.
d. List the words that have meaning in cooking.
e. Make the cookies and take them to your professor.

14. We said that following a recipe is easier than developing one. Go to
the supermarket and buy a vegetable that you have not cooked (or
eaten) before. Take it home and develop a recipe. Write your recipe
and your critique of the process. (If it is good, send it to the authors.)

15. Describe the top-down design process.

16. Differentiate between a concrete step and an abstract step.

17. Write a top-down design for the following tasks.
a. Buying a toy for your four-year-old cousin
b. Organizing an awards banquet for your soccer team
c. Buying a dress or suit for an awards banquet at which you are

being honored

18. Write a top-down design for the following tasks.
a. Calculating the average of ten test scores
b. Calculating the average of an unknown number of test scores
c. Describe the differences in the two designs.

19. Write a top-down design for the following tasks.
a. Finding a telephone number in the phone book
b. Finding a telephone number on the Internet
c. Finding a telephone number on a scrap of paper that you have lost
d. Describe the similarities and differences among these designs.

20. Distinguish between information and data.

21. Write a top-down design for sorting a list of names into alphabetical
order.

22. a. Why is information hiding important?
b. Name three examples of information hiding that you encounter

every day.

23. An airplane is a complex system.
a. Give an abstraction of an airplane from the view of a pilot.
b. Give an abstraction of an airplane from the view of a passenger.
c. Give an abstraction of an airplane from the view of the cabin crew.
d. Give an abstraction of an airplane from the view of a maintenance

mechanic.
e. Give an abstraction of an airplane from the view from the airline’s

corporate office.
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24. List the identifiers and whether they named data or actions for the
designs in Exercise 17.

25. List the identifiers and whether they named data or actions for the
designs in Exercise 18.

26. List the identifiers and whether they named data or actions for the
designs in Exercise 19.

27. Finish the verification of the address list example.

28. Take some sample data and desk check the address list example with
actual values.

29. Verify the designs in Exercise 17 using a walkthrough.

30. Verify the designs in Exercise 18 using an inspection.

31. Verify the designs in Exercise 19 using top-down reasoning.

32. Distinguish between an object and an object class.

33. Distinguish between a field and a method.

34. How can objects relate to one another?

35. Discuss the differences between a top-down design and an object-
oriented design.

36. We outlined a strategy for developing an object-oriented decomposi-
tion.
a. List the four stages.
b. Outline the characteristics of each stage.
c. What is the output from each of the four stages?
d. Are the stages independent? Explain.

Apply the four-stage design strategy to each of the problems in Exercises
37 through 41.

37. Design the CRC cards for an inventory system for a car dealership,
using brainstorming, filtering, and scenarios.

38. Design the CRC cards for a database for a zoo, using brainstorming,
filtering, and scenarios.

39. Distinguish between data abstraction and procedural abstraction.

40. What is a programming language?

41. Distinguish between syntax and semantics.
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1. Distinguish between a program that the CPU can execute directly and
a program that must be translated.

2. Top-down design and object-oriented design both create scaffolding
that is used to write a program. Isn’t all this scaffolding just a waste of
effort? Is it ever used again? Of what value is it after the program is up
and running?

3. Which of the problem-solving strategies do you use the most? Can you
think of some others that you use? Would they be appropriate for
computing problem solving?

4. A friend who is taking a course that you took last year comes to you
and asks to see the term paper you wrote for the class last year. Would
you let her see it? If you know that she would copy it, would you let
her have it? What are the moral issues involved in letting a friend see
material you submitted for a current course? A previous course?

5. Friends who are taking a programming course with you say that they
have found a web site with solutions to the programming assignments
in the textbook. What would you do? Would you tell the instructor?
Would you look at the solutions? Would you turn in a solution as
your own?

6. You find a great home page on a web site. What are the ethical issues
involved with downloading the source code and replacing your name
and information on the page and using it on your home page?

?

Thought Questions 185
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Low-Level Programming
Languages

Chapter 7

In the last chapter we examined problem solving, both how

humans solve problems in general and how humans must

approach problems in which the computer plays a part in the solu-

tion. The first phase, in both cases, is to come up with a plan or

algorithm. In Polya’s How To Solve It list, the human executes the

plan and evaluates the results. In a computer solution, we write a

program that expresses the plan in a programming language.

In the last chapter we introduced the concept of pseudocode as

a way to express algorithms. In this chapter, we begin to examine

the programming languages into which we translate our

pseudocode. Recall that just as each lock has a specific key that

opens it, each type of computer has a specific set of operations that

it can execute, called the computer’s machine language. We begin

our discussion of programming languages with machine code.

Because we never write a program in a vacuum, the language pres-

entation and appropriate pseudocode is intertwined within this

chapter.
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Goals
After studying this chapter, you should be able to

� list the operations that a computer can perform.
� discuss the relationship between levels of abstraction and the determina-

tion of concrete algorithm steps.
� describe the important features of the Pep/7 virtual machine.
� distinguish between immediate mode addressing and direct addressing.
� convert a simple algorithm into a machine-language program.
� distinguish between machine language and assembly language.
� describe the steps in creating and running an assembly-language

program.
� convert a simple algorithm into an assembly-language program.
� distinguish between instructions to the assembler and instructions to be

translated.
� describe two approaches to testing.
� design and implement a test plan for a simple assembly-language

program.

7.1 Computer Operations

Both our notations for expressing algorithms and the programming
languages we use to implement algorithms must mirror the types of opera-
tions that a computer can perform. So let’s begin our discussion by
repeating the definition of a computer: A computer is a programmable
electronic device that can store, retrieve, and process data.

The operational words are programmable, store, retrieve, and process.
In a previous chapter we pointed out the importance of the realization that
data and instructions to manipulate the data are logically the same and can
be stored in the same place. That is what the word programmable means
here. The instructions that manipulate data are stored within the machine
along with the data. To change what the computer does to the data, we
change the instructions.

Store, retrieve, and process are actions that the computer can perform
on data. That is, the instructions that the control unit executes can store
data into the memory of the machine, retrieve data from the memory of
the machine, and process the data in some way in the arithmetic/logic unit.
The word “process” is very general. At the machine level, the processing
involves performing arithmetic and logical operations on data values.
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Where does the data that gets stored in the computer memory come
from? How does the human ever get to see what is stored there, such as
the results of some calculation? There are other instructions that specify
the interaction between an input device and the CPU and between the CPU
and an output device.

7.2 Levels of Abstraction

When we described the problem-solving process in Chapter 6, we said that
an abstract step is one for which some details remain unspecified and a
concrete step is one for which the details are fully specified. How do we
know when a step is concrete? The answer depends on the programming
language in which we are going to express our algorithm.

In our address example in Chapter 6, we assumed that the task or step
Sort list on lastFirst field was fully specified but that step Print the list was
not. There are programming languages in which these assumptions are true.
But there are also programming languages in which step Sort list on lastFirst
field is abstract, and Print the list is concrete. Furthermore, there are languages
in which both steps are concrete and in which both steps are abstract.

In this chapter and the next we look more at how to write algorithms in
pseudocode and how to translate the pseudocode into a programming
language. We begin with machine language, the language that comes with
the hardware, graduate to assembly language, the lowest-level program-
ming language, and finally move up to a high-level language in the next
chapter. At each stage, the languages themselves become more abstract;
that is, they allow us to express more and more complex processing with
one statement. As you might expect, this move from the concrete to the
abstract mirrors the history of software development.

7.3 Machine Language

As we pointed out in Chapter 1, the only programming instructions that a
computer actually carries out are those written using machine language,
the instructions built into the hardware of a particular computer. Initially,
humans had no choice but to write programs in machine language because
other programming languages had not yet been invented.

So how are computer instructions represented? Recall that every
processor type has its own set of specific machine instructions. These are
the only instructions the processor can actually carry out. Since there are a
finite number of instructions, the processor designers simply list the
instructions and assign them a binary code that is used to represent them.
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This is similar to the approach taken when representing character data, as
described in Chapter 3.

The relationship between the processor and the instructions it can carry
out is completely integrated. The electronics of the CPU inherently recog-
nize the binary representations of the specific commands. So there is no
actual list of commands the computer must consult. The CPU embodies
the list in its design.

Each machine-language instruction does only one very low-level task.
Each small step in a process must be explicitly coded in machine language.
Even the small task of adding two numbers together uses three instructions
written in binary, and the programmer has to remember which combina-
tion of binary digits correspond to which instruction. As we mentioned in
Chapter 1, machine-language programmers have to be very good with
numbers and very detail-oriented.

However, we can’t leave you with the impression that only mathemati-
cians can write programs in machine language. In fact, very few programs
are written in machine language today, primarily because they are an inef-
ficient use of a programmer’s time. Most programs are written in higher-
level languages and then translated into machine language, a process we
describe later in this chapter. However, everyone should experience what
those early pioneers felt when they wrote the first programs in the machine
code of a specific machine. This experience emphasizes the basic definition
of a computer and makes you appreciate the ease with which you interact
with a computer today.

Pep/7: A Virtual Computer
By definition, machine code differs from machine to machine. That is, each
type of CPU has its own machine language that it understands. So how can
we give each of you the experience of using machine language when you
may be working on different machines? We solve that problem by using a
virtual computer. A virtual computer is a hypothetical machine, in this
case one that is designed to contain the important features of real
computers that we want to illustrate. Pep/7, designed by Stanley Warford,
is the virtual machine that we use here.1

Pep/7 has 32 machine-language instructions. This means that a program
for Pep/7 must be a sequence made of up of a combination of these 32
instructions. Don’t panic: We are not going to ask you to understand and
remember 32 sequences of binary bits. We are only going to examine a few of
these instructions, and we are not going to ask you to memorize any of them.

Important Features Reflected in Pep/7
The memory unit of the Pep/7 is made up of 4,096 bytes of storage. The bytes
are numbered from 0 through 4,095 decimal. Recall that each byte contains 8
bits, so we can describe the bit pattern in a byte using two hexadecimal digits.
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(Refer back to Chapter 2 for more information on hexadecimal digits.) The
word length in Pep/7 is 2 bytes, or 16 bits. Thus the information that flows
into and out of the ALU (arithmetic/logic unit) is 16 bits in length.

Recall from Chapter 5 that a register is a small area of storage in the
arithmetic/logic unit of the CPU used to hold special data and intermediate
values. Pep/7 has seven registers, four of which we focus on at this point:

� The program counter (PC), which contains the address of the next
instruction to be executed

� The instruction register (IR), which contains a copy of the instruction
being executed

� The index register (X register)

� The accumulator (A register)

The index register and the accumulator are used to hold data and the
results of operations; these are the special storage registers referred in
Chapter 5 in the discussion of the ALU.

We realize that this is a lot of detailed information, but don’t despair!
Remember that our goal is to give you a feel for what is actually
happening at the lowest level of computer processing. By necessity, that
processing keeps track of many details.

Figure 7.1 shows a diagram of Pep/7’s CPU and memory. Notice that the
addresses in memory are in red. This color is to emphasize that the addresses

Figure 7.1

Pep/7’s architecture

A  register (accumulator)

Pep/7's CPU

X  register

Program counter (CP)

Instruction register (IR)

0000

Pep/7's Memory

0001
0002

0FFE

. .

0FFF
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Figure 7.2 The Pep/7 instruction format

Instruction
specifier

Operand
specifier

(a) The parts of an instruction (b) The instruction specifier part of an instruction

Addressing-mode specifier

Register specifier (R)

Operation code

themselves are not stored in memory, but that they name the individual
bytes of memory. We refer to any particular byte in memory by its address.

Before we go on, let’s review some aspects of binary and hexadecimal
numbers. The largest decimal value that can be represented in a byte is
255. This occurs when all of the bits are 1’s: 11111111 in binary is FF in
hexadecimal and 255 in decimal. The largest decimal value that can be
represented in a word (16 bits) is 65,535. This occurs when all 16 bits are
1’s: 1111111111111111 in binary is FFFF in hexadecimal and 65,535 in
decimal. If we represent both positive and negative numbers, we lose a bit
in the magnitude (because one is used for the sign), so we can represent
values ranging from �7FFF to +7FFF in hexadecimal, which is from
�32,767 to +32,767 in decimal.

This information is important when working with the Pep/7 machine.
The number of bits we have available determines the size of the numbers
we can work with.

Instruction Format
We have talked about instructions going into the instruction register, being
decoded, and being executed. Now we are ready to look at a set (or subset)
of concrete instructions that a computer can execute. But first, we need to
examine the format of an instruction in Pep/7.

Figure 7.2 shows the format for an instruction in Pep/7. There are two
parts to an instruction: the 8-bit instruction specifier and (optionally) the
16-bit operand specifier. The instruction specifier (the first byte of the
instruction) indicates what operation is to be carried out, such as ‘Add a
number’ to a value already stored in a register, and how to interpret just
where the operand is. The operand specifier (the second and third bytes of
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Figure 7.3

Difference between imme-
diate-mode and direct-mode
addressing

Instruction specifier

Data

Operand specifier

(a) Immediate-mode addressing: Operand is shaded gray

0 0

Instruction specifier

Address of data

Operand specifier

Data

(b) Direct-mode addressing: Operand is shaded gray

0 1

the instruction) holds either the operand itself or the address of where the
operand is. Some instructions do not use the operand specifier.

The instruction specifier is made up of several sections: the operation
code, the register specifier, and the addressing-mode specifier. The opera-
tion code is 5 bits long (shaded green). The bit string in the operation code
specifies which instruction is to be carried out. You may have predicted
that the operation code would be 5 bits when we said that Pep/7 had 32
instructions: There are 32 unique patterns using 5 bits.

The 1-bit register specifier is 0 if register A (the accumulator) is involved
in the operation and 1 if register X (the index register) is involved. The
register specifier is not color coded.

The 2-bit addressing-mode specifier (shaded light blue) says how to
interpret the operand part of the instruction. If the addressing mode is 00,
the operand is in the operand specifier of the instruction. This addressing
mode is called immediate (i). If the addressing mode is 01, the operand is
the memory address named in the operand specifier. This addressing mode
is called direct (d). (There are two other addressing modes that we do not
cover here.) The distinction between the immediate addressing mode and
the direct addressing mode is very important because it determines where
the data involved in the operation is stored or is to be stored. See Figure
7.3. Locations that contain addresses are shaded in red; operands are
shaded gray.
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Figure 7.4

Subset of Pep/7 instructions

XXXXX

XXXX=

XXX=X

XXX==

XX=XX

==X==

===XX

Stop execution
Opcode Meaning of Instruction

Load operand into a register (either A of X)
Store the contents of register (either A or X) into operand
Add the operand to register (either A or X)
Subtract the operand from register (either A or X)
Character input to operand
Character output from operand

Instructions that do not have an operand (data to be manipulated) are
called unary instructions, and do not have an operand specifier. That is,
unary instructions are only one byte long rather than three bytes long.

Some Sample Instructions
Let’s look at some specific instructions in isolation and then put them
together to write a program. Figure 7.4 contains the 5-bit operation code
(or opcode). Recall that the operation code is in the leftmost 5 bits of the
instruction specifier, the 6th bit specifies the register used (if any), and
address mode specifier is in the remaining 2 bits.

XXXXX Stop execution During the fetch/execute cycle, when the operation
code is all zeros, the program halts. Stop is a unary instruction, so it only
occupies one byte. The three rightmost bits in the byte are ignored.

XXXX= Load operand into register This instruction loads one word (two
bytes) into a register. The register specifier and the mode specifier deter-
mine where the word is and into which register the contents is loaded.
Thus, the load opcode has different meanings depending on the register
specifier and the addressing-mode specifier. Recall that the register speci-
fier specifies which register (if any) is involved. In this case, it specifies the
register into which the operand is to be loaded: the A register if the speci-
fier is 0, and the X register if the specifier is 1. The mode specifier deter-
mines whether the value to be loaded is in the operand part of the
instruction (the second and third bytes of the instruction) or is in the place
named in the operand specifier. Let’s look at concrete examples of each of
these combinations. Here is the first 3-byte instruction.

Instruction specifier

Operand specifier

0010000

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0
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The register specifier is 0, which refers to the A register, and the addressing
mode is immediate, meaning that the value to be loaded is in the operand
specifier. That is, the data is in the operand specifier; thus it is shaded gray.
After execution of this instruction, the contents of the second and third
bytes of the instruction (the operand specifier) would be loaded into the A
register (the accumulator). That is, the A register would contain 0007 and
the original contents of A would be lost.

To simplify the discussion, from here on we represent all numbers in
hexadecimal (except the bit strings in the registers). We specify leading
zeros on addresses but not on numeric values.

Here is another load instruction.

The register specifier is 1, which refers to the X register, and the addressing
mode is immediate. Thus, the data to be loaded into the X register is
stored in the operand specifier itself. After the execution of this instruction,
the X register would contain 1F. Note that the original contents of the X
register would be lost.

Here is a third load instruction.

The register specifier is 0 and the addressing mode is direct. Direct-mode
addressing means that the operand itself is not in the operand specifier
(second and third bytes of the instruction); instead, the operand specifier
holds the address specifying where the operand is in memory. Thus, when
this instruction is executed, the contents of location 001F would be loaded
into the A register. Note that we have shaded the bits that represent a
memory address in red just as we have used red for other addresses. The A
register holds a word (2 bytes), so when an address is used to specify a
word (rather than a single byte) as in this case, the address given is the left-
most byte in the word. Thus, the content of adjacent locations 001F and
0020 are loaded into the A register. The contents of the operand (001F
and 0020) are not changed.

Here is the fourth, and last, combination.

Instruction specifier

Operand specifier

0110000

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

1

Instruction specifier

Operand specifier

0010000

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

1

Instruction specifier

Operand specifier

0110000

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

0
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Because the register specifier is 1, the contents of word 001F (bytes 001F
and 0020) would be loaded into register X. Otherwise, this instruction is
identical to the one before it.

XXX=X Store register to operand This instruction stores the contents of
either the A register or the X register into the location specified in the
operand, which is either the operand itself or the place named in the
operand.

This instruction stores the contents of the A register into the word begin-
ning at location 000A. It is invalid to have an addressing mode of imme-
diate with a store opcode; that is, we cannot try to store the contents of a
register into the operand specifier.

XXX== Add operand to register Like the Load operation, the Add opera-
tion uses both the register specifier and the addressing mode specifier,
giving alternative interpretations. The four alternatives for this instruction
are shown below with the explanation following each instruction.

The contents of the second and third bytes of the instruction (the operand
specifier) are added to the contents of the A register (20A in hex). Thus we
have shaded the operand specifier to show that it is data.

The contents of the second and third bytes of the instruction (the operand
specifier) are added to the contents of the X register.

Instruction specifier

Operand specifier

0011000

0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0

1

Instruction specifier

Operand specifier

0111000

0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0

0

Instruction specifier

Operand specifier

0011000

0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0

0

Instruction specifier

Operand specifier

0001000

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

1
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The contents of the operand specified in the second and third bytes of the
instruction (location 020A) are added into the A register.

The contents of the operand specified in the operand specifier (020A in
hex) are added to the X register.

XX=XX Subtract the operand This instruction is just like the Add opera-
tion except the operand is subtracted from the specified register rather
than added. Like the Load and the Add, there are variations of this instruc-
tion depending on the register specifier and the addressing mode.

==X== Character input to operand This instruction allows the program
to enter an ASCII character from the input device while the program is
running. Only direct addressing is allowed, so the character is stored in the
address shown in the operand specifier.

This instruction reads an ASCII character from the input device and store
it into location 000A.

===XX Character output from operand This instruction sends an ASCII
character to the output device while the program is running. The register
specifier is ignored, but the addressing may be either immediate or direct.

Because immediate addressing is specified, this instruction writes out the
ASCII character stored in the operand specifier. The operand specifier
contains 1000001, which is 41 in hex and 65 in decimal. The ASCII char-
acter corresponding to that value is ‘\’, so the letter A is written to the screen.

Instruction specifier

Operand specifier

0000111

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0

Instruction specifier

Operand specifier

0011011

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

1

Instruction specifier

Operand specifier

0111000

0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir


198 Chapter 7 Low-Level Programming Languages

Because direct addressing is used, this instruction writes out the ASCII
character stored in the location named in the operand specifier, location
000A. What is written? We can’t say unless we know the contents of byte
000A. The ASCII character corresponding to whatever is stored at that
location is printed.

7.4 A Program Example

Let’s look at an example using machine language. Programs are written to
solve problems, so we first begin with the problem and the algorithm to
solve it.

Problem and Algorithm
Let’s start with a very simple problem; let’s write "—ello" on the screen.
The algorithm is easy.

Is this a concrete step? It certainly would be if we were going to implement it
in a high-level programming language. However, it is not a concrete step in
machine language. Let’s further specify it by writing each letter separately.

Write “Hello”

Write “H”

Write “e”

Write “l”

Write “l”

Write “o”

Write “Hello”

Instruction specifier

Operand specifier

0000111

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir


7.4 A Program Example 199

Are these concrete steps? Not in machine language. We have to convert the
letters to their ASCII representation.

Now each of these steps is a concrete step.

A Program
We are now ready to write a machine-language program to implement the
algorithm to write "—ello" on the screen. There are six instructions in this
program: five to write out a character and one to indicate the end of the
process. The instruction to write a character on the screen is 11100, the
‘Character output from operand’ operation. Should we store the characters
in memory and write them using direct addressing or just store them in the
operand specifier and use immediate addressing? Let’s write it both ways
and see the difference. We use immediate addressing first. This means that
the addressing-mode specifier is 01 and the ASCII code goes into the third
byte of the instruction.

Write “o”

Write 6F (hex)

Write “l”

Write 6C (hex)

Write “l”

Write 6C (hex)

Write “e”

Write 65 (hex)

Write “H”

Write 48 (hex)
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The machine-language program is shown in binary in the second column
and in hexadecimal in the third column. Note that we need to construct
the operation specifier in binary because it is made up of a 5-bit opcode, a
1-bit register specifier, and a 2-bit addressing-mode specifier. Once we
have the complete eight bits, we can convert it to hexadecimal. We could
construct the operand specifier directly in hexadecimal.

Hand Simulation
Let’s simulate this program’s execution by following the steps of the
fetch/execute cycle. Such traces by hand really drive home the steps that
the computer carries out.

Recall the four steps in the fetch-execute cycle:

� Fetch the next instruction (from place named in the program
counter).

� Decode the instruction (and update program counter).

� Get data (operand) if needed.

� Execute the instruction.

There are six instructions in our program. Let’s assume that they are in
contiguous places in memory with the first instruction stored in memory
locations 0000–0002. Execution begins by loading 0000 into the
program counter (PC). At each stage of execution, let’s examine the PC
(program counter) and the IR (instruction register). The program does
not access the A register or the X register, so we do not bother to show

Module

Write "H"

Write "e"

Write "l"

Write "l"

Write "o"

Stop

Binary Instruction

===XXXXX

XXXXXXXXX=XX=XXX

Hex Instruction

EX

XX<>

===XXXXX

XXXXXXXXX==XX=X=

EX

XX!O

===XXXXX

XXXXXXXXX==X==XX

EX

XX!“

===XXXXX

XXXXXXXXX==X==XX

EX

XX!“

===XXXXX

XXXXXXXXX==X====

EX

XX!F

XXXXXXXX XX
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them. At the end of the first fetch, the PC and the IC look like this. (We
continue to use color to emphasize addresses, opcode, address-mode
specifier, and data.)

The instruction is decoded as a ‘Write character to output’ instruction with
immediate mode addressing. Because this instruction takes three bytes, the
PC is incremented by three. The data is retrieved from the operand specifier
in the IR, and the instruction is executed. “—” is written on the screen. The
second fetch is executed and the PC and IR are as follows:

The instruction is decoded as another ‘Write character to output’ instruc-
tion with immediate mode addressing. The instruction takes three bytes, so
the PC is again incremented by three. The data is retrieved, the instruction
is executed, and “e” is written on the screen. The next three instructions
are executed exactly the same way. After the “o” has been written, the PC
and IR look as follows:

The opcode is decoded as a Stop instruction. The contents of the addressing
mode and the operand specifier are ignored. The fetch-execute cycle stops.

Pep/7 Simulator
Remember that the instructions are written in the Pep/7 machine language,
which doesn’t correspond to any particular CPU’s machine language. We have
just hand-simulated the program. Can we execute it on the computer? Yes, we
can. Pep/7 is a virtual (hypothetical) machine, but we have a simulator for the
machine. That is, we have a program that behaves just like the Pep/7 virtual
machine behaves. To run a program, we enter the hexadecimal code, byte by
byte with blanks between each, and end the program with zz. The simulator

Program counter (CP)

Instruction register (IR)

0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0

Program counter (CP)

Instruction register (IR)

0 0 0 0 0 0 0 0 0 0 0 3
1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1

Program counter (CP)

Instruction register (IR)

0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0
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202 Chapter 7 Low-Level Programming Languages

recognizes two z’s as the end of the program. Here is a screen shot of the Pep/7
machine-language program, followed by a screen shot of the output window.

Let’s go through the steps required to go from the algorithm to the output.
We assume that the Pep/7 simulator has been installed. We begin by
opening a new file into which we enter our program. The File menu on the
menu bar allows us to do this. The menu bar looks like this:

We then key in the program as shown above and save the file, thus giving
it a name.

The next step is to load this program into the memory of the Pep/7
virtual machine and execute it. Under the Pep7 pull-down menu, there are
several options. The second is Load, the one we need. When Load is
clicked, a piece of software called the loader takes the program and loads
it into memory beginning in location 00000. Here is what Pep/7’s memory
looks like when the loader has finished. Although memory is one long
stream of bytes, we show it here in groups of three because each instruc-
tion except the Stop instruction takes three bytes.

XX

X�

X!

X9

X“

XF

Address
EX

EX

EX

EX

EX

XX

XX

XX

XX

XX

XX

<>

!O

!“

!“

!F
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The fetch-execute cycle begins with the instruction in location 0000, which is
where the first instruction has been loaded. To start the fetch-execute cycle, we
go back to the same pull-down menu (Pep7) and click on Execute. We could
have done the loading and executing in one step by clicking on Load/Execute.

The loader that puts the program into memory is very exacting. The
instructions must be in hexadecimal with exactly one blank between each
byte. If we mistype the program, say, by forgetting the blank before the zz,
the loader gives the following message.

An Alternate Program for the Same Algorithm
In the last section we encoded the algorithm using immediate-mode
addressing. The ASCII code for each character to be output was stored
directly into the third byte of the ‘Character output from operand’ instruc-
tion that would write out the character. Now, let’s code the program using
direct addressing. That is, the operand specifier for each ‘Character output
from operand’ instruction should contain the address of the character to be
output rather than the character itself. Therefore, we must change the
instruction specifier from

===XXXXX �EX he”�

to

===XXXX= �E= he”�

We must also change the operand specifier from the ASCII character to the
address describing where the ASCII character is stored in memory. How
do we know what the address is? We must store the character in a byte
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and then put the address of that byte into the output instruction. This
sounds more complicated than it is.

Look back at the map of memory after the program is loaded. There are
16 bytes used in the program. We must store the characters in "—ello" in
successive bytes beginning with the 17th byte (address 10 in hex). Then the
first instruction has 10 (17 decimal) in the second byte of its operand spec-
ifier. The second instruction has 11 (18 decimal) in the second byte of its
operand specifier, and so forth. Now all we have to do is store the ASCII
code for the characters. And that turns out to be easy. We just insert the
hexadecimal for each character between the Stop instruction and the zz.
Here is the screen shot of this revised program. The output is exactly the
same as from the previous versions.

An Enhanced Version of “Hello”
Before we leave machine language, let’s add another feature to our
program. Let’s use the ‘Character input to operand’ command to read in
an initial and print it following "—ello". Any enhancement means going
back to update the algorithm.

Because we are reading and writing one character at a time, these steps are
concrete steps in machine language. However, we must do some calculation
before we actually write the machine-language instruction. We used the iden-
tifier initial to stand for the character read in; actually, initial refers to the
place in memory to store the character and the place in memory from which
we wish to write out the character. In many languages, we can actually use
an identifier and let the translating system determine the place in memory to
use. In machine language, we must specify the memory address ourselves.

The Read and Write can be converted directly into machine-language state-
ments ‘Character input’ and ‘Character output’. The ‘Character input’ to
operand allows only direct addressing, so the character is stored into the place
named in the third byte of the input instruction. How do we know where to

Write “Hello”

Read initial

Write initial
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tell the instruction to put the character? Well, since the next statement is
going to write out that character, let’s just store the character directly into the
third byte of the next instruction, which is the ‘Character output’ instruction,
and mark the ‘Character output’ instruction to use immediate addressing.

But we must know where the ‘Character input’ instruction is going to
be placed before we can determine where the ‘Character output’ instruc-
tion is going. In the original version of the program, we know that the
Stop command was stored into location 0F. Our enhancements go before
the Stop instruction, so the ‘Character input’ instruction goes into loca-
tions 0F, 10, and 11. The ‘Character output’ instruction goes into the next
three locations: 12, 13, and 14. Therefore, the ‘Character input’ instruc-
tion must have 14 in its third byte; that is, the input character must be
stored into location 14. When the ‘Character output’ instruction is
executed, the character stored in location 14 is written out.

Here is a copy of the screen with the input program, followed by a copy of
the output screen.

Module

Write "H"

...

Get initial

Write initial

Stop

Binary Instruction

===XXXXX

XXXXXXXXX=XXX=X=

Location Hex Instruction

XX

X=, X�

==X==XX=

XXXXXXXXXXX=X=XX

XF

=X, ==

===XXXXX

XXXXXXXXXXXXXXXX

=�

=�, =<

=OXXXXXXXX

EX

XX<>

D9

XX=<

EX

XXXX

XX
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John von Neumann was a brilliant mathe-
matician, physicist, logician, and computer
scientist. Legends have been passed down
about his astonishing memory and the
phenomenal speed at which von Neumann
solved problems. He used his talents not only
for furthering his mathematical theories, but
also for memorizing entire books and
reciting them years after he had read them.
But ask a highway patrolman about von
Neumann’s driving ability and he would be
likely to throw up his hands in despair; behind the
wheel, the mathematical genius was as reckless as a
rebel teenager.

John von Neumann was born in Hungary in 1903,
the oldest son of a wealthy Jewish banker. He was
able to divide 8-digit numbers in his head by the age
of 6. He entered high school by the time he was 11,
and it wasn’t long before his math teachers recom-
mended he be tutored by university professors. He
enrolled at the University of Berlin in 1921 to study
chemistry as a compromise with his father, who
wanted him to study something that would allow him
to make money. He received his diploma in chemical
engineering from the Technische Hochschule in Zürich
in 1926. In the same year, he received his doctorate
in mathematics from the University of Budapest, with
a thesis on set theory. During the period from 1926 to
1929 von Neumann lectured at Berlin and at
Hamburg while holding a Rockefeller fellowship for
postdoctoral studies at the University of Göttingen.

von Neumann came to the United States in the
early 1930s to teach at Princeton, while still keeping
his academic posts in Germany. He resigned the
German posts when the Nazis came to power; he was
not, however, a political refugee as so many were at
that time. While at Princeton, he worked with the
talented and as-yet-unknown British student Alan
Turing. He continued his brilliant mathematical career,
becoming editor of Annals of Mathematics and co-
editor of Compositio Mathematica. During the war
von Neumann was hired as a consultant for the U.S.

Armed Forces and related civilian agencies
because of his knowledge of hydrody-
namics. He was also called upon to partici-
pate in the construction of the atomic bomb
in 1943. It was not surprising that,
following this work, President Eisenhower
appointed him to the Atomic Energy
Commission in 1955.

Even though bombs and their perform-
ance fascinated von Neumann for many
years, a fortuitous meeting in 1944 with

Herbert Goldstine, a pioneer of one of the first oper-
ational electronic digital computers, introduced the
mathematician to something more important than
bombs—computers. von Neumann’s chance conver-
sation with Goldstine in a train station sparked a
new fascination for him. He started working on the
stored program concept and concluded that inter-
nally storing a program eliminated the hours of
tedious labor required to reprogram computers (in
those days). He also developed a new computer
architecture to perform this storage task. In fact,
today’s computers are often referred to as von
Neumann machines because the architectural princi-
ples he described have proven so tremendously
successful. Changes in computers over the past 40
years have been primarily in terms of the speed and
composition of the fundamental circuits, but the basic
architecture designed by von Neumann has
persisted.

During the 1950s, von Neumann was a consultant
for IBM, where he reviewed proposed and ongoing
advanced technology projects. One such project was
John Backus’s FORTRAN, which von Neumann
reportedly questioned, asking why anyone would
want more than one machine language. In 1957, von
Neumann died of bone cancer in Washington, D.C.
at the age of 54. Perhaps his work with the atomic
bomb resulted in the bone cancer that caused the
death of one of the most brilliant and interesting
minds of the twentieth century.

John von Neumann
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Where did the E come from? It is the first character in the machine-
language program! The Pep/7 system is expecting input from the active
screen. We must load the program and then create a new screen and write
the character we wish to input. Now when we click on Execute, the
program works as we expected. Here is the output screen after entering the
character N in a separate window.

You are asked in the exercises to insert a blank before the initial to make
the output more readable.

Notice in all of these programs that the instructions and the data that is
being manipulated are both stored in memory, demonstrating the princi-
ples of the von Neumann architecture.

7.5 Assembly Language

As we pointed out in Chapter 1, the first tools developed to help the
programmer were assembly languages. Assembly languages assign
mnemonic letter codes to each machine-language instruction. The
programmer uses these letter codes in place of binary digits. The instruc-
tions in an assembly language are much like those we would use to tell
someone how to do a calculation on a handheld calculator.

Because every program that is executed on a computer eventually must
be in the form of the computer’s machine language, a program called an
assembler reads each of the instructions in mnemonic form and translates
it into the machine-language equivalent. And because each type of
computer has a different machine language, there are as many assembly
languages and translators as there are types of machines.

Pep/7 Assembly Language
The goal of this section is not to make you assembly-language programmers; it
is to make you appreciate the advantages of assembly-language programming
over machine coding. With this goal in mind, we cover only a few of Pep/7’s
assembly-language features. Let’s begin by examining the same operations we
looked at in the last sections. In Pep/7’s assembly language, there is a different
opcode for each register, the operand is specified by “hY” and the hexadec-
imal value, and the addressing mode specifier is indicated by the letters i or -.
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Mnemonic
Operand,
Mode
Specifier

ST P

“—\"I

“—\"X

DE“I

DE“ 

DE“ 

L \D\

L \D\

L \D‘

L \D‘

ST "E\

ST "E‘

\DD\

\DD\

\DD‘

\DD‘

SQ'\

SQ'\

SQ'‘

SQ'‘

hYXX>',-

(Y)'),i

hYXX>',-

hYXX>',-

hYXX>',i

hYXX>',-

hYXX>',i

hYXX>',-

hYXX>',i

hYXX>',-

hYXX>',-

hYXX>',-

hYXX>',i

hYXX>',-

hYXX>',i

hYXX>',-

hYXX>',i

hYXX>',-

hYXX>',i

hYXX>',-

Meaning of Instruction

Read a character and store it into byte 8B

Write the character B
Write the character stored in byte 0B

Read a decimal number and store it into location 8B
Write the decimal number 139 (8B in hex)
Write the decimal number stored in 8B

Load 008B into register A
Load the contents of location 8B into register A
Load 008B into register X
Load the contents of 8B into register X

Store the contents of register A into location 8B
Store the contents of register X into location 8B

Add 008B to register A
Add the contents of location 8B to register A
Add 008B to register X
Add the contents of location 8B to register X

Subtract 008B from register A
Subtract the contents of location 8B from register A
Subtract 008B from register X
Subtract the contents of location 8B from register X

Stop execution

Did you wonder why we didn’t do any arithmetic in machine language?
Well, the output was defined only for characters. If we had done arith-
metic, we would have had to convert the numbers to character form to see
the results, and this is more complex than we wished to get. However, the
Pep/7 assembly language has mnemonics DECI and DECO, which allow us
to do decimal input and output.

Pseudo-Operations
In a machine language program, every instruction is stored in memory and
then executed. Beginning with assembly languages, most programming
languages have two kinds of instructions: instructions to be translated and
instructions to the translating program. Here are a few useful assembler
directives for the Pep/7 assembler; that is, instructions to the assembler.
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Pseudo-Op Operand

*\S“II

*'L “+

)***)

-Y�

Meaning

Store the characters between the // 's into memory

Generate three bytes of storage and set each byte to zero

*END Signals the end of the assembly-language program

*W "D

*W "D

-YO

hYX=XO

Generate a word with the decimal value 5 stored in it
Generate a word with the hexadecimal value 0105 stored in it

Assembly-Language Versions of Previous Program
Program 1 (immediate addressing) Let’s take a look at the algorithm
again. Recall that it writes "—ello" on the screen.

For our machine-language program, we had to further specify each step in
this module. Because the assembly language allows us to directly specify
the character to be output, this module is concrete if we use assembly
language rather than machine language. Each step in this module can be
coded directly. Assembly language allows us to add a comment beside the
instruction. A comment is text written for the human reader of the
program that explains what is happening. Comments are an essential part
of writing any program. The assembler ignores everything from the semi-
colon through the end of the line. Here is our assembly language program
with appropriate comments.

“—\"  “Y)—),i . J01J0 2—2

“—\"  “Y)e),i . J01J0 2e2

“—\"  “Y)l),i . J01J0 2l2

“—\"  “Y)l),i . J01J0 2l2

“—\"  “Y)o),i . J01J0 2o2

ST P

*END

Write “Hello”

Write “H”

Write “e”

Write “l”

Write “l”

Write “o”

Write “Hello”
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Figure 7.5 Assembly process

Program
in

Assembly
Language

Program
in

Machine
Code

Assembler
OutputInput

The result of running the Assemble option on the Pep7 menu is shown in
the following screen.

Compare this screen with the machine-language program. They are iden-
tical. The output from the assembler is a machine-language version of the
program. Once we have the machine-language program, we execute it just
as we did with the machine-language version we loaded. We can also get
an assembler listing as shown below by clicking the Assembler Listing
option on the Pep7 menu.

The process is illustrated in Figure 7.5. The input to the Assembler is a
program written in assembly language. The output from the Assembler is a
program written in machine code. You can see why the creation of
assembly language was an important step in the history of programming
languages. It removed much of the details of machine-language program-
ming by abstracting the instructions into words. It added a step to the
process of executing a program (the translation of assembly to machine
code), but that extra step is well worth the effort because it has made the
programmer’s life so much easier.
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The Rosetta stone was unearthed by
Napoleon’s troops in 1799. The stone
contained a proclamation marking the first
anniversary of the coronation of Ptolemy V,
inscribed in three languages: hieroglyphics,
demonic (a cursive version of hieroglyphs),
and Greek. Thomas Young, a British physi-

cist, and Francois Champollion, a
French Egyptologist, were able to
decipher the ancient Egyptian
languages using the Greek as a
guide. Thus, the Rosetta stone
provided the key that unlocked the
translation of Egyptian hieroglyphics.

The Rosetta Stone as a Translation System

Program 1 with direct addressing What about the version of program 1
that used direct addressing rather than immediate addressing? We can code
it from the same algorithm, but it is more complex. Recall that when using
direct addressing we must specify the location in which the character we
wish to output is stored. We still have to figure out that address, but we
can store the characters there more easily than we did in machine language.
We put the *\S“II pseudocode operation immediately below the STOP, so
that the characters of "—ello" are stored beginning at location 0010.

“—\"  hYXX=X,- . J01J0 2—2

“—\"  hYXX==,- . J01J0 2e2

“—\"  hYXX=�,- . J01J0 2l2

“—\"  hYXX=�,- . J01J0 2l2

“—\"  hYXX=<,- . J01J0 2o2

ST P

*\S“II )—ello) .S0o3e 2—ello2 i40o 13o1e3 1l5(e6

*END

Here is the screen shot of the assembler listing and the assembled version
of the program. Compare the assembled version with the machine
language version found on page 204.

211
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Program 1 enhanced version Now let’s code the enhanced version of the
program, where we read in an initial and write it out following ‘—ello’.
Rather than enhance the immediate-addressing-mode version, let’s use the
direct-addressing-mode version previously shown. We need to insert a
“—\"I instruction and a “—\" instruction before the ST P. This means
that the characters to be printed must be moved two instructions further
down in memory, changing the address of each by 6 bytes. Thus the
operands of the “—\" statements must be increased by 6. The only tricky
part is to remember that 14 plus 6 is 1A, not 20.

“—\"  hY=!,- . J01J0 2—2

“—\"  hY=7,- . J01J0 2e2

“—\"  hY=>,- . J01J0 2l2

“—\"  hY=9,- . J01J0 2l2

“—\"  hY=\,- . J01J0 2o2

“—\"I hY=<,- .I41J0 54 i4i0i5l

“—\"  hYXX,i . J01J0 i4i0i5l

ST P

*\S“II )—ello) .S0o3e 2—ello2 i40o 13o1e3 1l5(e6

*END

Screen shots of the assembler listing and the machine-language program
are shown below. Compare the machine code generated with the machine
code for the enhanced version. The output is the same, but the programs
are different. Be sure that you understand why they are different.
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A New Program
Let’s make a step up in complexity and write a program to read in three
numbers and write out their sum. How would we do this task by hand? If
we had a calculator, we would first clear the total; that is, set the sum to
zero. Then we would get the first number and add it to the total, get the
second number and add it to the total, and finally get the third number
and add it to the total. The result would be what is in the accumulator of
the calculator. We can model the program on this algorithm.

The first step is concrete: It involves setting a place in memory to zero. In
fact, all of these statements look concrete. The most complex problem is
that there are four identifiers that we must associate with places in
memory, and this requires knowing how many places the program itself
takes—that is, if we put the data at the end of the program. Let’s make this
process easier by putting our data before the program. We can start associ-
ating identifiers with memory locations beginning with location 0001 and
have the fetch-execute cycle skip over these places to continue with the
program. In fact, we can assign identifiers to the memory locations and use
these names later in the program. We set up space for the sum using the
*W "D pseudocode so that we can set the contents to 0. We set up space for
the three numbers using the *'L “+ pseudocode.

6J8:  *W "D -YX .6e0 J1 wo3- wi0h ze3o 56 0he (o40e406

4J8=: *'L “+ -Y� .6e0 J1 5 0wo by0e blo(= fo3 4J8=

4J8�: *'L “+ -Y� .6e0 J1 5 0wo by0e blo(= fo3 4J8�

4J8�: *'L “+ -Y� .6e0 J1 5 0wo by0e blo(= fo3 4J8�

We can refer to these identifiers, and the assembler substitutes the
addresses. Now all of the steps are concrete. The first step in the algorithm
is to set the sum to zero. This is already done by the *W "D pseudo-op. The
next two steps are repeated three times: Read a number and Add number to

Set sum to 0

Read num1

Add num1 to sum

Read num2

Add num2 to sum

Read num3

Add num3 to sum

Write sum
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sum. Oops, there is a necessary step not in the algorithm: We must clear the
accumulator. We can either load sum into the accumulator first (to set it to
zero) or we can load the first number into the accumulator rather than
adding it in. Since we have made sure that sum is zero, let’s load it in first.
So, after reading and adding three numbers, we must write out the sum.
Oops, another missing step. We must store the accumulator into sum in
order to write it out.

Here is our completed program. Note that we had to have a statement
that branches around the data values as the first statement. That is, execution
begins with the instruction stored in location 0000. We have put the data at
the beginning of the program rather than the instructions that operate on the
data. Thus, we must have an instruction stored in location 0000 that puts the
location of the first instruction in the program into the program counter. The
'" instruction does this. '", followed by M5i4, stores the address associated
with the name M5i4 into the program counter, so that the instruction stored
in M5i4 is then loaded into the instruction register and executed. We have
also lined the statements up so that they are easier to read.

'" M5i4 .b354(h 0o lo(50io4 M5i4

6J8: *W "D -YX .6e0 J1 wo3- wi0h ze3o 56 0he (o40e406

4J8=: *'L “+ -Y� .6e0 J1 5 0wo by0e blo(= fo3 4J8=

4J8�: *'L “+ -Y� .6e0 J1 5 0wo by0e blo(= fo3 4J8�

4J8�: *'L “+ -Y� .6e0 J1 5 0wo by0e blo(= fo3 4J8�

M5i4: L \D\ 6J8,- .lo5- 5 (o1y of 6J8 i40o 5((J8Jl50o3

DE“I 4J8=,- .3e5- 54- 60o3e 5 -e(i85l 4J8be3 i4 4J8=

\DD\ 4J8=,- .5-- 0he (o40e406 of 4J8= 0o 5((J8Jl50o3

DE“I 4J8�,- .3e5- 54- 60o3e 5 -e(i85l 4J8be3 i4 4J8�

\DD\ 4J8�,- .5-- 0he (o40e406 of 4J8� 0o 5((J8Jl50o3

DE“I 4J8�,- .3e5- 54- 60o3e 5 -e(i85l 4J8be3 i4 4J8�

\DD\ 4J8�,- .5-- 0he (o40e406 of 4J8� 0o 5((J8Jl50o3

ST "E\ 6J8,- .60o3e (o40e406 of 0he 5((J8Jl50o3 i40o 6J8

DE“  6J8,- .oJ01J0 0he (o40e406 of 6J8

ST P .60o1 0he 13o(e66i4?

*END .e4- of 0he 13o?358

Here is the machine code and the assembler listing for this program. Look
it over carefully to be sure you understand how the program works.
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7.6 Other Important Threads

In the last chapter, we talked about threads that are important in
computing: information hiding, abstraction, naming things, programming
languages, and testing. All of these threads have appeared in this chapter,
emphasizing how intertwined they all are.

At the machine-language level, there is very little information hiding
going on. Every little detail must be explicitly taken care of. One bit of
information was hidden: Pep/7 uses 2’s complement to represent negative
numbers, but we did not need to know this to use the machine language.
(See Chapter 2 to refresh your memory about 2’s complement.) When we
move up to the assembly-language level, we can hide some of the details
using the abstractions that the language provides. For example, we are able
to set up a block of storage and give the first byte in the block a name by
which we can refer to the block. We can associate a word of storage with a
name and store a value into the word. We can give an instruction a name
and branch to the instruction. These examples of abstraction involve giving
names to data or actions. The idea that we can give a name to an action as
we did with the instruction we called M5i4 that loads the sum into the
accumulator is an extremely important concept, upon which we dwell at
some length in later chapters.
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Testing
We briefly tested our programs by executing them to see if they produced
the output we expected. However, there is far more to testing than just
running the program once. Let’s look at testing in more detail in the
context of the last program. The program reads in three numbers and
prints their sum. Testing at the design phase is a simple matter because
every step at the top level is a concrete step. How do we test a specific
program to determine its correctness? We design and implement a test

plan. A test plan is a document that specifies how many times and with
what data the program must be run in order to thoroughly test the
program. Each set of input data values is called a test case. The test plan
should list the reason for choosing the data, the data values, and the
expected output from each case.

The test cases should be chosen carefully. There are several approaches
to testing that can guide in the process. A code-coverage approach designs
test cases to ensure that each statement in the program is executed.
Because the code is visible to the tester, this approach is also called clear-

box testing. Data-coverage testing is another approach; it designs test
cases to ensure that the limits of the allowable data are covered. Because
this approach is based solely on input data and not the code, it is also
called black-box testing. Often testing is a combination of these two
approaches.

Test-plan implementation involves running each of the test cases
described in the test plan and recording the results. If the results are not as
expected, we must go back to our design and find and correct the error(s).
The process stops when each of the test cases gives the expected results.
Note that an implemented test plan gives us a measure of confidence that
the program is correct; however, all we know for sure is that our program
works correctly on the test cases. Therefore, the quality of the test cases is
extremely important.

In the case of the program that reads in three values and sums them, a
clear-box test would just include three data values. There are no condi-
tional statements in this program to test with alternate data. However, a
clear-box test would not be sufficient here. We need to try both negative
and positive data values. The numbers that are being read in are stored in
one word. The problem does not limit values to �215

�1, but our imple-
mentation does. We should also try values at the limits of the size of the
allowed input in the test plan, but because they are being summed, we
need to be sure the sum does not exceed �215

�1.
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To implement this test plan, the program is run six times, once for each
test case. The results are then written in the Observed Output column.

When running the enhanced "—ello" program, we loaded the program
and then made a file with the input as the active file before we ran the
program. Another alternative is to use interactive input. Interactive input is
where the program tells the user to key in the input data as the program is
running. If we choose Execution Input on the Pep7 menu, we see the
following screen:

We click the button by Interactive Input From Keyboard and the OK
button. When we run the program to implement the test cases, we get a
window that asks us to input the data.

Reason for Test Case

Assumption: Input values are no greater than 215–1 or less than –215.
Input three positive numbers
Input three negative numbers
Input mixed numbers

4, 6, 1
–4, –6, –1

32767, –1, +1

4, 6, –1
4, –6, 1
–4, 6, 1

11
–11

32767

9
–1
3

Large numbers

Input Values Expected Output Observed Output
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We key in a number and press Continue. This screen appears twice more.
If the first number we key in is 4, the second is 6, and the third is 1, we get
the following output.

The input is shown along with the output from the program. The first test
case runs correctly. You are asked to finish implementing the test plan in
the exercises.

Summary

A computer can store, retrieve, and process data. A user can enter data
into the machine, and the machine can display data so that the user can see
it. At the lowest level of abstraction, instructions to the machine directly
relate to these five operations.

A computer’s machine language is the set of instructions that the
machine’s hardware is built to recognize and execute. Machine-language
programs were written by entering a series of these instructions in their
binary form. The Pep/7 is a virtual computer with two registers (A and
X) and two-part instructions. One part of the instruction tells what
action the instruction performs, and the other part specifies the location
of the data to be used (if any). Programs written using the Pep/7 instruc-
tion set can be run using a simulator, a program that behaves like the
Pep/7 computer.

The Pep/7 assembly language is a language that allows the user to
enter mnemonic codes for each instruction rather than binary numbers.
Programs written in assembly language are translated into their
machine-language equivalents, which are then executed using the Pep/7
simulator.

Programs, like algorithms, must be tested. Code-coverage testing
involves determining the input to the program by looking carefully at the
program’s code. Data-coverage testing involves determining the input by
considering all possible input values.
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Software Piracy, Copyrighting
Have you ever upgraded your operating system by borrowing the

latest software from a friend? Or, when you spent only $50 to purchase

sophisticated software, did you ignore your suspicion that this “steal”

was too good to be true? The alarmingly casual attitude towards dupli-

cating, downloading, and reselling software has made software piracy a

critical issue for the computer industry. Research conducted by Business

Software Alliance indicated that, globally, 11.5 billion dollars were lost in

the year 2000 to pirated software. At a rate of 24%, the United States has

the lowest piracy rate in the world, but that percentage represents over

2.4 billion dollars in lost revenue to software companies. Software piracy

is the unlawful reproduction of copyrighted software, or a violation of

the terms of the agreement stated in the software’s license. A software

license is a document that outlines the terms by which the user may use

the software purchased. When you lend software to a friend, or down-

load software onto multiple computers, you are failing to adhere to the

license agreement and are, in fact, breaking the law.

Why is software copyrighted? Unlike an idea or written work, soft-

ware has functionality. This unique quality distinguishes software from

other forms of intellectual property and complicates its need for copy-

righting. Richard Stallman, President of the Free Software Foundation,

argues that assigning copyrights to software hinders its development and

that requiring licensing fees makes software cost-prohibitive for many

people. Both of these negative consequences suggest to many people that

standard copyrighting is not the best approach for software. Advocates of

open-source code believe that a program’s original source code should be

in the public domain. Open-source code is code that anyone can down-

load, and therefore anyone can rewrite portions of the program, thereby

participating in the software’s evolution. While a number of programs,

like the LINUX operating system, have open-source code, companies like

Microsoft chose to protect their code.

Respecting the copyrights of software, if it is not open code, is

important from a number of perspectives. Research shows that in one

year 107,000 jobs were lost in the United States because of pirated

software. “Softlifting,” or duplicating software from a friend’s copy,

contributes as much to this piracy problem as counterfeiting and “hard

W
WW
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disk loading,” which is the unauthorized installation of software into a

computer’s hard drive before it is sold. Using pirated software also

puts the user at risk by exposing him or her to potential software

viruses. The person who freely “borrows” software from a friend is

actually stealing, and this action has significant ramifications.

Key Terms
Assembler  pg. 207

Assembly language  pg. 207

Code-coverage (clear-box) testing
pg. 216

Comment  pg. 209

Data-coverage (black-box) testing
pg. 216

Loader  pg. 202

Machine language  pg. 189

Test plan  pg. 216

Test-plan implementation  
pg. 216

Virtual computer (machine)  
pg. 190

Exercises
1. What does it mean when we say that a computer is a programmable

device?

2. List five operations that any machine language must include.

3. The distinction between concrete and abstract steps in algorithms is
not always clear-cut. Discuss this dilemma and give concrete examples
to support your discussion.

4. What is a virtual machine? Discuss this definition in terms of the Pep/7
computer.

5. We said that you should have guessed that a Pep/7 instruction would
use 5 bits when we said that there were 32 instructions. Explain.

6. Describe the features of the Pep/7 CPU that we covered in this chapter.

7. We covered only two of the four addressing modes. If we had not
stated this explicitly, could you have deduced that this was true?
Explain.

8. Where is the data (operand) if the address mode specifier is
a. 00
b. 01

9. Distinguish between the IR (instruction register) and the PC (program
counter).

10. How many bits are required to address the Pep/7 memory?

11. How many more cells could be added to memory without having to
change the instruction format? Justify your answer.
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12. Some Pep/7 instructions are unary, taking only one byte. Other
instructions require three bytes. Given the instructions that we have
covered in this chapter, would it be useful to define instructions that
require only two bytes?

Given the following state of memory (in hexadecimal), answer Exercises
13 through 19.

XXX= \�

XXX� ==

XXX� FF

13. What are the contents of the A register after the execution of this
instruction?

XXXX=XXX XXXXXXXX XXXXXX==

14. What are the contents of the A register after the execution of this
instruction?

XXXX=XX= XXXXXXXX XXXXXX==

15. What are the contents of the X register after the execution of this
instruction?

XXXX==X= XXXXXXXX XXXXXX==

16. What are the contents of the A register after the execution of the
following two instructions?

XXXX=XX= XXXXXXXX XXXXXXX=

XXX==XXX XXXXXXXX XXXXXXX=

17. What are the contents of the A register after the execution of the
following two instructions?

XXXX=XXX XXXXXXXX XXXXXXX=

XXX==XX= XXXXXXXX XXXXXX=X

18. What are the contents of the A register after the execution of the
following two instructions?

XXXX=XX= XXXXXXXX XXXXXX==

XX=XXXX= XXXXXXXX XXXXXX=X

19. What are the contents of the X register after the execution of the
following two instructions?

XXXX==X= XXXXXXXX XXXXXX==

XX=XX=X= XXXXXXXX XXXXXX=X

20. If the input character is A, what is the result of executing the following
two instructions?

XXX= ==X==XX= XXXXXXXX XXXXX==X

XXX< ===XXXXX XXXXXXXX XXXX=X=X
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21. If the input character is A, what is the result of executing the following
two instructions?

XXX= ==X==XX= XXXXXXXX XXXXX==X

XXX< ===XXXX= XXXXXXXX XXXX=X=X

22. Write the algorithm for writing your name, given that the implementa-
tion language is Pep/7 machine code.

23. Write the machine-language program to implement the algorithm in
Exercise 22.

24. Write the algorithm for writing out your name, given that the imple-
mentation language is Pep/7 assembly language.

25. Write the assembly-language program to implement the algorithm in
Exercise 23.

26. Rewrite the enhanced “—ello” program so that a blank is printed
before the initial.

27. Distinguish between the Pep/7 menu options Load, Load/Execute, and
Execute.

28. The following program seems to run, but does strange things with
certain input values. Can you find the bug?

'" M5i4

6J8: *W "D -YX

4J8=: *'L “+ -Y=

4J8�: *'L “+ -Y=

4J8�: *'L “+ -Y=

M5i4: L \D\ 6J8,-

DE“I 4J8=,-

\DD\ 4J8=,-

DE“I 4J8�,-

\DD\ 4J8�,-

DE“I 4J8�,-

\DD\ 4J8�,-

ST "E\ 6J8,-

DE“  6J8,-

ST P 

*END

29. Correct the code in Exercise 28 and run the test plan outlined in the
chapter.

30. Finish executing the test plan for the algorithm in the text that reads
and sums three values.

31. Write an algorithm that reads in three values and writes out the result
of subtracting the second value from the sum of the first and the third
values.
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32. Implement the algorithm in Exercise 31 as an assembly-language
program.

33. Write and implement a test plan for the program in Exercise 31.

34. Design and implement an algorithm that reads four values and prints
the sum.

35. Is the test plan for a machine language program valid for the same
solution written in assembly language? Explain your answer.

36. Distinguish between the pseudocode instructions *'L “+ and *W "D.

37. Distinguish between assembly language pseudocode instructions and
mnemonic instructions.

38. Distinguish between test plans based on code coverage and data
coverage.

39. Explain the meaning of the Pep/7 menu option E”e(J0io4 I41J0.

Thought Questions

1. Would you like to do assembly-language programming? Can you
think of any personality types that would be suited for such detail
work?

2. The translation process has been demonstrated by showing the
machine-language program that is the result of the assembly-language
program. Look carefully at the solution of Exercise 32. Think about
the steps that the assembler program must execute. Do you think that
the translation can be made by looking at each assembly-language
instruction once or must each one be examined twice? Convince a
friend that you are right.

3. If a person has two computers of the same kind, is it ethical to buy
one copy of a software package and install it on both machines? What
are the arguments on the yes side? What are the arguments on the no
side?

4. Daniel Bricklin, whose biography appears in Chapter 12, did not
patent (or copyright) his software, believing that software should not
be proprietary. As a result he lost a great deal of possible royalties. Do
you consider his actions to be visionary or naive?

5. The Free Software Foundation is a tax-exempt charity that raises
funds for work on the GNU Project. GNU software is free. Go to the
Web and find out their philosophy. Compare GNU products with
those of manufacturers such as Microsoft and Sun.

6. If you continue with computing and become a programmer, which
side of this argument would you take: Should software be copyrighted
or should it be free?

?
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High-Level Programming
Languages

Chapter 8

In Chapter 1, we examined how the layers of languages were built up

over time around the hardware to make computing easier for the

applications programmer. In the last chapter, we looked at machine

code and then at an assembly language that allows the programmer

to use mnemonics to represent instructions rather than numbers.

Assembly languages are a step in the right direction, but the

programmer still must think in terms of individual machine instruc-

tions. High-level programming languages were developed to be closer

to how humans think and communicate. Because computers can only

execute machine code, translators were developed to translate

programs written in these high-level languages into machine code.

In this chapter, we look first at the translation process itself,

then we present four differing views of high-level programming

languages. This chapter then goes on to examine the functionality

that high-level languages give the programmer. Just as the concept

of “welcome” can be expressed in different languages, the func-

tionality we describe can be expressed in different languages. We

give concrete examples in four high-level languages: Ada, C++,

Java, and Visual Basic .NET. 225
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Goals
After studying this chapter, you should be able to

� describe the translation process and distinguish between assembly, compi-
lation, interpretation, and execution.

� name four distinct programming paradigms and name a language char-
acteristic of each.

� describe the following constructs: stream input and output, selection,
looping, and subprograms.

� construct Boolean expressions and describe how they are used to alter the
flow of control of an algorithm.

� define the concepts of a data type and strong typing.
� explain the concept of a parameter and distinguish between value and

reference parameters.
� describe two composite data-structuring mechanisms.
� name, describe, and give examples of the three essential ingredients of an

object-oriented language.

8.1 Translation Process

Recall from the last chapter that a program written in assembly language is
input to the assembler, which translates the assembly-language instructions
into machine code. The machine code, which is the output from the assem-
bler, is then executed. Figure 7.5 depicts the assembly process. The Pep/7
simulator produced a window showing the assembly-language statement,
the translated machine code, and the address in memory into which the
machine instruction is stored. This listing makes the assembly process very
clear. The hallmark of an assembly language is that each assembly-
language instruction is translated into one machine-language instruction.

Compilers
The algorithms that translate assembly-language instructions into machine
code are very simple because assembly languages are very simple. By
simple we mean that each instruction carries out a fundamental operation.
High-level languages provide a richer set of instructions that makes the
programmer’s life even easier, but because the constructs are more
abstract, the translation process is more difficult. Programs that translate
programs written in a high-level language are called compilers. In the early
days, the output of a compiler was an assembly-language version of the
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Figure 8.1 Compilation process

Program
in a 

high-level
language

Program
in

machine
code

Compiler
OutputInput

program, which then had to be run through an assembler to finally get the
machine-language program to execute. As computer scientists began to
have a deeper understanding of the translation process, compilers became
more sophisticated and the assembly-language phase was often eliminated.
See Figure 8.1.

A program written in a high-level language can be run on any computer
that has an appropriate compiler for the language. Note that a compiler is
a program; therefore, there must be a machine-code version of the
compiler for a particular machine in order to be able to compile a
program. Thus, to be able to be used on multiple types of machines, each
high-level language must have many compilers for that language.

Interpreters
An interpreter is a translating program that translates and executes the
statements in sequence. Unlike an assembler or compiler that produces
machine code as output, which is then executed in a separate step, an
interpreter translates a statement and then immediately executes the state-
ment. Interpreters can be viewed as simulators for the language in which a
program is written. As Terry Pratt in his classic text on programming
languages points out, both a translator and a simulator accept programs in
a high-level language as input. The translator (assembler or compiler)
simply produces an equivalent program in the appropriate machine
language, which must then be run. The simulator executes the input
program directly.1

Second-generation high-level languages came in two varieties: those
that were compiled and those that were interpreted. FORTRAN,
COBOL, and ALGOL were compiled; Lisp, SNOBOL4, and APL were
interpreted. Because of the complexity of the software interpreters,
programs in interpreted languages usually ran much more slowly than
compiled programs. As a result, the trend was towards compiled
languages until the advent of Java.

Java was introduced in 1996 and swept the computing community by
storm. In the design of Java, portability was of primary importance. To
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achieve optimum portability, Java is compiled into a standard machine
language called Bytecode. How can there by a standard machine
language? A software interpreter called the JVM (Java Virtual Machine)
takes the Bytecode program and executes it. That is, Bytecode is not the
machine language for any particular hardware processor. Any machine
that has a JVM can run the compiled Java program.

Be aware of the difference between the portability achieved by standard-
ized high-level languages and the portability achieved by translating Java

into Bytecode and then interpreting it on a JVM. A
program written in a high-level language can be
compiled and run on any machine that has the
appropriate compiler. The program is translated into
machine code that is directly executed by a
computer. A Java program is compiled into Bytecode
and the compiled Bytecode program can be run on
any machine that has a JVM interpreter. That is, the
output from the Java compiler is interpreted, not
directly executed. See Figure 8.2. Java is always
translated into Bytecode. In addition, there are
compilers for other languages that translate the

language into Bytecode rather than machine code. For example, there are
versions of Ada compilers that translate Ada into Bytecode.

The JVM is a virtual machine, just like Pep/7, discussed in Chapter 7.
We defined a virtual machine as a hypothetical machine designed to illus-
trate important features of a real machine. The JVM is a hypothetical
machine designed to execute Bytecode.

8.2 Programming Language Paradigms

What is a paradigm? The American Heritage Dictionary of the English
Language gives two definitions that relate to how we, in computing, use
the term: “One that serves as a pattern or model” and “A set of assump-
tions, concepts, values, and practices that constitute a way of viewing
reality for the community that shares them, especially in an intellectual
discipline.” 2 In Chapter 1, we outlined the history of software develop-
ment listing some of the programming languages that developed in each
generation. Another way to view programming languages is to look at the
ways different languages reflect differing views of reality; that is, to look at
the different paradigms represented.

The von Neumann model of sequential instructions that operate on
values in memory greatly influenced the most common model of a

UCSD’s p-system predates Bytecode
In the 1970’s the University of California at San
Diego had a system that executed p-code, a
language very similar to Bytecode. Programs
written in Pascal and FORTRAN were translated
into p-code, which could be executed on any
hardware with a p-code interpreter.

W
WW
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C++ compiler

John's program in
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Executing
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C++ compiler
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Output Output Output

John's program in
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Figure 8.2
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programming language: the imperative or procedural
model. The dominant languages used in industry
throughout the history of computing software come
from this paradigm. These languages include
FORTRAN, COBOL, BASIC, C, Pascal, Ada, and
C++. In this paradigm, the languages allow the
programmer to express algorithms as a hierarchy of
tasks as described in Chapter 6. That is, the program
describes the processing necessary to solve the
problem. The imperative paradigm is thus character-
ized by sequential execution of instructions, the use
of variables that represent memory locations, and the
use of assignment statements that change the values
of these variables.6

Another model of computation is the functional
model, which is based on the mathematical concept of
the function. Computation is expressed in terms of
the evaluation of functions. The solution to a problem
is expressed in terms of function calls. The basic
mechanism is the evaluation of functions; there are no
variables and no assignment statements. For example,
the addition of two values would be expressed this
way:

(+ 30 40)

where the parentheses represent an expression to be evaluated by applying
the first item (which must be a function) to the rest of the list. Thus, this
expression is evaluated by applying the addition function to the next two
numbers and returns the value 70. There is no looping construct; repetition
is expressed in terms of recursive function calls. (Recursion is discussed
later in this chapter.) The most well-known languages in the functional
paradigm are LISP, Scheme (a derivative of LISP), and ML.

Logic programming is a third programming paradigm. Logic program-
ming is based on the principles of symbolic logic. The model is of a set of
facts about objects and a set of rules about the relationships among the
objects. A program then consists of asking questions about the objects and
their relationships, which can be deduced from the facts and the rules. The
underlying problem-solving algorithm uses the rules of logic to deduce the
answer from the facts and rules.

PROLOG is a third-generation logic programming language developed
in France in 1970. It rose to prominence in 1981 when the Japanese
announced that logic programming would play be major role in their

The word paradigm has changed
over the years.

The 1977 Webster’s New Collegiate Dictionary
defines paradigm as “an example or pattern, an
outstanding example of an archetype, or an
example of a conjugation or declension of a
word.” There is no mention of a community of
views. A search of the Internet in 2001 found
many relevant definitions, including: “A pattern
or an example of something.” The word also
connotes the ideas of a mental picture and
pattern of thought. Thomas Kuhn uses the word
to mean the model that scientists hold about a
particular area of knowledge. Kuhn’s famous
book, The Structure of Scientific Revolutions, is
his view of the stages through which a science
goes in getting from one paradigm to the next.3

The generally accepted perspective of a partic-
ular discipline at a given time; “he framed the
problem within the psychoanalytic paradigm.”4

“A model or frame of reference. Radical trans-
formation in the way of looking at an issue or
problem.”5
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fifth-generation computer. A PROLOG program is made up of three types
of statements. One type declares facts about objects and their relation-
ships with and to each other. Another type defines rules about objects and
their relationships. A third type then asks questions about the objects and
their relationships.7

LISP and PROLOG are both used in artificial intelligence applications
described in Chapter 13. As you can see, programs in these languages have
little resemblance to the von Neumann architecture reflected in languages
in the imperative paradigm.

The fourth paradigm is the object-oriented paradigm. The object-
oriented view is one of a world of interacting objects. Each object has
responsibility for its own actions. In the imperative paradigm, data objects
are considered passive and are acted upon by the program. In the object-
oriented paradigm, objects are active. Objects and the code that manipu-
lates them are bundled together, thus making each object responsible for
its own manipulation. These languages allow the programmer to express
algorithms using a hierarchy of objects, as described in Chapter 6.

SIMULA and Smalltalk were the first two object-oriented programming
languages. Although C++ is considered by some to be an object-oriented
language, we view it as an imperative language with some object-oriented
features. On the other hand, Java, a relatively new language (released in
1996), is an object-oriented language with some imperative features.

We first discuss the functionality of imperative languages, then cover
the functionality of object-oriented languages.

8.3 Functionality of Imperative
Languages

In Chapter 6, we looked at problem solving in general and problem solving
in which the solution is implemented on a computer. We mentioned that
there are two processes that we used in designing algorithms: selection and
iteration (looping). However, we did not implement either of these
constructions in assembly language. We could have done so, but the imple-
mentation is very detailed and beyond the scope of what we wanted to
cover with assembly languages. In high-level languages, selection and itera-
tion are very easy. First we introduce the concept of a Boolean expression,
which is the construct that high-level languages use to make choices. Then
we examine constructs that high-level languages provide to make program-
ming easier and safer.
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Boolean Expressions
In Chapter 6, we wrote an algorithm to create an address list that includes
each person’s name, address, telephone number, and e-mail address. One
of the subalgorithms was to fill in missing data that had not been entered
originally. Let’s look at this module.

There is one loop and three selection statements in this algorithm. We
continue looping while there are more names. If a street, telephone
number, or e-mail address is missing, the algorithm asks for this informa-
tion. Notice how these questions are phrased:

(there are more names)

(street is missing)

(telephone is missing)

(eMail is missing)

Each phrase is actually a statement. If the statement is true, the answer to
the question is true. If the statement is not true, the answer to the question
is false. Making statements and then testing to see if they are true or false
is how programming languages ask questions. These statements are called
assertions or conditions. When we are writing algorithms, we make asser-
tions in English-like statements. When the algorithms are translated into a
high-level programming language, the English-like statements are rewritten
as Boolean expressions.

Fill in missing data Level 1

Write “To any of the prompts below, if the information is still not known, just 

press return.”

Get a name from the list

While (there are more names)

Get a lastFirst

Write lastFirst

If (street is missing)

Write “Enter street number and name; press return.”

Read street

If (telephone is missing)

Write “Enter area code and 7-digit number; press return.”

Read telephone

If (e-Mail is missing)

Write “Enter e-mail; press return.”

Get a name from the list
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What is a Boolean expression? In Chapter 4, we introduced the concept
of Boolean operations when we discussed gates and circuits. Here we are
using them at the logical level rather than the hardware level. A Boolean

expression is a sequence of identifiers, separated by compatible operators,
that evaluates to true or false. A Boolean expression can be

� a Boolean variable.

� an arithmetic expression followed by a relational operator followed
by an arithmetic expression.

� a Boolean expression followed by a Boolean operator followed by a
Boolean expression.

Yes, but what is a Boolean variable? In fact, what is a variable? In the algo-
rithms we have written, we have used identifiers to name places that repre-
sent values in the algorithm. For example, street represents a street address,
and telephone represents a telephone number. In Pep/7 programs, we chose
a location in memory for each identifier and stored appropriate values into
those locations. A variable is a location in memory that is referenced by an
identifier that contains a data value. Thus, a Boolean variable is a location
in memory that can contain either X=\" or —elo"*.

A relational operator between two arithmetic expressions is asking if
the relationship exists between the two expressions. For example,

xValue < yValue

is making the assertion that xValue is less than yValue. If xValue is less than
yValue, then the result of the expression is true; if xValue is not less than
yValue, then the result is false.

The relational operators are listed in the following table, along with the
symbols that various high-level languages use to represent the relation.

Relationship Symbol

equal to
not equal to
less than or equal to
greater than or equal to
less than
greater than

E or EE
<> or !E or OE
<E

>E

<

>

*When referring to code in a specific language or to what is actually stored in memory, we

use a monospace (code) font.
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Recall that Boolean operators are the special operators AND, OR, and
NOT. The AND operator returns X=\" if both expressions are true and
—elo" otherwise. The OR operator returns —elo" if both expressions are
false and X=\" otherwise. The NOT operator changes the value of the
expression. These operations are consistent with the functionality of the
gates in Chapter 4. At that level we were referring to the flow of electricity
and the representation of individual bits. At this level the logic is the same,
but we can talk in terms of a statement either being true or false.

Strong Typing
When working in an assembly language, we assign identifiers to memory
locations with no regard as to what is to be stored into the locations. Most
high-level languages require you to state what can be stored in a place
when you associate it with an identifier. If a statement in a program tries
to store a value into a variable that is not the proper type, an error
message is issued. The requirement that only a value of the proper type can
be stored into a variable is called strong typing.

In the next sections we look at common types of data values and how
high-level languages allow you to associate locations with identifiers. Each
of these data types has certain operations that legally can be applied to
values of the type. A data type is a description of the set of values and the
basic set of operations that can be applied to values of the type.

Data Types
Data are the physical symbols that represent informa-
tion. Inside a computer both data and instructions are
just binary bit patterns. The computer executes an
instruction because the address of the instruction is
loaded into the program counter and the instruction is
then loaded into the instruction register. That same bit
pattern that is executed can also represent an integer
number, a real number, a character, or a Boolean
value. The key is that the computer interprets the bit
pattern to be what it expects it to be.

For example, in Pep/7 the instruction for Stop is a
byte of all zero bits. When this instruction is loaded
into the Instruction Register, the program halts. A byte
of all zero bits can also be interpreted as an 8-bit
binary number containing the value 0. If the location
containing all zero bits is added to the contents of a
register, the value is interpreted as a number.

Consider the word bow.
A word is a sequence of symbols taken from the
alphabet. Some sequence or patterns of symbols
have been assigned meanings, others have not
(for example, the symbols ceba don’t form a
meaningful word in the English language). But
bow is an English word. However, it can mean
different things: part of a ship, something a little
girl wears in her hair, something you play the
violin with, or the act of bending from the waist.
We can differentiate between the meanings
based upon the context of the word, just as a
compiler can differentiate based on the
surrounding syntax.
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Most high-level languages have four distinct data types built into the
language: integer numbers, real numbers, characters, and Boolean values.

Integers The integer data type represents a range of integer values from
the smallest to the largest. The range varies depending upon how many
bytes are assigned to represent an integer value. Some high-level languages
provide several integer types of different sizes, which allows the user to
choose the one that fits the data in a particular problem.

The operations that can be applied to integers are the standard arith-
metic and relational operators. Addition and subtraction are represented
by the standard symbols + and �. Multiplication and division are usually
represented by * and /. Depending on the language, integer division may
return a real number or the integer quotient. Some languages have two
symbols for division, one that returns a real result and one that returns the
integer quotient. Most languages also have an operator that returns the
integer remainder from division. This operator is called the modulus oper-
ator, but it may or may not act as the mathematical modulus operator.
The relational operators are represented by the symbols shown in the table
in the previous section.

Reals The real data type also represents a range from the smallest to the
largest value with a given precision. Like the integer data type, the range
varies depending on the number of bytes assigned to represent a real
number. Many high-level languages have two sizes of real numbers. The
operations that can be applied to real numbers are the same as those that
can be applied to integer numbers. However, you must be careful when
applying the relational operators to real values, because real numbers are
often not exact. For example, 1/3 + 1/3 + 1/3 in computer arithmetic is not
necessarily 1.0. In fact, 1/10 * 10 is not 1.0 in computer arithmetic.

Characters In Chapter 3, we said that it takes one byte to represent char-
acters in the ASCII character set and two bytes to represent characters in
the Unicode character set. Our English alphabet is represented in ASCII,
which is a subset of Unicode. Applying arithmetic operations to characters
doesn’t make much sense, and many strongly typed languages do not
allow you to do so. However, comparing characters does make sense, so
the relational operators can be applied to characters. The meaning of “less
than” and “greater than” when applied to characters is “comes before”
and “comes after” in the character set. The character ‘A’ is less than ‘B’,
‘B’ is less than ‘C’, and so forth. The character ‘1’ (not the number) is less
than ‘2’, ‘2’ is less than ‘3’, and so forth. If you want to compare ‘A’ to ‘1’,
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you must look up the relationship between these two characters in the
character set you are using.

Boolean As we said in the previous section, the Boolean data type
consists of two values: X=\" and —elo". Not all high-level languages
support the Boolean data type. If a language does not, then you can simu-
late Boolean values by saying that the Boolean value X=\" is represented
by 1 and —elo" is represented by 0.

Integers, reals, characters, and Booleans are called simple or atomic data
types, because each value is distinct and cannot be subdivided into parts.
In a later section, we discuss composite data types: data types made up of a
collection of values. The string data type is a data type with some of the
properties of a composite type but is often considered a simple data type.

Strings A string is a sequence of characters considered as one data value.
For example,

“Fz�o �o e oX=�9�h”

is a string containing 17 characters: one uppercase letter, 12 lowercase
letters, three blanks, and a period. The operations defined on strings vary
from language to language. They include concatenation of strings and
comparison of strings in terms of lexicographic order. Other languages
provide a complete array of operations, such as taking a substring of a
given string or searching a given string for a substring.

Note that we have used single quotes to enclose characters and double
quotes to enclose strings. Some high-level languages use the same symbol,
thus not distinguishing between a character and a string with one
character.

Declarations
As we pointed out in the last chapter, most programming languages have
two kinds of instructions: instructions to be translated and instructions to
the translating program. We called the instructions to the assembler direc-
tives because they were directed to the Pep/7 assembler. Most of the
instructions to the translating system have to do with naming things. In
high-level languages, these instructions are called declarations. A declara-

tion is a statement that associates an identifier with a variable, an action,
or some other entity within the language that can be given a name so that
the programmer can refer to that item by name. In this section we discuss
how a variable is declared. Later we look at how actions are given names.

In the Pep/7 assembly language of Chapter 7, we were able to give a
location a name and store a value into that location. At the assembly-
language level, the programmer deals with specific memory locations.
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Language Variable Declaration

Ada o\� , �lDeX ,E Yi--o"X \S TD=  T�Xz Y eo PD9X"9Xo

9\�", I9X"�"=i   --o"X \S e XTD-L‘X" LlDPQ —D= 9\�"

9\�', I9X"�"=i   --o"X \S e XTD-L‘X" LlDPQ —D= 9\�'

9\�(, I)F*+*Ni   --o"X \S e XTD-L‘X" LlDPQ —D= 9\�(

hhh

9\�",E "i

VB.NET W�� o\� .o J�9�l" E YhY� 0 o"X \S TD=  T�Xz Y eo PD9X"9Xo

W�� 9\�" .o I9X"�"= 0 o"X \S e XTD-L‘X" LlDPQ —D= 9\�"

W�� 9\�' .o I9X"�"= 0 o"X \S e XTD-L‘X" LlDPQ —D= 9\�'

W�� 9\�( .o I9X"�"= 0 o"X \S e XTD-L‘X" LlDPQ —D= 9\�(

hhh

9\�" E "

C++/Java —lDeX o\� E YhYi   OO o"X \S TD=  T�Xz Y eo PD9X"9Xo

�9X 9\�",          OO o"X \S e XTD-L‘X" LlDPQ —D= 9\�"

�9X 9\�',          OO o"X \S e XTD-L‘X" LlDPQ —D= 9\�'

�9X 9\�(,          OO o"X \S e XTD-L‘X" LlDPQ —D= 9\�(

9\�" E "i

In a high-level language, we do not have to be concerned with where in
memory a variable is stored. We just list the identifier and specify the data
type of what is to be stored there. The syntax for variable declarations
varies from language to language. The following table shows how to
declare the same four variables in three different languages. To make it
more interesting, let’s use a real number for one of the variables.

These examples illustrate some differences among high-level languages.
VB.NET uses a reserved word to signal a declaration. A reserved word is
a word in a language that has special meaning; it cannot be used as an
identifier. W�� is a reserved word in VB.NET used to declare variables.
Ada, C++, and Java do not use a reserved word for this purpose. Ada,
C++, and Java use the semicolon to end a statement in the language;
VB.NET uses the end of the line or the comment symbol. The comment
symbols are different in each of these languages. Recall that Pep/7 uses a
semicolon to signal that what follows is a comment.

Notice that the reserved word for integer numbers is capitalized differ-
ently in the Ada example. Ada is not a case-sensitive language. This
means that uppercase and lowercase letters are considered the same. C++,
Java, and VB.NET are case sensitive. Two copies of the same identifier,
capitalized differently, are considered different words. Thus, Integer,
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INTEGER, InTeGeR, and INTeger are considered one identifier in Ada,
but four different identifiers in C++ and VB.NET. In C++ and Java, the
reserved word �9X is used for integer numbers and —lDeX for single-preci-
sion real numbers. Ada uses �lDeX for real numbers, but VB.NET uses
J�9�l" and WD\Ll" for its two versions of real numbers.

Each of these languages allows us to store an initial value in the location
assigned to the identifier by placing the assignment operator and a value
immediately following the declaration. A value can be stored in a variable
with an assignment statement. An assignment statement is an action
statement (not a declaration) that says to evaluate the expression on the
right-hand side of the symbol and store that value into the place named on
the left-hand side. Ada uses ,E as the assignment operator; VB.NET, C++,
and Java use the E.

Are these differences important? They are if you are writing a program
in one of these languages. However, they are just syntactic issues, that is,
different ways of doing the same thing. The important concept is that an
identifier is associated with (1) a place in memory and (2) a data type.

A variable by definition is a place in memory where the contents can
change. There are times in our programs when we want to associate an
identifier with a value that cannot change. Such a place is called a named

constant. Once a named constant has been declared, any attempt to store
another value into that place causes an error. The following table shows
how to declare the same three named constants in Ada, VB.NET, C++,
and Java.

Constant Declaration

Ada 1D��e    , PD9oXe9X 1ze=ePX"= ,E 020i

3"ooe�"  , PD9oXe9X JX=�9� ,E 45"llD4i

Fe67NeX" , PD9oXe9X �lDeX ,E 8h:i

1D9oX wbNW" .o 1ze= E 424P

1D9oX 3*JJ.+* .o JX=�9� E 45"llD4

1D9oX Fe6NeX" .o WD\Ll" E 8h:

PD9oX Pze= 1b33. E 020i

PD9oX oX=�9� 3*JJ.+* E 45"llD4i

PD9oX  D\Ll" F.y7N.F* E 8h:i

—�9el Pze= 1b33. E 020i

—�9el JX=�9� 3*JJ.+* E 45"llD4i

—�9el  D\Ll" F.y7N.F* E 8h:i

VB.NET

C++

Java
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In the exercises, we ask you to compare the syntactic differences that
surface in these examples.

The use of uppercase and lowercase in identifiers is part of the culture
of a language. In our examples, we have tried to stay with the style that is
common within the language’s culture. For example, most C++ program-
mers use all uppercase for named constants and begin variable names with
lowercase, while Ada and VB.NET programmers tend to begin variable
names with uppercase letters.

Input/Output Structures
In our pseudocode algorithms we have used the expressions Read and Write
to indicate that we were interacting with the environment outside the
program. Read was for getting a value from outside the program and
storing it into a variable inside the program, and Write was for displaying a
message for the human to see.

Machine-language instructions for input and output are very primitive.
The Pep/7 machine had two instructions: one wrote out one character and
the other read in one character. The Pep/7 assembly language provided
slightly more functionality by providing instructions to read and write
decimal numbers.

High-level languages view input data as a stream of characters divided into
lines. How the characters are interpreted depends on the data types of the
places into which the values are to be stored. There are three parts to any
input statement: the declaration of the variables into which data are to be
placed, the input statement with the names of the variables to be read, and the
data stream itself. For example, look at the algorithm that inputs three values.

The variables name, age, and hourlyWage would have to be declared along
with their respective data types. Let’s assume the types are string, integer,
and real. The input statement would list the three variables. Processing
would proceed as follows. The first data item on the input stream would
be assumed to be a string, because name is of type string. The string would
be read and stored into name. The next variable is an integer, so the read
operation expects to find an integer next in the input stream. This value is
read and stored in age. The third variable is a real number, so the read
operation expects to find a real value next on the input stream.

Read name, age, hourlyWage
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The input stream may be from the keyboard or a data file, but the process
is the same. The order in which the variables are listed on the input state-
ment must be the same as the order in which the values occur in the input
stream. The types of the variables being input determine how the characters
in the input stream are interpreted. That is, the input stream is just a series of
ASCII (or Unicode) characters. The type of the variable into which the next
value is to be stored determines how a sequence of characters is interpreted.
For simplicity, let’s assume that the input statement assumes that a blank
separates each data value. For example, given the following data stream

3e���" "Y "'h:Y

“3e���"” would be stored in name; "Y would be stored in age, and "'h:Y
would be stored in hourlyWage. Both "Y and "'h:Y are read in as characters
and converted to integer and real, respectively.

Output statements create streams of characters. The items listed on the
output statement can be literal values or variable names. Literal values are
numbers or strings written explicitly in the output statement (or any state-
ment for that matter). The values to be output are processed one at a time by
looking at the type of the identifier or literal. The type determines how the bit
pattern is to be interpreted. If the type is a string, the characters are written
into the output stream. If the bit pattern is a number, the number is converted
to the characters that represent the digits and the characters are written out.

Regardless of the syntax of input/output statements or where the
input/output streams are, the key to the processing is in the data type that
determines how characters are to be converted to a bit pattern (input) and
how a bit pattern is to be converted to characters (output).

We do not give examples of input/output statements because the syntax
is often quite complex and differs so widely among high-level languages.

Control Structures
In the last Pep/7 program in Chapter 7, the first statement in the program is
a branch instruction around the data to the first statement to be executed.

=N  3e�9     iL=e9Pz XD lDPeX�D9 3e�9

In machine language, and later in assembly language, the only way to alter
the sequential order in which instructions were executed was to branch to
another location, where the sequential process would resume. The branch
was the only control structure. A control structure is an instruction that
determines the order in which other instructions in a program are
executed.

In a seminal article, “Notes on Structured Programming,” published in
1972, Edsger W. Dijkstra pointed out that programmers should be precise
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Every field of human endeavor has its
leading contributors who are acclaimed for
their theoretical insights, extensions of
fundamental ideas, or innovative changes
that have redefined the subject. Just as
Beethoven, Schubert, Mozart, and Hayden
ring true in the world of classical music, and
the Beatles, Rolling Stones, and the Who
stand out in rock-‘n’-roll, Edsger Dijkstra
has a place reserved for him in the
computer language hall of fame.

Born to a Dutch chemist in Rotterdam in 1930, Dijk-
stra grew up with a formalist predilection toward the
world. While studying at the University of Leiden in the
Netherlands, he attended a summer course on program-
ming in Cambridge, England, and became fascinated
with programming. He took a part-time job at the Math-
ematical Centre in Amsterdam in 1952, and he
continued to work there after his graduation. He came to
the United States in the early 1970s as a research fellow
for Burroughs Corporation, and in September of 1984
he came to The University of Texas at Austin, where he
held the Schlumberger Centennial Chair in Computer
Sciences. He retired in November of 1999.

One of the Dijkstra’s most famous contributions to
programming was his strong advocacy of structured
programming principles. Dijkstra observed that
programs written with goto statements often turned into
a rat’s nest of jumping back and forth among disorgan-
ized, ad hoc sections of programs, making the
programs difficult to understand even for the authors—
not to mention the colleagues who might later be asked
to maintain the program. Dijkstra argued that the goto
was not the be-all and end-all of control structures, and
he strongly encouraged the use of iterative, or looping,
constructs that clearly bracket the scope of branching in
a program and effectively self document the program.
Dijkstra claimed that adhering to these structured
programming principles would make programs far
easier to understand and maintain and less likely to
contain errors.

Beyond his clear theoretical contributions, Dijkstra
is an interesting character in the computing world. He
has developed a reputation for speaking his mind,
often in inflammatory or dramatic ways that most of
us can’t get away with. For example, Dijkstra once
remarked that “the use of COBOL cripples the mind;

its teaching should therefore be regarded
as a criminal offence.” Not one to single
out only one language for his criticism, he
also said that “it is practically impossible to
teach good programming to students that
have had a prior exposure to BASIC; as
potential programmers they are mentally
mutilated beyond hope of regeneration.”
Some people find his message cogent and
feel that his manner is politically necessary
to make his point. Others, aware of the

historical development of languages and the contexts
in which they were designed, appreciate his message
but find his manner a bit strident.

Besides his work in language design, Dijkstra is
also noted for his work in proofs of program correct-
ness. The field of program correctness is an applica-
tion of mathematics to computer programming.
Researchers are trying to construct a language and
proof technique that might be used to certify uncondi-
tionally that a program will perform according to its
specifications—entirely free of bugs. Needless to say,
whether your application is customer billing or flight
control systems, this claim would be extremely
valuable.

In 1972 the Association for Computing Machinery
acknowledged Dijkstra’s rich contributions to the field
by awarding him the distinguished Turing Award. The
citation for the award read:

“Edsger Dijkstra was a principal contributor in the
late 1950’s to the development of the ALGOL, a
high level programming language which has
become a model of clarity and mathematical rigor.
He is one of the principal exponents of the science
and art of programming languages in general,
and has greatly contributed to our understanding
of their structure, representation, and implementa-
tion. His fifteen years of publications extend from
theoretical articles on graph theory to basic
manuals, expository texts, and philosophical
contemplations in the field of programming
languages.”

In 1989 SIGCSE, the Special Interest Group for
Computer Science Education, honored him with its
award for Outstanding Contributions to Computer
Science Education.

Edsger Dijkstra8
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and disciplined, that they should use only selected control structures. This
article and the others published with it introduced the era of structured
programming.9 Each logical unit of a program should have just one entry
and one exit. The program should not jump randomly in and out of logical
modules. Although programs could be designed in this way in assembly
language using instructions that branch to other parts of the program,
high-level languages introduced control constructs that made this discipline
easy to follow. These constructs are selection statements, looping state-
ments, and subprogram statements. Unrestricted branching statements
were no longer necessary.

With the advent of windows on the screen and input using a mouse, a
fifth basic control structure was introduced: asynchronous processing. In
the next sections we introduce these concepts at the logical level.

Sequence
The concept of one instruction following another in physical sequence is still
the underlying structure of an imperative program. Statements are executed
in sequence until an instruction is encountered that changes this sequencing.

Selection Statements
Selection statements come in two basic varieties: the if statement and the
case (or switch) statement for multi-way branching.

if statements The if statement allows the program to test the state of the
program variables using a Boolean expression. If the Boolean expression
returns X=\", no instruction, one instruction, or a sequence of instructions
is executed. If the Boolean expression returns —elo", no instruction,
another instruction, or another sequence of instructions is executed. Figure
8.3 illustrates this flow of control.

Let’s look at a concrete example. If a variable within the program repre-
sents a temperature (temperature), let’s compare the value in order to
determine the appropriate clothes to wear. Let’s first state the algorithm in
pseudocode, and then look at how the algorithm would be converted into
a high-level language.

The following table shows how Ada, VB.NET, and C++ would implement
this algorithm.

If (temperature > 75)

Write “No jacket is necessary”

Else

Write “A light jacket is appropriate”
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Figure 8.3 Flow of control
of the if statement
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The true branch is known as the then branch, but as you can see from the
table, the branch may or may not be labeled as such. The false branch is
called the else branch and is labeled as such in each of these examples. The
great variety in how information is written for the human to see is demon-
strated in the different way that the strings are written.

In our description of the behavior of the if statement we said that either
branch could have none, one, or a sequence of instructions. If the sequence is
empty, then the else branch is just not there. The example earlier shows how to
write the code if there is just one instruction, but how do we write a sequence
of instructions? High-level languages all have a way of considering a sequence
of instructions as a single group. Let’s add a second output statement to the
else branch of our algorithm and see how these three languages handle it.
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Instructions considered as a single group are called a compound statement.
Ada and VB.NET use reserved words to end a construct, so no special
grouping is necessary. C++ and Java group statements within curly braces.
They call this grouping a block.

Because we only get to the else branch if the Boolean expression is not
true, we can make use of the information to ask a series of questions. Let’s
alter and expand the algorithm with a finer grain on our temperature
problem.

The only way to get to the second if statement is if the first expression is
not true, so if the second expression is true, you know that the temperature
is between 71 and 90. If the first and second expressions are not true and
the third is, then the temperature is between 51 and 70. The same
reasoning leads to the conclusion that Philadelphia weather is between 33
and 50, and “Stay inside” is written if the temperature is less than or equal
to 32. Any one of the branches can contain a sequence of statements.

case statement The if is the workhorse of the selection statements. In fact,
you don’t need another selection statement, but for convenience, many
high-level languages include a case (or switch) statement that allows us to
make multiple-choice decisions easier, provided the choices are discrete.
Because the temperature problem was based on ranges of values rather
than on explicit values, it could not be implemented in a case statement.

Let’s look at an example that is a subalgorithm in a calculator program.
You have two data values and you need to determine which arithmetic
operator is to be applied between them. The operator is stored in character
form in operator. The algorithm for determining which operator to apply is
shown here.

If (temperature > 90)

Write “Texas weather: wear shorts”

Else If (temperature > 70)

Write “Ideal weather: short sleeves are fine”

Else if (temperature > 50)

Write “A little chilly: wear a light jacket”

Else If (temperature > 32)

Write “Philadelphia weather: wear a heavy coat”

Else

Write “Stay inside”
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The value stored in variable operator is compared with the symbol on each
successive line. When a match if found, the statement on the other side of
the colon is executed and control passes to the statement following the
case statement. If there is no match, none of the statements are executed.
Because the case is not necessary, we do not examine how it is translated
into a specific language.

Looping Statements
We introduced the concept of repeating a sequence of statements in
Chapter 6. The subalgorithm that we repeated earlier in this chapter has
the expression:

The processing is repeated until all the names have been processed. That
is, the sequence of statements is repeated as long as the expression is true.
When the expression becomes false, the processing continues with the
statements immediately following the loop. We used indentation in the
algorithm to show the statements included in the loop. Later we show how
a loop is implemented in Ada, VB.NET, C++, and Java. A while statement,
like an if statement, alters the normal sequential flow of a program. The
behavior is described in Figure 8.4.

Note that an if statement is used to make a choice between two courses
of action; the while statement is used to repeat a course of action. Before
we look at how different high-level languages express the while statement,
let’s look at two distinct types of repetitions.

Count-controlled loops A count-controlled loop is one that repeats a
specified number of times. The looping mechanism simply counts each
time the process is repeated, then tests to see if it’s finished before begin-
ning again. There are three distinct parts to this kind of loop, which makes

While (there are more names)

CASE operator OF

‘+’ :  Set answer to one + two

‘-’ :  Set answer to one – two

‘*’ :  Set answer to one * two

‘/’ :  Set answer to one / two
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Figure 8.4
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use of a special variable called a loop control variable. The first part is
initialization: The loop control variable is initialized to some starting
value. The second part is testing: Has the loop control variable reached a
predetermined value? The third part is incrementation: The loop control
variable is incremented by one. The following algorithm repeats a process
limit times.

count is the loop control variable. It is set to 1 outside the loop. The while
tests the expression count <= limit and executes the loop body as long as
the expression is true. The last statement in the loop increments the loop
control variable count. How many times does the loop execute? The loop
executes when count is 1, 2, 3, . . . limit. So the loop executes limit times. The
initial value of the loop control variable and the relational operator used in
the Boolean expression determine the number of times the loop executes.

Set count to 1 Initialize count to 1

While (count <= limit) Test

. . . Body of the loop

Set count to count + 1 Increment

. . . Statement(s) following loop
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The while loop is called a pretest loop. This means that the testing takes
place before the loop is executed. If the condition is false initially, the loop
is not entered. What happens if the incrementation statement is omitted?
The Boolean expression never changes. If the expression was false to begin
with, nothing happens; the loop is just not executed. If the expression is
true to begin with, the expression never changes, so the loop executes
forever. Actually, most computing systems have a timer, so the program
would not actually run forever. The program would halt with an error
message. A loop that never terminates is called an infinite loop.

The following table shows the implementation of the algorithm in Ada,
VB.NET, C++, and Java.

Incrementing the content of a variable by one is such a common operation
that C++ and Java provide a shortcut. In these languages, count++ is a
short cut for the statement count = count + 1.

Event-controlled loops Loops in which the number of repetitions is
controlled by an event that occurs within the body of the loop itself are
called event-controlled loops. To implement an event-controlled loop using
a while statement, there are again three parts to the process. The event
must be initialized, the event must be tested, and the event must be
updated.

Count-Controlled Loop with a while StatementLanguage

Ada 1D\9X E "i

Tz�l" 1D\9X <E E���X lDDS

hhh

1D\9X E 1D\9X F "i

"9  lDDSi

1D\9X E "

wz�l" ?PD\9X <E l���XB

hhh

PD\9X E PD\9X F "

*9  wz�l"
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A count-controlled loop is very straightforward: The process is repeated
a specified number of times. The event-controlled loop is less clear-cut. It
may not be immediately apparent what the event should be. Let’s look at a
couple of examples. First, let’s read and sum input data values until we
read a negative value. What is the event? An input value is positive. How
do we initialize the event? We read the first data value. We test the value
to determine if it is positive and enter the loop if it is. How do we update
the event? We read the next data value. Here is the algorithm.

Now let’s write the algorithm for reading and summing positive values
until ten have been counted. Ignore zero or negative values. What is the
event? The number of positive values read and summed. The means that
we must keep a count of the number of positive values as we read them;
let’s call it posCount. How do we initialize the event? We set posCount to 0.
We test posCount against ten, and exit the loop when posCount reaches 11.
How do we update the event? We increment posCount each time we read a
positive value.

Many languages have two additional looping structures. We said that
the while structure is a pretest loop. Another type of looping structure is
one where the testing occurs at the end of the loop. These loops are called
posttest loops, for obvious reasons. Posttest loops always execute the loop

Set sum to 0 Initialize sum to zero

Set posCount to 0 Initialize event

While (posCount <= 10) Test event

Read a value

If (value > 0) Test to see if event should be updated

Set posCount to posCount + 1 Update event

Set sum to sum + value Add value into sum

. . . Statement(s) following loop

Read a value Initialize event

While (value >= o) Test event

. . . Body of loop

Read a value Update event

. . . Statement(s) following loop
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body at least once. Although any loop can be implemented using the while
construct, there are times where you know that the loop executes once, so
a posttest loop would be appropriate. (Posttest loops are often called
repeat loops.) The second additional structure is one designed for count-
controlled loops where the initializing, testing, and incrementation are
included in the loop construct itself. These loops are often called for loops.

Subprogram Statements
When doing algorithms in Chapter 6, we gave a name to a task at one level
and then expanded the task at a lower level. The same idea holds in
programming languages. We can give a section of code a name and use
that name as a statement in another part of the program. When the name
is encountered, the processing in the other part of the program halts while
the named code is executed. When the named code finishes executing,
processing resumes with the statement just below where the name
occurred. The place where the name of the code appears is called the
calling unit.

There are two basic forms of subprograms: One is just named code
that does a particular task; the other does a task but also returns a single
value to the calling unit. The first is used as a statement in the calling
unit; the second is used in an expression in the calling unit where the
returned value is then used in the evaluation of the expression. These
subprograms have been called by many names. FORTRAN calls them
subroutines and functions. Ada calls them procedures and functions. C++
calls the first a void function and the second a value-returning function.
Java calls both of them methods. But regardless of what subprograms are
called, they are powerful tools for abstraction. The listing of a named
subprogram allows the reader of the program to see that a task is being
done without having to be bothered with the details of the task’s imple-
mentation. See Figure 8.5.

Many subprograms come as part of a high-level language or part of the
library that comes with the language. For example, mathematical problems
often need to calculate trigonometric functions. Subprograms that calcu-
late these values are available in most high-level languages in one way or
another. When a program needs to calculate one, the programmer looks
up the name of the subprogram that calculates the value and just calls the
subprogram to do the calculation.

Parameter passing There are times when the calling unit needs to give
information to the subprogram to use in its processing. The method of
communication used in high-level languages is called a parameter list. A
parameter list is a list of the identifiers with which the subprogram is to

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Parameters The identi-
fiers listed in parentheses
beside the subprogram
name; sometimes they
are called formal para-
meters.

8.3 Functionality of Imperative Languages 251

Figure 8.5

Subprogram flow of control

(a) Subprogram A does its task and calling unit continues with next statement

(b) Subprogram B does its task and returns a value that is added to 5 and stored in 6
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work, along with the types of each identifier placed in parentheses beside
the subprogram name. Because a subprogram is defined before it is called,
it does not know with which variables from the calling unit it is to work.
To solve this dilemma, we specify a list of variable names with associated
types in parentheses beside the subprogram name. These identifiers are
called parameters. When the subprogram is called, the calling unit lists the
subprogram name followed by a list of identifiers in parentheses. These
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Figure 8.6

Passing parameters

identifiers are called arguments. The arguments represent actual variables
in the calling unit with which the subprogram is to work.

You can think of a parameter as being a dummy identifier that is used
within a subprogram. When a subprogram is called, the calling unit sends
the names of the actual identifiers to the subprogram. The action in the
subprogram is defined using the parameters. When the action takes place,
the arguments are substituted one by one for the parameters. The substitu-
tion can be done in several ways, but the most common is by position. The
first argument substitutes for the first parameter, the second argument
substitutes for the second parameter, and so on.

The substitution mechanism acts like a message board. When a subpro-
gram is called, a list of the arguments is given to the subprogram (put on
the subprogram’s message board). The arguments tell the subprogram
where to find the values it is supposed to use. When a parameter is used in
the body of the subprogram, the subprogram accesses it through a relative
position on the message board. That is, the subprogram looks for its first
parameter in the first position on the message board and for its second
parameter in the second position on the message board. See Figure 8.6.

There must be the same number of arguments in the call as there are
parameters in the subprogram heading, and the parameters and arguments
must match up in both position and data type. Because the arguments and
parameters are matched by position, their names don’t have to be the
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same. This is very helpful when a subprogram is called more than once,
with different arguments in each call. Parameters passed in this fashion are
often called positional parameters.

Value and reference parameters There are two basic ways of passing
parameters: by value and by reference (or address). If a parameter is a value

parameter, the calling unit gives a copy of the argument to the subpro-
gram. If a parameter is a reference parameter, the calling unit gives the
address of the argument to the subprogram. This difference means that a
subprogram cannot change the content of an argument that is passed to a
value parameter. The subprogram can modify the copy, but the original
variable is not changed. In contrast, any argument passed by the calling unit
to a reference parameter can be changed by the subprogram because the
subprogram is manipulating the actual variable, not a copy of it.

Think of the difference this way: To access a reference parameter, the
subprogram accesses the contents of the address listed on the message
board. To access a value parameter, the subprogram accesses the contents
of the place on the message board itself. Clearly, both the calling unit and
the subprogram must know which parameter/argument is to be passed by
value and which is to be passed by reference. Not all high-level languages
allow both kinds of parameters, but those that do have some syntactic
schemes to label parameters as value or reference.

The following table shows how VB.NET and C++ define a subprogram
that does not return a single value. There are two integer value parame-
ters and one real reference parameter. Again, this is to give you a flavor
for the variety of syntax that abounds in high-level languages, not to
make you competent in writing this construct in any of them. The amper-
sand (I) used in C++ is not a typo; it signals that three is a reference
parameter.
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We do not show a Java example because Java handles memory very differ-
ently from the other three and has only value parameters. We do not show
an Ada example because the compiler is free to select the most efficient
parameter-passing mechanism for the given hardware or Bytecode virtual
machine.

Before we leave subprograms, let’s look at an example that illustrates
the difference between value and reference parameters. Let’s write an algo-
rithm that swaps the contents of two places in memory. Let’s call them
data1 and data2. This sounds easy enough: We just store data1 into data2
and data2 into data1. Right? Well, not exactly. If we do this, we end up
with both variables containing what was originally in data1. We need an
intermediate variable in which to store the contents of data2 before we
copy data1 into it. We call this intermediate variable a local variable. It is
only needed for a short while. We put the subprogram name on top of the
algorithm box along with its parameters.

Now let’s say that the calling unit (the part of the program that wants the
contents of the two places exchanged) calls Swap with data1 and data2 as
parameters.

Now let’s say that data1 is stored in location 0002 and data2 is stored in
location 0003. They contain the values 30 and 40, respectively. Figure
8.7 shows the content of the message board when the parameters are
passed by value and passed by reference. When a parameter is a value
parameter, the subprogram knows to manipulate the value on the
message board. When a parameter is a reference parameter, the subpro-
gram knows to manipulate the contents of the address on the message
board. Should the parameters for subprogram Swap be value or reference
parameters?

Swap (data1, data2)

Swap (Integer item1, Integer item2)

Integer temp                Declare local variable

Set temp to item2

Set item2 to item1

Set item1 to temp
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Figure 8.7
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Recursion
When a subprogram invokes itself, the call is known as a recursive call.
Recursion—the ability of a subprogram to call itself—is an alternative
control structure to repetition (looping). Rather than use a looping state-
ment to execute a program segment, the program uses a selection state-
ment to determine whether to repeat the code by calling the subprogram
again or to stop the process.

Each recursive solution has at least two cases: the base case and the
general case. The base case is the one to which we have an answer; the
general case expresses the solution in terms of a call to itself with a smaller
version of the problem. Because the general case solves a smaller and
smaller version of the original problem, eventually the program reaches the
base case, where an answer is known and the recursion stops.

Associated with each recursive problem is some measure of the size of
the problem. The size must get smaller with each recursive call. The first
step in any recursive solution is to determine the size factor. If the
problem involves a numerical value, the size factor might be the value
itself. For example, a classic recursive problem is the factorial. The
factorial of a number is defined as the number times the product of all
the numbers between itself and 0: N! = N * (N � 1)!. The factorial of 0
is 1. The size factor is the number for which we are calculating the
factorial. We have a base case, Factorial(0) is 1, and we have a general
case, Factorial(N) is N * Factorial(N – 1). An if statement can evaluate N to
see if it is 0 (the base case) or greater than 0 (the general case). Because
N is clearly getting smaller with each call, the base case is reached.
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What happens if the argument is a negative number? The subprogram
just keeps calling itself until the run-time support system runs out of
memory. This situation is called infinite recursion and is equivalent to an
infinite loop.

Recursion is a very powerful and elegant tool. However, not all prob-
lems can easily be solved recursively, and not all problems that have an
obvious recursive solution should be solved recursively. But there are many
problems for which a recursive solution is preferable. If the problem state-
ment logically falls into two cases, a base case and a general case, recursion
is a viable alternative.

Asynchronous Processing
Most of you have grown up in the windows generation. Notice that the w
is not uppercase. We are not talking about the Microsoft Windows oper-
ating system, but the concept that input and output can be accomplished
through windows on the screen. At a minimum you can get rid of a
window by clicking a box in the corner of the window. “Clicking” is the
magic word. Whether you are clicking on the corner of a window or
clicking on a button on the screen, you expect something to happen when
you do this. Clicking has become a major form of input to the computer.
In fact, for many applications, filling in boxes and clicking on buttons to
say the input is ready has become the major form of input.

In traditional stream processing, an input statement is executed in the
sequence in which it is encountered. Here are the first three statements in
the algorithm:

We expect these statements to be executed in sequence. Output is written
to a window, a name is read from the input stream, and the while loop is
executed. Stream input and output is within the sequential flow of the
program.

Mouse clicking, on the other hand, is not within the sequence of the
program. A user can click a mouse at any time during the execution of a

Write “To any of the prompts below, if the information is still not known, 

just press return.”

Get a name from the list

While (there are more names)

.. . .
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program. The program must recognize when a mouse click has occurred,
process the mouse click, and then continue. This type of processing is
called asynchronous, which means “not at the same time.” The mouse can
be clicked at any time; it is not synchronized with any other instructions.

Asynchronous processing is also called event-driven processing. The
processing is under the control of events happening outside the sequence of
program instructions.

Asynchronous processing is used frequently in Java and VB.NET, but
less so in the other languages. Although Ada does use asynchronous
processing extensively in embedded systems such as Flight Management
Systems software, where the events are such things as button and switch
changes made in the cockpit, sensors onboard the aircraft, and signals
from navigation aids on the ground.

Nested Logic
The statements to be executed or skipped in any control statement can be
simple statements or blocks (compound statements). There is no constraint
on what the statements can be. This means that the statement to be
skipped or repeated can contain a control structure. Selection statements
can be nested within looping structures; looping structures can be nested
within selection statements. Selection and looping statements can be nested
within subprograms, and subprogram calls can be nested within looping or
selection structures.

Composite Data Types
The data types described previously were atomic, with the possible excep-
tion of the string. In this section, we describe three mechanisms for
collecting data items together and accessing the items individually or as a
collection.

Records
A record is a named heterogeneous collection of items in which individual
items are accessed by name.10 Heterogeneous means that the elements in
the collection can be of various types. Each item is given an identifier and a
type. The operations allowed on a record are passing a record as a param-
eter to a subprogram and individual component access. Records are good
for bundling items together that relate to the same object. For example, we
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read in a name, an age, and an hourly wage. The three items could be
bound together into a record. Let’s look at how a record type is declared in
our three languages.

Record Type DeclarationLanguage

Ada X‘S" )e�"7JX=�9� �o JX=�9� ?"hh"YBi

X‘S" *�SlD‘""7F‘S" �o

="PD= 

)e�" , )e�"7JX=�9�i

.�"  , I9X"�"= =e9�" Yhh"YYi

5D\=l‘7we�" , �lDeX =e9�" "hYhh:YYYhYi

"9  ="PD= i

JX=\PX\=" *�SlD‘""

W�� )e�" .o JX=�9�

W�� .�" .o I9X"�"=

W�� 5D\=l‘we�" .o J�9�l"

*9  JX=\PX\="

oX=\PX *�SlD‘""F‘S"

C

oX=�9� 9e�"i

�9X e�"i

—lDeX zD\=l‘we�"i

Di

VB.NET

C++

Although the syntax is quite different, three elements are present: A record
type is defined with a name and three variable names are defined with their
data types. Notice that Ada allows the programmer to declare a range of a
numeric data types. The .�" field is defined as a reasonable subrange of
the integers. If the program tries to store a value outside that range into
.�", an error occurs. 5D\=l‘7we�" is defined as a reasonable subrange of
the reals. This is a very nice safety feature in the language.

How do you access the fields within a record? Well, first you have to
declare a record to be of the record type, and then you can access the fields
within the record variable. The syntax for declaring a record variable and
the accessing mechanism for the variables is shown on the next page.
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*�SlD‘""7F‘S" is a record type; .97*�SlD‘"" is a record variable.
.97*�SlD‘"" can be passed as a parameter, and the items within it can be
accessed by giving their individual names. In our three examples, each
name is a combination of the record name and the item name with a dot in
between. Some languages allow the items within a record to be a subpro-
gram. We look at how this is done when we look at the additional func-
tionality of object-oriented languages in the next section.

Arrays
An array is a named collection of homogeneous items in which indi-
vidual items are accessed by their place within the collection. The place
within the collection is called an index. Some languages call the first
place in the collection the 0th item and some languages allow the
programmer to name how the items are to be addressed; that is, the first
item might be called the ath item. When declaring an array, it is
customary to tell the system how many items are in the collection, and
the data type of each. Let’s look at the syntax necessary to declare an
array of 10 integer items.

Record Variable Declaration and UsageLanguage

Ada .97*�SlD‘"" , *�SlD‘""7F‘S"i

hhh

.97*�SlD‘""h)e�" E 4Je=ez +el"4i

.97*�SlD‘""h.�" E ('i

.97*�SlD‘""h5D\=l‘7we�" E K:hYYi

W�� .9*�SlD‘"" .o *�SlD‘""F‘S"

hhh

.9*�SlD‘""h)e�" E 4Je=ez +el"4

.9*�SlD‘""h.�" E ('

.9*�SlD‘""h5D\=l‘we�"  K:hYY

*�SlD‘""F‘S" e9*�SlD‘""i

hhh

e9*�SlD‘""h9e�" E 4Je=ez +el"4i

e9*�SlD‘""he�" E ('i

e9*�SlD‘""hzD\=l‘we�" E K:hYYi

VB.NET

C++
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Ada allows the programmer to specify how the ten items are to be
accessed. In this example I9 "67Ne9�" is defined as "hh"Y and is used to
define the array. The result of this combination of statements is that an
array of ten items is defined and is to be accessed using an index that
ranges from "hh"Y. In VB.NET, C++, and Java, the declaration specifies
the number of elements in the array, but the accessing occurs using the
values Y to K. Let’s look at a drawing of this array with values already
stored in the individual cells. See Figure 8.8.

An array variable can be passed as a parameter and each individual cell
can be accessed. How are the individual places in the array accessed? By
giving the array name followed by an index. Here is how the three
languages access the third and the last (tenth) cell.

Array DeclarationLanguage

Ada X‘S" I9 "67Ne9�" �o =e9�" "hh"Yi

X‘S" F"97Fz�9�o �o e==e‘ ?I9 "67Ne9�"B D— I9X"�"=i

W�� F"9Fz�9�o?"YB .o I9X"�"=VB.NET

�9X X"9Fz�9�oL"YMiC++/Java

LYM

L"M

L'M

L(M

LJM

L:M

LNM

LfM

L8M

"YNN

"JK'

"NN8

"KJ:

"Kf'

":"Y

KKK

"YY"

'"

'YY"LKM

Figure 8.8

Array variable
X"9Fz�9�o accessed
from YhhK

A variable in a record and a variable in an array are treated exactly like
any other variable. Only the accessing is different. In a record, variable
access is by name; in an array, variable access is by an index that specifies
which item in the collection you want.

Array AccessLanguage

Ada M\X?IX"� E> F"97Fz�9�o?(BBi

M\X?IX"� E> F"97Fz�9�o?"YBBi

VB.NET 3o�=D6?F"9Fz�9�o?'BB

3o�=D6?F"9Fz�9�o?KBB

C++ PD\X << F"9Fz�9�oL'Mi

PD\X << F"9Fz�9�oLKMi

Java J‘oX"�hD\XhS=�9X?X"9Fz�9�oL'MBi

J‘oX"�hD\XhS=�9X?X"9Fz�9�oLKMBi
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Encapsulation A
language feature that
enforces information
hiding

Object class or Class

(problem-solving phase)
A description of a group
of objects with similar
properties and behaviors

Object (problem-solving
phase) An entity or
thing that is relevant in
the context of a problem

Object (implementation
phase) An instance of
a class

Class (implementation
phase) A pattern for an
object

Instantiate To create
an object from a class
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8.4 Functionality of Object-Oriented

Languages

There are three essential ingredients in an object-oriented language: encap-
sulation, inheritance, and polymorphism. These ingredients foster reuse,
thus reducing the cost of building and maintaining software. Let’s look at
each of these ingredients.

Encapsulation
In Chapter 6, we talked about important threads running through the
discussion. Two of them were information hiding and abstraction. Recall
that information hiding is the practice of hiding the details of a module
with the goal of controlling access to the details. We said that abstraction
was a model of a complex system that includes only the details essential to
the viewer. We defined three types of abstraction, but the definitions of
each began and ended with the words “The separation of the logical view
of . . . from its implementation details.” Abstraction is the goal; informa-
tion hiding is a technique used to achieve the goal.

Encapsulation is a language feature that enforces information hiding. It
is a feature that hides a module’s implementation in a separate block with
a formally specified interface. An object knows things about itself, but not
about any other object. If one object needs information about another
object, it must request that information from that object.

The construct used to provide encapsulation is called a class. Just as the
concept of the class dominates object-oriented design, the class concept is
the major feature of Java and other object-oriented languages. Unfortu-
nately, the related definitions are not standard across the phases of design
and implementation. In the design (problem-solving) phase, an object is a
thing or entity that makes sense within the context of the problem. In the
implementation phase, a class is a language construct that is a pattern for
an object and provides a mechanism for encapsulating the properties and
actions of the object class. To get an object that fits the pattern, we instan-

tiate the class, by using an operator that takes the class name and returns
an instance of the class.

Syntactically, a class is like a record, as described earlier, in that it is a
heterogeneous composite data type. However, records have traditionally
been considered passive structures and have only in recent years had
subprograms as fields. The class, on the other hand, is an active structure,
and almost always has subprograms as fields. The only way to manipulate
the data fields is through the methods (subprograms) defined in the class.
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The fields in a record have traditionally been accessible to all by default;
the fields in a class are usually private by default. That is, none of the fields
(data) and subprograms of an object of a particular class can be accessed
by an object of another class unless the field is marked public. If a class
needs to make a method available to be called by an object of another
class, the class must explicitly specify that the method is public.

private and public are called access modifiers. They specify whether or
not code outside the class can access a class’s fields. Some languages have
additional access codes that further modify what code can access a class’s
fields. The class’s methods that others use to modify the class’s variables
are marked public; the class’s variables are marked private, either by
default or by the use of the access code private.

Because actions and properties are combined within a class, classes
designed for one application can often be used within another application.
For example, once a class that represents time has been written and tested,
it can be used in any application that requires a time object.

Inheritance
Object-oriented languages must have a construct that supports inheritance
as described in the section on OOD. Let’s say we define a class M"DSl" to
represent a person with data fields to represent such things as name,
address, and telephone number. In an object-oriented language, we can
define a class JX\ "9X, which inherits all the properties of class M"DSl"
and adds additional data fields to hold the local address and telephone
number. Objects of class M"DSl" have only one address and phone number,
but objects of class JX\ "9X have two: one inherited from class M"DSl"

and one defined within class JX\ "9X. An object can be of class M"DSl"
alone, but if an object is of class JX\ "9X, it also has all the properties and
behaviors of class M"DSl". We say that class JX\ "9X is derived from class
M"DSl".

Inheritance fosters reuse by allowing an application to take an already-
tested class and derive a class from it that inherits the properties the appli-
cation needs. Necessary additional properties and methods can then be
added to the derived class.

Polymorphism
Suppose both class M"DSl" and class JX\ "9X have a method named
S=�9X.  ="oo. The method in class M"DSl" prints the address defined in
its class, and the method in class JX\ "9X prints the address defined in its
class. Here are two methods with the same name but different implementa-
tions. The ability of a language to handle this apparent ambiguity is called
polymorphism. How does the language know which method is meant
when S=�9X.  ="oo is invoked by the calling unit? Methods that are part
of a class are applied to an instance of the class by the calling unit. The
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class of object to which the method is applied determines which S=�9X-
.  ="oo method is used.

For example, if we had Ae9" as an instance of class M"=oD9 and AePQ as
an instance of class JX\ "9X, Ae9"hS=�9X.  ="oo?B would invoke the
method defined in class M"=oD9 and AePQhS=�9X.  ="oo?B would print
the address defined in class JX\ "9X.

Inheritance and polymorphism combined allow the programmer to build
useful hierarchies of classes that can be reused in different applications.

You can think of the problem-solving phase as mapping the objects in
the real world into classes, which are descriptions of the categories of
objects. The implementation phase takes the descriptions of the cate-
gories (classes) and creates instances of the classes that simulate the
objects in the problem. The interactions of the objects in the program
simulate the interaction of the objects in the real world of the problem.
See Figure 8.9.

Figure 8.9 Mapping of
problem into solution(b) Implementation phase

Abstract to classes (descriptions of objects)

Oval

Circle

Square

Class type definitions

(a) Problem-solving phase

Problem space of objects

Program space of objects
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Summary

An assembler translates an assembly-language program into machine code.
A compiler translates a program written in a high-level language into
either assembly language (to be later translated into machine code) or into
machine code. An interpreter is a program that translates the instructions
in a program and executes them immediately. An interpreter does not
output machine-language code.

There are four models of high-level programming languages: procedural
(imperative), functional, logic, and object-oriented. The imperative model
describes the processing to be done. The functional model is based on the
mathematical concept of a function. The logic model is based on mathe-
matical logic. The object-oriented model is based on the concept of inter-
acting objects, each taking responsibility for its own actions.

A Boolean expression is an assertion about the state of a program. If the
assertion is true, the Boolean expression is true. If the assertion is false, the
Boolean expression is false. Boolean expressions are used to allow a
program to execute one section of code or another (conditional statements)
and to repeat a section of code (looping statements). Recursion, the action
of a subprogram executing itself, is an alternative to looping.

Each variable in a program is defined to be a certain data type. Strong
typing means that only values of that data type can be stored into that
variable. Storing a value into a variable is called assigning the value to the
variable (assignment statements).

Actions can be given names (subprograms), and the actions are
performed when the name appears as a statement or in an expression
(procedures and functions) in another part of the program. Information is
passed back and forth from the subprogram to the calling unit by param-
eter lists, which are lists of variables and/or constants in parentheses
beside the subprogram name.

Collections of data can be given names (records and arrays). Items
within the collection are accessed by name (records) or by position within
the collection (arrays).

Object-oriented programming languages have three essential ingredients:

� Encapsulation, a language feature that enforces information hiding
that is implemented using the class construct

� Inheritance, a language feature that allows one class to inherit the
property and behavior of another class

� Polymorphism, the ability of a language to disambiguate between
operations with the same name
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Hacking
The phrase computer hacker has changed over the last forty years. In

the 1960s hackers were perceived as skilled computer wizards whose

curiosity would lead to technological advancements. Today, the term

hacker has a more negative connotation and invokes the image of

malicious kids who get a thrill from defacing Web sites or professional

criminals who wreak havoc on the ’Net. These perceptions, however,

fuelled by some of the media, are often far from the truth.

Although the term hacker still has both positive and negative conno-

tation, hacking does not. Hacking refers to the trespassing or accessing

of a Web site without authorization. Unauthorized entry can led to

legal consequences, particularly if a hacker is deliberately violating the

website’s right to privacy. The Computer Fraud and Abuse Act states

that purposefully entering a site without authority and intentionally

accessing classified information is unlawful. Whether the hackers

damage the content or leave the site untouched, their ability to infil-

trate secure systems is powerful and disturbing. One study asserts that

59% of all company-owned Web sites were hacked during 1997.

In the famous New York Times hacking incident that occurred on

September 13, 1998, hackers broke into the newspaper’s Web site and

replaced the page with pornographic material and a threatening

message. Security breaches like this one have led companies such as

Honeynet to design decoy PCs with different levels of security to tempt

hackers. When these “honeypots” are hacked, the researchers are able

to gather information about hacking and are then able to apply that

knowledge to the development of better security systems.

Some hackers who penetrate secure Web sites subscribe to the belief

that all information should be free and accessible. Others see themselves

as taking an important role in protecting Web sites and feel that by

gaining access to a site, they are identifying vulnerabilities in the security

program. Still others, motivated by boredom and seeking entertainment,

engage in recreational hacking and leave the sites they visit unchanged.

Can trespassing onto someone’s Web site be considered parallel to

trespassing onto someone’s physical property? Opponents of this

parallel are quick to point out the unclear boundaries and the

W
WW

http://lib.ommolketab.ir
http//lib.ommolketab.ir


266 Chapter 8 High-Level Programming Languages

ambiguity of ownership in cyberspace. As hacking becomes more

prominent, society finds itself questioning the fine line between the free

access to information and the rights of individual or corporate privacy.
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Exercises
1. What is the hallmark of an assembly language?

2. Distinguish between an assembler and a compiler.

3. Distinguish between a compiler and an interpreter.

4. Compare and contrast an assembler, a compiler, and an interpreter.

5. Describe the portability provided by a compiler.

6. Describe the portability provided by the use of Bytecode.

7. Describe the process of compiling and running a Java program.

8. Discuss the word paradigm as it relates to computing.

9. Name four programming language paradigms and give an example
language in each.
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10. What are the characteristics of the imperative paradigm?

11. What are the characteristics of the functional paradigm?

12. What are the characteristics of the logic paradigm?

13. How does the view of an object-oriented program differ from the view
of an imperative program?

14. How do you ask questions in a programming language?

15. What is a Boolean variable?

16. What is a Boolean expression?

17. Given Boolean variables one, two, and three, write an assertion for
each of the following questions.
a. Is one greater than both two and three?
b. Is one greater than two, but less than three?
c. Are all three variables greater than zero?
d. Is one less than two or one less than three?
e. Is two greater than one and three less than two?

18. Write the operation table for Boolean operation AND.

19. Write the operation table for Boolean operation OR.

20. Write the operation table for Boolean operation NOT.

21. What is a data type?

22. What is strong typing?

23. Define the following data types.
a. integer
b. real
c. character
d. Boolean

24. Is the string data type an atomic data type? Justify your answer.

25. If the same symbol is used for both single characters and strings, how
can you distinguish between a single character and a one-character
string?

26. What is a declaration?

27. Fill in the following table showing the appropriate syntactic marker or
reserved word for the language shown based on your observation of
the table on page 237.
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28. How do the hwbNW and h=Eb1O assembler directives in the Pep/7
assembly language differ from the declarations in high-level languages?

29. Distinguish between instructions to be translated and instructions to
the translating program.

30. Consider the following identifiers: Address, ADDRESS, AddRess,
Name, NAME, NamE.
a. How many different identifiers are represented if the language is Ada?
b. How many different identifiers are represented if the language is

VB.NET?
c. How many different identifiers are represented if the language is C++?

31. Differentiate between a variable and a named constant.

32. Explain what is meant by stream input.

33. The example of stream input assumed that blanks were used to sepa-
rate data items in the stream. Is a separator necessary? Justify your
answer.

34. age, weight, and height are three integer variables and a read statement
says to input them in that order. Given the following input stream
(commas are separators),

"'(2NY2'(

Language Ada VB.NET C++ Java

Comments

End of 
statement

Assignment
statement

Real data
type

Integer
data type

Beginning
of
declaration(s)
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what is stored?
a. In age?
b. In weight?
c. In height?
d. Do the values stored in the variables seem reasonable?
e. If not, how would you correct the problem?

35. Write the stream-input algorithm in pseudocode.

36. Write the stream-output algorithm in pseudocode.

37. Explain the operation of the sequence control structure.

38. Explain the flow of control of the if statement.

39. Fill in the following table showing the appropriate syntactic marker(s)
or reserved word for the language shown based on your observation
of the tables on pages 238, 243, and 244.

Language Ada VB.NET C++ Java

Declaring a
character
variable

Declaring a
named 
constant

Boolean
expression in
if statement

true branch of 
an if statement

false branch of
an if statement

compound
statement or
block
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40. How does a case statement differ from an if statement?

41. What is the flow of control in a while statement?

42. Why is a while statement called a pretest loop?

43. What are the three steps in a count-controlled loop?

44. What are the three steps in an event-controlled loop?

45. Distinguish between a count-controlled loop and an event-controlled
loop.

46. Fill in the following table showing the appropriate syntactic marker(s)
or reserved word for the language shown based on your observation
of the table on page 248.

47. What is recursion?

48. How does recursion act as a repetition structure?

49. A looping structure uses a ______________ statement; a recursive
structure uses a ____________ statement.

50. Explain the statement, “Subprograms are a powerful tool for ab-
straction.”

51. Describe two kinds of subprograms.

52. Distinguish between the way in which the name of a subprogram
appears in the calling unit in the two kinds of subprograms described
in Exercise 51.

Language Ada VB.NET C++ Java

Boolean
expression in
a while 
statement

Body of the 
while 
statement

Statement that 
increments 
count
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53. Describe how a parameter list is used to communicate information
from the calling unit to the subprogram.

54. Distinguish between a parameter and an argument.

55. Distinguish between a value parameter and a reference parameter.

56. Fill in the following table showing the appropriate syntactic marker(s)
or reserved word for the language shown based on your observation
of the table on page 253.

57. What is the result of executing subprogram Swap if the parameters are
value parameters?

58. What is the result of executing subprogram Swap if the parameters are
reference parameters?

59. What is the result of executing subprogram Swap if one of the parame-
ters is a value parameter and one of the parameters is a reference
parameter?

60. How did the invention of the mouse change programming?

61. Distinguish between an atomic data type and a composite data type.

62. Name two composite data types and describe how their accessing
mechanisms differ.

63. What is meant by a homogeneous structure?

Language VB.NET C++

Separate 
paramenters 
from one 
another

Define a value 
parameter

Define a 
reference 
parameter

Body of a 
subprogram
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64. What is meant by a heterogeneous structure?

65. What three elements must be present in the definition of a record?

66. How do Ada, VB.NET, and C++ express the three elements outlined
in Exercise 65?

67. Although Ada, VB.NET, and C++ are quite different in many ways,
they all access the fields of a record in the same way. Describe this
syntax.

68. Ada uses a range of index values to define and array, but VB.NET and
C++ specify the number of places in the array. Explain.

69. Examine the following three array declarations:

X‘S" I9 "6 �o =e9�" P"hh"Yi 

X‘S" WeXe7.==e‘ �o e==e‘ ?I9 "6B D— I9X"�"=i

WeXe , WeXe7.==e‘i -- . e

W��  eXe?""B .o I9X"�"=             0 V=h)*F

�9X  eXeL""Mi                       OO 1FF

Are the arrays declared the same? Justify your answer.

70. Access the last element in the arrays declared in Exercise 69
a. in Ada.
b. in VB.NET.
c. in C++.

71. Distinguish between the definition of an object in the design phase and
in the implementation phase.

72. Distinguish between the definition of a class in the design phase and in
the implementation phase.

73. We say that a record is passive, but a class is active. Explain.

74. List and define the three ingredients necessary in an object-oriented
language.

Thought Questions

1. The languages used as examples in this chapter originated in quite
different ways. Ada was designed by a team of designers for the
Department of Defense. VB.NET is Microsoft’s latest version of Visual
Basic. C++ was developed at Bell Labs as a systems-programming
language, and Java was designed at Sun Microsystems. Speculate how
the language’s background has influenced the language.

?
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2. Go to a computer store and price compilers for these languages. Does
the language’s origins influence the cost of a compiler? Was there
more than one compiler for all of the languages? Again, what does this
tell you about the language?

3. Microsoft has developed a language called C# designed to compete
directly with Java. Things happen so rapidly in the world of
computing. Is C# in the marketplace as you read this book? There
were rumblings about another antitrust suite against Microsoft over
C#. Did this happen?

4. The word “hacker” used to be complimentary, describing a
programmer who buried his or her head in the code, only coming up
for air in the morning. A hacker would write very sophisticated
programs almost overnight. Now the term has come to refer to
someone with malicious intent. What connotations does the word
have for you?

5. Is it logical to speak of privacy in relation to Web sites when most of
them are created to advertise a product or service?

6. Altering someone’s Web site is illegal. Should it be illegal to enter a
secure site just to show you can do it?

Thought Questions 273
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Abstract Data Types
and Algorithms

Computer science is sometimes defined as the study of algorithms

and their efficient implementation in a computer. The focus of this

chapter is the definition of useful abstract objects for modeling

information in a program and the algorithms that manipulate

these objects. Just as a roll-top desk organizes data into cubby-

holes, there are logical structures appropriate for representing

different types of data in a program.

We first look at the concept of an abstract data type (ADT),

look at two distinct types of implementations, and then discuss a

useful collection of ADTs from the logical point of view. That is,

we examine the operations on these objects at the logical level; we

do not implement them in code.

One of the abstract structures that we discuss in this chapter is

the list. We develop algorithms for manipulating items in a list.

Once these algorithms exist we can use them in any problem

involving items in a list. Thus, the final implementation language is

immaterial: We can stop the algorithm decomposition at the stage

of manipulating the items in a list.
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Abstract data type

(ADT) A data type
whose properties (data
and operations) are
specified independently
of any particular imple-
mentation
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Goals
After studying this chapter, you should be able to

� define an abstract data type and discuss its role in algorithm development.
� distinguish between a data type and a data structure.
� distinguish between an array-based implementation and a linked imple-

mentation.
� distinguish between an array and a list.
� distinguish between an unsorted list and a sorted list.
� distinguish between a selection sort and a bubble sort.
� describe the Quicksort algorithm.
� apply the selection sort, the bubble sort, and the Quicksort to a list of

items by hand.
� apply the binary search algorithm.
� distinguish between the behavior of a stack and a queue.
� draw the binary search tree that is built from inserting a series of items.
� demonstrate your understanding of the algorithms in this chapter by hand

simulating them with a sequence of items.

9.1 Abstract Data Types

We have used the term data type in several chapters. You know what a
data type is: It is a set of values and the basic operations that can be
applied to values of that type. Let’s take that idea a step further. An
abstract data type is a data type whose properties (data and operations)
are specified independently of any particular implementation. Remember
that the goal in design is to reduce complexity through abstraction. If we
can define useful structures and the operations that manipulate them at the
logical level, we use them as if they exist when we need them in our
designs.

To put the concept of an ADT into context, we need to look at how we
view data. In computing, we view data from three perspectives: the appli-
cation level, the logical level, and the implementation level.

The application (or user) level is the view of the data within a particular
problem. If we look at object-oriented problem solving, this level repre-
sents objects within a particular problem. This view sees data objects in
terms of specific properties and behaviors.

The logical (or abstract) level is an abstract view of the data values (the
domain) and the set of operations to manipulate them. In object-oriented
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Data structure The
implementation of a
composite data field in
an abstract data type

Containers Objects
whose role is to hold and
manipulate other objects

Array-based implemen-

tation An implementa-
tion of a container in
which the items are
stored in an array
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problem solving, this level represents the classes abstracted from the
objects in the application level. This view sees data objects as groups of
objects with similar properties and behaviors. This level can be represented
as CRC cards (discussed in Chapter 6) along with the responsibility algo-
rithms that define the behavior of the ADT.

The implementation level is a specific representation of the structure to
hold the data items and the coding of the operations in a programming
language. This view sees the properties represented as specific data fields
and behaviors represented as methods implemented in code. This level is
concerned with data structures, the implementation of a composite data
fields in an abstract data type.

The abstract data types that we examine in this chapter are those that
history and experience have shown come up again and again in real-world
problems. These ADTs are containers in which data items are stored, and
each exhibits specific behaviors. They are called containers because their
sole purpose is to hold other objects.

9.2 Implementation

Yes, we know; we said that we would not look at the implementations for
the algorithms in this chapter—and we won’t look at code. However, we
do look at two distinct kinds of implementations from the logical level.
These distinctions remain constant across programming languages. The
implementations can be array based or they can be linked. We look at the
algorithms that depend on the implementation in the next sections—still
from the logical level, however.

There are several pseudocode expressions that we use in our algorithms
that mean very different things in an array-based implementation and a
linked implementation. They are Put item, Remove item, Get next item, and
More items. The first two are considered transformer operations, because
they change the state of a container. The third is an iterator, an operation
that allows access to all of the components one-at-a-time. The fourth is an
observer operation: It asks if we have looked at all of the items. We look at
what each means logically in the different implementations. In later algo-
rithms, we consider each to be a concrete step.

Array-Based Implementations
Recall from Chapter 8 that an array is a named collection of homogeneous
items in which individual items are accessed by their place within the
collection. The place within the collection is called an index. An array-

based implementation uses an array to store the items in the container.
We are not saying that an array and the container are the same; we are
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Figure 9.1

A list

length

[0]
[1]
[2]
[3]

[length–1]

[MAX_LENGTH–1]

list

saying that an array can be used to hold the items in the container. Items
in a container can be unordered or they can be ordered in some fashion. If
there is no ordering on the item in the container, we call the container
unsorted. If there is an ordering, we call the container sorted. In this
discussion we use the term list to mean a generic kind of container. Later
we discuss the list as a specific kind of container by describing a set of
behaviors.

Figure 9.1 shows a list. A list is made up of a length variable and an array
to hold the list items. All processing of the logical list is done from the 0th
position in the array variable list through the length – 1 position.

In an unsorted list, the component that comes before or after an item
has no semantic relationship with it. It only shows the order in which the
items were stored. In a sorted list, the items are arranged in such a way
that the component that comes before or after an item has a semantic rela-
tionship with that item. For example, a grade list can be a random list of
numbers or sorted by value. Figures 9.2 and 9.3 show an unsorted list of
grades and a sorted list of grades, respectively.

In an array-based implementation, accessing the first item is accessing
the list[0] position. In order to move through the items in the list, we
need an integer variable that starts at 0 and stops when its value is length.
Be careful: Keep in mind that the array goes from index 0 through index
MAX_LENGTH – 1; the container goes from index 0 through length – 1.
Forgetting this is a common cause for errors in programming.

Put item means that given an index, shift the items that follow down
one slot in the array and store the item at the index position.

Remove the item means that given an index, shift the items that follow
up one slot in the array.
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Linked implementation

An implementation of a
container where the
items are stored together
with information on
where the next item can
be found
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Figure 9.2

An unsorted list of integers

length

[0]6 60
75
95
80
65
90

[1]
[2]
[3]
[4]
[5]

[MAX_LENGTH–1]

list

Figure 9.3

A sorted list of integers

length

[0]6 60
65
75
80
90
95

[1]
[2]
[3]
[4]
[5]

[MAX_LENGTH–1]

list

Get next item means to increment the value used as an index and access
that indexed position.

More items means that the variable used as an index is less than length � 1.

Linked Implementation
A linked implementation is based on the concept of a node. A node is
made up of two pieces of data: the item that the user wants in the list and a
pointer to the next node in the list. A pointer to the first node in a list is
saved in a named variable, called the external pointer to the container
(list). The pointer variable of the last node in the list contains a symbol
that means the end of the list, usually null. Figure 9.4 shows the anatomy of
a linked list.
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Figure 9.4

Anatomy of a linked list

list

User's data

Pointer to
next item in
the list

End of list

Figure 9.5

An unsorted linked list

list

60 75 95 80

65 90

Figures 9.5 and 9.6 display the lists in Figures 9.2 and 9.3, respectively.
We call the user’s information the info part of the node and the pointer

the next part of the node. In an array-based list, we access each item by
using a variable that ranges from 0 through length – 1. In a linked list we
use a variable of the same type as the next part of the node; let’s call it
current. current is initialized to list, the first node in the list. info(current)
accesses the user’s data in the node and next(current) accesses the pointer
part of the node. To move to the next node in the list, we set current to
next(current). The last item has been accessed when current is equal to null.
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Figure 9.6 A sorted linked
list

list

60 65 75 80

90 95

Figure 9.7

Store a node with info of 67
after current

list

60 65 75 80

67

90 95

current

Figure 9.8 Remove node
next(current)

list

60 65 75 80

90 95

current

Put item means given current, insert a new node with item in the info
part of the node between current and next(current). See Figure 9.7.

Remove item means given current, remove the next(current). See Figure
9.8.

Get next item means to set current to next(current).

More items means that current does not contain null.
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Linked lists are also called unbounded lists because the nodes are created
at run time. The only limit on the number of nodes is the size of
memory. In a linked list, it is not necessary to keep track of the number
of items in the list explicitly, because you can always count the number
of nodes. In contrast, the length must be explicitly kept in an array-based
implementation.

9.3 Lists

Lists occur as naturally in programming as they do in real life. We manipu-
late guest lists, grocery lists, class lists, and things-to-do lists.  The list of
lists is endless. Three properties characterize lists: The items are homoge-
neous, the items are linear, and lists have varying length. By linear we
mean that each item except the first has a unique component that comes
before it and each item except the last has a unique component that comes
after it. For example, if there are at least three items in a list, the second
item comes after the first and before the third.

Basic List Operations
There are various kinds of lists depending on the behaviors the list
exhibits. Let’s start with a minimal set of operations. What are the opera-
tions that we do with, say, a “to-do” list? Well, starting with an empty
list, we put things on the list, and we cross items off the list. In computer
terms this means we must be able to add entries to and delete entries
from the list. Our “to-do” list is on a piece of paper we hold in our hand,
so we can see the items on the list. The analogy for a list in the computer
would be to require the list to print itself. We said that one of the charac-
teristics of a list is that it has length. That is, the list knows how many
items are stored within it. So our computerized list must be able to do the
following:

� create itself

� insert an item

� delete an item

� print itself

� know the number of items it contains

CRC cards are a good way to represent ADTs. Although the terminology is
object-oriented, it easily can be translated into a functional representation.
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Generic data type

(class) A data type (or
class) in which the oper-
ations are defined but
the type or class of the
objects being manipu-
lated is not
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Notice in this CRC card that we said that the list collaborates with Item-
Class. We don’t know what it is, but because items are being put on the
list, the list must collaborate with the class of which the items are objects.
We are writing this CRC card for a generic list. A generic data type (or
class) is one in which the operations are specified but the type or class of
the objects being manipulated is not.

The responsibility algorithms are quite straightforward. Initializing a list
is equivalent to setting the length to zero. The act of inserting and deleting
an item must increment and decrement the length, respectively. As we
write the algorithms, we continue to put abstract steps in blue. The steps
that we outlined in the previous section we put in red to remind you that
they are different in each implementation.

Insert(item)

Find where the item belongs

Put the item there

Increment length

Initialize

Set length to zero

Class Name:  Host Superclass:  Subclasses:

/esPrnsoSodotoes Collaborations

inotovdoae otsedI

inse,t LoteGu

Redete LoteGu

p,ont

OnrBHenDtc ,etl,ns onteDe,
...

iteGCdvss

iteGCdvss

iteGCdvss

http://lib.ommolketab.ir
http//lib.ommolketab.ir


284 Chapter 9 Abstract Data Types and Algorithms

Constraints on the Print operation break the list into subcategories.
Should the items be printed in the order in which they are inserted?
Should the items be printed in order by some information in the items
themselves? Answering yes to the first question leads to an unsorted list.
Answering yes to the second question leads to a sorted list. How can we
consider Print item concrete when we know nothing about the items on
the list? That’s just it. We consider this list to be generic so each item on
the list must know how to print itself. Print item just tells the item to print
itself.

Before we continue with the decomposition of the responsibility algo-
rithms in the two subcategories, let’s spend a moment on the implication
of the Find the item in the Delete operation. Finding an item means that
the class to which an item belongs has a way of recognizing a match. It is
not the responsibility of the list to know what a match is; it is the
responsibility of ItemClass. We need to make this assumption explicit
somewhere. Let’s add an assumption to the CRC card that ItemClass
must provide a compareTo method and indicate what the results must be.
Java has a X=\"—elo= method defined on items of class E<e>!O and
other classes in the Java Library. Let’s use that definition. We also need
compareTo in the Find where item belongs in the sorted list.

Know Length

return length

Print

While (more items)

Get next item

Print item

Delete(item)

Find the item

Remove the item

Decrement length
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Class Name:  Host Superclass:  Subclasses:

Responsibilities Collaborations

inotovdoae otsedI

inse,t LoteGu

Redete LoteGu

p,ont

OnrBHenDtc ,etl,ns onteDe,
.
.
.

iteGCdvss*

iteGCdvss

iteGCdvss

*xsslGPtorn: iteGCdvss Glst P,rNoAe
TrGPv,eEr GetcrA:
oteG1.TrGPv,eErLoteG2u
    <(: oteG1<oteG2
       (: oteG1 e)lvds oteG2
    >(: oteG1>oteG2

The step Find where the item belongs is decomposed differently in these two
subcategories. If the list is printed in the order in which the items are
inserted (unsorted), the logical place for each item is at the end of the list.
This is certainly efficient in the array-based implementation because the
item would go into the length position. However, in the linked implementa-
tion, the end of the list can only be accessed by traversing the entire list. It
would be more efficient to put each new item at the beginning of the list,
but the Print would have them in reverse order rather than the order in
which they were entered.

We said that a sorted list was one in which the items were printed in order
based on some information within the items on the list. This means that the
list must be kept such that the Get an item within the print method gets the

Find where the item belongs (Unsorted)

Item belongs at length
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appropriate item to print. Thus, the Insert operation must place the items in
the list in the proper order. The list doesn’t have to know anything about the
fields of ItemClass. The compareTo method gives enough information.

To see how this works, let’s look at an example. Let’s say we are keeping
numbers in numeric order. The list so far contains the following values:

23, 46, 75, 1066, 1492, 2001

and we want to insert 998. Compare 998 to 23 and it is larger, so we
compare 998 with the next value. 998 is larger than 46, so we compare 998
with the next value. 998 is larger than 75, so we compare 998 with the next
value. 998 is less than 1066, so 998 goes in the list just before 1066. We
begin with the first item in the list and compare the value to be inserted. As
long as the value we are inserting is greater than the next value in the list, we
keep moving down the list. When we find a place where the value to be
inserted is less than the value in the list, we have found the insertion place.

Find the item in the Delete algorithm is decomposed using the compareTo
method. But before we write the algorithm, we must ask exactly what we
mean by Delete. Can we assume that the item to be deleted is there? Do we
delete the item only if it is there? Do we delete all copies of the item? Do
we delete only the first copy? The answers to these questions lead to
different meanings of the Delete operation. Going back to our “to-do” list,
the obvious meaning is: “The item is there; delete it.” We write the algo-
rithm assuming this meaning. However, you should be aware that even an
operation as simple as Delete can have more than one meaning, and the
documentation of the operation must indicate the meaning being imple-
mented in the algorithm. Delete has one abstract step, Find the item.

Find the item

Set tempItem as first item

While (item.compareTo(tempItem) not equal to 0)

Set tempItem to next item

Find where the item belongs (Sorted)

Set tempItem to the first item

While (item.compareTo(tempItem) > 0)

Set tempItem to next item

Item belongs at tempItem
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Additional List Operations
What other operations do we do on our “to-do” list? Do you ever look to
see if an item is on the list in order to add an item if it isn’t? Do you ever
look to see if the list is empty? Is full? These operations are called observer
operations because they observe the state of the list. Let’s examine the
algorithm to determine if an item is in the list. This method should be a
Boolean method. We have to start at the beginning of the list and compare
each item in the list to the one passed as a parameter. Once we find a
match we return true. If we reach the end of the list without having found
a match, we return false.

This algorithm is called a sequential search for obvious reasons. We begin
at the first item and examine them in order. You are asked to complete the
algorithms for the other observer operations in the exercises at the end of
this chapter.

In the next sections we examine algorithms that transform an unsorted
list into a sorted one. Then we look at the binary search algorithm, a faster
searching algorithm that we can use if we know the list is sorted and the
implementation is array based.

9.4 Sorting

We all know what sorting is. We sort our sock drawers, our bookshelves,
even our priorities. Sorting is putting things in order. In computing, trans-
forming an unsorted list into a sorted list is a common and useful opera-
tion. Whole books have been written about various sorting algorithms, as
well as algorithms for searching a sorted list to find a particular element.
The goal is to come up with better, more efficient, sorts. Because sorting a
large number of elements can be extremely time-consuming, a good sorting
algorithm is very desirable. This is one area in which programmers are
sometimes encouraged to sacrifice clarity in favor of speed of execution.

IsThere(item)

Set tempItem to the first item

While (more items)

If (tempItem.compareTo(item) is equal to 0)

return true

Else

Set tempItem to next item

Return false
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Figure 9.9 Example of selection sort (sorted elements are shaded)
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In this section we present several quite different sorting algorithms to give
you a flavor of how many different ways there are to solve the same problem.
The language of sorting algorithms uses array-based notation because each
item to be sorted must be accessed directly by its index, not through the item
before it. In the sections that follow, we use compareTo to compare two items.

Selection Sort
The selection sort algorithm is probably the easiest because it mirrors how
we would sort a list of values if we had to do it by hand. If you were
handed a list of names and asked to put them in alphabetical order, you
might use this general approach:

1. Find the name that comes first in the alphabet, and write it on a
second sheet of paper.

2. Cross out the name on the original list.
3. Continue this cycle until all the names on the original list have been

crossed out and written onto the second list, at which point the
second list is sorted.

This algorithm is simple, but it has one drawback: It requires space for two
complete lists. Although we have not talked about memory-space consider-
ations, this duplication is clearly wasteful. A slight adjustment to this
manual approach does away with the need to duplicate space, however. As
you cross a name off the original list, a free space opens up. Instead of
writing the minimum value on a second list, exchange it with the value
currently in the position where the crossed-off item should go. Our “by-
hand list” is represented in an array. Let’s look at an example—sorting the
five-element list shown in Figure 9.9. Because of this algorithm’s
simplicity, it is usually the first sorting method that students learn.

Let’s think of the list as containing two parts: the unsorted part (not
shaded) and the sorted part (shaded). Each time we put an item into its
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proper place, we are shrinking the unsorted part and extending the sorted
part. Sorting begins with all of the list items in the unsorted part and ends
with all of the list items in the sorted part.

There are only two abstract steps: determining when the list is sorted and
finding the index of the smallest element. Moving from Figure 9.9(d) to
9.9(e) added the last two items to the shaded part of the list. This is always
the case because when the smaller of the last two is determined and put
into its proper place, the last one is also in its proper place. Thus, the loop
continues as long as current is less than the length of list – 1.

How would you find the name that comes first in the alphabet in the
unsorted portion if you were doing it by hand? You see (and mentally
record) the first one and then scan down the list until you see one that
comes before the first one. You remember this smaller one and continue
scanning the list looking for a name that comes before this one in the
alphabet. The process of remembering the smallest so far until you find a
smaller one is repeated until you reach the end of the list. This by-hand
algorithm is exactly the one we use here. Only we must remember the
index of the smallest because we are going to swap that item with the item
in the current position. So in terms of our list, we look for the smallest in
the unsorted portion, which runs from current through length – 1.

Find the index of the smallest

Set indexOfSmallest to current

For index going from current + 1 to length �1

If (list[index].compareTo(list[indexOfSmallest]) < 0)

Set indexOfSmallest to index

No sorted yet

current < length � 1

Selection Sort

Set current to the index of first item in the list

While (not sorted yet)

Find the index of the smallest unsorted item

Swap the current item with the smallest unsorted one

Incrementing current to shrink unsorted part

http://lib.ommolketab.ir
http//lib.ommolketab.ir


290 Chapter 9 Abstract Data Types and Algorithms

Figure 9.10 Example of a bubble sort

Bubble Sort
The bubble sort is a selection sort that uses a different scheme for finding
the minimum value. Starting with the last list element, we compare succes-
sive pairs of elements, swapping whenever the bottom element of the pair
is smaller than the one above it (Figure 9.10a). In this way the smallest
element “bubbles up” to the top of the list. Each iteration puts the smallest
unsorted item into its correct place using the same technique, but it also
makes changes in the locations of the other elements in the array (Figure
9.10b).

Before we write this algorithm, we must make an observation: Bubble
sort is the slowest of all the sorting algorithms. Why then do we bother to
mention it? Because it is the only sorting algorithm that can recognize
when it is already sorted. Let’s apply the algorithm to an already sorted
list. See Figure 9.11.

We compare Phil with John and do not swap. We compare John with
Jim and do not swap. We compare Jim with Bob and do not swap. We

a) First iteration (Sorted elements are shaded.)

b) Remaining iterations (Sorted elements are shaded.)
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Example of an already
sorted list.
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compare Bob with Al and do not swap. If no values are swapped during an
iteration, then the list is sorted. We set a Boolean variable to false before
we enter the loop and set it to true if a swap occurs. If the Boolean variable
is still false, then the list is sorted.

Compare the processing of bubble sort to selection sort on an already
sorted list. Selection sort makes no attempt to determine if the list is
sorted; therefore, we will go through the entire algorithm.

We used a posttest loop because at least one iteration is necessary to deter-
mine that the list is sorted even if the list is sorted to begin with.

Quicksort
The Quicksort algorithm, developed by C. A. R. Hoare, is based on the idea
that it is faster and easier to sort two small lists than one larger one. The name
comes from the fact that, in general, Quicksort can sort a list of data elements
quite rapidly. The basic strategy of this sort is to divide and conquer.

If you were given a large stack of final exams to sort by name, you
might use the following approach: Pick a splitting value, say L, and divide
the stack of tests into two piles, A–L and M–Z. (Note that the two piles do
not necessarily contain the same number of tests.) Then take the first pile
and subdivide it into two piles, A–F and G–L. The A–F pile can be further
broken down into A–C and D–F. This division process goes on until the
piles are small enough to be easily sorted by hand. The same process is
applied to the M–Z pile.

Bubble up

For index going from length � 1 down to current + 1

If (list[index].compareTo(list[index � 1]) < 0)

Swap list[index] and list[index � 1]

Set swap to true

Bubble Sort

Set current to index of first item in the list

Do

Set swap to false

“Bubble up” the smallest item in unsorted part

Increment current to shrink the unsorted portion

While (not yet sorted AND swap)
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A...Z

A...L

G...LA...F

M...Z

S...ZM..RFigure 9.12

Ordering a list using the
Quicksort algorithm

Eventually all the small sorted piles can be stacked one on top of the
other to produce a sorted set of tests. See Figure 9.12.

This strategy is based on recursion—on each attempt to sort the stack of
tests, the stack is divided, and then the same approach is used to sort each
of the smaller stacks (a smaller case). This process goes on until the small
stacks do not need to be divided further (the base case). The parameter list
of the Quicksort algorithm reflects the part of the list that is currently being
processed.

How do we select splitVal? One simple solution is to use whatever value is
in list[first] as the splitting value. Let’s look at an example using list[firstl
as splitVal.

9 20 6 10

splitVal = 9

14 8 60 11

[first] [last]

Quicksort(first, last)

IF (there is more than one item in list[first]..list[last])

Select splitVal

Split the list so that

list[first]..list[splitPoint–1] <= splitVal

list[splitPoint] = splitVal

list[splitPoint+1]..list[last] > splitVal

Quicksort the left half

Quicksort the right half
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After the call to Split, all the items less than or equal to splitVal are on the
left side of the list and all of those greater than splitVal are on the right side
of the list.

The two “halves” meet at splitPoint, the index of the last item that is less
than or equal to splitVal. Note that we don’t know the value of splitPoint
until the splitting process is complete. We can then swap splitVal (list[first])
with the value at list[splitPoint].

Our recursive calls to Quicksort use this index (splitPoint) to reduce the size
of the problem in the general case.

Quicksort(first, splitPoint – 1) sorts the left “half” of the list. Quicksort(split-
Point + 1, last) sorts the right “half” of the list. (The “halves” are not neces-
sarily the same size.) splitVal is already in its correct position in list[splitPoint].

What is the base case? When the segment being examined has only one
item, we do not need to go on.

We must find a way to get all of the elements equal to or less than
splitVal on one side of splitVal and the elements greater than splitVal on the
other side. We do this by moving a pair of the indexes from the ends
toward the middle of the list, looking for items that are on the wrong side
of the split value. When we find pairs that are on the wrong side, we swap
them and continue working our way into the middle of the list.

Set left to first + 1

Set right to last

Do

Increment left until list[left] > splitVal OR left > right

Decrement right until list[right] < splitVal OR left > right

Swap list[left] and list[right]

While (left <= right)

Set splitPoint to right

Swap list[first] and list[right]

6 8 9 10

larger valuessmaller values

14 20 60 11

[first] [split-
Point]

[last]

9 8 6 10

larger valuessmaller values

14 20 60 11

[first] [last]
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Tony Hoare’s interest in computing was
awakened in the early ’50s, when he
studied philosophy (together with Latin and
Greek) at Oxford University, under the tute-
lage of John Lucas. He was fascinated by
the power of mathematical logic as an
explanation of the apparent certainty of
mathematical truth. During his National
Service (1956–1958), he studied Russian in
the Royal Navy. Then he took a qualifica-
tion in statistics, and incidentally a course in
programming given by Leslie Fox. In 1959, as a
graduate student at Moscow State University, he
studied the machine translation of languages
(together with probability theory) in the school of
Kolmogorov. To assist in efficient look-up of words in
a dictionary, he discovered the well-known sorting
algorithm Quicksort.

On return to England in 1960, he worked as a
programmer for Elliott Brothers, a small scientific
computer manufacturer. He led a team (including his
later wife, Jill) in the design and delivery of the first
commercial compiler for the programming language
Algol 60. He attributes the success of the project to
the use of Algol itself as the design language for the
compiler, although the implementation used decimal
machine code. Promoted to the rank of Chief Engi-
neer, he then led a larger team on a disastrous
project to implement an operating system. After
managing a recovery from the failure, he moved as
Chief Scientist to the computing research division,
where he worked on the hardware and software
architecture for future machines.

These machines were cancelled when the company
merged with its rivals, and in 1968 Tony took a
chance to apply for the Professorship of Computing
Science at the Queen’s University, Belfast. His
research goal was to understand why operating
systems were so much more difficult than compilers,
and to see if advances in programming theory and
languages could help with the problems of concur-
rency. In spite of civil disturbances, he built up a
strong teaching and research department, and
published a series of papers on the use of assertions
to prove correctness of computer programs. He knew
that this was long-term research, unlikely to achieve

industrial application within the span of his
academic career.

In 1977 he moved to Oxford University,
and undertook to build up the Program-
ming Research Group, founded by Christo-
pher Strachey. With the aid of external
funding from government initiatives, indus-
trial collaborations, and charitable dona-
tions, Oxford now teaches a range of
degree courses in Computer Science,
including an external master’s degree for

software engineers from industry. The research of his
teams at Oxford pursued an ideal that takes provable
correctness as the driving force for the accurate speci-
fication, design, and development of computing
systems, both critical and non-critical. Well-known
results of the research include the Z specification
language, and the CSP concurrent programming
model. A recent personal research goal has been the
unification of a diverse range of theories applying to
different programming languages, paradigms, and
implementation technologies.

Throughout more than thirty years as an
academic, Tony has maintained strong contacts with
industry, through consultation, teaching, and collabo-
rative research projects. He took a particular interest
in the sustenance of legacy code, where assertions
are now playing a vital role, not for his original
purpose of program proof, but rather in instrumenta-
tion of code for testing purposes. On reaching retire-
ment age at Oxford, he welcomed an opportunity to
return to industry as a senior researcher with
Microsoft Research in Cambridge. He hopes to
expand the opportunities for industrial application of
good academic research, and to encourage
academic researchers to continue the pursuit of deep
and interesting questions in areas of long-term interest
to the software industry and its customers.

The above biographical sketch was written by Sir
Tony Hoare himself and reprinted with his permission.
What he does not say is that he received the Turing
Award in 1980 for his fundamental contributions to
the definition and design of programming languages
and was awarded a Knighthood in 1999 for his serv-
ices to education and computer science.

Tony Hoare1
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Sequential search

Looking for an item from
the beginning of the list
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Figure 9.13

Splitting algorithm

9 20 6 10

(a) Initialization

14 8 60 11

“”>e�<z“,l”<z “e>O�<z

9 20 6 10

(b) Increment left unitl list [left] > splitVal or left > right.

14 8 60 11

“”>e�<z“,l”<z “e>O�<z

9 20 6 10

(c) Decrement right until list[right] <= splitVal or left > right.

14 8 60 11

“”>e�<z“,l”<z “e>O�<z

9 8 6 10

(d) Swap list[left] and list[right]; move left and right toward each other.

14 20 60 11

“”>e�<z “,l”<z “e>O�<z

9 8 6 10

(d) Increment left until list[left] > splitVal or left > right.
     Decrement right until list[right] <= splitVal or left > right.
 
 

14 20 60 11

“”>e�<z “,l”<z“e>O�<z

6 8 9 10

(e) left > right so no swap occurs within the loop.
 Swap list[first and list[right].

14 20 60 11

“”>e�<z “e>O�<z

D�",><Y=>!<i

Figure 9.13 shows an example of this algorithm.

9.5 Binary Search

A sequential search of a list begins at the beginning of the list and
continues until the item is found or the entire list has been searched
without finding the item. A binary search looks for an item in a list using a
different strategy. The binary search is based on this same divide-and-
conquer strategy that we used in the Quicksort.
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Binary search Looking
for an item in an already
sorted list by eliminating
large portions of the
data on each compar-
ison
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The binary search algorithm assumes that the items in the list being
searched are sorted and either finds the item or eliminates half of the list
with one comparison. Rather than looking for the item starting at the
beginning of the list and moving forward sequentially, the algorithm
begins at the middle of the list in a binary search. If the item for which we
are searching is less than the item in the middle, we know that the item
won’t be in the second half of the list. So we continue by searching the
data in the first half of the list. Once again we examine the “middle”
element (which is really the item 25% of the way into the list). If the item
for which we are searching is greater than the item in the middle, continue
searching between the middle and the end of the list. If the middle item is
equal to the one for which you are searching, the search stops. The process
continues with each comparison cutting in half the portion of the list
where the item might be. The process stops when the item is found or
when the portion of the list where the item might be is empty.

This process sounds recursive. We stop when we find the item or when
we know it isn’t there (base cases). We continue to look for the item in
the section of the list where it will be if it is there. In the Quicksort algo-
rithm, indexes that represented the portion of the list being sorted were
parameters to the algorithm. We must do the same with the binary search
algorithm.

The original call to this algorithm would have first as 0 and last as
length – 1. Figure 9.14 shows a trace of the binary search algorithm looking
for cat, fish, and zebra.

Boolean Binary Search (first, last)

If (last > first)

return false

Else

Set middle to (first + last)/ 2

Set result to list[middle].compareTo(item)

If ( result is equal to 0)

return true

Else

If (result < 0)

Binary Search (first, middle – 1)

Else

Binary Search (middle + 1, last)
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Figure 9.14

Trace of the binary search
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cow
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camel“Pz

snake

BinarySearch(0, 10) middle:  5 cat < dog

BinarySearch(0, 4) middle:  2 cat < chicken

BinarySearch(0, 1) middle:  0 cat > ant

BinarySearch(1, 1) middle:  1 cat = cat Return: true

“�Fz

Searching for cat

BinarySearch(0, 10) middle:  5 fish > dog

BinarySearch(6, 10) middle:  8 fish < horse

BinarySearch(6, 7) middle:  6 fish = fish Return: true

Searching for fish

BinarySearch(0, 10) middle:  5 zebra > dog

BinarySearch(6, 10) middle:  8 zebra > horse

BinarySearch(9, 10) middle:  9 zebra > camel

BinarySearch(10, 10) middle:  10 zebra > snake

BinarySearch(11, 10) last > first Return: false

Searching for zebra
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Table 9.1 Average Number of Comparisons

Length

10
100

1,000
10,000

Sequential search

5.5
50.5

500.5
5000.5

Binary search

2.9
5.8
9.0

12.0

Is the binary search algorithm really faster than the sequential search
algorithm? Table 9.1 shows the number of comparisons required on
average to find an item using a sequential search and using a binary search.
If the binary search is so much faster, why don’t we always use it? More
computation is required for each comparison because we must calculate
the middle index. Also, the list must be in sorted order and must be imple-
mented using an array-based implementation. If the list is already sorted,
uses an array-based implementation, and the number of items is over 20,
use a binary search algorithm.

9.6 Stacks and Queues

Stacks and queues are abstract data types that are often thought of as a
pair—like peanut butter and jelly or horse and carriage. Why this is so
must be more historical than anything else, because they have quite
different behaviors.

Stacks
A stack is an abstract data type in which accesses are made at only one
end. You can insert an item as the first one and you can remove the first
one. This ADT models many things in real life. Accountants call it LIFO,
which stands for Last In First Out. The plate holder in a cafeteria has this
property. We can only take the top plate. When we do, the one below rises
to the top so the next person can take one. Canned goods on a grocer’s
shelf exhibit this property. When we take the first can in a row, we are
taking the last can put in that row.

Another way of stating the accessing behavior of a stack is that the item
removed is the item that has been in the stack the shortest time. Viewing a
stack from this perspective is more abstract. The insert has no constraints,
the entire LIFO behavior is specified in the removal operation.
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The mental image of the cafeteria plates has left an imprint on the tradi-
tional names used for the insert and delete operations. The insert is called
Push and the delete is called Pop. We Push and item onto the stack and Pop
an item off the stack. A stack does not have the property of length, so
there is no operation that returns the number of items on the stack. We do
need operations that determine whether a stack is Empty because trying to
Pop an item when the stack is empty is an error.

Let’s look at a case in which we use a stack. When we were designing
the insertion algorithm for the sorted list, we said that putting the item
into the last slot was efficient for the array-based implementation but not
for the linked implementation. The obvious place to put each new item in
the linked implementation is at the beginning of the list, but the list would
be in reverse order. Let’s assume that the insert puts the item at the begin-
ning of the list and uses a stack to print a list in reverse order. That is, if
the list is in reverse order and we print it in reverse order, the list should be
ordered appropriately. Right? Let’s try it.

If items

90, 65, 80, 95, 75, 60

are entered into a linked implementation of an unordered list with each
item going at the front of the list, the list would look like the one in Figure
9.5. The first item is accessed and put onto the stack, the second item is
accessed and put on the stack, and so on. When the last item has been
added to the stack, the contents of the stack look like this:

Top of stack

Bottom of the stack

60
75
95
80
65
90

Print list

While (more items)

Get an item

Push item

While (NOT IsEmpty)

Pop item

Print item
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Now we Pop off one item at a time and print it. The first item printed is
60, the next item printed is 75, and so on. The original list has now been
printed in reverse order using the stack. Any sequence of items put on the
stack comes off in reverse order.

Queues
Queues are an abstract data type in which items are entered at one end
and removed from the other end. Accountants call this FIFO, for First In
First Out. This sounds like a waiting line in a bank or supermarket.
Indeed, queues are used to simulate this type of situation. Insertions are
made at the rear of the queue and deletions are made from the front of the
queue.

Another way of stating the accessing behavior of a queue is that the
item removed is the item that has been in the queue the longest time.
Viewing a queue from this perspective is more abstract. Like the stack, the
insert has no constraints; the entire FIFO behavior is specified in the
removal operation. Unfortunately, there is no standard queue terminology
relating to the insertion and deletion operations. Enqueue, Enque, Enq,
Enter, and Insert are used for the insertion operation. Dequeue, Deque, Deq,
Delete, and Remove are used for the deletion operation.

Implementation
Stacks and queues are often visualized as linked structures. The stack has
only one external pointer and it points to the top of the stack. The queue
needs two external pointers, one to the front of the queue and one to the
rear. See Figure 9.15. Stacks and queues may also be implemented in
array-based fashion.

It is important to note that the stack and the queue take no parameter
for the deletion operation. Each knows where the next object to be deleted
is; there is no choice.

9.7 Trees

ADTs such as lists, stacks, and queues are linear in nature. Only one rela-
tionship in the data is being modeled. Items are next to each other in a list
or are next to each other in terms of time in a stack or queue. More
complex relationships require more complex structures. Take, for example,
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Figure 9.15 Stack and
queue visualized as linked
structures

...

top

...

Insertion and
Deletions occur
here

(a) A linked stack

front rear

(b) A linked queue

Deletions
occur here

Insertions
occur here

family relationships. If we want to model family relationships in a
program, a hierarchical structure would be needed. At the top of the hier-
archy would be the parents, the children would be at the next level, the
grandchildren at the next level, and so on.

These hierarchical structures are called trees, and there is a rich mathe-
matical theory relating to them. However, in computing we usually restrict
our discussion to binary trees. These are trees that are restricted to each
node having no more than two children.
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Binary tree A
container object with a
unique starting node
called the root, in which
each node is capable of
having two child nodes,
and in which a unique
path exists from the root
to every other node

Root The top node of a
tree structure; a node
with no parent

Leaf node A tree node
that has no children
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Figure 9.16

A binary tree
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8 109

tree

Binary Trees
The vocabulary of trees uses the same vocabulary that we introduced in
relation to the linked implementation. Every position in the tree is a node,
which contains both the user’s data and information on where to go to get
the next node.

From the computing perspective a binary tree is a container object in
which each node is capable of having two successor nodes, called children.
Each of the children, being nodes in the binary tree, can also have up to
two child nodes, and these children can also have up to two children, and
so on, giving the tree its branching structure. The beginning of the tree is a
unique starting node called the root, which is not the child of any node.
See Figure 9.16.

The external pointer tree points to the root node in the tree. Each node
in the tree may have zero, one, or two children. The node to the left of a
node, if it exists, is called its left child. For example, in Figure 9.16, the left
child of the root node contains the value 2. The node to the right of a
node, if it exists, is its right child. The right child of the root node in the
example contains the value 3. If a node has only one child, the child could
be on either side, but it is always on one particular side. The root node is
the parent of the nodes containing 2 and 3. (Earlier textbooks used the
terms left son, right son, and father to describe these relationships.) If a
node in the tree has no children, it is called a leaf. For instance, the nodes
containing 7, 8, 9, and 10 are leaf nodes.

In addition to specifying that a node may have up to two children, the
definition of a binary tree states that a unique path exists from the root to
every other node. This means that every node (except the root) has a
unique (single) parent.

Each of the root node’s children is itself the root of a smaller binary
tree, or subtree. The root node’s left child, containing 2, is the root of its
left subtree, while the right child, containing 3, is the root of its right
subtree. In fact, any node in the tree can be considered the root node of a
subtree. The subtree whose root node has the value 2 also includes the
nodes with values 4 and 7. These nodes are the descendants of the node
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containing 2. The descendants of the node containing 3 are the nodes with
the values 5, 6, 8, 9, and 10. A node is the ancestor of another node if it is
the parent of the node or the parent of some other ancestor of that node.
(Yes, this is a recursive definition.) The ancestors of the node with the
value 9 are the nodes containing 5, 3, and 1. Obviously, the root of the
tree is the ancestor of every other node in the tree.

The level of a node refers to its distance from the root. If we designate
the level of the root as 0 (zero), the nodes containing 2 and 3 are Level 1
nodes, the nodes containing 4, 5, and 6 are Level 2 nodes, and the nodes
containing 7, 8, 9, and 10 are Level 3 nodes.

The maximum level in a tree determines its height. Because we are refer-
ring to a binary tree, the maximum number of nodes at any level N is 2N.
Often, however, levels do not contain the maximum number of nodes. For
instance, in Figure 9.16, Level 2 could contain four nodes, but because the
node containing 2 in Level 1 has only one child, Level 2 contains three
nodes. Level 3, which could contain eight nodes, has only four. The
maximum number of nodes in a tree of height N is 2N+1 – 1. Thus, the
maximum number of nodes possible in the tree in Figure 9.16 is 15
compared to the actual number there, which is 10.

We could make many differently shaped binary trees out of the ten nodes
in this tree. Two variations are illustrated in Figure 9.17. It is easy to see that
the maximum number of levels in a binary tree with N nodes is N. What is the
minimum number of levels? If we fill the tree by giving every node in each
level two children until we run out of nodes, the tree has log2N + 1 levels
(Figure 9.17a). Demonstrate this to yourself by drawing “full” trees with 8
[log2(8) = 3] and 16 [log2(16) = 4] nodes. What if there are 7, 12, or 18 nodes?

Binary Search Trees
A binary search tree has the shape property of a binary tree; that is, a node in
a binary search tree can have zero, one, or two children. In addition, a binary
search tree has a semantic property among the values in the nodes in the tree:
The value in any node is greater than the value in any node in its left subtree
and less than the value in any node in its right subtree. See Figure 9.18.

Earlier in this chapter we described the binary search algorithm for
searching in a list. We pointed out that, unfortunately, the binary search
algorithm couldn’t be applied to a linked implementation of a list. A
binary search tree gives the flexibility of a linked implementation of a list
and the speed of a binary search.

Searching a Binary Search Tree
Let’s search for the value 18 in the tree in Figure 9.18. We compare 18
with 15, the value in the root node. 18 is greater than 15, so we know that
if 18 is in the tree it will be in the right subtree of the root. Note the
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Figure 9.17 Two varia-
tions of a binary tree
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Figure 9.18

A binary search tree

similarity of this approach to our binary search of a linear structure. We
eliminate a large portion of the data with one comparison.

Next we compare 18 with 17, the value in the root of the right subtree.
18 is greater than 17, so we know that if 18 is in the tree it will be in the
right subtree of the root. We compare 18 with 19, the value in the root of
the right subtree. 18 is less than 19, so we know that if 18 is in the tree, it
will be in the left subtree of the root. We compare 18 with 18, the value in
the root of the left subtree, and we have a match.
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Now let’s look at what happens when we search for a value that is not
in the tree. Let’s look for 4. We compare 4 with 15. 4 is less than 15, so if
4 is in the tree it will be in the left subtree of the root. We compare 4 with
7, the value in the root of the left subtree. 4 is less than 7, so if 4 is in the
tree it will be in 7’s left subtree. We compare 4 with 5. 4 is less than 5, so if
4 is in the tree it will be in 5’s left subtree. We compare 4 with 1. 4 is
greater than 1, so if 4 is in the tree it will be in 1’s right subtree. But 1’s left
subtree is empty, so we know that 4 is not in the tree.

In a linked list the node contained an info part that contained the user’s
data and a pointer to the next node in the list. If we are to implement a
binary tree, the node must have three parts: the user’s data and a pointer
to the left subtree and a pointer to the right subtree.

If current points to a node, info(current) refers to the user’s data in the
node, left(current) points to the root of the left subtree of current, and
right(current) points to the root of the right subtree of current. If a pointer
contains null, the subtree is empty. Using this notation, we can now write
the search algorithm. We start at the root of the tree and move to the root
of successive subtrees until we find the item we are looking for or we find
an empty subtree. The item to be searched for and the root of the tree
(subtree) are parameters.

Boolean IsThere(current, item)

If (current is null)

return false

Else

Set result to item.compareTo(info(current))

If (result is equal to 0)

return true

Else

If (result < 0)

IsThere(left(current, item))

Else

IsThere(right(current, item)

Pointer to the root
of the left subtree

Pointer to the root
of the right subtree

User's data
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With each comparison, either we find the item or cut the tree in half by
moving to search in the left subtree or the right subtree. In half? Well, not
exactly. As shown in Figure 9.17, the shape of a binary tree is not always
well balanced. Clearly, the efficiency of a search in a binary search tree is
directly related to the shape of the tree. How does the tree get its shape?
The shape of the tree is determined by the order in which items are entered
into the tree. Let’s build a binary search tree.

Building a Binary Search Tree
The clue of how to build a binary search tree lies in the search algorithm we
just used. If we follow the search path and do not find the item, we end up at
the place where it would be if it were there. Let’s now build a binary search
tree using strings: john, phil, lila, kate, becca, judy, june, mari, jim, and sarah.

Because john is the first value to be inserted, it goes into the root. The
second value, phil, is greater than john, so it goes into the root of the right
subtree. lila is greater than john but less than phil, so lila goes into the root of
the left subtree of phil. The tree now looks like this.

kate is greater than john, less than phil and less than lila, so kate goes into the
root of the left subtree of lila. becca is less than john, so it goes into the root of
the left subtree of john. judy is greater than john, less than phil, lila, and kate, so
judy goes into the root of the left subtree of kate. We follow the same path for
june as we did for judy. june is greater than judy, so it goes into the root of the
right subtree of judy. mari becomes the root of lila’s right subtree; jim becomes
the root of the right subtree of becca; and sarah becomes the root of the right
subtree of phil. The final tree is shown in Figure 9.19.

Insert (current, item)

If (tree is null)

Put item in tree

Else

If (item.compareTo(info(current)) < 0)

Insert (item, left(current))

Else

Insert (item, right(current))

john

tree

phil

lila
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Figure 9.19

A binary search tree built
from strings

john

tree

philbecca

lilajim

kate mari

judy

june

sarah

Figure 9.20 shows a trace of inserting nell in the tree in Figure 9.19. We use
the contents of the info part of the node within parentheses to indicate the
pointer to the subtree with that value as a root.

Printing the Data in a Binary Search Tree
When we printed the values in a list, we used the expression Get next item,
and showed what this expression translated to in an array-based imple-
mentation and in a linked implementation. What the expression meant
logically was clear: Get the next item in the linear ordering of the list.
What does the expression mean within a binary search tree? Well, for our
purposes it means the same thing. But rather than looking at the print
problem linearly, let’s look at it from the tree’s perspective.

Call to Insert 1st If Statement

Insert(( john),nell) ( john)!=null

2nd If Statement

nell>john

 Action/Call

"!�le< >!<= e>O�< �IL<ell

Insert((phil),nell) (phil)!=null nell<phil "!�le< >!<= ,l”< �IL<ell

Insert((lila),nell) (lila)!=null nell>lila "!�le< >!<= e>O�< �IL<ell

Insert((mari),nell) (mari)!=null nell>mari "!�le< >!<= e>O�< �IL<ell

Insert((null),nell) null=null E<=el !l,, —� e==< =”

e>O�< �IL<ell =” D\—e>i

Figure 9.20 Trace of inserting nell into the tree in Figure 9.19
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tree

Call Call to Print

1 Print((N))

If Statement

(N) != null

Action/Call

Print the left subtree

2 Print((C)) (C) != null Print the left subtree

3 Print((B)) (B) != null

(L) != null

Print the left subtree

4 Print((null)) (null) = null

(null) = null

Return to 3

3 Print B, Print right subtree

5 Print((null)) Return to 2, finished call 3

2 Print C, Print right subtree

6 Print((L)) Print the left subtree

7 Print((null)) (null) = null Return to 6

6 Print L, Print right subtree

C

N

L

S

B

To print the value in the root, we must first print all the values in its left
subtree, which by definition are smaller than the value in the root. Once
we print the value in the root, we must print all the values in the root’s
right subtree, which by definition are greater than the value in the root.
And we are then finished. Finished? But what about the values in the left
and right subtrees? How do we print them? Why, the same way of course.
They are, after all, just binary search trees. This algorithm sounds too easy.
That’s the beauty of recursive algorithms: They are often short and elegant
(though sometimes they take some thought to trace). Let’s write it and
trace it, using the tree shown below the algorithm. We number the calls in
our trace because there are two recursive calls.

Print (tree)

If (tree is NOT null)

Print (left(tree))

Write info(tree)

Print(right(tree))
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8 Print((null)) (null) = null Return to 1, finished calls 6 and 2

1 Print N, Print right subtree

9 Print((S)) (S) != null Print the left subtree

10 Print((null)) (null) = null Return to 9

9 Print S, Print right subtree

11 Print((null)) (null) = null Return to original call, finished
calls 9 and 1

This algorithm prints the items in the binary search tree in ascending value
order. There are other traversals of the tree that print the items in other
orders. We explore them in the exercises.

Other Operations
By now you should realize that a binary search tree is an object with the
same functionality as a list. The behavior that separates a binary search
tree from a simple list is the efficiency of the operations; the behaviors are
the same. We have not shown the Delete algorithm, because it is too
complex for this text. We have also ignored the concept length that must
accompany the tree if it is to be used to implement a list. Rather than keep
track of the number of items in the tree as we build it, let’s write an algo-
rithm to count the number of nodes in the tree.

How many nodes are there in an empty tree? Zero. How many nodes
are there in any tree? One plus the number of nodes in the left subtree and
the number of nodes in the right subtree. This definition leads to a recur-
sive definition of the length operation.

Length(tree)

If (tree is null)

return 0

Else

return Length(left(tree)) + Length(right(tree)) + 1
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Graph A data structure
that consists of a set of
nodes and a set of edges
that relate the nodes to
each other

Vertex A node in a
graph

Edge (Arc) A pair of
vertices representing a
connection between two
nodes in a graph

Undirected graph A
graph in which the
edges have no direction

Directed graph

(Digraph) A graph in
which each edge is
directed from one vertex
to another (or the same)
vertex
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Graphs
Trees are a useful way to represent relationships in which a hierarchy
exists. That is, a node is pointed to by at most one other node (its parent).
If we remove the restriction that each node may have only one parent
node, we have a data structure called a graph. A graph is made up of a set
of nodes called vertices and a set of lines called edges (or arcs) that
connect the nodes.

The vertices in the graph represent objects and the edges describe rela-
tionships among the vertices. For instance, if the graph is representing a
map, the vertices might be the names of cities and the edges that link the
vertices could represent roads between pairs of cities. Because the roads
that run between cities are two-way, the edges in this graph have no direc-
tion. This is called an undirected graph. However, if the edges that link
the vertices represent flights from one city to another, the direction of each
edge is important. The existence of a flight (edge) from Houston to Austin
does not assure the existence of a flight from Austin to Houston. A graph
whose edges are directed from one vertex to another is called a directed

graph, or digraph.
Vertices represent whatever objects are being modeled: people, houses,

cities, courses, concepts, and so on. The edges represent relationships
between the objects. For example, people are related to other people,
houses are on the same street, cities are linked by direct flights, courses
have prerequisites, and concepts are derived from other concepts. (See
Figure 9.21.) However, mathematically, vertices are the undefined
concept upon which graph theory rests. There is a great deal of formal
mathematics associated with graphs, which is beyond the scope of this
book. However, it is interesting to note that the stack and the queue
described earlier in this chapter are used extensively when processing
graphs.

9.8 Programming Libraries

Most modern programming languages provide a collection of library classes
and coded algorithms available for the programmer to use. For the most
part, these library routines are classes that encapsulate abstract data types.
Unfortunately, the designers of these libraries do not use the classical names
for many of these objects, so finding what you want becomes a little more
difficult. However, the old axiom of never reinventing the wheel is valid
when it comes to computing. Always check your language’s library to see if
a class exists with the behavior that you want to simulate.
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Figure 9.21 Examples of
graphs
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Summary

Abstract data types (ADTs) are data types whose properties (data and
operations) are specified independently of any particular implementation.
Containers are objects in which other objects are stored. We describe
container objects by ADTs. There are two general implementations used
for ATDs: array-based and linked. Array-based containers are those in
which the objects are stored in an array; linked implementations are those
in which each object contains directions to the next object.
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W
WW

Lists, stacks, queues, trees, and graphs are useful container ADTs. Each
ADT has its own defining property and the operations that guarantee that
property. All of these ADTs have operations to insert items and to delete
items. Lists and trees have operations to find items within the structure.

Sorting is the act of putting the items in a list into some sort of order.
Selection sort, bubble sort, and Quicksort are three common sorting algo-
rithms. If a list is in sorted order, a special searching algorithm called a
binary search can be used to locate items in the list.

Programming libraries are collections of classes and algorithms avail-
able for a programmer to use. Before beginning to code, a programmer
should check the library for the language to be used to see if there is a
library class that already provides the needed behavior.

Web Content
The World Wide Web has revolutionized communication, providing an

unprecedented forum for information exchange and self-expression.

Instead of standing on a soapbox or writing an article for a local paper,

anyone who wants to speak his or her mind can post a message on a

Web site and connect with an extensive global audience. The number

and variety of sites have prompted many people to evaluate Web site

content and consider the pros and cons of censorship. Pornographic

material, instructions for making bombs, hate propaganda, and Web

fraud are at the center of this debate. In June of 1996, Congress passed

the Communications Decency Act (CDA). This act was an attempt to

establish control over what could and could not be displayed on the

Web. The CDA criminalized “indecent” Web content and supporters

praised this effort to protect minors from sexually explicit material.

Opponents of the CDA declared that the Act violated the First Amend-

ment right of free speech. Furthermore, they felt that even if the Act were

in place, it would not serve as an effective defense against exposing

minors to pornography, since this national law would not prohibit the

posting of indecent material on sites located in other parts of the world.

In addition, opponents feared that the CDA would deny Web site access

to adults and block minors from important sites on health or sex educa-

tion. These strong arguments led the federal courts to rule the Act uncon-

stitutional, and three years later in 1999, the CDA II, a proposal of

similar intent, was likewise overruled. While no universal regulations
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censor the Web, many individuals assume the responsibility of moni-

toring what can and cannot be accessed on their computers. Some people

choose to use blocking and filtering systems, but these censoring tech-

niques are not entirely effective, and often block either too much or not

enough, material. Another potential solution to this problem is the instal-

lation of programs that use rating systems to determine what material to

block. These filtering systems have developed standard content labels

that Web sites can give themselves and each other. Then the users can

choose what pages to block based on these content labels. While many

people praise filtering programs, others argue that countries could use

this filtering system to prevent their citizens from accessing specific mate-

rial, for example, from viewing Web sites that contain information that

conflicts with their governmental ideals.

Laws that not only attempt to control access to pornography and

other indecent material, but also to monitor the accuracy of information

posted on the Web and to prevent Web fraud, are likely to emerge in the

near future. Currently, no standards exist to ensure the accuracy of mate-

rial appearing on the Web, but there are things that you can do. Look for

a site’s objectives and its author information, check the currency of the

site, and cross-reference any information gathered during a Web search.

Key Terms

Abstract data type (ADT)  pg. 276

Array-based implementation  
pg. 277  

Binary search  pg. 296

Binary tree  pg. 302

Containers  pg. 277

Data structure  pg. 277

Directed graph (Digraph)  pg. 310

Edge (Arc)  pg. 310

Generic data type (class)  pg. 283

Graph  pg. 310

Leaf node  pg. 302

Linked implementation  pg. 279

Root  pg. 302

Sequential search  pg. 295

Undirected graph  pg. 310

Vertex  pg. 310

Exercises
1. Abstract data types, data structures, and containers:

a. Define these terms.
b. What do they have in common?
c. What distinguishes each from the others?
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2. Name and describe the three views of data.

3. Array-based implementation and linked implementation:
a. Define these terms.
b. What do they have in common?
c. What distinguishes one from the other?

4. Draw the unsorted list containing the following strings: blue, black,
green, yellow, red, purple, white, and violet.
a. In an unsorted array-based list
b. In a sorted array-based list
c. In an unsorted linked list
d. In a sorted linked list

5. Give the meaning of the following expressions in an array-based
implementation:
a. Put item
b. Remove the item
c. Get next item
d. More items?

6. Give the meaning of the following expressions in a linked 
implementation:
a. Put item
b. Remove the item
c. Get next item
d. More items?

7. What does it mean to say that the Delete operation is ambiguous?

8. What three properties characterize lists? Explain what each means.

9. How were we able to make the list generic?

10. The obvious place to place a new item in an unsorted list is different in
an array-based and a linked implementation. Explain.

Questions 11 through 13 use the following list of values.

11. Show the state of the list when current is first set to the 4th item in the
list in the selection sort.

12. Show the state of the list when current is first set to the 5th item in the
list in the bubble sort algorithm.

13. Show the state of the list when the first recursive call is made.

8

length

[0]

list

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

23 41 66 20 2 90 9 34 19 40 99
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Questions 14 through 15 use the following list of values.

14. How many comparisons does it take using a sequential search to find
the following values or determine that the item is not in the list?
a. 4 d. 105
b. 44 e. 106
c. 45

15. How many comparisons does it take using a binary search to find the
following values or determine that the item is not in the list?
a. 4 d. 105
b. 44 e. 106
c. 45

16. A binary search is a natural recursive algorithm. It can also be
written as an iterative algorithm. Write the iterative version of the
algorithm.

17. What are the characteristics of the ADT stack?

18. What are the characteristics of the ADT queue?

19. Which of the following is true of stacks and queues?
a. A stack is a last-in, first-out structure, and a queue is a first-in,

first-out structure.
b. A stack is a first-in, first-out structure, and both structures are

random access structures.
c. A stack is a last-in, first-out structure, and a queue is a random-

access structure.
d. A queue is a last-in, first-out structure, and a stack is a first-in,

first-out structure.
e. A queue is a first-in, first-out structure, and a stack is a random-

access structure.

20. Write the algorithm for Push in an array-based implementation.

21. Write the algorithm for Pop in an array-based implementation.

22. Write the algorithm for Enque in an array-based implementation.

23. Write the algorithms for Deque in an array-based implementation.

24. Write the algorithm for Push in a linked implementation.

25. Write the algorithm for Pop in a linked implementation.

26. Write the algorithm for Enque in a linked implementation.

27. Write the algorithms for Deque in a linked implementation.

10

length

[0]

list

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

5 7 20 33 44 46 48 99 101 102 105
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28. What is the state of the stack after the following sequence of Push and
Pop operations?

Push anne

Push get

Push your

Pop

Push my

Push gun

Pop

29. What is the state of the queue after the following sequence of Enque
and Deque operations?

Enque my

Enque your

Deque

Enque get

Enque anne

Enque gun

The following tree is used in Exercises 30 through 36.

30. Name the content of each of the leaf nodes.

31. Name the content of each of the nodes that has just one child.

32. What is the height of the tree?

33. Name the content of nodes that are the ancestors of the nodes whose
content is 7.

34. How many comparisons does it take to find the following items or
determine that the item is not in the tree?
a. 1
b. 9
c. 35
d. 16
e. 35

tree

25

26

30

35

40

15

8

7

2
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35. How many more nodes could this tree have? Explain.

36. If a node with the value 9 is inserted into the tree, where does it go?

37. What is the maximum number of nodes on level 4?

38. What is the maximum number of nodes in a tree with 4 levels?

39. What are the properties of a binary tree?

40. What are the properties of a binary search tree?

41. Draw the tree that results in inserting the following strings into the
tree in Figure 9.18: susy, chris, kit, jimmie, christopher, nell, al, bobby,
john robert, and alex.

42. Draw a tree representing the relationships in your family.

43. Write the algorithm to determine if a list is empty.

44. Write the algorithm to determine if a list is full.

Thought Questions
1. A spreadsheet is a table with rows and columns. Thank about an ADT

spreadsheet. What operations would you need to construct the table?
What operations would you need to manipulate the values in the table?

2. Linked lists, trees, and graphs are composed of nodes and arrows
(pointers) that represent the relationships between nodes. Compare
these structures in terms of the operations that are allowed. Can a list
ever be a tree? Can a tree ever be a list? Can a tree ever be a graph? Can
a graph ever be a tree? How do the structures all relate to one another?

3. Have you every used the Web to conduct research for a paper? Have
you taken what you found, used the information, and not checked the
content for accuracy? How can we as citizens help monitor the accu-
racy of Web content?

4. Communications Decency Acts I and II were both overturned because
they violated the First Amendment right of free speech. Where do you
draw the line between free speech and the right of a society to monitor
what its citizens view?

5. Does the advent of the Internet and the Web change the fabric of
society around the world? How is the Web different from television or
radio in its influence?

6. There are concerns about Web content at all levels. Parents want to
protect their children from pornography; totalitarian governments want
to keep their citizens in ignorance of other political movements; closed
societies want to keep out different ideas. Some of these goals are good;
some are not. Who is to say what can and cannot be posted on the Web?

?
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Operating Systems

To understand a computer system you must understand the soft-

ware that manages and coordinates its pieces. The operating

system of a computer is the glue that holds the hardware and soft-

ware together. It is the software foundation on which all other

software rests, allowing us to write programs that interact with the

machine. This chapter and the next one explore the way in which

an operating system manages computer resources. Just as a

policeman organizes the efficient flow of cars through an intersec-

tion, an operating system organizes the efficient flow of programs

through a computer system.

319
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Application software

Programs that help us
solve real-world prob-
lems

System software

Programs that manage a
computer system and
interact with hardware

Operating system

System software that
manages computer
resources and provides
an interface for system
interaction

320 Chapter 10 Operating Systems

Goals
After studying this chapter, you should be able to:

� describe the two main responsibilities of an operating system.
� define memory and process management.
� explain how timesharing creates the virtual machine illusion.
� explain the relationship between logical and physical addresses.
� compare and contrast memory management techniques.
� distinguish between fixed and dynamic partitions.
� define and apply partition selection algorithms.
� explain how demand paging creates the virtual memory illusion.
� explain the stages and transitions of the process life cycle.
� explain the processing of various CPU scheduling algorithms.

10.1 Roles of an Operating System

In Chapter 1, we talked about the changing role of the programmer. As
early as the end of the first generation of software development, there was
a division between those programmers who wrote tools to help other
programmers and those who used the tools to solve problems. Modern
software can be divided into two categories, application software and
system software, reflecting this separation of goals. Application software is
written to address our specific needs—to solve problems in the real world.
Word processing programs, games, inventory control systems, automobile
diagnostic programs, and missile guidance programs are all application
software. Chapters 12 through 14 discuss various areas of computer
science and their relationship to application software.

System software manages a computer system at a fundamental level. It
provides the tools and an environment in which application software can
be created and run. System software often interacts directly with the hard-
ware and provides more functionality than the hardware itself does.

The operating system of a computer is the core of its system software.
An operating system manages computer resources, such as memory and
input/output devices, and provides an interface through which a human
can interact with the computer. Other system software supports specific
application goals, such as a library of graphics software that renders
images on a display. An operating system allows an application program
to interact with these other system resources.

Figure 10.1 shows the operating system in its relative position among
computer system elements. The operating system manages hardware
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Hardware

Operating system

Application software

Human users

Other system software

Figure 10.1

An operating system inter-
acts with many aspects of a
computer system.

resources. It allows application software to access system resources, either
directly or through other system software. It provides a direct user inter-
face to the computer system.

A computer generally has one operating system that becomes active and
takes control when the system is turned on. Computer hardware is wired
to initially load a small set of system instructions stored in permanent
memory (ROM). These instructions load a larger portion of system soft-
ware from secondary memory, usually a magnetic disk. Eventually all key
elements of the operating system software are loaded, start-up programs
are executed, the user interface is provided, and the system is ready for use.
This activity is often called booting the computer. The term boot comes
from the idea of “pulling yourself up by your own bootstraps,” which is
essentially what a computer does when it is turned on.

A computer could have two or more operating systems from which the
user chooses when the computer is turned on. This configuration is often
called a dual-boot or multi-boot system. Note that only one operating
system is in control of the computer at any given time.

You’ve likely used one operating system or another before. The various
versions of Microsoft Windows (Windows 98, Windows 2000, Windows
NT, Windows ME) are popularly used for personal computers. The
different versions of these operating systems represent the evolving soft-
ware over time as well as differences in the way services are provided and
managed. The Mac OS is the operating system of choice for computers

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Multiprogramming

The technique of keeping
multiple programs in
main memory at the
same time, competing
for the CPU

Memory management

The act of keeping track
of how and where
programs are loaded in
main memory

Process The dynamic
representation of a
program during 
execution

Process management

The act of keeping track
of information for active
processes

CPU scheduling The
act of determining which
process in memory is
given access to the CPU
so that it may execute

322 Chapter 10 Operating Systems

manufactured by Apple Computer. Unix has been a favorite of serious
programmers for years, and recently a version of Unix called Linux has
become popular for personal computer systems.

Any given operating system manages resources in its own particular
way. Our goal in this chapter is not to nitpick the differences among oper-
ating systems, but rather to discuss the ideas common to all of them. We
occasionally refer to the methods that a specific OS (operating system)
uses, and we discuss some of their individual philosophies. But in general
we focus on the underlying concepts.

The various roles of an operating system generally revolve around the
idea of “sharing nicely.” An operating system manages resources, and
these resources are often shared in one way or another among programs
that want to use them. Multiple programs executing concurrently share the
use of main memory. They take turns using the CPU. They compete for an
opportunity to use input/output devices. The operating system acts as the
playground monitor to make sure everyone cooperates and gets a chance
to play.

Memory, Process, and CPU Management
Recall from Chapter 5 that an executing program resides in main memory
and its instructions are processed one after another in the fetch-decode-
execute cycle. Multiprogramming is the technique of keeping multiple
programs in main memory at the same time; these programs compete for
access to the CPU so that they can execute. All modern operating systems
employ multiprogramming to one degree or another. An operating system
must therefore perform memory management to keep track of what
programs are in memory and where in memory they reside.

Another key operating system concept is the idea of a process, which
can be defined as a program in execution. A program is a static set of
instructions. A process is the dynamic entity that represents the program
while it is being executed. Through multiprogramming, a computer system
might have many active processes at once. The operating system must
manage these processes carefully. At any point in time a specific instruc-
tion is the next to be executed. Intermediate values have been calculated. A
process might get interrupted during execution, so the operating system
performs process management to carefully track the progress of a process
and all of its intermediate states.

Related to the ideas of memory management and process management
is the need for CPU scheduling, which determines which process in
memory is executed by the CPU at any given point.

Memory management, process management, and CPU scheduling are
the three main topics discussed in this chapter. Other key operating system
topics, such as file management and secondary storage, are covered in
Chapter 11.
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Keep in mind that the operating system is itself just a program that must
be executed. OS processes must be managed and maintained in main
memory along with other system software and application programs. The
OS executes on the same CPU as the other programs, and must take its
turn among them.

Before we delve into the details of managing resources such as main
memory and the CPU, we need to explore a few more general concepts.

Batch Processing
A typical computer in the 1960s and ‘70s was a large machine stored in its
own heavily air-conditioned room. Its processing was managed by a
human operator. A user would deliver his or her program, usually stored
as a deck of punched cards, to the operator to be executed. The user would
come back later, perhaps the next day, to retrieve the printed results.

When delivering the program, the user would also provide a set of sepa-
rate instructions regarding the system software and other resources that
would be needed to execute the program. Together the program and the
system instructions were called a job. The operator would make any neces-
sary devices available and load any special system soft-
ware as needed to satisfy the job. Therefore, the process
of preparing a program for execution on these early
machines was time consuming.

To simplify and economize this procedure, the oper-
ator would organize various jobs from multiple users
into batches. A batch would contain a set of jobs that
needed the same or similar resources. Therefore, the
operator wouldn’t have to reload and prepare the same
resources over and over. Figure 10.2 depicts this proce-
dure.

Batch systems could be executed in a multiprogram-
ming environment. In that case, the operator would
load multiple jobs from the same batch into memory,
and these jobs would compete for the use of the CPU and other shared
resources. As the resources became available, the jobs would be scheduled
to use the CPU.

Although the original concept of batch processing is not a function of
modern operating systems, the concept remains. The term batch has come
to mean a system in which programs and system resources are coordinated
and executed without interaction between the user and the program.
Modern operating systems incorporate batch-style processing by allowing
the user to define a set of OS commands as a batch file to control the
processing of a large program or a set of interacting programs. For
example, files with the extension .bat in MS Windows stems from the idea
of batch control files; they contain system commands

Influential computing jobs
There were many influential jobs in computing in
the ’60s, but none more so than the computer
operator. In his or her hands rested the decision
of whose computer jobs ran and when. Many a
graduate student was known to have bribed a
weary operator with coffee and cookies in the
wee hours of the morning for just one more run.

W
WW
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Figure 10.2
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Though most of our computer use these days is interactive, some jobs
even today lend themselves to batch processing. For example, processing a
corporation’s monthly salary payments is a large job that uses specific
resources with essentially no human interaction.

Early batch processing allowed multiple users to share a single
computer. Though the emphasis has changed over time, batch systems
taught us valuable lessons about resource management. The human oper-
ator of early computer systems played many of the roles that modern oper-
ating system software does now.

Timesharing
As we pointed out in Chapter 1, the problem of how to make use of the
machine’s greater capabilities and speed lead to the concept of time
sharing. A timesharing system allows multiple users to interact with a
computer at the same time. Multiprogramming allowed multiple processes
to be active at once, which gave rise to the ability for programmers to
interact with the computer system directly, while still sharing its resources.

Timesharing systems create the illusion that each user has the computer
exclusively. That is, each user does not have to actively compete for
resources, though that is exactly what is happening behind the scenes. One
user may actually know he is sharing the machine with other users, but
does not have to do anything special to allow it. The operating system
manages the sharing of the resources, including the CPU, behind the
scenes.

The word virtual means in effect, though not in essence. In a time-
sharing system, each user has his or her own virtual machine, in which all
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system resources are (in effect) available for use. In essence, however, the
resources are being shared among many such users.

Originally, timesharing systems were made up of a single computer,
often called the mainframe, and a set of dumb terminals connected to the
mainframe. A dumb terminal is essentially just a monitor display and a
keyboard. A user sits at a terminal and “logs in” to the mainframe. The
dumb terminals might be spread throughout a building, with the main-
frame in its own dedicated room. The operating system resides on the
mainframe, and all processing occurs there.

Each user is represented by a login process that runs on the mainframe.
When the user runs a program, another process is created (spawned by the
user’s login process). CPU time is shared among all of the processes created
by all of the users. Each process is given a little bit of CPU time in turn.
The premise is that the CPU is so fast that it can handle the needs of
multiple users without any one user seeing an effect. In truth, users of a
timesharing system can sometimes see degradation in the system responses
depending on the number of active users and the CPU capabilities. That is,
each user’s machine seems to slow down.

Though mainframe computers are mostly historical, the concept of
timesharing is not. Today, many desktop computers run operating systems
that support multiple users in a timesharing fashion. Although only one
user is actually sitting in front of the computer, other users can connect
through other computers across a network connection.

Other OS Factors
As computing technology improved, the machines themselves got smaller.
Mainframe computers gave rise to minicomputers, which no longer needed
dedicated rooms in which to store them. Minicomputers became the basic
hardware platform for timesharing systems. Microcomputers, which for
the first time relied on a single integrated chip as the CPU, truly fit on an
individual’s desk. This gave rise to the idea of a personal computer (PC).
As the name implies, a personal computer is not designed for multi-person
use, and originally personal computer operating systems reflected this
simplicity. Over time, personal computers evolved in functionality and
incorporated many aspects of larger systems, such as timesharing. Though
a desktop machine is still often referred to as a PC, the term workstation is
sometimes used and is perhaps more appropriate, describing it as generally
dedicated to an individual, but capable of supporting much more. Oper-
ating systems evolved to support these changes in the use of computers.

Operating systems must also take into account the fact that computers
are usually connected into networks. Today with the World Wide Web we
take network communication for granted. Networks are discussed in detail
in a later chapter, but we must acknowledge here the effect that network
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communication has on operating systems. Such communication is yet
another resource that an OS must support.

One final aspect of operating systems is the need to support real-time
systems. A real-time system is one that must provide a guaranteed
minimum response time to the user. That is, the delay between receiving a
stimulus and producing a response must be carefully controlled. Real-time
responses are crucial in software that, for example, controls a robot, or a
nuclear reactor, or a missile. Though all operating systems acknowledge
the importance of response time, a real-time operating system strives to
optimize it.

10.2 Memory Management

Let’s review what we said about main memory in Chapters 5 and 7. All
programs are stored in main memory when they are executed. All data refer-
enced by those programs are also stored in main memory so that they can be
accessed. Main memory can be thought of as a big continuous chunk of space
divided into groups of 8, 16, or 32 bits. Each byte or word of memory has a
corresponding address, which is simply an integer that uniquely identifies that
particular part of memory. See Figure 10.3. The first memory address is 0.

Earlier in this chapter we stated that in a multiprogramming environ-
ment, multiple programs (and their data) are stored in main memory at the
same time. Thus, operating systems must employ techniques to:

� track where and how a program resides in memory.

� convert logical program addresses into actual memory addresses.

A program is filled with references to variables and to other parts of the
program code. When the program is compiled, these references are
changed into the addresses in memory where the data and code reside. But
since we don’t know exactly where a program will be loaded into main
memory, how can we know what address to use for anything?

The solution is to use two kinds of addresses: logical addresses and
physical addresses. A logical address (sometimes called a virtual or rela-
tive address) is a value that specifies a generic location, relative to the
program but not to the reality of main memory. A physical address is an
actual address in the main memory device, as shown in Figure 10.3.

When a program is compiled, a reference to an identifier (such as a vari-
able name) is changed to a logical address. When the program is eventually
loaded into memory, each logical address finally corresponds to a specific
physical address. The mapping of a logical address to a physical address is
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Figure 10.3
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called address binding. The later we wait to bind a logical address to a
physical one, the more flexibility we have. Logical addresses allow a
program to be moved around in memory or loaded in different places at
different times. As long as we keep track of where the program is stored,
we are always able to determine the physical address that corresponds to
any given logical address. To simplify our examples in this chapter, we
perform address-binding calculations in base 10.

The following sections examine the underlying principles of three
techniques:

� Single contiguous memory management

� Partition memory management

� Paged memory management

Single Contiguous Memory Management
Let’s initially keep things simple by assuming that there are only two
programs in memory: the operating system and the application program
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Figure 10.5
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we want to execute. We divide main memory up into two sections, one for
each, as shown in Figure 10.4. The operating system gets what space it
needs, and the program is allocated the rest.

This approach is called single contiguous memory management

because the entire application program is loaded into one large chunk of
memory. Only one program other than the operating system can be
processed at one time. To bind addresses, all we have to take into account
is the location of the operating system.

In this memory management scheme, a logical address is simply an
integer value relative to the starting point of the program. That is, logical
addresses are created as if the program is loaded at location 0 of main
memory. Therefore, to produce a physical address, we add a logical
address to the starting address of the program in physical main memory.

Let’s get a little more specific: If the program is loaded starting at
address A, then the physical address corresponding to logical address L is
A+L. See Figure 10.5. Let’s plug in real numbers to make it clear. Suppose
the program is loaded into memory beginning at address 555555. When a
program uses relative address 222222, we know that that actually refers to
address 777777 in physical main memory.

It doesn’t really matter what the address L is. As long as we keep track
of A (the starting address of the program), we can always translate a
logical address into a physical one.

You may be saying at this point that if we switched the locations of the
operating system and the program, then the logical and physical addresses
for the program would be the same. That’s true. But then you’d have
other things to worry about. For example, a memory management scheme
must always take security into account. In particular, in a multiprogram-
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ming environment, we must prevent a program from accessing any
addresses beyond its allocated memory space. With the operating system
loaded at location 0, all logical addresses for the program are valid unless
they exceed the bounds of main memory itself. If we move the operating
system below the program, we’d have to make sure a logical address
didn’t try to access the memory space devoted to the operating system.
This wouldn’t be difficult, but it would be add to the complexity of the
processing.

The advantage of a single contiguous memory management approach is
that it is simple to implement and manage. However, memory space and
CPU time are almost certainly wasted. It is unlikely that an application
program needs all of the memory not used by the operating system, and
CPU time is wasted when the program has to wait for some resource.

Partition Memory Management
A more sophisticated approach is to have more than one application
program in memory at a time, sharing memory space and CPU time. Thus,
memory must be divided into more than two partitions. There are two
strategies that can be used to partition memory: fixed partitions and
dynamic partitions. When using fixed partitions, main memory is divided
into a particular number of partitions. The partitions do not have to be the
same size, but their size is fixed when the operating system initially boots.
A job is loaded into a partition large enough to hold it. The OS keeps a
table of addresses at which each partition begins and the length of the
partition.

When using dynamic partitions, the partitions are created to fit the need
of the programs. Main memory is initially viewed as one large empty parti-
tion. As programs are loaded, space is “carved out,” using only the space
needed to accommodate the program and leaving a new, smaller empty
partition, which may be used by another program later. The operating
system maintains a table of partition information, but in dynamic parti-
tions the address information changes as programs come and go.

At any point in time in both fixed and dynamic partitions, memory is
divided into a set of partitions, some empty and some allocated to
programs. See Figure 10.6.

Address binding is basically the same for both fixed and dynamic parti-
tions. As with the single contiguous technique, a logical address is an
integer relative to a starting point of zero. There are various ways an OS
might handle the details of the address translation. One way is to use two
special purpose registers in the CPU to help manage addressing. When a
program becomes active on the CPU, the OS stores the address of the
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Figure 10.6
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beginning of that program’s partition into the base register. Similarly, the
length of the partition is stored in the bounds register. When a logical
address is referenced, it is first compared to the value in the bounds
register to make sure the reference is in that program’s allocated memory
space. If it is, the value of the logical address is added to the value in the
base register to produce the physical address.

Which partition should we allocate to a new program? There are three
general approaches to partition selection:

� First fit, in which the program is allocated to the first partition big
enough to hold it

� Best fit, in which the program is allocated to the smallest partition
big enough to hold it

� Worst fit, in which the program is allocated to the largest partition
big enough to hold it

Worst fit doesn’t make sense to use in fixed partitions because it would waste
the larger partitions. First fit or best fit work for fixed partitions. But in
dynamic partitions, worst fit often works best because it leaves the largest
possible empty partition, which may accommodate another program later on.
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When a program terminates, the partition table is updated to reflect
that that partition is now empty and available for a new program. In
dynamic partitions, consecutive empty partitions are merged into one big
empty partition.

Partition memory management makes efficient use of main memory by
having several programs in memory at one time. But keep in mind that a
program must fit entirely into one partition. Fixed partitions are easier to
manage than dynamic ones, but restrict the opportunities available to
incoming programs. The system may have enough free memory to accom-
modate the program, but not in one free partition. In dynamic partitions,
the jobs could be shuffled around in memory to create one large free parti-
tion. This procedure is known as compaction.

Paged Memory Management
Paged memory management puts much more burden on the operating
system to keep track of allocated memory and to resolve addresses. But the
benefits gained by this approach are generally worth the extra effort.

In the paged memory technique, main memory is divided into small
fixed-size blocks of storage called frames. A process is divided into pages

that (for the sake of our discussion) we assume are the same size as a
frame. When a program is to be executed, the pages of the process are
loaded into various unused frames distributed through memory. Thus the
pages of a process may be scattered around, out of order, and mixed
among the pages of other processes. To keep track of all this, the operating
system maintains a separate page-map table (PMT) for each process in
memory; it maps each page to the frame in which it is loaded. See Figure
10.7. Note that both pages and frames are numbered starting with zero,
which makes the address calculations easier.

A logical address in a paged memory management system consists of
two values, a page and an offset. A logical address is often written as
<page, offset>, such as <2, 518>, which means the reference is to 518 bytes
into page 2 of the process.

To produce a physical address, you first look up the page in the PMT to
find the frame number in which it is stored. Then multiply the frame
number by the frame size and add the offset to get the physical address.
For example, given the situation shown in Figure 10.7, if process 1 is
active, a logical address of <1, 222> would be processed as follows: Page 1
of process 1 is in frame 12; therefore, the corresponding physical address is
12*1024 + 222 or 12510. Note that there are two ways in which a logical
address could be invalid: The page number could be out of bounds for that
process, or the offset could be larger than the size of a frame.

The advantage of paging is that a process no longer needs to be stored
contiguously in memory. The ability to divide a process into pieces changes
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Figure 10.7
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the challenge of loading a process from finding one available large chunk
of space to finding enough small chunks.

An important extension to the idea of paged memory management is
the idea of demand paging, which takes advantage of the fact that not all
parts of a program actually have to be in memory at the same time. At any
given instance in time, the CPU is accessing one page of a process. At that
point, it doesn’t really matter if the other pages of that process are even in
memory.

In demand paging, the pages are brought into memory on demand. That
is, when a page is referenced, we first see whether it is in memory already
and, if so, complete the access. If not, the page is brought in from secondary
memory into an available frame, and then the access is completed. The act of
bringing in a page from secondary memory, which often causes another page
to be written back to secondary memory, is called a page swap.
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The demand paging approach gives rise to the idea of virtual memory,
the illusion that there are no restrictions on the size of a program (because
the entire program is not necessarily in memory at the same time anyway).
In all earlier memory management techniques we examined, the entire
process had to be brought into memory as a continuous whole. We there-
fore always had an upper bound on process size. Demand paging removes
that restriction.

However, virtual memory comes with lots of overhead during the execu-
tion of a program. Before, once a program was loaded into memory, it was all
there and ready to go. With the virtual memory approach, we constantly have
to swap pages between main and secondary memory. This overhead is accept-
able—while one program is waiting for a page to be swapped, another process
can take control of the CPU and make progress. Too much page swapping,
however, is called thrashing and can seriously degrade system performance.

10.3 Process Management

Another important resource that an operating system must manage is the
use of the CPU by individual processes. To understand how an operating
system manages processes, we must recognize the stages that a process goes
through during its computational life and understand the information that
must be managed to keep a process working correctly in a computer system.

The Process States
Processes move through specific states as they are managed in a computer
system. A process enters the system, is ready to be executed, is executing, is
waiting for a resource, or is finished. The process states are depicted in
Figure 10.8. Each oval represents a state a process might be in, and the

Figure 10.8
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arrows indicate how and why a process might move from one state to
another.

Let’s examine what is happing to a process in each state.

In the new state a process is being created. It may, for instance, be a
login process created by a user logging onto a timeshare system, an
application process created when a user submits a program for execu-
tion, or a system process created by the operating system to accomplish
a specific system task.

A process that has no barriers to its execution is in the ready state. That
is, a process in the ready state is not waiting for an event to occur, or
for data to be brought in from secondary memory. It’s waiting only for
its chance to use the CPU.

A process in the running state is currently being executed by the CPU. Its
instructions are being processed in the fetch-execute cycle.

A process in the waiting state is currently waiting for resources (other
than the CPU). For example, a process in the waiting state may be
waiting for a page of its memory to be brought in from secondary
memory or for another process to send it a signal that it may continue.

A process in the terminated state has completed its execution and is no
longer an active process. At this point the operating system no longer
needs to maintain the information regarding the process.

Note that many processes may be ready state or the waiting state at the
same time, but only one process can be in the running state.

After a process is created, the operating system admits it to the ready
state. When the CPU scheduling algorithm dictates, a process is dispatched
to the running state. (CPU scheduling is discussed in more detail later in
the next section of this chapter.)

While running, the process might be interrupted by the operating system
to allow another process its chance on the CPU. In that case, the process
simply returns to the ready state. Or, a running process might request a
resource that is not available or require I/O to retrieve a newly referenced
part of the process, in which case it is moved to the waiting state. A
running process finally gets enough CPU time to complete its processing
and terminate normally; or it may generate an unrecoverable error and
terminate abnormally.

When a waiting process gets the resource it is waiting for, it moves to
the ready state again.

The Process Control Block
The operating system must manage a large amount of data for each active
process. Usually that data is stored in a data structure called a process

control block (PCB). Generally, each state is represented by a list of PCBs,
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Context switch The
exchange of register
information that occurs
when one process is
removed from the CPU
and another takes its
place

Nonpreemptive sched-

uling CPU scheduling
that occurs when the
currently executing
process gives up the CPU
voluntarily

Preemptive scheduling

CPU scheduling that
occurs when the oper-
ating system decides to
favor another process,
preempting the currently
executing process
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one for each process in that state. When a process moves from one state to
another, its corresponding PCB is moved from one state list to another in
the operating system. A new PCB is created when a process is first created
(the new state) and is kept around until the process terminates.

The PCB stores a variety of information about the process, including the
current value of the program counter, which indicates which instruction in
the process is to be executed next. As the life cycle indicates, a process may
be interrupted many times during its execution. At each point, its program
counter must be stored so that the next time it gets into the running state it
can pick up where it left off.

The PCB also stores the values of all other CPU registers for that
process. Keep in mind that there is only one CPU and therefore only one
set of CPU registers. These registers contain the values for the currently
executing process (the one in the running state). Each time a process is
moved to the running state, the register values for the currently running
process are stored into its PCB, and the register values of the new running
state are loaded into the CPU. This exchange of information is called a
context switch.

The PCB also maintains information about CPU scheduling, such as the
priority that a process is given by the operating system. It also contains
memory management information, such as base and bound register values
(for partitions) or page tables (for paged systems). Finally, the PCB also
includes accounting information, such as account numbers, time limits,
and the amount of CPU time used so far.

10.4 CPU Scheduling

CPU scheduling is the act of determining which process in the ready state
should be moved to the running state. That is, CPU scheduling algorithms
decide which process should be given over to the CPU so that it can make
computational progress.

CPU scheduling decisions are made when a process switches from the
running state to the waiting state, or when a program terminates. This type
of CPU scheduling is called nonpreemptive scheduling, because the need
for a new CPU process is the result of the activity of the currently
executing process.

CPU scheduling decisions may also be made when a process moves from
the running state to the ready state or when a process moves from the
waiting state to the ready state. These are examples of preemptive sched-

uling, because the currently running process (through no fault of its own)
is preempted by the operating system.
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Turnaround time The
CPU scheduling metric
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elapsed time between a
process’s arrival in the
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p1 p2 p3 p4 p5

0 140 215 535 815 940

Scheduling algorithms are often evaluated using particular metrics, such
as the turnaround time for a process. This is the amount of time between
the time a process arrives in the ready state to the time it exits the running
state for the last time. We would like, on average, for the turnaround time
for our processes to be small.

There are various approaches that can be used to determine which
process gets chosen first to move from the ready state to the running state.
We examine three of them in the next sections.

First-Come, First-Served
In first-come, first-served (FCFS) scheduling approach, processes are
moved to the CPU in the order in which they arrive in the running state.
FCFS scheduling is nonpreemptive. Once a process is given access to the
CPU, it keeps it unless it makes a request that forces it to wait, such as a
request for a device in use by another process.

Suppose processes p1 through p5 arrive in the ready state at essentially
the same time (to make our calculations simple) but in the following order
and with the specified service time:

In the FCFS scheduling approach, each process receives access to the
CPU in turn. For simplicity, we assume here that processes don’t cause
themselves to wait. The following Gantt chart shows the order and time of
process completion:

Since we are assuming the processes all arrived at the same time, the
turnaround time for each process is the same as its completion time. The
average turnaround time is (140 + 215 + 535 + 815 + 940) / 5 or 529.

Process

p1
p2
p3
p4
p5

Service time

140
75

320
280
125
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Time slice The amount
of time given to each
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The FCFS algorithm is easy to implement but suffers
from its lack of attention to important factors such as
service time requirements. Although the service times
were used in our calculations of turnaround time, the
algorithm didn’t use that information to help determine
the best order in which to schedule the processes.

Shortest Job Next
The shortest-job-next (SJN) CPU scheduling algorithm
looks at all processes in the ready state and dispatches the
one with the smallest service time. Like FCFS, it is also
generally implemented as a nonpreemptive algorithm.

Below is the Gantt chart for the same set of processes
we examined in the FCFS example. Because the selec-
tion criteria are different, the order in which the
processes are scheduled and completed are different:

What is a Gantt chart?
A Gantt chart is a horizontal bar chart devel-
oped as a production control tool in 1917 by
Henry L. Gantt, an American engineer and
social scientist. Frequently used in project
management, a Gantt chart provides a graph-
ical illustration of a schedule that helps to plan,
coordinate, and track specific tasks in a project.
Gantt charts may be simple versions created on
graph paper or more complex automated
versions created using project management
applications such as Microsoft Project or Excel.

The average turnaround time for this example is (75 + 200 + 340 + 620 +
940) / 5 or 435.

Note that the SJN algorithm relies on knowledge of the future. That
is, it gives the CPU to the job that runs for the shortest time when it is
allowed to execute. That time is essentially impossible to determine. So
to run this algorithm, the service time value for a process is usually esti-
mated by the operating system using various probability factors and
taking the type of job into account. But if these estimates are wrong, the
premise of the algorithm breaks down and its efficiency deteriorates. The
SJN algorithm is provably optimal, meaning that if we could know the
service time of each job, the SJN algorithm produces the shortest turn-
around time for all jobs compared to any other algorithm. However,
since we can’t know the future absolutely, we make guesses and hope
those guesses are correct.

Round Robin
Round-robin CPU scheduling distributes the processing time equitably
among all ready processes. The algorithm establishes a particular time

slice (or time quantum), which is the amount of time each process receives
before being preempted and returned to the ready state to allow another
process its turn. Eventually the preempted process will be given another

W
WW

p2 p5 p1 p4 p3

0 75 200 340 620 940
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During his keynote address at the Super-
computing ‘96 Conference, Charles Breck-
enridge had this to say about Seymour
Cray:

“It is fitting that we pay tribute today to
Seymour Cray, the individual who
created the industry that led to the
formation of this conference and the
individual who has been, for the last 40
years, the acknowledged leader of the
high-performance computer industry,
and the individual whose name is synonymous
with high-performance computing.”

Seymour Cray was born in Chippewa Falls,
Wisconsin, in 1925. He graduated from high school
in 1943 and served in both the European and Pacific
theaters of World War II. He received his B.S. in Elec-
trical Engineering from the University of Minnesota in
1950 and his M.S. in Applied Mathematics the next
year.

Cray went to work for Engineering Research Asso-
ciates (ERA), a year-old digital circuit company
housed in an old glider factory. He spent time
researching computers, listening to lecturers from
scholars such as von Neumann, and participating in a
design group for the development of two computers.
Remington Rand bought ERA, changing the focus
from scientific computers to commercial computers,
and so Cray joined Control Data Corporation (CDC)
as the first technical employee in 1957.

Cray’s goal was to create fast scientific computers.
At CDC he was responsible for the design of the CDC
1604, 6600, and 7600, a very successful series of
large scientific computers. As CDC grew, he found the

distractions overwhelming and moved the
research and development facilities out of
town. During the early stages of the CDC
1604, he was not happy with the oper-
ating system, and so he wrote one himself
over a weekend. He served as a director
for CDC and senior vice president.

Cray realized that the market for large
scientific computers had become so small
that CDC would discontinue research in
this area. Therefore he left to form his own

company, Cray Research, with the intention of
building the world’s highest performance supercom-
puter. And he did—the CRAY-1. The CRAY-2 and
CRAY-3 followed. He also designed, but never built,
the CRAY-4.

Breckenridge has this to say about Seymour Cray
in his tribute:

Seymour liked to work with fundamental and
simple tools—generally only a piece of paper and
a pencil. But he admitted that some of his work
required more sophisticated tools. Once, when
told that Apple Computer bought a CRAY to simu-
late their next Apple computer design, Seymour
remarked, “Funny, I am using an Apple to simu-
late the CRAY-3.” His selection of people for his
projects also reflected fundamentals. When asked
why he often hires new graduates to help with
early R&D work, he replied, “Because they don’t
know that what I’m asking them to do is impos-
sible, so they try.”1

Seymour Cray died in 1996 from injuries suffered
in an automobile accident.

Seymour Cray

time slice on the CPU. This procedure continues until the process eventu-
ally gets all the time it needs and terminates.

Note that the round-robin algorithm is preemptive. The expiration of a
time slice is an arbitrary reason to remove a process from the CPU. This
action is represented by the transition from the running state to the ready
state.

338
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p1 p2 p3 p4 p5 p2 p3 p4 p5p1 p3 p4 p3p4p3 p4 p3
p
3

p
4

p
5p1

0 50 325 515 640

920 940

Suppose the time slice used for a particular round-robin scheduling
algorithm was 50 and we used the same set of processes as our previous
examples. The Gantt chart results are:

Each process is given a time slice of 50, unless it doesn’t need a full slice.
For example, process 2 originally needed 75 time units. It was given an initial
time slice of 50. When its turn to use the CPU came around again, it needed
only 25. Therefore, process 2 terminates and gives up the CPU at time 325.

The average turnaround time for this example is (515 + 325 + 940 + 920
+ 640) / 5, or 668. Note that this turnaround time is higher than in the other
examples. Does that mean the round-robin algorithm is not as good as the
others? No. We can’t make such general claims based on one example. We
can only say that one algorithm is better than another for that specific set of
processes. General analysis of algorithm efficiencies is much more involved.

The round-robin CPU process scheduling algorithm is probably the
most widely used. It generally supports all kinds of jobs and is considered
the most fair.

Summary

An operating system is part of the system software that manages resources
on a computer. It serves as moderator among human users, application
software, and the hardware devices in the system.

Multiprogramming is the technique for keeping multiple programs in
memory at the same time, contending for time on the CPU. A process is a
program in execution. The operating system must perform careful CPU sched-
uling, memory management, and process management to ensure fair access.

Batch processing organizes jobs into batches that use the same or
similar resources. Timesharing allows multiple users to interact with a
computer at the same time, creating a virtual machine for each user.

An operating system must manage memory to control and monitor
where processes are loaded into main memory. Any memory management
technique must define the manner in which it binds a logical address to a
physical one. Various strategies have been developed for memory manage-
ment. The single contiguous approach allows only one program other than
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the operating system to be in main memory. The partition approach divides
memory into several partitions into which processes are loaded. Fixed
partitions have a set size, and dynamic partitions are determined by the
needs of the processes loaded. Paging divides memory into frames and
programs into pages. The pages of a program need not be contiguous in
memory. Demand paging allows for only a portion of a program to be in
memory at any given time.

An operating system manages a process’s life states, which are the stages
a program goes through during its execution. The process control block
stores the necessary information for any process.

CPU scheduling algorithms determine what process gets priority to use
the CPU next. First-come, first-served CPU scheduling gives priority to the
earliest arriving job. The shortest-job-next algorithm gives priority to jobs
with short running times. Round-robin scheduling rotates the CPU among
active processes, giving a little time to each.

Privacy Invasion
Look around. Is someone—or something—monitoring your every

move?  How confident are you that private information about your life

is under your control?  Is your privacy protected?  Technological

advancements have redefined our way of life, and in doing so, have

raised issues relating to our right to privacy.  Today the foods that you

buy, what URLs you visit (see Chapter 16’s discussion of cookies),

even where you drive, can be tracked, entered into a database, and

used by various organizations, often without your knowledge or

consent.  Many grocery stores, for example, now use shopping cards

instead of coupons to offer their customers special savings.  When

cashiers scan a shopping card, the company gets a detailed digital

record of every item the customer purchased along with the customer’s

name.  Critics of this system say that shopping cards compromise the

privacy of consumers who, before this technology, were able to save

money with coupons and preserve their anonymity.

Privacy includes a right to anonymity as well as a right to hold

personal information confidential and a right to solitude. Certain modern

technologies are available only with a sacrifice of privacy.  Telematics, a

W
WW
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recent innovation, are now present in the vehicles of many truck compa-

nies and rental car businesses.  These devices function as high-tech Global

Positioning Systems (GPS), and company representatives can contact

drivers over a speaker phone when they steer off a predetermined course.

The tracking technology can also monitor a vehicle’s speed.  Some rental

companies use this information to charge their customers for speeding

violations without properly informing them.  It is not surprising that

some people criticize the pervasive nature of this type of technology and

are concerned that the government and other organizations are able to

gain access to too much personal information.

Spamming, the practice of sending copies of an e-mail message or

advertisement to many different newsgroups or people, without regard for

whether the subject matter is appropriate, is an invasion of a person’s

time.  Recipients of these e-mails do not solicit the information and do not

want their addresses available for such purposes.  AOL has filed a number

of lawsuits against spammers in an effort to prevent junk mail from infil-

trating the mailboxes of AOL members.  Recently, spam mail has taken

on a new form and appears as text messages on cell phones.  An invasive

advertising technique, cell phone spamming has been defended as a

creative and useful service by those who send it.  Most people, however,

are unwilling to sanction an action that they feel blatantly violates their

privacy.  As we move further into the 21st century, we need to be vigilant

in defense of personal privacy against incursions by new technologies.

Key Terms
Address binding  pg. 329

Application software  pg. 322

Base register  pg. 332

Bounds register  pg. 332

Context switch  pg. 337

CPU scheduling  pg. 324

Demand paging  pg. 334

Dumb terminal  pg. 327

Dynamic-partition technique  
pg. 331

Fixed-partition technique  pg. 331
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Preemptive scheduling  pg. 337

Process  pg. 324

Process control block (PCB)  
pg. 336

Process management  pg. 324

Process states  pg. 335

Real-time system  pg. 328

Response time  pg. 328

Single contiguous memory
management  pg. 330

System software  pg. 322

Thrashing  pg. 335

Time slice  pg. 339

Timesharing  pg. 326

Turnaround time  pg. 338

Virtual machine  pg. 326

Virtual memory  pg. 335

Exercises
1. Distinguish between application software and system software.

2. What is an operating system?

3. a. Name the early PC operating system.
b. Name the operating systems made famous by Microsoft.
c. Name the operating system used on Apple machines.
d. Name an operating system popular with serious programmers.
e. Name a recent version of the one in (d) now available for PCs.

4. Explain the term multiprogramming.

5. The following terms relate to how the operating system manages
multiprogramming.  Describe the part each plays in this process.
a. Process
b. Process management
c. Memory management
d. CPU scheduling

6. What constitutes a batch job?

7. Describe the evolution of the concept of batch processing from the
human operator in the 1960s and ’70s to the operating systems of
today.

8. Define timesharing.

9. What is the relationship between multiprogramming and timesharing?

10. Why do we say that users in a timesharing system have their own
virtual machine?

11. In Chapter 7, we defined a virtual machine as a hypothetical machine
designed to illustrate important features of a real machine.  In this
chapter, we define a virtual machine as the illusion created by a time-
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sharing system that each user has a dedicated machine.  Relate these
two definitions.

12. How does the timesharing concept work?

13. What is a real-time system?

14. What is response time?

15. What is the relationship between real-time systems and response time?

16. In a multiprogramming environment, many processes may be active.
What are the tasks that the OS must accomplish in order to manage
the memory requirements of active processes?

17. Distinguish between logical addresses and physical addresses.

18. What is address binding?

19. Name three memory-management techniques and give the general
approach taken in each.

20. How is address binding done in single contiguous memory manage-
ment?

21. Distinguish between fixed (static) partitions and dynamic partitions.

22. How is address binding done in a partition system?

23. What are the base register and bounds register, and how are they used?

24. If, in a single, contiguous memory-management system, the program is
loaded at address 30215, compute the physical addresses (in decimal)
that correspond to the following logical addresses:
a. 9223
b. 2302
c. 7044

25. If, in a fixed-partition memory-management system, the current value
of the base register is 42993 and the current value of the bounds
register is 2031, compute the physical addresses that correspond to the
following logical addresses:
a. 104
b. 1755
c. 3041

26. If, in a dynamic-partition memory management system, the current
value of the base register is 42993 and the current value of the bounds
register is 2031, compute the physical addresses that correspond to the
following logical addresses:
a. 104
b. 1755
c. 3041
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Exercises 27 and 28 use the following state of memory.

27. If the partitions are fixed and a new job arrives requiring 52 blocks of
main memory, show memory after using each of the following parti-
tion selection approaches:
a. first fit
b. best fit
c. worst fit

28. If the partitions are dynamic and a new job arrives requiring 52 blocks
of main memory, show memory after using each of the following
partition selection approaches:

Operating
System

Process 1

Empty
60 blocks

Process 2

Process 3

Empty
52 blocks

Empty
100 blocks
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a. first fit
b. best fit
c. worst fit

29. Why shouldn’t we use worst-fit partition selection in a fixed-partition
memory-management scheme?

30. Distinguish between a page and a frame.

31. How does the page map table keep track of the relationship between a
page and a frame?

32. If, in a paged memory-management system, the frame size is 1024 and
the following page map table applies to the currently executing
process, compute the physical addresses that correspond to the
following logical addresses:
a. <1, 501>
b. <0, 85>
c. <3, 1048>
d. <4, 419>
e. <2, 311>

33. What is virtual memory and how does it apply to demand paging?

34. What are the conceptual stages through which a process moves while
being managed by the operating system?

35. Describe how a process might move through the various process
states. Create specific reasons why this process moves from one state
to another.

36. What is a process control block?

37. How is each conceptual stage represented in the OS?

38. What is a context switch?

39. Distinguish between preemptive scheduling and nonpreemptive sched-
uling.

40. Name and describe three CPU scheduling algorithms.

Use the following table of processes and service time for Exercises 41
through 43.

Frame 7 12 99 1 4

Page 0 1 2 3 4
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41. Draw a Gantt chart that shows the completion times for each process
using first-come, first-served CPU scheduling.

42. Draw a Gantt chart that shows the completion times for each process
using shortest-job-next CPU scheduling.

43. Draw a Gantt chart that shows the completion times for each process
using round-robin CPU scheduling with a time slice of 60.

44. Given the following state of memory where the partitions are
dynamic, show memory after using each of the following partition
selection approaches after a new job requiring 66 blocks of main
memory.
a. first fit
b. best fit
c. worst fit

45. Distinguish between fixed partitions and dynamic partitions.

Operating system

Process 1

Process 3

Empty
300 blocks

Process 2

Service time 120 60 180 50 300

Process P1 P2 P3 P4 P5
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Thought Questions
1. In Chapter 5, we said that the control unit was like the stage manager

who organized and managed the other parts of the von Neumann
machine.  The operating system is also like a stage manager, but on a
much grander scale.  Does this analogy hold or does it break down?

2. The user interface that the OS presents to the user is like a hallway
with doors leading off to rooms housing applications programs.  To
go from one room to another, you have to go back to the hallway.
Continue with this analogy.  What would files be?  What would be
analogous to a time slice?

3. Many large grocery stores issue cards to their regular customers.  If
you have the card when you check out, the cashier scans the card and
you get special sale prices. The store also gets information about your
shopping habits.  Is this an invasion of your privacy?  Do you have
such a card?  Have you ever thought about how much information the
store can accumulate about you?

4. Spamming is the Internet equivalent of unsolicited telephone sale’s
pitches.  There are laws now that allow a telephone user to request
that his or her name be removed from the solicitor’s calling list.
Should there be similar laws relating to spamming?

5. Tracking technology can determine that a car has been speeding.  Is
the use of this technology a good deterrent for speeding and a plus for
highway safety, or is it an invasion of basic privacy?

?

Thought Questions 347
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File Systems 
and Directories

The previous chapter examined some of the roles an operating

system plays. In particular, it described the management of

processes, the CPU, and main memory. Another key resource that

the operating system manages is secondary memory, most impor-

tantly magnetic disks. The organization of files and directories on

disk plays a pivotal role in everyday computing. Like a card file on

a desktop, the file system provides a way to access particular infor-

mation in a well-organized manner. The directory structure organ-

izes files into categories and subcategories. File systems and

directory structures are explored in detail in this chapter.
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File A named collec-
tion of data, used for
organizing secondary
memory

File system The oper-
ating system’s logical
view of the files it
manages

Directory A named
group of files
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Goals
After studying this chapter, you should be able to:

� describe the purpose of files, file systems, and directories.
� distinguish between text and binary files.
� identify various file types by their extensions.
� explain how file types improve file usage.
� define the basic operations on a file.
� compare and contrast sequential and direct file access.
� discuss the issues related to file protection.
� describe a directory tree.
� create absolute and relative paths for a directory tree.
� describe several disk-scheduling algorithms.

11.1 File Systems

In Chapter 5 we established the differences between main and secondary
memory. Recall that main memory is where active programs and data are held
while in use. Main memory is volatile, meaning that the information stored on
it is lost if electric power is turned off. Secondary memory is nonvolatile—the
information stored on it is maintained even when power is not on. Thus we
use secondary memory for permanent storage of our information.

The most prevalent secondary storage device is the magnetic disk drive.
This includes both hard drives in the computer’s main box and floppy
disks that are portable and can be moved easily between computers. The
basic concepts underlying both types of disks are the same. Other
secondary memory devices, such as tape drives, are used primarily for
archival purposes. Though many of the concepts that we explore in this
chapter apply to all secondary storage devices, it’s perhaps easiest to think
about a standard disk drive.

We store information on a disk in files, a mechanism for organizing
data on an electronic medium. A file is a named collection of related data.
From the user’s point of view, a file is the smallest amount of information
that can be written to secondary memory. Organizing everything into files
presents a uniform view for information storage. A file system is the
logical view that an operating system provides so that users can manage
information as a collection of files. A file system is often organized by
grouping files into directories.
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Text file A file that
contains characters

Binary file A file that
contains data in a
specific format, requiring
a special interpretation
of its bits
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A file is a generic concept. Different types of files are managed in
different ways. A file, in general, contains a program (in some form) or
data (of one type or another). Some files have a very rigid format; others
are more flexible.

A file is a sequence of bits, bytes, lines, or records, depending on how
you look at it. Like any data in memory, you have to apply an interpreta-
tion to the bits stored in a file before they have meaning. The creator of a
file decides how the data in a file is organized, and any users of the file
must understand that organization.

Text and Binary Files
Broadly, all files can be classified as either a text file or a binary file. In a
text file the bytes of data are organized as characters from the ASCII or
Unicode character sets. (Character sets are described in Chapter 3.) A
binary file requires a specific interpretation of the bits based on the infor-
mation in the file.

The terms text file and binary file are somewhat misleading. They seem
to imply that the information in a text file is not stored as binary data.
Ultimately, all information on a computer is stored as binary digits. These
terms refer to how those bits are formatted: as chunks of 8 or 16 bits,
interpreted as characters, or in some other special format.

Some information lends itself to a character representation, which often
makes it easier for a human to read and modify. Though text files contain
nothing but characters, those characters can represent a variety of informa-
tion. For example, an operating system may store much of its data as text
files, such as information about user accounts. A program written in a
high-level language is stored as a text file, which is sometimes referred to
as a source file. Any text editor can be used to create, view, and change the
contents of a text file, no matter what specific type of information it
contains.

For other information types it is more logical and efficient to represent
data by defining a specific binary format and interpretation. Only
programs set up to interpret that type of data can be used to view or
modify it. For example, there are many types of files that store image
information: bitmap, GIF, JPEG, and TIFF, to name a few. As we
discussed in Chapter 3, though they each store information about an
image, they all store that information in different ways. Their internal
formats are very specific. A program must be set up to view or modify a
specific type of binary file. That’s why a program that can handle a GIF
image may not be able to handle a TIFF image, or vice versa.

Some files you might assume to be text files actually are not. Consider,
for instance, a report that you type in a word processor program and save

http://lib.ommolketab.ir
http//lib.ommolketab.ir
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contained in a file, such
as a Java program or a
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Figure 11.1

Some common file types
and their extensions

doc, wp3

java, c, cpp

gif, tiff, jpg

mp3, au, wav

txt text data file

audio file

image file

word processing document

program source files

Extensions File type

to disk. The document is actually stored as a binary file because, in addi-
tion to the characters that are stored in the document, it also contains
information about formatting, styles, borders, fonts, colors and “extras”
such as graphics or clip art. Some of the data (the characters themselves)
are stored as text, but the additional information requires that each word
processing program has its own format for the data in its document files.

File Types
Most files, whether they are in text or binary format, contain a specific
type of information. For example, a file may contain a Java program, or a
JPEG image, or an MP3 audio clip. Some files contain files created by
specific applications, such as a Microsoft Word document or a Visio
drawing. The kind of information contained in a document is called the
file type. Most operating systems recognize a list of specific file types.

A common mechanism for specifying a file type is to indicate the type as
part of the name of the file. File names are often separated, usually by a
period, into two parts: the main name and the file extension. The exten-
sion indicates the type of the file. For example, the .java extension in the
file name MyProg.java indicates that it is a Java source code program file.
The .jpg extension in the file name family.jpg indicates that it is a JPEG
image file. Some common file extensions are listed in Figure 11.1.

File types allow the operating system to operate on the file in ways that
make sense for that file. They also usually make life easier for the user. The
operating system keeps a list of recognized file types and associates each
type with a particular kind of application program. In an operating system
with a graphical user interface, a particular icon is often associated with a
file type as well. When you see a file in a folder, it is shown with the
appropriate icon. That makes it easier for the user to identify a file at a
glance because now both the name of the file and its icon indicate what
type of file it is. When you double-click on the icon to open the program,
the operating system starts the program associated with that file type and
loads the file.
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For example, you might like a particular editor that you use when
developing a Java program. You can register the .java file extension with
the operating system and associate it with that editor. Then whenever you
open a file with a .java extension, the operating system runs the appro-
priate editor. The details of how you associate an extension with an appli-
cation program depend on the operating system you are using.

Some file extensions are associated with particular programs by default,
which you may change if appropriate. In some cases, a file type could be
associated with various types of applications, so you have some choice. For
example, your system may currently associate the .gif extension with a
particular Web browser, so that when you open a GIF image file, it is
displayed in that browser window. You may choose to change the associa-
tion so that when you open a GIF file it is brought into your favorite image
editor instead.

Note that a file extension is merely an indication of what the file
contains. You can name a file anything you want (as long as you use the
characters that the operating system allows for file names). You could give
any file a .gif extension, for instance, but that doesn’t make it a GIF image
file. Changing the extension does not change the data in the file or its
internal format. If you attempt to open a misnamed file in a program that
expects a particular format, you get errors.

File Operations
There are several operations that you, with the help of the operating
system, might do to and with a file:

� Create a file.

� Delete a file.

� Open a file.

� Close a file.

� Read data from a file.

� Write data to a file.

� Reposition the current file pointer in a file.

� Append data to the end of a file.

� Truncate a file (delete its contents).

� Rename a file.

� Copy a file.

Let’s examine briefly how each of these operations is accomplished.
The operating system keeps track of secondary memory in two ways. It

maintains a table indicating which blocks of memory are free (that is,
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available for use), and for each directory, it maintains a table that records
information about the files in that directory. To create a file, the operating
system finds free space in the file system for the file content, puts an entry
for the file in the appropriate directory table, and records the name and
location of the file. To delete a file, the operating system indicates that the
memory space the file was using is now free, and the appropriate entry in
the directory table is removed.

Most operating systems require that a file be opened before read and
write operations are performed on it. The operating system maintains a
small table of all currently open files to avoid having to search for the file
in the large file system every time a subsequent operation is performed. To
close the file when it is no longer in active use, the operating system
removes the entry in the open file table.

At any point in time, an open file has a current file pointer (an address)
indicating the place where the next read or write operation should occur.
Some systems keep a separate read pointer and a write pointer for a file.
Reading a file means that the operating system delivers a copy of the
information in the file, starting at the current file pointer. After the read
occurs, the file pointer is updated. Writing information to a file records
the specified information to the file space at the location indicated by the
current file pointer, and then the file pointer is updated. Often an oper-
ating system allows a file to be open for reading or writing, but not both
at the same time.

The current file pointer for an open file might be repositioned to
another location in the file to prepare for the next read or write operation.
Appending information to the end of a file requires that the file pointer be
positioned to the end of a file; then the appropriate data is written.

It is sometimes useful to “erase” the information in a file. Truncating a
file means deleting the contents of the file without removing the adminis-
trative entries in the file tables. This operation is provided to avoid the
need to delete a file and then recreate it. Sometimes the truncating opera-
tion is sophisticated enough to erase part of a file, from the current file
pointer to the end of the file.

An operating system also provides an operation to change the name of a
file, which is called renaming the file. It also provides the ability to create a
complete copy of the contents of a file, giving the copy a new name.

File Access
There are various ways in which the information in a file can be accessed.
Some operating systems provide only one type of file access, while others
provide a choice. The type of access available for a given file is established
when the file is created.
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Figure 11.2
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Let’s examine the two primary access techniques: sequential access and
direct access. The differences between these two techniques are analogous
to the differences between the sequential nature of magnetic tape and the
direct access of a magnetic disk, as discussed in Chapter 5. However, both
types of files can be stored on either type of medium. File access techniques
define the ways that the current file pointer can be repositioned. They are
independent of the physical restrictions of the devices on which the file is
stored.

The most common access technique, and the simplest to implement, is
sequential access, which views the file as a linear structure. It requires
that the information in the file be processed in order. Read and write oper-
ations move the current file pointer according to the amount of data that is
read or written. Some systems allow the file pointer to be reset to the
beginning of the file and/or to skip forwards or backwards a certain
number of records. See Figure 11.2.

Files with direct access are conceptually divided into numbered logical
records. Direct access allows the user to set the file pointer to any partic-
ular record by specifying the record number. Therefore, the user can read
and write records in any particular order desired, as shown in Figure 11.3.
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Direct access files are more complicated to implement, but are helpful in
situations where specific portions of large data stores must be available
quickly, such as in a database.

File Protection
In multiuser systems, file protection is of primary importance. That is, we
don’t want one user to be able to access another user’s files unless the
access is specifically allowed. It is the operating system’s responsibility to
ensure valid file access. Different operating systems administer their file
protection in different ways. In any case, a file protection mechanism
determines who can use a file and for what general purpose.

For example, a file’s protection settings in the Unix operating system is
divided into three categories: Owner, Group, and World. Under each cate-
gory you can determine if the file can be read, written, and/or executed.
Under this mechanism, if you can write to a file, you can also delete the file.

Each file is “owned” by a particular user, often the creator of the file.
The Owner usually has the strongest permissions regarding the file. A file
may have a group name associated with it. A group is simply a list of
users. The Group permissions apply to all users in the associated group.
You may do this, for instance, for all users who are working on a partic-
ular project. Finally, World permissions apply to anyone who has access to
the system. Because these permissions give access to the largest number of
users, they are usually the most restricted.

Using this technique, the permissions on a file can be shown in a 3 � 3
grid:

Suppose that this grid represents the permissions on a data file used in
project Alpha. The owner of the file (perhaps the manager of the project)
may read from or write to the file. Suppose also that the owner sets up a
group (using the operating system) called TeamAlpha, which contains all
members of the project team, and associates that group with this data file.
The members of the group may read the data in the file, but may not
change it. No one else is given any permission to access the file. Note that
no user is given execution privileges to the file because it is a data file, not
an executable program.

Owner

Group

World

Read Write/Delete Execute

Yes Yes No

Yes No No

No No No
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Other operating systems break down their protection schemes in
different ways, but the goal is the same: to control access to protect against
deliberate attempts to gain inappropriate access, as well as minimize inad-
vertent problems caused by well-intentioned but hazardous users.

11.2 Directories

We established early in this chapter that a directory is a named collection
of files. It is a way to group files so that you can organize them in a logical
manner. For example, you may group all of your papers and notes for a
particular class into a directory created for that class. The operating system
must carefully keep track of directories and the files they contain.

A directory, in most operating systems, is represented as a file. The
directory file contains data about the other files in the directory. For any
given file, the directory contains the file name, the file type, the address on
disk where the file is stored, and the current size of the file. The directory
also contains information about the protections set up for the file. It may
also contain information about when the file was created and when it was
last modified.

The internal structure of a directory file could be set up in a variety of
ways, and we won’t explore those details here. However, once it is set up,
it must be able to support the common operations that are performed on
directory files. For instance, the user must be able to list all of the files in
the directory. Other common operations are create, delete, and rename
files within a directory. Furthermore, the directory is commonly searched
to see if a particular file is in the directory.

Another key issue when it comes to directory management is the need
to reflect the relationships among directories, as discussed in the next
section.

Directory Trees
A directory of files can be contained within another directory. The direc-
tory containing another is usually called the parent directory, and the one
inside is called a subdirectory. You can set up such nested directories as
often as needed to help organize the file system. One directory can contain
many subdirectories. Furthermore, subdirectories can contain their own
subdirectories, creating a hierarchy structure. Therefore, a file system is
often viewed as a directory tree, showing directories and files within other
directories. The directory at the highest level is called the root directory.

For example, consider the directory tree shown in Figure 11.4. This tree
represents a very small part of a file system that might be found on a
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Figure 11.4 A Windows directory tree
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computer using some flavor of the Microsoft Windows operating system.
The root of the directory system is referred to using the drive letter X=
followed by the backslash ( \ ).

In this directory tree, the root directory contains three subdirectories:
"—elo"E, <> l!O“Fz�9�, and h”!�”,F �DYz�. Within the "—elo"E direc-
tory, there is a file called O,YOiz-z as well as two other subdirectories
(l”DSz”� and E>�9zF). Those directories contain other files and subdirec-
tories. Keep in mind that all of these directories in a real system would
typically contain many more subdirectories and files.
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Personal computers often use an analogy of folders to represent the
directory structure, which promotes the idea of containment (folders inside
other folders, with some folders ultimately containing documents or other
data). The icon used to show a directory in the graphical interface of an
operating system is often a graphic of a manila file folder such as the kind
you would use in a physical file drawer.

Note that there are two files with the name util.zip in Figure 11.4 (in the
<> l!O“Fz�9� directory, and in its subdirectory called T! �Y!,T�). The
nested directory structure allows for multiple files to have the same name.
All the files in any one directory must have unique names, but files in
different directories or subdirectories can have the same name. These files
may or may not contain the same data; all we know is that they have the
same name.

At any point in time, you can be thought of as working in a particular
location (that is, a particular subdirectory) of the file system. This subdi-
rectory is referred to as the current working directory. As you “move”
around in the file system, the current working directory changes.

The directory tree shown in Figure 11.5 is representative of one from a
Unix file system. Compare and contrast it to the one in Figure 11.4. They
both show the same concepts of subdirectory containment. However, the
naming conventions for files and directories are different. Unix was devel-
oped as a programming and system level environment, and therefore uses
much more abbreviated and cryptic names for directories and files. Also,
note that in a Unix environment, the root is designated using a forward
slash ( P ).

Path Names
How do we specify one particular file or subdirectory? Well, there are
several ways to do it.

If you are working in a graphical interface to the operating system, you
can double-click with your mouse to open a directory and see its contents.
The active directory window shows the contents of the current working
directory. You can continue “moving” through the file system using mouse
clicks, changing the current working directory, until you find the desired
file or directory. To move up the directory structure, there is usually an
icon on the window bar or a pop-up menu option that you can use to
move to the parent directory.

Operating systems usually also provide a nongraphical (text-based)
interface to the operating system. Therefore, we also have to be able to
specify file locations using text. This is very important for system instruc-
tions stored in operating system batch command files. Commands such as
OT (which stands for change directory) can be used in text mode to change
the current working directory.
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sive subdirectories
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Figure 11.5 A Unix directory tree
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To indicate a particular file using text, we specify that file’s path, which
is the series of directories through which you must go to find the file. A
path may be absolute or relative. An absolute path name begins at the
root and specifies each step down the tree until it reaches the desired file or
directory. A relative path name begins from the current working directory.

Let’s look at examples of each type of path. The following are absolute
path names based on the directory tree shown in Figure 11.4:

X=\h”!�”,F �DYz�\<E o""DOz\"D�"!”Tiz-z

X=\<> l!O“Fz�9�\Yz99z”�\,IIYDO,9D!��\S,LzO‘iT!O

X=\"D�T! �\E>�9zF\Q“DO'LDFz

They each begin at the root and proceed down the directory structure.
Each subdirectory is separated by the backslash ( \ ). Note that a path can
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specify a specific document (as it does in the first two examples) or an
entire subdirectory (as it does in the third example).

Absolute paths in a Unix system work the same way, except that the
character used to separate subdirectories is the forward slash ( P ). Here
are some examples of absolute path names that correspond to the directory
tree in Figure 11.5:

P(D�P9,”

Pz9OP�>�O!�"D�POY!O'

P“�”PY!O,YP�,Fz�P"!”9“�z

P‘!FzP�FD9‘P”zI!”9�P zz')i9-9

Relative paths are based on the current working directory. That is, they are
relative to your current position (hence the name). Suppose the current
working directory is X=\<> l!O“Fz�9�\Yz99z”� (from Figure 11.4).
Then the following relative path names could be used:

O,�OzY<,�iT!O

,IIYDO,9D!��\O,YE9,9ziT!O

The first example just specifies the name of the file, which can be found in
the current working directory. The second example specifies a file in the
applications subdirectory. By definition, the first part of any valid relative
path is located in the working directory.

Sometimes when using relative path we need to work our way back up
the tree. Note that this was not an issue when using absolute paths. In
most operating systems, two dots (..) are used to specify the parent direc-
tory (a single dot is used to specify the current working directory). There-
fore, if the working directory is X=\<> l!O“Fz�9�\Yz99z”�, the following
are also valid relative paths:

ii\Y,�T�O,Izi*I�

ii\O�O)+)\I”!*Ni*,S,

ii\ii\"—elo"E\l”DSz”�\W..—Xi—X<

ii\ii\h”!�”,F �DYz�\"D�JDI

Unix systems work essentially the same way. Using the directory tree in
Figure 11.5, and assuming that the current working directory is
P‘!FzP*!�z�, the following are valid relative paths:

“9DYD9Dz�PO!F(D�z

iiP�FD9‘P”zI!”9�

iiPiiPTzSP99>W0)

iiPiiP“�”PF,�PF,�)PY�i)i�1
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John Backus was an aimless young man
who pulled his act together and won the
Turing Award. Born in 1924 into a wealthy
Philadelphia family, he attended the presti-
gious Hill School in Pottstown, Pennsylvania,
where he repeatedly flunked out and had to
attend summer school in order to continue.
Finally graduating in 1942, he enrolled in
and flunked out of the University of Virginia.

In 1943 Backus joined the Army. After
his first aptitude test the Army enrolled him
in a pre-engineering program at the University of
Pittsburgh. Another aptitude test sent him to Havor-
ford College to study medicine. As part of the premed
program, he worked in a neurosurgery ward at an
Atlantic City hospital. While there he was diagnosed
with a brain tumor and a plate was installed in his
head. After nine months of medical school, he
decided that medicine wasn’t for him, after all.

He was at loose ends in 1946, after leaving the
army and having an additional operation to replace
the plate in his head. When he couldn’t find the hi-fi
set he wanted, he enrolled in a radio technicians’
school, where he said that he found his first good
teacher. His work with this teacher uncovered his
latent interest in mathematics. In 1949, he graduated
from Columbia University with a degree in mathe-
matics.

As the result of a casual remark to a guide while
touring the IBM Computer Center on Madison
Avenue, Backus got a job working with IBM’s Selec-
tive Sequence Electronic Calculator. In 1953 he wrote
a memo outlining the design of a new programming
language for IBM’s new 704 computer. The 704 had
floating point hardware and an index register, which
made it faster, but the software available didn’t make
use of these new features. He wanted to design not
only a better language, but one that would be easier

for programmers to use. His proposal was
accepted and a team was put together. The
language design was the easy part. The
hard part was the compiler that translated
the statements into binary. The project that
was estimated to take six months took two
years. They called the language FORTRAN
for formula translating system. The
completed compiler consisted of 25,000
lines of machine code.

FORTRAN has gone through many
transformations during the years but is still the most
popular language for scientists and engineers today.

Backus went on to develop a notation called the
Backus-Naur Form, which is used to describe formally
grammatical rules for high-level languages. Undoubt-
edly his interest in this subject was born when trying
to describe the rules of FORTRAN in English. His
notation was originally called Backus Normal Form
and introduced during the specification of ALGOL 60.
Peter Naur, a Danish scientist on the ALGOL 60
committee, made some modifications to the notation,
and so it became known as Backus-Naur Form.

In the 1970s Backus worked on finding better
programming methods. Toward this end, he devel-
oped the functional language FP. He is unique in that
he developed languages in two paradigms before the
word paradigm was even used in relation to
programming languages. FORTRAN is an imperative
language; FP is a functional language.

The citation for John Backus’ Turing Award reads:

For profound, influential, and lasting contributions
to the design of practical high-level programming
systems, notably through his work on FORTRAN,
and for seminal publication of formal procedures
for the specification of programming languages.

John Backus
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Disk scheduling The
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disk I/O to satisfy first
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Most operating systems allow the user to specify a set of paths that are
searched (in a specific order) to help resolve references to executable
programs. Often that set of paths is specified using an operating system
variable called h2L3, which holds a string that contains several absolute
paths. Suppose, for instance, that user *!�z� (from Figure 11.5) has a set
of utility programs that he uses from time to time. They are stored in the
directory P‘!FzP*!�z�P“9DYD9Dz�. When that path is added to the h2L3
variable, it becomes a standard location used to find programs that *!�z�
attempts to execute. Therefore, no matter what the current working direc-
tory is, when *!�z� executes the I”D�9,YY program (just the name by
itself), it is found in his utilities directory.

11.3 Disk Scheduling

The most important hardware device used as secondary memory is the
magnetic disk drive. File systems stored on these drives must be accessed in
an efficient manner. It turns out that transferring data to and from
secondary memory is the worst bottleneck in a general computer system.

Recall from Chapter 10 the discussion that the speed of the CPU and
the speed of main memory are much faster than the speed of data transfer
to and from secondary memory such as a magnetic disk. That’s why a
process that must perform I/O to disk is made to wait while that informa-
tion is transferred, to give another process a chance to use the CPU.

Because secondary I/O is the slowest aspect of a general computer
system, the techniques for accessing information on a disk drive are of
crucial importance to our discussion of file systems. As a computer deals
with multiple processes over a period of time, a list of requests to access
the disk builds up. The technique that the operating system uses to deter-
mine which requests to satisfy first is called disk scheduling. We examine
several specific disk-scheduling algorithms in this section.

Recall from Chapter 5 that a magnetic disk drive is organized as a stack
of platters, where each platter is divided into tracks, and each track into
sectors. The set of corresponding tracks on all platters is called a cylinder.
Figure 11.6 reprints the figure of a disk drive used in Chapter 5 to remind
you of this organization.

Of primary importance to us in this discussion is the fact that the set of
read/write heads hovers over a particular cylinder along all platters at any
given point in time. Remember, the seek time is the time it takes for the heads
to reach the appropriate cylinder. The latency is the additional time it takes
the platter to rotate into the proper position so that the information can be
read or written. Seek time is the more restrictive of these two, and therefore
is the primary issue dealt with by the disk-scheduling algorithms.
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Figure 11.6 A magnetic disk drive
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At any point in time, a disk drive may have a set of outstanding requests
that must be satisfied. For now, we consider only the cylinder (the parallel
concentric circles) to which the requests refer. A disk may have thousands
of cylinders. To keep things simple, let’s also assume a range of 100 cylin-
ders. Suppose at a particular time the following cylinder requests have
been made, in this order:

49, 91, 22, 61, 7, 62, 33, 35

Suppose also, that the read/write heads are currently at cylinder 26. The
question is now: To which cylinder should the disk heads move next?
Different algorithms produce different answers to that question.

First-Come, First-Served Disk Scheduling
In Chapter 10 we examined a CPU scheduling algorithm called first-come,
first-served (FCFS). An analogous algorithm can be used for disk scheduling.
It is one of the easiest to implement, though not usually the most efficient.
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In FCFS, we process the requests in the order they arrive, without
regard to the current position of the heads. Therefore, under a FCFS algo-
rithm, the heads move from cylinder 26 (its current position) to cylinder
49. After the request for cylinder 49 is satisfied (that is, the information is
read or written), the heads move from 49 to 91. After processing the
request at 91, the heads move to cylinder 22. Processing continues like
this, in the order that the requests were received.

Note that at one point the heads move from cylinder 91 all the way
back to cylinder 22, during which they pass over several cylinders whose
requests are currently pending.

Shortest-Seek-Time-First Disk Scheduling
The shortest-seek-time-first (SSTF) disk-scheduling algorithm moves the
heads the minimum amount it can to satisfy any pending request. This
approach could potentially result in the heads changing directions after
each request is satisfied.

Let’s process our hypothetical situation using this algorithm. From our
starting point at cylinder 26, the closest cylinder among all pending requests
is 22. So, ignoring the order in which the requests came, the heads are
moved to cylinder 22 to satisfy that request. From 22, the closest request is
for cylinder 33, so the heads move there. The closest unsatisfied request to
33 is at cylinder 35. The distance to cylinder 49 is now the smallest, so the
heads move there next. Continuing that approach, the rest of the cylinders
are visited in the following order: 49, 61, 62, 91, and finally 7.

This approach does not guarantee the smallest overall head movement,
but it is generally an improvement over the FCFS algorithm. However, a
major problem can arise with this approach. Suppose requests for cylinders
continue to build up while existing ones are being satisfied. And suppose
those new requests are always closer to the current position than an earlier
request. It is theoretically possible that the early request never gets
processed because requests keep arriving that take priority. This phenom-
enon is called starvation. First-come, first-served disk scheduling cannot
suffer from starvation.

SCAN Disk Scheduling
A classic example of algorithm analysis in computing comes from the way
an elevator is designed to visit floors that have people waiting. In general,
an elevator moves from one extreme to the other (say, the top of the
building to the bottom), servicing requests as appropriate. Then it travels
from the bottom to the top, servicing those requests.
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The SCAN disk-scheduling algorithm works in a similar way, except
instead of moving up and down, the read/write heads move in toward the
spindle, then out toward the platter edge, then back toward the spindle,
and so forth.

Let’s perform this algorithm on our set of requests. Unlike the other
approaches, though, we need to decide which way the heads are moving
initially. Let’s assume they are moving toward the lower cylinder values
(and are currently at cylinder 26).

As the read/write heads move from cylinder 26 toward cylinder 1, they
satisfy the requests at cylinders 22 and 7 (in that order). After reaching
cylinder 1, the heads reverse direction and move all the way out to the
other extreme. Along the way, they satisfy the following requests, in order:
33, 35, 49, 61, 62, and 91.

Note that new requests are not given any special treatment. They may
or may not be serviced before earlier requests. It depends on the current
location of the heads and direction in which they are moving. If the new
request arrives just before the heads reach that cylinder, it is processed
right away. If it arrives just after the heads move past that cylinder, it must
wait for the heads to return. There is no chance for starvation because
each cylinder is processed in turn.

Some variations on this algorithm can improve performance in various
ways. Note that a request at the edge of the platter may have to wait for the
heads to move almost all the way to the spindle and all the way back. To
improve the average wait time, the Circular SCAN algorithm treats the disk
as if it were a ring and not a disk. That is, when it reaches one extreme, the
heads return all the way to the other extreme without processing requests.

Another variation is to minimize the extreme movements at the spindle
and at the edge of the platter. Instead of going to the edge, the heads only
move as far out (or in) as the outermost (or innermost) request. Before
moving onto the next request, the list of pending requests is examined to
see whether movement in the current direction is warranted. This variation
is referred to as the LOOK disk-scheduling algorithm, because it looks
ahead to see whether the heads should continue in the current direction.

Summary

A file system defines the way our secondary memory is organized. A file is a
named collection of data with a particular internal structure. Text files are
organized as a stream of characters, and binary files have a particular
format that is meaningful only to applications set up to handle that format.

File types are often indicated by the file extension of the file name. The
operating system has a list of recognized file types so that it may open
them in the correct kind of application and display the appropriate icons in
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the graphical interface. The file extension can be associated with any
particular kind of application that the user chooses.

The operations performed on files include creating, deleting, opening,
and closing files. Of course, they must be able to be read from and written
to. The operating system provides mechanisms to accomplish the various
file operations. In a multi-user system, the operating system must also
provide file protection to ensure the proper access.

Directories are used to organize files on disk. They can be nested to
form hierarchical tree structures. Path names that specify the location of a
particular file or directory can be absolute, originating at the root of the
directory tree, or relative, originating at the current working directory.

Disk-scheduling algorithms determine the order in which pending disk
requests are processed. First-come, first-served disk scheduling takes all
requests in order, but is not very efficient. Shortest-seek-time-first disk
scheduling is more efficient, but could suffer from starvation. SCAN disk
scheduling employs the same strategy as an elevator, sweeping from one
end of the disk to the other.

Computer Viruses and Denial of Service
Receiving a love letter in the spring of 2000 left most romantics with

intact hearts but damaged computers. The “Love Bug” computer virus,

one of the worst infections to date, caused an estimated 10 billion

dollars worth of damage as it ravaged through computer systems in 20

countries. The seemingly innocent e-mail entitled “ILOVEYOU” with

an attachment called “LOVELETTER” landed in the mailboxes of

many unsuspecting users who opened the attachment and thereby

released the virus into their computer system. Fittingly, this type of

computer virus is termed a “Trojan Horse.” As in the legend of Troy,

when Odysseus secretly led Greek soldiers into Troy by hiding them in

a wooden horse that the Trojans believed was a gift, these computer

viruses appear harmless but wreak havoc.

When executed, a virus sweeps through files, modifying or erasing

them; it usually also sends itself to the e-mail addresses it accesses.

Disguised as desirable downloads like games or screensavers, Trojan

Horse viruses can spread rapidly, replicate, and cause significant damage

across the globe. Since 1981 when the first wave of computer viruses

entered the public sphere and attacked Apple II operating systems,

computer viruses have threatened the integrity of computer systems.

W
WW
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Denial of Service (DoS) attacks are not viruses but are a method

hackers use to deprive the user or organization of services. DoS attacks

usually just flood the server’s resources, making the system unusable.

Society views these computer viruses as serious offenses, and people who

launch DoS attacks face federal criminal charges. In the 2000 attack on

Yahoo, for example, the server was flooded with requests that lacked

verifiable return addresses. When the server could not confirm the fake

addresses it waited for a few moments; then when it finally denied the

request, it was loaded with more requests that had fake return

addresses—which tied up the server indefinitely. A DoS attack uses the

inherent limitations of networking to its advantage, and, in this case, it

successfully brought the site down.

The reality of these attacks highlights the need to reevaluate security

for both personal computers and the Internet. Scanning for viruses,

taking proper precautions when downloading material, and investi-

gating attachments before opening them are useful ways to protect your

computer. Internet Service Providers (ISPs) are often proactive in their

attempt to prevent viruses and DoS attacks and install firewalls that

foster security. Although no system is impenetrable, steps can be taken

to improve the security of computer systems and networks.
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Exercises
1. What is a file?

2. Distinguish between a file and a directory.

3. Distinguish between a file and a file system.

4. Why is a file a generic concept and not a technical one?

5. Name and describe the two basic classifications of files.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Exercises 369

Owner

Group

World

Read Write/Delete Execute

Yes Yes Yes

Yes Yes No

Yes No No

6. Why is the term binary file a misnomer?

7. Distinguish between a file type and a file extension.

8. What would happen if you give the name “myFile.jpg” to a text file?

9. How can an operating system make use of the file types that it
recognizes?

10. How does an operating system keep track of secondary memory?

11. What does it mean to open and close a file?

12. What does it mean to truncate a file?

13. Compare and contrast sequential and direct file access.

14. File access is independent of any physical medium.
a. How could you implement sequential access on a disk?
b. How could you implement direct access on a magnetic tape?

15. What is a file protection mechanism?

16. How does Unix implement file protection?

17. Given the following file permission, answer these questions.

a. Who can read the file?
b. Who can write or delete the file?
c. Who can execute the file?
d. What do you know about the content of the file?

18. What is the minimum amount of information a directory must contain
about each file?

19. How do most operating systems represent a directory?

20. Answer the following questions about directories.
a. A directory that contains another directory is called what?
b. A directory contained within another directory is called what?
c. The directory that is not contained in any other directory is called

what?
d. The structure showing the nested directory organization is called

what?
e. Relate the structure in (d) to the binary tree data structure exam-

ined in Chapter 9.
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21. What is the directory called in which you are working at any one
moment?

22. What is a path?

23. Distinguish between an absolute path and a relative path.

24. Show the absolute path to each of the following files or directories
using the directory tree shown in Figure 11.4:
a. QLW""zO9�i49-

b. (”!!'�iFI5

c. h”!�”,F �DYz�

d. 5T<,1zi�O”

e. h! z”h�9iz-z

25. Show the absolute path to each of the following files or directories
using the directory tree shown in Figure 11.5.
a. 9,”

b. ,OOz��i!YT

c. �,FzTiO!�"

d. �FD9‘

e.  zz'5i9-9

f. I”D�9,YY

26. Assuming the current working directory is X=\"—elo"E\E>�9zF, give
the relative path name to the following files or directories using the
directory tree shown in Figure 11.4.
a. QL—F,�zi49-

b. O,YOiz-z

c. Yz99z”�

d. I”!*5i*,S,

e. ,T!(zI6i‘YI

f. "D�"!”Tiz-z

27. Show the relative path to each of the following files or directories
using the directory tree shown in Figure 11.5.
a. Y!O,Y9DFz when the working directory is the root directory
b. Y!O,Y9DFz when the working directory is z9O
c. I”D�9,YY when the working directory is “9DYD9Dz�
d.  zz')i9-9 when the working directory is F,�N

28. What is the worst bottleneck in a computer system?

29. Why is disk scheduling concerned more with cylinders than with
tracks and sectors?

30. Name and describe three disk-scheduling algorithms.
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Use the following list of cylinder requests in Exercises 31 through 33.
They are listed in the order in which they were received.

40, 12, 22, 66, 67, 33, 80

31. List the order in which these requests are handled if the FCFS algo-
rithm is used. Assume that the disk is positioned at cylinder 50.

32. List the order in which these requests are handled if the SSTF algo-
rithm is used.  Assume that the disk is positioned at cylinder 50.

33. List the order in which these requests are handled if the SCAN algo-
rithm is used.  Assume that the disk is positioned at cylinder 50 and
the read/write heads are moving toward the higher cylinder numbers.

34. Explain the concept of starvation.

Thought Questions

1. The concept of a file permeates computing.  Would the computer be
useful if there were no secondary memory on which to store files?

2. The disk-scheduling algorithms examined in this chapter sound
familiar.  In what other context have we discussed similar algorithms?
How are these similar and how are the different?

3. Are there any analogies between files and directories and file folders
and filing cabinets?  Clearly the name “file” came from this concept.
Where does this analogy hold true and where does it not?

4. Both viruses and denial of services can cause great inconvenience at the
least and usually serious monetary damage. How are these problems
similar and how are they different. Is one more serious than the other?

5. Have you ever been affected by a virus attack?  How much time
and/or data did you lose? Do you have a firewall installed in your
computer system?

6. Have you ever tried to reach a Web site that was under attack?  How
many times did you try to access the site?

7. How many times have you seen an article in the paper or on the news
about either a DoS or virus in the last week?  Month?  Year?

?
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Information Systems

Most people interact with computers at the application level. That

is, even if a person doesn’t know anything about the details of the

other underlying levels of computing, the chances are that he or

she has used application software. Our goal at this level is to give

you an appreciation for how various application systems work.

Application software can be subdivided in various ways. In this

chapter we focus on general information systems. In Chapter 13

we discuss applications in the realm of artificial intelligence, and in

Chapter 14 we focus on simulations, computer-aided design, and

embedded systems.

Computers exist to manage and analyze data. Today this

affects almost all aspects of our lives. We use general information

systems to manage everything from sports statistics to payroll

data. Cash registers and ATMs have large information systems

backing them up. In this chapter we examine general-purpose soft-

ware, particularly spreadsheets and database management systems;

these help us organize and analyze the huge amounts of data with

which we must deal.

373
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Goals
After studying this chapter, you should be able to:

� define the role of general information systems.
� explain how spreadsheets are organized.
� create spreadsheets for basic analysis of data.
� define appropriate spreadsheet formulas using built-in functions.
� design spreadsheets to be flexible and extensible.
� describe the elements of a database management system.
� describe the organization of a relational database.
� establish relationships among elements in a database.
� write basic SQL statements.
� describe an entity-relationship diagram.

12.1 Managing Information

At various points in this text we’ve defined information as raw facts, and
data as information that has been organized in a convenient way for a
computer to use. An information system can be generally defined as soft-
ware that helps us organize and analyze data.

Any particular application program manages data, and some programs
manage data in particular ways using particular structures. Other special-
ized applications use specific techniques that are geared toward the type of
problems they are trying to solve. For example, as we discuss in the next
chapter, there are various ways of organizing data to support the analysis
that typically occurs in the computing field of artificial intelligence.

Most situations, however, are more general. There are innumerable situ-
ations that don’t require special consideration. We simply have data to
manage and relationships among that data to capture. These situations
don’t necessarily require special organization or processing. What they do
require, however, are flexible application software tools that allow the user
to dictate and manage the organization of data, and that have basic
processing capabilities to analyze the data in various ways.

Two of the most popular general application information systems are
electronic spreadsheets and database management systems. A spreadsheet
is a convenient tool for basic data analysis based on extensible formulas
that define relationships among the data. Database management systems
are geared toward large amounts of data that are often searched and
organized into appropriate subsections.
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program that allows the
user to organize and
analyze data using a
grid of cells

Cell An element of a
spreadsheet that can
contain data or a
formula
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Whole books have been written about spreadsheets and how they are
set up and used. The same can be said for database management systems.
Our goal for this chapter is not to exhaustively explore either of these, but
rather introduce the usefulness and versatility of both. After this discussion
you should be able to create basic versions of either type of system, and
you will have a foundation on which to explore them in more detail.

12.2 Spreadsheets

There are a variety of spreadsheet programs available today. You may
already have some experience with spreadsheets, though we don’t assume
any background knowledge in this discussion. Each spreadsheet program
has its own particular nuances regarding its abilities and syntax, but there
is a common set of concepts that all spreadsheets embrace. Our discussion
in this chapter focuses on these common concepts. The specific examples
that we explore are consistent with the syntax and functionality of the
Microsoft Excel spreadsheet program.

A spreadsheet is a software application that allows the user to organize
and analyze data using a grid of labeled cells. A cell can contain data or a
formula that is used to calculate a value. Data stored in a cell can be text,
numbers, or “special” data such as dates.

As shown in Figure 12.1, spreadsheet cells are referenced by their row
and column designation, usually using letters to specify the column and
numbers to specify the row. Thus we refer to cells such as A1, C7, and
G45. After the 26th column, spreadsheets begin to use two letters for the
column designation, so some cells have designations such as AA19. There
is usually some reasonably large maximum number of rows in a spread-
sheet, such as 256. Furthermore, in most spreadsheet programs multiple
sheets can be combined into one large interacting system.

Spreadsheets are useful in many situations, and are often designed to
manage thousands of data values and calculations. Let’s look at a small

Figure 12.1

A spreadsheet, made up of
a grid of labeled cells

1

2

3

4

5

A B C D
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Figure 12.2

A spreadsheet containing
data and computations

1
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5

6

7

8

9

10

11

12

A B C D E F G H

FrankAmy

Tutor

Hal Total Avg

131012 35 11.67

161614 46 15.33

131810 41 13.67

18218 47 15.67

121815 45 15.00

728359 214 71.33

14.4016.6011.80

1

2

3Week

4

5

Total

Avg 42.80 14.27

example that demonstrates fundamental spreadsheet principles. Suppose
we have collected data on the number of students that came to get help
from a set of tutors over a period of several weeks. Let’s say we’ve kept
track of how many students went to each of three tutors (Hal, Amy, and
Frank) each week for a period of five weeks. Now we want to perform
some basic analysis on that data. We might end up with the spreadsheet
shown in Figure 12.2.

This spreadsheet contains, among other things, the raw data to be
analyzed. Cell C4, for instance, contains the number of students that Hal
tutored in week 1. The column of data running from C4 to C8 contains
the number of students tutored by Hal in each of the five weeks during
which data was collected. Likewise, the data for Amy is stored in cells D4
through D8 and the data for Frank is stored in cells E4 through E8. This
same data can be thought of in terms of the row they’re in as well. Each
row shows the number of students helped by each tutor in any given week.

In cells C9, D9, and E9, the spreadsheet computes and displays the total
number of students helped by each tutor over all five weeks. In cells C10,
D10, and E10, the spreadsheet also computes and displays the average
number of students helped by each tutor each week. Likewise, the total
number of students helped each week (by all tutors) is shown in the
column of cells running from F4 to F8. The average number of students
helped per week is shown in cells G4 to G8.
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In addition to the totals and averages per tutor and per week, the
spreadsheet also calculates some other overall statistics. Cell F9 shows the
total number of students helped by all tutors in all weeks. The average per
week (for all tutors) is shown in cell F10 and the average per tutor (for all
weeks) is shown in cell G9. Finally, the average number of students helped
by any tutor in any week is shown in cell G10.

The data stored in columns A and B and in rows 2 and 3 are simply
used as labels to indicate what the values in the rest of the spreadsheet
represent. These labels are for human readability only and do not
contribute to the calculations.

Note that the labels and some of the values in the spreadsheet in Figure
12.2 are shown in different colors. Most spreadsheet programs allow the
user to control the look and format of the data in specific cells in various
ways. The user can specify the font, style, and color of the data as well as
the alignment of the data within the cell (such as centered or left justified).
In the case of real numeric values, such as the averages computed in this
example, the user can specify how many decimal places should be
displayed. In most spreadsheet programs, the user can also dictate whether
the grid lines for each cell are displayed or not (in this example they are all
displayed) and what the background color or pattern of a cell should be.
All of these user preferences are specified using menu options or buttons in
the spreadsheet application software.

Spreadsheet Formulas
In our tutor spreadsheet, we performed several calculations that give us
insight as to the overall situation regarding tutor support. And it turns out
that it is relatively easy to set up these calculations. You might say that it
wouldn’t take long to sit down with these numbers and produce the same
statistics with a calculator, and you would be right. However, the beauty
of a spreadsheet is that it is both easily modified and easily expanded.

If we’ve set up the spreadsheet correctly, we could add or remove
tutors, add additional weeks of data, or change any of the data we have
already stored and the corresponding calculations would automatically be
updated. So although we set up the tutor example to use the data of three
tutors, the same spreadsheet could handle hundreds of tutors! Instead of
five weeks of data, we could just as easily process a year’s worth.

The power of spreadsheets comes from the formulas that we can create
and store in cells. All of the totals and averages in the example in Figure
12.2 are computed using formulas. When a formula is stored in a cell, the
result of the formula is displayed in the cell. Therefore, when looking at
the values in a spreadsheet, it is sometimes challenging to tell if the data
shown in a particular cell was entered directly or if it has been computed
by an underlying formula.
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Figure 12.3 The formulas behind some of the cells
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=SUM(C4..C8)
=E9/COUNT(E4..E8)

=F9/COUNT(C4..E8)

=F7/COUNT(C7..E7)

=SUM(C4..E4)

Figure 12.3 shows the same spreadsheet as Figure 12.2, indicating the
formulas underlying some of the cells. Formulas in our examples (as in
many spreadsheet programs) begin with an equal sign (=). That’s how the
spreadsheet knows which cells contain formulas that must be evaluated.

The formulas in this example refer to particular cells (by their column
and row designation). When a formula is evaluated, the values stored in
the referenced cells are used to compute the result. Formulas in a spread-
sheet are reevaluated any time a change is made to the spreadsheet; there-
fore, the results are always kept current. A spreadsheet is dynamic—it
responds to changes immediately. If we changed the number of students
that Frank tutored in week 2, the totals and averages that use that value
would be recalculated immediately to reflect the revised data.

Formulas can make use of basic arithmetic operations using the stan-
dard symbols (+, �, *, and /). They can also make use of spreadsheet

functions that are built into the software. In the tutor example, the
formula in cell C9 uses the SUM function to compute the sum of the values
in the cells C4, C5, C6, C7, and C8.
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Because functions often operate on a set of contiguous cells, spread-
sheets provide a convenient way to specify a range of cells. Syntactically, a
range is specified with two dots (periods) between the two cell endpoints.
A range can specify a set of cells along a row, such as C4..E4, or it can
specify a set of cells down a column, such as C4..C8. A range can also
specify a rectangular block of cells, ranging from the top left to the bottom
right. For example, the range C4..E8 includes the cells C4 to C8, D4 to
D8, and E4 to E8.

Several of the formulas shown in Figure 12.3 use the COUNT function,
which computes the number of non-blank cells in the specified range. For
example, the formula in cell G7 divides the value in cell F7 by the count of
cells in the range C7..E7, which is 3.

The formula in cell G7 could have been written as follows:

=SUM(C7..E7)/3

Given the current status of the spreadsheet, this formula would compute
the same result. However, there are two reasons why this formula is not as
good as the original. First, the sum of the values in C7 to E7 have already
been computed (and stored in F7), so there is no need to recompute it. Any
change to the data would affect the value of F7, and consequently change
the value of G7 as well. Spreadsheets take all such relationships into
account.

Second (and far more important), it is always a good idea to avoid using
a constant in a formula unless it is specifically appropriate. In this case,
using the value 3 as the predetermined number of tutors limits our ability
to easily add or delete tutors from our analysis. Spreadsheet formulas
respond to insertions and deletions just as they do to changes in raw data
itself. If we insert a column for another tutor, the ranges in the original
formulas in columns F and G (which would move to columns G and H due
to the insertion) would automatically change to reflect the insertion. For
example, if a new tutor column is inserted, the formula in cell F4 would be
shifted to cell G4 and would now be

=SUM(C4..F4)

That is, the range of cells would increase to include the newly inserted
data. Likewise, the ranges used by the COUNT function in other functions
would change as well, and would result in a new, and correct, average. If
we had used the constant 3 in the formula of cell G7, the calculation
would be incorrect after the new column was inserted.

Usually a spreadsheet program provides a large number of functions
that we can use in formulas. Some perform math or statistical calculations,
common financial calculations, or special operations on text or dates.
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Many of the people whose biographies
appear in this book have been winners of
the ACM Turing Award, the highest award
given in computer science. The ACM also
gives an award for outstanding work done
by someone under 35, the Grace Murray
Hopper Award. The charge for this award
reads: 

Awarded to the outstanding young
computer professional of the year . . .
selected on the basis of a single recent
major technical or service contribution. . . .  The
candidate must have been 35 years of age or less
at the time the qualifying contribution was made. 

Daniel Bricklin won the Hopper Award in 1981, with
the following citation:

For his contributions to personal computing and, in
particular, to the design of VisiCalc. Bricklin’s
efforts in the development of the “Visual Calcu-
lator” provide the excellence and elegance that
ACM seeks to sustain through such activities as the
Awards program.

Daniel Bricklin, born in 1951, is a member of the
computer generation. He began his college career at
the Massachusetts Institute of Technology in 1969 as
a math major, but quickly changed to computer
science. He worked in MIT’s Laboratory for Computer
Science, where he worked on interactive systems and
met his future business partner, Bob Franksten. After
graduation, he was employed by Digital Equipment
Corporation, where he worked with computerized
typesetting and helped to design the WPS–8 word
processing product.

After a very short stint with FasFax Corporation, a
cash register manufacturer, Bricklin enrolled in the
MBA program at the Harvard Business School, in
1977. While there, he began to envision a program
that could manipulate numbers like word processors
manipulate text. Such a program would have an
immense impact on the business world. He teamed up
with his old MIT buddy Bob Franksten and turned the
dream into a reality. With Bricklin doing the design
and Franksten doing the programming, VisiCalc, the
first spreadsheet program, was written. They formed

Software Arts in 1978 to produce and
market VisiCalc. In the fall of 1979, a
version was made available for the Apple II
for $100 per copy. A version for the IBM
PC became available in 1981.

Bricklin made the decision not to patent
VisiCalc, believing that software should not
be proprietary. Although it didn’t have a
patent, the company grew to 125
employees in four years. However, another
start-up named Lotus came out with a

spreadsheet package called Lotus 1–2–3, which was
more powerful and user-friendly than VisiCalc. Sales
suffered. After a long expensive court battle between
Software Arts and VisiCorp (the company marketing
VisiCalc) Bricklin was forced to sell to Lotus Software.
In turn, Lotus 1–2–3 was surpassed by Microsoft’s
Excel spreadsheet program. Both Lotus 1–2–3 and
Excel were based on VisiCalc.

After working for a short time as a consultant with
Lotus Software, Bricklin again formed a new company.
As president of Software Garden, Inc., he developed a
program for prototyping and simulating other pieces
of software, which won the 1986 Software Publishers
Association Award for “Best Programming Tool.” In
1990, he cofounded Slate Corporation to develop
applications software for pen computers, small
computers that use a pen rather than a keyboard for
input. After four years, Slate closed its doors, and
Bricklin went back to Software Garden.

In 1995, he founded Trellix Corporation, a leading
provider of private-label web site publishing technology.
He still serves as the company’s Chief Technology
Officer. Bricklin was asked to share his view of the
Internet. Here is his reply as captured by the interviewer.

”Most people don’t understand it. They fail to
grasp the capabilities of its underpinnings.” He
likens the Net to a primitive road during the early
days of the automobile, when few saw the poten-
tial that a massive interstate highway system might
one day provide. “We need to understand not so
much the technology,” he explains, “but the
progression of technology and what might be built
with it. E-commerce, like electricity or the tele-
phone, simply enables us to use technology to do
what we now do, only better.”

Daniel Bricklin
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Figure 12.4 Some common spreadsheet functions

ComputesFunction

Sum of the specified set of valuesSUM(val1, val2, ...)
SUM(range)

Count of the number of cells that contain valuesCOUNT(val1, val2, ...)
COUNT(range)

Largest value from the specified set of valuesMAX(val1, val2, ...)
MAX(range)

The standard deviation from the specified sample valuesSTDEV(val1, val2, ...)
STDEV(range)

The sine of the specified angleSIN(angle)

The value of PIPI()

Today's dateTODAY()

If the test is true, it returns the true_val; otherwise, it returns
the false_val

IF(test, true_val, false_val)

Returns true if the specified value refers to an empty cellISBLANK (value)

The leftmost characters from the specified textLEFT(text, num_chars)

Others allow the user to set up logical relationships among cells. Examples
of some common spreadsheet functions are given in Figure 12.4. A typical
spreadsheet program provides dozens of functions like these that the user
may incorporate into formulas.

Another dynamic aspect of spreadsheets is the ability to copy values or
formulas across a row or down a column. When formulas are copied, the
relationships among cells are maintained. Therefore, it becomes easy to set
up a whole set of similar calculations. For instance, to enter the total calcu-
lations in our tutor example down the column from cell F4 to F8, we
simply had to enter the formula in cell F4, and then copy that formula
down the column. As the formula is copied, the references to the cells are
automatically updated to reflect the row that the new formula is in. For
our small example that tracks five weeks, the copy ability didn’t save that
much effort. But imagine if we were tracking this data for a whole year
and had 52 summation formulas to create. The copy aspect of spreadsheets
makes setting up that entire column a single operation.
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Figure 12.5

A circular reference situa-
tion that cannot be resolved

ContentsCell

=B7*COUNT(F8..K8)A1

=A14+SUM(E40..E50)B7

=G18+G19–D13E45

=D12/A1D13

Circular References
Note that spreadsheet formulas could be defined such that they create a
circular reference that can never be resolved because the result of one
formula is ultimately based on another, and vice versa. For instance, if cell
B15 contains the formula

=D22+D23

and cell D22 contains the formula

=B15+B16

there is a circular reference. Cell B15 uses the value in cell D22 for its
result, but cell D22 relies on B15 for its result.

Circular references are not usually this blatant and may involve many
cells. A more complicated situation is presented in Figure 12.5. Ultimately,
cell A1 relies on cell D13 for its value, and vice versa. Spreadsheet software
usually detects these problems and indicates the error.

Spreadsheet Analysis
One reason spreadsheets are so useful is their versatility. The user of a
spreadsheet determines what the data represents and how it is related to
other data. Therefore, spreadsheet analysis can be applied to just about
any topic area. We might, for instance, use a spreadsheet to:

� track sales

� analyze sport statistics

� maintain student grades

� keep a car maintenance log

� record and summarize travel expenses

� track project activities and schedules

� plan stock purchases
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What-if analysis Modi-
fying spreadsheet values
that represent assump-
tions to see how changes
in those assumptions
affect related data

Database A structured
set of data

Database management

system A combination
of software and data
made up of the physical
database, the database
engine, and the data-
base schema
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The list of potential applications is virtually endless. Business, in general,
has a huge number of specific situations in which spreadsheet calculations
are essential. It makes you wonder how we got along without them.

Another reason spreadsheets are so useful is their dynamic nature.
We’ve seen how, if we set up the spreadsheet formulas correctly, changes,
additions, and deletions to the data are automatically taken into account
by the appropriate calculations.

The dynamic nature of spreadsheets also provides the powerful ability
to do what-if analysis. We can set up spreadsheets that take into account
certain assumptions, and then challenge those assumptions by changing the
appropriate values.

For example, suppose we are setting up a spreadsheet to estimate the
costs and potential profits for a seminar we are considering holding. We
can enter values for the number of attendees, ticket prices, the costs of
materials, room rental, and other data that affects the final results. Then
we can ask ourselves some what-if questions to see how our scenario
changes as the situation changes—questions such as:

What if the number of attendees decreased by 10%?

What if we increase the ticket price by $5?

What if we could reduce the cost of materials by half?

As we ask these questions, we change the data accordingly. If we’ve set up
the relationships between all of the formulas correctly, then each change
immediately shows us how those changes affect the other data.

Business analysts have formalized this process in various ways, and
spreadsheets have become a primary tool in their daily efforts. Cost-benefit
analysis, break-even calculations, and projected sales estimates all become
a matter of organizing the spreadsheet data and formulas to take the
appropriate relationships into account.

12.3 Database Management Systems

Almost all sophisticated data management situations rely on an underlying
database and the support structure that allows the user (either a human or
a program) to interact with it. A database can simply be defined as a
structured set of data. A database management system (DBMS) is a
combination of software and data made up of the:

� physical database—a collection of files that contain the data
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Query A request for
information submitted to
a database

Schema A specifica-
tion of the logical struc-
ture of data in a
database

Relational model A
database model in which
data and the relation-
ships among them are
organized into tables

Table A collection of
database records

Record (or object, or
entity) A collection of
related fields that make
up a single database
entry

Field (or attribute) A
single value in a data-
base record
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Figure 12.6

The elements of a database
management system

Database
files

User

Schema

Database
engine

software

� database engine—software that supports access to and modification
of the database contents

� database schema—a specification of the logical structure of the data
stored in the database

The database engine software interacts with specialized database languages
that allow the user to specify the structure of data; add, modify, and delete
data; and query the database to retrieve specific stored data.

The database schema provides the logical view of the data in the data-
base, independent of how it is physically stored. Assuming the underlying
physical structure of the database is implemented in an efficient way, the
logical schema is the more important point of view from the database
user’s perspective because it shows how the data items relate to each other.

The relationships between the various elements of a database manage-
ment system are shown in Figure 12.6. The user interacts with the data-
base engine software to determine and/or modify the schema for the
database. The user then interacts with the engine software to access and
possibly modify the contents of the database stored on disk.

The Relational Model
There have been a few popular database management models, but the one
that has dominated for many years is the relational model. In a relational
DBMS, the data items and the relationships among them are organized
into tables. A table is a collection of records. A record is a collection of
related fields. Each field of a database table contains a single data value.
Each record in a table contains the same fields.

A record in a database table is also called a database object or an entity.
The fields of a record are sometimes called the attributes of a database object.

For example, consider the database table shown in Figure 12.7, which
contains information about movies. Each row in the table corresponds to a
record. Each record in the table is made up of the same fields in which
particular values are stored. That is, each movie record has a X=\"—el, a
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Figure 12.7

A database table, made up
of records and fields

TitleMovieId

Sixth Sense, The101

Back to the Future102

Monsters, Inc.103

Field of Dreams104

Alien105

Unbreakable106

X-Men107

Elizabeth5022

Independence Day5793

Platoon

Genre

thriller horror

comedy adventure

animation comedy

fantasy drama

sci-fi horror

thriller

action sci-fi

drama period

action sci-fi

action drama war

Rating

PG-13

PG

G

PG

R

PG-13

PG-13

R

PG-13

R7442

X=\"—

o"E<—, a >—!O—, and a “FE"!z that contain the specific data for each
record. A database table is given a name, such as X=\"— in this case.

Usually, one or more fields of a table are identified as key fields. The
key field(s) uniquely identifies a record among all other records in the
table. That is, the values stored in key field(s) for each record in a table
must be unique. In the X=\"— table, the X=\"—el field would be the logical
choice for a key. That way, two movies could have the same title. Certainly
the >—!O— and “FE"!z fields are not appropriate key fields in this case.

Each value in the key field X=\"—el must be unique. Most DBMSs
allow such fields to be automatically generated to guarantee unique
entries. Note, though, that there is no reason the key values have to be
consecutive. The last three entries of the table contain radically different
movie identification numbers. As long as they are unique values, the
X=\"—el field can serve as the key.

The movie table in Figure 12.7 happens to be presented in the order of
increasing X=\"—el value, but it could have been presented in other ways,
such as alphabetical by movie title. In this case, there is no inherent rela-
tionship among the rows of data in the table. Relational database tables
present a logical view of the data and have nothing to do with the under-
lying physical organization (how the records are stored on disk). Ordering
records becomes important only when we query the database for particular
values, such as all movies that are rated PG. At that point we might want
to sort the results of the query by title.
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Figure 12.8

A database table containing
customer data

NameCustomerId

Dennis Cook101

Doug Nickle102

Randy Wolf103

Amy Stevens104

Robert Person105

David Coggin106

Susan Klaton107

Genre

123 Main Street

456 Second Ave

789 Elm Street

321 Yellow Brick Road

654 Lois Lane

987 Broadway

345 Easy Street

CreditCardNumber

2736 2371 2344 0382

7362 7486 5957 3638

4253 4773 6252 4436

9876 5432 1234 5678

1122 3344 5566 7788

8473 9687 4847 3784

2435 4332 1567 3232

�9�E=h—O

The structure of the table corresponds to the schema it represents. That
is, a schema is an expression of the attributes of the records in a table. We
can express the schema for this part of the database as follows:

X=\"— ”X=\"—el�,—�D o"E<—D >—!O—D “FE"!zY

Sometimes a schema representation indicates the type of data that is
stored in individual fields, such as numeric or text. It may also indicate the
specific set of values that are appropriate for a given field. For instance,
the schema could indicate in this example that the Rating field can only be
G, PG, PG–13, R, or NC–17. The schema for an entire database is made
up of the individual schema that corresponds to individual tables.

Suppose we wanted to create a movie rental business. In addition to the
list of movies for rent, we must create a database table to hold information
about our customers. The �9�E=h—O table in Figure 12.8 could represent
this information.

Similar to what we did with our X=\"— table, the �9�E=h—O table
contains a �9�E=h—Oel field to serve as a key. The fact that some
�9�E=h—Oel values correspond to some X=\"—el values is irrelevant. Key
values must be unique only within a table.

Note that, in a real database, we would be better off subdividing the iFh—
field of our customer table into -"O�EiFh— and SF�EiFh— fields. Also, we
would probably have separate fields for various parts of a complete address,
such as �"E� and TEFE—. For our examples we are keeping things simple.

The X=\"— table and the �9�E=h—O table show how data can be organ-
ized as records within isolated tables. The power of relational database
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Figure 12.9

A database table storing
current movie rentals

CustomerId

103

103

105

MovieId

104

5022

107

3-12-2002

3-12-2002

3-12-2002

DateRented

3-13-2002

3-13-2002

3-15-2002

DateDue

“—!E�

management systems, though, is in the ability to create tables that concep-
tually link various tables together.

Relationships
Recall that records represent individual database objects, and that fields of
a record are the attributes of these objects. We can create a record to
represent a relationship between objects and include attributes about the
relationship in the record. Therefore, we can use a table to represent a
collection of relationships between objects.

Continuing our movie rental example, we need to be able to represent
the situation in which a particular customer rents a particular movie. Since
“rents” is a relationship between a customer and a movie, we can repre-
sent it as a record. The date rented and the date due are attributes of the
relationship that should be in the record. The “—!E� table in Figure 12.9
contains a collection of these relationship records that represents the
movies that are currently rented.

The “—!E� table contains information about the objects in the relation-
ship (customers and movies), as well as the attributes of the relationship.
But note that it does not contain all of the data about a customer or a
movie. In a relational database, we avoid duplicating data as much as
possible. For instance, there is no need to store the customer’s name and
address in the rental table. That data is already stored in the �9�E=h—O

table. When we need that data, we use the �9�E=h—Oel stored in the “—!E�
table to look up the customer’s detailed data in the customer table. Like-
wise, when we need data about the movie that was rented, we look it up in
the X=\"— table using the X=\"—el.

Note that the �9�E=h—Oel value 103 is shown in two records in the
table in Figure 12.9. That indicates that the same customer rented two
different movies.

Data is modified in, added to, and deleted from our various database
tables as needed. When movies are added or removed from the available
stock, we update the records of the X=\"— table. As people become
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Structured Query

Language (SQL) A
comprehensive relational
database language for
data management and
queries

When you look on the packaging of
most products, you find a Universal
Product Code (UPC) and its associ-
ated bar code, such as the one shown
at right. UPC codes were created to
speed up the process of purchasing a
product at a store and to help keep
better track of inventory.

A UPC symbol is made up of the
machine-readable bar code and the
corresponding human-readable 12-
digit UPC number. The first six digits of the UPC
number are the manufacturer identification number.
For example, General Mills has a manufacturer ID
number of 016000. The next five digits are the item
number. Each type of product, and each different
packaging of the same product, is assigned a unique
item number. Therefore, a 2-liter bottle of Coke has a
different item number than a 2-liter bottle of Diet
Coke, and a 10-oz. bottle of Heinz ketchup has a
different item number than a 14-oz. bottle of Heinz
ketchup.

The last digit of the UPC code is called a check digit,
which allows the scanner determine whether it scanned
the number correctly. A calculation is performed on the

rest of the digits of the number to deter-
mine the check digit. After reading the
number, the calculation is performed
and verified against the check digit.
(See Chapter 17 for more information
on check digits.)

For some products, particularly
small ones, a technique has been
developed to create UPC numbers that
can be shortened by eliminating certain
digits (all zeros). In this way, the entire

UPC symbol can be reduced in size.
Note that a product’s price is not stored in the UPC

number. When a product is scanned at a cash
register (more formally called a Point of Sale, or
POS), the manufacturer and item numbers are used to
look up that item in a database. The database might
contain a great deal of product information, including
its price. Keeping only basic information in the UPC
number makes it easy to change other information
such as the price without having to relabel the prod-
ucts. However, this also makes it easy to create situa-
tions of “scanner fraud” in which the database price
of an item does not match the price on the store shelf,
whether intentionally or not.

Universal Product Codes

A UPC symbol

customers of our store, we add them to the �9�E=h—O table. On an ongoing
basis we add and remove records from the “—!E� table as customers rent
and return videos.

Structured Query Language
The Structured Query Language (SQL) is a comprehensive database
language for managing relational databases. It includes statements that
specify database schemas as well as statements that add, modify, and
delete database content. It also includes, as its name implies, the ability to
query the database to retrieve specific data.

The original version of SQL was Sequal, developed by IBM in the early
’70s. In 1986, the American National Standards Institute (ANSI) published
the SQL standard, the basis for commercial database languages for
accessing relational databases.

388
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SQL is not case sensitive, so keywords, table names, and attribute
names can be uppercase, lowercase, or mixed. Spaces are used as separa-
tors in a statement.

Queries
Let’s first focus on simple queries. The select statement is the primary tool
for this purpose. The basic select statement includes a select clause, a from
clause, and a where clause:

�—<— E attribute-list PO=h table-list "I—O— condition 

The select clause determines what attributes are returned. The from clause
determines what tables are used in the query. The where clause restricts the
data that is returned. For example:

�—<— E o"E<— PO=h X=\"— "I—O— “FE"!z L ‘Q>‘

The result of this query is a list of all titles from the X=\"— table that have
a rating of PG. The where clause can be eliminated if no special restrictions
are necessary:

�—<— E iFh—D 'llO—�� PO=h �9�E=h—O

This query returns the name and address of all customers in the �9�E=h—O
table. An asterisk (() can be used in the select clause to denote that all
attributes in the selected records should be returned:

�—<— E ( PO=h X=\"— "I—O— >—!O— <",— ‘)F E"=!)‘

This query returns all attributes of records from the X=\"— table in which
the >—!O— attribute contains the word ‘F E"=!’. The <",— operator in SQL
performs some simple pattern matching on strings, and the ) symbol
matches any string.

Select statements can also dictate how the results of the query should be
sorted using the order by clause:

�—<— E ( PO=h X=\"— "I—O— “FE"!z L ‘“‘ =Ol—O *� o"E<—

This query returns all attributes of R-rated movies sorted by the movie title.
There are many more variations on select statements supported by SQL

than those we’ve shown here. Remember that our goal is to introduce the
database concepts to you. You would require much more detail to truly
become proficient at SQL queries.
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Modifying Database Content
The insert, update, and delete statements in SQL allow the data in a table
to be changed. The insert statement adds a new record to a table. Each
insert statement specifies the values of the attributes for the new record.
For example:

"!�—OE "!E= �9�E=h—O \F<9—� ”+NW.D ‘J=I! Th"EI‘D

‘.01 >O——!*O"FO �=9OE‘D ‘1+2N 2131 2401 01++‘Y

This statement inserts a new record into the �9�E=h—O
table with the specified attributes.

The update statement changes the values in one or
more records of a table. For example:

95lFE— X=\"— �—E >—!O— L ‘EIO"<<—O lOFhF‘

"I—O— E"E<— L ‘6!*O—F,F*<—‘

This statement changes the >—!O— of the movie
6!*O—F,F*<— to ‘EIO"<<—O lOFhF‘.

The delete statement removes all records from a
table matching the specified condition. For example, if
we wanted to remove all R-rated movies from the
X=\"— table, we could use the following delete state-
ment:

l—<—E— PO=h X=\"— "I—O— “FE"!z L ‘“‘

As with the select statement, there are many variations of the insert,
update, and delete statements as well.

Database Design
A database must be carefully designed from the outset if it is going to
fulfill its role. Poor planning in the early stages can lead to a database that
does not support the necessary relationships that are required.

One popular technique for designing relational databases is called
entity-relationship (ER) modeling. Chief among the tools used for ER
modeling is the ER diagram. An ER diagram captures the important
record types, attributes, and relationships in a graphical form. From an ER
diagram, a database manager can define the necessary schema and create
the appropriate tables to support the database specified by the diagram.

An ER diagram showing various aspects of the movie rental example is
shown in Figure 12.10. Specific shapes are used in ER diagrams to differ-

Mathematical basis of SQL
SQL incorporates operations in an algebra that
is defined for accessing and manipulating data
represented in relational tables. E. F. Codd of
IBM defined this algebra in the late 60’s; in
1981 he won the Turing award for his work.
SQL’s fundamental operations include:

Select operation to identify records in a table

Project operation to produce a subset of the
columns in a table

Cartesian product operation to concatenate
rows from two tables

Other operations include the set operations
union, difference, intersection, natural join (a
subset of the Cartesian product), and division.
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Figure 12.10 An ER diagram for the movie rental database

CustomerId Name

Address CreditCardNumber

DateRented

DateDue

Customer
1 M

Rents

MovieId Title

Genre Rating

Movie

entiate among the various parts of the database. Types of records (which
can also be thought of as classes for the database objects) are shown in
rectangles. Fields (or attributes) of those records are shown in attached
ovals. Relationships are shown in diamonds.

The position of the various elements of an ER diagram is not particularly
important, though if some thought is given to it they are easier to read. Note
that a relationship such as “—!E� can have its own associated attributes.

Also note that the relationship connectors are labeled, one side with a 1
and the other side with an M. These designations show the cardinality

constraint of the relationship. A cardinality constraint puts restrictions on
the number of relationships that may exist at one time.

There are three general cardinality relationships:

� one-to-one

� one-to-many

� many-to-many

The relationship between a customer and a movie is one-to-many. That is,
one customer is allowed to rent many movies, but a movie can only be
rented by a single customer (at any given time). Cardinality constraints
help the database designer convey the details of a relationship.
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Summary

An information system is application software that allows the user to organize
and manage data. General information system software includes spreadsheets
and database management systems. Other domain areas, such as artificial intel-
ligence, have their own specific techniques and support for data management.

A spreadsheet is a software application that uses a grid of cells to
organize data and the formulas used to compute new values. Cells are
referenced by their row and column designations, such as A5 or B7. Cells
can contain basic data or formulas. Formulas usually refer to the values in
other cells and may use built-in functions to compute their result. Formulas
may use data across a range of cells. When a formula is stored in a spread-
sheet cell, the value computed by the formula is actually shown in the cell.
It is important that formulas in a spreadsheet avoid circular references, in
which two or more cells rely on each other to compute their results.

Spreadsheets are both versatile and extensible. They can be used in many
different situations and they respond dynamically to change. As values in
the spreadsheet are altered, affected formulas are automatically recalcu-
lated to produce updated results. If spreadsheet rows or columns are added,
the ranges in spreadsheet formulas compensate immediately. Spreadsheets
are particularly appropriate for what-if analysis, in which values of
assumptions are modified to see their affect on the rest of the system.

A database management system includes the physical files in which the
data are stored, the software that supports access to and modification of
the data, and the database schema that specifies the logical layout of the
database. The relational model is the most popular database approach
today. It is based on organizing data into tables of records (or objects)
with particular fields (or attributes). A key field(s), whose values uniquely
identify individual records in the table, is usually designated for each table.

Relationships among database elements are represented in new tables
that may have their own attributes. Relationship tables do not duplicate
data in other tables. Instead they store the key values of the appropriate
database records so that the detailed data can be looked up when needed.

The Structured Query Language (SQL) is the standard database
language for querying and manipulating relational databases. The select
statement is used for queries and has many variations so that particular
data can be accessed from the database. Other SQL statements allow data
to be added, updated, and deleted from a database.

A database should be carefully designed. Entity-relationship modeling,
with its associated ER diagrams, is a popular technique for database
design. ER diagrams graphically depict the relationships among database
objects and show their attributes and cardinality constraints.
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Encryption
Have you ever purchased something over the Internet, done your

banking online, or transferred medical records through a Web site?

How confident are you that these are secure transactions? With

growing globalization of the Web, the ability to transfer sensitive infor-

mation securely from one computer to another is critical. Consider, for

example, the personal data that you provide when you purchase some-

thing online. E-commerce sites often require a credit card number, an

address, a telephone number, an e-mail address, and additional

marketing information such as age, sex, income, or interests. Who has

access to this data? Secure sites protect this personal information

through cryptography. The basic ideas of cryptography originated

before Roman times: Caesar coded his communications using a simple

alphabet code. Today, encryption, a type of cryptography, is used to

scramble and encode messages sent through the Internet. Once

encrypted, these messages can be deciphered only by using a key, or

translator. The goal of encryption is to maximize Web security so that

no one except the intended recipient can access transferred material.

Powerful encryption technology may improve online consumers’

confidence, but many people fear that sophisticated encryption can help

criminals, hackers, spies, and terrorists if they have access to it. The

U.S. government, for example, imposes certain restrictions on the

export of encryption technology, and some officials lobby for regula-

tions that would limit the strength of encryption technology products

within the United States. In the 1990s, the FBI supported a policy that

required citizens to surrender deciphering keys upon request. The

government could also gain access to secure information through “back

doors,” which bypass the need for a deciphering key in order to access

secure data. Privacy advocates protest against encryption restrictions.

They further argue that the government’s attempt to monitor encryp-

tion technology is Orwellian in nature. They further argue that back

doors open up secure sites for hackers, and that powerful encryption

helps keep confidential information out of the hands of criminals.

The terrorist attacks on the United States on September 11, 2001,

forced the encryption debate into the limelight. Undoubtedly, communi-

cation was key for the synchronization and execution of the attacks. The

terrorist organization may have communicated electronically by using

W
WW
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Exercises
1. What is an information system?

2. What is a spreadsheet?

3. What can be contained in a cell of a spreadsheet?

4. How do we refer to a particular cell of a spreadsheet?

5. How do you refer to a range of cells?

6. Express the following cells as ranges.
a. All the cells in row 2 from C through N.
b. All the cells in column B from 3 through 12.
c. All the cells in rows 4 through 7 from A through D.

7. Explain the data in column E and in row 7 of the tutor spreadsheet
example of Figure 12.2.

8. What is a spreadsheet formula?

Cardinality constraint  pg. 393

Cell  pg. 377

Circular reference  pg. 384

Database  pg. 385

Database management system  
pg. 385

Entity-relationship (ER) modeling
pg. 392

ER diagram  pg. 392

Field (or attribute)  pg. 386

Information system  pg. 376

Key  pg. 387

Query  pg. 386

Range  pg. 381

Record (or object, or entity)
pg. 386  

Relational model  pg. 386

Schema  pg. 386

Spreadsheet  pg. 377

Spreadsheet function  pg. 380

Structured Query Language (SQL)
pg. 390

Table  pg. 386

What-if analysis  pg. 385

encryption or hiding their messages in images, and the United States

failed to intercept and decipher this information. While it is not produc-

tive to speculate as to whether access to encryption keys and improved

ability to decipher codes could have changed the events of September 11,

2001, it is important to deliberate as to what type of control the govern-

ment should have, if any, over encrypted communication.

Key Terms
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9. What is a spreadsheet function?

10. In what ways does a spreadsheet dynamically respond to change?
How is this helpful?

11. What values in the tutor spreadsheet example of Figure 12.2 would
change if you modified the data that reflected the number of students
that Hal helped in week 4?

12. What values in the tutor spreadsheet example of Figure 12.2 would
change if you deleted the data for week 5?

13. What formulas would be stored in the following cells of the tutor
spreadsheet example of Figure 12.2?
a. cell D9
b. cell D10
c. cell E9
d. cell F5
e. cell F6
f. cell G7

14. List three different formulas that would compute the correct value for
the cell F9 in the tutor example of Figure 12.2.

15. The formula for cell D10 in the tutor example of Figure 12.2 could be
given as

=SUM(D4..D8)/5

Name two reasons why this formula is not a good solution. What is
the better solution?

16. How does copying formulas down a row or across a column some-
times help us set up a spreadsheet?

17. What is a spreadsheet circular reference? Why is it a problem?

18. Give a specific example of an indirect circular reference similar to the
one shown in Figure 12.5.

19. What is what-if analysis?

20. Name some what-if analysis questions that you might ask if you were
using a spreadsheet to plan and track some stock purchases. Explain
how you might set up a spreadsheet to help answer those questions.

For questions 21 through 24, use the paper spreadsheet form or use an
actual spreadsheet application program to design the spreadsheets. Your
instructor may provide more specific instructions regarding these
questions.

21. Design a spreadsheet to track the statistics of your favorite major
league baseball team. Include data regarding runs, hits, errors, and
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runs-batted-in (RBIs). Compute appropriate statistics for individual
players and the team as a whole.

22. Design a spreadsheet to maintain a grade sheet for a set of students.
Include tests and projects, given various weights to each in the calcula-
tion of the final grade for each student. Compute the average grade
per test and project for the whole class.

23. Assume you are going on a business trip. Design a spreadsheet to keep
track of your expenses and create a summary of your totals. Include
various aspects of travel such as car mileage, flight costs, hotel costs,
and miscellaneous (such as taxis and tips).

24. Design a spreadsheet to estimate and then keep track of a particular
project’s activities. List the activities, the estimated and actual dates
for those activities, and schedule slippage or gain. Add other data as
appropriate for your project.

25. Compare a database to a database management system.

26. What is a database schema?

27. Describe the general organization of a relational database.

28. What is a field in a database?

29. What other fields (attributes) might we include in the database table of
Figure 12.7?

30. What other fields (attributes) might we include in the database table of
Figure 12.8?

31. What is a key in relational database table?

32. Specify the schema for the database table of Figure 12.8.

33. How are relationships represented in a relational database?

34. Define an SQL query that returns all attributes of all records in the
�9�E=h—O table.

35. Define an SQL query that returns the movie id number and title of all
movies that have an R rating.

36. Define an SQL query that returns the address of every customer in the
�9�E=h—O table that lives on Lois Lane.

37. Define an SQL statement that inserts the movie Armageddon into the
X=\"— table.

38. Define an SQL statement that changes the address of Amy Stevens in
the �9�E=h—O table.

39. Define an SQL statement that deletes the customer with a CustomerId
of 103.
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40. What is an ER diagram?

41. How are entities and relationships represented in an ER diagram?

42. How are attributes represented in an ER diagram?

43. What are cardinality constraints and how are they shown in ER
diagrams?

44. What are the three general cardinality constraints?

45. Design a database that stores data about the books in a library, the
students who use them, and the ability to check out books for a period
of time. Create an ER diagram and sample tables.

46. Design a database that stores data about the courses taught at a
university, the professors who teach those courses, and the students
who take those courses. Create an ER diagram and sample tables.

Thought Questions
1. Other than the examples given in this chapter, think of five situations

for which you might set up a spreadsheet.

2. Other than the examples given in this chapter, think of five situations
for which you might set up a database.

3. Does the use of computerized databases mean that we can do away
with paper files? What sorts of paper files might still be needed?

4. What is encryption and how does it relate to you as a student?

5. How does encryption relate to e-commerce?

6. How does encryption relate to national defense?

7. What is the state of the encryption debate today? How much of an
effect did September 11, 2001, have on this debate?

?
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Artificial Intelligence

The subdiscipline of computing called artificial intelligence (AI) is

important in many ways. To many people it represents the future

of computing—the evolution of a machine to make it more like a

human. To others it is an avenue for applying new and different

technologies to problem solving.

The term artificial intelligence probably conjures up various

images in your mind, such as a computer playing chess or a robot

doing household chores. These are certainly aspects of AI, but it

goes far beyond that. AI techniques affect the way we develop

many types of application programs, from the mundane to the

fantastic. The world of artificial intelligence opens doors that no

other aspect of computing does. Its role in the development of

state-of-the-art application programs is crucial.

399
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Goals
After studying this chapter, you should be able to:

� distinguish between the types of problems that humans do best and those
that computers do best.

� explain the Turing test.
� define what is meant by knowledge representation and demonstrate how

knowledge is represented in a semantic network.
� develop a search tree for simple scenarios.
� explain the processing of an expert system.
� explain the processing of biological and artificial neural networks.
� list the various aspects of natural language processing.
� explain the types of ambiguities in natural language comprehension.

13.1 Thinking Machines

Computers are amazing devices. They can draw complex three-dimen-
sional images, process the payroll of an entire corporation, and determine
whether the bridge you’re building will stand up to the pressure of the
traffic expected. Yet they have trouble understanding a simple conversa-
tion and might not be able to distinguish between a table and a chair.

Certainly a computer can do some things better than a human can. For
example, if you are given the task of adding a thousand four-digit numbers
together using pencil and paper, you could do it. But it would take you quite
a long time, and you may very likely make an error while performing the
calculations. A computer could do it in a fraction of a second without error.

However, if you are asked to point out the cat in the picture shown in
Figure 13.1, you could do it without hesitation. A computer would have
difficulty making that identification and may very well get it wrong.
Humans bring a great deal of knowledge and reasoning capability to these
types of problems; we are still struggling with ways to perform human-like
reasoning using a computer.

So in our modern state of technology, computers are good at computa-
tion, but less good at things that require intelligence. The field of artificial

intelligence (AI) is the study of computer systems that attempt to model
and apply the intelligence of the human mind.

In this book we’ve occasionally made a distinction between the use of
the words data, information, and knowledge. We use them interchange-
ably in this chapter.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Turing test A behav-
ioral approach to deter-
mining if a computer
system is intelligent

13.1 Thinking Machines 401

Figure 13.1

A computer might have
trouble identifying the cat 
in this picture. Courtesy of

Amy Rose

The Turing Test
In 1950 English mathematician Alan Turing wrote a landmark paper that
asked the question: Can machines think? After carefully defining terms
such as intelligence and thinking, he ultimately concluded that we would
eventually be able to create a computer that thinks. But then he asked
another question: How will we know when we’ve succeeded?

His answer to that question came to be called the Turing test, which is
used to empirically determine whether a computer has achieved intelli-
gence. The test is based on whether a computer could fool a human into
believing that the computer is another human.

Variations on Turing tests have been defined over the years, but we
focus on the basic concept here. The test is set up as follows: A human
interrogator sits in a room and uses a computer terminal to communicate
with two respondents, A and B. The interrogator knows that one respon-
dent is human and the other is a computer, but doesn’t know which is
which. See Figure 13.2.

After holding conversations with both A and B, the interrogator must
decide which respondent is the computer. This procedure is repeated with
numerous human subjects. The premise is that if the computer could fool
enough interrogators, then it could be considered intelligent.

Some people argue that the Turing test is a good test for intelligence
because it requires that a computer possess a wide range of knowledge and
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Figure 13.2

In a Turing test, the inter-
rogator must determine
which respondent is the
computer and which is the
human.

have the flexibility necessary to deal with changes in conversation. To fool
a human interrogator, the knowledge required by the computer goes
beyond facts; it includes an awareness of human behavior and emotions.

Others argue that the Turing test doesn’t really demonstrate that a
computer understands language discourse, which is necessary for true
intelligence. They suggest that a program could simulate language compre-
hension, perhaps enough to pass the Turing test, but that alone does not
make the computer intelligent.

A computer that passes the Turing test would demonstrate weak equiv-

alence, meaning that the two systems (human and computer) are equiva-
lent in results (output), but they do not arrive at those results in the same
way. Strong equivalence indicates that two systems use the same internal
processes to produce results. Some AI researchers assert that true artificial
intelligence will not exist until we have achieved strong equivalence—that
is, until we create a machine that processes information as the human
mind does.

New York philanthropist Hugh Loebner organized the first formal
instantiation of the Turing test. The competition has been run annually
since 1991. A grand prize of $100,000 and a solid gold medal will be
awarded for the first computer whose responses are indistinguishable from
a human’s. So far the grand prize is still up for grabs. A prize of $2,000
and a bronze medal is awarded each year for the computer that is deter-
mined to be the most human-like, relative to the rest of the competition
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that year. The Loebner prize contest has become an important annual
event for computing enthusiasts interested in artificial intelligence.

Aspects of AI
The field of artificial intelligence has many branches. Our overall goal in
this chapter is to give you some insight into the primary issues involved
and the challenges yet to be overcome. In the remaining sections of this
chapter, we explore the following issues in the world of AI:

� Knowledge representation—the techniques used to represent knowl-
edge so that a computer system can apply it to intelligent problem
solving

� Expert systems—computer systems that embody the knowledge of
human experts

� Neural networks—computer systems that mimic the processing of
the human brain

� Natural language processing—the challenge of processing languages
that humans use to communicate

� Robotics—the study of robots

13.2 Knowledge Representation

The knowledge we need to represent an object or event varies based on the
situation. Depending on the problem we are trying to solve, we need
specific information. For example, if we are trying to analyze family rela-
tionships, it’s important to know that Fred is Cathy’s father, but not that
Fred is a plumber or that Cathy owns a pickup truck. Furthermore, not
only do we need particular information, we need it in a form that allows
us to search and process that information efficiently.

There are many ways to represent knowledge. We could describe it in
natural language. That is, we could write an English paragraph describing,
for instance, a student and the ways in which the student relates to the
world. However, though natural language is very descriptive, it doesn’t
lend itself to efficient processing. We therefore could formalize the
language; here we describe the student, creating an almost mathematical
notation. This formalization lends itself to more rigorous computer
processing, but it is difficult to learn and use correctly.

The concept of a data structure was discussed in Chapter 9, and to a
certain extent the issues here are the same. We want to create a logical
view of the data, independent of its actual underlying implementation, so
that the data can be processed in specific ways. In the world of artificial
intelligence, however, the information we want to capture often leads to

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Semantic network A
knowledge representa-
tion technique that repre-
sents the relationships
among objects

404 Chapter 13 Artificial Intelligence

new and interesting data representations. Not only do we want to capture
facts, but also relationships. The kind of problem we are trying to solve
may determine the structure we impose on the data.

As specific problem areas have been investigated, new techniques for
representing knowledge have been developed. We examine two in this
section: semantic networks and search trees.

Semantic Networks
A semantic network is a knowledge representation technique that focuses
on the relationships between objects. A directed graph is used to represent
a semantic network or net. The nodes of the graph represent objects and
the arrows between nodes represent relationships. The arrows are labeled
to indicate the types of relationships that exist.

Semantic nets borrow many object-oriented concepts discussed in Chap-
ters 6 and 8, including inheritance and instantiation. Recall that an inheri-
tance relationship indicates that one object is-a more specific version of
another object. And instantiation is the relationship between an actual
object and something that describes it (like a class).

Examine the semantic network shown in Figure 13.3. It has several is-a
relationships and several instance-of relationships. But it also has several
other types of relationships, such as lives-in (John lives-in Heritage Acres).

Figure 13.3

A semantic network
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Herbert A. Simon was a Renaissance man
of our generation. His home pages included
sections on Computer Science, Psychology,
and Philosophy, yet his PhD was in Political
Science and his Nobel Peace Price was in
Economics.

Dr. Simon was born in Milwaukee in
1916. His father was an engineer who
became a patent attorney, and his mother
was an accomplished pianist. He received
his undergraduate degree in 1936 from the
University of Chicago and worked for several years
as an editor and administrator. He completed his
Ph.D. at the University of Chicago in 1943 in Political
Science and began a 58-year academic career, the
last 52 years of which were at Carnegie Mellon.

In 1955, Dr. Simon, Allen Newell, and J. C. Shaw
(their programmer) created Logic Theorist, a program
that could discover geometric theorem proofs. At
about the same time, Simon was working with E. A.
Feigenbaum on EPAM, a program that modeled their
theory of human perception and memory. These
programs and the subsequent series of papers on the
simulation of human thinking, problem solving, and
verbal learning marked the beginning of the field of
Artificial Intelligence. In 1988, Simon and Newell
received the Turing Award of the Association for
Computing Machinery for their work in human

problem solving. In 1995, Simon received
the Research Excellence Award of the Inter-
national Joint Conference on Artificial
Intelligence.

Dr. Simon’s interest in information
processing and decision making led him to
develop his economic theory of “bounded
rationality,” for which he received the
1978 Nobel Prize in Economics. Classical
economics had argued that people make
rational choices to get the best item at the

best price. Dr. Simon reasoned that the “best” choice
was impossible because there are too many choices
and too little time to analyze them. Thus people
choose the first option that is good enough to meet
their needs. His Nobel Prize read “for his pioneering
research into the decision-making process within
economic organizations.”

Dr. Simon remained extraordinarily productive
throughout his long career. His bibliography contains
173 entries before 1960, 168 in the 60s, 154 in the
70s, 207 in the 80s, and 236 in the 90s. Outside of
his professional life, Dr. Simon enjoyed playing the
piano, especially with friends who played violin,
viola, and other instruments. He died in February
2001, and had continued his research and interac-
tions with students until a few weeks before his death.

Herbert A. Simon

There are essentially no restrictions on the types of relationships that can
be modeled in a semantic network.

Many more relationships could be represented in this semantic net. For
instance, we could have indicated that any person is either left- or right-
handed, or that John owns a car that is a Honda, or that every student has
a grade-point average. The relationships that we represent are completely
our choice, based on the information we need to answer the kinds of ques-
tions that we will face.

The way in which we establish the relationships can vary as well. For
example, instead of showing that individual students live in particular
dwellings, we could show that dwellings house certain people. In other

405
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words, we could turn those arrows around, changing the lives-in relation-
ship to a houses relationship. Again, the choice is ours as we design the
network. Which way best describes the kind of issues we address? In some
situations we may choose to represent both relationships.

The types of relationships represented determine which questions are
easily answered, which are more difficult to answer, and which cannot be
answered. For example, the semantic net in Figure 13.3 makes it fairly
simple to answer the following questions:

� Is Mary a student?

� What is the gender of John?

� Does Mary live in a dorm or an apartment?

� What is Mary’s student ID number?

However, the following questions are more difficult to answer with this
network:

� How many students are female and how many are male?

� Who lives in Dougherty hall?

Note that the information to answer these questions is in the network; it’s
just not as easy to process. These last questions require the ability to easily
find all students, and there are no relationships that make that information
easy to obtain. This network is designed more for representing the rela-
tionships that individual students have to the world at large.

This network cannot be used to answer the following questions, because
the knowledge required is simply not represented:

� What kind of car does John drive?

� What color are Mary’s eyes?

We know that Mary has an eye color, because she is a student and all
students are people and all people have a particular eye color. We just
don’t know what her particular eye color is, given the information stored
in this net.

A semantic network is a powerful, versatile way to represent a lot of
information. The challenge is to model the right relationships and to popu-
late (fill in) the network with accurate and complete data.

Search Trees
In Chapter 9, we mentioned tree structures in general, but concentrated on
binary trees, that is, trees with only two, one, or zero children. A general
tree structure, in which a node can have possibly many children, plays an
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important role in artificial intelligence. A tree is used to represent possible
alternatives in adversarial situations, such as game playing.

A search tree is a structure that represents all possible moves in a
game, for both you and your opponent. You can create a game program
that maximizes its chances to win. In some cases it may even be able to
guarantee a win.

Note that in the binary search trees of Chapter 9, a single value was used
to determine whether the search should continue right or left. In general
search trees used in artificial intelligence, the paths down a tree represent a
series of decisions made by the players. A decision made at one level
dictates the options left to the next player. Each node of the tree represents
a move based on all other moves that have occurred thus far in the game.

Let’s define a simplified variation of a game called Nim to use as an
example. In our version, there are a certain number of spaces in a row. The
first player may place one, two, or three Xs in the leftmost spaces. The
second player may then place one, two, or three Os immediately adjacent
to the Xs. Play continues back and forth. The goal is to place your mark in
the last (rightmost) space.

Here is an example of a play of our version of Nim using nine spaces:

Initial: X X X X X X X X X

Player 1: = = = X X X X X X

Player 2: = = = \ X X X X X

Player 1: = = = \ = X X X X

Player 2: = = = \ = \ \ X X

Player 1: = = = \ = \ \ = = Player 1 wins.

The search tree shown in Figure 13.4 shows all possible moves in our
version of the game using only five spaces (rather than nine spaces used in
the example). At the root of the tree, all spaces are initially empty. The
next level shows the three options the first player has (to place one, two, or
three Xs). At the third level, the tree shows all possible options that player
2 has, given the move that player 1 already made.

Note that when a large number of marks are made in one turn, there
may be fewer options for the next player, and the paths down the tree tend
to be shorter. Follow the various paths down from the root, noting the
different options taken by each player. Every single option in our simpli-
fied game is represented in this tree.

We’ve deliberately simplified the game of Nim so that we can show a
simple search tree. The real game of Nim has some important differences:
There are multiple rows, items are removed instead of added, and other
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Figure 13.4 A search tree for a simplified version of Nim
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differences. However, even our simplified version demonstrates several
interesting mathematical ideas.

The concepts of search tree analysis can be applied nicely to other, more
complicated games such as chess. In such complex games the search trees
are far more complicated, having many more nodes and paths. Think
about all the possible moves you might initially make in a chess game.
Then consider all possible moves your opponent might make in response. A
full chess search tree contains all possible moves at each level, given the
current status of the board. Because these trees are so large, only a fraction
of the tree can be analyzed in a reasonable time limit, even with modern
computing power.

As machines have become faster, more of the search tree could be
analyzed, but still not all of the branches. Programmers came up with ways
to “prune” the search trees, eliminating paths that no human player would
consider reasonable. And still the trees are too large to completely analyze
for each move.

So the question becomes, do we choose a depth-first approach,
analyzing selective paths all the way down the tree that hopefully result in
successful moves? Or do we choose a breadth-first approach, analyzing all
possible paths but only for a short distance down the tree? Both
approaches, shown in Figure 13.5, may miss key possibilities. This issue
has been debated among AI programmers for many years, though a
breadth-first approach tends to yield the best results. It seems that it’s
better to make consistently error-free conservative moves than to occasion-

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Knowledge-based

system Software that
uses a specific set of
information

Expert system A soft-
ware system based on
the knowledge of human
experts

13.3 Expert Systems 409

Figure 13.5 Depth-first and breadth-first searches

Depth-First Search Breadth-first Search

ally make spectacular moves. Programs that play chess at the master level
have become commonplace.

In 1997, the computer chess program Deep Blue, developed by IBM
using an expert system, defeated world champion Garry Kasparov in a six-
game match. This marked the first time a computer had defeated a human
champion at master-level play.

13.3 Expert Systems

We often rely on experts for their unique knowledge and understanding of
a particular field. We go to a doctor when we have a health problem, a car
mechanic when our car won’t start, and an engineer when we need to
build something.

A knowledge-based system is a software system that embodies and uses
a specific set of information from which it extracts and processes particular
pieces. The term expert system and knowledge-based system are often used
interchangeably, though expert systems usually embody the knowledge of a
specialized field, modeling the expertise of a professional in that field. A
user consults an expert system when confronted with a particular problem,
and the system uses its expertise to advise the user how to proceed.
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An expert system uses a set of rules to guide its processing, and there-
fore is called a rule-based system. The set of rules in an expert system is
referred to as its knowledge base. The inference engine is the part of the
software that determines how the rules are followed and therefore what
conclusions can be drawn.

A doctor is the living equivalent of an expert system. He or she gathers
information by asking you questions and running tests. Your initial
answers and the test results may lead to more questions and more tests.
The rules embodied by the doctor’s knowledge allow him or her to know
what questions to ask next. The doctor then uses the information to rule
out various possibilities and eventually narrows in on a specific diagnosis.
Once the problem is identified, that specific knowledge allows the doctor
to suggest the appropriate treatment.

Let’s walk through an example of expert-system processing. Suppose
you wanted to answer the question: What type of treatment should I put
on my lawn?

An expert system that embodies the knowledge of a gardener would be
able to guide you in this decision. Let’s define a few variables so that we
can abbreviate the rules in our gardening system:

NONE—apply no treatment at this time

TURF—apply a turf-building treatment

WEED—apply a weed-killing treatment

BUG—apply a bug-killing treatment

FEED—apply a basic fertilizer treatment

WEEDFEED—apply a weed-killing and fertilizer combination
treatment

Note that these values represent various conclusions that the expert system
might draw after analyzing the situation. The following Boolean variables
represent the current state of the lawn:

BARE—the lawn has large, bare areas

SPARSE—the lawn is generally thin

WEEDS—the lawn contains many weeds

BUGS—the lawn shows evidence of bugs

We assume that initially the system has no direct data regarding the status
of the lawn. The user would have to be questioned to determine, for
instance, if the lawn has large, bare areas. Other data may be available
directly to the system through some calculation or in some type of data-
base, such as:
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LAST—the last date a lawn treatment was applied

CURRENT—the current date

SEASON—the current season

Now we can formulate some rules that our system can use to draw a
conclusion. Rules take the form of if-then statements.

if (CURRENT – LAST < 30) then NONE

if (SEASON = winter) then not BUGS

if (BARE) then TURF

if (SPARSE and not WEEDS) then FEED

if (BUGS and not SPARSE) then BUG

if (WEEDS and not SPARSE) then WEED

if (WEEDS and SPARSE) then WEEDFEED

Note that this is only a sample of the types of rules that may exist in such a
system. Real expert systems may have thousands of rules to help analyze a
situation. The set of rules presented here do not cover all situations, even
in our small example.

When executed, the inference engine selects a rule to determine whether
it is applicable. That may only be determined by questioning the user. If it
is applicable, that may affect the applicability of other rules. The inference
engine continues to apply rules until no applicable rules remain. Don’t
think of the rules as linear (followed in sequence); the inference engine
applies whichever rules it can and continually loops until it reaches a
conclusion.

An execution of our inference engine may result in the following inter-
action:

System: Does the lawn have large, bare areas?

User: No

System: Does the lawn show evidence of bugs?

User: No

System: Is the lawn generally thin?

User: Yes

System: Does the lawn contain significant weeds?

User: Yes

System: You should apply a weed-killing and fertilizer combination
treatment.
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Note that the system doesn’t ask about things it can
look up, such as the date of the last treatment. And
apparently our scenario didn’t take place in winter,
because the system asked about a potential bug
problem. If it had been winter, the bug issue would
have already been eliminated.

An expert system has many advantages over other
advising techniques. First, it is goal-oriented. It
doesn’t focus on abstract or theoretical information,
but rather focuses on solving a specific problem.
Second, it is efficient. It records previous responses
and doesn’t ask irrelevant questions. And third, a
real expert system, through a carefully constructed
set of rules, can usually provide useful guidance even
if you don’t know the answers to some questions.

13.4 Neural Networks

We’ve said that some artificial intelligence researchers
focus on how the human brain actually works and try
to construct computing devices that work in similar
ways. An artificial neural network in a computer

attempts to mimic the actions of the neural networks of the human body.
Let’s first look at how a biological neural network works.

Biological Neural Networks
A neuron is a single cell that conducts a chemically-based electronic signal.
The human brain contains billions of neurons connected into a network.
At any point in time a neuron is in either an excited or inhibited state. An
excited neuron conducts a strong signal and an inhibited neuron conducts
a weak signal. A series of connected neurons forms a pathway. The signal
along a particular pathway is strengthened or weakened according to the
state of the neurons it passes through. A series of excited neurons creates a
strong pathway.

A biological neuron has multiple input tentacles called dendrites and one
primary output tentacle called an axon. The dendrites of one neuron pick
up the signals from the axons of other neurons to form the neural network.
The gap between an axon and a dendrite is called a synapse. See Figure
13.6. The chemical composition of a synapse tempers the strength of its
input signal. The output of a neuron on its axon is a function of all of its
input signals.

LISP is the language for AI
LISP (LISt Processor) is generally regarded as the
programming language for AI. John McCarthy
formulated LISP for AI applications in the late
50s. LISP’s essential data structure is an ordered
sequence of elements called a list. The elements
may be indivisible entities called “atoms” (func-
tions, names, or numbers) or they may be other
lists. A programmer doesn’t need to specify in
advance the number or type of elements in a list.
A list can be used to represent an almost limitless
number of things, from expert rules to computer
programs to thought processes to system compo-
nents.

LISP programs rely on recursion rather than
looping. Scheme, a LISP dialect, is used as an
introductory programming language at some
universities. LISP and its dialects belong to the
functional paradigm of languages.1 W
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Figure 13.6 A biological neuron Adapted from Chiras, D. Human Biology, Third Edition, 1999:

Jones and Bartlett Publishers, Sudbury, MA. www.jbpub.com. Reprinted with Permission
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So, a neuron accepts multiple input signals and then controls the contri-
bution of each signal based on the “importance” the corresponding
synapse gives to it. If enough of these weighted input signals are strong, the
neuron goes into an excited state and produces a strong output signal. If
enough of the input signals are weak, or are weakened by the weighting
factor of that signal’s synapse, the neuron goes into an inhibited state and
produces a weak output signal.

Neurons fire, or pulsate, up to 1,000 times per second, so the pathways
along the neural nets are in a constant state of flux. The activity of our
brain causes some pathways to strengthen and others to weaken. As we
learn new things, new strong neural pathways in our brain are formed.

Artificial Neural Networks
Each processing element in an artificial neural net is analogous to a biolog-
ical neuron. An element accepts a certain number of input values and
produces a single output value of either 0 or 1. These input values come
from the output of other elements in the network, so each input value is
either 0 or 1. Associated with each input value is a numeric weight. The
effective weight of the element is defined to be the sum of the weights
multiplied by their respective input values.

Suppose an artificial neuron accepts three input values: v1, v2, and v3.
Associated with each input value is a weight: w1, w2, and w3. The effec-
tive weight is therefore:

v1*w1 + v2*w2 + v3*w3

Each element has a numeric threshold value. The element compares the
effective weight to the threshold value. If the effective weight exceeds the
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threshold, the unit produces an output value of 1. If it does not exceed the
threshold, it produces an output value of 0.

This processing closely mirrors the activity of a biological neuron. The
input values correspond to the signals passed in by the dendrites. The weight
values correspond to the controlling effect of the synapse for each input signal.
The computation and use of the threshold value correspond to the neuron
producing a strong signal if “enough” of the weighted input signals are strong.

Let’s compute an actual example. In this case, let’s assume there are
four inputs to the processing element. There are, therefore, four correspon-
ding weight factors. Suppose the input values are 1, 1, 0, and 0, and the
corresponding weights are 4, �2, �5, and �2, and the threshold value for
the element is 4. The effective weight is:

1(4) + 1(�2) + 0(�5) + 0(�2)

or 2. Since the effective weight does not exceed the threshold value, the
output of this element is 0.

Note that though the input values are either 0 or 1, the weights can be
any value at all. They can even be negative. We’ve used integers for the
weights and threshold values, but they can be real numbers as well.

The output of each element is truly a function of all pieces. If an input
signal is 0, its weight is irrelevant. If the input signal is 1, the magnitude of
the weight, and whether it is positive or negative, greatly affects the effec-
tive weight. And no matter what effective weight is computed, it’s viewed
relative to the threshold value of that element. That is, an effective weight
of 15 may be enough for one element to produce an output of 1, but for
another element it results in an output of 0.

The pathways established in an artificial neural net are a function of its
individual processing elements. And the output of each processing
element changes on the basis of the input signals, the weights, and/or the
threshold values. But the input signals are really just output signals from
other elements. Therefore, we affect the processing of a neural net by
changing the weights and threshold value in individual processing
elements.

The process of adjusting the weights and threshold values in a neural
net is called training. A neural net can be trained to produce whatever
results are required. Often, initially, a neural net is set up with random
weights, threshold values, and initial inputs. The results are compared to
the desired results and changes are made. This process continues until the
desired results are achieved.

Consider the problem we posed at the beginning of this chapter: Find a
cat in a photograph. Suppose a neural net is used to address this problem,
using one output value per pixel. Our goal is to produce an output value of
1 for every pixel that contributes to the image of the cat, and to produce a
0 if it does not. The input values for the network could come from some
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representation of the color of the pixels. We then train the network using
multiple pictures containing cats, reinforcing weights and thresholds that
lead to the desired (correct) output.

Think about how complicated this problem is! Cats come in all shapes,
sizes, and colors. They can be oriented in a picture in thousands of ways.
They might blend into their background (in the picture) or they might not.
A neural net for this problem would be incredibly large, taking all kinds of
situations into account. The more training we give the network, the more
likely it will produce accurate results in the future.

But what else are neural nets good for? They have been used success-
fully in thousands of application areas, in both business and scientific
endeavors. They can be used to determine if a client should be given a
mortgage. They can be used in optical character recognition, allowing a
computer to “read” a printed document. They can even be used to detect
plastic explosives in luggage at airports.

The versatility of neural nets lies in the fact that there is no inherent
meaning in the weights and threshold values of the network. Their
meaning comes from the interpretation we apply to them.

13.5 Natural Language Processing

In a science fiction movie, it’s not uncommon to have a human inter-
acting with a computer by simply talking to it. The captain of a spaceship
might say, “Computer, what is the nearest starbase with medical facilities
sufficient to handle Laharman’s syndrome?” The computer might then
respond, “Starbase 42 is 14.7 light years away and has the necessary
facilities.”

How far is this science fiction from science fact? Ignoring space travel
and advanced medicine for now, why don’t we interact with computers
just by talking to them? Well, to a limited extent we can. We don’t tend to
have free-flowing verbal conversations yet, but we’ve made headway.
Some computers can be set up to respond to specific verbal commands.

To probe this issue further, we must first realize that there are three basic
types of processing going on during human/computer voice interaction.

� voice recognition—recognizing human words

� natural language comprehension—interpreting human commu-
nication

� voice synthesis—recreating human speech

The computer must first recognize the distinct words that are being spoken
to it, then understand the meaning of those words, then (after determining
the answer) produce the words that make up the response.
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Common to all of these problems is the fact that we are using a natural

language, which can be any language that humans use to communicate,
such as English, Farsi, or Russian. Natural languages have inherent gram-
matical irregularities and ambiguities that make some of this processing
quite challenging.

Computing technology has made great headway in all of these areas,
though some more than others. Let’s explore each one in more detail.

Voice Synthesis
Voice synthesis is generally a well-understood problem. There are two basic
approaches to the solution: dynamic voice generation and recorded speech.

To generate voice output using dynamic voice generation, a computer
examines the letters that make up a word and produces the sequence of
sounds that correspond to those letters in an attempt to vocalize the word.
Human speech has been categorized into specific sound units called
phonemes. The phonemes for American English are shown in Figure 13.7.

After selecting the appropriate phonemes, the computer may modify the
pitch of the phoneme based on the context in which it is used. The duration of
each phoneme must also be determined. Finally, the phonemes are combined
to form individual words. The sounds themselves are produced electronically,

Figure 13.7 Phonemes for American English

Symbols Examples
p pipe
b babe
m maim
f fee, phone, rough
v vie, love
θ thin, bath

the, bathe
t tea, beat
n nine
l law, ball
r run, bar

Symbols Examples

Semi Vowels Dipthongs

Consonants Vowels

k kick, cat
g get

sing
shoe, ash, sugar
measure
chat, batch
jaw, judge, gin

d day, bad
uh uh

s see, less, city
z zoo, booze

Symbols Examples
i eel, sea, see
I ill, bill
e ale, aim, day

elk, bet, bear
at, mat

u due, new, zoo
book, sugar

o own, no, know

c

c

aw, crawl, law, dog
a hot, bar, dart

sir, nerd, bird
cut, bun

w we
h he
j you, beyond

aj bite, fight
aw out, cow

boy, boil
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designed to mimic the way a human vocal track produces
the sounds.

The challenges to this approach include the fact that
the way we pronounce words varies greatly among
humans, and the rules governing how letters contribute
to the sound of a word are not consistent. Dynamic
voice-generation systems often sound mechanical and
stilted, though usually the words are recognizable.

The other approach to voice synthesis is to play
digital recordings of a human voice saying specific
words. Sentences are constructed by playing the appro-
priate words in the appropriate order. Sometimes
common phrases or groups of words that are always
used together are recorded as one entity. Telephone
voice mail systems often use this approach: “Press 1 to
leave a message for Alex Wakefield.”

Note that each word or phrase needed must be
recorded separately. Furthermore, since words are
pronounced differently in different contexts, some
words may have to be recorded multiple times. For
example, a word at the end of a question rises in pitch
compared to its use in the middle of a sentence. As the
need for flexibility increases, recorded solutions
become problematic.

The dynamic voice-generation technique does not generally produce
realistic human speech, but attempts to vocalize any words presented to it.
Recorded playback is more realistic; it uses a real human voice but is
limited in its vocabulary to the words that have been prerecorded, and it
must have the memory capacity to store all the needed words. Generally,
recorded playback is used when the number of words used is small.

Voice Recognition
When having a conversation, you may need to have something repeated
because you didn’t understand what the person said. It’s not that you
didn’t understand the meaning of the words (you hadn’t gotten that far).
You simply didn’t understand what words were being spoken. This might
happen for several reasons.

First, the sounds that each person makes when speaking are unique. We
each have a unique shape to our mouth, tongue, throat, and nasal cavities
that affect the pitch and resonance of our spoken voice. Thus we can say we
“recognize” someone’s voice, identifying him or her from the way the words
sound when spoken by that person. But that also means that each person says
any given word somewhat differently, complicating the task of recognizing

The National Weather Service gets a
new voice

In August of 2001, the National Oceanic and
Atmospheric Administration (NOAA) awarded
Siemens Information and Communication
Network of Boca Raton, Florida, a contract for
the voice-improvement software product known
as Speechify. This software combines concate-
nated, prerecorded phonetic sounds with the
emphasis and intonation of a human voice. The
contract award calls for both a male and a
female voice. Speechify voices received the most
favorable comments in the Web page public-
opinion survey.

“Paul,” the original computerized weather fore-
caster for NOAA Weather Radio, had been crit-
icized for sounding too stilted and foreign. Paul
will be replaced by Donna and Craig.2
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the word in the first place. Speech impediments, mumbling, volume, regional
accents, and the health of the speaker further complicate this problem.

Furthermore, humans speak in a continuous, flowing manner. Words are
strung together into sentences. Sometimes we speak so quickly that two words
may sound like one. Humans have great abilities to divide the series of sounds
into words, but even we can become confused if a person speaks too rapidly.

Related to this issue are the sounds of words themselves. Sometimes it’s
difficult to distinguish between phrases like “ice cream” and “I scream.”
And homonyms such as “I” and “eye” or “see” and “sea” sound exactly
the same but are unique words. Humans can often clarify these situations
by the context of the sentence, but that processing requires another level of
comprehension.

So, if we humans occasionally have trouble understanding the words we
say to each other, consider how difficult this problem is for a computer.
Modern voice-recognition systems still do not do well with continuous,
conversational speech. The best success has been with systems that assume
disjointed speech, in which words are clearly separated.

Further success is obtained when voice recognition systems are
“trained” to recognize a particular human’s voice and a set of vocabulary
words. A spoken voice can be recorded as a voiceprint, which plots the
frequency changes of the sound produced by the voice when speaking a
specific word. A human trains a voice-recognition system by speaking a
word several times so that the computer can record an average voiceprint
for that word by that person. Later, when a word is spoken, the recorded
voiceprints can be compared to determine which word was spoken.

Voice-recognition systems that are not trained for specific voices and
words do their best to recognize words by comparing generic voiceprints.
While less accurate, using generic voiceprints avoids the time-consuming
training process and allows anyone to use the system.

Natural Language Comprehension
Even if a computer recognizes the words that are spoken, it is another task
entirely to understand the meaning of those words. This is the most chal-
lenging aspect of natural language processing. Natural language is inher-
ently ambiguous, meaning that the same syntactic structure could have
multiple valid interpretations. These ambiguities can arise for several
reasons.

One problem is that a single word can have multiple definitions and can
even represent multiple parts of speech. The word “light,” for instance, is
both a noun and a verb. This is referred to as a lexical ambiguity. A
computer attempting to apply meaning to a sentence would have to deter-
mine how the word was being used. Consider the following sentence:

Time flies like an arrow.
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This sentence might mean that time seems to move quickly, just like an
arrow moves quickly. That’s probably how you interpreted it when you
read it. However, note that the word time can also be a verb, such as when
you time the runner of a race. The word flies can also be a noun. There-
fore, you could interpret this sentence as a directive to time flies in the same
manner in which an arrow times flies. Since an arrow doesn’t time things,
you probably wouldn’t apply that interpretation. But it is no less valid than
the other one! Given the definition of the words, a computer would not
know which interpretation was appropriate. Note that we could even inter-
pret this sentence a third way, indicating the preferences of that rare species
we’ll call a “time fly.” After all, fruit flies like a banana. That interpreta-
tion probably sounds ridiculous to you, but these ambiguities cause huge
problems when it comes to a computer understanding natural language.

A natural language sentence can also have a syntactic ambiguity

because phrases can be put together in various ways. For example:

I saw the Grand Canyon flying to New York. 

Since canyons don’t fly, there is one logical interpretation. But because the
sentence can be constructed that way, there are two valid interpretations.
To reach the desired conclusion, a computer would have to “know” that
canyons don’t fly and take that into account.

Referential ambiguity can occur with the use of pronouns. Consider the
following:

The brick fell on the computer but it is not broken. 

What is not broken, the brick or the computer? We might assume the
pronoun “it” refers to the computer in this case, but that is not obvious. In
fact, if a vase had fallen on the computer, even we humans wouldn’t know
what “it” referred to without more information.

Natural language comprehension is a huge area of study and goes well
beyond the scope of this book. But it’s important to understand the
reasons why this issue is so challenging.

13.6 Robotics

Robots are familiar to all of us. From television commercials about robotic
dogs to the nightly news about space exploration to assembly lines producing
beer, cars, or widgets, robots are a part of modern society. Robotics, the
study of robots, breaks down into two main categories: fixed robots and
mobile robots. The fixed robots are what you see on assembly lines. The
machines stay put and the products move. Because the world of a fixed robot
is circumscribed, its tasks can be built into the hardware. Thus fixed robots
belong mostly in the area of industrial engineering. Mobile robots, on the
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Both the National Science Foundation and the U.S.
Military funded large machine translation projects in
the late 1950s and early ‘60s. The vision of using a
computer to translate from one natural language to
another seemed immediately realizable. But the
approach of using large bilingual dictionaries and
word-by-word translation proved inadequate. This
inadequacy is demonstrated in the classic story of the

translation of the English expression “The spirit is
willing, but the flesh is weak” into Russian. The result
was “The vodka is acceptable, but the meat has
spoiled.”

Researchers realized that they needed to do more
fundamental research into language understanding
before tackling automatic language translation.

Early Promise of Machine Translation Not Realized

other hand, move about and must interact with their environment. Modeling
the world of the mobile robot requires the techniques of artificial intelligence.

The Sense-Plan-Act Paradigm
Mobile robotics is the study of robots that move relative to their environ-
ment, while exhibiting a degree of autonomy. The original approach to
modeling the world surrounding a mobile robot made use of plans. Plan-
ning systems are large software systems that, given a goal, a starting posi-
tion, and an ending situation, can generate a finite set of actions (a plan)
that, if followed (usually by a human), brings about the desired ending
situation. These planning systems solve general problems by incorporating
large amounts of domain knowledge. In the case of a mobile robot, the

ELIZA

ELIZA was an early natural-language program. In the
following script, the program plays the role of a
neutral psychotherapist.

The computer’s responses are in all uppercase.

Men are all alike.

IN WHAT WAY?

They’re always bugging us about something or
another.

CAN YOU THINK OF A SPECIFIC EXAMPLE?

Well, my boyfriend made me come here.

YOUR BOYFRIEND MADE YOU COME HERE?

He says I’m depressed much of the time.

I AM SORRY TO HEAR YOU ARE DEPRESSED.

It’s true. I am unhappy.

DO YOU THINK COMING HERE WILL HELP YOU
NOT TO BE UNHAPPY?

I need some help, that much seems certain.

. . .

WHAT ELSE COMES TO MIND WHEN YOU
THINK OF YOUR FATHER?

Bullies.

DOES THAT HAVE ANYTHING TO DO WITH THE
FACT THAT YOUR BOYFRIEND MADE YOU
COME HERE?3

More information about the ELIZA program can be
found on the Web site.

W
WW
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Sensing PlanningWorld
modeling Control Execution

Figure 13.8

The sense-plan-act (SPA)
paradigm

domain knowledge is the input from the robot’s sensors. In this approach,
the world of the robot is represented in a complex semantic net in which
the sensors on the robot are used to capture the data to build up the net.
Populating the net is time-consuming even for simple sensors; if the sensor
is a camera, the process is very time consuming. This approach is called
the sense-plan-act (SPA) paradigm4 shown in Figure 13.8.

The sensor data is interpreted by the world model, which in turn gener-
ates a plan of action. The robot’s control system (the hardware) executes
the steps in the plan. Once the robot moves, its sensors get new informa-
tion, and the cycle repeats with the new data being incorporated into the
semantic net. Problems occur when the new sensory data cannot be
processed fast enough to be used. (Perhaps the robot falls into a hole
before the word model recognizes that the change in light is a hole rather
than a shadow.) The flaw in this approach is that the representation of the
robot’s world as domain knowledge in a general system is too general, too
broad, and not tailored to the robot’s task.

Subsumption Architecture
In 1986, a paradigm shift occurred within the robotics community with
the introduction by Brooks of the subsumption architecture.5 Rather than
trying to model the entire world all the time, the robot is given a simple set
of behaviors each associated with the part of the world necessary for that
behavior. The behaviors run in parallel unless they came in conflict, in
which case an ordering of the goals of the behaviors determines which
behavior should be executed next. The idea that the goals of behaviors can
be ordered, or that the goal of one behavior can be subsumed by another,
led to the name of the architecture. See Figure 13.9.

Keep going to the left takes precedence over Avoid obstacles unless an
object gets too close, in which case the Avoid obstacles behavior takes prece-
dence. As a result of this approach, robots were built that could wander
around a room for hours without running into objects or into moving people.

The three laws of robotics defined by Isaac Asimov fit neatly into this
subsumption architecture.6 See Figure 13.10.

Another shift was away from viewing the world as a uniform grid with
each cell representing the same amount of real space towards viewing the
world as a topological map. Topological maps view space as a graph of
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Figure 13.9

The new control paradigm
Robust transit and station keeping

Avoid obstacles

Keep going to the left (or right)

Wander randomly

Figure 13.10

Asimov’s laws of robotics
are ordered.

Actuators

A robot may not injure a human
being or, through inaction, allow a
human being to come to harm.

A robot must obey orders given it
by a human being.

A robot must protect its own
existence.

Sensors

places connected by arcs, giving the notion of proximity and order but not
of distance. The robot navigates from place to place locally, which mini-
mizes errors. Also, topological maps can be represented in memory much
more efficiently than uniform grids.

In the ‘90s, a modified approach in which plans were used in conjunc-
tion with a set of behaviors with distributed world
views became popular.

Physical Components
We have been discussing the various approaches to
trying to get a robot to exhibit human-like behavior
and have ignored the physical components of a robot.
A robot is made up of sensors, actuators, and compu-
tational elements (a microprocessor). The sensors take
in data about the surroundings, the actuators move the
robot, and the computational elements send instruc-
tions to the actuators. Sensors are transducers that
convert some physical phenomena into electrical
signals that the microprocessor can read as data. There
are sensors that register the presence, absence, or inten-
sity of light. There are near-infrared proximity detec-

Robot competition and exhibition
Since 1992, the American Association for Artifi-
cial Intelligence (AAAI) Robot Competition and
Exhibition has drawn entries from all over the
world. The participants, who have included
students, senior professors, and young entrepre-
neurs, share the common goal of trying to inte-
grate software and hardware to get a robot to
act intelligently and autonomously in a given
task and environment. The entries represent the
cutting edge of robotics research. W
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Mars Polar lander vanishes
On December 3, 1999, the Mars polar lander
descended to the Martian surface and vanished.
The first signal from the lander was expected
approximately 30 minutes after landing. That
signal never came. In fact, no signal was ever
received from the lander.

The Mars Program Assessment report concluded:
“[T]he most probable cause of the failure was the
generation of spurious signals when the lander
legs were deployed during descent. The spurious
signals gave a false indication that the space-
craft had landed, resulting in a premature shut-
down of the engines and the destruction of the
lander when it crashed on Mars. Without any
entry, descent, and landing telemetry data, there
is no way to know whether the lander reached
the terminal descent propulsion phase. If it did
reach this phase, it is almost certain that prema-
ture engine shutdown occurred.”8

R2D2 charms millions
R2D2, the friendly, eccentric robot from the Star
Wars movies, became a household name in
1977 with the release of the original Star Wars
movie. A Web search for R2D2 conducted 25
years later produced over 1,200 references.

What is the Sojourner rover?
The Sojourner was man’s first attempt to operate
a remote control vehicle on another planet. After
landing, Sojourner drove down one of the two
ramps mounted to the lander petal. This exit and
subsequent exploration was watched by
hundreds of millions of fascinated earth-bound
viewers. This mission was conducted under the
constraint of a once-per-sol (Martian day)
opportunity for transmissions between the lander
and earth operators. Sojourner was able to
carry out her mission with a form of supervised
autonomous control in which goal locations
(called waypoints) or move commands were sent
to the rover ahead of time, and Sojourner then
navigated and safely traversed to these locations
on her own.

(Mars Now Team and the California Space
Institute. Oct. 6, 2001)9

Courtesy of NASA/JPL/Caltech

Courtesy of NASA/JPL/Caltech

Courtesy of Lucasfilm Ltd. Star Wars:
Episode IV—A New Hope © 1977
and 1997 Lucasfilm Ltd. & ™. All
Rights Reserved. Used under authori-
zation. Unauthorized duplication is
a violation of applicable law.
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tors, motion detectors, and force detectors that can all be used as sensors.
Cameras and microphones can be sensors. The three most common
systems on which robots move are wheels, tracks, and legs.

Summary

Artificial intelligence deals with the attempts to model and apply the intelli-
gence of the human mind. The Turing test is one measure to determine
whether a machine can think like a human by mimicking human conversation.

There are various aspects to the discipline of AI. Underlying all of them
is the need to represent knowledge in a form that can be processed effi-
ciently. Semantic networks are a graphical representation that captures
the relationships between objects in the real world. Questions can be
answered based on an analysis of the network graph. Search trees are a
valuable way to represent the knowledge of adversarial moves, such as in
a competitive game. For complicated games like chess, search trees are
enormous, so we still have to come up with strategies for efficient analysis
of these structures.

An expert system embodies the knowledge of a human expert. It uses a
set of rules to define the conditions under which certain conclusions can be
drawn. It is useful in many types of decision-making processes, such as
medical diagnosis.

Artificial neural networks mimic the processing of the neural networks
of the human brain. An artificial neuron produces an output signal based
on multiple input signals and the importance we give to those signals using
a weighting system. This mirrors the human neuron, in which synapses
temper the input signals from one neuron to the next.

Natural language processing deals with languages that we humans use to
communicate, such as English. Synthesizing a spoken voice can be accom-
plished by mimicking the phonemes of human speech or by replying prere-
corded words. Voice recognition is best accomplished when the spoken
words are disjoint, and even more so when the system is trained to recog-
nize a particular person’s voiceprint. Comprehending natural language—
applying an interpretation to the conversational discourse—is the heart of
natural language processing. It is complicated by various types of ambigui-
ties that allow one specific sentence to be interpreted in multiple ways.

Robotics, the study of robots, falls into two categories: fixed and
mobile. Fixed robots are those that stay put and have whatever they are
working on come to them. Mobile robots are those that are capable of
moving and require the techniques of artificial intelligence to model the
environment within which they move.
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Deep Linking
The incredible impact that the World Wide Web has on society can

undoubtedly be attributed to its ability to facilitate communication

and information exchange. It is a revolutionary medium in which

people can interact, conduct research, and post their thoughts and

ideas almost instantaneously. Users surf from web page to web page

with ease, following hyperlinks that direct them to relevant topics and

points of interest. These hyperlinks, which can appear as text or

images, respond to a mouse click and send the user a new page often

from outside of the original website. By connecting pages, hyperlinks

provide an important service to the user and are a defining feature of

the Web. In the early stages of web development, linking was

embraced as essential and recognized as an indispensable guide to

mapping cyberspace. As the Web has matured, however, deep linking

has become controversial. Deep linking occurs when one web page

includes a hyperlink to a web page that is buried deep within another

site, i.e. not to the other site’s homepage. While many companies

welcome visitors who stumble upon one of their pages, regardless of

whether or not it is their homepage, other companies feel that deep

linking is illegitimate, a technique that unfairly bypasses a site’s “front

door.”

Ticketmaster.com brought the problem to public attention when it

sued Microsoft in 1997 for inappropriately linking to its site.

Microsoft’s city-guide “Sidewalk” provided links to ticketing for

specific events on Ticketmaster.com that sent a wave of visitors to

pages deep within that site. Despite the traffic this link created, Ticket-

master.com felt that it should have control over how others link to its

site and that the deep link unfairly bypassed its advertising. Although

this case was settled out of court, Ticketmaster.com has subsequently

sued one of its rivals. Tickets.com, for a number of offenses including

improper linking. Ticketmaster.com contended that Tickets.com was

conducting unfair business practices by linking directly to pages within

its site and not to its homepage. Ticketmaster.com listed a number of

specific complaints, among them that deep linking hurt its advertising.

The court ruled that Tickets.com did not violate copyright law because

it did not republish in a new format the page to which it linked, nor

W
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was the relationship between the two sites likely to be misconstrued.

This decision, however, does not mean that the issue of deep linking

has been resolved. Other companies such as Ebay Inc. and Universal

Studios have similarly tried to prohibit deep linking into their web

sites, and the issue will continue to generate controversy as Internet

regulations develop and solidify.

Key Terms
Artificial intelligence (AI)  pg. 400

Artificial neural network  pg. 412

Breadth-first approach  pg. 408

Depth-first approach  pg. 408
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Inference engine  pg. 410

Knowledge-based system  pg. 409
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Exercises
1. Name three things that a computer can do well that a human cannot.

2. Name three things that a human can do well that a computer cannot.

3. What is the Turing test?

4. How is the Turing test organized and administered?

5. What is weak equivalence and how does it apply to the Turing test?

6. What is strong equivalence?

7. What is the Loebner prize?

8. Name and describe briefly five issues in the world of AI covered in this
chapter.

9. Name and define two knowledge representation techniques.
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10. What data structure defined in Chapter 9 is used to represent a
semantic network?

11. Create a semantic network for the relationships among your family
members. List five questions that your semantic net could easily be
used to answer and five questions that would be more of a challenge
to answer.

12. Create a semantic network for the relationships regarding books in a
library. List five questions that your semantic net could be easily used
to answer and five questions that would be more of a challenge to
answer.

13. Create a semantic network that captures the information in a small
section of a newspaper article.

14. What object-oriented properties do semantic networks posses?

15. What is a search tree?

16. Why are trees for complex games like chess so large?

17. Distinguish between depth-first searching and breadth-first searching.

18. What does it mean to prune a tree?

19. Distinguish between knowledge-based systems and expert systems.

20. Distinguish be rule-based systems and inference engines.

21. What is an example of a human expert system?

22. Define some variables and some rules that might be in an expert
system for automobile repair.

23. Define some variables and some rules that might be in an expert
system for loan approval.

24. Define some variables and some rules that might be in an expert
system used in selecting a neighborhood into which you will move.

25. What does the knowledge representation used in a neural network try
to mimic?

26. What is neuron?

27. What are the two states of a neuron?

28. Define a dendrite and an axon.

29. How is a neural network formed and what is the role of a synapse?

30. What puts a neuron into an excited state or an inhibited state?

31. How are new strong neural pathways formed in our brain?

32. If a processing element in an artificial neural net accepted four input
signals with values 0, 1, 0, and 1, using weights 5, 2, –2, and 7 and a
threshold value of 10, what would its output be?
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33. If a processing element in an artificial neural net accepted four input
signals with values 1, 1, 0, and 1, using weights 4.3, –3.7, –5.0, and
2.5 and a threshold value of 14.5, what would its output be?

34. Explain how a neural net can be trained.

35. What are the three basic types of processing that occur during
human/computer voice interaction?

36. Of the three types of processing in Exercise 35, which is the most
difficult?

37. What is a phoneme?

38. Describe the two distinct ways that voice synthesis can be accomplished.

39. What issues affect the ability to recognize the words spoken by a
human voice?

40. How can a voice-recognition system be trained?

41. Why are personalized voice-recognition systems so much better than
those that are not specific to a particular person?

42. Name and describe three kinds of ambiguity in natural language.

43. Give and explain an example of lexical ambiguity not found in this
chapter.

44. Give and explain an example of syntactic ambiguity not found in this
chapter.

45. Give and explain an example of referential ambiguity not found in this
chapter.

46. Name and describe two categories of robots.

47. What are planning systems?

48. What defines subsumption architecture?

49. Of what is a robot composed?

50. Is the following sentence ambiguous?  If so, explain why.

Go down the street to the left.

51. What kind of ambiguity (if any) is represented in Exercise 50?

52. Is the following sentence ambiguous?  If so, explain why.

After he threw the ball for the dog, he ran away.

53. What kind of ambiguity (if any) is represented in Exercise 52?

54. Is the following sentence ambiguous?  If so, explain why.

See Spot run.
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Thought Questions
1. Think of five questions that you might issue as the interrogator of a

Turing test. Why would a computer have difficulty answering them well?

2. Do you think that strong equivalence is possible?  How could it be
proven?

3. When you think of robots, what comes to mind?  Do you see a
human-like machine scampering around the floor? An assembly line
producing soft drinks or beer?

4. What do you think about deep linking?  Should all access to another
Web site be through the homepage of that Web site?  Would you feel
uncomfortable if someone accessed pages on your site that are in the
middle of your site?  Isn’t such a practice like taking comments out of
context?

5. Many commercial Web sites make their money by advertising.  Is
bypassing the advertising by deep linking ethical?  Should laws be
passed to disallow deep linking?

6. If you have a Web site, do you have links?  Are any of your links deep
links?  After reading about the issues surrounding deep linking, are
you going to change them?

?
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Simulation and 
Other Applications

Airplane manufacturers build wind tunnels to study airflow

around an airfoil on a new aircraft design. Pilots spend countless

hours in flight simulators, a model that recreates the responses of

an aircraft to actions the pilot might take, thus allowing the pilot

to learn to control the aircraft before he or she ever gets into the

cockpit. Before the plans of a new supermarket are finalized, a

computer program is run to help determine how many checkout

stations are needed for the expected number of customers. The

wind tunnel, the flight simulator, and the program are models. The

technique of using a model to represent phenomena, objects, or

situations is called simulation. In this chapter, we look at the

theory behind simulation and examine some concrete examples,

including models that predict the weather.

Two other applications, embedded systems and CAD (computer-

aided design) systems, are also covered in this chapter. They are

included to round out the discussion of the application layer.

431

Chapter 14

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Simulation Developing
a model of a complex
system and experi-
menting with the model
to observe the results

432 Chapter 14 Simulation and Other Applications

Goals
After studying this chapter, you should be able to

� define simulation.
� give examples of complex systems.
� distinguish between continuous and discrete event simulation.
� explain how object-oriented design principles can be used in building

models.
� name and discuss the four parts of a queuing system.
� explain the complexity of weather and seismic models.
� explain the concept of embedded systems and give examples from your

own home.
� distinguish between two-dimensional and three-dimensional CAD systems.

14.1 What Is Simulation?

Simulation is a powerful tool used to study complex systems. Simulation is
the development of a model of a complex system and the experimental
manipulation of the model to observe the results. Models may be purely
physical such as a wind tunnel, a combination of a physical object under
software control such as a spaceship or flight simulator, or logical as repre-
sented in a computer program.

Computer simulations have been used to help in decision making since
the mid–1950s. Building computer models of complex systems has allowed
decision-makers to develop an understanding of the performance of the
systems over time. How many tellers should a bank have? Would the
materials flow faster through the manufacturing line if there were more
space between stations? What is the weather going to be tomorrow?
Where is the optimal place to put the new fire station? We can gain consid-
erable insight into all of these questions through simulation.

Complex Systems
System is one of those words that we all intuitively understand but have
difficulty defining. The dictionary gives several definitions with the common
theme of groups (collections) of objects interacting in some way. The objects
can be animate or inanimate. A collection of hardware and software form a
computer system. A collection of tracks and railway cars form a railroad
system. A collection of teachers and students form a school system.

Systems that are best suited to being simulated are dynamic, interactive,
and complicated.1 That is, they should be complex. The behaviors of
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dynamic systems vary over time. The way that the behavior varies may be
understood and captured in mathematical equations, such as the flight of a
missile through nonturbulent atmosphere. Or the behavior may be only
partially understood but amenable to statistical representation, such as the
arrival of people at a traffic light. Although the definition of systems implies
that the objects interact, the more interactions that exist in the system, the
better candidate the system is for simulation. Take, for example, the
behavior of a plane under air traffic control. The performance characteris-
tics of the individual plane, the interaction with the air traffic controller, the
weather, and any routing changes due to problems on the ground all
contribute to the plane’s behavior. Finally, the system should be made up of
many objects. If it weren’t, simulating it would be a waste of time.

Models
Model is another of those words that we all understand but might have a
hard time defining. There are two dictionary definitions that relate to the
use of the word in simulation: an analogy used to help visualize something
that can not be directly observed, and a set of postulates, data, and infer-
ences presented as a mathematical description of an entity or state of
affairs. Although these two definitions seem very different, they have one
major thread in common. In both cases, a model is an abstraction of some-
thing else. In the first case, the model represents something that is not
completely understood, so we are forced to say it is like something else. In
the second case, the system is understood well enough to be described by a
set of mathematical rules.

For our purposes a model is an abstraction of a real system. It is a
representation of the objects within the system and the rules that govern
the interactions of the objects. The representation may be concrete as in
the case of the spaceship or flight simulators or abstract as in the case of
the computer program that examines the number of checkout stations
needed. In the rest of the discussion of simulation, the models we refer to
are abstract. The realization is only within a computer program.

Constructing Models
The essence of constructing a model is to identify a small subset of charac-
teristics or features that are sufficient to describe the behavior under inves-
tigation. Remember, a model is an abstraction of a real system; it is not the
system itself. Therefore, there is a fine line between having too few charac-
teristics to accurately describe the behavior of the system and more than
you need to accurately describe the system. The goal is to build the
simplest model that describes the relevant behavior.
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There are two distinct types of simulation for which models are built
and the process of choosing the subset of characteristics or features is
different for each. The distinction between the two types is based on how
time is represented: as a continuous variable or as a discrete variable.

Continuous Simulation
Continuous simulations treat time as continuous and express changes in
terms of a set of differential equations that reflect the relationships among
the set of characteristics. Thus the characteristics or features chosen to
model the system must be those whose behavior is understood mathemati-
cally. For example, meteorological modeling falls into this category. The
characteristics of weather models are wind components, temperature,
water vapor, cloud formation, precipitation, and so on. The interaction of
these components over time can be modeled by a set of partial differential
equations, which measure the rate of change of each component over some
three-dimensional region.

Because of the technical nature of the characteristics in continuous simu-
lations, engineers and economists frequently use this technique. The sets of
possible characteristics and their interactions are well-known in these
fields. In a later section we look more closely at meteorological simulation.

Discrete Event Simulation
Discrete event models are made up of entities, attributes, and events. An
entity represents some object in the real system that must be explicitly
defined. That is, the characteristic or feature of the system is an object. For
example, if we were modeling a manufacturing plant, the different
machines, and the product being created, would be entities. An attribute is
some characteristic of a particular entity. The identification number, the
purchase date, and the maintenance history would be attributes of a partic-
ular machine. An event is an interaction between entities. For example, the
sending of the output from one machine as input to the next machine
would be an event.

An object that flows through a system is usually represented as an entity.
For example, the output from one machine is an object that is passed on to
the next machine. Thus a raw widget flows from one machine to another (a
series of events) and ends up as a lovely doodad. An entity can also repre-
sent a resource that other entities need. For example, a cashier is a resource
in a model of a bank. If a cashier is not available, the customer entity must
enter a waiting line (a queue) until a cashier is available.

The keys to constructing a good model are choosing the entities to
represent the system and correctly determining the rules that define the
results of the events. Parteto’s law says that in every set of entities, there
exists a vital few and a trivial many. Approximately 80% of the behavior
of an average system can be explained by the action of 20% of the compo-
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nents.2 The second part of the definition of simulation gives us a clue
where to begin: “and experimenting with the model to observe the
results.” What results are to be observed? The answers to this question
give a good starting point to the determination of the entities in the real
system that must be present in the model. The entities and the rules that
define the interactions of the entities must be sufficient to produce the
results to be observed.

Since abstract models are implemented in a computer program, we can
apply object-oriented design to the problem of building the model. The
entities in the model are object classes. The attributes of the entities are
properties of a class. Where do the events fall into this analogy? The events
are the responsibilities of an entity. The rules that define the interactions of
the entities in the system are represented by the collaborations of the
classes.

In the next section, we apply these techniques to a specific example.

Queuing Systems
Let’s look at a very useful type of simulation called a queuing system. A
queuing system is a discrete-event model that uses random numbers to
represent the arrival and duration of events. A queuing system is made up
of servers and queues of objects to be served. Recall from Chapter 9 that a
queue is a first-in, first-out structure. We deal with queuing systems all the
time in our daily lives. When you stand in line to check out at the grocery
store or to cash a check at the bank, you are dealing with a queuing
system. When you submit a “batch job” (such as a compilation) on a
mainframe computer, your job must wait in line until the CPU finishes the
jobs scheduled ahead of it. When you make a phone call to reserve an
airline ticket and get a recording that says, “Thank you for calling Air
Busters. Your call will be answered by the next available operator. Please
wait.”—you are dealing with a queuing system.

Please Wait
Waiting is the critical element. The objective of a queuing system is to
utilize the servers (the tellers, checkers, CPU, operators, and so on) as fully
as possible while keeping the wait time within a reasonable limit. These
goals usually require a compromise between cost and customer satisfaction.

To put this on a personal level, no one likes to stand in line. If there
were one checkout counter for each customer in a supermarket, the
customers would be delighted. The supermarket, however, would not be in
business very long. So a compromise is made: The number of cashiers is
kept within the limits set by the store’s budget, and the average customer is
not kept waiting too long.

How does a company determine the optimal compromise between the
number of servers and the wait time? One way is by experience; the
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company tries out different numbers of servers and sees how things work
out. There are two problems with this approach: It takes too long and it is
too expensive. Another way of examining this problem is by using a
computer simulation.

To construct a queuing model, we must know the following four things:

1. The number of events and how they affect the system in order to
determine the rules of entity interaction

2. The number of servers
3. The distribution of arrival times in order to determine if an entity

enters the system
4. The expected service time in order to determine the duration of an

event

The simulation uses these characteristics to predict the average wait
time. The number of servers, the distribution of arrival times, and the
duration of service can be changed. The average wait times are then exam-
ined to determine what a reasonable compromise would be.

An Example
Consider the case of a drive-in bank with one teller. How long does the
average car have to wait? If business gets better and cars start to arrive
more frequently, what would be the effect on the average wait time? When
would the bank need to open a second drive-in window?

This problem has the characteristics of a queuing model. The entities
are a server (the teller), the objects being served (customers in cars), and a
queue to hold the objects waiting to be served (customers in cars). The
average wait time is what we are interested in observing. The events in this
system are the arrivals and the departures of customers.

Let’s look at how we can solve this problem as a time-driven simula-
tion. A time-driven simulation is one in which the model is viewed at
uniform time intervals, say, every minute. To simulate the passing of a unit
of time (a minute, for example), we increment a clock. We run the simula-
tion for a predetermined amount of time, say, 100 minutes. (Of course,
simulated time usually passes much more quickly than real time; 100 simu-
lated minutes pass in a flash on the computer.)

Think of the simulation as a big loop that executes a set of rules for
each value of the clock—from 1 to 100, in our example. Here are the rules
that are processed in the loop body:

Rule 1. If a customer arrives, he or she gets in line.

Rule 2. If the teller is free and if there is anyone waiting, the first
customer in line leaves the line and advances to the teller’s window. The
service time is set for that customer.
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Rule 3. If a customer is at the teller’s window, the time remaining for
that customer to be serviced is decremented.

Rule 4. If there are customers in line, the additional minute that they
have remained in the queue (their wait time) is recorded.

The output from the simulation is the average wait time. We calculate this
value using the following formula:

Average wait time = total wait time for all customers / number of
customers

Given this output, the bank can see whether their customers have an
unreasonable wait in a one-teller system. If so, the bank can repeat the
simulation with two tellers.

Not so fast! There are still two unanswered questions. How do we
know if a customer arrived? How do we know when a customer has
finished being serviced? We must provide the simulation with information
about the arrival times and the service times. These are the variables
(parameters) in the simulation. We can never predict exactly when a
customer arrives or how long each individual customer takes. We can,
however, make educated guesses, such as a customer arrives about every
five minutes and most customers take about three minutes to service.

How do we know whether or not a job has arrived in this particular
clock unit? The answer is a function of two factors: the number of minutes
between arrivals (five in this case) and chance. Chance? Queuing models
are based on chance? Well, not exactly. Let’s express the number of
minutes between arrivals another way—as the probability that a job
arrives in any given clock unit. Probabilities range from 0.0 (no chance) to
1.0 (a sure thing). If on the average a new job arrives every five minutes,
then the chance of a customer arriving in any given minute is 0.2 (1 chance
in 5). Therefore, the probability of a new customer arriving in a particular
minute is 1.0 divided by the number of minutes between arrivals.

Now what about luck? In computer terms, luck can be represented by
the use of a random-number generator. We simulate the arrival of a
customer by writing a function that generates a random number between
0.0 and 1.0 and applies the following rules.

1. If the random number is between 0.0 and the arrival probability, a
job has arrived.

2. If the random number is greater than the arrival probability, no job
arrived in this clock unit.

By changing the rate of arrival, we simulate what happens with a one-teller
system where each transaction takes about three minutes as more and
more cars arrive. We can also have the duration of service time based on
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probability. For example, we could simulate a situation where 60% of the
people require three minutes, 30% of the people require five minutes, and
10% of the people require ten minutes.

Simulation doesn’t give us the answer or even an answer. Simulation is
a technique for trying out “what if” questions. We build the model and
run the simulation many times, trying various combinations of the parame-
ters and observing the average wait time. What happens if the cars arrive
more quickly? What happens if the service time is reduced by 10%? What
happens if we add a second teller?

Other Types of Queues
The queue in the previous example was a FIFO queue:
The entity that receives service is the entity that has
been in the queue the longest time. Another type of
queue is a priority queue. In a priority queue, each item
in the queue is associated with a priority. When an
item is dequeued, the item returned is the one with the
highest priority. A priority queue operates like triage
on the television show M*A*S*H. When the wounded
arrive, the doctors put tags on each patient labeling the
severity of the injuries. Those with the most severe
wounds go into the operating room first.

Another scheme for ordering events is to have two
FIFO queues, one for short service times and one for
longer service times. This scheme is similar to the
express lane at the supermarket. If you have fewer than
ten items, you can go into the queue for the express
lane; otherwise, you must go into the queue for one of
the regular lanes.

Meteorological Models
In the last section we looked at a fairly simple simulation with discrete
inputs and outputs. We now jump to a discussion of a continuous simula-
tion: predicting the weather. The details of weather prediction are over the
heads of all but professional meteorologists. In general, meteorological
models are based on the time-dependent partial differential equations of
fluid mechanics and thermodynamics. Equations exist for two horizontal
wind velocity components, the vertical velocity, temperature, pressure, and
water vapor concentration. Initial values for the variables are entered from
observation, and the equations are integrated numerically (in layman’s
terms: solved) in order to define the values of the variables at some later
time.3 The equations are re-integrated using the predicted values as the
initial conditions. This process of re-integrating using the predicted values

SIMULA is designed for simulation
The SIMULA programming language, designed
and built by Ole-Johan Dahl and Kristen
Nygaard at the Norwegian Computing Centre
(NCC) in Oslo between 1962 and 1967, was
designed and implemented as a language for
discrete event simulation. SIMULA was later
expanded and re-implemented as a full-scale
general-purpose programming language.
Although SIMULA was never widely used, the
language has greatly influenced modern
programming methodology. SIMULA introduced
such important object-oriented language
constructs as classes and objects, inheritance,
and polymorphism.10
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Ivan Sutherland has credentials in
academia, industrial research, and in busi-
ness. On his Web page Sutherland lists his
profession as Engineer, Entrepreneur, Capi-
talist, Professor. He has won the prestigious
ACM’s AM Turing Award, Smithsonian
Computer World Award, the First Zworykin
Award from the National Academy of Engi-
neering, and the Price Waterhouse Informa-
tion Technology Leadership Award for
Lifetime Achievement.

Sutherland received a BS from Carnegie Institute of
Technology, an MS from the California Institute of
Technology, and a PhD from the Massachusetts Insti-
tute of Technology. His PhD thesis, “Sketchpad: A
Man-machine Graphical Communications System,”
pioneered the use of the lightpen to create graphic
images directly on a display screen. The graphic
patterns could be stored in memory and later
retrieved and manipulated just like any other data.
Sketchpad was the first GUI (Graphical User Inter-
face) long before the term was invented, and opened
up the field of computer-aided design (CAD).

The Defense Department and the National Secu-
rity Agency (NSA) spearheaded computing research
in the early 1960s. When Sutherland graduated, he
was inducted into the Army and assigned to NSA.
In 1964 he was transferred to the Defense Depart-
ment’s Advanced Research Projects Agency (ARPA,
later DARPA) where he commissioned and
managed computer science research projects as
director of ARPA’s Information Processing Tech-
niques Office.

After his stint with the military, Sutherland went to
Harvard as an associate professor. Sketchpad, which
allowed people to interact with the computer in terms of
images, was the logical predecessor to his work in
virtual reality. His goal was the “ultimate display,”
which would include a full-color, stereoscopic display
that filled the user’s entire field of vision. Turning the
theory into practice was more difficult than first imag-
ined because of the weight of the head-mounted

display (HMD). Thus, the first implementa-
tion was mounted on the wall or ceiling
rather than the head, earning it the nick-
name “Sword of Damocles.”

In 1968, Sutherland moved to the
University of Utah where he continued his
research into HMD systems. Sutherland
and David Evans, another faculty member
at Utah, founded Evans & Sutherland, a
company specializing in hardware and
software for visual systems for simulation,

training, and virtual reality applications. In 1975
Sutherland returned to the California Institute of Tech-
nology as chairman of the Computer Sciences Depart-
ment, where he helped to introduce circuit design into
the curriculum.

Sutherland left Caltech in 1980 and established
Sutherland, Sproull, and Associates, a consulting and
venture capital firm. He holds eight patents in
computer graphics and hardware and continues his
research into hardware technology. He is currently
Vice President and Sun Fellow at Sun Microsystems.

Surtherland was awarded the Turing Award in
1988. The citation reads:

For his pioneering and visionary contributions to
computer graphics, starting with Sketchpad, and
continuing after. Sketchpad, though written twenty-
five years ago, introduced many techniques still
important today. These include a display file for
screen refresh, a recursively traversed hierarchical
structure for modeling graphical objects, recursive
methods for geometric transformations, and an
object oriented programming style. Later innova-
tions include a “Lorgnette” for viewing stereo or
colored images, and elegant algorithms for regis-
tering digitized views, clipping polygons, and
representing surfaces with hidden lines.

Despite all the honors Sutherland has received, he
recently cited his proudest accomplishment as his four
grandchildren.

Ivan Sutherland
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from that last integration as the observed values for the current integration
continues, giving the predictions over time. Recall that these equations
describe rates of change of entities in the model, so the answers after each
solution give values that can be used to predict the next set of values. (See
Figure 14.1.)

Looking at the complexity of these equations and realizing that they
must hold true at each point in the atmosphere, it is easy to see that very
high-speed parallel computers are needed to solve them in a reasonable
amount of time. Fortunately, we do not have to understand the details of
these models in order to talk about them and describe how they are used.
For those who would like to know more about the math involved, five
college courses in the calculus sequence plus a course or two in numerical
methods should provide the background to understand the mathematics
involved in these models.

Weather Forecasting
“Red sky in the morning, sailor’s warning” is an often-quoted weather
prediction. Before the advent of computers, weather forecasting was based
on folklore and observations. In the early 1950s, the first computer models
were developed for weather forecasting. These models took the form of
very complex sets of partial differential equations. As computers grew in
size, the weather forecasting models grew even more complex.

If weathercasters use computer models to predict the
weather, why are TV or radio weathercasts in the same
city different? Why are they sometimes wrong?
Computer models are designed to aid the weather-
caster, not replace him or her. The outputs from the
computer models are predictions of the values of vari-
ables in the future. It is up to the weathercaster to
determine what the values mean.

Note that in the last paragraph we referred to
multiple models. Different models exist because they
make different assumptions. However, all computer
models approximate the earth’s surface and the atmos-
phere above the surface using evenly-spaced grid

points. The distance between these points determines the size of the grid
boxes, or resolution. The larger the grid boxes, the poorer the model’s
resolution becomes. The Nested Grid model (NGM) has a horizontal reso-
lution of 80 km and 18 vertical levels and views the atmosphere as divided
into squares for various levels of the atmosphere. Grids with smaller
squares are nested inside larger ones to focus on particular geographic
areas. The Model Output Statistics (MOS) model is made up of a set of
statistical equations tailored to various cities in the United States. The ETA

Weather prediction by rodents
Punxsutawney Phil, General Beauregard Lee,
and Staten Island Chuck are but three of an
army of groundhogs that predict the weather
each February 2. If a groundhog sees his (or
her) shadow on February 2, it supposedly means
there will be six more weeks of winter.
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Figure 14.1 Some of the complex equations used in meteorological models
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model, named after the ETA coordinate system that takes topographical
features such as mountains into account, is a newer model very similar to
the NGM model but with better resolution (29 km).4

The output from weather models can be in text form or graphical form.
The weathercaster’s job is to interpret all of the output. But any good
weathercaster knows that the output from the various models is only as
good as the input used as a starting point for the differential equations.
This data comes from a variety of sources, including radiosondes (to
measure humidity, temperature, and pressure at high altitudes), rawin-
sondes (to measure wind velocity aloft), aircraft observations, surface
observations, satellites, and other remote sensing sources. A small error in
any of the input variables can cause an increasing error in the values as the
equations are reintegrated over time. Another problem is that of scale. The
resolution of a model may be too coarse for the weathercaster to accu-
rately interpret the results within his or her immediate area.

Different weathercasters may believe the predictions or may decide that
other factors indicate that the predictions are in error. In addition, the
various models may give conflicting information. It is up the weathercaster
to make a judgment as to which, if any, is correct.

Hurricane Tracking
The modules for hurricane tracking are called relocatable models, because
they are applied to a moving target. That is, the geographical location of
the model’s forecast varies from run to run (i.e., from hurricane to hurri-
cane). The Geophysical and Fluid Dynamics Laboratory (GFDL) developed
the most recent hurricane model in order to improve the prediction of
where a hurricane would make landfall.

The GFDL hurricane model became operational in 1995. The equations
were such that the forecasts couldn’t be made fast enough to be useful
until the National Weather Service’s high-performance supercomputers
were used in parallel operation, which increased the running time over the
serial implementation by 18%. Figure 14.2 shows the improvement of this
model over the previous ones used to track hurricanes.

Combining Models
In June of 2001, ABC News reported that researchers from Florida State
University and the Indian Institute of Science in Bangalore, India, had
published results of a hurricane model that combined the outputs of
other models. This combined model gave better results than any of the
individual models. The technique correctly predicted the meandering
path of Hurricane Dennis and the paths of tropical storms Bret, Cindy,
and Emily.
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The researchers call their model a “superensemble.” The longer the
model runs, the better their results are, compared with individual models.
In a forecast of hurricane winds three days into the future, the new model
had an error of 21.5 mph as compared to the individual model errors that
ranged from 31.3 mph to 32.4 mph.

Specialized Models
Meteorological models can be adapted and specialized for research
purposes. For example, numeric-model simulations of atmospheric process
are being combined with air-chemistry models to diagnose atmospheric
transport and diffusion for a variety of air-quality applications. One such
study analyzed the part played by the topography of the Grand Canyon
region of Arizona in the movement of air pollution.

Another study showed that by assimilating or ingesting observed data
within the model solution as the model was running forward in time,
rather than using observations at only the initial time, the model’s
performance increased significantly. This allows for improved numerical
representations of the atmosphere for input into other specialized models.5

Advanced meteorological modeling systems can be used to provide
guidance for other complex systems in the military or aviation industry.
For example, the weather has an impact on projectile motions and must be
taken into consideration in battlefield situations. In the aviation industry,
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meteorological data is used in diverse ways, from determining how much
fuel to carry to deciding when to move planes to avoid hail damage.

Other Models
In a sense, every computer program is a simulation, because a program
represents the model of the solution that was designed in the problem-solving
phase. When the program is executed, the model is simulated. We do not
wish to go down this path, however, for this section would become infinite.
There are, however, several disciplines that explicitly make use of simulation.

Is the stock market going to go higher? Will consumer prices rise? If we
increase the money spent on advertising, will sales go up? Forecasting
models help to answer these questions. However, these forecasting models
are different from those used in weather forecasting. Weather models are
based on factors whose interactions are mostly known and can be modeled
using partial differential equations of fluid mechanics and thermody-
namics. Business and economic forecasting models are based on past
history of the variables involved, so they use regression analysis as the
basis for prediction.

Seismic models depict the propagation of seismic waves through the
earth’s medium. These seismic waves can come from natural events, such
as earthquakes and volcanic eruptions, or from man-made events, such as
controlled explosions, reservoir induced earthquakes, or cultural noise
(industry or traffic). For natural events, sensors pick up the waves, and
models, using these observations as input, can determine the cause and
magnitude of the source causing the waves. For man-made events, given
the size of the event and the sensor data, models can map the earth’s

subsurface. These models are used to explore for oil
and gas. The seismic data is used to provide geologists
with highly detailed three-dimensional maps of hidden
oil and gas reservoirs before drilling begins, thus mini-
mizing the possibility of drilling a dry well.

Computing Power Necessary
Many of the equations necessary for the continuous
models we have talked about were developed many
years ago. That is, the partial differential equations that
defined the interactions of the entities in the model
were known. However, the models based upon them
could not be simulated in time for the answers to be
useful. The introduction of parallel high-performance
computing in the mid-1990s changed all that. Newer,
bigger, faster machines allow scientists to solve more

Supercomputer used for 
oil exploration

A supercomputer comprised of a cluster of 256
servers and 512 microprocessors running Linux
can perform 13 trillion calculations per second.
This computer is being used to produce highly
detailed three-dimensional maps of hidden oil
and gas reservoirs beneath the Gulf of Mexico.
Only 5% of wells drilled in the Gulf of Mexico in
1989 were based on seismic imaging. Today,
seismic imaging precedes virtually all drilling
expeditions.6
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complex mathematical systems over larger domains and ever-finer grids
with even shorter wall clock times. These new machines are able to solve
the complex equations fast enough to provide timely answers. Numerical
weather forecasting, unlike some other applications, must beat the clock.
Yesterday’s weather prediction is not very useful if not received until
today.

14.2 Graphics and Computer-Aided

Design (CAD)

Graphics is the language of communications for engineers, designers, and
architects. Technical drawings are the means for describing something that
must be processed, manufactured, or built. Engineers,
designers, and architects use technical drawings as a
means of communicating their ideas. Until the 1950’s
and the advent of the computer, technical drawings
were done at the drafting table with paper, pencil, and
T-squares. Now most technical drawings are done at
the computer. What began as the automation of
drafting has expanded into techniques and capabilities
that a draftsperson in 1950 could not have imagined.

Computer-aided design (CAD) refers to a system that
uses computers with advanced graphics hardware and
software to create precision drawings or technical illus-
trations. If the system is being used to design parts to be
manufactured, the designer can draw and manipulate a
3-D image of the part without having to build a physical
model. If the system is being used to produce architec-
tural drawings, the structure can be drawn and viewed
from different perspectives. Although CAD systems can
be thought of as simulating the paper, pencil, and T-
square, they have far more complex capabilities.

CAD systems can be broadly classified as two-dimensional (2-D) CAD
and three-dimensional (3-D) CAD. Two-dimensional CAD systems are
basically glorified electronic drawing boards, replacing paper, pencil, and
the T-square. Of course, the drawings are easy to edit and reproduce, guar-
anteeing top-quality copies.

Three-dimensional CAD is also called geometric modeling. There are
three methods of modeling in three dimensions: wireframe modeling,

Contributions made by Pythagoras,
Brunelleschi, Durer, and Monge

In 525 B.C. in Greece, Pythagoras discovered
what became known as the Pythagorean
theorem of a right triangle: The square of the
hypotenuse of a right triangle is equal to the sum
of the squares of the other sides. Other mathe-
matical approaches to drawing came much later
when Brunelleschi demonstrated the theoretical
principles governing the laws of perspective
drawing and Durer (1471–1528) was credited
with the first basic knowledge of orthographic
projection. Gaspard Monge (1746–1818) is
credited as being the “inventor” of descriptive
geometry.
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Figure 14.3

Geometric modeling
techniques

surface modeling, and solid modeling. An example of a wire model and
solid model are shown in Figure 14.3. The intended purpose of the image
dictates the appropriate model.

Wireframe, the simplest 3-D modeling, represents objects by line elements
that provide exact information about edges, corners, and surface discontinu-
ities. With these models, there is no way to distinguish between the inside and
the outside of the object. Surface modeling, on the other hand, defines
precisely the outside of the object being modeled. Surface models connect
various types of surface elements by line segments. Solid models make use of
topology; the interior volume and mass of an object is defined. Surface models
appear similar to solid models, but the interior of the surface model is empty.7

Every CAD system has a set of elements or primitives out of which the
designs are created. In a 2-D system, the primitives are points, lines, and
surfaces. Surfaces can be polygons with any number of vertices; they can
also be figures such as circles and ellipses. Splines, free curves defined
mathematically, are also often included. In 3-D systems, the primitive

Courtesy of Queensland

Manufacturing Institute

Limited

Image courtesy of SolidWorks Corporation

http://lib.ommolketab.ir
http//lib.ommolketab.ir


14.3 Embedded Systems 447

shapes are cubes, wedges, cylinders, or spheres. In surface modeling, a cube
would be composed of six faces, but in solid modeling, a cube would be a
single primitive.

CAD systems that are specific to particular types of design may have a
set of specialized primitives. An architectural CAD might have architec-
tural components such as slabs, walls, doors, and windows. A CAD system
used in designing cars might have components such as bumpers, wind-
shields, and tires.

Even if CAD systems are used only as electronic drawing boards, they
provide great advantages. They are much faster and more accurate than hand
drawings. Revisions are easier to make, because the unchanged parts do not
need to be copied again. If the CAD system is being used as a real design tool,
the designer can try out ideas and immediately see the results. “What if”
questions can be applied to the model to test the integrity of new designs. If
the output of the design is the specification for an item to be manufactured,
the specifications can be sent directly to the manufacturing machine.

Of course, the use of CAD has introduced its own set of new problems.
Computer-aided design is a concept implemented in many diverse software
programs. The designers must learn to use the new software tools, some-
times taking as long as six months to become proficient. In architecture, for
example, there is no industry standard CAD software package, and
maddening differences exist among competing software packages. Yet,
Charles Eastman, a professor in the College of Architecture and
Computing at Georgia Tech, asserts that many new buildings, including the
Bilbao Museum in Spain, could not have been built without the aid of
computers.8

14.3 Embedded Systems

Embedded systems are computers that are dedicated to perform a narrow
range of functions as part of a larger system. Typically, an embedded
system is housed on a single microprocessor chip with the programs stored
in ROM. Virtually all appliances that have a digital interface—watches,
microwaves, VCRs, cars—utilize embedded systems. In fact, embedded
systems are everywhere: From consumer electronics, to kitchen appliances,
to automobiles, to networking equipment, and to industrial control
systems, you find embedded systems lurking in the device. Some embedded
systems include an operating system, but many are so specialized that the
entire logic can be implemented as a single program.9
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Early embedded systems were standalone 8-bit
microprocessors with their own homegrown operating
system. Today, they range from 8-bit controllers to 32-
bit digital signal processors (DSPs) to 64-bit RISC
(reduced instruction set) chips. More and more
embedded systems are based on networks of distrib-
uted microprocessors that communicate through wired
and wireless busses, remotely monitored and
controlled by regular network management communi-
cations protocols.

In fact, the term embedded system is nebulous
because it encompasses about everything except
desktop PCs. The term originated because the first
such computers were physically embedded within a
product or device and could not be accessed. Now the
term refers to any computer that is preprogrammed to
perform a dedicated or narrow range of functions as
part of a larger system. The implication is that there is
only minimal end-user or operator intervention if any
at all.

Because the average person encounters an
embedded system only in his or her kitchen, entertain-
ment room, or car, we tend to equate them with hard-
ware. However, programs must be written and
burned into the ROM (read-only memory) that comes
with the system to make it accomplish its assigned
function. Since programs cannot be developed and
tested on the embedded processor itself, how are they
implemented? Programs are written on a PC and
compiled for the target system, where the executable
code is generated for the processor in the embedded
system.

In early embedded systems, the size of the code and
the speed at which it executed were very important.
Because assembly-language programs provided the
best opportunity to streamline and speed up the code,
they were used almost exclusively for embedded
systems. Even when the C language became popular

Glucose monitor embedded in watch
Diabetics must monitor their glucose levels on a
regular basis. Until recently, this meant pricking
a finger to check blood sugar levels, optimally
four to seven times a day. A new wristwatch-like
device checks sugar levels every 20 minutes by
sending tiny electric currents through the skin.
The watch face displays the current time and the
user’s most recent blood sugar level. This device
holds great promise for the 16 million Americans
suffering from diabetes.10

Chips embedded in running shoes
Plastic circular chips about 1 1⁄2 inches in diam-
eter, 3/8” thick, and weighing fractions of an
ounce are changing the world of running. Before
a race, each runner is given a chip with a
7-character code that is tied onto the runner’s
shoelace. When the runner touches a mat at the
starting line, an electrical current in the mat
creates a magnetic field that charges the chip.
The mats have receiving antennas that pick up
the code on a chip and send it to a controller
box and computer. Mats are placed at different
points on the race course, picking up and trans-
mitting the code of each runner as he or she
steps on the mat.

In the 2000 New York City Marathon, the data
from the chips was transmitted to a Web site so
people could follow the progress of the indi-
vidual runners on the Web. In the 2001 Boston
Marathon, the information was available to
anyone with a cellular phone, text pager, or any
device with an e-mail address.11
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and cross-compilers for C to embedded systems became available, many
programmers have continued to use assembly language. C programs are
approximately 25% larger and slower, but are easier to write than
assembly-language programs. Even today, the size of the ROM may
dictate that the code be as small as possible, leading to an assembly-
language program.12

Summary

Simulation is a major area of computing that involves building computer
models of complex systems and experimenting with the models to observe
the results. A model is an abstraction of the real system in which the
system is represented by a set of objects or characteristics and the rules
that govern their behavior.

There are two major types of simulation: continuous and discrete event.
In continuous simulation, changes are expressed in terms of partial differ-
ential equations that reflect the relationships among the set of objects or
characteristics. In discrete event simulation, behavior is expressed in terms
of entities, attributes, and events, where entities are objects, attributes are
characteristics of an entity, and events are interactions among the entities.

Queuing systems are discrete event simulations in which waiting time is the
factor being examined. Random numbers are used to simulate the arrival and
duration of events, such as cars at a drive-in bank or people in a supermarket.
Meteorological and seismic models are examples of continuous simulation.

Computer-aided design (CAD) and embedded systems are two other
application areas of computing. CAD systems allow architects, engineers,
and designers to build computer models of structures and products.
Embedded systems are computer systems that perform a narrow range of
functions as a part of a larger system.

Online Gambling
The Internet has radically changed business practices throughout the

world. From banks and auction houses to retail outlets and grocery

stores, most businesses today capitalize on the convenience and speed of

W
WW
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the Internet. While most businesses have received unanimous praise for

their online services, Internet casinos have garnered a mixed response.

Positions about online gambling run the gamut from opposition to any

governmental regulations, to requiring stricter regulations, to the outright

banning of all Internet casinos. Our legislators on Capitol Hill have

repeatedly debated the merits of regulating online betting. The American

Gaming Association believes that laws should be enacted to prevent

unfair, untaxed, and unlicensed casinos from operating in cyberspace.

The Association feels that strict regulations should force the online

industry to adhere to the same guidelines that traditional casinos must

follow. The social factors that surround this issue are numerous. Anyone

with access to the Internet and a credit card can go online and gamble.

This ease of access is likely to lead to the problem of gambling addictions.

The ability to gamble 24–7 from the convenience of your own home can

quickly lead people with addictive personalities into serious financial

problems. You may have had the experience of opening a Web page and

encountering a pop-up casino advertisement. Compulsive gamblers find it

a real struggle to resist the temptations of these pervasive advertisements

and the plethora of games available online.

More and more people are supporting the online gambling industry

despite the criticism it has received. A surprisingly few online casinos,

approximately 15, were in operation in 1997 compared to more than

1,000 in 2002. One report estimates that if this expansion continues at

its present rate, 80.9 million people will participate in online gambling

in the year 2005. This growth is likely to be met with governmental

resistance. In June 2001, Australia passed legislation that prohibits

Australian online casinos from allowing Australian citizens to partici-

pate. The California State Legislature has proposed a similar bill. This

attitude—that it is legal to export a vice from which it protects its own

citizens—seems morally questionable. How Internet gambling changes

in the future depends largely on the type of control imposed by state

and federal governments.

Key Terms
Model pg. 433
Simulation pg. 432

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Exercises 451

Exercises
1. Define simulation and give five examples from everyday life.

2. Describe the characteristics of a complex system.

3. What is the essence of constructing a model?

4. Name two types of simulations and distinguish between them.

5. The solutions to continuous simulation usually take what form?

6. What are the ingredients in a discrete event simulation?

7. What are the keys to constructing a good model?

8. What defines the interactions among entities in a discrete event
simulation?

9. What is the relationship between object-oriented design and model
building?

10. Define the goal of a queuing system.

11. What are the four necessary pieces of information needed to build a
queuing system?

12. What part does a random-number generator play in queuing simulations?

13. Write the rules for a queuing simulation of a one-pump gas station,
where a car arrives every three minutes and the service time is four
minutes.

14. Do you think the gas station in Exercise 13 will be in business very
long? Explain.

15. Rewrite the simulation in Exercise 13 such that a car arrives every two
minutes and the service time is two minutes.

16. Write the rules for a queuing system for an airline reservation counter.
There is one queue and two reservation clerks. People arrive every
three minutes and take three minutes to be processed.

17. Distinguish between a FIFO queue and a priority queue.

18. What did SIMULA contribute to object-oriented programming
methodology?

19. In general, meteorological models are based on the time-dependent
equations of what fields?

21. How much mathematics is necessary to be a meteorologist?

22. Why is there more than one weather prediction model?

23. Why do different meteorologists give different forecasts if they are
using the same models?

24. What are specialized meteorological models and how are they used?
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25. What are seismic models used for?

26. Define CAD.

27. What are two-dimensional CAD models used for?

28. What are three-dimensional CAD models used for?

29. What are the three methods of modeling in three dimensions and how
do you determine which should be used where?

31. Distinguish between an embedded system and a regular computing
system.

32. Embedded systems’ programmers are the last holdout for assembly-
language programming. Explain.

33. A random number generator can be used to vary service times as well as
determine arrivals.  For example, assume that 20% of the customers
take 8 minutes and 80% of the customers take 3 minutes.  How might
you use a random number generator to reflect this distribution?

34. Why do we say that simulation doesn’t give an answer?

35. What do simulations and spreadsheet programs have in common?

36. Why do meteorologists need to study so much mathematics?

Thought Questions

1. Priority queues are very interesting structures. They can be used to
simulate a stack. How might you use a PQ as a stack?  

2. Priority queues can also be used to simulate a FIFO queue. How might
you use a PQ as a FIFO queue?

3. In Chapter 9, we described the graph data structure. A depth-first
traversal of a graph uses a stack, and a breadth-first traversal of a
graph uses a FIFO queue.  Can you explain why?

4. In this chapter we described queuing systems where there is a queue
for each server. There are other types of queuing systems. For
example, in the airport there is usually one queue for many servers.
When a server is free, the front of the queue goes to that server.
Could you represent this type of system in a simulation?

5. What other real-life situations can be modeled using a priority queue?

6. Walk through your kitchen and list the number of items that include
embedded computers.

?
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7. CAD systems are now available for everyday use.  Go to your local
computer store and see how many programs are available to help you
design anything from a kitchen to a guitar.

8. Have you ever used an online gambling facility? Was it as easy to use
as the Ethical Issues section predicted?

9. Should the government be involved in regulating Internet casinos?  If
so, should they be regulated by state or federal governments?

10. Should the government be involved in trying to stop people who are
addicted to gambling from using Internet casinos?

11. What do you think of the governmental attitude that says it is legal to
export a vice from which the government protects its own citizens? 

Thought Questions 453

http://lib.ommolketab.ir
http//lib.ommolketab.ir


15  Networks

The Communications Layer

Laying the Groundwork

1  The Big Picture

The Information Layer

2  Binary Values and Number Systems

3  Data Representation

The Hardware layer

4  Gates and Circuits

5  Computing Components

The Programming Layer

6  Problem Solving and Algorithm Design

7  Low-Level Programming Languages

8  High-Level Programming Languages

9  Abstract Data Types and Algorithms

The Operating Systems Layer

10  Operating Systems

11  File Systems and Directories

The Applications Layer

12  Information Systems

13  Artificial Intelligence

14  Simulation and Other Applications

The Communications Layer

15  Networks

16  The World Wide Web

In Conclusion

17  Limitations of Computing

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Networks

For many years, computers have played as important a role in

communication as they do in computation. This communication is

accomplished using computer networks. Like complex highway

systems that connect roads in various ways to allow cars to travel

from their origin to their destination, computer networks form an

infrastructure that allows data to travel from some source

computer to a destination. The computer receiving the data may

be around the corner or around the world. This chapter explores

some of the details of computer networks.

455
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Computer network A
collection of computing
devices connected so
that they can communi-
cate and share resources

Wireless A network
connection made without
physical wires

Node (or Host) Any
addressable device
attached to a network

Data transfer rate (also
bandwidth) The speed
with which data is
moved from one place to
another on a network
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Goals
After studying this chapter, you should be able to:

� describe the core issues related to computer networks.
� list various types of networks and their characteristics.
� explain various topologies of local-area networks.
� explain why network technologies are best implemented as open systems.
� compare and contrast various technologies for home Internet connections.
� explain packet switching.
� describe the basic roles of various network protocols.
� explain the role of a firewall.
� compare and contrast network hostnames and IP addresses.
� explain the domain name system.

15.1 Networking

A computer network is a collection of computing devices that are
connected in various ways in order to communicate and share resources.
E-mail, instant messaging, and Web pages all rely on communication that
occurs across an underlying computer network. We use networks to share
intangible resources, such as files, as well as tangible resources, such as
printers.

Usually, the connections between computers in a network are made
using physical wires or cables. However, some connections are wireless,
using radio waves or infrared signals to convey data. Networks are not
defined only by physical connections; they are defined by the ability to
communicate.

Computer networks contain devices other than computers. Printers, for
instance, can be connected directly to a network so that anyone on the
network can print to them. Networks also contain a variety of devices for
handling network traffic. We use the generic term node or host to refer to
any device on a network.

A key issue related to computer networks is the data transfer rate, the
speed with which data is moved from one place on a network to another.
We are constantly increasing our demand on networks as we rely on them
to transfer more data in general, as well as data that is inherently more
complex (therefore larger). Multimedia components such as audio and
video are a large contributor to this increased traffic. Sometimes the data
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Protocol A set of rules
that defines how data is
formatted and processed
on a network

Client/server model

A distributed approach
in which a client makes
requests of a server and
the server responds

File server A computer
dedicated to storing and
managing files for
network users

Web server A
computer dedicated to
responding to requests
for Web pages

Local-area network

(LAN) A network
connecting a small
number of nodes in a
close geographic area

Ring topology A LAN
configuration in which
all nodes are connected
in a closed loop
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Figure 15.1

Client/Server interactionResponse

Request

ServerClient

transfer rate is referred to as the bandwidth of a network. Recall that we
discussed bandwidth in Chapter 3 in the discussion of data compression.

Another key issue in computer networks is the protocols that are used.
As we’ve mentioned at other points in this book, a protocol is a set of rules
describing how two things interact. In networking, we use well-defined
protocols to describe how transferred data is formatted and processed.

Computer networks have opened up an entire frontier in the world of
computing called the client/server model. No longer do you think of
computers solely in terms of the capabilities of the machine sitting in front
of you. Software systems are often distributed across a network, in which a
client sends a request to a server for information or action, and the server
responds, as shown in Figure 15.1.

For example, a file server is a computer that stores and manages files
for multiple users on a network. That way every user doesn’t need to have
his or her own copy of the files. A Web server is a computer dedicated to
responding to requests (from the browser client) for Web pages.
Client/server relationships have become more complex as we rely heavily
on networks in our everyday lives. Therefore, the client/server model has
become increasingly important in the world of computing.

The client/server model has also grown beyond the basic
request/response approach. Increasingly, the client/server model is used to
support parallel processing, which is the use of multiple computers to solve
a problem by breaking it into pieces as discussed in Chapter 4. Using
networks and the client/server model, parallel processing can be accom-
plished by the client requesting that multiple machines perform a specific
part of a problem. The client gathers the responses from each to form a
complete solution to the problem.

Types of Networks
Computer networks can be classified in various ways. A local-area

network (LAN) connects a relatively small number of machines in a rela-
tively close geographical area. LANs are usually confined to a single room
or building. They may sometimes span a few close buildings.

Various configurations, called topologies, have been used to administer
LANs. A ring topology connects all nodes in a closed loop on which
messages travel in one direction. The nodes of a ring network pass along
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Star topology A LAN
configuration in which a
central node controls all
message traffic

Bus topology A LAN
configuration in which
all nodes share a
common line

Ethernet The industry
standard for local-area
networks, based on a
bus topology

Wide-area network

(WAN) A network
connecting two or more
local-area networks

Gateway A node that
handles communication
between its LAN and
other networks

Internet A wide-area
network that spans the
planet

Metropolitan-area

network (MAN) A
network infrastructure
developed for a large
city
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messages until they reach their destination. A star topology centers around
one node to which all others are connected and through which all
messages are sent. A star network puts a huge burden on the central node;
if it is not working, communication on the network is not possible. In a
bus topology, all nodes are connected to a single communication line that
carries messages in both directions. The nodes on the bus check any
message sent on the bus, but ignore any that are not addressed to them.
These topologies are pictured in Figure 15.2. A bus technology called
Ethernet has become the industry standard for local-area networks.

A wide-area network (WAN) connects two or more local-area networks
over a potentially large geographic distance. A wide-area network permits
communication among smaller networks. Often one particular node on a
LAN is set up to serve as a gateway to handle all communication going
between that LAN and other networks. See Figure 15.3.

Communication between networks is called internetworking. The
Internet, as we know it today, is essentially the ultimate wide-area
network, spanning the entire globe. The Internet is a vast collection of
smaller networks that have all agreed to communicate using the same
protocols and to pass along messages so that they can reach their final
destination.

Recently, the term metropolitan-area network (MAN) has been adopted
to refer to the communication infrastructures that have been developed in
and around large cities. The population and needs of a metropolitan area
often require unique attention. These networks are often implemented

Figure 15.2 Various network topologies

Ring topology Star topology Bus topology
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Internet backbone A
set of high-speed
networks carrying
Internet traffic

Internet service

provider (ISP) A
company providing
access to the Internet
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Figure 15.3 Local-area networks connected across a distance to create a wide-area network

Gateway

Gateway

using innovative techniques such as running optical fiber cable through
subway tunnels.

Internet Connections
The Internet backbone is a term used to refer to a set of high-speed
networks that carry Internet traffic. These networks are provided by
companies such as AT&T, GTE, and IBM. The backbone networks all
operate using connections that have high data transfer rates, ranging from
1.5 megabits per second to over 600 megabits per second (using special
optical cables).

An Internet service provider (ISP) is a company that provides other
companies or individuals with access to the Internet. ISPs connect directly
to the Internet backbone, or they connect to a larger ISP with a connection
to the backbone. America OnLine and Prodigy are examples of Internet
service providers.

There are various technologies available that you can use to connect a
home computer to the Internet. The three most popular techniques for
home connections are a phone modem, a digital subscriber line (DSL), or a
cable modem. Let’s examine each of these.
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Phone modem A
device that converts
computer data into an
analog audio signal and
back again

Digital subscriber line

(DSL) An Internet
connection made using a
digital signal on regular
phone lines

Cable modem A
device that allows
computer network
communication using the
cable TV hookup in a
home
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The telephone system had already connected homes throughout the
world long before the desire for Internet connections came along. There-
fore, it makes sense that the first technique for home-based network
communication was a phone modem. The word modem stands for modu-
lator/demodulator. A phone modem converts computer data into an
analog audio signal for transfer over a telephone line, and then a modem
at the destination converts it back again into data. One audio frequency is
used to represent binary 0 and another to represent binary 1.

To use a phone modem, you must first establish a telephone connection
between your home computer and one that is permanently connected to
the Internet. That’s where your Internet service provider comes in. You
pay your ISP a monthly fee for the right to call one of several (hopefully
local) computers that they have set up for this purpose. Once that connec-
tion is made, you can transfer data via your phone lines to your ISP, which
then sends it on its way through the Internet backbone. Incoming traffic is
routed through your ISP to your home computer.

This approach was fairly simple to implement because it does not
require any special effort on the part of the telephone company. Since the
data is treated as if it were a voice conversation, no special translation is
needed except at either end. But that convenience comes at a price. The
data transfer rate available with this approach is limited to that of analog
voice communication, usually 64 kilobits per second at most.

A phone line can provide a much higher transfer rate if the data is
treated as digital rather than analog. A digital subscriber line (DSL) uses
regular copper phone lines to transfer digital data to and from the phone
company’s central office. Since DSL and voice communication use different
frequencies, it is even possible to use the same phone line for both.

To set up a DSL connection, your phone company may become your
Internet service provider, or they may sell the use of their lines to a third-
party ISP. To offer DSL service, the phone company must set up special
computers to handle the data traffic. Though not all phone companies
support DSL yet, it is becoming an increasingly popular approach.

With DSL, there is no need to “dial in” to create the network connec-
tion like there is with a phone modem. The DSL line maintains an active
connection between your home and a computer at the ISP. However, to
make use of DSL technology, your home must be within a certain distance
from the central office; otherwise, the digital signal degrades too much
while traveling between those two points.

A third option for home connections is a cable modem. In this
approach, the data is transferred on the same line that your cable TV
signals come in on. Several leading cable TV companies in North America
have pooled their resources to create Internet service providers for cable
modem service.
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Broadband Network
technologies that gener-
ally provide data transfer
speeds greater than 128
bps

”Build a better mousetrap, and the world
will beat a path to your door. Invent the
computer mouse, and the world will all but
forget your name.” This was the lead para-
graph in an article celebrating the 20th
birthday of the computer mouse.1

Designed by Doug Engelbart—the name
that was forgotten—and a group of young
scientists and engineers at Stanford
Research Institute, the computer mouse
debuted in 1968 at the Fall Joint Computer
conference as part of a demonstration later called
“The Mother of All Demos” by Andy van Dam. The
historic demonstration foreshadowed human-
computer interaction and networking. It wasn’t until
1981 that the first commercial computer with a mouse
was introduced, however. In 1984 the Apple Macin-
tosh brought the mouse into the mainstream. To this
day no one seems to know where the term “mouse”
came from.

Engelbart grew up on a farm near Portland,
Oregon, during the Depression. He served in the
Navy in the Philippines during World War II as an
electronics technician. He completed his electrical
engineering degree in 1948 from Oregon State
University and moved to the Bay Area. In 1955 he
received a Ph.D. from the University of California at
Berkeley and joined the Stanford Research Institute.

Engelbart’s vision of the computer as an extension
of human communication capabilities and a resource
for the augmentation of human intellect was outlined
in the seminal paper “Augmenting Human Intellect: A
Conceptual Framework,” published in 1962. He has

never lost this vision. Ever since, he has
been developing models to improve the co-
evolution of computers with human organi-
zations to boost collaboration, and to
create what he calls “high performance
organizations.” 2

During the 1970s and 1980s, Engelbart
was Senior Scientist at Tymshare, which
was bought by McDonnell-Douglas. When
the program was shut down in 1989,
Engelbart founded the Bootstrap Institute,

aimed at helping companies and organizations utilize
his techniques. He feels encouraged by the open-
source movement, in which programmers collaborate
to create advanced and complicated software. He is
currently planning a system of open software that can
be distributed free over the Internet.

Recognition may have been long in coming, but
Englebart received 32 awards between 1987 and
2001, including the Turing Award in 1997 and the
National Medal of Technology in 2000. The citations
for these two prestigious awards read as follows:

(Turing Award) For an inspiring vision of the future
of interactive computing and the invention of key
technologies to help realize this vision.

(National Medal of Technology) For creating the
foundations of personal computing including
continuous real-time interaction based on cathode-
ray tube displays and the mouse, hypertext linking,
text editing, online journals, shared-screen telecon-
ferencing, and remote collaborative work.

Doug Engelbart

Both DSL connections and cable modems fall under the category of
broadband connections, which generally mean speeds faster than 128 bits
per second. Debate between the DSL and cable modem communities
continues to rage to see who can claim the dominant market share. Both
generally provide data transfer speeds in the range of 1.5 to 3 megabits per
second.
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Download Receiving
data on your home
computer from the
Internet

Upload Sending data
from your home
computer to a destina-
tion on the Internet

Packet A unit of data
sent across a network

Packet switching The
approach to network
communication in which
packets are individually
routed to their destina-
tion, then reassembled

Router A network
device that directs a
packet between networks
toward its final destina-
tion

Repeater A network
device that strengthens
and propagates a signal
along a long communi-
cation line
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For both DSL and cable modems, the speed for downloads (getting data
from the Internet to your home computer) may not be the same as uploads

(sending data from your home computer to the Internet). Most traffic for
home Internet users are downloads: receiving Web pages to view and
retrieving data (such as programs and audio and video clips) stored some-
where else on the network. You perform an upload when you send an e-mail
message, submit a Web-based form, or request a new Web page. Since
download traffic largely outweighs upload traffic, many DSL and cable
modem suppliers use technology that devotes more speed to downloads.

Packet Switching
To improve the efficiency of transferring information over a shared
communication line, messages are divided into fixed-sized, numbered
packets. The packets are sent over the network individually to their desti-
nation, where they are collected and reassembled into the original message.
This approach is referred to as packet switching.

The packets of a message may take different routes on their way to the
final destination. Therefore, they may arrive in a different order than the
way they were sent. The packets must be put into the proper order once
again, and then combined to form the original message. This process is
shown in Figure 15.4.

A packet may make several intermediate hops between computers on
various networks before it reaches its final destination. Network devices
called routers are used to direct packets between networks. Intermediate
routers don’t plan out the packet’s entire course; each router merely knows
the best next step to get it closer to its destination. Eventually a message
reaches a router that knows where the destination machine is. If a path is
blocked due to a down machine, or if a path currently has a lot of network
traffic, a router might send a packet along an alternative route.

If a communication line spans a long distance, such as across an ocean,
a device called a repeater is installed periodically along the line to

Figure 15.4

Messages sent by packet
switching

Message is divided
into packets

Packets are sent over the Internet
by the most expedient route

Packets are reordered
and then reassembled

Packet 1

Packet 2

Packet 3
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Packet 1

Sent
message
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Proprietary system A
system that uses tech-
nologies kept private by
a particular commercial
vendor

Interoperability The
ability of software and
hardware on multiple
machines and from
multiple commercial
vendors to communicate

Open system A system
that is based on a
common model of
network architecture and
an accompanying suite
of protocols

Open Systems Inter-

connection Reference

Model A seven-layer
logical breakdown of
network interaction to
facilitate communication
standards
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Figure 15.5

The layers of the 
OSI Reference Model

Application layer7

Presentation layer6

Session layer5

Transport layer4

Network layer3

Data Link layer2

Physical layer1

strengthen and propagate the signal. Recall from Chapter 3 that a digital
signal loses information only if it is allowed to degrade too much. A
repeater keeps that from happening.

15.2 Open Systems and Protocols

Many protocols have been defined to assist in network communication.
Some have gained a stronger foothold than others because of many
reasons, often historical. We focus in this section on the protocols used for
general Internet traffic. Before we discuss the details of particular proto-
cols, however, it is important to put them in context by discussing the
concept of an open system.

Open Systems
Early in the development of computer networks, commercial vendors came
out with a variety of technologies that they hoped businesses would adopt.
The trouble was that these proprietary systems were developed with their
own particular nuances and did not permit communication between
networks of various types. As network technologies grew, the need for
interoperability became clear; we needed a way for computing systems
made by different vendors to communicate.

An open system is one based on a common model of network architec-
ture and a suite of protocols used in its implementation. Open-system
architectures maximize the opportunity for interoperability.

The International Organization for Standardization (ISO) established
the Open Systems Interconnection (OSI) Reference Model to facilitate
the development of network technologies. It defines a series of layers of
network interaction. The seven layers of the OSI Reference Model are
shown in Figure 15.5.
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Protocol stack Layers
of protocols that build
and rely on each other
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Each layer deals with a particular aspect of network communication.
The highest level deals with issues that relate most specifically to the appli-
cation program in question. The lowest layer deals with the most basic
electrical and mechanical issues of the physical transmission medium (such
as types of wiring). The other layers fill in all other aspects. The network
layer, for example, deals with the routing and addressing of packets.

The details of these layers are beyond the scope of this book, but it is
important to know that networking technology as we know it today is
possible only through the use of open-system technology and approaches
such as the OSI Reference Model.

Network Protocols
Following the general concepts of the OSI Reference Model, network
protocols are layered such that each one relies on the protocols that
underlie it, as shown in Figure 15.6. This layering is sometimes referred to
as a protocol stack. The layered approach allows new protocols to be
developed without abandoning fundamental aspects of lower levels. It also
provides more opportunity for their use in that the impact on other aspects
of network processing is minimized. Sometimes protocols at the same level
provide the same service as another protocol at that level, but do so in a
different way.

Keep in mind that a protocol is, in one sense, nothing more than an
agreement that a particular type of data will be formatted in a particular
manner. The details of file formats and the size of data fields are important
to software developers creating networking programs, but we do not
explore those details here. The importance of these protocols is that they
provide a standard way to interact among networked computers.

The lower two layers in Figure 15.6 form the foundation of Internet
communication. Other protocols, sometimes referred to as high-level
protocols, deal with specific types of network communication. These layers
are essentially one particular implementation of the OSI Reference Model
and correspond in various ways to the levels described in that model. Let’s
explore these levels in more detail.

Figure 15.6

Layering of key network
protocols

User Datagram Protocol (UDP)Transmission Control Protocol (TCP)

Internet Protocol (IP)

SMTP FTP Telnet
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Transmission Control

Protocol (TCP) The
network protocol that
breaks messages into
packets, reassembles
them at the destination,
and takes care of errors

Internet Protocol (IP)

The network protocol
that deals with the
routing of packets
through interconnected
networks to the final
destination

TCP/IP A suite of
protocols and programs
that support low-level
network communication

User Datagram

Protocol (UDP) An
alternative to TCP that
achieves higher trans-
mission speeds at the
cost of reliability

Ping A program used
to test whether a partic-
ular network computer is
active and reachable

Traceroute A program
that shows the route a
packet takes across the
Internet
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TCP/IP
TCP stands for Transmission Control Protocol and IP stands for Internet

Protocol. The name TCP/IP (pronounced by saying the letters T-C-P-I-P)
refers to a suite of protocols and utility programs that support low-level
network communication. The name TCP/IP is written to reflect the nature
of their relationship—that TCP rests on top of the IP foundation.

IP software deals with the routing of packets through the maze of intercon-
nected networks to their final destination. TCP software breaks messages into
packets, hands them off to the IP software for delivery, and then orders and
reassembles the packets at their destination. TCP software also deals with any
errors that occur, such as if a packet never arrives at the destination.

UDP stands for User Datagram Protocol. It is an alternative to TCP.
That is, UDP software basically plays the same role as TCP software. The
main difference is that TCP is highly reliable, at the cost of decreased
performance, while UDP is less reliable, but generally faster. Note that
UDP is part of the TCP/IP suite of protocols. Because of the heavy reliance
on TCP, and for historical reasons, the entire suite is referred to as TCP/IP.

An IP program called ping can be used to test the reachability of
network designations. Every computer running IP software “echoes” ping
requests, which makes ping a convenient way to test whether a particular
computer is running and can be reached across the network. Ping officially
stands for Packet InterNet Groper, but the name was contrived to match
the term used when submarines send out a sonar pulse and listen for the
returned echo. Since ping works at the IP level, it often responds even
when higher-level protocols might not. The term ping is often used as a
verb among network administrators: “Ping computer X to see if it is
alive.”

Another TCP/IP utility program called traceroute shows the route that
a packet takes to arrive at a particular destination node. The output of
traceroute is a list of the computers that serve as the intermediate stopping
points along the way.

High-Level Protocols
Other protocols build on the foundation established by the TCP/IP
protocol suite. Some of the key high-level protocols are:

� Simple Mail Transfer Protocol (SMTP)—A protocol used to specify
the transfer of electronic mail

� File Transfer Protocol (FTP)—A protocol that allows a user on one
computer to transfer files to and from another computer

� Telnet—A protocol used to log into a computer system from a
remote computer. If you have an account on a particular computer
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Figure 15.7

Some protocols and the
ports they use

Protocol Port

Echo
File Transfer Protocol (FTP)
Telnet
Simple Mail Transfer Protocol (SMTP)
Domain Name Service (DNS)
Gopher
Finger
Hyper Text Transfer Protocol (HTTP)
Post Office Protocol (POP3)
Network News Transfer Protocol (NNTP)
Internet Relay Chat (IRC)

7
21
23
25
53
70
79
80

110
119

6667

that allows telnet connections, you can run a program that uses the
telnet protocol to connect and log in to that computer as if you were
seated in front of it.

� Hyper Text Transfer Protocol (HTTP)—A protocol defining the
exchange of World Wide Web documents, which are typically
written using the Hyper Text Markup Language (HTML). HTML is
discussed in more detail in the next chapter.

These protocols all build on TCP. Some high-level protocols have also
been defined that build on top of UDP in order to capitalize on the speed it
provides. But because UDP does not provide the reliability that TCP does,
UDP protocols are less popular.

Several high-level protocols have been assigned a particular port
number. A port is a numeric designation that corresponds to a particular
high-level protocol. Servers and routers use the port number to help
control and process network traffic. Common protocols and their ports are
listed in Figure 15.7. Some protocols, such as HTTP have default ports but
can use other ports as well.

MIME Types
Related to the idea of network protocols and standardization is the
concept of a file’s MIME type. MIME stands for Multipurpose Internet
Mail Extension. Although MIME types do not define a network protocol,
they define a standard for attaching or including multimedia or otherwise
specially formatted data with other documents, such as e-mail.

Based on a document’s MIME type, an application program can decide
how to deal with the data it is given. For example, the program you use to
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Figure 15.8 A firewall protecting a LAN

Protected LAN

Internet
users

Firewall

read e-mail may examine the MIME type of an e-mail attachment to deter-
mine how to display it (if it can).

MIME types have been defined for the documents created by many
common application programs, as well as for data from particular content
areas. Chemists and chemical engineers, for example, have defined a large
set of MIME types for various types of chemical-related data.

Firewalls
A firewall is a machine and its software that serve as a special gateway to a
network, protecting it from inappropriate access. A firewall filters the
network traffic that comes in, checking the validity of the messages as
much as possible and perhaps denying some messages altogether. The main
goal of a firewall is to protect (and to some extent hide) a set of more
loosely administered machines that reside “behind” it. This process is
pictured in Figure 15.8.

A firewall enforces an organization’s access control policy. For
example, a particular organization may allow network communication
only between its users and the “outside world” via e-mail, and deny other
types of communication, such as accessing Web sites. Another organiza-
tion may want to allow its users to freely access the resources of the
Internet, but may not want general Internet users to be able to infiltrate its
systems or gain access to its data.
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The system administrators of an organization set up a firewall for their
LAN that permits “acceptable” types of communication and denies other
types. There are various ways in which this can be accomplished, though
the most straightforward is to deny traffic on particular ports. For
example, a firewall could be set up to deny the ability for a user outside
the LAN to create a telnet connection to any machine inside the LAN by
denying all traffic that comes in on port 23.

More sophisticated firewall systems may maintain internal information
about the state of the traffic passing through them and/or the content of the
data itself. The more a firewall can determine about the traffic, the more able
it is to protect its users. Of course, this security comes at a price. Some sophis-
ticated firewall approaches might create a noticeable delay in network traffic.

15.3 Network Addresses

When you communicate across a computer network, you ultimately
communicate with one particular computer out of all possible computers
in the world. There is a fairly sophisticated mechanism for identifying
specific machines to establish that communication.

A hostname is a unique identification that specifies a particular
computer on the Internet. Hostnames are generally readable words sepa-
rated by dots. For example:

X=\"——elo—olE"<<=>!E=leO“

o!>O!FlOeEe<!o!Fzlo!X

We humans prefer to use the hostnames when dealing with e-mail
addresses and Web sites because they are easy to use and remember.
Behind the scenes, however, network software translates a hostname into
its corresponding IP address, which is easier for a computer to use. An IP
address is usually represented as a series of four decimal numbers sepa-
rated by dots. For example:

�9�lh”l�,�l��

�”hl�hhl�9l,

An IP address is stored in 32 bits. Each number in an IP address corresponds
to one byte in the IP address. Since one byte (8 bits) can represent 256 things,
each number in an IP address is in the range 0 to 255. See Figure 15.9.

It’s tempting to assume that since both hostnames and IP addresses are
separated into sections by dots, there is a correspondence between the
sections. That is not true. First of all, an IP address always has four values,
but hostnames can have a variety of sections.
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Figure 15.9

An IP address is stored in
four bytes

�99�9�99

148

9�99���9

78

�����9�9

250. . .

9999��99

12

An IP address can be split into a network address, which specifies a
specific network, and a host number, which specifies a particular machine
in that network. How the IP address is split up depends on what network
“class” it represents. The classes of networks (A, B, and C) provide for
networks of various sizes.

Class A networks use the first byte for the network address and the
remaining three bytes for the host number. Class B networks use the first
and second bytes for the network address and the last two bytes for the
host number. Class C networks use the first three bytes for the network
number and the last byte for the host number.

Think about the range of values this addressing approach allows for the
various network classes. There are relatively few class A networks, with
potentially many hosts on each. On the other hand, there are many class C
networks, but only a few (maximum 256) hosts on each. Class C network
addresses are assigned to most organizations, whereas class A and B networks
are reserved for very large organizations and Internet service providers.

The entire Internet protocol is based on a 32-bit IP address. If the use of
Internet-ready devices continues to grow, we will eventually run out of
reasonable address space to use. Debate continues to rage in networking
circles about how to handle this dilemma.

Domain Name System
A hostname consists of the computer name followed by the domain name.
For example, in the hostname

X=\"——elo—olE"<<=>!E=leO“

X=\"——e is the name of a particular computer, and o—olE"<<=>!E=leO“ is
the domain name. A domain name is separated into two or more sections
that specify the organization, and possibly a subset of an organization, of
which the computer is a part. In this example, X=\"——e is a computer in
the Department of Computing Sciences at Villanova University.

The domain names narrow in on a particular set of networks controlled
by a particular organization. Note that two organizations (or even subor-
ganizations) can have a computer named the same thing because the
domain name makes it clear which one is being referred to.
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Figure 15.10

Top-level domains,
including some relatively
new ones

Top-Level Domain General Purpose New TLDs General Purpose

.biz

.info

.pro

.museum

.aero

.coop

Business

Information

Professional

Museums

Aerospace industry

Cooperative

.com

.net

.org

.edu

.int

.mil

.gov

U.S. Commercial

Network

Nonprofit organization

U.S. Educational

International

U.S. Military

U.S. Government

Figure 15.11

Some of the top-level
domain names based on
country codes

Country Code TLD Country

.au

.br

.ca

.gr

.in

.ru

.uk

Australia

Brazil

Canada

Greece

India

Russian Federation

United Kingdom

The very last section of the domain is called its top-level domain (TLD)
name. The primary top-level domains are listed in Figure 15.10.

The first column of Figure 15.10 shows the top-level domains that have
been around since the Internet first evolved. Each one is used for organiza-
tions of a particular type, such as lo!X for commercial businesses and leO“
for colleges and universities. Organizations based in countries other than
the United States use a top-level domain that corresponds to their two-
letter country codes. Some of these codes (there are hundreds of them) are
listed in Figure 15.11.

Initially, anyone or any organization could register a domain name for
their own use as long as that name hadn’t already been taken. As the
Internet expanded, with new domain names being claimed regularly, it
quickly became clear that there was a problem. A common lament among
newcomers to the Internet was that the best domain names had already been
taken. Sometimes a name had already been claimed by another similar
organization, but in other cases people were trying to claim as many popular
names as possible, hoping to sell (ransom) them to large corporations (see
the discussion on domain name squatting at the end of this chapter).
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To alleviate the problem of domain name use, a new set of top-level
domains have been approved and are slowly being made available. The right
half of Figure 15.10 shows the new TLDs. This time the ability to register a
domain name using one of the new TLDs is being controlled, giving prefer-
ence to organizations that hold trademarks on particular names.

The domain name system (DNS) is chiefly used to translate hostnames
into numeric IP addresses. Before the DNS system was established, a Stan-
ford research group maintained a single file known as the host table. As
new host names were established, the Stanford group
would add them to the table (usually twice a week).
System administrators would retrieve the revised host
table occasionally to update their domain name

servers, which are computers that translate (resolve) a
hostname into its IP address.

As the number of hostnames grew, the single table
approach became unreasonable. It simply wasn’t a
practical way to update and distribute the information.
In 1984, network engineers designed the more sophisti-
cated domain name system that is in use today. DNS is
an example of a distributed database (as discussed in
Chapter 12); no one organization is responsible for
updating the hostname/IP mappings.

When you specify a hostname in a browser window
or e-mail address, the browser or e-mail software sends
a request to a nearby domain name server. If that server
can resolve the hostname, it does so. If not, that server
asks another domain name server. If that second server
can’t resolve it, the request continues to propagate.
Ultimately, the request finally reaches a server that can
resolve the name, or the request expires because it took
too much time to resolve.

Summary

A network is a collection of computers connected to share resources and
data. Network technologies must concern themselves with underlying
protocols and data transfer speeds. The client-server model has emerged as
an important software technology given our ever-increasing reliance on
networks.

Networks are often classified by their scope. A local-area network
(LAN) covers a small geographic area and a relatively small number of
connected devices. A wide-area network (WAN) embraces internet-
working, connecting one network to another, and covers a large

Terrorist attacks spark run on
domain names

After the suicide jetliner attacks against the
United States on September 11, 2001, hundreds
of related Internet domain names were regis-
tered—some for tributes and others for profit.
Some legitimate sites included WTCStories.com,
a collection of quotes and information on chari-
ties, and AirTragedy.com, which contained news
and resources for victims and survivors.

On the other hand, some domain names were
claimed in the hopes of selling them to interested
parties. WTCNot.com advertised that it was for
sale for $500,000, and WTCdestruction.net was
available for $75,000. One major domain
name reseller halted auctions for tasteless names
such as NewYorkCarnage.com. The CEO of a
name registration company said spectators of
attack-related names were misguided about their
value. His advice was to donate the $30 cost of
domain-name registration to an appropriate
charity instead.3
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geographic area. A municipal-area network (MAN) is specially designed
for large cities. LAN topologies include ring, star, and bus networks.
Ethernet has become a standard for local-area networks.

Open systems are based on a common model of network architecture and
protocols, allowing for interoperability. The OSI Reference Model is a seven-
layer description of network processing based on open-system principles.

The Internet backbone is a set of high-speed networks provided by
various companies. Internet service providers (ISP) connect to the back-
bone or to other ISPs and provide connections for both home and business
computing. Popular home connection technologies include phone modems,
digital subscriber lines (DSL), and cable modems. Phone modems transfer
data as audio signals and are therefore quite slow. DSL uses the same
phone lines but transfers data digitally. Cable modems are also digital and
use the cable TV wiring to transfer data.

Messages are transferred over the Internet by breaking them up into
packets and sending those packets separately to their destination where
they are reformed into the original message. Packets may make several
intermediate hops between networks before arriving at their destination.
Routers are network devices that guide a packet between networks.
Repeaters strengthen digital signals before they degrade too much.

Network protocols are layered so that a high-level protocol relies on
lower-level protocols that support it. The key lower-level protocol suite for
Internet traffic is TCP/IP. IP protocols and software deal with the routing
of packets. TCP protocols and software divide messages into packets,
reassemble them at the destination, and take care of errors that occur.
High-level protocols include SMTP for e-mail traffic, FTP for file transfers,
telnet for remote login sessions, and HTTP for Web traffic. Several high-
level protocols have been assigned port numbers, which are used to help
control and process network traffic. MIME types have been defined for
many types of documents and special data formats.

A firewall protects a network from inappropriate access and enforces an
organization’s access control policy. Some firewalls simply block traffic on
specific ports, while more sophisticated firewalls analyze the content of
network traffic.

An Internet network address must pinpoint a particular machine among all
possible ones in the world. A hostname uses readable words separated by dots.
A hostname gets translated into an IP address, which is a numeric address
separated into four sections. Part of the IP address identifies the network and
part identifies the specific host on that network. How the IP address is broken
down depends on the network class (A, B, or C) that the address references.

The domain name system (DNS) translates hostnames into IP addresses.
DNS has evolved from using a single file containing all of the information
into a distributed system dividing the responsibility among millions of
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domain name servers. Top-level domains, such as lo!X and leO“, have
become crowded, so some new top-level domains, such as l">D! and
lY"i, have been approved.

Cybersquatting
Cybersquatting refers to registering an Internet domain name (also

called “dot com” name) for the purpose of selling it later. How can

domain names become theft for resale? Why are they important

enough for someone to want to buy them? A company with a well-

known trademark tries to register the trademark as a domain name

only to find that someone else has already registered it. It may be that

the business that registered the name has a similar name or, more

likely, the name has been registered with the intention of selling it to

the company with the same trademark. Common names are also

subject to cybersquatting. For example, drugstore.com, furniture.com,

gardening.com, and Internet.com were sold by cybersquatters.

Names of famous people are targets for cybersquatters as well. For

example, in the 2000 National Football League draft, of the 120

players expected to be drafted only a few didn’t have domain sites

registered with their names—and very few of these sites were regis-

tered by the players themselves. One fan collects such sites as a piece

of history, but most of the people registering the names expected to

sell them after the draft.

In the late 1990s, domain-name auction houses arose. For a fee, the

house would appraise a registered domain name and offer it for

auction. Names such as 411.com, 611.com, and 911.com, all of which

were listed on one site, were expected to go for as much as $10 million

each. In addition, FastRefill.com was listed for $90,000, and Roast-

Beef.com was listed for $350,000.4

A different but related issue is the registering of domain names that

are clearly related to a famous person or brand name. For example, the

satirical site http://www.gwbush.com/ was set up during the 2000

presidential election campaign to poke fun at candidate George Bush.

(The official site was -\\zSTT   lPe!FPeY“—-lo!XT.) Another site,

\!"—IFI“—lo!l“L, was set up to air a customer’s grievances with

the Toys ‘R’ Us company.

W
WW
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In November 1999, the Anti-cyber Piracy Act was passed by

Congress and signed by President Clinton. The Act establishes that

someone registering a domain name may be liable to the owner of a

trademark or to others that may be affected by the “bad faith” of the

domain name registrant. In August of 2000, Governor Davis of Cali-

fornia signed into law a bill that closed gaps in the federal legislation

by including protection for names that are not trademarked or suffi-

ciently famous to meet the federal standards.

In 1998 the Internet Corporation for Assigned Names and Numbers

(ICANN), a technical coordination body for the Internet, was created in

the private sector. ICANN issued the Uniform Domain-Name Dispute-

Resolution Policy (often referred to as the “UDRP”). As the ICANN Web

site states,

“Under the policy, most types of trademark-based domain-name

disputes must be resolved by agreement, court action, or arbitration

before a registrar will cancel, suspend, or transfer a domain name.

Disputes alleged to arise from abusive registrations of domain names (for

example, cybersquatting) may be addressed by expedited administrative

proceedings that the holder of trademark rights initiates by filing a

complaint with an approved dispute-resolution service provider.”5

These laws and policies have cut down on the cases of cybersquat-

ting, but some people are concerned that they go too far. These people

fear that in curbing domain-name abuses, individual rights to free

speech have been abridged.
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Exercises
1. What is a computer network?

2. How are computers connected together?

3. To what does the word node (host) refer?

4. Name and describe two key issues related to computer networks.

5. What is a synonym for data transfer rate?

6. Describe the client/server model and discuss how it has changed how
we think about computing.

7. Just how local is a local-area network?

8. Distinguish between the following LAN topologies: ring, star, and bus.

9. How does the shape of the topology influence message flow through a
LAN?

10. What is Ethernet?

11. What is a WAN?

12. What is a gateway and what is its purpose?
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13. What is the Internet?

14. What is a MAN and what makes it different from a LAN and a WAN?

15. Distinguish between the Internet backbone and an Internet service
provider (ISP).

16. Name at least two national ISPs.

17. Name and describe three technologies for connecting a home com-
puter to the Internet.

18. What role do ISPs play with the three technologies in Exercise 17?

19. What are the advantages and disadvantages of each of the technolo-
gies in Exercise 17?

20. Phone modems and digital subscriber lines (DSLs) use the same kind
of phone line to transfer data. Why is DSL so much faster than phone
modems?

21. Why do DSL and cable modem suppliers use technology that devotes
more speed to downloads than to uploads?

22. Messages sent across the Internet are divided into packets.  What is a
packet and why are messages divided into them?

23. Explain the term packet switching.

24. What is a router?

25. What is a repeater?

26. What problems arise due to packet switching?

27. What are proprietary systems and why do they cause a problem?

28. What do we call the ability of software and hardware on multiple
platforms from multiple commercial vendors to communicate?

29. What is an open system and how does it foster interoperability?

30. Compare and contrast proprietary and open systems.

31. What is the seven-layer logical breakdown of network interaction
called?

32. What is a protocol stack and why is it layered?

33. What constitutes the foundation of Internet communication?

34. What is the role of the IP protocol?

35. What is the role of the TCP protocol?

36. Define TCP/IP.

37. Compare TCP and UDP.

38. What is the functionality of the utility program ping?

39. What is the functionality of the utility program Traceroute?

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Thought Questions 477

40. List four high-level protocols and what they specify.

41. What do we call a numeric designation corresponding to a particular
high-level protocol?

42. Define MIME type.

43. What is a firewall, what does it accomplish, and how does it accom-
plish it?

44. What is a host name and how is it composed?

45. What is an IP address and how is it composed?

46. What is the relationship between a hostname and an IP address?

47. Into what parts can an IP address be split?

48. What are the relative sizes of Class A networks, Class B networks, and
Class C networks?

49. How many hosts are possible in Class C networks, in Class B net-
works, and in Class A networks?

50. What is a domain name?

51. What is a top-level domain name?

52. How does the current domain name system try to resolve a hostname?

Thought Questions
1. What is the computer system in your school like? Are all the com-

puters networked?  Is there more than one network? Are the dormito-
ries networked?

2. If you wanted to register a domain name, how would you go about it?
lY"i, l">D!, lzF!, lX“—e“X, l=eF!, and lo!!z are new top-level
domain names.  Are there any current restrictions on the use of these
new top-level domain names?

3. Do you think that the name Internet is appropriate?  Would Intranet
be a better name?

4. Do you think the government or the private sector should monitor
domain-name abuse?

5. Go to the ICANN Web site and read the UDRP.  Do you think their
definition of “bad faith” is reasonable? Is it adequate to solve the
abuses described here?

6. Should a person be allowed to create a Web site with the intention of
broadcasting unsubstantiated claims against a product or company?

7. Should a person be allowed to create a Web site to parody a person,
company, or political institution?

?
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The World Wide Web

The evolution of the World Wide Web has made network commu-

nication a convenient reality for many users who would otherwise

avoid computers completely. As the name implies, the Web has

created spider-like connections across the entire planet, forming an

infrastructure of information and resources available at the click of

a mouse button. Several different underlying technologies make

the Web the productive tool it is today. This chapter explores a few

of them and establishes a foundation of Web-based principles on

which all future technologies likely will rely.
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World Wide Web (or
Web) An infrastructure
of information and the
network software used to
access it

Web page A document
that contains or refer-
ences various kinds of
data

Link A connection
between one Web page
and another

Web site A collection
of related Web pages,
usually designed and
controlled by the same
person or company

480 Chapter 16 The World Wide Web

Goals
After studying this chapter, you should be able to:

� compare and contrast the Internet and the World Wide Web.
� describe general Web processing.
� write basic HTML documents.
� describe several specific HTML tags and their purposes.
� describe the processing of Java applets and Java server pages.
� compare and contrast HTML and XML.
� define basic XML documents and their corresponding DTDs.
� explain how XML documents are viewed.

16.1 Spinning the Web

Many people use the words Internet and Web interchangeably, but in
reality they are fundamentally different. The details of computer networks
were discussed in Chapter 15. Networks have been used to connect
computers since the 1950s. Communication via the Internet has been
possible for many years, but in the early days that communication was
almost exclusively accomplished via text-based e-mail and basic file
exchanges.

Compared to the Internet, the World Wide Web (or simply the Web) is a
relatively new idea. The Web is an infrastructure of distributed informa-
tion combined with software that uses networks as a vehicle to exchange
that information. A Web page is a document that contains or references
various kinds of data, such as text, images, graphics, and programs. Web
pages also contain links to other Web pages so that the user can “move
around” as desired using the point-and-click interface provided by a
computer mouse. A Web site is a collection of related Web pages, usually
designed and controlled by the same person or company.

The Internet makes the communication possible, but the Web makes
that communication easy, more productive, and more enjoyable. Though
universities and some high-tech companies had been using the Internet for
years, it wasn’t until the mid 1990s, when the World Wide Web was devel-
oped, that the Internet became a household name. Suddenly, Internet
Service Providers (ISPs) were springing up everywhere, allowing people to
connect to the Internet from their homes. The Internet, largely because of
the World Wide Web, is now a primary vehicle for business. Electronic
shopping, financial transactions, and group management are all common
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Web browser A soft-
ware tool that retrieves
and displays Web pages

Web server A
computer set up to
respond to requests for
Web pages

Uniform Resource

Locator (or URL) A
standard way of speci-
fying the location of a
Web page
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Figure 16.1

A browser retrieving a Web
page

URL

Web Server

Request

Text,
images,

etc.

Browser

Local Computer

online activities. The Web has literally changed the way we conduct our
personal and business lives.

When we use the Web, we often talk about “visiting” a Web site, as if
we were going there. In truth, we actually specify the information we
want, and it is brought to us. The concept of visiting a site is understand-
able in that we often don’t know what’s at a particular site until we “go to
it” and see.

We communicate on the Web using a Web browser, such as Netscape
Navigator or Microsoft’s Internet Explorer. A browser is a software tool
that issues the request for the Web page we want and displays it when it
arrives. Figure 16.1 depicts this process.

The requested Web page is usually stored on another computer, which
may be down the hall or halfway around the world. That computer that is
set up to respond to Web requests is called a Web server.

In a browser, we specify the Web page we want using a Web address
such as

www.villanova.edu/academics.html

A Web address is the core part of a Uniform Resource Locator, or URL,
which uniquely identifies the page you want out of all of the pages stored
anywhere in the world. Note that part of a URL is the host name of the
computer on which the information is stored. Chapter 15 discussed host
names and network addresses in detail.

In addition to text, a Web page often consists of separate elements such
as images. All elements associated with a particular Web page are brought
over when a request for that Web page is made.

Various technologies contribute to the design and implementation of a
Web site. Our goal in this chapter is to introduce you to a few of these tech-
nologies. More detail about these topics can be found on the book’s Web
site.
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Hypertext Markup

Language (or HTML)

The language used to
create or build a Web
page

Markup language A
language that uses tags
to annotate the informa-
tion in a document

Tag The syntactic
element in a markup
language that indicates
how information should
be displayed
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Figure 16.2

A marked-up document

Final Report
European Conference on Expert Systems

Submitted by Justin Parker

First of all, our thanks go out to the following sponsors for their
support of the conference and its supplemental activities.

Allied Interactive
Sybernetics, Inc.
Dynamic Solutions of New Jersey

The conference was a great success. It ran a full four days, including
workshops and special sessions. Subjective feedback from conference
attendees was largely positive, and financially the revenues resulted
in a surplus of over $10,000.

boldface
Center

make these bullets

!

16.2 HTML

Web pages are created (or built) using a language called the Hypertext

Markup Language, or HTML. The term hypertext refers to the fact that the
information is not organized linearly, like a book. Instead, we can embed
links to other information and jump from one place to another as needed.
These days, the more accurate term would be hypermedia, because we deal
with many types of information in addition to text, including images,
audio, and video.

The term markup language comes from the fact that the primary
elements of the language take the form of tags that we insert into a docu-
ment to annotate the information stored there. In the case of HTML, the
tags indicate how the information should be displayed. It’s as if you took a
printed document and marked it up with extra notation to specify other
details, as shown in Figure 16.2.

HTML documents are regular text and can be created in any general-
purpose editor or word processor. There are also special-purpose software
tools that are designed to help us create Web pages, but these tools ulti-
mately generate HTML documents. It is these HTML documents that are
transported over the Web when a Web page is requested.
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Figure 16.3

The Student Dynamics Web
page as displayed in
Netscape Navigator

An HTML tag indicates the general nature of a piece of information
(such as a paragraph, an image, an itemized list) as well as how it should
be displayed (such as the font style, size, and color). Think of tags as
suggestions to the browser. Two different browsers may interpret the same
tags in slightly different ways. Therefore, the same Web page may look
different depending on what browser you use to view it.

Let’s look at an example Web page as displayed by a browser and then
examine the underlying HTML document with the various tags embedded
in it. Figure 16.3 shows a Web page displayed in the Netscape Navigator
browser. The page contains information about a student organization
called Student Dynamics.

The Web page contains an image at the top showing the name of the
group. Below the image, offset by a pair of horizontal lines, is a single
phrase in italics. Below that is some information about the organization,
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Figure 16.4 The HTML document defining the Student Dynamics Web page

X=\"—e

X=loEe

X\<\—le>!O“Fz! E�z9�h”�X,\<\—le

X,=loEe

X�DEYe

Xil-\lSeX<"T >Si P�!OE�z9�h”�"IhLPeX,il-\lSe

X=Se

Xil-\lSeX<eo �!O“Fz!‘Q9�F“ ”'��Ozh!� '(I9zh)9!h'z"X,<eX,il-\lSe

X=Se

X*e*+9z !' N9(!h”hN9!F hz 'O( ON”'�hzI FWFz!�.X,*e

XJ—e

X—<e0h�h! i1h+“(Fz2� ='�Nh!9+ 3"9(”1 456X,—<e

X—<e=F+N ”+F9z (Fz'W9!F“ �”1''+ I('Oz“� 3oN(h+ 76X,—<e

X—<ei'z!hzOF !1F X9 1(FL P'O!(F9”1"1!�+Pe8:w4 'O!(F9”1

N('I(9�"X,9e X<"T >Si PON“9!F“"IhLPeX,—<e

X,J—e

X*eX�eX<eY'O �1'O+“ QF hzW'+WF“bX,�eX,<e =F+N 'O( 9”!hWF 9z“

FzF(IF!h” !F9� �9yF 9 “hLLF(Fz”F hz !1F +hWF� 'L NF'N+F" DO(

X9 1(FL PF=F”�'9(“"1!�+PeF=F”O!hWF Q'9(“X,9e h� 9+f9�� fh++hzI

!' 9z�fF( 9z� MOF�!h'z� �'O �9� 19WF"X,*e

X*e='f ”9z fF 1F+N �'O? A19! �OIIF�!h'z� “' �'O 19WF (FI9(“hzI

zFf 9”!hWh!hF�? X9 1(FL P�OIIF�!h'z�"1!�+Pe—F! O� yz'fbX,9eX,*e

X*eAF 9(F 9+f9�� hz zFF“ 'L “'z9!h'z�. FMOhN�Fz!B �'zF�B '(

3QF!!F( �F!6 �'ObX,*e

Xil-\lSeX=5eC'hz O� L'( 'O( >N(hzI *h”zh” hz "9�bX,=5eX,il-\lSe

X,�DEYe

X,=\"—e

including a bulleted list of upcoming events followed by some short para-
graphs. The small image at the end of one bulleted item is used to indicate
that that information has been recently updated. The blue, underlined text
represents links that, when clicked using the mouse, open a new Web page.
Note that some of the text has special styling, such as bold or italics, and
that some is centered.

The underlying HTML document for this Web page is shown in Figure
16.4. It specifies all of the formatting seen in this Web page. The tags
embedded among the main document contents are highlighted in blue.

Tags are enclosed in angle brackets (X. . .e). Words such as =loE, \<\—l,
and �DEY are called elements and specify the type of the tag. Tags are often
used in pairs, with a start tag such as X�DEYe and a corresponding end tag
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with a , before the element name, such as X,�DEYe.
HTML is not case sensitive, so XQ'“�e and X�DEYe are
the same.

Every HTML file contains two main sections: the
head of the document followed by the body of the
document. The head contains information about the
document itself, such as its title. The body of the docu-
ment contains the information to be displayed.

The entire HTML document is enclosed between
X=\"—e and X,=\"—e tags. The head and body sections
of the document are similarly indicated. The text
between the X\<\—le and X,\<\—le tags appear in the
title bar of the Web browser when the page is
displayed.

The browser determines how the page should be
displayed based on the tags. It ignores the way we
format the HTML document using carriage returns,
extra spaces, and blank lines. Indenting some lines of
the document makes it easier for a human being to
read, but such formatting is irrelevant to the way it is
finally displayed. A browser takes into account the
width and height of the browser window. When you
resize the browser window, the contents of the Web
page are reformatted to fit the new size.

A browser does its best to make sense of the way a document is marked up
with tags and displays the page accordingly. If HTML tags conflict, or are not
properly ordered or nested, the results can be surprising and unattractive.

Basic HTML Formatting
The paragraph tags (X*e . . . X,*e) specify text that should be treated as a
separate paragraph. In most browsers, the closing X,*e tag is unnecessary,
but we use it for clarity. A browser usually begins each paragraph on a
new line with some space separating it from proceeding and following
paragraphs.

The center tags (Xil-\lSe . . . X,il-\lSe) indicate that the enclosed
information should be centered in the browser window.

The �, <, and J elements are used to indicate that the enclosed text
should be bold, italic, or underlined, respectively. These elements can be
nested, causing multiple effects to occur at the same time, though this is
not the case with all tags. That is, not all tags make sense when nested.

The X=Se tag inserts a horizontal rule (that is, a line) across the page.
Horizontal rules are often helpful in breaking up a Web page into sections.

Don’t believe everything you read
You should always keep in mind that there is no
guarantee that the information you find on the
Web is correct. We ran into this problem while
writing this book. In preparing the biography of
John Backus for Chapter 11, two conflicting
pieces of information surfaced. One Web refer-
ence said that he retired from the computer
industry in 1991, and another said that he died
on October 28, 1988. We sent an e-mail
message to the SIGCSE (Special Interest Group
for Computer Science Education) mailing list
asking if anyone knew which was correct.
Several colleagues responded saying that they
had had dinner with Backus in 1992, solving that
problem. The confusion was cleared up when
another colleague said that there was a research
physicist named John Backus who had died in
1988. The erroneous Web site had merged those
two pieces of information: the death of one John
Backus with the picture and biography of the
other.
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We often have cause to display a list of items. The J— element stands for
an unordered list, and the —< element represents a list item. In the Student
Dynamics example, three list items are enclosed in the XJ—e . . . X,J—e tags.
Most browsers display an unordered list using bullets. If the ordered list
element (D—) is used, the list items are numbered sequentially. Both
unordered and ordered lists can be nested, creating a hierarchy of lists.
Unordered nested lists use different bullet types for each level, and the
numbering for each ordered list begins over again at each level.

Several elements are used to define headings in a document. There are
six predefined heading elements defined in HTML: =w, =4, =5, =7, =D, and
=E. Text enclosed in X=5e. . .X,=5e tags, for instance, is treated as a level 3
heading, which is displayed in a larger font than level 4, but smaller than
level 2. Heading tags don’t have to specify text that introduces a section;
they can be used anywhere you want to change the size of the font.

Images and Links
Many tags can contain attributes that indicate additional details about the
information or how the enclosed information should be displayed.

Attributes take the following form:

9!!(hQO!F‘z9�F   W9+OF

For example, an image can be incorporated into a Web page using the <"T
element, which takes an attribute that identifies the image file to display.
The attribute name is called >Si, which stands for the source of the image.
There is no closing tag for the <"T element. For example,

X<"T >Si   P��*h”!O(F"IhLPe

inserts the image stored in file ��*h”!O(F"IhL into the HTML document.
There must be at least one space between <"T and >Si.

An image is used as a banner to the entire page in the Student Dynamics
example. And in another location a small image is used to indicate infor-
mation on the Web site that has been recently updated.

In HTML, a link is specified using the element o, which stands for
anchor. The tag includes an attribute called =SlF that specifies the URL of
the destination document. For example,

Xo =SlF   P1!!N.,,“OyF"”�”"Wh++9z'W9"F“O,“'”�,Pe

E'”O�Fz!9!h'z iFz!(9+b X,oe

shows the text “Documentation Central!” on the screen, usually under-
lined and in blue type. When the user clicks on the link with the mouse,
the Web page whose address is duke.csc.villanova.edu/docs is fetched and
displayed in the browser, replacing the current page. Notice that both the
name of a file and a URL are enclosed in quotes.
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Java applet A Java
program designed to be
embedded into an HTML
document, transferred
over the Web, and
executed in a browser

Keep in mind that we have only scratched the surface of HTML’s capa-
bilities, yet the few tags we’ve examined already give us the ability to
create fairly versatile and useful Web pages.

16.3 Interactive Web Pages

When HTML was first developed, it was amazing in its ability to format
network-based text and images in interesting ways. However, that infor-
mation was static. There was no way to interact with the information and
pictures presented in a Web page.

As users have clamored for a more dynamic web, new technologies were
developed to accommodate these requests. These technologies took
different approaches to solving the problem. Many of the new ideas were
offshoots of the newly developed Java programming language, which is
able to exploit the Web because of its platform independence. Let’s look
briefly at two of these technologies: Java Applets and Java Server Pages.

Java Applets
A Java applet is a program that is designed to be embedded into an HTML
document and transferred over the Web to someone who wants to run the
program. An applet is actually executed in the browser used to view the
Web page.

An applet is embedded into an HTML document using the o**—l\ tag.
For example:

Xo**—l\ ”'“F P"�oNN+F!"”+9��P fh“!1 4DV 1FhI1! wDV

eX,o**—l\e

When a Web user references the page containing this tag, the applet
program "�oNN+F!"”+9�� is sent along with any text, images, and other
data that the page contains. The browser knows how to handle each type
of data—it formats text appropriately and displays images as needed. In
the case of an applet, the browser has a built-in interpreter that executes
the applet, allowing the user to interact with it. Thousands of Java applets
are out on the Web, and most browsers are set up to execute them.

Consider the difficulties inherent in this situation. A program is written
on one computer, and then may be transferred to any other computer on
the Web to be executed. How can we execute a program that was written
on one type of computer on possibly many other types of computers? The
key, as briefly explained in Chapter 8, is that Java programs are compiled
into Bytecode, a low-level representation of a program that is not the
machine code for any particular type of CPU. This Bytecode can be
executed by any valid Bytecode interpreter, no matter what type of
machine it is running on.
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Note that the applet model puts the burden on the client’s machine. That
is, a Web user brings the program to his or her computer and executes it
there. It may be frightening to think that, while you are casually surfing the
Web, suddenly someone’s program is executing on your computer. That
would be a problem, except that Java applets are restricted as to what they
can do. The Java language has a carefully constructed security model. An
applet, for instance, cannot access any local files or change any system
settings.

Depending on the nature of the applet, the client’s computer may or may
not be up to the job. For this reason, and because applets are transferred over
a network, they tend to be relatively small. Although appropriate for some
situations, applets do not resolve all of the interactive needs of Web users.

Java Server Pages
A Java Server Page, or JSP, is a Web page that has JSP scriptlets

embedded in them. A scriptlet is a small piece of executable code inter-
twined among regular HTML content. While not exactly the same as Java,
JSP code resembles the general Java programming language.

A JSP scriptlet is encased in special tags beginning with XH and ending
with He. Special objects have been predefined to facilitate some processing.
For example, the object called 'O! can be used to produce output, which is
integrated into the Web page wherever the scriptlet occurs. The following
scriptlet produces the phrase “hello there” between the opening and
closing tag of an =5 header.

X=5e

XH

'O!"N(hz!+z 3P1F++' !1F(FP6I

He

X,=5e

In this particular case, the result is equivalent to

X=5e1F++' !1F(FX,=5e

But now imagine JSP scriptlets as having the expressive power of a full
programming language (which they do). We can make use of almost all
aspects of a regular Java program, such as variables, conditionals, loops,
and objects. With that kind of processing power, a JSP page can make
significant decisions resulting in truly dynamic results.

Note that JSPs are executed on the server side where the Web page
resides. They help dynamically define the content of a Web page before it is
shipped to the user. By the time it arrives at your computer, all active
processing has taken place, producing a static (though dynamically created)
Web page.
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Extensible Markup

Language (or XML) A
language that allows the
user to describe the
content of a document

Metalanguage A
language that is used to
define other languages

JSPs are particularly good for coordinating the interaction between a
Web page and an underlying database. The details of this type of
processing are beyond the scope of this book, but you’ve probably seen this
type of processing while surfing the Web. Electronic storefronts (sites that
exist primarily to sell products), in particular, make use of this type of
processing. The data about available products are not stored in static
HTML pages. Instead, that data are stored in a database. When you make
a particular request for information about a product, it may be a Java
Server Page responding to you. The scriptlets in the page interact with the
database and extract the needed information. Scriptlets and regular HTML
format the data appropriately and then ship the page to your computer for
viewing.

16.4 XML

HTML is fixed; that is, HTML has a predefined set of tags and each tag
has its own semantics (meaning). HTML specifies how the information in
a Web page should be formatted but doesn’t really indicate what the infor-
mation represents. For example, HTML indicates that a piece of text
should be formatted as a heading, but it doesn’t indicate what that heading
describes. There is nothing about HTML tags that describes the true
content of a document. The Extensible Markup Language, or XML, allows
the creator of a document to describe its contents by defining his or her
own set of tags.

XML is a metalanguage. Metalanguage is the word language with the
prefix meta, which means “beyond” or “more comprehensive.” A meta-

language is a language that goes beyond a normal language by allowing us
to speak precisely about that language. It is a language for talking about,
or defining, other languages. It is like an English grammar book describing
the rules of English.

A metalanguage called the Standard Generalized Markup Language, or
SGML, was used by Tim Berners-Lee to define HTML. XML is a simpli-
fied version of SGML and is used to define other markup languages. XML
has taken the Web in a new direction. It does not replace HTML; it
enriches it.

Like HTML, an XML document is made up of tagged data. But when
you write an XML document, you are not confined to a predefined set of
tags because there are none. You can create any set of tags necessary to
describe the data in your document. The focus is not on how that data
should be formatted; the focus is on what the data is.
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Tim Berners-Lee is the first holder of the
3Com (Computer Communication Compati-
bility) Chair at the Laboratory for Computer
Science at Massachusetts Institute of Tech-
nology. The chair is the first at MIT that may
be held by a member of the research staff
rather than the faculty. Mr. Berners-Lee is a
researcher, evangelist, and arbiter rather
than an academician. He is Director of the
World Wide Web Consortium, which coor-
dinates Web development worldwide. The
Consortium, with teams at MIT, INRIA in France, and
at Keio University in Japan, aims to lead the Web to
its full potential, ensuring its stability through rapid
evolution and revolutionary transformations of its
usage.

How did Tim Berners-Lee arrive at this very impor-
tant position? He built his first computer while a
student at Queen’s College, Oxford. After graduation,
he worked for two years with Plessey Telecommunica-
tions Ltd, a major Telecom equipment manufacturer in
the United Kingdom, worked as an independent
consultant for a year and a half, and worked for three
years at Image Computer Systems Ltd. His various
projects during this time included real-time control
firmware, graphics and communications software,
and a generic macro language.

In 1984, he took up a fellowship at CERN, the
European Organization for Nuclear Research in
Geneva, where he worked on a heterogeneous
remote procedure call system and a distributed real-
time system for scientific data acquisition and system
control. In 1989, he proposed a global hypertext
project to be known as the World Wide Web. It was
designed to allow people to work together by
combining their knowledge in a Web of hypertext
documents. He wrote the first World Wide Web
server, “httpd,” and the first client, “World Wide
Web,” a what-you-see-is-what-you-get hypertext
browser/editor. The work began in October of 1990,

and the program “World Wide Web” was
made available within CERN in December
and on the Internet at large in the summer
of 1991.

Between 1991 and 1993, Berners-Lee
continued working on the design of the
Web, coordinating feedback from users
across the Internet. His initial specifications
of URLs, HTTP, and HTML were refined and
discussed in larger circles as the Web tech-
nology spread. It became apparent that the

physics lab in Geneva was not the appropriate place
for the task of developing and monitoring the Web. In
October 1994, the World Wide Web Consortium
was founded by Berners-Lee at the MIT Laboratory for
Computer Science.

In a New York Times article in 1995, Berners-Lee
was asked about private corporations trying to domi-
nate Web standards for profit. He responded, “There’s
always the threat that a particular company would
dominate the market and control the standards of the
Web.” But he feels strongly that this should not happen.
“The essence of the Web is that it’s a universe of infor-
mation,” he said. “And it wouldn’t be universal if it was
tied, in any way, to one company.”

Michael Dertouzos, the director of the Computer
Science Laboratory at MIT, said that Mr. Berners-Lee
seems to embody the “libertarian idealism” of the
Internet culture. “He has a real commitment to keeping
the Web open as a public good, in economic terms,”
Mr. Dertouzos said. “That’s his mission.” Berners-Lee
concludes: “Reasonable competition speeds the pace of
innovation. Companies will promote the proprietary
aspects of their browsers and applications, and they
should. But the navigation of the Web has to be open. If
the day comes when you need six browsers on your
machine, the World Wide Web will no longer be the
World Wide Web.”

Berners-Lee was one of Time Magazine’s 100 most
important people in the 20th century.

Tim Berners-Lee
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Figure 16.5 An XML document containing data about books

For example, the XML document in Figure 16.5 describes a set of
books. The tags in the document annotate data that represents a book’s
title, author(s), number of pages, publisher, ISBN number, and price.

The first line of the document indicates the version of XML that is used.
The second line indicates the file that contains the Document Type Defini-

tion (DTD) for the document. The DTD is a specification of the organiza-
tion of the document. The rest of the document contains the data about
two particular books.

The structure of a particular XML document is described by its corre-
sponding DTD document. The contents of a DTD document not only
define the tags but also show how they can be nested. Figure 16.6 shows
the DTD document that corresponds to the XML books example.

The l—l"l-\ tags in the DTD document describe the tags that make up
the corresponding XML document. The first line of this DTD file indicates
that the Q''y� tag is made up of zero or more Q''y tags. The asterisk (N)
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Xbl—l"l-\ Q''y� 3Q''yN6 e

Xbl—l"l-\ Q''y 3!h!+FB 9O!1'(�B NOQ+h�1F(B N9IF�B h�QzB N(h”F6e

Xbl—l"l-\ 9O!1'(� 39O!1'(O6e

Xbl—l"l-\ !h!+F 3P*iEo\o6e

Xbl—l"l-\ 9O!1'( 3P*iEo\o6e

Xbl—l"l-\ NOQ+h�1F( 3P*iEo\o6e

Xbl—l"l-\ N9IF� 3P*iEo\o6e

Xbl—l"l-\ h�Qz 3P*iEo\o6e

Xbl—l"l-\ N(h”F 3P*iEo\o6e

Xbo\\—<>\ N(h”F ”O((Fz”� iEo\o PSlMJ<SlEe

Figure 16.6 The DTD document corresponding to the XML books document

beside the word book in parentheses stands for zero or more. The next line
specifies that the Q''y tag is made up of several other tags in a particular
order: !h!+F, 9O!1'(�, NOQ+h�1F(, N9IF�, h�Qz, and N(h”F. The next line
indicates that the 9O!1'(� tag is made up of one or more 9O!1'( tags. The
plus sign (O) beside the word author indicates one or more. The other tags
are specified to contain *iEo\o, which stands for Parsed Character Data,
which indicates that the tags are not further broken down into other tags.

The only tag in this set that has an attribute is the N(h”F tag. The last
line of the DTD document indicates that the N(h”F tag has an attribute
called ”O((Fz”� and that it is required.

XML represents a standard format for organizing data without tying it
to any particular type of output. A related technology called the Exten-

sible Stylesheet Language (or XSL) can be used to transform an XML
document into another format suitable for a particular user. For example,
an XSL document can be defined that specifies the transformation of an
XML document into an HTML document so that it can be viewed on the
Web. Another XSL document can be defined to transform the same XML
document into a Microsoft Word document, or into a format suitable for a
Personal Data Assistant such as a Palm Pilot, or even into a format that
can be used by a voice synthesizer. This process is depicted in Figure 16.7.
We do not explore the details of XSL transformations in this book.

Another convenient characteristic of languages specified using XML is
that documents in the language can be generated automatically with rela-
tive ease. A software system, usually with an underlying database, can be
used to generate huge amounts of specific data formatted in a way that is
easily conveyed and analyzed online. Once generated, the data can be
transformed and viewed in whatever manner best serves individual users.
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HTML Document

PDA Document

MS Word Document

Voice Synthesizer

XML
Document

XSL

Figure 16.7

An XML document can be
transformed into many
output formats

Several organizations have already developed XML languages for their
particular topic areas. For example, chemists and chemical engineers have
defined the Chemistry Markup Language, or CML, to standardize the
format of molecular data. CML includes a huge number of tags for specific
aspects of chemistry. It provides a common format by which chemistry
professionals can share and analyze data.

Keep in mind that XML is a markup specification language and XML
files are data: They just sit there until you run a program that displays
them (like a browser), does some work with them (like a converter that
writes the data in another format or a database that reads the data), or
modifies them (like an editor). XML and its related technologies provide a
powerful mechanism for information management and for communicating
that information over the Web in a versatile and efficient manner. As these
technologies evolve, new opportunities to capitalize on them will present
themselves.

Summary

Although the terms Internet and Web are often used interchangeably, they
are not the same. The World Wide Web is an infrastructure of information
distributed among thousands of computers across the world and the soft-
ware by which that information is accessed. The Web relies on underlying
networks, especially the Internet, as the vehicle to exchange the informa-
tion among users.
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A Web page contains information, as well as references to other
resources such as images. A collection of Web pages managed by a single
person or company is called a Web site. Links are established among
various Web pages across the globe, giving credence to the name World
Wide Web.

Visiting a Web site is really the act of requesting that a Web page stored
on a remote Web server be brought to our local computer for viewing. A
Uniform Resource Locator (URL) is used to specify the Web document we
wish to view.

The Hypertext Markup Language, or HTML, is the primary method of
defining Web pages. An HTML document consists of information that is
annotated by tags that specify how a particular element should be treated and
formatted. A Web browser displays an HTML page without regard to extra
spacing, blank lines, or indentation. The tags alone guide the browser, and a
given Web page may look slightly different when viewed in different
browsers.

HTML tags include those that specify the overall document structure as
well as tags that perform basic formatting, such as headings, paragraphs,
and centered text. Font styles, such as bold and italics, are specified using
tags as well. Unordered and ordered lists have their own set of tags.

Some HTML tags include attributes that specify additional information.
The source attribute of an image tag specifies the file in which the image is
stored, for instance. Anchor tags define links and use an attribute to
specify the location of the target Web page.

Additional opportunities to interact with and dynamically create the
content of Web pages exist. Two technologies that support Web-based
interaction are Java applets and Java Server Pages. Java applets are Java
programs designed to be embedded in HTML pages and executed in a
Web browser. Their cross-platform nature is possible because applets are
compiled into Java Bytecode, which is architecture-neutral.

Java Server Pages embed scriptlets into HTML code that is executed by
the Web server to help dynamically define the content of a Web page.
Scriptlets have the full expressive power of a full language. JSPs are particu-
larly good at coordinating the interaction between a Web page and an
underlying database.

XML stands for Extensible Markup Language. XML is a metalanguage,
which means it is used to define other languages. Unlike HTML, whose
tags focus on the format of displayed data, XML tags specify the nature of
the data. The user is not constrained to use particular tags; he or she can
define any tags that make sense for the data being described.

The format and relationships among XML tags are defined in a Docu-
ment Type Definition document. A set of XSL (Extensible Stylesheet
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Language) transformations define the way the content of an XML docu-
ment is turned into another format suitable for the current needs of a user.

Cookies
Internet cookies are very small text files (usually about 50 to 150

bytes) that are downloaded from a Web server to a Web browser.

Cookies are embedded in the HTML information flow involved when

browsers request files from Web servers. When a Web browser first

asks for a file from a Web server, the server creates a cookie containing

information about the request and sends the cookie to the server along

with the requested file. The next time a request is made from the

browser of the server, the cookie is sent to the server along with the

request. When the server returns the requested file, an updated cookie

is also returned.

The idea is quite simple, and it was intended to allow a server to

maintain information about those that visit it. For example, the cookie

could contain a user ID and password for a Web site so that the infor-

mation would not have to be reentered every time the Web site is

visited. The use of cookies allows sites to create personalized start-up

or news pages. This same scheme allows sites like Amazon.com to

suggest other books that you might like based on your purchases. Note

that the information is not kept within a server but within the

computer of the browser user.

This protocol sounds very useful and helpful, but there is a down-

side to the use of cookies. The information on user preferences is

collected, stored on the user’s computer, and retransmitted to the Web

server without the user’s knowledge or consent. Companies, called

targeted marketing companies, have evolved that sell cookie services.

These companies pay Web sites to send them copies of the cookies for

each transaction and thus build up a profile of a user’s Internet habits.

This information is used for marketing and advertising purposes.

Some people like the idea of having marketing and advertising

targeted to their interests. Others feel that this is an invasion of

privacy. Proposals put forth by the Internet Engineering Task Force

include limiting the persistence (lifetime) of each cookie and requiring

browsers to warn the user before accepting a cookie. Current versions

W
WW
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of Netscape and Internet Explorer allow the user to destroy cookies

when closing the browser by making certain selections on the Prefer-

ences menu.

Are cookies dangerous? No, they may invade a user’s privacy, but

they are not dangerous. Only executable files can do damage to a

machine. Normal text-based cookies are not executable files; therefore,

they cannot harm a machine or spread a virus, nor can they pass on

private information from any files, including e-mail address files.
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Exercises
1. Describe the World Wide Web.

2. Why is a spider Web a good analogy for the World Wide Web?

3. What is the relationship between a Web page and a Web site?

4. What is the difference between the Internet and the Web?

5. Describe how a Web page is retrieved and viewed by a Web user.

6. What is a Uniform Resource Locator?

7. What is a markup language? Where does the name come from?

8. Compare and contrast hypertext and hypermedia.

9. Describe the syntax of an HTML tag.
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10. What is a horizontal rule? What is it useful for?

11. Name five formatting specifications that can be established using
HTML tags.

12. What is a tag attribute? Give an example.

13. Write the HTML statement that inputs the image on file �hzF"IhL
into the Web page.

14. Write the HTML statement that sets up a link to the Web site
http://www.cs.utexas.edu/users/ndale/ and shows the text “Dale Home
Page” on the screen.

15. What happens when a user clicks on “Dale Home Page” as set up in
Exercise 14?

16. Design and implement an HTML document for an organization at
your school.

17. Design and implement an HTML document describing one or more of
your personal hobbies.

18. What is a Java applet?

19. How do you embed a Java applet in an HTML document?

20. Where does a Java applet get executed?

21. What kinds of restrictions are put on Java applets? Why?

22. What is a Java Server Page?

23. What is a scriptlet?

24. How do you embed a scriptlet in an HTML document?

25. How does JSP processing differ from applet processing?

26. What is a metalanguage?

27. What is XML?

28. How are HTML and XML alike and how are they different?

29. How does an XML document relate to a Document Type Definition?

30. a. In a DTD, how do you indicate that an element is to be repeated
zero or more times?

b. In a DTD, how do you indicate that an element is to be repeated
one or more times?

c. In a DTD, how do you indicate that an element cannot be broken
down into other tags?

31. What is XSL?

32. What is the relationship between XML and XSL?

33. How does an XML document get viewed?
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34. Define an XML language (the DTD) for your school courses and
produce a sample XML document.

35. Define an XML language (the DTD) for government offices and
produce a sample XML document.

36. Define an XML language (the DTD) for zoo animals and produce a
sample SML document.

37. This chapter is full of acronyms.  Define each of the following.
a. HTML
b. XML
c. DTD
d. XSL
e. SGML
f. URL
g. ISP

38. Create an HTML document for a web page that has each of the
following features.
a. centered title
b. unordered list
c. ordered list
d. link to another web page
e. a picture

39. Distinguish between an HTML tag and an attribute.

40. Why does the same web page look different in different browsers?

41. What are the two sections of every HTML document?

42. What are the contents of the two parts of an HTML document?

43. What does the A stand for in the tag that specifies a URL for a page?

44. Create an HTML document for a web page that has each of the
following features.
a. a right-justified title in large type font
b. an applet class named “Exercise.class”.
c. two different links
d. two different pictures

Thought Questions

1. How has the Web affected you personally?

2. Did you have a Web site before you started this class? How sophisti-
cated was it? Did you use HTML or some other Web design language?
If you used some other language, go to your Web site and view your

?

http://lib.ommolketab.ir
http//lib.ommolketab.ir


pages as source pages. Look at the HTML tags that actually format
your Web site. Are there any there that we have not discussed in this
chapter? If so, look them up to see what they mean. (Where? On the
Web, of course.)

3. Have you ever taken a Web-based course? Did you enjoy the experi-
ence? Did you feel that you learned less or more than you would have
in a regular course?

4. Give your vision of the future as it relates to the Web.

5. Do you feel that the benefits of using cookies outweigh the possible
invasion of privacy?

6. Have you ever visited a Web site where you were asked for personal
information and then the next time you visited the same site they
“knew” who you were? Explain how this information is transmitted
using cookies.

7. What are the ethical pros and cons of targeted marketing companies?

8. Do an Internet search to find out the status of the current Internet
Engineering Task Force recommendations for cookies.

Thought Questions 499
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Limitations of Computing

In the last 16 chapters, we have looked at computers: What they

are, what they can do, and how to use them to solve problems. In

this chapter, we look at what computers cannot do. That is, we

examine the limits imposed by the hardware, the software, and the

problems themselves. The dictionary gives multiple meanings for

the word limit, including “boundary” and “something that is exas-

perating or intolerable.” We use both of these definitions of limit

in this chapter.

Just as a roadblock stops traffic, the limits imposed by the

hardware, software, and problems stop certain kinds of

processing.

501
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Goals
After studying this chapter, you should be able to:

� describe the limits that the hardware places on the solution to computing
problems.

� discuss how the finiteness of the computer impacts the solutions to numeric
problems.

� discuss ways to ensure that errors in data transmission are detected.
� describe the limits that the software places on the solutions to computing

problems.
� discuss ways to build better software.
� describe the limits inherent in computable problems themselves.
� discuss the continuum of problem complexity from problems in Class P to

problems that are unsolvable.

17.1 Hardware

The limits on computing caused by the hardware stem from several factors.
One factor is that numbers are infinite, but the representation of them within
the computer is not. Another problem with hardware is just the fact that it is
hardware; that is, it is made up of mechanical and electronic components
that can fail. Another set of problems occurs when data is transmitted from
one internal device to another or from one computer to another. Let’s look
at each of these problems and some strategies to minimize their impact.

Limits on Arithmetic
We have discussed numbers and their representation in the computer in
Chapters 2 and 3. There are limitations imposed by the hardware on the
representations of both integer numbers and real numbers.

Integer Numbers
In the Pep/7 machine discussed in Chapter 7, the registers that are used for
arithmetic are 16 bits long. We said that the largest value we could store
there is 65,535 if we only represent positive values and 32,767 if we repre-
sent both positive and negative values. Pep/7 is a virtual machine; what
about real machines? If the word length is 32 bits, the range of integer
numbers that can be represented is �2,147,483,648 to 2,147,483,647.
Some hardware systems support long-word arithmetic, where the range is
�9,223,372,036,854,775,808 to 9,223,372,036,854,775,807: Surely this
is large enough for any calculation, or is it?
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Henry Walker, in his book The Limits of Computing, tells the following
fable.1 When the king asked a bright young dot-com’er to undertake a task
for him, she agreed if the pay was adequate. She offered the king two
choices: The king could pay her 1/5 of the crops produced in the kingdom
for the next five years or base her payment on a chess board as follows:

� One kernel of corn on the first square

� Two kernels of corn on the second square

� Four kernels of corn on the third square

� Eight kernels of corn on the fourth square

� The kernels of corn would double on each successive square until the
64th square had been reached.

After a moment’s thought, the king chose the second option. (Which
would you have chosen?)

When it came time to pay up, the king started placing kernels of corn on
the squares. There were 255 kernels on the first row (1 + 2 + 4 + 8 + 16 + 32 +
64 + 128); not too bad, he thought. For the next row, there were 65,280
kernels; still not too bad. The third row, however, with its 963,040 kernels of
corn, made the king uneasy. During the counting of the next row, the king
thought ahead to the last square, for he now understood the pattern. The
64th square alone would have 263 kernels of corn or roughly 8 � 1018 kernels
or 110,000 billion bushels. The king abdicated his throne in light of such a
staggering debt, and the mathematically sophisticated young lady became
queen.

The moral of this story is that integer numbers can get very big very fast. If
a computer word is 64 bits and we represent only positive numbers, we could
just represent the number of kernels on the 64th square. If we tried to add up
the kernels on the 64 squares, we could not do so. Overflow would occur.

The hardware of a particular machine determines the limits of the numbers,
both real and integer, that can be represented. There are software solutions,
however, that allow programs to overcome these limitations. For example, we
could represent a very large number as a list of smaller numbers. Figure 17.1
shows how integers could be presented by putting one digit in each word.

The program that manipulates integers in this form would have to add
each pair of digits beginning at the rightmost and add any carry into the
next addition to the left.

Real Numbers
In Chapter 3, we said that real numbers are stored as an integer along with
information showing where the radix point is. In order to better under-
stand why real numbers pose a problem, let’s look at a coding scheme that
represents the digits and the radix-point information.
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Figure 17.1 Representing very large numbers
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Let’s assume, to simplify in the following discussion, that we have a
computer in which each memory location is the same size and is divided
into a sign plus five decimal digits. When a variable or constant is defined,
the location assigned to it consists of five digits and a sign. When an inte-
gral variable or constant is defined, the interpretation of the number stored
in that place is straightforward. When a real variable is declared or a real
constant is defined, the number stored there has both a whole number part
and a fractional part. The number must be coded to represent both parts.

Let’s see what these coded numbers might look like and what this
coding does to arithmetic values in programs. We begin with integers. The
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range of the numbers we can represent with five digits is �99,999 through
+99,999:

The precision (the maximum number of digits that can be represented) is
five digits, and each number within that range can be represented exactly.
What happens if we allow one of these digits (let’s say the leftmost one, in
red) to represent an exponent? For example

represents the number +2,345 * 103. The range of numbers we can now
represent is much larger:

�9,999 * 109 to +9,999 * 109

or

�9,999,000,000,000 to +9,999,000,000,000

Now the precision is only four digits. That is, we can represent only four
significant digits (nonzero digits or zero digits that are exact) of the
number itself. This means we can represent only four-digit numbers
exactly in our system. What happens to larger numbers? The four leftmost
digits are correct, and the balance of the digits are assumed to be zero. We
lose the rightmost, or least significant, digits. The following table shows
what happens.

Notice that we can represent 1,000,000 exactly, but not �4,932,416. Our
coding scheme limits to four significant digits; the digits we cannot repre-
sent are assumed to be zero.

– 3 4 9 3 2–4,932,416 –4,932,000

+ 3 1 0 0 0+1,000,000 +1,000,000

– 2 9 9 9 9–999,999 –999,900

+ 1 9 9 9 9+99,999 +99,990

Number ValueSign Exp.

+ 3 2 3 4 5

– 9 9 9 9 9 Largest negative number

+ 0 0 0 0 0 Zero

+ 9 9 9 9 9 Largest positive number
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To extend our coding scheme to represent real numbers, we need to be
able to represent negative exponents. For example,

4,394 * 10�2 = 43.94

or

22 * 10�4 = 0.0022

Because our scheme does not allow for a sign for the exponent, we have to
change the scheme slightly. Let’s let the sign that we have already been
using be the sign of the exponent and add a sign to the left of it to be the
sign of the number itself.

Now we can represent all of the numbers between �9,999 * 10�9 and
9,999 * 109 accurately to four digits, including all the fractional values.

Suppose we want to add three real numbers x, y, and z using this
coding scheme. We could add x to y, then add z to the result. Or we could
do it another way, adding y to z, then adding x to the result. The associa-
tive law of arithmetic says that the two answers should be the same—but
are they?

The computer limits the precision (the number of significant digits) of a
real number. Using our coding scheme of four significant digits and an
exponent, let’s add the following allowable values of X, =, and \:

X " —eloE < e>
l

= " elo! < e>
l

\ " !EoE < e>
>

Largest positive number
+9,999 ∗ 1099999++ 9

Largest negative number
+9,999 ∗ 1099999+– 9

Smallest positive number
+1 ∗ 10–91009–+ 0

Smallest negative numbe
–1 ∗ 10–91009–– 0

Sign of
Exponent

Sign of
number

Sign Exp.
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(round-off) error An
arithmetic error caused
by the fact that the preci-
sion of the result of an
arithmetic operation is
greater than the preci-
sion of our machine

Underflow The condi-
tion that occurs when the
results of a calculation
are too small to repre-
sent in a given machine

Overflow The condition
that occurs when the
results of a calculation
are too large to repre-
sent in a given machine
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First let’s look at the result of adding \ to the sum of X and =:

OX“ —eloE < e>
l

O=“ elo! < e>
l

e < e>
l
" e>>> < e>

>

OX F =“ e>>> < e>
>

O\“ !EoE < e>
>

zEoE < e>
>
" OX F =“ F \

Now let’s see what happens when we add X to the sum of = and \:

O=“ elo!>>> < e>
>

O\“ !EoE < e>
>

ell>EoE < e>
> 
" ell> < e>

l
O�9�h”��,� �D YD�9

�i-i�S“

O= F \“ ell> < e>
l

OX“ —eloE < e>
l

z < e>
l
" z>>> < e>

>
" X F O= F \“

Our answers are the same in the thousands’ place but are different in the
hundreds’, tens’, and ones’ places. This is called representational error or
round-off error. The result of adding y to z gives us a number with seven
digits of precision, but only four digits can be stored.

In addition to representational errors, there are two other problems to
watch out for in floating-point arithmetic: underflow and overflow.
Underflow is the condition that arises when the absolute value of a calcula-
tion gets too small to be represented. Going back to our decimal represen-
tation, let’s look at a calculation involving very small numbers:

Eoe>        < e>
�T

< o>>> < e>
�T

TEo>>>> < e>
�ez

" TEo> < e>
�el

This value cannot be represented in our scheme because the exponent �13
is too small. Our minimum is �9. Therefore, the result of the calculation
would be set to zero. Any value too small to be represented is set of zero,
which is a reasonable thing to do under the circumstances.

Overflow is the condition that arises when the absolute value of a calcu-
lation gets too large to be represented. Overflow is a more serious problem
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because there is no logical thing to do when it occurs. For example, the
result of the calculation

     < e>
 

< e>>> < e>
 

    >>> < e>
eT

"      < e>
oe

cannot be stored. What should we do? To be consistent with our response
to underflow, we could set the result to 9999 * 109, the maximum real
value allowed in our scheme. But this seems intuitively wrong. The alterna-
tive is to stop the computation and issue an error message.

Another type of error that can happen with floating-point numbers is
called cancellation error. This error happens when numbers of widely
differing magnitudes are added or subtracted. Here’s an example:

Oe F >P>>>>eolE — e“ " >P>>>>eolE

The laws of arithmetic say this equation should be true. But what happens
when the computer is doing the arithmetic?

e>>>>>>>> < e>
�T

F eolE < e>
�T

e>>>>eolE < e>
�T

With four-digit accuracy, this becomes 1000 * 10�3. Now the computer
subtracts 1:

e>>> < e>
�l

— e>>> < e>
�l

>

The result is 0, not .00001234.
We have been discussing problems with real numbers, but integer

numbers can also overflow (both negatively and positively). The moral of
this discussion is twofold. First, the results of real calculations often are
not what you expect. Second, if you are working with very large numbers
or very small numbers, you need to be very careful of the order in which
you perform the calculations.

Limits on Components
“My hard disk crashed.” “The file server was down.” “My e-mail went
down last night.” Any computing instructor has heard these tales of woe
hundreds of time, as they are used to explain (excuse?) late assignments. Of
course, if an assignment is started when it is handed out rather than the day
it is due, these failures can be overcome. However, the problems of hard-
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ware failure do exist: Disks do crash, file servers do go down, and
networks do fail. The Titanic effect, which states that “The severity with
which a system fails is directly proportional to the intensity of the
designer’s belief that it cannot,” was coined by J.A.N. Lee.2 Hardware fail-
ures do occur: The best solution is preventive maintenance. In computing
this means periodic tests to detect problems and replacement of worn parts.

Preventive maintenance also means that the physical environment in which
a computer is housed is appropriate. Large mainframe computers often
require air conditioned, dust-free rooms. PCs should not be set up under leak-
prone plumbing. Alas, not all situations can be anticipated. One such situation
occurred during pre-integrated circuit days. A machine that had been working
correctly started producing erratic results. The problem was finally traced to a
moth that had gotten into the cabinet of the machine. This incident led to the
computer term bug for a computer error. A more recent incident involved a
DSL line that intermittently disconnected itself. The trouble was finally traced
to faulty telephone lines on which the squirrels had enjoyed munching.

Of course, any discussion of component limits assumes that the computer
hardware has been thoroughly tested at the design stage and during manufac-
turing. A major scandal in 1994 was the circuit flaw in the Intel’s Pentium
processor. The Pentium chip was installed in millions of computers manufac-
tured by IBM, Compaq, Dell, Gateway 2000, and others. The circuit flaw was
a design error in the floating-point unit that caused certain types of division
problems involving more than five significant digits to give the wrong answer.

How often would the error affect a calculation? IBM predicted that
spreadsheet users would experience an error every 24 days, Intel asserted that
that it would occur every 27,000 years, and PC Week’s test suite placed the
frequency once every 2 months to 10 years.3 The chip was corrected, but Intel
did not recall all flawed chips. The experience was a public relations disaster
for Intel, but they remain one of the leading chip manufacturers today.

Limits on Communications
The flow of data within a computer and between computers is the life’s
blood of computing. Therefore, it is extremely important that the data is
not corrupted in any way. This realization leads to strategies known as
error-detecting and error-correcting codes. Error-detecting codes determine
that an error has occurred during the transmission of data and then alert
the system. Error-correcting codes not only determine that an error has
occurred but try to determine what the correct value actually is.

Parity Bits
Parity bits are used to detect that an error has occurred between the
storing and retrieving of a byte or the sending and receiving of a byte. A
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parity bit is an extra bit that is associated with each byte in the hardware
that uses the scheme. This bit is used to ensure that the number of 1 bits in
a 9-bit value (byte plus parity bit) is odd (or even) across all bytes.

Odd parity requires the number of 1s in a byte plus parity bit to be odd.
For example, if a byte contains the pattern 11001100, the parity bit would
be 1, thus giving an odd number of 1s. If the pattern were 11110001, the
parity bit would be 0, giving an odd number of 1s. When a byte is retrieved
from memory or received from a transmission, the number of 1 bits is
counted (including the parity bit). If the number is even, an error has
occurred. If this scheme is used in the hardware, each byte actually has an
extra bit, accessible only by the hardware, that is used for error detection.
Even parity uses the same scheme, but the number of 1 bits must be even.

Check Digits
A software variation of the same scheme is to sum the individual digits of a
number, and then store the unit’s digit of that sum with the number. For
example, given the number 34376, the sum of the digits is 23, so the number
would be stored as 34376–3. If the 4 became corrupted as a 3, the error
would be detected. However, if the 7 were corrupted to a 6 and the 6 were
corrupted to a 7, the sum would still be correct, but the number would not be.

The scheme could be expanded to carry an additional digit, perhaps the
unit’s digit of the sum of the odd digits. In this case, 34376 would be
stored as 34376–23: 3 is the unit’s digits of the sum of all the digits and 2
is the unit’s digit of sum of the 1st, 3rd, and 5th digit. This technique
would catch a transposition error between adjacent digits, but would miss
other transpositions. Of course, we could also carry the unit’s digit of the
sum of the even digits. You get the idea. The more important it is for
errors to be detected, the more complex the algorithm used to detect them.

Error-Correcting Codes
If enough information about a byte or number is kept, it is possible to
deduce what an incorrect bit or digit must be. The ultimate redundancy
would be to keep two separate copies of every value that is stored. If the
parity is in error or there is an error in the check digits, look back at the
extra copy to determine the correct value. Of course, both copies could be
in error. The major work in error correcting codes relates to disk drives
and CDs where imperfections in the surface can corrupt data.

17.2 Software

We have all read horror stories about software that contained errors; they
make very interesting reading. Are software errors in running programs
really common occurrences? Can’t we do something to make software more
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error free? To answer the first question, a Web search
for “software bugs” just retrieved 5,163,935 hits. To
answer the second, software developers are trying. In
the next few sections, we examine why error-free soft-
ware is difficult—if not impossible—to produce, we
discuss current approaches to software quality, and we
end with a collection of interesting bugs.

Complexity of Software
If we accept the premise that commercial software
contains errors, the logical question is “Why?” Don’t
software developers test their products? The problem is
not lack of diligence but our old nemesis complexity.
As our machines have gotten increasingly more
powerful, the problems that can be tackled have
become increasingly more complex. A single programmer with a problem
moved to a programming team with a problem and finally graduated to a
team of teams with a problem.

Software testing can demonstrate the presence of bugs but cannot
demonstrate their absence. We can test software, find errors and fix them,
and then test it some more. As we find problems and fix them, we raise
our confidence that the software performs as it should. But we can never
guarantee that all bugs have been removed. There may always be yet
another bug lurking in the software that we haven’t found yet.

Since we can never know if we have found all the problems, when do
we stop testing? It becomes a question of risk. How much are you willing
to risk that there still may be another bug in your software? If you’re
writing a game you might take that risk a lot sooner than you would if
you’re writing airplane control software in which lives are on the line.

As Nancy Leveson points out in the Communications of the ACM, a
branch of computing known as software engineering emerged in the 1960s
with the goal of introducing engineering discipline into the development of
software.5 Great strides toward this goal have been made in the last half-
century, including a greater understanding of the role of abstraction, the
introduction of modularity, and the notions of the software life cycle,
which we discuss in detail later.

Most of these ideas come from engineering, but had to be adapted to
the unique problems that arose when working with more abstract mate-
rials. Hardware designs are guided and limited by the nature of materials
used to implement the designs. Software appears to have limits more
related to human abilities than physical limitations. Dr. Leveson continues,
“Thus, the first 50 years may be characterized as our learning about the
limits of our field, which are intimately bound up with the limits of
complexity with which humans can cope.”

Dijkstra decries the term “bugs”
Ever since the moth was found in the hardware,
computer errors have been called bugs. Edsger
Dijkstra chides us for the use of this terminology.
He says that it can foster the image that errors
are beyond the control of the programmer—that
a bug might maliciously creep into a program
when no one is looking. He contends that this is
intellectually dishonest because it disguises that
the error is the programmer’s own creation.4
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Building software has changed. The early days were filled with building
new software, but more and more the problems of maintaining and
evolving existing software have taken center stage. As our systems have
grown bigger and required large teams of designers, we have started to
examine the ways humans collaborate and to devise ways to assist them to
work together effectively.

Current Approaches to Software Quality
Although the complexity of large software systems makes error-free prod-
ucts almost an impossibility, it doesn’t mean that we should just give up.
There are strategies that we can adopt that, if used, improve the quality of
software.

Software Engineering
In Chapter 6, we outlined three stages of computer problem solving:
develop the algorithm, implement the algorithm, and maintain the
program. When we move from small, well-defined tasks to large software
projects, we need to add two extra layers on top of these: software require-
ments and specifications. Software requirements are broad, but precise,
statements outlining what is to be provided by the software product. Soft-

ware specifications are a detailed description of the function, inputs,
processing, outputs, and special features of a software product. The speci-
fications tell what the program does, but not how it does it.

Dr. Leveson mentions the software life cycle as part of the contributions
of software engineering. The software life cycle is the concept that soft-
ware is developed, not just coded, and evolves over time. Thus the life
cycle includes the following phases:

� requirements

� specifications

� design (high-level and lower-level)

� implementation

� maintenance

Verification activities must be carried out during all of the phases. Do the
requirements accurately reflect what is needed? Do the specifications accu-
rately reflect the functionality needed to meet the requirements? Does the
high-level design accurately reflect the functionality of the specifications?
Do each succeeding levels of design accurately implement the level above?
Does the implementation accurately code the designs? Do changes imple-
mented during the maintenance phase accurately reflect the desired
changes? Are the implementations of these changes correct?
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In Chapters 6 through 8 we have discussed the testing of the designs
and code for the relatively small problems we discuss in this book. Clearly,
as the problems get larger, verification activities become more important
and more complex. (Yes, that word again.) Testing the design and finished
code is only a small, albeit important, part of the process. Half the errors
in a typical project occur in the design phase; only half occur in the imple-
mentation phase. This data is somewhat misleading. In terms of the cost to
fix an error, the earlier in the design process an error is caught, the cheaper
it is to correct the error.6

Teams of programmers produce large software products. Two verifica-
tion techniques effectively used by programming teams are design or code
walk-throughs and inspections. (Although we discussed these techniques
briefly in Chapter 6, they are important enough for us to mention them
again here.) These are formal team activities, the intention of which is to
move the responsibility for uncovering errors from the individual
programmer to the group. Because testing is time-consuming and errors
cost more the later they are discovered, the goal is to identify errors before
testing begins.

In a walk-through, the team performs a manual simulation of the design
or program with sample test inputs, keeping track of the program’s data
by hand on paper or a blackboard. Unlike thorough program testing, the
walk-through is not intended to simulate all possible test cases. Instead, its
purpose is to stimulate discussion about the way the programmer chose to
design or implement the program’s requirements.

At an inspection, a reader (never the program’s author) goes through
the requirements, design, or code line by line. The inspection participants
are given the material in advance and are expected to have reviewed it
carefully. During the inspection, the participants point out errors, which
are recorded on an inspection report. Team members, during their pre-
inspection preparation, have noted many of the errors. Just the process of
reading aloud uncovers other errors. As with the walk-through, the chief
benefit of the team meeting is the discussion that takes place among team
members. This interaction among programmers, testers, and other team
members can uncover many program errors long before the testing stage
begins.

At the high-level design stage, the design should be compared to the
program requirements to make sure that all required functions have been
included and that this program or module correctly interfaces with other
software in the system. At the low-level design stage, when the design has
been filled out with more details, it should be re-inspected before it is
implemented. When the coding has been completed, the compiled listings
should be inspected again. This inspection (or walk-through) ensures that
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Table 17.1 Errors found during a maintenance project

System design

Software requirements

Design

Code inspection

Testing activities

2

8

12

34

3

Defects per KSLOCStage

the implementation is consistent with both the requirements and the
design. Successful completion of this inspection means that testing of the
program can begin.

Walk-throughs and inspections should be carried out in as non-threat-
ening a way as possible. The focus of these group activities is on removing
defects in the product, not the technical approach of the author of the
design or the code. Because these activities are led by a moderator who is
not the author, the focus is on the errors, not the people involved.

In the last ten to fifteen years, the Software Engineering Institute at
Carnegie Mellon University has played a major role in supporting research
into formalizing the inspection process in large software projects, including
sponsoring workshops and conferences. A paper presented at the SEI Soft-
ware Engineering Process Group (SEPG) Conference reported on a project
that was able to reduce product defects by 86.6% using a two-tiered inspec-
tion process of group walk-throughs and formal inspections. The process was
applied to packets of requirements, design, or code at every stage of the life-
cycle. Table 17.1 shows the defects per 1,000 source lines of code (KSLOC)
that were found in the different phases of the software lifecycle in a mainte-
nance project.7 During the maintenance phase, 40,000 lines of source code
were added to a program with over half a million lines of code. The formal
inspection process was used in all of the phases except Testing Activities.

We have talked about large software projects. Before we leave this
section, let’s quantify what we mean by large. The Space Shuttle Ground
Processing System has over 1/2 million lines of code; Windows 95 has 10
million lines of code. Most large projects fall somewhere in between.

We have pointed out that the complexity of large projects makes the
goal of error-free code almost impossible to attain. The following is a
guideline for the number of errors per lines of code that can be expected.8

Standard software: 25 bugs per 1,000 lines of program

Good software: 2 errors per 1,000 lines

Space Shuttle software: < 1 error per 10,000 lines
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Formal Verification
It would be nice if there were some tool that we could use to locate the
errors in a design or code without our even having to run the program.
That sounds unlikely, but consider an analogy from geometry. We
wouldn’t try to prove the Pythagorean theorem by proving that it worked
on every triangle; that would only demonstrate that the theorem works for
every triangle we tried. We prove theorems in geometry mathematically.
Why can’t we do the same for computer programs?

The verification of program correctness, independent of data testing, is
an important area of theoretical computer science research. The goal of
this research is to establish a method for proving programs that is analo-
gous to the method for proving theorems in geometry. The necessary tech-
niques exist for proving that code meets its specifications, but the proofs
are often more complicated than the programs themselves. Therefore, a
major focus of verification research is the attempt to build automated
program provers—verifiable programs that verify other programs.

Formal methods have been used successfully in verifying the correctness of
computer chips. One notable example is the verification of a chip to perform
real-number arithmetic, which won the Queen’s Award for Technological
Achievement. Formal verification to prove that the chip met its specifications
was carried out by C. A. R. Hoare, head of the Programming Research Group
of Oxford University, together with MOS Ltd. In parallel, a more traditional
testing approach was taking place. As reported in Computing Research News:

“The race [between the two groups] was won by the formal develop-
ment method—it was completed an estimated 12 months ahead of
what otherwise would have been achievable. Moreover, the formal
design pointed to a number of errors in the informal one that had not
shown up in months of testing. The final design was of higher
quality, cheaper, and was completed quicker.” 9

It is hoped that success with formal verification techniques at the hardware
level can lead eventually to success at the software level. However, soft-
ware is far more complex than hardware, so we do not anticipate any
major breakthroughs within the near future.

Open Source Movement10

In the early days of computing, software came bundled with the computer,
including the source code for the software. Programmers adjusted and
adapted the programs and happily shared the improvements they made. In
the 1970s, firms began withholding the source code, and software became
big business.

With the advent of the Internet, programmers from all over the world
can collaborate at almost no cost. A simple version of a software product
can be made available on the Internet. Programmers interested in
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extending or improving the program can do so. A “benevolent dictator”
who keeps track of what is going on governs most open-source projects. If
a change or improvement passes the peer review of fellow developers and
gets incorporated in the next version, it is a great coup.

Linux is the best known open source project. Linus Torvolds wrote the
first simple version of the operating system using Unix as a blueprint and
continued to oversee its development. IBM spent $1 billion on Linux in
2001 with the object of making it a computing standard. As The Econo-
mist says,

“Some people like to dismiss Linux as nothing more than a happy
accident, but the program looks more like a textbook example of an
emerging pattern. . . .  Open source is a mass phenomenon, with tens
of thousands of volunteer programmers across the world already
taking part, and more joining in all the time, particularly in countries
such as China and India. SourceForge, a web site for developers, now
hosts more than 18,000 open-source projects that keep 145,000
programmers busy.”

Only time will tell if the open-source software development movement
contributes to producing more high-quality products.

Notorious Software Errors
Everyone involved in computing has his or her favorite software horror
story. We include only a small sample here.

AT&T Down for Nine Hours
In January of 1990, AT&T’s long-distance telephone network came to a
screeching halt for nine hours, because of a software error in the electronic
switching systems. Of the 148 million long-distance and 800-number calls
placed with AT&T that day, only 50% got through. This failure caused
untold collateral damage:

� Hotels lost bookings.

� Rental car agencies lost rentals.

� American Airlines’ reservation system traffic fell by two-thirds.

� A telemarketing company lost $75,000 in estimated sales.

� MasterCard didn’t get to process its typical 200,000 credit
approvals.

� AT&T lost some $60 to $75 million.

As AT&T Chairman Robert Allen said, “It was the worst nightmare I’ve
had in 32 years in the business.” 11
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How did this happen? Earlier versions of the switching software worked
correctly. The software error was in the code that upgraded the system to
make it respond more quickly to a malfunctioning switch. The error
involved a break statement in the C-code.12 As Henry Walker points out in
The Limits of Computing, this breakdown illustrates several points
common to many software failures. The software had been tested exten-
sively before its release, and it worked correctly for about a month. In addi-
tion to testing, code reviews had been conducted during development. One
programmer made the error, but many others reviewed the code without
noticing the error. The failure was triggered by a relatively uncommon
sequence of events, difficult to anticipate in advance. And the error
occurred in code designed to improve a correctly working system; that is,
during the maintenance phase. E. N. Adams in the IBM Journal of Research
and Development estimates that 15 to 50% of attempts to remove an error
from a large program result in the introduction of additional errors.

Therac-25
One of the most widely cited software-related accidents involved a
computerized radiation therapy machine called the Therac-25. Between
June 1985 and January 1987, six known accidents involved massive over-
doses by the Therac-25, leading to deaths and serious injuries. These acci-
dents have been described as the worst series of radiation accidents in the
35-year history of medical accelerators.

It is beyond the scope of this book to go into a detailed analysis of the soft-
ware failure. Suffice it to say there was only a single coding error, but tracking
down the error exposed that the whole design was seriously flawed. Leveson
and Turner in their article in IEEE Computer, add this scathing comment:

“A lesson to be learned from the Therac-25 story is that focusing on
particular software bugs is not the way to make a safe system. Virtu-
ally all complex software can be made to behave in an unexpected
fashion under certain conditions. The basic mistakes here involved
poor software-engineering practices and building a machine that
relies on the software for safe operation. Furthermore, the particular
coding error is not as important as the general unsafe design of the
software overall.” 13

Bugs in Government Projects
On February 25, 1991, during the Gulf War, a Scud missile struck an
American Army barracks, killing 28 soldiers and injuring around 100
other people. An American Patriot Missile battery in Dhahran, Saudi
Arabia, failed to track and intercept the incoming Iraqi Scud missile
because of a software error. This error, however, was not a coding error
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but a design error. A calculation involved a multiplication by 1/10, which
is a non-terminating number in binary. The resulting arithmetic error accu-
mulated over the 100 hours of the batteries’ operation amounted to .34
seconds, enough for the missile to miss its target.14

The General Accounting Office concluded:

“The Patriot had never before been used to defend against Scud
missiles nor was it expected to operate continuously for long periods
of time. Two weeks before the incident, Army officials received
Israeli data indicating some loss in accuracy after the system had
been running for 8 consecutive hours. Consequently, Army officials
modified the software to improve the system’s accuracy. However,
the modified software did not reach Dhahran until February 26,
1991—the day after the Scud incident.” 15

The Gemini V missed its expected landing point by about 100 miles. The
reason? The design of the guidance system did not take into account the
need to compensate for the motion of Earth around the Sun.16

In October 1999, the Mars Climate Orbiter entered the Martian atmos-
phere about 100 kilometers lower than expected, causing the craft to burn
up. Arthur Stephenson, chairman of the Mars Climate Orbiter Mission
Failure Investigation Board concluded:

“The ‘root cause’ of the loss of the spacecraft was the failed transla-
tion of English units into metric units in a segment of ground-based,
navigation-related mission software, as NASA has previously
announced . . . The failure review board has identified other signifi-
cant factors that allowed this error to be born, and then let it linger
and propagate to the point where it resulted in a major error in our
understanding of the spacecraft’s path as it approached Mars.” 17

Launched in July of 1962, the Mariner 1 Venus probe veered off course
almost immediately and had to be destroyed. The problem was traced to
the following line of Fortran code:

"I ! L " eP l

The period should have been a comma. An $18.5 million space explo-
ration vehicle was lost because of this typographical error.

17.3 Problems

There are problems for which it is easy to develop and implement
computer solutions. There are problems for which we can implement
computer solutions, but we wouldn’t get the results in our lifetime. There
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are problems for which we can develop and implement computer solu-
tions provided we have enough computer resources. There are problems
for which we can prove there are no solutions. Before we can look at
these categories of problems, we must introduce a way of comparing
algorithms.

Comparing Algorithms
As we have shown in previous chapters, there is more than one way to
solve most problems. If you were asked for directions to Joe’s Diner (see
Figure 17.2), you could give either of two equally correct answers:

1. “Go east on the big highway to the Y’all Come Inn, and turn left.”

or

2. “Take the winding country road to Honeysuckle Lodge, and turn
right.”

The two answers are not the same, but because following either route gets
the traveler to Joe’s Diner, both answers are functionally correct.

If the request for directions contained special requirements, one solution
might be preferable to the other. For instance, “I’m late for dinner. What’s
the quickest route to Joe’s Diner?” calls for the first answer, whereas “Is
there a scenic road that I can take to get to Joe’s Diner?” suggests the
second. If no special requirements are known, the choice is a matter of
personal preference—which road do you like better?

Figure 17.2

Equally valid solutions to the
same problem.
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Often the choice between algorithms comes down to a question of effi-
ciency. Which one takes the least amount of computing time? Which one
does the job with the least amount of work? We are talking here of the
amount of work that the computer does.

To compare the work done by competing algorithms, we must first
define a set of objective measures that can be applied to each algorithm.
The analysis of algorithms is an important area of theoretical computer
science; in advanced computing courses, students see extensive work in
this area. We cover only a small part of this topic, just enough to allow
you to compare two algorithms that do the same task and understand
that the complexity of algorithms forms a continuum from easy to
unsolvable.

How do programmers measure the work that two
algorithms perform? The first solution that comes to
mind is simply to code the algorithms and then
compare the execution times for running the two
programs. The one with the shorter execution time is
clearly the better algorithm. Or is it? Using this tech-
nique, we really can determine only that program A is
more efficient than program B on a particular
computer. Execution times are specific to a particular
computer. Of course, we could test the algorithms on
all possible computers, but we want a more general
measure.

A second possibility is to count the number of
instructions or statements executed. This measure, however, varies with the
programming language used, as well as with the style of the individual
programmer. To standardize this measure somewhat, we could count the
number of passes through a critical loop in the algorithm. If each iteration
involves a constant amount of work, this measure gives us a meaningful
yardstick of efficiency.

Another idea is to isolate a particular operation fundamental to the
algorithm and count the number of times that this operation is performed.
Suppose, for example, that we are summing the elements in an integer list.
To measure the amount of work required, we could count the integer
addition operations. For a list of 100 elements, there are 99 addition oper-
ations. Note, however, that we do not actually have to count the number
of addition operations; it is some function of the number of elements (N)
in the list. Therefore, we can express the number of addition operations in
terms of N: for a list of N elements, there are N � 1 addition operations.
Now we can compare the algorithms for the general case, not just for a
specific list size.

Are users the problem?
Software systems may operate correctly, but if
bad data is used, the answers may be incorrect.
Answers are only as good as the data used to
derive them. The acronym for this situation is
GIGO: Garbage In, Garbage Out. In the same
vein, systems that are confusing to human users
are more often used incorrectly.
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Big-O Analysis
We have been talking about work as a function of the size of the input to
the operation (for instance, the number of elements in the list to be
summed). We can express an approximation of this function using a math-
ematical notation called order of magnitude, or Big-O notation. (This is a
letter O, not a zero.) The order of magnitude of a function is identified
with the term in the function that increases fastest relative to the size of the
problem. For instance, if

f(N) = N4 + 100N2+ 10N + 50

then f(N) is of order N4—or, in Big-O notation, O(N4). That is, for large
values of N, some multiple of N4 dominates the function for sufficiently large
values of N. It isn’t that 100N2+ 10N + 50 is not important, it is just that as N
gets larger, all other factors become irrelevant because the N4 term dominates.

How is it that we can just drop the low-order terms? If we want to buy
elephants and goldfish, for example, and we are considering two pet
suppliers, we only need to compare the prices of elephants; the cost of the
goldfish is trivial in comparison. In analyzing algorithms, the term that
increases most rapidly relative to the size of the problem dominates the
function, effectively relegating the others to the “noise” level. The
elephants are so much bigger that we could just ignore the goldfish. Simi-
larly, for large values of N, N4 is so much larger than 50, 10N, or even
100N2 that we can ignore these other terms. This doesn’t mean that the
other terms do not contribute to the computing time; it only means that
they are not significant in our approximation when N is “large.”
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What is this value N? N represents the size of the problem. Most problems
involve manipulating data structures like those discussed in Chapter 9.
Each structure is composed of elements. We develop algorithms to add an
element to the structure and to modify or delete an element from the struc-
ture. We can describe the work done by these operations in terms of N,
where N is the number of elements in the structure.

Suppose that we want to write all the elements in a list into a file. How
much work is that? The answer depends on how many elements are in the
list. Our algorithm is

If N is the number of elements in the list, the “time” required to do this task is

(N * time-to-write-one-element) + time-to-open-the-file

This algorithm is O(N) because the time required to perform the task is
proportional to the number of elements (N)—plus a little to open the file.
How can we ignore the open time in determining the Big-O approxima-
tion? Assuming that the time necessary to open a file is constant, this
part of the algorithm is our goldfish. If the list only has a few elements,
the time needed to open the file may seem significant, but for large
values of N, writing the elements is an elephant in comparison with
opening the file.

The order of magnitude of an algorithm does not tell us how long in
microseconds the solution takes to run on our computer. Sometimes we
need that kind of information. For instance, a word processor’s require-
ments state that the program must be able to spell-check a 50-page docu-
ment (on a particular computer) in less than 120 seconds. For information
like this, we do not use Big-O analysis; we use other measurements. We can
compare different implementations of a data structure by coding them and
then running a test, recording the time on the computer’s clock before and
after. This kind of “benchmark” test tells us how long the operations take
on a particular computer, using a particular compiler. The Big-O analysis,
however, allows us to compare algorithms without reference to these
factors.

Common Orders of Magnitude
O(1) is called bounded time The amount of work is bounded by a
constant and is not dependent on the size of the problem. Assigning a

Open the file

While more elements in list 

Write the next element

http://lib.ommolketab.ir
http//lib.ommolketab.ir


How long does it take to do a family’s weekly
laundry? We might describe the answer to this ques-
tion with the function

f (N ) = c * N

where N represents the number of family members
and c is the average number of minutes that each
person’s laundry takes. We say that this function is
O(N ) because the total laundry time depends on the
number of people in the family. The “constant” c may
vary a little for different families, depending on the
size of their washing machine and how fast they can
fold clothes, for instance. That is, the time to do the
laundry for two different families might be repre-
sented with these functions:

f (N ) = 100 * N
g (N ) = 90 * N

But overall, we describe these functions as O(N).
Now, what happens if Grandma and Grandpa

come to visit the first family for a week or two? The
laundry time function becomes

f (N ) = 100 * (N + 2)

We still say that the function is O(N ). How can that
be? Doesn’t the laundry for two extra people take any
time to wash, dry, and fold? Of course it does! If N is
small (the family consists of Mother, Father, and
Baby), the extra laundry for two people is significant.
But as N grows large (the family consists of Mother,
Father, 12 kids, and a live-in baby-sitter), the extra

laundry for two people doesn’t make much difference.
(The family’s laundry is the elephant; the guest’s
laundry is the goldfish.) When we compare algorithms
using Big-O, we are concerned with what happens
when N is “large.”

If we are asking the question “Can we finish the
laundry in time to make the 7:05 train?” we want a
precise answer. The Big-O analysis doesn’t give us this
information. It gives us an approximation. So, if 100 *
N, 90 * N, and 100 * (N + 2) are all O(N ), how can
we say which is “better”? We can’t—in Big-O terms,
they are all roughly equivalent for large values of N.
Can we find a better algorithm for getting the laundry
done? If the family wins the state lottery, they can drop
all their dirty clothes at a professional laundry 15
minutes’ drive from their house (30 minutes round trip).
Now the function is

f (N ) = 30

This function is O(1). The answer is not dependent on
the number of people in the family. If they switch to a
laundry 5 minutes from their house, the function
becomes

f (N ) = 10

This function is also O(1). In terms of Big-O, the two
professional-laundry solutions are equivalent: No
matter how many family members or house guests
you have, it takes a constant amount of the family’s
time to do the laundry. (We aren’t concerned with the
professional laundry’s time.)

Family Laundry: An analogy

value to the ith element in an array of N elements is O(l), because an
element in an array can be accessed directly through its index. Although
bounded time is often called constant time, the amount of work is not
necessarily constant. It is, however, bounded by a constant.

O(log2N) is called logarithmic time The amount of work depends on the
log of the size of the problem. Algorithms that successively cut the amount
of data to be processed in half at each step typically fall into this category.
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1

N

0

log2N

1

Nlog2N

1

N2

1

N3

2

2 1 2 4 8 4

4 2 8 16 64 16

8 3 24 64 512 256

16 4 64 256 4,096 65,536

32 5 160 1,024 32,768 4,294,967,296

64 6 384 4,096 262,144 About 5 years' worth of 
instructions on a supercomputer

128 7 896 16,384 2,097,152 About 600,000 times greater
than the age of the universe in
nano-seconds (for a 6-billion-year
estimate)

256 8 2,048 65,536 16,777,216 Don't ask!

2N

Table 17.2 Comparison of rates of growth

Finding a value in a list of sorted elements using the binary search algo-
rithm is O(log2N).

O(N) is called linear time The amount of work is some constant times the
size of the problem. Printing all the elements in a list of N elements is O(N).
Searching for a particular value in a list of unsorted elements is also O(N)
because you (potentially) must search every element in the list to find it.

O(N log2N) is called (for lack of a better term) N log2N time Algorithms
of this type typically involve applying a logarithmic algorithm N times.
The better sorting algorithms, such as Quicksort, Heapsort, and Merge-
sort, have N log2N complexity. That is, these algorithms can transform an
unsorted list into a sorted list in O(N log2N) time, although Quicksort
degenerates to O(N2) under certain input data.

O(N2) is called quadratic time Algorithms of this type typically involve
applying a linear algorithm N times. Most simple sorting algorithms are
O(N2) algorithms.

O(2N) is called exponential time These algorithms are costly. As you can
see in Table 17.2, exponential times increase dramatically in relation to the
size of N. The fable of the King and the Corn demonstrates an exponential
time algorithm, where the size of the problem is a kernel of corn. (It also is
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Polynomial-time 

algorithms Algorithms
whose complexity can be
expressed as a polyno-
mial in the size of the
problem

Class P The class
made up of all polyno-
mial-time algorithms
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Figure 17.3 Orders of complexity

O(1) O(log2N) O(N) O(Nlog2N) O(N*N) O(2N) O(N!)

. . .

interesting to note that the values in the last column grow so quickly that
the computation time required for problems of this order may exceed the
estimated life span of the universe!)

O(n!) is called factorial time These algorithms are even more costly than
exponential algorithms. The traveling salesperson graph algorithm is a
factorial time algorithm.

Algorithms whose order of magnitude can be expressed as a polynomial
in the size of the problem are called polynomial-time algorithms. Recall
from Chapter 2 that a polynomial is a sum of two or more algebraic terms,
each of which consists of a constant multiplied by one or more variables
raised to a nonnegative integral power. Thus, polynomial algorithms are
those whose order of magnitude can be expressed as the size of the
problem to a power, and the Big-O of the algorithm is the highest power in
the polynomial. All polynomial-time algorithms are defined as being in
Class P.

Think of common orders of complexity as being bins into which we sort
algorithms (see Figure 17.3). For small values of the size of the problem, an
algorithm in one bin may actually be faster than the equivalent algorithm
in the next-more-efficient bin. As the size increases, the difference among
algorithms in the different bins gets larger. When choosing between algo-
rithms with the same bin, we look at the goldfish that we ignored earlier.

Turing Machines
We have mentioned the name of Alan Turing several times in this book.
He developed the concept of a computing machine in the 1930s. He was
not interested in implementing his machine; rather, he used it as a model to
study the limits of what can be computed.
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Time magazine chose Alan Turing as one of
its 100 most influential persons of the 20th
Century. Their biography of Turing said:

For what this eccentric young Cambridge
don did was to dream up an imaginary
machine—a fairly simple typewriter-like
contraption capable somehow of scan-
ning, or reading, instructions encoded
on a tape of theoretically infinite length.
As the scanner moved from one square
of the tape to the next—responding to
the sequential commands and modifying its
mechanical response if so ordered—the output of
such a process, Turing demonstrated, could repli-
cate logical human thought.

The device in this inspired mind-experiment
quickly acquired a name: the Turing machine, and
so did another of Turing’s insights. Since the
instructions on the tape governed the behavior of
the machine, by changing those instructions, one
could induce the machine to perform the functions
of all such machines. In other words, depending
on the tape it scanned, the same machine could
calculate numbers or play chess or do anything
else of a comparable nature. Hence his device
acquired a new and even grander name: the
Universal Turing Machine.

. . .

So many ideas and technological advances
converged to create the modern computer that it is 
foolhardy to give one person the credit for inventing 

it. But the fact remains that everyone who
taps at a keyboard, opening a spreadsheet
or a word-processing program, is working
on an incarnation of a Turing machine.18

Alan Turing was born in June of 1912 to
Julius Mathison Turing, a member of the
Indian Civil Service, and Ethel Sara Stoney,
the daughter of the chief engineer of the
Madras railway. His father and mother spent
most of their time in India, while he and his
older brother were in various foster homes in

England until his father’s retirement in 1926.
The British Public (read Private in American

English) School system of the day did not foster orig-
inal thinking, so Turing had trouble fitting in. He was
criticized for his handwriting, struggled in English,
and even in mathematics didn’t produce the
expected conventional answers. At Sherborne
School, which he had entered at 13, the headmaster
said that if he was solely a scientific specialist, he
was wasting his time at a public cchool. Yet a public
school education was terribly important to his
mother, and so he persisted. Two things sustained
him during this period: his own independent study
and the friendship of Christopher Morcom, who was
a student a year ahead of him in school. Morcom
provided vital intellectual companionship, which
ended after two years with Morcom’s sudden death.

In 1931, Turing entered King’s College, Cam-
bridge, to study mathematics. The atmosphere at
King’s College encouraged free-ranging thought,
providing him with an intellectual home for the first

Alan Turing

A Turing machine, as his model became known, consists of a control
unit with a read/write head that can read and write symbols on an infinite
tape. The tape is divided into cells. The model is based on a person doing a
primitive calculation on a long strip of paper using a pencil with an eraser.
Each line (cell) of the paper contains a symbol from a finite alphabet.
Starting at one cell, the person examines the symbol and either leaves the
symbol alone or erases it and replaces it with another symbol from the
alphabet. The person then moves to an adjacent cell and repeats the
action.
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time. He graduated in 1934 and was elected a fellow
of King’s College in 1935 for a dissertation “On the
Gaussian Error Function,” which proved fundamental
results in probability theory.

Turing then began to work on decidability questions,
based on a course he had taken on the foundations of
mathematics with Max Newman. In 1936 Turing
published a paper in which he introduced the concept of
what we now call a Turing machine. These concepts
were introduced within the context of whether a definite
method or process exists by which it could be decided
whether any given mathematical assertion was prov-
able. Alonzo Church’s work at Princeton on the same
subject became known at the same time, and so Turing’s
paper was delayed until he could refer to Church’s
work. As a result, Turing spent two years as a student at
Princeton working with Church and von Neumann.

At the outbreak of World War II, Turing went to
work at the Government. Again we quote from the
Time Magazine text:

Turing, on the basis of his published work, was
recruited to serve in the Government Code and
Cypher School, located in a Victorian mansion
called Bletchley Park in Buckinghamshire. The task of
all those so assembled—mathematicians, chess
champions, Egyptologists, whoever might have
something to contribute about the possible permuta-
tions of formal systems—was to break the Enigma
codes used by the Nazis in communications between
headquarters and troops. Because of secrecy restric-
tions, Turing’s role in this enterprise was not
acknowledged until long after his death. And like the
invention of the computer, the work done by the

Bletchley Park crew was very much a team effort. But
it is now known that Turing played a crucial role in
designing a primitive, computer-like machine that
could decipher at high speed Nazi codes to U-boats
in the North Atlantic.

Turing was awarded the Order of the British
Empire in 1945 for his contributions to the war effort.

After a frustrating experience at the National Phys-
ical Laboratory in London, where he was to build a
computer, he returned to Cambridge where he
continued work and write. The war-time spirit of
cooperation that had short-circuited bureaucracy had
faded, and the ACE (Automatic Computing Engine)
was never built. In 1948, Turing became a Deputy
Director of the computing laboratory at Manchester
University. The vague title reflected its meaningless-
ness, and Turing spent the next years working and
writing on a variety of different subjects.

In 1950 he published an article reflecting one of his
major interests: Can machines think? From this article
came the well-known Turing test. He also became inter-
ested in morphogenesis, the development of pattern and
form in living organisms. All the while he continued his
research in decidability and quantum theory.

On June 7, 1954, Turing died of cyanide
poisoning, a half-eaten apple laying beside his bed.
His mother believed that he accidentally died while
conducting an experiment; the coroner’s verdict was
suicide. A few years ago, the award-winning one-
man play Breaking the Code was performed in
London’s West End and on Broadway, giving audi-
ences a brief glimpse of Turing’s brilliant, complex
character.

The control unit simulates the person. The human’s decision-making
process is represented by a finite series of instructions that the control unit
can execute. Each instruction causes

� a symbol to be read from a cell on the tape.

� a symbol to be written into the cell.

� the tape to be moved one cell left, one cell right, or left positioned as
it was.
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Figure 17.4

Turing machine processing

These actions do indeed model a person with a pencil, if we allow the
person to replace a symbol with itself. See Figure 17.4.

Why is such a simple machine (model) of any importance? It is widely
accepted that anything that is intuitively computable can be computed by a
Turing machine. This statement is known as the Church-Turing thesis,
named for Turing and Alonzo Church, another mathematician who devel-
oped a similar model known as the lambda calculus and with whom
Turing worked at Princeton. The works of Turing and Church are covered
in-depth in theoretical courses in computer science.

It follows from the Church-Turing thesis that if we can find a problem
for which a Turing-machine solution can be proven not
to exist, then the problem must be unsolvable. In the
next section we describe such a problem.

Halting Problem
It is not always obvious that a computation (program)
halts. In Chapter 6 we introduced the concept of
repeating a process; in Chapter 8 we talked about
different types of loops. Some loops clearly stop, some
clearly do not (infinite loops), and some loops stop
depending on input data or calculations that occur
within the loop. When a program is running, it is diffi-
cult to know whether it is caught in an infinite loop or
whether it just needs more time to run.

Thus, it would be very beneficial if we could predict
that a program with a specified input would not go

Reels of asterisks written
Before operating systems replaced the human
operator, one of the operator’s jobs was to
monitor the amount of output being written and
compare it to the estimated amount of output
shown on the job submission slip. A not-too-
observant operator finally stopped a job marked
for one page of output after the second tape reel
was written. The programmer was quite startled
to see the printout of two tape reels’ worth of
asterisks (*s), generated because of an infinite
loop.
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Halting problem The
unsolvable problem of
determining whether any
program will eventually
stop given particular
input
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Figure 17.5

Proposed program for
solving the Halting problem

Program Example
and

SampleData
SolvesHaltingProblem

"Halts"
or

"Loops"

OutputProgramInput

into an infinite loop. The Halting problem restates the question this way:
Given a program and an input to the program, determine if the program
will eventually stop with this input.

The obvious approach is to run the program with the specified input
and see what happens. If it stops, the answer is clear. What if it doesn’t
stop? How long do you run the program before you decide that it is in an
infinite loop? Clearly, there are flaws in this approach. Unfortunately,
there are flaws in every other approach as well. This problem is unsolv-
able. Let’s look at the outlines of a proof of this assertion, which can be
rephrased as: “There is no Turing-machine program that can determine
whether a program will halt given a particular input.”

How can we prove that a problem is unsolvable or, rather, that we just
haven’t found the solution yet? We could try every proposed solution and
show that every one contains an error. Since there are many known solu-
tions and many yet unknown, this approach seems doomed to failure.
Yet, this approach forms the basis of Turing’s solution to this problem. In
his proof, he starts with any proposed solution and then shows that it
doesn’t work.

Assume that there exists a Turing-machine program, called Solves-
HaltingProblem that determines for any program Example and input Sample-
Data whether program Example halts given input SampleData. That is,
SolvesHaltingProblem takes program Example and SampleData and prints
“Halts” if the program halts and “Loops” if the program contains an infi-
nite loop. This situation is depicted in Figure 17.5.

Recall that both programs (instructions) and data look alike in a
computer; they are just bit patterns. What distinguishes programs from
data is how the control unit interprets the bit pattern. So we could give
program Example a copy of itself as data in place of SampleData. Thus,
SolvesHaltingProblem should be able to take program Example and a second
copy of program Example as data and determine whether program Example
halts with itself as data. See Figure 17.6.
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Figure 17.6

Proposed program for
solving the Halting problem

Program Example
and

Program Example
SolvesHaltingProblem

"Halts"
or

"Loops"

OutputProgramInput

Figure 17.7 Construction of NewProgram

Program Example
and

SampleData
"Halts"

Program NewProgramInput Output from NewProgram

New Program uses
algorithm for

SolvesHaltingProblem
to produce output

"Halts"
"Loops"

Now let’s construct a new program, NewProgram, that
takes program Example as both program and data and
uses the algorithm from SolvesHaltingProblem to write
“Halts” if Example halts and “Loops” if it does not halt.
If “Halts” is written, NewProgram creates an infinite loop;
if “Loops” is written, NewProgram writes “Halts”. Figure
17.7 shows this situation.

Do you see where the proof is leading? Let’s now
apply program SolvesHaltingProblem to NewProgram,
using NewProgram as data. If SolvesHaltingProblem
prints “Halts”, program NewProgram goes into an infi-
nite loop. If SolvesHaltingProblem prints “Loops”,
program NewProgram prints “Halts” and stops. In
either case, SolvesHaltingProblem gives the wrong
answer. Since SolvesHaltingProblem gives the wrong
answer in at least one case, it doesn’t work on all cases.
Therefore, any proposed solution must have a flaw.

You can’t get there from here
A woman was traveling with three children to
England to visit her mother-in-law. Rather than a
map, the mother-in-law had sent a list of towns
the woman should go through from London’s
Gatwick airport to Brighton. After an exhausting
eight-hour flight, the family finally found the
rental car place and piled into the car for the
final leg of the journey. After getting completely
confused on the motorway system trying to
follow the list of towns, the woman saw a
policeman and asked for his help. He looked at
the list of towns, thought for a minute, and finally
shook his head, “Lady, you just can’t get there
from here.” Some computer problems are like
that too: You just can’t get there from here.
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Class P problems

Problems that can be
solved with one
processor in polynomial
time

Class NP problems

Problems that can be
solved in polynomial
time with as many
processors as desired

NP-complete problems

A class of problems
within Class NP that has
the property that if a
polynomial time solution
with one processor can
be found for any
member of the class,
such a solution exists for
every member of the
class
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Figure 17.8 A reorganization of algorithm classification

Class P
Exponential/

Factorial Unsolvable

Classification of Algorithms
Figure 17.3 showed the common orders of magnitude as bins. We now
know that there is another bin to the right, which would contain algo-
rithms that are unsolvable. Let’s reorganize our bins a little, combining all
polynomial algorithms in a bin labeled Class P, combine exponential and
factorial algorithms into one bin, and add a bin labeled Unsolvable. See
Figure 17.8.

The algorithms in the middle bin have known solutions, but they are
called intractable because for data of any size they simply take too long to
execute. We mentioned parallel computers in Chapter 1 when we reviewed
the history of computer hardware. Could some of these problems be solved
in a reasonable time (polynomial time) if enough processors were working
on the problem at the same time? Yes, they could. A problem is said to be
in Class NP if it can be solved with a sufficiently large number of proces-
sors in polynomial time.

Clearly Class P problems are also in Class NP. An open question in
theoretical computing is whether or not Class NP problems, whose only
tractable solution is with many processors, are also in Class P. That is, do
there exist polynomial-time algorithms for these problems that we just
haven’t discovered (invented) yet? We don’t know, but the problem has
been and is still keeping computer science theorists busy looking for the
solution. The solution? Yes, the problem of determining whether Class P is
equal to Class NP has been reduced to finding a solution for one of these
algorithms. There is a special class of problems called NP-complete prob-
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lems. These problems are in Class NP and have the
property that they can be mapped into one another. If
a polynomial-time solution with one processor can be
found for any one of the algorithms in this class, a
solution can be found for each of them as the solution
can be mapped to all the others. How and why this is
so is beyond the scope of this book. However, if the
solution is found, you will know, for it will make
headlines all over the computing world.

So for now we picture our complexity bins with a
new bin labeled Class NP. This bin and the Class P bin
have dotted lines on their adjacent sides, for they may
actually be just one bin. See Figure 17.9.

Summary

Limits are imposed on computer problem solving by the hardware, the
software, and the nature of the problems to be solved. Numbers are infi-
nite, but their representation within a computer is finite. This limitation
can cause errors to creep into arithmetic calculations, giving incorrect
results. Hardware components can wear out, and information can be lost
in inter-computer and intra-computer data transfer.

Class P
Exponential/

Factorial Class NP

Figure 17.9 Adding class NP

The Traveling Salesman problem
A classic NP problem is called the Traveling
Salesman problem. A salesman is responsible for
visiting all the cities in his sale’s district. In order to
visit every one in an efficient manner, he wants to
find a route of minimal cost that goes through
each city once and only once before returning to
the starting point. The cities can be represented in
a graph with the edges representing highways
between cities. Each edge is labeled with the
distance between the cities. The solution then
becomes a well-known graph algorithm whose
solution with one processor is O(N!).
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The sheer size and complexity of large software projects almost guaran-
tees that errors will occur. Testing a program can demonstrate errors, but
it cannot demonstrate the absence of errors. The best way to build good
software is to pay attention to quality from the first day of the project,
applying the principles of software engineering.

Problems vary from very simple ones to solve to those that cannot be solved
at all. Big-O analysis provides a metric that allows us to compare algorithms
in terms of the growth rate of a size factor in the algorithm. Polynomial-time
algorithms are those algorithms whose Big-O complexity can be expressed as
a polynomial in the size factor. Class P problems are those that can be solved
with one processor in polynomial time. Class NP problems are those that can
be solved in polynomial time with an unlimited number of processors. As
proved by Turing, the Halting problem does not have a solution.

Licensing Computer Professionals
Plumbers, electricians, beauty operators, psychologists, professional

engineers—almost anyone who provides a service to the public is

required to be licensed. Accountants (CPA) and medical doctors who

specialize in a particular area of medicine are certified. Computer

professionals, however, are not licensed and certification is scarce.

Certification is a voluntary process administered by a profession;

licensing is a mandatory process administered by a governmental agency,

usually at the state level in the U.S. The Institute for Certification of

Computing Professionals is the most well-established certification organ-

ization in software. They offer two levels of certification, Associate

Computing Professional (ACP) and Certified Computing Professional

(CCP). Both require an examination that includes 110 questions on

topics of human and organization framework, systems concepts, data

and information, systems development, and associated disciplines. The

ACP certification requires an exam on core topics and an exam on one

programming language. The CCP certification requires the core exam;

an exam on two additional topics, including management, procedural

programming, business information systems, and systems programming;

and 48 months of full-time experience or academic credentials with 24

months of full-time experience. This certification is slanted toward busi-

ness uses of computing rather than general computer professionals.

W
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Many commercial software companies such as Apple, Microsoft, and

Novell certify practitioners in the use of their tools.

There are two main professional organizations in computing: ACM

and IEEE Computer Society. These two organizations formed a Steering

Committee for the Establishment of Software Engineering as a Profession,

in 1993. To become a profession, the steering committee recommended

adopting standard definitions, defining a required body of knowledge and

recommended practices, defining ethical standards, and defining educa-

tional curricula. In 1998 the Software Engineering Coordination

Committee (SWECC) was established by ACM/IEEE to act as a perma-

nent committee to foster the evolution of software engineering as a profes-

sional computing discipline. The Texas Professional Engineers Licensing

Board asked this committee for help in defining the performance criteria

for a software engineering licensing exam to be administered in Texas.

Licensing is required for medical professionals, lawyers, and engi-

neers. Clearly the engineering model would be more appropriate for

computing professionals. The engineering model requires that the candi-

date be of good character; a graduate from an accredited engineering

program and have four years of experience, or have a non-approved

degree with 8 to 12 years of experience; and pass an examination.

SWECC was asked to help with the exam. The ACM is governed by a

council, the members of which are elected by the members. Several

members of the ACM Council had reservations about whether licensing

software engineers was in the best interest of the field or the public.

After further study, ACM Council passed the following motion:

ACM is opposed to the licensing of software engineers at this

time because ACM believes it is premature and would not be effec-

tive at addressing the problems of software quality and reliability.

ACM is, however, committed to solving the software quality

problem by promoting R&D, by developing a core body of knowl-

edge for software engineering, and by identifying standards of prac-

tice.

One of the reasons for ACM opposing the licensing is the 8-hour

Fundamentals of Engineering exam, which covers the first two years of

an engineering degree. Many of these topics, such as thermodynamics,

fluid mechanics, statics, and material science, are not of relevance to

computing professionals. In August 2001, IEEE Computer Society beta

tested a certificate program in software engineering. The requirements

are similar to the licensing requirements, but the degree can be in any

discipline from any accredited institution of higher learning. Thus

general engineering subjects are not included in the exam.
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Exercises 535

Key Terms
Big-O notation  pg. 521

Cancellation error  pg. 508

Class NP problems  pg. 531

Class P  pg. 525

Class P problems  pg. 531

Halting problem  pg. 529

Inspection  pg. 513

NP-complete problems  pg. 531

Overflow  pg. 507

Polynomial-time algorithms  
pg. 525

Precision  pg. 505

Representational (round-off) error
pg. 507

Significant digits  pg. 505

Software requirements  pg. 512

Software specification  pg. 512

Underflow  pg. 507

Walk-through  pg. 513

Exercises
1. Given the following three real values, what is the best order in which

to add these values so that you will get the most accurate answer?

x = 3214 * 104 y = 576 * 10�1 z = 4421 * 103

2. Given the following three real values, what is the best order in which
to add these values so that you will get the most accurate answer?

x = 3214 * 101 y = 576 * 10�1 z = 4421 * 100

3. Prove that (1 + x � 1) does not necessarily equal x.

4. Define representational error, cancellation error, underflow, and over-
flow. Discuss how these terms are interrelated.

5. Show the range of integer numbers that can be represented in each of
the following word sizes.
a. 8-bits
b. 16 bits
c. 24 bits
d. 32 bits
e. 64 bits

6. There is a logical action to take when underflow occurs, but not when
overflow occurs. Explain.

7. a. Show how the numbers 1066 and 1492 would be represented in a
linked list with one digit per node.
b. Use a linked list to represent the sum of these integers.
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c. Outline an algorithm to show how the calculation might be carried
out in a computer.

8. Explain the Titanic effect in relation to hardware failure.

9. Have any hardware failures happened to you? Explain.

10. Given the following 8-bit code, what is the parity bit if odd parity is
being used?
a. 11100010
b. 10101010
c. 11111111
d. 00000000
e. 11101111

11. Given the following 8-bit code, what is the parity bit if even parity is
being used?
a. 11100010
b. 10101010
c. 11111111
d. 00000000
e. 11101111

12. Given the following numbers, what would be the check digit for each?
a. 1066
b. 1498
c. 1668
d. 2001
e. 4040

13. What errors would be detected using the check bits in Exercise 12?

14. Given the following numbers, what would be the additional digits if
the unit’s digit of the sum of the even digits is used along with the
check digit?
a. 1066
b. 1498
c. 1668
d. 2001
e. 4040

15. Given the following numbers, what would be the additional digits if
the unit’s digit of the sum of the odd digits is used along with the
check digit?
a. 1066
b. 1498
c. 1668
d. 2001
e. 4040
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Exercises 537

16. How do the representations in Exercises 14 and 15 improve the error
detection over a simple check digit?

17. Explain the concept of the software life cycle.

18. Where do most of the errors occur in a software project?

19. Why does the cost of fixing an error increase the longer the error
remains undetected?

20. Compare and contrast the software verification activities code or
design walk-through and inspection.

21. How can a program be verified to be correct but still be worthless?

22. Name at least five places where a software error could be introduced.

23. How was the AT&T software failure typical of such failures?

24. What is formal verification?

25. Explain the analogy of the elephant and the goldfish.

26. Define the term polynomial time algorithm.

27. How is it possible to throw away all but the term with the largest
exponent when assessing the Big-O of a polynomial time algorithm?

28. Give the Big-O complexity measure of the following polynomials.
a. 4x3 + 32x2 + 2x + 1003
b. x5 + x
c. x2 + 124578
d. x + 1

29. Give the common name for the following complexity measures and an
example of an algorithm that falls into this category.
a. O(1)
b. O(N)
c. O(NlogN)
d. O(N2)
e. O(2N)
f. O(N!)

30. Explain the analogy of bins of complexity measures.

31. Who manufactures a Turing machine?

32. How does a Turing machine simulate a human with a paper and
pencil?

33. Are there problems for which there are no solutions?

34. Describe the Halting problem.

35. How is the fact that data and programs look alike inside a computer
used in the proof that the Halting problem is unsolvable?
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Thought Questions

1. Go on the web and perform a search for information on the Pentium
chip error. Try different keywords and combinations of keywords,
recording how many hits occur with each. Read at least three of the
articles and write a description of the problem in your own words.

2. Search the Web for the answers to the following questions.

a. Why did an unmanned Ariane 5 rocket explode in June of 1996?

b. Did the Russian Phobos 1 spacecraft commit suicide?

c. What caused the delay in the opening of the Denver airport?

d. What was the cost of the software repair in London's (England)
Ambulance dispatch system failure?

e. The USS Yorktown was dead in the water for several hours in
1998. What software error caused the problem?

3. A professor was giving a lecture to a local service club about the limits
of computing. A member of the audience said "But I didn't think there
were any limits.” If you were the professor, how would you have
answered him?

4. ACM is opposed to licensing software engineers at this time. What is
their argument? Do you agree or disagree? Why?

5. What is the difference between licensing and certification? Which do
you feel is more appropriate for people in computing? Should there be
stratified options for licensing? For certification?

?
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Chapter 1 Exercises
1. What French mathematician built and sold the first gear-driven

mechanical machine that did addition and subtraction?

Pascal

4. Who was considered the first programmer? Describe her contributions
to the history of computers.

Ada Lovelace was considered the first programmer because of her
work with Babbage. She edited his notes, adding many of her own
ideas. She is credited with inventing the concept of a loop.

7. For whom is the Turing Award in computing named?

Alan Turing, an English mathematician.

10. Some experts made early predictions that a small number of com-
puters would handle all of mankind’s computational needs. Why was
this prediction faulty?

Before the computer, we could only comprehend what we could calcu-
late by hand. With the computer, we had a tool that changed how we
viewed mathematics, physics, engineering, and business. Thus the defi-
nition of “a computational need” changed completely—and is still
changing.

539
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13. The following names were prominent in the early part of the fourth
generation of computer hardware: Apple, Tandy/Radio Shack, Atari,
Commodore, and Sun.
a. Which of these companies are still in business today under the same

name?
Apple, Atari, Sun

b. Which of these companies are still in business under another name?
Tandy/Radio Shack (Radio Shack)

c. Which of these companies is no longer in business?
Commodore went out of business in 1984.

16. What does the acronym LAN stand for?

Local Area Networks

19. Distinguish between assembly language and high-level languages.

Whereas assembly language is a language made up of mnemonic codes
that represent machine-language instructions, high-level languages use
English-like statements to represent a group of assembly-language
statements or machine-language statements. There is a one-to-one
correspondence between statements in an assembly language and the
statements they represent in machine language. There is a one-to-many
correspondence between high-level statements and the corresponding
machine-language statements.

22. Distinguish between a systems programmer and an applications
programmer.

A systems programmer writes programs that are tools to help others
write programs. An applications programmer writes programs to solve
specific problems.

25. What do the following pieces of software do?
a. Loader

A loader puts a program’s instructions into memory where they can
be executed.

b. Linker
A linker is a program that puts pieces of a large program together
so that it can be put into memory where it in can be executed.

c. Editor
A editor is a word processing program that allows the user to enter
and edit text.

28. Name several typical types of fourth-generation application software.

Spreadsheets, word processors, and database management systems
were introduced in the fourth generation.
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31. Distinguish between computing as a tool and computing as a disci-
pline.

Computing as a tool refers to the use of computing by people to solve
problems in their professional or personal life. Computing as a disci-
pline refers to the study of the body of knowledge that makes up
computer science and/or computer engineering.

33. Distinguish between systems areas and applications areas in
computing as a discipline.

The systems areas of computing as a discipline relate to the under-
standing and building of computer tools: algorithms and data struc-
tures, programming languages, (computer) architecture, operating
systems, software methodology and engineering, and human-computer
communication. The applications areas in computing relate to the
computer’s use as a tool: numerical computation, databases and infor-
mational retrieval, artificial intelligence and robotics, graphics, organi-
zational informatics, and bioinformatics.

Chapter 2 Exercises
1. Distinguish between a natural number and a negative number.

A natural number is 0 and any number that can be obtained by repeat-
edly adding 1 to it. A negative number is less than 0, and opposite in
sign to a natural number, although we usually do not consider nega-
tive 0.

4. How many 1s are there in 891 if it is a number in each of the
following bases?
a. base 10

891
b. base 8

It can’t be a number in base 8.
c. base 12

1,261
d. base 13

1,470
e. base 16

2,193

7. Explain how base 2 and base 8 are related.

Because 8 is a power of 2, base-8 digits can be read off in binary and 3
base-2 digits can be read off in octal.
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9. Expand the table on page 40 to include the decimal numbers from 11
through 16.

13. Convert the following binary numbers to hexadecimal.
a. 111110110

1F6
b. 1000001

41
c. 010000010

82
d. 1100010

62
e. 111000111

1C7

16. Convert the following decimal numbers to binary.
a. 45

101101
b. 69

1000101
c. 1066

10000101010
d. 99

1100011
e. 1

1

binary octal decimal
000
001
010
011
100
101
110
111
1000
1001
1010
1011
1100
1101
1110
1111
10000

0
1
2
3
4
5
6
7
10
11
12
13
14
15
16
17
20

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
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18. If you were going to represent numbers in base 18, what symbols,
other than letters, might you use to represent the decimal numbers 10
through 17?

Any special characters would work or characters from another
alphabet. Let’s use # for 16 and @ for 17.

22. Perform the following hexadecimal additions.
a. 19AB6 + 43

19AF9
b. AE9 + F

AF8
c. 1066 + ABCD

BC33

25. Perform the following hexadecimal subtractions.
a. ABC – 111

9AB
b. 9988 – AB

98DD
c. A9F8 – 1492

9566

28. How many bytes are there in one word of a 64-bit machine?

8

Chapter 3 Exercises
1. What is data compression and why is it an important topic today?

Data compression refers to reducing the amount of space needed to
store a piece of data. Although computer storage is relatively cheap, as
the amount of data keeps increasing rapidly, the cost of storage is a
factor. However, the most important reason for compressing data is
that, more and more, we share data. The Web and its underlying
networks have limitations on bandwidth that define the maximum
number of bits or bytes that can be transmitted from one place to
another in a fixed amount of time.

4. Is a clock with a sweeping second hand an analog or a digital device?
Explain.

A sweeping second hand is an analog device. The motion of the hand
is continuous.

7. How many things can be represented with:
a. four bits

16
b. five bits

32
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c. six bits
64

d. seven bits
128

10. Given a fixed-sized number scheme where k in the formula for the
ten’s complement is 6 (see page 59), answer the following questions.
a. How many positive integers can be represented?

499,999
b. How many negative integers can be represented?

500,000
c. Draw the number line showing the three smallest and largest posi-

tive numbers, the three smallest and largest negative numbers, and
zero.

13. In calculating the ten’s complement in Exercise 12, did you have
trouble borrowing from so many zeros? Such calculations are error
prone. There is a trick that you can use that makes the calculation
easier and thus less prone to errors: Subtract from all 9’s and then add
1. A number subtracted from all 9’s is called the nine’s complement of
the number.
a. Prove that the nine’s complement of a number plus one is equal to

the ten’s complement of the same number.
Negative(I) = 10k – I in 10’s compliment
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Negative(I) = (99..99 – I) + 1 in 9’s compliment.
(99..99) =  (10k –1)
Negative(I) =  (10k –1) – I + 1 =  10k – I

b. Use the nine’s complement plus one to calculate the values in Exer-
cise 12 b, c, and d.
b. 964232 c.  555545 d.  876544

c. Which did you find easier to use, the direct calculation of the ten’s
complement or the nine’s complement plus one? Justify your
answer.
This is an individual answer.

16. The one’s complement of a number is analogous to the nine’s comple-
ment of a decimal number. Use the scheme outlined in Exercise 13 to
calculate the results of Exercise 14, using the one’s complement rather
than the two’s complement.

a. 10001000 b. 11011110 c. 00100010 d. 10101011
e. 00110011

18. Convert the rules for subtraction in a sign-magnitude system to the
algorithm format.

22. Create a keyword encoding table that contains a few simple words.
Rewrite a paragraph of your choosing using this encoding scheme.
Compute the compression ratio you achieve.

Original text:

Computers are multimedia devices that manipulate data varying in
form from numbers to graphics to video. Because a computer can only
manipulate binary values, all forms of data must be represented in
binary form. Data is classified as being continuous (analog) or discrete
(digital).

Decimal values are represented by their binary equivalent, using one of
several techniques for representing negative numbers, such a sign

Find the first number on the number line

If addition

Move in the sign direction of second number the specified units

Else

Move in the opposite sign direction of the second number the speci-

fied units
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magnitude or two’s compliment. Real numbers are represented by a
triple made up of the sign, the digits in the number, and an exponent
that specifies the radix point.

A character set is a list of alphanumeric characters and the codes that
represent each one. The most common character set is Unicode (16
bits for each character), which has ASCII as a subset. The 8-bit ASCII
set is sufficient for English but not for other (or multiple) languages.
There are various ways for compressing text so that it takes less space
to store it or less time to transmit it from one machine to another.

Audio information is represented as digitized sound waves. Color is
represented by three values that represent the contribution of each of
red, blue, and green. There are two basic techniques for representing
pictures, bitmaps and vector graphics. Video is broken up into a series
of still images, each of which is represented as a picture.

Substitutions:

and:  & to: > the: ~

an:  ! it: < is: =

character: # ASCII: % that: $

represented: @

Text with substitutions:

Computers are multimedia devices $ manipulate data varying in form
from numbers > graphics > video. Because a computer can only
manipulate binary values, all forms of data must be @ in binary form.
Data = classified as being continuous (analog) or discrete (digital).

Decimal values are @ by their binary equivalent, using one of several
techniques for representing negative numbers, such a sign magnitude
or one’s compliment. Real numbers are @ by a triple made up of ~
sign, ~ digits in ~ number, & ! exponent $ specifies ~ radix point.

A # set = a list of alphanumeric #s & ~ codes $ represent each one.  ~
most common # set = Unicode (16 bits for each #), which has % as a
subset.  ~ 8-bit % set = sufficient for English but not for other (or
multiple) languages. There are various ways for compressing text so $
< takes less space > store < or less time > transmit < from one machine
> another.
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Audio information = @ as digitized sound waves.  Color = @ by three
values $ represent ~ contribution of each of red, blue, & green. There
are two basic techniques for representing pictures, bitmaps & vector
graphics.  Video = broken up into a series of still images, each of
which = @ as a picture.

Compression ratio: .8864

25. How do humans perceive sound?

We perceive sound when a series of air compressions vibrate a
membrane in our ear, which sends signals to our brain.

28. What does color depth indicate?

Color depth is the amount of data used to represent a color; that is the
number of bits used to represent each of the colors in the RGB value.

Chapter 4 Exercises
1. How is voltage level used to distinguish between binary digits?

A voltage level in the range of 0 to 2 volts is interpreted as a binary 0.
A voltage level in the range of 2+ to 5 volts is interpreted as a binary 1.

4. Characterize the notations asked for in Exercise 3.

Boolean expressions use the operations of Boolean algebra to describe
the behavior of gates and circuits.

Logic diagrams use a graphical representation to describe the behavior
of gates and circuits.

Truth tables define the behavior of gates and circuits by showing all
possible input and output combinations of the gates and circuits.

7. Give the three representations of a NOT gate and say in words what
NOT means.

A is the input signal and X is the output signal.

Boolean expression:  X = A’

Logic Diagram:

Logic Diagram SymbolBoolean Expression Truth Table

A X
0
0

1
0

A XX = A'
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NOT takes a binary input value and inverts it.

10. Give the three representations of an XOR gate and say in words what
XOR means.

A and B are the input signals and X is the output signal.

Boolean expression: A ⊕ B   (A XOR B)

Logic Diagram:

If both inputs are the same value, XOR returns a 0; otherwise XOR
returns a 1.

13. Why are there no logic diagram symbols for the NAND and NOR
gates?

Because NAND means not AND and NOR means not OR, there are
no symbols for NAND and NOR.  The AND and OR symbols are
used with the inversion bubble.

14. Draw and label the symbol for a three-input AND gate; then show its
behavior with a truth table.

Truth Table

A B
0
0
1
1

0
1
0
1

X
0
1
1
0

Logic Diagram SymbolBoolean Expression

X = A ⊕ B
A

B

X
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17. How does a transistor behave?

Depending on the voltage of an input signal, a transistor either acts as
a wire that conducts electricity or as a resister that blocks the flow of
electricity.

20. What are the three terminals in a transistor and how do they operate?

The source is an electric signal. The base value regulates a gate that
determines whether the connection between the source and the ground
(emitter) is made. An output line is usually connected to the source. If
the base value is high, the source is grounded and the output is low
(representing 0). If the base value is low, the gate is closed and the
source is not grounded and the output is high (representing 1).

23. Draw a transistor diagram for an OR gate. Explain the processing.

The NOR gate is the inverse of the OR gate, and the inverse of the
inverse is the original. Thus, the output from the NOR gate is input to
a NOT gate, giving us the NOR.

Source

Ground Ground

V1 V2

Source

Ground

Vout

Logic Diagram Symbol Truth Table

A B
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

C
0
1
0
1
0
1
0
1

X
0
0
0
0
0
0
0
1

A
B

C

X
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26. Draw a circuit diagram corresponding to the following Boolean
expression:

(A + B)(B + C)

29. Draw a circuit diagram corresponding to the following Boolean
expression:

(AB)’ + (CD)’

30. Show the behavior of the following circuit with a truth table:

A
0
0
1
1

B
0
1
0
1

AB
0
0
0
1

A+B
1
1
1
0

AB + (A + B)
1
1
1
1

A

B

A

B

D

C

A

B

C
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33. Show the behavior of the following circuit with a truth table:

35. Name six properties of Boolean algebra and explain what each means.

Commutative:  The commutative property says that binary operations
AND and OR may be applied left to right or right to left. (A AND B
is the same as B AND A; A OR B is the same as B OR A)

Associative:  The associative property says that given three Boolean
variables, they may be ANDed or ORed right to left or left to right.
((A AND B) AND C is the same as A AND (B AND C); (A OR B)
OR C is the same as A OR (B OR C))

Distributive: The distributive property says that given three Boolean
variables, the first AND the result of the second OR the third is the
same as the first AND the second OR the first AND the third. (A
AND (B OR C) = (A AND B) OR (A AND C))  Also, the first OR the
result of second AND the third is the same as the first OR the second
AND the result of the first OR the third. (A OR (B AND C) = (A OR
B) AND (A OR C))

A
0
0
0
0

B
0
0
1
1

C
0
1
0
1

AB
0
0
0
0

(BC)'
1
1
1
0

C'
1
0
1
0

(AB + C)'
0
1
0
1

(BC)' +(AB + C)'
1
1
1
1

1
1
1
1

0
0
1
1

0
1
0
1

0
0
1
1

1
1
1
0

1
0
1
0

0
1
0
0

1
1
1
0

A

B

C
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Identity: The identity property says that any value A AND the OR
identity always returns A and that any value A OR the AND identity
always returns A. (A AND 1 = A; A OR 0 = A)

Complement: The complement property says that any value AND the
complement of that value equals the OR identity and that any value
OR the complement of that value equals the OR identity. (A AND
(A’) = 0; A OR (A’) = 1)

DeMorgan’s Law:  DeMorgan’s Law says that the complement of A
AND B is the same as the compliment of A OR the complement of B
and the complement of A OR B is the same as the complement of B
AND the complement of A. ((A AND B)’ = A’ OR B’; (A OR B)’ = A’
AND B’)

39. a. Circuits used for memory are which types of circuits?
Memory circuits are sequential circuits because they are dependent
on the existing state of the circuit as well as input to the circuit.

b. How many digits does an S-R latch store?
one binary digit

c. The design for an S-R latch shown in Figure 4.12 guarantees what
about the outputs X and Y?
The values of X and Y are always compliments.

42. In the chip shown in Figure 4.13, what are the pins used for?

Eight are used for inputs to gates, four for outputs from the gates, one
for ground, and one for power.

Chapter 5 Exercises
1. Define the following terms.

a. Pentium IV processor
The Pentium IV is a popular central processing unit made by Intel.

b. hertz
A hertz is a unit of frequency equal to one cycle per second.

c. random access memory
Random access memory is memory in which each word has an
address by which the word can be directly accessed.

4. What does it mean to say that memory is 133MHz?

Saying a memory is 133Mhz means that the memory can be accessed
at 133,000,000 cycles per second.

7. Define the following terms and give their abbreviation.
a. pico

Pico (p) is 10–12.
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b. nano
Nano (n) is 0–9.

c. micro
Micro (µ) is 10–6.

d. milli
Milli (m) is 10–3.

10. What is the stored-program concept and why is it important?

The stored-program concept means that data and instructions both are
logically the same and both can be stored in memory. The von
Neumann architecture is built around this principle.  It is important
because the human does not have to enter instructions each time the
program is executed. Instructions can be stored in memory and
executed in sequence, referencing the data values it needs on which to
operate.

13. What is the addressability of an 8-bit machine?

8

16. Punched cards and paper tape were early input/output mediums.
Discuss their advantages and disadvantages.

Punched cards and paper tape used for input were prepared on sepa-
rate machines and then read into the computer. Input from cards and
paper tape was slow, but they provided a permanent record of the
input. When used for output, cards and paper tape had to be trans-
ferred to another device to get a human readable copy of the informa-
tion; however, the output could be stored permanently on cards and
paper tape.

19. List the steps in the fetch-execute cycle.

Fetch the next instruction from the address in the program counter.

Decode the instruction.

Execute the instruction.

22. Explain what is meant by “execute an instruction.”

Signals are sent to the arithmetic/logic unit to carry out the processing.

25. Discuss the pros and cons of using magnetic tape as a storage medium.

Magnetic tape is a cheap medium for storing large quantities of data.
However, data items cannot be directly addressed on tape. To reach a
data object, all information recorded before the one you want must be
read and discarded.

28. What is a cylinder?

A cylinder is a set of concentric tracks—that is, tracks that line up
under one another.
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31. Define the following acronyms.
a. CD

Compact Disk
b. CD-ROM

Compact Disk Read-Only Memory
c. CD-DA

Compact Disk-Digital Audio
d. CD-RW

Compact Disk Read-Write
e. DVD

Digital Versatile Disk

34. Compare the storage capacity of a generic floppy disk and a zip disk.

A zip disk stores several hundred megabytes on a single disk; thus, a
zip disk stores about 100 times more information than a generic
floppy.

37. Describe a parallel architecture that uses synchronous processing.

There are multiple processors applying the same program to multiple
data sets.

40. How many different memory locations can a 16-bit processor access?

216 different memory locations.

43. In discussing the computer ad, we used the expression “Bigger is
better” in relation to the compact disk. Explain.

The bigger the external storage device, the more information that can
be stored.

Chapter 6 Exercises
1. List the four steps in Polya’s How-To-Solve-It List.

Understanding the problem

Devising a plan

Carrying out the plan

Looking back

4. Apply the problem-solving strategies to the following situations.

Solutions are not unique.
a. Buying a toy for your four-year-old cousin.
Ask questions:

What do four-year olds like?
Does he or she like sports?
What stores sell toys?
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Where is a particular store located?
What toys does the cousin already have?

Look for things that are familiar:
I liked Lincoln Logs; would my cousin like them?
I liked my red wagon; would my cousin like them?
My cousin is like his (or her) mother; what did she play with as a
child?

Divide and conquer:
Go to store.
Go to toy aisle.
Find girls’ (or boys’) toys.
Choose one.

b. Organizing an awards banquet for your soccer team.
Ask questions:

Where will it be?
When will it be?
How many people will be there?
How many trophies will be awarded?

Look for things that are familiar:
I organized one last year.
I organized a fundraiser.
I was a scout leader.
I play soccer.

Divide and conquer:
Have Jane decide on day and time.
Have Jim choose menu.
Have Mary buy trophies.
Have Jeremy call people.

c. Buying a dress or suit for an awards banquet at which you are
being honored.

Ask questions:
What time of day is the banquet?
Where is the banquet being held?
What will others be wearing?
What is my best color?

Look for things that are familiar:
Last year the award winner wore a blue dress (suit).
Last year I wore a green suit.
I wore a suit when I was honored last year.

Divide and conquer:
Choose the store.
Go to the store.
Choose possibilities from racks.
Choose one.
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7. Write an algorithm for the following tasks.

Solutions are not unique.
a. Making a peanut butter and jelly sandwich.

b. Getting up in the morning.

c. Doing your homework.

Turn off TV.

Turn off CD.

Get backpack.

Sit at desk.

Open backpack.

Pet cat.

Open book.

Open assignment.

While (more to do).

Solve problem.

Pet cat.

Alarm goes off.

Hit sleep button.

Alarm goes off.

Hit sleep button.

Alarm goes off.

Turn off alarm.

Move dog.

Throw back covers.

Put feet over side of the bed.

Stand up.

Get bread.

Get peanut butter.

Get jelly.

Get knife.

Spread peanut butter on one slice of bread.

Spread jelly on one slice of bread.

Combine slices of bread, with peanut butter facing jelly.
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d. Driving home in the afternoon.

10. Describe the steps in the algorithm development phase.

The algorithm development phase includes analysis (understanding the
problem), proposed solution (logical sequence of solution steps), and
testing (following algorithm).

13. Look up a recipe for chocolate brownies in a cookbook and answer
the following questions.
a. Is the recipe an algorithm?  Justify your answer.

(One author’s solution.)
Yes, the recipe is an algorithm. If the steps are followed exactly,
brownies are produced.

b. Organize the recipe as an algorithm, using pseudo-code.

Preheat oven to 375o.

Put 2 oz unsweetened chocolate in double boiler.

Add 1/2 cup butter to chocolate in double boiler.

Put double boiler over moderate flame.

Melt contents of double boiler.

Remove double boiler from flame.

Get a cup of sugar.

Put 2 eggs in bowl.

While (more sugar).

Beat eggs.

Add sugar gradually.

Put contents of cooled double boiler in bowl.

Mix contents of bowl.

Find car.

Open car door.

Get into car.

Fasten seat belt.

Start engine.

Turn on radio.

While (not yet home).

Keep going.

Turn off engine.

Open car door.

Get out of car.

Close car door.
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c. List the words that have meaning in computing.
While is the only computing word. It means repetition.

d. List the words that have meaning in cooking.
Words with meaning in cooking include preheat, add, double
boiler, melt, moderate flame, beat, gradually, mix, shift, dash,
chopped, and grease.

e. Make the cookies and take them to your professor.

14. We said that following a recipe is easier than developing one. Go to
the supermarket and buy a vegetable that you have not cooked (or
eaten) before. Take it home and develop a recipe. Write up your recipe
and your critique of the process. (If it is good, send it to the authors.)

This is an activity. No answer expected.

17. Write a top-down design for the following tasks.

Solutions are not unique.
a. Buying a toy for your four-year-old cousin.

Go to store.

Choose toy.

Buy toy.

Sift 1/2 cup flour and dash of salt.

Stir flour mixture into bowl.

Add 1 teaspoon vanilla to bowl.

Add 1/2 cup chopped nuts to bowl.

Mix contents of bowl.

Grease 9-inch square pan.

Pour contents of bowl into pan.

Set minutes to 20.

Put pan in oven.

While (minutes not 0).

Set minutes to minutes – 1.

Remove pan from oven.

Cut into 1-1/2” squares.

Eat.
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b. Organizing an awards banquet for your soccer team.

Rent banquet room

Find what is available.

Visit possible choices.

Choose one.

Make reservation.

Rent banquet room.

Send invitations.

Choose menu.

Buy trophies.

Buy toy

Go to clerk.

Give stuffed animal to clerk.

Give credit card to clerk.

Sign credit card slip.

Choose toy

Walk up and down aisles.

Panic at choices.

Grab nearest large stuffed animal.

Go to store

Choose store.

Find location.

Take bus.
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c. Buying a dress or suit for an awards banquet at which you are
being honored.

20. Distinguish between information and data.

Information is any knowledge that can be communicated. When infor-
mation is in the form that a computer can use, it is called data. Thus,
data is any knowledge that can be communicated in a form that a
computer can process.

23. An airplane is a complex system.

Solutions are not unique.
a. Give an abstraction of an airplane from the view of a pilot.

A pilot can view the airplane as a car that he or she drives on a
highway of air.

b. Give an abstraction of an airplane from the view of a passenger.
A passenger can view the airplane as the inside of a limousine that
is carrying the passenger from one place to another.

c. Give an abstraction of an airplane from the view of the cabin crew.
The cabin crew can view an airplane as a dining room.

Go to favorite store.

Choose dress or suit that suits you.

Pay for choice.

Go home.

Buy trophies

Find out how many to buy.

Find store that carries trophies.

Order trophies over the phone.

Pick up trophies.

Send invitations

Get list of people to invite.

Buy invitations.

Address invitations.

Mail invitations.
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d. Give an abstraction of an airplane from the view of a maintenance
mechanic.
A maintenance mechanic can view an airplane as a collection of
parts and wires put together according to his maintenance
diagrams.

e. Give an abstraction of an airplane from the view from the airline’s
corporate office.
From the view of the boardroom, the airplane can be viewed as an
expensive object used in the process of making money.

26. List the identifiers and whether they named data or actions for the
designs in Exercise 19.

a. Actions: find, search, open, compare, turn, set

Data: page, column, name, book, right page, left page

b. Actions: log on, go, type, get

Data: Internet, search engine, first response, phone number

29. Verify the designs in Exercise 17 using a walk-through.

This is an activity not a question.

32. Distinguish between an object and an object class.

An object class is description of a group of objects with similar prop-
erties and behaviors. An object is a thing or entity that had meaning
within a problem. An object is one of the things described by an object
class.

35. Discuss the differences between a top-down design and an object-
oriented design.

Top-down design breaks the problem into successive levels of tasks;
object-oriented design breaks the problem into successive levels of
data objects.

38. Design the CRC cards for a data base for a zoo, using  brainstorming,
filtering, and scenarios.

Brainstorming: family name, name, date of birth, date bought, food,
cage number, sex, date of last shots,

Filtering: animal, name, date, food, cage number, sex
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Scenarios:

41. Distinguish between syntax and semantics.

Syntax is the formal rules governing how instructions are written in a
language. Semantics is the set of rules that give meaning to the instruc-
tions in a language.

Class Name:  Host Superclass:  Subclasses:

Responsibilities Collaborations
/ePsPorPnt PsStrd

ieva Ives,

ieva LoG

ieva Gtou

/es

Pes

Pes

Pes

Class Name:  Host Superclass:  Subclasses:

Responsibilities Collaborations
/ePsPorPnt PsStrd 

ieva Ives,

ieva LoG

ieva Gtou

/es

Pes

Pes

Pes

Class Name:  RePIor Superclass:  Subclasses:

Responsibilities Collaborations
/ePsPorPnt PsStrd 

ieva doIPrGpoIt

ieva eoIt

ieva dvvL

ievaSLostOdBPus,

ieva LostBvDc,s

lts S,vsS

ieva HostOd.,vsS

ieva CoctpDI*tu

ieva Stx

ieva LPtS

.suPec: Host: N,ou

.suPec

.suPec

.suPec

Host

Host

Host

Host

.suPec

N,ou

.suPec
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Chapter 7  Exercises
1. What does it mean when we say that a computer is a programmable

device?

Programmable means that data and instructions are logically the same
and are stored in the same place. The consequence of this fact is that
the program the computer executes is not wired into the hardware but
is entered from outside.

4. What is a virtual machine? Discuss this definition in terms of the Pep/7
computer.

A virtual machine is a hypothetical machine designed to illustrate
important features of a real computer. The Pep/7 computer is a virtual
machine designed to illustrate the features of the von Neumann archi-
tecture. It has instructions to store, retrieve, and process data as well
as instructions to input and output data.

7. We covered only two of the four addressing modes. If we had not
stated this explicitly, could you have deduced that this was true?
Explain.

If there were only two addressing modes, one bit would have been
used instead of two. Because two bits are used, there must be three or
four modes.

8. a. Where is the data (operand) if the address mode specifier is 00?
If the address mode specifier is 00, the data is in the operand speci-
fier.

b. Where is the data (operand) if the address mode specifier is 01?
If the address mode specifier is 01, the data is stored in the place
named in the operand specifier.

11. How many more cells could be added to memory without having to
change the instruction format? Justify your answer.

The operand specifier is 16 bits long. Therefore, 216 different bytes
could be addressed without changing the instruction format. Thus,
61440 more bytes could be added.

13. What are the contents of the A register after the execution of this
instruction?

XXXX"XXX XXXXXXXX XXXXXX""

XXXXXXXX XXXXXX""

16. What are the contents of the A register after the execution of the
following two instructions?

XXXX"XX" XXXXXXXX XXXXXXX"

XXX""XXX XXXXXXXX XXXXXXX"

XXXXXXXX "X"XXX""
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19. What are the contents of the X register after the execution of the
following two instructions?

XXXX""X" XXXXXXXX XXXXXX""

XX"XX"X" XXXXXXXX XXXXXX"X

XXXXXXXX """X"""X

22. Write the algorithm for writing your name, given that the implementa-
tion language is Pep/7 machine code.

25. Write the assembly-language program to implement the algorithm in
Exercise 23.

!O“Fz �9XX"X�h  ”z�,��, DYD

!O“Fz �9XX""�h  ”z�,��, DiD

!O“Fz �9XX"\�h  ”z�,��, D-D

!O“Fz �9XX"o�h  ”z�,��, D-D

Write “l”

Write 6C (hex)

Write “l”

Write 6C (hex)

Write “e”

Write 65 (hex)

Write “N”

Write 4E (hex)

Write “Nell”

Write “N”

Write “e”

Write “l”

Write “l”

Write “Nell”
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STz 

<“S!PP "Yi--"  ”S,ILi ‘Oi--IQ '(,I �LI�iL �-)*i+

<NYW

28. The following program seems to run, but does strange things with
certain input values. Can you find the bug?

.F  J)'(

+�01  <2zFW h9X

(�0"1 <.3z!4 h9"

(�0\1 <.3z!4 h9"

(�0o1 <.3z!4 h9"

J)'(1 3z“W“ +�0�h

WN!P (�0"�h

WN!P (�0\�h

WN!P (�0o�h

“WW“ (�0o�h

“WW“ (�0\�h

“WW“ (�0"�h

STzFN“ +�0�h

WN!z +�0�h

STz 

<NYW

One byte of storage is set up for each input value. If the value that is
read is greater than one byte, the excess spills over to the byte above,
giving the wrong answer.

31. Write an algorithm that reads in three values and writes out the result
of subtracting the second value from the sum of the first and the third
values.

Read num1

Read num2

Read num3

Load num1

Add num3

Sub num2

Store in answer

Write answer

Chapter 7 565

http://lib.ommolketab.ir
http//lib.ommolketab.ir


34. Design and implement in assembly language an algorithm that reads
four values and prints the sum.

.F  J)'(

)(+5iL1    <2zFW h9X

(�0"1 <.3z!4 h9\

(�0\1 <.3z!4 h9\

(�0o1 <.3z!4 h9\

(�0e1 <.3z!4 h9\

J)'(1 WN!P (�0"�h

WN!P (�0\�h

WN!P (�0o�h

WN!P (�0e�h

3z“W“  (�0"�h

“WW“ (�0\�h

“WW“ (�0o�h

“WW“ (�0e�h

STzFN“ )(+5iL�h

WN!z )(+5iL�h

STz 

<NYW

37. Distinguish between assembly language pseudo-code instructions and
mnemonic instructions.

Pseudo-code instructions are instructions to the assembler; mnemonic
instructions are to be translated by the assembler.

Read num1

Read num2

Read num3

Read num4

Load num1

Add num2

Add num3

Add num4

Store in answer

Write answer
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Chapter 8  Exercises
2. Distinguish between an assembler and a compiler.

An assembler translates assembly-language instructions into machine
code. A compiler translates high-level language instructions into
machine code. The translation of an assembler is one-to-one: One
statement in assembly language is translated into one statement in
machine code. The translation of a compiler is one-to-many: One
high-level language instruction is translated into many machine
language instructions.

5. Describe the portability provided by a compiler.

A program written in a high-level language that is compiled can be
translated and run on any machine that has a compiler for the
language.

10. What are the characteristics of the imperative paradigm?

Programs describe the processes necessary to solve the problem.

14. How do you ask questions in a programming language?

To ask a question in a programming language, you make an assertion.
If the assertion is true, the answer is true. If the assertion is false, the
answer is false.

17. Given Boolean variables one, two, and three, write an assertion for
each of the following questions.
a. Is one greater than both two and three?

(one > two) AND (one > three)
b. Is one greater than two, but less than three?

(one > two) AND (one < three)
c. Are all three variables greater than zero?

(one > 0) AND (two > 0) AND (three > 0)
d. Is one less than two or one less than three?

(one < two) or (one < three)
e. Is two greater than one and three less than two?

(two > one) AND (three < two)

21. What is a data type?

A data type is the description of a set of values and the basic set of
operations that can be applied to values of the type.

25. If the same symbol is used for both single characters and strings, how
can you distinguish between a single character and a one-character
string?

If the same symbol is used, a character cannot be distinguished from a
one-character string.
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29. Distinguish between instructions to be translated and instructions to
the translating program.

Instructions to the translating program tell the program to associate
identifiers with objects, and if the objects are data, tell the program
the data type of what can be stored in that place.

30. Consider the following identifiers: Address, ADDRESS, AddRess,
Name, NAME, NamE
a. How many different identifiers are represented if the language is

Ada?
1

b. How many different identifiers are represented if the language is
VB.NET?
4

c. How many different identifiers are represented if the language is
C++ or Java?
4

35. Write the stream-input algorithm in pseudo-code.

38. Explain the flow of control of the if statement.

If the Boolean expression is true, execute the first statement. If the
Boolean expression in false, execute the second statement. In either
case, continue with the statement following the second statement.

39. Fill in the following table showing the appropriate syntactic marker(s)
or reserved word for the language shown based on your observation
of the tables on pages 238, 243, and 244.

While (more names on input statement)

Set currentIdentifier to next name on input statement

Read and collect characters in dataValue until a blank is read

Translate dataValue into type of currentIdentifier

Set currentIdentifier to dataValue
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43. What are the three steps in a count-controlled loop?

Initialize counter, test counter against ending condition, increment
counter

47. What is recursion?

Recursion is the ability of a subprogram to call itself.

50. Explain the statement, “Subprograms are a powerful tool for abstrac-
tion.”

A subprogram is a named task. The calling program can be designed
and written using the subprogram name without knowing how the
subprogram is implemented.

54. Distinguish between a parameter and an argument.

A parameter is a dummy name listed on the subprogram’s heading. An
argument is the data the calling program sends to the subprogram to
use.

57. What is the result of executing subprogram Swap if the parameters are
value parameters?

There is no result. Nothing happens.

60. How did the invention of the mouse change programming?

The invention of the mouse introduced the concept of asynchronous
processing.

63. What is meant by a homogeneous structure?

A homogeneous structure is one in which all the individual parts are
of the same data type.

Language

Declaring a character
variable

Declaring a named
constant

Boolean expression
in if statement

true branch of an if
statement

Ada

Character

constant

no marker

then

VB.NET

Char

Const

expression in ( ) 

Then

C++

char

const

expression in ( ) 

none

Java

char

final

expression

none

false branch of an if
statement

else Else else else

compound statement
or block

end if; End If put block in ( ) put block in { }
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68. Ada uses a range of index values to define an array, but VB.NET and
C++ specify the number of places in the array. Explain.

Ada lets the user explicitly define how the values in the array are to be
indexed; the number of items is determined from this range. VB.NET
and C++ specify the number of elements in the array, and accessing is
always from [0] through [number of elements – 1].

69. Examine the following three array declarations:

,6�i P(hi7 '+ L)(8i E"<<"X” 

,6�i W),):“LL)6 '+ )LL)6 wP(hi7b Iy P(,i8iL”

W),) 1 W),):“LL)6”                  == “h)

W'0 h),)w""b “+ P(,i8iL             D f.<YNT

'(, h),)M""?”                       "" !AA

Are the arrays declared the same?  Justify your answer.

The Ada array contains 12 slots, indexed from (–1)..(10).

The VB.NET and C++ arrays contain 11 slots, indexed from (0)..(10)
in VB.NET and [0]..[10] in C++.

72. Distinguish between the definition of a class in the design phase and in
the implementation phase.

A class in the design phase is a description of a group of objects with
similar properties and behaviors. A class in the implementation phase
is a pattern for an object.

Chapter 9  Exercises
1. Abstract data types, data structures, and containers:

a. Define these terms.
Abstract data types are data types whose properties (domains and
operations) are specified independent of any particular implementa-
tion.

A data structure is the implementation of the composite data fields
of an abstract data type.

A container is an object whose role is to hold and manipulate other
objects.

b. What do they have in common?
Each represents the concept of collections of data objects.
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c. What distinguishes each from the others?
Each represents a different level. An ADT is the logical view of the
properties of a class of data. A data structure is the implementation
level of this logical view. A container is the description given to all
logical views of this type of object; it represents how an application
program might view the ADT at a higher level.

4. Draw the unsorted list containing the following strings: blue, black,
green, yellow, red, purple, white, and violet.
a. In an unsorted array-based list.

b. In a sorted array-based list.

[0]8 black

blue

green

purple

red

yellow

[1]

[2]

[3]

[4]

[7]

violet [5]
white [6]

list

[0]8 blue

black

green

yellow

red

violet

[1]

[2]

[3]

[4]

[7]

purple [5]
white [6]

list
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c. In an unsorted linked list.

d. In a sorted linked list.

5. Give the meaning of the following expressions in an array-based
implementation:
a. Put item

Put item means that given an index shift, the items that follow
move down one slot in the array and store the item at the index
position.

b. Remove the item
Remove the item means that given an index shift, the items that
follow move up one slot in the array.

c. Get next item
Get next item means to increment the value used as an index and
access that indexed position.

d. More items
More items means that the variable used as an index is less than
length – 1.

list

blue black green

violet white yellow

purple red

list

blue black green

purple white violet

yellow red
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7. What does it mean to say that the Delete operation is ambiguous?

Delete is ambiguous because there is more than one logical meaning.
Given an item to delete, the operation could mean to delete the first
copy found or delete all copies of the item. What should be done if the
item is not in the list?  Is it an error?

10. The obvious place to place a new item in an unsorted list is different in
an array-based and a linked implementation. Explain.

In an array-based list, the length position is directly accessible and no
items need to be moved to make room for the new item, so each new
item should go at the end. In a linked list, the first position is immedi-
ately accessible, so the new item should go at the front of the list.

Questions 11 through  13 use the following list of values.

11. Show the state of the list when current is first set to the 4th item in the
list in the selection sort.

14. How many comparisons does it take using a sequential search to find
the following values or determine that the item is not in the list?
a. 4

11
b. 44

5
c. 45

11
d. 105

11
e. 106

11

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

2 9 19 20 23 90 41 34 66 40 99

8

length [0]

list

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

23 41 66 20 2 90 9 34 19 40 99
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16. A binary search is a natural recursive algorithm. It can also be written
as an iterative algorithm. Write the iterative version of the algorithm.

17. What are the characteristics of the ADT stack?

Items are inserted and deleted at the same end, making this a last-in,
first-out structure.

20. Write the algorithm for Push in an array-based implementation.

23. Write the algorithms for Deque in an array-based implementation.

Set outItem to items[0]

For (index going from 0 to rear – 1)

Set items[index] to items[index+1]

// top is the index of the last element put on the structure

// items is the array in which the items are stored.

Increment top

Set items[top] to new item

Set first to 0

Set last to length – 1

Set found to false

Set moreToSearch to (first <= last)

while (moreToSearch) AND NOT found

Set midPoint to (first + last) / 2

Set result to (item.ComparedTo(info[midPoint]))

If (result <0)

Set last to midPoint – 1

Set moreToSearch to (first <= last)

Else If (result > 0)

Set first to midPoint + 1

Set moreToSearch to (first <= last)

Else

Set found to true
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26. Write the algorithm for Enque in a linked implementation.

The following tree is used in Questions 30 through 36.

30. Name the content of each of the leaf nodes.

2, 8, 26, 35

33. Name the content of nodes that are the ancestors of the nodes whose
content is 7.

15, 25

36. If a node with the value 9 is inserted into the tree, where does it go?

It goes as the right child of the node whose value is 8.

39. What are the properties of a binary tree?

A binary tree is a tree with the shape property that each node can have
zero, one, or two child nodes.

41. Draw the tree that results in inserting the following strings into the
tree in Figure 9.19: susy, chris, kit, jimmie, christopher, nell, al, bobby,
john robert, and alex.

25

tree

26

30

35

40

15

8

7

2

Set current to rear

put newItem
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Chapter 10  Exercises
1. Distinguish between application software and system software.

Systems software are tools to help others write programs; they manage
a computer system and interact with hardware. Application software
are programs to solve specific problems.

4. Explain the term multiprogramming.

Multiprogramming is the technique of keeping multiple programs in
main memory at the same time, each competing for time on the CPU.

7. Describe the evolution of the concept of batch processing from the
human operator in the 1960s and ’70s to the operating systems of
today.

Originally, the instructions regarding the system software needed for a
program were given to the human operator. Today, the instructions
are given directly to the computer through OS commands that are part
of the file containing the program. Today, batch processing has come
to mean a system in which programs and system resources are coordi-
nated and executed without interaction between the user and the
program.

10. Why do we say that users in a timesharing system have their own
virtual machine?

Users have the illusion of having the computer all to themselves.

john

tree

philbecca

lilajimal

kate mari

judy kit nell

susy

june

jimmiechris

christopher

john robert

alex

sarah
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11. In Chapter 7, we defined a virtual machine as a hypothetical machine
designed to illustrate important features of a real machine. In this
chapter, we define a virtual machine as the illusion created by a time-
sharing system that each user has a dedicated machine. Relate these
two definitions.

The illusion created in a timesharing situation is that the user owns a
single hypothetical machine. The hypothetical machine illustrates the
important features of the single machine the user needs.

14. What is response time?

Response time is how long it takes to get an answer. The expression
comes from the delay between receiving a stimulus (asking a question)
and producing a response (answering the question).

17. Distinguish between logical addresses and physical addresses.

A physical address is an actual address in the computer’s main
memory device. A logical address is an address relative to the
program. A logical address is sometimes called a relative address, for
obvious reasons.

21. Distinguish between fixed (static) partitions and dynamic partitions.

In a fixed-partition scheme, the number of partitions and their sizes
are determined when the operating system boots. In a dynamic-parti-
tion scheme, partitions and their sizes are created as needed.

24. If, in a single, contiguous memory-management system, the program is
loaded at address 30215, compute the physical addresses (in decimal)
that correspond to the following logical addresses:
a. 9223

39438
b. 2302

32517
c. 7044

37259

25. If, in a fixed-partition memory-management system, the current value
of the base register is 42993 and the current value of the bounds
register is 2031, compute the physical addresses that correspond to the
following logical addresses:
a. 104

43097
b. 1755

44748
c. 3041

Address out of bounds of partition.
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Exercises 27 and 28 use the following state of memory.

27. If the partitions are fixed and a new job arrives requiring 52 blocks of
main memory, show memory after using each of the following parti-
tion-selection approaches:

Operating System

Process 1

Process 3

Empty
60 blocks

Empty
52 blocks

Empty
100 blocks

Process 2
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a. first fit

b. best fit

Operating System

Process 1

Process 3

Empty
60 blocks

New Process

Empty
100 blocks

Process 2

Operating System

Process 1

Process 3

New Process

Empty
52 blocks

Empty
100 blocks

Process 2
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c. worst fit

29. Why shouldn’t we use worst-fit partition selection in a fixed-partition
memory-management scheme?

The worst-fit algorithm selects the largest partition and would thus
waste the most space in a fixed-partition scheme.

32. If, in a paged memory-management system, the frame size is 1024 and
the following page-map table applies to the currently executing
process, compute the physical addresses that correspond to the
following logical addresses:

Page

Frame

0 1 2 3 4

7 12 99 1 4

Operating System

Process 1

Process 3

Empty
60 blocks

Empty
52 blocks

New Process

Process 2
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a. <1, 501>
12789

b. <0, 85>
7253

c. <3, 1048>
Illegal address. 1048 is larger than the frame size.

d. <4, 419>
4515

e. <2, 311>
101687

35. Describe how a process might move through the various process
states. Create specific reasons why this process moves from one state
to another.

A new process begins in the new state. When the process has no bars
to its execution, it moves into the ready state.  It waits in the ready
state until it gets time in the running state. It runs for a while and
issues a command for file input. The process is moved into the waiting
state until the I/O has been completed, at which time it moves into the
ready state to await another turn in the running state. Eventually it
gets back to the CPU and runs until it needs access to a part of the
program that is on secondary storage. It moves into the waiting state
until the needed pages are brought in; then it moves back to the ready
state. It gets its third shot at the CPU and finishes, and then moves
into the terminated state.

40. Name and describe three CPU scheduling algorithms.

First-come, first-served: The processes are moved into the running
state in the order in which they arrive in the ready state.

Shortest job next: When the CPU is ready for anther job, the process
in the ready state that takes the shortest time is moved into the
running state. The estimated length of time that a process needs the
CPU may or may not be accurate.

Round robin: Each process stays in the running state for a predeter-
mined amount of time, called a time slice. When a process’s time slice
is over, it is moved back into the ready state, where it stays until it is
its turn again for the CPU.
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Use the following table of processes and service time for Exercises 41
through 43.

41. Draw a Gantt chart that shows the completion times for each process
using first-come, first-served CPU scheduling.

Chapter 11  Exercises
1. What is a file?

A file is the smallest amount of information that can be written to
secondary memory. It is a named collection of data, used for organ-
izing secondary memory.

2. Distinguish between a file and a directory.

A file is a named collection of data. A directory is a named collection
of files.

6. Why is the term binary file a misnomer?

All files ultimately are just a collection of bits, so why call one file type
“binary?” In a binary file, the bits are not interpreted as text. A binary
file would just be a stream of uninterpreted bits unless there is an
interpretation provided. If a binary file is printed without interpreta-
tion, it looks like garbage.

7. Distinguish between a file type and a file extension.

A file type is a description of the information contained in the file. A
file extension is a part of the file name that follows a dot and identifies
the file type.

11. What does it mean to open and close a file?

Operating systems keep a table of currently open files. The open oper-
ation enters the file into this table and places the file pointer at the
beginning of the file. The close operation removes the file from the
table of open files.

p1 p2 p3 p4 p5

0 120 180 360 410 710

Process

Service time

P1 P2 P3 P4 P5

120 60 180 50 300
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14. File access is independent of any physical medium.
a. How could you implement sequential access on a disk?

Sequential access always accesses the next record. You implement
sequential access on a disk by not giving the user an access command
that takes a record address as a parameter.

b. How could you implement direct access on a magnetic tape?
Each record on a magnetic tape is numbered conceptually from the
first to the last. Keep a counter of which record was read last.
When a user gives an access command to read a specific record, if
the record number is beyond the last record read, then records are
read and skipped until the correct record is found. If the record
number comes before the last record read, the tape is rewound and
records are read and skipped until the correct record is found.

17. Given the following file permission, answer these questions.

a. Who can read the file?
Anyone can read the file.

b. Who can write or delete the file?
The owner and members of the group can write or delete the file.

c. Who can execute the file?
Only the owner can execute the file.

d. What do you know about the content of the file?
Because the owner has permission to execute the file, it must
contain an executable program.

21. What is the directory called in which you are working at any one
moment?

working directory

24. Show the absolute path to each of the following files or directories
using the directory tree shown in Figure 11.4:
a. BTNyyi*,+<C,7

C:\WINDOWS\System\QuickTime\QTEffects.qtx
b. DLIIE+<0�o

C:\My Documents\downloads\brooks.mp3
c.  LI8L)0 F'-i+

C:\Program Files

Owner

Group

World

Read Write/Delete Execute

Yes Yes Yes

Yes Yes No

Yes No No
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d. ohJ)Vi<+*L

C:\WINDOWS\System\3dMaze.scr
e.  I5iL�(,<i7i

C:\Program Files\MS Office\Powerpnt.exe

27. Show the relative path to each of the following files or directories
using the directory tree shown in Figure 11.5.
a. -I*)-,'0i when the working directory is the root directory

/etc/localtime
b. -I*)-,'0i when the working directory is i,*

localtime
c. �L'(,)-- when the working directory is �,'-','i+

printall
d. 5iiE"<,7, when the working directory is 0)(\

../reports/week1.txt

30. Name and describe three disk-scheduling algorithms.

First-come, first-serve (FCSC):  The requests are handled in the order
in which they are generated.

Shortest seek time first (SSTF):  The request closest to the read/write
heads is handled next.

SCAN: The read/write heads move back and forth, handling the
closest in the direction in which they are moving.

Use the following list of cylinder requests in Exercises 31 through 33.
They are listed in the order in which they were received.

40, 12, 22, 66, 67, 33, 80

31. List the order in which these requests are handled if the FCFS algo-
rithm is used. Assume that the disk is positioned at cylinder 50.

40, 12, 22, 66, 67, 33, 80

34. Explain the concept of starvation.

In the SSTF algorithm, it is possible for some requests never to be serv-
iced because requests closer to the read/write heads keep being issued.

Chapter 12  Exercises
3. What can be contained in a cell of a spreadsheet?

A cell in a spreadsheet can contain data or a formula.

4. How do we refer to a particular cell of a spreadsheet?

A cell is referred to by its row and column designation. The columns
are usually letters and the rows are usually numbered.
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7. Explain the data in column E and in row 7 of the tutor spreadsheet
example of Figure 12.2.

E7 contains the number of students that Frank tutored in week 7.

8. What is a spreadsheet formula?

A spreadsheet formula is a formula that we can create and store in a
cell. The result of the formula is displayed in the cell.

11. What values in the tutor spreadsheet example of Figure 12.2 would
change if you modified the data that reflected the number of students
that Hal helped in week 4?

C9, C10, F7,G7, F9, G9, F10, and G10 would change, in addition to
C7 where the number of students Hal helped is recorded.

14. List three different formulas that would compute the correct value for
the cell F9 in the tutor example of Figure 12.2.

=SUM(F4..F8)

=SUM(C9..E9)

=SUM(C4..E8)

15. The formula for cell D10 in the tutor example of Figure 12.2 could be
given as

=SUM(D4..D8)/5

Name two reasons why this formula is not a good solution. What is
the better solution?

SUM(D4..D8) already exists in D9. There is no reason to recalculate
it. It is bad practice to use a constant in a formula. The 5 should be
replaced with COUNT(D4..D8).

=D9/COUNT(D4..D8) is a better formula.

18. Give a specific example of an indirect circular reference similar to the
one shown in Figure 12.5.

B1 = SUM(A1..A5) * C2

C2 = SUM(B5..B12)

B8 = G1 – D2

D2 = G3 * B1

B1 depends on C2; C2 depends on B8; B8 depends on D2; and D2
depends on B1.
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For Questions 21 through 24, use a paper spreadsheet form or use an
actual spreadsheet application program to design the spreadsheets. Your
instructor may provide more specific instructions regarding these ques-
tions.

These are activities for which there are no specific answers.

25. Compare a database to a database management system.

A database is a structured set of data. A database management system
is a software system made up of the database, a database engine (for
manipulating the database), and a database schema that provides the
logical view of the database.

26. What is a database schema?

A database schema is the specification of the logical structure of a
database.

29. What other fields (attributes) might we include in the database table of
Figure 12.7?

There are four fields in the table in Figure 12.7 that describe a movie:
MovieID, Title, Genre, and Rating. Additional items might be
Director, MaleLead, FemaleLead, Producer, and Date.

33. How are relationships represented in a relational database?

In a table, of course!  A table is created that represents the relation-
ship. Usually, the keys of both items in the relationships are repre-
sented as fields in the relationship table, along with appropriate
information about the relationship.

37. Define an SQL statement that inserts the movie Armageddon into the
JIH'i table.

'(+iL, '(,I JIH'i H)-�i+w"eoo� I“L0)8ihhI(I� I)*,'I(I 

I+*'=y'I� DFDb

40. What is an ER diagram?

An ER diagram is a graphical representation of an Entity-relationship
model, which is a technique for designing relational databases.

45. Design a database that stores data about the books in a library, the
students who use them, and the ability to check out books for a period
of time. Create an ER diagram and sample tables.
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IdNum

.IIE+

443233

567622

657687

Author

Brown

Smith

Anderson

Fly Fishing in the Sahara

Dust Storms in the Amazon Basin

Skating on Thin Ice

Title

IdNum

S,�hi(,+

223456789

432543654

898978675

Name

Sally Silent

Lottie Loud

Maud Middle

232-4432

343-3321

454-3452

PhoneNo

Name

PhoneNo
IDNum

Students
1 M

ChecksOut

Title

Author
IDNum

Books

Chapter 13 587

Chapter 13  Exercises
1. Name three things that a computer can do well that a human cannot.

Perform arithmetic calculations, draw complex three-dimensional
images, store and retrieve massive amounts of information (data)
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4. How is the Turing test organized and administered?

A human interrogator sits in a room and uses a computer terminal to
communicate with two respondents. The interrogator knows that one
respondent is human and the other is a computer. After conversing
with both the human and the computer, the interrogator must decide
which respondent is the computer. If the computer could fool enough
interrogators, then it must be considered intelligent.

5. What is weak equivalence and how does it apply to the Turing test?

Weak equivalence is the equality of two systems based on their results.
The Turing test shows weak equivalence.

9. Name and define two knowledge representation techniques.

Semantic networks: A technique that represents the relationships among
objects.

Search trees: A structure that represents alternatives in adversarial
situations such as games.

11. Create a semantic network for the relationships among your family
members. List five questions that your semantic net could easily be
used to answer and five questions that would be more of a challenge
to answer.

Justin

Parent

John

Male

Sharon

Female

Kayla

Female1

Male3

instance of

has child has childgender

genderage

gender

instance of

has childha
s ch

ild

genderage
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Easy questions to answer given this organization:

Who are John’s children?

What is the gender of Kayla?

How old are Sharon’s children?

How many female children does John have?

Does Sharon have any children older than 5 years of age?

More challenging questions to answer given this organization:

Who are Kayla’s parents?

Who are Justin’s siblings?

How many female children are there?

Who is the mother of John’s children?

Does John have any stepchildren?

14. What object-oriented properties do semantic networks borrow?

Semantic networks borrow inheritance and instantiation. The inheri-
tance is expressed in the “is-a” relationship, and instantiation is
expressed when an object is related to something that describes it.

16. Why are trees for complex games like chess so large?

A search tree contains all possible moves from the first position, all
possible moves from each of the moves from the first position, ...., all
possible moves from all possible moves at the level above. This is why
the trees are very large for complex games like chess.

19. Distinguish between knowledge-based systems and expert systems.

A knowledge-based system is a software system that uses a specific set
of information from which it extracts and processes particular pieces.
An expert system is sometime used as a synonym, but it also carries
with it the idea of modeling the expertise of a professional in that
particular field.
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22. Define some variables and some rules that might be in an expert
system for automobile repair.

ELECTRICAL – the problem is in the electrical system

POWERTRAIN – the problem is in the powertrain system

BATTERY – check battery

STARTER – check starter

TIMING – check timing

LOOSE – check for loose components

TURNOVER – the engine turns over

STARTS – the car starts

LIGHTS – the lights come on

ROUGH – the car runs rough

RATTLE – the car makes inappropriate noise when running

if (not TURNOVER or not STARTS) then ELECTRICAL

if (STARTS) then POWERTRAIN

if (ELECTRICAL and not TURNOVER) then STARTER

if (ELECTRICAL and not LIGHTS) then BATTERY

if (POWERTRAIN and ROUGH) then TIMING

if (POWERTRAIN and RATTLE) then LOOSE

25. What does knowledge representation used in a neural network try to
mimic?

The human brain

28. Define a dendrite and an axon.

A dendrite is an input tentacle to a neuron; there are many per neuron.
An axon is the output tentacle from a neuron.

32. If a processing element in an artificial neural net accepted four input
signals with values 0, 1, 0, and 1, using weights 5, 2, –2, and 7 and a
threshold value of 10, what would its output be?

(0 * 5 + 1 * 2 + 0 * –2 + 1 * 7 = 9) < 10, so the output is 0.

590 Answers to Selected Exercises

http://lib.ommolketab.ir
http//lib.ommolketab.ir


34. Explain how a neural net can be trained.

The weights, representing the synapses, are varied and the output is
monitored until the neural network produces the correct answers to
the required inputs.

37. What is a phoneme?

A phoneme is a fundamental sound in a language.

41. Why are personalized voice-recognition systems so much better than
those that are not specific to a particular person?

Generalized systems have to use generic voiceprints, but personalized
systems can use voiceprints specific to the user.

42. Name and describe three kinds of ambiguity in natural language.

Lexical ambiguity: Ambiguity created when words have multiple mean-
ings.

Syntactic ambiguity: Ambiguity created when sentences can be con-
structed in various ways.

Referential ambiguity: Ambiguity created when pronouns can refer to
multiple objects.

45. Give and explain an example of referential ambiguity not found in this
chapter.

The dog chased the cat up the tree, but it is ok. 
What is ok: the dog, the cat, or the tree?

Chapter 14  Exercises
3. What is the essence of constructing a model?

The essence of constructing a model is to identify a small subset of
characteristics or features that are sufficient to describe the behavior
to be investigated.

4. Name two types of simulations and distinguish between them.

Continuous simulation treats time as continuous and expresses
changes in terms of a set of differential equations that reflect the rela-
tionships among the set of characteristics. Discrete event simulation is
made up of entities, attributes, and events, where entities represent
objects in the real system, attributes are characteristics of a particular
entity, and events are interactions among entities.

7. What are the keys to constructing a good model?

The keys to constructing a good model are correctly choosing the enti-
ties to represent the system and correctly determining the rules that
define the results of the events.
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8. What defines the interactions among entities in a discrete event simu-
lation?

A set of rules that are part of the model determine the interactions
among the events.

11. What are the four necessary pieces of information needed to build a
queuing system?

The four necessary pieces of information are

1. the number of events and how they affect the system (to determine
the rules of entity interaction)

2. the number of servers (entities)

3. the distribution of arrival times (to determine if an entity enters the
system)

4. the expected service time (to determine the duration of an event)

14. Do you think the gas station in Exercise 13 will be in business very
long?  Explain.

No. The service time is greater than the arrival probability.

15. Rewrite the simulation in Exercise 13 such that a car arrives every two
minutes and the service time is two minutes.

If a car arrives, it gets in line. A car arrives if the random number is
between 0.0 and 0.5.

If the pump is free and there is a car waiting, the first car in line leaves
the line and goes to the pump and the service time is set to 2.

If a car is at the pump, the time remaining for the car is decremented.

If there are cars in line, the additional minute that they have been
waiting is recorded.

19. In general, meteorological models are based on the time-dependent
equations of what fields?

Meteorological models are based on time-dependent equations from
fluid mechanics and thermodynamics.

23. Why do different meteorologists give different forecasts if they are
using the same models?

Meteorologists may or may not agree with the predictions from a
particular model. Also, various models give conflicting information.
Thus, meteorologists must use their judgment as to which, if any, is
correct.
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24. What are specialized meteorological models and how are they used?

Specialized meteorological models are adaptations for specialized
research purposes. A meteorological model may be combined with air-
chemistry models to diagnose atmospheric transport and diffusion for
a variety of air-quality applications. Specialized meteorological models
are useful in the military and aviation industries.

28. What are 3-dimensional CAD models used for?

Three-dimensional CAD models are used for geometric modeling—
that is, three-dimensional objects. They can be used for modeling
anything from cars to houses.

32. Embedded systems’ programmers are the last holdout for assembly-
language programming. Explain.

In embedded systems, the size of the code and the speed of execution
are very important. Assembly-language programs provide the best
opportunity for a programmer to streamline and speed up the code.

Chapter 15  Exercises
1. What is a computer network?

A computer network is a collection of computing devices connected so
that they can communicate and share resources.

2. How are computers connected together?

The computers in a network can be physically connected by wires or
cables, or logically connected by radio waves or infrared signals.

6. Describe the client/server model and discuss how it has changed how
we think about computing.

The client/server is a model in which resources are spread across the
Web. The client makes a request for information or an action from a
server and the server responds. For example, a file server, a computer
dedicated to storing and managing files for network users, responds to
requests for files. A Web server, a computer dedicated to responding
to requests for Web pages, produces the requested page. Before the
client/server model was developed, a user thought of computing
within the boundaries of the computer in front of him or her. Now the
functions that were provided within one computer are distributed
across a network, with separate computers in charge of different func-
tions.
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10. What is Ethernet?

Ethernet is the industry standard for local-area networks. It is a cheap
coaxial cable connecting the machines and a set of protocols that
allow the machines to communicate with one another.

13. What is the Internet?

The Internet is a WAN spanning the entire globe. It is a vast collection
of smaller networks that all agree to communicate using the same
protocols and agree to act as transfer stations for messages.

14. What is a MAN and what makes it different from a LAN and a
WAN?

A MAN is a metropolitan-are a network. It is a network with some of
the features of both a LAN and a WAN. Large metropolitan areas
have special needs because of the volume of traffic. MANs are collec-
tions of smaller networks, but are implemented using such techniques
as running optical fiber cable through subway tunnels.

18. What role do ISPs play with the three technologies in Exercise 17?

Each of the technologies in Exercise 17 requires the connection to go
through an ISP. With a phone modem, you dial up a computer that is
permanently connected to the Internet. Once the connection is made,
you may transfer data. A DSL line maintains an active connection
between your home and the ISP. The communication is set up to and
from your home using cable that goes through an ISP.

19. What are the advantages and disadvantages of each of the technolo-
gies in Exercise 17?

Phone modems are the cheapest because the phone lines are in place,
but transfer speed is very slow because computer data must be
converted into an analog audio signal for transfer.

DSL service uses regular phone lines to transfer digital data and you
do not have to dial in, but you must be within a certain distance of
special equipment or else the signal degrades.

Cable modems use service that many people already have, but the
signal deteriorates if too many people in the neighborhood have the
service.

Both DSL and cable modems are broadband connections.

22. Messages sent across the Internet are divided into packets. What is a
packet and why are messages divided into them?

A packet is a unit of data sent across a network. It is more efficient to
send uniform-sized messages across the Internet.
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23. Explain the term packet switching.

Packets that make up a message are sent individually over the Internet
and may take different routes to their destination. When all the
packets arrive at the destination, they are reassembled into the original
message.

28. What do we call the ability of software and hardware on multiple
platforms from multiple commercial vendors to communicate?

Interoperability

31. What is the seven-layer logical breakdown of network interaction
called?

Open Systems Interconnection (OSI) Reference Model

34. What is the role of the IP protocol?

The IP protocol defines the routing of packets through interconnected
networks.

39. What is the functionality of the utility program TL)*iLI�,i?

Program TL)*iLI�,i displays the route a packet takes across the
Internet.

42. Define MIME type.

MIME type is a standard for defining the format of files that are
included as e-mail attachments or on Web sites.

43. What is a firewall, what does it accomplish, and how does it accom-
plish it?

A firewall is a computer system that protects a network from inappro-
priate access. A firewall filters incoming traffic, checking the validity
of incoming messages, and perhaps denying access to messages. For
example, a LAN might deny any remote access by refusing all traffic
that comes in on port 23 (the port for telnet).

47. Into what parts can an IP address be split?

An IP address can be split into a network address, which specifies the
network, and a host number, which specifies a particular machine on
the network.

51. What is a top-level domain name?

It is the last part of a domain name that specifies the type of organiza-
tion or its country of origin.
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Chapter 16  Exercises
1. Describe the World Wide Web.

The World Wide Web is an infrastructure of distributed information
and the network software used to access and exchange the informa-
tion.

2. Why is a spider web a good analogy for the World Wide Web?

The Internet is the hardware upon which the spider-like connections
of the World Wide Web have been created.

6. What is a Uniform Resource Locator?

A Uniform Resource Locator (URL) is the standard way of specifying
the location of a Web page.

7. What is a markup language? Where does the name come from?

A markup language is one that uses tags to identify the elements in a
document and indicates how they should be displayed. The name
comes from the idea of taking a document and writing is it (marking
up) on the document tags that say how to display it.

10. What is a horizontal rule? What is it useful for?

Horizontal rules are lines across a page. They are useful for separating
sections of a page.

11. Name five formatting specifications that can be established using
HTML tags.

HTML is not case sensitive.

<b>..</b>  bold

<i>..</i>   italic

<hr>  horizontal rule

<ul>..</ul>  unordered list

<ol>..</ol>  ordered list

<li>  list item

<h3>..</h3>  number 3 heading

16. Design and implement an HTML document for an organization at
your school.

Activity, no answer expected.

20. Where does a Java applet get executed?

A Java applet gets executed in the user’s browser.
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21. What kinds of restrictions are put on Java applets? Why?

Because a Java applet is executed on the user’s machine, it must be
transmitted from the Web server.  Also, the user’s computer may not
have a resource that the applet needs. Thus, only relatively small
programs using very standard resources are appropriate.

25. How does JSP processing differ from applet processing?

Scriptlet processing is done on the server side; applet processing is
done on the user’s side.

27. What is XML?

XML is a metalanguage that is used to define other markup languages.

30. a. In a DTD, how do you indicate that an element is to be repeated
zero or more times?
An element in parentheses with an asterisk following the element
indicates zero or more times.

b. In a DTD, how do you indicate that an element is to be repeated
one or more times?
An element in parentheses with a plus sign following the element
indicates one or more times.

c. In a DTD, how do you indicate that an element cannot be broken
down into other tags?
An element followed by (#PCDATA) indicates that the element
cannot be broken down further.

33. How does an XML document get viewed?

An XML document is translated by XSL into a form that can be
displayed.

35. Define an XML language (the DTD) for political offices and produce a
sample XML document.

<?xml version=“1.0” ?>

<!DOCTYPE government SYSTEM “government.dtd”>

<government>

<position>

<title>President of the United States</title>

<type>Federal</type>

<currentHolder>

<name>George W. Bush</name>

<party>Republican</party>
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</currentHolder>

<pastHolders>

<name>William Clinton</name>

<name>George H. W. Bush</name>

<name>Ronald Reagan</name>

<name>James Carter</name>

</pastHolders>

</position>

<position>

<title>Vice President of the United States</title>

<type>Federal</type>

<currentHolder>

<name>Richard Cheney</name>

<party>Republican</party>

</currentHolder>

<pastHolders>

<name>Al Gore</name>

<name>Dan Quayle</name>

<name>George H. W. Bush</name>

<name>Walter Mondale</name>

</pastHolders>

</position>

</government>

<!ELEMENT government (position*) >

<!ELEMENT position (title, type, currentHolder, pastHolders)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT type (#PCDATA)>

<!ELEMENT currentHolder (name, party)>

<!ELEMENT pastHolders (name*)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT party (#PCDATA)>
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Chapter 17  Exercises
1. Given the following three real values, what is the best order in which

to add these values so that you will get the most accurate answer?  

x = 3214 * 104 y = 576 * 10–1 z = 4421 * 103

It doesn’t matter in this case. The answer to four digits is 3656 * 104

no matter which way the arithmetic is done. However, the actual
answer is 36561057.6.

2. Given the following three real values, what is the best order in which
to add these values so that you will get the most accurate answer? 

x = 3214 * 101 y = 576 * 10–1 z = 4421 * 100

It doesn’t matter in this case. The answer to four digits is 3662 * 101

no matter which way the arithmetic is done. However, the actual
answer is 36618.6.

5. Show the range of integer numbers that can be represented in each of
the following word sizes.
a. 8-bits

–128..127
b. 16 bits

–32768..31767
c. 24 bits

–8388608..8388607
d. 32 bits

–2147483648..2147483647
e. 64 bits

–9223372036854775808..9223372036854775807

7. a. Show how the numbers 1066 and 1492 would be represented in a
linked list with one digit per node.

b. Use a linked list to represent the sum of these integers.
c. Outline an algorithm to show how the calculation might be carried

out in a computer.
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a.

b.

c. To calculate the sum, you must move from right to left in the list
rather than left to right. Assume an operation called previous that
gets the node before current. MOD is an operation that returns the
remainder from integer division. DIV is an operation that returns
the quotient from integer division.

Set currentFirst to last

Set currentSecond to last

Set carry to 0

While (currentFirst <> NULL and currentSecond <> NULL)

Get a new node

Set info(new node) to (info(currentFirst) + info(currentSecond) +

carry) MOD 10

Set carry to (info(currentFirst) + info(currentSecond) + carry) DIV

10

Set currentFirst to previous(currentFirst)

Set currentSecond to previous(currentSecond)

Put new node into result

While (currentFirst <> NULL)

// Copy rest of first list if it is not empty

Get a new node

Set (info(new node) to info(currentFirst) + carry) MOD 10

Set carry to (info(currentFirst) + carry) DIV 10

Set currentFirst to previous(currentFirst)

Put new node into result

2 5 5 8

1 0 6 6

1 4 9 2
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11. Given the following 8-bit code, what is the parity bit if even parity is
being used?
a. 11100010

0
b. 10101010

0
c. 11111111

0
d. 00000000

0
e. 11101111

1

13. What errors would be detected using the check bits in Exercise 12?

This technique recognizes when one digit of a number is corrupted.

14. Given the following numbers, what would be the additional digits if
the unit’s digit of the sum of the even digits is used along with the
check digit?

Counting is from left to right.
a. 1066

6
b. 1498

2
c. 1668

4
d. 2001

1
e. 4040

0

While (currentSecond <> NULL)

//Copy rest of second lit if it is not empty

Get a new node

Set (info(new node) to info(currentSecond) + carry) MOD 10

Set carry to (info(currentSecond) + carry) DIV 10

Set currentSecond to previous(currentSecond)

Put new node into result
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17. Explain the concept of the software life cycle.

The software life cycle is the concept that software is developed, not
just coded, and evolves over its lifetime from requirements to mainte-
nance.

20. Compare and contrast the software verification activities code or
design walk-throughs and inspections.

A walk-through is an activity in which a team performs a manual
simulation of the program or design. An inspection is an activity in
which one member of a team reads the program or design line by line
and the others point out errors. Both are group activities, but an
inspection is lead by one person.

24. What is formal verification?

Formal verification is the verification of program correctness inde-
pendent of testing. The goal is to develop a method for proving
programs that is analogous to the method of proving theorems in
geometry.

29. Give the common name for the following complexity measures and an
example of an algorithm that falls into this category.
a. O(1)

Bounded (constant time):  Assigning a value to an atomic variable.
b. O(N)

Linear time: Accessing all the times in a list.
c. O(NlogN)

NlogN time: Finding a value in a sorted list using a binary search.
d. O(N2)

Quadratic time: Sorting a list using the selection sort or the bubble
sort algorithm.

e. O(2N)
Exponential time: An algorithm that doubles each time like the
corn on the chessboard.

f. O(N!)
Factorial time: The traveling salesperson graph algorithm.

30. Explain the analogy of bins of complexity measures.

We can think of a bin representing one of the Big-O complexity meas-
ures. The bin contains all of the algorithms that have that complexity
measure, but within the bin the algorithms can be ordered by the
discarded terms.
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Absolute path A path that begins at the root and includes all successive
subdirectories

Abstract data type A class of data objects with a defined set of properties
and a set of operations that process the data objects while maintaining the
properties; also called ADT

Abstract step An algorithmic step for which some details remain unspeci-
fied

Abstraction A mental model that removes complex details; a model of a
complex system that includes only the details essential to the viewer; the
separation of the logical properties of data or actions from their implemen-
tation details; the separation of the logical properties of an object from its
implementation; (in OOD) the essential characteristics of an object from
the viewpoint of the user

Access control policy A set of rules established by an organization that
specify what types of network communication are permitted and denied

Access time The time it takes for a block to start being read; the sum of
seek time and latency

Adder An electronic circuit that performs an addition operation on
binary values

Addressability The number of bits stored in each addressable location in
memory

Address binding The mapping from a logical address to a physical
address
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Aggregate operation An operation on a data structure as a whole, as
opposed to an operation on an individual component of the data structure

Algorithm Unambiguous instructions for solving a problem or sub-
problem in a finite amount of time using a finite amount of data

Allocate To assign memory space at run time for use by an object

ALU See arithmetic/logic unit

Analog data Information represented in a continuous form

Application software Programs that help us solve real-world problems

Arguments The identifiers listed in parentheses on the subprogram call;
sometimes called actual parameters

Arithmetic/logic unit The computer component that performs arithmetic
operations (addition, subtraction, multiplication, division) and logical
operations (comparison of two values)

Array A collection of components, all of the same type, ordered on n
dimensions (n >= 1); each component is accessed by n indices, each of
which represents the component’s position within that dimension

Artificial intelligence (AI) The study of computer systems that model and
apply the intelligence of the human mind

Artificial neural network A computer representation of knowledge that
attempts to mimic the neural networks of the human body

Assembler A program that translates an assembly-language program into
machine code

Assembly language A low-level programming language in which a
mnemonic represents each of the machine-language instructions for a
particular computer

Assertion A logical proposition that is either true or false

Assignment statement A statement that stores the value of an expression
into a variable

Asynchronous Not occurring at the same moment as some specific opera-
tion of the computer; in other words, not synchronized with the program’s
actions

Atomic data type A data type that allows only a single value to be associ-
ated with an identifier of that type

Attribute Part of a tag that provides additional information about the
element

Auxiliary storage device A device that stores data in encoded form
outside the computer’s memory

Bandwidth The number of bits or bytes that can be transmitted from one
place to another in a fixed amount of time
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Base The foundational value of a number system, which dictates the
number of digits and the value of digit positions

Base address The memory address of the first element of an array

Base case The case in a recursive solution for which the solution can be
stated nonrecursively

Base class The class being inherited from

Base register A register that holds the beginning address of the current
partition

Big-O notation A notation that expresses computing time (complexity) as
the term in a function that increases most rapidly relative to the size of a
problem

Binary digit A digit in the binary number system; a 0 or a 1

Binary file A file that contains data in a specific format, requiring a
special interpretation of its bits

Binary operator An operator that has two operands

Binary search A search algorithm for sorted lists that involves dividing
the list in half and determining, by value comparison, whether the item
would be in the upper or lower half; the process is performed repeatedly
until either the item is found or it is determined that the item is not on the
list

Bit Short for binary digit

Block A group of zero or more statements enclosed in braces; the infor-
mation stored in a sector on a disk

Body The statement(s) to be repeated within the loop; the executable
statement(s) within a subprogram

Boolean algebra A mathematical notation for expressing two-value
logical functions

Boolean expression A sequence of identifiers, separated by compatible
operators, that evaluates to true or false

Boolean operators Operators applied to values of the type Boolean

Boolean type A data type consisting of only two values: true and false

Booting the system The process of starting up a computer by loading the
operating system into its main memory

Bounds register A register that holds the length of the current partition

Brainstorming The beginning phase of an object-oriented design in which
possible classes of objects in the problem are identified
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Branch A code segment that is not always executed; for example, a switch
or case statement has as many branches as there are case labels

Branching control structure See selection control structure

Breadth-first approach Searching across levels of a tree prior to searching
down specific paths

Broadband Network technologies that generally provide data transfer
speeds greater than 128 bps

Bus A set of wires that connect all major sections of a machine through
which data flows

Bus topology A LAN configuration in which all nodes share a common
line

Byte Eight binary digits

Bytecode A standard machine language into which Java source code is
compiled

Cable modem A device that allows computer network communication
using the cable TV hookup in a home

Call The point at which the computer begins following the instructions in
a subprogram

Cancellation error A loss of accuracy during addition or subtraction of
numbers of widely differing sizes, due to limits of precision

Cardinality constraint The number of relationships that may exist at one
time between entities in an ER diagram

Case sensitive Uppercase and lowercase letters are not considered the
same; two identifiers with the same spelling but different capitalization are
considered to be two distinct identifiers

Cell An element of a spreadsheet that can contain data or a formula

Character set A list of the characters and the codes used to represent each
one

Circuit A combination of interacting gates designed to accomplish a
specific logical function

Circuit equivalence The same output for each corresponding input-value
combination for two circuits

Circular reference A set of formulas that ultimately, and erroneously, rely
on each other to compute their results

Class (general sense) A description of the behavior of a group of objects
with similar properties and behaviors; (implementation phase) a pattern
for an object
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Class NP problems Problems that can be solved in polynomial time with
as many processors as desired

Class P The class made up of all polynomial-time algorithms

Class P problems Problems that can be solved with one processor in poly-
nomial time

Client Software that declares and manipulates objects of a particular class

Client/server model A distributed approach in which a client makes
requests of a server and the server responds

Code Data type specifications and instructions for a computer that are
written in a programming language

Code walk-through A verification process for a program in which each
statement is examined to check that it faithfully implements the correspon-
ding algorithmic step

Code-coverage (clear-box) testing Testing a program or subprogram
based on covering all the statements in the code

Coding Translating an algorithm into a programming language; the
process of assigning bit patterns to pieces of information

Collating sequence The ordering of the elements of a set or series, such as
the characters (values) in a character set

Combinational circuit A circuit whose output is solely determined by its
input values

Comment Explanatory text for the human reader

Compiler A program that translates a high-level language program into
machine code

Complexity (of an algorithm) A measure of the effort expended by the
computer in performing a computation, relative to the size of the computa-
tion

Composite data type A data type that allows a collection of values to be
associated with an object of that type

Composition (containment) A mechanism by which an internal data
member of one class is defined to be an object of another class type

Compression ratio The size of the compressed data divided by the size of
the uncompressed data

Computer (electronic) A programmable device that can store, retrieve, and
process data

Computer hardware The physical elements of a computing system

Computer network A collection of computing devices that are connected
so that they can communicate and share resources
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Computer program Data type specifications and instructions for carrying
out operations that are used by a computer to solve a problem

Computer programming The process of specifying the data types and the
operations for a computer to apply to data in order to solve a problem

Computer software The programs that provide the instructions that a
computer executes

Computing system Computer hardware, software, and data, which
interact to solve problems

Concrete step A step for which the details are fully specified

Conditional test The point at which the Boolean expression is evaluated
and the decision is made to either begin a new iteration or skip to the first
statement following the loop

Constant An item in a program whose value is fixed at compile time and
cannot be changed during execution

Constant time An algorithm whose Big-O work expression is a constant

Constructor An operation that creates a new instance of a class; a method
that has the same name as the class type containing it, which is called
whenever an object of that type is instantiated

Container class A class into which you can add other elements

Containment A mechanism whereby one class contains an object of
another class as a field

Context switch The exchange of register information that occurs when
one process is removed from the CPU and another takes its place

Control abstraction The separation of the logical view of a control struc-
ture from its implementation

Control structure A statement used to alter the normally sequential flow
of control; an instruction that determines the order in which other instruc-
tions in a program are executed

Control unit The computer component that controls the actions of the
other components in order to execute instructions in sequence

Count-controlled loop A loop that executes a predetermined number of
times

Counter A variable whose value is incremented to keep track of the
number of times a process or event occurs

CPU A combination of the arithmetic/logic unit and the control unit; the
“brain” of a computer that interprets and executes instructions

CPU scheduling The act of determining which process in memory is given
access to the CPU so that it may execute
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Crash The cessation of a computer’s operations as a result of the failure
of one of its components; cessation of program execution due to an error

CRC cards Index cards on which a class name is written along with its
super- and sub-classes and a listing of the responsibilities and collaborators
or the class; class, responsibility, collaboration

Cursor control keys A special set of keys on a computer keyboard that
allow the user to move the cursor up, down, right, and left to any point on
the screen

Cylinder The set of concentric tracks on all surfaces of a disk

Data Information in a form that a computer can use

Data abstraction The separation of the logical view of data from its
implementation

Data compression Reducing the amount of space needed to store a piece
of data

Data encapsulation The separation of the representation of data from the
applications that use the data at a logical level; a programming language
feature that enforces information hiding

Data representation The concrete form of data used to represent the
abstract values of an abstract data type

Data structure A collection of data elements whose organization is char-
acterized by accessing operations that are used to store and retrieve the
individual data elements; the implementation of the composite data
members in an abstract data type; the implementation of a composite data
field in an abstract data type

Data transfer rate (also Bandwidth) The speed with which data is moved
from one place to another on a network

Data type A description of the set of values and the basic set of opera-
tions that can be applied to values of the type

Data validation A test added to a program or a function that checks for
errors in the data

Database management system A combination of software and data made
up of the physical database, the database engine, and the database schema

Database A structured set of data

Data-coverage (black-box) testing Testing a program or subprogram
based on the possible input values, treating the code as a black box

Deallocate To return the storage space for an object to the pool of free
memory so that it can be reallocated to new objects
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Debugging The process by which errors are removed from a program so
that it does exactly what it is supposed to do

Declaration A statement that associates an identifier with a variable, an
action, or some other entity within the language that can be given a name
so that the programmer can refer to that item by name

Deep copy An operation that not only copies one class object to another
but also makes copies of any pointed-to data

Demand paging An extension to paged memory management in which
pages are brought into memory only when referenced (on demand)

Demotion (narrowing) The conversion of a value from a “higher” type to
a “lower” type according to a programming language’s precedence of data
types; demotion may cause loss of information

Depth-first approach Searching down the paths of a tree prior to searching
across levels

Derived class The class that inherits; a class that is created as an exten-
sion of another class in the hierarchy

Desk checking Tracing the execution of a design on paper

Development environment A single package containing all of the software
required for developing a program

Dialog A style of user interface in which the user enters data and then
performs a separate action (such as clicking a button) when the entered
values are ready to be processed by the program

Digital data Information represented in a discrete form

Digital subscriber line (DSL) An Internet connection made using a digital
signal on regular phone lines

Digitize The act of breaking down information into discrete pieces

Direct file access The technique in which data in a file is accessed directly,
by specifying logical record numbers

Directory A named group of files

Directory tree A structure showing the nested directory organization of
the file system

Disk scheduling The act of deciding which outstanding requests for disk
I/O to satisfy first

Documentation The written text and comments that make a program
easier for others to understand, use, and modify

Document Type Definition (or DTD) A specification of the organization of
an XML document
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Domain name The part of a hostname that specifies a specific organiza-
tion or group

Domain name server A computer that attempts to translate a hostname
into an IP address

Domain name system A distributed system for managing hostname reso-
lution

Down A descriptive term applied to a computer when it is not in a usable
condition

Download Receiving data on your home computer from the Internet

Driver A simple dummy main program that is used to call a function
being tested; a main function in an object-oriented program

Dumb terminal A monitor and keyboard that allow the user to access the
mainframe computer in early timesharing systems

Dynamic allocation Allocation of memory space for a variable at run time
(as opposed to static allocation at compile time)

Dynamic binding Determining at run time which form of a polymorphic
method to call

Dynamic memory management The allocation and deallocation of
storage space as needed while an application is executing

Dynamic-partition technique The memory management technique in
which memory is divided into partitions as needed to accommodate
programs

Echo printing Printing the data values input to a program to verify that
they are correct

Editor An interactive program used to create and modify source programs
or data

Effective weight In an artificial neuron, the sum of the weights multiplied
by the corresponding input values

Encapsulation A language feature that enforces information hiding;
bundling data and actions so that the logical properties of data and actions
are separated from the implementation details

Entity-relationship (ER) modeling A popular technique for designing rela-
tional databases

ER diagram A graphical representation of an ER model

Ethernet The industry standard for local-area networks, based on a bus
topology

Evaluate To compute a new value by performing a specified set of opera-
tions on given values
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Event An action, such as a mouse click, that takes place asynchronously
with respect to the execution of the program

Event counter A variable that is incremented each time a particular event
occurs

Event handler A method that is part of an event listener and is invoked
when the listener receives a corresponding event

Event handling The process of responding to events that can occur at any
time during execution of the program

Event listener An object that is waiting for one or more events to occur

Event-controlled loop A loop that terminates when something happens
inside the loop body to signal that the loop should be exited

Exception An unusual situation that is detected while a program is
running; throwing an exception halts the normal execution of the method

Exception handler A section of a program that is executed when an
exception occurs in Java or C++

Executing The action of a computer performing as instructed by a given
program

Execution trace Going through the program with actual values recording
the state of the variables

Expert system A software system based on the knowledge of human
experts

Expression An arrangement of identifiers, literals, and operators that can
be evaluated to compute a value of a given type

Expression statement A statement formed by appending a semicolon to
an expression

Extensible Markup Language (or XML) A language that allows the user to
describe the content of a document

Extensible Stylesheet Language (or XSL) A language for defining transfor-
mations from XML documents to other output formats

External file A file that is used to communicate with people or programs
and is stored externally to the program

External pointer A named pointer variable that references the first node in
a linked list

External representation The printable (character) form of a data value

Fetch-execute cycle The sequence of steps performed by the central
processing unit for each machine-language instruction

Fields Named items in a class; can be data or subprograms

File A named collection of data, used for organizing secondary memory
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File extension Part of a file name that indicates the file type

File server A computer dedicated to storing and managing files for
network users

File System The operating system’s logical view of the files it manages

File type The specific kind of information contained in a file, such as a
Java program or a Microsoft Word document

Filtering The phase in an object-oriented design in which the proposed
classes of objects from the brainstorming phase are refined and overlooked
ones are added

Finite state machine An idealized model of a simple computer consisting
of a set of states, the rules that specify when states are changed, and a set
of actions that are performed when changing states

Firewall A gateway machine and its software that protects a network by
filtering the traffic it allows

Firing an event An event source generates an event

Fixed-partition technique The memory management technique in which
memory is divided into a specific number of partitions into which
programs are loaded

Flag A Boolean variable that is set in one part of the program and tested
in another to control the logical flow of a program

Floating point A representation of a real number that keeps track of the
sign, mantissa, and exponent

Flow of control The order of execution of the statements in a program

Formatting The planned positioning of statements or declarations and
blanks on a line of a program; the arranging of program output so that it
is neatly spaced and aligned

Frame A fixed-size portion of main memory that holds a process page

Full adder A circuit that computes the sum of two bits, taking an input
carry bit into account

Functional cohesion A property of a module in which all concrete steps
are directed toward solving just one problem, and any significant subprob-
lems are written as abstract steps

Functional decomposition A technique for developing software in which
the problem is divided into more easily handled subproblems, the solutions
of which create a solution to the overall problem; similar to top-down
design.

Functional equivalence A property of a module that performs exactly the
same operation as the abstract step it defines, or when one module
performs exactly the same operation as another module
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Functional modules In top-down design, the structured tasks and subtasks
that are solved individually to create an effective program

Functional problem description A description that clearly states what a
program is to do

Gate A device that performs a basic operation on electrical signals,
accepting one or more input signals and producing a single output signal

Gateway A node that handles communication between its LAN and
other networks

General (recursive) case The case in a recursive solution for which the
solution is expressed in terms of a smaller version of itself

Half adder A circuit that computes the sum of two bits and produces the
appropriate carry bit

Halting problem The unsolvable problem of determining if any program
will eventually stop given particular input

Hardware The physical components of a computer

Heuristics Assorted problem-solving strategies

Hierarchy Structuring of abstractions in which a descendant object
inherits the characteristics of its ancestors

High-level programming language Any programming language in which a
single statement translates into one or more machine-language instructions

Homogeneous A descriptive term applied to structures in which all
components are of the same data type (such as an array)

Host number The part of an IP address that specifies a particular host on
the network

Hostname A name made up of words separated by dots that uniquely
identifies a computer on the Internet; each hostname corresponds to a
particular IP address

Huffman encoding Using a variable-length binary string to represent a
character so that frequently used characters have short codes

Hypertext Markup Language (or HTML) The language used to create or
build a Web page

Identifier A name associated with a package, class, method, or field and
used to refer to them

Implementation phase The second set of steps in programming a
computer: translating (coding) the algorithm into a programming
language; testing the resulting program by running it on a computer,
checking for accuracy, and making any necessary corrections; using the
program
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Implementing Coding and testing an algorithm

Implementing a test plan Running the program with the test cases listed
in the test plan

Index A value that selects a component of an array

Inference engine The software that processes rules to draw conclusions

Infinite loop A loop whose termination condition is never reached and
therefore is never exited without intervention from outside of the program

Infinite recursion The situation in which a subprogram calls itself over
and over continuously because a base case is never reached

Information Any knowledge that can be communicated

Information hiding The practice of hiding the details of a module with the
goal of controlling access to the details of the module

Information system Software that helps the user organize and analyze
data

Inheritance A mechanism by which one class acquires the properties—
data fields and methods—of another class; a design technique used with a
hierarchy of classes by which each descendant class inherits the properties
(data and operations) of its ancestor class; a mechanism that enables us to
define a new class by adapting the definition of an existing class

Input The process of placing values from an outside data set into vari-
ables in a program; the data may come from either an input device
(keyboard) or an auxiliary storage device (disk or tape)

Input prompts Messages printed by an interactive program, explaining
what data is to be entered

Input unit A device that accepts data to be stored in memory

Input/output (i/o) devices The parts of a computer that accept data to be
processed (input) and present the results of that processing (output)

Inspection A verification method in which one member of a team reads
the program or design line by line and the others point out errors

Instantiate To create an object from a class

Integer A natural number, a negative of a natural number, or zero

Integrated circuit (also chip) A piece of silicon on which multiple gates
have been embedded

Interactive system A system that allows direct communication between
the user and the computer

Internet A wide-area network that spans the planet
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Internet backbone A set of high-speed networks carrying Internet traffic

Internet Protocol (IP) The network protocol that deals with the routing of
packets through interconnected networks to the final destination

Internet service provider (ISP) A company providing access to the Internet

Interoperability The ability of software and hardware on multiple
machines and from multiple commercial vendors to communicate

Interpreter A program that inputs a program in a high-level language and
directs the computer to perform the actions specified in each statement

Invoke To call on a subprogram, causing the subprogram to execute
before control is returned to the statement following the call

IP address An address made up of four numeric values separated by dots
that uniquely identifies a computer on the Internet

Iteration An individual pass through, or repetition of, the body of a loop

Iteration counter A counter variable that is incremented with each itera-
tion of a loop

Java applet A Java program designed to be embedded into an HTML
document, transferred over the Web, and executed in a browser

JSP scriptlet A portion of code embedded in an HTML document
designed to dynamically contribute to the content of the Web page

Key One or more fields of a database record that uniquely identifies it
among all other records in the table

Keyword encoding Substituting a frequently used word with a single
character

Knowledge-based system Software that uses a specific set of information

Latency The time it takes for the specified sector to be in position under
the read/write head

Length The number of items in a list; the length can vary over time

Lexical ambiguity The ambiguity created when words have multiple
meanings

Lifetime For a variable, constant, or object, the portion of an applica-
tion’s execution time during which it is assigned storage space in the
computer’s memory

Linear relationship Each element except the first has a unique predecessor,
and each element except the last has a unique successor

Linear time For an algorithm, when the Big-O work expression can be
expressed in terms of a constant times n, where n is the number of values
in a data set
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Link A connection between one Web page and another

Linked list A list in which the order of the components is determined by
an explicit link field in each node, rather than by the sequential order of
the components in memory

Literal value Any constant value written in a program

Loader A piece of software that takes a machine-language program and
places it into memory

Local-area network (LAN) A network connecting a small number of nodes
in a close geographic area

Loebner prize The first formal instantiation of the Turing test, held annu-
ally

Logarithmic order Algorithm complexity in which the Big-O work
expression can be expressed in terms of the logarithm of n, where n is the
number of values in a data set

Logging off Informing a computer—usually through a simple command—
that no further commands follow

Logging  on Taking the preliminary steps necessary to identify yourself to
a computer so that it accepts your commands

Logic diagram A graphical representation of a circuit; each type of gate
has its own symbol

Logical address A reference to a stored value relative to the program
making the reference

Logical order The order in which the programmer wants the statements in
the program to be executed, which may differ from the physical order in
which they appear

Loop A method of structuring statements so that they are repeated while
certain conditions are met

Loop entry The point at which the flow of control first passes to a state-
ment inside a loop

Loop exit That point when the repetition of the loop body ends and
control passes to the first statement following the loop

Loop test The point at which the loop expression is evaluated and the
decision is made either to begin a new iteration or skip to the statement
immediately following the loop

Lossless compression A technique in which there is no loss of information

Lossy compression A technique in which there is loss of information

Machine language The language made up of binary-coded instructions
that is used directly by the computer

Glossary 617

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Mainframe A large, multi-user computer often associated with early time-
sharing systems

Maintenance The modification of a program, after it has been completed,
in order to meet changing requirements or to take care of any errors that
show up

Maintenance phase Period during which maintenance occurs

Mantissa With respect to floating-point representation of real numbers,
the digits representing a number itself and not its exponent

Markup language A language that uses tags to annotate the information
in a document

Memory management The act of keeping track of how and where
programs are loaded in main memory

Memory unit Internal data storage in a computer

Metalanguage A language that is used to define other languages

Method A named algorithm that defines one aspect of the behavior of a
class

Metropolitan-area network (MAN) A network infrastructure developed for
a large city

MIME type A standard for defining the format of files that are included as
e-mail attachments or on Web sites

Model An abstraction of a real system; a representation of objects within
a system and the rules that govern the behavior of the objects.

Module A self-contained collection of steps that solves a problem or
subproblem

Motherboard The main circuit board of a personal computer

Multimedia Several different media types

Multiplexer A circuit that uses a few input control signals to determine
which of several input data lines is routed to its output

Multiprogramming The technique of keeping multiple programs in main
memory at the same time, competing for the CPU

Named constant A location in memory, referenced by an identifier, that
contains a data value that cannot be changed

Natural language Languages that human beings use to communicate,
such as English

Natural language comprehension Using a computer to apply a meaningful
interpretation to human communication
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Natural number The number 0 and any number obtained by repeatedly
adding 1 to it

Negative number A value less than 0, with a sign opposite to its positive
counterpart

Nested control structure A program structure consisting of one control
statement (selection, iteration, or subprogram) embedded within another
control statement

Network address The part of an IP address that specifies a specific
network

Node (or Host) Any addressable device attached to a network

Nodes The building blocks of dynamic structures, each made up of a
component (the data) and a pointer (the link) to the next node

Nonpreemptive scheduling CPU scheduling that occurs when the
currently executing process gives up the CPU voluntarily

NP-complete problems A class of problems within Class NP that has the
property that if a polynomial time solution with one processor can be
found for any member of the class, such a solution exists for every member
of the class

Number A unit of an abstract mathematical system subject to the laws of
arithmetic

Object A collection of data values and associated operations

Object (problem-solving phase) An entity or thing that is relevant in the
context of a problem

Object class or Class (problem-solving phase) A description of a group of
objects with similar properties and behaviors

Object code A machine-language version of a source code

Object  program The machine-language version of a source program

Object-based programming language A programming language that
supports abstraction and encapsulation, but not inheritance

Object-oriented design A technique for developing software in which the
solution is expressed in terms of objects—self-contained entities composed
of data and operations on that data that interact by sending messages to
one another

One-dimensional array A structured collection of components of the
same type given a single name; each component is accessed by an index
that indicates its position within the collection
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Open system A system that is based on a common model of network
architecture and an accompanying suite of protocols

Open Systems Interconnection Reference Model A seven-layer logical
breakdown of network interaction to facilitate communication standards

Operating system System software that manages computer resources and
provides an interface for system interaction

Out-of-bounds array index An index value that is less than the position of
the first element or greater than the position of the last element

Output unit A device that prints or otherwise displays data stored in
memory or makes a permanent copy of information stored in memory or
another device

Overflow The condition that occurs when the results of a calculation are
too large to represent in a given machine

Packet A unit of data sent across a network

Packet switching The approach to network communication in which
packets are individually routed to their destination, then reassembled

Page A fixed-size portion of a process that is stored into a memory frame

Page map table (PMT) The table used by the operating system to keep
track of page/frame relationships

Page swap Bringing in one page from secondary memory, possibly
causing another to be removed

Paged memory technique A memory management technique in which
processes are divided into fixed-size pages and stored in memory frames
when loaded

Parameter The identifiers listed in parentheses beside the subprogram
name; sometimes called formal parameters

Parameter list A mechanism for communicating between two parts of a
program

Parameter passing The transfer of data between the arguments and
parameters in a subprogram call

Pass by address A parameter-passing  mechanism in which the memory
address of the actual parameter is passed to the formal parameter; also
called pass by reference

Pass by value A parameter-passing mechanism in which a copy of an
actual parameter’s value is passed to the formal parameter

Password A unique series of letters assigned to a user (and known only
by that user) by which that user identifies himself or herself to a computer
during the logging-on procedure; a password system protects information
stored in a computer from being tampered with or destroyed
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Path A text designation of the location of a file or subdirectory in a file
system

Peripheral device An input, output, or auxiliary storage device attached
to a computer

Personal computer (pc) A small computer system (usually intended to fit
on a desktop) that is designed to be used primarily by a single person

Phone modem A device that converts computer data into an analog audio
signal and back again

Phonemes The set of fundamental sounds made in any given natural
language

Physical address An actual address in the main memory device

Ping A program used to test if a particular network computer is active
and reachable

Pipelining processing Multiple processors arranged in tandem, where
each contributes one part of an overall computation

Pixels Individual dots used to represent a picture; stands for picture
elements

Polymorphism The ability of a language to have duplicate method names
in an inheritance hierarchy and to apply the method that is appropriate for
the object to which the method is applied

Polynomial-time algorithms Algorithms whose complexity can be expressed
as a polynomial in the size of the problem

Port A numeric designation corresponding to a particular high-level
protocol

Positional notation A system of expressing numbers in which the digits
are arranged in succession, the position of each digit has a place value, and
the number is equal to the sum of the products of each digit by its place
value

Postfix operator An operator that follows its operand(s)

Precision The maximum number of significant digits that can be repre-
sented

Preconditions Assertions that must be true before a module begins execu-
tion

Preemptive scheduling CPU scheduling that occurs when the operating
system decides to favor another process, preempting the currently executing
process

Prefix operator An operator that precedes its operand(s)
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Problem solving The act of finding a solution to a perplexing question

Problem-solving phase The first set of steps in programming a computer:
analyzing the problem; developing an algorithm; testing the algorithm for
accuracy

Procedural abstraction The separation of the logical view of an action
from its implementation

Process The dynamic representation of a program during execution

Process control block (PCB) The data structure used by the operating
system to manage information about a process

Process management The act of keeping track of information for active
processes

Process states The conceptual stages through which a process moves as it
is managed by the operating system

Program A sequence of instructions written to perform a specified task

Program counter (PC) The register that contains the address of the next
instruction to be executed

Programming Planning, scheduling, or performing a task or an event; see
also computer programming

Programming language A set of rules, symbols, and special words used to
construct a program—that is, to express a sequence of instructions for a
computer

Proprietary system A system that uses technologies kept private by a
particular commercial vendor

Protocol A set of rules that define how data is formatted and processed
on a network

Protocol stack Layers of protocols that build and rely on each other

Pseudocode A mixture of English statements and control structures that
can easily by translated into a programming language

Pulse-code modulation Variation in a signal that jumps sharply between
two extremes

Query A request for information submitted to a database

Radix point The dot that separates the whole part from the fractional
part in a real number in any base

Range A set of contiguous cells specified by the endpoints

Range of values The interval within which values must fall, specified in
terms of the largest and smallest allowable values

Raster-graphics format Storing image information pixel by pixel
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Rational number An integer or the quotient of two integers (division by
zero excluded)

Real number A number that has a whole and a fractional part and no
imaginary part

Real-time system A system in which response time is crucial given the
nature of the application domain

Reclock The act of reasserting an original digital signal before too much
degradation occurs

Record (or object, or entity) A collection of related fields that make up a
single database entry

Recursion The ability of a subprogram to call itself

Recursive call A subprogram call in which the subprogram being called is
the same as the one making the call

Recursive case See general case

Recursive definition A definition in which something is defined in terms of
a smaller version of itself

Reference parameter A parameter that expects the address of its argu-
ment to be passed by the calling unit (put on the message board)

Referential ambiguity The ambiguity created when pronouns could be
applied to multiple objects

Refinement In top-down design, the expansion of a module specification
to form a new module that solves a major step in the computer solution of
a problem

Register A small storage area in the CPU used to store intermediate
values or special data

Relational model A database model in which data and the relationships
among them are organized into tables

Relational operators Operators that state that a relationship exists
between two values

Relative path A path that begins at the current working directory

Repeater A network device that strengthens and propagates a signal
along a long communication line

Representational (round-off) error An arithmetic error caused by the fact
that the precision of the result of an arithmetic operation is greater than
the precision of our machine

Reserved word A word in a language that has special meaning; it cannot
be used as an identifier
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Resolution The number of pixels used to represent a picture

Response time The time delay between receiving a stimulus and
producing a response

Responsibility algorithms The algorithms for the class methods in an
object-oriented design; the phase in the design process where the algo-
rithms are developed

Return The point at which the computer comes back from executing a
subprogram

Reuse The ability to use a class in any program without additional modi-
fication to either the class or the program

Right-justified Placed as far to the right as possible within a fixed number
of character positions

Ring topology A LAN configuration in which all nodes are connected in a
closed loop

Robust A descriptive term for a program that can recover from erroneous
inputs and keep running

Root directory The topmost directory, in which all others are contained

Router A network device that directs a packet between networks toward
its final destination

Rule-based system A software system based on a set of if-then rules

Run-length encoding Replacing a long series of a repeated characters with
a count of the repetition

Scenarios The phase in an object-oriented design in which responsibilities
are assigned to the classes

Schema A specification of the logical structure of data in a database

Scientific notation An alternative floating-point representation

Scope of access (scope) The region of program code where it is legal to
reference (use) an identifier

Scope rules The rules that determine where in a program an identifier
may be referenced, given the point where the identifier is declared and its
specific access modifiers

Search tree A structure that represents alternatives in adversarial situa-
tions, such as game playing

Secondary storage device See auxiliary storage device

Sector A section of a track

Seek time The time it takes for the read/write head to get positioned over
the specified track
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Selection control structure A form of program structure allowing the
computer to select one among possible actions to perform based on given
circumstances; also called a branching control structure

Self-documenting code A program containing meaningful identifiers as
well as judiciously used clarifying comments

Semantic network A knowledge representation technique that represents
the relationships among objects

Semantics The set of rules that gives the meaning of instructions in a
language

Semiconductor Material such as silicon that is neither a good conductor
nor insulator

Sentinel A special data value used in certain event-controlled loops as a
signal that the loop should be exited

Sequence A structure in which statements are executed one after another

Sequential circuit A circuit whose output is a function of input values and
the current state of the circuit

Sequential file access The technique in which data in a file is accessed in a
linear fashion

Shallow copy An operation that copies one class object to another
without copying any pointed-to data

Shared memory Multiple processors share a global memory

Short-circuit (conditional) evaluation Evaluation of a logical expression in
left-to-right order with evaluation stopping as soon as the final boolean
value can be determined

Significant digits Those digits that begin with the first nonzero digit on
the left and end with the last nonzero digit on the right (or a zero digit that
is exact)

Sign-magnitude representation Number representation in which the sign
represents the ordering of the number (negative and positive) and the value
represents the magnitude

Simulation Developing a model of a complex system and experimenting
with the model to observe the results

Single contiguous memory management The approach to memory manage-
ment in which a program is loaded into one continuous area of memory

Size (of an array) The physical space reserved for an array

Software Computer programs; the set of all programs available on a
computer
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Software engineering The application of traditional engineering method-
ologies and techniques to the development of software

Software life cycle The phases in the life of a large software project,
including requirements analysis, specification, design, implementation,
testing, and maintenance

Software piracy The unauthorized copying of software for either personal
use or use by others

Software requirements A statement of what is to be provided by a
computer system or software product

Software specification A detailed description of the function, inputs,
processing, outputs, and special features of a software product; provides
the information needed to design and implement the software

Sort key The field to be used in the ordering

Sorted list A list with predecessor and successor relationships determined
by the content of the keys of the items in the list; there is a semantic rela-
tionship among the keys of the items in the list

Sorting Putting a list of items in order, either numerically or alphabeti-
cally

Source program A program written in a high-level programming language

Spatial compression Movie compression technique based on the same
compression techniques used for still images

Spreadsheet A program that allows the user to organize and analyze data
using a grid of cells

Spreadsheet function A computation provided by the spreadsheet soft-
ware that can be incorporated into formulas

Stable sort A sorting algorithm that preserves the order of duplicates

Standardized Made uniform; most high-level languages are standardized,
as official descriptions of them exist

Star topology A LAN configuration in which a central node controls all
message traffic

String (general sense) A sequence of characters, such as a word, name, or
sentence, enclosed in double quotes

Strong equivalence The equality of two systems based on their results and
the process by which they arrive at those results

Strong typing Each variable is assigned a type, and only values of that
type can be stored in the variable

Structured data type An organized collection of components; the organi-
zation determines the method used to access individual components
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Structured Query Language (SQL) A comprehensive relational database
language for data management and queries

Style The individual manner in which computer programmers translate
algorithms into a programming language

Supercomputer The most powerful class of computers

Synchronous processing Multiple processors apply the same program in
lockstep to multiple data sets

Syntactic ambiguity The ambiguity created when sentences can be
constructed in various ways

Syntax The formal rules governing the construction of valid instructions

System software Programs that manage a computer system and interact
with hardware

Table A collection of database records

Tag The syntactic element in a markup language that indicates how infor-
mation should be displayed

Tail recursion A recursive algorithm in which no statements are executed
after the return from the recursive call

TCP/IP A suite of protocols and programs that support low-level network
communication

Team programming The use of two or more programmers to design a
program that would take one programmer too long to complete

Temporal compression Movie compression technique based on differences
between consecutive frames

Ten’s complement A representation of negative numbers such that the
negative of I is 10 raised to k minus I.

Termination condition The condition that causes a loop to be exited

Test plan A document that specifies how a program is to be tested

Testing Checking a program’s output by comparing it to hand-calculated
results; running a program with data sets designed to discover any errors

Test-plan implementation Using the test cases specified in a test plan to
verify that a program outputs the predicted results

Text file A file that contains characters

Thrashing Inefficient processing caused by constant page swapping

Throw The act of signaling that an exception has occurred; throwing an
exception abnormally terminates the execution of a subprogram

Time slice The amount of time given to each process in the round-robin
CPU scheduling algorithm
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Timesharing A system in which CPU time is shared among multiple inter-
active users at the same time

Top-down design A technique for developing a program in which the
problem is divided into more easily handled subproblems, the solutions of
which create a solution to the overall problem

Top-level domain (TLD) The last section of a domain name, specifying the
type of organization or its country of origin

Traceroute A program that shows the route a packet takes across the
Internet

Track A concentric circle on the surface of a disk

Training The process of adjusting the weights and threshold values in a
neural net to get a desired outcome

Transfer rate The rate at which data moves from the disk to memory

Transistor A device that acts either as a wire or a resister, depending on
the voltage level of an input signal

Transmission Control Protocol (TCP) The network protocol that breaks
messages into packets, reassembles them at the destination, and takes care
of errors

Traverse a list To access the components of a list one at a time from the
beginning of the list to the end

Truth table A table showing all possible input values and the associated
output values

Turing test A behavioral approach to determining whether a computer
system is intelligent

Turnaround time The CPU scheduling metric that measures the elapsed
time between a process’s arrival in the ready state and its ultimate comple-
tion

Two-dimensional array A collection of components, all of the same type,
structured in two dimensions; each component is accessed by a pair of
indices that represent the component’s position within each dimension

Type casting  (type conversion) The explicit conversion of a value from
one data type to another

Type coercion An automatic conversion of a value of one type to a value
of another type

Unary operator An operator that has only one operand

Underflow The condition that occurs when the results of a calculation are
too small to represent in a given machine
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Uniform Resource Locator (or URL) A standard way of specifying the loca-
tion of a Web page

Unstructured data type A collection consisting of components that are not
organized with respect to one another

Upload Sending data from your home computer to a destination on the
Internet

User name The name by which a computer recognizes the user, and
which must be entered to log on to a machine

User Datagram Protocol (UDP) An alternative to TCP that achieves higher
transmission speeds at the cost of reliability

Value parameter A parameter that expects a copy of its argument to be
passed by the calling unit (put on the message board)

Value-returning function A function (subprogram) that returns a single
value to its caller and is invoked from within an expression

Variable A location in memory, referenced by an identifier, that contains
a data value

Vector graphics Representation of an image in terms of lines and shapes

Video codec Methods used to shrink the size of a movie

Virtual computer (machine) A hypothetical machine designed to illustrate
important features of a real machine

Virtual machine The illusion created by a timesharing system that each
user has a dedicated machine; the illusion that there is no restriction on
program size because an entire process need not be in memory at the same
time

Virus A computer program that replicates itself, often with the goal of
spreading to other computers without authorization, possibly with the
intent of doing harm

Voice recognition Using a computer to recognize the words spoken by a
human

Voice synthesis Using a computer to create the sound of human speech

Voiceprint The plot of frequency changes over time, representing the sound
of human speech

Walk-through A verification method in which a team performs a manual
simulation of the program or design

Weak equivalence The equality of two systems based on their results

Web browser A software tool that retrieves and displays Web pages

Web page A document that contains or references various kinds of data
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Web server A computer set up to respond to requests for Web pages

Web site A collection of related Web pages, usually designed and controlled
by the same person or company

What-if analysis Modifying spreadsheet values that represent assump-
tions to see how changes in those assumptions affect related data

Wide-area network (WAN) A network connecting two or more local-area
networks

Wireless A network connection made without physical wires

Word A group of one or more bytes; the number of bits in a word is the
word length of the computer

Work A measure of the effort expended by the computer in performing a
computation

Working directory The currently active subdirectory

Workstation A minicomputer or powerful microcomputer designed to be
used primarily by one person at a time

World Wide Web (or Web) An infrastructure of information and the
network software used to access it
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first-come, first served

CPU scheduling, 336-337
disk scheduling, 364-365

first fit partition selection, 330
first generation of

computer hardware, 13
computer software, 18

fixed partitions, 329-331
fixed-sized numbers, 58-59
flag character, 68
Flash vector grahics, 77
floating point, 61-62
floppy disk, 130
formal verification of software, 515
formula, spreadsheet, 377-378, 379-382
FORTRAN, 19, 75, 206, 227-228, 230, 362
fourth generation of

computer hardware, 15-16
computer software, 21-22

frame, 331-332

full adder, 103-104
functional paradigm, 230

G
gambling, online, 449-450
Gannt, Henry L., 337
Gannt chart, 337
gate,

constructing, 96-99
electronic, 86-88, 90-99
AND, 90, 92, 95-96
NAND, 90, 94-95, 97-98
NOR, 90, 94-95, 97-98
NOT, 90-91, 95, 97-98
on an integrated circuit, 107-108
OR, 90, 92-93, 95
with more than two inputs, 95-96
XOR, 90, 93, 95

gateway, 458
Gates, Bill, 27, 117
generations of

computer hardware, 13-16
computer software, 18-23

generic data type, 283
GHz, see gigahertz
GIF graphics format, 76-77, 351-352
giga, 119
gigahertz, 117
Global Positioning System, 341
glucose monitor, 448
Goldberg, Adele, 165
Goldstine, Herbert, 206
graph, 310-311

directed, 310-311
undirected, 310-311

graphical interface, 22, 439
graphics, 25

representation of, 52, 73-77
grounded electrical signal, 97
groundhogs, 440

Index 645

http://lib.ommolketab.ir
http//lib.ommolketab.ir


H
hacker, computer, 265
hacking, 265-266
half adder, 102-103
halting problem, 528-529, 530
hard disk, 117
hardware,

computer, 3, 4
first generation of, 13
fourth generation of, 15
history of, 9-17
limitations of, 502-510
second generation of, 14
third generation of, 14-15

hardware layer, 5-6, 86-87, 114-115
Harvard, Mark I, 12
hashing, 36
hertz, 117
Hertz, Heinrich R., 117
Hewlett Packard, 15
heterogeneous collection, 257
heuristic, 147
hexadecimal, 38, 40-41
HiColor, 74
high-level language, 19, 189, 224-225
history of

computing, 9-24
hardware, 9-17
software, 17-24

Hoare, C.A.R., 291, 294
Hollerith, Herman, 10-12, 123
Honeywell, 119
Hopper, Grace Murray, 44, 118
host, 456
hostname, 468-469
host number, 469
HTML, 482-487
Huffman, David, 69
Huffman encoding, 66, 69-70
human-computer communication, 25
hurricane tracking, 442
hypertext markup language, 482-487

I
IBM, 15-16, 23, 27, 37, 123, 206, 388

370, 43-44
PC, 15, 21

if, 155
statement, 242-245

Ifrah, Georges, 36
image, representation of, 52, 73-77
imperative paradigm, 230-260
implementation

array-based, 277-279
linked, 277, 279-282
of an ADT, 277-282
phase, 148

index
of an array, 277
register, 191

indexed color, 74-76
inference engine, 410
infomatics, organizational, 25
information, 156

hiding, 176-177, 261
layer, 5, 32, 32-33, 50-51
retrieval, 25
superhighway, 17
system, 372-374

inheritance, 163, 262
input

device, 120
unit, 123

input/output
structures, 239-240
unit, 123

insert statement, 390
inspection, 162, 513
instantiate, 261
instruction

format of Pep/7, 192-194
register, 124-125, 191-198
specifier, 192

integer, 34, 235
integrated circuit, 14, 107-108
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integration,
large-scale, 15, 107
scales, 107

Intel, 17, 44, 116-117
intelligence, artificial, 25
interactive web pages, 487-489
interface, graphical, 22, 439
interoperability, 463
interpreter, 227-228
Internet, 17, 24, 44-45, 458

backbone, 459
protocol, 465
service provider, 118, 459

invasion of privacy, 340-341
inversion bubble, 91
inverter, 91
IP address, 468-469
Itanium processor, 44

J
Jacquard, Joseph, 10
Jacquard’s Loom, 10
jargon, computer, 116-119
Java, 22, 225, 227-228, 231, 237-238, 243-

244, 248, 258-260
applet, 487-488
server pages, 488-489
virtual machine, 228

Jobs, Steve, 15
JPEG graphics format, 76-77, 351-352
JSP, 488-489

scriptlets, 488-489

K
key fields of a database record, 385
keyframe, 78
keyword encoding, 66-68
kilo, 119
knowledge-based system, 409
knowledge representation, 403-409
Kuhn, Thomas, 230

L
language,

assembly, 18, 189, 207-215
high-level, 19, 189, 224-225
low-level, 186-187
machine, 16, 18, 189-190
natural, 415-416
object-oriented, 261-263
programming, 25, 186-187

language translation, 420
large-scale integration, 15, 107
latch, S-R, 106
latency, 130, 363
law,

DeMorgan’s, 101-102
distributive, 101
Moore’s, 15-16

layers
of a computing system, 5
of software, 18-22

leaf node, 302
Legos, 115-116
Leibniz, see von Leibniz
levels of abstraction, 189
Leveson, Nancy, 511-512
lexical ambiguity, 418-419
libraries, programming, 310
licensing computer professionals, 533-534
limitations of

arithmetic, 502-508
communications, 509-510
components, 508-509
computing, 500-501
hardware, 502-510
problem types, 518-533
software, 510-518

link, web, 480
linked

implementation, 277, 279-282
list, 279-282

linker, 20
linking, deep, 425-426
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Lisp, 19, 227, 230-231, 412
list, 282-287

ADT, 275
linked, 279-282
operations, 282-287

loader, 20, 202
local area network, 17
Loebner, Hugh, 402
Loebner prize, 403
logic, nested, 257
logic

diagram, 88-89, 90-95, 99-100, 103-104,
106-107

paradigm, 230
logical address, 326-333
looping, 147

statement, 246-250
loops,

count-controlled, 246-248
event-controlled, 248-250

lossless compression, 53
lossy compression, 53
Lotus 1-2-3, 22, 380
low-level programming languages, 186-187

M
machine language, 16, 189-190

example, 198-207
Macintosh computer, 15, 22-23
Mac OS, 323
magnetic

core, 14
disk, 14, 128-130
drum, 13
tape, 13, 128

main memory, 115, 124
mainframe, 325
maintenance phase, 148
marathon, New York City, 448
markup language, 482

hypertext, 482-487
Mars polar lander, 423

Mauchly, John, 119, 121
MB, see megabyte
McCarthy, John, 412
medium-scale integration, 107
mega, 119
megabyte, 117
memory, 13-15, 120-122

address, 120
cell, 120
circuits, 106
main, 115
management, 322, 326-333
of Pep/7, 191-192
unit, 120
virtual, 333

mercury thermometer, 53-54
metalanguage, 489
Metcalf, Robert, 17, 24
meteorological models, 438-444
method, 163, 250
metropolitan-area network, 458-459
micro, 119
microcomputer, 325
microsecond, 118
Microsoft, 22, 27-28, 117-118, 425

Internet Explorer, 22, 27-28
Word, 22
Windows operating system, 22, 27, 118,

321
milli, 119
MIMD, 16
MIME type, 466-467
minicomputer, 325
ML, 230
mobile robotics, 420
model, 433-435

client/server, 457
constructing, 433-435
meteorological, 438-444
OSI Reference, 463-464

modem, 118
cable, 460-462
phone, 460
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Modula-2, 21
module, 151-155
monitor, 117
Moore, Gordon, 15
Moore’s law, 15-16
Monge, Gaspard, 445
Mossberg, Walter S., 133
motherboard, 124
MP3 audio format, 72-73
MPEG, 73

video compression, 78
MS-DOS, 21
multimedia, 52
multiplexer, 104-106, 108
multiprogramming, 322
mux, see multiplexer

N
named constant, 238
NAND gate, 90, 94-95, 97-98
nano, 119
nanoscience, 90
nanosecond, 118
nanotechnology, 90
Napier, John, 42
Napier’s bones, 42
Napster, 79-80
natural language, 415-416

comprehension, 415, 418-419
processing, 403, 415-419

NCR, 15
negative values, representing, 57-61
nested logic, 257
Netscape color palette, 75-76
Netscape Navigator, 22, 27
Neumann, see von Neumann
neural network, 403, 412-415

artificial, 412-415
biological, 412-413

New York City marathon, 448
non-von Neumann architectures, 131-133
network, 16, 454-455, 456-463

address, 468-469, 470-471
local area, 17, 457
metropolitan-area, 458-459
neural, 403, 412-415

artificial, 412-415
biological, 412-413

semantic, 404-406
types of, 457-459
wide-area, 458-459

network topologies, 457-459
networking, 17, 456-463
Nim, 407-408
node

of a linked list, 279-280
of a network, 456

nonpreemptive CPU scheduling, 335
NOR gate, 90, 94-95, 97-98
NOT gate, 90-91, 95, 97-98
notation,

positional, 35-37
scientific, 62-63

notorious software errors, 516-518
NP-complete problems, 531-532
number, 34

fixed-sized, 58-59
natural, 34, 35
negative, 34
rational, 34
representation of, 52, 57-63

number
categories, 34
line, 58, 60
overflow, 60-61
systems, 32-33

numeric data, representing, 57-63
numerical computation, 25
Nygaard, Kristen, 438

O
object, 163, 261

class, 163
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object-oriented
design, 22, 162-176
language functionality, 261-263
paradigm, 231

octal, 38, 40-41
oil exploration, 444
Olsen, Ken, 24
office suite, 22
online gambling, 449-450
opcode, see operation code
open

source movement, 515-516
system, 463-468

Open Systems Interconnection Reference
model, 463-464

operand specifier, 192
operation code, 193-194
operations, computer, 188-189
operating system, 20, 25, 318-320
operating system layer, 6, 318-319, 348-349
operator, 323-324
OR gate, 90, 92-93, 95
orders of magnitude, 522-532
organizational infomatics, 25
OSI model, 463-464
output

device, 120
unit, 123

overflow, 60-61, 507-508

P
packet, 462

switching, 17, 462-463
page, 331-333

map table, 331-332
swap, 332-333

paged memory
management, 327, 331-333
technique, 331

paging, demand, 332
paradigm, programming language, 228-231

functional, 230
imperative, 230-260
logic, 230
object-oriented, 231
procedural, 230

paradigm, robotic,
sense-plan-act, 420-421

parameter, 251-252
reference, 253
value, 253

parameter
list, 250
passing, 250-255

parity bit, 509-510
partition

memory management, 327, 329-331
selection, 330-331

partitions,
dynamic, 329-331
fixed, 329-331

Pascal, 21, 228, 230
Pascal, Blaise, 9
parallel

architectures, 16
computing, 16

passing parameters to subprograms, 250-255
path, 360

absolute, 360
name, 359-363
relative, 360

PC-DOS, 21
Pentium processor, 44, 116-117, 120, 122
Pep/7, 190-198

simulator, 201-203
peripheral devices, 13
Perlis, Alan, 126
personal computer, 15, 325
phone modem, 460
phonemes, 416
physical address, 326-333
pico, 119
picosecond, 118
picture, big, 3
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ping, 465
pipelining, 132
piracy, software, 219-220
pixel, 76-77
place value, 35-37
plagiarism, 180-181
point-and-click, 22
point,

floating, 61-62
radix, 61

Polya, George, 143-145
polymorphism, 261-262, 263
polynomial-time algorithms, 525
port, 466
positional notation, 35-37
power of two number systems, 40-41
precision, 505
predictions, 23
preemptive CPU scheduling, 335
priority queue, 437
privacy, email, 109-110
privacy invasion, 340-341
problem, halting, 528-529, 530
problem solving, 140-142, 143-151

phases, 148-149
procedural

abstaction, 178
paradigm, 230

process, 188
control block, 334-335
of an operating system, 322
management, 322, 333-335
states, 333-334

processing,
asynchronous, 256-257
batch, 323-324
conditional, 147
event-driven, 257
natural language, 403, 415-419
synchronous, 132

program, 143, 151, 179
counter, 124-125, 191

programmable, 188

programmer, 143
application, 19, 24
system, 18, 24

programming, 3, 24
egoless, 162
structured, 21, 242

programming
language, 18, 25, 179
layer, 6, 140-141, 186-187, 224-225, 274-

275
libraries, 310

PROLOG, 230-231
properties of Boolean algebra, 101-102
proprietary system, 463
protection, file, 356-357
protocol, 17, 457, 463-467

stack, 464
pseudocode, 141, 154-155
pseudo-operations, 208-209
pulse-code modulation, 55
punched card, 12-13, 123
Punxsutawney Phil, 440
Pythagoras, 445
Pythagorean theorem, 445

Q
query, database, 384, 388-390
queue, 298-301

priority, 438
queuing system, 435-438
quicksort, 291-295

R
R2D2, 423
radix point, 61
RAM, see random access memory
random

access memory, 126-127
number generator, 437

Index 651

http://lib.ommolketab.ir
http//lib.ommolketab.ir


range, spreadsheet, 379
raster-graphics format, 76
ratio, compression, 52
read-only memory, 117, 126-127

compact disk, 117
read/write head, 128-130
real numbers,

data type, 235
representing, 61-63

Real Video, 78
real-time system, 326
reclock, 55
recognition, voice 415, 417-418
record, 257-259

of a database table, 384
recursion, 255-256
reference, circular, 382
referencial ambiguity, 419
reference parameter, 253
register, 123, 191

specifier, 192-193
relational model, 384-387
relationships

between classes, 163-164
in a database, 387-388

relative path, 360
repeat, 155
repeater, 462
repetition, 147, 155
representation, 24

binary, 55-57
knowledge, 403-409
signed-magnitude, 57-58

representational error, 507
representing

audio, 70-72
color, 73-76
images and graphics, 73-77
negative values, 57-61
numeric data, 57-63
real numbers, 61-63
text, 63-66
video, 78

requirements, software, 512
reserved word, 237
resolution, 76
response time, 326
responsibilities, 165
responsibility algorithm, 165, 168-169
retrieval, information, 25
retrieve, 188
RGB value, 73-74
ring topology, 457-458
RISC architecture, 16
robotics, 25, 403, 419-424
ROM, see read only memory
root, 302

directory, 357
Rosetta stone, 211
round-off error, 507
round-robin CPU scheduling, 337-339
router, 462
rule-based system, 410
run-length encoding, 66, 68-69

S
sampling, 71
Scalable Vector Graphics, 77
SCAN disk scheduling, 365-366

circular, 366
scenario, 165, 167-168, 170-171
schema, database, 384
Scheme, 19, 230, 412
scientific notation, 62-63
screen, monitor, 117
scriptlets, JSP, 488-489
SDRAM, 117
search,

binary, 287, 295-296, 297-298
sequential, 287, 295

search tree, 406-407, 408-409
binary, 303-309

second generation of
computer hardware, 14
computer software, 18-19
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secondary storage, 117
devices, 127-131

sector, magnetic disk, 129, 364
seek time, 130, 363
select

signals, 104-105
statements, 389

selection
sort, 288-289
statements, 2422-46

semantic network, 404-406
semantics, 179
semiconductor, 96
sense-plan-act paradigm, 420-421
September 11, 2001, 393-394, 471
sequence, 242
sequential

file access, 355
search, 287, 295

server,
domain name, 471
file, 17, 457
web, 457, 481

shared-memory configuration, 133
Shockley, William B., 14
shortest-job-next CPU scheduling, 337
shortest-seek-time-first disk scheduling, 

365
Siegel, Richard W., 90
signed-magnitude representation, 57-58
significant digits, 505
SIMD, 16
Simon, Herbert A., 405
SIMULA, 231, 438
simulation, 430-432, 433-445

continuous, 434
discrete event simulation, 434-435
time-driven, 436

single contiguous memory management, 327-
328, 329

small-scale integration, 107
Smalltalk, 231
SNOBOL4, 227

software,
application, 320
computer, 3, 4
fifth generation of, 22-23
first generation of, 18
fourth generation of, 21-22
history of, 17-23
limitations of, 510-518
second generation of, 18-19
system, 320
third generation of, 20-21

software
engineering, 511-512
life cycle, 512
methodology, 25
piracy, 219-220
requirements, 512
specifications, 512

Sojourner rover, 423
Sorenson video codec, 78
sort

bubble, 290-291
key, 158
quick, 291-295
selection, 288-289

sorted list, 278-279
sorting, 158, 287-295
sound wave, 70-71
source file, 351
spatial compression, 78
specification, software, 512
Sperry Rand, 119, 121
spindle, 129, 364
spreadsheet,

electronic, 22, 374-375, 376-383
formula, 377-378, 379-382
range, 379

spreadsheet analysis, 382-383 
SPSS, 20
S-R latch, 106
Stonehenge, 9-10
subsumption architecture, 421-422
Sun, 15
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stack, 298-301
Stallman, Richard, 219
star topology, 458
starvation, 365
statement,

assignment, 91, 238
case, 245-246
delete, 390
if, 242-245
insert, 390
looping, 246-250
selection, 242-246
select, 389
subprogram, 250-257
update, 390

stone, Rosetta, 211
storage devices, auxiliary, 13
store, 188
stored program concept, 119-131
string data type, 236
strong

equivalence, 402
typing, 234-239

structure, control, 178
structured

programming, 21, 242
query language, 388-390

subareas of computer science, 25
subprogram, 250-257
subroutine, see subprogram
subtree, 302
super class, 163
superhighway, information, 17
Sutherland, Ivan, 439
switching, packet, 17, 462-463
synchronous processing, 132
syntactic ambiguity, 419
syntax, 179
synthesis, voice 415-417
symbolic computation, 25
system,

complex, 432-433

embedded, 23, 430-431, 447-449
expert, 403, 409-412
file, 348-350
information, 372-374
knowledge-based, 409
number, 32-33
open, 463-468
operating, 20, 25, 320-322
proprietary, 463
queuing, 435-438
real-time, 326
rule-based, 410

systems
areas, 26
programmer, 18, 24
software, 20, 320

T
table,

database, 384-387
truth, 88, 90-95, 100-101, 103-105

Tandy/Radio Shack, 15
tag, HTML 482-487
tape, magnetic, 128
TCP/IP, 17, 465-466
telephony, 118
temporal compression, 78
ten’s complement, 59
tera, 119
terminal, 15

dumb, 325
terrorist attack, 393-394, 471
test, Turing, 401-403
test plan, 216
testing, 148, 160-162, 179, 216-218

black-box, 216
bottom-up, 162
clear-box testing, 216
code-coverage, 216
data-coverage, 216
top-down, 162
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text,
compression of, 66-70
representation of, 52, 63-66

text file, 351-352
Therac-25, 517
thermometer, mercury, 53-54
thinking machines, 400-403
third generation of

computer hardware, 14-15
computer software, 20-21

TIFF file, 351-352
timesharing, 20, 324-325
time slice, 337
time-driven simulation, 436
thrashing, 333
top-down

design, 151-162
methodology, 160

top-level domain name, 470-471
topology, network, 457-459

bus, 458
ring, 457-458
star, 458

traceroute, 465
track, magnetic disk, 129, 364
training an artificial neural network, 414-415
transistor, 14, 96-99
transfer rate, 130

data, 456
translation process, 226-228
translator, 18
transmission control protocol, 465-466
traveling salesman problem, 532
tree, 300-309

binary, 301-302, 303-309
binary search, 303-309
directory, 357-363
search, 406-407, 408-409

TrueColor, 74, 77
truth table, 88, 90-95, 100-101, 103-105
tube, vacuum, 13-14, 23, 96
Turing, Alan, 12, 25, 206, 525-527

Turing
machine, 12, 525-528
test, 401-403

turnaround time, 336
two’s complement, 59-60
type,

data, 234-239
file, 353-353

types of networks, 457-459
typing, strong, 234-239

U
underflow, 507
undirected graph, 310-311
UNICODE character set, 63, 65-66, 75
uniform resource locator, 481
UNIVAC I, 13, 15, 44
universal product codes, 388
UNIX operating system, 16, 21
unsorted list, 278-279
update statement, 390
upload, 462
URL, see uniform resource locator
user,

changing profile of, 22, 24
data, 520

user datagram protocol, 465

V
vacuum tubes, 13-14, 23, 96
value parameter, 253
variable, 233-239

declaration, 236-239
VB .NET, see Visual Basic .NET
vector graphics, 77
vertices of a graph, 310-311
very-large-scale integration, 107
video,

compression of, 78
representation of, 52, 78
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virtual
computer, 190
machine, 324-325
memory, 333

virus, computer, 367-368
VisiCalc, 380
Visual Basic .NET, 225, 237-238, 243-244,

248, 258-260
voice

recognition, 415, 417-418
synthesis, 415-417

voiceprint, 418
volatile memory, 127
von Leibniz, Gottfried Wilhelm, 9-10
von Neumann, John, 12-13, 119, 206
von Neumann architecture, 119-126
VQF audio format, 72

W
Walker, Henry, 503, 517
walk-through, 162, 513
Warford, Stanley, 190
Wasniak, Steve, 15
Watson, Thomas, 23
WAV audio format, 72-73
weak equivalence, 402
weather forecasting, 440-442
web, 22-23, 312-313, 478-480

browser, 481
content, 312-313
page, 480
server, 481
site, 480

surfing, 3
weight, effective, 413
what-if analysis, 383
while, 155

statement, 246-250
wide-area network, 458-49
Windows, see Microsoft Windows
wireless, 456
Wirfs-Brock, Rebecca, 165
WordPerfect, 22
word, 43-44, 120, 122
word processor, 22
World Wide Web, 22-23, 312-313, 478-480,

490
working directory, 359
workstation, 16, 325
worst fit partition selection, 330

X
Xerox, 17
XML, 489-493
XOR gate, 90, 93, 95
XSL, 492-493

Y
Yourdon, Ed, 165

Z
zero, importance of, 36
ZIP disk, 130
Zuse, Konrad, 119
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