
Excel Scientific and Engineering Cookbook

By David M. Bourg

...

Publisher: O'Reilly

Pub Date: January 2006

Print ISBN-10: 0-596-00879-1

Print ISBN-13: 978-0-59-600879-6

Pages: 442

Table of Contents | Index

Given the improved analytical capabilities of Excel, scientists and engineers everywhere are using it-
-instead of FORTRAN--to solve problems. And why not? Excel is installed on millions of computers,
features a rich set of built-in analyses tools, and includes an integrated Visual Basic for Applications
(VBA) programming language. No wonder it's today's computing tool of choice.

Chances are you already use Excel to perform some fairly routine calculations. Now the Excel
Scientific and Engineering Cookbook shows you how to leverage Excel to perform more complex
calculations, too, calculations that once fell in the domain of specialized tools. It does so by putting
a smorgasbord of data analysis techniques right at your fingertips. The book shows how to perform
these useful tasks and others:

Use Excel and VBA in general

Import data from a variety of sources

Analyze data

Perform calculations

Visualize the results for interpretation and presentation

Use Excel to solve specific science and engineering problems

Wherever possible, the Excel Scientific and Engineering Cookbook draws on real-world examples
from a range of scientific disciplines such as biology, chemistry, and physics. This way, you'll be
better prepared to solve the problems you face in your everyday scientific or engineering tasks.

High on practicality and low on theory, this quick, look-up reference provides instant solutions, or
"recipes," to problems both basic and advanced. And like other books in O'Reilly's popular Cookbook
format, each recipe also includes a discussion on how and why it works. As a result, you can take

http://lib.ommolketab.ir
http://lib.ommolketab.ir

comfort in knowing that complete, practical answers are a mere page-flip away.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Excel Scientific and Engineering Cookbook

By David M. Bourg

...

Publisher: O'Reilly

Pub Date: January 2006

Print ISBN-10: 0-596-00879-1

Print ISBN-13: 978-0-59-600879-6

Pages: 442

Table of Contents | Index

 Copyright

 Preface

 Recipe Who Should Read This Book

 Recipe What's in This Book

 Recipe Conventions in This Book

 Recipe Using Code Examples

 Recipe Safari Enabled

 Recipe We'd Like Your Feedback!

 Recipe Acknowledgments

 Chapter 1. Using Excel

 Section 1.0. Introduction

 Recipe 1.1. Navigating the Interface

 Recipe 1.2. Entering Data

 Recipe 1.3. Setting Cell Data Types

 Recipe 1.4. Selecting More Than a Single Cell

 Recipe 1.5. Entering Formulas

 Recipe 1.6. Exploring the R1C1 Cell Reference Style

 Recipe 1.7. Referring to More Than a Single Cell

 Recipe 1.8. Understanding Operator Precedence

 Recipe 1.9. Using Exponents in Formulas

 Recipe 1.10. Exploring Functions

 Recipe 1.11. Formatting Your Spreadsheets

 Recipe 1.12. Defining Custom Format Styles

 Recipe 1.13. Leveraging Copy, Cut, Paste, and Paste Special

 Recipe 1.14. Using Cell Names (Like Programming Variables)

 Recipe 1.15. Validating Data

 Recipe 1.16. Taking Advantage of Macros

 Recipe 1.17. Adding Comments and Equation Notes

 Recipe 1.18. Getting Help

 Chapter 2. Getting Acquainted with Visual Basic for Applications

 Section 2.0. Introduction

 Recipe 2.1. Navigating the VBA Editor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Recipe 2.2. Writing Functions and Subroutines

 Recipe 2.3. Working with Data Types

 Recipe 2.4. Defining Variables

 Recipe 2.5. Defining Constants

 Recipe 2.6. Using Arrays

 Recipe 2.7. Commenting Code

 Recipe 2.8. Spanning Long Statements over Multiple Lines

 Recipe 2.9. Using Conditional Statements

 Recipe 2.10. Using Loops

 Recipe 2.11. Debugging VBA Code

 Recipe 2.12. Exploring VBA's Built-in Functions

 Recipe 2.13. Exploring Excel Objects

 Recipe 2.14. Creating Your Own Objects in VBA

 Recipe 2.15. VBA Help

 Chapter 3. Collecting and Cleaning Up Data

 Section 3.0. Introduction

 Recipe 3.1. Importing Data from Text Files

 Recipe 3.2. Importing Data from Delimited Text Files

 Recipe 3.3. Importing Data Using Drag-and-Drop

 Recipe 3.4. Importing Data from Access Databases

 Recipe 3.5. Importing Data from Web Pages

 Recipe 3.6. Parsing Data

 Recipe 3.7. Removing Weird Characters from Imported Text

 Recipe 3.8. Converting Units

 Recipe 3.9. Sorting Data

 Recipe 3.10. Filtering Data

 Recipe 3.11. Looking Up Values in Tables

 Recipe 3.12. Retrieving Data from XML Files

 Chapter 4. Charting

 Section 4.0. Introduction

 Recipe 4.1. Creating Simple Charts

 Recipe 4.2. Exploring Chart Styles

 Recipe 4.3. Formatting Charts

 Recipe 4.4. Customizing Chart Axes

 Recipe 4.5. Setting Log or Semilog Scales

 Recipe 4.6. Using Multiple Axes

 Recipe 4.7. Changing the Type of an Existing Chart

 Recipe 4.8. Combining Chart Types

 Recipe 4.9. Building 3D Surface Plots

 Recipe 4.10. Preparing Contour Plots

 Recipe 4.11. Annotating Charts

 Recipe 4.12. Saving Custom Chart Types

 Recipe 4.13. Copying Charts to Word

 Recipe 4-14. Displaying Error Bars

 Chapter 5. Statistical Analysis

 Section 5.0. Introduction

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Recipe 5.1. Computing Summary Statistics

 Recipe 5.2. Plotting Frequency Distributions

 Recipe 5.3. Calculating Confidence Intervals

 Recipe 5.4. Correlating Data

 Recipe 5.5. Ranking and Percentiles

 Recipe 5.6. Performing Statistical Tests

 Recipe 5.7. Conducting ANOVA

 Recipe 5.8. Generating Random Numbers

 Recipe 5.9. Sampling Data

 Chapter 6. Time Series Analysis

 Section 6.0. Introduction

 Recipe 6.1. Plotting Time Series Data

 Recipe 6.2. Adding Trendlines

 Recipe 6.3. Computing Moving Averages

 Recipe 6.4. Smoothing Data Using Weighted Averages

 Recipe 6.5. Centering Data

 Recipe 6.6. Detrending a Time Series

 Recipe 6.7. Estimating Seasonal Indices

 Recipe 6.8. Deseasonalization of a Time Series

 Recipe 6.9. Forecasting

 Recipe 6.10. Applying Discrete Fourier Transforms

 Chapter 7. Mathematical Functions

 Section 7.0. Introduction

 Recipe 7.1. Using Summation Functions

 Recipe 7.2. Delving into Division

 Recipe 7.3. Mastering Multiplication

 Recipe 7.4. Exploring Exponential and Logarithmic Functions

 Recipe 7.5. Using Trigonometry Functions

 Recipe 7.6. Seeing Signs

 Recipe 7.7. Getting to the Root of Things

 Recipe 7.8. Rounding and Truncating Numbers

 Recipe 7.9. Converting Between Number Systems

 Recipe 7.10. Manipulating Matrices

 Recipe 7.11. Building Support for Vectors

 Recipe 7.12. Using Spreadsheet Functions in VBA Code

 Recipe 7.13. Dealing with Complex Numbers

 Chapter 8. Curve Fitting and Regression

 Section 8.0. Introduction

 Recipe 8.1. Performing Linear Curve Fitting Using Excel Charts

 Recipe 8.2. Constructing Your Own Linear Fit Using Spreadsheet Functions

 Recipe 8.3. Using a Single Spreadsheet Function for Linear Curve Fitting

 Recipe 8.4. Performing Multiple Linear Regression

 Recipe 8.5. Generating Nonlinear Curve Fits Using Excel Charts

 Recipe 8.6. Fitting Nonlinear Curves Using Solver

 Recipe 8.7. Assessing Goodness of Fit

 Recipe 8.8. Computing Confidence Intervals

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Chapter 9. Solving Equations

 Section 9.0. Introduction

 Recipe 9.1. Finding Roots Graphically

 Recipe 9.2. Solving Nonlinear Equations Iteratively

 Recipe 9.3. Automating Tedious Problems with VBA

 Recipe 9.4. Solving Linear Systems

 Recipe 9.5. Tackling Nonlinear Systems of Equations

 Recipe 9.6. Using Classical Methods for Solving Equations

 Chapter 10. Numerical Integration and Differentiation

 Section 10.0. Introduction

 Recipe 10.1. Integrating a Definite Integral

 Recipe 10.2. Implementing the Trapezoidal Rule in VBA

 Recipe 10.3. Computing the Center of an Area Using Numerical Integration

 Recipe 10.4. Calculating the Second Moment of an Area

 Recipe 10.5. Dealing with Double Integrals

 Recipe 10.6. Numerical Differentiation

 Chapter 11. Solving Ordinary Differential Equations

 Section 11.0. Introduction

 Recipe 11.1. Solving First-Order Initial Value Problems

 Recipe 11.2. Applying the Runge-Kutta Method to Second-Order Initial Value Problems

 Recipe 11.3. Tackling Coupled Equations

 Recipe 11.4. Shooting Boundary Value Problems

 Chapter 12. Solving Partial Differential Equations

 Section 12.0. Introduction

 Recipe 12.1. Leveraging Excel to Directly Solve Finite Difference Equations

 Recipe 12.2. Recruiting Solver to Iteratively Solve Finite Difference Equations

 Recipe 12.3. Solving Initial Value Problems

 Recipe 12.4. Using Excel to Help Solve Problems Formulated Using the Finite Element Method

 Chapter 13. Performing Optimization Analyses in Excel

 Section 13.0. Introduction

 Recipe 13.1. Using Excel for Traditional Linear Programming

 Recipe 13.2. Exploring Resource Allocation Optimization Problems

 Recipe 13.3. Getting More Realistic Results with Integer Constraints

 Recipe 13.4. Tackling Troublesome Problems

 Recipe 13.5. Optimizing Engineering Design Problems

 Recipe 13.6. Understanding Solver Reports

 Recipe 13.7. Programming a Genetic Algorithm for Optimization

 Chapter 14. Introduction to Financial Calculations

 Section 14.0. Introduction

 Recipe 14.1. Computing Present Value

 Recipe 14.2. Calculating Future Value

 Recipe 14.3. Figuring Out Required Rate of Return

 Recipe 14.4. Doubling Your Money

 Recipe 14.5. Determining Monthly Payments

 Recipe 14.6. Considering Cash Flow Alternatives

 Recipe 14.7. Achieving a Certain Future Value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Recipe 14.8. Assessing Net Present Worth

 Recipe 14.9. Estimating Rate of Return

 Recipe 14.10. Solving Inverse Problems

 Recipe 14.11. Figuring a Break-Even Point

 About the Author

 Colophon

 Index

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Excel Scientific and Engineering Cookbook™

by David M. Bourg

Copyright © 2006 O'Reilly Media, Inc. All rights reserved. Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent

Production Editor: A. J. Fox

Copyeditor: Derek Di Matteo

Proofreader: A. J. Fox

Indexer: John Bickelhaupt

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrators: Robert Romano, Jessamyn Read, and Lesley Borash

Printing History:

January 2006: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The Cookbook series designations, Excel Scientific and Engineering Cookbook, the
image of a common genet, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-00879-1

[M]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Preface
The purpose of this book is to show you how to leverage Excel as a capable computing tool to solve a
variety of both routine and complex problems. As a practicing engineer and researcher, I've used
Excel extensively for everything from routine data analysis to sophisticated design optimization
problems. There's little doubt Excel spreadsheets are quick and easy to use. Excel's convenient
spreadsheet interface and functionality combined with its integrated Visual Basic for Applications
programming language make it a powerful, versatile computing tool. Its ready availability makes it
even more attractive.

It's tough to dismiss Excel as a computing tool when it's very likely sitting right there on your work
and home computers. You probably already use Excel to some extent for routine calculations. I'd like
to show you how you can leverage Excel for some calculations that are not so routine. Don't worry if
you're new to Excel, because I cover the basics as well.

This book if full of real-world uses of Excel, many of which I have personally performed either for my
own work or for clients. Throughout this book, I try to use easily recognizable, yet real-world,
examples wherever possible. To this end, I draw examples from a variety of scientific disciplines,
ranging from biology and chemistry to physics to structural engineering. I hope to show you how to
leverage Excel to solve problems you may face in your everyday scientific or engineering tasks.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Who Should Read This Book

This book is for anyone who has scientific or engineering calculations to perform.

If you are a science or engineering student, then this book is for you. As a student and instructor
myself, I know that sometimes you face a lack of courses designed to give you real-world computing
experience, leaving you to fend for yourself. Or you are taught how to use computing tools that are
available only in special labs on campus. My personal experience suggests that students often
gravitate toward the most readily accessible tool, which in many cases is Excel. You probably have
Excel on your home computer, your parents' computer, or at your place of work. The trouble you
often face, however, is that most resources on Excel don't address the particular types of problems
you as a science or engineering student must solve; the vast majority of Excel books deal with
financial calculations.

If you are already a veteran scientist or engineer who's used to using programming languages such
as Fortran and are looking for an alternative, then this book is for you too. I personally know several
professionals who are looking at Excel to replace, to some extent, Fortran and other computing tools
such as Mathcad and Mathematica. One of the primary reservations these scientists and engineers
have with migrating to Excel is they feel Excel is not powerful enough to solve the sort of problems
they deal with. I hope to dispel some of those reservations with this book.

Finally, if you are a scientist or engineer who has already embraced Excel as your primary computing
tool but aren't yet harnessing its full computing potential, then this book is also for you. As a
professional you probably don't have time to wade through disparate Excel and VBA books to piece
together the information you need to solve specific problems. This book provides a convenient,
concise guide focused on scientific and engineering problems. The recipe format of this book allows
you to quickly find the type of problem you're solving and get the answer without having to read the
entire book sequentially. Moreover, I provide many cross-references throughout the book to point
you toward relevant background material.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

What's in This Book

This book aims to present Excel as a "cradle to grave" computing environment for scientific and
engineering computations. What I mean by this is that I want to show how to use Excel and VBA in
general, how to import data from a variety of sources, analyze data, perform calculations, and finally
visualize the results for interpretation and presentation. Further, since I'm assuming you have limited
time for learning a computing language, I show you in a very concise way how to immediately use
Excel to solve science and engineering problems. In order to demonstrate Excel's power and
versatility, I show you how to solve some relatively complicated problems that are not immediately
recognizable as suitable problems for Excel.

This book consists of 14 chapters. Here is a brief overview of each chapter:

Chapter 1, Using Excel

Is meant for those new to Excel. It covers a variety of fundamental topics, including navigating
Excel's interface, entering data and formulas, and formatting cells. Experienced Excel users can
safely skip this chapter.

Chapter 2, Getting Acquainted with Visual Basic for Applications

Is also meant for those new to Excel's Visual Basic for Applications (VBA) features. This chapter
covers a variety of fundamental VBA programming topics, including VBA syntax, using the VBA
editor, and integrating VBA code with Excel spreadsheets. Experienced VBA users can safely
skip this chapter.

Chapter 3, Collecting and Cleaning Up Data

Shows you how to import data into Excel from a variety of sources, including text files,
databases, and the Web.

Chapter 4, Charting

Shows you how to visualize data in Excel. This chapter shows a variety of example charts,
including line, bar, 3D surface, and combination charts.

Chapter 5, Statistical Analysis

Shows you how to perform standard statistical calculations in Excel, such as computing
summary statistics, calculating confidence intervals, and performing analysis of variance,
among other calculations.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6, Time Series Analysis

Is an extension of the data analysis topics covered in Chapter 5, but specifically focusing on
conducting various time series analysis tasks, including forecasting and Fourier transforms in
Excel.

Chapter 7, Mathematical Functions

Introduces you to many of Excel's useful math functions.

Chapter 8, Curve Fitting and Regression

Continues discussion of data analysis, specifically focusing on curve fitting and regression
analysis.

Chapter 9, Solving Equations

Shows you how to leverage Excel to solve linear and nonlinear equations, as well as linear and
nonlinear systems.

Chapter 10, Numerical Integration and Differentiation

Shows you how to perform various numerical integration calculations, such as computing areas
and moments of areas, among others. This chapter also shows you how to perform numerical
differentiation using standard difference formulas and how to improve the results.

Chapter 11, Solving Ordinary Differential Equations

Shows you how to solve initial value and boundary value problems using standard numerical
techniques such as the Runge-Kutta and shooting methods.

Chapter 12, Solving Partial Differential Equations

Shows you how to leverage Excel to help solve problems involving partial differential equations.

Chapter 13, Performing Optimization Analyses in Excel

Shows you how to perform optimization analysis using Excel's built-in optimization tools. This
chapter also shows you how to implement a not so standard methoda genetic algorithmusing
VBA.

Chapter 14, Introduction to Financial Calculations

Introduces you to some of Excel's extensive financial analysis capabilities.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Conventions in This Book

The following typographical conventions are used in this book:

Constant width

Indicates VBA and Excel functions; spreadsheet formulas and cell data; user-assigned names
for cells, rows, and columns; and other literals. Also used for code exampes and for text that
you type in literally.

Constant width italic

Indicates placeholders (for which you substitute an actual name) in examples, cell formulas,
and Excel function calls.

Constant width bold

Used to highlight segments of code.

Italic

Used for URLs, file extensions, filenames, and directory names. Also used for emphasis and to
introduce new terms.

Indicates a tip, suggestion, or general note.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book doesn't require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Excel Scientific and Engineering Cookbook, by David M. Bourg.
Copyright 2006 O'Reilly Media, Inc., 0-596-00879-1."

If you feel your use of code examples falls outside fair use or the permission given here, feel free to
contact us at permissions@oreilly.com.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Safari Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book,
that means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

We'd Like Your Feedback!

The information in this book has been tested and verified to the best of our ability, but mistakes and
oversights do occur. Please let us know about errors you may find, as well as your suggestions for
future editions, by writing to:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the U.S. or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information.
You can access this page at:

http://www.oreilly.com/excelseckbk

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
our web site at:

http://www.oreilly.com

http://www.oreilly.com/excelseckbk
http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Acknowledgments

Thanks to O'Reilly for taking on this project with me. This is my third book project with O'Reilly, and I
can say the staff at O'Reilly are true professionals and a joy to work with. Special thanks go to my
editor, Simon St. Laurent, for his skillful editing and flexibility in allowing me to pursue my vision for
this book.

I want to extend thanks to the respectable Dr. Dongming Wei at the University of New Orleans for his
thoughtful technical review. And thanks to my friend and Excel power user extraordinaire Kenneth
Humphreys for his meticulous review and suggestions.

Finally, I want to dedicate this book to my lovely wife, Helena, and beautiful daughter, Natalia, and
thank them for their unwavering support.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 1. Using Excel

Section 1.0. Introduction

Recipe 1.1. Navigating the Interface

Recipe 1.2. Entering Data

Recipe 1.3. Setting Cell Data Types

Recipe 1.4. Selecting More Than a Single Cell

Recipe 1.5. Entering Formulas

Recipe 1.6. Exploring the R1C1 Cell Reference Style

Recipe 1.7. Referring to More Than a Single Cell

Recipe 1.8. Understanding Operator Precedence

Recipe 1.9. Using Exponents in Formulas

Recipe 1.10. Exploring Functions

Recipe 1.11. Formatting Your Spreadsheets

Recipe 1.12. Defining Custom Format Styles

Recipe 1.13. Leveraging Copy, Cut, Paste, and Paste Special

Recipe 1.14. Using Cell Names (Like Programming Variables)

Recipe 1.15. Validating Data

Recipe 1.16. Taking Advantage of Macros

Recipe 1.17. Adding Comments and Equation Notes

Recipe 1.18. Getting Help

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.0. Introduction

This chapter is necessarily basic and is intended for readers new to Excel or with little Excel
experience. Experienced users may skip this chapter without loss of continuity. The aim of this
chapter is to get you acquainted with Excel's interface and the main features and capabilities that
we'll use throughout the remainder of this book. I'm also going to show you several techniques that
will help you create presentable spreadsheets and allow you to work efficiently in Excel. The
techniques and features summarized in this chapter will be put to use in the recipes throughout the
remainder of this book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.1. Navigating the Interface

Problem

You've never used Excel before and don't know where to start.

Solution

Start Excel and begin poking around the interface to become familiar with it.

Discussion

This solution sounds simple and it is. I believe there's no better way to learn something on the
computer than to just start exploring and experimenting. Don't worry about breaking anything. The
worst you can do is create a nonsensical spreadsheetin which case, you can exit Excel without saving
anything and start over fresh. I have a four-year-old daughter who loves playing around in Excel
because of the paperclip office assistant. If she can't ruin anything with all her random clicking and
typing, then I think you're in good shape to do some purposeful exploring. That said, I won't just
throw you to the wolves, but will point you in the right direction to begin your journey.

Excel is just like any other standard Windows application: it consists of a multiple-document interface
main window containing a main menu bar, toolbars, and a status bar.

A multiple-document interface main window is just a window that acts as a
container for several of the same type of files, so to speak. For example, in
Excel you can have more than one spreadsheet open at once and switch
between them. Word is another example; you can have many different Word
documents open at once and switch between them as desired. By contrast, an
application based on a single-document interface window is one that allows you
to open up and work on only one file at a time. Many specialized programs are
based on this paradigm.

Figure 1-1 shows a screenshot of Excel as installed on my computer. You'll notice that it looks like
any other Windows application, with one distinct difference.

Figure 1-1. Excel's main window

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In addition to the standard menu bar, toolbars, and status bar, the window contains a large grid of
cells . These cells are arranged in an organized matrix, with letters identifying columns and numbers
identifying rows. This is the spreadsheet. Notice that there are a few tabs toward the bottom of the
spreadsheet labeled Sheet 1, Sheet 2, and Sheet 3. By default, Excel starts with a blank workbook .
A workbook contains multiple sheets, which can be linked together. You can add or remove
spreadsheets from a workbook, rename the sheets, put data and formulas on one sheet and refer to
them from another sheet, and so on. We'll explore the details of working with spreadsheets and
workbooks throughout the remainder of this book. For now, let's continue getting acquainted with the
window itself.

Main menu bar

The main menu bar gives you access to all of Excel's features and functionality. Excel's main menu
bar contains the following menus:

File

Access the usual file operations such as open, save, print, and exit.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Edit

Access the standard cut, copy, paste, find, replace, and other operations.

View

Customize Excel's appearance by changing options such as page layout, zoom, toolbars, status
bar, and task pane.

Insert

Add various spreadsheet elements such as cells, rows, and columns, as well as other objects
such as notes, comments, and pictures.

Format

Customize the formatting of text, cells, rows, columns, and other aspects of your spreadsheets.

Tools

Access various useful tools including spelling tools, change tracking, formula auditing, and a
host of useful analysis tools such as goal seek, solver, and data analysis tools. The tools menu
also provides access to the Customize and Options windows, allowing you to tailor Excel to your
specific needs and preferences.

Data

Access various data management tools such as sorting, validation, and tables.

Window

Manage Excel's windows by using features such as arranging windows and splitting panes.

Help

Access Excel's built-in help system.

These nine menus comprise the standard menus built into Excel. I encourage you to click through
these menus in your version of Excel to familiarize yourself with them a little. We're going to use
these menus a great deal throughout the remainder of this book.

Take another look at Figure 1-1 and notice that my version of Excel has one more menu option in
addition to the nine just summarized. In my case, I have Adobe PDF converter installed, so a custom
menu option for it appears in Excel's main menu bar after the standard menus. (Such custom menus
will not appear on your version of Excel unless you've installed third-party software that adds them.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

I should mention that you can also add your own menus using techniques that we'll discuss in other
recipes throughout this book.

As with most standard Windows programs, you can access the menu using the mouse or the
keyboard. Accessing the menu with the mouse is, of course, as simple as pointing and clicking. Notice
in Figure 1-1 that the View menu is currently visible. Also notice the little down arrow icon at the
bottom of the menu. Whenever you see this icon on a menu, it means there are more menu items
available to you, but they are hidden. By default, MS Office applications hide less frequently used
menu items from view, showing only your most frequently used items in an effort to simplify the
menus. If you click the down arrow icon, the full menu will appear. I personally don't like this feature
and prefer to see the menus in their entirety all the time.

You can change this behavior by going to the Tools Customize... menu and clicking the Options
tab (see Figure 1-2).

Figure 1-2. Customize window

On the Options tab you'll see a checkbox labeled "Always show full menus." If you check that
checkbox, full menus will be shown all the time. Otherwise, you'll get the abbreviated menus, in
which case you can select an option to show the full menus after a short delay. Press the Close
button to save your changes and get rid of this window.

There are two ways to access menu items with the keyboard. The first way involves using the Alt key
on your keyboard to set input focus on the main menu bar. In Excel, or any other Windows
application for that matter, press the Alt key and you will notice that the first menu on the main

http://lib.ommolketab.ir
http://lib.ommolketab.ir

menu bar gets highlighted. This means the menu has focus. Also notice that each menuFile, Edit,
View, and so onhas one letter underlined. The underlined characters are called accelerator
characters. After pressing the Alt key and giving focus to the main menu bar, you can press a key
corresponding to one of those accelerator characters to open the corresponding menu. For example,
the key sequence Alt-V will open the View menu, as shown in Figure 1-1.

You'll notice each menu item in the View menu also contains an accelerator character. If you now
press the key corresponding to one of these accelerators, you'll activate the corresponding menu
item. For example, the key sequence Alt-V-Z will activate the Zoom menu item, opening a new
window that allows you to customize the zoom level of your spreadsheet. The zoom feature is helpful
for those of us whose eyesight needs a little help.

The second way to access menu items from the keyboard involves the use of shortcut keys . Take
another look at the View menu shown in Figure 1-1. Notice the Task Pane menu item has a key
combination denoted to the right. In this case the key combination is Ctrl-F1 . This is the shortcut key
combination to activate the Task Pane menu item. (This applies to Excel 2003. Earlier versions may
not have this shortcut.) So, if you press and hold the Ctrl key and then press the F1 key (while still
holding the Ctrl key down), you'll activate the Task Pane menu item. When you execute this key
combination, the task pane on the right side of the window will disappear. If you execute this
shortcut again, the task pane will reappear. (We'll come back to the task pane in a moment.)

Both of these keyboard techniques are designed to speed up your productivity by providing quick
access to Excel's functionality: you don't have to keep taking your hand off the keyboard to navigate
with the mouse. These quick access features are not unique to Excel and, in fact, are standard
Windows interface features. Most well-designed Windows applications provide one or both of these
features.

Task pane

I've already mentioned the task pane in the context of accessing menus using shortcuts (i.e.,
toggling the task pane's visibility by using Ctrl-F1); however, I haven't mentioned what the task pane
actually does. The task pane provides another portal to features included in Excel, giving you access
to Excel's built-in and online help systems, a searchable dictionary and other reference material, and
various spreadsheet templates. With Excel open as shown in Figure 1-1, click the little down arrow
icon located to the right of the Getting Started title on the task pane to view the various tools
available to you.

The one I find most useful is the Help tool. The Help tool is easy to use and provides access to both
built-in and online sources of documentation on Excel . If you click the Help option, you'll be
presented with a text box at the top of the pane that allows you to type in search terms for topics.

For example, if you type in keyboard shortcuts, the task pane will switch to the Search Results view,
displaying a list of topics related to your search terms. In my case, the topic Keyboard Shortcuts is at
the top of the list. Find this in your version and click it. Upon doing so, you'll be presented with a new
help window showing a list of topics specifically related to keyboard shortcuts.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Excel has keyboard shortcuts for many features in addition to the menu
shortcuts we discussed earlier. The help documentation describes all of those
available to you and is a convenient reference for learning all sorts of useful
shortcuts to help you work more efficiently. I encourage you to explore this
documentation.

While the task pane does provide convenient access to some useful features, I find it sometimes gets
in the way of my spreadsheet. So, when I'm not using it, I Ctrl-F1 it away or reduce its width by
clicking and dragging the task pane's left edge over toward the right, making more space for the
spreadsheet.

Toolbars

Referring back to Figure 1-1, or your version of Excel if you have it open now, you'll notice that the
Excel window contains many toolbars and tool buttons. These are standard, dockable toolbars that
provide yet another means to access Excel's features. Many of the toolbars duplicate menu
functionality, giving you another way of selecting menus; other toolbars provide access to features
buried in various dialog boxes or windows that are themselves accessible from the menu or other
toolbars. These toolbars are provided for convenience and it's up to you to develop your own
preferences, i.e., whether you prefer navigating the menu, using shortcut keys, or clicking tool
buttons. I do all three.

You may have noticed that the toolbars in my version of Excel, shown in Figure 1-1, are different
from those shown in your version of Excel. Certain toolbars that I use frequently are visible, while
others are hidden. You can customize your toolbars to your liking. To do so, open the View menu and
select the Toolbars submenu. This will display a list of toolbars available to you for display. The ones
shown with checkmarks to their left are visible. You may select whichever ones you'd like to show or
hide.

You can also customize the toolbars by using the Customize window shown in Figure 1-2. To activate
this window, select Tools Customize.... Select the Toolbars tab to display a list of available
toolbars that you can show or hide.

The Commands tab in the Customize window allows you to further customize
your toolbars. Using the Commands tool, you can select specific commands and
then drag-and-drop a button corresponding to each command onto Excel's
toolbar area. This allows you to tailor your toolbars to contain only those
command buttons you use most frequently, without cluttering your window with
rarely used buttons.

Toolbars in Excel are dockable. This means you can drag them around to rearrange them. To do so,
click (and hold) the four dots located to the left of a toolbar and drag it around. You can rearrange all
your toolbars in this manner, placing some at the top of the window (below the main menu bar),
some toward the bottom of the window (above the status bar), and some to the left or right of the
window.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

The aim of this recipe is not to provide a treatise on Excel's interface, but to acquaint you with its
layout so we can explore Excel further throughout this book. As I said earlier, I think the best way to
become familiar and comfortable with Excel is to explore it directly. I've shown you how to access
Excel's online help and documentation already, and they are a good source for additional reading
material on Excel.

If you're interested in browsing Excel's documentation rather than searching it, then click the "Table
of Contents" link just below the search term entry box on the Excel Help task pane (see Figure 1-3).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.2. Entering Data

Problem

You've familiarized yourself with Excel's layout and now you're ready to enter data into a spreadsheet
but don't know how.

Solution

Select a cell in the spreadsheet and starting typing. Press Enter when done.

Discussion

When you select a cell in a spreadsheet, it becomes highlighted with a thick black border, as shown in
Figure 1-3. In that figure the cell in row 3 and column B is the selected cell. Notice the row and
column headings of the currently selected cell are highlighted. Once a cell is selected in this manner,
you can simply start typing on the keyboard to insert text in the cell. Press Enter when you are
finished and notice that the cell below the one within which you entered text is now automatically
selected. This allows you to type and enter text in a column of cells rapidly, without having to select
the next cell using the mouse.

Figure 1-3. Excel Help task pane

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Upon entering text, you can also press the Tab key to commit your entry and move the cell selection
to the next cell to the right. Alternatively, you can use the arrow keys on your keyboard to commit
an entry and move to any cell adjacent to the cell within which you've entered text. Of course you
can always use the mouse to click on a cell, selecting it for input; however, doing this may slow you
down if you are trying to enter text in a contiguous group of cells, since you'll have to remove your
hands from the keyboard very often.

You can also enter text into a cell using the formula bar (located just above the spreadsheet grid and
just below the toolbars), as shown in Figure 1-4. The formula bar has an fx icon, adjacent to a long
white rectangular area.

Click anywhere in the white rectangular area of the formula bar to give it the input focus and then
start typing. Your text will appear in both the formula bar and the currently selected cell. To commit
the entry, press the Enter key or press the green checkmark icon on the formula bar. To cancel your
entry, press the red x icon or press the Esc key on your keyboard.

Figure 1-4. Using the formula bar

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Let's say you want to make changes to some text already entered in a cell. To make changes to a cell
entry, select the cell with the mouse or use the arrow keys to navigate the grid and then press the F2
shortcut key to put the cell in edit mode, allowing you to edit the contents of the cell. Alternatively,
double-clicking on a cell will automatically select it and put it in edit mode. Finally, you can always
select a cell and simply start typing and press Enter to completely overwrite the contents of the cell.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.3. Setting Cell Data Types

Problem

You've learned how to enter text from the previous recipe, but now you want to enter data other
than text (e.g., numbers, dates, and currency).

Solution

Enter the data just as you would text and let Excel automatically figure out its type, or use the
Format Cells... menu to open a dialog box allowing you to manually format the data type for a
cell.

Discussion

In the previous recipe, I had you simply enter text in cells. Whether you entered a word or a number,
Excel automatically figured out what type of data you entered. In general, input starting with letters
is automatically interpreted as text, and input starting with numbers is automatically interpreted as
numeric. There are some special cases worth noting here. Preceding any string of charactersnumbers
or letterswith the ' symbol forces Excel to interpret the data as text. Preceding a string of numbers
with the $ symbol forces Excel to interpret the data as currency. Using E (or e) while entering a
number in scientific notation forces Excel to interpret the string as a number in scientific notation.
Entering numbers with dashes between them will cause Excel to interpret the number as a date. I
encourage you to try entering various types of data like those I describe here to see how Excel
handles the data. In some cases you'll notice that Excel will reformat your data a little. For example,
if you type 1.2345e3 in a cell, it will appear as 1.23E+3 in the cell and 1234.56 in the formula bar
(when the cell is selected).

In general, Excel is pretty smart about interpreting the data type you intend; however, sometimes it
does need a little help. Also, sometimes you may want to change the format of the data to give it an
appearance other than the default appearance assigned to it by Excel. In these cases you can
manually specify the type and format of data contained in cells by accessing the Format Cells dialog
box . You can do so by selecting Format Cells... from the menu or by using the shortcut key
combination, Ctrl-1.

Figure 1-5 shows the Format Cells dialog box. Notice here I had a cell selected that contained the
entry 1.2345e3, which appears in the Sample area of the dialog box. This allows you to preview the
results while making format changes.

I find that one of the most common uses of formatting tasks is specifying the number of decimal
places to show for numbers. You can specify the number of decimal places to show by entering a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

value in the "Decimal places" field. Changing this setting is a format change only; it does not change
the data itself. For example, if you enter 123.45678 in a cell and set the number of decimal places to
3, the cell will show 123.457 but the actual number is still stored as 123.45678, as can be seen in the
formula bar when the cell is selected.

You can also select one of the categories shown in the Format Cells dialog box to set the type of data.
If you click each category in the list, a short description and other formatting options will appear in
the Format Cells dialog box. For example, if you select the Number category, the Format Cells dialog
box will appear (see Figure 1-6).

The new formatting options appear on the right side of the dialog box, just under the "Decimal
places" setting.

Format changes affect the currently selected cell and remain in effect until you change the format. If
you set a cell to display Currency and then enter a new value in that cell, it will also be interpreted as
currency.

Figure 1-5. Format cells dialog box

Figure 1-6. Format Cells with the Number category selected

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You need not always use the Format Cells dialog box to change cell formatting. Some of these
formatting operations have been assigned to toolbar buttons for convenience. Take a look at Figure
1-7 and notice the toolbar buttons that I highlighted. These specific buttons allow you to change
some cell format properties with the click of a button.

Figure 1-7. Cell format toolbar

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The $ button changes the cell format to currency while the % button changes the cell format to
percentage; e.g., if you enter 0.38, it will show up as 38%. The two other highlighted buttons
respectively increase and decrease the number of decimal places to show.

I should also point out that formatting changes take effect for all of the cells currently selected. So
far, I've only discussed selecting a single cell; however, there are times when you may want to make
changes to multiple cells all at one time. The next recipe explains how to select more than one cell at
a time.

See Also

I find the Number, Percentage, and Scientific format categories more than adequate for most
scientific and engineering computing tasks; however, there may be occasions when you want to set
your own specific data format for a unique application. In this case, you can actually specify your own
format template in the Format Cells dialog box by setting up format codes using the Custom format
category. I won't go into the details here since it's fairly well documented in Excel's online help. To
learn more, open the Excel Help task pane and do a search using the key phrase "Custom
Formatting." In your search results, look for the topics entitled "Create or delete a custom number
format" and "Number format code."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.4. Selecting More Than a Single Cell

Problem

You want to select more than a single cell at one time; for example, so you can set the format of a
group of cells at once rather than individually.

Solution

The easiest way to select a contiguous group of cells is to click and drag with the mouse. Specifically,
press the left mouse button to select a cell at one corner of the group and then hold down the mouse
button while dragging to an opposite corner of the group of cells. The whole block of cells will be
selected. You can click and drag to select a column of cells, a row of cells, or a block of cells, as
described here.

Discussion

As with most things in Excel, there are number of alternative methods for selecting a group of cells.
Clicking and dragging with the mouse is probably the most common way, but you can also perform
the same operation using the keyboard. With a cell selected, hold down the Shift key and press one
of the arrow keys to select a range of cells.

You can also use the Shift key in conjunction with the mouse. For example, select a cell and then hold
down the Shift key and select another cell. This selects the range of cells between the two corner
cells.

If you want to select a group of cells that are not contiguous, you can do so by clicking each desired
cell while holding down the Ctrl key.

To select all of the cells in the spreadsheet, click the small rectangle in the grid heading bar just
above the first row heading and to the left of the first column heading. This is called the Select All
button (the Select All shortcut is Ctrl-A).

To select an entire row, click the row heading. Likewise, to select an entire column, click the column
heading. You can use the Shift and Control keys to select groups of rows or columns from their
headings, analagously to how you select groups of cells.

When a group of cells is selected, all of the selected cells are highlighted as shown in Figure 1-8.

The selection methods described here are fairly common selection tasks that I use all the time. In
some cases, even more control over selection is required. In this case, Excel has a feature that allows

http://lib.ommolketab.ir
http://lib.ommolketab.ir

you to select cells based on some specific criterion (for example, cells that contain text or cells that
contain numbers).

Press Ctrl-G or select Edit Go To... from the main menu bar to open up the Go To dialog box.
Then press the button labeled Special to open the Go To Special dialog box, as shown in Figure 1-9.

Figure 1-8. Group of selected cells

The Go To Special dialog box allows you to select or go to cells that correspond to the selected
criterion. For the text selected in Figure 1-8, I selected the Constants criterion, which enabled the
checkboxes below Formulas, at which point I made sure only Text was checked. You can do the same
with numbers; for example, this is a convenient way to select all cells that contain only numbers, so
that in a single shot you can change the number of decimal places shown for all numeric cells.

See Also

To learn more about selecting cells, do a search in Excel Help using the phrase "selecting cells." In

http://lib.ommolketab.ir
http://lib.ommolketab.ir

your search results, click the topic "Select data or cells in a worksheet."

To learn more about using the Go To and Go To Special feature, do a search in Excel Help using the
phrase "Go To." In your search results, click the topic entitled "Use the Go To command to find
special cells."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.5. Entering Formulas

Problem

You've entered data and are ready to perform some calculations, but don't know how.

Figure 1-9. Group of selected cells

Solution

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You need to enter cell formulas in order to perform calculations on data contained in other cells.
Entering a formula is simple enough: simply select a cell to hold the formula and then type the equals
sign followed by your formula, which can refer to other cells that contain data. A formula to add two
numbers contained in cells A1 and A2 would look like this: =A1+A2.

Discussion

All formulas start with an equals sign, as in the =A1+A2 example. You can enter a formula in the same
way you enter text, as discussed in Recipe 1.2. You can either enter the formula directly in a cell
(pressing Enter when done), or you can use the formula bar, as discussed earlier. The cell containing
the formula will display the result of the formula and not the formula itself. To see the formula, just
look at the formula bar when the cell is selected. Or press the F2 shortcut key to edit the formula
directly in the cell, as shown in Figure 1-10.

Figure 1-10. Entering formulas

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The cell in column C row 4 contains a formula to divide the number contained in column A row 1 by
that in column A row 2. I pressed F2 to display the formula for editing directly in the cell.

Formulas may contain the usual mathematical operators such as +, -, /, and *, as well as any
number of other built-in functions, as discussed in Recipe 1.10.

I should mention here that spreadsheets are a bit different from procedural programs with which you
may be used to working. With a procedural program, you have to explicitly run it after writing the
code (we'll do this when we write custom macros and functions using Visual Basic for Applications in
Chapter 2). However, once you write a formula in a spreadsheet cell, it executes and remains up-to-
date automatically. Therefore, if you change the data in cells referred to by a formula, the results of
the formula are updated immediately. Excel takes care of making sure your spreadsheet calculations
are updated whenever you change anything.

Excel performs calculations on the stored values of cells (not the displayed
values), using 15 digits of precision.

To really leverage formulas, you must understand cell references . In the formula =A1+A2, the data
contained in the cells in rows 1 and 2 of column A are referenced as A1 and A2, respectively. In Excel
such references are called A1-style references. The letter refers to the column; the number refers to
the row number.

References to cells such as A1 are by default relative references . When a relative reference to a cell
appears in a formula, that cell is referred to in terms of its relative position to the cell containing the
formula. If you cut or copy the formula and then paste it someplace else, the cell references in the
formula will automatically change so that they refer to cells in the same relative position to the
formula as before. This is better explained by way of example.

In Figure 1-10, the cell A4 contains the formula =A1+A2, which uses relative references. If I copy and
paste the formula from cell A4 to cell A5, then the new formula will be =A2+A3. I moved the formula
one row down, so the relative cell references were also adjusted by one row. If I moved the formula
to column B, then the cell references would have changed from A to B.

This behavior may seem a bit unusual at first, but the advantage of it is clear when you are setting
up tables of data and formulas to manipulate the data. For example, say I had two columns of data,
B and C, as shown in Figure 1-11.

Figure 1-11. Relative cell references

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now in column D, I want to enter a formula to multiply each number in column B by the
corresponding number (on the same row) in column C. To do this, I can enter the formula =B2*C2 in
cell D2 to yield the product of numbers in cells B2 and C2. For all the remaining rows, I can simply
copy and paste the formula in cell D2 into cells from D3 to D7, and Excel will automatically adjust the
row numbers in the formulas. For example, after such copying and pasting, cell D7 contains the
formula =B7*C7. This saves you the time of having to rewrite each formula directly. Relative cell
references are also important when performing certain database filtering operations, as we'll discuss
later.

As useful as relative references are, they aren't always want you want. Let's say you have the data
as shown in Figure 1-11, but instead of just taking the product of the two numbers in columns B and
C, you want to also multiply this product by a single number contained in cell A1. Let's say you want
every product shown in column D to be multiplied by that same factor in cell A1. You might enter a
formula in cell D2 like =B2*C2*A1. This works for the first result contained in cell D2, but if you copy
and paste this formula into cells D3 through D7, the cell reference A1 will also be adjusted by 1 each
time, resulting in the formula =(B7*C7)*A6 in cell D7. This isn't want you want, since there are no
values in cells A2 through A6. To force Excel to refer to a specific cell you need to use an absolute cell
reference. This essentially fixes the cell reference to always refer to a specific cell no matter how the
formula is moved or copied. The syntax for an absolute reference to cell A1 in our example looks like
=(B2*C2)*A1.

The $ symbol in the cell reference indicates to Excel that you want to use absolute references. In this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

case we fixed both the column and the row in the example cell reference. If we wanted to fix just the
column, we would write $A1. Likewise, we could fix just the row by writing A$1.

When entering a formula in a cell, you can select another cell from the
spreadsheet to include that cell's reference in the formula. You can also press
F4 to cycle through the reference styles for the cell being referred to.

I use absolute references most often when performing calculations on datasets using formulas that
refer to common scientific or engineering constants.

Formulas cannot refer to themselves. For example, if you put a formula in cell
A3, it cannot contain a reference to cell A3. That's called a circular reference,
and Excel will give you a warning message if one occurs.

See Also

The A1 style of cell reference is the default reference style, but it isn't the only style; Recipe 1.6
discusses others.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.6. Exploring the R1C1 Cell Reference Style

Problem

You've seen the use of the A1 style of cell reference in Recipe 1.5 and are wondering if there are
other ways to refer to cells.

Solution

Yes, there are other ways to refer cells, such as the R1C1 style.

Discussion

Besides using the A1 style of cell reference, you can also use the so-called R1C1 style of cell
reference. This is not the default style, but in some cases it can be more intuitive or conducive to
matrix operations and programming, as we'll see later.

The R1C1 style uses numbers to identify both rows and columns in a spreadsheet. For example,
R1C1 refers to the cell in row 1 column 1. To use the R1C1 style you must first activate it. To do so,
go to the Tools Options... menu to open the Options dialog box. Once it's open, press the
General tab (see Figure 1-12).

Figure 1-12. General tab in the Options dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Check the box next to R1C1 reference style under the Settings heading to activate the R1C1 style.
When you press OK and return to your spreadsheet, you'll see that the column headings have
changed from letters to numbers, as shown in Figure 1-13.

Figure 1-13. R1C1 reference style

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Also notice that Excel automatically changed the formulas. For example, the formula in cell D7 (now
R7C4) was =B7*C7; now it's =RC[-2]*RC[-1], which is a relative reference in R1C1 style.

When using the R1C1 style, if you enter a cell reference like R3C5 (i.e., R followed by a number and C
followed by another number), you are using absolute cell references. The equivalent in A1 style would
be E3. Using brackets around the number following either R or C indicates relative cell references.
For example, R[1]C[2] refers to the cell one row down and two rows to the right of the cell containing
that reference. The cell two rows up and one row to the left would be referred to as R[-2]C[-1]. An R
or C not followed by a number or a number in brackets refers to the same row or column as the cell
containing the reference.

See Also

To learn more about cell references, see Recipe 1.7 and Recipe 1.14. You can also check out the
Excel Help topic "About cell and range references."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.7. Referring to More Than a Single Cell

Problem

Sometimes you need to refer to a group of cells, not just a single cell. For example, some formulas
discussed in Recipe 1.10 take more than a single cell as an argument. Thus you need to know the
syntax for referring to more than one cell.

Solution

Use cell ranges .

Discussion

A cell range is simply a contiguous group of cells in rows or columns, or both. For example, the cell
reference A1:A10 refers to the range of cells in column A from row 1 to row 10. The colon character
(:) is used to indicate a range reference. The reference A1:B10 refers to the range of cells from
column A row 1 to column B row 10. Technically speaking, the cell reference A1 is itself a range of
only a single cell; thus, in a sense, all cell references can be thought of as ranges.

See Also

See Recipe 1.10 for examples on where ranges are required as function arguments.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.8. Understanding Operator Precedence

Problem

You want to learn the specific order in which Excel executes operations in formulas.

Solution

Excel performs operations in formulas from left to right following the leading equals sign. In doing so,
Excel performs specific operations, if they are encountered in your formula, in the following order of
precedence: negation, exponentiation, multiplication and division, and addition and subtraction.

Discussion

You can change operator precedence using parentheses. For example, if you enter the formula
=A1+B2/C3 in a cell, Excel will perform the division first and then the addition. This may be what you
wantthat is, you want to add the result of B2 divided by C3 to A1. However, if you intend to divide
the sum of A1 and B2 by C3, then you need to write =(A1+B2)/C3. The parentheses force Excel to
perform the addition operation first, followed by the division.

You can also nest parentheses. For example you could write =((A1+B2)/C3)*C4, and so on. I find it is
always good practice to use parentheses liberally to be sure your formula is executed as intended.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.9. Using Exponents in Formulas

Problem

You need to write a formula that raises some number to some power but you don't know the syntax
for exponentiation in Excel.

Solution

Use the caret (^) operator.

Discussion

Raising a number to some power is a common calculation task. In Excel, the caret operator (̂) is
used for exponentiation. For example, to raise the number contained in cell A1 to the third power,
you could enter the formula =A1^3. You can use whole number exponents as well as decimal numbers
or even other operations. For example, the formulas =A1^0.25 and =A1^(1/4) both raise the value in
cell A1 to the one-fourth power.

You need not hardcode exponents. You could use a number contained in another cell as an exponent;
e.g., =A1^C5, or =A1^(C5+D10), or =(A1+A2)^(C5/E8), and so on.

See Also

See Recipe 1.10 for other common mathematical functions .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.10. Exploring Functions

Problem

The basic mathematical operators (+, -, /, *, and ^) are not enough to perform all the calculations
you need.

Solution

Use Excel's built-in functions, such as ABS(), SQRT(), and SIN(), as needed.

Discussion

Throughout this book, I'm going to use all sorts of built-in functions in various calculations from data
analysis to unit conversions to various engineering calculations. In this recipe I want to make you
aware of the wide variety of built-in functions and how to access them in your spreadsheets.

Excel has many built-in functions, which can be organized in the following categories:

Database functions

Database functions include functions that allow you to get information from database entries
and perform some statistical analyses of data contained in databases.

Date and time functions

Date and time functions include functions that allow you work with and perform calculations
using dates and times. For example, you may want to calculate the number of working days
between two dates, in which case you can use the NETWORKDAYS function. There are many
others, including functions to get the current date and time.

Engineering functions

Engineering functions include functions that allow you to work with complex numbers, convert
between number systems, and convert between systems of measurement. There are also
many other specialized functions for working with Bessel and Delta functions, among others.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Financial functions

Financial functions include many functions that help you analyze things like accrued interest,
depreciation, annuities, and investments, among many others.

Logical functions

Logical functions include a small set of useful logical functions . For example, the IF function
allows you to evaluate a logical expression and return one value if the expression is true and
another value if it is false. There are other functions including AND, OR, and NOT, among others,
that help you construct logical expressions.

Lookup functions

Lookup functions are useful for looking up data in tables, matching values, returning rows or
columns for cell references, and other tasks.

Math functions

Math functions help you perform calculations, and include operations such as taking the
absolute value of a number, finding square roots, working with logarithms and exponential
functions, summing values of data contained in rows or columns, and working with
trigonometric functions. This is perhaps the most used set of functions for the sorts of
calculations discussed in this book.

Statistical Functions

Statistical functions are useful for calculating averages, standard deviations, variances, among
many other calculations. There is also a set of functions useful for working with probability and
distributions, including binomial, Weibull, and normal distributions, among others.

Text and data functions

Text and data functions include a set of functions for manipulating text and converting numeric
data to text. For example, there are functions to compare text strings, search for a substring
within a larger text string, convert a string to all upper- or lowercase, and replace characters
within a string.

There are a few other categories of built-in functions that I didn't summarize here. These functions
are rather specialized and are useful for working with external programs and databases and collecting
information from the host operating system, among other tasks.

The recipes throughout the remainder of this book will use many built-in functions, most notably, but
not limited to, the math, statistical, engineering, and logical functions. I'm not going to list all of the
available functions here, since they are already documented fairly well within Excel itself and there
are also many books that serve as complete Excel function references. I do want to show you how to
access these built-in functions now so you can be familiar with the process when you read the more
specific recipes to follow in later chapters of this book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The easiest way to use a function in a formula is to simply type the function. For example, to sum the
values contained in a column consisting of the cell range C1:C10, you can write a formula using the
SUM function like this: =SUM(C1:C10). In this case, SUM is the function and the cell range is the
argument of the function.

When typing such a formula in a cell, as soon as you type the opening parenthesis after the function
name, Excel will display a small, helpful information box below your formula, showing what
arguments are expected (assuming you've typed a valid built-in function and spelled it correctly). At
this point, you can type the arguments directly or, if the argument calls for a cell range, you can
actually point and click to select the cell range, and Excel will automatically complete the cell
reference argument for you. This reduces working with cell references in formulas to a point-and-click
operation rather than typing everything out manually.

When typing a function, if you'd like more help on the function aside from the argument list that's
automatically displayed, you can press the fx icon (called the Insert Function button) in the formula
bar to display the Function Arguments dialog box (see Figure 1-14).

Figure 1-14. Function Arguments dialog box

The Function Arguments dialog box displays controls and notes to help you construct the arguments
for the function. There's also a link to more help on the specific function, as shown in the lower-left
corner of the dialog box in Figure 1-14.

Of course, the method of using functions discussed so far requires that you at least know the function
name that you'd like to use. If you don't know or can't remember the name, you can either look it up
in Excel Help or you can use the formula bar and the Insert Function dialog box to help you find
appropriate functions.

To use the Insert Function dialog, select the formula bar to begin writing a formula and then press
the fx icon when you need to look up a function. This will bring up the Insert Function dialog box (see
Figure 1-15).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 1-15. Insert Function dialog box

With the Insert Function dialog box open, you may type a short description of what you're looking for
in the "Search for a function" field. Or you can select a category from the drop-down list to view a list
of functions within that category. From there you can select the specific function you need and press
OK. When you press OK, the Function Argument dialog box will open to assist you with supplying
function arguments. When you press OK in the Function Argument dialog box, you'll see your
selected function, including arguments, appear in the formula bar; at this point, you can continue
writing your formula.

You can nest functions. For example, you can use a formula like
=SQRT(ABS(C5)) to return the square root of the absolute value of the value
contained in cell C5.

See Also

Excel Help contains a handy function reference. I usually have the task pane opened up with the
Excel Help page displayed and open to the function reference section of the help guide. To open the
function reference, open the task pane (Ctrl-F1) and select Excel Help from the drop-down list at the
top of the pane. Click the "Table of Contents" link, look for the topic "Working with Data," and click it.
Now look for the subtopic "Function Reference" and click it to see the various function categories,
which you can click to reveal specific topics on each built-in function.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There are also many useful Excel function reference books on the market, such as Excel 2000 in a
Nutshell (O'Reilly), by Jinjer Simon. It contains a concise reference to all of the menu options and
built-in functions in Excel.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.11. Formatting Your Spreadsheets

Problem

You've got data and some calculations, but the spreadsheet looks unpresentable.

Solution

Format your spreadsheet to make it more presentable and better organized.

Discussion

In Recipe 1.3, I discussed how to format cells to specify the type of data (e.g., text, numbers,
currency, etc.). In this recipe, I'll show you a few other formatting techniques. Take a look at the
spreadsheet in Figure 1-16.

This simple spreadsheet merely calculates values for a function of the form y = xn, where n is the
exponent shown on the spreadsheet. It also calculates the cumulative area under the curve from 0 to
x. The results are plotted on a chart adjacent to the calculation table. Chapter 4 covers charting in
detail, so I won't discuss the chart here. Instead I want to focus on the calculation table.

I could have simply filled in a column of x values, entered formulas for the y and area values, and left
it at that. However, that would look messy. More than likely you'll want to include your calculations in
reports or share them with others, so making your spreadsheets presentable is a good idea.
Formatting also serves as a form of documentation so that you can come back to a spreadsheet
weeks or years later and quickly see what you did. There's (almost) nothing worse than opening an
old spreadsheet and seeing just a grid of scattered numbers.

Figure 1-16. Formatted spreadsheet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There are many ways to format your spreadsheet. In this example, I added a text label, in italics, in
the cell C2 to indicate the purpose of the value in cell D2. I also added some borders around the table
of calculations and delineated the column headings with a filled background and bold text. I also
centered the column labels above the data instead of using the default left justification for text. If
you're a keen observer, you may have noticed that I also changed the column width of several
columnsI reduced the width of columns A and B so they wouldn't take up too much space and I
increased the width of column E to accommodate the area column label. These are some of the most
common formatting tasks I make on virtually every spreadsheet I write. They are simple and
effective.

You can access Excel's formatting functions via the Format menu . There you'll find options for
formatting cells, whole rows or columns, and even the entire spreadsheet. I personally use the cell
formatting options the most. You've already seen how to access the Format Cells dialog box in Recipe
1.3, and as shown in Figure 1-6. You can use the main menu bar or the shortcut key combination,
Ctrl-1, to open the Format Cells dialog box.

The Number tab displays the data type formatting options discussed earlier. The other tabs give you
control of other cell aspects:

Alignment

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Set the position, orientation, and justification of text within a cell. You can also specify whether
long text should wrap around, creating multiple lines of text in a single cell.

Font

Specify the font type, style, and size of text to appear in a cell. For example, you could specify
Arial font type with a bold style and a size of 10 points.

Border

Add borders to any edge of a cell. You can select from a variety of line styles, including solid,
dashed, and dotted, among others, and even set the line thickness.

Patterns

Set the background color or pattern for a cell.

Protection

Specify whether a cell is protected (meaning it can't be changed without a password) and
whether a cell is hidden.

While the Format Cells dialog box presents you with many cell formatting options, I prefer to use the
toolbars for quick formatting tasks. If you look closely at Figure 1-16, you'll see the formatting
toolbar visible just above the formula bar. This toolbar contains buttons to change a cell's font,
justification, data type, number of decimal places, indention, borders, fill patterns, text color, and
more. You can customize this toolbar as discussed in Recipe 1.1.

There may be times when you want to clear all the formats applied to a cell. To do so, select the cell
whose formats you want to clear and then select Edit Clear Formats from the main menu
bar.

See Also

The formatting options discussed here are common and useful. There are other formatting options
that may come in handy from time to time, although you probably will not use them too often. These
options include the row, column, and spreadsheet formatting options mentioned earlier, as well as
others such as conditional formatting, which allows you to set formatting for a cell contingent on the
value of the cell relative to some criterion you specify. We'll make use of these other formatting
options throughout the remainder of the book. For the time being, you can read more about
formatting options in Excel's built-in help system. To do so, open Excel Help by pressing Ctrl-F1 and
click the "Table of Contents" link. Look for the "Working with Data" topic and click on it to reveal a list
of subtopics. Look for the "Formatting Data" subtopic and click it to see a list of specific formatting-
related topics.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.12. Defining Custom Format Styles

Problem

You find yourself applying the same formats repeatedly to different cells and would like to save time
when doing so.

Solution

Define your own custom style and apply it to cells, taking care of many format settings all in one
step.

Discussion

Select Format Style from the main menu bar to open the Style dialog box as shown in Figure 1-
17.

Figure 1-17. Style dialog box

The drop-down combo box next to the "Style name" label contains a list of predefined styles that you

http://lib.ommolketab.ir
http://lib.ommolketab.ir

can apply to cells. Some of these are familiar, including the normal cell style along with currency and
percent styles. You can add your own style to this list. Click the combo box, type in a unique name
for your new style, and then press the Add button. Now you can check off the format options you
want to include in your style and modify the format settings by pressing the Modify button. Pressing
the Modify button opens the Format Cells dialog box (see Figure 1-6 in Recipe 1.3). You can make
any format selection you desire and close this dialog box when done. The settings you specified will
be applied to your custom style.

Once your style is defined, you have a few options for actually using it to format cells. One way to
apply your custom style is to select the desired cell (or cells) and then select Format Style...
from the main menu bar to open the Style dialog box again. There you can select your desired style
and press OK to close the dialog box. Your style will then be applied to the selected cell (or cells).

A faster approach involves adding a style drop-down list component to one of the toolbars on the
main window so that you can simply select cells and then select a style to apply from the toolbar.

To add a style drop-down list to a toolbar, select View Toolbar Customize... from the main
menu bar to open the Customize dialog box. Select the Commands tab (shown in Figure 1-18).

Figure 1-18. Customize dialog box

Now select Format from the Categories list to show the format commands. From the Commands list
look for the Style drop-down listbox shown in Figure 1-18. Don't confuse it with the Style... dialog
box command. Click and drag the Style listbox control from the Commands list over to any toolbar,
preferably the format toolbar, on Excel's main window. After you close the Customize dialog box, that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

listbox will be available to you on the toolbar.

To use the Style listbox, select the cells to which you want to apply a style and then select the
desired style from the Style listbox that you added to the toolbar.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.13. Leveraging Copy, Cut, Paste, and Paste
Special

Problem

You'd like to take advantage of standard Windows copy-and-paste functionality but aren't familiar
with the caveats for doing so within Excel.

Solution

Read the following discussion.

Discussion

Under Excel's Edit menu , you'll find the usual Cut, Copy, and Paste menu items. For the most part,
these work just as they do in any other Windows program. To move the contents of a cell from one
place to another, use the Cut and Paste operations. To copy a cell into other cells, use the Copy and
Paste operations. There are a few things to be aware of when performing these operations in Excel:

When you cut or copy and then paste, all of the cell's attributes are copied, along with the data
or formula that it contains. This means things like font, alignment, borders, and patterns will be
copied as well.

When you cut and paste data to a new location, any formulas referring to its original cell
location are automatically updated to refer to its new location. Copying a cell to another location
has no effect on formulas that refer to the original cell.

When you copy a cell containing a formula, relative cell references in the formula will be
adjusted by the relative distance of the pasted cell from the copied cell.

When you cut a formula and paste it to a new location, the formula will remain unchanged; i.e.,
it should still refer to the same cells and give the same results as before the cut-and-paste
operation.

Sometimes you may want to cut or copy and then paste all of the format settings and data from one
cell to another. In cases when you don't, you can use the Paste Special option, which is also under
the Edit menu. When you select the Paste Special option, a dialog box like that shown in Figure 1-19
appears.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 1-19. Paste Special dialog box

Here you can select exactly what it is you want to copy and paste. For example, if you want to copy
and paste only cell format settings, you can select the Formats option. Similarly, if you want to copy
and paste just a formula and not the cell's formatting, then you can select the Formulas option, and
so on.

The Operation options allow you to specify some basic mathematical operations to perform on the
data being copied and the contents of the destination cell. For example, say you copy a number from
one cell and Paste Special it to a cell that already contains another number. If you select the Add
option, the sum of the two cell values will be entered in the destination cell.

The "Skip blanks" option excludes empty cells from the selected range of cells being copied. The
Transpose option is similar to a matrix transpose operation. For example, if you copy a column of
numbers and paste it with the Transpose option, it will be converted to a row of numbers.

Here are some handy keyboard shortcuts for the basic cut-and-paste operations:

Cut

Ctrl-X

Copy

Ctrl-C

Paste

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Ctrl-V

There is no shortcut for the Paste Special operation; however, you can right-click anywhere in your
spreadsheet to bring up a pop-up menu containing the Paste Special option. I find this quicker than
accessing the main menu bar.

Cut, Copy, Paste, and other options (e.g., Format Cells) are also shown on the
right-click pop-up menu.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.14. Using Cell Names (Like Programming
Variables)

Problem

You frequently use a particular cell in formulas and are tired of typing the reference. You'd like a
more descriptive syntax, similar to that used for variable or constant names in traditional
programming languages.

Solution

Use cell names .

Discussion

Select the cell or cell range for which you want to define a name. Next, select Insert Name
Define... from the main menu bar to open the Define Name dialog box (see in Figure 1-20).

Figure 1-20. Define Name dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Enter a name for the selected cell range in the edit field under "Names in workbook." Make sure the
"Refers to" field does indeed refer to the cell range you'd like to name. If you had the range selected
when you opened this dialog box, then the cell range should already be correct. If you didn't have it
selected, press the icon in the lower-right corner; this will allow you to select the proper range
without leaving the Define Name dialog box. Once your name is entered and the cell reference is
correct, press the Add button. You'll now be able to use that name to refer to the associated cell
range in any formulas in your workbook.

Notice that the cell reference in the "Refers to" field in Figure 1-20 includes the sheet name, Sheet1,
followed by the exclamation mark (!), which precedes the absolute A1-style cell reference. This
format, using the sheet name followed by !, makes the reference refer to the specified cell on that
specific sheet. Thus, you can use the name in a formula on any other sheet and it will still point to the
cell on Sheet1.

I find names quite useful. Typically, if I'm performing calculations that require
the use of empirical constants or commonly used data, I'll set up a specific
sheet in my workbook that contains only constants and commonly used data
(or formulas). Then I name these so I can refer to them throughout the
workbook. I find descriptive names more intuitive and easier to remember than
cryptic cell references that span sheets in a workbook.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.15. Validating Data

Problem

You want to make sure users of your spreadsheet don't enter inappropriate data.

Solution

Use Excel's Data Validation feature.

Discussion

Excel allows you to specify what constitutes valid data for any given cell. For example, say you had a
spreadsheet that performed some calculations given a value that was input in a particular cell by a
user other than yourself. Let's say you want to restrict the range of values the user can enter in the
input cell, in order to minimize the possibility of misuse. Such a situation could arise if, say, you write
a spreadsheet that allows you to interpolate data based on a regression equation. In such a case, you
would want to restrict the independent value input by the user to within the allowable bounds of the
regression analysis. Basically, you don't want the user to attempt to extrapolate beyond the data
range used in the regression analysis, as such extrapolations can sometimes yield dangerously
inaccurate results.

To specify validation for a cell, select the cell you want to set validation for and then open the Data
Validation dialog box by selecting Data Validation... from the main menu bar. Figure 1-21 shows
the Data Validation dialog box.

Figure 1-21. Data Validation dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Allow drop-down listbox allows you to select the type of data to allow (for example, a decimal
number, a whole number, a date, or text). Once you select the Allow type, the other controls will
present additional qualifiers. In the example shown in Figure 1-21, I set 0 to 560 as the valid data
range. You can also specify ranges greater than some value, less than some value, and so on. Once
you press OK, these changes take effect. If the user attempts to enter data that does not fit the valid
data criteria, a message box will appear indicating bad data entry.

You can specify exactly what you want the error message to display by entering
your message under the Error Alert tab of the Data Validation dialog box.
Further, clicking the Input Message tab allows you to specify an information
message to be displayed to the user whenever a cell using data validation is
selected. This is useful for giving your users a clue as to what constitutes valid
data for any particular cell.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.16. Taking Advantage of Macros

Problem

You find yourself repeating the same actions over and over and would like to automate that process.

Solution

Use Excel's macro-recording feature to record your actions, which can then be executed again using
a keyboard shortcut.

Discussion

Let's say you find yourself repeatedly applying the same format settings to cells; for example, you
select a cell, set the font style to bold, set justification to center, and apply a pattern and a border.
You could define a custom style reflecting these format settings and use the style as discussed in
Recipe 1.12, or you could record a macro to automate the process of setting these formats.

Although I'm using formats as an example, you should be aware that the macro-recording feature
lets you record any sequence of actions taken in Excel, thus allowing you to automate almost
anything. In Chapter 2, I discuss macros and other programming tasks in much greater detail in the
context of using Visual Basic for Applications. That said, you can record simple macros to automate
common tasks as discussed here, without using Visual Basic.

Take these steps to record a macro:

Select Tools Macro Record New Macro... from the main menu bar to open the Record
Macro Dialog box.

1.

In the Macro Dialog box, enter a descriptive name for your new macro in the Macro Name field.
Also enter a shortcut letter for the shortcut key combination (Ctrl plus the letter you specify),
which will be used to execute the macro on demand. In the Store Macro In field, select where
you want the macro stored. The default is This Workbook, which stores the macro in the current
workbook. However, if you want to be able to use the macro in any workbook, you should select
Personal Macro Workbook. Press OK when you're done; this will return you to the spreadsheet
in macro-recording mode.

2.

Execute the actions you want recorded.3.

When you've finished your actions, select Tools Macro Stop Recording from the main4.

5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.

menu bar.
4.

Use the shortcut key you specified in the Macro Dialog box to execute your macro.5.

Let's say you recorded a series of cell-formatting actions in a macro. Then, anytime you select a cell
and press the shortcut key for that macro, the macro will run and you'll see that formatting applied
to the cell.

If you want the macro to execute relative to the position of the active cell when you start recording,
make sure the Relative Reference button is selected on the Record Macro toolbar that appears when
you start recording a macro. The Relative Reference button is shown in Figure 1-22.

Figure 1-22. Record Macro toolbar

You may also press the Stop Recording button to stop recording a macro (instead of using the Stop
Recording menu item as mentioned earlier).

To manage macros, you can access the Macro dialog box via the Tools Macro Macros...
menu or the Alt-F8 shortcut. The Macro dialog box allows you to run selected macros, delete macros,
or redefine their shortcut keys.

See Also

See Excel's "Create a Macro" help topic or open the Excel Help task pane and search for the phrase
"recording macros" to view a list of relevant topics. Or open the Excel Help task pane, click the "Table
of Contents" link, and then click on the "Automating Tasks and Programmability" topic to reveal a list
of help topics related to macros.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.17. Adding Comments and Equation Notes

Problem

You'd like to add comments to your spreadsheet, just as you'd comment your code in a traditional
programming language.

Solution

Aside from simply inserting text in cells adjacent to cells containing data or formulas, you can use
comments or equation objects to document your spreadsheets.

Discussion

Figure 1-23 shows a sample spreadsheet that includes a comment and an equation object
documenting parts of the spreadsheet.

Figure 1-23. Spreadsheet with comment and equation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The comment is the rectangle containing the text "David Bourg: This is the exponent," with an arrow
pointing to cell D2. The equation object is the rectangle containing the mathematical expression for
the area calculation. Both comments and equations are useful devices for documenting your
spreadsheets. I often use comments to leave myself notes or reminders or to-do lists within my
spreadsheets. I use equations to document formulas used in my spreadsheets that will be used by
others or included in reports or other presentations. Equations in standard mathematical form are
much clearer and far easier to comprehend than cell formulas containing a bunch of cell references
and operators all strung together.

To add a comment, first select the cell to which you want the comment attached, then select Insert
 Comment from the main menu bar. A comment box will appear (with input focus, so you can

immediately begin typing your comment). When you're done typing, use the mouse to select where
on the spreadsheet you want the comment box to be placed. To edit an existing comment, select the
cell containing the comment and select Insert Edit Comment from the main menu bar. This will
give input focus to the comment, allowing you to edit its message. To delete a comment, select the
cell containing the comment and right-click to reveal a pop-up menu where you can select Delete
Comment to actually delete the comment.

You can also use the Reviewing toolbar (by selecting View Toolbars
Reviewing) to access comment features such as adding, editing, deleting, or
temporarily hiding comments.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To add an equation, you need to use the Microsoft Equation Editor to insert an equation object into
your spreadsheet. Select Insert Object... to show the Object Dialog box. From the list of Object
Types in this dialog box, choose Microsoft Equation 3.0. When you press OK, the dialog will close,
returning you to the spreadsheet in equation-editing mode (see Figure 1-24).

The equation rectangle will appear, allowing you to enter an equation using the equation toolbar
shown in Figure 1-24. You can type text in the equation using the keyboard. To insert mathematical
symbols, select them from the equation toolbar. Use the arrow keys on the keyboard to navigate an
equation while editing. The Equation Editor is a bit cumbersome at first; I suggest you try it and
practice until you get the hang of it. When you're done entering an equation, simply click anywhere in
your spreadsheet to close the Equation Editor. You can click and drag the resulting equation to place
it anywhere in your spreadsheet. To edit an existing equation, select it and then right-click on it to
reveal a pop-up menu. Select Equation Object Edit from this pop-up menu to edit the equation.
To delete an equation, simply select it and press the Delete key on your keyboard.

Figure 1-24. Editing an equation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

There's an alternative to editing equations directly on your spreadsheet as illustrated in Figure 1-24.
If you select an equation object and then right-click to open the pop-up menu, you can select the
Equation Object Open menu option. This will open a new Equation Editor window showing your
equation along with the Equation Editor toolbar. You can edit your equation here and select File
Exit to return to your spreadsheet.

The Equation Editor also contains a help menu option. Select Help Equation Editor Help Topics to
open the Equation Editor help file and read more about using the Equation Editor.

The Equation Editor discussed here is the same one that's accessible from
Microsoft Word . You can insert equations in your Word documents in the same
way that you add equations to a spreadsheet, and you don't have to have Excel
open in order to do so. This is useful for preparing technical reports in Word.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.18. Getting Help

Problem

You're off to a great start and would like to know where you can go to find help within Excel .

Solution

You can access Excel's online help system by selecting Help Microsoft Excel Help from the main
menu bar. Or you can use the shortcut Ctrl-F1 to access the Help task pane, enabling you to select
the Excel Help page, where you can click the "Table of Contents" link or enter a search phrase to
search for help topics.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 2. Getting Acquainted with Visual
Basic for Applications

Section 2.0. Introduction

Recipe 2.1. Navigating the VBA Editor

Recipe 2.2. Writing Functions and Subroutines

Recipe 2.3. Working with Data Types

Recipe 2.4. Defining Variables

Recipe 2.5. Defining Constants

Recipe 2.6. Using Arrays

Recipe 2.7. Commenting Code

Recipe 2.8. Spanning Long Statements over Multiple Lines

Recipe 2.9. Using Conditional Statements

Recipe 2.10. Using Loops

Recipe 2.11. Debugging VBA Code

Recipe 2.12. Exploring VBA's Built-in Functions

Recipe 2.13. Exploring Excel Objects

Recipe 2.14. Creating Your Own Objects in VBA

Recipe 2.15. VBA Help

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.0. Introduction

I started using Visual Basic in the early 1990s, way back in the days of DOS and Windows 3.1. At the
time, I was not all that impressed with Visual Basic and preferred Visual C and a few Borland
products over Visual Basic. I still prefer C/C++ for most of the commercial applications I develop for
clients; however, when I need to perform quick calculations for my own research or when a client
needs something done quickly, I do now turn to Visual Basic for Applications (VBA).

When I first used Visual Basic, I saw no advantage over the other languages I was using at the time.
All that changed, however, when Microsoft integrated Visual Basic with its Office suite of applications.
This opened the door to greater flexibility, more control, and the possibility of developing very
powerful applications very quickly using VBA while leveraging the interface, features, and
functionality of the host Office application (Excel in our case).

Indeed, I've since started integrating standalone applications developed for my own clients using
C/C++ with Office applications such as Word, Outlook, and Excel. For example, a standalone
application written in C/C++ can perform calculations and then automatically send the output to
Word in a nicely formatted report, which can then be emailed automatically using Outlook. VBA
allows you to do this sort of thing too. We'll cover some of these cool things, such as making Excel
talk to Word, later in the book. But before we do, you should be familiar with the VBA development
tools, language, and interface to Excel.

This chapter is meant to give you that familiarity if you don't already have it. Just like the overview of
Excel presented in Chapter 1, the material covered in this chapter is necessarily at an introductory
level. If you are already familiar with VBA, you can skip this chapter without loss of continuity.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.1. Navigating the VBA Editor

Problem

You want to start exploring the Visual Basic for Applications (VBA) language and don't know where to
begin.

Solution

Open Excel and select Tools Macro Visual Basic Editor from the main menu bar to open the
VBA integrated development environment (IDE). Start exploring the IDE as described in the
following discussion.

Discussion

The VBA IDE is basically the VBA editor. It's where to write VBA code, manage code modules , and
debug your code. The editor allows you to perform all these development tasks in a single, integrated
application. You can access the IDE using the menu as mentioned earlier or you can use the shortcut
Alt-F11. You can also use the Visual Basic toolbar, shown in Figure 2-1.

Figure 2-1. Visual Basic toolbar

The IDE looks very much like any other Windows application, with a menu at the top, toolbars, and
child windows in the client area of the window, as shown in Figure 2-2.

The VBA IDE is a multiple-document interface style of window. The area below the toolbars and menu
is called the client area, which acts as a container for all the other (child) windows to be displayed
within the IDE.

Within the client area of the VBA IDE shown in Figure 2-2, there are three panels or windows. The
panel in the upper left is called the project panel, or project explorer window. It shows an Explorer-
like view of all the currently open VBA projects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Each Excel workbook has a corresponding VBA project with a default name of the form VBAProject
(spreadsheet name). You can change this name by editing the Name property in the properties panel

(more on that panel in a moment). Each project consists of multiple objects and code modules. Every
sheet in a workbook has an associated object shown in the project window, as does the workbook
itself. I'll come back to these Excel objects in Recipe 2.13.

For the most part, we'll add our own code modules to a project and put our custom code in these
modules. This has the advantage of giving our custom code global scope so that our custom functions
will be accessible by any sheet in the workbook.

Figure 2-2. VBA IDE

To add a module, select Insert Module from the main menu bar (make sure your project is
selected first in the project panel). Upon doing so, you'll see a module object appear under your
selected project in the project panel. Double-click the module in the project panel to open its code
window if it isn't already opened. Figure 2-2 shows an example project with an open code window
containing some VBA code.

When you select any object or module in the project panel, its properties are displayed in the
properties panel.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In object-oriented programming lingo, an object is a construct that contains
properties and methods . Properties define certain attributes of the object,
while methods define the object's functionality. For example, let's say we write
a code object to represent your car. We'd give it properties such as make,
model, color, engine type, and seat covering type. These properties describe
what the object looks like (i.e., its attributes, or characteristics). Further, we
could give it methods such as move forward, reverse, and stop. These are
actions (i.e., things the car can do when we invoke these methods). A more
realistic programming example would be an object that represents, say, a text
file. The properties could be things like size and number of words, while
methods would be things like save and spellcheck.

For the example module shown in Figure 2-2, the only property available is its name. You can change
the module's name by editing the Name field in the properties panel.

Unless I'm doing work with Excel objects themselves or writing my own custom objects, I usually
close the properties panel to clean up the editor a bit. Press F4 or select View Properties Window
to show it when you need it. (We'll come back to Excel objects in Recipe 2.13.)

Throughout this book, we'll spend most of our time in the VBA editor working with module code
windows. Take another look at the code window shown in Figure 2-2. At the top of the window you
should see two drop-down listboxes. The listbox on the left is the object list and the one on the right
is the procedure list. The object list shows a list of objects in the selected module, while the
procedure list shows a list of procedures associated with the selected object.

Procedures in VBA context refer to functions and subroutines. We can write
both functions and subroutines to perform actions and calculations for us, but
there's a distinct difference between the two as discussed in Recipe 2.2.

For Excel objects, the object list may contain several entries; however, for the code modules that
we'll work with the most, the object list will show only General, while the procedure list will show a
list of all our custom procedures. You can jump to any procedure in the code window by selecting it
from the procedure list. This is a handy way to get around your code window when it fills up with a lot
of code.

You may have also noticed two little icons in the lower-left corner of the code window shown in Figure
2-2. (These icons consist of a few horizontal lines.) The icon on the left with fewer lines puts the code
window in Procedure View when clicked, while the one on the right puts the code window in Full
Module View. Procedure View shows only one procedure at a time in the code window, which is
convenient if you find your code window too cluttered. In Procedure View, you have to use the
procedure list to navigate from procedure to procedure. On the other hand, Full Module View shows
the entire contents of the module. I usually leave the window in full view and navigate using both
normal window scrolling and the procedure list. I have no particular reason for doing so other than
that's how all my other development tools work and it's how I'm used to working with code.

You write VBA statements (instructions) in code windows, as illustrated in Figure 2-2. As you can see,
the code illustrated in Figure 2-2 is indented in blocks. This is not a VBA requirement, so you're free
to space and indent your code as you desire. However, it's considered good practice to indent logical

http://lib.ommolketab.ir
http://lib.ommolketab.ir

blocks of code, making the code more readable. You'll see this practice throughout all the code
presented in this book.

I'll talk more about the VBA language and statements throughout the rest of this chapter, and the
remainder of this book for that matter, so I won't get into code details in this recipe. I do want to
mention that when you're typing code in a code window, VBA will automatically complete some code
for you. For example, if you type a function declaration, VBA will automatically complete an End
Function statement for you. VBA has other code completion features that you'll encounter as you use
it. These are designed to save you time and help reduce errors.

I should also mention that it's a good idea to save your work often while working in the code window.
Simply press the Save button on the VBA IDE toolbar, select File Save..., or press Ctrl-S. Saving
in either the VBA IDE or Excel saves both your VBA project and its associated workbook.

To return to Excel from the VBA IDE, press the Excel icon in the VBA IDE toolbar. Or you can switch
to Excel via the normal application switching methods in Windows; e.g., press the Excel button on the
Windows Start bar at the bottom of the screen, click directly on the Excel window if it's visible, or use
Alt-Tab.

See Also

This recipe is merely an overview of the VBA IDE. Granted, it isn't that complicated an application,
but there are other aspects to its interface that I have not addressed. The VBA help guide contains a
complete reference entitled "Visual Basic User Interface Help " that you may consult for more details
on the interface. I can't say it's the most captivating reading, but it's there if you need it. Press F1 in
the VBA IDE to open the VBA help document and then press the Contents tab. The first topic is the
user interface reference. As I mentioned in Chapter 1, I think the best way to learn the VBA IDE is to
explore it and try things out. You'll also learn more as you go through other recipes in this book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.2. Writing Functions and Subroutines

Problem

You want to write VBA code to perform some task or calculation but you're not sure where to begin.

Solution

Open the VBA IDE, create a code module for your workbook, and then start writing your custom
procedures (functions and subroutines).

Discussion

When working with Excel and VBA, you write custom code in functions and subroutines. Unlike in
traditional application programming, we're not going to write a main program from which we manage
the application loop, making calls to other functions and subroutines, and so on. We will, however,
make heavy use of custom VBA procedures and call them from other VBA procedures. Moreover,
we're going to call our VBA procedures from within Excel itself. Therefore, we're sort of attaching our
custom code to Excel's main program and invoking our code within cell formulas or in response to
certain events (for example, when a user presses a button). Essentially, the VBA procedures you
write are extensions of Excel. This extensibility is what makes Excel, in my opinion, such a powerful
computation tool.

You can actually write a subroutine and call it main, using it as a starting point
for subsequent code and calls to other procedures.

Subroutines

VBA subroutines have the basic form shown in Example 2-1.

Example 2-1. VBA Subroutine

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Sub MySubroutineName(Param1 As Integer, Param2 As Double)
 ' Your code goes here...
End Sub

Subroutines start with a scope qualifier, Public or Private, followed by the Sub keyword, followed by
the subroutine name, which is then followed by an optional parameter list. After the declaration
comes the body of the subroutine, which is a collection of code statements that you supply. A
subroutine definition is closed with End Sub. Let's consider each part of the declaration in more detail.

The scope qualifier specifies whether the subroutine has global or local scope. If you specify Public,
then the subroutine has global scope and can be called from any code module. On the other hand, if
you specify Private, then the subroutine has local scope and can only be called from the code module
within which it is defined. If you don't specify anything, VBA assumes Public.

The Sub keyword is mandatory and lets VBA know you are indeed declaring a subroutine procedure.
Note that VBA will show keywords in a different color from that used for your code statements. I
have my version set to display keywords in blue and code statements in black. This is the default, but
you can change this if you'd like. Select Tools Options... from the main menu bar and select the
Editor Format tab to customize the editor.

After the Sub keyword, you must supply a subroutine name. I recommend you use descriptive names
wherever possible; it doesn't matter if the names are long. Gone are the programming days of trying
to compress names down to a meager eight characters! Just keep the following naming rules in mind
when making up subroutine names:

The name must start with a letter.

Names can't include the characters @, &, $, #, or !. They can't include spaces or periods either.

Names can be up to 255 characters in length.

You should avoid names that are the same as built-in VBA functions and keywords.

You can't reuse names in a single code module. For example, you can't give two different
subroutines the same name if they reside in the same code file.

By the way, these naming rules apply to all names in VBA, including function names, variable names,
constants, and parameters . I should also point out that VBA is not case sensitive. It is, however,
considered good style to use both upper- and lowercase characters to make your code more
readable. For example, MySubroutineName is more readable than mysubroutinename. To make things
even clearer, you could use the underscore character (e.g., My_Subroutine_Name).

Parameters are optional for subroutines. If you don't include parameters you still have to include the
open and closing parenthesis (i.e.,(and)). Parameters may be passed into the subroutine and used
in your code. A parameter list must include the parameter name followed by a type specifier in the
form ParamName As DataType. You must separate the parameter name from the data type specifier

using the As keyword. Separate multiple parameters in the list with commas as illustrated in Example
2-1. Data types are types such as Integer, Double, Boolean, and Byte. See Recipe 2.3 for more

http://lib.ommolketab.ir
http://lib.ommolketab.ir

information on data types .

By default, arguments passed into procedures as parameters are passed by
reference. This means the actual value of the argument is not passed to the
function; rather, a pointer to the argument is passed. A pointer is a data type
that stores the memory address of the object being pointed to. This gives the
procedure direct access to the argument, which means the procedure can
change the value of the argument. This may be what you want, but you need
to be careful not to inadvertently change the value of an argument. To pass an
argument by value, use the ByVal keyword in the parameter list. For example,
to force Param1 to be passed by value in Example 2-1, you would write ByVal
Param1 As Integer. Doing so ensures the argument passed in as Param1 will be
preserved irrespective of how its value is used in the procedure. The drawback
of passing parameters by value is performance degradation, since the actual
value has to be copied in memory when the procedure is called.

After you've defined a subroutine, you can call it from other places in your code simply by writing the
name of the subroutine followed by any parameters. Alternatively, you may use the Call keyword.
Both approaches are illustrated in Example 2-2.

Example 2-2. Calling subroutines

MySubroutineName 4, 2.87
Call MySubroutineName(4, 2.87)

When using the Call approach, you must enclose the parameter list in parentheses. In many cases
you won't actually call subroutines directly in code. Instead, you'll assign them to buttons or other
controls included in a spreadsheet (see Recipe 9.3). Note that you cannot call subroutines from cell
formulas. You can do so with functions , as discussed in a moment.

To actually add a new subroutine to a code module, you can either use the Add Procedure dialog box
or simply start typing the subroutine in a code window. Personally, I find it more efficient to just type
the subroutine directly. The Add Procedure dialog box, shown in Figure 2-3, allows you to specify
what type of procedure you want to add, along with a few options.

Figure 2-3. Add Procedure dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To access the Add Procedure dialog box, select Insert Procedure... from the main menu bar.

Functions

VBA functions are similar to subroutines except for two key differences. First, functions are declared
using the Function keyword instead of Sub. Second, functions actually return a value and can
therefore be used within expressions. Example 2-3 shows an example function declaration, along with
how the function may be called as part of an expression.

Example 2-3. Example VBA function

Public Function Calc_q(y1 As Double, y3 As Double) As Double
 Calc_q = 1 / ((Abs(y3 - y1)) ^ 0.74)
End Function

.

.

.

 x = 1.24 * Calc_q(3.75, 2.87) + y1
.
.
.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this example, the function is named Calc_q and it takes two Double parameters. Since this is a
function that returns a value, you need to specify the data type of the value returned by the function.
Thus, you have to include the As DataType qualifier at the end of the function declaration. In this

example, the return type is a Double. The example statement setting the value for the variable x
shows how the Calc_q function may be included in an arithmetic expression. Moreover, you can
include function calls in cell formulas, whereas you can't with subroutines.

You can, of course, include other statements in the body of a function, in addition to the single
statement illustrated in Example 2-3. The important thing to remember is that the function exits,
returning a value, on a code line where the function name is set to some value.

The naming rules that apply to subroutines also apply to functions.

Adding a function is similar to adding a subroutine. You can either type it in directly as I prefer to do,
or you can use the Add Procedure dialog.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.3. Working with Data Types

Problem

You are unfamiliar with VBA data types and their syntax.

Solution

Visual Basic supports the usual data types you'd expect to see in any programming language. Table
2-1 summarizes some of the VBA data types that I use most often for the sorts of calculations
covered in this book.

Table 2-1. VBA data types

Data type Storage Values

Boolean 2 bytes TRue or False

Byte 1 byte 0 to 255

Integer 2 bytes -32, 768 to 32,767

Double 8 bytes -1.79769313486231 E 308 to +1.79769313486231 E 308

String Variable ASCII and special characters

Discussion

There are other data types, including user-defined data types, supported by Visual Basic. For the
most part, the types shown in Table 2-1 are sufficient for the sorts of programming tasks discussed
throughout this book.

I mentioned in Chapter 1 that Excel performs calculations using double precision by default. To
ensure double-precision calculations in Visual Basic, be sure to use the Double data type. When
writing expressions using literal numeric values, you can use Visual Basic type-declaration characters
to let Visual Basic know what data type you want it to consider when evaluating your expression. For
example, if you have an expression that includes an operation like 2*3, Visual Basic will interpret
these numbers as integers. However, if you write 2#*3#, then Visual Basic will treat each number as a
Double. The # character is the type-declaration character for Double data types. In fact, the VBA IDE
will help you out here. If you type a number like 3.0, VBA will replace it with 3# automatically. I say

http://lib.ommolketab.ir
http://lib.ommolketab.ir

this now so you're not surprised when your expressions change before your eyes as you type them.

There are other type-declaration characters recognized by Visual Basic. For example, the % character
indicates Integer, and the $ character indicates a string.

Speaking of strings, while this book focuses mainly on scientific and engineering calculations where
doubles and integers are more prevalent, strings are sometimes useful for formatting output. Such
output may go to spreadsheet cells in the form of text or datafiles written directly to disk.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.4. Defining Variables

Problem

You're ready to write some code and would like to declare some variables but are not sure of the
proper VBA syntax for doing so.

Solution

Use the Dim statement to declare a variable, as illustrated in Example 2-4.

Example 2-4. Declaring variables using the Dim statement

Dim a As Double
Dim n As Integer

Dim statements are of the general form Dim VariableName As DataType, where Dim and As are VBA
keywords, DataType is one of the VBA data types as discussed in Recipe 2.3, and VariableName is a

name you supply that conforms to the naming rules discussed in Recipe 2.2.

Discussion

You can use Dim statements to declare local variables within procedures by including the Dim
statements in the body of the procedure. Such local variables can be used only by the procedures
within which they are declared. To declare global variables that have module-level scope, place the
Dim statements at the beginning of the code module before any procedure declarations. Such global
variables can be used by any procedure in the module within which the variables are declared.

To declare global variables that can be used by any code module within a project, use a Public
statement like this Public VariableName As DataType.

You can also declare module-level variables using the Private statement, but
this is the same as using the Dim statement.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can declare multiple variables on a single line by separating the variable declarations with
commas, as shown in Example 2-5.

Example 2-5. Multiple declarations

Dim a As Double, Dim b As Double, Dim c As Double
Dim d, e, f As Double

The first line in Example 2-5 declares three Double type variables, a, b, and c. It's tempting to think
that the second line in Example 2-5 declares three more Double type variables, d, e, and f, but this is
not the case. The fact is, only variable f in the second line is a Double; d and e are of Variant type.
So what gives?

VBA requires an explicit data type to follow each variable name; otherwise, it assumes a Variant
type. So to make d and e Doubles, you'd have to put As Double after each one. Given this
requirement, in my opinion there isn't much use in putting multiple declarations on a single line in
VBA. You're better off putting each Dim statement on a separate line to make your code more
readable.

By now you're probably wondering what a Variant data type is. A Variant is a generic data type that
can represent any of the other explicit data types. VBA determines the appropriate type to use given
the context within which a Variant variable is used. While this may seem like a flexible way to use
variables, it's less efficient in terms of code execution performance and makes your code less
readable. I recommend using explicit data types as much as possible and using Variants only when
absolutely necessary (for example, when a built-in VBA procedure or function requires Variant
parameters).

The VBA IDE provides a useful way to quickly find the declaration of any
variable in your code. Say you're reading through a long procedure and come
across a variable whose type you've forgotten or which isn't clear given the
context in which it is used. You can select the variable name in your code and
use the shortcut Shift-F2 to automatically jump to the statement that declares
the variable.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.5. Defining Constants

Problem

You'd like to declare some constants and need to know the correct VBA syntax.

Solution

VBA constants are declared using the syntax Const Name As DataType = Value, as illustrated in Example

2-6.

Example 2-6. Declaring constants

 Const MyConstant As Integer = 14

 Public MyConstant2 As Double = 1.025

Discussion

Just as with variables, you can declare constants with local or global scope. Constants declared within
procedures have local scope; that is, they are available only within the procedure. Constants declared
outside of any procedures at the beginning of a code module have module-level scope and can be
used by any procedure within the module. As with variables, you can use the Public keyword, as
illustrated in Example 2-6, when declaring constants at the beginning of a code module to make the
constant available to all procedures in the project.

A constant is just that, constant. Once a constant is declared with its value set, you cannot change its
value. Constants are useful for defining descriptive names to commonly used values such as scientific
or engineering coefficients. For example, you could define a constant to represent and use the
constant Pi throughout your calculations rather than write out the numerical value.

Excel includes a built-in worksheet function PI that returns the value of . You
can actually use that function in your VBA code by accessing the function
through the WorksheetFunction object, as in WorksheetFunction.Pi. See Recipe
2.13 for more information on Excel Objects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.6. Using Arrays

Problem

You don't know the VBA syntax for declaring arrays .

Solution

You declare arrays just as you do variables, except you specify the size of the array in the
declaration, as shown in Example 2-7.

Example 2-7. Declaring arrays

Dim y(1 To 4) As Double
Dim x(4) As Double

Dim M(1 To 8, 1 To 8) As Double
Dim N(8, 8) As Double

Arrays are declared with their size specified in parentheses following the array name.

Discussion

When you use the To keyword in an array size specification, the first number is the lower bound and
the second number (the one following To) is the upper bound of the array. You can skip the To
keyword and simply put the desired size (i.e., the number of array elements) in parentheses
following the array name. In this latter approach, the first array index, the base, is 0 unless you use
the Option Base statement.

Use the Option Base statement at the beginning of a code module (before your procedures) to
specify the default base for arrays. For example, Option Base 1 sets the base to 1, while Option Base
0 sets the base to 0.

You can declare multidimensional arrays by separating each dimension's size, or upper and lower
bounds, by commas in the array declaration, as shown in the last two lines of Example 2-7. VBA
supports multidimensional arrays of up to 60 dimensions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To actually access an array's elements in your code statements, write the array name followed by the
index to the array element enclosed in parentheses. Example 2-8 shows how to access array
elements.

Example 2-8. Accessing array elements

y(3) = 2.983

M(1, 2) = 4.321

Separate the array indices by commas for multidimensional arrays.

See Also

The array declarations discussed here are static declarations in that the size of the arrays is specified
in the Dim statement. In some special cases, you may not know the required size of an array and
may need to allocate memory for the array dynamically. In such cases you can declare the array as
discussed earlier but leave the parentheses following the array name blank (include the parentheses,
just don't put anything between them). Then in your code you'll have to dynamically allocate memory
for the array of the size you desire. Use ReDim statements to set, or reset, the size of an array. For
the most part, I'll stay away from dynamically allocated arrays except in special circumstances. You
can learn more about dynamic arrays by reading the VBA help topic "Declaring Arrays." Press F1 in
the VBA IDE to access the VBA help guide.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.7. Commenting Code

Problem

You want to follow good coding practice by documenting your code with comments .

Solution

There are two ways to comment code in VBA: use the Rem keyword or the apostrophe (') character
to denote a comment, as illustrated in Example 2-9.

Example 2-9. Comments

Public Sub DoRungeKutta()
 ' Local variables

 Dim y(1 To 4) As Double
 Dim k1(1 To 4) As Double
 Dim k2(1 To 4) As Double
 Dim k3(1 To 4) As Double
 Dim k4(1 To 4) As Double
 Dim a As Double
 Dim n As Integer
 Dim dt As Double
 Dim time As Double

Rem Initialize Variables

 y(1) = 29.8613
 y(2) = 0
 y(3) = 30.0616
 y(4) = 0
 n = 5000
 dt = 5 / n: Rem calculate time step
 time = 0 ' set starting time to zero
 .
 .
 .

End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 2-9 shows a portion of a custom subroutine to perform numerical integration using the
Runge-Kutta method. This code contains four comments, using both commenting approaches.

You may place comments on the same line as code statements; however, if you use Rem for
comments when doing so, you must precede the Rem keyword with a colon (:). You need not use the
colon when using the apostrophe comment indicator.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.8. Spanning Long Statements over Multiple
Lines

Problem

Some of your code statements are very long and you'd like to make them more readable by splitting
them over multiple lines.

Solution

Use the underscore character (_) to break statements over multiple lines, as shown in Example 2-10.

Example 2-10. Spanning multiple lines

k2(1) = dt * dy1dt(y(1) + k1(1) / 2#, y(2) + _
 k1(2) / 2#, y(3) + k1(3) / 2#, y(4) + _
 k1(4) / 2#)

You must include a space between the last character of a line and the underscore character.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.9. Using Conditional Statements

Problem

You need to make some logical tests and branch your code accordingly.

Solution

Use If/Then statements as illustrated in Example 2-11.

Example 2-11. If statements

If (time = 32000) then
 ' Statements go here
End If

If (MyCondition = True) Then
 ' Statements
Else
 ' More statements
End If

If (count < 10) Then
 ' Statements
ElseIf (count < 20) Then
 ' Statements
ElseIf (count < 30) Then
 ' Statements
End If

If statements start with the If keyword followed by a logical expression, which is followed by the
Then keyword. If the logical expression is true, the code between the If statement and the End If
statement gets executed. You can also use the Else keyword to define a block of code to execute if
the logical expression is false. Further, you can use the ElseIf keyword to test other conditions in a
series of If-Then-ElseIf-Then statements.

You'll notice I enclose the logical expressions being evaluated in parentheses. VBA does not require
this; I do so only because it is more readable to me. (It's also kind of a habit I picked up from

http://lib.ommolketab.ir
http://lib.ommolketab.ir

programming in C.)

See Also

Sometimes you may encounter situations where you have a lot of conditions to test and you find
yourself with long, strung out If-Then-ElseIf-ElseIf-Then statements. In these situations, you may
find VBA's Select Case statement more appropriate. Select Case statements are handy when you're
testing for different values of a numerical expression or text. See the VBA help topic "Select Case
Statement" for more information.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.10. Using Loops

Problem

You need to loop through some code and don't know the VBA syntax for loops.

Solution

Use a For loop like the one shown in Example 2-12.

Example 2-12. For loop

For i = 1 To n
 ' Statements go here
Next i

For loops are sometimes called For Next loops because you use the Next statement to bound the
code over which you want to loop. Also, the Next statement increments the counter variable, i in this
case, by 1 each time through the loop. In this example, the loop starts with the counter equal to 1
and ends when the counter equals the value stored in the variable n. You can hardcode start and end
values or use variables.

Discussion

To increment the counter in a For loop by a something other than 1, use the Step keyword as shown
in Example 2-13.

Example 2-13. For loop

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For i = 1 To n Step 2
 ' Statements go here
Next i

In this case, the counter variable gets incremented by 2 each time through the loop. You may also
use a negative step value to count down from a start value to an end value.

Sometimes it's necessary to exit a For loop before the counter actually reaches the end value. To exit
a For loop, use the Exit For statement. You can put this in a conditional statement to exit only under
specific conditions, as shown in Example 2-14.

Example 2-14. Exit For statement

For i = 1 To n
 ' Statements go here

 ' Test an exit condition
 If time > 32000 Then
 Exit For
 End If

 ' May have more statements here

Next i

When an Exit For statement is encountered, code execution will jump from the Exit For statement
to the first statement after the Next statement of the loop.

For most of the calculations discussed in this book that require looping, plain old For loops will work
just fine. In fact, I use For loops probably 90% of the time, but in some special cases Do loops are a
better choice.

Do loops are useful when you're not actually iterating a counter but are testing some condition (a
logical statement) instead. In VBA there are actually four different ways of writing Do loops, as shown
in Example 2-15.

Example 2-15. Four different Do loops

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Do While (dtime < 32000)
 ' Statements go here
Loop

Do
 ' Statements go here
Loop While (dtime < 32000)

Do Until (dtime > 32000)
 ' Statements go here
Loop

Do
 ' Statments go here
Loop Until (dtime > 32000)

The first two loops in Example 2-15 are Do While loops, and the last two are Do Until loops.

Do While loops execute the loop as long as the condition following the While keyword is TRue. In this
example, the condition is enclosed in parentheses. Note the difference between the two Do While
loops. In the first case the condition is tested before the code in the loop is executed, while in the
second case the code in the loop is executed once before the condition is tested. This means that in
the first case it's possible the code within the loop may not get executed, while in the second case the
code within the loop will get executed at least once.

Do Until loops execute the loop as long as the condition following the Until keyword is false (that
is, until the condition becomes true). As with Do While loops, there are two ways to write Do Until
loops. In the first case shown in Example 2-15 the condition is tested before the code within the loop
is executed, while in the second case the code in the loop is executed before the condition is tested.

As with For loops, you can exit a Do loop anytime before the looping condition is satisfied, using an
Exit Do statement.

See Also

VBA also has a For Each loop that is used to loop over collections of objects. These loops are useful
when interfacing with Excel objects, such as cells. For example, you can use a For Each construct to
loop over a range of selected cells in a spreadsheet without actually knowing the number of cells in
the range. See the help topic "Using For Each...Next Statements" in the VBA help for more
information on these loops. Press F1 in the VBA IDE to access the VBA help guide.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.11. Debugging VBA Code

Problem

You want to know how to debug your code in VBA.

Solution

Use VBA's built-in debugger by accessing the Debug menu in the VBA IDE or working with the Debug
toolbar (select View Toolbars Debug to show the Debug toolbar).

Discussion

When you are writing code, VBA will automatically check for syntax errors as soon as you press Enter
following each code line. If VBA finds no syntax errors, your code will be accepted and it will be
highlighted to denote comments and keywords. If VBA finds an error, it will immediately display an
error message box with information on the error. It will also highlight your code statement and
indicate which part is causing the error. You can then edit the statement in the code window until you
get it right.

Alas, VBA cannot automatically detect logical errors in your code. That technology is a long way off
for any computing language. In the meantime, we do have integrated debuggers to help us find and
correct logical errors. Logical errors are the sort of error where your code, though syntactically
correct, does not do what you intend. For example, you might have written an integration routine
based on the Improved Euler method and it does not appear to work correctly; e.g., it's giving you
garbage results. Such poor results could be due to a time step that's too small, an incorrect formula
in your code, or a particularly nasty function that you're trying to integrate.

For tracking down and fixing logical errors, the debugger included with the VBA IDE is an invaluable
tool. Let's say you're trying to debug the procedure shown in Figure 2-4.

Figure 2-4. Debugging a procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first thing you should do is display the Debug toolbar by selecting View Toolbars Debug
from the main menu bar. The Debug toolbar is shown in Figure 2-4 in the upper-right side of the
window. Figure 2-5 shows a close-up of the Debug toolbar.

Figure 2-5. Debug toolbar

The next thing you need to do is set some breakpoints in the procedure you're trying to debug.
Breakpoints are lines in your code that you tag to let the debugger know you want to stop at that line
while debugging, in order to inspect what's going on during execution. To set a breakpoint, simply
click in the margin to the left of the code window adjacent to any executable line upon which you'd
like to break. The breakpoints will be highlighted as in Figure 2-4. The two breakpoints shown there
have a small circle in the margin and a dark rectangle highlighting the code line where the debugger
will break.

Now you can start the debugger and inspect what's happening in your code. Place the cursor in the
procedure you want to debug and press the Continue button on the toolbar (see Figure 2-5) to start
the debugger. The debugger will execute your procedure and break when it encounters a breakpoint.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Once a breakpoint has been reached, you can take several actions to inspect your code and follow its
execution. One thing you might do is step line by line through your code to follow the execution path.
To step through your code, you can press the Step Into, Step Over, or Step Out button on the Debug
toolbar (see Figure 2-5). Step Over will execute the current code line and stop on the next line. The
current line, the one upon which execution has paused, is also highlighted with an arrow icon in the
margin (see Figure 2-4). Step Into is useful if you want to follow code execution line by line into other
procedures that may be called from within the one you're trying to debug. Step Out is useful for
jumping out of a procedure and getting back to the calling procedure to continue line by line
stepping.

While stepping through your code, it's helpful to actually inspect the values of variables used in your
algorithms. This is how you can check to see if things are being calculated correctly or where things
may be going wrong. The easiest way to inspect a value is to hold the mouse cursor over a variable
name and wait a second or so for VBA to display a small rectangle showing the current value of the
selected variable.

You may also display the Locals window to show all local variables within the procedure you're
debugging. Press the Locals button on the Debug toolbar (see Figure 2-5) to open the Locals window.
The Locals window will show not only the variables, but their values as well. This is very handy when
stepping through to monitor changes in values of some key variables.

Alternatively, you can open the Watch window (use the toolbar button shown in Figure 2-5) to
monitor select variables. Initially the Watch window will be empty. To add a variable to watch,
highlight or place the cursor on the desired variable in the code window, and then right-click to reveal
a pop-up menu. Select Add Watch to add the variable to the Watch window.

With either of these windows open, you can continue to step through your code, monitoring how key
variables change. Watching variables this way and in the context of executing statements might
illuminate problems in your code.

VBA also includes a window called the Immediate window . This window can be used for typing in
commands or writing output using the Print statement. When you are debugging, the Immediate
window is useful for writing debugging text so you can trace the execution of the code or follow the
value of a variable as the procedure executes. To display the Immediate window, press the toolbar
button shown in Figure 2-5. You can send output to the Immediate window using the Print method.
When debugging, you have to use the Debug object's Print method, as in Debug.Print Str(k1(1)).
In this example, the value stored in element 1 of the k1 array is converted to a string, using the Str
function, and then printed to the Immediate window.

I use the Immediate window in this way for long procedures or complex programs that are simply too
long or complicated to step through line by line. I strategically place print statements in the code that
will send write messages informing me of the status of certain things of interest. Such things may
include variable values or whether or not a particular line or block of code was executed.

I often use the Beep statement to play a short tone during execution of a
procedure. I'll place it strategically if I want to determine whether a particular
block of code is reached. For quick checks, using Beep is faster than typing in a
message to display via the Print method.

At any point during debugging, you can press the Continue button to continue code execution from

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the current line. Execution will proceed until another breakpoint is encountered or the end of the
procedure is reached. You can also terminate a debugging session by pressing the Reset button (see
Figure 2-5).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.12. Exploring VBA's Built-in Functions

Problem

You need to get familiar with VBA's built-in functions and use them in your code, but you're not sure
where to begin.

Solution

Check out the Visual Basic Language Reference in the VBA help guide. There's a section in the
language reference entitled "Functions," which includes an alphabetically organized list of built-in
functions. For your convenience, I've summarized some of the more commonly used functions for
scientific and engineering calculations in Table 2-2.

Table 2-2. Some useful VBA fuctions

Function Comment

Abs(number) Returns the absolute value of the number argument. The data type returned is the
same as that of the argument.

Atn(number) Returns the arctangent of the number argument. The returned data type is a
Double. The result is in radians from - /2 to /2.

Cos(number) Returns the cosine of the number argument, which represents an angle in radians.
The return type is a Double in the range from -1 to 1.

Exp(number) Returns e raised to the number power. The return type is a Double.

Int(number) Returns the integer part of number, where number is a decimal number. The return

type is an Integer. Int essentially truncates the number. To round a number use
the Round function.

Log(number) Returns the natural logarithm (to base e) of number. The return type is a Double. To

calculate the base 10 log of a number, use the expression Log(number) / Log(10).

Round(number) Returns number rounded to the nearest integer. The return type is an Integer.

Round(number,

n)

Returns number rounded to the nearest decimal place specified by n. The return

type is a Double.

Sgn(number) Returns the sign of number. Sgn returns -1 if number is negative, 1 if number is
positive, and 0 if number equals zero.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Function Comment

Sin(number) Returns the sine of number, which represents an angle in radians. The return type is

a Double in the range from -1 to 1.

Sqr(number) Returns the square root of number. The return type is a Double. Taking the Sqr of a

negative number causes an error.

Tan(number) Returns the tangent of number, which represents an angle in radians. The return

type is a Double.

Discussion

You can call VBA functions in your own expressions, as illustrated in Example 2-16.

Example 2-16. Calling VBA functions

num1 = 1 - cos(1.571)

num2 = 1 - Atn(a/b)

You need not hardcode arguments as shown in the first statement. You can use an expression like
that shown in the second statement as an argument to a function so long as the expression evaluates
to an acceptable value permitted by the particular function.

As discussed in Recipe 1.10, Excel has a great many useful functions that you can use in conjunction
with the VBA functions discussed here. You can actually call Excel's built-in functions from within a
VBA procedure. See Recipe 2.13 for more information on calling Excel functions from VBA code. You
have to be a little careful when working with both VBA and Excel functions. VBA and Excel both have
some functions that perform the same (or a similar) operation, but in some cases functions with the
same name are different, and this can be confusing. For example, both Excel and VBA have a Log
function; however, the VBA version of the function returns the base e logarithm while the Excel
version returns the base 10 logarithm unless you specify otherwise. This is just something to keep in
mind when mixing functions.

Some programming languages have a function that raises a number to some
exponent. VBA does not; however, you can use the ̂ operator to raise a
number to an exponent just as you do when raising a number to a power in an
Excel formula. For example, the expression num^3 raises the variable num to the
third power. You can also include an expression as the exponent, as in
num^(k*1.3). See Recipes 1.8 and 1.9 for more information.

Sin(number) Returns the sine of number, which represents an angle in radians. The return type is

a Double in the range from -1 to 1.

Sqr(number) Returns the square root of number. The return type is a Double. Taking the Sqr of a

negative number causes an error.

Tan(number) Returns the tangent of number, which represents an angle in radians. The return

type is a Double.

Discussion

You can call VBA functions in your own expressions, as illustrated in Example 2-16.

Example 2-16. Calling VBA functions

num1 = 1 - cos(1.571)

num2 = 1 - Atn(a/b)

You need not hardcode arguments as shown in the first statement. You can use an expression like
that shown in the second statement as an argument to a function so long as the expression evaluates
to an acceptable value permitted by the particular function.

As discussed in Recipe 1.10, Excel has a great many useful functions that you can use in conjunction
with the VBA functions discussed here. You can actually call Excel's built-in functions from within a
VBA procedure. See Recipe 2.13 for more information on calling Excel functions from VBA code. You
have to be a little careful when working with both VBA and Excel functions. VBA and Excel both have
some functions that perform the same (or a similar) operation, but in some cases functions with the
same name are different, and this can be confusing. For example, both Excel and VBA have a Log
function; however, the VBA version of the function returns the base e logarithm while the Excel
version returns the base 10 logarithm unless you specify otherwise. This is just something to keep in
mind when mixing functions.

Some programming languages have a function that raises a number to some
exponent. VBA does not; however, you can use the ̂ operator to raise a
number to an exponent just as you do when raising a number to a power in an
Excel formula. For example, the expression num^3 raises the variable num to the
third power. You can also include an expression as the exponent, as in
num^(k*1.3). See Recipes 1.8 and 1.9 for more information.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.13. Exploring Excel Objects

Problem

You've heard of Excel objects (in fact I've already mentioned them several times) and want to know
what they are and how they'll benefit you.

Solution

Excel exposes its features and functionality through objects. Excel's object model, as it's called,
includes nearly 200 objects that represent everything from cell ranges to charts to worksheets,
workbooks, and the Excel application. Each object has properties that allow access and control over
its attributes, as well as methods that expose the object's functionality. When working with VBA, you
access Excel and the spreadsheets included in your project through Excel objects. There are far too
many objects to discuss here. Further, not all of them are directly relevant to the sort of calculations
in which we're interested in this book. The purpose of this recipe is to introduce key objects to you
now, so we can use them in later recipes. The discussion to follow gives an overview of these key
objects.

Discussion

Before looking at specific objects, I want to discuss the Object Browser available in the VBA
development environment. The Object Browser is a handy tool that allows you to browse through
available objects, inspecting their properties and methods.

The Object Browser

As I mentioned earlier, there are nearly 200 Excel objects that you can access using VBA. Each
object also contains numerous properties and methods. Thus, it's very difficult to keep track of all the
objects, their properties, and methods without the aid of a good reference book, the VBA help guide,
or the Object Browser. The Object Browser is a window that you can open within the VBA IDE by
pressing the F2 key or selecting View Object Browser from the main menu bar. Figure 2-6 shows
the Object Browser opened in the VBA IDE.

Figure 2-6. Object Browser window

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Object Browser displays a list of objects. The upper-left drop-down listbox allows you to select
the scope of the objects to view. For example, in Figure 2-6 I've selected Excel; therefore, the Object
Browser is displaying only those objects belonging to Excel. Other options include selecting only those
objects in your project or only objects in the Microsoft Office Suite object model; there are also many
others. We're going to focus on objects in Excel.

The list labeled Classes is the list of objects. You can select any object in this list to display more
information on the object. For example, the very bottom panel of the Object Browser window is
telling us that the selected Application object is a member of the Excel object model. Also, the list to
the right of the Classes list displays all members of the selected object. Members include both
properties and methods. You can select a member in this list and the bottom panel will display
relevant information, such as whether it is a property or a method. If you press the button at the top
of the Object Browser window with the question mark icon, a new window will open that contains
context-sensitive help specific to the selected object or member. Thus the Object Browser is a
convenient way to navigate the object reference guide, too.

The second drop-down listbox at the top of the browser window allows you to enter a term (e.g., a
property name), and search for it in the object list. The search results panel will display a list of
findings for your search term.

I encourage you to play around with the Object Browser and explore the myriad objects, properties,
and methods included in the Excel object model. That said, for the most part we'll use only a small
subset of these for our purposes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Application object

The Application object represents the Excel program. It's a top-level object that gives access to top-
level features in Excel such as setting options, among others. Some of the most common uses I have
for the Application object involve accessing an object that represents the currently active worksheet,
accessing an object that represents the currently active cell, and controlling Excel's window updating
while VBA procedures are running.

Example 2-17 shows how to access the currently active worksheet in Excel by using the ActiveSheet
property of the Application object. You can type the statement shown in Example 2-17 directly in a
VBA procedure.

Example 2-17. ActiveSheet property

Application.ActiveSheet.Cells(1, 2) = time

You access members of objects by placing a period after the object name, followed by the property or
method you want to access. In Example 2-17 I'm accessing the Cells property of the ActiveSheet,
which itself is a property of the Application object. Note that properties can be objects with
members of their own. This sort of cell access is useful when writing calculation output directly into
cells in a worksheet, in this case the currently active worksheet. Note the cell reference style used
here. Cells(1, 2) represents the cell in row 1 column 2.

Example 2-18 shows how to access the ScreenUpdating property of the Application object.

Example 2-18. ScreenUpdating property

Application.ScreenUpdating = false

The ScreenUpdating property stores a Boolean value, indicating whether the Excel window should be
updated while VBA code is running. In most cases I leave ScreenUpdating set to TRue so I can follow
my VBA code as it runs. However, for some intensive calculations, especially with a lot of looping,
keeping ScreenUpdating set to true can really slow things down. In those cases, it may be desirable
to turn ScreenUpdating off (i.e., set it to false). You can set it back to true after the intensive block
of code.

Workbook object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Workbook object represents an Excel workbook. You can control many aspects of workbooks, such
as gaining access to the active sheet in a workbook through its ActiveSheet property, obtaining the
name and path to the workbook, and saving the workbook.

I often use the Workbook object's Save method to save the workbook. For example, if I write a
particular VBA procedure that makes changes to a workbook by writing calculation output to cells in a
worksheet, then I'll have the VBA procedure also save the workbook. Example 2-19 shows how to
call the Save method.

Example 2-19. Save method

Application.ActiveWorkbook.Save

In this example, I'm gaining access to the currently active workbook through the Application
object's ActiveWorkbook property.

Worksheet object

The Worksheet object represents an Excel worksheet. It provides access to sheet-level features and
functionality such as copying and pasting, printing the sheet, saving the sheet, and showing or hiding
the sheet. I use it primarily to access cells, as shown earlier in Example 2-17 (in that example,
ActiveSheet is a Worksheet object that refers to the currently active worksheet).

WorksheetFunction object

As discussed in Recipes 2.5 and 2.12, the WorksheetFunction object allows you to access Excel
functions from within VBA. Figure 2-7 shows a screenshot of the Object Browser with the
WorksheetFunction object selected.

Figure 2-7. WorksheetFunction object in the Object Browser

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the figure, you can see a partial list of functions to which you have access through the
WorksheetFunction object. Example 2-20 shows a few ways to call Excel functions using the
WorksheetFunction object.

Example 2-20. Calling functions through the WorksheetFunction object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

area = WorksheetFunction.Pi * r ^ 2

a = WorksheetFunction.Acos(b)

Set TestRange = Worksheets("Sheet1").Range("A1:A5")
TestSum = WorksheetFunction.Sum(TestRange)

The first line uses the worksheet function Pi in an expression for calculating the area of a circle given
its radius (stored in the variable r).

The second line calculates the arccosine of the variable b and returns the result in the variable a.

The last pair of lines sets a range consisting of the first five cells in column A of Sheet1 in the open
workbook and then uses Excel's Sum function to get the sum of the values stored in the range.

This last pair of lines uses the Worksheets collection, which is simply a collection of all the open
Worksheet objects in a workbook. In this case, we access a specific sheet in the collection using the
sheet's name. We then access the Range property of the selected sheet and set it to include cells A1
through A5.

I use the Set statement to set the Range object to a temporary variable called TestRange. This saves
a bit of typing when using the range in multiple statements. Finally, TestRange is passed in as an
argument to the Sum function, and the result is returned in the TestSum variable.

Range objects

Range objects represent cell ranges. Earlier I showed you how to access cells using the Cells property
of the ActiveSheet object. You can use Range objects as another means of accessing cells, as shown
previously in Example 2-20.

Example 2-21 shows a few more ways to use the Range object to access cells.

Example 2-21. Using Ranges

Set TestRange = Worksheets("Sheet1").Range("A1:A5")
TestSum = WorksheetFunction.Sum(TestRange)

Worksheets("Sheet1").Range("A7").Value = TestSum
Worksheets("Sheet1").Range("B7").Formula = "=Sum(A1:A5)"

This example includes the last two statements from the earlier example, with the addition of two new

http://lib.ommolketab.ir
http://lib.ommolketab.ir

statements. The second to last statement takes the sum calculated in the previous statement and
puts it in cell A7. As a comparison, the final statement adds a cell formula to cell B7, which also
calculates the sum of values in cells A1 to A5. When these statements are executed, both cells A7
and B7 should show the same value.

These are just a few common tasks that involve working with Range objects. Another very useful
member of the Range object is the GoalSeek function, which we can use for iterative calculations (see
Chapter 9 for some examples).

See Also

The summary presented in this recipe only scratches the surface of Excel's object model. Granted, we
don't really need much in the way of Excel objects for our purposes; however, it's good to be familiar
with the other objects in case you decide to expand your use of VBA and Excel; for example, if you
decide you want to write and distribute your own add-ins.

For more information on Excel objects, you can always consult the VBA help guide. Look for the
"Objects" topic under Microsoft Excel Visual Basic Reference in the table of contents. There you'll find
an alphabetically organized object reference.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.14. Creating Your Own Objects in VBA

Problem

You know VBA is an object-oriented language and you'd like to create your own objects for use in
other subroutines and functions.

Solution

Create a new Class Module in VBA and add your object properties and methods.

Discussion

Let me show you how to do this by way of example. First, for those of you not familiar with object-
oriented lingo, an object is a code construct comprised of properties and methods. Properties are
variables that describe the object in some way; they store attributes of the object. Methods are
functions or subroutines that actually do something. They can manipulate properties, perform some
action on given parameters, or do whatever other programming task you can devise. Objects provide
a convenient way of packaging code that allows easy reuse.

In Recipe 7.11, I show you how you might add support for manipulating vectors using VBA. You
might also approach the same problem by writing a vector object to encapsulate all the properties
and functionality of a vector. This way you can define vector type variables and perform
computations with these variables. I'll show you step by step how to get started.

Open Excel and the VBA editor. In the VBA editor, select Insert Class Module from the main
menu bar. In VBA (as in some other languages) an object is called a class. Under the VBA project
browser panel, you should see a folder called Class Modules and under that a new module called
something like class1. Now press F4 (or select View Properties Window from the main menu
bar) to open the properties panel. Click on your new class and you should see its properties displayed
in the properties panel.

For the moment you won't see much. You should, however, see a Name property. Click the field to
the right of Name and type in MyVector. This is the new name for your vector object, which should
also be reflected in the VBA project browser window.

Find the module now named MyVector in the project browser and double-click it to open a code
window. It will be blank at first, so you need to add the properties and methods for this new vector
class.

First, let's add some properties. At the very least, for a 2D vector, you know you need an x and a y
component. So add the code shown in Example 2-22.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 2-22. MyVector properties

'MyVector Object Properties:
Public x As Double
Public y As Double

These look similar to local variable declarations. Notice the Public keyword, however. You need to
use this keyword to make your properties available to you outside of this module. You can add any
number of properties in this manner, but for now these two will suffice.

When you use a custom object in other code, you have to create the object by allocating memory for
it. I'll show you how to do that later, but you should be aware that when an object is created, VBA
will automatically call an initializing subroutine to initialize the object for you, setting its properties to
default values. If you want your object's properties set to some specific default values, then you
should create a custom initialize method.

Look at the top of the code window in your class module. You should see a drop-down listbox with the
word General displayed in it. Click this listbox and select Class from the drop-down list. Over to the
right, you'll see another listbox. Click it and select "initialize" from the list. Now you should see that a
new subroutine has been created in your code module. It should look like that shown in Example 2-
23.

Example 2-23. Empty initialize method

Private Sub Class_Initialize()

End Sub

You can add your custom initialization code inside this subroutine. For example, in Example 2-24 I
added two lines to initialize this object's properties to 0.

Example 2-24. Empty initialize method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Private Sub Class_Initialize()
 x = 0
 y = 0
End Sub

It isn't quite necessary in this simple case, but does illustrate how to initialize objects.

So far, this vector object only stores two values. To make it actually do something, you have to add
methods. As I said earlier, methods are just subroutines and functions. Example 2-25 shows one I
added to compute and return the magnitude of the vector.

Example 2-25. Magnitude method

Public Function Magnitude() As Double
 Magnitude = sqrt(x * x + y * y)
End Function

This method is simply a function. You add it just as you would a regular function, as shown earlier in
this chapter. The Public keyword makes this function available outside of this module. As you can
see, the vector magnitude is computed using the object's x and y properties. Since these properties
have module-level scope, you can access them from within any method you write.

You can add any number of methods in a similar manner. For example, you could add a subroutine
that normalizes the vector, or you could write a subroutine that adds another vector given as a
parameter to the vector, and so on.

Now we have a real object that can do something. To use this object in other code, you must first
declare a variable with your object name as the type. Then you have to call VBA's Set and New
statements to actually create the memory for the object, which also initializes the object by calling its
initialize method if one exists. Once the object is created, you can use it in code using the . syntax to
access its methods and properties. Example 2-26 illustrates all these tasks.

Example 2-26. Using the MyVector class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Sub MySubroutine()
 Dim v As MyVector
 Dim mag As Double

 Set v = New MyVector

 v.x = 2
 v.y = 4

 mag = v.Magnitude
End Sub

The line Dim v As MyVector declares a local variable of type MyVector. You can't use it just yet (unlike
mag, which is a regular variable of type Double). The line Set v = New MyVector is required to actually
create the MyVector object, assigning it to the variable v.

The lines v.x = 2 and v.y = 4 set the x and y properties of the vector, v, to 2 and 4, respectively.
They'll stay that way until you change them. A method is called in a similar manner. The line mag =
v.Magnitude calls the vector's Magnitude method, returning the vector magnitude and storing it in the
local variable mag.

See Also

You can create fairly complex objects encapsulating a wide variety of functionality using these simple
techniques. In Recipe 13.7, I use these same techniques to create a Chromosome object for a genetic
algorithm.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.15. VBA Help

Problem

You'd like more information on Visual Basic for Applications.

Solution

Look in the VBA help guide. Select Help Microsoft Visual Basic Help from the main menu bar. For
context-sensitive help, you can select a keyword in a code window and press F1 to open up a new
help window containing information specific to the selected keyword.

Further, if you'd like to learn more about programming Excel in general, I can recommend Steven
Roman's book Writing Excel Macros with VBA (O'Reilly). Steven's book covers most of the topics
summarized in this chapter. He also covers topics I've left out that, while useful for general Excel
programming, aren't immediately relevant to the calculations I discuss in this book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 3. Collecting and Cleaning Up Data
Section 3.0. Introduction

Recipe 3.1. Importing Data from Text Files

Recipe 3.2. Importing Data from Delimited Text Files

Recipe 3.3. Importing Data Using Drag-and-Drop

Recipe 3.4. Importing Data from Access Databases

Recipe 3.5. Importing Data from Web Pages

Recipe 3.6. Parsing Data

Recipe 3.7. Removing Weird Characters from Imported Text

Recipe 3.8. Converting Units

Recipe 3.9. Sorting Data

Recipe 3.10. Filtering Data

Recipe 3.11. Looking Up Values in Tables

Recipe 3.12. Retrieving Data from XML Files

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.0. Introduction

Chances are you're going to have to deal with data that's not already in the form of an Excel file. This
data may be standard scientific and engineering data (such as element properties or thermodynamic
tables), or it could be the results of other computer simulations (such as computation fluid dynamics
results or galaxy formation simulation results), or it could be experimental data obtained from any of
a wide variety of scientific and engineering measurements. In many cases such data would be in the
form of text files that could be imported into Excel for further analysis. Text files are common
because they are universal, they are easy to generate in custom programs, and you don't have to
have specialized software to read them. Still other data that you may want to process in Excel could
reside in nontext files such as database files. This chapter will show you how to import data into Excel
from these and other sources. Further, I'll show you how to massage that data once it's in Excel,
making it easier to manipulate and analyze.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.1. Importing Data from Text Files

Problem

You have some data you'd like to analyze in Excel but it's located in a separate text file.

Solution

Open the text file in Excel using File Open....

Discussion

Excel is capable of reading many different file formats, not just Excel spreadsheet files. Opening a
text file is very much like opening a spreadsheet file: simply use File Open... (or use the shortcut
Ctrl-O) to pull up the Open dialog box and select the file you wish to open. Figure 3-1 illustrates the
Open dialog box.

Figure 3-1. Open dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Open dialog box defaults to listing only Microsoft Excel files (with extensions .xls, .xla, and so
on). To list text files (with the .txt extension), you'll have to select Text Files in the "Files of type"
drop-down listbox, as shown in Figure 3-1. Press the Open button after selecting the file you wish to
open.

The sample file I'm using here, Filip.txt , was obtained from the National
Institute of Standards and Technology (NIST) online statistical reference
dataset archive. This particular dataset was prepared by A. Filippelli of NIST for
polynomial least-squares regression.[*]

[*] You can find all sorts of useful data, a lot of which is freely available, on the NIST web site at

http://www.nist.gov.

Upon pressing the Open button, you'll see the Text Import Wizard dialog box shown in Figure 3-2.
Since text files aren't necessarily in a format consistent with tidy rows and columns, Excel provides
this import wizard to assist with parsing text, so the data you're after ends up in rows and columns in
the newly formed spreadsheet. The wizard treats every line in the text file as a row of data. It then
allows you to specify where column breaks should go so your data ends up in rows and columns. If
you skip the column specification part, you could end up with rows of data in a single column, with
each cell in the column potentially containing long strings of text.

http://www.nist.gov
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 3-2. Text Import Wizard: Step 1

Specifying column breaks is fairly painless. The first thing you need to do is specify whether your data
is in delimited or fixed-width form. Delimited means the data on each row is separated by characters
such as commas, spaces, tabs, or semicolons. Fixed width means the sets of data on each row are
already aligned in columns, with spaces separating the columns. The data I'm using in this example is
fixed width, as shown in Figure 3-2. See Recipe 3.2 to learn how to work with delimited data .

Notice the row numbers to the left of the data previewed in Figure 3-2. The text file actually contains
some descriptive information at the beginning of the file that, while useful, is not what I'm really
interested in importing. Therefore, I've scrolled down to row 60 in the preview window so I can see
the actual data. I've also set "Start import at row" to 60 so all the lines above the actual data will be
skipped.

At this point, you should press the Next button to advance to the next step in the import wizard.
Doing so opens the dialog box for step 2 shown in Figure 3-3.

In this step you actually specify your desired column breaks. The import wizard usually makes a
pretty good guess for you, and often you don't have to do anything else. In some cases, a few
tweaks are in order. Specifying column breaks is easy and the dialog box shown in Figure 3-3 actually
includes instructions. Simply click at a point along the ruler just above the data preview window to
set a column break. Double click a break to delete it. Or, click and drag to reposition a break. It's that
simple. Click Next to proceed to the third step once your breaks are set. Figure 3-4 shows the dialog
box for step 3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 3-3. Text Import Wizard: Step 2

Figure 3-4. Text Import Wizard: Step 3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The third step allows you to specify the data type, or format, of the data contained in each column
you specified in the previous step. Simply click any column in the data preview window to select the
column. Next, specify the data format for that column by pressing one of the "Column data format"
radio buttons. To be honest, I usually skip this step and use the defaults set by the wizard. The
wizard usually does a fine job recognizing text versus numbers. I find this step most useful when I
want to skip a column. For example, the first column in Figure 3-4 does not contain any data; it
contains only one row of text. Therefore, I select it and specify "Do not import column."

At this point you should press Finish to exit the wizard. Excel will then import the text per your
specifications. The results for this example are shown in Figure 3-5.

Figure 3-5. Imported text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you can see, Excel imported only the data I specified, placing it in columns A and B of a new
spreadsheet. Now you can perform any of the usual spreadsheet operations on this data and save
the resulting spreadsheet as you normally would. Before going too far, I recommend you do a Save
As (File Save As...) and save the new spreadsheet as a spreadsheet file with the .xls extension.
This way, you can be sure to avoid overwriting your original text file. (Excel will warn you anyway if
you attempt to overwrite it.)

See Also

See Recipes 3.2, 3.3, 3.4, and 3.5 for alternative data-importing techniques.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.2. Importing Data from Delimited Text Files

Problem

You want to import data from a text file, but the data isn't in fixed-width format as in Recipe 3.1. This
time, the data is delimited, i.e., separated by commas, spaces, tabs, or some other character.

Solution

Follow the import procedure described in Recipe 3.1, but select Delimited instead of "Fixed width" in
step 1 of the Text Import Wizard (see Figure 3-2).

Discussion

When you select Delimited instead of "Fixed width," you don't specify column breaks during step 2 of
the import procedure. Instead, you specify the delimiter that separates the data on each row being
imported. In this case, step 2 of the Text Import Wizard looks like Figure 3-6 instead of Figure 3-3.

Figure 3-6. Text Import Wizard: Step 2 (Delimited file type)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The example data shown in the data preview window in Figure 3-6 was taken from one of my fluid
dynamics simulations. It shows fluid field variables (velocity, pressure, density) as functions of
position on a 2D grid. The output file consists of rows of data, with each number separated by a
comma. I checked the comma delimiter in the import wizard dialog and the wizard automatically set
the column break points. Pressing Next at this point takes you to step 3, as already discussed in
Recipe 3.1.

See Also

See Recipe 3.1, Recipe 3.3, and Recipe 3.4 for alternative data importing techniques.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.3. Importing Data Using Drag-and-Drop

Problem

You routinely use drag-and-drop to open files in Windows and are wondering if you can do the same
with text files in Excel.

Solution

Yes, you can. Simply drag the text file and drop it on Excel's window.

Discussion

While this sounds trivial, you'll quickly realize that dragging and dropping a text file into a
spreadsheet does not always yield the results you'd like. Take a look at the example shown in Figure
3-7.

Figure 3-7. Text imported by drag-and-drop

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The data contained in the text file was indeed loaded into the spreadsheet; however, all of the data
on each line in the text file was lumped into a single cell (in column A) on each row in the
spreadsheet. In this form, the data is treated as text and you can't perform analyses on the data or
plot it on a chart. You need to parse the data in order put it in a useful form, i.e., separate the data
into columns. See Recipe 3.6 to learn how to convert text like that shown in Figure 3-7 to columns of
data.

See Also

See Recipe 3.6 to learn how to convert strings of text to useful columns of data.

Also, take a look at Recipes 3.1, 3.2, 3.4, and 3.5 for alternative data-importing techniques.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.4. Importing Data from Access Databases

Problem

You have data in a Microsoft Access database that you'd like to import into Excel for analysis.

Solution

Use File Open... to open the Access database file.

Discussion

When you select File Open..., you'll get the familiar Open dialog box. In the "Files of type" drop-
down listbox, look for and select the Access Databases file type, as shown in Figure 3-8. Access
database files have the file extension .mdb.

Locate and select the database file you'd like to open and then press the Open button. Upon doing so,
you'll see the Select Table dialog box shown in Figure 3-9.

The example database file I'm using here contains standard structural material properties and
standard structural shape data. It includes two distinct tables: Materials and Sections. In this case,
I've selected the Materials table for import into Excel. When I make the table selection and press the
OK button, the data contained in the table is imported into Excel, as shown in Figure 3-10.

That's all there is to it. You can now perform operations on the imported data as you wish.

I should point out that the data imported into Excel is linked to the original Access database. This
means that when data is changed in the original database, it can automatically be updated in your
spreadsheet. You have some control over how the data is updated. Notice the External Data toolbar ,
shown in Figure 3-10, to the right of the imported data. This toolbar appears automatically when the
data is imported. (You can also show this toolbar from the main menu bar via View Toolbars
External Data.)

Figure 3-8. Opening an Access database

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 3-9. Select Table dialog box

The second button from the left of the External Data toolbar is the Data Range Properties button .
Pressing this button opens the External Data Range Properties dialog box , which allows you to
specify how often you want Excel to automatically refresh the imported data. You can also specify
that you want the data automatically refreshed every time you open your spreadsheet. The button
with the exclamation point on it forces Excel to refresh the data instantly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 3-10. Imported Access table

You can import data from other databases as well. For example, Excel allows
you to create new database queries facilitating access to such databases as
Oracle, FoxPro, and dBase. Select Data Import External Data New
Database Query... to create a new database query or use an existing data
source. See the help topics "About importing data," "Create an OLAP query file
to connect to an OLAP database," and "Import or connect to data in Excel's
online help" for more information.

See Also

Take a look at the help topic "Data sources you can access" for more information on the types of
databases you can access from within Excel and for specific information on connecting to those
databases.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.5. Importing Data from Web Pages

Problem

You've found a web page containing useful data that you'd like to use in a spreadsheet; however, you
don't feel like retyping it all in.

Solution

There are a few ways to get the data from a web page into Excel without having to retype it all. You
could try copying and pasting, but this may give you format problems. You could also try saving the
web page as a text file, but the formatting of the web page may make this cumbersome.

The most direct way to import data from a web page uses Excel's built-in capability to import data
from tables and preformatted areas contained in web pages . From within Excel, select Data
Import External Data New Web Query....

Discussion

Upon selecting Data Import External Data New Web Query... from the main menu bar, you'll
see the New Web Query window shown in Figure 3-11. The New Web Query window is essentially a
web browser. You can type in a URL in the address bar to go to the page containing the data you'd
like to import. You can also navigate using the forward and back buttons (the circular ones with
arrows, to the right of the Go button in the toolbar).

A key difference between this window and your usual web browser is that this window analyzes the
web page to determine which data you can import. Each block of data that can be imported is
marked with a little arrow icon in the block's upper-left corner, as shown in Figure 3-11. If you drag
you mouse over one of these icons, the corresponding data block will be highlighted. Click the icon to
select that block of data (the arrow will turn into a checkbox). Click the arrow icon in the upper-left
corner of the page to import the entire page. Once you've selected the blocks of data you'd like to
import, press the Import button.

The results of this action for the page displayed in Figure 3-11 are shown in Figure 3-12. Notice that
the External Data toolbar is shown when the web query is completed, just as in the earlier example
showing how to import data from an Access database. You can use the External Data toolbar to
manipulate the web query. For example, if you press the refresh button, Excel will attempt to refresh
the data obtained from the web page by reaccessing the page over the Internet. This can be useful if
the data you've imported changes frequently.

Once you've imported the data, you can use it in your own analyses or manipulate it further using

http://lib.ommolketab.ir
http://lib.ommolketab.ir

other techniques discussed in this chapter.

Figure 3-11. New Web Query window

See Also

You can save your web queries and rerun them at later times from other workbooks if you'd like. This
is useful if you want to use the data in more than one workbook. You can save the query by pressing
the save icon in the New Web Query window (see Figure 3-11). For more information see the help
topic "Query for data from a Web page" in Excel's online help.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.6. Parsing Data

Problem

You've imported data from a text file as discussed in Recipe 3.3, but all data on each row is lumped
into a single cell. You'd like to separate the data on each row into columns.

Solution

Select the data you'd like to parse. Then select Data "Text to Columns... " from the main menu
bar to open the "Convert Text to Columns" Wizard.

Figure 3-12. Data imported using web query

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

The data shown in Figure 3-7 (in Recipe 3.3) was imported from a text file via drag-and-drop. The
problem with this approach is that all the data on each row is lumped into a single cell. This is less of
a problem with the import method in Recipe 3.1, because using File Open... automatically
launches the Text Import Wizard, which allows you to set columns for your data either manually or
by specifying delimiters.

The "Convert Text to Columns" Wizard, accessible via Data "Text to Columns ...," is essentially
the Text Import Wizard. The three steps in the "Convert Text to Columns" Wizard are identical to
those in the Text Import Wizard. First you specify whether the text to be parsed is in fixed-width
form or delimited. Then, depending on your selection in step 1, you either manually set column
breaks or select the delimiting character. Finally, you can specify data formats and choose which
columns to ignore.

Performing these steps on the data shown in Figure 3-7 yields the parsed data shown in Figure 3-13.

Figure 3-13. Parsed data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.7. Removing Weird Characters from Imported
Text

Problem

You've imported data from a text file but find weird (i.e., nonprintable) characters in the imported
text. You'd like to remove the nonprintable characters.

Solution

Use the CLEAN worksheet function.

Discussion

If you've tried some of the text-importing recipes in this chapter, you may have come across some
unusual characters in your imported data, as illustrated in Figure 3-14.

Notice the unusual rectangle characters mixed with the data. These characters are so-called
nonprintable characters because under normal circumstances you can't see them. They include
control characters such as line-feed and carriage-return characters, tabs, and others. You may or
may not encounter such characters, depending on where your text files originate. I find I'm more
likely to encounter such characters when importing data from text files that originated on a non-
Windows system. This is because there are different standards for specifying formatting and control
instructions on different systems. For example, Windows uses both a line feed and carriage return to
denote the end of a line of text, whereas Macintosh systems use a single carriage return.

Figure 3-14. Nonprintable characters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can remove these nonprintable characters using Excel's built-in worksheet function CLEAN. Simply
type =CLEAN(cell reference) in a cell to remove nonprintable characters from the text contained in
the referenced cell. You should replace cell reference with a valid cell reference, such as C1. Figure

3-15 shows how CLEAN deals with the first several rows of data.

Columns G and H show the cleaned data. Notice the cell formula for the selected cell, G1, displayed in
the formula bar. In this case, the formula is =CLEAN(B1). The result is that the nonprintable character
was removed from the number 0.8116.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.8. Converting Units

Problem

You want to convert a number from one unit to another directly within Excel.

Figure 3-15. CLEAN

Solution

Use Excel's built-in worksheet function CONVERT. Alternatively, you can write your own conversion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

function.

Discussion

The sections below describe hoe to use CONVERT, how to write your own conversion function (or other
functions), and how to create an add-in to make your own collection of functions accessible from any
spreadsheet.

Using CONVERT

The Analysis ToolPak add-in included in Excel contains a worksheet function called CONVERT that allows
you to convert values from one unit to another. To use CONVERT, you must ensure the Analysis
ToolPak is installed in your version of Excel. To do this, select Tools Add-Ins ... from the main
menu bar to open the Add-Ins dialog box. Select Analysis ToolPak from the list of available add-ins
and then press OK.

The syntax for CONVERT is =CONVERT(cell reference, from units, to units), where cell reference is
a valid cell reference, from units is a string indicating the units of the value being converted, and to
units is a string indicating the units to which the value is being converted.

Valid strings for units are listed in the Excel help topic "Convert." You can find this topic by searching
for "Convert" in Excel's online help, or you can browse this topic starting from the help table of
contents (look for the topic Working with Data Function Reference Engineering Functions

 Convert).

CONVERT supports a basic set of units, including length, mass, time, force, pressure, energy, power,
magnetism, temperature, and volume. It also supports a range of prefixes for tera-, giga-, centi-,
pica-, and so on.

You use CONVERT in a worksheet by entering the function in a cell, as illustrated in the following
examples:

 =CONVERT(A1, "in", "ft")
 =CONVERT(A2, "in", "cm")
 =CONVERT(A3, "HP", "MW")

In the first example, the value in cell A1 is converted from inches to feet. Notice how the from units
and to units strings must be included in quotes. In the second example, the value in A2 is converted
from inches to centimeters. In this case, the units string for meters, m, is prefixed with the centi-
prefix, c, to yield the centimeters string, cm. In the third example, the value in A3 is converted from
horsepower to megawatts. Here, MW is formed by prefixing the watts units string, W, with the mega-
prefix, M. I should point out that these units strings are case-sensitive. For example, MW yields
megawatts; however, mW yields milliwatts.

Writing your own functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

While CONVERT is a handy conversion function, it is limited to a set of very common units. You'll
probably find that units common to your specialty are not included in CONVERT's lexicon. For example,
in the field of naval architecture, the standard weight unit used for ships and cargo is the long ton, or
LT. CONVERT does not support long tons. In fact, it does not support tons of any form.

Since converting units is a common task when pre- and post-processing data, you may find it helpful
to write your own custom unit-conversion functions to supplement those supported by CONVERT.
Example 3-1 shows a few custom conversion functions I use quite often.

Example 3-1. Custom unit-conversion functions

Public Function LbsToLT(value As Double) As Double
 LbsToLT = value / 2240#
End Function

Public Function LbsToTons(value As Double) As Double
 LbsToTons = value / 2000#
End Function

Public Function cuFtTocuM(value As Double) As Double
 cuFtTocuM = value * 0.028316846592
End Function

You can add these or similar functions to your own spreadsheets as explained in Recipe 2.2. Be sure
to put these in a new code module as explained in Chapter 2. You'll then be able to call these
functions as cell formulas anywhere in your spreadsheet.

Creating an add-in

If you're like me, you'll find yourself building a custom library of useful functions and subroutines that
you'd like to use repeatedly in different spreadsheets. To make your library of custom functions
accessible from any spreadsheet, convert it to an add-in. Creating an add-in is easy. Here are the
steps:

Open a workbook and add your custom functions to a code module as discussed earlier.1.

Save your workbook as an add-in. Select File Save As ... to open the Save As dialog box.
Then select "Microsoft Excel Add-in (*.xla)" from the "Save as type" drop-down listbox. Doing
so will automatically change the Save In folder to the default Excel add-ins folder on your
machine (it's usually something like C:\Documents and Settings\User\Application
Data\Microsoft\AddIns). Close your add-in.

2.

3.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Open a new workbook.3.

Select Tools Add-Ins ... from the main menu bar to open the Add-Ins dialog box.4.

Locate your add-in in the list of available add-ins and make sure it's checked. Press OK.5.

From now on, your custom add-in will be available to all of your workbooks. To add new capabilities
to your add-in, go to the Visual Basic editor and locate your add-in in the Project window as
discussed in Chapter 2. Double-click the code module for your add-in and make your changes. Save
your changes when you're done.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.9. Sorting Data

Problem

You have unsorted data in your spreadsheet and you'd like it sorted.

Solution

Select the data you want to sort, then choose Data Sort ... from the main menu bar to open the
Sort dialog box. The Sort dialog box will allow you to specify how to sort the data, as discussed
below.

Discussion

Figure 3-16 shows a sample spreadsheet containing hypothetical student grades. The student names
are not in alphabetical order, so I'll use Excel's sort feature to sort them from A to Z. Moreover, when
I sort the names, the grades associated with each student will remain so; that is, we're not just going
to sort the first column, but will also keep grade associations intact for each student name.

Figure 3-16. Unsorted grade report

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To sort the data keeping everything intact, you must select the entire data range. Click the first name
in the list and drag the selection to the lower-right of the range. Now select Data Sort ... from
the main menu bar. You should see the Sort dialog shown in Figure 3-17.

In this example, let's sort by student names in ascending order. Select Student Name in the "Sort by"
drop-down listbox, and select Ascending next to it. In the event two names are identical, let's use the
associated final exam grade as the tiebreaker, with the name of the student who has the lower final
exam grade appearing first. To do this, select Final Exam from the "Then by" drop-down listbox and
select Ascending next to it.

You might be wondering how Excel knows the names of the columns to include in the "Sort by" and
"Then by" listboxes. Excel detects whether or not you have text in the row above the selected data. If
so, it sets "My data range has" to "Header row" and uses the header row labels in the drop-down
listboxes. If you don't have a header row, Excel will use the column labels in the drop-down listboxes
instead.

Figure 3-17. Sort dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Pressing the OK button at this point causes Excel to perform the sort. Results for this example are
shown in Figure 3-18.

As you can see, the names are now in alphabetical order and their associated grades were kept
intact. You need not sort on the first column of data as we did in this example. You could have just as
easily selected the average grade column to sort by in order to see grades reported in ascending or
descending order of each student's final score. These capabilities give you a fair amount of flexibility
when sorting data for further processing or plotting using Excel's charting features.

See Also

O'Reilly's Excel Hacks book, written by David and Raina Hawley, contains a couple of sorting hacks
you might find useful. Hack #29 shows you how to sort using more than three columns, while Hack
#30 shows you how to perform random sorts.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 3-18. Sorted grades

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.10. Filtering Data

Problem

You have a spreadsheet that contains a large table of data and you'd like to be able to filter the data
so you can view smaller subsets at a time.

Solution

Use Excel's built-in filter capability.

Discussion

Figure 3-19 shows a spreadsheet that contains atomic weights for all elements and their isotopes.

The data used in this example was downloaded from the freely available Atomic
Weights and Isotopic Compositions database on the National Institute of
Standards (NIST) and Technology web site, http://www.nist.gov. The data
shown here is an abridged version of the full dataset prepared by J. S. Coursey,
D. J. Schwab, and R. A. Dragoset, which is available on the NIST web site.

Figure 3-19. Unfiltered data

http://www.nist.gov
http://lib.ommolketab.ir
http://lib.ommolketab.ir

This dataset consists of nearly 3,000 records. Clearly it would be cumbersome to search for a
particular element by having to manually scroll through all of the data. To make looking up specific
records easier, you can filter the data.

The easiest way to filter data like this is to simply select Data Filter AutoFilter from the main
menu bar. Excel will automatically scan your data and set up drop-down listboxes above each
column, allowing you to filter the dataset. Figure 3-20 shows the spreadsheet with autofiltering
turned on.

Notice the little down arrow buttons located adjacent to the column headings. Excel populates these
drop-down listboxes with filter options automatically determined from your data. For example, Figure
3-21 shows what's in the listbox for the Isotope column.

Figure 3-20. Autofiltering active

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can select any element listed to apply a filter such that only records with the selected element in
the Isotope column will be shown. Figure 3-22 shows the filtered list with the element O (oxygen),
selected.

There are a few things to keep in mind when using autofiltering:

Excel detects your dataset automatically and assumes it ends when it encounters a blank row.
Therefore, be sure not to include any blank rows in your data, so as not to confuse Excel.

Filtered lists are shown with row numbers in blue.

Filtering does not delete any data. Rows of data that don't meet the filter criteria are merely
hidden.

You can add rows of data to the list simply by inserting or appending them to your existing data
range.

You can perform calculations on your filtered data just as you normally would. For example, you
could include a column of calculated fields in column D.

You can turn autofiltering off at any time by selecting Data Filter AutoFilter again.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 3-21. Isotope filter

Figure 3-22. Filtered list

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Occasionally, you may find you require a bit more flexibility when setting filter criteria. For example,
say you wanted to see the isotopes for both hydrogen and oxygen at the same time. You can achieve
this by setting up custom filter criteria. Take another look at Figure 3-21 and notice the third item in
the exposed filter list is "(Custom ...)." You can select this item to open the Custom AutoFilter dialog
box (shown in Figure 3-23).

Figure 3-23. Custom AutoFilter dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this case I set up a custom filter to show all records whose Isotope column contains O or H. The
drop-down listboxes showing "equals" in Figure 3-21 allow you to select other criteria as well, such as
"equals," "not equal," "greater than," "less than," "begins with," and "contains." This gives you quite
a bit of flexibility. Pressing OK at this point will show a filtered list containing all records whose
Isotope column contains O or H.

You should also be aware that you can specify criteria in more than one column at a time. Doing so
will instruct Excel to show all records that meet the criteria specified in the first column and the next
column and so on. Combine this capability with custom filters and you have a handy filtering
mechanism at your disposal.

See Also

Occasionally your data may be so complex that you require more advanced filtering capabilities. Excel
facilitates this; see the help topic "Filter by using advanced criteria" in Excel's online help for more
information.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.11. Looking Up Values in Tables

Problem

You're using tabular data in calculations and you need an easy way to look up values in the table for
use in other calculations.

Solution

Use the built-in functions Lookup, VLookup, HLookup, Match, or Index.

Discussion

Excel provides five functions to help you access data in tabular form. These functions come in handy
when performing calculations that require looking up data from standard tables. For example, you
can develop a spreadsheet to perform thermodynamic calculations and include standard steam tables
in this spreadsheet. This way, instead of manually looking up fluid properties to use in your
calculations, you can automatically include that data via the lookup functions discussed here.

LOOKUP

The syntax for LOOKUP is =LOOKUP(lookup value, lookup vector, result vector). Lookup finds the
value in result vector corresponding to the position of the value in lookup vector that matches
lookup value. The lookup vector must be sorted in ascending order (see Recipe 3.9). Also, the lookup

and result vectors may be row or column ranges.

You can use text or a number as the lookup value; the function just compares the lookup value to
the data stored in the lookup vector to find a match. This is an important caveat with this function
(and the others discussed here), as no interpolation is performed. The function looks for an exact
match and if it does not find one, it returns the value in the result vector corresponding to the value
in the lookup vector that is closest to but less than the lookup value. (Take a look at the recipes in
Chapter 8 to learn how to interpolate data in Excel.)

Figure 3-24 illustrates a typical application of LOOKUP. In this example, we have a simple table of data
that presents design factors, say for ship structural design, as a function of length of the ship under
consideration, the ship's hull material, and the units used. (Don't bother looking up this table of data
in a marine design handbookit doesn't exist. I just made it up for illustration purposes.)

Let's say we have a design formula, or better yet a whole series of calculations that must be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

performed, that requires the design factor as input. Including the design factor table in the
spreadsheet allows you to conveniently select the factor by specifying the length, material type, and
units, rather than looking up the data in a handbook and entering it manually. This is especially
handy if you distribute your spreadsheet to someone else.

The three values in cells F14 through F16 are user input values corresponding to the given length,
units, and material, respectively. The design factor corresponding to this given data is contained in
cell F17. The formula in cell F17 that actually performs the lookup is:

 =LOOKUP(F14, IF(F15="ft",D8:D12,E8:E12), IF(F16="Steel", F8:F12,G8:G12))

This formula looks more complicated than it is, due to the nested IF functions.

Figure 3-24. LOOKUP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IF functions are like conditional statements in traditional programming
languages. They are quite handy for use in spreadsheets. The syntax for the IF
function is =IF(logical expression, value if true, value if false). The

logical expression can be any expression that evaluates to true or false. You
can use cell references in a logical expression along with logical operators such
as >, <, and =. There are also a few other logical functions (AND, OR, and NOT)
that you can use to construct more elaborate logical statements like
=IF(AND(C5>F9, G9=2), ...) or =IF(AND(OR(C5>F9, G9=2), NOT(C11)), ...,).
value if true is what will be used if the logical expression evaluates to true,
whereas value if false will be used if the logical expression evaluates to

false. Either of these values may be hardcoded numbers or text, cell
references, or nested functions (for example, you can construct nested
conditional statements by including another IF function as value if true or
value if false, and so on.

Basically, the given length, cell F14, is used as the value to look up in the lookup vector, but the
lookup vector itself depends on which units are selected. An IF function is used to test the given units
and return the correct lookup vector. Another IF function is used to test the given material and
return the correct result vector. The design factor is extracted from the result vector on the row
corresponding to the row containing the given lookup value (the given length, in this case).

If you take a close look at Figure 3-24, you will notice a little down arrow
button next to selected cell, F15, corresponding to the given units. Pressing this
button will display a listbox allowing you to select which units to enter (ft or m)
instead of manually typing the units. I used the same technique for the given
material input cell. Using drop-down selection lists in this way is a great way to
control the input value of a cell, being sure the value entered is a valid value.
This provides a more robust spreadsheet, especially when the spreadsheet is
distributed to other users. To actually get the cell to display a list of valid data,
use Excel's Data Validation feature (see Recipe 1.15). The Allow field shown in
Figure 1-21 includes a List option. When you select a List in the Allow field, a
Source field will be displayed, allowing you to select a cell range containing the
data to show in the list. For cell F15 in Figure 3-24, I set the source range to
D7:E7, which includes the two valid options, ft and m.

VLOOKUP

The syntax for VLOOKUP is =VLOOKUP(lookup value, table, column, match flag). VLOOKUP searches for
the given lookup value in the first column of the range of cells given by table and returns the value
on the corresponding row in the given column. match flag is optional. If it is set to TRue or is omitted,

then VLOOKUP will find an exact match or a close match. In this case, the first column in the given
table should be sorted in ascending order (see Recipe 3.9). If an exact match is not found, the
function returns the value in the given column corresponding to the value in the first column that is
closest to but less than the lookup value. If match flag is false, VLOOKUP will look only for exact

matches. If one is not found, the function returns #N/A, indicating the absence of an exact match.

Figure 3-25 shows a spreadsheet containing a table of physical properties for water. The first column

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of the table contains temperatures ranging from 10 to 90°C. Typical calculations would involve
looking up physical properties in such a table for use in other calculations.

Physical properties of water for a given temperature can be retrieved from this table using VLOOKUP.
In Figure 3-25, cell E17 contains the given temperature for which properties are retrieved. In this
case, density, internal energy, enthalpy, entropy, specific heats, sound speed, and viscosity
corresponding to the given temperature are shown in cells E18 through E25. Each of these cells
contains a formula that utilizes VLOOKUP. For example, cell E18 contains the formula
=VLOOKUP(E17,C4:K12,2). The value to be looked up in the first column of the data table is
stored in cell E17; this is the given temperature. The data table itself is stored in the cell range
C4:K12. The last parameter in this formula indicates the column in the data table from which to
retrieve data corresponding to the given temperature. Column 2 in this case is the density of water.
The remaining cells contain similar formulas. The only differences are the last parameter in VLOOKUP
(i.e., the column index from which to retrieve the desired value).

Figure 3-25. VLOOKUP

HLOOKUP

HLOOKUP is very similar to VLOOKUP; however, HLOOKUP uses the first row of data in a given cell range
as the lookup array. The syntax for HLOOKUP is = HLOOKUP(lookup value, table, row, match flag).

The only difference between this syntax and that of VLOOKUP is the third parameter; HLOOKUP requires
a row number to be used to retrieve the result.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 3-26 contains the same data shown in Figure 3-25; however, in this new example the data
has been transposed. Now, temperatures are on the first row instead of in the first column.

It's easy to transpose data in Excel. Select the range of cells you want to
transpose and copy it, using Ctrl-C or Edit Copy. Select a new cell where
you want to paste the data and select Edit Paste SpecialIn the Paste
Special dialog box, check the Transpose box and press the OK button.

Physical properties of water for a given temperature can be retrived from this table using HLOOKUP.
For example, cell D17 extracts the density corresponding to the temperature given in cell D16. The
formula in cell D17 is =HLOOKUP(D16,D4:L12,2). The formulas for the other properties in cells
D18 through D24 are very similar; only the result row number changes.

Figure 3-26. HLOOKUP

MATCH

MATCH returns the position of an item in an array. For example, in the spreadsheet shown in Figure 3-
27 we could use MATCH to return the position of the cell containing the text Sound Spd. (m/s) in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

array of cells C4 to C12. In this case, the position returned would be 8. The syntax for MATCH is
=MATCH(lookup value, lookup array, match type). Here, lookup value is the value to be looked up in
the array lookup array. The last parameter, match type, tells MATCH how you want to determine a
match. If match type is 0, then MATCH looks for an exact match. If match type is -1, then Match
returns the position of the smallest value greater than or equal to lookup value. If match type is 1,
then MATCH returns the position of the largest value less than or equal to lookup value. Remember,

MATCH returns the position of the matched value, not the value itself.

The spreadsheet in Figure 3-27 shows how you might use MATCH. In this case, we have the same data
table as in the HLOOKUP example. This time, however, in cell D18 we have this formula:
=HLOOKUP(D17,D4:L12,MATCH(C18,C5:C12,0)+1). This time I nested a call to MATCH as the third
parameter in HLOOKUP. In the previous example, I specified a row in which to look up the result. In
this case, I use MATCH to find the row corresponding to the description of the property selected in cell
C18. Cell C18 contains a drop-down listbox that allows you to select any of the properties in the table
except the temperature property. I used the same data validation technique described earlier in this
recipe to create the selection list in this example.

Figure 3-27. MATCH

The call to MATCH in the call to HLOOKUP returns the position of the selected description in the list of
descriptions contained in cells C5 to C12. To get the proper row number for the table in the cell range
C4:L12, you have to add 1 to the value returned by MATCH since the number of rows in the
description cell list is shifted by 1 from the data table.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

INDEX

INDEX is useful for extracting a value from a table (cell range) given the position of the value in the
table. The syntax for INDEX is =INDEX(cell reference, row, column). INDEX will return the value in the
cell at position row and column in the range specified by cell reference. This is like extracting the

value of an element in a matrix given its row and column position.

Figure 3-28 shows a spreadsheet containing a set of data resembling a 4x3 matrix.

Cell D10 contains the value of element [2,2] extracted using INDEX. The formula in cell D10 is
=INDEX(D4:F7,2,2).

If you want to extract an entire row, set the column to 0 in the call to INDEX. Likewise, to extract an
entire column, set the row to 0. To extract an entire row or column at a time, you need to use array
formulas. These are nothing more than formulas that act over a range of cells (instead of over a
single cell, like the formulas I've discussed so far).

Figure 3-28. INDEX

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To extract the first row as shown in Figure 3-28, I first selected the destination cell range D12:F12 by
clicking and dragging the mouse. Then I pressed the equals sign to begin writing the formula:
=INDEX(D4:F7,1,0). Notice that I set the column to 0, indicating that I want an entire row. To enter
this formula, which is now an array formula, press Ctrl-Shift-Enter instead of the usual Enter. This
tells Excel you're entering an array formula, and it will fill all the selected cells with results of the
formula you entered.

Array formulas are shown in the formula bar with braces around them, like
{=INDEX(D4:F7,1,0)}. I show you how to use array formulas in other recipes
throughout this book. Take a look at Recipe 5.2 and Recipe 7.11 for some
examples.

To extract the entire second column as shown in Figure 3-28, select the range D14:D17 and Ctrl-
Shift-Enter the formula =INDEX(D4:F7,0,2). In this case, the row is set to 0, indicating that you want
to extract an entire column.

INDEX is handy when working with matrices or matrix-like data and calculations. See Chapter 7 for
more recipes dealing with matrix calculations.

See Also

In this recipe, I used and briefly discussed Excel's IF function. While its use is fairly straightforward,
you can read more about it and other logical functions in Excel's online help. Look for the topic
"Logical Functions."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.12. Retrieving Data from XML Files

Problem

You need to analyze some data contained in an XML file and would like to do so in Excel.

Solution

Import the XML file into Excel using File Open ... and then manipulate the data as you normally
would in Excel.

Discussion

Extensible Markup Language (XML) files are text files that use the XML protocol for structuring data.
XML was developed as a standard, cross-platform data exchange file format that would make
transferring data from platform to platform and application to application easy. In this regard, XML is
very similar to HTML used for web pages.

Programmers using a variety of languages can create XML datafiles of program output. Database
applications can put their data in XML files . In fact, Microsoft Access allows you to import and export
XML files. If you need to get at the data contained in an XML file, you can do so using any of a
number of programs that read XML files, like Access. However, if you're also interested in
manipulating or analyzing the data in Excel, then the more direct route is to open the XML file directly
in Excel. Select File Open ... from the main menu bar as you normally would to open a file, and
select "XML Files (*.xml)" from the "Files of Type" drop-down list instead of the default XLS file type.

This feature is currently available only in Microsoft Office Professional Edition
2003 and Microsoft Office Excel 2003.

Example 3-2 shows the partial contents of a sample XML file as if opened in a text editor.

Example 3-2. Sample XML file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

- <Materials>
 <ID>1</ID>
 <Description>5083 - H111</Description>
 <UT>269</UT>
 <Sigma_x0020_YW>145</Sigma_x0020_YW>
 <Tau>83</Tau>
 <Sigma_x0020_Y>165.62</Sigma_x0020_Y>
 <Type>Aluminum</Type>
 <Units>Metric</Units>
 </Materials>
- <Materials>
 <ID>2</ID>
 <Description>5083 - H116</Description>
 <UT>276</UT>
 <Sigma_x0020_YW>165</Sigma_x0020_YW>
 <Tau>96</Tau>
 <Sigma_x0020_Y>199.92</Sigma_x0020_Y>
 <Type>Aluminum</Type>
 <Units>Metric</Units>
 </Materials>
- <Materials>
 <ID>3</ID>
 <Description>5083 - H321</Description>
 <UT>276</UT>
 <Sigma_x0020_YW>165</Sigma_x0020_YW>
 <Tau>96</Tau>
 <Sigma_x0020_Y>215.6</Sigma_x0020_Y>
 <Type>Aluminum</Type>
 <Units>Metric</Units>
 </Materials>

Clearly the data contained in this file is difficult to decipher in this form. Once imported into Excel, the
data appears as shown in Figure 3-29.

Now the data is in a useful tabular form in Excel. At this point you can manipulate it as you would any
other spreadsheet.

When Excel imports an XML file, it attempts to infer the structure of the data unless an XML schema
is available. A schema is like a template for an XML file. It provides further guidance on how to
interpret the data in an XML file (e.g., how to interpret text versus numerical values and so on).
Schemas can be embedded within an XML file or they can reside as separate XSD (XML Schema
Definition) files. Excel calls these XML Map files, and they can be loaded in as well. See the help topic
on XML Map files for your version of Excel for more information on loading map files.

Figure 3-29. XML data in Excel

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

The O'Reilly book Excel Hacks, by David and Raina Hawley, provides a few useful hacks on dealing
with XML data in Excel. For more in-depth coverage, you should check out the O'Reilly book Office
2003 XML, by Evan Lenz, Mary McRae, and Simon St.Laurent. Chapter 6 is particularly interesting
and even covers loading and saving XML files using VBA.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 4. Charting
Section 4.0. Introduction

Recipe 4.1. Creating Simple Charts

Recipe 4.2. Exploring Chart Styles

Recipe 4.3. Formatting Charts

Recipe 4.4. Customizing Chart Axes

Recipe 4.5. Setting Log or Semilog Scales

Recipe 4.6. Using Multiple Axes

Recipe 4.7. Changing the Type of an Existing Chart

Recipe 4.8. Combining Chart Types

Recipe 4.9. Building 3D Surface Plots

Recipe 4.10. Preparing Contour Plots

Recipe 4.11. Annotating Charts

Recipe 4.12. Saving Custom Chart Types

Recipe 4.13. Copying Charts to Word

Recipe 4-14. Displaying Error Bars

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.0. Introduction

Excel has built-in support for preparing a wide variety of charts , including custom charts, in your
spreadsheet. You can even copy charts you create and embed them in Word documents. Charting is
a handy data visualization technique that may provide valuable insight into the experimental or
calculated data you may be trying to analyze. Excel makes charting quick and easy, and provides a
great deal of flexibility in customizing your charts. Excel's charting capabilities are not as
sophisticated as those of some specialized scientific data visualization applications, but in many cases
Excel may be the fastest way to visualize data. This is especially true if you're generating your data in
Excel via calculations or if you have already imported your data into Excel using techniques discussed
in Chapter 3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.1. Creating Simple Charts

Problem

You've imported or generated data and you'd like to plot your data for further analysis.

Solution

Use Excel's built-in charting features. Select the data you want to plot. Then select Insert
Chart...from the main menu bar to launch the Chart Wizard . Now let the wizard walk you through
the rest of the chart-creation process.

Discussion

Let's walk through an example to illustrate the basic steps involved in creating a chart in Excel.
Figure 4-1 shows the data we'll use in this example.

The data consists of two columns. The first column contains heading angles in degrees and the
second contains wind force in kilo-pounds (kips) corresponding to the heading angles. (In case you're
curious, this data represents the wind forces exerted on an offshore drilling rig operating in the Gulf
of Mexico.)

Figure 4-1. Sample XY data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is a good example of the sort of data that can be plotted on an XY chart. Basically, the heading
data represents abscissa (x-axis) values, while force data represents ordinate (y-axis) data. Plotting
the data should reveal how the wind force varies with heading.

To plot the data, click and drag the cell range containing the data. In this case, click and drag from
cell A1 to B38. It's okay to include the column headings in the selected range, because Excel will use
these as default series names.

After selecting the data, select Insert Chart...from the main menu bar or press the Chart Wizard
button on the toolbar (in Figure 4-1, it's the eighth button from the left under the main menu bar and
has a little bar chart image on it). This activates the Chart Wizard (see Figure 4-2).

Figure 4-2. Chart Wizard: Step 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Excel offers a variety of built-in chart types, as shown in the "Chart type" list in Figure 4-2. See
Recipe 4.2 for a list of other kinds of charts you can create in Excel. Here, we're working with an XY
(or scatter) chart, so select XY (Scatter) in the "Chart type" list.

Both Line and XY scatter chart types allow you plot points or lines and curves
through data. XY charts allow you to specify both the ordinate and abscissa of
each point, which can be at irregular spaces. Line charts plot ordinates versus
equally spaced abscissas corresponding to the data point number. XY scatter
charts give you greater flexibility when plotting two-dimensional data.

The right side of the Chart Wizard contains images of available sub-types for each major type of
chart. XY charts have the five sub-types shown in Figure 4-2. The images are fairly representative of
the sub-types. The choices here include simply plotting data points, plotting points with smoothed
lines passing through them, plotting just the smooth lines, plotting points with straight line segments
passing through them, and plotting just the straight line segments. I've selected smooth lines with
point markers for this example.

If you press the button labeled "Press and Hold to View Sample," you'll see a little sample of your
data plotted with the selected chart type and sub-type. Click the Next button to go to the second
Chart Wizard step, or click Finish to stop here and create your chart, after which you can view and
edit it manually.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 4-3 shows the second step in the Chart Wizard.

Figure 4-3. Chart Wizard: Step 2

I included two views of the step 2 dialog box in Figure 4-3. The one on the left corresponds to the
Data Range tab , while the one on the right corresponds to the Series tab .

On the Data Range tab, you can change the data range you selected for plotting. Since I selected the
data before launching the Chart Wizard, the data range field is already populated with the correct
data range. Excel makes an assumption as to whether or not your data is oriented in columns of data
or rows of data. In this case, the data is contained in two columns and Excel correctly defaulted to
"Series in Columns." Excel gets this right most of the time and usually goofs up only when you don't
select headings in your data range and your data range is nearly square.

The Series tab shows the data series that will be plotted on the chart. In this example, the first
column in the selected range represents x-values and the second column represents y-axis data. You
can have more than one column of y-axis data corresponding to a single column of x-axis data. In
such cases you could plot more than one data series. Here, you have the opportunity to add more
data series to your chart. Further, you can always access the series dialog to add new series to an
existing chart.

Once a chart has been created, you can access the Source Data dialog box to
edit, add, or delete series. Right-click on the chart and then select Source Data
from the pop-up menu to display the Source Data dialog box.

To add a new series, select each field on the right side of the dialog and fill in the appropriate cell

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ranges corresponding to the range containing the series name, the series x-axis data (which could be
the same for all series on a chart), and the series y-axis data. Pressing the little icon to the right of
each range field allows you to temporarily switch back to your spreadsheet and select the ranges by
using the mouse instead of trying to remember cell references and manually typing them in.

Again, at this point you can press the Next button to proceed to the third step or press the Finish
button to quit the Chart Wizard, thus creating your chart.

The step 3 dialog contains five different tabs, as shown in Figures 4-4, 4-5, and 4-6.

Figure 4-4. Chart Wizard: Step 3, Titles and Axes tabs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Titles tab allows you to enter titles for major components of your chart, such as the chart title
and the axes titles. If you have secondary axes (for plotting multiple series with different scales), you
can also specify titles for the secondary axes. (See Recipe 4.6 for more information.) The Axes tab
allows you to specify which axes you'd like to show.

Figure 4-5. Chart Wizard: Step 3, Gridlines and Legend tabs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Gridlines tab allows you to select which, if any, gridlines you'd like to show on the chart. Major
gridlines correspond to the major scale divisions for each axis, while the minor gridlines correspond to
the minor scale divisions. (See Recipe 4.4 for more information on customizing your chart axes,
including setting scale divisions.)

The Legend tab allows you to specify whether or not you want to include a legend on your chart and
where you'd like it displayed. For this example, we really don't need a legend, since we're plotting a
single data series. Legends are handy when you have multiple data series and would like a key that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lets the user know which is which.

The final tab, Data Labels, allows you to specify whether you want data labels plotted next to each
data point on your series and which label you want shown. You can choose from the series name
itself, the x-value of each point, or the y-value of each point. (As you can see, there are a few other
options for some other specific chart types.)

Figure 4-6. Chart Wizard: Step 3, Data Labels tab

At this point I usually just press the Finish button to quit the Chart Wizard and create my chart.
However, let's take a look at the final Chart Wizard step by pressing the Next button.

Figure 4-7 illustrates the final step in the Chart Wizard.

Figure 4-7. Chart Wizard: Step 4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this final step, you tell Excel where you want to create your chart. You can choose between having
the chart created on a new chart sheet within your workbook or embedding it within a different
worksheet.

Almost 99.9% of the time, I choose to have the chart embedded in the same sheet containing the
data I'm plotting. The main reason I do this is that in many cases the data being plotted is generated
or manipulated with custom calculations, and by placing the chart on the same pane as the data (and
calculations), I can instantly view how changes in the underlying data (and calculations) affect the
chart.

If you choose to place your chart on its own sheet, then you can specify the name of that sheet in
this dialog box. The drop-down list next to the "As Object in" radio button allows you to select into
which worksheet you want to embed your chart.

Now you can press the Finish button to exit the Chart Wizard and see the resulting chart. Figure 4-8
shows the chart created for this example.

Figure 4-8. Newly created chart

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You have some flexibility in where to locate your new chart in a worksheet. You can click and drag it
anywhere to suit your needs.

You need not worry about skipping steps in the Chart Wizard or changing your mind. You can always
go back and reformat your chart. See Recipe 4.3 for more information.

See Also

See Recipe 4.2 to learn about other chart types available in Excel.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.2. Exploring Chart Styles

Problem

You've seen how to create handy XY charts in the previous recipe and would like to learn what other
chart types are available in Excel.

Solution

Excel has several built-in chart types to choose from. Excel's standard chart types are:

Column

The Column type includes the sub-types Clustered Column, Stacked Column, 100% Stacked
Column, Clustered Column 3-D, Stacked Column 3-D, 100% Stacked Column 3-D, and 3-D
Column.

Bar

The Bar type includes the sub-types Clustered Bar, Stacked Bar, 100% Stacked Bar, Clustered
Bar 3-D, Stacked Bar 3-D, and 100% Stacked Bar 3-D.

Line

The Line type includes the sub-types Line, Stacked Line, 100% Stacked Line, Line with
Markers, Stacked Line with Markers, 100% Stacked Line with Markers, and 3-D Line.

Pie

The Pie type includes the sub-types Pie, Pie 3-D, Pie of Pie, Exploded Pie, Exploded Pie 3-D, and
Bar of Pie.

XY (Scatter)

The XY type includes the sub-types Scatter, Scatter with smoothed lines, Scatter with
smoothed lines and markers, Scatter with lines, and Scatter with lines and markers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Area

The Area type includes the sub-types Area, Stacked Area, 100% Stacked Area, Area 3-D,
Stacked Area 3-D, and 100% Stacked Area 3-D.

Doughnut

The Doughnut type includes the sub-types Doughnut and Exploded Doughnut.

Radar

The Radar type includes the sub-types Radar, Radar with Markers, and Filled Radar.

Surface

The Surface type includes the sub-types 3-D Surface, Wireframe 3-D Surface, Contour, and
Wireframe Contour.

Bubble

The Bubble type includes the sub-types Bubble and Bubble 3-D.

Stock

The Stock type includes the sub-types High-Low-Close, Open-High-Low-Close, Volume-High-
Low-Close, and Volume-Open-High-Low-Close.

Cylinder

The Cylinder type includes the sub-types Column, Stacked Column, 100% Stacked Column,
Bar, Stacked Bar, 100% Stacked Bar, and 3-D Column.

Cone

The Cone type includes the sub-types Column, Stacked Column, 100% Stacked Column, Bar,
Stacked Bar, 100% Stacked Bar, and 3-D Column.

Pyramid

The Pyramid type includes the sub-types Column, Stacked Column, 100% Stacked Column,
Bar, Stacked Bar, 100% Stacked Bar, and 3-D Column.

In addition to these standard chart types, Excel has many other built-in, custom chart types to
choose from. Moreover, you can combine many of the these chart types on a single chart to create
your own custom chart type, which you can save in the Custom Types list for repeated use.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To different types of charts, follow the same procedure described in Recipe 4.1. Just select a different
type of chart during step 1 of the Chart Wizard process. The Chart Type dialog box (step 1 of the
Chart Wizard) shows you all of the available built-in chart types. You can select any type and view a
preview of the resulting chart by pressing the preview button, as discussed earlier. The Custom Types
tab of the Chart Type dialog box also allows you to select or add custom chart types. (See Recipe
4.12 for more information.)

See Also

See Recipe 4.8 to learn how to set different styles for each data series on a single chart.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.3. Formatting Charts

Problem

You've created a chart and would like to alter its appearance.

Solution

Adjust the formats for your chart using Excel's chart formatting capabilities.

Discussion

You can select any chart element, including the chart itself, by clicking on it with the mouse. Also,
once a chart is selected, you can cycle through, selecting each element using the arrow keys. You can
select and format the chart itself, the plot area, the axes, labels, data series, and the legend, as well
as any other element that may appear in a chart.

The name of the currently selected chart element is displayed in the Name box
to the left of the formula bar.

You can change the formatting of any chart element by selecting the element and pressing Ctrl-1 to
open a format dialog box specific to the selected chart element. Or you can right-click on any
element and select the Format option from the pop-up menu. Alternatively, you can use the various
format tool buttons in Excel's main window to format various aspects of the chart element. Also,
when a chart element is selected you can select Format from the main menu bar to access a context-
specific format dialog box just as if you had pressed Ctrl-1.

Some of the most common format options available for chart elements include colors, line style and
thickness, fill pattern (including gradients, patterns, textures, and pictures), and font styles. Specific
chart elements, such as chart axes, have other options that allow you to format things such as axes
scales, labels, position, and whether an axis is in linear or log scale. (See Recipe 4.4 for more
information.)

The bottom line is that pretty much everything on a chart can be customized. Simply select it and
press Ctrl-1 to see what options are available. The recipes throughout this chapter provide specific
examples and tips for formatting charts.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.4. Customizing Chart Axes

Problem

While Excel automatically sets chart axis scales, they aren't always what you desire; therefore, you'd
like to customize the axes to suit your needs.

Solution

To format an axis, right-click on it and select Format Axis from the pop-up menu. This launches the
Format Axis dialog box , allowing you to format many aspects of the selected axis.

Discussion

Right-clicking on an axis to select it can be difficult at times, especially when the chart is a little
cluttered. Take a look at the chart in Figure 4-9, whcih shows angular vibration samples taken during
a laboratory experiment.

Figure 4-9. Dense chart

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is a standard Line chart with sample numbers (Excel calls them categories) shown on the
horizontal axis. By default, Excel places tick marks along this axis, one at every other sample. With a
thousand samples as shown here, the axis is quite cluttered. Indeed, the density of samples plotted
makes selecting the axis with the mouse difficult.

An alternative way to select chart elements for formatting is to first select the chart itself by clicking
anywhere on it, and then use the arrow keys to cycle through, selecting each chart element. The
name of the currently selected element is displayed in the Name box to the left of the formula bar. In
this case, we're looking for Category Axis. After selecting the chart axis in this manner, you can
launch the Format Axis dialog by selecting Format Selected Axis...(Ctrl-1) from the main menu
bar.

Figure 4-10 shows the Format Axis dialog box with the Scale tab selected.

Figure 4-10. Format Axis dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To make the horizontal axis a bit more readable you could set the number of categories between tick
marks and tick-mark labels to, say, 100. You could also go to the Font tab and change the font size
of the axis labels to make them larger and more readable. The Font tab also allows you to change the
font type, style, and color, among other settings.

If you'd prefer to have your category labels oriented vertically, you can go to the Alignment tab and
alter their orientation. The Number tab allows you to format the labels just as you might format
numbers or text in a cell. For example, you could have numbers displayed in scientific notation, as
percentages, or as fractions.

In addition to formatting axis labels, you can change the appearance of the axis line itself by using
the format controls on the Patterns tab. For example, you could change the thickness, line style, and
color of the axis line, as well the appearance of tick marks.

The Scale tab contains different controls depending on the type of data plotted along the axis. The
horizontal axis in this case shows categories or numbers that are evenly spaced. An XY scatter
chart's x-axis shows real numbers with arbitrary spacing. The vertical axes in both chart types also
show arbitrary real numbers. Figure 4-11 shows the scale controls available for axes that display
arbitrary real numbers.

The controls on this tab allow you to specify the minimum and maximum values (i.e., the range of
values shown along the axis). You can also specify the major and minor units, which control how
often labels and gridlines are displayed. And you can specify where the x-axis intersects the y-axis, in
case you want to shift the x-axis out of the way for clarity.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 4-11. Format Axis dialog box with different scale controls

By default, all of these controls are set to Auto, which means Excel will attempt to determine suitable
values for you. For the most part, Excel does an OK job at this. However, there are several reasons
why you'd want to set these controls manually. One reason is that you may not want to view the
entire range of data on the chart, but instead would rather focus in on a specific subrange. You can
set the minimum and maximum values to a suitable range for this purpose. Another reason is that
you may want specific scale divisions shown rather than those selected by Excel. For example, Excel
may automatically set the major unit to 2 and the minor unit to 1; however, for your particular data
you may prefer a major unit of 10 and a minor unit of 2.

As you can see from Figure 4-11, Excel also allows you to specify a logarithmic scale (see Recipe 4.5
for an example). You can even reverse the order of values along the axis or specify the x-axis
crossing point at the maximum value, whatever that may be.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.5. Setting Log or Semilog Scales

Problem

You'd like to use log scales instead of linear scales.

Solution

Select the axis you'd like to set to log scale and open the Format Axis dialog, as described in Recipe
4.4. Go to the Scale tab and check the Logarithmic Scale option (see Figure 4-11).

Discussion

You can create a log chart by setting both axes to logarithmic scale, or you can create a semilog
chart by setting only one axis to logarithmic scale.

Consider the data shown in Figure 4-12 as an example. This data represents the reduction in
concentration of cyclopropane as a function of reaction time (the cyclopropane gets converted to
propane gas).

Figure 4-12. Reaction time plot

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This plot of concentration versus reaction time shows the characteristic logarithmic form of so-called
first-order reactions. Changing the vertical axis to logarithmic scale as described earlier results in the
chart shown in Figure 4-13.

Notice that the plotted line is now linear. Plotting the data in this form facilitates estimating the rate
constant for such a reaction, since the slope of the line can be determined by using the simple
equation for a straight line.

Figure 4-13. Reaction time plotted on semilog chart

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

See Chapter 8 to learn how to perform least-squares curve fitting in Excel.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.6. Using Multiple Axes

Problem

You've plotted several series on a chart, but one of them consists of values much larger than the
others; when it is plotted on the same scale, you can barely discern the smaller values. Thus, you'd
like to plot multiple data series on a single chart but with different scales.

Solution

You can use multiple scales. Excel has built-in support for secondary axes . This allows you to plot,
for example, one data series using a primary y-axis and another data series using a secondary y-
axis. To specify the axis for a data series, select the series and then select Format Selected Data
Series...from the main menu bar to open the Format Data Series dialog box . Click the Axis tab and
then click either "Primary axis" or "Secondary axis" to specify the axis. Press OK when you're done,
and Excel will automatically set up another axis and rescale your series.

Discussion

Figure 4-14 shows an example of two data series with very different scales plotted on the same
chart.

Figure 4-14. Two data series with very different scales

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The scales of these two sets of data are so different that when they are plotted on the same chart,
you can barely even see one of the data series; it's almost coincident with the x-axis.

Changing the axis of this series so that it's plotted on a secondary y-axis (as described earlier)
results in the chart shown in Figure 4-15.

Figure 4-15. Chart using a secondary y-axis

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This version of the chart is far more readable than the original, and shows how useful secondary axes
are. You can adjust the position of each series relative to the other by changing the minimum and
maximum values of the primary or secondary axes.

You can, of course, plot more than one series relative to either the primary or secondary axes.
Unfortunately, Excel does not support more than one secondary axis. While this isn't the end of the
world, there are times when more than one secondary axis would be useful. In these cases, there are
a couple of workarounds you can try.

The easiest thing to try is to scale your data. For example, multiply (or divide) a data series by 10,
100, 1,000, or some other appropriate value and then plot it against the primary or secondary axis.
Be sure to label the series properly so readers of your chart can clearly see that the data is scaled.

Another trick you might find useful is to fake another axis by using a specifically crafted dummy
series. Let's say we wanted to plot another series on the chart shown in Figure 4-15, but the values
of this new series ranged from about 100 to 150. Clearly such a series would get buried by the scale
of values for the other two series.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The solution is to multiply the values in this new series by an appropriate scale factor, say 10, and
then plot it against the primary axis. This would make the values range from about 1,000 to 1,500,
which would be clearly visible on the chart. Confusion may arise, however, if the scale is not
annotated to indicate the new series has been scaled. To get around this, you can create a fake scale
using a dummy series. Figure 4-16 shows just such a fake scale.

Figure 4-16. Fake scale

The series labeled Lever is the new, scaled series plotted against the primary y-axis (the center one).
The fake axis is the short axis to the left, labeled Lever. This technique allows all of these series to be
plotted on the same chart, even though the series values vary widely in magnitude.

To create the fake axis, you need to create and add a dummy series. The dummy series I created for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

this example is shown in Figure 4-17.

Figure 4-17. Fake series data

The key to using a series to represent an axis is to make one of the coordinates constant. In this
case, since I want the series to represent a vertical axis, I set the x-value for the series to a
constant. I used -185 to position the series all the way to the left of the chart. The y-values are
simply selected to capture an appropriate range of values. Once the series data is prepared, you can
add the series to the chart as discussed in Recipe 4.1. You'll also want to turn on Y-labels for the
dummy series. You can turn on Y-labels by opening the Format Data Series dialog box and selecting
the Data Labels tab. Upon doing so, you'll notice a little hiccup that you have to correct.

The default Y-Labels for the dummy series displays the actual y-values. The problem is that these

http://lib.ommolketab.ir
http://lib.ommolketab.ir

values represent the scaled values for the series we wanted to use the fake axis for in the first place.
This isn't what we want, so you must edit each data label manually to display the appropriate values.
Click the series labels once to select all of the labels. Then click once again on the specific label you
want to modify. This will put the label in edit mode, where you can change the label to whatever you
desire. Make the changes to all of the labels and you'll end up with something like the chart shown in
Figure 4-16.

You can use this fake axis technique to add any number of fake horizontal or
vertical axes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.7. Changing the Type of an Existing Chart

Problem

You've created a chart but later decide a different chart type would be more effective. You'd like to
change the chart type without having to re-create the chart from scratch.

Solution

Select your chart and right-click on it with the mouse. On the pop-up menu that appears, select
Chart Type to open the Chart Type dialog box, which is the same as that used during step 1 of the
Chart Wizard (see Figure 4-2). Select the new chart type and sub-type and press the OK button
when you're done.

Discussion

As a simple example, reconsider the data used in the example for Recipe 4.1. The force data is a
function of heading in degrees from 0 to 360. In the previous example, we used an XY chart type
that showed the data series as a function of heading angles along the x-axis. A better way to view
this data would be to plot the force data radially as a function of heading in a polar plot fashion. In
Excel this type of chart is called a Radar chart.

Figure 4-18 shows what the data from Figure 4-1 looks like as a Radar chart.

I should mention that Radar charts require the x-axis data to be evenly spaced. The heading data for
this example is the x-axis data, but for this Radar chart the heading data is merely used for labeling
the chart; it does not govern the structure of the polar axis. The spacing of radial gridlines on Radar
charts is always uniform. The number of radial gridlines will equal the number of data points in the
series being plotted.

Figure 4-19 shows the Source Data dialog box for this example. To access this dialog box, select the
chart and right-click to display a pop-up menu. Select Source Data from the pop-up menu.

The cell range in the Values field is the range of cells containing the y-data to be plotted, the force
data in this example. The heading data happens to be uniform and ranges from 0 to 360 degrees.
These facts make the chart appear as you would expect. To force the chart to display the heading
angles on the radial axis, you have to supply the cell range containing the heading data in the
"Category (X) axis labels" field. Since we converted this chart from an XY chart, Excel filled in the
label field automatically.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 4-18. Radar chart

You'll notice that this chart looks a little fancier than some of the other examples discussed earlier. All
I did was format the chart a little differently by including a background image as the fill pattern for
the chart itself, and by tweaking the title and grid line colors using their format options. See Recipe
4.3 for more information.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 4-19. Source Data dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.8. Combining Chart Types

Problem

You want to display different datasets on the same chart using different styles.

Solution

Set the chart style for each data series individually. First, right-click on the desired series and then
select Chart Type from the pop-up menu to display the Chart Type dialog box (see Figure 4-2 in
Recipe 4.1). Now select the type of chart you'd like to apply to that series.

Discussion

In Recipe 4.7 you saw how easy it is to change the type of chart for an existing chart. Sometimes,
instead of changing the chart type for the entire chart, it's more desirable to change the type for
individual series on a chart, resulting in a combination chart.

Take a look at Figure 4-20, for example. This provides a picture of student grade statistics for a
college course over a five-year period. The series representing the mean of grades is a Line chart
with error bars representing the standard error (see Chapter 5 for recipes on generating descriptive
statistics).

Figure 4-20. Combination chart

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The series representing the minimum and maximum grades (the range for each year) are also Line
charts.

The other two series, Females and Males, represent the relative population of males and females in
each class for the given year. Both of these are Area charts. I could have made these Line charts like
the others, but thought that making them Area charts as a sort of backdrop would be more effective.

This chart was created with all the data series initially in Line chart type. I then selected each of the
Female and Male series and changed their type, as described earlier.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.9. Building 3D Surface Plots

Problem

You want to create a 3D surface plot in Excel (e.g., to present results on a multidimensional
optimization study or perhaps to present topographic data).

Solution

Use Excel's built-in Surface chart type.

Discussion

Excel's Surface chart allows you to create plots that can be viewed from various angles.

In Excel, surface plots are like a collection of line plots that get connected to form a surface. Thus,
they suffer from some of the limitations of line plots. In particular, the values to be plotted (we'll call
these the z-data) must be uniformly spaced along the x- and y-axes. You can't have arbitrarily
spaced data as you can in XY scatter plots.

Figure 4-21 shows some sample data in the proper form for a 3D surface plot. The sample data
shown here represents results from a 1D finite element simulation of nonlinear, non-Newtonian fluid
flowing through a porous material.

Figure 4-21. 3D surface plot data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Node column represents the finite element node at which data was calculated. This column also
represents values (or categories) that will be displayed on one of the chart axes. The row of text
showing t=0, t=0.01002, and so on represents the other axis; more precisely, these are labels to be
displayed on the other axis. Excel will display these labels (for both axes) uniformly spaced on the
chart, so I purposely extracted data at regular time intervals so the chart would make sense.

The values in the cell range starting at B3137 and ending in the lower-right corner represent the z-
values to be plotted as functions of node and time. These values represent the velocity of the fluid
flowing through the porous material in this example.

To create the plot, select the entire range of cell data, including the label column and row (i.e., the
Node column and the row containing the elapsed time labels). In this example, the complete range is
A3136:AD3147. After selecting the data, click the Chart Wizard button and go through the Chart
Wizard as discussed in Recipe 4.1; however, this time select Surface for the chart type. The results
are shown in Figure 4-22.

Figure 4-22. 3-D Surface chart

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here you can see that one axis on the horizontal plane contains node number labels, while the other
contains the elapsed time labels. The surface represents fluid flow velocity at each node over time.
The surface clearly shows a lot of information in a concise fashion, facilitating interpretation of the
results.

The colors shown on the surface represent values within small ranges; you can set these to control
the number of different colors used on the plot. To do this, you need to format the legend's scale in
much the same way as you would adjust the scale of an axis as discussed in Recipe 4.4. Specifically,
you can adjust the major and minor units (see Figure 4-11) to control the number of colors used to
represent small ranges of values in the plot.

To format the legend's scale, you'll first have to display it. Right-click on the chart and select Chart
Options from the menu to display the Chart Options dialog box. Click the Legend tab and then check
the Show Legend control.

After closing the Chart Options dialog box, select the legend and press Ctrl-1 to open the Format
Legend dialog box. Click the Scale tab to reveal scale controls like those shown in Figure 4-11. Adjust
the scale to suit your needs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 4-23 shows a new version of the chart from Figure 4-22, with a reduced number of colors.

Figure 4-23. 3-D Surface chart with adjusted legend scale

If you set the major and minor units too small, you could end up with a large number of colors and
items in the legend. This may make the legend too big to display on your chart. If you want to keep
such a large number of colors, then you'll probably want to hide the legend.

You can format the legend and data series even further. After selecting the legend, click on any
legend entry to select it (you'll see selection handles around it). Right-click on it and select Format
Legend Entry from the pop-up menu. You'll then be able to change the formatting of the legend entry
font. With a legend entry selected, click on its legend keythe little colored square next to the legend
entry text. Now right-click on the key and select Format Legend Key from the pop-up menu. You'll
then be able to change the formatting of the legend key. For example, you can change its color or fill
pattern, which also affects the chart. This allows you to set specific colors for the values displayed in
the chart. In the Format Legend Key dialog box, you'll also find an Options tab. Click it to reveal
additional formatting options that affect the entire chart. For example, you can change the depth of
the chart or set a 3D shading effect, giving the chart more of a 3D look.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3-D Surface charts can also be useful for plotting 3D analytic functions to visualize their form. For
example, the plot of the function

looks like that shown in Figure 4-24.

Figure 4-24. 3-D Surface chart of sample analytic function

Notice that the x- and y-axes (in the horizontal plane) show real numbers. These resemble axes in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

an XY scatter plot, but they are still just category labels here. The trick to pulling this sort of plot off
is to make sure you perform your calculations at uniformly spaced x- and y-values.

Excel's Surface chart type also gives you the option of displaying wireframe representations of
surfaces such as that shown in Figure 4-25.

Figure 4-25. Wireframe 3-D Surface chart of sample analytic function

Sometimes, wireframe views are more effective in revealing the structure of such a surface without
the distraction of all the colors.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You're not restricted to the point of view I used in these examples, by the way.
Excel allows you to change the point of view by rotating, translating, or even
changing the level of perspective of your 3D plot. Right-click on your chart to
reveal a pop-up menu and then select 3-D View.... This will open the 3-D View
dialog box, which contains several controls allowing you to adjust the point of
the view for your chart.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.10. Preparing Contour Plots

Problem

You'd like to prepare a contour plot (e.g., to illustrate an elevation map, a map of pressure readings,
or any other value distributed over a uniformly spaced grid).

Solution

Use Excel's Surface chart type. Open the Chart Type dialog as discussed in Recipes 4.1 and 4.9.
Select the Surface chart type and then the Contour chart sub-type.

Discussion

Figure 4-26 shows a set of data representing measured height readings taken over a uniform 10 x 10
grid.

Figure 4-26. Contour plot data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You could use a 3-D Surface chart to display this data as discussed in Recipe 4.9, or you may instead
want to present this data as a contour plot.

Excel's Surface chart type allows you to plot contour plots in addition to 3D surface plots. Contour
and Wireframe Contour plots are sub-types of the Surface type. If you create a Surface-Contour
chart (see Recipe 4.1 for the basic chart-creation steps) with the data shown in Figure 4-26, you'll
end up with the contour plot shown in Figure 4-27.

Figure 4-27. Contour chart

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note the legend displayed on this chart. You can format this legend as discussed in Recipe 4.9 to
either increase or decrease the number of colors (and represented data ranges) displayed on the
chart. Figure 4-28 shows a new version of the plot from Figure 4-27, with a slightly reduced
resolution, so to speak.

This chart uses only two fewer colors, but results in a very different lookit's less cluttered and
perhaps more clearly highlights the data of interest. You can use the legend scale in this way to really
draw attention to the data you want the viewer to focus on.

Figure 4-28. Contour chart with reduced number of colors

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.11. Annotating Charts

Problem

You'd like to embellish your charts with annotations (for example, to add emphasis or provide notes
for viewers of your charts).

Solution

Use Excel's drawing tools to draw directly on your charts.

Discussion

The callouts (text boxes with arrows) on the chart shown in Figure 4-16 in Recipe 4.8 were added
using Excel's drawing tools. You need to display the Drawing toolbar if it isn't already visible. Select
View Toolbars Drawing from the main menu bar. Figure 4-16 shows the Drawing toolbar
docked in the lower left of Excel's window.

The drawing toolbar contains all sorts of tools, allowing you to add text notes, callouts, arrows,
shapes, and many other elements to your charts. There are also tools that allow you to format your
annotations. For example, you can edit line style and thickness, color, and fill pattern, among other
attributes. The 3D style buttons even allow you to create 3D effects to really make your annotations
stand out. There are also tools that allow you to change the depth order, spacing, and alignment of
your annotations.

To draw on your chart, simply select your chart and then click on the desired element from the
drawing toolbar. Now start drawing on your chart. For example, to add a line to your chart, click the
chart, then click the line button on the drawing toolbar, then click and drag on your chart to add the
line. You can change the position of the line after it has been drawn by clicking and dragging it. You
can also edit the line endpoints by clicking and dragging the endpoint handles (little circles).

By the way, you can use these same drawing tools directly on your
spreadsheets; they aren't limited to drawing on charts. Follow the same
procedure described in this recipe for drawing on charts, but instead just draw
directly on your spreadsheet.

Figure 4-29 shows an example chart that I embellished using Excel's drawing tools.

This chart illustrates results of a standard beam analysis. The results include load, shear, and
bending moment curves, as well as calculated reactions at each support. To create this chart, I

http://lib.ommolketab.ir
http://lib.ommolketab.ir

prepared a table of data including the load, shear, and bending moment values at various locations
along the beam. I plotted this data on a standard XY scatter chart using the procedure outlined in
Recipe 4.1. I formatted the primary and secondary axes to display specific ranges with minimum and
maximum units, as described in Recipe 4.4. For the primary y-axis, I specified the crossing point for
the x-axis as -800. I did this to force the x-axis toward the bottom of the chart.

After setting up the curves and axes, I labeled the bending moment and shear curves using Callout
text boxes with leader arrows, which are accessible from the Drawing toolbar's Autoshapes
Callouts menu. To represent the beam, I added a basic rectangle shape and manually positioned it
where the y-axis values show zero. I formatted the rectangle using a cross-hatched fill pattern.

Right-click on any drawing element you add to a chart or spreadsheet and
select Format Autoshape from the menu to format the shape (or press Ctrl-1).
You can also using the formatting tools displayed on the Drawing toolbar.

Figure 4-29. Annotated chart

http://lib.ommolketab.ir
http://lib.ommolketab.ir

I used small triangle shapes to represent standard, simple supports for the beam. I added these by
accessing the Autoshapes Basic Shapes menu from the Drawing toolbar. I manually positioned
them at the proper x-location using the mouse. For the reaction forces, I added a couple of arrows
from the Autoshapes Block Arrows menu on the Drawing toolbar. I formatted these with a red fill
color. Further, I added a couple of text boxes (also accessible from the Drawing toolbar) to indicate
the calculated reaction forces. I formatted the beam, support, and reaction shapes with a faint drop
shadow for a little depth effect. I used the Shadow Style tool (the button with a rectangle and drop
shadow, second from the right) from the Drawing toolbar to format the drop shadow.

These are just a few examples of the sort of embellishments you can add to your technical charts to
make them more meaningful, readable, and attractive. Excel's drawing tools are far more extensive
than has been demonstrated here. You can add 3D text and shapes, draw smooth lines and edit their
points, and prepare flow charts, among many other drawing tasks. I encourage you to explore the
drawing tools more.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Do a search in Excel's help using the keywords "drawing" or "autoshapes" to find help topics
specifically related to drawing in Excel.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.12. Saving Custom Chart Types

Problem

You find yourself repeatedly creating the same type of chart, with the same custom formats, titles,
colors, and so on, and you'd like to be able to save your customizations so you don't have to redo
them each time you create a new chart.

Solution

Add your customized chart to the Custom Types list to make it available in the Custom Type dialog
box and Chart Wizard. After creating your customized chart, right-click on it and select Chart Type
from the pop-up menu. In the Chart Type dialog box, select the Custom Types tab. Select the "User-
defined" radio button toward the bottom of the tab. Press the Add...button to bring up the Add
Custom Chart Type dialog box. Type a unique name in the Name field and type a short description in
the Description field. Press OK when you're done; you should then see your custom chart's name
added to the Custom Types chart list. Now you can select this type when creating new charts, instead
of having to recustomize one of Excel's built-in charts each time.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.13. Copying Charts to Word

Problem

You've created a chart in Excel and would like to include it in a report written in Word.

Solution

Simply copy and paste the chart from Excel to Word. Select your chart and press Ctrl-C, or select
Edit Copy from the main menu bar. Open your Word document and select the line where you'd
like to paste the chart and press Ctrl-V or select Edit Paste from the main menu bar.

Discussion

This seems simple enough, and it is. But you do have some options to consider when pasting an Excel
chart into a Word document. By default, a picture of the chart gets pasted into Word. This picture is
static: you can't edit the chart and it isn't linked to the original spreadsheet.

When you paste a chart into Word, you'll notice a little clipboard icon near the lower-right corner of
the pasted chart. If you select that icon, you'll see three paste options: Picture of Chart; Excel Chart;
Link to Excel Chart. The first option is just a picture of the chart, as explained a moment ago.

The second option is really quite powerful. The entire spreadsheet gets embedded into your Word
document. This means that you can transmit the entire spreadsheet along with the Word document
to other readers of your document. Within Word you can right-click on the chart and select Chart
Object Edit from the pop-up menu to edit the chart right there, as though you were in Excel. You
can even edit the spreadsheet data used to create the chart. This may prove handy in some cases.
Be careful, however, not to transmit underlying data and formulas to people who shouldn't see that
data.

The third option embeds just the chart (not the entire spreadsheet), but not as a static picture.
Instead it's a link to the original Excel spreadsheet. When the spreadsheet gets updated, the
embedded chart will be updated too. You can access the linked spreadsheet by right-clicking on the
chart in Word and selecting Linked Worksheet Object Open Link from the pop-up menu. This will
open the linked spreadsheet in Excel, where you can make changes if you'd like. Any changes will be
reflected in the Word document containing the linked chart.

When you open a Word document containing a linked chart, Word will ask you if you want to update
the linked chart so that recent changes to the Excel chart are reflected in the Word document. If for
some reason the link between the Word document and Excel file gets broken (for example, if you
move or rename the Excel file), then Word will inform you that it could not update the linked chart.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4-14. Displaying Error Bars

Problem

You want to display error bars on data series in your charts.

Solution

You can display error bars for a series by opening the Format Data Series dialog box. Select the
series and press Ctrl-1. Click the Y Error Bars tab to specify how you'd like the error bars displayed.
You can choose to display plus or minus bars or both. Further, you can specify the error as a fixed
value, a percentage of the value being plotted, or as custom values in a cell range you provide.
Figure 4-20 (in Recipe 4.9) shows an example data series with error bars.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 5. Statistical Analysis
Section 5.0. Introduction

Recipe 5.1. Computing Summary Statistics

Recipe 5.2. Plotting Frequency Distributions

Recipe 5.3. Calculating Confidence Intervals

Recipe 5.4. Correlating Data

Recipe 5.5. Ranking and Percentiles

Recipe 5.6. Performing Statistical Tests

Recipe 5.7. Conducting ANOVA

Recipe 5.8. Generating Random Numbers

Recipe 5.9. Sampling Data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.0. Introduction

As you've seen in Chapter 3, it's fairly easy to import data into Excel for analysis. Certainly,
performing statistical analyses on such data would be very convenient to do in Excel. Indeed, Excel
has dozens of built-in spreadsheet functions that allow you to perform all sorts of statistics
calculations. The Analysis ToolPak add-in also contains several other statistical tools. Moreover, being
able to visualize your data as discussed in Chapter 4 makes Excel especially convenient for certain
analyses.

Excel's help documents contain descriptions of and syntax for all of its statistical functions; there are
dozens of them, covering all sorts of calculations from descriptive statistics to significance tests. The
help topic "Statistical Functions" lists all such functions, providing links to more details on the syntax
and use of each function, along with examples in many cases.

The help topic "About Statistical Analysis Tools" also provides information on the use of the analysis
tools available in the Analysis ToolPak add-in. To make sure you have the Analysis ToolPak add-in
available in your version of Excel, select Tools from the main menu bar and see if the Data Analysis
menu option appears toward the bottom of the Tools menu. If not, select Tools Add-Ins from the
main menu bar and select the Analysis ToolPak option from the list.

In this chapter I'm going to show you how to use Excel to perform standard statistical calculations. I
don't go into the theory behind all of these analyses, so you should consult your favorite statistics
book for relevant background material.

Also, I don't include any recipes on regression and curve fitting in this chapter. That material
deserves a chapter of its own; thus, Chapter 8 is devoted to curve fitting and regression.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.1. Computing Summary Statistics

Problem

You need to compute summary statistics (measures of central tendency and dispersion) but are not
sure what support Excel offers for these calculations.

Solution

Excel offers many built-in spreadsheet functions allowing you to quickly compute summary statistics.
Further, the Analysis ToolPak offers a Descriptive Statistics tool . You can perform the same
statistical calculations offered in the Descriptive Statistics tool using spreadsheet functions. There are,
however, caveats that you need to know about. Read the following discussion for more information.

Discussion

I'll show you how to perform basic statistical calculations in Excel on an example set of data. The
dataset I'll use was downloaded from the National Institute of Standards and Technology statistical
reference dataset page at http://www.itl.nist.gov/div898/strd/general/dataarchive.html. The dataset
consists of speed of light measurements from a study conducted by Michelson in 1879. The data
consists of 100 values representing the speed of light in units of millions of meters per second. Figure
5-1 illustrates a portion of this data along with several computed statistics for the dataset.

The dataset is in column B, labeled Speed of Light (millions of m/s). There are 100 values in this
column, but only the first dozen and a half or so are shown in the figure.

Column F contains statistics for this dataset computed using the Analysis ToolPak's Descriptive
Statistics tool. The corresponding labels contained in column E indicate what each value represents.
Column H contains statistics computed using Excel's built-in spreadsheet formulas. I'll show you how
to use both methods.

First, to use the Descriptive Statistics tool, you have to open the Analysis ToolPak by selecting Tools
 Data Analysis from the main menu bar. This action opens the Data Analysis dialog shown in

Figure 5-2.

Select Descriptive Statistics from the list of available tools and press OK to open the Descriptive
Statistics dialog box shown in Figure 5-3.

In the Input Range field, type (or select directly from your spreadsheet) the cell range containing the
data you want to analyze. Since the example data is in a column, I selected the Grouped By:
Columns option.

http://www.itl.nist.gov/div898/strd/general/dataarchive.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

For this example, I decided to place the output on the same spreadsheet, next to the dataset.
Therefore, I specified cell E6 for the Output Range. This specified cell represents the upper-left cell of
the output table. You may choose to place the output on a new worksheet, in which case you need to
specify a worksheet name.

Figure 5-1. Summary statistics of speed of light measurements

Figure 5-2. Data Analysis dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

I checked all of the options shown in the lower part of the dialog box in Figure 5-3 in order to
generate all the available statistics. Pressing OK generates the results shown earlier in Figure 5-1.

Figure 5-3. Descriptive Statistics dialog box

You can compute the same statistics using only Excel's built-in functions. Cells H8 through H23 in
Figure 5-1 contain the same set of statistics, computed using Excel's functions. Table 5-1 shows the
cell formula I used to compute each statistic.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 5-1. Summary statistics cell formulas

Statistic Cell formula

Mean =AVERAGE(Data)

Standard Error =H12/SQRT(H20)

Median =MEDIAN(Data)

Mode =MODE(Data)

Standard Deviation =STDEV(Data)

Sample Variance =VAR(Data)

Kurtosis =KURT(Data)

Skewness =SKEW(Data)

Range =h18-H17

Minimum =MIN(Data)

Maximum =MAX(Data)

Sum =SUM(Data)

Count =COUNT(Data)

Largest(1) =LARGE(Data,1)

Smallest(1) =SMALL(Data,1)

Confidence Level(95.0%) =CONFIDENCE(0.05,H12,100)

Most of these formulas require the cell range containing the input data as an argument. For
convenience, I named the cell range B5 to B104 (containing the input data) Data. (See Recipe 1.14 to
learn how to name cells and cell ranges.)

Table 5-1 illustrates that Excel has built-in formulas for all of these basic statistics with two
exceptions. There's no formula for computing the Standard Error (standard error of the mean in this
case). Nor is there a formula for computing the Range. However these two statistics are easily
computed using the results of other formulas. For example, to compute the range you simply take
the difference between the Maximum and the Minimum. To compute the Standard Error of the mean,
you simply divide the Standard Deviation by the square root of Count.

If you take a close look at Figure 5-1, you'll see that the statistics computed using Excel's formulas
exactly match those computed with the Analysis ToolPak with one exception: the values for the 95%
confidence interval are different. This difference is due to the fact that the CONFIDENCE function uses
the inverse of a standard normal distribution to compute the confidence interval, whereas the
Analysis ToolPak uses the inverse of Student's t-distribution. Excel does provide other functions that
allow you to compute confidence intervals using Student's t-distribution. See Recipes 5.3 and 8.8 for
more information.

I should also mention that some of Excel's statistics functions (including those in the Analysis
ToolPak) have historically dealt poorly with some troublesome datasets. For example, if your dataset
contained very large numbers with very small differences between them, the Descriptive Statistics

http://lib.ommolketab.ir
http://lib.ommolketab.ir

tool would compute the standard deviation and variance incorrectly, and this would then affect
results of other statistics that used those values. The workaround in this case is to center your data
by subtracting the mean from each value (or by shifting the data by a sufficiently large value), and
then compute the standard deviation and variance based on the centered data.

In Excel 2003, it appears that the statistics functions have been fixed, so this error no longer occurs.
To see if this error exists on your version of Excel, enter the following data in a spreadsheet and
compute the standard deviation: 10000000001, 10000000002, 10000000003, 10000000004, and
10000000005. The average, standard deviation, and variance for this dataset are 10000000003,
1.58113883, and 2.5, respectively. In older versions of Excel, the standard deviation and variance
would come out to 0.

If you center your data by subtracting the mean from each value, your dataset should look like this: -
2, -1, 0, 1, 2. The standard deviation and variance should be the same as for the uncentered
dataset. In older versions of Excel, the standard deviation and variance for this centered dataset
should come out correctly.

If you shift the original dataset by subtracting, say, 1e10 from each value, you end up with a dataset
that looks like this: 1, 2, 3, 4, 5. The standard deviation and variance should be the same as in the
previous two cases. Again, older versions of Excel deal with this shifted dataset just fine and compute
the correct statistics.

This sort of troublesome data can also adversely affect the results of statistical
tests covered later in this chapter. Here again, you should center the data
before conducting such tests.

See Also

Excel's help guide includes a complete list of all its built-in statistical functions. You can find this list
by searching Excel's help for the topic "Statistical Functions."

Excel also has several built-in summation functions that are very handy for statistical calculations
that involve sums, sums of squares, sums of squared differences, and so on. These functions are
discussed in Recipe 7.1.

Moreover, Excel has built-in functions to support regression and curve fitting. These, along with other
regression techniques, are discussed in Chapter 8.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.2. Plotting Frequency Distributions

Problem

You're analyzing a dataset and would like to create a histogram plot of the data showing its
frequency distribution.

Solution

Use Excel's FREQUENCY function to compute the frequency of occurrence of each data point and use
Excel's charting features (see Chapter 4) to create the histogram plot. Or use the Histogram tool in
the Data Analysis add-in to compute the frequencies of occurrence and then use Excel's plotting
features.

Discussion

Figure 5-4 shows a histogram plot (bar graph) along with a frequency polygon (the thin line) and
cumulative frequency plot (the bold line) for a set of data. The dataset for this example plot
represents the angular response of a torsional spring.

You can quickly create this sort of chart using the techniques discussed throughout Chapter 4. You'll
first have to compute the actual frequency distribution for your dataset, and to that end you have
two choices in Excel: the FREQUENCY function or the Histogram tool included in the Data Analysis add-
in.

Figure 5-5 shows a portion of a spreadsheet containing the data used for the histogram plot shown in
Figure 5-4.

Figure 5-4. Histogram plot

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The angular response data contained in column A is the original dataset for which frequencies are
computed. Before applying the FREQUENCY function, you must set up a range of discrete bin values,
called bins. The bins form bands, or ranges of values, within which values in the original dataset will
be lumped when compiling frequencies of occurrence. In this example, I know the angular response
values fall within approximately -15 to 15 degrees; therefore, I set up a range of bin values from -15
to 15 degrees in increments of 1 degree. These are contained in column C in Figure 5-5.

To compute the frequencies for each bin, I applied the FREQUENCY formula, passing the dataset cell
range as the first parameter and the bin cell range as the second parameter. For example, the
formula in cell D5 is {=FREQUENCY(A5:A1005,C5:C35)}. Notice that this is an array formula
and to enter it you must first select the entire output cell range, cells D5 to D35 in this case, and
then enter the formula by pressing Ctrl-Shift-Enter.

Figure 5-5. Histogram example data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can compute such a frequency distribution using the Histogram tool instead of the FREQUENCY
function if you'd like. To do so, select Tools Data Analysis from the main menu bar to open the
Data Analysis dialog box shown in Figure 5-6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Then select the Histogram tool from the list of available tools and press OK to open the Histogram
dialog box shown in Figure 5-7.

Figure 5-6. Data Analysis dialog box

Figure 5-7. Histogram tool dialog box

In the Input Range field, enter or select from your spreadsheet the range of cells containing the input
dataset. In the Bin Range field, enter or select the range of cells containing the bin values.

Under "Output options," select your preferred location for the output. In Figure 5-7, I set the output
range to start at cell C39 in the same worksheet that contains the original dataset.

There are a few other options you can choose, and in this example I chose the Cumulative

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Percentage option to generate values for the cumulative plot shown earlier in Figure 5-4. Upon
pressing OK, you should see results similar to those shown in Figure 5-5.

See Also

Check out Chapter 4 to learn more about creating charts in Excel.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.3. Calculating Confidence Intervals

Problem

You need to compute confidence intervals for certain estimates and you're not sure what support
Excel provides for these calculations.

Solution

Excel offers a built-in function called CONFIDENCE that allows you to compute confidence intervals
based on a normal distribution. Moreover, Excel provides functions such as NORMSINV and TINV that
allow you to compute inverses for normal and Student's t-distributions, respectively. You can then
use these results to compute confidence intervals.

Discussion

In Recipe 5.1, I showed you how to use Excel's built-in functions to compute summary statistics. I
also showed you how to compute summary statistics using the Descriptive Statistics tool available
from the Analysis ToolPak. In both cases, confidence intervals for the mean were computed and I
pointed out that the confidence interval returned by Excel's CONFIDENCE function is different from that
returned by the Descriptive Statistics tool. Figure 5-1 shows the different values.

The difference in the computed confidence interval is due to the fact that the CONFIDENCE function
uses the inverse of a standard normal distribution to compute the confidence interval, whereas the
Analysis ToolPak uses the inverse of Student's t-distribution. Instead of using the CONFIDENCE
function, you can use the functions NORMSINV or TINV to compute confidence intervals; this gives you
the option of using a normal distribution or Student's t-distribution, which is more suitable for small
samples.

NORMSINV computes the inverse of a standard normal distribution with a mean of 0 and standard
deviation equal to 1. In other words, NORMSINV returns the z-score corresponding to a given
probability. The syntax for NORMSINV is =NORMSINV(probability). For a 95% confidence interval, you

need to enter a probability of 1-0.05/2 or 0.975. Referring to the example shown in Figure 5-1, you
can compute the confidence interval for the mean using the formula =H9*NORMSINV(0.975), where cell
H9's value contains the standard error of the mean. This formula returns a confidence value of
0.015486, which agrees with the results returned using the CONFIDENCE function.

You can use TINV to compute the confidence interval based on Student's t-distribution. TINV
computes the inverse of Student's t-distribution given a probability and the degrees of freedom
characterizing the distribution. Again, referring back to the example in Figure 5-1, you can compute
the confidence interval using the formula =H9*TINV(0.05,H20-1). In this case, the probability for 95%

http://lib.ommolketab.ir
http://lib.ommolketab.ir

confidence is entered as 1-0.95 or 0.05. As before, H9 refers to the cell containing the standard error
of the mean. Cell H20 contains the value returned by COUNT, and the number of degrees of freedom is
computed by h20-1. The resulting confidence value is 0.015677, which agrees with the result
returned by the Descriptive Statistics tool.

See Also

You can use the formulas discussed in this recipe to compute confidence intervals for other estimates
as well. In Recipe 8.8, I show you how to compute confidence intervals for regression curves.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.4. Correlating Data

Problem

You're working with a multivariable problem and want to compute the correlation coefficient between
variables.

Solution

Use Excel's built-in functions CORREL or PEARSON, or use the Correlation tool available in the Analysis
ToolPak.

Discussion

In Recipe 8.4, I show you how to perform linear regression where the dependent variable depends on
more than one independent variable. The example I discuss in that recipe involves six independent
variables. This is a typical example where it's prudent to assess the correlation between independent
variables before conducting the regression analysis. This way you can avoid using highly correlated
(or colinear) independent variables, which can give you trouble.

Excel provides two built-in functions that allow you to compute the Pearson product-moment
correlation coefficients between variables. These functions are CORREL and PEARSON and, according to
Excel's help documents, they perform exactly the same calculation. (I've no idea why there are two
functions to do the same thing.)

Figure 5-8 shows the data from the multiple linear regression example I discuss in Chapter 8. For
now, I'll show you how to examine the correlation between independent variablesthe x variablesusing
Excel's correlation functions as well as the Analysis ToolPak.

To compute the correlation coefficient between variables x1 and x2, you can use the cell formula
=CORREL(E7:E22,F7:F22) or =PEARSON(E7:E22,F7:F22). They both produce the same results, which is
0.991589. Clearly, these two variables are positively correlated and in a regression analysis, for
example, you would probably exclude one of these variables from the curve fit. You can compute
correlation coefficients between the other variables in a similar manner.

Figure 5-8. Multiple linear regression data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To save some time when dealing with numerous variables, you might consider using the Correlation
tool available in the Analysis ToolPak. Select Tools Data Analysis from the main menu bar to
open the Data Analysis dialog box shown in Figure 5-9.

Figure 5-9. Data Analysis Correlation tool

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Select the Correlation tool and press OK to open the Correlation tool dialog box shown in Figure 5-10.

Figure 5-10. Correlation tool dialog box

The Correlation tool allows you to select multiple datasets at once; it will compute the correlation
coefficients between all the datasets. For example, in Figure 5-10 I entered cells E6 through J22 in
the Input Range. This cell range includes all of the x variables shown in Figure 5-8. I included the
header labels in the input range, so I checked the "Labels in first row" option. Further, I specified cell
M7 (on the same worksheet) as the starting cell where I'd like the output displayed. Figure 5-11
shows the results.

Figure 5-11. Correlation results

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This table presents the correlation coefficient between each given variable and every other variable.
It also correlates each variable with itself, which of course results in a correlation coefficient of 1 (as
you can see in Figure 5-11).

Sometimes it's useful to compute coefficients of determination instead of correlation coefficients
alone. To compute a coefficient of determination, simply square the correlation coefficient. For
example, if cell N9 contains the correlation coefficient between variables x1 and x2, then the formula
=N9^2 would yield the coefficient of determination.

There are other types of correlation coefficients common in statistical analysis. For example, Phi, rank
biserial, point biserial, and Spearman rank coefficients are common, in addition to the Pearson
coefficient. Excel does not have built-in support for these other correlation coefficients; however, you
can certainly set up a spreadsheet to calculate these coefficients.

For example, you can readily prepare a spreadsheet to compute the Spearman rank correlation
coefficient between variables x1 and x2 from the previous example. The Spearman coefficient
requires you to convert the raw data to ranks first. You can achieve this conversion using Excel's
built-in RANK function (see Recipe 5.5). Figure 5-12 shows a simple spreadsheet I set up to compute
the Spearman rank correlation coefficient between the variables x1 and x2 from the previous
example.

The first two columns in the table contain the raw data. The third and fourth columns contain the
rank of each data point. I used the RANK function for these calculations. For example, cell E41
contains the cell formula =RANK(C41,C41:C56,1), which computes the rank for the first x1 value,
assuming the data are sorted in ascending order (see Recipe 5.5).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The formula for computing the Pearson rank correlation coefficient is:

Here, d is the difference in ranks between corresponding values for both x1 and x2, and N is the
number of data points. You can compute N using the COUNT function. Cell D58 contains the formula
=COUNT(D41:D56) which returns a value of 16 for the number of points.

To compute d2, I set up another column containing formulas like =(E41-F41)^2. The results are shown
in the last column of the table shown in Figure 5-12.

Cell G57 computes the sum of d2 values using the formula =SUM(G41:G56). Cell G59 computes the
N(N2 - 1) term using the formula =(D58*(D58^2-1)). And finally, the correlation coefficient is
computed in cell G60 using the formula =1-6*G57/G59. The resulting correlation coefficient is 0.997.

Figure 5-12. Spearman rank correlation coefficient calculation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Take a look at Recipe 8.4 to see the resulting regression model for this example dataset. Chapter 8
also discusses coefficients of determination in the context of least-squares curve fitting.

Read Recipe 5.5 to learn more about RANK and other ranking functions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.5. Ranking and Percentiles

Problem

You need to compute certain percentiles of a set of data and you'd also like to compute the rank of
certain values in the dataset.

Solution

Use the built-in functions PERCENTILE, RANK, and PERCENTRANK. Or you can use the Rank and Percentile
tool available in the Analysis ToolPak.

Discussion

By way of example, let's assume your dataset consists of the values 1, 3, 5, 7, 9, 2, 4, 6, 8, 10, and
0. Let's also assume this dataset resides on a spreadsheet in the cell range C18:C28. (This is a rather
simple dataset for example purposes; in practice your dataset can be anything and it need not be
sorted.)

To compute the 25% percentile, use the formula =PERCENTILE(C18:C28,0.25), which returns a value
of 2.5. To compute the 95% percentile, use =PERCENTILE(C18:C28,0.95), which returns a value of 9.5
as expected.

To compute the rank of a given value, use the formula =RANK(2,C18:C28,1). The rank of the value 2
in this dataset is 3, assuming the dataset is sorted in ascending order. If you want to compute the
rank of a value as though the dataset were in descending order, then use a value of 0 for the third
argument in the call to RANK.

If you'd like to compute the rank of a value in percentage terms, then use the PERCENTRANK function.
For example, =PERCENTRANK(C18:C28,2,2) returns the rank of the value 2 as 20%. The second
argument in this function call represents the value whose rank is sought. The third argument is the
number of significant digits for the result (in this case, two significant digits).

Instead of using these built-in functions, you could use the Analysis ToolPak's Rank and Percentile
tool. Select Tools Data Analysis from the main menu bar to open the Data Analysis dialog box
shown in Figure 5-13.

Select "Rank and Percentile" from the list and press OK to open the "Rank and Percentile" dialog box
shown in Figure 5-14.

In the Input Range field, type (or select from your spreadsheet) the cell range containing the input

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dataset you'd like to rank. You can also specify the output location, as shown in Figure 5-14.

Figure 5-13. Data Analysis dialog box

Figure 5-14. Rank and Percentile tool dialog box

For the simple example dataset discussed earlier, the Rank and Percentile tool returns the results
shown in Figure 5-15.

The ranks are computed assuming the data is sorted in descending order. The first column in the
resulting table contains an index for each data point. The second column contains the raw value of
the data point. The third column contains the corresponding rank. The last column contains the
percentage rank.

In the event of ties (that is, where two or more values in the dataset are the same), you may want
to use the correction recommended in Excel's help file for computing ranks. The formula to use is
=[COUNT(data)+1-RANK(value, data, 0)-RANK(value, data, 1)]/2. In this formula, data is a cell

http://lib.ommolketab.ir
http://lib.ommolketab.ir

reference containing the input dataset and value is the value for which you want to find a rank. See

the Excel help topic for the RANK function for more information. To the best of my knowledge, the
Rank and Percentile tool in the Analysis ToolPak does not handle ties. So if your data contains ties
and you need to correct for this, you should use the RANK function instead.

Figure 5-15. Rank and Percentile results

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.6. Performing Statistical Tests

Problem

You're engaged in hypothesis testing and you'd like to learn about Excel's support for conducting
statistical tests .

Solution

Excel provides support for conducting standard z-tests, t-Tests, and F-tests. Read the following
discussion to learn more.

Discussion

The built-in function ZTEST computes the one-tailed z-test using the normal distribution. The syntax
for this function is =ZTEST(cell ref, ,) where cell ref is a cell reference containing an input

dataset, is the value being tested, and is the population standard deviation. If is not known, it
can be omitted, in which case the sample's standard deviation will be computed and used in the z-
test calculation.

You can also compute two-tailed z-tests as follows: =2 * MIN(ZTEST(cell ref, ,), 1 -

ZTEST(cell ref, ,)).

The function TTEST computes the one- or two-tailed t-test using Student's t-distribution. Further,
TTEST allows you the option of performing paired, two sample with equal variance, or two sample with
unequal variance tests. The syntax for TTEST is =TTEST(cell ref 1, cell ref 2, tails, type), where
cell ref 1 and cell ref 2 are cell references to the two datasets under consideration and tails is
the number of tails to consider for the test (1 or 2). type is a value of 1, 2, or 3, indicating the test

type: paired, two sample equal variance, or two sample unequal variance, respectively.

FTEST computes the two-tailed F-test for two datasets. The syntax for FTEST is =FTEST(cell ref 1,
cell ref 2), where cell ref 1 and cell ref 2 are cell references to the two datasets under

consideration.

All three of these test functions have corresponding inverse functions (namely, NORMSINV, TINV, and
FINV) that are useful when computing critical values for comparison. NORMSINV and TINV were
discussed in Recipe 5.3. Recipe 8.7 makes use of FTEST and FINV while performing an F-test in the
context of regression analysis.

The Analysis ToolPak also provides several tools for conducting statistical tests. These tools include:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

F-Test Two-Sample for Variances

t-Test Paired Two-Sample for Means

t-Test Two-Sample Assuming Equal Variances

t-Test Two-Sample Assuming Unequal Variances

z-Test Two-Sample for Means

To access these tools, select Tools Data Analysis from the main menu bar to open the Data
Analysis dialog box. This is the same Data Analysis dialog box shown earlier in Figure 5-13. You'll find
each of the statistical test tools listed in this dialog box. They all work pretty much the same way:
select a tool to open the tool's dialog box, select input cell ranges, specify your hypothesis, and select
your output options.

I'll show an example using the t-Test Two-Sample Assuming Unequal Variances tool. Figure 5-16
shows a portion of a spreadsheet containing measured weights of North American bullfrogs sampled
from two southern states.

Each state's sample contains 60 data points. An example hypothesis to test here (a null hypothesis)
is that there's no difference between the mean weights of bullfrogs from Louisiana and Alabama.

To conduct this test, select t-Test: Two-Sample Assuming Unequal Variances from the Data Analysis
dialog box discussed earlier to open the t-Test dialog box shown in Figure 5-17.

Figure 5-16. Bullfrog weight data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 5-17. t-Test dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the Variable 1 Range and Variable 2 Range fields, type (or select from the spreadsheet) the cell
ranges containing the dataset corresponding to Louisiana and Alabama, respectively. In this example,
I included the column labels in these input ranges, so I checked the Labels checkbox.

Alpha represents the level of significance related to the probability of
encountering a type I error. 0.05 represents a 5% significant level. 0.01
represents a 1% significant level, and so on. See any standard text on statistics
for more information on this value and hypothesis testing.

The hypothesis is that there is no difference between the means; therefore, enter a value of 0 in the
Hypothesized Mean Difference field. In this example, I left the Alpha field (confidence field) at the
default 5%; but you can change that as well. Finally, choose your output options. In this case, I
chose to have the output on the same spreadsheet, starting at cell D93. Press OK; the results are
shown in Figure 5-18.

Figure 5-18. t-Test results

http://lib.ommolketab.ir
http://lib.ommolketab.ir

These results include computed means and variances for the two input datasets, along with other
information such as the number of observations, the hypothesized mean difference, and the degrees
of freedom. The t-statistic is also reported, along with both the one-tailed and two-tailed probabilities
and critical values. In this case, the t-statistic is 2.1, which is greater than the two-tailed t-critical
value, thus indicating there is a statistically significant difference in means between the two datasets.
You can also see that the P-value is less than the significance level (Alpha value of 5% in this case),
which also indicates rejection of the null hypothesis.

The other statistical test tools available in the Analysis ToolPak generate results that look very much
like the ones shown in Figure 5-18.

See Also

To learn more about the Analysis ToolPak statistical tests, read the Excel help topic entitled "About
statistical analysis tools." Refer to any standard text that covers statistical tests, or tests of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

significance, to learn more about these and other statistical tests.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.7. Conducting ANOVA

Problem

You'd like to conduct an analysis of variance (ANOVA).

Solution

The Analysis ToolPak offers three flavors of ANOVA: single factor, two-factor with replication, and
two-factor without replication. Select Tools Data Analysis from the main menu bar to access
these tools.

Discussion

By way of example, consider the hypothetical drug effectiveness data shown in Figure 5-19.

The data values represent some measure of merit, or effectiveness, for drugs A, B, and C, along with
a control group. The Anova: Single Factor tool allows you to perform an analysis of variance for two
or more groups, so we'll use that tool to test the hypothesis that there's no difference between the
means of these groups.

After selecting the Anova: Single Factor tool from the Data Analysis dialog box, you should see the
Anova: Single Factor dialog box like the one shown in Figure 5-20.

In the Input Range field, type or select the cell range containing all the data under consideration.
Your dataset must be in contiguous columns for this tool. If you include the column labels as I did in
this example, then be sure to check the "Labels in first row" option. You can set the Alpha parameter
to whatever you'd like. In this case I left it at 5%.

Finally, choose your output options and press OK. Here, I chose to generate the output in the same
worksheet, starting in cell E178. The results of this analysis are shown in Figure 5-21.

These results show descriptive statistics for each group, along with standard ANOVA information.
ANOVA results are displayed for between groups and within groups. SS represents the sum of
squared deviations from the mean. df represents degrees of freedom. MS is the mean square value. F
is the F-Ratio. And finally, F crit is the critical F-value based on the F-distribution. In this example,
the P-value is less than the supplied Alpha value, and the obtained F-value is greater than the critical
F-value. These results imply that we should reject the null hypothesis that there's no significant
difference between the means of these groups and conclude that there's some statistically significant
difference.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 5-19. Drug effectiveness

Figure 5-20. Anova: Single Factor dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 5-21. ANOVA results

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To learn more about the Analysis ToolPak ANOVA tools, read the Excel help topic "About statistical
analysis tools." Refer to any standard text that covers statistical tests, or tests of significance, to
learn more about ANOVA and other statistical tests.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.8. Generating Random Numbers

Problem

You'd like to compute random numbers between specific upper and lower bounds and you're not sure
how to do so in Excel.

Solution

Use Excel's built-in spreadsheet function RAND or VBA's Rnd function.

Discussion

RAND generates an evenly distributed random number between 0 and 1. Its syntax is =RAND() with
no arguments. When this function is used in a spreadsheet, its value changes every time the
spreadsheet is recalculated. For a random number that won't be recalculated, enter =RAND() in the
formula bar and then press F9. This will enter a random number between 0 and 1 in the selected cell,
instead of entering the formula =RAND(). Therefore, the random value will remain unchanged when
the spreadsheet is recalculated.

To compute a random number between two specific values, use the formula =RAND()*(MaxVal-
MinVal)+MinVal, where MinVal and MaxVal are the two values between which you want the random

number to be generated. The result will be a real number. To generate a random integer, use
=ROUND(RAND()*(MaxVal-MinVal)+MinVal, 0).

You can use the VBA function Rnd in a similar manner. For example, the code x = (MaxX-
MinX+1)*Rnd+MinX generates a random number between MinX and MaxX. In VBA, you should seed the
random number generator by making a call to the Randomize function prior to using the Rnd function.

See Also

See Recipe 13.4 for an example that uses random numbers.

Generating random numbers can also be useful when selecting random samples from some
population. Recipe 13.7 shows how to select random samples from a population where the probability
of selecting any given sample is not uniform.

In cases where you need to draw samples from a finite population of discrete values, you should
consider the Sampling tool . This tool is discussed in Recipe 5.9.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.9. Sampling Data

Problem

You need to draw random samples from a finite population of discrete values.

Solution

Use the Analysis ToolPak Sampling tool. Select Tools Data Analysis from the main menu bar and
then select Sampling from the list of available tools.

Discussion

Figure 5-22 shows a spreadsheet containing a set of discrete values from which three were selected
at random. The Sampling tool discussed a moment ago was used to draw these three random
samples.

Upon selecting the Sampling tool from the Data Analysis tool list, you should see the Sampling dialog
box shown in Figure 5-23.

Figure 5-22. Sampling discrete values

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 5-23. Sampling dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the Input Range, enter or select the cell range containing the discrete values from which to draw
random samples. Next, select the Sampling Method, which can be either Periodic or Random. If you
choose Periodic you also have to specify a periodic interval where sampling will take place. At every
kth period, a random sample will be drawn. For example, if you choose Periodic with a period of 2 for
the example data shown in Figure 5-22, then six samples will be drawn, corresponding to every other
value in the input range starting from the second value.

If you choose Random, then you have to specify how many random samples to draw. In this
example, I chose to draw three random samples. Finally, select your output options and press OK. In
this example I chose to display the results in the same worksheet, starting at cell E11. The results
are shown in Figure 5-22.

See Also

See Recipe 5.8 to learn how to generate random numbers in Excel.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6. Time Series Analysis
Section 6.0. Introduction

Recipe 6.1. Plotting Time Series Data

Recipe 6.2. Adding Trendlines

Recipe 6.3. Computing Moving Averages

Recipe 6.4. Smoothing Data Using Weighted Averages

Recipe 6.5. Centering Data

Recipe 6.6. Detrending a Time Series

Recipe 6.7. Estimating Seasonal Indices

Recipe 6.8. Deseasonalization of a Time Series

Recipe 6.9. Forecasting

Recipe 6.10. Applying Discrete Fourier Transforms

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.0. Introduction

Time series analysis is a broad field of study with applications ranging from engineering analysis to
socioeconomic forecasting to stock market prediction, among many other applications. You can use
Excel to perform many tasks required in time series analysis , such as pre- and post-processing of
data, visualizing results, and making forecasts. Excel also offers a Fourier Analysis tool that allows
you to transform time series data to the frequency domain (and back) for further analysis. This
chapter aims to show you some specific examples of how you can effectively use Excel when
analyzing time series data.

There are many time series analysis techniques available, many of which are tailored to specific kinds
of time series, so I'm not going to attempt to cover them all. Instead, the examples discussed here
serve to show you how you can leverage Excel's standard functionality to perform some important
analysis tasks. Building on the techniques I show you here, you have the ability and power within
Excel to devise all sorts of other analysis techniques.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.1. Plotting Time Series Data

Problem

You need to plot a set of time series data for further analysis.

Solution

Time series charts, such as the one shown in Figure 6-1, are easy to create in Excel.

Select the data series (both x and y values) you want to chart and then press the Chart Wizard
button on the Standard toolbar, or select Insert Chart... from the main menu bar to open the
Chart Wizard. The Chart Wizard allows you to select the chart style and customize charts in various
ways. Read Chapter 4 to learn more about creating charts in Excel.

Figure 6-1. Time series chart

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.2. Adding Trendlines

Problem

You've plotted your time series using Excel's charting feature and now you'd like to add a trendline.

Solution

Figure 6-2 shows an example linear trendline you can create on Excel charts. Notice that you also
have the option of displaying the trendline equation on the chart, as shown in the figure.

Figure 6-2. Linear trendline

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Excel also supports nonlinear trendlines . Figure 6-3 shows the same time series with a second-order
polynomial trendline instead of a linear trendline.

Figure 6-3. Polynomial trendline

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To create a trendline for a given data series, select the series by clicking on it and then right-click to
reveal a pop-up menu. Select Add Trendline from the pop-up menu to open the Add Trendline dialog
box, where you can select the type of trendline and other options. Refer to Chapter 8 to learn more
about adding these and other types of trendlines to Excel charts.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.3. Computing Moving Averages

Problem

You'd like to smooth a set of time series data by computing moving averages.

Solution

You can compute moving averages in several ways in Excel. You can use the built-in Moving Average
trendline charting feature, the Analysis ToolPak Moving Average feature, or spreadsheet functions to
compute moving averages.

Discussion

Excel allows you to compute moving averages in several ways. I'll show you three ways: using chart
trendlines, using the Analysis ToolPak, and using spreadsheet formulas.

Moving Average trendline

As mentioned in Recipe 6.2, you can add a trendline to a chart by selecting the data series and then
right-clicking to reveal a pop-up menu. You can then select Add Trendline to open the Add Trendline
dialog box shown in Figure 6-4.

Figure 6-4. Add Trendline dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can select from six different types of trendlines. In this case, select the Moving Average type. To
the right of the Moving Average icon, you should see a Period spinner control (as shown in the
figure). Use the spinner arrows to select the period over which averages will be computed. You can
also type in a number. In this example, I entered 3 so as to create a three-year moving average
trendline.

On the Options tab you can type in a name for the new trendline. Figure 6-5 shows the Options tab.

Figure 6-5. Add Trendline: Options tab

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Moving Average trendlines have available only the "Trendline name" options. The other options apply
to the other trendline types shown in Figure 6-4. (See Chapter 8 for examples using the other
trendline types.)

Pressing OK closes the Add Trendline dialog box and adds the new trendline to your chart. Figure 6-6
shows the time series from Figure 6-2 and Figure 6-3 with a three-year moving average trendline.

Figure 6-6. Three-year moving average trendline

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you decide to modify the resulting moving average trendline, perhaps changing the averaging
period, simply select the trendline on the chart and then right-click to reveal a pop-up menu. Next,
select Format Trendline from the pop-up menu to open the Format Trendline dialog box.

You can also open the Formation Trendline dialog box by selecting the trendline
and pressing Ctrl-1.

The Format Trendline dialog box includes the same the Add Trendline dialog box, where you can
change the trendline type and any of its options. Further, the Format Trendline dialog box has an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

additional tab called Patterns that allows you to format the actual line drawn for the trendline. For
example, you can change the line weight, color, and style.

Chart trendlines offer an easy way of creating moving average trendlines for time series data.
However, this method does not allow you to extract the actual numerical values representing the
moving average trendline. Also, this method requires that you first create a chart of your data. If you
need numerical values for the trendline or you don't want to create a chart, then you can use one of
the two following approaches.

Analysis ToolPak Moving Average

The Analysis ToolPak includes a Moving Average feature that allows you to compute moving averages
in a manner similar to that of the Excel chart Moving Average trendline. The benefit of using the
Analysis ToolPak is that you get the actual numerical data for the moving average series and not just
a chart of the data.

To compute moving averages for a data series, select Tools Data Analysis... from the main menu
bar to open the Data Analysis dialog box. Figure 6-7 shows the Data Analysis dialog box, where
you're presented with a list of analysis tools to choose from.

Figure 6-7. Data Analysis dialog box

Select Moving Average from this list and press OK to open the Moving Average dialog box shown in
Figure 6-8.

Figure 6-8. Moving Average dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the Input Range field, enter (or select directly on your spreadsheet) the cell range containing the y
values of the data series for which you'd like to compute moving averages. For my example, cells O3
to O72 contained the relevant data.

Next, enter the Interval over which you'd like to compute averages. This is the same as the Period
field used in the Trendline dialog box, as discussed earlier.

Finally, enter the topmost cell in the range where you'd like the output created. In this case I
selected cell P3, to place the moving average data adjacent to the original time series data.

You may also elect to have a chart created automatically or have standard errors computed. Press
OK to close the Moving Average dialog box and create the data. Your spreadsheet will now contain
the new moving average data. Figure 6-9 shows a portion of the average annual temperature data
series shown in Figure 6-6, along with the computed moving averages.

Figure 6-9. Moving Average results

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice that the first two entries in the moving average series are #N/A. This is because the Moving
Average tool computes moving averages based on the previous data points, and there are not
enough points to compute the three-year average at the beginning of the series.

In Figure 6-9, I intentionally selected one of the computed moving averages to show you that these
results are not static numerical values. Instead, the Moving Average tool entered formulas to
compute the moving average. The formula used is the standard AVERAGE spreadsheet formula, as
shown in the formula bar in Figure 6-9. Using the spreadsheet formula in this way means that if your
original data changes, the moving average will update accordingly.

At this point, you can perform other spreadsheet operations on the moving average data or plot the
data as you wish. This approach gives you greater flexibility, as opposed to the trendline moving

http://lib.ommolketab.ir
http://lib.ommolketab.ir

average method discussed earlier. However, what if you want to compute the moving averages over
a period centered about each data point in the original series? You can use spreadsheet formulas to
accomplish this, as discussed in the next section.

Spreadsheet formulas

Aside from the two previous approaches, you can always use simple spreadsheet formulas to
compute moving averages. Specifically, you can use the AVERAGE formula, as shown in Figure 6-10.

Figure 6-10. Centered moving averages

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 6-10 shows the same original data and three-year moving average data computed using the
Analysis Toolpak from the previous section. Further, Figure 6-10 shows a new column of three-year
moving averages computed using the AVERAGE formula manually. To generate the new column, I
entered the AVERAGE formula in Q4 with the cell range O3:O5 passed as the argument. The formula is
=AVERAGE(O3:O5). This formula computes the average of the three original series data points centered
over the second data point. Once I had that formula entered, I simply copied and pasted the same
formula in all the remaining cells in column Q, corresponding to the original data. Using relative cell
references meant that Excel automatically adjusted the cell range argument passed into the AVERAGE
formula. For example, Figure 6-10 shows the resulting formula contained in cell Q6, along with the
corresponding cell range argument.

The result of these simple steps yields a new data series containing three-year centered moving

http://lib.ommolketab.ir
http://lib.ommolketab.ir

averages. This approach is direct in that you don't need to use charts first if you don't want to, nor
do you need to use the Analysis ToolPak. Further, this approach is flexible. For example, you can
change the cell range passed into the AVERAGE formula to compute averages over any period of your
choosing.

See Also

You can also compute weighted moving averages in Excel. See Recipe 6.4 to learn how.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.4. Smoothing Data Using Weighted Averages

Problem

You'd like to smooth data in a time series.

Solution

Use Excel's exponential smoothing feature in the Analysis ToolPak or construct a smoothed data
series yourself using spreadsheet functions and VBA.

Discussion

Smoothing data is often desirable to remove unwanted noise in a data series. Computing moving
averages as discussed in Recipe 6.3 is actually a smoothing process. Besides the moving averages
methods discussed earlier, there are other ways to smooth data. Excel offers an exponential
smoothing feature as part of the Analysis ToolPak. Further, you can construct any smoothing
operations you desire using standard spreadsheet functions (and/or VBA). You already saw this
approach in the previous recipe; however, this time I'll show you how to use a weighted moving
average that makes use of a cubic spline interpolation kernel.

Exponential smoothing

Exponential smoothing is also a weighted-averaging technique. The idea behind weighted averaging
is to give data values closest to the value being forecast or estimated greater importance, or
influence, as opposed to values further away. Exponential smoothing uses the following formula:

Fn+1 is the value being estimated at time interval n + 1. is a weighting factor, which is called a
damping factor in Excel. Fn is the previous estimated value, and Yn is the previous actual value in the
original data series.

To use exponential smoothing, select Tools Data Analysis... from the main menu bar to open the
Data Analysis dialog box (shown earlier in Figure 6-7). Select Exponential Smoothing from the list of
available analyses. Doing so opens the Exponential Smoothing dialog box shown in Figure 6-11.

Figure 6-11. Exponential Smoothing dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the Input Range field, type (or select on the spreadsheet) the cell range containing the input data
you wish to smooth. Enter a damping factor in the "Damping factor" field or leave it blank to use the
default value of 0.3. Enter a reference to the topmost cell in the desired output cell range in the
Output Range field.

Press OK when you're done and you should see the results on your spreadsheet. Figure 6-12 shows
an example for the same annual temperature data used in the previous recipe. The resulting data
series after smoothing is contained in column R.

Figure 6-12. Exponential smoothing results

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Just like the Moving Average tool discussed earlier, the Exponential Smoothing tool places a cell
formula rather than a value in each cell of the resulting data series. This way, if your original data
changes, the smoothed data will update automatically. Cell R10 is selected in Figure 6-12 so you can
see what the formulas look like. The formula is shown in the formula bar and is of the form
=0.7*O9+0.3*R9. As you can see, this formula corresponds to the exponential smoothing equation I
showed you earlier. Of course, you can enter these formulas yourself, bypassing the need to use the
Analysis ToolPak, if you desire.

Figure 6-13 shows a plot of the smoothed data series superimposed over the original series so you
can see the difference between the two.

Figure 6-13. Exponentially smoothed temperature data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Other weighted averaging techniques are commonly used in time series analysis. In the next section
I'll show you one based on a cubic spline interpolation kernel.

Kernel smoothing

In this example, I'll show you a weighted averaging technique that uses a cubic spline interpolation
kernel designed to approximate a Gaussian kernel. You can use all sorts of different kernels for
smoothing with only slight modifications to the technique I'll present. The kernel I'll use is:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

r represents the distance between data points and h represents the effective smoothing radius
divided by 2. I'll use this smoothing function to compute weights when computing weighted averages
of the time series. To make this task easier, I added a VBA function called Wcs that you call from the
spreadsheet. Example 6-1 shows my VBA implementation for this smoothing kernel.

Example 6-1. Cubic spline kernel

Public Function Wcs(r As Double, h As Double) As Double
 Dim s As Double
 Dim w As Double

 s = r / h

 If s > 2 Then
 w = 0
 ElseIf (s <= 2) And (s > 1) Then
 w = (1# / 3#) * (2# - s) ^ 3
 ElseIf (s <= 1) And (s >= 0) Then
 w = (4# / 3#) * (1 - (3# / 2#) * s ^ 2 + (3# / 4#) * s ^ 3)
 End If

 Wcs = w
End Function

This is a fairly straightforward implementation of the equation I showed earlier, so I won't go over
each line of code. Refer to Chapter 2 if you're not already up to speed on using VBA and adding
custom functions and subroutines.

I'll use this function to generate weights in order to smooth the same temperature data discussed
earlier. Figure 6-14 shows a weight table I computed using this function.

Figure 6-14. Weight table

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first column in the table, labeled r, contains relative indices around the fourth index, labeled 0.
We can do this here to compute r because the time series data is sampled at evenly spaced intervals.
The second column contains formulas like =Wcs(U10,2). This is the formula contained in cell V10. All
the other cells contain similar formulas. The sum of the weights (computed using the SUM formula
shown in cell V14) is required to normalize the weighted average computation. You can avoid this
step if your kernel integrates to unity over its range of support.

Now, to compute the smoothed data series, I set up another column in my spreadsheet, as shown in
Figure 6-15.

Figure 6-15. Kernel-smoothing results

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The smoothed data is contained in column S under the heading Kernel Smoothing. I selected the first
smoothed data value in cell S10 in the figure so you can see the cell formula. The formula is
=SUMPRODUCT(R7:R13,V7:V13)/V14. As you can see, it uses the SUMPRODUCT formula to compute
the sum of the products of each corresponding term in the two given cell ranges (see Chapter 7 for
more information on this and other handy functions). In this case, the first cell range corresponds to
the six data items around the given data item, including the given data item. This means the
weighted average in this case is centered over the ith data item and includes the weighted influence
of the three previous items and the three following items.

The second cell range contains the weights shown in Figure 6-14. Further, dividing by the sum of
weights, contained in cell V14, normalizes the result. Once the first formula was set up, I simply
copied and pasted it into the remaining cells in the data series.

Notice that we do lose some data. Specifically, we lose the first and last three data items in the range
because of the range of influence of the weighting function I used. You can increase the range of
influence by increasing the value for the h parameter passed into Wcs, or you can decrease it by

http://lib.ommolketab.ir
http://lib.ommolketab.ir

decreasing this value. The greater the range of influence (hence the greater the number of data
items in the series averaged for each smoothed result), the smoother the resulting data series.

Figure 6-16 shows a plot of the smoothed data series compared to the original data series; the effect
of smoothing is clearly evident.

Figure 6-16. Kernel-smoothed temperature data

See Also

See Recipe 6.3 to learn how to compute non-weighted moving averages in Excel. Smoothing data
using the techniques in this and the previous recipe is actually a form of filtering. You can also filter
data in the frequency domain in Excel using Fourier transforms; read Recipe 6.10 to learn more.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.5. Centering Data

Problem

You need to center a data series before further analysis.

Solution

Use basic spreadsheet techniques and Excel's built-in formulas to center the data.

Discussion

Centering in this context refers to the process of removing a bias or offset in a series of data so that
the resulting series values fluctuate approximately about 0. Centering is often required before
processing data using forecasting techniques, and can be accomplished quite easily in Excel. There
are a number of ways to center a data series, and here we'll use the standard approach of
subtracting the average of the data in the series from each data item in the series.

Figure 6-17 shows an example spreadsheet I set up.

Figure 6-17. Centering example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first column contains the month label, while the second column contains the original data series
before centering. This series represents average monthly temperatures.

To center the data, I first computed the average of all the temperature values in the original data
series. Cell D27 contains the formula =AVERAGE(D3:D26) that computes the average of all
temperatures.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The column adjacent to the original data series contains the centered data (column E). The formulas
in this column are of the form =D3-D27. All this does is subtract the average temperature contained
in cell D27 from every temperature value in the original series. The result is a centered data series
with the offset removed.

I set up a few plots so you can see the difference. Figure 6-18 shows the original data series and
Figure 6-19 shows the centered data series.

Figure 6-18. Original data series

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 6-19. Centered data series

The original data series oscillates about the average temperature up in the 60s, while the centered
data series oscillates about the 0 axis.

This isn't the only way to center data. Some techniques involve computing a weighted average of the
data and using the result to center the series.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.6. Detrending a Time Series

Problem

You're working with a data series that exhibits a clear trend and before processing the data further
you need to remove the trend from the data. This is called detrending .

Solution

Construct a trendline in Excel using one of the techniques discussed in Chapter 8 (see Recipe 6.2 for
an introduction to trendlines in Excel). Use the resulting trendline to detrend the original data as
discussed in this recipe.

Discussion

Time series data is often thought of as being comprised of several components: a long-term trend,
seasonal variation, and irregular variations. (Some models assume a fourth, cyclic, component.)
When analyzing time series data (e.g., when making forecasts based on historical data), it's often
desirable to decompose the time series into its various components. To this end, additive or
multiplicative models are often used.

Let Y represent the ordinates of a time series such that Y = f(t), where f is some function of time.
Then, we can decompose Y as follows:

or

In these equations, T represents the long-term trend component, S the seasonal component, and I
the irregular variation component of the total time series, Y. The first equation is a multiplicative
model, while the second is an additive model. Which model you decide to use largely depends on the
nature of your data and which model yields the best results. For example, when forecasting you
might try both models and use whichever model yields the most accurate predictions. In this and the
remaining recipes in this chapter, I'm going to use the multiplicative model; however, you can apply
the additive model using very similar Excel techniques.

Figure 6-20 shows historical average annual temperatures for the state of Louisiana from 1970 to
2000. This series exhibits a clear upward trend, highlighted by the linear trendline superimposed over
the original data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 6-20. Annual temperatures from 1970 to 2000

If you were going to make a forecast using this historical data, one of the first steps you'd take would
be to detrend the original series to remove the long-term trend component.

Using the multiplicative model, divide both sides of the equation Y = TSI by T to yield Y/T = SI. This
means the detrended series, Y/T, consists only of the seasonal and irregular variation components.
To actually compute Y/T, you must first compute a trendline as shown in Figure 6-20 (see Recipe 6.2
or Chapter 8). Then compute the trend value for each year in the series. Next, divide the original
series ordinate (Y) by the computed trend value (T) to yield the detrended series (SI). Figure 6-21
shows a portion of the spreadsheet I set up to perform these calculations for the example
temperature series.

Figure 6-21. Detrending example spreadsheet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Column B contains the year while column C (under the heading Y), contains the original temperature
series.

The formula for the trendline shown in Figure 6-20 is T=0.0446x-22.061, where x is the year. (This
trendline equation was determined using Excel's chart trendline feature; see Recipe 6.2.) Column D
(under the heading T), contains this formula for each year. The cell formulas in column D are of the
form =0.0446*B40-22.061. This series represents the long-term trend component for the original time
series.

Finally, column E (under the heading Y/T = SI), contains the detrended series. You simply divide
each value in the Y column by the corresponding value in the T column to yield Y/T. The cell formulas
in the Y/T = SI column are of the form =C40/D40. Figure 6-22 shows the resulting detrended series.

Figure 6-22. Detrended series

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you were to construct a linear trendline for this series, it would simply consist of a horizontal line.
The variations shown in Figure 6-22 are around the long-term trend, and they consist of both
seasonal components (if present) and irregular variations. Further analysis (e.g., when forecasting),
would probably require you to decompose this series even further to remove the seasonal
component. This process is called deseasonalization and is covered in the next two recipes.

See Also

There are other methods of detrending a time series besides using the least squares linear trendline
used in this example. Sometimes higher-order trendlines are used, while at other times linear
trendlines are computed using only the two series values at each end of the time series. Consult a
standard text on time series analysis for more detailed information on these and other detrending
methods.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.7. Estimating Seasonal Indices

Problem

You're working with a time series that shows some seasonal variation and you'd like to compute the
seasonal indices prior to deseasonalizing the data.

Solution

You can compute seasonal indices using any of a number of methods. I'll show you how easy it is to
compute such indices in Excel using the average-percentage method.

Discussion

Take a look at the time series shown in Figure 6-23.

Figure 6-23. Average monthly temperatures

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This time series consists of average monthly temperatures for the state of Louisiana from 1996 to
1999. The vertical gridlines correspond to three-month quarters, and it's clear there's an obvious
seasonal variation in average temperatures. In Recipe 6.9, I'll show you how to forecast the average
monthly temperatures for the year 2000 given this historical data. Part of that forecast analysis
requires you to isolate the seasonal variation in temperatures. To do so, you must first compute the
seasonal indices.

There are many standard methods for computing seasonal indices. The method I'll show you to
illustrate how to use Excel for such calculations is the average-percentage method.

I'll use the series shown in Figure 6-23 as an example. To apply the average-percentage method,
compute the annual average temperature for each year and then express each monthly temperature
as a percentage of the average annual temperature for the corresponding year. Then you average
these percentages for corresponding months over all years to arrive at the seasonal index for each
month.

The data shown in Figure 6-23 was given as a series of temperature values over a range of months
from 1 to 49, covering the years 1996 to 1999. To compute the seasonal indices, it's convenient to
reorganize the data as shown in Figure 6-24.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 6-24. Original data and averages

The original data is now in a table with rows representing monthly values over years represented by
columns. Now it's a simple matter of applying the AVERAGE worksheet formula to compute annual
averages. The last row of the table in Figure 6-24 computes these averages using formulas of the
form =AVERAGE(F69:F80).

The next step is to divide each monthly temperature value by the annual average for the
corresponding year. Figure 6-25 shows the table I set up for this calculation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 6-25. Seasonal indices

This table is similar in format to the one shown in Figure 6-24; however, each value in the table
represents the ratio of monthly temperature to annual average for corresponding years. For example,
the cell formula in cell F85 corresponding to January 1996 is =F69/F$81, which is the temperature
value for January 1996 from the table shown in Figure 6-24 divided by the annual average for the
year 1996, from the last row of the table in Figure 6-24. The cell formulas are similar for the other
months and years in the table in Figure 6-25.

The last column in Figure 6-25 contains the seasonal index for each month. The seasonal index is
simply the average of the ratios for the corresponding month over all years. For example, the
January seasonal index in cell J85 is computed using the formula =AVERAGE(F85:I85). The remaining
indices are computed similarly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The average of the seasonal indices for all months should come out to a value of 1. If it does not,
then a suitable factor should be applied to each index so that the average does indeed work out to a
value of 1. Cell J98 computes the average seasonal index as a check. As you can see, it comes out to
a value of 1.00, so no adjustments are required.

The seasonal indices computed here confirm the observation made earlier that the temperatures are
seasonally higher in the middle months of the year (over the second and third quarters of each year).
You can see this by observing that the seasonal indices for the months of May through October are
above the average index of 1, while the remaining indices are below this average.

See Also

You can decompose a time series such as the one discussed here to isolate the seasonal variation in a
manner similar to the way in which we isolated the long-term trend in Recipe 6.6. Further, as you can
also deseasonalize a time series. The next recipe shows you how.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.8. Deseasonalization of a Time Series

Problem

You're working with a time series with clear seasonal components, which you'd like to isolate and
remove from the original data.

Solution

Deseasonalize your data in Excel using standard spreadsheet techniques.

Discussion

In the previous recipe, I showed you how to compute seasonal indices for a time series using the
average-percentage method. That recipe required nothing more than standard spreadsheet
techniques to compute the indices. Further, the earlier Recipe 6.6 showed you how to use standard
spreadsheet techniques to isolate and remove the long-term trend in a time series. The model used
there was the multiplicative model in which the original time series, Y, is assumed to be composed of
a long-term trend, seasonal variation, and irregular variation, which is represented in the formula Y =
TSI. Deseasonalizing a time series amounts to estimating the S contribution and removing it by
dividing Y by S (that is, by computing Y/S). You can extend these ideas further to isolate the irregular
variation as well by computing Y/(TS) to yield I.

Let's reconsider the average monthly temperature series shown earlier in Figure 6-23. That data
series has a slight upward trend and a very clear seasonal variation over each year. Using the
seasonal indices computed in the previous recipe for this time series, we can easily decompose and
deseasonalize the series. Figure 6-26 shows a spreadsheet I set up to decompose the time series.

Figure 6-26. Average monthly temperature decomposition

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Column Y represents the original time series data. These are the average monthly temperatures
plotted in Figure 6-23. This data series exhibits a slight upward trend, which can be modeled with the
linear trendline equation T = 0.0592x + 65.521. Column T in Figure 6-26 computes this trend.
Detrending this series is carried out as before (in Recipe 6.6), by dividing the original data Y by the
trend T. Column Y/T contains the result.

Deseasonalization is carried out in a similar manner. However, here we divide the original series, Y,
by the seasonal index for corresponding months. For example, the first cell in column Y/S, cell G3,
contains the formula =D3/Jan. Jan is a name I defined for the January seasonal index computed in the
previous recipe. Likewise, the formula in cell G4 for the month of February 1996 is =D4/Feb. I named
all the seasonal indices in this manner and each monthly Y in each year is divided by the
corresponding seasonal index. The results are contained in column Y/S and represent the
deseasonalized series. Figure 6-27 shows the resulting deseasonalized temperature series.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 6-27. Deseasonalized temperature series

You can now detrend the deseasonalized series by dividing every value in the Y/S column by the
trend value in the T column. These calculations are carried out in the Y/(TS) column in Figure 6-26,
where the cell formulas are of the form =G3/E3.

In some cases (e.g., if your data exhibits a significant long-term trend), you might prefer to detrend
the data series first and then compute seasonal indices on the detrended series using the same
techniques discussed in the previous recipe. Then seasonal components can be removed from the
detrended series using the techniques discussed here. In either case, you've effectively isolated the
irregular variation component, I, of the original series.

See Also

In Recipe 6.9, I'll show you how to extend the material presented in this and earlier recipes to predict
the average monthly temperatures for the year 2000 based on the 1996 through 1999 historical data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

shown in Figure 6-23.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.9. Forecasting

Problem

You need to make a forecast of future values given historical values for a time series.

Solution

Excel does not provide built-in functionality for sophisticated forecasting . It does have a FORECAST
spreadsheet function that sounds enticing; however, that merely uses a linear trendline and is
unsuitable for time series that exhibit significant seasonal variability.

As an alternative, you could use the various moving average techniques to make near-term
forecasts. Or you could use some higher-order regression equation (see Chapter 8) to make near-
term predictions. Keep in mind that extrapolating too far beyond the extents of the original time
series could result in significant errors.

If you have the resources, you could purchase one of the many Excel add-ins that offer sophisticated
autoregressive moving average (ARMA) or neural network techniques. If you're so inclined, you can
even program such techniques yourself in VBA.

In lieu of all these approaches, you can use standard spreadsheet techniques to make forecasts. I'll
show you how by extending the techniques discussed in the previous several recipes.

Discussion

I'll again use the time series shown in Figure 6-23. Recall that this series consists of average monthly
temperatures in Louisiana from January 1996 to December 1999. The task now is to make a forecast
for the average monthly temperatures in the year 2000.

The brunt of this forecasting effort has already been covered in the previous recipes, in which I
showed you how to decompose the time series into its various components using the model Y = TSI.
(If you have not read the previous three recipes, you should do so now for relevant background
discussion and calculations.)

In Recipe 6.8 I showed you how to compute the long-term trend component, T, for this example time
series. Also, in Recipe 6.7 I showed you how to compute the seasonal indices for this example time
series.

Now we'll put those results together to make a forecast for the year 2000. We can do so by
computing Yf = TS. Here Yf represents the forecast temperature values. T represents the long-term
trend, this time extended out over the year 2000. And S represents the seasonal indices as before.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

I've ignored the irregular variability component here. This component requires
a more sophisticated modeling approach such as an ARMA or neural network
approach. As you'll see shortly, we still get fairly good predictions without this
component. Further, you could take this irregular variability into account when
computing confidence intervals on your predictions by using techniques
discussed in Chapter 5.

So all you really need to do now is compute the long-term trend values for the year 2000 using the
trend equation from the previous recipe. Then multiply these trend values by the seasonal index for
each corresponding month to arrive at a prediction for each month in the year 2000. Figure 6-28
shows a spreadsheet I set up to perform these calculations.

Figure 6-28. Year 2000 forecast

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The column labeled Month contains the months representing the year 2000 as an extension of the
original series, in which December 1999 was month number 48. You need to number the months for
the year 2000 this way because the trendline equation computed in the previous recipe is based on
the original monthly series from months 1 to 48 and now we're extending that trend out over another
12 months.

Column T in Figure 6-28 shows the results of the forecast trend in the year 2000. The formulas in this
column are of the form =0.0592*D119+65.521.

Column Y = TS contains the predicted average monthly temperatures for the year 2000. These are
computed by multiplying each trend value for the year 2000 by the corresponding seasonal index for
each corresponding month. For example, the predicted value for January 2000, cell F119, is
computed using the formula =E119*Jan. Here again, I'm making use of the cell names I set up
corresponding to each seasonal index computed in Recipe 6.7.

Figure 6-29 shows the predicted results compared to the actual average monthly temperatures on

http://lib.ommolketab.ir
http://lib.ommolketab.ir

record for the year 2000.

Figure 6-29. Year 2000 forecast chart

As you can see, these predictions are fairly good. They won't get me a starring role as the local
weatherman, but they're not bad for such a simple forecast model. The table in Figure 6-28 also
contains computed %Error values, and you can see that errors are on the order of a few percent
except for the months of November and December.

The forecasting technique shown in this recipe is by no means the only technique available to you.
Time series forecasting is a huge field of study and there are many techniques and models available,
many of which are tailored to specific kinds of time series. The examples discussed here serve to
show how you can leverage Excel's standard functionality to perform predictions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.10. Applying Discrete Fourier Transforms

Problem

You'd like to use a discrete Fourier transform to analyze a dataset but aren't sure how to do so in
Excel.

Solution

Use the Fourier Analysis tool in the Analysis ToolPak.

Discussion

Excel provides a Fourier Analysis tool as part of the Analysis ToolPak. This tool allows you to perform
discrete Fourier transforms and inverse transforms directly in your spreadsheet. Once your data is
transformed, you can manipulate it in either the frequency domain or time domain, as you see fit.

Consider the time series shown in Figure 6-30.

Figure 6-30. Sample time series

http://lib.ommolketab.ir
http://lib.ommolketab.ir

I generated this time series by superimposing several cosine and sine waves of varying frequencies.
Discrete samples were taken every 0.15708 (/20) seconds for a total of 32 samples. Figure 6-31
shows a portion of a spreadsheet containing the data making up this time series.

Figure 6-31. Sample cosine and sine wave frequency data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first column, labeled i, contains an index identifying the sample number. The second column,
labeled Time, contains the time at which each sample was taken. And the third column, labeled Y(t),
contains the sampled ordinate. There are a total of 32 samples, numbered 0 to 31.

I hid several rows of data in this table so I could fit the first and last rows in
one screenshot. You can hide and unhide rows (or columns) by selecting the
appropriate menu option from the Format menu. For example, Format Row

 Hide hides the selected row(s).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Before transforming this time series to the frequency domain, I set up a few columns to contain
frequency values. A Fourier transform produces the same number of frequency bins, or bands, as
time series samples. Therefore, there are 32 frequency bins to label in this example. I used the
standard formula fi = i /(ns) to compute the frequencies in cycles per second (Hz), as shown in the
Frequency (Hz) column. In this formula, i represents the sample number, n the number of samples,
and s the sample interval. The cell formulas in the Frequency (Hz) column are of the form =A5/(n*s).
I used cell names (see Recipe 1.14 to learn how to name cells) to name the cells containing the
number of samples and the sample interval. Their names are n and s, respectively.

I also computed frequencies in standard units of cycles per sample using the formula fi = i/n. These
frequencies are contained in the Frequency (cycles/sample) column. The formulas in this column are
of the form =A5/n.

The column DFT(Y) contains the discrete Fourier transform of the time series data. To generate these
values you have to use the Fourier Analysis tool. Select Tools Data Analysis... from the main
menu bar to open the Data Analysis dialog box. Select Fourier Analysis from the list of available
analysis options shown in Figure 6-32.

Figure 6-32. Fourier Analysis tool selection

Press OK to open the Fourier Analysis dialog box shown in Figure 6-33.

Figure 6-33. Fourier Analysis dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

At this point in the example, we're performing a time to frequency domain transform, so make sure
the Inverse checkbox is not checked. In the Input Range field, type (or select from your spreadsheet)
the cell range containing the time series ordinates to transform. The cell range for this example is C5
to C36. The size of this range must be a power of 2 (for example, 21, 22, 23, 24, and so on). The
maximum size is 4,096 (i.e., 212). If your time series data is not a power of 2, then you should pad
the end of the series to the next power of 2.

Time series data is often padded on one end before it is transformed, for a
couple of reasons. One reason is to build a set of data of a size that's a power
of 2. Another reason involves the so-called wraparound effect that can distort
results when convolving data. In either case, the padded values of the time
series should be 0 if your original time series is centered (see Recipe 6.5). If
your time series is not centered, then you can use the average value of the
time series ordinates as the pad value. It's also helpful to detrend your time
series first if it exhibits a significant trend (see Recipe 6.6).

You have a choice as to where to place the output. You can have the tool place the transformed data
on a new worksheet, in which case you supply the name of the new worksheet. Or you can specify a
cell on the current worksheet in which to place the results. The results will actually be placed in a
column of cells with the specified output cell as the topmost cell. In this example, I specified cell F5
on the current worksheet as the first cell for the output column.

Press OK to close the Fourier Analysis tool and view your results. Column DFT(Y) in Figure 6-31
contains the results for this example. Note that these are complex numbers (you can't see them in
their entirety, because I didn't make the cells wide enough). These cell entries look like this:
0.432411242541142-4.7611558001505E-002i. These aren't actually numbers. In fact, they are text.
Excel uses text in this form to represent complex numbers. You can still perform mathematical
operations on these complex numbers using Excel's complex number worksheet functions. Refer to
Recipe 7.13 for a list, along with descriptions, of Excel's built-in complex number functions.

At this point, you have the frequency domain version of your original time series. You can manipulate
these results in many different ways to suit the type of analysis you're conducting. For example, you
can easily generate a power spectrum of these results to study the frequency content of the original
series. All you need to do is add another column to the table shown in Figure 6-31 and use standard

http://lib.ommolketab.ir
http://lib.ommolketab.ir

formulas for computing the power contained in each frequency band. Figure 6-34 shows a modified
table containing a power spectrum calculation for this example.

Figure 6-34. Power spectrum calculation

Column P-DFT(Y) is the new one containing the power calculations. These calculations use one of
Excel's built-in complex number functions, IMABS, to compute the absolute value of a complex
number. For example, the power for the second frequency band, 0.031 cycles/sample, is computed
using the cell formula =2*IMABS(F6)^2/n^2. Cell F6 contains the complex number corresponding to a
frequency of 0.031 in the discrete Fourier transform data column.

I computed the power for each frequency band up to the highest frequency, the Nyquist frequency
(0.5 cycles/sample). The formula used for the power of the 0 frequency band is =IMABS(F5)^2/n^2,
while the formula used for the Nyquist frequency band is =IMABS(F21)^2/n^2. The factor of 2 for all
intermediate frequency power calculations is due to the periodicity of the Fourier transform and the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

fact that I'm only computing power from 0 to 0.5 cycles per sample. Figure 6-35 shows a plot of the
resulting power spectrum.

Figure 6-35. Power spectrum

The frequencies on the horizontal axis are in Hz. As you can see, there's a strong component at a
frequency of about 0.6 (0.637 to be more specific). Further, there are clear contributions at
frequencies of 0.952 and 1.59, though these are not as strong as the one at 0.637.

You can take your analysis even further at this point. Let's say you want to filter the data in the
frequency domain to isolate the 0.637 Hz component of the original series. It's relatively easy to
construct and apply an appropriate filter in Excel and then perform an inverse Fourier transform to
see the resulting filtered series in the time domain.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A suitable filter for this example would be a band pass filter centered at a frequency of 0.637 Hz or
0.1 cycles per sample. I used a standard Gaussian band pass filter to calculate the filter values shown
in Figure 6-36.

Figure 6-36. Band pass filter calculation

The Filter column contains filter values using formulas of the following form: =EXP(-(((ABS(E5)-
fo)/sig)^2)). This equation is a standard Gaussian filter equation. fo is the center frequency, which
is contained in cell G1 (I defined the cell name fo to refer to this cell). sig is the spreading factor for
the filter, which defines how wide it is in terms of how many frequency bands the filter covers.
ABS(E5) is the absolute value of the frequency contained in the column labeled Frequency
(cycles/sample). Notice that the center frequency in cell G1 is also expressed in units of cycles per
sample.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 6-37 shows a plot of the resulting filter over a frequency range from 0 to 0.5 cycles per
sample.

Figure 6-37. Band pass filter

To actually apply this filter, you need to multiply each value in column DFT(Y) by the corresponding
value in the Filter column. Remember, however, that the values contained in the DFT(Y) column are
actually text values representing complex numbers. Therefore, you have to use one of Excel's built-in
complex number functions to perform the multiplication. The appropriate function is the IMPRODUCT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

function. For example, the cell formulas contained in the column labeled DFT(Y) * Filter in Figure 6-
36 are of the form =IMPRODUCT(F5,G5), where the corresponding values in columns DFT(Y) and Filter
are used as arguments. The results are complex numbers (text values) contained in the column
DFT(Y) * Filter.

At this point, you can construct another power spectrum based on these filtered results to see the
relative strength of the frequency components. I generated the filtered power spectrum shown in
Figure 6-38 using the same techniques discussed earlier for constructing a power spectrum.

Figure 6-38. Filtered power spectrum

As you can see, this filter effectively isolates the 0.637 Hz frequency component. To see the filtered
results back in the time domain, you have to perform an inverse transform.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Open the Fourier Analysis tool as explained earlier. Then, referring to Figure 6-36, select the cell
range containing the column labeled DFT(Y) * Filter as the input cell range. Select cell I5 as the
output cell. Since this is an inverse transform, be sure to check the Inverse checkbox. These settings
are shown in Figure 6-39.

Figure 6-39. Inverse transform settings

Press OK when you're done and you should see results that look like those shown in column Inverse
DFT(Y) in Figure 6-36. The results of the inverse transform are real numbers in this example;
however, Excel formatted them as text (i.e., as the real part of an imaginary number). Use the
IMREAL function to convert these imaginary numbers to values you can use. Column Yf(t) in Figure
6-36 contains the results. The cell formulas in that column are of the form =IMREAL(I5).

Now you can plot these filtered results and see how they compare to the original time series. Figure
6-40 shows the comparison.

Figure 6-40. Original versus filtered data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The bold curve shows the filtered time series, where it's clear the high frequency components have
been removed.

You can easily replace the band pass filter used in this example with a low- or high-pass filter. For
example, the following cell formula creates a low-pass filter: =if(ABS(Ef)<fo, 1, EXP(-(((ABS(E5)-
fo)/sig)^2))). Using cell formulas in this manner allows you to construct a wide variety of filters.
You can use these same techniques to create window functions if your analysis requires windowing.
You can create even more elaborate functions using VBA and call them directly from cell formulas,
just as we did the weighted average function in Recipe 6.4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 7. Mathematical Functions

Section 7.0. Introduction

Recipe 7.1. Using Summation Functions

Recipe 7.2. Delving into Division

Recipe 7.3. Mastering Multiplication

Recipe 7.4. Exploring Exponential and Logarithmic Functions

Recipe 7.5. Using Trigonometry Functions

Recipe 7.6. Seeing Signs

Recipe 7.7. Getting to the Root of Things

Recipe 7.8. Rounding and Truncating Numbers

Recipe 7.9. Converting Between Number Systems

Recipe 7.10. Manipulating Matrices

Recipe 7.11. Building Support for Vectors

Recipe 7.12. Using Spreadsheet Functions in VBA Code

Recipe 7.13. Dealing with Complex Numbers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.0. Introduction

Recipe 1.10 introduced you to Excel's built-in mathematical functions . These functions include things
such as taking square roots, computing sines and cosines, inverting matrices, and performing
summations. Excel's mathematical functions are pretty much the bread and butter of many of the
computations discussed throughout this book. You can think of these as calculator functions, in that
they offer the same functionality you'd expect from a scientific calculator. In this regard, these
functions are essential for scientific and engineering calculations in Excel. This chapter covers many
of Excel's built-in mathematical functions; others are treated in different chapters where they seem
to fit better in specific contexts.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.1. Using Summation Functions

Problem

You're performing calculations that require summations of large amounts of data (for example, for
least-squares curve fitting) and would like to use built-in functions that make such summation
computations easy.

Solution

Use Excel's built-in summation functions such as SUM, SUMSQ, SUMPRODUCT, and SUMX2MY2.

Discussion

Excel includes several built-in functions that make performing summations of large (or small)
amounts of data very easy. Perhaps the most common sum function is SUM, which simply adds all
values contained in a range of cells. For example, =SUM(B2:B24) adds all the values contained in cells
B2 to B24. The range of cells does not have to be contiguous either. For example,
=SUM(B2:B24,C2:C24) adds all the values contained in each cell range (you separate cell ranges with
commas). You can even include explicit values like this =SUM(B2:B24,1). In this case, the values
contained in the range plus the specified value, 1, are added.

Most of Excel's functions that take cell ranges or multiple values as arguments
allow you to mix cell references and values, using commas as separators.

Table 7-1 contains a list with short descriptions of several of Excel's convenient summation functions.

Table 7-1. Common summation functions

Function Syntax Description

SUM =SUM(n1, n2, n3, ...)
Returns the sum of all given numbers, which may include
cell ranges and explicit numbers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Function Syntax Description

SUMPRODUCT
=SUMPRODUCT(array1,

array2, ...)

Adds the products of corresponding values in given cell
ranges (called arrays). The ranges must have the same
number of elements.

SUMSQ =SUMSQ(n1, n2, n3, ...)
Returns the sum of the squares of given numbers, which
may include cell ranges and explicit numbers.

SUMX2MY2
=SUMX2MY2(array_x,

array_y)

Returns the sum of the difference of squares of values; i.e.,

(x2 - y2).

SUMX2PY2
=SUMX2PY2(array_x,

array_y)
Returns the sum of the sum of squares of values; i.e., (x2

+ y2).

SUMXMY2
=SUMXMY2(array_x,

array_y)
Returns the sum of squares of differences of values; i.e., (x
- y)2.

See Also

Excel's Insert Function tool makes it easy to browse for built-in functions. For more information, see
Recipe 1.10.

Excel also contains a family of functions that allow you to perform conditional sums, and other
operations, on data. For example, you can sum all the values in a range of database-type records
that meets a specific criterion. These functions are discussed in Chapter 5.

SUMPRODUCT
=SUMPRODUCT(array1,

array2, ...)

Adds the products of corresponding values in given cell
ranges (called arrays). The ranges must have the same
number of elements.

SUMSQ =SUMSQ(n1, n2, n3, ...)
Returns the sum of the squares of given numbers, which
may include cell ranges and explicit numbers.

SUMX2MY2
=SUMX2MY2(array_x,

array_y)

Returns the sum of the difference of squares of values; i.e.,

(x2 - y2).

SUMX2PY2
=SUMX2PY2(array_x,

array_y)
Returns the sum of the sum of squares of values; i.e., (x2

+ y2).

SUMXMY2
=SUMXMY2(array_x,

array_y)
Returns the sum of squares of differences of values; i.e., (x
- y)2.

See Also

Excel's Insert Function tool makes it easy to browse for built-in functions. For more information, see
Recipe 1.10.

Excel also contains a family of functions that allow you to perform conditional sums, and other
operations, on data. For example, you can sum all the values in a range of database-type records
that meets a specific criterion. These functions are discussed in Chapter 5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.2. Delving into Division

Problem

You already know how to perform normal division using the / operator, but need to perform other
division operations, such as modulo division.

Solution

Use Excel's various division functions, which are summarized in Table 7-2.

Table 7-2. Common division functions

Function Syntax Description

MOD =MOD(numerator,denominator) Returns the remainder of numerator / denominator.

QUOTIENT =QUOTIENT(numerator,denominator)
Returns the integer part of numerator /
denominator.

GCD =GCD(n1, n2, n3, ...)
Returns the greatest common divisor of the given
integer numbers.

See Also

Excel also supports division of complex numbers. See Recipe 7.13 for more information. Take a look
at Recipe 7.3 for a neat little trick you can do in Excel to quickly scale or shift a selected set of data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.3. Mastering Multiplication

Problem

You already know how to perform normal multiplication using the * operator, but need to perform
other multiplication operations.

Solution

Use Excel's various multiplication functions , which are summarized in Table 7-3.

Table 7-3. Common multiplication functions

Function Syntax Description

PRODUCT =PRODUCT(n1, n2, n3, ...)
Returns the product of all given numbers, which may include
cell ranges and explicit numbers.

LCM =LCM(n1, n2, n3, ...)
Returns the least common multiple of the given integer
numbers.

SUMPRODUCT
=SUMPRODUCT(array1,

array2,...)

Adds the products of corresponding values in given cell
ranges (called arrays). The ranges must have the same
number of elements.

Discussion

Excel provides a handy utility to multiply a range of numbers by some value in one fell swoop. For
example, say you have a range of data like that shown in Figure 7-1, whch you'd like to scale by a
factor of 1,000.

Figure 7-1. Data to be scaled

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Follow these steps to quickly scale the data in the range B3:B19 by 1,000. Type the scale factor, 1000
in this case, in a cell (in Figure 7-1, I put it in cell B1). Select the cell containing the scale factor.
Select Edit Copy from the main menu bar. Now, with the mouse, select the range containing the
data to be scaled (range B3:B19 in this example). From the main menu bar, select Edit Paste
Special... to open the Paste Special dialog box shown in Figure 7-2.

Figure 7-2. Paste Special dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now select the Multiply option and press the OK button. The selected data will be multiplied by the
scale factor in place; i.e., the scaled data will replace the original data.

Excel will revise the formulas to include the scale factor if the cells to be scaled
contain formulas instead of values. For example, if cell B3 in the example
discussed here contained the formula =A3+A4, then after scaling it would contain
the formula =(A3+A4)*1000.

You'll notice from Figure 7-2 that Paste Special also provides other operations including adding,
subtracting, and dividing. You can use the same technique with these other operations to
conveniently shift or scale data.

See Also

Excel provides support for matrix multiplication and complex number multiplication. See Recipes 7.10
and 7.13 for more information.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.4. Exploring Exponential and Logarithmic
Functions

Problem

You need to compute logarithms in your calculations but aren't familiar with Excel's support for such
calculations.

Solution

Excel provides nine built-in functions for computing logarithms and one exponential function
(excluding the special class of exponential functions known as hyperbolic functions, for which Excel
provides six built-in functions). A few of these logarithm functions are related to the log-normal
probability distribution, while others are related to complex numbers. See Chapter 6 for recipes
dealing with probability and check out Recipe 7.13 for dealing with complex numbers. Read the
following discussion to learn about the remaining logarithmic functions .

Discussion

Table 7-4 shows several of Excel's built-in logarithmic and exponential functions.

Table 7-4. Common logarithmic and exponential functions

Function Syntax Description

LOG
=LOG(n,

base)
Returns the log of the number n to the specified base

LOG10 =LOG10(n) Returns the log of the number n to the base 10

LN =LN(n) Returns the natural logarithm of n

EXP =EXP(n) Returns en

POWER =POWER(n, p) Returns np and is the same as the syntax n^p using the ^ operator

SINH =SINH(n) Returns (en - e-n)/2

COSH =COSH(n) Returns (en + e-n)/2

TANH =TANH(n) Returns (en - e-n) / (en + e-n)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Function Syntax Description

ASINH =ASINH(n)
Returns the inverse hyperbolic sine, ln(n + sqrt(n2+1)), where n is any
real number

ACOSH =ACOSH(n)
Returns the inverse hyperbolic cosine, ln(n + sqrt(n2-1)); n must be
greater than 1

ATANH =ATANH(n)
Returns the inverse hyperbolic tangent, ln((1+n)/(1-n))/2; n must be
between -1 and 1

These functions pretty much do what you'd expect functions related to logarithms and natural
logarithms to do. You may wonder why there's a LOG10 function when the LOG function with a
specified base of 10 performs the same computation. Moreover, if you leave the base out of a call to
LOG, then base 10 is assumed. It seems redundant, but perhaps some people prefer typing LOG10(n)
to typing LOG(n,10) or even LOG(n).

Excel also provides the exponential function EXP(n) to compute en, which is of course the inverse of

the natural logarithm function.

Aside from straightforward logarithmic and exponential computations, these functions are useful
when curve fitting. For example, you may have data through which you'd like to fit a logarithmic
curve. You could use Excel's built-in logarithmic curve-fitting features (see Chapter 8) or you could
transform the data and use Excel's linear curve-fitting functions. For example, LINEST(y values,
LOG(x values)) uses Excel's linear curve-fitting function on the transformed data, which results in a

logarithmic curve fit. Moreover, sometimes it's more convenient or insightful to plot the log of a
dataset instead of the dataset in its original form. You can use these functions to transform your data
as desired.

Excel also has a function called POWER that you may find useful. The syntax for POWER is =POWER(n,
power), where n is a given number and power is the power to which n will be raised. You can also use

the ^ operator to raise a number to a power, as discussed in Recipe 1.9. Conversely, you can use
POWER to reverse a LOG operation on a value. For example =POWER(10, LOG(3)) simply returns a value
of 3.

This all seems straightforward enough, and it is, but there's potential for confusion when working
with Excel's built-in logarithmic functions and the Log function available in VBA (Visual Basic for
Applications; see Chapter 2 for a quick introduction). VBA provides the function Log(n), which returns
the natural logarithm of the given number n, not the base 10 logarithm as you might expect. This

clearly is not consistent with Excel's built-in logarithmic functions, where LOG means base 10 log and
LN means natural log.

VBA does not provide another function for computing the base 10 logarithm of a number (or any
other base, for that matter). However, when working in VBA you can compute the logarithm of a
number to any base by taking the ratio of the natural logarithm of the number to the natural
logarithm of the desired base. For example, to compute the base 10 logarithm of n, you'd write Logn
= Log(n) / Log(10.0), where Logn is just a variable you'd define to store the result (you can name it

whatever you want, of course).

See Also

ASINH =ASINH(n)
Returns the inverse hyperbolic sine, ln(n + sqrt(n2+1)), where n is any
real number

ACOSH =ACOSH(n)
Returns the inverse hyperbolic cosine, ln(n + sqrt(n2-1)); n must be
greater than 1

ATANH =ATANH(n)
Returns the inverse hyperbolic tangent, ln((1+n)/(1-n))/2; n must be
between -1 and 1

These functions pretty much do what you'd expect functions related to logarithms and natural
logarithms to do. You may wonder why there's a LOG10 function when the LOG function with a
specified base of 10 performs the same computation. Moreover, if you leave the base out of a call to
LOG, then base 10 is assumed. It seems redundant, but perhaps some people prefer typing LOG10(n)
to typing LOG(n,10) or even LOG(n).

Excel also provides the exponential function EXP(n) to compute en, which is of course the inverse of

the natural logarithm function.

Aside from straightforward logarithmic and exponential computations, these functions are useful
when curve fitting. For example, you may have data through which you'd like to fit a logarithmic
curve. You could use Excel's built-in logarithmic curve-fitting features (see Chapter 8) or you could
transform the data and use Excel's linear curve-fitting functions. For example, LINEST(y values,
LOG(x values)) uses Excel's linear curve-fitting function on the transformed data, which results in a

logarithmic curve fit. Moreover, sometimes it's more convenient or insightful to plot the log of a
dataset instead of the dataset in its original form. You can use these functions to transform your data
as desired.

Excel also has a function called POWER that you may find useful. The syntax for POWER is =POWER(n,
power), where n is a given number and power is the power to which n will be raised. You can also use

the ^ operator to raise a number to a power, as discussed in Recipe 1.9. Conversely, you can use
POWER to reverse a LOG operation on a value. For example =POWER(10, LOG(3)) simply returns a value
of 3.

This all seems straightforward enough, and it is, but there's potential for confusion when working
with Excel's built-in logarithmic functions and the Log function available in VBA (Visual Basic for
Applications; see Chapter 2 for a quick introduction). VBA provides the function Log(n), which returns
the natural logarithm of the given number n, not the base 10 logarithm as you might expect. This

clearly is not consistent with Excel's built-in logarithmic functions, where LOG means base 10 log and
LN means natural log.

VBA does not provide another function for computing the base 10 logarithm of a number (or any
other base, for that matter). However, when working in VBA you can compute the logarithm of a
number to any base by taking the ratio of the natural logarithm of the number to the natural
logarithm of the desired base. For example, to compute the base 10 logarithm of n, you'd write Logn
= Log(n) / Log(10.0), where Logn is just a variable you'd define to store the result (you can name it

whatever you want, of course).

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Take a peek at Recipe 7.13 for more information on Excel's support for taking logarithms of complex
numbers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.5. Using Trigonometry Functions

Problem

You need to become familiar with Excel's support for trigonometric functions .

Solution

Explore the trigonometric functions summarized in Table 7-5.

Table 7-5. Trigonometric functions

Function Syntax Description

SIN =SIN(angle) Returns the sine of the given angle, where angle is in radians.

COS =COS(angle) Returns the cosine of the given angle, where angle is in radians.

TAN =TAN(angle) Returns the tangent of the given angle, where angle is in radians.

ASIN =ASIN(n)

Returns the inverse sine of the given number, n, where n must be within the

range -1 to 1. The returned angle is in radians and within the range - /2 to
/2.

ACOS =ACOS(n)

Returns the inverse cosine of the given number, n, where n must be within

the range -1 to 1. The returned angle is in radians and within the range 0 to
.

ATAN =ATAN(n)
Returns the inverse tangent of the given number, n. The returned angle is

in radians and within the range - /2 to /2.

Excel's function PI() returns the value of (i.e., 3.14159265358979...), which
you might find useful in some calculations.

Discussion

The trigonometric functions take or return angles in radians. However, often degrees are more
convenient to work with. Excel provides two functions making conversions between radians and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

degrees easy: RADIANS and DEGREES. Use RADIANS(angle) to convert an angle from degrees to radians.
Use DEGREES(angle) to convert an angle from radians to degrees. For example, =COS(RADIANS(45))

returns the cosine of the angle 45 degrees.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.6. Seeing Signs

Problem

You want to capture only the sign of an expression, not its value. Or you want to take the absolute
value of an expression.

Solution

Use the SIGN function in the former case and the ABS function in the latter case.

Discussion

Situations often arise in scientific calculations when you're more interested in the sign of an
expression than in the resulting value. For example, the formula

=$F3-$E$8/(ABS(G$2/F2))*ABS(G$2/$F$2)^0.1*SIGN(G2-F2)

uses the SIGN function to compute the algebraic sign of the expression (G2-F2) and multiplies the rest
of the formula by that sign (as a unit value). If (G2-F2) evaluates to a negative value, then the
formula is multiplied by -1; if (G2-F2) evaluates to a positive number, then it is multiplied by +1
instead.

In this particular case, the expression (G2-F2) represents some change in value of a dimensional
parameter and the direction of that change (i.e., positive or negative) is used as a scale factor to
scale some other parameter from a baseline using an empirical formula. In other examples, you may
be interested in whether some value is greater or less than zero, which you can determine by
checking the sign of the value. The SIGN function allows you to perform such a check very easily and
use the result in other computations or logical functions like the IF function.

You'll notice that in the example formula discussed a moment ago, I also used the absolute value
function, ABS. The syntax for this function is =ABS(value or expression), where you can supply a

value, cell reference, or some mathematical expression.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.7. Getting to the Root of Things

Problem

You need to compute the square root of an expression. Moreover, you'd like to know how to compute
other roots, like the cube root, of an expression.

Solution

Use the SQRT function for taking square roots and use the POWER function or the ̂ operator to handle
other roots.

Discussion

The syntax for the square root function is simply =SQRT(n), where n is a number or an expression
containing cell references that evaluates to a number. SQRT returns the positive square root of n.

Excel does not provide other specific functions for taking cube roots and so on; however, you can
take such roots using the POWER function or the ̂ operator, which performs the same function as the
POWER function. To take the cube root of a number, use =POWER(n, 1/3) or n^(1/3). Taking the cube

root of a number is the same as raising the number to the power 1/3. So for any other roots you
may find in your calculations, you can raise a number to the reciprocal of the desired root using POWER
or ^.

See Also

See Recipe 7.4 for more information related to the POWER function. Also, take a look at Recipe 1.9 for
more on ^ and other operators.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.8. Rounding and Truncating Numbers

Problem

Your calculations call for you to either round or truncate values in your spreadsheet.

Solution

Use one or more of the built-in functions shown in Table 7-6.

Table 7-6. Excel functions for rounding and truncating

Function Syntax Description

ROUND =ROUND(n, digits) Rounds the number n to the specified number of digits

ROUNDUP =ROUNDUP(n, digits) Rounds the number n up to the specified number of digits

ROUNDDOWN =ROUNDDOWN(n, digits) Rounds the number n down to the specified number of digits

MROUND =MROUND(n, multiple) Rounds the number n to the nearest multiple

CEILING =CEILING(n, multiple) Rounds the number n up to the nearest multiple

EVEN =EVEN(n) Rounds the number n to the nearest even integer

ODD =ODD(n) Rounds the number n to the nearest odd integer

INT =INT(n) Rounds the number n to the nearest integer

trUNC =trUNC(n, digits) Truncates the number n at the specified number of digits

Discussion

In Excel you can format any cell displaying a value to display that value to a specified number of
decimal places. For example, you can format a cell containing the value 4.5837450 to display the
number to only two decimal places (that is, 4.58). Formatting a cell to display only a certain number
of decimal places does not change the underlying value; it only changes what's shown in the cell. To
actually change the value, you need to use the rounding or truncating functions shown in Table 7-6.

I pretty much use the ROUND function as my workhorse for rounding numbers. For example, to round
the value 3.213 to one decimal place use =ROUND(3.213, 1); this returns 3.2. To round a value to the
nearest integer, specify 0 for the number of digits. For example, to round 3.213 to the nearest

http://lib.ommolketab.ir
http://lib.ommolketab.ir

integer use =ROUND(3.213, 0) this returns 3.

You can also use ROUND to round a value to the nearest significant digit to the left of the decimal
place. To do so, specify a negative number of digits. For example, =ROUND(121.986,-1) returns a
value of 120. The formula =ROUND(12839.31,-3) returns a value of 13,000.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.9. Converting Between Number Systems

Problem

You need to convert numbers between number systems, for example, from hexadecimal to decimal.

Solution

Use Excel's number system conversion functions such as HEX2DEC and DEC2HEX.

Discussion

When debugging software, I use the heck out of hexadecimal to decimal (and vice versa)
conversions. Excel makes such conversions easy with its HEX2DEC and DEC2HEX functions.

The syntax for HEX2DEC is =HEX2DEC(n), where n is the hexadecimal to be converted. For example, the

formula =HEX2DEC("1F0CC3") returns the decimal value 2,034,883.

Conversions from decimal to hexadecimal use the syntax DEC2HEX(n, digits), where n is the
hexadecimal to be converted and digits is the number of characters to use for the resulting

hexadecimal number. For example, the formula =DEC2HEX(64000,8) returns the hexadecimal value
0000FA00, whereas =DEC2HEX(64000,4) returns FA00.

See Also

Excel also supports conversions to and from the binary and octal systems. For example, OCT2HEX
converts a number from octal to hexadecimal and DEC2BIN converts a decimal number to binary.
Check out the Excel help topic "Engineering Functions" for more information on these other number
system conversion functions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.10. Manipulating Matrices

Problem

You need to manipulate matrices in your calculations and would like to know what support Excel
offers for dealing with matrices.

Solution

Excel has several built-in matrix functions for computing matrix inverses and determinants and for
multiplying or transposing matrices.

Discussion

Table 7-7 summarizes Excel's built-in matrix functions.

Table 7-7. Excel's built-in matrix functions

Function Syntax Description

MDETERM =MDETERM(cell range)
Returns the determinant of the matrix argument, which must be
a square matrix.

MINVERSE =MINVERSE(cell range)
Returns the inverse of the matrix argument, which must be a
square matrix.

MMULT
=MMULT(cell range 1,

cell range 2)

Returns the matrix product of the two matrix arguments. The
resulting matrix has the same number of rows as the first
argument and the same number of columns as the second.

trANSPOSE
=trANSPOSE(cell

range)
Returns the transpose of the matrix argument.

MDETERM returns a scalar, which means you enter the function as a normal function, by pressing
Enter. The other three functions are array functions, which means you first have to select an
appropriate number of cells, then type the function and press Ctrl-Shift-Enter to enter the function.

Figure 7-3 shows how these functions can be used in a spreadsheet.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 7-3. Matrix functions

To enter a matrix in a spreadsheet, just type the matrix elements in a series of cells as shown in
Figure 7-3. Matrix A is a 3 x 3 matrix whose elements are contained in cells C4 through E6.

To compute the determinant of A, you can enter the formula =MDETERM(C4:E6). This formula was
entered in cell C8 of the spreadsheet shown in Figure 7-3. The result is 82.

The inverse of A is shown in cells C10 to E12. To compute the inverse, select the cell range from C10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to E12, type the formula =MINVERSE(C4:E6), and press Ctrl-Shift-Enter.

You can use a similar procedure to compute the transpose of A, as shown in cells C14 to E16. The
formula to enter is =trANSPOSE(C4:E6).

Cells C19 to E20 contain a 2 x 3 matrix, M. Another matrix, N, is contained in cells C22 to D24. N is a
3 x 2 matrix. To compute the matrix product MN, select a 2 x 2 range of cells and type the formula
=MMULT(C19:E20,C22:D24). Press Ctrl-Shift-Enter to enter the formula. The results for this example
are contained in cells C27 to D28.

See Also

Take a look at Recipe 9.4 for an example application of matrix operations.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.11. Building Support for Vectors

Problem

You want to perform vector-based calculations , like vector cross and dot products, but can't find any
vector functions in Excel.

Solution

Excel does not provide any built-in functions to perform vector calculations; however, you can add
your own custom functions without too much effort.

Discussion

Since VBA allows you to write custom functions that can then be called directly from your Excel
spreadsheet, you can easily add functions to perform vector calculations.

Figure 7-4 shows an example spreadsheet containing two vectors, u and v, whose x-, y-, and z-
components are stored in separate cells.

Figure 7-4. Vector example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Cells D7 and E7 show the magnitudes of these vectors. These magnitudes are computed using a
custom function called v_Mag. The syntax for v_Mag is =v_Mag(cell range), where cell range is a cell

reference consisting of three cells containing the vector components, x, y, and z. Example 7-1 shows
the VBA code for v_Mag. (See Recipe 2.2 for more information on writing VBA functions.)

Example 7-1. v_Mag

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Function v_Mag(v As Range) As Double
 Dim x As Double
 Dim y As Double
 Dim z As Double

 x = v.Cells(1).Value
 y = v.Cells(2).Value
 z = v.Cells(3).Value

 v_Mag = Sqr(x ^ 2 + y ^ 2 + z ^ 2)
End Function

The only parameter for this function is a cell range, v, that represents the selected cell range
containing the three vector components, x, y, and z. The first three lines of this function declare three
local variables in which to store the vector components. You really don't need to use local variables in
this example, but I did so to make the remainder of the code more readable.

The next three lines set the values of the local variables to the values contained in the input cell
range. Since v is of type Range, you can access its Cells property to retrieve the value for each cell.
Each cell in the range is referred to using a 1-based array index as shown.

Finally, the last line of this function computes the magnitude of the vector and returns the result as a
Double type scalar value.

The VBA function for square root is Sqr, whereas the Excel function for square
root is SQRT. This is another example of inconsistencies between VBA and Excel
function names.

Computing the vector cross product is a little more involved than simply computing the magnitude of
a vector. For the cross product, we need to return the three components of the resulting vector as an
array in Excel. This means we need to write a VBA function that returns an array instead of a scalar.
The resulting function will be an array function that must be entered in a spreadsheet using Ctrl-
Shift-Enter just like Excel's built-in array functions.

In Figure 7-4, cells D10 through D12 contain an array formula called v_CrossProduct. This is a
custom function I created to compute the vector cross product of two vectors passed in as cell
ranges. If you take a look at the formula bar in Figure 7-4, you'll see how this function is used;
specifically, the formula is {=v_CrossProduct(D3:D5, E3:E5)}, where the braces indicate the function
is an array function.

To enter this function, you have to select a range consisting of three contiguous cells, either vertically
or horizontally oriented. The function we'll write will detect how the input cells are oriented and will
return the results accordingly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you select a range of fewer than three contiguous cells, then only those
selected will contain results. If you select a range of more than three
contiguous cells, then the cells after the first three will contain #N/A.

Example 7-2 shows the VBA code for v_CrossProduct.

Example 7-2. v_CrossProduct

Public Function v_CrossProduct(u As Range, v As Range)
 ' Declare local variables:
 Dim ux As Double
 Dim uy As Double
 Dim uz As Double
 Dim vx As Double
 Dim vy As Double
 Dim vz As Double
 Dim ReturnArray(3)
 Dim DoTranspose As Boolean

 ' Determine whether or not the selected
 ' output range is a row or a column array:
 If Application.Caller.Rows.Count > 1 Then
 DoTranspose = True
 Else
 DoTranspose = False
 End If

 ' Get the vector components:
 ux = u.Cells(1).Value
 uy = u.Cells(2).Value
 uz = u.Cells(3).Value

 vx = v.Cells(1).Value
 vy = v.Cells(2).Value
 vz = v.Cells(3).Value

 ' Compute the cross product:
 ReturnArray(0) = (uy * vz - uz * vy)
 ReturnArray(1) = (uz * vx - ux * vz)
 ReturnArray(2) = (ux * vy - uy * vx)

 ' If the selected output range is a column of cells then transpose the result:
 If DoTranspose Then
 v_CrossProduct = Application.WorksheetFunction.Transpose(ReturnArray)
 Else
 v_CrossProduct = ReturnArray
 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Function

v_CrossProduct takes two parameters. Both are cell ranges that must contain three contiguous cells,
which themselves contain the x, y, and z components for each vector. The first six lines in this
function declare six local variables to store the components for each input vector.

The second to last local variable, called ReturnArray, is a three-element array that is used to store
the result of the vector cross product operation. The final local variable, DoTranspose, is a Boolean
flag that is used to control whether or not the resulting vector is transposed upon output.

The next commented block of code checks to see whether the selected output range is a row vector
or a column vector. If the selected output range is a column vector, then its row count will be greater
than 1 and we'll have to transpose the resulting vector. Otherwise, the selected output range is a row
vector and we don't have to transpose the result.

The next block of code stores the components of the input vectors in local variables. Then it
computes the cross product with each component of the resulting vector stored in the three elements
of the local array ReturnArray, which we declared to store the result.

The final step is to check the DoTranspose flag. If it is true, then ReturnArray must be transposed
using the transpose worksheet function. If it is false, you can simply return the ReturnArray without
further modification.

The techniques discussed here can be used to construct custom functions to perform all the usual
vector operations.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.12. Using Spreadsheet Functions in VBA Code

Problem

You're writing a VBA function and want to call a built-in Excel function from within VBA code.

Solution

Use the WorksheetFunction object to gain access to Excel's functions from within VBA code. Read
Recipe 2.13 for more information on the WorksheetFunction object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.13. Dealing with Complex Numbers

Problem

You need to perform complex algebra (e.g., when working on electrical engineering problems
involving alternating current), and would like to know how Excel supports complex numbers so you
can use them in your spreadsheets.

Solution

Excel supports complex numbers in the form a + bi or a + bj (j is often used to indicate a complex
number instead of i, as is common in electrical engineering applications). Further, Excel provides 18
built-in functions that can be used to manipulate complex numbers and perform complex algebra.

You need to have the Analysis ToolPak loaded in order to use Excel's complex
number functions. See the introduction to Chapter 5 for instructions on loading
the Analysis ToolPak.

Discussion

In Excel, a complex number is entered into a cell in the form a + bi or a + bj. In reality, Excel treats
complex numbers entered this way as text. To enter a complex number, simply type it in as you
would text. For example, to enter the complex number 6 + 2j, simply select a cell, type in 6+2j and
then press Enter. Or you can use the COMPLEX function to let Excel format the complex number, given
the real and imaginary parts you provide. For example, entering the formula =COMPLEX(6,2) in a cell
results in the cell displaying the text 6+2i.

Excel provides a suite of special-purpose imaginary number functions to manipulate complex
numbers in these forms. There are 18 functions that are designed to work specifically with complex
numbers. All but one of these functions start with the prefix IM (for example, IMABS, IMPRODUCT and so
on). The one function that does not start with the IM prefix is COMPLEX. These and the other complex
number functions are summarized in Table 7-8.

Table 7-8. Complex number functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Function Syntax Description

COMPLEX
=COMPLEX(real

part,imaginary part)

Takes the real and imaginary arguments and returns text
representing the complex number

IMABS =IMABS(complex number) Returns the modulus of the complex number

IMAGINARY
=IMAGINARY(complex

number)
Returns the imaginary part of a complex number

IMARGUMENT
=IMARGUMENT(complex

number)

Returns the argument , in radians, of the complex
number, where is from the exponential form of
complex numbers, rei

IMCONJUGATE
=IMCONJUGATE(complex

number)
Returns the complex conjugate of a complex number

IMCOS =IMCOS(complex number) Returns the cosine of a complex number

IMDIV =IMDIV(n1, n2)
Returns the quotient of two complex numbers where the
first argument is the numerator and the second is the
denominator

IMEXP =IMEXP(complex number) Returns the exponential of a complex number

IMLN =IMLN(complex number) Returns the natural logarithm of a complex number

IMLOG10 =IMLOG10(complex number) Returns the base 10 logarithm of a complex number

IMLOG2 =IMLOG2(complex number) Returns the base 2 logarithm of a complex number

IMPOWER
=IMPOWER(complex number,

n)
Raises the complex number to the nth power

IMPRODUCT =IMPRODUCT(n1, n2, n3, ...) Returns the product of two or more complex numbers

IMREAL =IMREAL(complex number) Returns the real part of a complex number

IMSIN =IMSIN(complex number) Returns the sine of a complex number

IMSQRT =IMSQRT(complex number) Returns the square root of a complex number

IMSUB =IMSUB(n1, n2) Subtracts the complex number n2 from n1

IMSUM =IMSUM(n1, n2, n3, ...) Returns the sum of two or more complex numbers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 8. Curve Fitting and Regression

Section 8.0. Introduction

Recipe 8.1. Performing Linear Curve Fitting Using Excel Charts

Recipe 8.2. Constructing Your Own Linear Fit Using Spreadsheet Functions

Recipe 8.3. Using a Single Spreadsheet Function for Linear Curve Fitting

Recipe 8.4. Performing Multiple Linear Regression

Recipe 8.5. Generating Nonlinear Curve Fits Using Excel Charts

Recipe 8.6. Fitting Nonlinear Curves Using Solver

Recipe 8.7. Assessing Goodness of Fit

Recipe 8.8. Computing Confidence Intervals

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.0. Introduction

A very common exercise when analyzing data is fitting a curve through that data. Curve fitting is the
process of trying to find the curve (which is represented by some model equation) that best
represents the sample data, or more specifically the relationship between the independent and
dependent variables in the dataset. When the results of the curve fit are to be used for making new
predictions of the dependent variable, this process is known as regression. Sometimes, you may want
to fit a curve just to interpolate a set of data. At other times, you may actually want to extrapolate
beyond the sample data. In still other cases, curve fitting can be used to predict parameters of some
known model (an equation) given a set of observed data. In this chapter, I discuss several different
techniques for performing linear and nonlinear curve fitting in Excel.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.1. Performing Linear Curve Fitting Using Excel
Charts

Problem

You'd like to generate a best-fit straight line for a set of data.

Solution

Use Excel's chart trendline feature to perform a linear curve fit of your data. Plot your data using an
XY scatter chart (see Chapter 4). Once your chart has been created, right-click on the data series
and select Add Trendline from the pop-up menu.

Discussion

Linear curve fits are easily generated using the trendline feature built into Excel's XY scatter chart.
Once you've plotted your data using an XY scatter chart, you can generate a trendline that will be
displayed on your chart, superimposed over your data. You can also include the resulting equation for
the best-fit line on your chart.

Consider the data shown in Table 8-1. This data represents experimentally obtained angular
deflections of an angular spring resulting from prescribed applied torques.

Table 8-1. Angular spring data

Applied torque Measured deflection

(N-m) (degrees)

-1.993 -1.547

-1.411 -1.178

-1.440 -1.167

-0.443 -0.318

-0.428 -0.416

-0.444 -0.327

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Applied torque Measured deflection

(N-m) (degrees)

0.016 -0.035

0.013 0.032

0.049 0.036

0.830 0.762

0.854 0.687

0.851 0.698

1.730 1.412

1.703 1.399

1.698 1.419

2.044 1.675

2.063 1.624

2.034 1.627

This data should exhibit a linear trend when plotted. (Assuming the spring obeys Hooke's law.)
Indeed this is the case, as is revealed by plotting this data on an XY scatter chart. Once that chart
has been created, right-click on the data series and select Add Trendline from the pop-up menu. This
will open the Add Trendline dialog box shown in Figure 8-1.

Excel's trendline feature allows you to add nonlinear trendlines as well. See
Recipe 8.5 for more information.

Select the Linear Trend/Regression type as shown. Before pressing OK, click the Options tab (see
Figure 8-2).

Select "Display equation on chart" and "Display R-squared value on chart." The former will display
the resulting best-fit equation on your chart, while the latter will also include the R-squared value,
allowing you to assess the goodness of the fit (see Recipe 8.7). Press OK to go back to your chart and
see the resulting trendline.

Figure 8-1. Add Trendline dialog box

0.016 -0.035

0.013 0.032

0.049 0.036

0.830 0.762

0.854 0.687

0.851 0.698

1.730 1.412

1.703 1.399

1.698 1.419

2.044 1.675

2.063 1.624

2.034 1.627

This data should exhibit a linear trend when plotted. (Assuming the spring obeys Hooke's law.)
Indeed this is the case, as is revealed by plotting this data on an XY scatter chart. Once that chart
has been created, right-click on the data series and select Add Trendline from the pop-up menu. This
will open the Add Trendline dialog box shown in Figure 8-1.

Excel's trendline feature allows you to add nonlinear trendlines as well. See
Recipe 8.5 for more information.

Select the Linear Trend/Regression type as shown. Before pressing OK, click the Options tab (see
Figure 8-2).

Select "Display equation on chart" and "Display R-squared value on chart." The former will display
the resulting best-fit equation on your chart, while the latter will also include the R-squared value,
allowing you to assess the goodness of the fit (see Recipe 8.7). Press OK to go back to your chart and
see the resulting trendline.

Figure 8-1. Add Trendline dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 8-2. Add Trendline Options tab

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 8-3 shows the resulting best-fit line for the example data contained in Table 8-1. The best-fit
line is shown as the dashed line in Figure 8-3. The original data points are shown as dots. Clearly the
data follows a straight line trend very well.

Figure 8-3. Linear fit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Excel's trendline feature can give you poor results if your data consists of very
large numbers that differ only slightly relative to their magnitudes (for
example, if your y-values look something like 100,000,001, 100,000,001.5,
100,000,002.3, and so on). If your data looks like this, then you should center
it or scale it before performing any sort of curve fit. You can easily center data
by subtracting the mean value from each data point.

The equation for the best-fit line is displayed in the upper-right of the chart. The R-squared value for
the trendline is very close to 1, indicating a good fit.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can edit your trendline by selecting it and pressing Ctrl-1. To delete the
trendline, select it and then right-click. Choose Clear from the pop-up menu to
get rid of it.

In practice, you could use the slope from this best-fit line to estimate the spring constant for the
spring being tested. You have to be careful with units here, because we've plotted deflection versus
torque, resulting in units for the slope of degrees per N-m.

In reality, you'd probably want the reciprocal of this value, to yield a slope with units of N-m per
degree, following the standard units for spring constants. You can force your best-fit line to go
through the origin by specifying the intercept on the Options tab of the Add Trendline dialog box (see
Figure 8-2). Perhaps a better approach would be to plot the angular deflections on the horizontal axis
with the torque data on the vertical axis, and then fit a line through the points.

The trendline equation shown on the chart in Figure 8-3 uses Y as the
dependent variable and X as the independent variable. These correspond to
angular deflection and applied torque, respectively, for the example considered
here. To make your chart less confusing, you can edit the equation text shown
on the chart, changing Y to angular deflection and X to applied torque. Simply
select the equation and then click again to position the cursor where you'd like
to start editing the text. Then make your changes. Take a look at Figure 8-5 for
an example.

See Also

See Chapter 4 for recipes covering creating and manipulating charts in Excel. Take a look at Recipe
8.7 to learn more about the R-squared value of trendlines. Also, check out the other recipes in this
chapter to learn about alternative methods of performing linear curve fitting.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.2. Constructing Your Own Linear Fit Using
Spreadsheet Functions

Problem

You want to perform a linear curve fit using standard least-squares formulas instead of Excel's linear
trendline.

Solution

Use Excel's built-in formulas such as COUNT, SUM, SUMSQ, and SUMPRODUCT to make it easy to apply the
standard least-squares formulas.

Discussion

The standard equation for a straight line is:

The standard least-squares formulas used to determine the slope, m, and intercept, b, of the fit line
are:

In these equations, n is the number of data points. Excel has several built-in functions that make it
very easy to compute the various sums that appear in the least-squares equations. These functions
include:

COUNT

This function counts the number of cells containing numbers in a range of cells.

SUM

This function adds all the numbers in a range of cells.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SUMSQ

This function returns the sum of squares of the numbers contained in a range of cells.

SUMPRODUCT

This function sums the products of entries in corresponding ranges of cells.

Let's reconsider the data used in the example in Recipe 8.1. Instead of using a chart trendline to
determine the best-fit line, we'll use the least-squares equations and built-in Excel functions. Figure
8-4 shows a simple spreadsheet I set up for this example.

The columns labeled X and Y contain the same data as before. I just renamed them to make it easier
to follow the application of the formulas used in this example. Cells B23 through B27 contain
formulas to compute the various quantities required by the least-squares formula. The formulas in
these cells are as follows:

Cell B23

The formula in this cell, =COUNT(A4:A21), computes the number of data points.

Cell B24

The formula in this cell, =SUM(A4:A21), computes the sum of x-values.

Cell B25

The formula in this cell, =SUM(B4:B21), computes the sum of y-values.

Cell B26

The formula in this cell, =SUMPRODUCT(A4:A21,B4:B21), computes the sum of the products on
values in the X and Y columns.

Cell B27

The formula in this cell, =SUMSQ(A4:A21), computes the sum of squares of x-values.

Figure 8-4. Least-squares fit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

These cells contain all of the data we need to apply the least-squares formulas.

Cell F6 computes the slope of the best-fit line. The formula in cell F6 is =(B23*B26-
B24*B25)/(B23*B27-B24^2). The formula in cell F7, =(B25*B27-B24*B26)/(B23*B27-B24^2), computes
the y-intercept for the best-fit line.

The resulting slope and intercept are 0.80869 and 0.007391, respectively. These values agree very
well with those obtained using a trendline as discussed in Recipe 8.1.

To assess how well this fit equation represents the data, you can compute the R-squared value just

http://lib.ommolketab.ir
http://lib.ommolketab.ir

as Excel does when it computes chart trendlines. The closer R-squared is to 1, the better the fit. Read
Recipe 8.7 to learn more about the R-squared value.

For this example, you need to perform a few more calculations in order to compute the R-squared
value. Namely, you need to compute the mean of the y-values, the estimated y-values, and the
residuals. Figure 8-5 shows these new calculations for this example. Cell F10 computes the mean y-
value using Excel's AVERAGE function. Column H contains the estimated y-values using the equation
for a straight line, along with the computed slope and intercept. Columns I and J are used to
calculate the differences between the estimated y-values and the mean and between the actual y-
values and the mean, respectively. The sums of the squares of these differences are computed in
cells I22 and J22 using Excel's SUMSQ function.

Figure 8-5. R-squared computation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The R-squared value is computed in cell F12 by simply taking the ratio of the values in cells I22 and
J22. In Figure 8-5, cell F12 is selected and you can see the cell formula for computing R-squared in
the formula bar. For this example, R-squared comes out to 0.9985, which indicates a good fit and
agrees very well with the value obtained using a chart trendline as discussed in Recipe 8.1.

See Also

Take a look at Recipe 8.7 in this chapter to learn more about R-squared. Also, check out the other
recipes in this chapter to learn about alternative methods of performing linear curve fitting .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.3. Using a Single Spreadsheet Function for
Linear Curve Fitting

Problem

You want to perform a quick linear curve fit without using chart trendlines and without having to
write the least-squares formulas yourself.

Solution

Use Excel's LINEST function.

Discussion

LINEST computes statistics for a least-squares straight line through a given set of data. The syntax
for LINEST is {= LINEST(y-value cell range, x-value cell range, compute intercept, compute
statistics)}. Note the braces surrounding this formula since it is an array formula. When you type

this formula into a cell, you have to press Ctrl-Shift-Enter to enter it. Further, you have to select a 2
x 5 grid of cells before typing and entering the formula. This is because LINEST returns an array of
data containing the various statistics computed for the best-fit line.

The first argument in LINEST is a cell range containing the y-values for the data to be fit, and the
second argument is a cell range containing the x-values. The third argument is a logical value (true
or false) specifying whether or not to force the intercept of the fit line to pass through zero. If TRue,
the intercept is calculated in the usual least-squares manner. If false, the intercept is forced to zero,
with the slope computed accordingly. The fourth argument is a logical value indicating whether or not
to display extended statistics for the best-fit line. These extended statistics include such things as
standard errors and residual sums. (See the "LINEST" help topic in Excel's online help for more
information on these statistics. Also, take a look at Recipes 8.7 and 8.8.)

Consider the chemical reaction data discussed in Recipe 4.5. Instead of plotting concentration versus
reaction time on a semilog scale, you can plot the log of the concentration versus reaction time on a
linear scale. The plot should look like a straight line. Figure 8-6 shows the log of the concentration
versus reaction time data, along with an XY scatter plot of the data using linear axes.

Figure 8-6. Log concentration versus reaction time

http://lib.ommolketab.ir
http://lib.ommolketab.ir

I also included a linear trendline on this chart (see Recipe 8.1). The linear trendline represents the
data very well.

Figure 8-7 shows the results of using LINEST to perform a linear fit. The data returned by LINEST is
contained in cells H5 to I9. The key to the right describes what each returned value represents. The
three values in bold type are the slope, intercept, and R-squared value. These values agree very well

http://lib.ommolketab.ir
http://lib.ommolketab.ir

with those returned by the chart trendline.

Figure 8-7. Linear fit using LINEST

You'll also notice that I have cell H5 selected. This is the first cell in the range that I selected before
entering the formula. The formula I entered is displayed in the formula bar. The actual formula is
=LINEST(F5:F13,D5:D13,TRUE,TRUE). The y-values are contained in the range F5:F13. These are the
log of concentration values. The x-values are the reaction times in the range D5:D13. I set the final
two arguments to trUE so that LINEST computes the intercept and returns extended statistics.

Here are the steps for using LINEST as I did in this example:

With the mouse, select the cell range H5:I9. (You can select any 2 x 5 range you'd like). If you
want to see only the slope and intercept, select only two side-by-side cells.

1.

Type the LINEST formula using the syntax described earlier.2.

Don't press Enter! Press Ctrl-Shift-Enter to enter the formula as an array formula.3.

That's all there is to it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.

Excel also includes a function called LOGEST that performs an exponential fit. It's
used in much the same way as LINEST. See the Excel help topic "LogEst" for
more information.

LINEST is also capable of performing multiple linear regression where the equation fit is of the form y
= m1x1 + m2x2 + m3x3 + ... + mixi + b. See Recipe 8.4 for an example.

The Analysis ToolPak add-in contains a regression tool that is capable of
performing linear and multiple linear regressions. This tool actually uses LINEST
to compute the curve fits, and it also returns a boatload of other statistics
including ANOVA (analysis of variance) results and confidence intervals. It also
computes residuals, making it convenient to check them while assessing the fit.
It also prepares a few plots for you. The Analysis ToolPak is installed on your
version of Excel if you see the menu item Data Analysis under the Tools menu.
Otherwise, select Tools Add-Ins...from the main menu bar and select
Analysis ToolPak from the list of available add-ins.

See Also

Read the help topic "LinEst" in Excel's online help guide for more details on the LINEST function.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.4. Performing Multiple Linear Regression

Problem

You want to perform multiple linear regression, where an independent variable depends linearly on
more than one independent variable.

Solution

Use Excel's LINEST function. LINEST computes statistics for a least-squares straight line through a
given set of data. It can be used for linear regression or multiple linear regression. See Recipe 8.3 for
an example using LINEST for linear regression. The steps for using LINEST for multiple linear
regression are almost identical; the only differences are the model being fit to the data and the
number of cells you have to select when entering the array formula.

Discussion

As discussed in Recipe 8.3, the syntax for LINEST is {= LINEST(y-value cell range, x-value cell
range, compute intercept, compute statistics)}. Braces surround this formula because it is an

array formula. When you type this formula into a cell, you must press Ctrl-Shift-Enter to enter it.
Further, you must select a grid of cells before typing and entering the formula. This is because LINEST
returns an array of data containing the various statistics computed for the best-fit line. For multiple
linear regression, the grid of cells you have to select must be n + 1 columns wide by 5 rows high,
where n represents the number of independent variables in the data (the x-variables).

The first argument in LINEST is a cell range containing the y-values for the data to be fit, and the
second argument is a cell range containing the x-values, which should be in multiple adjacent
columns, corresponding to the number of independent variables in the data being fit. The third
argument is a logical value (true or false) specifying whether or not to force the intercept of the fit
line to pass through zero. If TRue, the intercept is calculated in the usual least-squares manner. If
false, the intercept is forced to zero, with the slope computed accordingly. The fourth argument is a
logical value indicating whether or not to display extended statistics for the best-fit line. These
extended statistics include such things as standard errors and residual sums.

Let's consider a standard benchmark dataset. I downloaded the data shown in Figure 8-8 from the
NIST web site (http://www.nist.gov).[*] The data represents labor statistics where the dependent
variable, y, is the Total Derived Employment and the independent variables are GNP Implicit Price
Deflator with Year 1954 = 100, Gross National Product, Unemployment, Size of Armed Forces, Non-
Institutional Population over Age 14, and Year, corresponding to the variables x1, x2, x3, x4, x5, and
x6, respectively.

http://www.nist.gov
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[*] NIST stands for National Institute of Standards and Technology. The data used here is from the NIST statistical reference

library, which is freely available online. The data was originally prepared by J. W. Longley in 1967. See J. W. Longley, "An

Appraisal of Least Squares Programs for the Electronic Computer from the Viewpoint of the user." Journal of the American

Statistical Association 62 (1967): 819-841.

The model to be fit is of the form y = m6x6 + m5x5 + m4x4 + m3x3 + m2x2 + m1x1 + b. This model
has seven parameters (the ms and b) that are determined by the fitting process.

The steps for applying LINEST in this example are as follows:

With the mouse, select the cell range D25:J29. (You can select any (n + 1) x 5 range you'd
like).

1.

Type the LINEST formula using the syntax shown in the formula bar in Figure 8-8.2.

Press Ctrl-Shift-Enter to enter the formula as an array formula.3.

The results are shown in Figure 8-8. I labeled the model parameters for clarity. Notice the R-square
value shown in bold in Figure 8-8. A value of 0.995 represents a very good fit and agrees very well
with the results published by the NIST for this dataset.

I also calculated the estimated y-values as shown in column K (Figure 8-8). Figure 8-9 shows a chart
of the estimated y-value along with the actual y-value. Visually, the fit very reasonably approximates
the underlying data.

Figure 8-8. Multiple linear regression using LinEst

http://lib.ommolketab.ir
http://lib.ommolketab.ir

One of the challenges with multiple regression is determining which
independent variables best predict the dependent variable without duplicating
characteristics. That is, you don't want to use independent variables that are
highly correlated with each other. See Recipe 5.4 for more information on
conducting correlation analyses in Excel.

See Also

Read the help topic "LinEst" in Excel's online help for more details on the LINEST function.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 8-9. Y and Y-estimated

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.5. Generating Nonlinear Curve Fits Using Excel
Charts

Problem

You'd like to generate best-fit curvesnonlinear curvesthrough your data.

Solution

Use Excel's chart trendline feature to perform nonlinear curve fits of your data. Plot your data using
an XY scatter chart (see Chapter 4). Once your chart has been created, right-click on the data series
and select Add Trendline from the pop-up menu.

Discussion

The procedure for adding nonlinear trendlines to charts is the same as that used for adding linear
trendlines, as discussed in Recipe 8.1. Once you've plotted your data using an XY scatter chart, you
can generate a trendline, which will be displayed on the chart, superimposed over your data. You can
also include the resulting equation for the best-fit line on your chart.

When you add a trendline using the procedure discussed in Recipe 8.1, you can choose from several
different Trend/Regression types (as shown in the Add Trendline dialog box in Figure 8-1). Depending
on the range of values in your data, you'll be able to choose from six different trendlines. Of these
six, four are nonlinear trendlines: Logarithmic, Polynomial, Power, and Exponential. The other two
include the Linear trendline already discussed and a Moving Average trendline.

The Logarithmic trendline uses the equation:

where c and b are parameters to be determined during the curve-fitting process.

Polynomial trendlines use the equation:

where the c-coefficients and b are parameters of the curve fit. Excel supports polynomial fits up to
sixth order. You can select the order to use in the Add Trendline dialog box (See Figure 8-1).

Excel's Power trendline uses the equation:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

where c and b are parameters of the fit.

Finally, the Exponential trendline uses the equation:

where c and b are parameters of the fit.

The natural question that arises upon learning of these available models is which one to use. There's
no single answer to this question, as it depends on your purpose for performing the fit and the nature
of your data. If you're simply fitting a curve through some data so you can conveniently interpolate
the data, then choose whichever model best replicates your data. In this case, you're not so
concerned with smoothing the data or with statistical rigor. To assess which model works, you can
look at the R-squared value (see Recipe 8.7) or you can eyeball the trendline against your data.
Further, you can plot the residualsdifferences between your actual y-value and the estimated y-
valueand examine them to assess how well your data is represented. You can compute percentage
differences to gauge how well your data is replicated. Further, you should examine how the trendline
behaves between data points used to generate the trendline to make sure there are no unrealistic
oscillations between data points. This can happen when you try to fit a higher-order polynomial
trendline.

On the other hand, if you're genuinely interested in modeling the data from a statistical standpoint,
or are trying to gain insight in a physical process, then I suggest you read Recipe 8.7. Further, you
must also consider what your data represents. If your data represents some physical process, then
let physics be your guide and choose a model that best represents the physical relationship between
the variables underlying the data, if it is indeed known. If none of Excel's trendline models work for
you, then you're left to your own devices to craft a suitable model. In this case, take a look at Recipe
8.6.

See Also

Take a look at Recipes 8.6 and 8.7. Also, be sure to read Recipe 8.1 for a refresher on adding
trendlines to charts.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.6. Fitting Nonlinear Curves Using Solver

Problem

You'd like to perform a curve fit using a model (an equation) that's not included in Excel's suite of
curve fit functions and trendlines.

Solution

Perform a least-squares curve fit using Solver.

Discussion

Solver is a fantastic Excel add-in that allows you to perform constrained optimization calculations.
Solver uses the nonlinear Generalized Reduced Gradient optimization algorithm developed by Leon
Lasdon and Allan Waren. Go to the Tools Solver menu to open the Solver dialog box shown in
Figure 8-10.

Figure 8-10. Solver dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you don't see the Solver menu item, then go to Tools Add-Ins...and look for Solver in the
available add-ins list. Select its checkbox to make it available.

Solver allows you to choose a target cell and either maximize it, minimize it, or attempt to set its
value to some specified value by changing values in a given range of cells. The controls in the Solver
dialog box allow you to set these parameters. After setting these parameters in the Solver dialog box,
press Solve to initiate the iterative calculation. Solver will iterate until it finds a solution or until
certain limits are reached (these effectively put the brakes on the iterative calculation so it will not
continue forever). You can set these limits by opening the Options dialog via the Options button.

The target cell could be any cell containing a formula. That formula could contain references to other
cells, which could themselves contain formulas, and so on. Ultimately, the value in the target cell will
be affected by certain parameters contained in a select group of cells or a single cell. You can
construct arbitrarily complex spreadsheets that somehow relate the target cell to one or more cells
containing values, such as constants or coefficients. This is really powerful. You can create
spreadsheets to compute something subject to a given set of inputs and then you can use Solver to
find the optimum set of inputs to maximize, minimize, or specify the output. It's this facility that we'll
leverage to use Solver for nonlinear curve fitting.

Ultimately, curve fitting involves minimizing some error, which can be expressed as the sum of
squared differences between actual and predicted values as in the least-squares method. You could
use some other merit function instead of the sum of squared residuals. For example, you could
choose to maximize the coefficient of determination, R-squared, instead.

The basic approach to using Solver for curve fitting is to set up a spreadsheet containing sample data
for your dependent and independent variables. The dependent variable will be predicted using some
model (i.e., an equation) that you devise. Set up another column for predictions of your dependent
variable using your model equation. Add another column containing the residuals (i.e., the differences
between your predicted value and the actual value of the dependent variable). Compute the sum of
squared differences in another cell. In the case of minimizing the sum of squared differences, you can
set this cell as the target cell in the Solver dialog box. Set the option to minimize that cell. Your
model equation must contain parameters, or coefficients. These should be located conveniently in
another set of cells. Use references to these cells as the cells to change in the Solver dialog box.
Solver will then attempt to minimize the sum of squared differences with the end result, if it
succeeds, being the set of parameters that yield the optimum solution. This gives you the curve fit.

Let's look at an example. We'll consider a standard reference set of data available from the NIST web
site. In this case, the data is from an NIST study involving semi-conductor electron mobility where
the dependent variable, y, is a measure of electron mobility, and the independent variable, x, is the
natural log of the density.[*] The model for this data is nonlinear and of the following form:

[*] This dataset is credited to R. Thurber of NIST and is available for download from http://www.nist.gov.

The bs in this equation are the parameters to be determined through the fitting processes. There are
seven of them. Clearly, this nonlinear, rational function is not included in Excel's suite of curve-fitting
tools. This illustrates the generality of using Solver for curve fittingyou can use any model equation
you want.

Figure 8-11 shows a portion of the data used for this example. There are 37 data points contained in
columns D and E. As you can see, I set up a little table of b-coefficients off to the left. These are set

http://www.nist.gov
http://lib.ommolketab.ir
http://lib.ommolketab.ir

up with some initial values that you must choose. These cells don't contain formulas. Just type the
numbers in directly; Solver will change them during its calculations.

Figure 8-11. Example data

You have to provide an initial guess at the model parameters, the bs in this
example. This is the case with many iterative algorithms. You must choose
these wisely given the problem you are considering and in light of your
understanding of it. It's best to make as good an educated guess as possible. If
your model is highly nonlinear, there may be several solutions. As with
nonlinear optimization problems in general, there could exist local minima and
maxima in the merit function domain within which Solver may converge on a
solution. I recommend you try several different sets of initial values to make
sure you're converging on a global optimum as opposed to some local
optimum.

Column G contains the estimated y-value for each x-value in the dataset. This estimated y-value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

uses the model equation. In this case, I coded the model equation in a custom VBA function called
CalcYest (see Recipe 2.2). CalcYest is shown in Example 8-1.

Example 8-1. CalcYest

Function CalcYest(x As Double, b1 As Double, b2 As Double, b3 As Double,
 b4 As Double, b5 As Double, b6 As Double,
 b7 As Double) As Double

 CalcYest = (b1 + b2 * x + b3 * x ^ 2 + b4 * x ^ 3) /
 (1 + b5 * x + b6 * x ^ 2 + b7 * x ^ 3)

End Function

This function takes the x-value along with all seven b-parameters as arguments and returns the
estimated y-value. You'll notice in Figure 8-11 that cell G5 is selected. Take a look at the formula bar
to see how CalcYest is actually used as a cell formula.

The table off to the right in Figure 8-11 contains several statistics that I computed for this example.
I'll address most of these later (see Recipes 8.7 and 8.8), so for now just look at cell M5. That cell
contains the sum of squared residuals. The residuals are computed in column H and are simply the
estimated y-values minus the sampled y-values. The sum of squared residuals is computed in cell M5
with the formula =SUMSQ(H5:H41). SUMSQ is Excel's built-in function that computes the sum of the
squares of the values contained in the given range. It's this value we want to minimize for the curve
fit.

With things set up as described, you can now open Solver and set the parameters. First set the
target cell to M5, the sum of squared residuals. Next select the "Equal to: Min" option, letting Solver
know we want to minimize the value contained in M5. Enter the cell range B4:B10 in the By Changing
Cells field. Press the Solve button. At this point, another dialog box will open, showing the results of
Solver's calculations. Solver will tell you whether or not it converged on a solution and will give you
the option of saving its results or restoring your original values (the values of the parameters you
allowed Solver to change).

The converged results for this example are already shown in Figure 8-11. The b-parameters
computed here agree very well with the NIST benchmark results. Further, the R-squared value for
this example is 0.99932, indicating a good fit. Figure 8-12 shows the results plotted on a chart along
with the original data. The original data points are shown with diamond point markers, and the
estimated values are shown with the solid curve. The two other curves above and below the estimate
curve represent the 95% confidence interval for the predicted values. See Recipe 8.8 to learn how to
compute these curves.

Figure 8-12. Solver curve-fit results

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Clearly, this approach using Solver yields a nice curve fit to a fairly nonlinear set of data. I must say
that not all nonlinear curve fits are this straightforward. I've had some very unruly cases involving
multiple nonlinear models, where a different local minimum was converged upon for virtually every
set of guessed input parameters I could imagine. In other cases, the model was such that Solver
could not converge on a solution at all. These aren't necessarily a defect in this approach or a
deficiency in Solver. Those of you who've experienced such difficulties firsthand know that it's just the
nature of some highly nonlinear problems to make your life difficult.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.7. Assessing Goodness of Fit

Problem

You need to assess how well an equation fits the underlying data.

Solution

If you're simply fitting a curve through some data so you can conveniently interpolate the data, then
choose whichever model best replicates your data. In this case you're not so concerned with
smoothing the data or with statistical rigor. You can plot your data along with estimates using the fit
curve and eyeball them to see how well they compare. You can also plot the residualsdifferences
between your actual y-value and the estimated y-valueand examine them to assess how well your
data is represented or to determine if the residuals exhibit some unexpected structure. You can
compute percentage differences to gauge how well your data is replicated. Further, you should
examine how the trendline behaves between data points used to generate the trendline to make sure
there are no unrealistic oscillations between data points. This can happen when you try to fit a
higher-order polynomial trendline.

If you're interested in modeling the data from a statistical standpoint, or are trying to gain insight
into a physical process, then you can perform some standard statistical calculations to help assess
your trendline. Moreover, you should consider what your data represents. If your data represents
some physical process, then let physics be your guide and choose a model that best represents the
physical relationship between the variables underlying the data, if it is indeed known. In the
discussion to follow, I show you how to perform several standard calculations for assessing goodness
of fit in Excel.

Discussion

As already mentioned, one way to see how well your equation fits the underlying data is to plot the fit
equation over the data and observe how well it appears to capture the relationship between the
variables considered. The correlation coefficient is a quantitative way to assess how well your
equation models the relationship between the underlying variables.

Any standard text on statistical analysis that covers regression and correlation theory can provide
details on the derivation of the correlation coefficient. In a nutshell, the correlation coefficient is a
ratio of variations between the variables estimated using the fit equation and the actual variables.
The basic formula for correlation coefficient is:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The term in the denominator under the radical is called the total variation of Y. It's a measure of the
deviations of Y from the mean value of Y in the dataset. Total variation is composed of two
components: the explained variation and the unexplained variation. Explained variation is a measure
of the deviations of the estimated Y values (those predicted from the fit curve) from the mean value
of Y in the dataset. Unexplained variation is a measure of the deviations of the estimated Y value
from the actual or measured Y value. These variations are assumed random and it's these variations
you aim to minimize when fitting a curve to a set of data.

The formula for the correlation coefficient can be and often is written in
different forms. For example, in some cases it's written in terms of standard
deviations.

As you can see from the formula shown a moment ago, the correlation coefficient is the ratio of the
explained variation to the total variation. The greater the explained variation, the smaller the
unexplained variation, and therefore the closer the correlation coefficient approaches a value of ±1.
The R-squared value is just the square of the correlation coefficient. Therefore, the closer R-squared
is to a value of 1, the smaller the unexplained variation and the better the fit. Excel's curve fit and
trendline functions compute the R-squared value, which is also called the coefficient of determination
. I've mentioned this R-squared value several times in other recipes already. The closer the R-
squared value is to 1, the better the equation fits the underlying data.

You can display the R-squared value for a chart trendline by checking "Display
R-squared value on chart" under the Options tab in the Add Trendline dialog
box. See Figure 8-2 in Recipe 8.1.

For illustration purposes, I prepared a dataset that exhibits a linear relationship and had Excel
compute various trendlines, including one linear and three nonlinear trendlines. The results are
shown in Figure 8-13.

The equations, along with the corresponding R-squared values, are also shown on the chart. The
linear trendline best fits the data, as expected, with an R-squared value of 0.997. The next best fit is
from the power fit, with an R-squared value of 0.9749, which is still not a bad fit. The other two
trendlinesthe log and exponential

Figure 8-13. Various trendlines

http://lib.ommolketab.ir
http://lib.ommolketab.ir

trendlinesexhibit poor fits, with R-squared values of 0.7999 and 0.8207, respectively. You can also
visually see that the log and exponential fits poorly represent the data under consideration.

Examining these results brings up a point of concern. Say you initially fit a power curve to the data
shown here. You might reasonably assume the power curve is the best-fit curve, given the resulting
R-squared value of 0.9749. However, we happen to know a little something about the physical
phenomenon this data represents and know that this is a linear problem. A linear fit indeed shows a
better fit, with an R-squared value of 0.997. These results reinforce the importance of the need to
use your judgment and understanding of the problem being analyzed when choosing an appropriate
model.

As a further check on how well a model equation fits the data, you can plot the residuals. (See Recipe
8.6 for an example showing how to compute residuals.) These represent the unexplained variation
between the estimated y-values and the given y-values. Unexplained variations are supposed to be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

random, and the residuals, when plotted, should confirm this behavior. If you plot the residuals and
see some structure to the residual plot that does not appear random, you should take a closer look at
your assumed model.

As an illustrative example, consider the data shown in Figure 8-12 along with the linear and
exponential trendlines. The residuals between the linear fit and the exponential fit are plotted in
Figure 8-14.

Figure 8-14. Residual plot

The residual curve from the linear fit does seem to exhibit a random pattern. On the other hand, the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

residual curve from the exponential fit exhibits a very distinct pattern, resembling an exponential
curve that's sort of been shifted down a bit. Such a structure in the residual plot indicates a
fundamental misrepresentation of the underlying data. This is an exaggerated example, as we
already knew the exponential curve was a poor fit. However, the point is that examining the residual
plot can give you some insight into the goodness of the fit.

Another check on how well a model represents a set of data is known as the F-test . This test comes
from a technique known as analysis of variance (ANOVA) developed by R. A. Fisher. The formal
details of this test can be found in standard statistical texts that cover ANOVA.

Excel makes it easy to perform this F-test because its regression functions, such as LINEST, return
the statistics required for this test, and Excel also contains other required probability-related
functions. The F-test basically involves computing a statistic known as the F-statistic and comparing
that value to a critical value obtained from the standard F-distribution using Excel's built-in functions.
If the computed F-statistic is greater than the critical statistic, then you can conclude the fit is a good
one or, more formally, statistically significant.

Figure 8-15 shows an example linear curve fit using Excel's LINEST function (see Recipe 8.3). The
results of using LINEST on the given dataset are contained in the cell range E8:F12. I've included a
key explaining what each returned value represents. The value in cell E11 is the F-statistic computed
by LINEST.

Cells F25 to F30 contain calculations I added to compute the critical F-value for comparison. Cell F25
contains the number of parameters in the regression equation; 2 in this case, since it's linear. Cell
F26 contains the number of samples. I used =COUNT(A8:A25) to determine the number of samples (of
course, for this small dataset they can be easily counted manually). Cell F27 contains the numerator
degrees of freedom required for computing F-critical; this value is equal to the number of parameters
in the regression equation. Cell F28 contains the denominator degrees of freedom, which is equal to n
- (k + 1), where n is the number of samples and k is the number of regression parameters. Cell F29
contains the probability of significance for which we're interested in computing F-critical. F-critical is
computed using the formula =FINV(F29,F27,F28). In this case, we get an F-critical value of 3.6823,
which is far lower than the F-statistic computed for the curve fit. This indicates that curve fit is
significant and useful in representing the underlying data.

FINV is a built-in formula that returns the inverse of the F-distribution. See
Excel's help topic "FINV" and Recipe 5.6 for more information.

See Also

Assessing goodness of fit is certainly not limited to the techniques I've discussed here. I'm sure a
professional statistician could easily explain a half-dozen more statistical tests that could be used to
validate a particular curve fit.

Figure 8-15. F-test example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.8. Computing Confidence Intervals

Problem

You want to compute confidence intervals along with your curve fits.

Solution

See the following discussion.

Discussion

You can compute confidence intervals for the estimated values from your curve fit, or you can
compute confidence intervals for the parameters in the model itself.

Confidence intervals for estimated values

You can readily compute confidence intervals for the values predicted by a regression equation. In
this case, you'd report estimated values as y ± yc, where y is the estimated value and each ±yc is
the confidence limit corresponding to some degree of confidence (probability), c. To compute
confidence limits, we'll utilize the Student's t-distribution , which comes from an area of statistics
called small sampling theory . Excel provides support for the t-distribution through several built-in
functions. See Recipe 5.6 for more information.

Let's reconsider the example from Recipe 8.6. Figure 8-12 shows the result of a nonlinear curve fit,
along with upper and lower confidence limits. Figure 8-11 shows the original data along with the fit
parameters. It also shows several other statistics I computed for this example. The ones of interest
here are t-value and Confidence Interval, shown in cells M13 and M14.

Before computing these values, you must set up some auxiliary calculations. First you must compute
the sum of squared residuals as shown in cell M5. The formula used in this example is
=SUMSQ(H5:H41), which is just the sum of the squares of the residuals already computed in column H.

Next you need to compute the residual standard deviation. This value is computed in cell M6 using
the formula =SQRT(M5/M9), where the cell in the numerator is the sum of squared residuals and the
cell in the denominator is the degrees of freedom for this example. Degrees of freedom is computed
in cell M9 using the formula =M8-M7, which is the number of samples minus the number of parameters
in the fit (7 in this case, for the seven b-parameters).

Now you can compute the t-statistic using the formula =TINV((1-M12), M9), the result of which is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

shown in cell M13. The function TINV returns the inverse of the Student's t-distribution corresponding
to a specified probability. In this case, I set the degree of confidence to 95% (.95 probability) in cell
M12 and used 1-M12 as the probability passed in as the first argument in TINV. The second argument
to TINV represents the problem's degrees of freedom.

Finally, the confidence limits are found by multiplying the t-statistic by the residual standard
deviation. Cell M14 contains this result, using the formula =M13*M6. To plot the upper and lower
confidence limits on the same chart as the original data and fit curve, you must set up two new
columns. The first column contains the estimated y-value plus the confidence limit, and the second
column contains the estimated y-value minus the confidence limit. You can then add these two new
series to your chart to obtain the results shown in Figure 8-12.

Confidence intervals for curve parameters

Sometimes it's the parameters of a curve fit that are of scientific interest, instead of the estimated
values predicted from the fit line. For example, you may compute a best-fit straight line through a set
of experimental data where the slope of the best-fit line represents some aspect of the underlying
physical process, such as reaction rate or spring constant. Curve fitting to estimate the model
parameters yields statistical estimates of those parameters given the sample, which we assume
represents the entire population. We can use statistical techniques to estimate confidence intervals
for these parameters just as we did when estimating confidence intervals for predicted values.

Figure 8-16 shows some experimental data that has been the subject of a linear least-squares curve
fit. In this case, the parameters of the curve fit (the slope and intercept) are of scientific importance
and we'll compute confidence limits for each of these corresponding to a 95% degree of confidence.

To begin with, you must fit a straight line through the data, using any of the linear curve-fitting
techniques discussed in this chapter. Then you need to compute the standard error for the estimate
by using Excel's built-in function STEYX. Cell F12 contains the formula =STEYX(B4:B10,A4:A10), which
computes the standard error for a given set of y- and x-values. In this case, the y- and x-values are
contained in columns B and A, respectively.

STEYX computes the standard error assuming a linear fit. See Excel's help topic
"STEYX" for more information.

The t-statistic is computed in a manner similar to that discussed earlier. In this case, cell F13
computes the t-statistic using the formula =TINV(0.05,(B12-2)).

Now you need to set up a column computing the x - xmean for each sample. These aren't shown in
Figure 8-16, but all you need to do is set up another column containing the formula =A4-
AVERAGE(A4:A10) for each x-value contained in cells A4 through A10. Once that's set up, you can
compute the sum of squares of the values in that column by using the formula =SUMSQ(L4:L10). In
my spreadsheet, I put the x - xmean calculations in the cell range L4:L10.

Finally, the confidence limits for the slope and intercept are computed in cells F15 and F16,
respectively. Cell F15 contains the formula =F13*F12/SQRT(L11), which

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 8-16. Parameter confidence intervals example

yields a confidence limit of ± 0.0110 for the slope. Cell F16 contains the formula
=F13*F12*SQRT(1/B12+AVERAGE(A4:A10)^2/L11), which yields a confidence limit of ± 0.0691 for the
intercept.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The results of this exercise would be reported as follows: slope m = 0.1107 ± 0.0110; intercept b =
0.0016 ± 0.0691.

See Also

See Recipes 5.3 and 5.6 for more information on Excel's support for the Student's t-distribution.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 9. Solving Equations

Section 9.0. Introduction

Recipe 9.1. Finding Roots Graphically

Recipe 9.2. Solving Nonlinear Equations Iteratively

Recipe 9.3. Automating Tedious Problems with VBA

Recipe 9.4. Solving Linear Systems

Recipe 9.5. Tackling Nonlinear Systems of Equations

Recipe 9.6. Using Classical Methods for Solving Equations

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.0. Introduction

In this chapter we're going to focus on solving equations using Excel. Equation solving, in a general
sense, can range from finding roots of single equations, to finding values of independent variables
that yield a specific value of a dependent variable, to solving systems of nonlinear equations. There
are many traditional hand and computerized methods for solving equations. Newton's method for
iteratively finding roots of nonlinear equations and Gaussian elimination with back substitution for
solving linear systems are just a couple of examples of classical equation-solving methods.
Hildebrand's classic book Introduction to Numerical Analysis presents several classical methods for
equation solving. The Numerical Recipes books also present algorithms in a variety of programming
languages suitable for equation solving.[*] The methods presented in these and other standard
textbooks on numerical methods are just fine and have served scientists and engineers very well.
However, in this chapter I want to show you how easy it is to leverage Excel's built-in features to
solve equations with very little programming, and in some cases no programming at all beyond basic
spreadsheet formulas. After seeing what Excel has to offer, if you still want to program a classic
method, I'll show you how to use VBA with Excel to implement a few classic techniques.

[*] See F. B. Hildebrand, Introduction to Numerical Analysis, 2nd ed. (New York: Dover Publications, 1974) and the Numerical

Recipes books by Press, Teukolsky, Vetterling, and Flannery, published by Cambridge University Press.

There's not much to gain by using Excel or some other tool to solve equations that can readily be
solved by hand after a few algebraic manipulations. Therefore, I'm going to focus almost exclusively
on nonlinear equations for the examples presented in this chapter.

I should also add that while most of the example equations are presented in the form of
mathematical expressions, this need not be the case for applying the techniques discussed herein.
For example, you might have an "equation" composed of several formulas with a few tabular lookups,
and so on, that can easily be set up in a spreadsheet. This spreadsheet may then represent a
nonlinear equation that you'd like to solve. You can even have calculations span multiple
spreadsheets. Ultimately, whether you're dealing with a neat mathematical expression or a
complicated spreadsheet, you have both independent variables and dependent variables. Much of
what we try to achieve when solving these sorts of equations is finding specific values for the
independent variables that yield certain dependent variables. In some cases these dependent
variables are indirectly related to the equation being solved, in that we may be trying to find a root
for some measure of merit (for example, in least-squares curve fitting).

This sort of calculation also falls within or overlaps the subjects of "what-if" analyses and optimization
(see Chapter 13). In both of these cases, you often have to resort to the same iterative techniques
used for nonlinear equation solving.

Because the recipes in this chapter rely heavily on the use of Excel's built-in tools Goal Seek and
Solver, I want to go over them now to make sure you're aware of their capabilities and differences.

Goal Seek and Solver are handy tools that allow you to easily perform iterative calculations without
having to program iterative solution algorithms yourself. For me, these tools are workhorses, and I
use them for problems ranging from solving nonlinear systems of equations to optimization analysis
to forecasting. I've even used Solver to solve the equations of motion for a hydrofoil boat that I built

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and tested.

On the surface it appears as though Goal Seek and Solver do the same thing; that is, they both allow
you to iteratively find a target value in a target cell by changing a value in some other related cell.
There are, however, certain key differences between Goal Seek and Solver that you should be aware
of when deciding which tool to use for a particular problem. The discussion to follow describes these
key differences.

Goal Seek

Goal Seek is quick and simple to use. Simply specify a target value for a target cell and specify the
independent cell to vary in order to reach the target. Figure 9-1 shows Goal Seek's interface. (You
can access Goal Seek from the Tools menu; select Tools Goal Seek...from the main menu bar.)

The "Set cell" field contains the target cell whose value you want to set to the value contained in the
"To value" field. You tell Goal Seek which cell to change by specifying a cell in the "By changing cell"
field. The target cell must contain a formula that must also directly or indirectly refer to the cell
specified in the "By changing cell" field.

Figure 9-1. Goal Seek window

You can also use Goal Seek from within VBA subroutines, so you don't have to
access it manually. This comes in handy when you need to use Goal Seek
repeatedly. See Recipe 9.3 for an example.

You can vary only one cell using Goal Seek; thus Goal Seek is only for univariate problems. Further,
you must specify the target value explicitly; that is, you have to give a numerical value as the target
value. Also, Goal Seek does not allow you to impose any constraints on the independent cell (the cell
in the "By changing cell" field).

According to a short article on Microsoft's support web site (Article ID 100782), Goal Seek employs a
linear search algorithm using initial guesses around the value initially set in the independent cell. This
means that the value contained in the independent cell when you first start Goal Seek in effect serves

http://lib.ommolketab.ir
http://lib.ommolketab.ir

as your initial guess. This is important to remember, especially when solving problems with more
than one solution. For example, if you're trying to find the roots of a cubic equation, your initial guess
may result in Goal Seek converging on one solution, while a different initial guess will result in
convergence on the other solution. This also implies that if Goal Seek fails to converge on a solution,
you should try a different initial guess.

Goal Seek considers convergence successful if the maximum amount of change between iterations
falls below some threshold. By default, this threshold is 0.001. Goal Seek will also stop if the number
of iterations exceeds some maximum (100 by default). You can change these criteria by selecting
Tools Options...from the main menu bar, which opens the Options window as shown in Figure 9-
2.

Click the Calculation tab to reveal the calculation options. Toward the middle of the window you'll see
an Iteration checkbox along with "Maximum iterations" and "Maximum change" fields. Specify
appropriate values in these fields and check the Iteration checkbox so they take effect.

For simple iterative problems, Goal Seek is quite capable and it's quick and easy to use. However, for
more complex problems or where more control over the iterative process is required, Solver is the
tool of choice.

Figure 9-2. Options window

Solver

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Solver is similar to Goal Seek in that you can iteratively find a target value in a target cell by
changing values in an independent cell, but Solver's features go well beyond those of Goal Seek. This
is reflected in the more complex interface to Solver, which is shown in Figure 9-3. (You can access
Solver from the Tools menu. If you don't see it listed there, go to Tools Add-Ins...and select
Solver Add-in to make it available; then go to Tools Solver...to open it.)

Figure 9-3. Solver Parameters window

You can use Solver for multivariate problems, where you want to vary more than one independent
cell to obtain some target value in a target cell. You can specify the cells to vary in the By Changing
Cells field . You can use any valid cell reference format here, with multiple cell references separated
by commas. In the version of Solver that's bundled with Excel, you can select up to 200 cells to
change.

You can use the Guess button to let Solver attempt to "guess" the independent
cells to change for your problem. I usually shy away from this feature, though.
All it does is select all nonformula cells that are referred to by the formula
contained in the target cell. For simple formulas with a few independent
variables where you want to change them all, this may be useful. However, for
the problems I've encountered I find it selects way too many cells, many of
which I don't want to vary at all (e.g., certain constants or values that I want to
fix for one reason or another). On the other hand, if you're dealing with a large
number of variables, it might be easier to let Solver select them all and then
manually remove the ones you don't want from the By Changing Cells field.

In Solver you don't even have to specify a target value. Instead you can choose to maximize or
minimize the value in the target cell. The target cell is referred to in the Set Target Cell field (it must
be a single cell that contains a formula). The Equal To radio buttons allow you to specify whether to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

maximize or minimize the target cell or set its value to a specific numerical value.

Solver does not stop there. You can even specify constraints on cells that are part of the problem
being solved. These constraints allow you to impose equalities or upper and lower bounds on values
within cells. This is a handy feature when you're trying to bracket a solution or when performing
constrained optimization problems. Recipe 9.4 shows how to use constraints with Solver to solve
simultaneous equations. Also, Chapter 13 contains recipes on using Solver for constrained
optimization. Solver allows up to 100 constraints for nonlinear problems and up to 200 constraints for
linear problems (in the version that's bundled with Excel).

Solver also has more available solution algorithms than does Goal Seek. For linear problems, Solver
uses the simplex method. Solver is also capable of handling nonlinear problems by employing a
generalized reduced gradient method. In cases where the problem being solved requires integer-
valued variables, Solver also employs a branch and bound algorithm.

You do have a little control over these algorithms in Solver via the Options window. Press the Options
button on the Solver Parameters window to display the Solver Options window (see Figure 9-4).

Figure 9-4. Solver Options window

As you can see, there are several more options here, as opposed to the two available for Goal Seek.
Solver's options include:

Max Time

Max Time represents the maximum amount of time to allow Solver to obtain a solution, after
which the process will be aborted. Solver will display a message box saying that it could not
find a solution within the allowable time. You can set this value as high as 32,767 seconds (just

http://lib.ommolketab.ir
http://lib.ommolketab.ir

over 9 hours), though I doubt you'll ever have to do so.

Iterations

Iterations specifies the maximum number of iterations to allow Solver while attempting to find
a solution. If the maximum number of iterations is reached before Solver finds a solution, the
process will be aborted and Solver will display a message box saying that it could not find a
solution within the allowable number of iterations. You can set this value as high as 32,767,
though in my experience I've never had to set it above 1,000 and usually leave it at the default
value of 100.

Precision

Precision is specified as a decimal number between 0 and 1, with a default value of 1.0 x 10-6.
It is used by Solver to determine when a constraint is satisfied. The lower the value specified
here, the higher the precision. Rarely do I have to change this value in practice.

Tolerance

Tolerance is used to determine whether or not an integer-valued constraint is satisfied.
Tolerance is expressed as a percentage, with a default value of 5%. If you're not using integer
constraints, then Tolerance does not apply.

Convergence

Convergence is used to determine whether or not Solver has converged on a solution. Solver
considers a solution converged upon when the optimal values are within the value specified in
the Convergence field over the last five solution iterations. Solver will display a message box
after it converges on a solution. Solver will continue trying to converge so long as the specified
maximum number of iterations or maximum time has not been reached. If either limit is
reached, Solver will display a message box indicating that it could not converge.

Assume Linear Model

In cases where you know your problem consists of a linear model you can specifically instruct
Solver to use the simplex method of solution rather than the generalized reduced gradient
method. In the event that you do specify this option, Solver will perform some checks to see if
your model is indeed linear according to its criteria. If not, a message box will appear, warning
you that your model does not fit the criteria for a linear model.

Assume Non-Negative

You can check this to instruct Solver to automatically set lower limit constraints on all variable
cells. If you know that your variables should always be greater than 0 and you want to
constrain them to be so, check this option. This way you can avoid having to add a constraint
manually for each variable.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use Automatic Scaling

In some problems the values of the independent variables and dependent variables may differ
widely in magnitude. In these cases it's prudent to scale the model so that the magnitudes of
the input and output values are of the same order. If you didn't already set up your model with
scaling, then you can select this option to allow Solver to perform the scaling for you. In this
case, it will scale your input and output values by dividing them by the initial value specified in
the variable and target cells. This makes your initial guesses extra important for problems
where scaling is required. It is always best to set your initial values to something realistic and
reasonable for the problem under consideration.

Show Iteration Results

If you want to follow Solver's progress as it iterates when solving a problem, you can check the
Show Iteration Results option. When you do, a dialog box will appear, saying that Solver is
paused and that the current iteration's results are displayed on the active worksheet. This
option is useful when you want to see the results of each iteration step; for example, when
Solver can't find a solution, you can use this option to try to gain insight as to why not. Under
normal circumstances I do not check this option, since you actually have to press a button each
time Solver is paused in order for it to proceed to the next step. This can become tedious if the
solution for a particular problem requires much iteration.

Estimates

Here you can specify how Solver will estimate initial values of the independent variables.
Tangent uses linear extrapolation, whereas Quadratic uses quadratic extrapolation and is said
to speed convergence for nonlinear problems. Quite frankly, given today's high-speed
processors, I notice little difference on convergence time for typical problems.

Derivatives

Solver uses finite differences to compute gradients and provides two options for your control.
You can use either a forward differencing scheme or a central differencing scheme. Central
differencing requires more computations but is generally more accurate. Here again, the
difference in processing time using either method may be imperceptible on today's processors.
I generally just use central differencing. (See Recipe 10.6 for more discussion on forward
differencing versus central differencing in general numerical work.)

Search

You can choose to instruct Solver to use either Newton's method or the conjugate gradient
method for solving a problem. Solver uses these methods to determine search directions
during each iteration. Newton's method requires fewer computations than the conjugate
method; however, Newton's method requires more memory. If memory is a concernfor
example, if you're dealing with a very large problem with many variables and constraints or if
your computer memory is limitedthen you might want to use the conjugate method.

There are two other available Solver options that don't affect the solution process for Solver, though
they are useful nonetheless. These options are Load Model and Save Model. Basically, Solver allows

http://lib.ommolketab.ir
http://lib.ommolketab.ir

you to save Solver models and reload them. This can be quite handy when you're trying different
combinations of variables and constraints along with solution options to see which model works best
for a given problem. It also allows you to recall a model later (without having to remember all the
model settings) if you decide to come back and redo an analysis.

Press the Save Model button to save a model. When you do, a small dialog box will appear, asking
you to select a range of cells within which the model data will be saved. You should select a range of
cells away from other data and formulas in your spreadsheet so that you don't overwrite anything.
You need only select a single cell and Solver will fill in a column of data, starting with the selected
cell, consisting of a number of cells totaling 3 plus the number of constraints in your model.

To recall a model later, simply go to the Solver Options window and press the Load Model button. You
will then see a small dialog box asking you to select the range of cells containing the saved model.
You must select the entire range of cells previously saved. Selecting only the uppermost cell will not
work.

Another handy Solver feature not included with Goal Seek is the Solver Results feature. Upon finding
a solution, Solver will notify you via a message box like that shown in Figure 9-5.

Figure 9-5. Solver Results window

Here you can choose to keep the solution found by Solver, or revert back to your original values.
Moreover, you can choose to generate any of three Solver reports: Answer, Sensitivity, or Limits.
Click on each report name that you want. You can click one or all or any combination. When you
press the OK button, Solver will create a new worksheet for each selected report. These reports are
useful for interpreting the results of a Solver solution, particularly for constrained optimization
problems. I talk more about these reports in Chapter 13, which covers optimization.

You can always refer to the Solver help documents in Excel by pressing the help buttons that appear
on the various Solver-related windows. For more interesting reading about the history and inner
workings of Solver, check out the paper "Design and Use of the Microsoft Excel Solver," by Daniel
Fylstra, Leon Lasdon, John Watson, and Allan Waren, published in Interfaces 28, no. 5 (1998).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.1. Finding Roots Graphically

Problem

You want to find the roots of an equation graphically.

Solution

Write the equation in the form y = g(x), compute values for y for a given range of x-values, and plot
the results using Excel's charting features. Refer to Chapter 4 for more information on charting in
Excel.

Discussion

When faced with finding roots to an equation that you can't solve by hand, the first thing I
recommend you do is chart it. This will give you valuable insight into the nature of the equation and
where its roots lie. If you can write the equation in the form of y = g(x), where x is the independent
variable and y the dependent variable, then you can easily set up a few columns computing y for
various values of x.

This may all seem trivial and frankly, in terms of spreadsheet operations, it is very simple to perform.
However, when dealing with a particularly ugly equation with potentially multiple roots, you'd better
have a good idea of where those roots lie. This is because most iterative methods for solving
equations require an initial guess as to where the roots lie. Some methods require two initial guesses,
while others require you to bracket the roots. The success of these various methods for finding roots
lies in the quality of your initial guess. (See the other recipes in this chapter for specific examples.)

Consider the third-order polynomial equation:

This equation has, of course, three roots. That is, there are three values of x that yield a y-value of
zero. This is readily confirmed by plotting the curve for y versus x in Excel. Figure 9-6 shows how this
particular equation looks when plotted in Excel.

Figure 9-6. Third-order polynomial plot

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you can see, there are indeed three zero crossings; that is, there are three values of x that yield
zero for y. To plot this curve, I set up two columns: one containing given values for x and the other
containing calculated values for y. These are shown in columns B and C, respectively, in Figure 9-6. I
assumed arbitrary coefficients for this example and placed them in cells C2 through C5. The formula
bar shows how I constructed the formula for computing y-values corresponding to each x. (Cell C8 is
selected in the screenshot, so you see its formula in the formula bar.) The formula is of the form
=C2+C3*B8+C4*B8^2+C5*B8^3.

At this point, you have a clear picture of how this equation behaves and where its roots lie. You have
a few options now to actually find the particular values for x that yield y = 0. You can approximate
the xs by interpolating between the tabulated values contained in columns B and C. Essentially you
look for the xs corresponding to where the y-values go from negative to positive and positive to
negative and then interpolate between those tabulated values. Alternatively, you can use iterative
techniques to find the x-values. Such techniques are illustrated in Recipes 9.2 and 9.3. Recipe 9.6
shows how to find the roots of the cubic equation discussed here, using Newton's method and the
secant method.

Now, let me ask you what happens when you're dealing with an equation that you can't write in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

form y = g(x). Well, that presents a problem when you attempt to plot it using the straightforward
approach discussed in this recipe. Fortunately, Excel offers other tools that you can leverage to get
around such a difficulty. Check out Recipe 9.2 to see what I mean.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.2. Solving Nonlinear Equations Iteratively

Problem

You'd like to solve a nonlinear equation that requires an iterative solution and are not sure how to
approach it in Excel.

Solution

Use Goal Seek or Solver. See the introduction to this chapter for more information on how these two
tools differ as well as their respective advantages and disadvantages.

Discussion

In this recipe, I want to show you by way of example how to use Excel's built-in Solver and Goal
Seek tools to solve a nonlinear equation. The equation we'll consider is:

This equation is used to estimate a frictional drag coefficient, Cf, as a function of the Reynolds
number , RN, for some ship resistance calculations. There are other equations for this same purpose
but I chose this classical one because it can't be written in an explicit form of y = g(x). Instead, you
have to resort to some iterative method to find a value of Cf corresponding to some given value of
RN.

I'll show you how to use both Goal Seek and Solver to solve this example problem. In both cases the
equation must first be rearranged in the following form:

Now we can use Solver or Goal Seek to iteratively find a value for Cf given a value for RN that makes
the righthand side of this equation equal to 0. But first, you need to enter the righthand side of this
equation as a spreadsheet formula, as shown in Figure 9-7.

Figure 9-7. Nonlinear equation example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Cell C5 contains a worksheet formula representing the righthand side of our equation. The formula is
=0.242/SQRT(C4)-LOG(C3*C4,10), as shown in the formula bar in Figure 9-7. Cell C3 contains the
given Reynolds number, while cell C4 contains the corresponding friction coefficient, found using
either Solver or Goal Seek. Before actually using Solver or Goal Seek, you should enter your initial
guess for the friction coefficient in cell C4. As mentioned in the introduction to this chapter, you
should pick an initial guess that is reasonable for the problem at hand.

Finding Cf with Goal Seek

To use Goal Seek to find a solution for this example, select Tools Goal Seek...from the main
menu bar to open the Goal Seek window shown in Figure 9-8.

Figure 9-8. Goal Seek window for nonlinear equation example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the "Set cell" field, type in C5, or press the little icon to the right of the edit field to temporarily go
back to the spreadsheet and click cell C5 to select it (press Enter when you've selected it to return to
the Goal Seek window). Remember, cell C5 contains the formula representing the righthand side of
our equation, and we want the result of this formula to be zero. Therefore, in the "To value" field,
type in 0. That's our target value. Now, set the "By changing cell" field to C4, which contains the
friction coefficient value. When you press the OK button, Goal Seek will vary the value in C4 until the
formula in C5 is approximately 0. The result for this example is shown in Figure 9-7, where the
residual shown in cell C5 is -2.23 x 10-7.

I should mention that my initial guess (i.e., the value I started with in cell C4) was 1 x 10-7. I would
have chosen 0 since I know the friction coefficient should be a pretty small number, but I didn't,
because it would have resulted in a divide-by-zero error for this problem. Running Goal Seek with the
divide-by-zero error would result in Goal Seek failing with a "Formula in cell must result in a number"
error.

A residual of -2.23 x 10-7 isn't that bad, but we can do a little better. As discussed in the
introduction, you can change the convergence settings for Goal Seek by going to the Options window.
Select Tools Options...from the main menu bar to open the Options window (shown earlier in
Figure 9-2). On the Calculation panel, I checked Iteration, set "Maximum iterations" to 5,000, and set
"Maximum change" to 1 x 10-8. With these settings, Goal Seek finds a solution with a much smaller
residual, 1.2 x 10-13. The corresponding coefficient of friction for the given Reynolds number is
0.0124.

Finding Cf with Solver

Goal Seek works well for this simple example, and in practice you would not have to rely on Solver
for this problem. For illustration purposes, however, I want to show you how to apply Solver to the
same problem. The spreadsheet set up in this case is the same as in the case of using Goal Seek. All
you do differently is select Tools Solver...from the main menu bar to open Solver instead of Goal
Seek. The Solver Parameters window for this example is shown in Figure 9-9.

Figure 9-9. Solver Parameters window for nonlinear equation example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here, I set the Set Target Cell field to C5 and set the Equal To option to a value of 0. Again, C5
contains the righthand side of our equation, which we want equal to 0. Next, I set the By Changing
Cells field to cell C4, which contains the initial value for the friction coefficient. Pressing the Solve
button initiates the solution process.

Solver does indeed find a solution, yielding a friction coefficient of 0.0124 with a residual of -4.87 x
10-12. These values are comparable with the results obtained using Goal Seek.

Just for fun, try this example again, but this time use an initial guess for the friction coefficient of 1 or
5 or some large number. In this case, Solver actually fails to find a solution! What happens is that
Solver overshoots the actual solution and ends up trying a value for the friction coefficient of 0 for an
iteration. This of course yields a divide by zero error, which causes Solver to fail prematurely. This
little exercise highlights the importance of selecting a reasonable initial guess. It further shows that if
your first attempt fails, you should try a different initial guess as the new one might work.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.3. Automating Tedious Problems with VBA

Problem

You now know how to use Solver and Goal Seek to solve nonlinear equations, but the trouble is you
need to solve such an equation over a range of values, making manual, repeated application of
Solver and Goal Seek tedious.

Solution

Automate this process using VBA, where you can programmatically call Solver or Goal Seek.

Discussion

Solver and Goal Seek are very handy tools for solving a wide variety of problems in Excel. What's
even cooler is that you can use these tools directly in VBA code, without ever having to manually
open their respective windows, click cells, and so on. This means you can automate many tasks that
require Solver or Goal Seek, saving yourself a lot of time.

Let's reconsider the example equation from the Recipe 9.2. The equation is repeated here for
convenience:

What if you wanted to plot this equation? If you wanted to plot a curve of Cf versus RN, you'd have to
use Solver or Goal Seek a number of times for each point along the curve you intend to plot. Maybe
you don't want to plot this curve, but instead want to generate a lookup table with Cf over a range of
RN values. In either case, what a pain it would be to have to manually apply Solver or Goal Seek
repeatedly for every value of RN. Imagine an even more complicated case where there's another
parameter in the equation and you want to vary it systematically as well. Now you're really taking
about tedium!

Thankfully, the developers of Solver and Goal Seek have exposed their functionality to us in VBA so
we can automate their use.

Automating Goal Seek

To show you how to automate Goal Seek, I'll start with the spreadsheet shown in Figure 9-7 and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

make some modifications to it. What I want to do is add a VBA subroutine that makes calls to Goal
Seek to compute values for Cf for a range of RN values. In order to call the VBA subroutine, I want to
add a button control to the spreadsheet that can be clicked to start the solution process. Also, I want
to set up a table that will be filled in automatically with the Cf and RN values as they are computed.
Finally, I'd like to add a chart to show the resulting curve. The modified spreadsheet is shown in
Figure 9-10.

Figure 9-10. Goal Seek automation example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you can see, there are quite a few additions here, so I'll explain each one. The original
spreadsheet elements are shown in italics in Figure 9-10; everything else is new for this example.

The first thing I added were entries in cells C1 and C2 to store starting and ending values for the
range of RN values I wanted to consider. I also added text labels to the left of these cells.

Then I constructed a table in cells A9 through C30 to hold values of Cf versus RN. Initially, this table
contained only the headings in row 9 and row number labels in column A. The Cf and RN cells were
left blank because they will get filled in later with a custom VBA subroutine that I'll show you shortly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

With this table set up, I then created a chart to plot Cf versus RN. Since the table is initially empty,
the chart didn't display any curve. However, having it set up ahead of time means that when the
custom VBA subroutine is finished computing the required data, the chart will automatically be
updated, showing the resulting curve. (Refer to Chapter 4 to learn how to prepare charts in Excel if
you need a refresher.)

The final element to add is the button shown in Figure 9-10, labeled Compute Cf. Excel allows you to
add several standard windows controls to spreadsheets, enabling you to prepare fairly rich GUI
(graphical user interface) forms like the ones you see in standard Windows applications. For the
purposes of this example, I'll show you how to add a simple button control and associate it with some
VBA code, so that when the button is pressed it will actually do something. In this case, the VBA code
will compute Cf over a range of RN and fill in the data table.

To add the button, you need to make sure the Control Toolbox toolbar is displayed in Excel. The
Control Toolbox toolbar is shown in Figure 9-11.

Figure 9-11. Control Toolbox toolbar

If you don't see it, select View Toolbars Control Toolbox from Excel's main menu bar.

To add a button, control-click the Command Button icon (see Figure 9-11) and then click anywhere in
your spreadsheet where you'd like to place the button. Upon doing so, you should see a new button
on your spreadsheet. Initially, it will have some resizing handles (circles) located around it so you can
click and drag to resize the button. You can also click and drag the button itself to relocate it.

Initially, when you place a new control on a spreadsheet, Excel enters design mode and the Design
Mode button on the Control Toolbox toolbar is depressed to indicate this. In design mode you can
resize and move controls, whereas when you're not in design mode, clicking on a control will activate
it. You can toggle design mode by pressing the Design Mode button on the toolbar.

The controls available from the Control Toolbox are ActiveX controls. While in
design mode, you can right-click on the control and select Properties from the
pop-up menu to open a window displaying all of the control's properties. You
can edit many characteristics of the control from the properties window. For
example, the Caption property allows you to change the text shown on the
control itself. In this example, I changed the caption to Compute Cf, as you can
see in Figure 9-10.

With the button added, you need to associate it with some VBA code so that it will actually do
something when you click it. So the next step is to add a custom VBA subroutine and then associate
it with the new button.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 9-1 shows the custom VBA subroutine I prepared for this example. (Refer to Chapter 2 to
learn how to add VBA subroutines such as this one to your spreadsheets.)

Example 9-1. ComputeCf

Public Sub ComputeCf()
 Dim inc As Double

 With Worksheets("Nonlinear equation")
 inc = (.Range("Rn_2") - .Range("Rn_1")) / 20

 For i = 0 To 20
 .Range("Rn") = .Range("Rn_1") + (inc * i)
 .Range("Fx").GoalSeek goal:=0, ChangingCell:=.Range("Cf")
 .Cells(10 + i, 2) = .Range("Rn")
 .Cells(10 + i, 3) = .Range("Cf")
 Next i
 End With
End Sub

This subroutine, called ComputeCf, exTRacts the RN range from cells C1 and C2 in the spreadsheet
and then computes 20 corresponding values of Cf using Goal Seek. As each Cf value is computed, the
results are placed in the table contained in cells A9 through C30 of the spreadsheet.

The first line of code within the subroutine declares a local variable, inc, that is the increment (to be
computed later) between successive RN values in the range.

The next statement is a With statement. With statements are useful in object-oriented languages
such as VBA where members of objects are accessed with the . syntax that you see in this example.
With statements allow you to specify which object to use as the default object when accessing
members. This way you can leave off the parent object name, saving yourself some typing. For
example, here I'm using the statement With Worksheets("Nonlinear equation"). I'm telling VBA that
I want access to the worksheet object named "Nonlinear equation." That's the name I gave to the
worksheet we're using in this example. You can see this name in the worksheet tab at the bottom of
Figure 9-10. Now, every time I use a statement like .Range("Rn_2"), in this case accessing the range
object, VBA defaults to accessing the range object of the Nonlinear equation worksheet object.
Without using the With statement, you'd have to write Worksheets("Nonlinear
equation").Range("Rn_2").

With statements must be bracketed with an End With statement, as shown in
Example 9-1. This limits the scope of the With statement to apply to everything
within the With and End With statements.

The next statement after the With statement computes inc by accessing the cells via range objects

http://lib.ommolketab.ir
http://lib.ommolketab.ir

containing the starting and ending RN values, as discussed earlier. Notice that I'm using the name
labels Rn_2 and Rn_1 here to access the cells. I find names far more readable than standard cell
references. Take a look at Recipe 1.14 to learn how to add cell names like these.

After inc is computed, the subroutine enters a for loop iterating over the range of RN values. For
each RN, Goal Seek is used to iteratively find a corresponding Cf value. Let me explain each line of
the for loop:

.Range("Rn") = .Range("Rn_1") + (inc * i)

This line computes the next RN value and stores it in the cell named Rn (cell C3).

.Range("Fx").GoalSeek goal:=0, ChangingCell:=.Range("Cf")

This is the line that actually calls Goal Seek for the cell named Fx (cell C4). Fx is the target cell
whose value we want to set to 0. In the VBA code shown here, the target value is specified by
goal:=0. We also specify the By Changing Cell with ChangingCell:=.Range("Cf"), telling Goal
Seek to vary Cf until Fx is zero.

.Cells(10 + i, 2) = .Range("Rn")

This line adds the Rn value for this iteration in our data table starting at cell B10 and
incrementing by 1 row at each iteration through the loop. Notice here that I'm using R1C1-
style cell references for convenience. (See Recipe 1.6 for more information on this style.)

.Cells(10 + i, 3) = .Range("Cf")

This line adds the Cf value found by Goal Seek to the data table. Here again, I'm using the
R1C1 reference style.

With the ComputeCf subroutine written, you can now associate it with the button we added earlier.
Enter design mode for the control as discussed earlier and then right-click on the button to reveal a
pop-up menu. Select View Code from this menu. This will switch you over to the VBA editor, where
you should see a new subroutine for this button. Our new subroutine is shown in Example 9-2.

Example 9-2. New button subroutine

Private Sub CommandButton1_Click()

End Sub

This is the click event handler for the button you added earlier. The button's default name is
CommandButton1, so this subroutine is named CommandButton1_Click.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can change the name of a control by changing the Name property in the
ActiveX control's property window. In design mode, right-click on the control
and select Properties from the pop-up menu to display the Properties window.
You can then make the appropriate changes to the control's properties.

Initially, this subroutine is empty, so you need to add a call to our custom subroutine, ComputeCf, as
shown in Example 9-3.

Example 9-3. Add call to ComputeCf

Private Sub CommandButton1_Click()
 ComputeCf
End Sub

When you click the button in Excel now (with design mode off), it will execute the custom subroutine,
computing Cf values over the desired RN range. You'll also see the results displayed in the table and
on the chart. Should you decide you want to compute new Cf values over a different range of RN

values, you need only enter the new range in cells C1 and C2 and press the button again.

Excel has another set of form controls available from the Forms toolbar (select
View Toolbars Forms to show it). These controls look like the ActiveX
controls we used in this example, but give you more control. The Form controls
work a little differently in terms of how you edit their properties and assign
functionality to them. In general, the ActiveX controls are newer and more
powerful, while the Forms controls are older and maintained for backward
compatibility.

Automating Solver

You can automate Solver in a manner similar to the way in which we automated Goal Seek earlier. In
fact, we can modify the earlier example slightly to use Solver instead of Goal Seek. All of the
spreadsheet elements can remain the same as before and we need only make some VBA code
modifications in the ComputeCf subroutine. The new ComputeCf subroutine is shown in Example 9-4.

Example 9-4. ComputeCf using Solver

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Sub ComputeCf()
 Dim inc As Double

 With Worksheets("Nonlinear equation")
 inc = (.Range("Rn_2") - .Range("Rn_1")) / 20

 For i = 0 To 20
 .Range("Rn") = .Range("Rn_1") + (inc * i)

 ' New code starts here:
 .Range("Cf") = 0.001

 SolverOK SetCell:=Range("Fx"), MaxMinVal:=3, ValueOf:=0, _
 ByChange:=Range("Cf")

 SolverSolve UserFinish:=True

 SolverFinish KeepFinal:=1

 .Cells(10 + i, 2) = .Range("Rn")
 .Cells(10 + i, 3) = .Range("Cf")
 Next i
 End With
End Sub

The new code consists of the four lines of code following the ' New code starts here: comment. The
new lines are:

.Range("Cf") = 0.001

This line sets the initial value for Cf to 0.001. This serves as our initial guess prior to calling
Solver.

SolverOK SetCell:=Range("Fx"), MaxMinVal:=3, ValueOf:=0, ByChange:=Range("Cf")

This line calls the Solver subroutine SolverOK to initialize the Solver model. The target cell is set
to Fx by SetCell:=Range("Fx"). We want to set it to a specific value, so we set MaxMinVal:=3. If
we wanted to maximize the target, we'd set MaxMinVal to 1; if we wanted to minimize it, we'd
set MaxMinVal to 2. The target value is set via ValueOf:=0, which tells Solver to set the target
value to 0. ByChange:=Range("Cf") tells Solver to vary the value in the cell named Cf to find a
solution.

SolverSolve UserFinish:=True

Calling SolverSolve actually starts Solver. We specify UserFinish:=True to let Solver know that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

we do not want it to display the Results dialog box every time it finds a solution. If we set this
to false, Solver will display the Results dialog, which can be useful for debugging.

SolverFinish KeepFinal:=1

This line tells Solver that we want to keep the results it finds.

Upon making these code changes and running the code by pressing the button on the example
spreadsheet, you should see results that are very similar to those obtained using Goal Seek.

If after adding the new code you attempt to run the subroutine and get a "Sub
or Function not Defined" error, you need to make sure Solver is being
referenced in your VBA editor. To do so, in the VBA editor select Tools
References...from the main menu bar. In the References window that appears,
make sure SOLVER is checked and press OK.

See Also

You can control many more aspects of Solver using VBA code than those I showed here. For more
information, see the Solver help in Excel and check out Microsoft's support web site,
http://support.microsoft.com, where you can search for technical articles on Solver (among many
other Microsoft product-related topics). The article "How to create Visual Basic macros by using Excel
Solver in Excel 97" (Article ID 843304) should get you well on your way to becoming a Solver power
user.

http://support.microsoft.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.4. Solving Linear Systems

Problem

You'd like to solve a linear system of equations using Excel.

Solution

You can take one of several approaches to solving linear systems in Excel. You could, for example,
use VBA to program any of the standard numerical algorithms for solving systems of equations. While
this approach would undoubtedly work, it's the most time-consuming since you'd have to program
and test the algorithm. Since Excel provides built-in support for matrix operations, you could frame
the problem in the form of a matrix problem and perform the necessary matrix inversion to find a
solution. An easier way is to use Solver. In the discussion that follows, I'll show you the latter two
approaches.

Discussion

If you can frame the system of equations in the form of a matrix equation, then you can use direct
matrix inversion to find a solution. If you can't or don't want to do so, or if you're dealing with
nonlinear equations, you can use one of Solver's several approaches.

Matrix inversion

In Recipe 7.10, I showed you how to use Excel's built-in matrix functions to multiply and invert
matrices. You can use these same functions to solve a linear system of equations of the form:

The approach to solving this problem is a straightforward application of the built-in matrix functions,
where you can find the unknown xs that satisfy this equation by solving the following matrix
equation:

For example, let's say you're given [A] and [b] matrices as shown in Figure 9-12.

Figure 9-12. Solving a matrix equation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first step in the solution is to invert the [A] matrix. To do so, enter the matrix formula
=MINVERSE(C6:E8). Remember, this is a matrix formula entered in a range of cells; you have to press
Ctrl-Shift-Enter to enter the formula. The results of this matrix inversion are shown in Figure 9-12 in
cells C14 through E16.

The next and final step is to multiply the inverse of the [A] matrix by the [b] matrix using the
formula =MMULT(C14:E16,C10:C12). Here again, this is a matrix formula entered in a range of cells.
The final results are shown in Figure 9-12 in cells C19 through C21.

Using Solver with constraints

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Instead of using matrix functions, which can get a little unwieldy for large matrices, you can use
Solver to solve a linear system (or a nonlinear one, as discussed in Recipe 9.5). In this example, I'll
show you how to solve the same linear system discussed earlier by using Solver with constraints.
Figure 9-13 shows how this problem is set up.

Figure 9-13. Solving a linear system with Solver by using constraints

This problem essentially deals with three equations and three unknowns, the xs. The equations are of
the form a1x1 + a2x2 + a3x3 = b. In this approach, I consider the system in this equation form rather
than in the matrix form shown earlier. It's the same system, just with different notation and format.

The first thing I do in this approach is set up a table containing the given a-coefficients and b-
coefficients along with initial guesses for the corresponding xs. Referring to Figure 9-13, I entered the
a-coefficients in cells D9 through F11, the b-coefficients in cells I9 through I11, and the xs in cells H9
through H11.

Next, I set up a column of cells (J9 through J11) containing formulas of the form
=D9*H9+E9*H10+F9*H11. These formulas compute b for each equation, given the a-coefficients
and the initial guesses for the xs. Ideally, the results in this column should equal the given b-values
shown in the adjacent column. Since initially the xs are only guesses, the b-results will differ.
However, we can use Solver to find xs that will make these two columns of b-values the same, thus
resulting in the solution to this system of equations.

Open Solver by selecting Tools Solver...from the main menu bar. Instead of maximizing,
minimizing, or setting a target value for some target cell, we're going to leave the target cell blank,
as shown in Figure 9-14.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 9-14. Solver with constraints

We will set the By Changing Cells fields to the range of cells containing the x-values, cells H9 through
H11 in this case. Now it's time to add some constraints.

Basically, we want to let Solver vary the xs subject to the constraints that the computed b-values in
cells J9 through J11 are equal to the given b-values in cells I9 through I11. So we have to add a
constraint for each b-value.

Figure 9-14 shows the constraints I set up in Solver. To add a constraint, press the Add button to
open the Add Constraint window shown in Figure 9-15.

Figure 9-15. Add Constraint window

In the Cell Reference field, select one of the cells containing a computed b-value. Then in the
Constraint field, select the cell containing the corresponding given b-value. In the drop-down listbox
in the center of the window, select the equals sign (=). Press the Add button to add the constraint.
Pressing Add does not close the Add Constraint window, so you can go ahead and add the other two
constraints as well. Press Cancel when you're done to close the window. Upon doing so, you should

http://lib.ommolketab.ir
http://lib.ommolketab.ir

see the constraints as shown in Figure 9-14.

You might be wondering why we didn't add a target cell. It turns out that
Solver will add a dummy target cell if one is omitted. We can take advantage of
that fact to simply add our constraints, since the actual value of the dummy cell
is irrelevant to the solution.

After everything is set up, you can press Solve to actually solve the problem. Solver should quickly
find a solution as in Figure 9-14, where the column of x-values (H9 through H11) represents the
solution to the given system of equations. Notice that these x-values are equal to those found earlier
using matrix inversion.

Using Solver to minimize residuals

An alternative approach to using constraints in Solver is to frame the problem in the form of
minimizing residuals. We can easily do this by adding a column to the setup shown in Figure 9-14.
The new setup is shown in Figure 9-16.

Figure 9-16. Solving a linear system with Solver by minimizing residuals

Column K contains the square of residuals between the given b-values (column I) and the computed
b-values (column J). The formulas in column K are of the form =(I20-J20)^2. Cell K23 contains the
sum of these squared residuals, using the formula =SUM(K20:K22).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is now essentially a least-squares problem, where we want to minimize the sum of squared
residuals. We can readily use Solver to minimize this sum by changing the x-values contained in
column H.

This is a straightforward application of Solver using techniques already discussed in this chapter.
Figure 9-17 shows the Solver model for this example.

Figure 9-17. Solver without constraints

Set the target cell to the cell containing the sum of squared residuals, cell K23. In this case you want
to minimize the value in cell K23. Select the cells containing the x-values to vary in the By Changing
Cells field. Notice that there are no constraints this time.

Upon pressing Solve, you should see the results already shown in Figure 9-16. Here again, the
resulting x-values are the same as those found using the two other approaches discussed earlier.

Which approach is better depends on your preferences and the size of your problem. For larger
systems I'd probably use this third methodSolver without constraintssince it would be the quickest
one to set up. This is also a good example of how you might find many different, equally successful,
approaches to solving the same problem in Excel.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.5. Tackling Nonlinear Systems of Equations

Problem

You have a system of nonlinear equations that you need to solve.

Solution

Frame the problem in terms of residuals and use Solver to minimize the residual, thus arriving at a
solution.

Discussion

You can use the same Solver-based techniques discussed in Recipe 9.4 to solve systems of nonlinear
equations. By way of example, consider the two equations:

Let's assume you want to find a value, or values, of x satisfying both equations simultaneously. As
you can see from the plot of these two equations shown in Figure 9-18, there are actually two
solutions.

Figure 9-18. Nonlinear equations plot

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You have some choices as to how you approach a solution to this problem. If you can readily solve
these equations for y (which you can in this case), then you can equate them and rewrite them in the
form 0 = f(x) - g(x) and then use the techniques discussed in Recipe 9.2 to find a solution.

If you have more than two equations or you can't easily solve them in terms of a common variable,
then you can use the minimization of residuals method discussed in Recipe 9.4, specifically in the
section "Using Solver to minimize residuals," to find a solution. Using this latter approach, I found two
xs that satisfy this system, namely, x = 0.306 and x = -0.253. In order to get Solver to find both
solutions, I had to assume two different initial guesses for x. In one case I chose an initial x-value
greater than 0.5, and in the other I chose an initial x-value less than -0.5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.6. Using Classical Methods for Solving Equations

Problem

You've seen how to leverage Excel's built-in features to solve linear and nonlinear equations and
systems, but you'd still like to know how to go about implementing some classical equation-solving
algorithms in Excel.

Solution

You can use VBA to program any algorithm, just as you might in other programming languages. In the
discussion to follow, I'll show you how to implement two classical methods in VBA: Newton's method and
the secant method.

Discussion

The examples in this recipe will show how you might implement Newton's method and the secant
method. These are well-known methods and are treated in most advanced mathematics and numerical
methods texts. Further, you can find implementations of these methods in various languages, such as
Fortran and C, on the Web. It's not a great leap to implement these methods in VBA in the form of a
custom function, which you can then call from an Excel spreadsheet.

For the examples in this recipe, let's reconsider the cubic polynomial equation already discussed in Recipe
9.1 . The equation is repeated here for convenience:

A quick plot of this equation, as shown earlier in Figure 9-6 , shows about where these three roots lie.
You could easily use Solver to accurately find each of these roots. Or, you could use Newton's method or
the secant method (or any of a number of other methods you could program), as discussed in the
remainder of this recipe.

Newton's method

Newton's method is based on the idea of estimating values of x that are roots of the equation by taking
the intersection of a line tangent to the curve under consideration at some assumed starting x -value.
Subsequent estimates are made repeatedly using this approach until the estimate x -value converges on
the true root. The basic formula for predicting each new x -value as you approach a root is:

Notice that in Newton's method you must be able to compute, or estimate, the first derivative of the
curve under consideration. In the example considered here, we have an equation that allows you to
explicitly compute the derivative. In other cases where you can't easily compute the derivative, or where

http://lib.ommolketab.ir
http://lib.ommolketab.ir

it is impossible to do so explicitly (such as when part of your function relies on tabular data), you have to
resort to numerical derivatives. Recall from the introduction to this chapter that Solver uses numerical
derivatives and allows you to select either forward differencing or central differencing (refer to Recipe
10.6 for a discussion of these and other techniques).

The structure of the above equation should give you some hints as to how you might implement
Newton's method. First, we need a subroutine to evaluate the function under consideration. Second, we
need another subroutine to evaluate the derivative of that function. Third, we need a subroutine that will
iteratively apply the above equation starting from some initial guess until it converges on a root. I've
prepared just such subroutines for this example. The first one is shown in Example 9-5 and it is used to
evaluate the function under consideration at some given x -value.

Example 9-5. Function Fx

Public Function Fx(x As Double) As Double
 Fx = 1 + x * (3 + x * (3 * x - 7))
End Function

This subroutine is actually a Function , and therefore it returns a value to the calling subroutine. In this
case, it returns the value of the cubic equation we're considering for this example. (If you were dealing
with some other equation, you would change the function Fx accordingly.)

The next subroutine, shown in Example 9-6 , is a Function that returns the derivative of our cubic
equation for some given value of x .

Example 9-6. Function dFx

Public Function dFx(x As Double) As Double
 dFx = 3 + x * (9 * x - 14)
End Function

The final required subroutine is shown in Example 9-7 and actually implements Newton's method, making
periodic calls to Fx and dFx .

Example 9-7. Newton's method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Function NewtonsMethod(x0 As Double, e As Double, n As Integer) As Double
 Dim i As Integer
 Dim err As Double
 Dim xn As Double
 Dim xn1 As Double

 i = 0
 err = 9999
 xn = x0

 While (err > e) And (i < n)
 xn1 = xn - Fx(xn) / dFx(xn)
 err = Abs(xn1 - xn)
 xn = xn1
 Wend
 NewtonsMethod = xn
End Function

Notice again that this subroutine, NewtonsMethod , is actually a Function . This means you'll be able to call
it directly in a spreadsheet cell formula and it will return a result in the calling cell. I'll show you how
shortly, but first I want to go through the function NewtonsMethod .

NewtonsMethod takes three parameters. The first one, x0 , serves as your initial guess at a root. The
second parameter, e , is a convergence tolerance, which should be a small real number (e.g., 0.001). e
is used to determine when the function has converged on a possible root. The third and final parameter,
n , is an iteration limit. It is used to prevent the function from iterating indefinitely in the event it can't
converge on a root.

Several variables are declared upon entering the function. These include i , which is just a counter
variable; err , which is used to store the difference between successive estimates for x ; xn , which is
used to store estimate x n ; and xn1 , which is used to store estimate x n +1 .

Next, these variables are initialized. i is set to 0 . err is set to some large number. And xn is set to the
initial guess x0 .

The While loop is where Newton's method is applied. The While loop will iterate until the computed error,
err , is less than the convergence tolerance, e , or until the maximum number of iterations, n , has been
reached.

A few things take place within the While loop. First, Newton's formula is applied, calling Fx and dFx to
estimate the next x -value given the current estimate. Then the error is computed. Finally, the current x
-estimate is updated before starting the next iteration.

When the While loop ends due either to converging on a root or reaching the iteration limit, the current
estimate for x is returned by the function.

To call this function from a spreadsheet cell, you could enter something like =NewtonsMethod(0, 0.0001,
100) in any given cell. Excel will automatically call NewtonsMethod every time the spreadsheet needs
updating (there's no need to use a button control, because NewtonsMethod is a Function). In this case,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the cell will contain the value -0.215, which is indeed a root to the equation under consideration. Notice
the initial guess I used here of 0.

To capture the other roots, you could change your initial guess. Changing the initial guess to 0.5 yields
the root at x = 1.0. Again, changing the initial guess to 1.75 yields the root at x = 1.549.

Secant method

An alternative to Newton's method is the secant method . The secant method has the advantage that
you do not need to compute the derivative of the equation under consideration. As a trade-off, you do
have to supply two initial guesses so that a secant line can be constructed instead of a tangent line for
making x predictions. The formula for estimating x n +1 using the secant method is:

To implement the secant method, we still need the function Fx as shown in Example 9-5 , but we do not
need the function dFx .

The VBA Function that implements the secant method for this example is shown in Example 9-8 .

Example 9-8. Secant method

Public Function SecantMethod(x0 As Double, x1 As Double, e As Double, n As Integer) As
Double
 Dim i As Integer
 Dim err As Double
 Dim xn As Double
 Dim xn1 As Double
 Dim xnm1 As Double

 i = 0
 err = 9999
 xn = x1
 xnm1 = x0

 While (err > e) And (i < n)
 xn1 = xn - Fx(xn) * (xn - xnm1) / (Fx(xn) - Fx(xnm1))
 err = Abs(xn1 - xn)
 xnm1 = xn
 xn = xn1
 Wend
 SecantMethod = xn
End Function

This function is substantially similar to the function NewtonsMethod . There are a few differences that I'll
highlight. First, notice the additional parameter, x1 , which represents the second initial guess for x .
Remember that for the secant method we need two initial guesses for x .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The remaining differences are found within the While loop. As you can see, the expression for predicting
xn1 has been replaced with the secant formula. And each iteration requires updating both x n and x n -1 ,
which are stored in the variables xn and xnm1 , respectively.

You can use SecantMethod in a cell formula just as you did NewtonsMethod . For example, I entered the
following three formulas in three different cells in a spreadsheet:

 =secantmethod(0, -0.1, 0.0001, 100)
 =secantmethod(0.5, 0.6, 0.0001, 100)
 =secantmethod(1.75, 1.7, 0.0001, 100)

These three formulas returned the values -0.215, 1.000, and 1.549, respectively. As you see, these
roots are identical to those obtained using Newton's method, and in both cases the results agree well
with what you can glean by examining the plot of the example cubic equation in Figure 9-6 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 10. Numerical Integration and
Differentiation

Section 10.0. Introduction

Recipe 10.1. Integrating a Definite Integral

Recipe 10.2. Implementing the Trapezoidal Rule in VBA

Recipe 10.3. Computing the Center of an Area Using Numerical Integration

Recipe 10.4. Calculating the Second Moment of an Area

Recipe 10.5. Dealing with Double Integrals

Recipe 10.6. Numerical Differentiation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.0. Introduction

Numerical integration is the process of approximating integrals in lieu of evaluating them analytically.
This subject is very rich in terms of the number of different techniques, history, applications, and
even debate as to which approaches are better for given applications. Many of the methods
commonly used are derived from Newton-Cotes integration formulas. Most modern books on
numerical methods include some chapter(s) devoted to these methods. Some well-known Newton-
Cotes integration formulas are the trapezoidal rule, Simpson's first and second rules, and Bode's rule.

There are other methods that are typically referred to as Gaussian methods or Gaussian quadratures
. This class of methods includes such formulas as the Gauss-Legendre formula, the Gauss-Chebyshev
formula, and the Gauss-Hermite formula.

Of course, there are other methods that combine elements of these classes, expand upon them, or
take different approaches altogether, for example, Monte Carlo integration .

In this chapter I'll show you how to implement some of the more popular numerical integration rules
and formulas to solve specific problems. My aim is to show you how to implement such rules and
formulas in Excel, not to show how to implement every rule, formula, or variation available. In
general, most of these rules and formulas follow similar patterns in the way they are constructed,
with many of them differing only by coefficients and factors. Therefore, the techniques I discuss here
on how to implement some common methods in Excel can be easily extended to deal with other rules
and formulas.

Additionally, I've included a recipe here on numerical differentiation. As differentiation is the inverse
of integration, I felt it appropriate to address numerical differentiation here as well, and to highlight
some of the particular challenges associated with numerical differentiation. In other chapters of this
book that deal with solving differential equations, I'll address some other numerical methods that
involve differentiation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.1. Integrating a Definite Integral

Problem

You have an analytic function that you need to integrate numerically.

Solution

Use the trapezoidal rule of numerical integration.

Discussion

As discussed in the introduction to this chapter, there exists a multitude of numerical integration
formulas and rules to choose from. Your choice depends on several factors including, but not limited
to, desired accuracy and ease of implementation. For the purposes of this example, I want to use one
of the easiest to implement numerical integration rules, namely the trapezoidal rule. This rule
exemplifies the main steps in setting up numerical integration in a spreadsheet without clouding the
issue with more complicated mathematics.

In this example, I'll consider the integration of a given analytic function of the form:

where the analytic form of f(x) is known. Even though you know f(x), you may not be able to
integrate it analytically, and this is one reason why you would resort to numerical integration.

The trapezoidal rule is well documented in virtually every calculus, engineering analysis, or numerical
methods book I've ever read. Basically, this technique approximates the function under consideration
with a sequence of linear curves. The general formula (also called extended or composite formula) for
the trapezoidal rule is:

Here, s is the distance along the x-axis between samples. This formula assumes that all of the y-
values are computed, or correspond, to equally spaced x-values. Since we have an analytic form of
f(x), we can easily choose the spacing and thus the number of x-values between the bounds of
integration a and b. The smaller the spacing and the greater the number of samples, the higher the
accuracy.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Excel is very well suited to integration formulas like the trapezoidal rule. In fact, many popular
integration rules are of similar form, in that they consist of the sum of products between coefficients
and y-values. This sort of computation is easily set up in Excel.

Figure 10-1 shows a spreadsheet that uses the trapezoidal rule to compute the integral of the
function:

for x in the interval [0,1].

Figure 10-1. Trapezoidal rule example

The first step in performing this integration is to set up a table containing the x-values and
corresponding y-values. I selected a spacing of 0.1 between x-values and put them in column B. The
y-values are computed in column C using formulas like =EXP(-(B6^2)).

The next step is to set up a column containing the coefficients that appear in the integration formula.
This is almost trivial in the case of the trapezoidal rule, since all but the first and last coefficients are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1, but it's a very handy way to organize the coefficients for other rules that don't involve a bunch of
ones.

I put the x-spacing value (s = 0.1) in cell C18, just for clarity. Cell C20 contains the actual
trapezoidal rule formula. This cell is selected in the screenshot so you can see the formula in the
formula bar toward the top of the spreadsheet. The formula is =C18*SUMPRODUCT(C6:C16,D6:D16) and
it uses the SUMPRODUCT worksheet function to compute the sum of the products of the y-values and
the coefficients. The result in this case is 0.746 and represents the area under the curve from x = 0
to x = 1.

In many cases, you won't necessarily have an analytic function with which to
work. You may be dealing with experimental data or functions represented by
tabular values. You can apply the technique discussed in this recipe in just the
same way. Instead of evaluating the given function to populate a y-column as
shown in Figure 10-1, you would simply use your sampled or tabulated y-data.
The rest of the calculation is the same as discussed here. See Recipes 10.3 and
10.4 for some examples using tabulated data.

The trapezoidal rule shown here is very easy to implement, which makes it very attractive. The
theoretical error of the trapezoidal rule is proportional to spacing between samples to the third
power. If you increase the number of samples so as to decrease the spacing by a factor of 2, then
the error will decrease by a factor of 8. Looking at this from another angle, for the example discussed
here, reducing the spacing by a factor of 2 from 0.1 to 0.05 only affects the result beyond the fourth
digit after the decimal place. The result goes from 0.746211 to 0.746671.

Increasing the number of samples (thus decreasing the spacing) is one way to improve accuracy
when using the trapezoidal rule. Some practitioners take an iterative approach and stop increasing
the number of samples when changes in the result from successive iterations fall below some
tolerance (see Recipe 10.2).

There are other ways to improve the accuracy of numerical integration. An obvious way is to use a
rule or method that is inherently more accurate. One very well-known rule is called Gaussian
quadrature or Gaussian integration.

There are many other, inherently more accurate rules, many of which are easier to implement than
Gaussian quadrature and which are better suited for tabulated data in lieu of having a known analytic
function. Recipes 10.3 and 10.4 discuss examples using Simpson's rule for tabulated data, which is
just as easy to implement as the trapezoidal rule, and more accurate.

For now, let's consider the same problem discussed earlier but this time solved using Gaussian
integration. The idea behind Gaussian integration is that an integral of a function over a standard
interval can be approximated by the weighted sum of functional values over that interval. In equation
form this looks like:

There are a couple of tricks to applying this method. First, for integrals over nonstandard intervals,
you have to transform (usually using a linear transformation) the actual interval to the standard
interval, using a change of variables. Also, you need to derive the proper coefficients by which to
multiply the functional values over the interval.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Fortunately, there are several different standard Gaussian integration formulas that have already
been derived and are readily available from standard texts on the subject of numerical methods.
Once such standard formula is the fifth-order formula :

To apply this formula to the example function discussed in this recipe, the first thing you need to do
is transform from variable x over the interval from 0 to 1 to a variable t over the interval from -1 to
1. To do this, let t = 2x - 1. Then x = (t + 1)/2, which gives dx = (1/2)dt. Now we have:

And the integral to be evaluated is now:

The 1/2 factor comes from the change of variables dx = (1/2)dt. Applying the Gaussian formula in a
spreadsheet cell formula looks like this:

 =0.5 * (5/9 * f_of_t(-SQRT(3/5)) + 8/9 * f_of_t(0) + 5/9 * f_of_t(SQRT(3/5)))

This formula uses a custom VBA function named f_of_t, which simply evaluates the function f(t)
shown earlier. The VBA code for this function is shown in Example 10-1.

Example 10-1. VBA code for f_of_t

Public Function f_of_t(t As Double) As Double
 f_of_t = Exp(-(1 / 4#) * (t + 1) ^ 2)
End Function

You don't have to use a custom VBA function as I did here. I did so only to make the spreadsheet
formula more readable.

The end result for this example is 0.746814. Comparing this result to that obtained using the
trapezoidal rule shows that the results are identical out to the third decimal place. To make the result
from the trapezoidal rule equal that obtained from the Gaussian formula out to the fourth decimal
place, you'd have to increase the number of samples to 53. To make the result identical to the fifth
decimal place, you'd have to increase the number of samples to 67. (I obtained these values
iteratively.)

There are two ways to view these results. On one hand, it's clear that the required number of
samples when using the trapezoidal rule is higher for the same level of accuracy. On the other hand,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in this example at least, the higher number of samples results in an insignificant increase in
computational time, whereas applying the Gaussian formula is certainly more effort.

I have to be honest here. I've never applied the Gaussian formula to solve any real-world problem.
I've always found it too easy to simply increase the number of samples when using the trapezoidal
rule, or more often Simpson's rule, and live with the few extra milliseconds it takes to compute the
result, given the power of modern desktop computers. This works for me, but it's not to say the
same will work for the type of problems that require you to implement numerical integration.

See Also

If you're dealing with a known analytic function, then you might consider using VBA to carry out the
integration, as discussed in Recipe 10.2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.2. Implementing the Trapezoidal Rule in VBA

Problem

You see how easy it is to apply the trapezoidal rule in a spreadsheet, but you'd like to implement the rule
in VBA to save having to set up the columns of data as was done in the previous recipe. You'd also like to
be able to quickly change the spacing between x -values to improve accuracy.

Solution

Add two custom VBA functions as discussed here. See Recipe 2.2 to learn the basics of writing VBA
functions if you don't know them already.

Discussion

Let's reconsider the example from Recipe 10.1 . This time, instead of setting up the table of data shown in
Figure 10-1 and using the SUMPRODUCT function in cell C20, you need only write two simple VBA functions.

The first function we need is simply a function to compute a y -value for a given x -value using the known
analytic function under consideration. Example 10-2 shows just such a function for computing the analytic
function from the previous example.

Example 10-2. VBA function for computing y = f(x)

Public Function F(x As Double) As Double
 F = Exp(-(x ^ 2))
End Function

As you can see, it's a fairly simple function. It takes a given x -value as an argument and returns the
corresponding y -value using the given analytic function. The other required VBA function is shown in
Example 10-3 .

Example 10-3. VBA function for trapezoidal rule

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Function Trapezoidal(xMin As Double, xMax As Double, n As Integer) As Double
 Dim dx As Double
 Dim sum As Double
 Dim y As Double

 dx = (xMax - xMin) / n

 sum = (F(xMin) + F(xMax)) / 2#

 For i = 1 To (n - 1)
 y = F(xMin + (dx * i))
 sum = sum + y
 Next i

 sum = sum * dx

 Trapezoidal = sum
End Function

This function takes three arguments: the lower and upper bounds of the interval of integration, xMin and
xMax , and the number of intervals over which to divide the range of x -values, n .

The first task upon entering this function is to declare a few local variables. dx will store the computed
spacing of the x -values given the number of intervals, n . The computed y -value is stored in the variable
y . sum is used to accumulate the products of the coefficients and the y values.

After declaring these local variables, the function goes on to compute dx , which is just the x -range
divided by the number of intervals. sum is also initialized to the average of the results of the function
evaluated at the upper and lower bounds of integration. This step takes care of the first and last terms in
the trapezoidal rule formula involving the 1/2 coefficient. Next, the function enters a For loop on the index
variable i from 1 to n-1 to accumulate the function evaluated at each computed x -point. This step takes
care of all the middle sums in the trapezoidal rule formula.

The first calculation within the For loop evaluates y for a given x value by calling the function F as defined
in Example 10-2 . Here, x is computed by multiplying dx and i . Upon exiting the loop, sum is multiplied by
dx to yield the final result.

To actually use these functions in a spreadsheet you need only type the formula =trapezoidal(0,1,10)
into any given cell. Here, I used the same range and number of samples as used in the example from
Recipe 10.1 . As expected, the result in this case is exactly the same as before, that is, 0.746.

Using the VBA approach discussed here allows you to easily change the number of samples used in the
computation to improve the accuracy of the result. Increasing the argument n results in more samples at a
smaller x -spacing, resulting in greater accuracy. You can also change the upper and lower bounds of
integration very easily using this approach. You can achieve both of these changes by taking the
spreadsheet approach, but it requires you to reconstruct your columns of data.

You can integrate other analytic functions using the VBA functions shown here. All you need to do is
change the F function to use your new analytic expression; the function trapezoidal remains unaffected.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

I mentioned in Recipe 10.1 that some practitioners apply an iterative approach using the trapezoidal rule
to adjust the number of sample intervals until the end result stops changing by an amount greater than
some given tolerance. You can easily implement such a scheme using the VBA functions shown in this
recipe. As an illustration, I added another custom VBA function as shown in Example 10-4 .

Example 10-4. IterateTrapezoidal function

Public Function IterateTrapezoidal(xMin As Double, xMax As Double, n As Integer, tol As
Double) As Double
 Dim value As Double
 Dim previousValue As Double
 Dim difference As Double
 Dim counter As Integer
 Dim nNew As Integer

 previousValue = Trapezoidal(xMin, xMax, n)
 difference = 99999
 counter = 0
 nNew = n

 While ((counter < 100) And (difference > tol))
 nNew = nNew * 2
 previousValue = value
 value = Trapezoidal(xMin, xMax, nNew)
 difference = Abs(value - previousValue)
 counter = counter + 1
 Wend

 IterateTrapezoidal = value
End Function

This function, called IterateTrapezoidal , takes four arguments. The first three are the same as discussed
earlier for the function trapezoidal . The fourth argument is new and represents the tolerance, tol ,
which tells the iterative algorithm when to stop.

The scheme goes like this: first, we compute a result using TRapezoidal just as we did earlier, using the
supplied default number of sample intervals, n . Then we double n , recompute the result, and compare it
with the previous result to see how much the result changed given the change in n . If the change is
greater than tol , then we double n again and recompute. This repeats until the difference is less than tol
, at which time the loop is exited and the last computed result is returned. This algorithm works pretty well
and is one way to automate the process of choosing an appropriate n when applying the trapezoidal rule.

You do have to be careful with this approach. You'll notice that I put a counter in the While loop shown in
Example 10-4 . You could encounter a situation where the specified tolerance is too low and the solution
never converges. The counter will eventually kick execution out of the loop, to prevent the function from
getting stuck in an infinite loop. You do also have to keep in mind round-off error and precision. Basically,
don't specify an unrealistically small tolerance, and keep in mind the magnitude of the result you're

http://lib.ommolketab.ir
http://lib.ommolketab.ir

expecting. If you're expecting a result on the order of 10,000 ± 100, a tolerance of 1e-5 is probably way
too small!

See Also

Refer back to Recipe 10.1 for more discussions on the trapezoidal rule.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.3. Computing the Center of an Area Using
Numerical Integration

Problem

You need to integrate a function represented by tabular values to determine the area enclosed by the
function and the center of that area.

Solution

Apply a numerical integration technique in your spreadsheet (as discussed in earlier recipes) to
compute the area, and take the first moment of the area to compute the centroid.

Discussion

It often happens in science and engineering that you need to compute the area under a curve or the
area of some nonprimitive geometric shape. Often the center of that area is of some significance.
When working with probability distributions, the area and moments of the area yield important
information. In structural mechanics, areas and moments of areas are important for computing
stress. Naval architects compute areas and moments of areas to assess how ships float. These are
just a few examples of how areas and moments of areas are commonly found in science and
engineering.

In this recipe, we'll consider the first moment of an area, which is computed according to the
formula:

This formula yields the first moment of the area about the y-axis. The center of area is computed
according to the formula:

In this formula, My is the first moment of the area and A is the area.

Now, let's consider an example. This time, instead of using the trapezoidal rule, I'll use another
common integration rule known as Simpson's rule .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There's another Simpson's rule known as Simpson's second rule or the 3/8ths
rule.

The general formula for Simpson's rule is:

This formula is a little different from the formula for the trapezoidal rule. Notice the coefficients in this
formula; they follow the pattern 1, 4, 2, 4, 2, 4, 1. The first and last coefficients are always 1, while
the middle terms alternate between 4 and 2, with the second and second to last coefficients always
4. Generally, Simpson's rule yields more accurate results than the trapezoidal rule for the same
number of samples because Simpson's rule approximates the function, or curve, being integrated
using a second-order polynomial as opposed to a linear approximation as is used in the trapezoidal
rule. Application of Simpson's rule requires an odd number of samples, ys in the general formula,
which makes n an even number. Further, just as in the trapezoidal rule, the spacing, s, between x-
values must be uniform.

In this example, we're not dealing with a known analytic function. Instead we have tabular y-values
corresponding to a set of x-values. In the real world, these could be measured coordinates from
some geometry, or experimentally obtain data, for example.

Figure 10-2 shows the data for this example. x- and y-values are shown in columns B and C, and the
coefficients are shown in column D. The little chart on the right shows the shape of the curve
represented by this data.

Calculating the area under this curve proceeds in a manner similar to that discussed earlier in Recipe
10.1. Area is computed in cell C19 using the formula =C17/3*SUMPRODUCT(C5:C15,D5:D15). Here again,
I use the SUMPRODUCT formula to simultaneously sum the products of the x- and y-values.

The first step in computing the center of the area is to compute the first moment of the area about
each axis. This allows you to compute both the x- and y-coordinates of the center of area. To get the
coordinates, you have to divide the first moment of the area by the area.

Figure 10-2. Area and area moments example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The x-coordinate of the center of area is computed in cell C20 using the formula
=(C17/3*SUMPRODUCT(B5:B15,C5:C15,D5:D15))/C19. The numerator in this formula computes the first
moment of the area about the y-axis using Simpson's rule. This is achieved by again using the
SUMPRODUCT formula to compute the sum of the products of x, y, and the coefficients. Dividing by the
area, contained in cell C19, yields the x-coordinate to the center of area relative to the origin.

The y-coordinate of the center of area is computed in a similar manner in cell C21 using the formula
=(C17/3*SUMPRODUCT(C5:C15,C5:C15/2,D5:D15))/C19. This formula is generally similar to the one used
to compute the x-coordinate; however, this time you don't use the x-value at all. To compute the
first moment about the x-axis, you multiply the y-value by the distance from the x-axis to the center
of the ordinate, which is just half of y. Take a look at the third parameter in the SUMPRODUCT term; it
includes a cell range divided by 2. Excel interprets this as an instruction to divide each value in the
cell range C5:C15 by 2 before multiplying it by the other values from the other ranges in the
SUMPRODUCT function. This is convenient, as it saves having to set up another column of data to
compute y/2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can use other mathematical operators and functions in a similar manner.
Clever use of this sort of syntax allows you to construct concise formulas.

Dividing the first moment of the area about the x-axis by the area yields the y-coordinate to the
center of area. The result is shown in cell C21 in Figure 10-2.

See Also

You can easily extend the example discussed here to compute the second moment of the area. See
Recipe 10.4 for more information.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.4. Calculating the Second Moment of an Area

Problem

You've learned how to compute area and center of area using numerical integration as discussed in
the previous recipe and now you want to learn how to compute the second moment of the area.

Solution

Use the same technique as discussed in the previous recipe for computing the first moment of the
area, but this time use the product of x2 and y instead of x and y.

Discussion

You can easily extend the example shown in Figure 10-2 from the previous recipe to include
computing the second moment of the area. In mechanics, the second moment of an area is called the
moment of inertia and is computed according to the following formula:

This yields the moment of inertia about the y-axis. The formula for computing the second moment
about the x-axis is very similar; the xs and ys are just swapped.

Often, you're more interested in the moment of inertia about an axis that passes through the center
of an area. In that case you need to apply the well-known parallel axis theorem:

Here, Ina is the moment of inertia of the area about an axis parallel to the y-axis, but passing
through the centroid of the area. A is the area, and d is the distance from the y-axis to the axis
passing through the centroid.

Figure 10-2 includes the results of these computations for the area considered earlier. Cell C23
computes the moment of inertia about the y-axis using the formula
=C17/3*SUMPRODUCT(C5:C15,B5:B15^2,D5:D15). This formula looks very similar to that shown earlier
for computing the first moment of the area. However, in this case we square the x-values using the
argument B5:B15^2.

Application of the parallel axis theorem yields the moment of inertia about an axis that passes
through the center of the area. Cell C24 computes this value using the formula =C23-C19*C20^2. In
this case, the d term from the parallel axis theorem is the distance along the x-axis to the center of
area, which was already computed in the example from the previous recipe.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See also

Read Recipe 10.3 for more information on applying Simpson's rule to calculate areas and centers of
areas.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.5. Dealing with Double Integrals

Problem

You need to numerically integrate a double integral (for example, to compute the volume of some
arbitrary shape or the volume under a surface).

Solution

Separate the problem into two parts, each involving only single integrals, and then apply the
numerical integration techniques discussed earlier in this chapter.

Discussion

Computing multiple integrals numerically can be challenging, especially when triple or higher integrals
and involved. To the best of my knowledge, there are no general-purpose numerical integration
formulas that handle multiple integrals. There is a method called Monte Carlo integration that
involves taking a lot of random samples within the volume or domain being integrated and using the
distribution of those samples to estimate the volume or whatever is of interest in higher dimensions.
Alternatively, you can break up a multiple integral into successive single integrals and apply the
standard numerical integration techniques discussed in this chapter.

To demonstrate this latter approach, consider the surface shown in Figure 10-3.

Figure 10-3. 3D surface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Let's assume you want to compute the volume under that surface bounded by y = [0,1] and x =
[0,1]. This is a three-dimensional problem, but instead of computing a multiple integral, you can
compute a series of single integrals.

The first step is to consider cross-sections of this surface at successive y-values. Each cross-section,
at each y-value, will yield a curve. We can compute the area under each of these curves using a
standard integration rule. You'll end up with a new set of data that represents cross-sectional areas
as a function of y. You can then integrate the resulting curve of areas to get the volume under the
surface.

Figure 10-4 shows the data that represents the surface in Figure 10-3.

The table contains z-values for corresponding x- and y-values. As outlined a moment ago, the first
task is to compute cross-sectional areas corresponding to cross-sections

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 10-4. Data for 3D surface

taken of the surface at each y-value. This means that for each y-value, held constant, we can
integrate along the x-axis to compute the area under the cross-section curve.

The row labeled Areas on row 16 of the spreadsheet shows the results of integrating the cross-section
curves for each y-value. I applied the trapezoidal rule here, using formulas like
=D1*SUMPRODUCT(A5:A15,D5:D15). Cells D16 through N16 contain formulas just like this one to
compute each cross-sectional area, that is, at each y-value.

If you plot the resulting cross-sectional areas versus the y-values, you end up with a curve like that
shown in Figure 10-5.

This plot was generated using the y-data in the cell range D4:N4 and the area data in the cell range
D16:N16. The area under this curve is the volume under the surface. So now all you need to do is
integrate this cross-sectional area curve to get the volume. Cell D19 contains the formula
=D2*SUMPRODUCT(D17:N17,D16:N16), which performs the integration of the cross-sectional area curve,
yielding the volume under the surface.

That's all there is to it. This technique is fairly straightforward and readily implemented in Excel.

Figure 10-5. Cross-sectional area curve

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.6. Numerical Differentiation

Problem

You have a table of experimentally obtained data representing some function and you'd like to
approximate the derivatives of that function.

Solution

Use numerical differentiation in your spreadsheet.

Discussion

A well-respected professor once told me that numerical differentiation is death. That's a pretty strong
statement, and what he meant was that once you start taking finite differences (a way to
approximate derivatives numerically), accuracy goes downhill fast, ruining your results. This is
because numerical differentiation can be very inaccurate due to its high sensitivity to inaccuracies in
the values of the function being differentiated. This is in contrast to numerical integration, which is far
more insensitive to functional inaccuracies because it has a smoothing effect that diminishes the
effect of inaccuracies in the values of the function being integrated.

If you have an analytic form of the function under consideration, then you're far better off deriving an
analytic expression for the derivative, as opposed to resorting to numerical differentiation. On the
other hand, if you have experimentally obtained data with no analytic expression for the function,
then you may have to resort to numerical differentiation. This latter case is the one we'll consider
here.

By definition, the derivative of a function is:

When given tabulated data representing a function, we don't have the luxury of allowing h to go to
zero. In this case, we have the function evaluated at some point x and some other point x + x that's
a finite distance, x, away from x. We can approximate the derivative of a function using so-called
finite differences, where we have:

It then follows that as x gets smaller, this approximation should become more accurate. The trouble
with tabulated data is that often x is not as small as we'd like it to be for purposes of approximating
derivatives. That said, we can use this approach to at least approximate the derivative of a function.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The question then arises: when dealing with a tabulated set of data of the form (xi, yi), what set of
values do you use to approximate the derivative at point i? Specifically, do you use a forward
difference, (f(xi +1) - f(xi))/ x, or a backward difference, (f(xi) - f(xi -1))/ x? The answer is that you
could use either approach or better yet, neither. An even better approach uses a so-called central
difference, (f(xi +1) - f(xi -1))/(2 x).

Let's consider each of these in the context of an example using a known analytic function so we can
compare the approximate results to known theoretical results. Consider the function f(x) = x3. The
derivative of this function is easily derived and is f'(x) = 3x2. Figure 10-6 shows tabulated values for
this function and its theoretical derivative over the range x = [0,1].

I've also included several columns corresponding to approximations of the function's derivative using
several different approaches, namely, forward differences, backward differences, central differences,
and a so-called 5-point formula, which I'll come back to shortly.

Figure 10-6. Comparison of finite differencing schemes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The formulas in column F for the forward difference approximation are of the form =(D5-D4)/G1,
where the difference D5-D4 is the forward difference in y-values and G1 contains the value for x
(labeled h in the spreadsheet). Similarly, the formulas in column G for the backward difference
approximation are of the form =(D5-D4)/G1. The central difference formulas in column H are of the
form =(D6-D4)/(2*G1).

Plotting these results along with the theoretical derivatives yields the chart shown in Figure 10-7.

The dy/dx curve is the theoretical derivative. The others are the various approximations. Clearly, the
central difference approach yields far better results than either forward differencing or backward
differencing. This is true in general, and central differences are usually preferred over the other two
approaches. For this particular function, the central difference approximation curve lies directly on
top of the theoretical curve, implying very close agreement. You can also see this from the tabulated
results shown in Figure 10-6.

The central difference approach has the effect of smoothing the derivative at a point as it considers
the values of the function both ahead of and behind the point under consideration. The 5-point
formula mentioned earlier extends this idea, taking into account even

Figure 10-7. Chart comparing approximate to theoretical results

http://lib.ommolketab.ir
http://lib.ommolketab.ir

more points around the specific point under consideration. The 5-point formula is commonly
presented in texts on numerical methods and the formula is as follows:

In this example, the 5-point formula is of the form =(1/(12*G1))*(D4-8*D5+8*D7-D8). This formula
corresponds to the approximation in cell I6.

For this particular example, the 5-point formula yields results exactly matching the theoretical
derivatives. In practice, this isn't always the case, but it does show how much better the 5-point
formula is than forward or backward differencing for this example.

As mentioned earlier, numerical differentiation is very sensitive to errors in the values of the function
being considered, and this is one of the main sources of error in numerical derivatives. The example
so far has included exact values for the function under consideration.

In practice, if this data was measured experimentally, you'd expect some error in values.To simulate
such error, I computed some random deviations for the example function. Figure 10-8 shows the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

simulated experimental data plotted against the theoretical values from the function under
consideration.

Figure 10-8. Simulated experimental data

As you can see, the curve labeled y exp fairly closely approximates the theoretical curve of y = x3,
but with some small errors. Now, let's look at the effect of these small errors on the derivatives as
approximated using the numerical differentiation formulas shown earlier. Figure 10-9 shows the
results.

This chart is dramatically different from that shown in Figure 10-7. Look at how wildly the forward

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and backward difference curves deviate from the curves shown in Figure 10-7. This is characteristic
of numerical derivatives in light of small errors in the values of the function under consideration. Any
small errors in the values of the function from point to point are amplified in the numerically obtained
derivative.

These results are motivation for using the central difference or 5-point formulas, as they tend to
smooth out these oscillations by considering more neighboring values of

Figure 10-9. Approximate derivatives for experimental data

the function. Figure 10-9 illustrates that these latter methods do indeed yield far better
approximations. The curves of the derivative using these two approaches still aren't as smooth as the
theoretical curve, but they are far better than either the forward or backward difference curves.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The smoothing effect offered by formulas like the central difference and 5-point formulas has inspired
other techniques for approximating derivatives. Indeed, it would seem plausible to smooth the
tabulated functional values before computing numerical derivatives in an effort to increase accuracy.
Moreover, you can fit an interpolation function to a given set of data and then use the derived
analytic expression for the fit curve to derive an expression for the derivative, thus giving much
smoother results for the derivative. (See Chapter 8 to learn how to fit equations in Excel.) In fact,
this is the basis for many numerical methods that require derivative computations.

Another approach is to compute the numerical derivatives as discussed here and then fit a curve
through those results to yield a smooth derivative curve. Figure 10-10 shows the central difference
results from Figure 10-9 plotted along with a second-order least-squares fit polynomial. This
polynomial was fit using Excel's trendline feature (see Chapter 8) on the central difference curve.

Figure 10-10. Smoothed derivative curve

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The resulting trendline is smooth and approximates the theoretical derivative fairly well, giving a
much better picture of the derivative than the raw derivative curve computed using central
differences.

There are many schemes and formulas for computing numerical derivatives besides the ones
discussed here. Further, you can apply these techniques to compute higher derivatives such as the
second and third derivatives of a function. Such formulas are widely published in books on numerical
methods, which include numerical differentiation.

See Also

Take a look at Chapter 8 to learn how to fit curves to data using Excel. You can use those fit curves
to approximate derivatives as discussed here.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 11. Solving Ordinary Differential
Equations

Section 11.0. Introduction

Recipe 11.1. Solving First-Order Initial Value Problems

Recipe 11.2. Applying the Runge-Kutta Method to Second-Order Initial Value Problems

Recipe 11.3. Tackling Coupled Equations

Recipe 11.4. Shooting Boundary Value Problems

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.0. Introduction

In this chapter we're going to focus on numerically solving ordinary differential equations using Excel.

There are many methods available for numerically solving ordinary differential equations. Solution
methods for initial value problems include such standard methods as Euler's method, the improved
Euler method, the Runge-Kutta method, the leap frog method, various implicit schemes, as well as
various adaptive schemes. Texts on numerical methods are full of such methods.

Other classes of problems dealing with ordinary differential equations include boundary value
problems and initial-boundary value problems. Methods available for boundary value problems
include the shooting method and variants, the band matrix method, Richardson extrapolation,
various finite difference methods, and many others.

I aim to show you a few selected methods in this chapter to show you how you might implement
some of these well known methods in Excel. Numerical methods texts contain detailed descriptions of
these, as well as other methods. The Excel techniques I'll show you in this chapter will allow you to
implement many of the standard methods in Excel.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.1. Solving First-Order Initial Value Problems

Problem

You need to numerically solve a first-order differential equation of the form:

y(0) = a

Solution

This is a standard initial value problem and you can implement any of a number of standard
numerical integration techniques to solve it using Excel and VBA.

Discussion

Consider a specific initial value problem such as:

y(0) = a

The exact solution for this problem is:

y = ex - x - 1

Figure 11-1 shows a plot of this exact solution.

Normally, if you can find an exact solution, you wouldn't resort to numerical integration. However, I
chose this problem so that you can compare the numerical results with the exact solution.

In this recipe, I will show you how to implement Euler's method . This isn't necessarily the best
method, since it requires small step sizes to ensure accuracy. However, it's simple enough to show
you the mechanics of implementing such a method in Excel and VBA without clouding the issue. In
Recipe 11.2, I'll show you how to implement a much better method. In Recipe 11.3, I'll show you
why Euler's method may not be the best choice for some problems.

Euler's method is based on taking the first two terms of a Taylor series expansion of a function to
predict the value of the function at some point, knowing the value of the function at some other point

http://lib.ommolketab.ir
http://lib.ommolketab.ir

plus some information about the derivatives of that function. In this case, you can write the Taylor
series expansion of y as follows:

Euler's method considers only the first two terms on the right side of this equation, ignoring all
higher-order terms, which collectively constitute the truncation error for this method. For the
problem we're considering here, we know dy/dxit's the given differential equationtherefore, we can
use the first two terms in the Taylor series expansion of y to determine y at successive increments
along x, starting at the given initial value. This scheme is very easy to implement in Excel and VBA.
In fact, you can implement this scheme easily in a standard spreadsheet without the use of VBA, or
you can write a VBA subroutine, which I think is a more versatile approach. I'll show you how to do
both.

Figure 11-1. Exact solution of an example initial value problem

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using spreadsheet only

Figure 11-2 shows a spreadsheet I set up implementing Euler's method using only spreadsheet
formulas.

The three separate tables you see in Figure 11-2 are solutions to the same problem using three
different step sizes, x (labeled dx in Figure 11-2). You need only one table to solve the problem, but
I include three to show the differences in results using different step sizes.

The tables are fairly straightforward. The columns labeled x contain formulas like =M5+N1, which
simply compute a new x-value given the previous x-value plus the step size. The columns labeled y
contain Euler's formula for predicting the next y-value. The spreadsheet formula looks like =N5+(M6-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

M5)*(M5+N5). The (M6-M5) part of this formula is the step size, which could have been simply N1 as
well. The (M5+N5) part is the derivative of y from the given differential equation.

Figure 11-2. Euler's method using only spreadsheet formulas

The columns labeled y exact contain formulas like =EXP(M6)-M6-1, corresponding to the equation for
the exact solution discussed earlier. And finally, the error columns contain formulas like =(O6-N6),
which is just the difference between the exact solution and the approximate solution.

The error decreases as the step size decreases, as you would expect. Note, however, that you have
to perform far more computations with the smaller step size to cover an equivalent range of x-
values. For example, if you wanted to compute the solution over the range x = [0,1], you'd need 10
rows of calculations using a step size of 0.1, 100 rows using a step size of 0.01, and 1,000 rows
using a step size of 0.001. Clearly, if you require a small step size and want to cover a reasonable
range of x-values for a given problem, your spreadsheet tables will grow very large. This becomes
cumbersome, especially when you want to plot the results, change the range, or change your step
size. VBA offers a better approach.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using VBA

Example 11-1 shows the VBA subroutine I wrote implementing Euler's method for our example
problem.

Example 11-1. DoEuler1stOrder

Public Sub DoEuler1stOrder()
 Dim yn As Double
 Dim yn1 As Double
 Dim xn As Double
 Dim dx As Double
 Dim n As Integer

 yn = 0
 xn = 0
 dx = 0.001
 n = 1000

 For i = 1 To n
 yn1 = yn + (xn + yn) * dx
 xn = xn + dx
 yn = yn1
 ActiveSheet.Cells(i + 1, 1) = xn
 ActiveSheet.Cells(i + 1, 2) = yn
 Next i
End Sub

This subroutine computes estimated values for y over a range of x-values and places the results in
the active spreadsheet starting at row 2 in columns A and B.

The variables declared at the beginning of this subroutine are used to store yx (yn), yx+1 (yn1), x
(xn), and x (dx). n is a counter variable representing the number of steps to take.

The For loop iterates from 1 to n, computing estimates for y at each step. The line yn1 = yn + (xn +
yn) * dx computes the predicted y-value given the previous y-value, the step size, and the
derivative of y from the original differential equation. After this calculation and after updating xn and
yn, the subroutine writes the results to the active spreadsheet. The line ActiveSheet.Cells(i + 1, 1)
= xn writes the x-value to row i+1 and column 1 in the R1C1 cell reference style (column 1
corresponds to column A). The line ActiveSheet.Cells(i + 1, 2) = yn writes the y-value to row i+1,
column 2.

I set up a button on a spreadsheet (just like the one I showed in Recipe 9.3) to call this subroutine.
When I press the button, the spreadsheet is populated with the computed results. While this
approach works fine, it suffers one of the problems mentioned earlier with using pure spreadsheet
formulas: when using a small step size while covering a reasonable range of x-values, the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

spreadsheet contains a large number of data points. The subroutine shown in Example 11-1 would fill
1,000 rows of data, which could become cumbersome, as discussed earlier.

To mitigate this problem, you can readily add a few lines of code to DoEuler1stOrder that will output
results every 100 steps or so in order to keep the number of output rows manageable.

This is a common technique in numerical and simulation work. For example,
real time simulations and video games that use physics-based effects use
numerical integration to solve equations of motion. These algorithms typically
use very small time steps that would render the simulation or game extremely
slow if the graphics were updated every time step. Instead, the underlying
computations are computed at small steps but the graphics are updated at a
rate that keeps the simulation or game at a real-time pace.

Example 11-2 shows the modified subroutine using this controlled output technique.

Example 11-2. Modified DoEuler1stOrder

Public Sub DoEuler1stOrder()
 Dim yn As Double
 Dim yn1 As Double
 Dim xn As Double
 Dim dx As Double
 Dim n As Integer
 Dim c As Integer
 Dim k As Integer

 yn = 0
 xn = 0
 dx = 0.001
 n = 1100
 c = n / 10
 k = 1

 For i = 1 To n
 yn1 = yn + (xn + yn) * dx
 xn = xn + dx
 yn = yn1

 If c >= (n / 10) Then
 ActiveSheet.Cells(k + 1, 1) = xn
 ActiveSheet.Cells(k + 1, 2) = yn
 k = k + 1
 c = 0
 Else
 c = c + 1
 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Next i
End Sub

I added two new variables, c and k. c is a counter variable used to determine when to output results
to the spreadsheet, and k is a counter variable used to track the output row.

I decide to output only 10 rows of data while keeping the step size at 0.001. I still wanted to cover a
range of x-values from 0 to 1, which meant I had to make n equal to 1,100. Thus, output will be
delivered to the spreadsheet every n/10 steps, that is, whenever c equals n/10.

The results of this new subroutine are shown in Figure 11-3.

Figure 11-3. Results using VBA

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here you can see the little table I set up to receive the 10 rows of results. You can also see the
button I set up to run the subroutine. This version is much more manageable and gives you greater
flexibility when you need to modify your solution algorithm. For example, to change the step size to
0.0001 while keeping the results table the same size, all you need to do is change dx to 0.0001 and n
to 11,000 in DoEuler1stOrder and then rerun it.

If you try Euler's method for a problem and see that it gives poor results, you might then decide to
implement a higher-order method such as the Runge-Kutta method. This latter method would be
cumbersome to set up in a spreadsheet alone; however, if you're already using VBA, you can modify
your solution subroutine without too much effort and then recompute the results.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Check out Recipe 11.2 to see how to extend the VBA techniques from this recipe to handle second-
order equations.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.2. Applying the Runge-Kutta Method to
Second-Order Initial Value Problems

Problem

You need to numerically solve a second-order differential equation of the form:

Solution

This is a standard initial value problem, and you can implement any of a number of standard
numerical integration techniques to solve it using Excel and VBA.

Discussion

Consider this equation and initial conditions:

Physically, this equation represents the equation of motion for an object moving under some applied
thrust, T.[*] Here, m represents the mass of the object, Cd represents a drag factor, and s represents
the displacement (position) of the object. This equation allows us to compute the motion of this
object.

[*] This problem was adapted from an example I used in one of my previous books, Physics for Game Developers (O'Reilly).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To solve this equation, it helps to rewrite it in the form of two first-order equations. Let v = ds/dt
represent the velocity of the object. Now we have the following:

These equations represent two coupled first-order equations, and you can apply any of a number of
numerical integration schemes to solve them both.

From physics, you know that acceleration is the time rate of change of velocity,
a = dv/dt. Therefore, you can see that the equation written in terms of velocity
is nothing more than an expression of Newton's second law of motion, which
states that the sum of all forces acting on an object equals the object's mass
times its acceleration.

I decided to use the Runge-Kutta method for this example. This method is based on taking more
terms in the Taylor series expansion of a function, as I explained in Recipe 11.1. The caveat here is
that you need to apply further Taylor series expansions to estimate the higher-order derivatives. The
Runge-Kutta approach reduces the truncation error to something on the order of (dt)5, as opposed to
(dt)2 in the case of Euler's basic method (dt is the step size). This means you can usually use larger
step sizes while still maintaining accuracy. The trade-off here is more computations per step. But
ultimately, with the larger step size you should be able to reduce the overall computational burden
using this method.

The Runge-Kutta integration formulas are a little more complicated than the simple formula we used
with Euler's basic method. The general equations are as follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

y' represents dy/dx in these equations. You can see that every step requires four intermediate
computations prior to predicting the next y-value, that is, y(x + x).

Example 11-3 shows the VBA subroutine I wrote implementing these formulas.

Example 11-3. Implementation of Runge-Kutta method

Public Sub DoRK2ndOrder()
 Dim T As Double ' Thrust
 Dim Cd As Double ' Drag coefficient
 Dim M As Double ' Mass
 Dim dt As Double ' Time step size
 Dim F As Double ' Force
 Dim A As Double ' Acceleration
 Dim Vn As Double ' Velocity at time t
 Dim Vn1 As Double ' Velocity at time t + dt
 Dim Sn As Double ' Displacement at time t
 Dim Sn1 As Double ' Displacement at time t + dt
 Dim time As Double ' Total time
 Dim k1 As Double ' Runge-Kutta k1
 Dim k2 As Double ' Runge-Kutta k2
 Dim k3 As Double ' Runge-Kutta k3
 Dim k4 As Double ' Runge-Kutta k4
 Dim n As Integer ' Counter controlling total number of time steps
 Dim C As Integer ' Counter controlling output of results to spreadsheet
 Dim k As Integer ' Counter controlling output row
 Dim r As Integer ' Number of output rows

 ' Extract given data from the active spreadsheet:
 With ActiveSheet
 dt = .Range("dt")
 T = .Range("T")
 M = .Range("M")
 Cd = .Range("Cd")
 n = .Range("n")
 r = .Range("r_")
 End With

 ' Initialize variables:
 k = 1
 time = 0
 C = n / r
 Vn = 0
 Sn = 0

 ' Start iterations:
 For i = 1 To n

 ' Compute k1:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 F = (T - (Cd * Vn))
 A = F / M
 k1 = dt * A

 ' Compute k2:
 F = (T - (Cd * (Vn + k1 / 2)))
 A = F / M
 k2 = dt * A

 ' Compute k3:
 F = (T - (Cd * (Vn + k2 / 2)))
 A = F / M
 k3 = dt * A

 ' Compute k4:
 F = (T - (Cd * (Vn + k3)))
 A = F / M
 k4 = dt * A

 ' Compute velocity at t + dt:
 Vn1 = Vn + (k1 + 2 * k2 + 2 * k3 + k4) / 6

 ' Compute displacement at t + dt using Euler prediction:
 Sn1 = Sn + Vn1 * dt

 ' Update variables:
 time = time + dt
 Vn = Vn1
 Sn = Sn1

 ' Output results to the active spreadsheet:
 If C >= n / r Then
 ActiveSheet.Cells(k + 1, 1) = time
 ActiveSheet.Cells(k + 1, 2) = Sn
 ActiveSheet.Cells(k + 1, 3) = Vn
 k = k + 1
 C = 0
 Else
 C = C + 1
 End If
 Next i
End Sub

This is a relatively long subroutine compared to the one shown in Example 11-2 implementing Euler's
method, so I commented this one to help you navigate through it.

As usual, several local variables are declared at the beginning of the subroutine. There are a bunch of
them here, so I labeled each one in Example 11-3 to indicate their respective purposes.

After the variables are declared, several of them are populated with data retrieved from the active

http://lib.ommolketab.ir
http://lib.ommolketab.ir

spreadsheet. The spreadsheet is shown in Figure 11-4.

Figure 11-4. Solution using the Runge-Kutta method

Values retrieved from the spreadsheet include the time-step size, thrust, mass, drag coefficient,
number of iterations, and number of output rows. The block of code in Example 11-3 containing the
With statement performs the data retrieval. Notice that I use cell names to refer to the spreadsheet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cells containing the data of interest.

See the discussion of Example 9-1 in Recipe 9.3 for information on the use of
With statements. Also, take a look at Recipe 1.14 to learn how to define cell
names.

The next little section of code simply initializes a few variables. This is where the initial values for
displacement and velocity specified in the problem are set.

Next, the For loop iterates computing estimates for displacement and velocity at each step. Taking a
closer look at the code within the For loop, you can see how I applied the Runge-Kutta formulas to
compute vt+dt. To make things a little more intuitive (at least to me), I broke the computations of the
k-values into a few steps, using the analogy of Newton's second law of motion. F in these
computations stands for the sum of forces. For this problem, the sum of forces is composed of the
thrust force and the drag force. A then represents the object's acceleration, which is equal to the net
force divided by the object's mass. Finally, the k-values are computed by multiplying the acceleration
by the time step.

I find it easier to think in terms of physical values like force and acceleration whenever possible.
Knowing that acceleration is equal to dv/dt, you can readily see that acceleration corresponds to y' in
the Runge-Kutta formulas for this particular problem. This is because we broke the original equation
up and are dealing with the first one involving velocity.

After all of the k-values are obtained, vt+dt is estimated using the Runge-Kutta formula discussed
earlier. Next, a simple Euler estimate is made for the corresponding displacement, st+dt.

Finally, the results are sent to the active spreadsheet in the same manner I showed you in Recipe
11.1. Figure 11-4 shows the results, including a plot of velocity and displacement versus time, using
a time step of 0.005. You should play around with this time step to see how the accuracy of the
results is affected. (If this were a class, I'd assign that exercise for homework.)

I should also mention that I used a button control, as you can see in Figure 11-4, to call the
subroutine when the button is clicked. Refer back to Recipe 9.3 to learn how to add this sort of
button control and assign its functionality.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.3. Tackling Coupled Equations

Problem

You've seen how to apply both the Runge-Kutta method and Euler's basic method using VBA for first- and
second-order differential equations, but now you need to solve a system of coupled equations . You're
wondering how to extend what you've learned so far to deal with this more complicated problem.

Solution

You can apply the same VBA techniques discussed earlier with some modifications to deal with multiple
equations.

Discussion

Consider this system of coupled nonlinear differential equations with initial conditions:

Pretty, huh? This problem originally consisted of two coupled second-order equations that were reduced to
four first-order equations using the same technique discussed in Recipe 11.2 . This is a common technique
for reducing the order of differential equations, making them more amenable to solving. This particular
problem was adapted from a problem that appears in An Introduction to Linear and Nonlinear Finite
Element Analysis , by Prem K. Kythe and Dongming Wei (Birkhauser). The problem represents a finite
element solution of the nonlinear vibrations of a metal rod. Since this is a nonlinear problem, it requires a
numerical solution. In their book, Kythe and Wei present some Matlab code to solve this problem using
Euler's method .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Euler's method

I implemented Euler's method in VBA to illustrate how to solve this same system in Excel. Example 11-4
shows my VBA code.

Example 11-4. DoEuler for nonlinear system

Public Sub DoEuler()
 Dim y(1 To 4) As Double
 Dim t(1 To 4) As Double
 Dim n As Integer
 Dim dt As Double
 Dim time As Double

 y(1) = 29.8613
 y(2) = 0
 y(3) = 30.0616
 y(4) = 0

 n = 5000
 dt = 5 / n
 time = 0

 For i = 1 To n
 t(1) = y(1) + dt * dy1dt(y(1), y(2), y(3), y(4))
 t(2) = y(2) + dt * dy2dt(y(1), y(2), y(3), y(4))
 t(3) = y(3) + dt * dy3dt(y(1), y(2), y(3), y(4))
 t(4) = y(4) + dt * dy4dt(y(1), y(2), y(3), y(4))

 y(1) = t(1)
 y(2) = t(2)
 y(3) = t(3)
 y(4) = t(4)

 time = time + dt
 ActiveSheet.Cells(i + 1, 1) = time
 ActiveSheet.Cells(i + 1, 2) = y(1)
 ActiveSheet.Cells(i + 1, 3) = y(2)
 ActiveSheet.Cells(i + 1, 4) = y(3)
 ActiveSheet.Cells(i + 1, 5) = y(4)
 Next i
End Sub

As you can see, this is not a particularly complicated subroutine. It's very similar to the code in Example
11-2 that I showed you for solving a first-order equation using Euler's method. The major difference in
this case is that we have four coupled equations instead of a single equation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

I'm using VBA array variables in this code for the y -values and temporary t -values.
In VBA, you declare an array using Dim y(1 To 4) As Double . You can access the
array using y(1) or y(3) , and so on.

I have to confess that there's a little more to this code than is shown in Example 11-4 . Notice the function
callsdy1dt , dy2dt , dy3dt , dy4dt in the lines of code that implement Euler's integration formula (the lines
just after the For statement). These functions compute the derivatives for each y . The derivative
expressions are taken directly from the system of equations shown earlier. The corresponding VBA
functions are shown in Example 11-5 .

Example 11-5. Derivative functions

Public Function dy1dt(y1 As Double, y2 As Double, y3 As Double, y4 As Double) As Double
 dy1dt = y2
End Function

Public Function dy2dt(y1 As Double, y2 As Double, y3 As Double, y4 As Double) As Double
 dy2dt = (-15600# * (2# * ((Abs(y1)) ^ -0.74) + 3# * ((Abs(y3 - y1))^-0.74))) _
 / 7# * y1 + (3# * 15600# * ((Abs(y3 - y1)) ^ -0.74)) / 7# * y3
End Function

Public Function dy3dt(y1 As Double, y2 As Double, y3 As Double, y4 As Double) As Double
 dy3dt = y4
End Function

Public Function dy4dt(y1 As Double, y2 As Double, y3 As Double, y4 As Double) As Double
 dy4dt = (-15600# * (-((Abs(y1)) ^ -0.74) - 5# * ((Abs(y3 - y1)) ^ -0.74))) _
 / 7# * y1 - (5# * 15600# * ((Abs(y3 - y1)) ^ -0.74)) / 7# * y3
End Function

This code runs just fine. The problem is that this is a particularly troublesome system of equations for
Euler's method. The solution diverges dramatically as it marches along in time. Check out Figure 11-5 to
see what I mean.

The chart shows y 1 and y 3 the displacements of the rod at its center and free endover time. The results
should look sinusoidal. However, you can clearly see that this solution is not a sinusoid. This is wonderful
example of the sort of problem where Euler's method, though easy to implement, is a poor choice.

Runge-Kutta method

The Runge-Kutta method presents a better alternative to Euler's method for this problem. In Recipe 11.2 ,
I showed you how to reduce a second-order equation to two first-order equations and then use the Runge-
Kutta method to solve one and use a Euler step to solve the other. In this new example, I'll show you how
to apply the Runge-Kutta method for all four equations at each time step. To this end, I prepared a new
subroutine, DoRungeKutta , shown in Example 11-6 . DoRungeKutta also makes calls to the derivative

http://lib.ommolketab.ir
http://lib.ommolketab.ir

functions shown earlier in Example 11-5 .

Figure 11-5. Poor results using Euler's method

Example 11-6. Runge-Kutta for nonlinear system

Public Sub DoRungeKutta()
 ' Declar Local variables
 Dim y(1 To 4) As Double
 Dim k1(1 To 4) As Double
 Dim k2(1 To 4) As Double
 Dim k3(1 To 4) As Double
 Dim k4(1 To 4) As Double
 Dim n As Integer
 Dim dt As Double
 Dim time As Double

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Application.ScreenUpdating = False

 ' Initialize variables
 y(1) = 29.8613
 y(2) = 0
 y(3) = 30.0616
 y(4) = 0
 n = 5000
 dt = 5 / n:
 time = 0

 ' Perform iterations
 For i = 1 To n
 k1(1) = dt * dy1dt(y(1), y(2), y(3), y(4))
 k1(2) = dt * dy2dt(y(1), y(2), y(3), y(4))
 k1(3) = dt * dy3dt(y(1), y(2), y(3), y(4))
 k1(4) = dt * dy4dt(y(1), y(2), y(3), y(4))

 k2(1) = dt * dy1dt(y(1)+k1(1)/2#, y(2)+k1(2)/2#, y(3)+k1(3)/2#, _
 y(4)+k1(4)/2#)
 k2(2) = dt * dy2dt(y(1)+k1(1)/2#, y(2)+k1(2)/2#, y(3)+k1(3)/2#, _
 y(4)+k1(4)/2#)
 k2(3) = dt * dy3dt(y(1)+k1(1)/2#, y(2)+k1(2)/2#, y(3)+k1(3)/2#, _
 y(4)+k1(4)/2#)
 k2(4) = dt * dy4dt(y(1)+k1(1)/2#, y(2)+k1(2)/2#, y(3)+k1(3)/2#, _
 y(4)+k1(4)/2#)

 k3(1) = dt * dy1dt(y(1)+k2(1)/2#, y(2)+k2(2)/2#, y(3)+k2(3)/2#, _
 y(4)+k2(4)/2#)
 k3(2) = dt * dy2dt(y(1)+k2(1)/2#, y(2)+k2(2)/2#, y(3)+k2(3)/2#, _
 y(4)+k2(4)/2#)
 k3(3) = dt * dy3dt(y(1)+k2(1)/2#, y(2)+k2(2)/2#, y(3)+k2(3)/2#, _
 y(4)+k2(4)/2#)
 k3(4) = dt * dy4dt(y(1)+k2(1)/2#, y(2)+k2(2)/2#, y(3)+k2(3)/2#, _
 y(4)+k2(4)/2#)

 k4(1) = dt * dy1dt(y(1) + k3(1), y(2) + k3(2), y(3) + k3(3), y(4) + k3(4))
 k4(2) = dt * dy2dt(y(1) + k3(1), y(2) + k3(2), y(3) + k3(3), y(4) + k3(4))
 k4(3) = dt * dy3dt(y(1) + k3(1), y(2) + k3(2), y(3) + k3(3), y(4) + k3(4))
 k4(4) = dt * dy4dt(y(1) + k3(1), y(2) + k3(2), y(3) + k3(3), y(4) + k3(4))

 y(1) = y(1) + (k1(1) + 2 * k2(1) + 2 * k3(1) + k4(1)) / 6
 y(2) = y(2) + (k1(2) + 2 * k2(2) + 2 * k3(2) + k4(2)) / 6
 y(3) = y(3) + (k1(3) + 2 * k2(3) + 2 * k3(3) + k4(3)) / 6
 y(4) = y(4) + (k1(4) + 2 * k2(4) + 2 * k3(4) + k4(4)) / 6

 time = time + dt
 ActiveSheet.Cells(i + 1, 1) = time
 ActiveSheet.Cells(i + 1, 2) = y(1)
 ActiveSheet.Cells(i + 1, 3) = y(2)
 ActiveSheet.Cells(i + 1, 4) = y(3)
 ActiveSheet.Cells(i + 1, 5) = y(4)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Next i
 Application.ScreenUpdating = True
 Application.ActiveWorkbook.Save

End Sub

The line Dim y(1 To 4) As Double declares a four-element array variable in which to store the computed y
s at every time step. The next several declarations consist of array declarations for the Runge-Kutta k -
values. Each of the four equations requires four empty k -values.

After setting the initial y conditions and initializing other utility variables, the subroutine enters a For loop.
The guts of the For loop contain a straightforward application of the Runge-Kutta formulas for each
equation in the system being solved. As in earlier examples, output is returned to the active spreadsheet
at each time step.

Running DoRungeKutta gives much better results than the earlier attempt that used Euler's method. Figure
11-6 shows the new results.

Figure 11-6. Good results using the Runge-Kutta method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

These results look far better than those obtained earlier. Clearly, the results shown in Figure 11-6 for y 1
and y 3 are sinusoidal as expected. The difference between these results and those obtained using Euler's
method are dramatic and effectively illustrate the relative accuracy of higher-order methods, such as the
Runge-Kutta method, over Euler's basic method.

Take note of the lines of code Application.ScreenUpdating = False and
Application.ScreenUpdating = True at the beginning and end of this subroutine,
respectively. These lines turn screen updating off and then back on. This subroutine
generates a lot of results, so I turned off screen updating to speed up the
calculations. At the end, I turned it back on so the final results are displayed. The
line Application.ActiveWorkbook.Save saves the workbook just in case I forget to
do so.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.4. Shooting Boundary Value Problems

Problem

You need to numerically solve a boundary value problem where you're given an ordinary differential
equation and boundary conditions in the problem domain.

Solution

You can use the shooting method to solve the boundary value problem in Excel.

Discussion

The shooting method is a well-known iterative method for solving boundary value problems .
Consider this example:

This is a second-order equation subject to two boundary conditions, or a standard two-point
boundary value problem .

Let y2 = u and y1 = du/dt = dy2/dt to reduce this second-order equation to two first-order equations:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The shooting method attempts to solve this sort of problem as an initial value problem using a
marching algorithm like Euler's method or the Runge-Kutta method, as discussed earlier in this
chapter. The problem is that the initial conditions are not fully specified; du/dt at t = 0 is unknown.
This is the same as saying y1(0) in the reduced system is unknown. Therefore, the shooting method
requires you to make an initial guess at the unknown initial condition and then implement a marching
algorithm over the problem domain. Once that is complete, you have to check to see if the values
obtained at the end of the marching process satisfy the given boundary conditions at the end of the
boundary. If they are not satisfied, you have to assume new values for the unknown initial
conditions, redo the marching solution, and then check the end boundary conditions again. You
repeat this process until you converge on a solution that satisfies all boundary conditions. This
iterative process is ideally suited to Excel's Solver tool.

You can readily set this problem up in Excel and solve it using a combination of Solver and a method
such as Euler's method. Figure 11-7 shows the spreadsheet I set up to solve the reduced system of
equations shown earlier.

At the top of this spreadsheet you can see where I entered the given boundary conditions into
several cells. I divided these into initial conditions that will serve as initial conditions for the marching
algorithm, and a boundary condition at the end of the problem domain (t = 1). Make sure you notice
that the initial condition y1(0) is unknown. The value shown in cell D3 is an assumed initial value.
We're going to use Solver to find it later.

The meat of this spreadsheet is the table you see in the middle of Figure 11-7, which implements
Euler's method to solve the reduced system of equations. The values at t = 0 in this table contain the
initial conditions. For example, the cell containing y1 at t = 0 (cell D12) contains the cell formula =D3,
referring back to the unknown initial condition. Similarly, the cell containing y2 at t = 0 (cell E12)
contains the cell formula =D2 referring back to the given initial condition.

Figure 11-7. Two-point boundary value problem setup

http://lib.ommolketab.ir
http://lib.ommolketab.ir

All of the other cells in this table contain formulas like =D12+2*C13*D9 for the y1 column and
=E12+D12*D9 for the y2 column. These formulas correspond to the Euler integration formulas for this
problem shown here:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The table shown in Figure 11-7 is only a portion of the table I set up. You can
see that the row labels skip from row 16 to row 106. What happened to the
rows in between? I hid them using Format Row Hide from the main
menu bar (select the rows you want to hide first). This way I could see the
bottom end of the table without having to scroll down.

Notice in Figure 11-7 that the computed value for y2 at the end of the domain, t = 1, does not satisfy
the given boundary condition. This is because my assumed initial condition, y1(0) = 0, is not the
correct initial condition. However, we can use Solver to find it iteratively, subject to the constraint
that the value in cell E112 must be equal to the value in cell D6 in order to satisfy the boundary
conditions. Figure 11-8 shows the Solver model I set up for this problem.

Figure 11-8. Solver model for two-point boundary value problem

Just as in Recipe 9.4, I didn't specify a target cell. Instead, I specified only a cell to change subject to
a single constraint. Solver will automatically set up a dummy target cell if one is not specified. The
value of that target cell is irrelevant to the solution. The cell to change for this problem is the value of
the unknown initial condition. The constraint consists of requiring the computed value of y2 at the end
of the problem domain to equal the given boundary condition. (See Recipe 9.4 to learn how to add
constraints in Solver).

Setting up this Solver model and pressing the Solve button starts the iterative solution process,
resulting in the solution shown in Figure 11-9.

Figure 11-9. Two-point boundary value problem solution

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you can see, Solver found a solution satisfying the specified constraint. It turns out that the
correct initial condition for y1 is 0.666701. At this point the problem is solved and you can plot the
results if you desire. (See Chapter 4 to learn how to create charts in Excel.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 12. Solving Partial Differential
Equations

Section 12.0. Introduction

Recipe 12.1. Leveraging Excel to Directly Solve Finite Difference Equations

Recipe 12.2. Recruiting Solver to Iteratively Solve Finite Difference Equations

Recipe 12.3. Solving Initial Value Problems

Recipe 12.4. Using Excel to Help Solve Problems Formulated Using the Finite Element Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.0. Introduction

Partial differential equations are incredibly important in scientific and engineering problem solving,
and it's no wonder a vast array of methods have been devised to solve them. As in the case of
ordinary differential equations, you can divide problems involving partial differential equations into
two broad classes: boundary value problems and initial value problems (including initial-boundary
value problems).

The best examples for boundary value problems are elliptic equations of the form:

I'm using the standard subscript notation here to indicate partial derivatives,
e.g., ux represents the first partial derivative of u with respect to x.

The first equation shown above is the well-known Laplace equation, while the second is the Poisson
equation. Boundary conditions are required for these equations and can consist of specification of u,
derivatives of u, or a mix of these two on the problem boundary, corresponding to Dirichlet,
Neumann, and mixed conditions, respectively. The numerical solution to boundary value problems of
this form generally consists of discretizing the problem domain using one of a variety of techniques,
such as the finite difference method, finite element method, or boundary element method, and
formulating a system of algebraic equations that can be solved for the unknown values of u at
discrete nodal points inside the problem domain or boundary.

Time does not enter into elliptic problems, so the solution sought is a steady state or static solution.
For example, a fluid flow problem can be formulated as a steady state problem, or a structural
problem can be formulated as a static problem. The resulting system of equations may or may not be
linear and, depending on the size of the problem and how it's discretized, could be a relatively small
system of equations or a very large one. These factors combine to guide selection of an appropriate
solution algorithm. Small linear systems can be solved directly, but nonlinear or large systems might
require an iterative approach.

Time-dependent problems are typically of the form:

The first equation is the one-dimensional diffusion equation, and the second is the one-dimensional
wave equation. These equations can, of course, apply to higher-dimensional problems as well, with

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the addition of suitable terms. In terms of standard mathematical classifications, the diffusion
equation represents a parabolic equation, while the wave equation represents a hyperbolic equation.

An important distinction between these equations and the previously mentioned elliptic equations is
the dependence on time in the case of parabolic and hyperbolic equations . This has implications with
regard to the method of solution. In time-dependent problems, marching or stepping algorithms can
be used to propagate solutions in time, just as you saw Chapter 11 for time-dependent ordinary
differential equations. Further, in addition to boundary conditions of the types mentioned earlier, you
also have to specify initial conditions for time-dependent problems.

Partial differential equations apply to an incredible variety of problems, from describing physical
processes to modeling economic processes, and all sorts of problems in between. For many problems,
exact solutions are difficult if not impossible to find, and numerical methods play an important role in
their solution. Given the ready availability of computing power these days, numerical methods for
partial differential equations are enjoying much attention and rapid development. It seems the
number and variety of methods is almost as varied as are the problems being solved.

In general, Excel will do nothing to formulate a solution to any given partial differential equation. You
have to do the math yourself. However, once you have formulated a solution in the form of a
nonlinear equation or system of linear or nonlinear equations, either static or time-dependent, you
can leverage Excel to help solve these equations. In this regard, the recipes in this chapter provide
several examples of how you might use Excel to solve partial differential equations. These are by no
means all-inclusive, but I hope they provide some inspiration for taking advantage of Excel's features
to help solve some complicated problems.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.1. Leveraging Excel to Directly Solve Finite
Difference Equations

Problem

You've formulated the finite difference equations for an elliptic boundary value problem and now you
need to solve the resulting system of equations.

Solution

Use Excel's matrix functions to solve the system of finite difference equations.

Discussion

The finite difference method is a well-known and well-established numerical method suitable for
solving partial differential equations. Virtually every book I've ever read dealing with partial
differential equations covers the finite difference method to some degree. DuChateau and Zachmann
give a pretty good introduction, with examples, on the application of the finite difference method to
partial differential equations in their book Applied Partial Differential Equations.[*]

[*] Paul DuChateau and David Zachmann, Applied Partial Differential Equations (Mineola, N.Y.: Dover Publications, 2002;

originally published 1989 by Harper & Row).

The basic idea of the finite difference method is to divide the problem domain into a finite number of
cells, forming a grid. The intersections of grid lines then represent computational nodes where the
value of the function sought will be approximated. The governing differential equation is then written
in terms of finite differences (see Recipe 10.6). These finite differences could be forward differences,
backward differences, or central differences, and they are used to approximate the derivatives
appearing in the governing partial differential equations at each node in the computational grid.

Consider the Laplace equation :

If we discretize the problem domain as describe a moment ago, then at each node illustrated in
Figure 12-1, we can approximate the second partial derivative of u with respect to x using the
following finite difference approximation:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 12-1. Finite difference nodes

Similarly, the finite difference approximation for uyy is:

Here, I'm assuming the node spacing is uniform and the same in both the x and y directions.
Substitution of these finite difference approximations into the Laplace equation yields the following
finite difference equation:

This equation must be satisfied at every node. Nodes adjacent to boundary nodes with Dirichlet
boundary conditions will include the specified value at the boundary node. Typically, a ghost particle
technique is used in the case of Neumann boundary conditions. In any case, writing this finite
difference approximation at each node in the computation grid results in a system of equations that
must be solved to find the u-values at each node. It's this resulting system of equations that can be
solved in Excel.

For example, a rectangular domain divided into nine equal-sized cells would contain four interior
nodes where values of u are sought. Applying the above finite difference equation at each node would
result in a system of four equations and four unknowns. In this case, with such a small number of
equations, you can use matrix formulas discussed in Recipe 9.4 to solve for the unknown u-values.

Finer computational grids, or meshes, result in a larger number of nodes and thus a larger system of
equations. In these cases, it's usually more efficient and easier to use iterative methods to solve the
system. Recipe 12.2 explains such an approach.

See Also

The body of literature covering finite difference methods is vast. Consult your favorite numerical

http://lib.ommolketab.ir
http://lib.ommolketab.ir

methods book for more information. I found the Applied Partial Differential Equations book cited
earlier in this recipe very readable and comprehensive in its coverage of the finite difference method
to elliptic, parabolic, and hyperbolic problems.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.2. Recruiting Solver to Iteratively Solve Finite
Difference Equations

Problem

You've set up a finite difference solution to an elliptic boundary value problem, but instead of directly
solving a system of algebraic equations, you want to use an iterative approach.

Solution

Set up your finite difference equations in Excel and use Solver to iteratively find a solution.

Discussion

In Recipe 12.1, I explained how you can use Excel's matrix functions to directly solve systems of
finite difference equations. For small systems, direct matrix operations are viable; however, for large
systems the use of matrix functions in Excel is cumbersome. Other standard direct methods include
Gauss elimination and Fourier's method, among others. These methods could be programmed in
Excel; however, there's another class of methods known as iterative methods that are more
attractive.

Iterative solutions to finite differences equations abound. Various standard methods such as Jacobi's
method , Gauss-Seidel iteration (also called Liebmann's method), and the alternating direction
implicit (ADI) method are commonly used in lieu of direct methods. Iterative methods have an
advantage over direct methods in that they typically require less memory and are relatively easy to
program. Moreover, when using Excel to help solve your problem, you already have access to a
powerful iterative tool, Solver. This means that you can use Solver to find a solution to your finite
difference equations without any programming beyond setting up a spreadsheet.

By way of example, consider the steady state temperature distribution in a square plate. The left,
right, and bottom edges of the plate are maintained at a constant 100°C, whereas the top of the
plate is maintained at a constant 0°C. The temperature distribution in the interior of the plate is
governed by the Laplace equation shown earlier, where u represents temperature. The Laplace
equation is repeated here for convenience:

A finite difference mesh for this problem might look something like that shown in Figure 12-2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 12-2. Finite difference grid for temperature distribution in square
plate

Each little circle shown in the grid in Figure 12-2 represents a computational node where the
following finite difference equation, from the previous recipe, applies:

In this example, I'm assuming the grid spacing, h, is uniform in both x and y directions and equal to
1 cm.

If you rearrange this finite difference equation, solving for u(x, y), you get the following:

You can see that u (the temperature) at each node is simply the average of the temperatures of
adjacent nodes. For nodes adjacent to the plate boundary, the specified boundary conditions are
included in the average.

This example results in 49 finite difference equations with 49 unknown temperatures. A temperature
distribution is sought that satisfies the above equation at each node.

Another way to look at this problem is to reconsider this form of the finite difference equation:

This is the same equation shown earlier, prior to solving for u(x, y). This form of the equation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

represents the residual at each nodethat is, the temperature minus the estimated temperature at
each node. This residual must ideally be 0. If you take all these residuals, one for each node, and
square them and then sum the squares, you end up with a least-squares minimization problem. You
can use Solver to minimize the sum of squared residuals to arrive at a solution that satisfies the
governing equations. Figure 12-3 shows the spreadsheet I set up to solve this problem in Excel.

Figure 12-3. Finite difference spreadsheet setup

The table under the heading Finite Difference Solution represents the temperature distribution
satisfying the governing equations and boundary conditions. At the moment, the table is filled with
initial guesses except at the boundaries, where the given boundary conditions are applied. Each of
the shaded cells in this table corresponds to a computational node in the finite difference grid
illustrated in Figure 12-2. The nonshaded cells bounding the shaded cells correspond to boundary
nodes with specified boundary conditions.

The lower table in Figure 12-3, under the heading Residuals-squared, contains a similar set of shaded

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cells. In this case, the shaded cells contain the finite difference equation for each node, squared. The
cell formulas are of the following form: =(-4*S6+S5+S7+R6+T6)^2. This is the cell formula for cell S18.
All the other cells contain similar formulas with relative cell references. This form is essentially the
square of the residual for each node. Note that these formulas refer to the values for each node
contained in the upper table.

Cell R28 contains the formula =SUM(S18:Y24). This is simply the sum of all squared residuals
contained in the lower table.

Now you can use Solver to minimize the value in cell R28 by changing all the values contained in the
shaded cells in the upper table. Figure 12-4 shows the Solver model I used for this example.

Figure 12-4. Solver model for finite difference solution

You can see that this model aims to minimize the value in cell R28, the sum of squared residuals, by
changing all the values contained in cells S6 to Y12. If Solver is successful, cells S6 to Y12 in the
upper table in Figure 12-3 will contain a temperature distribution that satisfies the governing
equations and boundary conditions.

After you press the Solve button, Solver does indeed find a solution, as shown in Figure 12-5.

Figure 12-5. Solution to finite difference problem

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you can see, the sum of squared residuals is a very small number and the squared residuals for
each cell are all 0 (to 14 decimal places). The upper table now contains the solution to the
temperature distribution problem.

Just for fun, I plotted these results using Excel's 3-D Surface chart feature (see Chapter 4). Figure
12-6 shows the resulting plot.

This highlights another advantage of using Excel: you can quickly visualize your results without
having to program your own visualizations or use a separate visualization tool.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 12-6. Surface plot of temperature distribution

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.3. Solving Initial Value Problems

Problem

You're dealing with a parabolic or hyperbolic problem and have developed the finite difference
equations for the problem, which includes both discretized spatial and time variables. Now you have
to solve these equations.

Solution

Use Excel and Solver to solve the finite difference equations in a manner similar to that discussed in
Recipe 12.2.

Discussion

In the previous recipe, I showed you how to leverage Solver to solve the finite difference equations,
arriving at a steady state solution to an elliptic-type boundary value problem. You can apply the
same techniques to solve time-dependent parabolic or hyperbolic types of problems.

Consider the time-dependent one -dimensional heat equation:

This is a parabolic equation, which can be used to model the time-dependent heat conduction in a
metal rod, for example, subject to some prescribed initial temperature distribution and boundary
conditions at the ends of the rod.

Let's assume we have a 1m rod that's insulated all around except at the ends. The ends of the rod
are maintained at a constant 10°C and the initial temperature distribution along the length of the rod
(at time t = 0) is as shown in Figure 12-7, row 13. Further assume that c2 equals 1. Now we can use
the finite difference method to solve for the temperature distribution along the length of the rod over
time.

Erwin Kreyszig solves a similar problem in Advanced Engineering Mathematics.[*] Kreyszig uses the
Crank-Nicolson finite difference method, where the following finite difference equation applies at each
computational node in the finite difference grid:

[*] Erwin Kreyszig, Advanced Engineering Mathematics, 6th ed. (New York: Wiley, 1988).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this method, both spatial and time variables are discretized. You can set up a finite difference grid
similar to that shown in Figure 12-2, where instead of the vertical axis representing the y-dimension,
the vertical axis will now represent time. The horizontal axis still represents the x-dimensionthe
distance along the rod's length in this case. The finite difference equation shown here assumes that
the time step size, t, is related to the x step size, x, such that t = x2.

You can solve this problem in a manner similar to that discussed in Recipe 12.2, where I showed you
how to solve a boundary value problem using Solver. Figure 12-7 shows the spreadsheet I set up to
solve this initial value problem.

The upper table, Finite Difference Solution, initially contains only specified boundary and initial
values (nonshaded cells) and initial guesses for the unknown temperature values along the length of
the rod (shaded cells). We're going to let Solver alter the values in the shaded cells in the upper table
to find a solution.

The shaded cells in the lower table, Residuals-squared, contain the finite difference equation shown
earlier for each node. Actually, the square of the lefthand side, the residual, is computed; the idea is
to minimize these residuals as discussed earlier. For example, the formula in cell H22 is =(4*H8-I8-
G8-I9-G9)^2. All the other cell formulas are similar. Notice that these formulas refer to values
contained in the upper table.

Cell D29 contains the sum of all these residual cells. We're going to have Solver attempt to minimize
the value computed in cell D29. The Solver model I used for this example is shown in Figure 12-8.

Figure 12-7. Spreadsheet for solving initial value problem

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 12-8. Solver model for initial value problem

http://lib.ommolketab.ir
http://lib.ommolketab.ir

I set the target cell to D29 so as to minimize the sum of squared residuals. The cells to change are all
the shaded cells in the upper table of Figure 12-7. The corresponding cell range is E5 to K12.
Pressing the Solve button sets Solver going on its search for a solution. After a few seconds, Solver
presents the results shown in Figure 12-9.

Figure 12-9. Final solution to initial value problem

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you can see, all the residuals are 0 and the upper table now contains the solution to this initial
value problem. Figure 12-10 shows a plot of these results.

As I mentioned in the previous recipe, the ability to quickly visualize your results in Excel without
having to use a separate visualization tool is another compelling reason to use Excel for this sort of
problem when possible. Refer to Chapter 4 to learn more about creating charts in Excel.

Figure 12-10. Plot of initial value problem results

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.4. Using Excel to Help Solve Problems
Formulated Using the Finite Element Method

Problem

You've applied the finite element method to a nonlinear problem and must now iteratively find a
solution.

Solution

Use Solver to find a solution to the resulting nonlinear equation or system of equations. See Chapter
9 for recipes showing how to use Solver.

Discussion

The finite element method is a very popular method for numerically solving differential equations. The
method involves discretizing the problem domain and governing equations, resulting in an algebraic
system of equations that must be solved to arrive at an approximate solution to the problem. In
some cases, the problem is nonlinear, which results in a nonlinear equation, or system of equations,
that must be solved. As discussed in Chapter 9, Excel's built-in Solver tool is very adept at finding
solutions to such equations.

By way of example, consider a heat conduction problem presented by Kythe and Wei in their
Introduction to Linear and Nonlinear Finite Element Analysis.[*] The governing partial differential
equation, with boundary conditions, is as follows:

[*] Prem Kythe and Dongming Wei, An Introduction to Linear and Nonlinear Finite Element Analysis (Boston: Birkhauser, 2004).

See pages 244 and 245 for a complete derivation using the Galerkin method .

This equation represents steady state heat conduction in a laterally insulated rod with constant
temperature maintained at one end (x = 0) and with radiation heat transfer at the other end (x = L).
k is the thermal conductivity of the rod material. is the Stefan-Boltzman constant. is the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

emissivity constant. Kythe and Wei apply the Galerkin method with linear shape functions to derive a
solution for this problem. The resulting nonlinear equation to be solved is:

TL represents the unknown temperature at the end of the rod. All other parameters in this equation
are given. The solution to this equation was actually assigned as a homework problem in a graduate
course I took with Dr. Wei. I used Excel's Solver tool to find a solution to this problem. Figure 12-11
shows the spreadsheet I prepared.

Cells C3 through C10 contain all of the given data for this problem. Cell C11 contains the unknown
temperature at the end of the rod that must be found iteratively. Cell C12 contains the righthand side
of the nonlinear equation shown earlier. In Figure 12-11, cell C12 is selected so that you can see the
cell formula in Excel's formula bar. The formula is =-(C9*C10)/C6*(C11^4 - C8^4)*C5+C7-C11.

Figure 12-11. Solving for TL using Solver

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 12-11 also shows the Solver window overlaid on the spreadsheet. The Solver model for this
problem is relatively simple. Basically, you want to set the value of cell C12the one containing the
nonlinear equationto 0 by changing the value in cell C11, which contains the temperature at the end
of the rod. Setting up this model and pressing the Solve button in Solver yields the solution shown in
Figure 12-11. That is, the temperature at the end of the rod is approximately 373.09 K.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Some approaches to formulating finite element solutions, for example the Rayleigh-Ritz approach,
result in a minimization problem to find an approximate solution. In these cases, once the
minimization problem has been formulated, you can use Excel's Solver tool. See Chapter 9 for more
information on using Solver.

Solutions to many problems formulated using the finite element approach (particularly linear ones)
result in an algebraic system of equations that must be solved. Here again, you can use techniques
discussed in Chapter 9 to solve these systems.

Some finite element solution formulations require you to solve a system of ordinary differential
equations in order to find an approximate solution to the original partial differential equation. Such
systems can be solved in Excel. See Recipe 11.3 for an example.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 13. Performing Optimization
Analyses in Excel

Section 13.0. Introduction

Recipe 13.1. Using Excel for Traditional Linear Programming

Recipe 13.2. Exploring Resource Allocation Optimization Problems

Recipe 13.3. Getting More Realistic Results with Integer Constraints

Recipe 13.4. Tackling Troublesome Problems

Recipe 13.5. Optimizing Engineering Design Problems

Recipe 13.6. Understanding Solver Reports

Recipe 13.7. Programming a Genetic Algorithm for Optimization

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.0. Introduction

Optimization problems come up frequently. A businessman may try to optimize profit given
production performance from several different production facilities. An engineering manager may try
to optimize his labor force to meet forecast demands. Engineers often try to optimize design
problems to produce optimum performing designs at minimum cost or perhaps minimum weight. The
variety of applications is incredible.

By now you're familiar with Solver; we've used it for least-squares curve fitting and for solving
nonlinear equations and systems of equations. In reality, Solver is an optimization tool that has been
very nicely integrated with Excel. You can use Solver to handle many different types of optimization
problems directly within Excel. You can use Solver for linear programming types of problems and for
nonlinear optimization problems (sometimes called dynamic programming). I use Solver very often
for engineering design optimization and some business optimization problems. While Solver is very
capable, it isn't your only option, and sometimes it's not necessarily the best option.

In this chapter, I will show you how to leverage Excel's built-in features, like Solver, to solve several
typical types of optimization problems. Further, I will show you how you can use Excel and VBA to
program a nontraditional algorithm (a genetic algorithm) to solve optimization problems.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.1. Using Excel for Traditional Linear
Programming

Problem

You've formulated an optimization problem in traditional linear programming form and would like to
use Excel to solve the problem.

Solution

Use Solver's linear optimization capabilities.

Discussion

Linear optimization problems can be written in the form of an objective function to maximize (or
minimize) subject to constraints. Constraints can be written in the form of inequalities or equalities.
Consider this simple example:

Objective function

Constraints

If this were a product mix type of problem, the variables x1 and x2 could represent different products
subject to some availability or production constraints, while the objective function could represent
total profit given the mix of products produced. The idea is to find the optimum mix of products so as
to maximize profit. Linear optimization is not limited to this sort of product mix problem. For
example, your problem could consist of trying to maximize the vitamin content of a livestock feed
given certain ingredients, subject to their availability and cost. Or your problem could consist of
trying to minimize the cost of labor for producing certain products in your laboratory (see the next
recipe for a hypothetical example).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Moreover, the problem need not be limited to two variables. You can have any number of variables
and constraints, depending on your problem. I chose two variables for this simple example because
we can plot it using Excel's charting feature and gain some insight into the solution. Problems with
more variables are much more difficult, if not impossible, to visualize adequately. Such problems
require you to exercise great care when searching for a solution (particularly if the problem is
nonlinear) or to simplify the problem in ways that will allow you to visualize certain variables while
holding others constant.

Getting back to our simple example, Figure 13-1 shows a graph of our problem. I used Excel's
charting features (see Chapter 4) to prepare this graph.

This graph essentially consists of the constraints for the problem within the x1, x2 space. The two
straight lines labeled Constraint 1 and Constraint 2 represent the first two constraints. The shaded
region below these constraints represents the region of feasible values for x1 and x2 that are within
the given constraints. Notice that this region is bounded by the x1- and x2-axes because we also have
the two greater-than-or-equal-to-zero constraints on these variables.

Figure 13-1. Graph of linear optimization example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

I drew the shaded region using Excel's AutoShapes Lines Freeform
drawing tool, available from the Drawing toolbar. To draw the shaded area,
simply define vertices by pointing and clicking with the mouse. Be sure to select
your chart before you start drawing the shaded region, because if you don't,
you'll find the resulting shaded region drawn on your spreadsheet, not on your
chart. Then when you reposition your chart, you'll find that the shaded area
won't move with it.

From this graph, you can deduce that the optimum solution corresponds to (x1,x2) = (10,5), which is
at the intersection of the two constraint lines. You can use Solver to verify this result.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 13-2 shows a simple spreadsheet I set up to facilitate finding optimum values for x1 and x2 so
as to maximize the objective function.

Figure 13-2. Linear optimization example

Cell C3 contains the righthand side of the objective function. The formula is =29*C1+45*C2. The values
for x1 and x2 shown in Figure 13-2 are indeed the optimum values, and the value of 515 for the
objective function is the maximum value. Before calling Solver, cells C1 and C2 contain only initial
guesses for the optimum. I had initially set these to 0.

Cells C6 and C7 contain formulas corresponding to Constraint 1 and Constraint 2, respectively. The
formula in C6 is =2*C1+8*C2, and the formula in C7 is =4*C1+4*C2. These formulas represent the
lefthand side of the constraint equations shown earlier. The limiting values (called righthand side
values) for these constraints are contained in cells D6 and D7.

Figure 13-3 shows the Solver model I used to solve this problem.

The target cell is C3 and I instructed Solver to attempt to maximize its value. The cells to change are
C1 and C2, corresponding to x1 and x2, respectively. There are four constraints as well. Refer to
Recipe 9.4 to learn how to add constraints in Solver.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 13-3. Solver model for linear optimization

The first two constraints shown in Figure 13-3 correspond to the constraints that x1 and x2 must be
greater than or equal to 0. The last two constraints correspond to the constraint equations discussed
earlier, that is, Constraint 1 and Constraint 2 as plotted in Figure 13-1.

I also set the Solver option Assume Linear Model for this problem, since it is a linear optimization
problem. See the introduction to Chapter 9 for a discussion of Solver's options. Pressing the Solve
button results in the optimum solution shown earlier in Figure 13-2.

See Also

As I mentioned in the introduction to Chapter 9, Solver can generate several reports for you upon
finding a solution. See Recipe 13.6 for more information.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.2. Exploring Resource Allocation Optimization
Problems

Problem

You'd like to use Excel to solve a resource allocation problem.

Solution

You can use Excel and Solver to tackle more complicated linear optimization problems than what you
saw in the previous recipe. Resource allocation problems, like finding the optimum product mix to
yield maximum profit, are commonly formulated as linear optimization problems, which are easily
solved in Excel. The following discussion shows you an example. The techniques discussed here are
not limited to resource allocation problems ; on the contrary, they apply to many difficult problems so
long as you can formulate them in the form of an objective function plus constraints.

Discussion

Let's assume you're running a laboratory that produces a certain chemical product. You currently
employ 10 regular employees, technicians, who make the product. Given input from your sales and
marketing group, you've put together a demand schedule for your product over the next six months.
Operating budgets are tight, however, and you need to develop an optimum labor schedule for
meeting demand for your product at minimum labor cost. I should point out that you know that the
demand for your product over the next six months will fluctuate, so at some times you may need to
hire new employees and at others you may have to let folks go.

You have the options of having your employees work overtime or hiring contract labor. Although they
have a higher hourly rate than regular employees, contractors charge straight time for overtime,
whereas you must pay regular employees time and a half for overtime.

Regular employees earn $15 per hour ($22.50 per overtime hour), while contract employees earn
$18 per hour (both regular and overtime hours). To complicate matters, regular employees can work
only 8 hours overtime per week, due to union rules. Contract employees are willing to work up to 16
hours per week overtime.

Historically, you know that each employee is capable of producing 2 units of product per hour, but
this productivity rate drops to about 1.75 units per overtime hour. Further, you have only enough
space in your facility to employ a maximum of 20 technicians at any given time. Also, it is company
policy to employ no less than 5 regular technicians at any given time.

Finally, your human resources director tells you that it costs $500 in overhead charges to hire a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

regular employee and $600 to let one go. Similarly, it costs only $250 to hire a contractor and $300
to let one go.

Your task now is to come up with a labor schedule for the next six months that will allow you to meet
projected demand for your product, while at the same time minimizing labor costs.

This is a classic sort of linear optimization problem that's ideally suited for solving in Excel. I'll walk
you through the process.

The first thing I did toward solving this problem was enter all the data in a spreadsheet. Figure 13-4
shows how I arranged this data.

The cells in column B contain text labels I used to describe the data. The actual data values are
contained in column D. The short text labels you see in column C are labels I included to allow me to
easily define cell names for each data item. I use these cell names in other cell formulas later.

Figure 13-4. Resource allocation problem data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To quickly define names for a group of cells arranged like those shown in Figure
13-4, select the range of cells containing text label and data value pairs and
then select Insert Name Create from the main menu bar. This will
display a simple Create Names dialog box, allowing you to choose how you
want the names created. You can choose to create the names given text labels
in the left column, right column, or top or bottom row of the selected cell range.
For this example, I selected the cell range C1:D14 and then selected Insert
Name Create. Then I chose the Left Column option from the Create Names
dialog box.

After setting up the data, I created a table in the spreadsheet to contain a monthly labor schedule.
This part of the spreadsheet is shown in Figure 13-5.

The first row of this table contains the projected demand for your product over the next six months.
These are given values. At month 0, the current month, you know you have 10 regular employees
working regular 40-hour work weeks. The second to last row, Production, calculates the monthly
production given the number of regular and contract employees and their overtime schedules each
month. The formulas contained in this row look like this:
=n*(D23+D24)*whrs+no*D26*romax+no*D27*comax. Clearly the projected production, given current
staffing in month 0, is not going to be enough to meet the forecast demand. So your job is to figure
out how many (if any) regular or contract employees to hire each month (along with their overtime
schedules) to allow you to meet production targets at minimum labor cost.

Figure 13-5. Resource allocation monthly schedule

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Labor cost, or Total Cost, is the objective function. In this case you want to minimize total cost. Cell
C32 contains the total cost for this example. It is simply the sum of monthly costs computed in the
last row of the table, the row labeled Cost.

Monthly cost is computed using formulas like =D23*whrs*rrate + D24*whrs*crate + D26*romax*orate
+ D27*comax*crate + D19*hrcost + D20*frcost + D21*hccost + D22*fccost. There are eight terms
in this cost function:

D23*whrs*rrate

This term computes the direct labor cost per month, given the total number of direct
employees in a given month, along with the number of regular working hours per month and
the regular employee labor rate.

D24*whrs*crate

This term computes the contract labor cost per month, given the total number of contractors,
along with their labor rate and the number of regular working hours per month.

D26*romax*orate

This term computes the overtime labor cost for regular employees, given the number of regular
employees working overtime (assuming each employee works the maximum 8 hours per week

http://lib.ommolketab.ir
http://lib.ommolketab.ir

overtime), along with the overtime labor rate.

D27*comax*crate

This term computes the overtime labor cost for contractors, given their rate and assuming that
each contractor working overtime works the maximum 16 hours per week overtime.

D19*hrcost

This term computes the overhead cost of hiring regular employees, given the number of
regular employees hired at the beginning of a month.

D20*frcost

The term computes the overhead cost of firing ("letting go" is a nicer way to say this, I
suppose) regular employees, given the number of regular employees fired at the beginning of a
month.

D21*hccost

This term computes the overhead cost of hiring contract employees, given the number of
contract employees hired at the beginning of a month.

D22*fccost

The term computes the overhead cost of firing contract employees, given the number of
contract employees fired at the beginning of a month.

Given this cost function, you can readily see the variables in this problem. They include the following:
the number of regular employees hired, the number of regular employees let go, the number of
contractors hired, the number of contractors let go, the number of regular employees working
overtime, and the number of contractors working overtime each month. I highlighted all of the
variable cells in the table shown in Figure 13-5 so you can readily see them.

The next step is to use Solver to optimize this problem. I basically told Solver to minimize the total
cost in cell C32 by changing all the shaded cells in Figure 13-5, subject to a bunch of constraints.
(See Recipe 9.4 for instructions on adding constraints in Solver.) The constraints for this problem are
as follows:

Production meets or exceeds demand

The production values computed in cells D28 through I28 must be greater than the
corresponding projected demand values contained in cells D18 through I18.

Greater than zero requirement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Each of the variables (shaded cells in Figure 13-5) must be greater than or equal to 0.

Maximum employees

There can be no more than 20 total employees in any given month.

Overtime consistency

The number of regular employees working overtime must be less than or equal to the total
number of regular employees in a given month. Also, the number of contract employees
working overtime must be less than or equal to the total number of contract employees in a
given month.

Minimum regular employees

The total number of regular employees must be greater than the specified minimum number of
regular employees in any given month.

Refer to the previous recipe and the introduction to Chapter 9 for details on setting up and using
Solver. Running Solver for this example quickly yielded the results shown in Figure 13-6.

Figure 13-6. Resource allocation results

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you can see, Solver found a solution satisfying all the constraints. It turns out that the minimum
labor costs is $243,654, which is achieved through a combination of hiring and letting go both regular
and contract employees over the six-month period. Some months will also require some contractor
overtime. So far so good, but there's one problem: look at the required number of regular employee
hires for month 1. Solver says you need 5.62 employees. How do you hire 62% of an employee?
Well, either you hire some part-time labor, in which case you'd have to alter your model accordingly,
or you require Solver to find an optimum solution using only integer values for the variables. This
latter approach requires the use of integer constraints . In the next recipe I show you how to apply
integer constraints to solve this same example problem.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.3. Getting More Realistic Results with Integer
Constraints

Problem

You've performed an optimization problem where several variables were real valued, but realistically,
certain values should only be integers. For example, in the previous recipe, the number of optimum
lab technicians for a given month was 5.62. Obviously hiring 0.62 of a person would be hard (unless
you're assuming the number represents part-time employment, in which case you could assume that
0.62 represents 62% of a regular 40-hour work week). Therefore, you want to constrain certain
variables to be whole integers like 5 or 6.

Solution

Use Solver as discussed in the previous recipes, along with integer constraints on certain variables.

Discussion

Let's pick up where we left off with the resource allocation example from the previous recipe. What
you need to do now is add several integer constraints. In fact, you want to require every value
contained in cells D19 to I22 and D26 to I27 to assume only integer values. Real numbers will not be
allowed.

You can add an integer constraint in Solver just as you would an ordinary constraint (see Recipe 9.4
for a discussion of constraints). After opening the Solver window, click the Add button to open the
Add Constraint window. Select the cell you want to constrain and then select "int" from the drop-
down list in the middle of the window, as shown in Figure 13-7.

Figure 13-7. Adding an integer constraint

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Solver will automatically enter "integer" in the Constraint field. Press Add for each constraint you
want to add. A faster approach involves selecting an entire cell range in the Cell Reference field. For
example, you could select the range D19:I22 to constrain all of the cells within that range to integer
values. This approach avoids the tedium of having to add constraints one at a time for each cell in
the range.

After you've added integer constraints, you can rerun Solver for this problem. Be prepared to wait,
though. Adding integer constraints results in far greater computation time for this model. Whereas
the first example (without integer constraints) converged on a solution in a matter of seconds, this
second example (with integer constraints) took several hours to find a solution. In fact, it was taking
so long on my computer that I left it running overnight, since I couldn't stay awake waiting for Solver
to finish.

When Solver did finish, it yielded the results presented in Figure 13-8.

Figure 13-8. Resource allocation results with integer constraints

In this case, the minimum total cost comes to $251,966. This is a little higher than the earlier results
discussed in the previous recipe. The reason is that Solver had to round up the number of employees
hired or fired, and so on. Therefore, you end up with a little excess labor capacity. The production
numbers reflect this excess capacity, where you can see that production will exceed demand by a
little bit each month.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A further refinement of this problem would involve carrying over the excess production from one
month to the next and factoring it in the required labor optimization each month. I'll leave that
exercise to you.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.4. Tackling Troublesome Problems

Problem

You're dealing with a particularly troublesome optimization problem where you can't seem to
converge on a global optimum. For example, Solver converges to several different solutions given
different initial values. You suspect Solver is converging to local optima rather than a true global
optimum solution.

Solution

Getting trapped by local maxima or minima is an unfortunate part of optimization. Some problems
are just riddled with local extrema over their objective function landscape and, depending on your
assumed initial guess, you may end up in one of these locally optimum solutions rather than finding a
globally optimum solution. One way around this is to select different initial guesses just as I discussed
in Chapter 9 when finding multiple roots of a nonlinear equation. Also, if possible, you should plot the
objective function to get a feel for how it behaves. This is not always possible for multidimensional
problems, though.

As an alternative, you can use a Monte Carlo -inspired approach by repeatedly using Solver for many
initial guesses. The following discussion shows you how.

Discussion

Take a look at the function plotted in Figure 13-9 .

Figure 13-9. Troublesome function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This function wreaks havoc on Solver. The equation for this function is:

Let's look at this function from a different angle. Check out Figure 13-10 .

Figure 13-10. Cross-section of troublesome function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The shape of this function provides for an infinite number of local extrema that can trap Solver. It's a
veritable mine field of local optima! For example, I ran Solver to minimize this function by varying x
and y and with an initial (x,y) = (5,8). Solver found the "minimum" z = 1.236 corresponding to (x, y
) = (4.971, 7.953). Obviously that's wrong, since you can see clearly from the two charts of this
function that the minimum z is -1.25 at (x, y) = (0, 0). Trying another initial guess for (x, y) didn't
help matters. An initial guess of (x, y) = (10, 3) yielded a minimum z of 1.238; another initial guess
of (x, y) = (2, 1) yielded a minimum z of 1.064; yet another initial guess of (x, y) = (1.5, 1.5)
yielded a minimum z of 1.064. All of these are wrong!

Since you can plot this function, you can see where the global minimum lies and choose much better
initial values for x and y values close to (0, 0). But what if this was a higher-dimensional problem that
you could not plot? If you were trying to minimize such a function, you'd very likely get stuck in a
local minimum unless you were lucky enough to pick just the right initial guess. Therefore, it would be
prudent for you to try many different guesses in an effort to comprehensively cover the possible
solution domain, homing in on the global optimum. You can indeed perform such an exercise using
Solver manually, but that would get dull rather quickly.

A better approach, inspired by Monte Carlo methods, involves programmatically selecting many
random initial guesses and running Solver for each guess. Such sampling of the solution domain

http://lib.ommolketab.ir
http://lib.ommolketab.ir

would allow you to quickly evaluate many possible solutions. This approach is easy to program in
Excel, since you can call Solver directly from VBA code (see Recipe 9.3). I'll show you how to do it.

Figure 13-11 shows a simple spreadsheet I set up for this problem.

Figure 13-11. Monte Carlo-inspired solution

Cell D57 contains the formula for our objective function: =(1 - COS(D55^2+D56^2) /
(D55^2+D56^2+0.5)) * 1.25. The formula is also shown in the formula bar in Figure 13-11 , since cell
D57 is selected in that figure. Cells D55 and D56 contain the initial guesses for x and y .

Cell D59 contains a value for the maximum number of iterations that will be used by the VBA
subroutine I'll show you shortly. I'll explain this more in a moment. The other cells, formatted with
italic text, are status messages generated by the VBA subroutine I'll show you. These status
messages will allow you to see how the iterative solution is progressing. The button you see in Figure
13-11 will launch the iterative subroutine when you click it. See Recipe 9.3 to learn how to add this
sort of button.

The iterative solution I want to show you involves generating many random initial guesses for x and y
within the solution domain for this problem. These guesses, or random samples, will then be used as
initial guesses for running Solver. Actually, the algorithm I'll show you takes a random sample, runs
Solver, and stores the result. Then it picks another random sample, runs Solver again, and compares
the new result with the previous one. If the new result, the minimum z , is lower than the previous
one, then we know the previous result was only a local minimum, so we discard it and replace it with
the new one. This process repeats over and over until the maximum number of iterations that you
specified in cell D59 is reached.

Example 13-1 shows the VBA subroutine I wrote that implements this algorithm.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 13-1. Algorithm to iteratively minimize a function

Private Sub FindMinimumButton_Click()
 ' Declare local variables:
 Dim xMin As Double
 Dim yMin As Double
 Dim zMin As Double
 Dim n As Integer
 Dim Z As Double
 Dim MaxIterations As Integer

 With Worksheets("Function")
 ' Initialize variables:
 n = 0
 xMin = .Range("x")
 yMin = .Range("y")
 zMin = .Range("z")
 MaxIterations = .Range("MaxIterations")

 ' Randomize the random number generator:
 Randomize

 ' Generate random values for x and y:
 .Range("x") = (5 - (-5) + 1) * Rnd + (-5)
 .Range("y") = (5 - (-5) + 1) * Rnd + (-5)

 ' Start solution iterations:
 Do While (n <= MaxIterations)
 .Range("Iteration") = n

 ' Run Solver:
 SolverOK SetCell:=.Range("z"), MaxMinVal:=2, ByChange:=.Range("x", "y")
 SolverSolve UserFinish:=True
 SolverFinish KeepFinal:=1

 Z = .Range("z")

 ' Check result:
 If Z < zMin Then
 xMin = .Range("x")
 yMin = .Range("y")
 zMin = Z

 .Range("x_Min") = xMin
 .Range("y_Min") = yMin
 .Range("z_Min") = zMin
 End If

 ' Generate random values for x and y:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 .Range("x") = (5 - (-5) + 1) * Rnd + (-5)
 .Range("y") = (5 - (-5) + 1) * Rnd + (-5)
 n = n + 1
 Loop

 .Range("x") = xMin
 .Range("y") = yMin
 End With
End Sub

I've commented the code so you can generally see what's going on. The first several lines in the
subroutine declare local variables in the usual manner. xMin , yMin , and zMin store the current
minimum x , y , and z as the routine iterates over many trial values. n is just a counter variable used
to track the current iteration. z stores the z value found by Solver in each iteration; it may or may
not be the global minimum z . Finally, MaxIterations stores the maximum number of iterations you
set in the spreadsheet (cell D59).

Upon entering the With statement (see Recipe 9.3) the routine initializes several variables. Basically,
the counter n is set to 0, while the other variables mentioned earlier are set to values extracted from
the worksheet named Function .

Randomize is then called to initialize VBA's random number generator. Next, two random numbers
between the bounds -5 and 5 are generated and stored in cells D55 and D56, named x and y ,
respectively. These serve as random initial guesses before we call Solver.

See Recipe 5.8 to learn how to use Excel's and VBA's random number functions.
Also, see Recipe 1.14 to learn more about cell names.

Next, a Do While loop is entered to iterate MaxIterations times, generating random initial guesses
and calling Solver each time. Let's look inside the Do While statement.

The line .Range("Iteration") = n sets the value of cell D60, named Iteration , to n . This provides
feedback to you on the status of the subroutine as it runs. The next several lines invoke Solver as
described in Recipe 9.3 . In this case, the target cell is set to the cell named z, and the cells to
change are the ones named x and y . MaxMinVal is set to 2, indicating that we want to minimize the
target cell. When Solver is finished, the cell named z in the worksheet named Function , should
contain a minimum of the subject function. However, this may or may not be the global minimum.
So, we have to check it against the currently stored minimum, zMin .

First, the value from the cell named z is extracted and stored in variable z . The following If
statement checks whether or not z is less than the stored zMin . If it is, then we found a better
estimate of the minimum of the subject function, which should be saved in the current minimum
variables. The three lines xMin = .Range("x") , yMin = .Range("y") , and zMin = Z take care of this
task. The next three lines echo the current minimum variables back to the spreadsheet so you can
see their status as the routine iterates.

Upon exiting this If statement, the routine generates two new random guesses for x and y and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

increments the iteration counter by 1. The Do While loop then repeats until MaxIterations is reached.

After the maximum number of iterations has been reached, the minimum values found are echoed
back to the spreadsheet.

When the routine is finished, cells E62 through E64 will contain the minimum z -value and
corresponding x- and y -values for the subject function. After running this routine many times, I have
found that it finds the global minimum in all but a very few cases; in those cases, a randomly selected
initial guess that would have converged toward the global minimum was never selected. You can
reduce the likelihood of that occurring by cranking up the value for MaxIterations .

See Also

The approach shown in this recipe goes a long way to mitigate getting stuck at local minima or
maxima. It's not the only approach, though. Take a look at Recipe 13.7 for a completely different
approach.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.5. Optimizing Engineering Design Problems

Problem

You're working on an engineering design problem and would like to see how you can leverage Excel
to find an optimum design solution.

Solution

Model your design problem in Excel as an optimization problem and then use Solver to find a solution.

Discussion

It is rather straightforward to model many different engineering design problems in Excel. Many
engineers do so on a daily basis. Moreover, once you have a model set up in Excel, it's a small step
to use Solver to optimize that model. Take a look at the spreadsheet in Figure 13-12.

Figure 13-12. Engineering design optimization example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This spreadsheet represents a typical structural engineering design task. I don't want to go too far
describing all the structural engineering background relevant to this problem; but I'll give you an
overview so you can get the gist of what we're trying to optimize. Basically, this is a model of a
stiffened panel. A stiffened panel is comprised of a plate with beams attached to it to provide
strength and rigidity. In this case, the panel is comprised of an aluminum plate, 150 cm long and 100
cm wide, supported all around its edges. The plate also has attached to it a number of T-type
stiffeners. Figure 13-13 illustrates this sort of panel.

Figure 13-13. Stiffened panel

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can imagine such a panel forming a portion of a wall of an aluminum building or perhaps the hull
of an aluminum boat. The latter case is actually the inspiration for this example.

Boats, especially high-speed boats, are sensitive to weight in terms of performance. So a common
task facing naval engineers involves sizing panels like this one so that it has enough strength but is
also as light as possible. Sure, you could be conservative and use a really thick plate with a lot of
stiffening beams, but that would be expensive and heavy.

You have to use some sort of standard criteria to determine whether such a panel is strong enough.
There are such codes (as in rules and regulations, not to be confused with software code) for many
types of structures and in this particular case, you can use the standard codes applicable to
aluminum boats. These codes require engineers to calculate certain properties of the panel to
compare with acceptable values given in the codes. The spreadsheet shown in Figure 13-12 performs
just this sort of calculation and comparison.

Cells D1 through D8 contain basic information on the panel and associated stiffeners. The table
toward the bottom, cells C18 through J22, contains more specific information on the geometry of the
components making up the stiffened panel. This panel also performs the required engineering
calculations needed to determine the properties of the stiffened panel. The results of these
calculations are contained in cells D10 through D14.

Finally, cells J1 through J7 contain code-related requirements on the properties of the stiffened panel.
These cells also contain some practical engineering limits.

The optimization task is to find an optimum combination of plate thickness, stiffener web size,
stiffener flange size, and spacing between stiffeners that will yield a panel meeting the code
requirements, while at the same time resulting in the minimum achievable weight. Therefore, in
terms of optimization, minimizing weight is the objective. All the other requirements become
constraints.

Since the material is homogeneous and uniform in this case, we can minimize weight by minimizing
the total volume of metal material used to build the stiffeners and panel. The volume is computed by
summing the volumes of the plate and stiffeners. Cell D16 contains the volume calculation, and you
can see the formula in the formula bar in Figure 13-12. This is our objective function.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The variables we want to change include the stiffener spacing, plate thickness, stiffener web depth
and thickness, and stiffener flange width and thickness.

Figure 13-14 shows the Solver model I set up for this problem.

Figure 13-14. Design optimization Solver model

As expected, cell D16, the objective function, is the target cell, which is set to be minimized. The By
Changing Cells textbox includes all of the shaded cells in Figure 13-12 corresponding to the variables
we want to vary, as discussed a moment ago.

All the code and design requirements discussed earlier become constraints. (See Chapter 9 for more
on setting up Solver models and adding constraints.) For example, the section modulus (SM) of the
stiffened panel (SM top and SM bot in the spreadsheet) must be greater than or equal to the Min.
allowable SM specified in cell J3. The corresponding Solver constraints are D13 >= J3 and
D14 >= J3, as shown in Figure 13-14. I added similar constraints for each design requirement
listed in cells J1 through J7.

Running Solver resulted in the optimum values shown earlier in Figure 13-12. Initially, I tried 50 cm
for stiffener spacing and 1 cm for all other optimization variables. Solver readily found a solution with
this initial guess. Just to be sure, I tried several other initial guesses; Solver converged on the same
solution, so I'm fairly confident that this solution represents a global optimum in this particular design
space.

In summary: if you can model a design problem in Excel, you can optimize it in Excel. The trick is in
identifying your objective function and the variables you want to change. For highly nonlinear
problems, you also have to be careful that you don't converge to a local minimum. You can use the
technique I showed you in Recipe 13.4 to mitigate the risk of not finding a global optimum.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.6. Understanding Solver Reports

Problem

You know that Solver can generate several types of reports upon finding a solution to a problem and
you'd like to learn more about these.

Solution

The version of Solver that ships with Excel can generate three reports: an Answer report, a
Sensitivity report, and a Limits report. These reports are described in the following discussion.

Discussion

Solver's three reports are helpful when interpreting the results obtained by Solver. When it finds a
solution, you're presented with a dialog box containing a message regarding the nature of the
solution found. You can choose which Solver reports , if any, to generate. (See the introduction to
Chapter 9 for more information.) Solver will generate the selected reports in separate worksheets
that it will create automatically. Each of the three available report types is explained in the following
sections.

Answer report

Figure 13-15 shows an example Answer report. This is the Answer report for the problem solved in
Recipe 13.1.

Answer reports show the initial and final values of the objective (Target Cell) and all variables
(Adjustable Cells). You can quickly see from these reports how close your initial guess was to the
optimal solution.

This report also shows the optimum values for all constraints, including a note indicating which
constraints were actually binding. For Not Binding constraints, the amount of slack is also reported.
The slack on a constraint tells you how far away a constraint is from becoming a binding constraint.
All this information is helpful in determining which constraints govern, or limit, the problem being
solved, and how much leeway you have on other constraints.

Notice that these reports contain cell references to the objective, variables, and constraints. They
also include a name for these cells. These are not cell names as defined using Excel's cell name
feature (discussed in Recipe 1.14). Instead, these names are automatically generated by Solver
using a specific algorithm. If you set your spreadsheet up with this algorithm in mind, the names are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

meaningful; otherwise, they could be completely meaningless.

Figure 13-15. Answer report

Solver builds names for target, variable, and constraint cells by searching to the left of the given cell
for the first cell containing text. At the same time, it looks above the given cell for the first cell
containing text. The text in these two cells is combined to create the name shown in Solver reports.
Therefore, if you want a cell to have a meaningful label, whether it's a cell containing the objective

http://lib.ommolketab.ir
http://lib.ommolketab.ir

function, a variable, or a constraint, you need to make sure that the text cells nearest to the left of
and above the given cell contain the desired label. I typically put text labels to the left of my target,
variable, or constraints cells, and make sure no cell above these has any text.

Sensitivity report

There are two versions of the sensitivity report. The one shown in Figure 13-16 corresponds to a
linear problem. Solver generates a different sensitivity report for nonlinear problems, as shown in
Figure 13-17. These reports tell you how sensitive the solution is to small changes in variables and
constraints.

Figure 13-16. Linear sensitivity report

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Referring to Figure 13-16, you will see that the linear problem sensitivity report contains two tables.
The first table provides information on the sensitivity of the problem's variables, while the second
contains information on the sensitivity of the problem's constraints.

Both tables start with a cell reference column, along with a label and then a final value column. The
final values are simply the resulting values of the variables or constraints corresponding to the
solution found by Solver. The other columns in these tables give you the sensitivity information.

The Reduced Cost applies to variables whose optimum value turns out to be 0. In this case, reduced
cost provides an estimate of how much the objective function will change if you force the variable to
assume some nonzero value. Variables whose values turn out to be nonzero for the optimum solution
will show a reduced cost of 0.

Figure 13-17. Nonlinear sensitivity report

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Objective Coefficient shows the coefficient corresponding to each variable as it appears in the
objective function. The Allowable Increase and Allowable Decrease values tell you that so long as
these coefficients remain with their current value plus or minus the allowable increase and decrease,
respectively, the optimum values for the variables will remain unchanged, although the optimum
value for the objective function (target cell) may change.

The Shadow Price for each constraint shown in the Constraints table tells you how much the value of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the objective function will change if the value of the righthand side of the constraint, shown in the
Constraint R.H. Side column, changes within the limits specified by the Allowable Increase and
Allowable Decrease values.

For nonlinear problems, the sensitivity report is a little different. Figure 13-17 shows the sensitivity
report for a nonlinear problem.

As in the linear case, there are two tables, corresponding to variables (Adjustable Cells) and
constraints. In both cases the cell reference, name, and final optimum values for each variable and
constraint are shown.

For variables, the Reduced Gradient tells you how much the value of the objective function would
change if the value of the variable were increased by 1. For constraints, the Lagrange Multiplier tells
you how much the value of the objective function would change if the righthand-side value of the
constraint were increased by 1.

Limits report

Limits reports tell you how the value of the objective function changes as each variable is maximized
and minimized, while all other values are held constant and while still satisfying the problem's
constraints. Figure 13-18 shows a typical Limits report.

Figure 13-18. Limits report

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Target values show you the value of the objective function corresponding to the lower and upper
limits of the variables obtained through a maximization and minimization process as described a
moment ago.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.7. Programming a Genetic Algorithm for
Optimization

Problem

You're an expert at using Solver for optimization but find it still can't handle some troublesome
problems, or you'd simply like to use an alternative optimization approach.

Solution

Genetic algorithms offer an alternative approach and are gaining popularity in optimization problem
solving. You can use VBA to program your own genetic algorithm (or any other algorithm you can
devise).

Discussion

This recipe is a little longer than the others and contains a lot of VBA code. If you're not up to speed
on using VBA, I recommend that you read Chapter 2 first.

Also, before getting into implementation details, I want to first explain some fundamental ideas
behind genetic algorithms in case you aren't already familiar with the concept.

Genetic Algorithm Fundamentals

Genetic algorithms are inspired by the biological evolutionary process. The basic idea for optimization
problems is that solutions to a problem can be "bred" from a population of candidate solutions.
Repeated breeding and survival of the fittest creates successive generations of offspring whose
characteristics become more and more specialized or, to say it another way, which converge toward
an optimum set of characteristics.

The trick with genetic algorithms, or rather one of the many tricks, is coming up with a way to
encode the variables of a problem in a meaningful way that can be used to evolve a new set of values
for the variables. A set of encoded variables is called a chromosome, a term obviously taken directly
from the genetic algorithm's biological roots. Chromosomes are comprised of genes , and genes
represent the encoded variables for the problem.

In addition to devising a suitable structure for chromosomes, you have to devise a way to measure
the fitness of each chromosome. In other words, you have to quantify how well the solution encoded
in each chromosome solves, or optimizes, the problem you're modeling. Fitness in this sense is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

directly related to the objective function of the problem.

The next big question that arises when developing a genetic algorithm is how to breed, or combine,
chromosomes to generate successive populations in order to evolve a solution.

The way a genetic algorithm works is that you create an initial population of randomly generated
chromosomes. The data encoded in these chromosomes will almost certainly not solve your problem
well at all. The idea is to pick the fittest ones of this bunch and breed them to create a new
population. You decide how chromosomes are bred. Most algorithms use some sort of crossover
function, where you simply swap the genes between two parent chromosomes. For example, you
might take the first half from the mommy chromosome and the second half from the daddy
chromosome. Other practitioners take every other gene from the mommy and daddy. It's really up to
you and depends a lot on how you encoded your chromosomes in the first place.

Once a new population has been bred, it replaces the older generation. The new population is then
evaluated for fitnessthat is, how well each new chromosome solves your problem. Next, a new set of
fit parents are selected and used to generate a whole new population of offspring. This process
repeats over many generations until the bred chromosomes converge on an optimal solution to the
problem.

Naturally, there's more to this than meets the eye. One big issue is what to do if you start with an
initial, randomly selected population that is just terrible in that it very poorly satisfies the problem
you're trying to solve. If you breed with only these chromosomes, you're left with a limited gene pool
and almost surely no chance of finding a globally optimum solution.

To introduce new genetic material , in genetic algorithm lingo, you need to mutate the genes of
offspring chromosomes. These mutations are random and provide opportunities for new
characteristics to be introduced into the gene pool. Here again, there are many ways in which you
may mutate a chromosome. A simple and common approach is to randomly select a gene and
change it to some other randomly selected value. If it's a bad mutation, one that produces poor
results or an unfit chromosome, it will be purged through the selection and evolution process. On the
other hand, if it's a good mutation, it will be retained and passed along to subsequent generations.
This is a key element of genetic algorithms, and we'll talk more about it shortly when I get to some
implementation details.

Given this basic description of genetic algorithms, it's clear there's a great deal of leeway available for
formulating a genetic algorithm. There is no single genetic algorithm, and you are free to devise one
that is well suited to the problem with which you are dealing.

Developing genetic algorithms seems, to me, to consist of a little theory and a
lot of voodoo. I like them because the basic concept is simple and you have so
much creative leeway in formulating an approach to a given problem. Plus, they
work! At the same time, you can treat certain aspects of them in a rigorous
theoretical manner. If you're interested in the theory, I encourage you to check
out Melanie Mitchell's Introduction to Genetic Algorithms (MIT Press). There's
absolutely no source code in that book, but it covers the theory and a lot of
history behind genetic algorithms.

The genetic algorithm I'll show in this recipe is based on the concepts discussed here, but it's tailored
to solve a specific problem. The problem I'll show you how to solve is the same troublesome function
discussed in Recipe 13.4. If you have not already read Recipe 13.4, go back and have a look at it now

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to become familiar with the function we're dealing with here.

Chromosome class

The first step in creating our Frankenstein's monster is to create a chromosome class. The encoding
for this chromosome is simple since there are only two variables to change, x and y.

To create this class, which we'll call Chromosome, open the VBA editor window and create a new class
module named Chromosome using the techniques I showed you in Recipe 2.14 in Chapter 2.

Once you've created the Chromosome class module, go ahead and add the properties shown here in
Example 13-2.

Example 13-2. Chromosome properties

Public x As Double
Public y As Double
Public Z As Double
Public MaxX As Double
Public MinX As Double
Public MaxY As Double
Public MinY As Double
Public MutationRate As Double
Public FitnessScore As Double

The first three properties are x, y, and z. The genes in this chromosome are x and y. My encoding
here is simple. The genes x and y are simply properties of the Chromosome class. Historically, many
genetic algorithms use bit strings or some other low-level programming device to encode the problem
variables. I personally like to use object properties or structures, depending on the language I'm
using. I simply find them easier to deal with in code. But that's just my preference.

The next four properties store the x and y bounds for the problem. Genes will be randomly selected
within the range defined by these upper and lower bounds.

The second to last property, MutationRate, is very important. It specifies the probability of a
chromosome mutating as described earlier. This value should be tuned to achieve acceptable results.
Many researchers use a value of 0.001. I've played with it for this example and find that any
mutation rate between 0.001 and 0.01 seems to yield good results. If the mutation rate is too low,
then new genetic material is introduced at a very slow rate. This means that it could take a long time
for the population to converge toward an optimum solution. On the other hand, if you set the
mutation rate too high, you may never converge at all, because even fit chromosomes will mutate,
possibly destroying their superior fitness.

The final property required for this problem is FitnessScore. This property stores a value that is used
to rank the chromosomes according to their fitness. I'll discuss how we actually measure fitness

http://lib.ommolketab.ir
http://lib.ommolketab.ir

shortly. That's it for Chromosome properties. Now I'll show you all the methods required for this class.

The Class_Initialize method shown in Example 13-3 is the constructor, or initializing subroutine,
for the Chromosome class. This subroutine is automatically called by VBA when a Chromosome object is
created. I'm using it here to set the properties to default values.

Example 13-3. Initialize method

Private Sub Class_Initialize()
 MutationRate = 0.05
 MaxX = 5
 MinX = -5
 MaxY = 5
 MinY = -5

 x = (MaxX - MinX + 1) * Rnd + MinX
 y = (MaxY - MinY + 1) * Rnd + MinY

 EvaluateZ

End Sub

I set the mutation rate to 0.05 by default, but as you'll see later, this gets overridden with a value
supplied through a spreadsheet cell. The bounds on x and y are set to -5 and 5. The next two lines
generate random values for x and y within the default bounds and store these values in the x and y
properties. Remember, these are the chromosome's genes. Finally, the method EvaluateZ is called to
calculate z using the function we're trying to optimize, the one shown in Recipe 13.4. EvaluateZ is
shown in Example 13-4.

Example 13-4. EvaluateZ method

Public Sub EvaluateZ()
 Z = (1 - Cos(x * x + y * y) / (x * x + y * y + 0.5)) * 1.25
End Sub

EvaluateZ simply computes Z given the current values stored in x and y. I'll show you later how Z is
used to evaluate the fitness of the chromosome.

We need a method for Chromosome that mutates its genes given the mutation rate stored in the
MutationRate property. The Mutate method shown in Example 13-5 is one I devised for this purpose.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 13-5. Mutate method

Public Sub Mutate()
 Dim num As Double

 num = Rnd

 If num < MutationRate Then
 num = Rnd
 If num < 0.5 Then
 x = (MaxX - MinX + 1) * Rnd + MinX
 Else
 y = (MaxY - MinY + 1) * Rnd + MinY
 End If
 End If
End Sub

The first action performed in Mutate is the generation of a random number between 0 and 1. I used
VBA's Rnd function for this purpose and stored the value in the local variable num. The subsequent If
statement compares num to the mutation rate. If num is less than MutationRate, then you need to
mutate the chromosome; otherwise, don't do anything with it.

If you do indeed need to mutate the chromosome, then Mutate generates another random number. If
this number is less than 50, then the x gene is mutated; otherwise, the y gene is mutated. This
scheme gives each gene a 50 percent chance of being mutated.

Mutating either gene is accomplished by simply generating a new random number for the gene
between the bounds stored in the x or y bounds properties.

Example 13-6 shows another required method, the Mate method.

Example 13-6. Mate method

Public Sub Mate(mom As Chromosome, dad As Chromosome)
 ' Take average as crossover function
 x = (mom.x + dad.x) / 2
 y = (mom.y + dad.y) / 2

 ' Mutate the result
 Mutate
End Sub

As its name implies, this method takes two chromosomes and combines them in such a way as to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

yield an offspring chromosome that consists of some combination of its parents' genes.

I played around with two different mating approaches for this example. First, I tried simply taking an
x from dad and a y from mom to create the offspring. That worked OK, but I thought a better approach
might be to simply average the x and y values, respectively, obtained from both mom and dad. After
many trials, I think the averaging approach is better. It seems to converge faster to an optimum. (I'll
leave the reason why for someone else to figure out.)

After the offspring chromosome's genes are computed, Mate calls Mutate to mutate the offspring.

The final method for this class is Copy. It's a utility method that simply copies the properties of a
given chromosome into the calling chromosome. Example 13-7 shows the Copy method.

Example 13-7. Copy method

Public Sub Copy(dup As Chromosome)
 x = dup.x
 y = dup.y
 Z = dup.Z
 MaxX = dup.MaxX
 MinX = dup.MinX
 MaxY = dup.MaxY
 MinY = dup.MinY
 MutationRate = dup.MutationRate
 FitnessScore = dup.FitnessScore
End Sub

That's it for the Chromosome class. In the next section, I show you how to actually use this class.

Genetic optimization

Figure 13-19 shows the spreadsheet I set up for this example.

I set this up so you need only supply two parameters to the genetic algorithm. First, you must supply
a limit on the number of generations evolved. Second, you must supply the mutation rate. These two
values are contained in cells G1 and G2, respectively.

The Current Generation value shown in cell G4 is informational. As the genetic algorithm runs, it will
display the current generation in this cell so you can track its progress. Further, the entire population
of chromosomes for each generation is echoed back to this spreadsheet starting in cells A1, B1, and
C1. This allows you to see how the populations evolve as the genetic algorithm does its thing.

Figure 13-19. Genetic algorithm spreadsheet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You'll notice the "Show Progress?" checkbox on the spreadsheet just above the Evolve button. This
checkbox is another ActiveX control available from the Control Toolbox toolbar (see Recipe 9.3 for
more on the Control Toolbox).

You add a checkbox control just as you add a button control, as I've shown in other recipes
throughout this book. Simply click the checkbox icon on the Control Toolbar and then click anywhere
in your spreadsheet where you'd like the control located. While in design mode, you can right-click on
the checkbox control and select Properties from the pop-up menu to display the control's Properties
window. As with button controls, you can change the name of the control, the caption displayed on
the control, and many other attributes. I changed the caption to "Show Progress?" for this checkbox.

Checkbox controls have a value property that can be either true or false. When this value is true,
the checkbox is checked. When it's false, the checkbox is not checked. When a user clicks the
checkbox, checking and unchecking it, the value property is changed accordingly. This allows you to
programmatically inspect the value property to determine the state of the checkbox. I use it here to
determine whether to update the spreadsheet with the status of each evolution as the genetic

http://lib.ommolketab.ir
http://lib.ommolketab.ir

algorithm runs. Displaying the progress is certainly informative, but it is a lot slower; therefore, if you
want the algorithm to run faster, you can uncheck the progress checkbox.

You can also associate code with a checkbox: the code will get executed when
the user clicks on the checkbox. This is achieved in a manner similar to the way
in which you associate code with a button, as discussed in Chapter 9.

The Evolve button allows you to start the genetic algorithm. I added this button using the same
techniques I showed you in Chapter 9. The click event handler for this button is shown in Example
13-9; but, before I explain what it does, I want to go over some global variables required for the
genetic algorithm. Example 13-8 shows these global variables.

Example 13-8. Global variables

Const PopulationSize As Integer = 100

Dim MaxGenerations As Integer
Dim MutationRate As Double
Dim CurrentGeneration(1 To PopulationSize) As Chromosome
Dim Offspring(1 To PopulationSize) As Chromosome
Dim SumFitnessScores As Double

The first line in Example 13-8 isn't really a variableit's a constant. The constant PopulationSize is an
integer value that I set to 100. This means the initial and all subsequent chromosome populations will
consist of 100 chromosomes. This is also a tunable value. If you set this too low, then the population
won't be diverse enough, and convergence to an optimum solution could be slow or unsuccessful. If
it's too high, the algorithm will run more slowly. 100 seemed like a good size for this problem. I tried
a population size as low as 10 and as high as 200. In the former case, convergence was poor; in the
latter case it was slower and no more accurate than a size of 100. So I stuck with 100.

The next five lines are actual variable declarations. These variables have module-level scope, so any
function or subroutine in the same code module has access to them. Each variable is described in the
following list:

MaxGenerations

MaxGenerations is an integer variable representing the limit on the number of generations to
evolve. This value is extracted from spreadsheet cell G1.

MutationRate

MutationRate represents the probability of mutation as discussed earlier. Its value is extracted

http://lib.ommolketab.ir
http://lib.ommolketab.ir

from spreadsheet cell G2.

CurrentGeneration

CurrentGeneration is an array of Chromosome objects. The size of this array is PopulationSize.
This array represents the entire population of Chromosomes comprising the current generation.

Offspring

Offspring is another array of Chromosome objects. Its size is also PopulationSize. This array is
used to store offspring chromosomes bred from the current generation. After all offspring are
created, they replace the current generation, becoming the new CurrentGeneration.

SumFitnessScores

SumFitnessScores is a Double variable. It's used to store the sum of fitness scores for all
chromosomes in the current generation. Its value is used in a roulette wheel selection process
that I'll show you later.

Now, let's get back to the click event handler for the Evolve button. The handler is shown in Example
13-9.

Example 13-9. Evolve button's click event handler

Private Sub EvolveButton_Click()
 Dim i As Integer

 Application.ScreenUpdating = ShowProgressCheckBox.Value

 Randomize

 MaxGenerations = Worksheets("Genetic").Range("MaxGenerations")
 MutationRate = Worksheets("Genetic").Range("MutationRate")

 For i = 1 To PopulationSize
 Set CurrentGeneration(i) = New Chromosome
 Set Offspring(i) = New Chromosome

 CurrentGeneration(i).MutationRate = MutationRate
 Next

 DoGeneticAlgorithm

 Application.ScreenUpdating = True
 Application.ActiveWorkbook.Save

End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This subroutine is responsible for initializing and kicking off the genetic algorithm. After creating a
local counter variable, i, the subroutine sets the status of screen updating to the value represented
in the "Show Progress?" checkbox. The line Application.ScreenUpdating =
ShowProgressCheckBox.Value takes care of that task. If the value property for the progress checkbox
is true (indicating it's checked) then screen updating will occur; otherwise, it won't.

The next line of code simply initializes VBA's random number generator with a call to Randomize.
Next, the values for MaxGenerations and MutationRate are extracted from cells G1 and G2 in the
spreadsheet. I named these two cells MaxGenerations and MutationRate, respectively (see Recipe
1.14 to learn how to name cells).

The For loop that comes next is responsible for creating the two required populations of Chromosome
objects. Remember, the array declarations for CurrentGeneration and Offspring don't actually create
the Chromosome object. You have to use the Set and New statements as shown in Example 13-9 (and
as discussed in Recipe 2.14) to create memory for the objects, initialize them, and assign them to the
arrays.

After the arrays are taken care of, the mutation rate property for the current generation of
chromosomes is set to the value provided in cell G2 and stored in the variable MutationRate.

After the For loop, a call is made to DoGeneticAlgorithm, which, as its name implies, executes the
genetic algorithm. This subroutine is shown in Example 13-10. Before getting there, let me just say
that the last two lines of code in Example 13-9 are responsible for turning screen updating back on
and saving the workbook. Now, on to DoGeneticAlgorithm.

Example 13-10. DoGeneticAlgorithm subroutine

Public Sub DoGeneticAlgorithm()
 Dim i As Integer
 Dim Generation As Integer
 Dim mom As Integer
 Dim dad As Integer

 Generation = 0
 EvaluteFitness
 DisplayResults

 Do While (Generation <= MaxGenerations)
 Worksheets("Genetic").Range("Generation") = Generation

 For i = 1 To PopulationSize
 mom = SelectChromosome
 dad = SelectChromosome
 Offspring(i).Mate CurrentGeneration(mom), CurrentGeneration(dad)
 Next

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 For i = 1 To PopulationSize
 CurrentGeneration(i).Copy Offspring(i)
 Next

 Generation = Generation + 1
 EvaluteFitness
 DisplayResults
 Loop

 ' Sort the results:
 Range("A3:C102").Select
 Selection.Sort Key1:=Range("C3"), Order1:=xlAscending, Header:=xlGuess, _
 OrderCustom:=1, MatchCase:=False, Orientation:=xlTopToBottom, _
 DataOption1:=xlSortNormal
End Sub

DoGeneticAlgorithm requires four local variables. i is simply a counter variable used to loop over
array elements. Generation is a counter variable used to keep track of the number of generations
evolved. This value gets echoed back to the spreadsheet in cell G4. mom and dad are integers used to
store indices to array elements in CurrentGeneration that represent two chromosomes selected for
breeding.

With the local variables taken care of, DoGeneticAlgorithm initializes a few things. Generation is set
to 0, and calls to EvaluateFitness and DisplayResults are made. EvaluateFitness updates the
fitness scores for the chromosomes in the current generation, and DisplayResults displays the
current generation's genes and z-value in the spreadsheet. We'll come back to the details of these
two subroutines later.

DoGeneticAlgorithm next enters a Do While loop. This loop will repeat until the number of generations
evolved reaches the limit stored in MaxGenerations. It is within this Do While loop that the evolution
of a solution takes place.

The first action taken in this loop is simply to display the current generation number in the
spreadsheet. Next, a For loop is encountered; it is responsible for selecting candidate chromosomes
from the current generation and breeding them to create the new offspring population.

The integers mom and dad are selected via calls to a function called SelectChromosome.
SelectChromosome selects candidates from the current generation, where the probability of selecting
any individual chromosome is proportional to the chromosome's fitness score. I'll show you the
details later. For now, just know that this is a survival-of-the-fittest selection process.

After two parents are selected, they are mated by calling the offspring Chromosome's Mate method.
Here's the line of code that calls the Mate method:

 Offspring(i). Mate CurrentGeneration(mom), CurrentGeneration(dad)

This line calls the Mate method of Offspring(i), which is the ith Chromosome stored in the Offspring

http://lib.ommolketab.ir
http://lib.ommolketab.ir

array. Mate requires two arguments, a mom and a dad Chromosome. These arguments are
CurrentGeneration(mom) and CurrentGeneration(dad). Notice that there are no parentheses around
these arguments, unlike when you make a function call or procedure call in most other languages. If
you put parentheses around these arguments, VBA will return an error.

When this For loop is finished, Offspring will contain an entirely new population of chromosomes.
The next task is to make this new population the CurrentGeneration. This task is achieved in the next
For loop, which calls the Copy method for each chromosome in CurrentGeneration where the
corresponding chromosome (based on the array index) in the Offspring array is passed as the
chromosome to copy.

After all the chromosomes have been copied, the new population stored in CurrentGeneration is
updated. First, the generation counter is incremented by 1. Then a call to EvaluateFitness is made to
update the fitness scores for the new population. Finally, DisplayResults is called to display the
current population in the spreadsheet.

At this point, execution goes back to the beginning of the Do While loop and repeats until the
maximum number of generations has been reached. When that occurs, the last few lines of code in
Example 13-10 are executed.

As the comment suggests, these lines sort the population displayed in cells A3 to C102 in the
spreadsheet. This population represents the fittest population at the end of the evolution process. Not
all of the chromosomes displayed in this list are the most fit and some are more fit than others. So to
see which are the fittest, I sort the list to display the chromosomes in order from the fittest down to
the least fit. This way you need only look at the uppermost values in the spreadsheet to see the
results.

Harvesting Autogenerated VBA Code

The code in Example 13-10 that takes care of sorting was actually generated by Excel. I
didn't know the VBA code to perform a sort; rather than look it up in the help guide, I
went into Excel and recorded a macro and harvested the relevant code from the macro
code created by Excel. Here's how I did it: first, I went to my spreadsheet in Excel and
turned on macro recording (see Recipe 1.16). Then I selected the cell range I wanted to
sort (cells A3 through C102) and sorted it in descending order based on the z-values
contained in column C (see Recipe 3.9). Next, I turned macro recording off. Then I went
to the VBA editor and looked for the new code module created in my VBA project. It was
called Module1 by default. This module contained a few lines of VBA code, corresponding
to the macro just recorded. I copied and pasted the sort code from this module to the
subroutine shown in Example 13-10. This is a handy trick when you can't figure out the
VBA code to perform some action; just let Excel do it for you and copy and paste as
needed.

Now let's take a look at the subroutine EvaluateFitness. As I mentioned earlier, this subroutine is
responsible for assessing the fitness of each chromosome in the current population. EvaluateFitness
first computes the z-value for each chromosome and then gives each chromosome a fitness score
based on its z-value relative to the other z-values in the population. Remember, we're trying to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

minimize z for the objective function; therefore, a lower z-value is better. So any chromosome whose
genes (x and y) yield a lower z-value is more fit than a chromosome whose genes yield a higher z-
value. We want these fitter chromosomes to reproduce so they'll get a higher fitness score. Example
13-11 shows how I constructed EvaluteFitness.

Example 13-11. EvaluteFitness subroutine

Public Sub EvaluteFitness()
 Dim i As Integer
 Dim MinZ As Double
 Dim MaxZ As Double

 CurrentGeneration(1).EvaluteZ
 MinZ = CurrentGeneration(1).Z
 MaxZ = CurrentGeneration(1).Z

 For i = 2 To PopulationSize
 CurrentGeneration(i).EvaluteZ
 If CurrentGeneration(i).Z > MaxZ Then
 MaxZ = CurrentGeneration(i).Z
 End If
 If CurrentGeneration(i).Z < MinZ Then
 MinZ = CurrentGeneration(i).Z
 End If
 Next

 SumFitnessScores = 0
 For i = 1 To PopulationSize
 CurrentGeneration(i).FitnessScore = 1 - _
 (CurrentGeneration(i).Z - MinZ) / (MaxZ - MinZ)

 SumFitnessScores = SumFitnessScores + CurrentGeneration(i).FitnessScore
 Next
End Sub

EvaluateFitness first declares a few local variables. Here again, i is simply a counter variable. MinZ
and MaxZ are used to store the minimum and maximum z-values found in the current population.
They represent the range of z-values for the population. They are initialized to the z-value for the
first chromosome in the population. Then a For loop iterates over all remaining chromosomes in the
current population. Within the For loop, each chromosome's z-value is computed and compared to
the minimum and maximum z-values stored in MinZ and MaxZ. If the chromosome's z-value is higher
or lower than the currently stored range, the range gets updated accordingly. By the time this For
loop ends, MinZ and MaxZ will contain the range for the entire population.

Before the subroutine enters the next For loop, it sets SumFitnessScores to 0. Within the next For
loop, SumFitnessScores will tally all of the fitness scores for every chromosome in the population.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The next For loop iterates over the entire current population, computing a fitness score for each
chromosome. The formula I came up with for the fitness score is:

where zmin and zmax represent MinZ and MaxZ, respectively.

This formula gives the chromosome with the highest z-value a fitness score of 1 and the chromosome
with the lowest z-value a fitness score of 0. All other chromosomes will have a score somewhere
between 0 and 1. As I mentioned earlier, SumFitnessScores computes a running total of these fitness
scores.

That's it for the fitness score subroutine. Now let's turn our attention to the function responsible for
selecting the fittest chromosomes, based on their fitness scores. The function I wrote for this task is
called SelectChromosome and is shown in Example 13-12.

Example 13-12. SelectChromosome function

Public Function SelectChromosome() As Integer
 Dim FitnessValue As Double
 Dim FitnessTotal As Double
 Dim i As Integer
 Dim Selection As Integer
 Dim continue As Boolean

 FitnessValue = Rnd * SumFitnessScores
 FitnessTotal = 0
 continue = True

 i = 1
 Do While (i <= PopulationSize) And (continue = True)
 FitnessTotal = FitnessTotal + CurrentGeneration(i).FitnessScore

 If FitnessTotal > FitnessValue Then
 Selection = i
 continue = False
 End If
 i = i + 1
 Loop
 SelectChromosome = Selection
End Function

This function selects chromosomes using a standard roulette wheel algorithm. The idea is to select
chromosomes with a probability of selection proportional to the chromosomes' fitness scores.
Chromosomes with the highest fitness scores have greater probabilities of being selected, while those
with lower scores have lower probabilities of being selected.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SelectChromosome implements the algorithm as follows: a random number between 0 and 1 is
obtained and multiplied by the sum of all fitness scores. The result is stored in the variable
FitnessValue. Next, a Do While loop is entered to iterate over the current population. During each
iteration an accumulation variable, FitnessTotal, accumulates the fitness scores for each
chromosome. When this FitnessTotal exceeds the randomly obtained FitnessValue, we have a
selection. The chromosome whose fitness score tipped FitnessTotal over FitnessValue is the
chromosome to select, and its index gets returned by SelectChromosome.

That's pretty much it for the genetic algorithm portion of the code. The remaining function I want to
show is DisplayResults. As mentioned earlier, it simply populates the spreadsheet (cells A3 through
C102) with chromosome data for the current population. Example 13-13 shows the subroutine.

Example 13-13. DisplayResults subroutine

Public Sub DisplayResults()
 Dim i As Integer
 Dim r As Integer

 r = 3
 For i = 1 To PopulationSize
 With Worksheets("Genetic")
 .Cells(r, 1) = CurrentGeneration(i).x
 .Cells(r, 2) = CurrentGeneration(i).y
 .Cells(r, 3) = CurrentGeneration(i).Z
 End With
 r = r + 1
 Next
End Sub

As you can see, this function simply iterates over the current population, copying each chromosome's
x-, y-, and z-values to the corresponding cells in the spreadsheet.

Results

Figure 13-19 shows some results of this genetic algorithm, with a mutation rate set at 0.01 and the
number of generations limited to just 200. The minimum z-value obtained in this case is -1.2247.
That's not too far off from the true global minimum for the subject function of -1.25. You can,
however, achieve better results by increasing the number of allowable generations, giving the
solution more time to evolve.

For example, setting the mutation rate to 0.01 and the maximum number of generations to 10,000
yields a minimum z-value of -1.2498. This run took only a few minutes on a typical desktop computer
with "Show Progress?" turned off. I tried many combinations of mutation rate and number of
generations. With mutation rates in the range of 0.001 to 0.01 and generation numbers ranging from
200 to 10,000, the algorithm converges to within a few percent, or fractions of a percent, of the true

http://lib.ommolketab.ir
http://lib.ommolketab.ir

global optimum every time.

This is a key benefit of such a genetic algorithm: it converges towards the global minimum every
time. The algorithm I showed you in Recipe 13.4, where I used Solver in a Monte Carlo fashion, did
not always converge to the global solution. It did the vast majority of the time, but there were a very
small percentage of cases where it didn't.

Conversely, when the Solver-based algorithm did converge, it did so more accurately in that the
exact global minimum at (x, y) = (0, 0) was found. Another downside of genetic algorithms is that
since they incorporate random elements, they don't always yield the same solution each time. For
example, one run with the maximum generations set to 10,000 and with a mutation rate set to 0.01
returned a minimum z-value of -1.2419, while another run using the same settings returned a value
of -1.2488.

On the other hand, genetic algorithms are robust and don't require gradient-based computations;
plus, they can handle very nonlinear problems in many cases better than a gradient-based approach
can. Which sort of method is best suited to a particular problem is very problem-dependent, but at
least you now have two powerful techniques at your disposalgenetic algorithms as shown here and
Solver-based approaches as discussed earlier.

See Also

If you have not already done so, read Recipe 13.4 to see the same problem solved using a Solver-
based approach.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 14. Introduction to Financial
Calculations

Section 14.0. Introduction

Recipe 14.1. Computing Present Value

Recipe 14.2. Calculating Future Value

Recipe 14.3. Figuring Out Required Rate of Return

Recipe 14.4. Doubling Your Money

Recipe 14.5. Determining Monthly Payments

Recipe 14.6. Considering Cash Flow Alternatives

Recipe 14.7. Achieving a Certain Future Value

Recipe 14.8. Assessing Net Present Worth

Recipe 14.9. Estimating Rate of Return

Recipe 14.10. Solving Inverse Problems

Recipe 14.11. Figuring a Break-Even Point

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.0. Introduction

This chapter is a departure from all the material presented earlier in this book. While this book does
focus on scientific and engineering types of calculations, I felt it would be appropriate to at least
introduce you to what Excel has to offer in the way of financial calculations . After all, even as
scientists and engineers, we do have to worry about money, whether we're preparing bids and
proposals, justifying the purchase of new laboratory equipment, or figuring out our retirement
benefits.

In practice, you can devise all sorts of financial or economic models in Excel for a huge variety of
problems. The large number of financial model templates available over the Internet attests to this
fact. To make some common calculations easier, Excel offers several dozen built-in financial formulas
. These built-in formulas handle calculations ranging from amortization to depreciation to treasury bill
yield calculations, and many others in between. You can find a list of all these functions in Excel's
help documents. Look for the help topic "Financial Functions" (from the help Table of Contents, look
for the topic "Working with Data" Function Reference Financial Functions Financial
Functions). There you'll find a list of all built-in financial functions with short descriptions and links to
more detailed information for each one.

There's little doubt that Excel is used more for these sorts of calculations than for pure scientific and
engineering calculations. Further, there are plenty of good books that show you in excruciating detail
how to leverage Excel for business and financial calculations. My aim in this chapter is not to try to
compete with those sources, but to introduce you, by way of a few examples, to how you can
leverage Excel for financial calculations.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.1. Computing Present Value

Problem

You need to determine the present value of a future dollar amount, considering the time value of
money.

Solution

Use the built-in function PV.

Discussion

Consider this example: what is the present value of a $5,000 payment to occur three years from now
if the annual interest rate is 7%? You can use the present value, PV, function to find out. The syntax
for PV is =PV(rate, nper, pmt, fv, type), where rate is the interest rate per period, nper is the
number of payment periods, pmt is the payment per period, fv is the future value, and type is an

indicator of the payment type (0 for payments at the end of each pay period or 1 for payments at the
beginning of each pay period).

You need to keep the interest rate and pay periods consistent when using this
formula. For example, if you're using a 7% annual interest rate, then your pay
period is in years. If your payments are each month, then you need to use the
monthly interest rate.

To compute the present value for our example, enter the formula =PV(0.07, 3, 0, 5000) in a cell. The
result comes to -$4,081.49. Excel generates this as a negative number, implying that this is what
you would have to invest now at the given rate to have a future value of $5,000 three years from
now. You can get rid of the negative by taking the absolute value, using the ABS function (see
Chapter 7).

See Also

Take a look at the other recipes in this chapter to learn about other calculations of the time value of
money.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.2. Calculating Future Value

Problem

You need to compute the future value of a series of payments, considering the time value of money.

Solution

Use the FV function.

Discussion

FV performs essentially the reverse of PV, which was discussed in the previous recipe. Consider this
example: what is the future value of $500 monthly payments over five years at an annual 8%
interest rate? You can use FV to find an answer. The syntax for FV is =FV(rate, nper, pmt, pv, type),
where rate is the interest rate per period, nper is the number of payment periods, pmt is the
payment per period, pv is the present value, and type is an indicator of the payment type (0 for

payments at the end of each pay period or 1 for payments at the beginning of each pay period).

For our example, the cell formula =FV(0.08/12,5*12,-500,0,0) returns a future value of $36,738.43.
The interest rate passed in as the first argument in the call to FV is 0.08/12 to compute the monthly
rate, since payments are made every month. Further, the number of payments over the five-year
period was entered as 5*12. Also, the $500 monthly payment was entered as a negative value,
indicating it's an out payment.

See Also

Take a look at the other recipes in this chapter to learn about other calculations of the time value of
money.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.3. Figuring Out Required Rate of Return

Problem

You want to figure out the required rate of return for some given present value to grow to a desired
future value.

Solution

Use the RATE function.

Discussion

Let's say you have $5,000 now and want to know what rate of return would be required for that sum
to grow to $15,000 in 10 years if interest is compounded annually. The RATE function can figure this
out for you.

The syntax for RATE is =RATE(nper, pmt, pv, fv, type, guess), where nper is the number of payment
periods, pmt is the payment per period, pv is the present value, fv is the future value, type is an

indicator of the payment type (0 for payments at the end of each pay period or 1 for payments at the
beginning of each pay period), and guess is an initial guess at the required interest rate.

RATE performs an iterative search for the required rate and your initial guess
helps it converge. guess is actually an optional parameter and you can omit it if

you'd like.

For our example, the formula =RATE(10, 0, -5000, 15000, 0, 0.1) returns a required interest rate
of 11.61%. Notice that I entered the present value as a negative value, indicating an out payment.
The signs for pv and fv must be opposite (fv can be 0); otherwise, RATE returns an error.

See Also

Take a look at the other recipes in this chapter to learn about other calculations of the time value of
money.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.4. Doubling Your Money

Problem

You want to figure out how long it will be before an initial investment will double, given an annually
compounded interest rate.

Solution

Use the NPER function.

Discussion

Let's say you invest $5,000 now at an annual interest rate of 8% and want to know how many years
it will be until the investment doubles, assuming interest is compounded annually. You can use NPER
to figure this out.

The syntax for NPER is =NPER(rate, pmt, pv, fv, type), where rate is the interest rate per period, nper
is the number of payment periods, pmt is the payment per period, pv is the present value, fv is the
future value, and type is an indicator of the payment type (0 for payments at the end of each pay

period or 1 for payments at the beginning of each pay period).

The formula for our example is =NPER(0.08, 0, -5000, 10000, 0), which returns a value of 9.01
years.

You can, of course, compute how long before your investment triples, quadruples, and so on, by
entering the appropriate future value. In this example, I entered twice the present value. Notice that
I change signs between present and future values as well.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.5. Determining Monthly Payments

Problem

You're borrowing money and want to figure out what your monthly payments will be, given the
principal amount and interest rate.

Solution

Use the PMT function.

Discussion

Let's say you're borrowing $25,000 and the term of the loan is five years. Payments are due at the
end of each month and the annual interest rate is 3.9%. What are your required monthly payments?

PMT can figure this out for you. The syntax for PMT is =PMT(rate, nper, pv, fv, type), where rate is
the interest rate per period, nper is the number of payment periods, pmt is the payment per period,
pv is the present value, fv is the future value, and type is an indicator of the payment type (0 for

payments at the end of each pay period or 1 for payments at the beginning of each pay period).

For this example, the formula =PMT(0.039/12, 12*5, 25000, 0, 0) returns -$459.29, which means
you'd have to pay $459.29 per month to cover principal and interest.

See Also

Excel includes a loan amortization template that's very handy when investigating loan options. Select
File New ... from the main menu bar to open the New Workbook Task Pane on the right side of
the window. Under Templates, select "On My Computer ..." to open the Templates dialog box. Select
the Loan Amortization template and press OK to open the template. Enter your loan parameters and
the template will automatically compute monthly payments, along with principal and interest
summaries over the term of the loan.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.6. Considering Cash Flow Alternatives

Problem

You're considering two different projects that will generate cash flow streams over a period of years,
and each project requires some start-up costs. You want to decide which project offers the highest
present value (making it the more attractive option).

Solution

You can set up a cash flow table rather easily using basic spreadsheet functions. Further, you can use
the time value of money formulas discussed to discount the future values to present dollars, forming
a present value basis of comparison.

Discussion

As an example, let's assume that project A requires an initial outlay of $5,000 during the first year
and will generate a positive cash flow of $3,000 per year for the next three years and $4,000 during
the fifth year. Project B requires an initial outlay of $6,000 during the first year and will generate a
positive cash flow of $3,250 per year for the next three years and $4,250 during the fifth year. We'll
assume the time value of money (interest rate) is 4.9%.

If you sum the initial outlay and cash flows for each project, you'll find the sum is $8,000 for each
project. Therefore, it would seem they are both equally attractive. However, the story is somewhat
different when you consider the time value of money.

What's required is to discount the future cash flow values using the PV function (see Recipe 14.1) to
derive cash flow sums for each project in terms of present dollars. Figure 14-1 shows a simple
spreadsheet I set up to make these calculations.

Figure 14-1. Discounted cash flow

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Cell E2 contains the interest rate (4.9%) to be used as the first argument in calls to PV.

Normally, you have to enter percentages in decimal format like 0.049 for 4.9%,
0.1 for 10%, and so on. However, if you format a cell as a percentage (by
using Format Cells ... Category Percentage or by entering % after
a number in a cell), then you can enter percentages as 4.9, 10, and so on.
Excel will take care of the 1/100 factor for you.

The table contained in cells B6 to F13 consists of columns showing the year and cash flow for project
A and for project B. The first two cash flow columns are not discounted. The values in these columns
were entered manually. The last two cash flow columns are discounted.

The cash flow value for year 0 is not discounted, whereas the cash flows for years 1 through 4 are
discounted. The formulas in these cells look like =PV(E2,$B9,0,-C9,0). The first argument is the
interest rate contained in cell E2. The second argument refers to the corresponding year for the
particular cash flow value, which is passed in as the fourth argument. I took the negative of the cash
flow value so the discounted results come out positive.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The totals in the last row of the table are computed using the SUM formula (see Chapter 7). As it turns
out, project A's present value is higher than that of project B. The difference is about 2% and makes
project A the more attractive option even though when you look at the nondiscounted cash flows,
they both appear to generate the same total cash flow.

See Also

Excel offers a function called NPV that discounts a series of cash flow values in one function call. See
Recipe 14.8 for more information.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.7. Achieving a Certain Future Value

Problem

You want to put away a sum of money annually at a given interest rate in order to achieve a specific
future value to cover a known upcoming expense. You need to know how much to put away each
year.

Solution

Use the PMT function.

Discussion

By way of example, let's assume you need $150,000 in 15 years' time and you want to invest a sum
of money annually to raise this money. You're confident you can get an annual interest rate on your
investment of 7.6%. How much do you invest each year?

You can use the PMT function (see Recipe 14.5) to compute the annual amount to invest. The formula
=PMT(0.076, 15, 0, 150000, 0) returns a payment value for this example of $5,698.76 per year.

See Also

See Recipe 14.5 for more information on the syntax for PMT.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.8. Assessing Net Present Worth

Problem

You're considering certain equipment upgrades in your lab and you want to perform a net present
worth analysis of the projected cash flow streams from these upgrades to determine which option
presents the best alternative.

Solution

You can use the same techniques discussed in Recipe 14.6 to discount the projected cash flow
streams in terms of present values. The option with the highest net present value is the best choice.

Discussion

Consider this example: you're currently running a numerical simulation laboratory that uses an aging
supercomputer to run your simulations. You've forecast cash flows for your simulation services over
the next five years. Now you're considering purchasing one of two candidate cluster-based systems
that will boost your forecast cash flow over the next five years. These new clusters cost money,
though, so you're not sure which one, if either, offers the best choice economically speaking. You
need to decide whether to purchase system A, system B, or nothing at all.

Let's further assume that system A costs $250,000 and system B, which is somewhat more powerful
than system A, costs $310,000. Also, at the end of the fifth year you can sell either system for
salvage at 10% of its original cost.

You've worked out cash flow forecasts for these two options as shown in Figure 14-2.

The No Upgrade option means you don't upgrade your system, but instead continue offering services
over the next five years using your current system. In this case, your cash flow is projected to
decrease somewhat over the five-year period due to anticipated increases in operating and
maintenance costs. Forecast cash flows for the system A option are expected to be fairly high, and
the cash flow in the fifth year includes the 10% salvage value. Similarly, system B is expected to
generate more cash flow due to its higher performance capabilities. The fifth-year cash flow value for
system B also includes the 10% salvage value.

Examination of the net cash flow values shown in the Total row for the first three cash flow columns
in the table in Figure 14-2 gives the impression that upgrading to system A offers the best choice.
This is before discounting and figuring out the net present value of each option.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 14-2. Net present worth example

Discounting these cash flows uses the same formulas shown in Recipe 14.6. The formulas in the last
three cash flow columns, the discounted columns, are of the form =PV(E2,$B9,0,-C9,0), where the
present value function, PV, is used to compute the present value of each year's cash flow amount for
each option.

Net present values are represented by the totals for the last three discounted cash flow columns.
Examining these totals reveals that purchasing system A is not the best option as originally thought.
Instead the No Upgrade option offers the best alternative at this time. Upon viewing results like this,
you might be inclined to hold off on your upgrade until new system prices come down a bit, in which
case the net present worth analysis might yield different results. Other factors to consider include
fluctuations in interest rates, as well as the declining cash flow of the old system as it ages further.

Excel offers a built-in function called NPV that computes the net present value of a series of cash flows
given a discount rate (interest rate). Its syntax is = NPV(rate, values), where rate is the interest
rate and values is a cell range or series of values separated by commas representing the cash flow

series. You can use NPV to compute net present values for the cash flows shown in the first three
columns of the table in Figure 14-2. Doing so will save you the trouble of constructing the discounted
cash flow tables and using the PV function.

For example, to compute the net present value of the No Upgrade option, use the formula
=C8+NPV(E2,C9:C12). Notice that this formula discounts only the cash flow values for the second
through fifth years. The first year, year 0, is then added to the discounted cash flow series to arrive

http://lib.ommolketab.ir
http://lib.ommolketab.ir

at the net present value. Similarly, the formulas =D8+NPV(E2,D9:D12) and =E8+NPV(E2,E9:E12)
compute the net present values for the system A and system B options, respectively. These three
formulas yield the same net present value results computed using the PV function.

See Also

Check out Recipe 14.9 to learn how to compute internal rates of return for the options in this
example.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.9. Estimating Rate of Return

Problem

You're evaluating a series of payments and cash flows and want to compute the rate of return on
your investment.

Solution

Use the IRR function to compute the internal rate of return .

Discussion

Let's reconsider the example cash flow options discussed in Recipe 14.6. In addition to looking at net
present values, you also want to compute the rate of return on each investment. IRR will do that for
you. The syntax for IRR is =IRR(values, guess), where values is a cell range containing the
investment and cash flow value and guess is your initial guess at the rate of return.

IRR uses an iterative solution approach; your initial guess is used to help it
converge on a solution.

To compute the rates of return for the two projects, project A and project B, enter these two
formulas: =IRR(C8:C12) and =IRR(D8:D12). The first formula computes the rate of return for project A
before discounting, and the second formula computes the rate of return for project B before
discounting. These formulas return 50% and 43%, respectively, indicating that project A is the better
option.

The formulas =IRR(E8:E12) and =IRR(F8:F12) compute the rates of return for projects A and B after
discounting their cash flows. The resulting rates of return are 43% and 36% for project A and project
B, respectively. These results again indicate that project A is the better alternative.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.10. Solving Inverse Problems

Problem

You want to solve a problem in reverse. For example, referring to the net present worth example
discussed in Recipe 14.8, you might want to find what annual cash flow value would make one
upgrade option the more attractive alternative.

Solution

Use Goal Seek or Solver to iteratively find a solution. See Chapters 9 and 13 for an in-depth
discussion and examples of using Goal Seek and Solver.

Discussion

Let's reconsider the example discussed in Recipe 14.8. Earlier it was found that the No Upgrade option
yielded the highest net present worth. Now the question is what annual cash flow would be required
for, say, the system A option to yield a net present worth equal to or greater than the No Upgrade
option. You can solve this problem with just a few small changes to the spreadsheet shown earlier in
Figure 14-2. All you have to do is add a new value in a cell that represents the assumed annual cash
flow for system A. Then you need to revise the cash flow values shown in the undiscounted cash flow
column for system A to refer to the new assumed value. Finally, you can use Goal Seek to iteratively
find the assumed cash flow value while setting the net present worth value for system A to that of
the No Upgrade option. Figure 14-3 shows the result of this exercise.

Cell E3 contains the new assumed annual cash flow value for system A. After running Goal Seek as
discussed a moment ago, the resulting value is $88,607, and you can see that the net present worth
values for the No Upgrade and System A options in cells F13 and G13, respectively, are the same.
Therefore, in order for system A to be the more attractive option, your annual cash flow for that
option must exceed $88,607.

The only changes I made to the original spreadsheet to find this solution are as follows:

I added a value in cell E3 to hold the assumed annual cash flow value for system A.1.

I added a text label in cell D3.2.

I changed cells D9, D10, and D11 from hardcoded values to the cell formula =E3.3.

I changed the formula in cell D12 from =85000+0.1*ABS(D8) to =E3+0.1*ABS(D8).4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.

4.

After making these changes, I ran Goal Seek to set cell G13 to a value of 85,575 by changing the
value in cell E3. The result is as shown in Figure 14-3.

Figure 14-3. Net present worth example revisited

See Also

Be sure to read Chapter 9 to learn a lot more about using Solver and Goal Seek.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.11. Figuring a Break-Even Point

Problem

You want to figure out a break-even point for an investment or business venture.

Solution

Set up a spreadsheet containing projected expenses and revenue over a period of time and compute
cumulative expenses and revenue over that period. Compute the net revenue and find the point at
which net revenue goes from negative to positive.

Discussion

Consider the data shown in Figure 14-4, which shows hypothetical expenses and revenue for a
proposed business venture.

An initial, one-time cost of $97,000 is required in year 0, with operating expenses increasing linearly
from $9,600 to $14,400 from year 1 through year 10. Revenue is expected to start flowing in year 1
and to increase annually until year 6, at which point it levels off.

Figure 14-4. Break-even example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The question is how long it will be before you break even. That is, how many years until your total
revenue exceeds your total expenses?

Columns G and H compute cumulative expenses and revenue over the period in question. These are
computed by summing all previous expenses and revenue for years prior to and including the current
year.

The last column in the table computes the difference between cumulative revenue and cumulative
expenses. The break-even point is found when this value changes from negative to positive. In this
example, break-even occurs between years 5 and 6. A plot of the cumulative expenses and revenue
illustrates the break-even point graphically; see Figure 14-5.

The point where these two curves cross is the break-even point. If you plot the net revenue values
over time (the last column in the table shown in Figure 14-4), you'll see that the break-even point
occurs when the net revenue curve crosses the horizontal axis. You can pinpoint the break-even point
by interpolating the net revenue curve. Or you can fit a curve through it and use Solver or Goal Seek
to find its root. See Chapter 9 to learn how.

Figure 14-5. Break-even plot

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

You can also compute rates of return for this venture by using techniques discussed in Recipe 14.9.
Further, you can consider the time value of money using techniques shown in Recipe 14.8. You can
also perform a so-called what-if analysis to see how changes in your expense and revenue
projections affect your break-even point. Finally, you can use techniques discussed in Recipe 14.10 to
figure out required cash flows in order to achieve a break-even point by a specific year.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

About the Author

David M. Bourg is a practicing engineer who provides consulting services through his company,
David M. Bourg & Associates, LLC. He is also an adjunct professor of naval architecture at the
University of New Orleans. His current research involves the direct numerical simulation of
multiphase fluid flow problems. Additionally, David is professionally involved in computer game
development and consulting. He is the author of two other O'Reilly books, AI for Game Developers
and Physics for Game Developers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Colophon

The animal on the cover of the Excel Scientific and Engineering Cookbook is a common genet
(Genetta vulgaris or Genetta genetta), also known as a true or small-spotted genet. (The taxonomy
of the genus is controversial, with several similar species and numerous proposed subspecies,
reflecting many geographic and habitat-specific variations.) The animal's name is pronounced with a
soft "g" and rhymes with "Senate," in contrast to the homographic surname of the French novelist
and playwright of the theater of the absurd.

Related to but distinct from true cats, genets are members of the civet or viverrid family (Viverridae),
which also includes the mongoose. The viverrids are generally regarded as the closest living
descendants of the extinct common ancestor of the carnivores. The oldest genet fossils, found in
Morocco, date back to the Pliocene. Genets were kept as pets by the ancient Egyptians and as rat
catchers in Europe until they were eventually replaced by house cats (depictions of domesticated
genets can be seen on European tapestries from the Middle Ages).

Common genets are distributed throughout southern Europe, parts of the Middle East, North Africa,
and the savanna south of the Sahara. They prefer low altitudes but live in diverse habitats, including
pine forests, olive groves, rocky areas, and scrublands. Genets are considered arboreal, but they also
spend a large amount of time on the ground and are partial to streambanks. They are agile climbers,
with semiretractable claws and an extremely flexible body that can squeeze through any opening
large enough to admit the head. They are primarily solitary; genets of opposite sexes may share
overlapping territory, but those of the same sex will not. They are mostly nocturnal, resting during
the day in thickets and hollow trees. Genets do most of their hunting on the ground and, like cats,
they hunt by stealth, crouching low to the ground and killing prey with a quick bite on the neck.

The genet is an opportunistic carnivore; its main prey are small mammals, but it rounds out its diet
according to seasonal availability with birds, reptiles, amphibians, fish, insects, and fruits. Genets use
their sense of smell for both hunting and communication; they convey social, mating, and territorial
messages via secretions from several scent glands (although these are not as highly developed as
those of civets, whose perineal glands have long played a role in the making of perfume and the
unusual processing of Indonesian coffee beans called kopi luwak). Both sexes use flank and hind-leg
rubbing to distribute olfactory cues, in addition to marking with perineal secretions (common among
females) and urine (more popular with males).

Genets have five vocalizations: a hiccup (used primarily by mothers to call the litter, and by males
during the mating period); a purr (used only during the first week of life); a mew (used by the young
while still dependent); a growl (used by the young once their predatory behavior is fully developed);
and a click (used by adults in aggressive interactions). In offensive stance, the dorsal fur bristles and
the genet arches its back, opens its mouth, and bares its teeth.

The cover image is from Lydekker's Royal Natural History. The text font is Linotype Birka; the
heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono Condensed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

' (apostrophe)

^ (caret operator)

 VBA programming and

: (colon)

$ (dollar sign)

 button

= (equals sign)

(hash mark)

() (parentheses)

% (percent) button

' (quote, single)

_ (underscore)

3D surface plots, charting

 views, rotating

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

A1-style cell references

ABS function

Abs()

absolute cell references

accelerator characters

Access databases, importing into Excel

ACOS function

ACOSH function

Add Procedure dialog box

add-in functions, creating

Alt key

alternating direction implicit (ADI) method

Analysis ToolPak

 Correlation tool

 exponential smoothing

 Fourier Analysis tool

 Moving Average

 Rank and Percentile tool

 statistical testing tools

ANOVA (analysis of variance) 2nd

Application object

area center, computing with numerical integration

arguments

arrays

 memory allocation for

As DataType qualifier

ASIN function

ASINH function

ATAN function

ATANH function

Atn()

AutoFilter

automation

 macros

averages

 AVERAGE formula

 average-percentage method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

band pass filters

Beep statement

boundary value problems

break-even point on investments, calculating

breakpoints

built-in financial formulas

built-in functions

 lookup functions

button controls, adding to spreadsheets

ByVal keyword

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Call keyword

callout boxes

caret (^) operator

 VBA programming and

cash flow alternatives, comparing

CEILING function

cells

 cell names

 cell references

 A1-style

 absolute cell references

 R1C1-style

 ranges

 relative cell references

 data entry

 data types, setting

 scientific notation

 formulas, entering

 selection operations

centering data

charts

 3D surface plots

 views, rotating

 annotating

 axes, customizing

 Scale tab

 Chart Wizard

 Axes tab

 Data Labels tab

 Data Range tab

 Gridlines tab

 Legend tab

 Series tab

 Titles tab

 contour plots

 customizations, saving

 error bars

 formatting

 Ctrl-1 key

 linear curve fitting using

 log or semilog scales, setting

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 multiple axes

 dummy series, using

 nonlinear curve fitting

 Source Data dialog box

 styles

 trendlines, creating

 types

 changing on existing charts

 combining

 Word documents, copying to

 XY (scatter) charts

chromosomes

classical methods for solving equations

CLEAN function

code conformance in engineering problems

code formatting

coefficients of determination 2nd

colon (:)

comments 2nd

COMPLEX function

complex numbers

Compute Cf subroutine

CONFIDENCE function

confidence intervals 2nd

constants

constructors

contour plotting

conversion between number systems, functions for

CONVERT function

Convert Text to Columns Wizard

CORREL function

correlation coefficient

Correlation tool

COS function

Cos()

COSH function

Coursey, J. S.

Crank-Nicolson finite difference method

Ctrl key

 Ctrl-A

 Ctrl-C

 Ctrl-F1

 Ctrl-V

 Ctrl-X

curve fitting

 assessing fit

 coefficient of determination

 correlation coefficient

 explained and unexplained variation

 total variation

 confidence intervals, computing

 fitting nonlinear curves

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Excel charts, using

 Solver, using

 multiple linear regression

custom functions

 example

 unit conversion

 vector-based calculations

cut-and-paste operations

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

damping factors

data

 correlating of

 data series, centering

 importing

 refreshing data

 random sampling of

Data Analysis ToolPak

 Sampling tool

data entry

data operations

 cleaning of nonprintable characters

 filtering 2nd

 importing

 Access databases

 delimited text files

 drag-and-drop

 text files

 web pages

 XML files

 parsing

 sorting

 tabular data lookups

Data Range Properties button

data types 2nd

 As DataType qualifier

 type-declaration characters

data validation

databases

 database functions

 importing data from

date and time functions

debugging

 breakpoints

DEC2HEX function

decimal places, setting

DEGREES function

delimited data

delimited text files, importing

derivative of a function

Descriptive Statistics tool

http://lib.ommolketab.ir
http://lib.ommolketab.ir

deseasonalization of time series

design mode

detrending

difference (forward, backward, and central)

diffusion equations

Dim statements

 declaring arrays

discrete Fourier transforms

division functions

Do loops

 For loops, versus

Do While and Do Until loops

dockable toolbars

DoEuler VBA code for nonlinear system

DoEuler1stOrder VBA subroutine

 modified

double integrals

Dragoset, R. A.

Drawing toolbar

DuChateau, Paul

dynamic programming

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

E or e

Edit menu

engineering functions

equals sign

Equation Editor

 Microsoft Word

equation notes

equations, documentation in spreadsheets

equations, solving

 automating solutions with VBA

 classical methods

 Newton's method

 secant method

 linear systems

 matrix inversion, using

 Solver, using

 nonlinear equations, solving iteratively

 nonlinear systems of equations

 roots, finding graphically

Euler's method

 coupled equations, solving

 implementing

 spreadsheets, using

 VBA, using

EVEN function

Excel and VBA functions

Excel objects

 Application object

 Object Browser

 Range objects

 Save method

 Worksheet objects

 WorksheetFunction objects

Exit For statement

Exp()

exponential functions

exponential smoothing

exponents

External Data Range Properties dialog box

External Data toolbar 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

F-test

F2 shortcut key

fifth-order formula

Filip.txt

Filippelli, A.

financial calculations

 break-even point on investment, calculating

 cash flow alternatives

 future value, calculating

 inverse problems

 monthly payments on debt

 net present worth, calculating

 rate of return, estimating

 required rate of return

 return on interest

 target value, calculating investment required

financial functions

finite difference method

finite element method (FEM)

Fisher, R. A.

fixed-width data

For Each loops

For loops versus Do loops

For Next loops

FORECAST function and time series analysis

forecasting

Format Axis dialog box

Format Cells dialog box

Format Data Series dialog box

Format menu

formatting

 custom styles, defining

 style drop-down lists

 spreadsheets

formulas

 cell references

 cells, entering into

 exponents

 mathematical operators used in

 operator precedence

Fourier transforms

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FREQUENCY function

FTEST function

Function Arguments dialog box

Function keyword

functions 2nd

 add-in worksheet functions, creating

 arguments

 built-in financial formulas

 built-in functions

 lookup functions

 derivative of a function

 documentation

 Excel functions versus VBA functions

 FV function

 Insert Function button

 IRR function

 linear fits with spreadsheet functions

 NPER function

 NPV function

 PMT function 2nd

 PV function 2nd

 SUM function

future value, calculating

FV function

Fylstra, Daniel

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Galerkin method

Gauss-Seidel iteration

Gaussian quadratures

GCD function

Generalized Reduced Gradient optimization algorithm

genes

genetic algorithm

 chromosome class, creating

 chromosomes and genes

 Class_Initialize method

 Copy method

 EvaluateFitness subroutine

 EvaluateZ method

 Evolve button

 event handler

 genetic material

 genetic optimization

 global variables

 Mate method

 Mutate method

 MutationRate property

 SelectChromosome function

global scope

Goal Seek

 inverse solutions to financial calculations

 nonlinear equations, automating solutions with VBA

 nonlinear equations, solving iteratively

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Hawley, David 2nd

Hawley, Raina 2nd

Help

 Excel 2nd

 VBA

 Visual Basic User Interface Help

HEX2DEC function

Hildebrand, F. B.

Histogram tool

HLOOKUP function

hyperbolic equations

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

IDE (integrated development environment)

IMABS function

IMAGINARY function

IMARGUMENT function

IMCONJUGATE function

IMCOS function

IMDIV function

IMEXP function

IMLN function

IMLOG10 function

IMLOG2 function

Immediate window

IMPOWER function

IMPRODUCT function 2nd

IMREAL function 2nd

IMSIN function

IMSQRT function

IMSUB function

IMSUM function

INDEX function

initial value problems 2nd

Insert Function button

INT function

Int()

integer constraints

 optimization problems and

internal rate of return

investments, calculating break-even point on

IRR function

iterative methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Jacobi's method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

kernel smoothing

keyboard shortcuts

 cut, copy, and paste

Kreyszig, Erwin

Kythe, Prem 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

labor statistics dataset

Laplace equation 2nd

Lasdon, Leon

LCM function

Lenz, Evan

Liebmann's method

linear curve fitting

 charts, using

 spreadsheet functions, using

 LINEST function

linear optimization programming

linear systems, solving

 matrix inversion, using

 Solver, using

LINEST function

 F-tests

 linear curve fitting

 multiple linear regression

LN function

loan amortization template

local scope

Locals window

log charts

LOG function

 VBA Log versus Excel LOG

Log()

logarithmic functions

logical functions

Longley, J. W.

LOOKUP function

lookup functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

macros

main menu bar

MATCH function

mathematical functions 2nd

 ABS function

 complex numbers

 division functions

 exponential functions

 logarithmic functions

 matrix functions

 multiplication functions

 number systems, conversion between

 rounding and truncating numbers

 SIGN function

 spreadsheet functions, using in VBA code

 SQRT function

 summation functions

 trigonometric functions

 vector-based calculations

matrix functions

 large systems and

 linear systems of equations, solving with

McRae, Mary

MDETERM function

memory allocation for arrays

menus

 main menu bar

 options

methods

Michelson

Microsoft Word

 copying charts to

 spreadsheets, embedding in

MINVERSE function

Mitchell, Melanie

MMULT function

MOD function

moment of inertia

Monte Carlo integration 2nd

Monte Carlo method

monthly payments on debt, calculating

http://lib.ommolketab.ir
http://lib.ommolketab.ir

moving averages, computing

 Analysis ToolPak Moving Average

 spreadsheet formulas for

 trendlines, using

MROUND function

multidimensional arrays

multiple axes charts

multiple linear regression

multiple-document interface main window

multiplication functions

MutationRate property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

net present worth, calculating

New Web Queries

Newton's method for solving equations

Newton-Cotes integration formulas

Next statement

nonlinear equations, solving iteratively

nonlinear systems of equations, solving

NORMSINV function

NPER function

NPV function

number systems, conversion between

numerator degrees of freedom

numerical differentiation

numerical integration

 computing the center of an area

 computing the second moment of an area

 double integrals

 integrating a definite integral

 trapezoidal rule

 VBA, implementing in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Object Browser

 Classes list

object-oriented programming

objects

 creating

 members

ODD function

operator precedence

optimization analysis

 engineering design problems

 integer constraints, using

 locally optimal versus globally optimal solutions

 resource allocation optimization

 traditional linear programming

Option Base statement

ordinary differential equations, solving

 boundary value problems

 coupled equations

 Euler's method

 Runge-Kutta method

 first-order initial value problems

 second-order initial value problems

 solution methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

parabolic equations

parentheses ()

partial differential equations, solving

 finite difference equations

 finite element method

 initial value problems

Paste and Paste Special

PEARSON function

PERCENTILE function

PERCENTRANK function

PI function

PMT function 2nd

pointers

Poisson equation

POWER function

procedural programs

PRODUCT function

product mix problems

properties

Public keyword

PV function 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

QUOTIENT function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

R1C1-style cell references

Radar charts

 types

RADIANS function

random number generation

random sampling

Range objects

ranges

RANK function

 Spearman rank correlation using

rate of return, estimating

relative references

Rem keyword

required rate of return

resource optimization allocation

return on interest, calculating

Reynolds number

Roman, Steven

roots, finding graphically

ROUND function

Round()

rounding functions

Runge-Kutta method

 coupled equations, solving

 second-order initial value problems, applying to

 VBA code for nonlinear system

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Sampling tool

Save method

schemas (XML)

Schwab, D. J.

scientific notation

scope qualifiers

seasonal indices, estimating

secant method for solving equations

secondary axes

semilog charts

Sgn()

shooting method

shortcut keys

SIGN function

Simon, Jinjer

Simpson's rule

SIN function

Sin()

SINH function

small sampling theory

smoothing data

 exponential smoothing

 kernel smoothing

Solver

 By Changing Cells field

 finite difference equations, solving

 first-order initial value problems, solving

 Guess button

 inverse solutions to financial calculations

 linear systems, solving

 nonlinear curve fitting

 nonlinear equations, automating solutions with VBA

 optimization analysis

 engineering design problems

 integer constraints, using

 locally optimal versus globally optimal solutions

 resource allocation problems

 traditional linear programming

 options

 reports feature

 Set Target Cell field

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 solutions using the finite element method

 Solver reports

 Answer reports

 Limits reports

 Sensitivity reports

speed of light dataset

spreadsheet functions

 linear curve fitting using

spreadsheets

 Euler's method, implementing

 formatting

 procedural programs, compared to

 Word documents, embedding in

Sqr()

SQRT function

St.Laurent, Simon

statistical analysis

 ANOVA (analysis of variance)

 confidence intervals, calculating

 data, correlating

 frequency distributions, plotting

 FREQUENCY function, using

 Histogram tool, using

 random number generation

 random sampling

 ranking and percentiles

 statistical tests

 summary statistics, computing

statistical functions

STEYX function

stiffened panel model

Student's t-distribution

style drop-down lists

subroutines

 calling

 data types

 names

 parameters

 Sub keyword

SUM function

summation functions

SUMPRODUCT function

 trapezoidal rule, implementation using

SUMSQ function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

table value lookups

TAN function

Tan()

TANH function

target value, calculating investment required

task pane

Taylor series expansion

testing functions

 inverse functions of

text and data functions

text files

 delimited files, importing

 Excel, opening in

 importing

 column-break specification

 dragging and dropping

 Save As...

Text Import Wizard

Thurber, R.

time series analysis

 data series, centering

 deseasonalization

 detrending a time series

 discrete Fourier transforms

 forecasting

 nonlinear trendlines

 plotting time series data

 seasonal indices, estimating

 trendlines, adding

TINV function

To keyword

Toolbars

 dockability

TRANSPOSE function

trapezoidal rule

 VBA, implementing in

 function for

trendline tool

trendlines

 detrending time series using

trigonometric functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

truncating functions

TTEST function

two-point boundary value problem

type-declaration characters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

unit conversion

 add-ins, creating

 CONVERT function

 custom functions

user input

 validating

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

v_CrossProduct code

v_Mag code

variables

VBA (Visual Basic for Applications)

 arrays

 autogenerated code, using

 automating solutions to nonlinear equations

 built-in functions

 code completion

 comments

 constants

 custom functions for vector calculations

 data types

 debugging

 breakpoints

 debugging code

 derivative functions

 Dim statements

 DoEuler subroutine

 DoEuler1stOrder subroutine

 modified

 DoRK2ndOrder subroutine (Runge-Kutta)

 DoRunge-Kutta subroutine

 Euler's method, implementing

 functions

 Excel functions and

 y=f(x), computing

 Help

 Visual Basic User Interface Help

 Immediate window

 Locals window

 names

 objects, creating

 procedures

 spreadsheet functions, using in code

 statements

 conditional statements

 spanning over multiple lines

 subroutines

 trapezoidal rule, implementing

 function for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 v_CrossProduct code

 v_Mag code

 variables

 Visual Basic Language Reference

 Watch window

 Wcs function

VBA Editor

 code modules

 properties

 IDE

 object and procedure lists

 Object Browser

 procedure and full module views

 project panel or explorer

 VBAProject

vector-based calculations

VLOOKUP function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Waren, Allan

Watch window

Watson, John

wave equations

Wcs function

web pages

 importing into Excel

Wei, Dongming 2nd

weighting factors

workbook

Workbook object

Worksheet object

WorksheetFunction objects

 accessing Excel functions from within VBA

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

XML (Extensible Markup Language)

 importing files into Excel

 schemas

XY (scatter) charts

 generating nonlinear curve fits

 linear curve fitting

 types

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Zachmann, David

ZTEST function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Excel Scientific and Engineering Cookbook
	Table of Contents
	Copyright
	Preface
	Recipe Who Should Read This Book
	Recipe What's in This Book
	Recipe Conventions in This Book
	Recipe Using Code Examples
	Recipe Safari Enabled
	Recipe We'd Like Your Feedback!
	Recipe Acknowledgments

	Chapter 1. Using Excel
	Section 1.0. Introduction
	Recipe 1.1. Navigating the Interface
	Recipe 1.2. Entering Data
	Recipe 1.3. Setting Cell Data Types
	Recipe 1.4. Selecting More Than a Single Cell
	Recipe 1.5. Entering Formulas
	Recipe 1.6. Exploring the R1C1 Cell Reference Style
	Recipe 1.7. Referring to More Than a Single Cell
	Recipe 1.8. Understanding Operator Precedence
	Recipe 1.9. Using Exponents in Formulas
	Recipe 1.10. Exploring Functions
	Recipe 1.11. Formatting Your Spreadsheets
	Recipe 1.12. Defining Custom Format Styles
	Recipe 1.13. Leveraging Copy, Cut, Paste, and Paste Special
	Recipe 1.14. Using Cell Names (Like Programming Variables)
	Recipe 1.15. Validating Data
	Recipe 1.16. Taking Advantage of Macros
	Recipe 1.17. Adding Comments and Equation Notes
	Recipe 1.18. Getting Help

	Chapter 2. Getting Acquainted with Visual Basic for Applications
	Section 2.0. Introduction
	Recipe 2.1. Navigating the VBA Editor
	Recipe 2.2. Writing Functions and Subroutines
	Recipe 2.3. Working with Data Types
	Recipe 2.4. Defining Variables
	Recipe 2.5. Defining Constants
	Recipe 2.6. Using Arrays
	Recipe 2.7. Commenting Code
	Recipe 2.8. Spanning Long Statements over Multiple Lines
	Recipe 2.9. Using Conditional Statements
	Recipe 2.10. Using Loops
	Recipe 2.11. Debugging VBA Code
	Recipe 2.12. Exploring VBA's Built-in Functions
	Recipe 2.13. Exploring Excel Objects
	Recipe 2.14. Creating Your Own Objects in VBA
	Recipe 2.15. VBA Help

	Chapter 3. Collecting and Cleaning Up Data
	Section 3.0. Introduction
	Recipe 3.1. Importing Data from Text Files
	Recipe 3.2. Importing Data from Delimited Text Files
	Recipe 3.3. Importing Data Using Drag-and-Drop
	Recipe 3.4. Importing Data from Access Databases
	Recipe 3.5. Importing Data from Web Pages
	Recipe 3.6. Parsing Data
	Recipe 3.7. Removing Weird Characters from Imported Text
	Recipe 3.8. Converting Units
	Recipe 3.9. Sorting Data
	Recipe 3.10. Filtering Data
	Recipe 3.11. Looking Up Values in Tables
	Recipe 3.12. Retrieving Data from XML Files

	Chapter 4. Charting
	Section 4.0. Introduction
	Recipe 4.1. Creating Simple Charts
	Recipe 4.2. Exploring Chart Styles
	Recipe 4.3. Formatting Charts
	Recipe 4.4. Customizing Chart Axes
	Recipe 4.5. Setting Log or Semilog Scales
	Recipe 4.6. Using Multiple Axes
	Recipe 4.7. Changing the Type of an Existing Chart
	Recipe 4.8. Combining Chart Types
	Recipe 4.9. Building 3D Surface Plots
	Recipe 4.10. Preparing Contour Plots
	Recipe 4.11. Annotating Charts
	Recipe 4.12. Saving Custom Chart Types
	Recipe 4.13. Copying Charts to Word
	Recipe 4-14. Displaying Error Bars

	Chapter 5. Statistical Analysis
	Section 5.0. Introduction
	Recipe 5.1. Computing Summary Statistics
	Recipe 5.2. Plotting Frequency Distributions
	Recipe 5.3. Calculating Confidence Intervals
	Recipe 5.4. Correlating Data
	Recipe 5.5. Ranking and Percentiles
	Recipe 5.6. Performing Statistical Tests
	Recipe 5.7. Conducting ANOVA
	Recipe 5.8. Generating Random Numbers
	Recipe 5.9. Sampling Data

	Chapter 6. Time Series Analysis
	Section 6.0. Introduction
	Recipe 6.1. Plotting Time Series Data
	Recipe 6.2. Adding Trendlines
	Recipe 6.3. Computing Moving Averages
	Recipe 6.4. Smoothing Data Using Weighted Averages
	Recipe 6.5. Centering Data
	Recipe 6.6. Detrending a Time Series
	Recipe 6.7. Estimating Seasonal Indices
	Recipe 6.8. Deseasonalization of a Time Series
	Recipe 6.9. Forecasting
	Recipe 6.10. Applying Discrete Fourier Transforms

	Chapter 7. Mathematical Functions
	Section 7.0. Introduction
	Recipe 7.1. Using Summation Functions
	Recipe 7.2. Delving into Division
	Recipe 7.3. Mastering Multiplication
	Recipe 7.4. Exploring Exponential and Logarithmic Functions
	Recipe 7.5. Using Trigonometry Functions
	Recipe 7.6. Seeing Signs
	Recipe 7.7. Getting to the Root of Things
	Recipe 7.8. Rounding and Truncating Numbers
	Recipe 7.9. Converting Between Number Systems
	Recipe 7.10. Manipulating Matrices
	Recipe 7.11. Building Support for Vectors
	Recipe 7.12. Using Spreadsheet Functions in VBA Code
	Recipe 7.13. Dealing with Complex Numbers

	Chapter 8. Curve Fitting and Regression
	Section 8.0. Introduction
	Recipe 8.1. Performing Linear Curve Fitting Using Excel Charts
	Recipe 8.2. Constructing Your Own Linear Fit Using Spreadsheet Functions
	Recipe 8.3. Using a Single Spreadsheet Function for Linear Curve Fitting
	Recipe 8.4. Performing Multiple Linear Regression
	Recipe 8.5. Generating Nonlinear Curve Fits Using Excel Charts
	Recipe 8.6. Fitting Nonlinear Curves Using Solver
	Recipe 8.7. Assessing Goodness of Fit
	Recipe 8.8. Computing Confidence Intervals

	Chapter 9. Solving Equations
	Section 9.0. Introduction
	Recipe 9.1. Finding Roots Graphically
	Recipe 9.2. Solving Nonlinear Equations Iteratively
	Recipe 9.3. Automating Tedious Problems with VBA
	Recipe 9.4. Solving Linear Systems
	Recipe 9.5. Tackling Nonlinear Systems of Equations
	Recipe 9.6. Using Classical Methods for Solving Equations

	Chapter 10. Numerical Integration and Differentiation
	Section 10.0. Introduction
	Recipe 10.1. Integrating a Definite Integral
	Recipe 10.2. Implementing the Trapezoidal Rule in VBA
	Recipe 10.3. Computing the Center of an Area Using Numerical Integration
	Recipe 10.4. Calculating the Second Moment of an Area
	Recipe 10.5. Dealing with Double Integrals
	Recipe 10.6. Numerical Differentiation

	Chapter 11. Solving Ordinary Differential Equations
	Section 11.0. Introduction
	Recipe 11.1. Solving First-Order Initial Value Problems
	Recipe 11.2. Applying the Runge-Kutta Method to Second-Order Initial Value Problems
	Recipe 11.3. Tackling Coupled Equations
	Recipe 11.4. Shooting Boundary Value Problems

	Chapter 12. Solving Partial Differential Equations
	Section 12.0. Introduction
	Recipe 12.1. Leveraging Excel to Directly Solve Finite Difference Equations
	Recipe 12.2. Recruiting Solver to Iteratively Solve Finite Difference Equations
	Recipe 12.3. Solving Initial Value Problems
	Recipe 12.4. Using Excel to Help Solve Problems Formulated Using the Finite Element Method

	Chapter 13. Performing Optimization Analyses in Excel
	Section 13.0. Introduction
	Recipe 13.1. Using Excel for Traditional Linear Programming
	Recipe 13.2. Exploring Resource Allocation Optimization Problems
	Recipe 13.3. Getting More Realistic Results with Integer Constraints
	Recipe 13.4. Tackling Troublesome Problems
	Recipe 13.5. Optimizing Engineering Design Problems
	Recipe 13.6. Understanding Solver Reports
	Recipe 13.7. Programming a Genetic Algorithm for Optimization

	Chapter 14. Introduction to Financial Calculations
	Section 14.0. Introduction
	Recipe 14.1. Computing Present Value
	Recipe 14.2. Calculating Future Value
	Recipe 14.3. Figuring Out Required Rate of Return
	Recipe 14.4. Doubling Your Money
	Recipe 14.5. Determining Monthly Payments
	Recipe 14.6. Considering Cash Flow Alternatives
	Recipe 14.7. Achieving a Certain Future Value
	Recipe 14.8. Assessing Net Present Worth
	Recipe 14.9. Estimating Rate of Return
	Recipe 14.10. Solving Inverse Problems
	Recipe 14.11. Figuring a Break-Even Point

	About the Author
	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

