downloaded from: lib.ommolkefab.ir

Copyright © 2003 O'Rellly & Associates, Inc. All rights reserved.

Printed in the United States of America. This book was originally published as C kurz & gut, Copyright © 2002 by
O'Rellly Verlag GmbH & Co. KG.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Rellly & Associates books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://). For more information contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly &
Associates, Inc. Many of the designations used by manufacturers and sellersto distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Rellly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps. The association between the image of a
cow and the topic of C isatrademark of O'Rellly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

downloaded from: lib.ommolkefab.ir

http://

downloaded from: lib.ommolkefab.ir

Chapter 1. C Pocket Reference

Section 1.1. Introduction

Section 1.2. Fundamentals

Section 1.3. Basic Types

Section 1.4. Constants

Section 1.5. Expressions and Operators

Section 1.6. Type Conversions

Section 1.7. Statements

Section 1.8. Declarations

Section 1.9. Variables

Section 1.10. Derived Types

Section 1.11. Functions

Section 1.12. Linkage of Identifiers

Section 1.13. Preprocessing Directives

Section 1.14. Standard Library

Section 1.15. Standard Header Files

Section 1.16. Input and Output

Section 1.17. Numerical Limits and Number Classification

Section 1.18. Mathematical Functions

Section 1.19. Character Classification and Case Mapping

Section 1.20. String Handling

Section 1.21. Searching and Sorting

Section 1.22. Memory Block Management

Section 1.23. Dynamic Memory M anagement

Section 1.24. Time and Date

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Section 1.25. Process Control

Section 1.26. Internationalization

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.1 Introduction

The programming language C was developed in the 1970s by Dennis Ritchie at Bell Labs (Murray Hill, New Jersey)
In the process of implementing the Unix operating system on a DEC PDP-11 computer. C hasitsoriginsin the

typel ess programming language BCPL (Basic Combined Programming Language, developed by M. Richards) and in
B (developed by K. Thompson). In 1978, Brian Kernighan and Dennis Ritchie produced the first publicly available
description of C, now known as the K& R standard.

C isahighly portable language oriented towards the architecture of today's computers. The actual language itself is
relatively small and contains few hardware-specific elements. It includes no input/output statements or memory
management techniques, for example. Functions to address these tasks are available in the extensive C standard
library.

C's design has significant advantages.
e Source codeis highly portable
e Machine code is efficient
e Ccompilersareavailablefor all current systems

Thefirst part of this pocket reference describes the C language, and the second part is devoted to the C standard
library. The description of C is based on the ANSI X3.159 standard. This standard corresponds to the international
standard | SO/IEC 9899, which was adopted by the International Organization for Standardization in 1990, then
amended in 1995 and 1999. The |SO/IEC 9899 standard can be ordered from the ANSI web site; see
http://ansi.org/public/std _info.ntml.

The 1995 standard is supported by all common C compilerstoday. The new extensions defined in the 1999 release
(called "ANSI C99" for short) are not yet implemented in many C compilers, and are therefore specially labeled in
this book. New types, functions, and macros introduced in ANSI C99 are indicated by an asterisk in parentheses ().

1.1.1 Font Conventions

The following typographic conventions are used in this book:
Italic

Used to introduce new terms, and to indicate filenames.

Constant w dth

Used for C program code as well as for functions and directives.

Constant wmdth 1talic

| ndicates replaceable items within code syntax.

Constant w dth bol d

downloaded from: lib.ommolkefab.ir

http://ansi.org/public/std_info.html

downloaded from: lib.ommolkefab.ir

Used to highlight code passages for special attention.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.2 Fundamentals

A C program consists of individual building blocks called functions, which can invoke one another. Each function
nerforms a certain task. Ready-made functions are available in the standard library; other functions are written by the
programmer as necessary. A special function name ismain(): this designates the first function invoked when a
program starts. All other functions are subroutines.

1.2.1 C Program Structure

Figure 1-1 illustrates the structure of a C program. The program shown consists of the functions mal n() and
showPage() , and prints the beginning of atext file to be specified on the command line when the program is

started.

Figure 1-1. A C program

f* Head.c: This program outputs the beginning ot a

* pext file to the standard output. # (amments
= Usage : Head <filenames ¥
ginclude «stdia,hoe Freprocessor direcLives
Hd=tine LIKES e,

vold showPage{ FILE * }; /4 prototype Funtion maini]

imt main{ imt arpc, char *®argv)

1
FILE *fp; int exit code = 0O;

if { arge 1= 2)

i
fprinmtfi stderr, “U=age: Head <filename>\n®™ |;
exit code = 1;

}

?]5-& 1f { { fp = fopent argv[1i], "r" }) == WILL }
fprint¥f{ stderr, “Error openimg filelwn®);
exit code = F;

!

plce

1
showPage| fp);
'I'i.'ln-'r.r?-fp I;; J
return exit code;

|

void showPage| FILE *fp) Jf Dutpul a screen pagpe Otherfanctions
i

int count = 0}
char line|B1];
while [count < LINES 3R fgets{ line, 81, fp) 1= HULL }

}
fputs] line, stdout };
++Count

|
t

The statements that make up the functions, together with the necessary declarations and preprocessing directives,
form the source code of a C program. For small programs, the source code iswritten in asingle sourcefile. Larger C
programs consist of several source files, which can be edited and compiled separately. Each such source file contains
functions that belong to alogical unit, such as functions for output to aterminal, for example. Information that is
needed in severa source files, such as declarations, is placed in header files. These can then be included in each
source fileviathe#1 ncl ude directive.

Source files have names ending in .c; header files have names ending in .h. A source file together with the header files
included in it iscalled atrandlation unit.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

There is no prescribed order in which functions must be defined. The function showPage() inFigure 1-1 could
also be placed before the function mai n() . A function cannot be defined within another function, however.

The compiler processes each source file in sequence and decomposes its contents into tokens, such as function names
and operators. Tokens can be separated by one or more whitespace characters, such as space, tab, or newline
characters. Thus only the order of tokens in the file matters. The layout of the source code-line breaks and
Indentation, for example-is unimportant. The preprocessing directives are an exception to this rule, however. These

directives are commands to be executed by the preprocessor before the actual program is compiled, and each one
occupies alineto itself, beginning with a hash mark (#).

Comments are any strings enclosed either between/ * and */ , or between/ / and the end of theline. In the

preliminary phases of trandlation, before any object code is generated, each comment is replaced by one space. Then
the preprocessing directives are executed.

1.2.2 Character Sets

ANSI C defines two character sets. Thefirst isthe source character set, which isthe set of characters that may be
used in asource file. The second is the execution character set, which consists of all the charactersthat are
Interpreted during the execution of the program, such as the characters in a string constant.

Each of these character sets contains a basic character set, which includes the following:

e The52 upper- and lower-case letters of the Latin alphabet:

o ABCDEFGHI JKLMNOPQRSTUVWXY/Z
abcdefghi] kl mnopqgrstuvwxyz

e Theten decimal digits (where the value of each character after O is one greater than the previous digit):

O 1 2 3 4 5 6 7 8 9

e Thefollowing 29 graphic characters:

o ot # % & () o+, -
< = >2 1 \ 1 7 { |} -

e Thefive whitespace characters:
space, horizontal tab, vertical tab, newline, form feed
In addition, the basic execution character set contains the following:

e Thenull character \ O, which terminates a character string

e The control characters represented by simple escape sequences, shown in Table1-1, for controlling output
devices such as terminals or printers

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Table 1-1. The standard escape seguences

Escape Action ondisplay

sequence device Escape sequence Action ondisplay device

\ a Alert (beep) \' The character

\'b Backspace \ " The character "

\ f Form feed \ ? The character ?

\'n Newline \\ The character \

\'r Carriage return \di(g);i t)\ 00 1 000(0 =octa The character with this octal code
\ xh.

\ t Horizontal tab The character with this hexadecimal
(h. . = string of hex digits) ~ |C0d€

\'v Vertical tab

Any other characters, depending on the given compiler, can be used in comments, strings, and character constants.
These may include the dollar sign or diacriticals, for example. However, the use of such characters may affect
portability.

The set of all usable charactersis called the extended character set, which is aways a superset of the basic character
Set.

Certain languages use characters that require more than one byte. These multibyte characters may be included in the
extended character set. Furthermore, ANSI C99 providesthe integer typewchar t (wide character type), whichis

large enough to represent any character in the extended character set. The modern Unicode character encoding is
often used, which extends the standard ASCI| code to represent some 35,000 characters from 24 countries.

C99 aso introduces trigraph sequences. These seguences, shown in Table 1-2, can be used to input graphic characters
that are not available on all keyboards. The sequence ??! |, for example, can be entered to represent the " pipe"

character | .

Table 1-2. The trigraph sequences
Trigraph 7= ??(?7?1 ?7?) ?7?' ?7?7< ?7?1 77> ?7?-
Meaning # [\] " { } ~

1.2.3 Identifiers

|dentifiers are names of variables, functions, macros, types, etc. |dentifiers are subject to the following formative
rules:

e Anidentifier consists of a sequence of letters (Ato Z, a toz), digits (O to 9), and underscores ().

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

e Thefirst character of an identifier must not be adigit.
e Ildentifiers are case-sensitive.

e Thereisno restriction on the length of an identifier. However, only the first 31 characters are generally
significant.

Keywords are reserved and must not be used as identifiers. Following isalist of keywords:

aut o enum restrict(?*) unsi gned

br eak extern return voi d

case fl oat short vol atile

char for si gned whi | e

const got o Si zeof _Bool (*)

cont i nue | f static _Compl ex(*)
def aul t I nline(*) st ruct I magi nary(*)
do | Nt sw tch

doubl e | ong t ypedef

el se regi ster uni on

External names-that is, identifiers of externally linked functions and variables-may be subject to other restrictions,
depending on the linker: in portable C programs, external names should be chosen so that only the first eight
characters are significant, even if the linker Is not case-sensitive.

Some examples of identifiers are:

vaid: a, DM dm FLOAT, varl,t opOf W ndow
Invalid: do, 586 cpu, zahl er,nl -fl ag,US $

1.2.4 Categories and Scope of ldentifiers

Each identifier belongs to exactly one of the following four categories.
e Label names

e Thetags of structures, unions, and enumerations. These are identifiers that follow one of the keywords
st ruct,uni on, or enum(see Section 1.10).

e Names of structure or union members. Each structure or union type has a separate name space for its
members.

o All other identifiers, called ordinary identifiers.

|dentifiers of different categories may be identical. For example, alabel name may also be used as a function name.
Such re-use occurs most often with structures: the same string can be used to identify a structure type, one of its
members, and a variable; for example:

struct person {char *person; /*...*/} person,

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

The same names can a so be used for members of different structures.

Each identifier in the source code has a scope . The scope is that portion of the program in which the identifier can be
used. The four possible scopes are:

Function prototype

|dentifiersin the list of parameter declarations of afunction prototype (not a function definition) have

function prototype scope . Because these identifiers have no meaning outside the prototype itself, they are
little more than comments.

Function

Only label names havefunction scope. Their use islimited to the function block in which the label is defined.
L abel names must also be unique within the function. The got 0 statement causes ajump to alabelled

statement within the same function.

Block
|dentifiers declared in a block that are not |abels have block scope. The parameters in afunction definition
also have block scope. Block scope begins with the declaration of the identifier and ends with the closing
brace (}) of the block.

File

|dentifiers declared outside all blocks and parameter lists havefile scope. File scope begins with the
declaration of the identifier and extends to the end of the sourcefile.

An identifier that is not alabel name is not necessarily visible throughout its scope. If an identifier with the same
category as an existing identifier is declared in a nested block, for example, the outer declaration is temporarily
hidden. The outer declaration becomes visible again when the scope of the inner declaration ends.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.3 Basic Types

The type of avariable determines how much space it occupies in storage and how the bit pattern stored is interpreted.
Similarly, the type of afunction determines how its return value is to be interpreted.

Types can be either predefined or derived. The predefined typesin C are the basic types and the typevol d. The
basic types consist of the integer types and the floating types.

1.3.1 Integer Types

There are five signed integer types: si gned char,short 1 nt (orshort),int,l ong I nt (orl ong),
andl ong | ong i nt® (orl ong | ong®). For each of these types there is a corresponding unsigned integer
type with the same storage size. The unsigned type is designated by the prefix unsi gned in the type specifier, asin
unsi gned I nt.

Thetypeschar,si gned char,andunsi gned char areformally different. Depending on the compiler
settings, however, char isequivalent eithertosi gned char ortounsi gned char . Theprefix si gned has
no meaning for thetypesshort,i nt,l ong,and| ong | ong®, however, since they are adways considered to
besigned. Thusshort andsi gned short specify the sametype.

The storage size of the integer typesis not defined; however, their width is ranked in the following order: char <=
short <=1 nt <=l ong <=l ong | ong®. Furthermore, the size of typeshort isatleast 2 bytes, | ong at
least 4 bytes, and | ong | ong at least 8 bytes. Their value ranges for a given implementation are found in the
header file limits.h.

ANSI C99 aso introduces thetype Bool to represent Boolean values. The Boolean valuet 1 ue is represented by
1 andf al se by O. If the header file stdbool.h has been included, then bool can be used as a synonym for Bool
and the macrost r ue andf al se for theinteger constants 1 and O. Table 1-3 shows the standard integer types

together with some typical value ranges.

Table 1-3. Standard integer types with storage sizes and value ranges

Type Storage size Value range (decimal)
_Bool 1 byte Oand 1
char 1 byte -1281t0 127 or 0 to 255
unsi gned char 1 byte 0to 255
si gned char 1 byte -128 to 127
| Nt 20r4bytes |-32,768 to 32,767 or -2,147,483,648 to 2,147,483,647
unsi gned 1 nt 2 or 4 bytes |0 to 65,535 or O to 4,294,967,295
short 2 bytes -32,768 t0 32,767
unsi gned short 2 bytes 0 to 65,535
| ong 4 bytes -2,147,483,648 to 2,147,483,647
unsi gned | ong 4 bytes 0 to 4,294,967,295

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

| ong | ong(™) 8 bytes -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
unsi gned | ong | ong'™) 8bytes 0 to 18,446,744,073,709,551,615

ANSI C99 introduced the header file stdint.h(*), which defines integer types with specific widths (see Table 1-4). The
widthN of an integer type is the number of bits used to represent values of that type, including the sign bit.
(Generally, N = 8, 16, 32, or 64.)

Table 1-4. Integer types with defined width

Type M eaning
| Nt Nt Width is exactly N bits
I nt _| east N_t Widthisat least N bits
I nt _fastN_t Thefastest typewith width of at least N bits
| Nt max _t The widest integer type implemented
lntptr _t Wide enough to store the value of a pointer

For example, | Nt 16 t isaninteger typethat is exactly 16 bitswide, and | nt fast 32 t isthefastest integer

type that is 32 or more bits wide. These types must be defined for the widths N = 8, 16, 32, and 64. Other widths,
suchasi nt 24 t, areoptional. For example:

Intle t val = -10; // 1 nteger vari able
[/ wdth: exactly 16 bits

For each of the signed types described above, there is also an unsigned type with the prefix u. ul nt nax t, for
example, represents the implementation's widest unsigned integer type.

1.3.2 Real and Complex Floating Types

Three types are defined to represent non-integer real numbers. f | oat , doubl e,and| ong doubl e. Thesethree
types are called the real floating types .

The storage size and the internal representation of these types are not specified in the C standard, and may vary from
one compiler to another. Most compilers follow the IEEE 754-1985 standard for binary floating-point arithmetic,
however. Table 1-5 is also based on the | EEE representation.

Table 1-5. Real floating types

Type Storage size Value range(decimal, unsigned) Precision (decimal)
f1 oat 4 bytes 1.2E-38 to 3.4E+38 6 decimal places
doubl e 8 bytes 2.3E-308 to 1.7E+308 15 decimal places
| ong doubl e/10 bytes 3.4E-4932 to 1.1E+4932 19 decimal places

The header filefloat.h defines symbolic constants that describe all aspects of the given representation (see Section
1.17).

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.3.2.1 Internal representation of a real floating-point number

The representation of a floating-point number X isaways composed of asign s, a mantissa m and an exponent ex p
to base 2:

X =s * m* 28XP where 1.0 <=m< 2 or m=20

The precision of afloating type is determined by the number of bits used to store the mantissa. The value range is
determined by the number of bits used for the exponent.

Figure 1-2 shows the storage format for thef | oat type (32-bit) in |EEE representation.

Figure 1-2. IEEE storage format for the 32-bit float type

Bit position: 31 30 231 0

The sign bit S has the value 1 for negative numbers and O for other numbers. Because in binary the first bit of the
mantissais aways 1, it is not represented. The exponent is stored with abias added, which is 127 for the f | oat

type.

For example, the number -2.5=-1* 1.25* 2 lisstored as.

S =1, Exponent = 1+127 = 128, Mantissa = 0. 25
1.3.2.2 Complex floating types

ANSI C99 introduces special floating types to represent the complex numbers and the pure imaginary numbers. Every
complex number z can be represented in Cartesian coordinates as follows:

Z = X + 1%y

where X andy arereal numbersandi istheimaginary unit

Thereal numbers X andy represent respectively thereal part and theimaginary part of z.
Complex numbers can also be represented in polar coordinates:

Zz =1 * (cos(theta) + 1 * sin(theta))

Theanglet het a iscalled the argument and the number r isthe magnitude or absolute value of z.

In C, acomplex number isrepresented as apair of real and imaginary parts, each of which hastypef | oat ,
doubl e,orl ong doubl e. The corresponding complex floatingtypesaref | oat Conpl ex, doubl e
Conpl ex, and| ong doubl e _Conpl ex.

In addition, the pure imaginary numbers-i. e., the complex numbers z = | *y wherey is a rea number-can also
be represented by thetypesf | oat | nmagi nary,doubl e | nagi nary,andl ong doubl e
_I'magi nary.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Together, the real and the complex floating types make up the floating types.

1.3.3 The Type void

The type specifier voi d indicates that no value is available. It is used in three kinds of situations:

Expressions of type void

There are two uses for VoI d expressions. First, functions that do not return avalue are declared asv ol d.
For example:

void exit (int status);

Second, the cast construction (VoI d) expr essi on can be used to explicitly discard the value of an
expression. For example:

(void)printf("An exanple.");
Prototypes of functions that have no parameters

For example:

I nt rand(voi d);
Pointersto void

Thetypevoi d * (pronounced "pointer to void") represents the address of an object, but not the object's

type. Such "typeless' pointers are mainly used in functions that can be called with pointers to different types
as parameters. For example:

voi d *nmentpy(void *dest, void *source, size_ t count);

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.4 Constants

Every constant is elther an integer constant, a floating constant, a character constant, or astring literal. There are
also enumeration constants, which are described in Section 1.10.1. Every constant has atype that is determined by its
value and its notation.

1.4.1 Integer Constants

Integer constants can be represented as ordinary decimal numbers, octal numbers, or hexadecimal numbers:
e A decima constant (base 10) begins with adigit that is not O; for example: 1024
e Anocta constant (base 8) beginswith a0; for example: 012

e A hexadecimal constant (base 16) begins with the two characters Ox or 0X; for example: Ox7f, OX7f, OX7F,
0X7F. The hexadecimal digits A to F are not case-sensitive.

Thetype of an integer constant, if not explicitly specified, isthe first type in the appropriate hierarchy that can
represent its value.

For decimal constants, the hierarchy of typesis.
Int, long, unsigned |long, long [ong(*).
For octal or hexadecimal constants, the hierarchy of typesis:

Il nt, unsigned int, |long, unsigned |long, |long |ong(*),
unsi gned | ong | ong(*).

Thus, integer constants normally have typel nt . The type can also be explicitly specified by one of the suffixes L or
| (forl ong), LL® or| | ®) (forl ong | ong®), and/or Uor u (for unsi gned). Table 1-6 provides some

examples.
Table 1-6. Examples of integer constants

Decimal Octal Hexadecimal Type
15 017 Oxf | nt
32767 077777 Ox7FFF | Nt
10U 012U OxAU unsi gned 1 nt
32768U 0100000U 0x8000u unsi gned 1 nt
16L 020L Ox10L | ong
27UL 033ul Ox1BUL unsi gned | ong

The macrosin Table 1-7 are defined to represent constants of an integer type with a given maximum or minimum
width N (e. g., = 8, 16, 32, 64). Each of these macros takes a constant integer as its argument and is replaced by the

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

same value with the appropriate type.

Table 1-7. Macros for integer constants of minimum or maximum width

Macro
| NTMAX_ ()

Ul NTMAX ()
| NTN_C()

Ul NTN_ ()

1.4.2 Floating Constants

Return type
| nt max _t
ul nt max _t
Nt | east N t
uint | east N t

A floating constant is represented as a sequence of decimal digits with one decimal point, or an exponent notation.

Some examples are:

41. 9

5.67E-3 // The nunber 5.67*10° 3

E can also bewritten ase. Theletter P or p is used to represent a floating constant with an exponent to base 2

(ANSI C99); for example:

2. 7TP+6 /| The nunber 2.7*2°

The decimal point or the notation of an exponent using E, e, P®), or p() is necessary to distinguish a floating constant

from an integer constant.

Unless otherwise specified, afloating constant has type doubl e. The suffix F or f assigns the constant the type
f 1 oat ;thesuffix L or| assignsitthetypel ong doubl e. Thusthe constantsin the previous examples have
typedoubl e, 12. 34F hastypef | oat ,and 12. 34L hastypel ong doubl e.

Each of the following constants has type doubl e. All the constants in each row represent the same value:

5. 19 0. 519E1
12. 12. 0
370000. 0 37e+4
0. 000004 4E- 6

0. 0519e+2 519E-2
. 12E2 12e0
3. 7TE+5 0.37e6
0. 4e-5 .4E-5

1.4.3 Character Constants and String Literals

A character constant consists of one or more characters enclosed in single quotes. Some examples are:

o A tab'

Character constants have type | nt . The value of a character constant that contains one character is the numerical
value of the representation of the character. For example, in the ASCII code, the character constant ' O' has the value

48, and the constant © A' has the value 65.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

The value of a character constant that contains more than one character is dependent on the given implementation. To
ensure portability, character constants with more than one character should be avoided.

Escape sequencessuchas' \ n' may be used in character constants. The characters’ and\ can also be represented
thisway.

The prefix L can be used to give a character constant thetypewchar t ; for example:
L' A L'\ x123'

A string literal consists of a sequence of characters and escape sequences enclosed in double quotation marks; for
example:

"I ama string!l\n"

A string literal is stored internally asan array of char (see Section 1.10) with the string terminator ' \ 0" . Itis

therefore one byte longer than the specified character sequence. The empty string occupies exactly one byte. A string
literal isalso called a string constant, although the memory it occupies may be modified.

Thestring literal " Hel | o! ", for example, isstored asachar array, as shown in Figure 1-3.

Figure 1-3. A string literal stored as a char array

String literals that are separated only by whitespace are concatenated into one string. For example:

"hel | 0" wor | d!'" isequivalentto" hel | o wor |l d!' ™.

Because the newline character is also a whitespace character, this concatenation provides a simple way to continue a
long string literal in the next line of the source code.

Wide string literals can also be defined as arrays whose elements have typewchar t . Again, thisis done by using
the prefix L; for example:

L"] ama string of wde characters!”

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.5 Expressions and Operators

An expression is acombination of operators and operands. In the simplest case, an expression consists simply of a
constant, avariable, or afunction call. Expressions can also serve as operands, and can be joined together by
operators into more complex expressions.

Every expression has atype and, if thetypeisnot vol d, avaue. Some examples of expressions follow:

4 * 512 [Type: 1nt
printf("An exanple!\n") [/ Type: 1nt
1.0 + sin(x) /] Type: doubl e
srand((unsigned)tine(NULL)) /] Type: void
(tnt*)mal |l oc(count *si zeof (I nt)) // Type: Iint *

In expressions with more than one operator, the precedence of the operators determines the grouping of operands with
operators. The arithmetic operators™* , / , and % for example, take precedence over + and - . In other words, the usual

rules apply for the order of operations in arithmetic expressions. For example:

4 + 6 * 512 // equivalent to 4 + (6 * 512)

If adifferent grouping is desired, parentheses must be used:
(4 + 6) * 512

Table 1-8 lists the precedence of operators.

Table 1-8. Precedence of operators

Priority Operator Grouping
1 () [] -> . left to right
2 I~ ++ -- + - (type)* & sizeof right to left
3 * | % eft to right
4 + - eft to right
5 << >> eft to right
6 < <= > >c= eft to right
7 == | = eft to right
8 & eft to right
9 N eft to right
10 | eft to right
11 && eft to right
12 | | eft to right
13 ? right to left
14 = 4= -= *= [= U &= N= | = <<= >>= right to left

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

15 : left to right

If two operators have equal precedence, then the operands are grouped as indicated in the " Grouping" column of
Table 1-8. For example:

2 * 5/ 3 // equivalent to (2 * 5) / 3

Operators can be unary or binary: aunary operator has one operand, while a binary operator has two. This distinction
IS important for two reasons:

e All unary operators have the same precedence.

e Thefour characters - , +, *, and & can represent unary or binary operators, depending on the number of
operands.

Furthermore, C has one ternary operator: the conditional operator ?: has three operands.

The individual operators are briefly described in Table 1-9 through Table 1-16 in the following sections. The order In
which the operands are evaluated is not defined, except where indicated. For example, there's no guarantee which of
the following functions will be invoked first:

f1() + £2() // Which of the two functions Is
[/ called first 1s not defi ned.

1.5.1 Arithmetic Operators

Table 1-9. The arithmetic operators

Operator, Meaning Example Result
* Multiplication X * 'y |Theproduct of X andy.
/ Division X ['y |Thequotientof X byy.
% I\/_Io_dglo X % vy | Theremainder of thedivisonx / .

division
+ Addition X + y Thesumof X andy.
- Subtraction (X - Yy |Thedifferenceof x andy.
+ (unary) Positivesign | +X Thevalueof X.
- (unary) Negativesign |- X The arithmetic negation of X.

X X isincremented (Xx=x+1). The prefixed operator (++x) increments the

++ |ncrement » -+ operand before it is evaluated; the postfixed operator (X ++) increments the

operand after it Is evaluated.

X Isdecremented (x=x- 1). The prefixed operator (- - X) decrements the
- - Decrement operand before it is evaluated; the postfixed operator (X - -) decrements the

operand after it is evaluated.

The operands of arithmetic operators may have any arithmetic type. Only the %ooperator requires integer operands.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Theusual arithmetic conversions may be performed on the operands. For example, 3. 0/ 2 isequivaent to
3. 0/ 2. 0. Theresult has the type of the operands after such conversion.

Note that the result of division with integer operands is also an integer! For example:

6/ 4 [/ Resul t: 1
6 % 4 [/ Resul t: 2
6.0/ 4.0 [/ Result: 1.5

Theincrement operator ++ (and analogoudly, the decrement operator - -) can be placed either before or after its
operand. A variable X I1sincremented (i. e., increased by 1) both by ++Xx (prefix notation) and X ++ (postfix
notation) . The expressions nonetheless yield different values: the expression ++X hasthe value of X increased by 1,
while the expression x ++ yields the prior, unincremented value of X.

Because the operators ++ and - - perform an assignment, their operand must bean | val ue;i. e., an expression that
designates a location in memory, such asavariable.

The operators ++, - - , + (addition), and - (subtraction) can also be used on pointers. For more information on
pointers and pointer arithmetic, see Section 1.10.

1.5.2 Assignment Operators

Assignments are performed by simple and compound assignment operators, as shown in Table 1-10.

Table 1-10. Assignment operators

Operator Meaning Example Result

= Simpleassignment X = Yy |Assignthevalueof y toX

X 0op= Yy isequivdenttox = x op (Yy) (whereop isabinary
arithmetic or binary bitwise operator)

Compound

op= .
assignment

X +=y

The left operand in an assignment must bean | val ue;i. e., an expression that designates an object. This object is
assigned a new value.

The simplest examples of | val ues are variable names. In the case of a pointer variablept r, both pt r and* pt r
are | val ues. Constants and expressions such as X +1, on the other hand, arenot | val ues.

The following operands are permissible in a ssimple assignment (=):
e Two operands with arithmetic types

e Two operands with the same structure or uniontype

e Two pointers that both point to objects of the same type, unless the right operand is the constant NUL L

If one operand is a pointer to an object, then the other may be a pointer to the "incomplete" typevol d (i. e, vol d

*),

If the two operands have different types, the value of the right operand 1s converted to the type of the left operand.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

An assignment expression has the type and value of the left operand after the assignment. Assignments are grouped
from right to left. For example:

a =»Db =100; // equivalent to a=(b=100);
// The value 100 Is assigned to b and a.

A compound assignment hastheformx op= Yy, where op isabinary arithmetic operator or a binary bitwise
operator. Thevalueof X op (Yy) isassignedto x. For example:

a *= b+1; /] equivalent to a =a* (b + 1);

In acompound assignment X op= Y, theexpression X isonly evaluated once. Thisisthe only difference between x
op= yandx = x op (V).

1.5.3 Relational Operators and Logical Operators

Every comparison is an expression of typel nt that yieldsthevaluel or O. Thevalue 1 means "true" and O means
"false." Comparisons use the relational operatorslisted in Tablel-11.

Table 1-11. The relational operators

Operator Meaning Example Result: 1 (true) or O (false)

< less than X <y lifxislessthany

<= less than or equal to X <= y|/lifxislessthanorequa toy

> greater than X >y 1if X isgreater thany

>= greater than or equal to (X >= Yy 1 if X isgreater than or equal toy

== egual to X == ylifxisequatoy

| = not equal to X I'= yllifxisnotegua toy. Inall other cases, the expression yieldsO.

The following operands are permissible for all relational operators:

e Two operandswith real arithmetic types. The usual arithmetic conversions may be performed on the
operands.

e Two pointersto objects of the same type.

The equality operators == and! = can aso be used to compare complex numbers. Furthermore, the operands may
also be pointers to functions of the same type. A pointer may also be compared with NULL or with a pointer to
vol d. For example:

I nt cnp, *pl, *p2;

6nﬁ - pl < p2; // 1f plis less than p2, then cnp = 1;
/] otherwse cnmp = 0.

1.5.4 Logical Operators

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Thelogical operators, shown in Table1-12, can be used to combine the results of several comparison expressions into
one logical expression.

Table 1-12. The logical operators

Operator, Meaning Example Result: 1 (true) or O (false)
&& ogical AND x && vy |1 if bothx andy are not equal to O

| | ogical OR x || vyl if either or both of X andy isnot equal to O

| ogical NOT I x 1 if X equalsO. In all other cases, the expression yields 0.

The operands of logical operators may have any scalar (i. e., arithmetic or pointer) type. Any value except O is
interpreted as "true*; O i1s"false.”

Like relational expressions, logical expressions yield the values "true" or "false”; that is, thel nt valuesO or 1:

I'x || y [/ "(not x) or y" vields 1 (true)
[/ 1f xX=00o0r vy !=0

The operators && and | | first evaluate the left operand. If the result of the operation is already known from the value
of the left operand (i. e., the left operand of && isO or the left operand of | | isnot O), then the right operand is not

evaluated. For example:
I < max && scanf("%l", &) ==

In thislogical expression, the functionscanf () isonly caledifi islessthannax.

1.5.5 Bitwise Operators

There are six bitwise operators, described in Table1-13. All of them require integer operands.

Table 1-13. The bitwise operators

Operator Meaning Example Result (for each bit position)
& bitwise AND X &Yy |1,iflinbothx andy

| bitwise OR X | y |1, if 1inetherx ory, or both

A bitwise exclusive OR x Ny 1,if 1 inether x ory, but not both

~ bitwise NOT ~X 1, ifOinXx

<< shift |eft X << y|EachhitinXx isshiftedy positionsto the |left
>> snift right X >> Yy Eachbitinx isshifted y positionsto the right

Thelogical bitwise operators, & (AND), | (OR), * (exclusive OR), and ~ (NOT) interpret their operands bit by bit: a
bit that isset, i. e, 1, isconsidered "true"; acleared bit, or O, is"false". Thus, intheresultof z = X & YV, each bit
Isset if and only if the corresponding bit is set in both X andy. The usual arithmetic conversions are performed on the

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

operands.

The shift operators << and >> transpose the bit pattern of the left operand by the number of bit positions indicated by

the right operand. Integer promotions are performed beforehand on both operands. The result has the type of the left
operand after integer promotion. Some examples are:

Int x = OxF, result;
result = x << 4; // yields OxFO
result = x >> 2; // yields 0x3

The bit positions vacated at the right by the left shift << are alwaysfilled with O bits. Bit values shifted out to the |eft
are |ost.

The bit positions vacated at the left by the right shift >> arefilled with O bitsif the left operand is an unsigned type

or has anon-negative value. If the left operand is signed and negative, the left bits may be filled with O (logical shift)
or with the value of the sign bit (arithmetic shift), depending on the compiler.

1.5.6 Memory Accessing Operators

The operatorsin Table 1-14 are used to access objects in memory. The terms used here, such as pointer, array,
structure, etc., are introduced later under Section 1.10.

Table 1-14. Memory accessing operators

Operator M eaning Example Result

& Address of &X A constant pointer to x

* Indirection *p The object (or function) pointed to by p

[] Array element x[1] *(x+i),theelement withindexi inthearray x

: Member of astructure or union|S. X The member named X In the structure or union s

- > Member of astructure or union |P- >X Themember named X in the structure or union pointed to by p

The operand of the address operator & must be an expression that designates a function or an object. The address
operator & yields the address of its operand. Thus an expression of the form &x isapointer to X. The operand of &
must not be a bit-field, nor avariable declared with the storage class specifier r egi st er .

Theindirection operator * isused to access an object or afunction through a pointer. If pt r isapointer to an object
or function, then * pt r designates the object or function pointed to by pt r . For example:

int a, *pa; // An int variable and a pointer to iInt.

pa = &a; /] Let pa point to a.

*pa = 123; // Now equivalent to a = 123;

The subscript operator [| can be used to address the elements of an array. If v isan array and | isan integer, then
V[1] denotesthe eement withindex| inthearray. In more genera terms, one of the two operands of the operator
[] must be apointer to an object (e. g., an array hame), and the other must be an integer. An expression of the form
X[1] isequivalentto(* (x+(1))) . For example:

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

float a[10], *pa; // An array and a pointer.
pa = a; /] Let pa point to aO0].

Since pa pointstoal| O] , pal 3] isequivaenttoal 3] or*(a+3).

The operators. and - > designate a member of a structure or union. The left operand of the dot operator must have a

structure or union type. The left operand of the arrow operator is a pointer to a structure or union. In both cases, the
right operand is the name of a member of the type. The result has the type and value of the designated member.

If p isapointer to astructure or union and X isthe name of amember, then p- >Xx isequivalentto(*p) . X, and
yields the member X of the structure (or union) to which p points.

The operators. and- >, like [| , have the highest precedence, so that an expression such as ++p- >Xx isequivalent
to++(p- >X) .

1.5.7 Other Operators

The operatorsin Table 1-15 do not belong to any of the categories described so far.

Table 1-15. Other operators

Oper ator M eaning Example Result

() Function call pow X, y) Executethefunction with the argumentsx andy

(type) |Cast (1 ong) x Thevaue of x with the specified type

Si zeof |Sizein bytes Si zeof (x) | The number of bytes occupied by X

?: Conditional evaluation X?y: Z If X isnot equal to O, then y, otherwise z
Sequence operator X, Y Evaluate X first, theny

A function call consists of a pointer to afunction (such as a function name) followed by parentheses () containing
the argument list, which may be empty.

The cast operator can only be used on operands with scalar types! An expression of theform (t ype) X yieldsthe
value of the operand X with the type specified in the parentheses.

The operand of the S| zeof operator is either atype name in parentheses or any expression that does not have a
function type. The si zeof operator yields the number of bytes required to store an object of the specified type, or
the type of the expression. The result is a constant of typesi ze t.

The conditional operator ?: forms aconditional expression. In an expression of theform x?y: z, the left operand x
is evaluated first. If the result is not equal to O (in other words, if X is"true"), then the second operand y isevaluated,
and the expression yields the value of y. However, if X isequal to O ("false"), then the third operand z isevaluated,
and the expression yields the value of z.

Thefirst operand can have any scalar type. If the second and third operands do not have the same type, then atype
conversion is performed. The type to which both can be converted is the type of the result. The following types are
permissible for the second and third operands:

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

e Two operands with arithmetic types.

e Two operands with the same structure or union type, or the type voli d.

e Two pointers, both of which point to objects of the sane t ype, unlessone of them isthe constant NULL.
If one operand is an object pointer, the other may be a pointer to voi d.

The sequence or comma operator , has two operands: first the left operand is evaluated, then the right. The result has
the type and value of the right operand. Note that acommain alist of initializations or arguments is not an operator,
but simply a punctuation mark!

1.5.7.1 Alternative notation for operators

The header file 1s0646.h defines symbolic constants that can be used as synonyms for certain operators, aslisted in

Table1-16.
Table 1-16. Symbolic constants for operators
Constant Meaning Constant Meaning Constant Meaning
and && bi t and & and eq &=
or | | bi t or | or _eq | =
not | XOor A X0r _eo N=

conpl ~ not _ec

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.6 Type Conversions

A type conversion yields the value of an expression in a new type. Conversion can be performed only on scalar types,
. e., arithmetic types and pointers.

A type conversion always conserves the original value, if the new type is capable of representing it. Floating-point
numbers may be rounded on conversion fromdoubl e tof | oat , for example.

Type conversions can be implicit-i. e., performed by the compiler automatically-or explicit, through the use of the
cast operator. It Is considered good programming style to use the cast operator whenever type conversions are
necessary. This makes the type conversion explicit, and avoids compiler warnings.

1.6.1 Integer Promotion

Operands of thetypes Bool ,char,unsi gned char,short,andunsi gned short, aswell as bit-
fields, can be used in expressions wherever operands of type | nt orunsi gned | nt arepermissible. In such
cases, integer promotion is performed on the operands. they are automatically convertedtol nt or unsi gned
| Nt . Such operands are converted to unsi gned 1 nt only if thetypel nt cannot represent all values of the
original type.

Thus C always "expects' values that have at least typel nt . If ¢ isavariable of typechar , thenitsvauein the
expression:

c +'0

ispromoted to | Nt before the addition takes place.

1.6.2 Usual Arithmetic Conversions

The operands of abinary operator may have different arithmetic types. In this case, the usual arithmetic conversions

are implicitly performed to cast their values in a common type. However, the usual arithmetic conversions are not
performed for the assignment operators, nor for the logical operators && and | | .

If operands still have different types after integer promotion, they are converted to the type that appears highest in the
hierarchy shown in Figure 1-4. The result of the operation also has this type.

Figure 1-4. Arithmetic type promotion hierarchy

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

leng double

!

double

T

float

T

unsigned long long

long long

!

unsigned long

T

long

T

unsigned int

!

int

Mar appleable f int
squivalant to Long

When one complex floating type is converted to another, both the type of the real part and the type of the imaginary
part are converted according to the rules applicable to the corresponding real floating types.

1.6.3 Type Conversions in Assignments and Pointers

A simple assignment may also involve different arithmetic types. In this case, the value of the right operand is always
converted to the type of the left operand.

In a compound assignment, the usual arithmetic conversions are performed for the arithmetic operation. Then any
further type conversion takes place as for a ssimple assignment.

A pointer to Vol d can be converted to any other object pointer. An object pointer can also be converted into a
pointer to vol d. The address it designates-its value-remains unchanged.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.7 Statements

A statement specifies an action to be performed, such as an arithmetic operation or afunction call. Many statements
serve to control the flow of aprogram by defining loops and branches. Statements are processed one after another in
seguence, except where such control statements result in jumps.

Every statement that is not a block is terminated by a semicolon.
1.7.1 Block and Expression Statements

A block , also called a compound statement, groups a number of statements together into one statement. A block can
also contain declarations.

The syntax for ablock is:

{[l1st of declarations][liIst of statenents]}

Here is an example of a block:

{ I1nt 1 = 0; /* Declarations */
static |ong a;
extern | ong nmax;

++a,; [* Statenents */

1f(a >= nmax)

{ Lo } /* A nested bl ock */
}
The declarations in a block normally precede the statements. However, ANSI C99 permits free placement of
declarations.

New blocks can occur anywhere within afunction block. Usually a block i1s formed wherever the syntax callsfor a
statement, but the program requires several statements. Thisisthe case, for example, when more than one statement is
to be repeated in aloop.

An expression statement is an expression followed by a semicolon. The syntax is:
| expression] ;
Hereis an example of an expression statement:

y = X; [Assi gnnent

The expression-an assignment or function call, for example-is evaluated for its side effects. The type and value of
the expression are discarded.

A statement consisting only of a semicolon is called an empty statement, and does not peform any operation. For

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

example:
for (1 =0; str[i] !'="\0"; ++i)

; [/ Empty statenment
1.7.2 Jumps

The following statements can be used to control the program flow:

e Sdlection statements; 1 f ...el seorsw t ch
e Loopsswhile,do..whileorfor

e Unconditional jumps. got o, cont | nue, break orret urn

If ... else

Thel f statement creates a conditional jump.

Syntax:

| f (expression) statenentl [else statenent?2]

Theexpr essi on must have ascaar type. First, thei f statement's controlling expression is evaluated. If the result
isnot equal to O-in other words, if the expression yields "true'-then st at enent 1 isexecuted. Otherwisg, if
el se ispresent, st at enent 2 isexecuted.

Example:

1f (x >y) nmax
el se max

X; [/ Assign the greater of x and y to
y: [/ the variabl e max.

Theuse of el se isoptional. If the value of the controlling expression isO, or "false", and el se isomitted, then the
program execution continues with the next statement.

If several | T statements are nested, then an el se clause aways belongstothelasti f (inthe given block nesting
level) that does not yet haveanel se clause. Anel se canbeassigned to adifferent 1 f by creating explicit blocks.

Example:

f (n>0
1f (n %2 ==
puts("n is positive and even");

|
{
}

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

el se /! Belongs to first if
puts("n Is negative or zero");

switch

Inasw t ch statement, the value of theswi t ch expression is compared to the constants associated with case

labels. If the expression evaluates to the constant associated with a case label, program execution continues at the
matching label. If no matching label Is present, program execution branches to the default label If present; otherwise
execution continues with the statement following the switch statement.

Syntax:

swmtch (expression) statenent

Theexpr essi on isaninteger expression and st at enent isablock statement withcase labels and at most
onedef aul t label. Everycase label hastheformcase const : , whereconst isaconstant integer
expression. All case constants must be different from one another.

Example:
swtch(comand) [/ Query a command obt al ned
{ [/ by user Input In a nenu,
[l for exanple.
case 'a':
case 'A . actionl(); [/ Carry out action 1,
br eak; /] then quit the swtch.
case 'b':
case 'B': action2(),; [/ Carry out action 2,
br eak; [/ then quit the swtch.
default: putchar('\a'); // On any other "conmmuand":
/] alert.
}

After the jump fromthesw t ch to alabel, program execution continues sequentialy, regardless of other labels. The
br eak statement can be used to exit thesw t ch block at any time. A br eak isthus necessary if the statements
following other cas e labels are not to be executed.

Integer promotion is applied tothesw t ch expression. The case constants are then converted to the resulting type
of thesw t ch expression.

1.7.3 Loops

A loop consists of a statement or block, called the loop body, that is executed several times, depending on agiven
condition. C offers three statements to construct loops. whi | e, do ...whi | e,and f or .

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

In each of these |loop statements, the number of 1oop iterations performed is determined by acontrolling expression.

Thisisan expression of ascalar type, I. e., an arithmetic expression or apointer. The expression is interpreted as
"true" if itsvalueis not equal to O; otherwiseit is considered "false".

Syntactically, the loop body consists of one statement. If several statements are required, they are grouped in a block.

while

Thewhi | e statement isa"top-driven” loop: first the loop condition (i. e., the controlling expression) is evaluated. If

It yields "true", the loop body is executed, and then the controlling expression is evaluated again. If it isfalse,
program execution continues with the statement following the loop body.

Syntax:

while (expression) statenment

Example:
S = str; /] Let the char pointer s
while(*s !'="'"\0") // point to the end of str
++S:
do ... while
Thedo ... whi | e statement isa"bottom-driven" loop: first the body of the loop is executed, then the

controlling expression is evaluated. Thisis repeated until the controlling expression is"fase", or O.

The key difference fromawhi | e statementisthatado ... whi | e loop body isaways executed at |east once.
A Whi | e loop may not execute at all, because its expression could be false to begin with.

Syntax:

do statenent while (expression) ;

Example:

1 = 0;

do [/ Copy the string strl
str2[1] = strl[i]; [/ to string str2

while (strlfi++] I="\0");

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

for

A typical for loop uses a control variable and performs the following actions on it:
1. Initialization (once before beginning the loop)
2. Teststhe controlling expression

3. Makes adjustments (such as incrementation) at the end of each loop iteration

The three expressions in the head of the f or loop define these three actions.

Syntax:

for ([expressionl]; [expression2]; [expressiona3]
st at enent

expressi onl andexpr essi on3 can beany expressions. Expr essi on2 isthe controlling expression, and
hence must have a scalar type. Any of these expressions can be omitted. If expr essi on2 isomitted, the loop
body is executed unconditionally. In ANSI C99, expr essi onl may also be adeclaration. The scope of the
variable declared is then limited to the f or loop.

Example:

for (int i = DELAY; i > 0; --i) /] Wait alittle

Except for the scope of the variable | , thisf or loop is equivalent to the following whi | e loop:

Int |1 = DELAY;, // Initialize
while(1 > 0) // Test the controlling expression
--1; [/ Adjust

1.7.4 Unconditional Jumps

goto

Thegot o statement jumps to any point within afunction. The destination of the jump is specified by the name of a
|abel.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Syntax:

goto | abel nane;

A label isaname followed by a colon that appears before any statement.

Example:
for (...) [/ Junp out of
for (...) /|l nested | oops.
1 f (error
goto handle error;
héﬁdle_error: [/ Error handling here

Theonly restriction isthat the got 0 statement and the label must be contained in the same function. Nonetheless, the
got o statement should never be used to jump into ablock from outside it.

continue

Thecont | nue statement can only be used within the body of aloop. It jumps over the remainder of the loop body.
Thusinawhi e ordo ... whi | e loop, it jumpsto the next test of the controlling expression, andin af or

loop it jJumps to the evaluation of the per-iteration adjustment expression.

Syntax:

cont i nue;

Example:

for (I =-10; 1 < 10; ++i
{ if.ki == 0) conti nue; /] Skip the value O

}

br eak

Thebr eak statement jumpsimmediately to the statement after the end of aloop orswi t ch statement. This

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

provides away to end execution of aloop at any point in the loop body.

Syntax:

br eak:

Example:

while (1

{ ...
| f (command == ESC) Dbreak; /] Exit the | oop

return

Ther et ur n statement ends the execution of the current function and returns control to the caller. The value of the
expression in the return statement is returned to the caller as the return value of the function.

Syntax:

return expression;

Example:

Int max(int a, int b)) [/ The maxi num of a and b
{ return (a>b ? a : b); }

Any number of r et ur n statements can appear in afunction.
Thevalue of ther et ur n expression is converted to the type of the function if necessary.

The expressioninther et ur n statement can be omitted. This only makes sense in functions of typevol d,
however-in which case the entire r et ur n statement can also be omitted. Then the function returns control to the

cdler at the end of the function block.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.8 Declarations

A declaration determines the interpretation and properties of one or more identifiers. A declaration that allocates
storage space for an object or afunction is a definition. In C, an object is a data storage region that contains constant
or variable values. The term "object" Is thus somewhat more general than the term "variable."

In the source file, declarations can appear at the beginning of a block, such as a function block, or outside of all
functions. Declarations that do not allocate storage space, such as function prototypes or type definitions, are
normally placed in a header file.

ANSI C99 allows declarations and statements to appear in any order within a block.
1.8.1 General Syntax and Examples

The general syntax of adeclaration is asfollows;

[storage class] type D1 [, D2, ...];
st orage cl ass

One of the storage class specifiersext ern,st at 1 c,aut o,orr egi st er.

type
A basic type, or one of the following type specifiers. voi d, enum t ype (enumeration), st r uct or
uni on type,ortypedef nane.
{ ype may also contain type qualifiers, suchasconst .

D1 [,D2,..]

A list of declarators. A declarator contains at |east one identifier, such as a variable name.

Some examples are:

char letter;

| nt 1,], K;

static double rate, price;
extern char fl ag;

Variables can be initialized-that Is, assigned an initial value-in the declaration. Variable and function declarations
are described in detail in the sections that follow.

1.8.2 Complex Declarations

If adeclarator contains only one identifier, with or without an initialization, the declaration is called asmple
declaration. In acomplex declaration, the declarator also contains additional type information. Thisis necessary in
declarations of pointers, arrays, and functions. Such declarations use the three operators, shown in Table1-17.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Table 1-17. Operators for complex declarations

Operator Meaning
Pointer to

[] Array of element type

() Function returning value of type

*

The operatorsin Table 1-17 have the same precedence in declarations as in expressions. Parentheses can also be used
to group operands.

Complex declarators are always interpreted beginning with the identifier being declared. Then the following steps are
repeated until all operators are resolved:

1. Any pair of parentheses () or square brackets| | appearing to theright isinterpreted.

2. |If there are none, then any asterisk appearing to the left isinterpreted.
For example:

char *strptr[100];

This declaration identifiesst r pt r asan array. The array's 100 elements are pointers tochar .

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.9 Variables

Every variable must be declared before it can be used. The declaration determines the variable's type, its storage
class, and possibly itsinitial value. The type of a variable determines how much space it occupies in storage and how
the bit pattern it stores is interpreted. For example:

float dollars = 2.5F; [/ a variable of type fl oat

Thevariabledol | ar s designates aregion in memory with asize of 4 bytes. The contents of these four bytes are
Interpreted as a floating-point number, and initialized with the value 2.5.

1.9.1 Storage Classes

The storage class of avariable determines its scope, its storage duration, and its linkage. The scope can be either
block or file (see Section 1.2.4, earlier in this book). Variables also have one of two storage durations:

Static storage duration

The variable is generated and initialized once, before the program begins. It exists continuously throughout
the execution of the program.

Automatic storage duration

The variable is generated anew each time the program flow enters the block in which it is defined. When the
block is terminated, the memory occupied by the variable is freed.

The storage class of a variable is determined by the position of its declaration in the source file and by the storage
class specifier, if any. A declaration may contain no more than one storage class specifier. Table 1-18 lists the valid
storage class specifiers.

Table 1-18. The storage class specifiers

Specifier Meaning
Variables declared with the storage class specifier aut 0 have automatic storage duration. The
aut o specifier aut o isapplicable only to variables that are declared within afunction. Because the

automatic storage class is the default for such variables, the specifier aut o0 israrely used.

The storage class specifier r egi st er instructs the compiler to store the variable in a CPU register if
regil st er possible. Asaresult, the address operator (&) cannot be used withar egi st er variable. In all other
respects, however, r egi st er variables are treated the same asaut o variables.

Variables declared as st at | ¢ always have static storage duration. The storage class specifier
st at | ¢ isused to declare static variables with alimited scope.

The specifier ext er n isused to declare variables with static storage duration that can be used
throughout the program.

static

extern

Table1-19 illustrates the possible storage classes and their effect on the scope and the storage duration of variables.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Table 1-19. Storage class, scope, and storage duration of variables

Position of the declaration Stor age class specifier Scope Storageduration
Outside all functions none extern,static File |Static
Within afunction none, aut o, r egl st er Block|Automatic
Within afunction extern,static Block Static

1.9.2 Initialization

Variables can be initialized (assigned an initial value) in their declaration. The initializer consists of an equal sign
followed by a constant expression. Some examples are:

Int 1ndex = 0, max = 99, *intptr = NULL;
stati ¢c char nessagel[20] = "Exanple!",;

Variables are not initialized in declarations that do not cause an object to be created, such as function prototypes and
declarations that refer to external variable definitions.

Every initialization is subject to the following rules:

1. A variable declaration with an initializer is aways a definition. This means that storage is allocated for the
variable.

2. A variablewith static storage duration can only be initialized with a value that can be calculated at the time
of compiling. Hence the initial value must be a constant expression.

3. For declarations without an initializer: variables with static storage duration are implicitly initialized with
NULL (all bytes have the value 0); the initial value of all other variables is undefined!

The type conversion rules for ssimple assignments are also applied on initialization.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.10 Derived Types

A programmer can also define new types, including enumerated types and derived types. Derived types include
pointers, arrays, structures, and unions.

The basic types and the enumerated types are collectively called thearithmetic types . The arithmetic types and the
pointer types in turn make up the scalar types . The array and structure types are known collectively as the aggregate

types .

1.10.1 Enumeration Types

Enumeration types are used to define variables that can only be assigned certain discrete integer values throughout the
program. The possible values and names for them are defined in an enumeration. The type specifier begins with the
keyword enum for example:

enumtoggle { OFF, ON, NO = 0, VYES };

The list of enumerators inside the braces defines the new enumeration type. Theidentifier t oggl e isthetag of this
enumeration. This enumeration defines the identifiersin the list (OFF, ON, NO, and YES) as constants with type
| nt .

The value of each identifier in the list may be determined explicitly, asinNO = 0 inthe example above. Identifiers

for which no explicit value is specified are assigned a value automatically based on their position in the list, as
follows. An enumerator without an explicit value hasthe value O if it isthefirst in the list; otherwiseitsvalueis 1

greater than that of the preceding enumerator. Thus in the example above, the constants O-F and NO have the value
O, while ON and YES havethevauel.

Once an enumeration type has been defined, variables with the type can be declared within its scope. For example:
enumtoggle t1, t2 = ON;

This declaration definest 1 andt 2 asvariableswithtypeenum t oggl e, and also initializest 2 with the value
ON, or 1.

Following is an enumeration without atag:

enum { Dbl ack, blue, green, cyan, red, nmagenta, white };

Asthis example illustrates, the definition of an enumeration does not necessarily include atag. In this case, the

enumeration type cannot be used to declare variables, but the enumeration constants can be used to designate a set of
discrete values. Thistechnique can be used as an alternative to the #def | ne directive. The constants in the example

above havethefollowing values. bl ack = 0, blue=1, ..,white=6.

Variables with an enumeration type can generally be used in a C program-in comparative or arithmetic expressions,
for example-as ordinary | nt variables.

1.10.2 Structures, Unions, and Bit-Fields

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Different data items that make up alogical unit are generally grouped together in arecord. The structure of a
record-i. e., the names, types, and order of its components-is represented in C by a structure type .

The components of arecord are called the members of the structure. Each member can be of any type. The type
specifier begins with the keyword st r uct ; for example:

struct article { char nanme| 40] ;
| Nt gquantity;
doubl e pri ce;

'

This example declares a structure type with three members. Theidentifierar t | cl e isthetag of the structure, and
nanme, quanti ty,andpri ce arethe names of its members. Within the scope of a structure declaration, variables

can be declared with the structure type:

struct article al, a2, *pArticle, arrArticle[100];

al andaZ2 arevariablesof typest ruct arti cl e,and pArti cl e isapointer to an object of typest r uct
article.Thearrayarr Arti cl e has100 elementsof type st ruct arti cl e.

Structure variables can also be declared ssimultaneously with the structure type definition. If no further referenceis
made to a structure type, then its declaration need not include atag. For example:

struct {unsigned char character, attribute;}
xchar, xstr[100];

The structure type defined here has the memberschar act er andat t r 1 but e, both of which have the type
unsi gned char . Thevariablexchar and the e ements of thearray Xxst r have the type of the new tagless

structure.

The members of a structure variable are located in memory in order of their declaration within the structure. The
address of the first member is identical to the address of the entire structure. The addresses of the other members and
the total storage space required by the structure may vary, however, since the compiler can insert unnamed gaps

between the individual members for the sake of optimization. For this reason the storage size of a structure should
aways be obtained using thesi1 zeof operator.

The macro of f set of , defined in the header file stddef.h, can be used to obtain the location of a member within a
structure. The expression:

of fsetof (structure type, nenber)
hasthetypesi ze t, and yigldsthe distance in bytes between the beginning of the structure and nenber .

Structure variables can be initialized by an initialization list containing a value for each member:

struct article flower = [/ Declare and 1 nitialize the
{ "rose", 7, 2.49 }, [/ structure vari able fl ower

A structure variable with automatic storage duration can also be initialized with the value of an existing structure
variable. The assignment operator can be used on variables of the same structure type. For example:

arrArticle[0] = flower;

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

This operation copies the value of each member of f | ower to the corresponding member of arr Arti cl e[0] .

A specific structure member can be accessed by means of the dot operator, which has a structure variable and the
name of a member as its operands:

fl ower. name [/ The array 'nane
flower.price [/ The doubl e variable 'price'

Efficient data handling often requires the use of pointers to structures. The arrow operator provides convenient access
to amember of astructure identified by a pointer. The left operand of the arrow operator is a pointer to a structure.
Some examples follow:

DArticle = &f | ower; /] Let pArticle point to fl ower
DArticle->quantity /] Access nenbers of fl ower
DArticle->price [/ using the pointer pArticle

A structure cannot have itself as a member. Recursive structures can be defined, however, by means of members that
are pointers to the structure's own type. Such recursive structures are used to implement linked lists and binary trees,
for example.

1.10.2.1 Unions

A union permits references to the same location in memory to have different types. The declaration of a union differs
from that of a structure only in the keyword uni on:

uni on nunber {long n; double Xx;};

This declaration creates a new union type with thetag nunber and the two membersn and Xx.

Unlike the members of a structure, all the members of a union begin at the same address! Hence the size of aunionis
that of its largest member. According to the example above, avariable of typeuni on nunber occupies 8 bytes.

Once a union type has been defined, variables of that type can be declared. Thus:

uni on nunmber nx|[10];

declares an array Nnx with ten elements of typeuni on nunber . At any given time, each such element contains
either al ong oradoubl e value. The members of a union can be accessed in the same ways as structure members.
For example:

nx[0].x = 1.234; /] Assign a double value to nx| O]

Like structures, union variables areinitialized by an initializer list. For a union, however, the list contains only one
initializer. If no union member is explicitly designated, the first member named in the union type declaration is
initialized:

uni on nunber length = { 100L };

After thisdeclaration, | engt h. n hasthevaue100.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.10.2.2 Bit-fields

Members of structures or unions can also be bit-fields. Bit-fields are integers which consist of a defined number of
bits. The declaration of abit-field has the form:

type [1dentifier] . wdth;

wheret ype isetherunsi gned 1 nt orsi gned Int,identifler istheoptional name of the bit-field,
and W dt h isthe number of bits occupied by the bit-field in memory.

A bit-field is normally stored in a machine word that is a storage unit of length si zeof (1 nt) . The width of abit-
field cannot be greater than that of a machine word. If asmaller bit-field |eaves sufficient room, subsequent bit-fields
may be packed into the same storage unit. A bit-field with width zero is a specia case, and indicates that the
subsequent bit-field isto be stored in a new storage unit regardless of whether there's room in the current storage unit.
Here's an example of a structure made up of bit fields:

st ruct { unsigned int b0 2 : 3
Si ghed int b3 7 . 5;
unsi gned I nt 7
unsi gned I nt bl5 1
} var;

The structure variable var occupies at least two bytes, or 16 bits. It isdivided into four bit-fields: var . b0 2
occupies the lowest three bits, var . b3 7 occupiesthe next five bits, and var . b15 occupies the highest bit. The

third member has no name, and only serves to define a gap of seven bits, as shown in Figure 1-5.

Figure 1-5. Bit assignments in the example struct

Bit-fields with the typeunsi gned | nt areinterpreted as unsigned. Bit-fields of typesi gned | nt can have
negative values in two's-complement encoding. In the example above, var . b0 2 can hold valuesin the range from
Oto7,and var . b3 7 cantakevaluesin the range from -16 to 15.

Bit-fields also differ from ordinary integer variables in the following ways:

e Theaddress operator (&) cannot be applied to bit-fields (but it can be applied to a structure variable that
contains bit-fields).

e Some uses of bit-fields may lead to portability problems, since the interpretation of the bits within aword can
differ from one machine to another.

1.10.3 Arrays

Arraysare used to manage large numbers of objects of the same type. Arraysin C can have elements of any type
except afunction type. The definition of an array specifiesthe array name, the type, and, optionally, the number of
array elements. For example:

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

char |1 ne[81];

Thearray | 1 ne consists of 81 elements with thetype char . Thevariable| | ne itself hasthe derived type "array of
char" (or"char array").

In astatically defined array, the number of array elements (i. e., thelength of the array) must be a constant expression.
In ANSI C99, any integer expression with a positive value can be used to specify the length of a non-static array with
block scope. Thisisalso referred to as a variable-length array.

An array always occupies a continuous location in memory. The size of an array I1s thus the number of elements times
the size of the element type:

sizeof(line) == 81 * sizeof(char) == 81 bytes

Theindividual array elements can be accessed using an index. In C, the first element of an array has the index O.
Thusthe 81 dlementsof thearray | | ne arel 1 ne[O] ,I 1 ne[1],... ,l1 ne[80].

Any integer expression can be used as an index. It Is up to the programmer to ensure that the value of the index lies
within the valid range for the given array.

A string is a sequence of consecutive e ements of type char that ends with the null character,' \ O' . The length of
the string is the number of characters excluding the string terminator * \ 0" . A stringisstoredinachar array,

which must be at |east one byte longer than the string.

A wide string consists of characters of typewchar t andisterminated by the wide null character, L' \ O' . The
length of awide string isthe number of wchar t charactersin the string, excluding the wide string terminator. For

example:

wchar t wstr[20] = L"Mster Fang"; // length: 11
// wde characters

A multi-dimensional array in Cisan array whose elements are themselves arrays. For example:
short point[50][20]][10];

The three-dimensional array poi nt consists of 50 elements that are two-dimensional arrays. The declaration above
defines atotal of 50* 20* 10 = 10,000 elements of type shor t , each of which isuniquely identified by three indices:

point[O0][O0][9] =7, [/ Assign the value 7 to the "point"
// wth the "coordinates" (0,0,9).

Two-dimensional arrays, also called matrices, are the most common multi-dimensional arrays. The elements of a
matrix can be thought of as being arranged in rows (first index) and columns (second index).

Arraysin C are closely related to pointers: in aimost all expressions, the name of an array is converted to a pointer to
the first element of the array. Thesi zeof operator is an exception, however: if its operand is an array, it yields the

number of bytes occupied, not by a pointer, but by the array itself. After the declaration:

char nmsg[] = "Hello, world!";

the array name ns g pointsto the character ' H' . In other words, nsQ isequivalent to&nsg[0] . Thusina
statement such as:

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

puts(msg), // Print string to display

only the address of the beginning of the string is passed to the function put s() . Internally, the function processes
the charactersin the string until it encounters the terminator character ' \ 0" .

An array isinitialized by an initialization list containing a constant initial value for each of the individual array
elements:

double x[3] ={ 0.0, 0.5, 1.0 };

After thisdefinition, x| O] hasthevalueO. O, x[1] thevalueO. 5, and x| 2] thevauel. O. If the length of the
array is greater than the number of valuesin the list, then all remaining array elements are initialized with O. If the

Initialization list is longer than the array, the redundant values are ignored.

The length of the array need not be explicitly specified, however:

double x[] ={ 0.0, 0.5, 1.0 };

In this definition, the length of the array is determined by the number of valuesin the initialization list.
A char array can beinitialized by astring literal:

char str[] = "abc";

This definition allocates and initializes an array of four bytes, and is equivalent to:

char str|[] ={ 'a, 'b', 'c', "\0" } ;

In the initialization of a multi-dimensional array , the magnitude of all dimensions except the first must be specified.
In the case of atwo-dimensional array, for example, the number of rows can be omitted. For example:

char error _nmsg[][40] = { "Error opening filel",
"Error reading filel",
"Error witing to filel"};

Thearray er r or _nsg consists of three rows, each of which contains a string.

1.10.4 Pointers

A pointer represents the address and type of a variable or afunction. In other words, for avariable X, & isapointer
to X.

A pointer refers to alocation in memory, and its type indicates how the data at this location isto be interpreted. Thus
the pointer types are called pointer to char , pointer to | nt , and so on, or for short, char pointer,1 nt pointer, €etc.

Array names and expressions such as &x are address constants or constant pointers, and cannot be changed. Pointer

variables, on the other hand, store the address of the object to which they refer, which address you may change. A
pointer variable is declared by an asterisk (*) prefixed to the identifier. For example:

float x, vy, *pFloat;
pFl oat = ; /] Let pFloat point to Xx.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

After thisdeclaration, X andy arevariables of typef | oat , and pFl oat isavariable of typef | oat *
(pronounced "pointer to f | oat "). After the assignment operation, the value of pFl oat isthe address of X.

Theindirection operator * isused to access data by means of pointers. If pt r isapointer, for example, then * pt r
IS the object to which pt r points. For example:

y = *pFl oat; /[l equivalent to y = X;

Aslongas pFl oat pointsto X, the expression * pFl oat can be used in place of the variable x. Of course, the
indirection operator * must only be used with a pointer which contains avalid address.

A pointer with the value O is called a null pointer. Null pointers have a special significancein C. Because all objects

and functions have non-zero addresses, a null pointer always represents an invalid address. Functions that return a
pointer can therefore return a null pointer to indicate afailure condition. The constant NULL isdefined in stdio.h,

stddef.h, and other header files as anull pointer (i.e., a pointer with avalue of zero).

All object pointer variables have the same storage size, regardless of their type. Two or four bytes are usually required
to store an address.

Parentheses are sometimes necessary in complex pointer declarations. For example:

| ong arr[10]; [/ Array arr with ten el enents
long (*pArr)[10]; // Pointer pArr to an array
[/ of ten |ong el ements

Without the parentheses, the declaration | ong * pAr r[10] ; would create an array of ten pointersto| ong.
Parentheses are always necessary in order to declare pointersto arrays or functions.

1.10.4.1 Pointer arithmetic

Two arithmetic operations can be performed on pointers:
e Aninteger can be added to or subtracted from a pointer.
e One pointer can be subtracted from another of the same type.

These operations are generally useful only when the pointers point to e ements of the same array. In arithmetic
operations on pointers, the size of the objects pointed to is automatically taken into account. For example:

int a[3] ={ 0, 10, 20 }; [/ An array wth three el enents
Il nt *pa a, /] Let pa point to afO]

Since pa pointstoal 0] ,theexpressionpa + 1 yieldsapointer to the next array element,al 1] , whichis
si zeof (1 nt) bytesaway in memory. Furthermore, because the array namea likewise pointstoal 0] ,a+1
dsoyieldsapointertoal 1] .

Thus for any integer | , the following expressions are equivalent:
&a[1] , atl , pa+i [/ pointers to the 1-th array el enent

By the same token, the following expressions are also equivalent:

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

ali1] , *(a+1) , *(pa+i) , pa[i] [/ the i-th array el enent

Thus a pointer can be treated as an array name: pal 1 | and* (pa+i) areequivalent. Unlike the array name,
however, pa isavariable, not an address constant. For example:

pa = at2; /] Let pa point to a[?2]
Int n =pa-a, [/ n =2

The subtraction of two pointers yields the number of array elements between the pointers. For example, the
expression pa- a yieldstheinteger value2 if pa pointstoa| 2] . Thisvalue hasthe integer typept rdi ff t,
which is defined (usually asi nt) in stddef.h.

The addition of two pointersis not a useful operation, and hence is not permitted. It is possible, however, to compare
two pointers of the same type, as the following example illustrates:

// Formatted output of the elenents of an array
#define LEN 10
fl oat nunbers[LEN], *pn;

for (.pﬁ - nunbers; pn < nunbers+LEN;, ++pn)
printf("9%6.4f", *pn);

1.10.4.2 Function pointers

The name of afunction is a constant pointer to the function. Its value is the address of the function's machine code in
memory. For example, the name put s isapointer to the function put s() , which outputs a string:

#1 ncl ude <stdi o. h> /] 1 nclude declaration of puts()
Int (*pFunc)(const char*); [/ Pointer to a function
/] whose paraneter Is a string
/] and whose return val ue
/] has type Int

pFunc = puts; [/ Let pFunc point to puts()
(*pFunc) ("Any questions?"); // Call puts() using the
[/ pol nter

Note that the first pair of parenthesesis required in the declaration of the variable pFunc. Without it, I nt
pFunc(const char); woulddeclarepFunc asafunction that returnsapointer toi nt .

1.10.5 Type Qualifiers and Type Definitions

The type of an object can be qualified by the keywordsconst andvol at i | e inthe declaration.

Thetype qualifier const indicatesthat the program can no longer modify an object after its declaration. For
example:

const double pi = 3.1415927,

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

After this declaration, a statement that modifiesthe object pi , suchaspi = pi +1; ,isillegal and resultsin a
compiler error.

Thetype qualifier vol at | | e indicates variables that can be modified by processes other than the present program.
Based on this information, the compiler may refrain from optimizing access to the variable.

Thetype quaifiersvol at 1 | e andconst can also be combined:
extern const volatile unsigned clock ticks;

After thisdeclaration, cl ock t i1 cks cannot be modified by the program, but may be modified by another process,
such as a hardware clock interrupt handler.

Type qualifiers are generally prefixed to the type specifier. Inpointer declarations, however, type qualifiers may be
applied both to the pointer itself and to the object it addresses. If the type qualifier isto be applied to the pointer itself,
It must be placed immediately before the identifier.

The most common example of such a declaration is the "pointer to a constant object." Such a pointer may point to a
variable, but cannot be used to modify it. For this reason, such pointers are also called "read-only" pointers. For
example:

Iint varl = 1, var2 = 2, *ptr;
const Iint cArr[2],;
const Iint *ptrToConst;// "Read-only pointer"” to Int

The following statements are now permitted:

ptr ToConst = &cArr|[O0]; /| Change the val ue of
++pt r ToConst ; /] the pointer vari able
ptr ToConst = &var 1;

var2 = *ptrToConst; /] "Read" access

The following statements are not permitted:

ptr = ptrToConst; /] "Read-only" cannot be copied to
[l "read-write"

*ptr ToConst = 5; [/l "WIite" access not all owed!

restrict

ANSI C99 introduces the type qualifier rest ri ct , whichisonly applicable to pointers. If a pointer declared with
ther estri ct qualifier pointsto an object that isto be modified, then the object can only be accessed using that

pointer. Thisinformation allows the compiler to generate optimized machine code. It is up to the programmer to
ensure that the restriction is respected!

Example:

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

voli d *nencpy(void * restrict dest, [/ destination
const void* restrict src, // source
sizet n);

In using the standard function mentpy () to copy amemory block of n bytes, the programmer must ensure that the
source and destination blocks do not overlap.

typedef

Thekeyword t ypedef isusedto give atype anew name.

Examples.

t ypedef unsigned char UCHAR;
typedef struct { double x, y } PO NT;

After these type definitions, the identifier UCHAR can be used as an abbreviation for thetypeunsi gned char,
and the identifier PO NT can be used to specify the given structure type.

Examples.

UCHAR c1, c2, tab[100];
PO NT point, *pPoint;

Inat ypedef declaration, the identifier is declared as the new type name. The same declaration without the
t ypedef keyword would declare avariable and not atype name.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.11 Functions

Every C program contains at least the function mai n() , which isthe first function executed when the program
starts. All other functions are subroutines.

The definition of afunction lists the statements it executes. Before a function can be called in agiven trandation unit,
It must be declared. A function definition also serves as a declaration of the function. The declaration of afunction
Informs the compiler of its return type. For example:

ext ern doubl e pow);

Here pow() isdeclared as afunction that returns avalue with typedoubl e. Because function names are external
names by default, the storage class specifier ext er n can also be omitted.

In ANSI C99, implicit function declarations are no longer permitted. Formerly, calls to undeclared functions were
alowed, and the compiler implicitly assumed in such cases that the function returned avalue of typel nt .

The declaration of the function pow() inthe example above contains no information about the number and type of

the function's parameters. Hence the compiler has no way of testing whether the arguments supplied in agiven
function call are compatible with the function's parameters. This missing information is supplied by afunction
prototype.

1.11.1 Function Prototypes

A function prototype is a declaration that indicates the types of the function's parameters as well as its return value.
For example:

doubl e pow(doubl e, double); /| prototype of pow)

This prototype informs the compiler that the function pow() expectstwo arguments of typedoubl e, and returns a
result of typedoubl e. Each parameter type may be followed by a parameter name. This hame has no more

significance than a comment, however, since its scope is limited to the function prototype itself. For example:

doubl e pow(doubl e base, doubl e exponent);

Functions that do not return any result are declared with the type specifier voli d. For example:

vold funcl(char *str); // funcl expects one string
[/ argunment and has no return
/| val ue.

Functions with no parameters are declared with the type specifier voli d in the parameter list:

Int func2(void); [/ func2 takes no argunents and
[/ returns a value wth type iInt.

Function declarations should always be in prototype form. All standard C functions are declared in one (or more) of
the standard header files. For example, math.h contains the prototypes of the mathematical functions, such as

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

sin(),cos(),pow), etc., whilestdio.h contains the prototypes of the standard input and output functions.

1.11.2 Function Definitions

The general form of a function definition is;

| storage cl ass|] [type] name(
[paranmeter list]) // function decl arator

{
}

st orage cl ass

/[* declarations, statenments */ [/ function body

One of the storage class specifiersext er n or st at | c. Becauseext er n isthe default storage class for
functions, most function definitions do not include a storage class specifier.

type
The type of the function's return value. This can be either VoI d or any other type, except an array.

nane

The name of the function.

paraneter |1 st

The declarations of the function's parameters. If the function has no parameters, the list is empty.

Here is one example of a function definition:

long sum(Iint arr[], int len)// Find the sumof the first
{ // len elenments of the array arr
Int 1 ;
|l ong result = O;

for(1 =0;, 1 < len; ++)
result += (long)arr[i];
return result;

}

Because by default function names are external names, the functions of a program can be distributed among different
source files, and can appear in any sequence within a sourcefile.

Functionsthat are declared as st at | ¢, however, can only be called in the same trandation unit in which they are

defined. But it is not possible to define functions with block scope-in other words, a function definition cannot
appear within another function.

The parameters of afunction are ordinary variables whose scope is limited to the function. When the function is
called, they are initialized with the values of the arguments recelved from the caller.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

The statements in the function body define what the function does. When the flow of execution reachesar et ur n
statement or the end of the function body, control returns to the calling function.

A function that callsitself, directly or indirectly, is called recursive. C permits the definition of recursive functions,
since variables with automatic storage class are created anew-generally in stack memory-with each function call.

The function declarator shown above is in prototypestyle. Today's compilers still support the older Kernighan-Ritchie
style, however, in which the parameter identifiers and the parameter type declarations are separate. For example:

l ong sum(arr, len) // Paraneter i1dentifier |ist
int arr[], |en; /| Parameter declarations
{ ... } /1 Function body

In ANSI C99, functions can also be defined as inline. Thel nl I ne function specifier instructs the compiler to

optimize the speed of the function call, generally by inserting the function's machine code directly into the calling
routine. Thel nl I ne keyword is prefixed to the definition of the function:

inline Iint max(Int x, Int y)
{ return (x>y ?2x:vy); }

If an inline function contains too many statements, the compiler may ignorethel nl | ne specifier and generate a
normal function call.

An inline function must be defined in the same trandation unit in which it is called. In other words, the function body
must be visible when the inline "call" is compiled. It is therefore a good ideato define inline functions-unlike
ordinary functions-in a header file.

Inline functions are an alternative to macros with parameters. In trandating a macro, the preprocessor ssimply
substitutes text. An inline function, however, behaves like a normal function-so that the compiler tests for
compatible arguments, for example-but without the jump to and from another code location.

1.11.3 Function Calls

A function call Is an expression whose value and type are those of the function's return value.

The number and the type of the arguments in afunction call must agree with the number and type of the parametersin
the function definition. Any expression, including constants and arithmetic expressions, may be specified as an
argument in afunction call. When the function is called, the value of the argument iscopied to the corresponding
parameter of the function! For example:

doubl e x=0.5, y, pow); [/ Declaration
y = pow 1.0 + x, 2.5); [l Call to pow() yields
/! the double value (1.0+x)?%?°

In other words, the arguments are passed to the function by value. The function itself cannot modify the values of the
arguments in the calling function: it can only access itslocal copy of the values.

In order for afunction to modify the value of a variable directly, the caller must give the function the address of the

variable as an argument. |n other words, the variable must be passed to the function by reference. Examples of
functions that accept arguments by referenceincludescanf () ,t 1 ne(), and all functions that have an array as

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

one of their parameters. For example:

doubl e swap(doubl e *px, double *py) // Exchange val ues
[/ of two vari abl es

{ double z = *px; *px = *py; *py = z; }
The arguments of a function are subject to implicit type conversion:

e |f thefunction was declared in prototype form (as is usually the case), each argument is converted to the type
of the corresponding parameter, as for an assignment.

e |f no prototype is present, integer promotion is performed on each integer argument. Arguments of type
f 1 oat areconvertedtodoubl e.

1.11.4 Functions with Variable Numbers of Arguments

Functions that can be called with a variable number of arguments always expect a fixed number of mandatory

arguments-at least one is required-and a variable number of optional arguments. A well-known example isthe
functionpr i nt f () : theformat string argument is mandatory, while al other arguments are optional. Internally,

printf () determinesthe number and type of the other arguments from the information in the format string.
In the function declarator, optional arguments are indicated by threedots(. . .). For example:

Int printf(char *str, ...); /| Prototype

In the function definition, the optional arguments are accessed through an object with thetypeva | | st , which

contains the argument information. This type is defined in the header file stdarg.h, along with the macros
va start,va arg,andva_end, which are used to manage the arguments.

In order to read the optional arguments, the function must carry out the following steps:

1. Declare anobject of typeva | i st . Inthefollowing example, thisobjectisnamedar gl | st .

2. Invokethemacrova st art topreparethear gl | st object to return the first optional argument. The
parametersof va_ st art arethear gl | st object and the name of the last mandatory parameter.

3. Invokethemacrova ar g withtheinitializedar gl | st object to obtain each of the optional argumentsin
sequence. The second parameter of va_ar g isthetype of the optional argument that is being obtained.

After each invocation of theva_ar g macro, thear gl | st object is prepared to deliver the first optional
argument that has not yet been read. Theresult of va ar g hasthe type specified by the second argument.

4. After reading out the argument list, the function should invoke the va_end macro before returning control
to the caller. The only parameter of va_end isthear gl | st object.

Following is an example of afunction, named max, that accepts a variable number of arguments:

/] Determ ne the maxi num of a nunber of positive Integers.
[/ Parameters:. a variable nunber of positive val ues of

[/ type unsigned int. The |ast argunent nust be O.

/] Return value: the maxi num of the argunents

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

#1 ncl ude <stdarg. h>
unsi gned I nt max(unsigned int first, ...)

{
unsi gned I nt maxarg, arg;
va |i1st arglist; [/ The optional-argunent

[/ |1st object
va start(arglist, first); // Set arglist to deliver

/] the first optional
[| ar gument
arg = maxarg = first;
while (arg !'= 0)
{ arg = va_arg(arglist, unsigned);// Get an argunent
If (arg > maxarg) naxarg = arg;

}
va end(arglist); /] Finished reading the

[/ optional argunents
return maxarg;

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.12 Linkage of ldentifiers

An identifier that is declared more than once, whether in different scopes (in different files, for example) or in the
same scope, may refer to the same variable or function. Identifiers must be "linked" in thisway in order for avariable
to be used "globally," across different source files, for example.

Each identifier has either external, internal, or no linkage. These three kinds of linkage have the following
significance:

External linkage

An identifier with external linkage represents the same object or function throughout the entire program, i. €.,
In all source files and libraries belonging to the program. The identifier is made known to the linker.

When a second declaration of the same identifier with external linkage occurs, the linker associates the
Identifier with the same object or function. A declaration of an existing external object is sometimes called a
reference declaration.

Internal linkage

An identifier with internal linkage represents the same object or function within a given translation unit. The
linker has no information about identifiers with internal linkage. Thus they remain "internal” to the
translation unit.

Nolinkage

If an identifier has no linkage, then any further declaration using the identifier declares something new, such
as anew variable or anew type.

The linkage of an identifier is determined by its storage class; that is, by the position of the declaration and any
storage class specifier included in it. Only identifiers of variables and functions can have internal or external linkage.
All other identifiers, and identifiers of variables with automatic storage class, have no linkage. Table 1-20 summarizes
this information.

Table 1-20. Linkage of identifiers

Linkage | dentifierswith thislinkage

Names of variables either declared with the storage class specifier ext er n, or declared outside of all
functions and without a storage class specifier. Names of functions defined without the specifier st at | c.

Internal | Names of functions and variables declared outside of all functions and with the specifier st at | c.

External

None All other identifiers, such as function parameters.
The form of external names (identifiers with external linkage) is subject to restrictions, depending on the linker

Implementation: some linkers only recognize the first eight characters of a name, and do not distinguish between
upper- and lower-case | etters.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.13 Preprocessing Directives

The C compiler preprocesses every source file before performing the actual trandation. The preprocessor removes
comments and replaces macros with their definitions.

Every preprocessing directive appears on aline by itself, beginning with the character #. If the directiveislong, it can
be continued on the next line by inserting a backsash (\) as the last character before the line break.

#define

The#def | ne directiveis used to define macros.

Syntax:

define nane[(paraneter |list)] [replacenent text]

The preprocessor replaces each occurrence of nane or nane(par anet er |1 st) inthe subsequent source
codewithr epl acenent text.

Examples.

#define BUF SIZE 512 [/ Synbolic constant
#define MAX(a,b) ((a) > (b) ? (a) : (b))

These directives define the macros BUF S| ZE and MAX. If the replacement text is a constant expression, the macro

Is also called a symbolic constant. Macros can also be nested; a macro, once defined, can be used in another macro
definition.

In the previous example, the parentheses are necessary in order for the substitution to be performed correctly when
MAX is used in an expression, or when complex expressions replace the parameters a and b. For example, the

preprocessor replaces the macro invocation:
result =2 * MAX(X, v & OXFF);
with:

result =2 * ((x) > (y &OxFF) ? (x) : (y & OxFF));
The# Operator

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

In the macro replacement text, the parameters of the macro may be preceded by the operator # (called the hash or
stringizing operator). In this case, the preprocessor sets the corresponding argument in quotation marks, thus
converting it into a string.

Example:

#define print _int(i) printf("value " # " = 9%", 1)
If X andy arevariableswith typel nt , then the statement:

print _int(x-y);

IS replaced with:

printf("value ""x-y"" = 9", x-y);
Because consecutive string literals are concatenated, thisis equivalent to:
printf("value x-y = %", x-y);

The ## Operator

If a macro parameter appears in the replacement text preceded or followed by the operator ## (called the double-hash
or token-pasting operator), then the preprocessor concatenates the tokens to the left and right of the operator, ignoring
any spaces. If the resulting text also contains a macro name, then macro replacement is performed once again.

Example:

#defi ne show(var, num) \
printf(#var #num" = % 1f\n", var ## num)

If the float variable x5 hasthevaue16. 4, then the macro invocation:

show(x, 5);

IS replaced with:

printf("x" "5" " = % 1f\n", x5);
[/ Qutput: x5 = 16.4\n

#undef

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

The#undef directive cancels amacro definition. Thisis necessary when the definition of a macro needsto be
changed, or when a function of the same name needs to be called.

Syntax:

#undef nane

No parameter list needs to be specified, even if the previously defined macro has parameters.

Example:

#1 ncl ude <ctype. h>
#undef toupper

C :.tbubper(c); [/ Call the function toupper()

#include

The#1 ncl ude directive instructs the preprocessor to insert the contents of a specified file in the program at the
point wherethe #1 ncl ude directiveappears.

Syntax:

#1 nclude <fil enane>
#1 nclude "fil enane"

If the filename is enclosed in angle brackets, the preprocessor only searchesfor it in certain directories. These
directories are usually named in the environment variable | NCL UDE.

If the filename is enclosed in quotation marks, the preprocessor first looks for the file in the current working
directory.

Thef 1 | enane may contain adirectory path. In this case, thefileis only looked for in the specified directory.

The files named in include directives are generally "header" files containing declarations and macro definitions for
use in several source files, and have names ending in .h. Such files may in turn contain further #1 ncl ude

directives.

In the following example, one file to be included is selected based on the value of a symbolic constant:

#1 ncl ude <stdi o. h>
#1 ncl ude "project.h”
#1f VERSI ON ==

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

#define MPRQJ H "versionl.h"
#el se

#define MYPRQJ H "version2.h"
#endi f
#1 ncl ude MYPRQJ H

#f, #elif, #else, #endif

These directives are used to present source code to the compiler only on certain conditions. In thisway a different
selection of program statements can be compiled from one build to another. This technique can be used to adapt a
single program to a variety of target systems, for example, without requiring modification of the source code.

Syntax:

#1 f expressionl
[t ext 1]

[#el I f expression2
t ext 2]

[#elif. éxpression(n)
text(n)]

| #el se
text(n+1)]
#endi f

Each #1 f directive may be followed by any number of #el | f directives, and at most one#el se directive. The
conditional source code section must be closed by an #endi f directive.

The preprocessor evaluates expr essi onl, expr essi on2, etc. in succession. At the first expression whose

valueis"true", I. e., not equal to O, the conditional code Is processed. If none of the expressionsistrue, then the
#el se directiveisprocessed, if present.

expressi onl, expressi on2, etc. must be constant integer expressions. The cast operator cannot be used in
preprocessing directives.

The conditional text consists of program code, including other preprocessing directives and ordinary C statements.
Conditional text that the preprocessor skips over Is effectively removed from the program.

Thedefined operator

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Thedef | ned operator can be used to verify whether a given macro name s currently defined.

Syntax:

defi ned (nane)

The operator yields a non-zero value if avalid definition exists for nane; otherwise it yields the value 0. A macro

name defined by a#def | ne directive remains defined until it is cancelled by an#undef directive. A macro name
is considered to be defined even if no replacement text is specified after nane inthe#def | ne directive.

Thedef | ned operator istypically used in#1 f and#el | f directives:

#1 f defi ned(VERSI ON
#tendi f
Unlikethe#1 f def and#i f ndef directives, thedef | ned operator yields avalue that canbe used in a
Preprocessor expression:
#1 f defi ned(VERSI ON) && defi ned(STATUS
#tendi f
#ifdef and #fndef

The#i f def and#i f ndef directives can be used to make program text directly conditional upon whether agiven
macro name is defined.

Syntax:

#1 f def nane
#1 f ndef nane

The#i f def directiveis"true" if nane isdefined, and the#i f ndef directiveis"true" if nane isnot defined.
Both requireaclosing #endi f directive.

The following two constructions are equivalent:

#1 f def VERSI ON
#eﬁaif

#1 f defi ned(VERSI ON
#endi f

#line

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

The compiler identifies errors it encounters during compilation by the source filename and the line number in thefile.
The#| | ne directive can be used to change the filename and line numbering in the source file itself.

Syntax:

#l i ne new nunber ["fil enane"]

From this location in the file onward, lines are counted starting from new _nunber . If f i | enane isaso
specified, it becomes the new filename indicated by the compiler in any error messages.

The new filename must be enclosed in quotation marks, and new numnber must be an integer constant.

Example:

#l 1 ne 500 "ny prg.c"

The#! | ne directiveistypically used by program generators in translating other kinds of code into a C program. In

this way the C compiler's error messages can be made to refer to the appropriate line and filename in the original
source code.

The current effective line number and filename are accessible through the predefined macros . LI NE _and

_FILE__.

Examples:

printf("Current source |ine nunber: %\n", _ LINE_ _);
printf ("Source file: %\n", _ FLE _);

#pragma

The#pr agna directive isimplementation-specific. It can be used to define any preprocessor directives desired for a
given compiler.

Syntax:

#pragnma conmand

Any compiler that does not recognize conmrand simply ignoresthe#pr agna directive.

Example:

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

#pragma pack(1)

The Microsoft C compiler interprets this directive as an instruction to align the members of structures on byte
boundaries, so that no unnamed gaps occur. (Other pragmas supported by that compiler are pack(2) and

pack(4) , for word and double-word alignment.)

ANSI C99 introduces the standard pragmas CX LI M TED RANGE, FENV_ ACCESS, and FP_ CONTRACT,
which are described in the upcoming section Section 1.18.

Predefined standard macr os

There are eight predefined macros in C, whose names begin and end with two underline characters. They are
described in Table1-21.

Table 1-21. Predefined standard macros

Macro Replacement value

|| NE The number of the line (within the given source file) in whichthemacro __ LI NE_
o o _ appears
_ _HLE _ The name of the source filein whichthemacro__FI LE__ appears
_ _func_ (%) The name of the function in which themacro __f unc__ appears
_ _DATE The date of compilation, in the format "Mmm dd yyyy". Example: "Dec 18 2002"
- TIME The time of compilation, in the format "hh:mm:ss"
__STDC The integer constant 1 if the compiler conforms to the ANSI standard

STD HOSTED (*) “;e int_eger constant 1 if the current implementation is a"hosted" implementation;
- T - otherwise

STD VERS| ON (*) | Theinteger constant 199901L if the implementation conformsto C99, the ANSI C
— - - standard of January, 1999

ANSI C99 distinguishes between "hosted" and "free-standing” execution environments for C programs. Unlike the
normal "hosted" environment, a"freestanding” environment provides only the capabilities of the standard library as
declared in the header files float.h, 1s0646.h, limits.h, stdarg.h, stdbool.h, and stddef.h.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.14 Standard Library

The remaining sections in this book describe the contents of the ANSI C library. The standard functions, types, and

macros are grouped according to their purpose and areas of application. This arrangement makes it easy to find less
well-known functions and macros. Each section also supplies the background information needed in order to make
efficient use of the library's capabilities. New data types, functions, and macros introduced in ANSI C99 are

indicated by an asterisk in parentheses ().

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.15 Standard Header Files

All function prototypes, macros, and types in the ANSI library are contained in one or more of the following standard

header files:

assert.h I nttypes. h(*) signal . h stdlib.h
compl ex. h(*) | S0646. h(*) stdarg. h string.h
ctype. h limts.h st dbool . h(*) tgmat h. h(*)
errno. h | ocal e. h st ddef . h tine.h
fenv. h(*) mat h. h stdint. h(*) wchar . h(*)
float.h set] np. h stdio.h wet ype. h(*)

Because a standard "function” may also be implemented as a macro, your source files should contain no other
declaration of a function once the appropriate header file has been included.

Table 1-22 describes some commonly used types. The table also lists which header files define each type.

Table 1-22. Commonly used types

Type Purpose Header files

Used to express the size of an object as anumber of bytes (generaly o« 4ot h st dio. h

stze_t equivalenttounsi gned i nt)

wehar t Used to hold multi-byte character codes, and large enough to stdlib.h, wchar.h(*)
- represent the codes of all extended character sets o '

wint t (") ﬁgégﬁeégﬁe used to represent wide characters, including the wchar . h(*)

otrdiff t :i)s;e(;l]:o) represent the difference of two pointers (usually equivalent st ddef h

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.16 Input and Output

The ANSI library provides a suite of high-level functions to manage all kinds of input and output, with the
appropriate buffering, as uniform data streams.

When afile is opened, for example, a new stream is created along with a file pointer, which is a pointer to a structure
of type FI LE that contains information about the stream. This information includes the address of the buffer, the

number of bytes not yet read, and other information about the file itself. The file pointer is used to identify thefilein
all subsequent operations.

Devices such as the display are addressed in the same way as files. When the program starts, three streams are open
by default, with the following file pointers:

stdi n

The standard input device

st dout

The standard output device

stderr

The standard output device for error messages

st di n isgeneraly associated with the keyboard, whilest dout andst der r are associated with the display,
unless redirection has been performed using the function f r eopen() or by the environment in which the program

IS running.

Thereis no predefined file structure in C: every file is assumed to contain simply a sequence of bytes. The internal
structure of afileis completely left up to the program that uses it.

All read and write operations are applied at the current fileposition , which is the position of the next character to be
read or written, and is always recorded in the FI LE structure. When the file is opened, the file positionisO. It is
iIncreased by 1 with every character that isread or written. Random file access is achieved by means of functions that
adjust the current file position.

In ANSI C99, characters in the extended character set can also be written to files. Thus any file used in read or write
functions can be either byte-oriented or wide-oriented. After afile is opened and before any read or write access takes
place, the file has no orientation. As soon as a byte input/output function is performed on the file, it becomes byte-
oriented. If the first function that reads from or writes to the file is awide-character input or output function, the file
becomes wide-oriented. The function f Wi de() can also be used before the first access function to set the file's

orientation, or to obtain its orientation at any time.

Only wide characters can be written to awide-oriented file. The appropriate read and write functions thus perform
conversion between wide characters with typewchar t and the multibyte character encoding of the stream. For

every wide-oriented stream, the momentary multibyte character parsing state is stored in an object with type
nbst at e t . Byte access to wide-oriented files, and wide-character access to byte-oriented files, are not permitted.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.16.1 Error Handling for Input/Output Functions

Errors on file access are indicated by the return value of the file access function. When the end of afileis
encountered by aread function, for example, the symbolic constant EOF (for byte-oriented files) or WEOF (for wide-

oriented files) isreturned. If aread or write error has occurred, an error flag isalso set inthe Fl LE structure.

Furthermore, in reading or writing wide-oriented streams, errors can occur in the conversion between wide characters
of typewchar t and multibyte charactersin the stream. Thisisthe case if one of the conversion functions

nmortowc() andwcrt onb() doesnot return apermissible value. The global error variableer r no then hasthe
value EI LSEQ ("error: illegal sequence").

1.16.2 General File Access Functions

The following functions, macros, and symbolic constants are declared in the header file stdio.h. In the descriptions
below, f p designates the file pointer. Functions with typel nt return O to indicate success, or avalue other than 0 in

case of errors.

void clearerr (FILE *fp);

Clears the error and end-of-file flags.

int fclose (FILE *fp);

Closes thefile.

Int feof (FILE *fp);

Tests whether the end of the file has been reached. Returns a value not equal to O if the end-of-fileflag is
set, or Oif it isnot.

int ferror (FILE *fp);

Tests whether an error occurred during file access. Returns avalue not equal to O if the error flag is set, or O
If It isnot.

Int fflush (FILE *fp);

Causes any unwritten datain the file buffer to be written to the file. Returns EOF if an error occurs, or O on
SUCCESS.

Int fgetpos (FILE *fp , fpos t *ppos);

Determines the current file position and copiesit to the variable addressed by ppos. Thetypef pos t is
generaly defined as| ong.

FI LE *fopen (const char *nane , const char *node);

Opensthe file nane with the access modenode. Possible access mode stringsare " r " (read), " r +" (read

and write), " W' (write),” w+" (writeand read), " a" (append), and” a+" (append and read). For modes
“r"and”r+", thefilemust aready exist. Modes™ W' and” w+" create anew file, or erase the contents of

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

an existing file. Text or binary access mode can be specified by appending t or b to the mode string. If
neither is used, thefile Is opened in text mode.

The maximum length of afilenameisthe constant FI LENANME MAX. The maximum number of files that
can be open simultaneoudly is FOPEN MAX.

Int fsetpos (FILE *fp , const fpos t *ppos),
Sets the file position to the new value referenced by ppos.

long ftell (FILE *fp);

Returns the current file position.

FI LE *freopen (const char *nane , const char *nobde ,
FILE *fp);

Closes and reopens the file name with the access mode node using the existing file pointer f p.

Int fseek (FILE *fp , long offset , Int origin);

Moves the file position to of f set bytes from the beginning of thefile (if or i gi n = SEEK SET), or
from the current file position (if or i gi n = SEEK CUR), or from the end of thefile (if ori gi n =
SEEK END). The constants SEEK SET, SEEK CUR, and SEEK END are usually defined as 0, 1, and 2.

voli d perror (const char *string);

After asystem function call has resulted in an error, you can use per r or () to write the string pointed to
bystringtostderr,followed by acolon and the appropriate system error message.

I nt renove (const char *filename);

Makesthefilenamedf | | enane unavailable by that name. If no other filenames are linked to thefile, it is
del eted.

I nt renane (const char *oldnane , const char *newnanme);

Changes the name of the file whose hame is addressed by ol dnane to the string addressed by newnane.
void remmnd (FILE *fp);

Sets the file position to the beginning of the file, and clears the end-of-file and error flags.
void setbuf (FILE *fp , char *buf);

Defines the array addressed by buf as the input/output buffer for the file. The buffer must be an array whose
sizeisequa to the constant BUFSI Z. If buf isanull pointer, then the input/output stream is not buffered.

I nt setvbuf (FILE *fp , char *buf , int node , sizet sz);

Definesthe array buf with lengthsz asthe input/output buffer for the file. The parameter node is one of

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

the following constants: | OFBF (full input/output buffering), | OLBF (line-wise input/output buffering),
or | ONBF (no input/output buffering). If buf isanull pointer, then abuffer of sizesz isdynamicaly

allocated.
FILE *tnpfile(void);

Opens atemporary file in binary read/write mode. The file is automatically deleted at the end of the program.
The program should be able to open at least TMP__MAX temporary files. The symbolic constant TMP_ MAX is

greater than or equal to 25.
char *tnpnam (char *s);

Generates a unique filename that can be used to create atemporary file. If s iIsanull pointer, the filename
generated is stored in an internal static buffer. Otherwise, S must point toachar array with alength of at
least Lt npnambytes, in which the function stores the new name.

1.16.3 File Input/Output Functions

The classic functions for reading from and writing to files are declared in the header file stdio.h. In the descriptions
that follow in Table 1-23, f p designates the file pointer. Those functions that have no parameter with the file pointer

typeread from st di n or writetost dout .

1.16.3.1 Reading and writing characters and strings

Table 1-23. Character read and write functions

Purpose Functions
int fputc(Int ¢, FILE *fp);
Write a character Int putc(1nt ¢, FILE *fp);

int putchar(int c);
int fgetc(FILE *fp);

Read a character Int getc(FILE *fp);
I nt getchar(void),
Put back a character I nt ungetc(Iint c, FILE *fp);
Write 2 line ?nt fputs(const char *s, FILE *fp);
I nt puts(const char *s),
ead aline char *fgets(char *s, int n, FILE *fp);

char *gets(char *buffer);

For each of these input/output functions, there is also a corresponding function for wide-oriented access. The wide
functions are declared in the header file wchar.h(), Their names are formed with we (for wide character) in place of

C (for character), or withws (for wide string) in place of s (for string).

1.16.3.2 Block read and write functions

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Thefollowing file access functions can be used to read or write a block of characters:

sizet fwite (const void *buf , sizet sz, sizet n ,
FILE *fp);

Writes n objects of length sz from the buffer addressed by buf to thefile.

sizet fread (void *buffer , sizet sz, sizet n ,
FILE *fp);

Reads up to n objects of length sz from the file and copies them to the memory location pointed to by buf .

Both functions return the number of objects transferred. If the return value is less than the argument n, then an error
occurred, or f r ead() encountered the end of thefile.

1.16.3.3 Formatted output

Thepr i nt f functions provide formatted output:
int printf (const char *format , ... /*argl , ... , argn */);

Writes the format string pointed to by f or mat to the standard output stream, replacing conversion
specifications with values from the argument listar g1, ..., ar gn.

int fprintf (FILE *fp , const char *format , ...);
Likepri ntf (), butwritestheformat string f or nat to the file indicated by the file pointer f p.
Int vprintf (const char *format , va list arg);

Likepri ntf (), but with the variable argument list replaced by an object of typeva | | st that has been
initialized usingtheva st art macro.

int viprintf (FILE *fp , const char *format , va list arg);

Likef pri ntf (), butwith the variable argument list replaced by an object of typeva | | st that has
beeninitialized usingtheva st art macro.

All of thepr i nt f functions return the number of characters written, or EOF if an error occurred.
In the following example, the function pr i nt f () iscalled with one conversion specification:
printf("%10.2f", sin(1.2));

The resulting output displaysthe signed value of si n(1. 2) to two decimal places, right-justified in afield 10
spaces wide.

The general format of the conversion specifications used inthepr i nt f functionsis asfollows:

Wflags][field wdth][.precision]specifier

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Thef | ags consist of one or more of the characters+,"' ' (space), - , O, or #. Their meanings are:

+

The plus sign is prefixed to positive numbers.

(space)

A leading space Is prefixed to positive numbers.

The output isleft-justified in the field.
0

Thefiedisfilled with leading zeroes to the left of the number.
H

Alternate conversion rules are used as follows: If speci fi er isA®, al), E, e, G or g, floating-point
numbers are formatted with adecimal point. If speci f 1 er isX X, or 0, hexadecimal integers are
formatted with the OX or Ox prefix, and octal integers with the O prefix.

Thefi1 el d w dt h isapositive integer that fixes the length of the field occupied by the given conversion
specification in the output string. If the f | ags include a minus sign, the converted value appears |eft-justified in the

field; otherwise, it isright-justified. The excess field length is filled with space characters. If the output string is
longer than the field width, the field width is increased as necessary to print the string in its entirety.

An asterisk (*) may also be specified for the field width. In this case, the field width is determined by an additional
argument of type | nt , which immediately precedes the argument to be converted in the argument list.

. preci si on determines the number of decimal places printed in the output of floating-point numbers, when
speci fier isf ore.lfspecifier isg,. preci si on determinesthe number of significant digits.
Rounding is performed if necessary. For floating-point numbers, the default valuefor . preci si on is 6.

For integers, . pr ecl si on indicates the minimum number of digitsto be printed. Leading zeroes are prefixed as
necessary. For integers, the default valuefor . preci si onis 1.

If the argument to be converted isastring, then . pr eci si on indicates the maximum number of characters of the
string that should appear.

speci f 1 er istheconversion specifier, indicating how the given argument is to be interpreted and converted. Note
that speci f 1 er must correspond to the actual type of the argument to be converted. The possible conversion

specifiersarelisted in Table 1-24.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Table 1-24. Conversion specifiers for formatted output

Specifier| Argument types

e

e
e
e

d, | | nt

u unsi gned | nt
0 unsi gned | nt
X unsi gned I nt
X unsi gned 1 nt
f f1 oat/ doub
e, E float/doub
a, A |float/doub
g, G |float/doub
C char / 1nt
S string

N Nt *

P pointer

% none

Output format
Decimal
Decimal
Octal
Hexadecimal witha, b,c,d, e, f
Hexadecima with A, B, C, D, E, F
FH oating-point number, decimal
Exponential notation, decimal
Exponential notation, hexadecimal)
Floating-point or exponential notation, whichever is shorter

Single character

The string terminated by ' \ O' or truncated to the number of characters specified by
. preci si on.

ne number of characters printed up to this point is stored in the given location

ne corresponding address, hexadecimal
ne character %

Theletter | (that'san €ll) can be prefixed tothec or s conversion specifiersto indicate awide character or awide

string.

Theletters| orl |) can also be prefixed to the conversion specifiersd ,1 ,u, 0, x , and X to indicate an
argument of typel ong or | ong | ong®. Similarly, h or hh can be prefixed to the same conversion specifiers to
indicate an argument of typeshort orchar.

An argument of typel ong doubl e can be converted by using the prefix L with the conversion specifierf , e , E

,0,G,a,orA.

Furthermore, ANSI C99 has introduced the following extensions:

e Thenew conversion specifiers A and a can be used to print a number of type doubl e in hexadecimal
exponential notation (OXh. hhhhP+d or Oxh. hhhhpzd). Thisconversion uses FLOAT RADI X, which
IS generally defined as 2, as the base. If no precision is specified, the number is printed with as many
decimal places as necessary for exact representation.

e Argumentsof typei nt max_t () orui nt max _t) can be converted by prefixing the letter | tothe
conversion specifiersd, | , 0, U, X, or X, Similarly, the argument typesi ze t isindicated by the prefix z,
andthetypept rdi ff t by theprefixt .

e For theinteger types defined in the header file stdint.n®) (suchasi nt 16 t andi nt | east 32 _t),
there are separate conversion specifiersfor useinpri nt f () format strings. These conversion specifiers

are defined as macros in the header filei nt t ypes. h(®). The macro names for the conversion specifiers
correspondingtod, | , 0, X, and X begin with the prefixes PRI d, PRI | , PRI o, PRI u, PRI x, and PRI X.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

For example, the macro names beginning with PRI d are:

PRI dN PRI dLEASTN PRI dFASTN PRI dVMAX PRI dPTR
where Nisthewidth in bits (usually 8, 16, 32, or 64). For example:

Intmax_t 1 = | NTMAX_NAX;
printf("Largest iInteger value: %0" PRIdMAX "\n",I);

1.16.3.4 Formatted input

Thescanf () input functions are the counterpartstothepri nt f () formatted output functions. They are used to
read file input under control of aformat string and convert the information for assignment to variables.

I nt scanf (const char *format , ... /*argl , ... , argn */);

Reads characters from standard input and saves the converted values in the variables addressed by the pointer
argumentsar gl, ..., ar gn. The characters read are converted according to the conversion specifications

in the format string f or mat .
int fscanf (FILE *fp , const char *format , ...);
Likescanf (), but reads from the file specified by f p rather than standard input.
Int vfscanf (FILE *fp , const char *format , va list arg);

Likef scanf () , but with the variable argument list replaced by an object (ar g) of typeva | | st that

has been initialized usingtheva_ st art macro. See "Functions with Variable Numbers of Arguments®
earlier inthisbook for informationonva | 1 st andva start.

I nt vscanf (const char *format , va list arg);

Likescanf (), but with the variable argument list replaced by an object (ar g) of typeva | 1 st that has
been initialized usingtheva st art macro. See"Functions with Variable Numbers of Arguments* earlier
in thisbook for infformationonva |1 st andva start.

All of thescanf functions return the number of successfully converted input fields. The return value is EOF if the
first input field could not be read or converted, or if the end of the input file was reached.

The general format of the conversion specifications used inthescanf functionsis asfollows:
Wfield wdth]specifier
For example:

scanf("%bd", &var); [/ var has type I nt

For each conversion specification in the format string, the next input item Is read, converted, and assigned to the
variable pointed to by the corresponding argument. Input fields are separated by whitespace characters (space, tab,
and newline characters).

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

f1eld w dth indicatesthe maximum number of characters to be read and converted. The next input field begins
with the first character not yet processed.

speci f I er corresponds to the conversion specifiersin output format strings, except for the following differences:

e 9 isusedtoread decimal, octal, and hexadecimal integers. The base is determined by the number's prefix,
as for constants in source code.

e 06 convertsinput for assignment to avariable of typef | oat , and % f to avariable of typedoubl e.

e J€ readsthe next character, which may also be a space. All other conversion specifiers read the next input
Item, skipping over any spaces that precede It.

e U6 readsastring and appends the string terminator character ' \ O' . The conversion specifier for astring, S,

may be replaced by a sequence of charactersin square brackets, called the scanlist. In this case, each
character read must match one of these characters. For example, use % 1234567890] toread only digits.

Thefirst character that does not match any of the characters in the scanlist terminates the input item. If the
scanlist beginswith acaret (), then the input item is terminated by the first character in the input stream that

does match one of the other characters in the scanlist. A hyphen can be used to indicate a sequence of
consecutive search characters. For example, the scanlist [a- f | isequivalent to[abcdef | .

If a conversion specification contains an asterisk (*) after the percent sign (%9, then the input item is read as specified,
but not assigned to avariable. In effect, that input field is skipped. Such a conversion specification corresponds to no
variable argument.

Any character that cannot be interpreted according to the conversion specification terminates the current input field,
and is put back into the input buffer. This character is then the first one read for the next input item.

The format string can also contain other characters that do not form part of a conversion specification and are not
whitespace. Thescanf functions expect such charactersto be matched in the input stream, but do not convert or

save them. If non-matching characters occur in the input, the function stops reading from the file. However, a

whitespace character in the format string matches any sequence of whitespace characters in the input. For example, if
theformat string " %¢" isused to read an individual character, any leading whitespace is skipped.

Asfor printf (), ANSI C99 defines separate conversion specifiers for reading fixed-width integer variables, such
asi nt | east 32 _t . The corresponding macro names, defined in the header file inttypes.h(®), have the prefix SCN
(for "scan") rather than PRI (for "print").

The header file wchar.h(") contains the declarations of wpr i nt f () ,wscanf (), and related functions. These

functions provide input and output controlled by awide format string. The conversion specifications and their
interpretation are identical to thoseof thepri nt f () andscanf () functions.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.17 Numerical Limits and Number Classification

When working with C's various numeric types, it's important to understand the range of values that each type can
hold.

1.17.1 Value Ranges of Integer Types

The value ranges of the integer types are documented in the header file limits.h. The constants, listed in Table 1-25,
Indicate the largest and smallest values that can be represented by the given type.

Table 1-25. Limits of the integer types

Type Minimum Maximum Maximum of the unsigned type
char CHAR_M N CHAR_MAX UCHAR_MAX
si gned char SCHAR M N |SCHAR MAX
short SHRT_M N SHRT_MAX USHRT_MAX
| nt NT_M N NT_MAX Ul NT_MAX
| ong _ONG M N _ONG_MAX ULONG MAX
l ong 1 ong{™) [LLONG M NU7) |LLONG_MAXU™) JULLONG_MAX(™)

If char isinterpreted as signed, then CHAR M Nisequa to SCHAR M Nand CHAR MAX isequal to
SCHAR NMAX. If not, then CHAR M Nisequal to O and CHAR NMAX isequa to UCHAR NAX.

In addition to the constants listed in Table 1-25, [imits.h also contains the following:

CHAR BIT
The number of bitsin abyte (usually 8)
MB LEN MAX
The maximum number of bytes in a multibyte character
In the header file stdint.h(®), constants are also defined to document the minimum and maximum values of the types
wchar t,wnt t,size t,ptrdiff t,andsi g atom c t,and of the fixed-width integer types, such

asi nt | east 32 t . The names of these constants are formed from the type names as follows: the type name is
written all in capital letters, and the suffix t isreplacedby M Nor MAX. For example:

WCHAR M N [/ M nimum val ue of wchar t
| NT _LEAST32 MAX // Maximum val ue of Iint | east32 t

For theunsi gned typesonly the. . . MAX constants are defined.

1.17.2 Range and Precision of Real Floating Types

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Themacros listed in Table 1-26 are defined in the header file float.h to represent the range and the precision of the
typesf | oat ,doubl e,and| ong doubl e. The macro names are formed using the prefixes FLT forf | oat ,

DBL fordoubl e, and LDBL forl ong doubl e. Themacros FLT RADI X and FLT ROUNDS apply to all
three floating types.

Table 1-26. Macros for floating types in float.h

Macro name Purpose
FLT RADI X Base (or radix) of the exponential notation
Indicates how rounding is performed on values that cannot be represented exactly:

- 1 = undetermined

0 =towards zero,
FLT ROUNDS

1 =towards the nearest representable value
2 = upwards

3 = downwards
-LT MANT DI G
DBL MANT DI G ' The number of digitsinthe mantissato base FLT RADI X
_DBL _ MANT DI C

FLT M N EXP

DBL. M N _EXP Minimum value of the exponent to base FL T RADI X
_DBL M N _EXP

-LT MAX EXP

DBL MAX EXP ' Maximum value of the exponent to base FL T RADI X
_DBL MAX EXP

The macros listed in Table 1-26 document the range and precision of all real floating types. In actual programs, such

Information is most often needed for decimal (base 10) notation. Accordingly, you can use the macros for type
f 1 oat listed Table1-27, and which are defined in float.h.

Table 1-27. Limits for the type float

Macro name Purpose
LT DI G Precision as a number of decimal digits
L T_M N_10_EXP Minimum negative exponent to base 10

L T_MAX T 10_EXP Maximum positive exponent to base 10

FLT M N Minimum representabl e positive floating-point number
FLT MAX Maximum representabl e floating-point number
FLT EPSI LON Minimum positive representabl e floating-point number X suchthat 1.0+ x '= 1.0

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Similar constants are also defined for thetypes doubl e and| ong doubl e. These have names beginning with
DBL or LDBL inplaceof FLT.

ANSI C99 also introduces the macro DECI MAL DI G, which indicates the precision of the largest floating type as a
number of decimal digits.

1.17.3 Classification of Floating-Point Numbers

ANSI C99 defines five categories of floating-point numbers, listed in Table1-28. A symbolic constant for each
category is defined in the header file math.h.

Table 1-28. Floating-point categories

Macro name Category
-P_ZERO Floating-point numbers with the value 0
-P_ NORNVAL Floating-point numbers in normalized representation
~P_ SUBNORMVAL L

111 Tiny numbers may be represented in subnormal Floating-point numbers In subnormal representation

notation.
FP I NFI NI TE Floating-point numbers that represent an infinite value
EP NAN Not a Number (NAN): bit patterns that do not represent avalid

floating-point number

[1] Tiny numbers may be represented in subnormal notation.

The macrosin Table1-29 can be used to classify areal floating-point number X with respect to the categoriesin Table
1-28 without causing an error condition.

Table 1-29. Macros for floating-point number classification

Macro Result

Returns one of the constants described in Table 1-28 to indicate the category to which x
nelongs.

Returns "true” (i. e., avalue other than 0) if the value of x isfinite (O, normal, subnormal, not
infinite, or NAN), otherwise O.

| si nf (x) Returns "true" if X isan infinity, otherwiseO.

f pcl assi fy(x)

| sfinite(Xx)

Returns "true" if the value of X isanormalized floating-point number not equal to 0. Returns O
In all other cases.

| snan(x) Returns "true” if X is"not a number" (NaN), otherwise O.
si gnbi t (x) Returns "true” if X isnegative (i. e., if the sign bit is set), otherwise O

| snor mal (X)

The following constants are also defined in math.h:

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

| NFI NI TY

The maximum positive value of typef | oat , used to represent infinity.
NAN (Not a Number)

A vaueof typef | oat whichisnot avalid floating-point number.

NANSs can be either quiet or signaling. If asignaling NAN occurs in the evaluation of an arithmetic expression, the
exception status flag FE | NVALI D in the floating point environment is set. Thisflag is not set when a quiet NAN

OCCUrs.

C implementations are not required to support the concept of NANs. If NANSs are not supported, the constant NAN is
not defined.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.18 Mathematical Functions

C supports avariety of useful mathematical functions. Different functions apply to different datatypes. For example,
randomization functions apply to integers, whereas trigonometric functions apply to floating-point values.

1.18.1 Mathematical Functions for Integer Types

The mathematical functionsfor thetypesi nt and| ong aredeclared in stdlib.h .
Int rand(void);

Generates a random number between 0 and RAND MAX . The constant RAND NMAX has avalue of at |east
32767, or 215 - 1.

void srand (unsigned n);

Initializes the random number generator with the seed n . After this function has been called, calls to
rand() generateanew sequence of random numbers.

Int abs (Int x);
Returns the absolute value of X .
divt div (int x, inty);

Dividesx byy and storestheinteger part of the quotient and the remainder in a structure of typedi v_t
whose membersquot (the quotient) and r em (the remainder) havetypel nt . Thetypedi v _t is
defined in stdlib.h .

The corresponding (toabs() anddi v())functions| abs() ,Ilabs() O, 1div() ©,andl di v()
are also provided for integers of typel ong | ong(*) . Furthermore, the functionsi maxabs()) and
| maxdi v() O aredefined for thetypei nt max _t () . Thesefunctions are declared in inttypes.h () .

1.18.2 Mathematical Functions for Real Floating Types

The mathematical functions declared in math.h were originally defined only fordoubl e values, with return values
and parameters of typedoubl e . These functions are shown in Table1-30 .

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Table 1-30. The traditional mathematical functions for double values

M athematical function C function
Trigonometric functions:

e Sine, cosine, tangent sin(), cos(), tan()
asin(), acos()
e Arcsine, arccosine atan(), atan2()

e Arctangent

Hyperbolic functions sinh(), cosh(), tanh()
Powers, square root powm), sqrt(),

Exponentia functions exp(), frexp(), |dexp()
Logarithms |l og(), |10gl0()

Next integer ceil (), floor()

Absolute value fabs()

Remainder (modular division) f nod()

Separation of integer and fractional parts nodf ()

ANSI C99 introduces new versions of the functionslisted in Table1-30 for thetypesf | oat and| ong doubl e
. The names of these functionsend withf or | ; for example:

doubl e cos(double x);
float cosf(float x);
| ong doubl e cosl(| ong double x);

New standard mathematical functions for real numbers have also been added in math.h , aslisted in Table 1-31 .
These functions also have versionsfor f | oat and| ong doubl e , withnamesendinginf and |

Table 1-31. New mathematical functions for double values in ANSI C99

M athematical

| C function
function
Trigonometric .
functions asi nh(), acosh(), atanh()
Exponential
functions exp2(), expmnil()
Logarithms |1 1 ogb(), logb(), loglp(), [0g2()
ROOtS cbrt (), hypot ()

Remainder remai nder (), renquo()

Positive :
fdi n
difference)

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

I\/Iini_mumand frin(), frmax()
maximum
Rounding trunc(), rint(), lrint(), llrint(), round(), Iround(), Ilround()

Next number nearbyint(), nextafter(), nexttoward()
Copy sign copysi gn()

Optimized o bn(), scalbln(), fm()
operations

Gamma

function tgama(). |gamm()

Error

functions ert(), erte()

Macros for comparing floating-point numbers are also defined in math.h and are listed in Table 1-32 . Unlike the
comparative operators, these macros do not raisethe FE | NVALI D exception when the arguments cannot be

compared, as when one of them isa NAN , for example.

Table 1-32. Macros for comparing floating-point numbers

Macro Compar ative expression
i sgreater(x, y) (x) > (y)
| sgreaterequal (X, y) (X)) >= (y)
isless(X, y) (x) < (y)

i sl essequal (x, y) (X) <= (y)

| slessgreater(x, v) [(X) < (y) || (x) > (y)
| sunordered(X, Vy) 1 if X andy cannot be compared, otherwise O

1.18.3 Optimizing Runtime Efficiency

ANSI C99 has introduced features to optimize the efficiency of floating-point operations.

Thetypesf | oat t anddoubl e t , definedin math.h, represent the types used internally in floating-point

arithmetic. When these types are used in a program, no conversions are necessary before arithmetic operations are
performed. Themacro FLT EVAL NMETHOD indicates what the equivalent basic types are, and returns one of the

values described in Table1-33 .

Table 1-33. Interpretation of float_t and double t

FLT EVAL METHOD Typerepresented by float_t Typerepresented by double t
0 fl oat doubl e

1 doubl e doubl e

2 | ong doubl e | ong doubl e

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

CPUs may have special machine instructions to perform standard arithmetic operations quickly. Rounding and error
conditions may also be ignored. Optimizations of these kinds can be enabled by the pragma FP_ CONTRACT . For

example:
#pragma STDC FP_CONTRACT ON
The same pragma with the switch OFF rather than ON disables such optimizations.

Furthermore, the macro FP_FAST FMNMA isdefined if the "floating-point multiply-add” functionf ma(x, vy, z

) ,whichreturnsx*y+z ,isimplemented as a specia instruction, and is thus faster than separate multiplication and
addition operations. The macros FP_FAST FMAF and FP_FAST FMAL are analogous indicators for the
functionsf maf () andfral () .

1.18.4 Mathematical Functions for Complex Floating Types

Functions and macros for complex numbers are declared in the header file complex.h (*). The functions shown in
Table1-34 have one parameter and return avalue of typedoubl e conpl ex .

Table 1-34. Mathematical functions for the type double complex
Mathematical function C function
Trigonometric functions:

e Sine, cosing, csin(), ccos(), ctan()

tangent casi n(), cacos()

e Arcsine, arccosine catan()

e Arctangent
Hyperbolic functions csinh(), ccosh(), ctanh(), casinh(), cacosh(), catanh()
Powers, square root cpow(), csqgrt()
Exponential function cexp()
L ogarithm cl og()
Complex conjugate conj ()

The functions shown in Table 1-35 have one parameter of type doubl e conpl ex and return avalue of type
doubl e .

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Table 1-35. Complex functions with type double

Mathematical function C function
Absolute value cabs()
Argument (phase angle) carg()
Real and imaginary parts creal (), cinmag()
Projection onto the Riemann sphere cproj ()

These functions also have versionsfor f | oat conpl ex and| ong doubl e conpl ex , with names ending
inf and|

Table 1-36 shows macros that are defined for complex types.

Table 1-36. Macros for complex types

Macro Replacement value
compl ex _Conpl ex
S o : . _
_Conpl ex | The imaginary unit, 1. e., the number | such that | 1 ,withtypeconst fl oat
_Compl ex
| magi nary I magi nary

I magi nary_| Theimaginary unit, withtypeconst fl oat | nmagi nary

| _I'magi nary | if thecompiler supportsthetype | magi nary , otherwise
Compl ex|

Arithmetic operations with complex numbers can be accelerated in cases when no overflow or underflow can occur.
The programmer can signal such "safe" operations using the pragma:

#pragma STDC CX LIM TED RANGE ON

The default setting is OFF.
1.18.5 Type-Generic Macros

Thetype-generic macros defined in header file tgmath.h are unified names that can be used to call the different
mathematical functions for specific real and complex floating types.

If agiven function isdefined for real or for both real and complex floating types, then the type-generic macro nameis
the same as the name of the function version with typedoubl e . (Thereal function nodf () isan exception,

however, for which there is no type-generic macro.)

The type-generic macros always call the function that matches the type of the arguments. For example:

complex z = 1.0 + 2. 1*1;

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

cos(z); [/ Calls ccos()
ceil(7.1L); [] Calls ceill()

Type-generic macros are also defined for the complex functions for which there are no corresponding real functions:
carg() ,conj() ,creal () ,cimag() ,andcproj () .Thesemacrosawayscall the corresponding

complex function, if the argument is a real floating-point number or a complex number.
1.18.6 Error Handling for Mathematical Functions

Error conditions are customarily detected by examining the return value of a function and/or the global error variable
errno . Thevariableer r no isdeclared with typei nt inthe header file errno.h .

If afunction is passed an argument that is outside the domain for which the function is defined, a"domain error*
occurs, and er r no isassigned the value of the macro EDOM . Similarly, if the result of a function cannot be

represented by the type of the function's return value, then a"range error” occurs, and er r no isassigned the value
ERANCE . In the case of an overflow-that is, if the magnitude of the result is too great for the specified type-the
function returns the value of the macro HUGE VAL , with the appropriate sign. In case of an underflow-i. e, the
magnitude of the result is too small-the function returns O .

In addition to HUGE VAL (with typedoubl e), ANSI C99 aso provides the macros HUGE VALF (typef | oat
)y and HUGE VALL (typel ong doubl e), which are returned by functions of the corresponding types.

Furthermore, ANSI C99 introduces the macros FP_ | LOGB0 and FP | LOGBNAN . Thefunctioni | ogb(x)
returns FP_| LOGBO0 if X isequa to O . If X is"not anumber” (NaN), 1 | ogb(X) returnsthe value of
FP | LOGBNAN .

1.18.7 The Floating-Point Environment

ANSI C99 has introduced the floating-point environment to permit more detailed representation of error conditionsin
floating-point arithmetic. All of the declarations for the floating-point environment are contained in the header file
fenv.h (*). The floating-point environment contains two system variables. one for thestatus flags, which are used in
handling floating-point exceptions , and one for the control modes , which determine certain behaviors of floating-
point arithmetic, such as the rounding method used.

For every exception possible in an implementation that supports floating-point exceptions, an appropriate status flag is
defined, as described in Table 1-37 .

Table 1-37. Macros for floating-point exceptions in fenv.h)

Macro Error condition
—~E_DI VBYZERC| Division by 0
—~E_| NEXACT Theresult of the operation is not exact

-E_| NVALI D Theresult is undefined, e.g., avaue was outside the domain for which the function is defined
FE_OVERFLOW A floating-point overflow occurred
FE UNDERFLOW AN underflow occurred

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Several of these constants can be combined by abitwise OR (|). Themacro FE _ALL EXCEPT isequal to the
bitwise CR of all of the floating-point exception constants implemented. The system variable for the floating-point
exception status hasthetypef except t

The following functions are used to handle floating-point exceptions. With the exception of f et est except () ,

each function returns O to indicate success, or avalue other than O In case of errors. The excepts argument indicates
which of the exceptions listed in Table 1-37 are affected.

I nt fetestexcept (I nt excepts);

Tests which of the specified floating-point exceptions are set. Bits are set in the return value to correspond to
the exceptions that are currently set.

I nt feclearexcept (I nt excepts);

Clears the specified floating-point exceptions.

I nt feral seexcept (1 nt excepts);
Raises the specified floating-point exceptions.

I nt fegetexceptflag (fexcept t *flagp , I nt excepts);
Saves the status of the specified exceptionsin the object referenced by f | agp .

I nt fesetexceptflag (const fexcept t *flagp ,
| Nt excepts);

Sets the exception status according to the flags previously saved (by f eget except fl ag())inthe
object referenced by f | agp .

The control mode determines certain properties of floating-point arithmetic, including the rounding method used. The
symbolic constants described in Table 1-38 are defined for this purpose.

Table 1-38. Controlling rounding behavior

Macro Rounding direction
FE DOMWARD Round down to the next lower value.
FE_TONEAREST Round to the nearest value.
FE TOMNMRDZERC Truncate.

FE UPWARD Round up to the next higher value.

The current rounding direction can be read and changed using the functions | nt f eget round() andi nt
fesetround(int round) .

The following functions manipul ate the floating-point environment as asingle entity. Thetypef env _t represents
the entire floating-point environment.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

int fegetenv (fenv_t *envp);

Saves the current floating-point environment in the object referenced by envp .
Int fesetenv (const fenv_t *envp);

Establishes the floating-point environment referenced by envp .
| nt fehol dexcept (fenv_t *envp);

Saves the current floating-point environment in the object referenced by envp , then clears the status flags
and installs a non-stop mode , so that processing continues in case of further floating-point exceptions.

| nt feupdateenv (const fenv_t *envp);

Establishes the floating-point environment referenced by envp , and then raises the exceptions that were set
In the saved environment.

Themacro FE DFL ENV isapointer to the floating-point environment that isinstalled at program start-up, and can
be used as an argument in the functionsf eset env() andf eupdat eenv() .

The floating-point environment need not be active in an implementation that supportsit. It can be activated by the
pragma:

#pragma STDC FENV_ACCESS ON
and deactivated by the same pragmawith the switch OFF .

Themacro mat h_er r handl i ng , defined in math.h , can be used to determine whether the program useser r no
and/or the floating-point environment:

e Iftheexpressionmat h errhandl i ng & MATH ERRNO isnot O ,thentheerror variableer r no is
used.

e Iftheexpressonmat h _errhandl i ng & MATH ERREXCEPT isnot O , then floating-point errors
raise the exceptions defined in fenv.h .

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.19 Character Classification and Case Mapping

A number of functions for classifying and changing the case of characterswith typechar are defined in the header
file ctype.h. These functions, whose names beginwithi s. .. ort 0. .., accept aone-character argument whose
value is between 0 and 255, or ECF.

Thel s. .. functions, listed in Table 1-39, test whether the character is amember of a specific category of
characters. They return "true," i.e., anon-zero value, if the character isin the given category. If not, the return value

IS O, or "false.”

Table 1-39. Functions for character classification

Category Function

| etter Int 1salpha(int c);
L ower-case | etter Int islower(Iint c);
Upper-case letter I nt 1 supper(int c);
Decimal digit Int 1sdigit(int c);
Hexadecimal digit Int 1sxdigit(int c);
_etter or decimal digit int isalnum(int c);
Printable character Int isprint(int c),
Printable character other than space ' Int 1sgraph(int c);
Whitespace character Int I sspace(int c);
Punctuation mark Int 1spunct(int c);
Control character int iscntrl(int ¢);
Space or horizontal tabulator int isblank(int ¢);(7)

The following example reads a character and then tests to see whether it isa digit:

Int ¢ = getchar(); // Read a character
1f (isdigit(¢c)) ...// Is it adecimal digit?

Thet 0... functions are used to convert characters from upper- to lower-case and vice versa, as shown in Table 1-40.

Table 1-40. Case mapping functions

Conversion Function
Upper- to lower-case int tolower(Int c);
L ower- to upper-case Il nt toupper(Iint c);

The corresponding functions for wide characters, with typewchar t , are declared in the header file wctype.h(®.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Their names are similar to those in Table 1-39 and Table 1-40, but start with1 sw... and t ow.... These functions
expect one character argument of typew nt t whose valueisbetween 0 and 32767, or WEOF.

For wide characters there are also the extensible classification and mapping functions, | swct ype() and
t owct r ans() . These functions provide flexible, local e-specific testing and mapping of wide characters. Before

one of these functions is used, the desired test criterion or mapping information must be registered by a call to
wet ype() orwtrans():

| swetype(we, wetype("lower"));
towtrans(wc, wetrans("upper"));

These callsare equivalent tol sw ower (wc) ; andt owupper (we) ; . Thefunctionwet ype() returnsavalue
of typewct ype t,andwct rans() hasareturnvalueof typewct rans t.

Single-byte characters of type unsi gned char can be converted to thetypewchar t using the function
bt owc(), whichisdeclared in wchar.h("). The opposite conversion is performed by the functionwct ob() . If the
character cannot be converted, these functions return EOF or VEOF.

All of these functions take language-specific particularities of the current locale into account (see the later section
Section 1.26).

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.20 String Handling

Thereisno basic typefor stringsin C. A string is simply a sequence of characters ending with the string terminator,
storedinachar array. A string is represented by achar pointer that points to the first character in the string.

The customary functions for manipulating strings are declared in string.h. Those functions that modify a string return
a pointer to the modified string. The functions used to search for a character or a substring return a pointer to the
occurrence found, or anull pointer if the search was unsuccessful.

char *strcat (char *sl , const char *s2);

Appendsthe string s2 totheend of s1. Thefirst character copied from s 2 replaces the string terminator
character of s 1.

char *strchr (const char *s , Iint ¢);
L ocates the first occurrence of the character ¢ inthe string s.
Int strcnp (const char *sl1 , const char *s2);

Comparesthe stringss 1 and s 2, and returns avalue that is greater than, equal to, or lessthan O toindicate
whether s 1 isgreater than, equal to, or lessthan s 2. A string is greater than another if the first character

code in it which differs from the corresponding character code in the other string is greater than that character
code.

Int strcoll (const char *sl1l , const char *s2);

Transforms an internal copy of the stringss 1 and s 2 using the functionst r xf r n() , then compares them
using st r cnp() and returns the result.

char *strcpy (char *s1 , const char *s2);

Copiess2 tothechar array referenced by s1. Thisarray must be large enough to contain S 2 includingits
string terminator character ' \ 0" .

Int strcspn (const char *sl1 , const char *s2);

Determines the length of the maximum initial substring of S1 that contains none of the characters found in
S2.

size t strlen (const char *s);

Returns the length of the string addressed by s. The length of the string isthe number of characters it
contains, excluding the string terminator character ' \ 0" .

char *strncat (char *sl1 , const char *s2 , sizet n);

Appendsthefirst n charactersof s2 (and the string terminator character) tos 1.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Int strncnp (const char *sl1 , const char *s2 , sizet n);
Comparesthefirst n characters of the stringss1 and s 2. Thereturn value isthe sameasfor st r cnp() .
char *strncpy (char *s1 , const char *s2 , size t n);

Copiesthefirst n characters of s2 to the char array s1. The string terminator character ' \ 0" isnot
appended.

char *strpbrk (const char *s1 , const char *s2);
L ocates the first occurrencein s 1 of any of the characters contained ins?2.
char *strrchr (const char *s , Iint ¢);

L ocates the last occurrence of the character € inthe string S. The string terminator character ' \ 0" is
Included in the search.

I nt strspn (const char *sl1 , const char *s2);

Determines the length of the maximum initial substring of S1 that consists only of characters contained in
S2.

char *strstr (const char *sl1 , const char *s2);

L ocates the first occurrence of s2 (without theterminating' \ 0")ins1.
char *strtok (char *sl1l , const char *s2);

Breaksthe string in s 1 into the substrings ("tokens') delimited by any of the characters contained ins?2.
size t strxfrm(char *sl1l , const char *s2 , sizet n);

Performs a locale-specific transformation (such as a case conversion) of s2 and copies the result to the
char array with lengthn that isreferenced by s 1.

Similar functions for wide-character strings, declared in the header file wchar.h(*) , have names beginning with
WCS inplaceof str.

1.20.1 Conversion Between Strings and Numbers

A variety of functions are declared in the header file stdlib.h to obtain numerical interpretations of the initial digit
charactersin astring. The resulting number is the return value of the function.

int atoi (const char *s);

Interprets the contents of the string s as a number with typel nt . The analogous functions at ol (),

atol I ()®,andat of () areused to convert astring into a number with typel ong, | ong | ong®, or
doubl e.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

double strtod (const char *s , char **pptr),

Serves asimilar purpose to that of at of () , but takesthe address of achar pointer as a second argument.
If thechar pointer referenced by ppt r isnot NULL, it isset to the first character in the string s

(excluding any leading whitespace) that is not part of the substring representing a floating-point number.

The corresponding functions for conversionto thetypesf | oat andl ong doubl e arestrt of ()
andstrtol d()®.

|l ong strtol (const char *s , char **pptr , Int base);

Converts a string to a number with typel ong. The third parameter is the base of the numeral string, and
may be an integer between 2 and 36, or 0. If base is0, thestring s isinterpreted as anumeral in base 8,

16, or 10, depending on whether it begins with O, 0x, or one of the digits 1 to 9.

The analogous functions for converting astringtounsi gned | ong, | ong | ong® orunsi gned
long |l ong® arestrtoul ()®,strtoll ()®,andstrtoul | (),

The header fileinttypes.h(") also declaresthe functionsst rt oi max() andst rt ounax() , which convert the
initial digitsin astring to an integer of typel nt max _t orui nt nax t.

Similar functions for wide-character strings are declared in the header file wchar.h(®). Their names begin withwe's in
placeof st r.

The following function fromthe pr 1 nt f family is used to convert numeric values into a formatted numeral string:
Int sprintf (char *s ,const char *format ,.../*al ,...,an */);

Copiesthe format string f or mat tothechar array referenced by s, with the conversion specifications
replaced using the valuesintheargument list al, . . ., an.

Numerical values can aso be read from a string based on aformat string:

I nt sscanf (char *s ,const char *format ,.../*al ,...,an */);

Reads and converts datafrom s, and copies the resulting values to the locations addressed by the argument
listal, ..., an.

Thefunctionsvsprintf () andvsscanf () aresmilartospri ntf () andsscanf (), but with the variable
argument list replaced by an object of typeva | 1 st that hasbeeninitialized usingtheva st art macro(see
Section 1.11.4 earlier in this book). The functionssnpri ntf () andvsnprintf () writeamaximum of n

characters, including the string terminator character, to the array referenced by s. These functions return the number
of characters actually written to the array, not counting the string terminator character.

The corresponding formatted string input/output functions for wide-character strings are declared in wchar.h®). Their
names begin with sw (for "string, wide") in place of the initial s (for "string") in the names of the functions described

above for char strings. For example, swpr i nt f () .

1.20.2 Multibyte Character Conversion

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

A multibyte character may occupy more than one byte in memory. The maximum number of bytes that can be used to
represent a multibyte character is the value of the macro VB CUR _MAX, which is defined in stdlib.h. Itsvalueis

dependent on the current locale. In the default locale"C", VB CUR_MAX hasthe value 1.

Every multibyte character corresponds to exactly one character of typewchar t . The functionsfor multibyte
character conversion are declared in the header file stdlib.h.

Int nblen (const char *s , size t max);

Determines the length of the multibyte character pointed to by S. The maximum length of the character is
specified by max. Accordingly, max must not exceed VB CUR NMAX.

size t wtonb (char *s , wchar t w);

Converts the wide character wc into the multibyte representation, and writes the corresponding multibyte
character in the array addressed by s.

size t wstonbs (char *s , const wchar t *p , sizet n);

Convertsthe first n wide characters referenced by p into multibyte characters, and copies the results to the
char array addressed by s.

size.t nbtowc (whar t *p , const char *s , size t max),

Determines the wide character code corresponding to the multibyte character in S, whose maximum length is
specified by nax, and copiestheresult tothewchar t variable referenced by p.

size t nbstows (wchar t *p , const char *s , sizet n);

Convertsthe first n multibyte characters of S into the wide characters and copies the result to the array
addressed by S.

Similar functions with an additional r in their names (for restartable) are also declared in wchar.h(). The restartable
functions have an additional parameter, a pointer to thetype nost at e t , that must point to an object describing the
current wide/multibyte character conversion state. Furthermore, the function nosi ni t () (*) can be used to test

whether the current conversion state is an initial conversion state.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.21 Searching and Sorting

The following two functions are declared in the header file stdlib.h as general utilities for searching and sorting:

vold gsort (void *a , sizet n, size t size ,
I nt (*conpare)(const void *,const void *));

Sortsthe array a using the quick-sort algorithm. The array is assumed to have n elementswhose sizeis
S| ze.

voi d *bsearch (const void *key , const void *a ,
sizet n, sizet size , Int
(*conpare)(const void*, const void*));

Searches in asorted array a for the keyword addressed by key, using the binary search algorithm. The array
a isassumed to haven array elementswhose sizeissi ze.

The last parameter to these functions, conpar e, isapointer to afunction that compares two elements of the array

a. Usually this function must be defined by you, the programmer. Its parameters are two pointers to the array
elements to be compared. The function must return a value that is less than, equal to, or greater than O toindicate
whether the first element isless than, equal to, or greater than the second. To search or sort an array of f | oat

values, for example, the following comparison function could be specified:

Int floatcnp(const void* pl, const void* p2)
{ float x = *(float *)pl,
y = *(float *)p2;
return x <=y ?(x<y?-1:0 : 1;

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.22 Memory Block Management

The following functions declared in string.h are used to compare, search, or initialize memory buffers:
voild *nmenchr (const void *buf , Int ¢, sizet n);

Searches thefirst n bytes of the buffer buf for the first occurrence of the character C.
voild *nencnp (const void *sl1l , const void *s2 , sizet n);

Comparesthefirst n bytesin the buffer s1 with the corresponding bytesin the buffer s2. Thereturn valueis
less than, equal to, or greater than O to indicate whether s 1 islessthan, equal to, or greater thans?2.

void *nmencpy (void *dest , const void *src , sizet n);
Copies n bytes from the buffer sr ¢ to the buffer dest .
void *memmove (void *dest , const void *src , sizet n);

Copies n bytes from the buffer sr ¢ to the buffer dest . In case the buffers overlap, every character is read
before another character is written to the same location.

void *nmenset (void *dest , int ¢, sizet n);
Fillsthefirst n bytes of the buffer dest with the character C.

The corresponding wnem . . functions, for handling buffers of wide characters with typewchar t , are declared
in the header file wchar.h(®),

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.23 Dynamic Memory Management

In order to make efficient use of memory, it isimportant for a program to be able to allocate and rel ease blocks of
memory dynamically during execution. The functions for dynamic memory management are declared in the header
file stdlib.h.

A successful call to one of the memory allocation functions returns the beginning address of a memory block of the
requested size. The return value has the type "pointer to voi d". The program can then use the alocated block in any

way desired. When a block of memory is no longer needed, it should be released. All dynamically allocated memory
blocks are automatically released when the program exits.

void *malloc (size t size);
Allocates amemory block of Si ze bytes.
void *calloc (sizet n, size t size);

Allocates enough memory to hold an array of n elements, each of which hasthesizesi ze, and initializes
every byte with the valueO.

void *realloc (void *ptr , sizet n);

Changes the length of the memory block referenced by pt r to the new length n. If the memory block hasto

be moved in order to provide the new size, then its current contents are automatically copied to the new
location.

void free (void *ptr);
Releases the memory block referenced by pt r .
The following example uses mal | oc to allocate space for an array of 1000 integers.

/] Get space for 1000 1 nt val ues:
Int *1Arr = (int*)malloc(1000 * sizeof(Int));

These functions can be called as often as necessary, and in any order. The pointer argument passedtor eal | oc()
and f r ee() must refer to amemory block that has been dynamically allocated, of course.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.24 Time and Date

The ANSI C library includes a set of functions to determine the current time and date, to convert time and date
Information, and to generate formatted time and date strings for output. These functions are declared in the header file
time.h.

The principal functions for determining the current time are:

clock t clock(void);

Returns the CPU time used by the program so far, withtype cl ock t (usually equivalent tol ong). The
result can be converted to seconds by dividing it by the constant CLOCKS PER SEC.

tinme t time (tine t *pSec);

Returns the number of seconds that have elapsed since a certain time (usually January 1, 1970, 00:00:00
o'clock). If the pointer pSec isnot NULL, theresult is also copied to the location it addresses. The type

tine t isgeneraly defined asl ong.
The functions for converting and formatting date and time information are:
double difftine (tinmet t1 , tinet tO0);
Returns the number of secondsbetweent O andt 1.
struct tm*gntinme (const tine t *pSec);

Returns a pointer to the current Greenwich Mean Time as astructure of type st r uct t m with members of
typel nt for the second, minute, hour, day, etc.

struct tm*localtinme (const tine t *pSec);
Likegnt | me(), but returns the local time rather than Greenwich Mean Time.

char *ctinme (const tine t *pSec);
char *asctinme (const struct tm*ptm);
size t strftine (char *dest , size t naxsize ,
const char *format , const struct tm*ptm);

These functions generate a string representing the local dateand time. st rf t | me() accepts aformat
string to control the output format.

Thefunctionwesft i me() isaversionof strfti nme() forwide-character strings, and is declared in the header
filewchar.h(*).

Figure 1-6 illustrates the uses of the time and date functions.

Figure 1-6. Usage of time and date functions

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

clock() - ‘ CPU time used |
time()

— localtime()
Arithmetic type gtime() * | Second

time t Minute

[seconds) | . Hour
mitime() Diay of momth

ctime{) Manth

Year since 1500
strime{) Day of week
' Far examplke: Sun ful 18 16:12:30 2003 Dy of year
05T flag

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.25 Process Control

A processis aprogram that is being executed. The attributes that a process can have vary from one operating system
to another. For this reason, the process control functions work in ways that are specific to certain systems.

1.25.1 Communication with the Operating System

Environment

In operating systems such as Unix and Windows, each process is started in an environment represented by a
list of strings with the form NANVE=VAL UE. These "environment variables' can be read using the function

getenv().
Systemcalls

Thefunction syst en() invokesthe system's command interpreter and givesit acommand to execute.
Program termination

A C program isnormally terminated viaacall to the functionexi t (), or by ar et ur n statement in the
function nail n() . On normal termination, the following actions are performed:

1. Any functions that have been installed by at exi t () are executed.

2. The 1/O buffers are flushed and the files closed.

3. Thefilescreated by t npf i | e() aredeeted.

The function abor t () , on the other hand, ends a C program without performing the actions just listed.
This function does produce an error message announcing that the program was aborted, however.

The function exi t () can be caled with one of the constants EXI T _FAI LURE and EXI T _SUCCESS,

defined in stdlib.h, as an argument. In this way the program can inform its parent process whether it "faled"
or "succeeded."

All of the functions described in this section are declared in the header file stdlib.h.

1.25.2 Signals

The operating system can send processes a signal when an exceptional situation occurs. This may happen in the event
of a severe fault, such asamemory addressing error for example, or when a hardware interrupt occurs. Signals can
also be triggered by the user at the console, however, or by the program itself, using the functionr ai se() .

Functions and macros for dealing with signals are declared in the header file signal.h.

Each type of signal is assigned a constant signal number and identified by a macro name. These include the signals
listed in Table 1-41.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Table 1-41. Macros for signals in signal.h

Signal

umber M eaning
SI GABRT Abort: abnormal program termination, as caused by theabor t () function
Sl G-PE Floating point exception: caused by an overflow, division by O, or other FPU or emulation errors
SI G LL lllegal instruction: an invalid instruction was encountered in the machine code
SI G NT Interrupt: the break key (e. g., Ctrl-C) was pressed
Sl GSEGV Segmentation violation: illegal memory access

Terminate: arequest to terminate the program (in Unix, the standard signal sent by the ki | |
SI GTERM
command)

Other signals may be defined depending on the operating system.
Int raise (Iint sig);
Sendsthe signal si g to the program which called the function.
void (*signal (1nt sig, void (*func)(int)))(int);

Specifies how the program responds to a signal with the number si g. The second argument, f unc,
Identifies the signal handler. This may be a pointer to afunction, or one of the following constants:

e S| G DFL Executethe default signal handler.
e S| G | GNIgnorethesignal.

The default signal handler terminates the program. If unsuccessful, si gnal () returnsthe value
SI G ERR

The header file signal.h also definesthe integer typesi g at om ¢t . Thistypeisused for static objects which can
be accessed by a hardware interrupt signal handler.

1.25.3 Non-Local Jumps

Local jumps, or jumps within a function, are performed by the got o statement. The macroset | np() , on the other

hand, marks alocation in the program (by storing the pertinent process information) so that execution can be resumed
at that point at any time by acall to the function| ongj np() . Thel ongj np() functionandtheset | np()
macro are declared in the header fileset | np. h.

Int setjnp (jnp _buf env);

Saves the current calling environment (CPU registers and stack) in the buffer env, which has the type
] p_buf .

void longjnmp (jnp_buf env , int retval);

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Restores the saved environment, so that program execution continues at the point whereset | np() was
called.

The program can use the return value of set | np() to determine whether set | np() itself wasjust called, or
whether a jump to this point by meansof | ongj] np() hasjust occurred. set | np() itself returnsthe value O, but
after acall tol ong] np() theapparent return value of set | np() isthevalue of theargumentr et val . If

ret val isequal to O, the apparent return valueis 1.

1.25.4 Error Handling for System Functions

If an error occurs during a call to a system function, the global error variable er r no is assigned an appropriate error
code. The following three functions are used to provide the corresponding system error messages.

voli d perror (const char *string);
Declared in stdio.h

Writes the text pointed to by st r 1 ng, followed by the system error message corresponding to the current
value of er r no, to the standard error stream.

char *strerror (Int errnum);
Declared in string.h

Returns a pointer to the system error message corresponding to er r num Thevalue of er r numisusually
obtained from the error variableer r no.

The following two statements result in the same output:

perror("OPEN');
fprintf(stderr, "OPEN. %\n", strerror(errno));
voli d assert (Iint expression); Declared in assert.h

This macro tests the scalar expression expr essi on. If theresult is 0, or "false”, then assert () writes

the expression, function name, filename, and line number to the standard error stream, and then aborts
program. If the expression is "true" (i.e., not equal to 0), no action is taken and the program continues.

If the macro NDEBUG is defined, callstoassert () haveno effect.

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

1.26 Internationalization

The ANSI standard supports the development of C programs that are adaptable to language and country-specific
customs, such as the formatting of currency strings. The ANSI library also provides two functions, thetypel conv,

and macros for dealing with locales. These are declared in the header file locale.h.

All programs start with the default locale "C", which contains no country or language-specific information. During
execution, the program can change to another locale and retrieve locale-specific information. Since most applications
do not require the full range of locale-specific information, this information is classified into categories, as shown in

Table1-42.
Table 1-42. Locale categories
Category Portions of the locale affected
_C ALL The entire locale, including all of the categories below
_C COLLATE Onlythefunctionsstrcoll () andstrxfrn)
_C CTYPE Functions for character processing, such asi sal pha() andthe multibyte functions
_C _MONETARY | The currency formatting information returned by | ocal econv()

The decimal point character used by input/output and string conversion functions, and the
LC NUVERI C . 7 .
— formatting of non-currency numeric information, asreturned by | ocal econv()

LC TI ME Formatting of date and timeinformationby st rfti ne()
The following function is used to adapt a program to a specific locale:
char *setlocale (Iint category , const char *nane);

Theargument cat egor y isone of the symbolic constants described in Table 1-42, and nane pointsto a
string which identifies the desired locale for the specified category.

Thenane string may have at least the following values:
11 CI

The default locale, with no country-specific information.

The compiler's native locale.

NULL

set | ocal e() makesno changes, but returns the name of the current locale. This name can later be
passedtoset | ocal e() asanargument to restore the locale after it has been changed.

The following standard function groups use locale information: formatted 1nput/output, character classification and

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

case mapping, multibyte character handling, multibyte string handling, and conversion between strings and numeric

values.

The following function can be used to obtain information for formatting numeric strings, such as the decimal point
and currency symbol characters.

struct | conv* |ocaleconv (void);

Fillsinastructure of typest r uct | conv with the values defined by the current locale. The members of

this structure type must include at least those shown in the following example. The sample valuesin
parentheses are those for Switzerland:

struct | conv {
[/ | nformation for non-currency val ues:
char *deci mal poi nt; [/ The deci mal character
[(".")
char *thousands sep; /] The character used to group
[/ digits left of the deci nal
[/ point (",")
char *groupli ng; [/ Nunber of digits in each group
[l ("\3")
[/ | nformation for currency val ues:
char *int _curr_synbol; // The three-letter synbol for
[/ the |ocal currency per |SO
[l 4217, wth a separator
/] character ("CHF ")
char *currency synbol; // The | ocal currency
[/ synmbol ("SFrs.")
char *non_decimal _point; // The decimal point character
[/ for currency strings (".")
char *non_t housands sep; // The character used to group
[/ digits left of the deci nal
[/ point (".")
char *non_groupi ng; [/ Nunmber of digits 1n each group
[l ("\3")
char *positive sign; [/ Sign for positive
[/ currency strings ("")
char *negative_ sign; [/ Sign for negative
/] currency strings ("C")
char int frac digits; [/ Nunber of digits after the
[/ decimal point In the
/[l 1nternational format (2)
char frac digits; [/ Nunber of digits after the
[/ decimal point Iin the |ocal
[l format (2)
char p_cs _precedes; // For non-negative val ues:
[/ 1 = currency synbol Is before,
[/ 0 = after the anmount (1)
char p _sep by space; /] For non-negative val ues:

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

[1 currency synbol is before,
/[l 0O after the anount (1)
char n_cs_precedes; /| For negative val ues:
[/ 1 = currency synbol Is before,
[/ 0 = after the anount (1)
char n_sep by space; /| For negative val ues:
// 1 = space, 0 = no space
/| between currency
/] synmbol and anount (0)

char p_sign _posn; /] Position of positive sign (1)
char n_sign_posn; /] Position of negative sign (2)
char int_p cs precedes; [// For non-negative

[/ Iinternationally formatted
/| val ues:
/] l1l=space, 0 = no space
/] between currency synbol
[/ and anount (1)
char Iint_p sep by space; // For non-negative
[/ Iinternationally formatted
/] val ues:
// 1 = space, 0O = no space
/| between currency synbol
[/ and anount (0)
char int_n cs precedes; [/ For negative internationally
/] formatted val ues:
[/ 1= currency synbol precedes
[/ anmount, O = currency synbol
/[l follows anmount (1)
char int_n sep by space; // For negative internationally
[/ formatted val ues:
// 1 = space, 0O = no space
/] between synbol and anount (0)
char int_p sign posn; [/ Position of positive sign for
[/ Internationally formatted
/] val ues (1)
char Int_n sign posn; // Position of negative sign for
[/ Internationally formatted
/] val ues (2)

'

If thevalueof p_Si gn_posn,n_sign _posn, Int _p sign _posn, or int _n sign posnisO,
the amount and the currency symbol are set in parentheses. If 1, the sign string is placed before the amount and the
currency symbol. If 2, the sign string is placed after the amount and the currency symbol. If 3, the sign string
Immediately precedes the currency symbol. If 4, the sign string is placed immediately after the currency symbol.

Thevaue\ 3 inthestringsgr oupi ng andnon_gr oupi Ng means that each group consists of threedigits, asin
"1,234,567.89".

downloaded from: lib.ommolkefab.ir

	Copyright
	C Pocket Reference
	Introduction
	Fundamentals
	Basic Types
	Constants
	Expressions and Operators
	Type Conversions
	Statements
	Declarations
	Variables
	Derived Types
	Functions
	Linkage of Identifiers
	Preprocessing Directives
	Standard Library
	Standard Header Files
	Input and Output
	Numerical Limits and Number Classification
	Mathematical Functions
	Character Classification and Case Mapping
	String Handling
	Searching and Sorting
	Memory Block Management
	Dynamic Memory Management
	Time and Date
	Process Control
	Internationalization

