
Copyright © 2002, 2000 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://). For more information contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly &
Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps. The association between the image of
slender lorises and the topic of sed and awk is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

http://
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 1. sed & awk Pocket Reference

Section 1.1. Introduction

Section 1.2. Conventions Used in This Book

Section 1.3. Matching Text

Section 1.4. The sed Editor

Section 1.5. The awk Programming Language

Section 1.6. Additional Resources

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.1 Introduction

This pocket reference is a companion volume to O'Reilly's sed & awk, Second Edition, by Dale Dougherty and
Arnold Robbins, and to Effective awk Programming, Third Edition, by Arnold Robbins. It presents a concise
summary of regular expressions and pattern matching, and summaries of sed, awk, and gawk (GNU awk).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.2 Conventions Used in This Book

This pocket reference follows certain typographic conventions, outlined here:

Constant Width

Used for code examples, commands, directory names, and options.

Constant Width Italic

Used in syntax and command summaries to show replaceable text; this text should be replaced with user-
supplied values.

Constant Width Bold

Used in code examples to show commands or other text that should be typed literally by the user.

Italic

Used to show generic arguments and options; these should be replaced with user-supplied values. Italic is
also used to highlight comments in examples, to introduce new terms, and to indicate filenames.

$

Used in some examples as the Bourne shell or Korn shell prompt.

[]

Surround optional elements in a description of syntax. (The brackets themselves should never be typed.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.3 Matching Text

A number of Unix text-processing utilities let you search for, and in some cases change, text patterns rather than fixed
strings. These utilities include the editing programs ed, ex, vi, and sed, the awk programming language, and the
commands grep and egrep. Text patterns (formally called regular expressions) contain normal characters mixed with
special characters (called metacharacters).

1.3.1 Filenames Versus Patterns

Metacharacters used in pattern matching are different from metacharacters used for filename expansion. When you
issue a command on the command line, special characters are seen first by the shell, then by the program; therefore,
unquoted metacharacters are interpreted by the shell for filename expansion. For example, the command:

$ grep [A-Z]* chap[12]

could be transformed by the shell into:

$ grep Array.c Bug.c Comp.c chap1 chap2

and would then try to find the pattern Array.c in files Bug.c, Comp.c, chap1, and chap2. To bypass the shell and pass
the special characters to grep, use quotes as follows:

$ grep "[A-Z]*" chap[12]

Double quotes suffice in most cases, but single quotes are the safest bet.

Note also that in pattern matching, ? matches zero or one instance of a regular expression; in filename expansion, ?
matches a single character.

1.3.2 Metacharacters

Different metacharacters have different meanings, depending upon where they are used. In particular, regular
expressions used for searching through text (matching) have one set of metacharacters, while the metacharacters used
when processing replacement text have a different set. These sets also vary somewhat per program. This section
covers the metacharacters used for searching and replacing, with descriptions of the variants in the different utilities.

1.3.2.1 Search patterns

The characters in the following table have special meaning only in search patterns:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character Pattern

. Match any single character except newline. Can match newline in awk.

*
Match any number (or none) of the single character that immediately precedes it. The preceding
character can also be a regular expression. For example, since . (dot) means any character, .* means

"match any number of any character."

^ Match the following regular expression at the beginning of the line or string.

$ Match the preceding regular expression at the end of the line or string.

\ Turn off the special meaning of the following character.

[]

Match any one of the enclosed characters. A hyphen (-) indicates a range of consecutive characters. A
circumflex (^) as the first character in the brackets reverses the sense: it matches any one character not in
the list. A hyphen or close bracket (]) as the first character is treated as a member of the list. All other

metacharacters are treated as members of the list (i.e., literally).

{n,m}

Match a range of occurrences of the single character that immediately precedes it. The preceding
character can also be a metacharacter. {n} matches exactly n occurrences; {n,} matches at least n

occurrences; and {n,m} matches any number of occurrences between n and m. n and m must be

between 0 and 255, inclusive.

\{n,m\} Just like {n,m}, but with backslashes in front of the braces.

\(\)
Save the pattern enclosed between \(and \) into a special holding space. Up to nine patterns can be

saved on a single line. The text matched by the subpatterns can be "replayed" in substitutions by the
escape sequences \1 to \9.

\n
Replay the nth sub-pattern enclosed in \(and \) into the pattern at this point. n is a number from 1 to

9, with 1 starting on the left.

\< \> Match characters at beginning (\<) or end (\>) of a word.

+ Match one or more instances of preceding regular expression.

? Match zero or one instances of preceding regular expression.

| Match the regular expression specified before or after.

() Apply a match to the enclosed group of regular expressions.

Many Unix systems allow the use of POSIX character classes within the square brackets that enclose a group of
characters. These are typed enclosed in [: and :]. For example, [[:alnum:]] matches a single alphanumeric

character.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Characters matched

alnum Alphanumeric characters

alpha Alphabetic characters

blank Space or TAB

cntrl Control characters

digit Decimal digits

graph Nonspace characters

lower Lowercase characters

print Printable characters

space Whitespace characters

upper Uppercase characters

xdigit Hexadecimal digits

1.3.2.2 Replacement patterns

The characters in the following table have special meaning only in replacement patterns:

Character Pattern

\ Turn off the special meaning of the following character.

\n
Restore the text matched by the nth pattern previously saved by \(and \). n is a number from 1 to 9,

with 1 starting on the left.

& Reuse the text matched by the search pattern as part of the replacement pattern.

~ Reuse the previous replacement pattern in the current replacement pattern. Must be the only character in
the replacement pattern (ex and vi).

% Reuse the previous replacement pattern in the current replacement pattern. Must be the only character in
the replacement pattern (ed).

\u Convert first character of replacement pattern to uppercase.

\U Convert entire replacement pattern to uppercase.

\l Convert first character of replacement pattern to lowercase.

\L Convert entire replacement pattern to lowercase.

\E Turn off previous \U or \L.

\e Turn off previous \u or \l.

1.3.3 Metacharacters, Listed by Unix Program

Some metacharacters are valid for one program but not for another. Those that are available to a Unix program are
marked by a bullet () in the following table. (This table is correct for SVR4 and Solaris and most commercial Unix
systems, but it's always a good idea to verify your system's behavior.) Items marked with a "P" are specified by
POSIX; double check your system's version. Full descriptions were provided in the previous section.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Symbol ed ex vi sed awk grep egrep Action

. Match any character.

* Match zero or more preceding.

^ Match beginning of line/string.

$ Match end of line/string.

\ Escape following character.

[] Match one from a set.

\(\) Store pattern for later replay.[1]

\n Replay sub-pattern in match.

{ } P P Match a range of instances.

\{ \} Match a range of instances.

\< \> Match word's beginning or end.

+ Match one or more preceding.

? Match zero or one preceding.

| Separate choices to match.

() Group expressions to match.

[1] Stored sub-patterns can be "replayed" during matching. See the examples in the next table.

Note that in ed, ex, vi, and sed, you specify both a search pattern (on the left) and a replacement pattern (on the right).
The metacharacters listed in this table are meaningful only in a search pattern.

In ed, ex, vi, and sed, the following metacharacters are valid only in a replacement pattern:

Symbol ex vi sed ed Action

\ Escape following character.

\n Text matching pattern stored in \(\).

& Text matching search pattern.

~ Reuse previous replacement pattern.

% Reuse previous replacement pattern.

\u \U Change character(s) to uppercase.

\l \L Change character(s) to lowercase.

\E Turn off previous \U or \L.

\e Turn off previous \u or \l.

1.3.4 Examples of Searching

When used with grep or egrep, regular expressions should be surrounded by quotes. (If the pattern contains a $, you
must use single quotes; e.g., 'pattern'.) When used with ed, ex, sed, and awk, regular expressions are usually
surrounded by / although (except for awk), any delimiter works. Here are some example patterns:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Pattern What does it match?

bag The string bag.

^bag bag at the beginning of the line.

bag$ bag at the end of the line.

^bag$ bag as the only word on the line.

[Bb]ag Bag or bag.

b[aeiou]g Second letter is a vowel.

b[^aeiou]g Second letter is a consonant (or uppercase or symbol).

b.g Second letter is any character.

^...$ Any line containing exactly three characters.

^\. Any line that begins with a dot.

^\.[a-z][a-z] Same as previous, followed by two lowercase letters (e.g., troff requests).

^\.[a-z]\{2\} Same as previous; ed, grep and sed only.

^[^.] Any line that doesn't begin with a dot.

bugs* bug, bugs, bugss, etc.

"word" A word in quotes.

"*word"* A word, with or without quotes.

[A-Z][A-Z]* One or more uppercase letters.

[A-Z]+ Same as previous; egrep or awk only.

[[:upper:]]+ Same as previous; POSIX egrep or awk.

[A-Z].* An uppercase letter, followed by zero or more characters.

[A-Z]* Zero or more uppercase letters.

[a-zA-Z] Any letter, either lower- or uppercase.

[^0-9A-Za-z] Any symbol or space (not a letter or a number).

[^[:alnum:]] Same, using POSIX character class.

egrep or awk pattern What does it match?

[567] One of the numbers 5, 6, or 7.

five|six|seven One of the words five, six, or seven.

80[2-4]?86 8086, 80286, 80386, or 80486.

80[2-4]?86|Pentium 8086, 80286, 80386, 80486, or Pentium.

compan(y|ies) company or companies.

ex or vi pattern What does it match?

\<the Words like theater, there, or the.

the\> Words like breathe, seethe, or the.

\<the\> The word the.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ed, sed, or grep pattern What does it match?

0\{5,\} Five or more zeros in a row.

[0-9]\{3\}-[0-9]\{2\}-[0-9]\{4\} U.S. Social Security number (nnn-nn-nnnn).

\(why\).*\1 A line with two occurrences of why.

\([[:alpha:]_][[:alnum:]_.]*\) = \1; C/C++ simple assignment statements.

1.3.4.1 Examples of searching and replacing

The following examples show the metacharacters available to sed or ex. Note that ex commands begin with a colon. A
space is marked by a ; a TAB is marked by a .

Command Result

s/.*/(&)/ Redo the entire line, but add parentheses.

s/.*/mv & &.old/ Change a wordlist (one word per line) into mv commands.

/^$/d Delete blank lines.

:g/^$/d Same as previous, in ex editor.

/^[]*$/d Delete blank lines, plus lines containing only spaces or s.

:g/^[]*$/d Same as previous, in ex editor.

s/ */ /g Turn one or more spaces into one space.

:%s/ */ /g Same as previous, in ex editor.

:s/[0-9]/Item &:/ Turn a number into an item label (on the current line).

:s Repeat the substitution on the first occurrence.

:& Same as previous.

:sg Same as previous, but for all occurrences on the line.

:&g Same as previous.

:%&g Repeat the substitution globally (i.e., on all lines).

:.,$s/Fortran/\U&/g On current line to last line, change word to uppercase.

:%s/.*/\L&/ Lowercase entire file.

:s/\<./\u&/g Uppercase first letter of each word on current line. (Useful for titles.)

:%s/yes/No/g Globally change a word to No.

:%s/Yes/~/g Globally change a different word to No (previous replacement).

Finally, here are some sed examples for transposing words. A simple transposition of two words might look like this:

s/die or do/do or die/

The real trick is to use hold buffers to transpose variable patterns. For example, to transpose using hold buffers:

s/\([Dd]ie\) or \([Dd]o\)/\2 or \1/

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.4 The sed Editor

The stream editor, sed, is a noninteractive editor. It interprets a script and performs the actions in the script. sed is
stream-oriented because, like many Unix programs, input flows through the program and is directed to standard
output. For example, sort is stream-oriented; vi is not. sed's input typically comes from a file or pipe, but it can also be
directed from the keyboard. Output goes to the screen by default but can be captured in a file or sent through a pipe
instead.

Typical uses of sed include:

 Editing one or more files automatically

 Simplifying repetitive edits to multiple files

 Writing conversion programs

sed operates as follows:

 Each line of input is copied into a pattern space, an internal buffer where editing operations are performed.

 All editing commands in a sed script are applied, in order, to each line of input.

 Editing commands are applied to all lines (globally) unless line addressing restricts the lines affected.

 If a command changes the input, subsequent commands and address tests will be applied to the current line
in the pattern space, not the original input line.

 The original input file is unchanged because the editing commands modify a copy of each original input line.
The copy is sent to standard output (but can be redirected to a file).

 sed also maintains the hold space, a separate buffer that can be used to save data for later retrieval.

1.4.1 Command-Line Syntax

The syntax for invoking sed has two forms:

sed [-n] [-e] 'command' file(s)

sed [-n] -f scriptfile file(s)

The first form allows you to specify an editing command on the command line, surrounded by single quotes. The
second form allows you to specify a scriptfile, a file containing sed commands. Both forms may be used together, and
they may be used multiple times. If no file(s) is specified, sed reads from standard input.

The following options are recognized:

-n

Suppress the default output; sed displays only those lines specified with the p command or with the p flag of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the s command.

-e cmd

Next argument is an editing command. Useful if multiple scripts or commands are specified.

-f file

Next argument is a file containing editing commands.

If the first line of the script is #n, sed behaves as if -n had been specified.

1.4.2 Syntax of sed Commands

sed commands have the general form:

[address[,address]][!]command [arguments]

sed copies each line of input into the pattern space. sed instructions consist of addresses and editing commands. If the
address of the command matches the line in the pattern space, then the command is applied to that line. If a command
has no address, then it is applied to each input line. If a command changes the contents of the pattern space,
subsequent commands and addresses will be applied to the current line in the pattern space, not the original input line.

addresses are described in the next section. commands consist of a single letter or symbol; they are described later,
alphabetically and by group. arguments include the label supplied to b or t, the filename supplied to r or w, and the
substitution flags for s.

1.4.2.1 Pattern addressing

A sed command can specify zero, one, or two addresses. An address can be a line number, the symbol $ (for last

line), or a regular expression enclosed in slashes (/pattern/). Regular expressions are described in Section 1.3.
Additionally, \n can be used to match any newline in the pattern space (resulting from the N command), but not the

newline at the end of the pattern space.

If the command specifies: Then the command is applied to:

No address Each input line.

One address
Any line matching the address. Some commands accept only one address: a, i, r, q,
and =.

Two comma-separated
addresses

First matching line and all succeeding lines up to and including a line matching the
second address.

An address followed by ! All lines that do not match the address.

1.4.2.2 Examples

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Command Action performed

s/xx/yy/g Substitute on all lines (all occurrences).

/BSD/d Delete lines containing BSD.

/^BEGIN/,/^END/p Print between BEGIN and END, inclusive.

/SAVE/!d Delete any line that doesn't contain SAVE.

/BEGIN/,/END/!s/xx/yy/g Substitute on all lines, except between BEGIN and END.

Braces ({ }) are used in sed to nest one address inside another or to apply multiple commands to the matched same

address.

[/pattern/[,/pattern/]]{
command1
command2
}

The opening curly brace must end its line, and the closing curly brace must be on a line by itself. Be sure there are no
spaces after the braces.

1.4.3 Group Summary of sed Commands

In the lists that follow, the sed commands are grouped by function and are described tersely. Full descriptions,
including syntax and examples, can be found afterward in the Section 1.4.4 section.

1.4.3.1 Basic editing

a\ Append text after a line.

c\ Replace text (usually a text block).

i\ Insert text before a line.

d Delete lines.

s Make substitutions.

y Translate characters (like Unix tr).

1.4.3.2 Line information

= Display line number of a line.

l Display control characters in ASCII.

p Display the line.

1.4.3.3 Input/output processing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

n Skip current line and go to the next line.

r Read another file's contents into the output stream.

w Write input lines to another file.

q Quit the sed script (no further output).

1.4.3.4 Yanking and putting

h Copy into hold space; wipe out what's there.

H Copy into hold space; append to what's there.

g Get the hold space back; wipe out the destination line.

G Get the hold space back; append to the pattern space.

x Exchange contents of the hold and pattern spaces.

1.4.3.5 Branching commands

b Branch to label or to end of script.

t Same as b, but branch only after substitution.

:label Label branched to by t or b.

1.4.3.6 Multiline input processing

N Read another line of input (creates embedded newline).

D Delete up to the embedded newline.

P Print up to the embedded newline.

1.4.4 Alphabetical Summary of sed Commands

sed

Command
Description

#

#

Begin a comment in a sed script. Valid only as the first character of the first line. (Some versions allow
comments anywhere, but it is better not to rely on this.) If the first line of the script is #n, sed behaves as
if -n had been specified.

:
:label

Label a line in the script for the transfer of control by b or t. label may contain up to seven characters.

=
[/pattern/]=

Write to standard output the line number of each line addressed by pattern.

[address]a\
text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a
Append text following each line matched by address. If text goes over more than one line, newlines must
be "hidden" by preceding them with a backslash. The text will be terminated by the first newline that is
not hidden in this way. The text is not available in the pattern space, and subsequent commands cannot
be applied to it. The results of this command are sent to standard output when the list of editing
commands is finished, regardless of what happens to the current line in the pattern space.

b

[address1[,address2]]b[label]

Unconditionally transfer control to :label elsewhere in script. That is, the command following the

label is the next command applied to the current line. If no label is specified, control falls through to the
end of the script, so no more commands are applied to the current line.

c

[address1[,address2]]c\
text

Replace (change) the lines selected by the address(es) with text. (See a for details on text.) When a range
of lines is specified, all lines are replaced as a group by a single copy of text. The contents of the pattern
space are, in effect, deleted and no subsequent editing commands can be applied to the pattern space (or
to text).

d

[address1[,address2]]d

Delete the addressed line (or lines) from the pattern space. Thus, the line is not passed to standard
output. A new line of input is read, and editing resumes with the first command in the script.

D

[address1[,address2]]D

Delete the first part (up to embedded newline) of multi-line pattern space created by N command and

resume editing with first command in script. If this command empties the pattern space, a new line of
input is read, as if the d command had been executed.

g

[address1[,address2]]g

Paste the contents of the hold space (see h and H) back into the pattern space, wiping out the previous
contents of the pattern space.

G

[address1[,address2]]G

Same as g, except that a newline and the hold space are pasted to the end of the pattern space instead of

overwriting it.

h

[address1[,address2]]h

Copy the pattern space into the hold space, a special temporary buffer. The previous contents of the hold
space are obliterated. You can use h to save a line before editing it.

H

[address1[,address2]]H

Append a newline and then the contents of the pattern space to the contents of the hold space. Even if
the hold space is empty, H still appends a newline. H is like an incremental copy.

i

[address]i\
text

Insert text before each line matched by address. (See a for details on text.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

l

[address1[,address2]]l

List the contents of the pattern space, showing nonprinting characters as ASCII codes. Long lines are
wrapped.

n

[address1[,address2]]n

Read the next line of input into the pattern space. The current line is sent to standard output, and the next
line becomes the current line. Control passes to the command following n instead of resuming at the top

of the script.

N

[address1[,address2]]N

Append the next input line to contents of the pattern space; the new line is separated from the previous
contents of the pattern space by a newline. (This command is designed to allow pattern matches across
two lines.) By using \n to match the embedded newline, you can match patterns across multiple lines.

p

[address1[,address2]]p

Print the addressed line(s). Note that this can result in duplicate output unless default output is
suppressed by using #n or the -n command-line option. Typically used before commands that change
flow control (d, n, b), which might prevent the current line from being output.

P

[address1[,address2]]P

Print first part (up to embedded newline) of multiline pattern space created by N command. Same as p if
N has not been applied to a line.

q

[address]q

Quit when address is encountered. The addressed line is first written to the output (if default output is
not suppressed), along with any text appended to it by previous a or r commands.

r

[address]r file

Read contents of file and append after the contents of the pattern space. There must be exactly one space
between the r and the filename.

s

[address1[,address2]]s/pat/repl/[flags]

Substitute repl for pat on each addressed line. If pattern addresses are used, the pattern // represents
the last pattern address specified. Any delimiter may be used. Use \ within pat or repl to escape the

delimiter. The following flags can be specified:

n

Replace nth instance of pat on each addressed line. n is any number in the range 1 to 512; the
default is 1.

g

Replace all instances of pat on each addressed line, not just the first instance.

p

Print the line if the substitution is successful. If several substitutions are successful, sed will

http://lib.ommolketab.ir
http://lib.ommolketab.ir

print multiple copies of the line.

w file

Write the line to file if a replacement was done. A maximum of 10 different files can be opened.

t

[address1[,address2]]t [label]

Test if successful substitutions have been made on addressed lines, and if so, branch to the line marked
by :label. (See b and :.) If label is not specified, control branches to the bottom of the script. The t

command is like a case statement in the C programming language or the various shell programming
languages. You test each case; when it's true, you exit the construct.

w

[address1[,address2]]w file

Append contents of pattern space to file. This action occurs when the command is encountered rather
than when the pattern space is output. Exactly one space must separate the w and the filename. A

maximum of 10 different files can be opened in a script. This command will create the file if it does not
exist; if the file exists, its contents will be overwritten each time the script is executed. Multiple write
commands that direct output to the same file append to the end of the file.

x
[address1[,address2]]x

Exchange the contents of the pattern space with the contents of the hold space.

y
[address1[,address2]]y/abc/xyz/

Translate characters. Change every instance of a to x, b to y, c to z, etc.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.5 The awk Programming Language

awk is a pattern-matching program for processing files, especially when they are databases. The new version of awk,
called nawk, provides additional capabilities. (It really isn't so new. The additional features were added in 1984, and it
was first shipped with System V Release 3.1 in 1987. Nevertheless, the name was never changed on many systems.)
Every modern Unix system comes with a version of new awk, and its use is recommended over old awk. The GNU
version of awk, called gawk, implements new awk and provides a number of additional features.

Different systems vary in what new and old awk are called. Some have oawk and awk, for the old and new versions,
respectively. Others have awk and nawk. Still others only have awk, which is the new version. This example shows
what happens if your awk is the old one:

$ awk 1 /dev/null

awk: syntax error near line 1
awk: bailing out near line 1

awk will exit silently if it is the new version.

Items described here as "common extensions" are often available in different versions of new awk, as well as in gawk,
but should not be used if strict portability of your programs is important to you.

The freely available versions of awk described in Section 1.6 all implement new awk. Thus, references in the
following text such as "nawk only," apply to all versions. gawk has additional features.

With original awk, you can:

 Think of a text file as made up of records and fields in a textual database

 Perform arithmetic and string operations

 Use programming constructs such as loops and conditionals

 Produce formatted reports

With nawk, you can also:

 Define your own functions

 Execute Unix commands from a script

 Process the results of Unix commands

 Process command-line arguments more gracefully

 Work more easily with multiple input streams

 Flush open output files and pipes (with the latest Bell Laboratories version of awk)

In addition, with GNU awk (gawk), you can:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Use regular expressions to separate records, as well as fields

 Skip to the start of the next file, not just the next record

 Perform more powerful string substitutions

 Sort arrays

 Retrieve and format system time values

 Use octal and hexadecimal constants in your program

 Do bit manipulation

 Internationalize your awk programs, allowing strings to be translated into a local language at runtime

 Perform two-way I/O to a coprocess

 Open a two-way TCP/IP connection to a socket

 Dynamically add built-in functions

 Profile your awk programs

1.5.1 Command-Line Syntax

The syntax for invoking awk has two forms:

awk [options] 'script' var=value file(s)
awk [options] -f scriptfile var=value file(s)

You can specify a script directly on the command line, or you can store a script in a scriptfile and specify it with -f.
nawk allows multiple -f scripts. Variables can be assigned a value on the command line. The value can be a string or
numeric constant, a shell variable ($name), or a command substitution (`cmd`), but the value is available only after

the BEGIN statement is executed.

awk operates on one or more files. If none are specified (or if - is specified), awk reads from the standard input.

The recognized options are:

-F fs

Set the field separator to fs. This is the same as setting the built-in variable FS. Original awk only allows the

field separator to be a single character. nawk allows fs to be a regular expression. Each input line, or record,
is divided into fields by white space (spaces or TABs) or by some other user-definable field separator. Fields
are referred to by the variables $1, $2,..., $n. $0 refers to the entire record.

-v var= value

Available in nawk only. Assign a value to variable var. This allows assignment before the script begins
execution.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For example, to print the first three (colon-separated) fields of each record on separate lines:

awk -F: '{ print $1; print $2; print $3 }' /etc/passwd

Numerous examples are shown later in the Section 1.5.4.3 section.

1.5.2 Important gawk Options

Besides the standard command-line options, gawk has a large number of additional options. This section lists those
that are of most value in day-to-day use. Any unique abbreviation of these options is acceptable.

--dump-variables [= file]

When the program has finished running, print a sorted list of global variables, their types, and final values to
file. The default is awkvars.out.

--gen-po

Read the awk program and print all strings marked as translatable to standard output in the form of a GNU
gettext Portable Object file. See Section 1.5.14 for more information.

--help

Print a usage message to standard error and exit.

--lint[=fatal]

Enable checking of nonportable or dubious constructs, both when the program is read, and as it runs. With an
argument of fatal, lint warnings become fatal errors.

--non-decimal-data

Allow octal and hexadecimal data in the input to be recognized as such. This option is not recommended; use
strtonum() in your program, instead.

--profile [= file]

With gawk, put a "prettyprinted" version of the program in file. Default is awkprof.out. With pgawk (see
Section 1.5.3), put the profiled listing of the program in file.

--posix

Turn on strict POSIX compatibility, in which all common and gawk-specific extensions are disabled.

--source=' program text'

Use program text as the awk source code. Use this option with -f to mix command-line programs with awk

library files.

--traditional

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Disable all gawk-specific extensions, but allow common extensions (e.g., the ** operator for

exponentiation).

--version

Print the version of gawk on standard error and exit.

1.5.3 Profiling with pgawk

When gawk is built and installed, a separate program named pgawk (profiling gawk) is built and installed with it. The
two programs behave identically; however, pgawk runs more slowly since it keeps execution counts for each
statement as it runs. When it is done, it automatically places an execution profile of your program in a file named
awkprof.out. (You can change the filename with the --profile option.)

The execution profile is a "prettyprinted" version of your program with execution counts listed in the left margin. For
example, after running this program:

$ pgawk '/bash$/ { nusers++ }
> END { print nusers, "users use Bash." }' /etc/passwd
16 users use Bash.

the execution profile looks like this:

 # gawk profile, created Wed Nov 1 14:34:38 2000

 # Rule(s)

35 /bash$/ { # 16
16 nusers++
 }

 # END block(s)

 END {
 1 print nusers, "users use Bash."
 }

If sent SIGUSR1, pgawk prints the profile and an awk function call stack trace, and then keeps going. Multiple
SIGUSR1 signals may be sent; the profile and trace will be printed each time. This facility is useful if your awk

program appears to be looping, and you want to see if something unexpected is being executed.

If sent SIGHUP, pgawk prints the profile and stack trace, and then exits.

1.5.4 Patterns and Procedures

awk scripts consist of patterns and procedures:

pattern { procedure }

Both are optional. If pattern is missing, { procedure } is applied to all lines. If { procedure } is missing, the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

matched line is printed.

1.5.4.1 Patterns

A pattern can be any of the following:

/regular expression/
relational expression
pattern-matching expression
BEGIN
END

 Expressions can be composed of quoted strings, numbers, operators, function calls, user-defined variables, or
any of the predefined variables described later in Section 1.5.5.

 Regular expressions use the extended set of metacharacters and are described earlier in Section 1.3.

 The ^ and $ metacharacters refer to the beginning and end of a string (such as the fields), respectively, rather

than the beginning and end of a line. In particular, these metacharacters will not match at a newline
embedded in the middle of a string.

 Relational expressions use the relational operators listed in the section Section 1.5.6 later in this book. For
example, $2 > $1 selects lines for which the second field is greater than the first. Comparisons can be
either string or numeric. Thus, depending on the types of data in $1 and $2, awk will do either a numeric or

a string comparison. This can change from one record to the next.

 Pattern-matching expressions use the operators ~ (match) and !~ (don't match). See Section 1.5.6 later in

this book.

 The BEGIN pattern lets you specify procedures that will take place before the first input line is processed.

(Generally, you process the command line and set global variables here.)

 The END pattern lets you specify procedures that will take place after the last input record is read.

 In nawk, BEGIN and END patterns may appear multiple times. The procedures are merged as if there had

been one large procedure.

Except for BEGIN and END, patterns can be combined with the Boolean operators || (or), && (and), and ! (not). A

range of lines can also be specified using comma-separated patterns:

pattern,pattern

1.5.4.2 Procedures

Procedures consist of one or more commands, function calls, or variable assignments, separated by newlines or
semicolons, and are contained within curly braces. Commands fall into five groups:

 Variable or array assignments

 Input/output commands

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Built-in functions

 Control-flow commands

 User-defined functions (nawk only)

1.5.4.3 Simple pattern-procedure examples

Print first field of each line:

{ print $1 }

Print all lines that contain pattern:

/pattern/

Print first field of lines that contain pattern:

/pattern/ { print $1 }

Select records containing more than two fields:

NF > 2

Interpret input records as a group of lines up to a blank line. Each line is a single field:

BEGIN { FS = "\n"; RS = "" }

Print fields 2 and 3 in switched order, but only on lines whose first field matches the string URGENT:

$1 ~ /URGENT/ { print $3, $2 }

Count and print the number of pattern found:

/pattern/ { ++x }
END { print x }

Add numbers in second column and print total:

{ total += $2 }
END { print "column total is", total}

Print lines that contain less than 20 characters:

length($0) < 20

Print each line that begins with Name: and that contains exactly seven fields:

NF == 7 && /^Name:/

Print the fields of each record in reverse order, one per line:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

{
 for (i = NF; i >= 1; i--)
 print $i
}

1.5.5 Built-in Variables

All awk variables are included in nawk. All nawk variables are included in gawk.

Version Variable Description

awk FILENAME Current filename.

 FS Field separator (a space).

 NF Number of fields in current record.

 NR Number of the current record.

 OFMT Output format for numbers ("%.6g") and for conversion to string.

 OFS Output field separator (a space).

 ORS Output record separator (a newline).

 RS Record separator (a newline).

 $0 Entire input record.

 $n nth field in current record; fields are separated by FS.

nawk ARGC Number of arguments on the command line.

 ARGV An array containing the command-line arguments, indexed from 0 to ARGC - 1.

 CONVFMT String conversion format for numbers ("%.6g"). (POSIX)

 ENVIRON An associative array of environment variables.

 FNR Like NR, but relative to the current file.

 RLENGTH Length of the string matched by match() function.

 RSTART First position in the string matched by match() function.

 SUBSEP Separator character for array subscripts ("\034").

gawk ARGIND Index in ARGV of current input file.

 BINMODE
Controls binary I/O for input and output files. Use values of 1, 2, or 3 for input, output,

or both kinds of files, respectively. Set on the command line to affect standard input,
standard output, and standard error.

 ERRNO
A string indicating the error when a redirection fails for getline or if close()
fails.

 FIELDWIDTHS A space-separated list of field widths to use for splitting up the record, instead of FS.

 IGNORECASE
When true, all regular expression matches, string comparisons, and index() ignore

case.

 LINT
Dynamically controls production of "lint" warnings. With a value of "fatal", lint

warnings become fatal errors.

 PROCINFO An array containing information about the process, such as real and effective UID
numbers, process ID number, and so on.

 RT The text matched by RS, which can be a regular expression in gawk.

1.5.6 Operators

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 TEXTDOMAIN The text domain (application name) for internationalized messages ("messages").

1.5.6 Operators

The following table lists the operators, in order of increasing precedence, that are available in awk:

Symbol Meaning

= += -= *= /= %= ^= **= Assignment.[2]

?: C conditional expression (nawk only).

|| Logical OR (short-circuit).

&& Logical AND (short-circuit).

in Array membership (nawk only).

~ !~ Match regular expression and negation.

< <= > >= != == Relational operators.

(blank) Concatenation.

+ - Addition, subtraction.

* / % Multiplication, division, and modulus (remainder).

+ - ! Unary plus and minus, and logical negation.

^ ** Exponentiation.[2]

++ -- Increment and decrement, either prefix or postfix.

$ Field reference.

[2] While ** and **= are common extensions, they are not part of POSIX awk.

1.5.7 Variable and Array Assignment

Variables can be assigned a value with an = sign. For example:

FS = ","

Expressions using the operators listed in the previous table can be assigned to variables.

Arrays can be created with the split() function (described later), or they can simply be named in an assignment
statement. Array elements can be subscripted with numbers (array[1], ..., array[n]) or with strings. Arrays

subscripted by strings are called associative arrays. (In fact, all arrays in awk are associative; numeric subscripts are
converted to strings before using them as array subscripts. Associative arrays are one of awk's most powerful
features.)

For example, to count the number of widgets you have, you could use the following script:

/widget/ { count["widget"]++ } Count widgets
END { print count["widget"] } Print the count

You can use the special for loop to read all the elements of an associative array:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

for (item in array)
 process array[item]

The index of the array is available as item, while the value of an element of the array can be referenced as
array[item].

You can use the operator in to test that an element exists by testing to see if its index exists (nawk only). For

example:

if (index in array)
 ...

tests that array[index] exists, but you cannot use it to test the value of the element referenced by
array[index].

You can also delete individual elements of the array using the delete statement (nawk only).

1.5.7.1 Escape sequences

Within string and regular expression constants, the following escape sequences may be used:

Sequence Meaning

\a Alert (bell)

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t TAB

\v Vertical tab

\\ Literal backslash

\nnn Octal value nnn

\xnn Hexadecimal value nn

\" Literal double quote (in strings).

\/ Literal slash (in regular expressions).

The \x escape sequence is a common extension, but it is not part of POSIX awk.

1.5.8 Octal and Hexadecimal Constants in gawk

gawk allows you to use octal and hexadecimal constants in your program source code. The form is as in C: octal
constants start with a leading 0, and hexadecimal constants with a leading 0x or 0X. The hexadecimal digits a-f
may be in either upper- or lowercase.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

$ gawk 'BEGIN { print 042, 42, 0x42 }'
34 42 66

Use the strtonum() function to convert octal or hexadecimal input data into numerical values.

1.5.9 User -Defined Functions

nawk allows you to define your own functions. This makes it easy to encapsulate sequences of steps that need to be
repeated into a single place, and re-use the code from anywhere in your program.

The following function capitalizes each word in a string. It has one parameter, named input, and five local

variables, which are written as extra parameters:

capitalize each word in a string
function capitalize(input, result, words, n, i, w)
{
 result = ""
 n = split(input, words, " ")
 for (i = 1; i <= n; i++) {
 w = words[i]
 w = toupper(substr(w, 1, 1)) substr(w, 2)
 if (i > 1)
 result = result " "
 result = result w
 }
 return result
}

main program, for testing
{ print capitalize($0) }

With this input data:

A test line with words and numbers like 12 on it.

this program produces:

A Test Line With Words And Numbers Like 12 On It.

For user-defined functions, no space is allowed between the function name and the left
parenthesis when the function is called.

1.5.10 Group Listing of awk Functions and Commands

awk functions and commands may be classified as in the following table. For descriptions and examples of how to use
these commands, see Section 1.5.13.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Function type All awk versions nawk gawk

Arithmetic exp atan2

 int cos

 log rand

 sqrt sin

 srand

String index gsub asort

 length match gensub

 split sub strtonum

 sprintf tolower

 toupper

Control flow break do/while

 continue return

 exit

 for

 if/else

 while

Input/output next close fflush[3]

Processing print getline nextfile[3]

 printf

Programming delete extension

 function

 system

[3] Also in Bell Labs awk.

The following functions are specific to gawk:

Function type Functions

Bit manipulation and lshift rshift

 compl or xor

Time mktime strftime systime

Translation bindtextdomain dcgettext dcngettext

1.5.11 Coprocesses and Sockets with gawk

gawk allows you to open a two-way pipe to another process, called a coprocess. This is done with the |& operator
used with getline and print or printf.

print database command |& "db_server"
"db_server" |& getline response

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the command used with |& is a filename beginning with /inet/, gawk opens a TCP/IP connection. The filename

should be of the following form:

/inet/protocol/lport/hostname/rport

The parts of the filename are:

protocol

One of tcp, udp, or raw, for TCP, UDP, or raw IP sockets, respectively. Note: raw is currently reserved

but unsupported.

lport

The local TCP or UPD port number to use. Use 0 to let the operating system pick a port.

hostname

The name or IP address of the remote host to connect to.

rport

The port (application) on the remote host to connect to. A service name (e.g., tftp) is looked up using the
C getservbyname() function.

1.5.12 Implementation Limits

Many versions of awk have various implementation limits, on things such as:

 Number of fields per record

 Number of characters per input record

 Number of characters per output record

 Number of characters per field

 Number of characters per printf string

 Number of characters in literal string

 Number of characters in character class

 Number of files open

 Number of pipes open

 The ability to handle 8-bit characters and characters that are all zero (ASCII NUL)

gawk does not have limits on any of the above items, other than those imposed by the machine architecture and/or the
operating system.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.5.13 Alphabetical Summary of awk Functions and Commands

The following alphabetical list of keywords and functions includes all that are available in awk and nawk. nawk

includes all old awk functions and keywords, plus some additional ones (marked as N). Extensions that aren't part of

POSIX awk but that are in both gawk and the Bell Laboratories awk are marked as E . Cases where gawk has

extensions are marked as G . Items that aren't marked with a symbol are available in all versions.

Command Description

and

and(expr1, expr2) G

Return the bitwise AND of expr1 and expr2, which should be values that fit in a C unsigned
long.

asort

asort(src [,dest]) G

Sort the array src, destructively replacing the indexes with values from one to the number of
elements in the array. If dest is supplied, copy src to dest and sort dest, leaving src unchanged.
Returns the number of elements in src.

atan2
atan2(y, x) N

Return the arctangent of y/x in radians.

bindtextdomain

bindtextdomain(dir [,domain]) G

Look in directory dir for message translation files for text domain domain (default: value of
TEXTDOMAIN). Returns the directory where domain is bound.

break
break

Exit from a while, for, or do loop.

close

close(expr) N

close(expr, how) G

In most implementations of awk, you can only have up to ten files open simultaneously and one
pipe. Therefore, nawk provides a close() function that allows you to close a file or a pipe. It

takes the same expression that opened the pipe or file as an argument. This expression must be
identical, character by character, to the one that opened the file or pipe-even whitespace is
significant.

In the second form, close one end of either a TCP/IP socket or a two-way pipe to a coprocess. how
is a string, either "from" or "to". Case does not matter.

compl

compl(expr) G

Return the bitwise complement of expr, which should be a value that fits in a C unsigned
long.

continue
continue

Begin next iteration of while, for, or do loop.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cos
cos(x) N

Return the cosine of x, an angle in radians.

dcgettext

dcgettext(str [, dom [,cat]]) G

Return the translation of str for the text domain dom in message category cat. Default text domain
is value of TEXTDOMAIN. Default category is "LC_MESSAGES".

dcngettext

dcngettext(str1, str2, num [, dom [,cat]]) G

If num is one, return the translation of str1 for the text domain dom in message category cat.
Otherwise return the translation of str2. Default text domain is value of TEXTDOMAIN. Default
category is "LC_MESSAGES". For gawk 3.1.1 and later.

delete

delete array[element] N

delete array E

Delete element from array. The brackets are typed literally. The second form is a common
extension, which deletes all elements of the array in one shot.

do

do
 statement
while
(expr)
N

Looping statement. Execute statement, then evaluate expr and if true, execute statement again. A
series of statements must be put within braces.

exit

exit [expr]

Exit from script, reading no new input. The END procedure, if it exists, will be executed. An

optional expr becomes awk's return value.

exp
exp(x)

Return exponential of x (ex).

extension

extension(lib, init) G

Dynamically load the shared object file lib, calling the function init to initialize it. Return the value
returned by the init function. This function allows you to add new built-in functions to gawk. See
Effective awk Programming, Third Edition, for the details.

fflush

fflush([output-expr]) E

Flush any buffers associated with open output file or pipe output-expr.

gawk extends this function. If no output-expr is supplied, it flushes standard output. If output-expr
is the null string (""), it flushes all open files and pipes.

for(init-expr;test-expr;incr-expr)
 statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

for
C-style looping construct. init-expr assigns the initial value of a counter variable. test-expr is a
relational expression that is evaluated each time before executing the statement. When test-expr is
false, the loop is exited. incr-expr is used to increment the counter variable after each pass. All of
the expressions are optional. A missing test-expr is considered to be true. A series of statements
must be put within braces.

for

for (item in array)
 statement

Special loop designed for reading associative arrays. For each element of the array, the statement is
executed; the element can be referenced by array [item]. A series of statements must be put

within braces.

function

function name(parameter-list){N
 statements
}

Create name as a user-defined function consisting of awk statements that apply to the specified list
of parameters. No space is allowed between name and the left parenthesis when the function is
called.

gensub

gensub(regex, str, how [, target]) G

General substitution function. Substitute str for matches of the regular expression regex in the
string target. If how is a number, replace the howth match. If it is g or G, substitute globally. If
target is not supplied, $0 is used. Return the new string value. The original target is not modified.

(Compare with gsub and sub.)

getline

getline
getline [var][< file]N
command | getline[var]N
command |& getline[var]G

Read next line of input. Original awk does not support the syntax to open multiple input streams or
use a variable.

The second form reads input from file and the third form reads the output of command. All forms
read one record at a time, and each time the statement is executed it gets the next record of input.
The record is assigned to $0 and is parsed into fields, setting NF, NR, and FNR. If var is specified,
the result is assigned to var and $0 and NF are not changed. Thus, if the result is assigned to a
variable, the current record does not change. getline is actually a function and it returns 1 if it

reads a record successfully, 0 if end-of-file is encountered, and -1 if for some reason it is otherwise
unsuccessful.

The fourth form reads the output from coprocess command. See Section 1.5.11 for more
information.

gsub

gsub(regex, str [, target]) N

Globally substitute str for each match of the regular expression regex in the string target. If target
is not supplied, defaults to $0. Return the number of substitutions.

if (condition)
 statement1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

if

[else
 statement2]

If condition is true, do statement1, otherwise do statement2 in optional else clause. The
condition can be an expression using any of the relational operators <, <=, ==, !=, >=, or >, as
well as the array membership operator in, and the pattern-matching operators ~ and !~ (e.g., if
($1 ~ /[Aa].*/)). A series of statements must be put within braces. Another if can
directly follow an else in order to produce a chain of tests or decisions.

index
index(str, substr)

Return the position (starting at 1) of substr in str, or zero if substr is not present in str.

int
int(x)

Return integer value of x by truncating any fractional part.

length
length([arg])

Return length of arg, or the length of $0 if no argument.

log
log(x)

Return the natural logarithm (base e) of x.

lshift

lshift(expr, count) G

Return the result of shifting expr left by count bits. Both expr and count should be values that fit in
a C unsigned long.

match

match(str,regex)N
match(str,regex [,array])G

Function that matches the pattern, specified by the regular expression regex, in the string str and
returns either the position in str where the match begins, or 0 if no occurrences are found. Sets the
values of RSTART and RLENGTH to the start and length of the match, respectively.

If array is provided, gawk puts the text that matched the entire regular expression in array[0], the
text that matched the first parenthesized subexpression in array[1], the second in array[2], and

so on.

mktime

mktime(timespec) G

Turns timespec (a string of the form "YYYY MM DD HH MM SS [DST]" representing a local

time) into a time-of-day value in seconds since midnight, January 1, 1970, UTC.

next
next

Read next input line and start new cycle through pattern/procedures statements.

nextfile

nextfile E

Stop processing the current input file and start new cycle through pattern/procedures statements,
beginning with the first record of the next file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

or

or(expr1, expr2) G

Return the bitwise OR of expr1 and expr2, which should be values that fit in a C unsigned
long.

print

print [output-expr[, ...]] [dest-expr]

Evaluate the output-expr and direct it to standard output followed by the value of ORS. Each
comma-separated output-expr is separated in the output by the value of OFS. With no output-expr,
print $0. The output may be redirected to a file or pipe via the dest-expr, which is described in the

section Section 1.5.13.1 following this table.

printf

printf(format [, expr-list]) [dest-expr]

An alternative output statement borrowed from the C language. It has the ability to produce
formatted output. It can also be used to output data without automatically producing a newline.
format is a string of format specifications and constants. expr-list is a list of arguments
corresponding to format specifiers. As for print, output may be redirected to a file or pipe. See

the section Section 1.5.13.2 following this table for a description of allowed format specifiers.

rand

rand() N

Generate a random number between 0 and 1. This function returns the same series of numbers each
time the script is executed, unless the random number generator is seeded using srand().

return

return [expr] N

Used within a user-defined function to exit the function, returning value of expression. The return
value of a function is undefined if expr is not provided.

rshift

rshift(expr, count) G

Return the result of shifting expr right by count bits. Both expr and count should be values that fit
in a C unsigned long.

sin
sin(x) N

Return the sine of x, an angle in radians.

split

split(string, array [, sep])

Split string into elements of array array[1],...,array[n]. Return the number of array

elements created. The string is split at each occurrence of separator sep. If sep is not specified, FS
is used.

sprintf

sprintf(format [, expressions])

Return the formatted value of one or more expressions, using the specified format. Data is
formatted but not printed. See the section Section 1.5.13.2 following this table for a description of
allowed format specifiers.

sqrt
sqrt(arg)

Return square root of arg.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

srand

srand([expr]) N

Use optional expr to set a new seed for the random number generator. Default is the time of day.
Return value is the old seed.

strftime

strftime([format [,timestamp]]) G

Format timestamp according to format. Return the formatted string. The timestamp is a time-of-day
value in seconds since midnight, January 1, 1970, UTC. The format string is similar to that of
sprintf. If timestamp is omitted, it defaults to the current time. If format is omitted, it defaults

to a value that produces output similar to that of the Unix date command.

strtonum

strtonum(expr) G

Return the numeric value of expr, which is a string representing an octal, decimal, or hexadecimal
number in the usual C notations. Use this function for processing nondecimal input data.

sub

sub(regex, str [, target]) N

Substitute str for first match of the regular expression regex in the string target. If target is not
supplied, defaults to $0. Return 1 if successful; otherwise.

substr

substr(string, beg [, len])

Return substring of string at beginning position beg (counting from 1), and the characters that
follow to maximum specified length len. If no length is given, use the rest of the string.

system

system(command) N

Function that executes the specified command and returns its exit status. The status of the executed
command typically indicates success or failure. A value of 0 means that the command executed
successfully. A nonzero value indicates a failure of some sort. The documentation for the command
you're running will give you the details.

The output of the command is not available for processing within the awk script. Use command |
getline to read the output of a command into the script.

systime
systime() G

Return a time-of-day value in seconds since midnight, January 1, 1970, UTC.

tolower
tolower(str) N

Translate all uppercase characters in str to lowercase and return the new string.[4]

toupper
toupper(str) N

Translate all lowercase characters in str to uppercase and return the new string. [4]

while

while (condition)
 statement

Do statement while condition is true (see if for a description of allowable conditions). A series of
statements must be put within braces.

[4] Very early versions of nawk don't support tolower() and toupper(). However, they are now part of the POSIX

specification for awk.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xor

xor(expr1, expr2) G

Return the bitwise XOR of expr1 and expr2, which should be values that fit in a C unsigned
long.

[4] Very early versions of nawk don't support tolower() and toupper(). However, they are now part of the POSIX

specification for awk.

1.5.13.1 Output redirections

For print and printf, dest-expr is an optional expression that directs the output to a file or pipe.

> file

Directs the output to a file, overwriting its previous contents.

>> file

Appends the output to a file, preserving its previous contents. In both of these cases, the file will be created if
it does not already exist.

| command

Directs the output as the input to a system command.

|& command

Directs the output as the input to a coprocess. gawk only.

Be careful not to mix > and >> for the same file. Once a file has been opened with >, subsequent output statements

continue to append to the file until it is closed.

Remember to call close() when you have finished with a file, pipe, or coprocess. If you don't, eventually you

will hit the system limit on the number of simultaneously open files.

1.5.13.2 printf formats

Format specifiers for printf and sprintf have the following form:

%[posn$][flag][width][.precision]letter

The control letter is required. The format conversion control letters are given in the following table:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character Description

c ASCII character.

d Decimal integer.

i Decimal integer. (Added in POSIX)

e Floating-point format ([-]d.precisione[+-]dd).

E Floating-point format ([-]d.precisionE[+-]dd).

f Floating-point format ([-]ddd.precision).

g e or f conversion, whichever is shortest, with trailing zeros removed.

G E or f conversion, whichever is shortest, with trailing zeros removed.

o Unsigned octal value.

s String.

u Unsigned decimal value.

x Unsigned hexadecimal number. Uses a-f for 10 to 15.

X Unsigned hexadecimal number. Uses A-F for 10 to 15.

% Literal %.

gawk allows you to provide a positional specifier after the % (posn$). A positional specifier is an integer count

followed by a $. The count indicates which argument to use at that point. Counts start at one, and don't include the

format string. This feature is primarily for use in producing translations of format strings. For example:

$ gawk 'BEGIN { printf "%2$s, %1$s\n", "world", "hello" }'
hello, world

The optional flag is one of the following:

Character Description

- Left-justify the formatted value within the field.

space Prefix positive values with a space and negative values with a minus.

+ Always prefix numeric values with a sign, even if the value is positive.

#

Use an alternate form:

%o has a preceding 0

%x and %X are prefixed with 0x and 0X, respectively

%e, %E, and %f always have a decimal point in the result

%g and %G do not have trailing zeros removed

0 Pad output with zeros, not spaces. This only happens when the field width is wider than the converted
result. This flag applies to all output formats, even non-numeric ones.

The optional width is the minimum number of characters to output. The result will be padded to this size if it is
smaller. The 0 flag causes padding with zeros; otherwise, padding is with spaces.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The precision is optional. Its meaning varies by control letter, as shown in this table:

Conversion Precision means

%d, %i, %o, %u, %x, %X The minimum number of digits to print.

%e, %E, %f The number of digits to the right of the decimal point.

%g, %G The maximum number of significant digits.

%s The maximum number of characters to print.

1.5.14 Internationalization with gawk

You can internationalize your programs if you use gawk. This consists of choosing a text domain for your program,
marking strings that are to be translated and, if necessary, using the bindtextdomain(), dcgettext(),
and dcngettext() functions.

Localizing your program consists of extracting the marked strings, creating translations, and compiling and installing
the translations in the proper place. Full details are given in Effective awk Programming, Third Edition.

The internationalization features in gawk use GNU gettext. You may need to install these tools to create translations if
your system doesn't already have them. Here is a very brief outline of the steps involved:

1. Set TEXTDOMAIN to your text domain in a BEGIN block:

BEGIN { TEXTDOMAIN = "whizprog" }

2. Mark all strings to be translated by prepending a leading underscore:

3. printf(_"whizprog: can't open /dev/telepath (%s)\n",
 dcgettext(ERRNO)) > "/dev/stderr"

4. Extract the strings with the --gen-po option:

$ gawk --gen-po -f whizprog.awk > whizprog.pot

5. Copy the file for translating, and make the translations:

6. $ cp whizprog.pot esperanto.po
$ ed esperanto.po

7. Use the msgfmt program from GNU gettext to compile the translations. The binary format allows fast lookup
of the translations at runtime. The default output is a file named messages.

8. $ msgfmt esperanto.po
$ mv messages esperanto.mo

9. Install the file in the standard location. This is usually done at program installation. The location can vary
from system to system.

That's it! gawk will automatically find and use the translated messages, if they exist.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.6 Additional Resources

This section lists resources for further exploration.

1.6.1 Source Code

This following URLs indicate where to get source code for GNU sed, four freely available versions of awk, and GNU
gettext.

ftp://ftp.gnu.org/gnu/sed/sed-3.02.tar.gz

The Free Software Foundation's version of sed. The somewhat older version, 2.05, is also available.

http://cm.bell-labs.com/~bwk

Brian Kernighan's home page, with links to the source code for the latest version of awk from Bell
Laboratories.

ftp://ftp.freefriends.org/arnold/Awkstuff/mawk1.3.3.tar.gz

Michael Brennan's mawk. A very fast, very robust version of awk.

ftp://ftp.gnu.org/gnu/gawk/gawk-3.1.1.tar.gz

The Free Software Foundation's version of awk, called gawk.

http://awka.sourceforge.net

The home page for awka, a translator that turns awk programs into C, compiles the generated C, and then
links the object code with a library that performs the core awk functions.

ftp://ftp.gnu.org/gnu/gettext/gettext-0.11.2.tar.gz

The source code for GNU gettext. Get this if you need to produce translations for your awk programs that use
gawk.

1.6.2 Books

1. Dale Dougherty, Arnold Robbins, sed & awk, Second Edition (Sebastopol, Calif.: O'Reilly & Associates,
1997).

2. Alfred V. Aho, Brian W. Kernighan, Peter J. Weinberger, The AWK Programming Language (Reading,
Mass.: Addison Wesley, 1988).

3. Arnold Robbins, Effective awk Programming, Third Edition (Sebastopol, Calif.: O'Reilly & Associates,
2001).

4. Brian W. Kernighan, Rob Pike, The Unix Programming Environment (Englewood Cliffs, N.J.: Prentice-

http://cm.bell-labs.com/~bwk
http://awka.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hall, 1984).

5. Arnold Robbins, Unix In A Nutshell, Third Edition (Sebastopol, Calif.: O'Reilly & Associates, 1999).

6. Jon Bentley, Programming Pearls, Second Edition (Reading, Mass.: Addison Wesley, 2000).

7. Jon Louis Bentley, More Programming Pearls: Confessions of a Coder (Reading, Mass.: Addison Wesley,
1988).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Copyright
	sed & awk Pocket Reference
	Introduction
	Conventions Used in This Book
	Matching Text
	The sed Editor
	The awk Programming Language
	Additional Resources

