downloaded from: lib.ommolkefab.ir

Copyright © 2002, 2000 O'Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.
Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Rellly & Associates books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://). For more information contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly &
Associates, Inc. Many of the designations used by manufacturers and sellersto distinguish their products are clamed
as trademarks. Where those designations appear in this book, and O'Rellly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps. The association between the image of
slender lorises and the topic of sed and awk is atrademark of O'Rellly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

downloaded from: lib.ommolkefab.ir

http://
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 1. sed & awk Pocket Reference

Section 1.1. Introduction

Section 1.2. Conventions Used in This Book

Section 1.3. Matching Text

Section 1.4. The sed Editor

Section 1.5. The awk Programming L anguage

Section 1.6. Additional Resources

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.1 Introduction

This pocket reference is a companion volume to O'Reilly's sed & awk, Second Edition, by Dale Dougherty and

Arnold Robbins, and to Effective awk Programming, Third Edition, by Arnold Robbins. It presents a concise
summary of regular expressions and pattern matching, and summaries of sed, awk, and gawk (GNU awk).

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.2 Conventions Used in This Book

This pocket reference follows certain typographic conventions, outlined here:

Constant Wdth

Used for code examples, commands, directory names, and options.

Constant Wdth Italic

Used in syntax and command summaries to show replaceable text; this text should be replaced with user-
supplied values.

Constant Wdth Bold

Used in code examples to show commands or other text that should be typed literally by the user.
Italic

Used to show generic arguments and options; these should be replaced with user-supplied values. Italicis
also used to highlight comments in examples, to introduce new terms, and to indicate filenames.

Used in some examples as the Bourne shell or Korn shell prompt.

[]

Surround optional elements in a description of syntax. (The brackets themselves should never be typed.)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.3 Matching Text

A number of Unix text-processing utilities let you search for, and in some cases change, text patterns rather than fixed
strings. These utilities include the editing programs ed, ex, vi, and sed, the awk programming language, and the
commands grep and egrep. Text patterns (formally called regular expressions) contain normal characters mixed with
specia characters (called metacharacters).

1.3.1 Filenames Versus Patterns

Metacharacters used in pattern matching are different from metacharacters used for filename expansion. When you
Issue a command on the command line, special characters are seen first by the shell, then by the program; therefore,
ungquoted metacharacters are interpreted by the shell for filename expansion. For example, the command:

$ grep [A-Z]* chap[12]

could be transformed by the shell into:
$ grep Array.c Bug.c Conp.c chapl chap?

and would then try to find the pattern Array.c in filesBug.c, Comp.c, chapl, and chap2. To bypass the shell and pass
the special charactersto grep, use quotes as follows:

$ grep "[A-Z]*" chap[12]
Double quotes suffice in most cases, but single quotes are the safest bet.

Note also that in pattern matching, ? matches zero or one instance of aregular expression; in filename expansion, ?
matches a single character.

1.3.2 Metacharacters

Different metacharacters have different meanings, depending upon where they are used. In particular, regular
expressions used for searching through text (matching) have one set of metacharacters, while the metacharacters used
when processing replacement text have a different set. These sets also vary somewhat per program. This section
covers the metacharacters used for searching and replacing, with descriptions of the variants in the different utilities.

1.3.2.1 Search patterns

The characters in the following table have special meaning only in search patterns:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Character

_—

[]

{n.m

\{n,m)

V()

Pattern
Match any single character except newline. Can match newline in awk.

Match any number (or none) of the single character that immediately precedesit. The preceding
character can also be aregular expression. For example, since. (dot) means any character,. * means

"match any number of any character."
Match the following regular expression at the beginning of the line or string.
Match the preceding regular expression at the end of the line or string.

Turn off the special meaning of the following character.

Match any one of the enclosed characters. A hyphen (-) indicates a range of consecutive characters. A
circumflex (™) asthefirst character in the brackets reverses the sense: it matches any one character not in
thelist. A hyphen or close bracket (]) asthefirst character is treated as a member of thelist. All other

metacharacters are treated as members of thelist (i.e., literally).

Match arange of occurrences of the single character that immediately precedesit. The preceding
character can also be a metacharacter. { N} matches exactly n occurrences; { n, } matches at least n

occurrences; and { n, Nt matches any number of occurrences between n and m. n and m must be
between 0 and 255, inclusive.

Just like { n, N}, but with backslashesin front of the braces.

Save the pattern enclosed between \ (and\) into a specia holding space. Up to nine patterns can be

saved on asingle line. The text matched by the subpatterns can be "replayed” in substitutions by the
escape sequences\ 1 to\ 9.

Replay the nth sub-pattern enclosed in\ (and\) into the pattern at this point. n isanumber from 1 to
9, with 1 starting on the | eft.

Match characters at beginning (\ <) or end (\ >) of aword.
Match one or more instances of preceding regular expression.
Match zero or one instances of preceding regular expression.
Match the regular expression specified before or after.

Apply a match to the enclosed group of regular expressions.

Many Unix systems allow the use of POSIX character classes within the square brackets that enclose a group of
characters. These aretyped enclosed in| : and: | . For example, [[: al nunt]]| matches a single alphanumeric

character.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

al num
al pha
bl ank
cntrl
di git
gr aph
| ower
print
space
upper
xdi git

Char acters matched
Alphanumeric characters
Alphabetic characters
Space or TAB
Control characters
Decimal digits
Nonspace characters
L owercase characters
Printable characters
Whitespace characters
Uppercase characters
Hexadecimal digits

Class

1.3.2.2 Replacement patterns

The characters in the following table have special meaning only in replacement patterns:

Character
\

\'n

&

—~

%

\ u
\ U
\
\ L
\ E
\e

Pattern

Turn off the special meaning of the following character.

Restore the text matched by the nth pattern previously saved by \ (and\) . nisanumber from 1to 9,
with 1 starting on the |eft.

Reuse the text matched by the search pattern as part of the replacement pattern.

Reuse the previous replacement pattern in the current replacement pattern. Must be the only character in
the replacement pattern (ex and wi).

Reuse the previous replacement pattern in the current replacement pattern. Must be the only character in
the replacement pattern (ed).

Convert first character of replacement pattern to uppercase.
Convert entire replacement pattern to uppercase.
Convert first character of replacement pattern to lowercase.

Convert entire replacement pattern to lowercase.
Turn off previous\ Uor\ L.

Turn off previous\ u or\ | .

1.3.3 Metacharacters, Listed by Unix Program

Some metacharacters are valid for one program but not for another. Those that are available to a Unix program are
marked by abullet () inthefollowing table. (Thistableis correct for SVR4 and Solaris and most commercial Unix
systems, but it's always a good ideato verify your system's behavior.) Items marked with a"P" are specified by
POSIX; double check your system's version. Full descriptions were provided in the previous section.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Symbol ed ex vi sed awk grep egrep Action
e e® & @ » Match any character.

* oo 9% & @ @® Match zero or more preceding.

A oo 9® & o @ Match beginning of line/string.

$ Match end of line/string.

\ o000 & @ @ Escape following character.

[] e eoee o o @ Match one from a set.

\(\) e o oe ° Store pattern for later replay.[1]

\n o e 00 ® Replay sub-pattern in match.

{ } eP ®P ' Match arange of instances.

\{ \} ® ® ® Match arange of instances.

\<\>8 o @ Match word's beginning or end.

+ ® ® Match one or more preceding.

? ® e Match zero or one preceding.

| ® ® Separate choices to match.

() ® o Group expressions to match.

1] Stored sub-patterns can be "replayed" during matching. See the examples in the next table.

Note that in ed, ex, vi, and sed, you specify both a search pattern (on the left) and areplacement pattern (on the right).
The metacharacters listed in this table are meaningful only in a search pattern.

In ed, ex, vi, and sed, the following metacharacters are valid only in a replacement pattern:

Symbol ex vi sed ed Action
\ Escape following character.

\'n Text matching pattern storedin\ ('\).

& Text matching search pattern.

~ Reuse previous replacement pattern.

% Reuse previous replacement pattern.

\u \U Change character(s) to uppercase.

\[\L Change character(s) to lowercase.

\ E Turn off previous\ Uor\ L.

\e Turn off previous\ u or\ | .

1.3.4 Examples of Searching

When used with grep or egrep, regular expressions should be surrounded by quotes. (If the pattern contains a $, you
must use single quotes; e.g., ' pattern’ .) When used with ed, ex, sed, and awk, regular expressions are usually
surrounded by / although (except for awk), any delimiter works. Here are some example patterns:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Pattern What doesit match?
bag The string bag.
bag nag at the beginning of theline.
bag$ nag at the end of theline.
"bag$ nag as the only word on the line.
' Bb] ag Bag or bag.
o[ael ou] @ Second letter is avowel.
o[Mael ou] @ Second letter is a consonant (or uppercase or symbol).
0. g Second letter is any character.
AT Any line containing exactly three characters.
AW Any line that begins with a dot.

M.l a-z] | a-z] Sameasprevious, followed by two lowercase letters (e.g., troff requests).
ML la-z]\{2\} Sameasprevious; ed, grep and sed only.

MM Any line that doesn't begin with a dot.

bugs* bug, bugs, bugss, etc.

"wor d" A word in quotes.

"*word"* A word, with or without quotes.
A-Z][A-Z]* One or more uppercase letters.

A-Z] + Same as previous; egrep or awk only.

[upper:]]+ Sameasprevious, POSIX egrep or awk.
A-Z] . * An uppercase letter, followed by zero or more characters.
A-Z] * Z€ero or more uppercase letters,

a- zA- Z] Any letter, either lower- or uppercase.
70-9A- Za-z] | Any symbol or space (not aletter or a number).
M ralnum] Same, using POSIX character class.

egrep or awk pattern What doesit match?

[567] One of the numbers 5, 6, or 7.
f1vel| sl x| seven One of the words five, six, or seven.
80[2- 4] 786 8086, 80286, 80386, or 80486.
80[2- 4] ?86| Pent i um 8086, 80286, 80386, 80486, or Pentium.
conpan(y|i es) company or companies.

ex or vi pattern What does it match?
\ <t he Words like theater, there, or the.
t he\ > Words like breathe, seethe, or the.
\ <t he\ > The word the.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ed, sed, or grep pattern What does it match?
O\{5,\} Five or more zerosin arow.
[0-9]\{3\}-]0-9]\{2\}-]10-9]\{4\} U.S. Socia Security number (nnn-nn-nnnn).
\(why\). *\1 A line with two occurrences of why.

\([[:alpha:] J[[:alnum]_.]*\) =\1;, | C/C++ simpleassignment statements.

1.3.4.1 Examples of searching and replacing

The following examples show the metacharacters available to sed or ex. Note that ex commands begin with a colon. A
spaceismarked by al_l; aTAB ismarked by a

Command Result
s/.*I(&)/ Redo the entire line, but add parentheses.
s/.*/mv & & ol d/ Change awordlist (one word per ling) into mv commands.
["$/d Delete blank lines.
. g/ "%/ d Same as previous, in ex editor.
[MNO—»]*$/d Delete blank lines, plus lines containing only spacesor s.
gl MM] *%$/d Same as previous, in ex editor.
s/ ol B Turn one or more spaces into one space.
- U/ ol A Same as previous, in ex editor.
:s/[0-9]/1tem &/ | Turnanumber into an item label (on the current line).
. S Repeat the substitution on the first occurrence.
& Same as previous.
. SQ Same as previous, but for all occurrences on theline.
: &Q Same as previous.
. V&g Repeat the substitution globally (i.e., on all lines).
.., $s/ Fortran/\ U& g On current lineto last line, change word to uppercase.
08/ . [\ L& L owercase entirefile.
s/\<./\u& g Uppercase first letter of each word on current line. (Useful for titles.)
%8/ yes/ No/ g Globally change aword to No.
. U8/ Yes/ ~/ g Globally change a different word to No (previous replacement).

Finally, here are some sed examples for transposing words. A ssimple transposition of two words might look like this:

s/die or do/do or die/

Thereal trick isto use hold buffers to transpose variable patterns. For example, to transpose using hold buffers:

s/\([Dd]lie\) or \([Dd]o\)/\2 or \1/

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.4 The sed Editor

The stream editor, sed, is a noninteractive editor. It interprets a script and performs the actions in the script. sed is
stream-oriented because, like many Unix programs, input flows through the program and is directed to standard
output. For example, sort is stream-oriented; vi is not. sed's input typically comes from afile or pipe, but it can also be
directed from the keyboard. Output goes to the screen by default but can be captured in afile or sent through a pipe
Instead.

Typical uses of sed include:
e Editing one or more files automatically
e Simplifying repetitive edits to multiple files
e \Writing conversion programs
sed operates as follows:
e Eachlineof input is copied into a pattern space, an internal buffer where editing operations are performed.
e All editing commands in ased script are applied, in order, to each line of input.
e Editing commands are applied to all lines (globally) unless line addressing restricts the lines affected.

e If acommand changes the input, subsequent commands and address tests will be applied to the current line
In the pattern space, not the original input line.

e Theorigina input file is unchanged because the editing commands modify a copy of each original input line.
The copy Is sent to standard output (but can be redirected to afile).

e sed also maintains the hold space, a separate buffer that can be used to save datafor later retrieval.

1.4.1 Command-Line Syntax

The syntax for invoking sed has two forms:
sed [-n] [-e] 'command' file(s)
sed [-n] -f scriptfile file(s)

Thefirst form allows you to specify an editing command on the command line, surrounded by single quotes. The
second form allows you to specify ascriptfile, afile containing sed commands. Both forms may be used together, and
they may be used multiple times. If nofile(s) is specified, sed reads from standard input.

The following options are recognized:
- N

Suppress the default output; sed displays only those lines specified with thep command or with thep flag of

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

the S command.

-ecnd

Next argument is an editing command. Useful if multiple scripts or commands are specified.

ffile

Next argument is afile containing editing commands.

If the first line of the script is#n, sed behaves asif - N had been specified.

1.4.2 Syntax of sed Commands

sed commands have the general form:

| address|, address]][!] command [ar gunent s]

sed copies each line of input into the pattern space. sed instructions consist of addresses and editing commands. If the
address of the command matches the line in the pattern space, then the command is applied to that line. If a command
has no address, then it is applied to each input line. If acommand changes the contents of the pattern space,

subsequent commands and addresses will be applied to the current line in the pattern space, not the original input line.

addresses are described in the next section. commands consist of asingle letter or symbol; they are described later,
aphabetically and by group. arguments include the label suppliedto b ort , the filename supplied tor or w, and the

substitution flagsfor s.

1.4.2.1 Pattern addressing

A sed command can specify zero, one, or two addresses. An address can be aline number, the symbol $ (for last

line), or aregular expression enclosed in slashes (/pattern/). Regular expressions are described in Section 1.3.
Additionaly, \ n can be used to match any newline in the pattern space (resulting from the N command), but not the

newline at the end of the pattern space.

|f the command specifies. Then the command isapplied to:
No address Each input line.
One address Qn r(ljy:h ne matching the address. Some commands accept only one address: a, 1 , T, q,
Two comma-separated First matching line and all succeeding lines up to and including aline matching the
addresses second address.
An address followed by | All lines that do not match the address.

1.4.2.2 Examples

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Command Action performed
s/ xx/yyl g Substitute on all lines (all occurrences).
[BSDY d Delete lines containing BSD.
["BEA N/, /"ENDY p Print between BEE N and END, inclusive.
[SAVE/ ! d Delete any line that doesn't contain SAVE.

[BEA N, / END/ ! s/ xx/ yy/ g Substitute on all lines, except between BEG N and END.

Braces ({ }) areused in sed to nest one address inside another or to apply multiple commands to the matched same
address.

[/ pattern/[,/pattern/]]{
comuandl
command?2

}

The opening curly brace must end its line, and the closing curly brace must be on aline by itself. Be sure there are no
spaces after the braces.

1.4.3 Group Summary of sed Commands

In the lists that follow, the sed commands are grouped by function and are described tersely. Full descriptions,
Including syntax and examples, can be found afterward in the Section 1.4.4 section.

1.4.3.1 Basic editing

a\ Append text after aline.
c\ Replace text (usually atext block).
|\ nsert text before aline.
Delete lines.
S Make substitutions.

Trandlate characters (like Unix tr).

1.4.3.2 Line information

Display line number of aline.
Display control charactersin ASCII.
Display the line.

o | | |l

1.4.3.3 Input/output processing

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

N Skip current line and go to the next line.

' 'Read another file's contents into the output stream.
W Write input lines to another file.

d Quit the sed script (no further output).

1.4.3.4 Yanking and putting

h Copy into hold space; wipe out what's there.

H Copy into hold space; append to what's there.

J Get the hold space back; wipe out the destination line.
G Get the hold space back; append to the pattern space.
X | Exchange contents of the hold and pattern spaces.

1.4.3.5 Branching commands

D Branch to label or to end of script.
t Same as b, but branch only after substitution.

. | abel |Label branchedtobyt orb.

1.4.3.6 Multiline input processing

N Read another line of input (creates embedded newline).
D Delete up to the embedded newline.
P Print up to the embedded newline.

1.4.4 Alphabetical Summary of sed Commands

sed
Command

#

Description

Begin acomment in ased script. Valid only as the first character of the first line. (Some versions allow
comments anywhere, but it is better not to rely on this.) If the first line of the script is#n, sed behaves as

If - N had been specified.
: | abel

Label alinein the script for the transfer of control by b or t . [abel may contain up to seven characters.
[/ pattern/]=

Write to standard output the line number of each line addressed by pattern.

| addr ess] a\
t ext

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Append text following each line matched by address. If text goes over more than one line, newlines must
be "hidden" by preceding them with a backslash. The text will be terminated by the first newline that is
not hidden in thisway. The text is not available in the pattern space, and subsequent commands cannot
be applied to it. The results of this command are sent to standard output when the list of editing
commands is finished, regardless of what happens to the current line in the pattern space.

[addr ess1[, addr ess?2]]b[l abel]

b Unconditionally transfer control to: | abel elsewherein script. That is, the command following the

label Isthe next command applied to the current line. If nolabel is specified, control falls through to the
end of the script, so no more commands are applied to the current line.

| addr ess1|, address?2]] c\
t ext

C Replace (change) the lines selected by the address(es) with text. (See a for details on text.) When arange
of linesis specified, al lines are replaced as a group by asingle copy of text. The contents of the pattern
space are, 1n effect, deleted and no subseguent editing commands can be applied to the pattern space (or
to text).

[addr ess1[, addr ess?]]d

Delete the addressed line (or lines) from the pattern space. Thus, the line is not passed to standard
output. A new line of input is read, and editing resumes with the first command in the script.

[addr ess1[, addr ess?2]]D

D Delete the first part (up to embedded newline) of multi-line pattern space created by N command and

resume editing with first command in script. If this command empties the pattern space, a new line of
input isread, asif the d command had been executed.

[addr ess1[, addr ess?2]]g

Paste the contents of the hold space (see h and H) back into the pattern space, wiping out the previous
contents of the pattern space.

[addr ess1[, addr ess?]]G

Same as g, except that a newline and the hold space are pasted to the end of the pattern space instead of
overwriting It.
[addr ess1[, addr ess?2]]h

Copy the pattern space into the hold space, a special temporary buffer. The previous contents of the hold
space are obliterated. Y ou can use h to save aline before editing it.

[addr ess1[, addr ess?2]]H

Append a newline and then the contents of the pattern space to the contents of the hold space. Even if
the hold space is empty, H still appends anewline. His like an incremental copy.

| address] i\
t ext

Insert text before each line matched by address. (See a for details on text.)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[addr ess1[, addr ess?2]]l

List the contents of the pattern space, showing nonprinting characters as ASCI| codes. Long lines are
wrapped.

[addr ess1[, addr ess?2]]n

n Read the next line of input into the pattern space. The current line is sent to standard output, and the next
line becomes the current line. Control passes to the command following n instead of resuming at the top
of the script.

[addr ess1[, addr ess2]]N

N Append the next input line to contents of the pattern space; the new line Is separated from the previous

contents of the pattern space by a newline. (Thiscommand is designed to allow pattern matches across
two lines.) By using \ n to match the embedded newline, you can match patterns across multiple lines.

[addr ess1[, addr ess2]]p

P Print the addressed line(s). Note that this can result in duplicate output unless default output is
suppressed by using #n or the- N command-line option. Typically used before commands that change

flow control (d, n, b), which might prevent the current line from being outpuit.
[addr ess1[, addr ess?2]]P

Print first part (up to embedded newline) of multiline pattern space created by N command. Same asp |f
N has not been applied to aline.

[addr ess]q

G Quit when address is encountered. The addressed line isfirst written to the output (if default output is
not suppressed), along with any text appended to it by previous a or r commands.

[address]r file

Read contents of file and append after the contents of the pattern space. There must be exactly one space
petween ther and the filename.

addr ess1[, address?2]]s/ pat/ repl/[fl ags]

Substitute repl for pat on each addressed line. If pattern addresses are used, the pattern/ / represents
the last pattern address specified. Any delimiter may be used. Use\ within pat or repl to escape the

delimiter. The following flags can be specified:

n

Replace nth instance of pat on each addressed line. n isany number in the range 1 to 512; the
default is 1.

Replace all instances of pat on each addressed line, not just the first instance.

Print the line If the substitution is successful. If several substitutions are successful, sed will

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

print multiple copies of theline.

wfile

Write the line to file if areplacement was done. A maximum of 10 different files can be opened.
[addr ess1[, addr ess?2]]t [| abel]

Test iIf successful substitutions have been made on addressed lines, and iIf so, branch to the line marked
by : | abel . (Seeb and:.) If label isnot specified, control branches to the bottom of the script. Thet

command is like a case statement in the C programming language or the various shell programming
languages. Y ou test each case; when it's true, you exit the construct.

[addr ess1[, address2]]jwfil e

Append contents of pattern space to file. This action occurs when the command is encountered rather
W than when the pattern space is output. Exactly one space must separate the w and the filename. A

maximum of 10 different files can be opened in a script. This command will create the fileif it does not
exist; If the file exists, its contents will be overwritten each time the script is executed. Multiple write
commands that direct output to the same file append to the end of thefile.

[addr ess1[, addr ess2]]x

Exchange the contents of the pattern space with the contents of the hold space.
[addr ess1[, addr ess?2]]ly/ abc/ xyz/

Trandate characters. Change every instance of atox, btoy, c to z etc.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.5 The awk Programming Language

awk Is a pattern-matching program for processing files, especially when they are databases. The new version of awk,
called nawk, provides additional capabilities. (It really isn't so new. The additional features were added in 1984, and it
was first shipped with System V Release 3.1 in 1987. Neverthel ess, the name was never changed on many systems.)
Every modern Unix system comes with aversion of new awk, and its use is recommended over old awk. The GNU
version of awk, called gawk, implements new awk and provides a number of additional features.

Different systems vary in what new and old awk are called. Some have oawk and awk, for the old and new versions,
respectively. Others have awk and nawk. Still others only have awk, which isthe new version. This example shows
what happens if your awk is the old one:

$ awk 1 /dev/null

awk: syntax error near line 1
awk: balling out near line 1

awk will exit silently if it isthe new version.

Items described here as "common extensions' are often available in different versions of new awk, as well as in gawk,
but should not be used if strict portability of your programs is important to you.

The freely avallable versions of awk described in Section 1.6 all implement new awk. Thus, references in the
following text such as "nawk only," apply to al versions. gawk has additional features.

With original awk, you can:
e Think of atext file as made up of records and fields in atextual database
e Peaform arithmetic and string operations
e Use programming constructs such as loops and conditionals
e Produce formatted reports
With nawk, you can al so:
e Define your own functions
e Execute Unix commands from a script
e Processthe results of Unix commands
e Process command-line arguments more gracefully
e Work more easily with multiple input streams
e Fush open output files and pipes (with the latest Bell Laboratories version of awk)

In addition, with GNU awk (gawk), you can:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e Useregular expressions to separate records, aswell asfields
e Skiptothe start of the next file, not just the next record

e Perform more powerful string substitutions

e Sortarrays

e Retrieve and format system time values

e Useocta and hexadecimal constantsin your program

e Do bit manipulation

e Internationalize your awk programs, allowing strings to be translated into alocal language at runtime
e Perform two-way |I/O to a coprocess

e Openatwo-way TCP/IP connection to a socket

e Dynamically add built-in functions

e Profileyour awk programs

1.5.1 Command-Line Syntax

The syntax for invoking awk has two forms:

awk [options] ‘'script' var=value file(s)
awk J[options] -f scriptfile var=value file(s)

Y ou can specify ascript directly on the command line, or you can store a script in ascriptfile and specify it with - f .
nawk allows multiple- f scripts. Variables can be assigned a value on the command line. The value can be a string or
numeric constant, a shell variable ($nane), or acommand substitution (' cnd), but the value is available only after

the BEG N statement is executed.

awk operates on one or more files. If none are specified (or if - Is specified), awk reads from the standard input.

The recognized options are:

-Ffs

Set the field separator to fs. Thisisthe same as setting the built-in variable FS. Original awk only alows the
field separator to be a single character. nawk allows fs to be aregular expression. Each input line, or record,

Isdivided into fields by white space (spaces or TABS) or by some other user-definable field separator. Fields
are referred to by thevariables $1, $2,..., $n. $0 refers to the entire record.
-v var =val ue

Available in nawk only. Assign avalue to variablevar. This allows assignment before the script begins
execution.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

For example, to print the first three (colon-separated) fields of each record on separate lines:

awk -F: '{ print $1; print $2; print $3 }' /etc/passwd

Numerous examples are shown later in the Section 1.5.4.3 section.

1.5.2 Important gawk Options

Besides the standard command-line options, gawk has alarge number of additional options. This section lists those
that are of most value in day-to-day use. Any unique abbreviation of these options is acceptable.

--dunp-variables[=fi 1] €]

When the program has finished running, print a sorted list of global variables, their types, and final valuesto
file. The default is awkvars.out.

- - gen- po

Read the awk program and print all strings marked as translatable to standard output in the form of a GNU
gettext Portable Object file. See Section 1.5.14 for more information.

--hel p
Print a usage message to standard error and exit.
--lint[=fatal]

Enable checking of nonportable or dubious constructs, both when the program isread, and as it runs. With an
argument of f at al , lint warnings become fatal errors.

--non-deci mal - dat a

Allow octal and hexadecimal datain the input to be recognized as such. This option is not recommended; use
strtonun() inyour program, instead.

--profile[=file]

With gawk, put a"prettyprinted" version of the program in file. Default is awkprof.out. With pgawk (see
Section 1.5.3), put the profiled listing of the program in file.

- - posi X
Turn on strict POSIX compatibility, in which all common and gawk-specific extensions are disabled.

--source=" programtext’

Use program text as the awk source code. Use this option with - f to mix command-line programs with awk
library files.

--tradi ti onal

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Disable all gawk-specific extensions, but allow common extensions (e.g., the* * operator for
exponentiation).

--VvVerslion

Print the version of gawk on standard error and exit.
1.5.3 Profiling with pgawk

When gawk is built and installed, a separate program named pgawk (profiling gawk) is built and installed with it. The
two programs behave identically; however, pgawk runs more slowly since it kegps execution counts for each

statement as it runs. When it is done, it automatically places an execution profile of your program in afile named
awkprof.out. (Y ou can change the filename with the - - pr of i | e option.)

The execution profile isa"prettyprinted” version of your program with execution counts listed in the left margin. For
example, after running this program:

$ pgawk '/bash$/ { nusers++ }
> END { print nusers, "users use Bash." }' /etc/passwd
16 users use Bash.

the execution profile looks like this:

gawk profile, created Wed Nov 1 14:34:38 2000

Rul e(s)

35 /bash$/ { # 16

16 nuser s++
}
END Dbl ock(s)
END {

1 print nusers, "users use Bash."

}

If sent SI GUSR1, pgawk prints the profile and an awk function call stack trace, and then keeps going. Multiple
S| GUSR1 signals may be sent; the profile and trace will be printed each time. This facility is useful if your awk

program appears to be looping, and you want to see if something unexpected is being executed.

If sent SI GHUP, pgawk prints the profile and stack trace, and then exits.

1.5.4 Patterns and Procedures

awk scripts consist of patterns and procedures:.

pattern { procedure }

Both are optional. If pattern ismissing, { procedure} isappliedtoal lines. If { procedure} ismissing, the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

matched line s printed.

1.5.4.1 Patterns

A pattern can be any of the following:

/ regul ar expression/
rel ati onal expression
pattern-mat chi ng expressi on

BEG N
END

e EXpressions can be composed of quoted strings, numbers, operators, function calls, user-defined variables, or
any of the predefined variables described later in Section 1.5.5.

e Regular expressions use the extended set of metacharacters and are described earlier in Section 1.3.

e The” and$ metacharacters refer to the beginning and end of a string (such as the fields), respectively, rather

than the beginning and end of aline. In particular, these metacharacters will not match at a newline
embedded in the middle of a string.

e Reational expressions use the relational operators listed in the section Section 1.5.6 later in this book. For
example, $2 > $1 sdectslines for which the second field is greater than the first. Comparisons can be
either string or numeric. Thus, depending on the types of datain $1 and $2, awk will do either a numeric or

a string comparison. This can change from one record to the next.

e Pattern-matching expressions use the operators ~ (match) and! ~ (don't match). See Section 1.5.6 later in
this book.

e TheBEG N pattern lets you specify procedures that will take place before the first input line is processed.
(Generally, you process the command line and set global variables here.)

e The END pattern lets you specify procedures that will take place after the last input record is read.

e Innawk, BEG N and END patterns may appear multiple times. The procedures are merged as if there had
been one large procedure.

Except for BEG N and END, patterns can be combined with the Boolean operators| | (or), && (and), and! (not). A
range of lines can also be specified using comma-separated patterns:

pattern, pattern

1.5.4.2 Procedures

Procedures consist of one or more commands, function calls, or variable assignments, separated by newlines or
semicolons, and are contained within curly braces. Commands fall into five groups:

e Variable or array assignments

e Input/output commands

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e Built-in functions
e Control-flow commands

e User-defined functions (nawk only)

1.5.4.3 Simple pattern-procedure examples

Print first field of each line:
{ print $1 }
Print all linesthat contain pattern:

[pattern/

Print first field of lines that contain pattern:

[pattern/ { print $1 }

Select records containing more than two fields:

NF > 2

Interpret input records as a group of lines up to ablank line. Each lineisasingle field:

BEGN{ FS = "\n"; RS ="" }

Print fields 2 and 3 in switched order, but only on lines whose first field matches the string URGENT
$1 ~ /URGENT/ { print $3, $2 }

Count and print the number of pattern found:

[pattern/ { ++x }
END { print x }

Add numbers in second column and print total:

{ total += $2 }
END { print "colum total 1s", total}

Print lines that contain less than 20 characters:

| engt h($0) < 20

Print each line that beginswith Nane: and that contains exactly seven fields:
NF == 7 && /*"Nane: /

Print the fields of each record in reverse order, one per line:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

}

for (I =

NF, i >=1; i--)

print 9i

1.5.5 Built-in Variables

All awk variables are included in nawk. All nawk variables are included in gawk.

Version
awk

nawk

gawk

Variable
FI LENANME

FS

NF

NR

OFMI
OFS

ORS

RS

$0

$n

ARGC
ARGV
CONVFMT
ENVI RON
FNR
RLENGTH
RSTART
SUBSEP
ARG ND

Bl NMCODE

ERRNO

Description
Current filename.
Feld separator (a space).
Number of fields in current record.
Number of the current record.
Output format for numbers (" % 69") and for conversion to string.
Output field separator (a space).
Output record separator (a newline).
Record separator (anewline).

Entire input record.
nth field in current record; fields are separated by FS.

Number of arguments on the command line.
An array containing the command-line arguments, indexed from 0to ARGC - 1.

String conversion format for numbers (" % 69"). (POSIX)
An associative array of environment variables.

Like NR, but relative to the current file.

Length of the string matched by mat ch() function.

First position in the string matched by mat ch() function.
Separator character for array subscripts (" \ 034").

Index in ARGV of current input file.

Controls binary /O for input and output files. Usevaluesof 1, 2, or 3 for input, output,
or both kinds of files, respectively. Set on the command line to affect standard input,
standard output, and standard error.

A string indicating the error when aredirection failsfor get | | ne orif cl ose()
fails.

FI ELDW DTHS A space-separated list of field widths to use for splitting up the record, instead of FS.

| GNORECASE

LI NT

PROCI NFO
RT

downloaded from: lib.ommolkefab.ir

When true, all regular expression matches, string comparisons, and | ndex() ignore
Case.

Dynamically controls production of "lint" warnings. With avalueof " f at al ", lint
warnings become fatal errors.

An array containing information about the process, such as real and effective UID
numbers, process |D number, and so on.

The text matched by RS, which can be aregular expression in gawk.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

TEXTDOVAI N The text domain (application name) for internationalized messages (" nessages”).

1.5.6 Operators

The following table lists the operators, in order of increasing precedence, that are available in awk:

Symbol M eaning
= += -= *= [= U N=**= Assignment 2]
?: C conditional expression (nawk only).
| | Logical OR (short-circuit).
&& Logical AND (short-circuit).
I N Array membership (nawk only).
~ 1~ Match regular expression and negation.
< <= > >= | = == Relational operators.
(blank) Concatenation.
+ - Addition, subtraction.
* | % Multiplication, division, and modulus (remainder).
+ - | Unary plus and minus, and logical negation.
Ak Exponentiation.[2]
++ - - Increment and decrement, either prefix or postfix.
$ Field reference.

2I'while ** and * * = are common extensions, they are not part of POSIX awk.

1.5.7 Variable and Array Assignment

Variables can be assigned avalue with an = sign. For example:
FS —_ 1 ’ 1]]

Expressions using the operators listed in the previous table can be assigned to variables.

Arrays can be created withthespl 1 t () function (described later), or they can simply be named in an assignment
statement. Array elements can be subscripted with numbers (ar r ay|[1], ..., arr ay[n]) or with strings. Arrays

subscripted by strings are called associative arrays. (In fact, all arrays in awk are associative; numeric subscripts are
converted to strings before using them as array subscripts. Associative arrays are one of awk's most powerful
features.)

For example, to count the number of widgets you have, you could use the following script:

[wdget/ { count["w dget"]++ } Count w dgets
END { print count["w dget"] } Print the count

Y ou can use the special f or loop to read all the elements of an associative array:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

for (1temin array)
process arrayl[item

Theindex of the array isavailableas| t em while the value of an element of the array can be referenced as
array[item.

Y ou can use the operator | N to test that an element exists by testing to see if itsindex exists (nawk only). For
example:

If (1 ndex 1 n array)

teststhat ar r ay|[| ndex] exists, but you cannot use it to test the value of the e ement referenced by
array| 1 ndex] .

Y ou can also delete individual elements of the array using the del et e statement (nawk only).

1.5.7.1 Escape sequences

Within string and regular expression constants, the following escape sequences may be used:

Sequence Meaning
\ a Alert (bell)

\'b Backspace

\ f Form feed

\'n Newline

\r Carriage return

\ t TAB

\'v Vertica tab

\\ Literal backslash

\ nnn Octal value nnn

\ Xnn Hexadecimal value nn
\ " _iteral double quote (in strings).
\/ _iteral dash (in regular expressions).

The\ X escape sequence is acommon extension, but it is not part of POSIX awk.

1.5.8 Octal and Hexadecimal Constants in gawk

gawk allows you to use octal and hexadecimal constants in your program source code. Theformisasin C: octal
constants start with aleading O, and hexadecimal constants with aleading Ox or OX. The hexadecimal digits a-f

may be in elther upper- or lowercase.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

$ gawk 'BEG N { print 042, 42, 0x42 }'
34 42 66

Usethest rt onunm() functionto convert octal or hexadecimal input datainto numerical values.

1.5.9 User -Defined Functions

nawk allows you to define your own functions. This makes it easy to encapsul ate sequences of steps that need to be
repeated into a single place, and re-use the code from anywhere in your program.

The following function capitalizes each word in a string. It has one parameter, named | nput , and five local
variables, which are written as extra parameters:

capitalize each word in a string

function capitalize(input, result, words, n, I, W)
{
result = ""
n =split(input, words, " ")
for (I =1; 1 <=n; 1++) {
w = words|i]
w = toupper(substr(w, 1, 1)) substr(w, 2)
f (i > 1)
result = result " "
result = result w
}

return result

}

main program for testing
{ print capitalize($0) }

With thisinput data

Atest line wwth words and nunbers like 12 on i1t.

this program produces:

A Test Line Wth Wirds And Nunbers Like 12 On It.

For user-defined functions, no space is allowed between the function name and the | eft
parenthesis when the function is called.

1.5.10 Group Listing of awk Functions and Commands

awk functions and commands may be classified asin the following table. For descriptions and examples of how to use
these commands, see Section 1.5.13.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Function type All awk versions nawk gawk
Arithmetic exp at an2
| Nt COS
| og rand
sqrt sSin
srand
String | ndex gsub asort
| engt h mat ch gensub
split sub strtonum
sprintf t ol ower
t oupper
Control flow br eak domhi | e
cont i nue return
exi t
for
| f /el se
whi | e
| nput/output next cl ose fflushl3
Processing pri nt getline nextfil el3l
printf
Programming del ete ext ensi on
function
system
3] Also in Bell Labs awk.
The following functions are specific to gawk:
Function type Functions
Bit manipulation and | shi ft rshift
conmpl or XOor
Time nkti nme strftinme systi ne
Trandation bl ndt ext domai n dcget t ext dcnget t ext

1.5.11 Coprocesses and Sockets with gawk

gawk allows you to open atwo-way pipe to another process, called acoprocess. Thisis done with the | & operator

usedwithget | i ne andprint orprintf.

print database command | & "db_server™

"db_server" | & getline response

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

If the command used with | & is afilename beginning with/ | net / , gawk opens a TCP/IP connection. The filename
should be of the following form:

/1 net/ protocol /| port/host nane/ rport

The parts of the filename are:

protocol

Oneof t cp, udp, orr aw, for TCP, UDP, or raw | P sockets, respectively. Note: r awis currently reserved

but unsupported.
|port

Thelocal TCP or UPD port number to use. Use O to let the operating system pick a port.
hostname

The name or |P address of the remote host to connect to.
rport

The port (application) on the remote host to connect to. A service name (e.g., t f t p) islooked up using the
Cget servbynane() function.

1.5.12 Implementation Limits

Many versions of awk have various implementation limits, on things such as.
e Number of fields per record
e Number of characters per input record
e Number of characters per output record
e Number of characters per field
e Number of charactersper pri nt f string
e Number of charactersin literal string
e Number of charactersin character class
e Number of files open
e Number of pipes open
e Theability to handle 8-bit characters and characters that are all zero (ASCII NUL)

gawk does not have limits on any of the above items, other than those imposed by the machine architecture and/or the
operating system.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.5.13 Alphabetical Summary of awk Functions and Commands

The following alphabetical list of keywords and functions includes all that are available in awk and nawk. nawk
Includes all old awk functions and keywords, plus some additional ones (marked asN). Extensions that aren't part of
POSI X awk but that are in both gawk and the Bell Laboratories awk are marked as E . Cases where gawk has
extensions are marked as G . Items that aren't marked with a symbol are available in all versions.

Command Description

and(exprl, expr2) G
and Return the bitwise AND of exprl and expr2, which should be valuesthat fitinaC unsi gned

| ong.
asort(src|, dest]) G

asort Sort the array src, destructively replacing the indexes with values from one to the number of
elementsinthe array. If dest i1s supplied, copy src to dest and sort dest, leaving src unchanged.
Returns the number of elementsin src.

atan2(y, x) N
atan2
Return the arctangent of y/x in radians.

bl ndt ext domail n(di r [, donmail n]) G

bindtextdomain Look in directory dir for message translation files for text domain domain (default: value of

TEXTDOVAI N). Returns the directory where domain is bound.

br eak
break _
Exit fromawhi | e, f or, or do loop.
cl ose(expr) N
cl ose(expr, how) G
In most implementations of awk, you can only have up to ten files open ssimultaneously and one
| pipe. Therefore, nawk providesacl ose() function that allowsyou to close afile or apipe. It
Close takes the same expression that opened the pipe or file as an argument. This expression must be
Identical, character by character, to the one that opened the file or pipe-even whitespace is
significant.
In the second form, close one end of either a TCP/IP socket or atwo-way pipe to a coprocess. how
iIsastring, either " f ronm’ or"t 0" . Case does not matter.
compl (expr) G
compl Return the bitwise complement of expr, which should be avalue that fitsinaC unsi gned
| ong.
cont i nue
continue

Begin next iteration of whi | e, f or, or do loop.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

COS

dcgettext

dcngettext

delete

do

exit

exp

extension

fflush

cos(x) N

Return the cosine of x, an anglein radians.
dcgettext (str [, dom[, cat]]) G

Return the trangdlation of str for the text domain dom in message category cat. Default text domain
iIsvalue of TEXTDOVAI N. Default category is” LC VESSAGES" .

dcngettext(strl, str2, num[, dom[, cat]]) G

If num Is one, return the trandation of strl for the text domain dom in message category cat.
Otherwise return the trandation of str2. Default text domain is value of TEXTDOVAI N. Default

category is” LC NMESSACGES" . For gawk 3.1.1 and later.
del etearray[el enment] N

deletearray E

Delete element from array. The brackets are typed literally. The second form is a common
extension, which deletes all elements of the array in one shot.

do
st at enent

whi | e

(expr)
N

L ooping statement. Execute statement, then evaluate expr and if true, execute statement again. A
series of statements must be put within braces.

exi t [expr]

Exit from script, reading no new input. The END procedure, if it exists, will be executed. An
optional expr becomes awk's return value.

exp(x)

Return exponential of x (€%).
extension(lib, init) G

Dynamically load the shared object file lib, calling the function init to initialize it. Return the value
returned by the init function. This function allows you to add new built-in functions to gawk. See
Effective awk Programming, Third Edition, for the details.

fflush([out put-expr]) E

Flush any buffers associated with open output file or pipe output-expr.

gawk extends this function. If no output-expr is supplied, it flushes standard output. If output-expr
Isthe null string ("), it flushes all open files and pipes.

for(init-expr;test-expr;incr-expr)
st at enent

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

for

for

function

gensub

getline

gsub

C-style looping construct. init-expr assigns the initial value of a counter variable. test-expr isa
relational expression that is evaluated each time before executing the statement. When test-expr is
false, the loop Is exited. incr-expr Is used to increment the counter variable after each pass. All of
the expressions are optional. A missing test-expr is considered to be true. A series of statements
must be put within braces.
for (1temin array)

st at enent

Special loop designed for reading associative arrays. For each element of the array, the statement is
executed; the element can bereferenced by ar r ay [I t enj. A series of statements must be put

within braces.

function nane(paraneter-list){N
st at enent s

}

Create name as a user-defined function consisting of awk statements that apply to the specified list
of parameters. No space is allowed between name and the |eft parenthesis when the function is
called.

gensub(regex, str, how|[, target]) G

General substitution function. Substitute str for matches of the regular expression regex inthe
string target. If how is anumber, replace the howth match. If itisg or G substitute globally. If

target is not supplied, $0 isused. Return the new string value. The origina target isnot modified.
(Compare with gsub and sub.)

getl i ne

getline [var][< file]N

command getline[var] N

command | & getline[var]G

Read next line of input. Original awk does not support the syntax to open multiple input streams or
use avariable.

The second form reads input from file and the third form reads the output of command. All forms

read one record at atime, and each time the statement Is executed it gets the next record of input.
The record isassigned to $0 and is parsed into fields, setting NF, NR, and FNR. If var isspecified,

the result is assigned to var and $0 and NF are not changed. Thus, if the result is assigned to a
variable, the current record does not change. get | | ne isactually afunction and it returns 1 if it

reads arecord successfully, O if end-of-file is encountered, and -1 if for some reason it is otherwise
unsuccessful.

The fourth form reads the output from coprocess command. See Section 1.5.11 for more
Information.

gsub(regex, str [, target]) N

Globally substitute str for each match of the regular expression regex in the string target. If target
is not supplied, defaults to $0. Return the number of substitutions.

| f (condition)
statenent 1

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

If

Index

Nt

length

|shift

match

mktime

next

nextfile

| el se
st at enent 2]

If condition istrue, do statementl, otherwise do statement2 in optional el se clause. The
condition can be an expression using any of the relational operators <, <=, ==, =, >= or >, as
well as the array membership operator I n, and the pattern-matching operators~ and! ~ (e.g., | f
($1 ~ /[Aa]. */)). A seriesof statements must be put within braces. Another | f can
directly follow an el se in order to produce a chain of tests or decisions.

| ndex(str, substr)

Return the position (starting at 1) of substr in str, or zero if substr is not present in str.
| Nt (X)

Return integer value of x by truncating any fractional part.
| engt h([ar g])

Return length of arg, or the length of $0 if no argument.
| og(x)

Return the natural logarithm (base e) of x.
| shi ft(expr, count) G

Return the result of shifting expr left by count bits. Both expr and count should be values that fit in
acunsi gned | ong.

mat ch(str, regex) N
match(str,regex [,array])G

Function that matches the pattern, specified by the regular expression regex, in the string str and

returns either the position in str where the match begins, or 0 if no occurrences are found. Setsthe
values of RSTART and RLENGT H to the start and length of the match, respectively.

If array is provided, gawk puts the text that matched the entire regular expression in array| O] , the
text that matched the first parenthesized subexpression in array| 1] , the second in array| 2] , and

SO on.
nktime(tinmespec) G

Turnstimespec (astring of theform ™ YYYY MM DD HH MM SS| DST] " representing aloca
time) into atime-of-day value in seconds since midnight, January 1, 1970, UTC.

next

Read next input line and start new cycle through pattern/procedures statements.
nextfileE

Stop processing the current input file and start new cycle through pattern/procedures statements,
beginning with the first record of the next file.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

or

print

printf

rand

return

r shift

SN

split

sprintf

sgrt

or (exprl, expr2) G

Return the bitwise OR of exprl and expr2, which should be values that fitinaC unsi gned
ong.
or I nt [out put -expr[,..]][dest-expr]

Evaluate the output-expr and direct it to standard output followed by the value of ORS. Each
comma-separated output-expr is separated in the output by the value of OFS. With no output-expr,
print $0. The output may be redirected to afile or pipe via the dest-expr, which is described in the

section Section 1.5.13.1 following this table.
printf(format [, expr-list]) [dest-expr]

An alternative output statement borrowed from the C language. It has the ability to produce
formatted output. It can also be used to output data without automatically producing a newline.

format Isastring of format specifications and constants. expr-list isalist of arguments
corresponding to format specifiers. Asfor pr i nt , output may be redirected to afile or pipe. See

the section Section 1.5.13.2 following this table for a description of allowed format specifiers.
rand() N

Generate a random number between 0 and 1. This function returns the same series of numbers each
time the script is executed, unless the random number generator is seeded using sr and() .

return[expr]N

Used within a user-defined function to exit the function, returning value of expression. The return
value of afunction is undefined if expr is not provided.

rshift(expr, count) G

Return the result of shifting expr right by count bits. Both expr and count should be values that fit
inaCunsi gned | ong.

sin(x) N

Return the sine of X, an angle in radians.
split(string, array [, sep])

Split string into elementsof array ar r ay[1] ,...,ar r ay[n] . Return the number of array
elements created. The string is split at each occurrence of separator sep. If sep is not specified, FS
IS used.

sprintf(format [, expressi ons])

Return the formatted value of one or more expressions, using the specified format. Datais
formatted but not printed. See the section Section 1.5.13.2 following this table for a description of
allowed format specifiers.

sqrt(arg)

Return square root of arg.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

srand

strftime

strtonum

sub

substr

system

systime

tolower

toupper

while

srand([expr]) N

Use optional expr to set anew seed for the random number generator. Default is the time of day.
Return value is the old seed.

strftinme([format [, t1 nestanp]]) G

Format timestamp according to format. Return the formatted string. The timestamp isatime-of-day

value in seconds since midnight, January 1, 1970, UTC. The format string is similar to that of
spri ntf.If timestamp isomitted, it defaults to the current time. If format is omitted, it defaults

to avalue that produces output similar to that of the Unix date command.
strtonun(expr) G

Return the numeric value of expr, which is a string representing an octal, decimal, or hexadecimal
number in the usual C notations. Use this function for processing nondecimal input data.

sub(regex, str [, target]) N

Substitute str for first match of the regular expression regex in the string target. If target isnot
supplied, defaultsto $0. Return 1 if successful; otherwise.

substr(string, beg], |en])

Return substring of string at beginning position beg (counting from 1), and the characters that
follow to maximum specified length len. If no length is given, use the rest of the string.

syst en{ conmand) N

Function that executes the specified command and returns its exit status. The status of the executed
command typically indicates success or fallure. A value of 0 means that the command executed
successfully. A nonzero value indicates afailure of some sort. The documentation for the command
you're running will give you the details.

The output of the command is not available for processing within the awk script. Use command |
get | I ne to read the output of acommand into the script.

systinme() G

Return atime-of-day value in seconds since midnight, January 1, 1970, UTC.
tolower(str) N

Translate all uppercase charactersin str to lowercase and return the new string !
t oupper(str) N

Trandate all lowercase charactersin str to uppercase and return the new string. [4]
while (condition)
st at enent

Do statement while condition istrue (see if for adescription of allowable conditions). A series of
statements must be put within braces.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

xor (exprl, expr2) G

Xor Return the bitwise XOR of exprl and expr2, which should be values that fitinaC unsi gned
| ong.

41 Very early versions of nawk don't support t Ol ower () and t oupper () . However, they are now part of the POSIX
specification for awk.

1.5.13.1 Output redirections

Forpri nt andpri ntf, dest-expr isan optional expression that directs the output to afile or pipe.
>file
Directs the output to afile, overwriting its previous contents.

>>f1] e

Appends the output to afile, preserving its previous contents. In both of these cases, the file will be created if
It does not already exist.

| command

Directs the output as the input to a system command.

| & command

Directs the output as the input to a coprocess. gawk only.

Be careful not to mix > and >> for the same file. Once afile has been opened with >, subsequent output statements
continue to append to the file until it is closed.

Remember to call cl ose() whenyou have finished with afile, pipe, or coprocess. If you don't, eventually you
will hit the system limit on the number of simultaneously open files.

1.5.13.2 printf formats

Format specifiersforpri ntf andspri nt f havethe following form:

% posn$] [flag][wdth][.precision]letter

The control letter isrequired. The format conversion control letters are given in the following table:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Character Description
C ASCII character.
d Decimal integer.

Decimal integer. (Added in POSI X)
~loating-point format ([-]d.precisione[+-]dd).
~loating-point format ([-]d.precisionE[+-]dd).

oating-point format ([-]ddd.precision).

e or f conversion, whichever is shortest, with trailing zeros removed.
E or f conversion, whichever is shortest, with trailing zeros removed.
Unsigned octal value.

String.

Unsigned decimal value.

Unsigned hexadecimal number. Usesa-f for 10 to 15.

Unsigned hexadecimal number. Uses A-F for 10 to 15.

Literal %

X|x|clololple|=~Imlo

S

gawk alows you to provide apositional specifier after the %(posn$). A positional specifier is an integer count
followed by a$. The count indicates which argument to use at that point. Counts start at one, and don't include the
format string. This feature is primarily for use in producing translations of format strings. For example:

$ gawk 'BEG@ N { printf "9@%s, %d$s\n", "world", "hello" }'
hell o, world

The optional flag is one of the following:

Character Description

- L eft-justify the formatted value within the field.

space Prefix positive values with a space and negative values with a minus.

+ Always prefix numeric values with asign, even if the value Is positive.

Use an alternate form:
%® hasapreceding O

% and %X are prefixed with Ox and O X, respectively
%e, Y&, and %6 always have adecima point in the result

%@ and %5 do not have trailing zeros removed

0 Pad output with zeros, not spaces. This only happens when the field width is wider than the converted
result. Thisflag appliesto all output formats, even non-numeric ones.

The optional width isthe minimum number of characters to output. The result will be padded to thissizeif it is
smaller. The O flag causes padding with zeros; otherwise, padding is with spaces.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The precision is optional. Its meaning varies by control letter, as shown in this table:

Conversion Precision means
%, % , Yo, Y, %, %X The minimum number of digitsto print.
Ye, Y, % The number of digitsto the right of the decimal point.
%9, %5 The maximum number of significant digits.
Vs The maximum number of charactersto print.

1.5.14 Internationalization with gawk

Y ou can internationalize your programs if you usegawk. This consists of choosing atext domain for your program,
marking strings that are to be translated and, if necessary, using thebi ndt ext domai n(),dcgettext(),

anddcnget t ext () functions.

Localizing your program consists of extracting the marked strings, creating translations, and compiling and installing
the trandlations in the proper place. Full details are given in Effective awk Programming, Third Edition.

The internationalization features in gawk use GNU gettext. Y ou may need to install these tools to create trandations if
your system doesn't already have them. Here isavery brief outline of the steps involved:

1. Set TEXTDOVAI N to your text domainin aBEG N block:
BEGA N { TEXTDOVAI N = "whi zprog" }

2. Mark al stringsto be trandlated by prepending aleading underscore:

3. printf(_"whizprog: can't open /dev/telepath (%)\n",
dcgettext (ERRNO)) > "/dev/stderr”

4. Extract the stringswith the- - gen- po option:
$ gawk --gen-po -f whizprog.awk > whi zpr og. pot
5. Copy thefilefor trandating, and make the translations:

6. $ cp whizprog. pot esperanto. po
$ ed esperanto. po

7. Usethe msgfmt program from GNU gettext to compile the trandations. The binary format allows fast lookup
of the trandations at runtime. The default output is afile named messages.

8. $ msgfnt esperanto. po
$ nv nessages esperanto. no

9. Instal thefilein the standard location. Thisisusually done at program installation. The location can vary
from system to system.

That'sit! gawk will automatically find and use the translated messages, if they exidt.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.6 Additional Resources
This section lists resources for further exploration.

1.6.1 Source Code

Thisfollowing URLs indicate where to get source code for GNU sed, four freely available versions of awk, and GNU
gettext.

ftp://ftp.gnu.org/gnu/sed/sed-3.02.tar.gz

The Free Software Foundation's version of sed. The somewhat older version, 2.05, Isaso avallable.

http://cm.bell-labs.com/~bwk

Brian Kernighan's home page, with links to the source code for the latest version of awk from Bell
L aboratories.

ftp://ftp.freefriends.org/arnol d/Awkstuff/mawk1.3.3.tar.gz

Michael Brennan's mawk. A very fast, very robust version of awk.

ftp://ftp.gnu.org/gnu/gawk/gawk-3.1.1.tar.gz

The Free Software Foundation's version of awk, called gawk.

http://awka.sourceforge.net

The home page for awka, atrandator that turns awk programs into C, compiles the generated C, and then
links the object code with alibrary that performs the core awk functions.

ftp://ftp.gnu.org/gnu/gettext/gettext-0.11.2.tar.gz

The source code for GNU gettext. Get this if you need to produce translations for your awk programs that use
gawk.

1.6.2 Books

1. DaleDougherty, Arnold Robbins, sed & awk, Second Edition (Sebastopol, Calif.: O'Rellly & Associates,
1997).

2. Alfred V. Aho, Brian W. Kernighan, Peter J. Weinberger, The AWK Programming Language (Reading,
Mass.: Addison Wedsley, 1988).

3. Arnold Robbins, Effective awk Programming, Third Edition (Sebastopol, Calif.: O'Reilly & Associates,
2001).

4. Brian W. Kernighan, Rob Pike, The Unix Programming Environment (Englewood Cliffs, N.J.: Prentice-

downloaded from: lib.ommolkefab.ir

http://cm.bell-labs.com/~bwk
http://awka.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Hall, 1984).

5. Arnold Robbins, Unix In A Nutshell, Third Edition (Sebastopol, Calif.: O'Rellly & Associates, 1999).
6. Jon Bentley, Programming Pearls, Second Edition (Reading, Mass.: Addison Wesley, 2000).

/. Jon Louis Bentley, More Programming Pearls. Confessions of a Coder (Reading, Mass.: Addison Wedley,
1988).

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Copyright
	sed & awk Pocket Reference
	Introduction
	Conventions Used in This Book
	Matching Text
	The sed Editor
	The awk Programming Language
	Additional Resources

