
Programming HTML5 Applications

http://lib.ommolketab.ir
http//lib.ommolketab.ir


http://lib.ommolketab.ir
http//lib.ommolketab.ir


Programming HTML5 Applications

Zachary Kessin

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Programming HTML5 Applications
by Zachary Kessin

Printing History:

ISBN: 978-1-449-39908-5
1315947718

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ix

1. The Web as Application Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
Developing Web Applications 1
Adding Power to Web Applications 3

2. The Power of JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
JavaScript's Triumph 5
Non-blocking I/O and Callbacks 7
Lambda Functions Are Powerful 8
Closure 10
Functional Programming 12
Prototypes and How to Expand Objects 15
Expanding Functions with Prototypes 17
Currying and Object Parameters 20
Array iteration operations 21
You Can Extend Objects, Too 24

3. Testing Javascript applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
QUnit 28

A Simple Example 28
Testing with QUnit 30
Mocking and Stubs 31

Selenium 31
Selenium Commands 34
Constructing tests With the Selenium IDE 37
Automatically running tests 37
Selenese Command Programing Interface 41
Running QUnit from Selenium 43
Selenium RC and a test farm 45

v

http://lib.ommolketab.ir
http//lib.ommolketab.ir


4. Local Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
The localStorage and sessionStorage Objects 48

Using localStorage in ExtJS 51
Offline Loading With a Data Store 53
Storing Changes for a Later Server Sync 55

JQuery Plugins 56
DSt 56
jStore 57

5. IndexedDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59
Adding and Updating Records 63
Adding Indexes 64
Retrieving data 65
Deleting data 66
Handling Errors 66

6. Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67
Blobs 67
Working With Files 69
Uploading Files 70
Drag and Drop 71
Putting it all together 71
Filesystem 73

7. Take it Offline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75
Introduction to the Manifest File 75

Structure of the Manifest file 76
Updates to the manifest 77

Events 79
Debugging Manifest Files 80

8. Splitting Up Work Through Web Workers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85
Web Worker Use Cases 87

Graphics 87
Maps 88

Using Web Workers 88
The Worker Environment 88
Worker Communication 89

Web Worker Fractal Example 89
Using Multiple Web Workers 96
Testing and Debugging Web Workers AKA SHOOT ME NOW! 96
A pattern for degredation 97

vi | Table of Contents

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Libraries for Web Workers 99

9. Web Sockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101
The Web Sockets Interface 103
The WebSocket Protocal 103
Web Socket Example 104
Web Socket Protocal 106

10. New Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109
Tags for Applications 109
Accessibility Through WAI-ARIA 110
Microdata 111
New Form Types 112
Audio and Video 113
Canvas & SVG 113
Geolocation 114
New CSS 114

Appendix: JavaScript Tools You Should Know . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117

Table of Contents | vii

http://lib.ommolketab.ir
http//lib.ommolketab.ir


http://lib.ommolketab.ir
http//lib.ommolketab.ir


Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does

ix

http://lib.ommolketab.ir
http//lib.ommolketab.ir


require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Book Title by Some Author. Copyright
2008 O’Reilly Media, Inc., 978-0-596-xxxx-x.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/0636920015116

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

x | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.oreilly.com/catalog/0636920015116
mailto:bookquestions@oreilly.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir


For more information about our books, conferences, Resource Centers, and the O’Re-
illy Network, see our web site at:

http://www.oreilly.com

Preface | xi

http://www.oreilly.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir


http://lib.ommolketab.ir
http//lib.ommolketab.ir


CHAPTER 1

The Web as Application Platform

HTML5 makes the Web a first-class environment for creating real applications.
HTML5 reinforces JavaScript's existing toolset with key extensions to the browser APIs
that make it easier to create applications that feel (and can be) complete in themselves,
not just views on some distant server process.

The Web began as a way to share files, stored on a web server, that changed only
occasionally. Developers quickly figured out how to generate those files on the fly,
taking the first big step toward building applications. The next big step was adding
interactivity in the browser client. JavaScript and the Document Object Model (DOM)
let developers create Dynamic HTML, as the "browser wars" raged and then suddenly
stopped. After a few years, Ajax brought these techniques back into style, adding some
tools to let pages communicate with the server in smaller chunks.

HTML5 builds on these twenty years of development, and fills in some critical gaps.
On the surface, many of HTML5's changes add support for features (especially multi-
media and graphics) that had previously required plugins, but underneath, it gives
JavaScript programmers the tools they need to create standalone (or at least more
loosely tethered) applications using HTML for structure, CSS for presentation, and
JavaScript for logic and behavior.

Developing Web Applications
In the old days, a complex web application might be a catalog, which would be static
pages derived from a database, or a JavaScript loan calculator. But no one would have
dreamed of doing complex applications in JavaScript. Those required Java or maybe a
dedicated client/server application written in C or C++. Indeed, in the days before the
DOM and Ajax, doing so in JavaScript would have been pretty much impossible.
However Ajax introduced the ability to interact with the server without reloding the
page, and the DOM allowed the programmer to change HTML on the fly.

In 2007 Google introduced Gears, a browser extension that gave the developer a lot
more power than had been there before. Gears allowed the browser to work offline, to

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir


store more data in the browser and have a worker pool to ofload long running tasks.
Gears has since been discontinued, as most of its features have migrated into HTML5
in modified forms.

The modern web features a full range of sites, from things that are still effectively old-
style collections of documents like Wikipedia, to sites that offer interactions with other
people such as Facebook, YouTube, and Ebay, to things that can only be described as
replacements for desktop applications such as Gmail and Goggle Docs. Many formerly
stand-alone applications, such as mail clients, have become part and parcel of the web
experience. In the modern Web, the line between applications and pages has blurred.
The difference at this point is only in the intent of the site.

Running an application in the browser has some major advantages for both the user
and the developer. For the user, there is no commitment to the application: you try it
out and if you don't like it you can move on to the next page with nothing left behind
to clutter up your disk. Trying new applications is also reasonably safe, in that they run
in a sandboxed environment. New versions of the application are automatically down-
loaded to the browser when the developer updates the code. Web applications rarely
have version numbers, at least public ones.

For the developer, the case is even stronger. First of all, the things that are an advantage
to the users are also good for the developers. There is no installation program to write,
and new versions can automatically be sent to the users, making small incremental
updates not only possible but practical. However there are other bonuses as well.

The web is cross-platform. It is possible to write a web page that will work on Windows
XP, Windows Vista, Windows 7, Mac OS X, Linux, the iPhone/iPad, and Android.
Doing that with a conventional development tool would be a monumental task. But
with the Web and some forethought it almost comes for free. A web application built
on standards with a library like jQuery (“jQuery” jQuery on page  0 ) will be able to
run on major browsers on all those platforms and a few others. While at one point Sun
hoped that its Java applets would define the web as a platform, JavaScript has turned
out to become the default web platform.

You can even run web applications on mobile devices, at least the ones today called
smartphones. With a wrapper like PhoneGap, you can create an HTML5 application
and package it for sale in the App Store, the Android Market, and more. You might
create an application that interacts heavily with a web server, or you might create a
completely self-contained application. Both options are available.

The real place that the Web, prior to HTML5, traditionally falls short is that a web
application, running on a computer with gigabytes of memory and disk space, acts
almost like it is running on an old vt320 terminal. All data storage must be done on a
server, all files must be loaded from the server, and every interaction pretty much re-
quires a round trip to the server. This can cause the user experience to feel slow, espe-
cially if the server is far away from the user. If every time the user wishes to look up
something there is a minimum response time of 400 milliseconds before any actions

2 | Chapter 1: The Web as Application Platform

http://lib.ommolketab.ir
http//lib.ommolketab.ir


can be taken, the application will feel slow. From my office in Tel Aviv to a server in
California, the round trip time for an ICMP ping is about 250 ms. Any action on the
server would be extra and slow that down even more. Mobile device communications
can, of course, be even slower.

Adding Power to Web Applications
HTML5 raises the bar for web applications. While it still has to work under security
constraints, it finally provides tools that desktop developers have expected for years:

Local data storage
Up to 5 MB of data, referenced with a key-value system.

Databases
Originally a SQLite-based API, the tide seems to have shifted to IndexedDB, a
NoSQL system that is natively JavaScript.

Files
While applications still can't freely access the file system, for obvious security rea-
sons, they can now work with files the user specifies and are starting to be able to
create files as well.

Taking it offline
When a laptop or phone is in "Airplane Mode", web applications can't communi-
cate with the server. Manifest files help developers get around that by caching files
for later use.

Web Workers
Threads and forks have always been problematic, but JavaScript simply didn't offer
them. Web Workers provide a way to put applications processes into separate
spaces where they can work without blocking other code.

Web Sockets
Hypertext Transfer Protocol (HTTP) has been the foundation of the Web, despite
a few updates over time. Web Sockets transform the request-response approach to
create much more flexible communications systems.

There's much more, of course, from geolocation to audio and video to canvas graphics
to a wide variety of minor new tags, but these provide the foundations for building
industrial-strength applications on HTML5.

Adding Power to Web Applications | 3

http://lib.ommolketab.ir
http//lib.ommolketab.ir


http://lib.ommolketab.ir
http//lib.ommolketab.ir


CHAPTER 2

The Power of JavaScript

JavaScript is not a difficult language to program, but it can be a challenge to rise to the
level of a true JavaScript expert. There are several key factors to becoming a skilled
JavaScript programmer. The techniques in this chapter will appear repeatedly in the
libraries and programming practices taught in the rest of this book, so you should
familiarize yourself with these techniques before continuing with those chapters.

There are a number of excellent tools for JavaScript programming, some of them listed
in Appendix. These tools can provide you with a lot of assistance. Specifically, JSLint
(JSLint on page 117) will catch a large number of errors that a programmer might miss.
Sites such as StackOverflow and  O'Reilly Answers will be a good source of other tools.

This chapter is not a full introduction to the power of JavaScript. There are a number
of excelent books on Javscript including these.

• JavaScript, The Good Parts by Douglas Crockford

• JavaScript: The Definitive Guide, by David Flanagan

• High Performance JavaScript, by Nicholas C. Zakas

• JavaScript Patterns, by Stoyan Stefanov

JavaScript's Triumph
Though JavaScript has been a key component of web development since it first ap-
peared in 1995, it spent a decade or so with a bad reputation. It offered weak perform-
ance, quirky syntax that led to mysterious bugs, and suffered from its dependence on
the DOM. Browsers kept it locked in a "sandbox", easing users' security concerns but
making it very difficult for developers to provide features that seemed trivial in more
traditional desktop application development.

Scripting culture created its own problems. While providing a very low barrier to entry
is a good thing, it does come with costs. One of those costs is that such a language often
allows inexperienced programmers to do some very ill-advised things. Beginning pro-
grammers could easily find JavaScript examples on the web, cut and paste it, change a

5

http://stackoverflow.com/
http://answers.oreilly.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir


few things, and have something that mostly works. Unfortunately, maintaining such
code becomes more and more difficult over time.

With the Ajax revival, developers took a new look at JavaScript. Some of those devel-
opers worked on improving the engines interpreting and running JavaScript code,
leading to substantial speed improvements. Others focused on the language itself, re-
alizing that it had some very nice features and were able to develop best practices like
those outlined in Douglas Crockford's JavaScript: The Good Parts (O'Reilly, 2008).

Beyond the core language, developers built tools that made debugging JavaScript much
easier. Although Venkman, an early debugger had appeared in 1998, the 2006 release
of Firebug became the gold standard of javascript debuggers. It allows the developer
to track Ajax calls, view the state of the DOM and CSS, as well as single stepping code
and much more. Browsers built on WebKit, notably Apple's Safari and Google Chrome,
offer similar functionality built in, and Opera Dragonfly provides support for Opera.
Even developers working in the confined spaces of mobile devices can now get Firebug-
like debugging with weinre, Web Inspector Remote.

The final key component in this massive recent investment in JavaScript was libraries.
Developers still might not understand all the code they were using, but organizing that
code into readily upgradeable and sometimes even interchangeable libraries simplified
code management.

jQuery
If anything can be described as the Gold Standard of JavaScript libraries it would
have to be John Resig's jQuery library which forms a wrapper around the DOM
and other Javascript objects such as the XMLHttpRequest object and makes doing
all sorts of things in JavaScript a lot easier and a lot more fun. In many ways jQuery
is the essential JavaScript library that every JavaScript programmer should know.

To learn jQuery see the jQuery website http://jquery.org, or a number of good
books on the subject such as "Head First jQuery" or the "jQuery Cookbook" both
published by O'Reilly. Many examples in this book are written using jQuery.

ExtJS
Whereas jQuery forms a wrapper around the DOM, ExtJS, from Sencha http://
sencha.com tries to abstract it away as much as possible. ExtJS features a rich
widget set that can live in a web page and provide many of the widgets, such as
trees, grids, forms, buttons and so on that desktop developers are familar with.
The entire system is very well thought out and fits together well and makes devel-
oping many kinds of applications a joy. While ExtJS tends to be heavy in terms of
the size of the library it is a good fit for some kinds of application development.

On nice feature of ExtJS is that many of its objects know how to save their state.
So if a user takes a grid and reorganizes the columns the next time the user views
that grid it is possible to set it up so that this state is saved. How to use the HTML5
localStorage to enhance this will be shown in “Using localStorage in
ExtJS” on page 51.

6 | Chapter 2: The Power of JavaScript

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Others
Tools such as GWT allow the programmer to write Java code, which is then com-
piled down to JavaScript and then can be run on the browser.

Non-blocking I/O and Callbacks
The first key to JavaScript, past the language itself, is to understand event-driven pro-
gramming. In the environment where JavaScript runs, operations tend to be asynchro-
nous, which is to say that they are set up in one place and will execute later after some
external event happens.

This can represent a major change from the way I/O happens in traditional languages.
Take Example 2-1 as a typical example of I/O in a traditional language, in this case
PHP. The line $db->getAll($query); will require that the database access the disk, and
therefore will take orders of mangitude more time to run than the rest of the function.
While the program is waiting for the server to execute the query statement is blocked
and the program is doing nothing. In a server side language like PHP, where there can
be many parallel threads or processes of execution, this isn't usually a problem.

Example 2-1. Blocking I/O in PHP

function getFromDatabase()
{
  $db = getDatabase();
  $query = "SELECT name FROM countries";
  $result = $db->getAll($query);
  return $result;
}
    

In JavaScript, however, there is only one thread of execution, so if the function is
blocked nothing else happens and the user interface is frozen. As such, JavaScript must
find a different way to handle I/O (including all network operations). What JavaScript
does is return right away from a method that might be perceived as slow, leaving behind
a function that gets called when the operation (say, downloading new data from the
web server) is done. The function is known as a callback. When making an Ajax call
to the server the Javascript launches the request then goes on to do something else. It
then provides a function that is called when the server call is finished. This function is
called (Hence the name callback) with the data that is returned from the server at the
time when the data is ready.

As an analogy, consider two ways of buying an item at a grocery store. Some stores
leave items behind the counter, so you have to ask a salesperson for it and wait while
she retrieves it. That's like the PHP program just shown. On the other hand, some stores
have a deli counter where you can request an order and get a number. You can go off

Non-blocking I/O and Callbacks | 7

http://lib.ommolketab.ir
http//lib.ommolketab.ir


to do other shopping, and when your order is ready, you can pick it up. That situation
is like a callback.

In general, a fast operation can be blocking, because it should return the data requested
right away. A slow operation, such as a call to a server that may take several seconds,
should be non-blocking and should return its data via a callback function. The presense
of a callback option in a function will provide a good clue on the relative time it will
take for an operation to run. In a single threaded language like JavaScript a function
can not block to wait for the network or user without locking up the browser.

So a major step to JavaScript mastery involves using callbacks strategically and knowing
when they'll be triggered. When you use a datastore object with Ajax, for example, the
data will not be there for a second or two. Using a closure (“Closure” on page 10) to
create a callback is the correct way to handle data loading. All such external I/O (da-
tabases, calls to the server) should be non-blocking in JavaScript, so learning to use
closures and callbacks is critical.

With a few exceptions that should probably be avoided, JavaScript I/O does not block.
The three major exceptions to this rule are the window methods alert(), confirm(),
and prompt(). These three methods do in fact block all JavaScript on the page from the
moment when they are called to the moment when the user dismisses the dialog. In
addition the XHR object can make an Ajax call to the server in a syncrous mode, this
can be used in a web worker but in the main window will cause the browser UI to lock
up. It should be avoided.

Lambda Functions Are Powerful
Programmers who have come to JavaScript from PHP or other procedural languages
will tend to treat JavaScript functions like those in the languages that they have already
used. While it is possible to use JavaScript functions in this way, it is missing a large
chunk of what makes JavaScript functions so powerful.

JavaScript functions can be created with the function statement (Example 2-2) or the
function expression (Example 2-3). These two forms look pretty similar, and both ex-
amples produce a function called square that will square a number. However, there are
some key differences. The first form is subject to hoisting, which is to say that the
function will be created at the start of the enclosing scope. So you can't use a function
statement when you want the function defined conditionally, because JavaScript won't
wait for the conditional statement to be executed before deciding whether to create the
function. In practice, most browsers allow you to put a function inside an if, but it is
not a good idea, as what browsers will do in this case can vary. It is much better to use
a function statement if the definition of a function should be conditional.

Example 2-2. Function declaration

function square(x) {
    return x * x;

8 | Chapter 2: The Power of JavaScript

http://lib.ommolketab.ir
http//lib.ommolketab.ir


} // Note lack of a ;

      

Example 2-3. Function statement

var square = function(x) {
    return x * x;
};

      

In the second form, the function expression, the function is created when execution
gets to that point in the flow of the program. It is possible to define a function condi-
tionally, or to have the function defined inside a larger statement.

The function expression, in addition, assigns no name to the function, so the function
can be left anonymous. However, the example shown assigns a name (square) on the
left side of the equal sign, which is a good idea for two reasons. First, when you are
debugging a program, assigning a name allows you to tell which function you're seeing
in a stack trace; without it, the function will show up as anonymous. It can be quite
frustrating to look at a stack trace in Firebug and see a stack of nine or ten functions,
all of which are simply listed as anonymous. Also assigning a function name allows you
to call the function recursively if desired.

A function expression can be used anywhere in JavaScript that an expression can ap-
pear. So a function can be assigned to a varible as in Example 2-3, but it can also be
assigned to an object member or passed to a function.

JavaScript functions are more like the Lisp lambdas than C functions. In C-type lan-
guages (including Java and C++) a function is basically a static thing. It is not an object
on which you can operate. While you can pass objects as arguments to functions, there
is little ability to build composite objects or otherwise expand objects.

Back in the 1950s when Lisp was first being created, the folks at MIT
were being heavily influnced by Alonzo Church's Lambda Caculus,
which provided a mathematical framework for dealing with functions
and recursion. So John McCarthy used the keyword lambda for dealing
with an anonymous function. This has propogated to other languages
such as Perl, Python, and Ruby. Although the keyword "lambda" does
not appear in JavaScript, its functions do the same things.

As in Lisp, functions in JavaScript are first class citizens of the language. A function in
JavaScript is just data with a special property that it can be executed. But like all other
variables in JavaScript, a function can be operated on. In C and similar languages,
functions and data are in effect two separate spaces. In JavaScript, functions are data
and can be used in every place that you can use data. A function can be assigned to a
variable, passed as a parameter, or returned by a function. Passing a function to another

Lambda Functions Are Powerful | 9

http://lib.ommolketab.ir
http//lib.ommolketab.ir


function is a very common operation in JavaScript. For example this would be used
when creating a callback for a button click (Example 2-4). Also, a function can be
changed by simple assignment.

Example 2-4. ExtJS Button with function as handler

var button = new Ext.Button({
    text: 'Save',
    handler: function() {
        // Do Save here 
    }

});

      

Closure
Access to functions as first class objects in JavaScript would not be worth as much,
were it not for the property that goes along with it called closure. Closure is yet another
element from Lisp that has migrated into JavaScript. When a function is created in
JavaScript, the function has access to any lexically scoped variables that were in the
environment that created it. Those variables are still available even if the context in
which they were originally defined has finished executing. The variables may be ac-
cessed and modified by the inner function as well as the outer function.

Closures are often useful for constructing callbacks. When ever a second function will
run as a response to some event but need to know what has happened before.

This is often useful when building a function generator, as each time the generator
function runs it will have a different outer state, which will be encapsulated with the
created function. It is also possible to create more than one function in a generator, all
of which are closed onto the same environment.

In the following example the dom element or css selector 'el' is wrapped in a function
to allow the HTML content to be set with a simple function call. The outer function
(factory) binds the element 'el' to a lexical variable which is used by the inner function
to set the dom element via jQuery. The outer function returns the inner function as its
return value. By wrapping the entire function in parethesies in this example it is possible
to call this function inline. In this example updateElement is set to the inner set function
already with the element already bound.

Closure is one of the most powerful features of the JavaScript function. In the simple
case it can be used to create functions that can access the variables of an outer scope
to allow callbacks to access data from the controlling function. However even more
powerful is the ability to create custom functions that bind variables into a scope.

10 | Chapter 2: The Power of JavaScript

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Example 2-5. Closure

// closure example
//

var updateElement = (function factory (el)
   {
        return function set(html)
        {
            $(el).html(html);        
        };
   }(el));

      

It is also possible to make several functions that are closed on one scope. If a function
returns several functions in an object or array, all of those functions will have access to
the internal variables of the creating function.

Example 2-6 adds to the browser's toolbar the buttons defined in the tools array. Each
of the buttons gets its own handler, named clickHandler. This function has access to
the callling function's variables, and embeds the button and tool variables into its op-
erations. You can easily update the application by adding or subtracting an element
from the tools array, and the button with all the defined functionality will appear or
disappear.

Example 2-6. Closure in a Button

$('document').ready(function Ready() {
    var button, tools;
    tools = ['save', 'add', 'delete'];
    console.info($('div#toolbar'));
    tools.forEach(function (tool) {
        console.info(tool);
        var button = $('<button>').text(tool).attr({
            css: 'tool'
        }).appendTo('div#toolbar');
        button.click(function clickHandler() {
            console.info(tool, button);
            alert("User clicked " + tool);
        });
    });

});
      

When using closures, it can be hard to know which variables are or are not in the scope
of a function. However, both Google Chrome's Dev tools and Firebug will show the
list of closed variables.

In Firebug the scope chain can be seen in the Script tab by looking under "Watch".
Under all the variables of the current scope will be a ladder of the scopes going up to
the main 'window' object.

Closure | 11

http://lib.ommolketab.ir
http//lib.ommolketab.ir


In Dev tools, for example, when the code is halted in the debugger, a subsection called
"closure" in the right hand column under Scope Variables will show the closed variables
for the current function (Figure 2-1). In this case, it shows that we have clicked on the
"delete" button and lists the reference to the jQuery object for the button itself.

Functional Programming
Functional programming is a methodology that is more commonly associated with
languages like Lisp, Scala, Erlang, F# or Haskall, but works quite well in JavaScript
also. Functional programming rests on a couple basic assumptions:

• Functions are first class citizens of the language an can be used where any other
value can be used.

Figure 2-1. Closures in Google Chrome's Dev tools

12 | Chapter 2: The Power of JavaScript

http://lib.ommolketab.ir
http//lib.ommolketab.ir


• Complex behavior can be built by composition of simple functions.

• Functions return values, in many cases a given function will always return the same
value for the same inputs.

In mathematics, functions do not have side effects. Take a classical mathematical func-
tion like y = sin(x). It just returns a value that y can store, but does not change x or
anything in the global state of the program. By ensuring that functions are "pure" (have
no side effects), this practice enables the function to be called from anywhere in the
program without causing something strange to happen. The problem with side effects
in programming is that they can cause strange dependencies that can be very hard to
track down. If calling a method can cause data to be corrupted somewhere else, it greatly
increases the potential for bugs that will be very difficult to track down.

JavaScript functions can have side effects and there is no built in way to prevent func-
tions from having side effects. In addition Javascript functions do not by default return
values unless the return statement has been explicitly invoked to return a value. In the
absanse of a return statement the function will return undefined.

When employing functional programing, the `programmer often falls into the pattern
of using many very small functions, often with only two or three lines of code each, to
accomplish a goal. This can be a very good design technique, as very short functions
are in general easier to make corrrect, as well as being easier to test.

When doing functional programming in Javascript it is often useful to have a function
return the implicit this variable to allow composition chains.

It is often the case that complex behavior can be built up from simple functions by
composition. A chain of functions can be built up from simple functions so that each
function in the chain returns this allowing the next function to be called.

The jQuery library often uses function changes such as in ??? on page 13. In this
example jQuery finds a DOM item, sets its text, fades it into view and then sets a click
handler on it that will hide it with a second dom chain.

     $('div.alert').text("Message").fadein(2000).click(
    function ()
    {
       $(this).fadeout(2000);
    }
    );
    

One very powerful pattern of Functional programming is the higher order function. A
higher order function takes a function as an argument to abstract out specific behavior
while leaving the generic behavior in the outer function.

A good example of a higher order function is the Array map function. “Array iteration
operations” on page 21 Which takes an array and returns a new array that is the result
of the passed function applied to each element in the array. This model can be applied

Functional Programming | 13

http://lib.ommolketab.ir
http//lib.ommolketab.ir


to a wide range of circumstances beyond just array manipulation. As a general patern
the Higher order function can be used whereever a geenric behavior needs a few specific
modifications.

The jQuery library tends to favor functional programing in its interface. The jQuery
interface tends to promote selecting a set of DOM nodes from the page and then pro-
viding a functional interface to interact with those nodes.

In addition most of the methods of jQuery return a value so that they can be chained.
For example to find all the images wider then a set size in a page one could select all
the images in the page, filter out all those smaller than 300 pixels then scale all those
that are left in the list.

Example 2-7 does exactly that. It selects all the images in a document, then filters out
those that have a width greater than 300 pixels (maxWidth), and scales those. By mak-
ing the filter and scale functions very simple it is possible to be very confidant that the
code will work as intended.

Example 2-7. Scaling Images

var scaleImages = (function (maxWidth){
  return function (){
   $('img').filter(function (){
      return  $(this).width() > maxWidth;
    }).each(function (){
       $(this).width(maxWidth);
    });

};
}(300));

      

When processing a list of operations in a time consuming process, such as in an Ajax
call. Sometimes it is not practical to send the entire list to the server in one request. For
example it may be that sending the entire list will cause the server to time out.

In this case to itterate over the list it is useful to think of the list as a head and tail. Take
the first element off of the list (or first few elements) and process that, then by use of
recurssion process the rest of the list until the list is empty.

At each time threw the loop the userinterface can be updated to show the progress to
the user so that he knows what is going on.

For example I have used this when adding data to a REST interface. Each call to the
interface takes on average about one second so it is not practical to call it 500 times
from one Ajax call. In this case I was able to process the list by recursion.

14 | Chapter 2: The Power of JavaScript

http://lib.ommolketab.ir
http//lib.ommolketab.ir


What's with the entire Ajax versus XHR terminology? The JavaScript
object is called XMLHttpRequest, which is abbreviated XHR. Ajax derives
from the term "Asynchronous JavaScript and XML," which was coined
by Jesse James Garret. Actually, in many cases the data being sent over
the network is not XML but may be JSON or other data.

Example 2-8. List Recursion

/* List recurssion example */

function itterateAjax(tasks) {
    function itterator(tasks) {
        $.ajax({
            url: 'index.php',
            data: tasks[0],
            success: function(data, status, XmlHttpRequest) {
                if (tasks.length > 0) {
                    // Do something with the results here
                    itterator(tasks.slice(1));
                }
            }
        });
    }
    itterator(tasks);
}

      

Although building an entire single page web application with only functional pro-
gramming styles would not be practical, there are many useful ideas here which should
not be ignored. Functional programming is very well suited for use with Web Workers
(Chapter 8).

Not a lot has been written about functional programming in JavaScript, but there is
quite a lot in other langauges that can be applied to JavaScript. For more on functional
programming, see these books:

• Real World Haskell, by Bryan O'Sullivan, John Goerzen, and Donald Bruce Stewart
(O'Reilly)

• Programming Scala, by Dean Wampler, and Alex Payne (O'Reilly)

• Structure and Interpretation of Computer Programs, by Harold Abelson and Gerald
Jay Sussman (MIT Press)

Prototypes and How to Expand Objects
Everything in JavaScript can have methods attached to it. Every element has some basic
methods that can be used by the programmer to enhance its usefulness. JavaScript
primitives such as Booleans, strings, and numbers have a second life as objects. The

Prototypes and How to Expand Objects | 15

http://lib.ommolketab.ir
http//lib.ommolketab.ir


transformation from primitive to object is transparent, so it is possible to apply these
methods to a primitive. Actally what happens is that a simple value, for example a
string, will be converted to an object, and then converted back if needed.

For strings, a large number of methods that can be called to manipulate them. A few
will modify the string in place, but most will return a new string. A full list can be found
on the Mozilla developers site, but here are a few highlights.

string.indexOf(‘x’)
Returns the first index of a substring in a string, or -1 if not found.

string.lastIndexOf(‘x’)
Same as indexOf(), but starting at the end.

string.match(/regexp/)
Matches a regular expression in a string.

string.replace(/regexp/)
Replaces a regexp (specified as a function or string).

string.split()
Splits up a string into an array of substrings.

string.slice()
Extracts a substring.

However, there may come a time when the predefined methods are not enough and
some custom functionality is required. In this case, JavaScript provides something very
powerful, a way to extend a built-in object. Although you can always assign a method
to a JavaScript object with a simple assignment, that is not always the best way to do
it. If you want to add a method to every string, you can attach a method to the
String.prototype object. In the JavaScript object system, each object inherits from a
chain of prototypes, so by adding methods somewhere in that chain you can add to an
entire type of object.

Here is an example to illustrate the concept. The goal is to create a new method named
populate that substitutes values into a template. The template is the object on which
the method is called, for instance:

Hello {name}

The string should contain keywords in curly braces that the programmer wants to
replace with specific values. The parameter to populate is an object specifying keywords
in the template and values to substitute. Thus, if the argument contains a property
called name, the value for name is plugged into the string.

Once the following code is run, the populate method is attached to all strings. When
populate is called, it refers to the string on which it is called through the standard
JavaScript object this. Having the value of this, the populate method can use simple
substitution to plug in values from its parameter. In general, it is a good idea to not

16 | Chapter 2: The Power of JavaScript

https://developer.mozilla.org/en/javascript
http://lib.ommolketab.ir
http//lib.ommolketab.ir


modify the object on which a method is called, but to return a new instance of the
object (an idea from functional programming).

Example 2-9. String Token Replacement

String.prototype.populate = function populate(params) {
    var str = this.replace(/\{\w+\}/g, function stringFormatInner(word) {
        return params[word.substr(1, word.length - 2)];
    });
    return str;
};

"Hello {name}".populate({
    name: "Zach"
});

      

Of course, Strings are not the only types of objects in JavaScript that have prototypes,
Numbers, Arrays, Objects, Functions, and Booleans do as well.

Extending the prototypes of basic objects such as Object, Array, etc.,
can sometimes break libraries. The culprit is usually creating a property
that already existed on the object. Be sure that the property you are
creating does not exist before adding it, and test carefully.

In truth extending base types in Javascript is a practice that attracts a
lot of debate. Some people say it should never be done. I think that it is
such a powerful tool that it can not be ruled out completly.

The Number prototype works exactly the same way as the one for strings. So it is very
possible to define a new method to take care of any need that may be required. If, for
example, an application requires squaring numbers on a regular basis, it would be easy
to add this method:

Example 2-10. Using Number.prototype

Number.prototype.square = function square() {
    return this * this;
};
6.square(); // 36

      

Expanding Functions with Prototypes
In addition to data objects such as strings and arrays, functions also have a prototype.
This can be used to create composite functions that are very powerful. By combining
simple functions into larger units, using the Function.prototype to add methods to the
Function object, you can pull apart complex logic into much simpler cases. In fact,

Expanding Functions with Prototypes | 17

http://lib.ommolketab.ir
http//lib.ommolketab.ir


many toolkits do exactly this and provide some methods to accomplish some of these
tasks.

One example of prototyping, which may increase the robustness of your code through-
out its execution, is to add error-checking before executing a function. In the following
example, a cube function runs without checking that its input is a number. The code
wraps the function in an interceptor that does the check. Whenever cube is subsequently
called, the interceptor runs first, then calls the original cube if the input is a number.

Example 2-11. Function interceptor

Function.prototype.createInterceptor = function createInterceptor(fn) {
    var scope = {};
    return function() {
        if (fn.apply(scope, arguments)) {
            return this.apply(scope, arguments);
        }
        else {
            return null;
        }
    };
};

var interceptMe = function cube(x) {
    console.info(x);
    return Math.pow(x, 3);
};

// 
var cube = interceptMe.createInterceptor(function(x) {
    return typeof x === "number";
});

      

As a more extensive example, say that you wish to compute Fibonacci sequences reg-
ularly. A very simple brute force approach would be something like Example 2-12.
However something as trivial as fib(40) would take quite a long time to run.

Example 2-12. Basic Fibonacci

var fib = function fib(n) {
    if (n === 1 || n === 2) {
        return 1;
    }
    return (fib(n - 1) + fib(n - 2));
};

      

A quick trace through a sample run of this function shows that it does a lot of redundant
calculations. It would be much faster to have a Fibonacci method that could calculate
each value only once. We can do this by wrapping the Fibonacci function with an

18 | Chapter 2: The Power of JavaScript

http://lib.ommolketab.ir
http//lib.ommolketab.ir


interceptor method that caches the result of each iteration (Example 2-13). The inter-
ceptor does not need to know anything about how a Fibonacci sequence is generated;
it just has to know that for a given input it should always produce the same output. So
once fib(n) is computed, it becomes a simple matter of doing a lookup, and if it is not
known, it can be computed.

Example 2-13 has two parts: the cache method and the actual Fibonacci sequence gen-
erator. The cache method does not know anything about the Fibonacci sequence except
for one fact: that any given input value will always return the same value, which can
be cached. Thus, when decoratedFib(32) is called, the first thing that will happen the
cache will check whether it has already computed the result for 32. If it has, it will just
return it. If it has not, it will start to compute it. But the Fibbonacci sequence is heavily
recursive. So to compute the Fibbonacci sequence for 32, the function first must com-
pute it for 31, and so on. The function will recursively look for a solution until it hits
a value it has. If this is the first time running the function, it will find n = 2 and n = 1,
which are in the seed values.

Although the Fibonacci sequence is not something many people spend much time on
it is a good example of how using a function prototype can take two very short functions
and combine them for a very powerful result.

These examples more complex then it realy has to be in order to show
the idea of how to cache function results from functions that have no
side effects. Really this is probably not the best way to write this code.

Example 2-13. Advanced Fibonacci

var smartFib = (function makeFib() {
    var fibsequence = [0, 1, 1];
    var fib = function fib(n) {
        if (fibsequence[n]) {
            return fibsequence[n];
        }
        fibN = fib(n - 1) + fib(n - 2);
        fibsequence[n] = fibN;
        return fibsequence[n];
    };
    return fib;
}());

Function.prototype.decorate = function Decorate(params) {
    return params.decorator(this, params.initialData);
};

var cache = function cache(lambda, initial) {
    return function cacheRunner(n) {
        if (initial[n] !== undefined) {
            return initial[n];
        }

Expanding Functions with Prototypes | 19

http://lib.ommolketab.ir
http//lib.ommolketab.ir


        else {
            initial[n] = lambda(n);
            return initial[n];
        }
    };
};

var decoratedFib = function fib(n) {
    return decoratedFib(n - 1) + decoratedFib(n - 2);
}.decorate({
    decorator: cache,
    initialData: [0, 1, 1]
});

      

Suppose that you have a function that should run periodically in response to user inputs
but should not run more than once in a given time period. It would be simple using the
Function prototype to create a wrapper function that would store when that function
was last called and keep it from running if it is called again within the designated time.
You could choose just to not run it quietly, or throw an exception, as needed by the
application.

On the flip side, it is also possible to create a method to a function that will cause it
execute after a delay, or periodically. Often, a task needs to run after an event but should
not run too often. For instance, you might want to check on what a user is typing, but
running the check after every keystroke would be excessive. Setting up a method that
will run only once every 250 ms would make sense.

There are two approaches to this. First, you could run the method once and not allow
it to run again until the required time has passed. Or you could create a method that
will run at some time interval after it is called, and will reset the timer when called. This
pattern is useful if the objective is have something run when the user stops typing or
when some other set of events pauses. In practice, a new method would act as a wrapper
around the basic JavaScript setTimeout() and setInterval() methods, but make their
use more convenient. It is also possible to create a method that will schedule a future
task and cancel an existing task if it has already been scheduled.

Currying and Object Parameters
In functional programming, one common programming model is "currying" a function.
Named for a feature of Haskell, currying refers to the practice of combining several
parameters into a single object so you can pass them to a function as a single parameter.
If a function needs to take a large number of parameters, it is often best in JavaScript
to forgo the long parameter list and take a single object as a parameter. By using an
object as the parameter, you can turn all the various options into name/value pairs.
One benefit of doing so is that the ordering of arguments becomes irrelevant. Further-
more, you can make some or all of the parameters optional. For complex methods

20 | Chapter 2: The Power of JavaScript

http://lib.ommolketab.ir
http//lib.ommolketab.ir


accepting many options, this can be a great help. In particular, it is often useful for
some of the object creation methods in ExtJS.

The easiest way to curry parameters is to create a function that takes a parameter block
and returns a function that will call the original function with the pre-supplied param-
eters as defaults. This way, you can establish a set of defaults that you don't have to
specify each time, while allowing callers to change any parameters they want.

Example 2-14. Curry Example

Function.prototype.curry = function FunctionCurry(defaults) {
    var fn = this;
    return function(params) {
        return fn.apply(this, defaults.concat(params));
    };

};

      

This pattern can also be applied to object creation. For an object constructor that takes
a parameter block, it is possible to subclass the object with a custom class that calls the
parent constructor with a set of default parameters overlaid onto what the user passed.

Array iteration operations
Like other first class objects in JavaScript, Arrays also have methods. The standard array
has a number of methods for the programmer. In the more recent versions of Firefox
(post 1.5), a number of standard iteration methods have also been created.

The basic idea of these operations is that you take a lambda function and apply it to
each element of an array to produce some result. Using this approach with a few smaller
functions allows you take an array and create a set of operations on it that can build an
algebra of arrays. This in turn lets you build up a very robust set of operations from a
basic set of operations.

The first of the array methods is map(). Map takes an array and a method. It then applies
the method to each element of the array and creates a new array from the return values.
So given an array of numbers, it would be possible to create an array of squares of each
of the numbers by simply applying a square function in map().

The array methods such as map are avalable on most modern browsers.
However If they are not avalable they can be added. Sample code for all
of the array methods can be found on the mozilla developer site.

As of Internet Explorer version 9 these methods exist in all major brows-
ers

Array iteration operations | 21

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The called function receives as parameters the current value of the array, the index of
the current position in the array, and the entire array. Usually, the map worker function
will only need to look at the current value of the array, as in Example 2-15.

Example 2-15. Array Map

    [1, 2, 3, 4 , 5].map(function (x){
    return x* x;
    });
    //Result:  [1,4,9,16,25]
      

However, there are a few cases where that may not be enough. In Example 2-16, the
desire is to show a running average of the values in an array, so each element needs to
know about its neighbors.

Example 2-16. Running Average Example

function makeRunningAverage(list, size){
    return list.map(function (current, index, list){
            var start, end, win;
        /* find start and end points of the rolling average window */
            start = index - size < 0? 0: index-size;
            end  = index + size > list.length? list.length : index+ size;
        /* extract that window */
            win = list.slice(start,end);
        /* take an average */
            return win.reduce(function (accumulator, current){return accumulator + current;}, 0)
            / (end - start);
            
            });

}
      

There are a few big advantages to using array elements over a for loop. First of all, it is
logically clean and isolates the iteration code, allowing the programmer to think of the
array as a whole. Secondly, by avoiding side effects, in the inner function and keeping
the functions short, it is possible to write very robust code.

Another case that should be considered is when adding callback handlers. If you were
to use a for loop to iterate over items and addn handlers, you cannot use the closure
property of JavaScript functions. You might be tempted to use something like Exam-
ple 2-17. However this will not do what you expect. In this case, the method will always
show the last element. What is deceptive is that here, the value of i that is referenced
in all cases is the final value. A closure will always see the current value of a variable,
not the value when it was created. The for loop changes the value of i as it itterates
over the list. In the Example 2-18 example, the code will work correctly. In this case

22 | Chapter 2: The Power of JavaScript

http://lib.ommolketab.ir
http//lib.ommolketab.ir


the node referenced in each iteration is independent because it is inside the scope of
the function.

Example 2-17. Loop With For

for (var i = 0; i < nodes.length; i += 1) {
    nodes[i].bind('click', function() {
        console.info(nodes[i]);
    });
}

      

Example 2-18. Binding with forEach

nodes.forEach(function(node) {
    node.bind('click', function() {
        console.info(node);
    });
});

      

The next method of note is filter(). Filter takes an array and returns the subset of the
array for which the method returns true. The iterator function here receives the same
parameters as it does for map but should return a boolean value

Example 2-19. Filter

    [1,2,3,4,5].filter(even); => [2,4]
      

If you wish to know whether some fact is true for all elements of an array, use
every(). It will apply a method to an array and return true if the method returns true
for all elements in the array. It will stop after the first false.

If you wish to know whether some condition is true for at least one element of the list,
use the some() method. This will return true if at least one element of a list returns true.
Like every(), it will evaluate only enough elements to get a result.

The last two operators in the JavaScript algebra of arrays are reduce() and reduce
Right(). The first method takes an array and reduces it to some single value. It is useful
as an accumulator. In this case, the calling function also receives the accumulated value.
So using reduce() to sum up a list would look like the following listing. You can provide
an optional initial value, which will be passed as the previous value on the first iteration.
If you do not, it will start by using the first two elements of the array.

Example 2-20. Reduce

    [0,1,2,3,4,5].reduce(function(prev, current){
                           return prev + current;

Array iteration operations | 23

http://lib.ommolketab.ir
http//lib.ommolketab.ir


                              },
                             initialValue);
      

If the JavaScript array algebra does not provide the method you need for a task, use the
Array.prototype object to create it. If you have a list of numbers and you need to create
a standard deviation from that list, for instance, you can simply apply a standard de-
viation method. In Example 2-21 a Standard Deviation method is added to the array
prototype.

Example 2-21. Standard Deviation

    var stdDev = [1,2,7,2....].stddev();
      

Array.reduce.sum = function sum() {
    var sum = this.reduce(function(previous, current) {
        return previous + current;
    });
    return sum;
};

Array.prototype.square = function squareArray() {
    return this.map(function(x) {
        return x * x;
    });
};

Array.prototype.mean = function mean() {
    return this.sum() / this.length;
};

Array.prototype.standardDeviation = function standardDeviation() {
    var mean = this.mean();
    var int1 = this.map(function(n) {
        return n - mean;
    });
    var int2 = int1.square();
    var int3 = Math.sqrt(int2.sum() / mean.length);
};

//Give it a shorter name
Array.prototype.stddev = Array.prototype.standardDeviation;

      

You Can Extend Objects, Too
If you like the map function in arrays and wish you had that for objects as well, there
is no reason why you could not add it. It is possible to build a map function that will
not only visit all the nodes of a JavaScript object but will also recursively apply a function

24 | Chapter 2: The Power of JavaScript

http://lib.ommolketab.ir
http//lib.ommolketab.ir


to each of its subnodes. This can be very useful for turning a data structure into some
form of a node tree. The following example checks to see whether the user's browser
has already defined map() and filter() for the object being assigned to, then defines
the functions if necessary.

Example 2-22. Extending map and filter to Objects

if (Object.prototype.map === undefined) {
    Object.prototype.map = function(fn) {
        var newObj = {};
        for (var i in this) {
            if (this.hasOwnProperty(i)) {
                newObj[i] = fn(i, this[i], this);
            }
        }
        return newObj;
    };
}

if (Object.prototype.filter === undefined) {
    Object.prototype.filter = function(fn) {
        var newObj = {};
        for (var i in this) {
            if (this.hasOwnProperty(i)) {
                if (fn(i, this[i], this)) {
                    newObj[i] = this[i];
                }
            }
        }
        return newObj;
    };
}

      

JavaScript Objects can become arbitrarily complex trees in modern applications. It
would be nice to be able to find a specific subtree of an object, by a path similar to the
way one might specify a path in a file system. This is actually rather easy to accomplish.

The path method takes a path in the form of a Unix file path, /path/to/our/data. It
then uses an inner function to recursively move down the data tree until it finds the
requested element and returns it, or realizes the element is not present, in which case
it will return undefined. At first glance, it would seem to make sense to just call the top-
level path function for each iteration. This would not be a good idea, as it is possible
that in some cases there will be an indexed array at some point in the path, causing the
iteration to break if the Array.prototype is not the same as the Object.prototype. By
doing the search with an inner function, you avoid this problem.

This method can handle arrays as well as objects. Since both Arrays and objects can be
addressed with the square bracket notation if a part of the path is a number, ie /4/ then
it will take the 4th element in the array.

You Can Extend Objects, Too | 25

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Example 2-23. Select By Path

Object.prototype.path = function FindByPath(path) {
    var elementPath = path.split('/');
    var findItter = function findItter(element, path) {
        // If the element is empty just ignore it and move on
        if (path[0] === '') {
            return findItter(element, path.slice(1));
        }
        if (element[path[0]] === undefined) {
            return undefined;
        }
        if (path.length === 1) {
            return element[path[0]];
        }
        return findItter(element[path[0]], path.slice(1));
    };
    return findItter(this, elementPath);
};

      

26 | Chapter 2: The Power of JavaScript

http://lib.ommolketab.ir
http//lib.ommolketab.ir


CHAPTER 3

Testing Javascript applications

Testing has become a key element of development in most server-side development
platforms. Solid test harnesses can be found in development environments for PHP,
Java, Ruby and so on. However the standard method for testing in most of these lan-
guages does not work well for Javascript. Let's look at a few reasons why.

Server-side test suites generally have to test the program under just one set of environ-
ments. If a REST service is being built with Python, the tester can build the tests with
several safe assumptions. For instance, they may know that it will run on Python version
3.0 on Linux, along with specific versions of all the supporting software.

The web application developer has no such confidence. Users will come to the site using
Firefox, Internet Explorer, Chrome, Safari, and Opera—and several versions of each.
So test suites must be able to handle testing across a number of browsers and operating
systems, each of which is a little bit different.

There are two main sources of differences, there are differences in the language itself
between different browsers. For example Firefox supports the keyword const while
Internet Explorer does not. Secondly many HTML interfaces only exist in some brows-
ers or browser versions. Many of the various JavaScript interfaces in this book only
exist in some browsers. So tests must be able to adjust to those differences and handle
degredation where needed.

The run-time model for JavaScript is also more complex. In a server-side language, a
unit test generally consists of a few sequential steps:

1. Set up any needed fixtures.

2. Run the method to be tested.

3. Test the results of the method against some criteria.

However, this model does not fit Javascript, where the results of an action may not be
immediate but may happen some time later. A test like this would fail in Javascript as
there can be delay between when the method is run and when its results will become
avalible. In Javascript, testing a test may go more like this:

27

http://lib.ommolketab.ir
http//lib.ommolketab.ir


1. Set up any needed fixtures.

2. Run the method to be tested.

3. Wait for an Ajax call to complete.

4. Check the DOM for the results of the action (including undesired effects on un-
expected parts of the page).

In addition, there is the complication that in many cases the method to run is a callback
on a DOM element. In order to run unit tests in this case, you really want to find the
DOM Element and send it the correct event. That way, the handler is invoked in a
manner as similar as possible to when an actual user is using the application. Even that
is not enough: it doesn't reproduce the experience of a user clicking through various
complex interfaces in the DOM.

QUnit
QUnit is a Javascript test suite from the same team that produced jQuery. To create a
test suite in QUnit, call the test function with two arguments: the test suite name and
a function that will actually run the tests.

It is also possible to configure QUnit to complain if any new global
variables have been introduced by running a test, and because global
variables are one of the major sources of Javascript bugs, this is a very
helpful feature. To test for leaking global variables, add ?noglobals to
the URL when starting the tests.

Use of JSLint JSLint on page 117 can also be very helpful in finding
leaking globals and a lot of other errors. It is possible to run JSLint over
a set of javascript files as part of an automated test suite.

A Simple Example
As an example let us consider a very trivial Ajax application. In Example 3-1 We have
a HTML page with a button. When the button is clicked, the JavaScript handleButton
Click() function will make an Ajax query to the server for a document (in this case, a
static HTML document) and then place that document in a <div> in the page. Note
that for simplicity I have placed the JavaScript in the document directly. A cleaner
implementation would keep the JavaScript in a separate file that the test runner loads
along with the tests.

To test this we want to run the button callback and verify the results are correct. There
are two ways that this can be done. The test program could send a click event to the
button, or it could call the function directly. For testing in QUnit it is simpler to call
the function directly, but that requires us to bind the function to some variable that
can be seen by the test runner. I have done this in the example, assigning the function

28 | Chapter 3: Testing Javascript applications

http://lib.ommolketab.ir
http//lib.ommolketab.ir


to the variable handleButtonClick. after calling the callback the test function waits for
a short time to allow the ajax call to run then uses JQuery to check if the element is
present.

Example 3-1. Simple Application

          <!DOCTYPE html>
<html>
<head>
  <script src="http://code.jquery.com/jquery-latest.js"></script>
  <script src='button.js'>
  </script>
  <script>
var handleButtonClick = function handleButtonClick(){
  $().get('document.html', '', function(data, status){
         $("<div>").attr({id:'target_div'}).text(data).appendTo('body');
      });
};

$('button.click_me').click(handleButtonClick);
 </script>
  <link rel="stylesheet"
          href="http://github.com/jquery/qunit/raw/master/qunit/qunit.css"
          type="text/css"
        media="screen" />
  <script    src="http://github.com/jquery/qunit/raw/master/qunit/qunit.js"></script>
  <script src='simple-test.js'></script> 
</head>

<body>
 <button id='click_me'>Click Me</button> 
 <!-- Stuff required by QUnit-->
 <h1 id="qunit-header">QUnit example</h1>
 <h2 id="qunit-banner"></h2>
 <h2 id="qunit-userAgent"></h2>
 <ol id="qunit-tests"></ol>
 <div id="qunit-fixture">test markup, will be hidden</div>
</body>
</html>

        

The QUnit test runner is loaded by the page on load as any other javascript program
would be. In this case it is loaded from http://github.com/jquery/qunit/raw/master/qunit/
qunit.js. This file will start running any jquery tests on load. The results of those tests
will be shown on the page once tests are finished running, which is why QUnit requires
those elements to be present in the DOM.

To test the example, we'll load QUnit which the test runner in Example 3-1 does, then
calls the handleButtonClick method. Example 3-2 waits for one second for the docu-
ment to be loaded, by passing a value of 1000 to the setTimeout method. After that

QUnit | 29

http://github.com/jquery/qunit/raw/master/qunit/qunit.js
http://github.com/jquery/qunit/raw/master/qunit/qunit.js
http://lib.ommolketab.ir
http//lib.ommolketab.ir


second, it tests whether the <div> exists in the DOM (the first equal call), gets the text
from the div, and checks that the first word in the text is "First", which is the expected
value (the second equal call). A more complete test may choose to check for that element
every quarter-second until it appears or until some maximum time is reached. In a real
world web page load times can vary depending on external factors including network
usage and server load.

A test in QUnit is a javascript function that is called by the test runner. Looking at the
simple test in Example 3-2. The test uses several assertion functions that must be sat-
isfied for the test to pass. To test if a value is equal to an expected result use the
equal() method, it takes three methods, the value to test, the expected result and an
optional parameter which is a message for the test to show if it fails. Using this message
will help figure out what when a test fails. This is even more useful if a test is being
looked at six months after it was written.

Example 3-2. Simple Test

          
test("Basic Test", function (){
     // assert that the target attribute does not exist
     equal( $('div#target_div').length, 0, 
             "Target element should not exist");
     //run method
     handleButtonClick();
     equal( $('div#target_div').length, 0,
             "Target element should still not exist");
     window.setTimeout(function (){
                   start();
                   equal($('div#target_div').length,1, 
                           "Target element should now exist");
                   equal("First",
                           $('div#target_div').text().substr(0,5), 
                           "Check that the first word is correct");
               }, 1000  );
     stop();
});

        

Testing with QUnit
To run QUnit tests, the qunit style sheet and javascript files must be included, these
can be pulled directly from github or loaded locally. (See Example 3-1). The DOM must
also include a few elements which are used by QUnit to display its results. These can
be seen in the bottom of the HTML in Example 3-1. That is all that is required to run
tests.

QUnit provides eight assertion functions. In addition to equal(), which appeared in
our previous example, there are further tests of equality and the ok() method, which

30 | Chapter 3: Testing Javascript applications

http://lib.ommolketab.ir
http//lib.ommolketab.ir


tests whether the value passed to it is true. Also, strictEqual() tests according to the
javascript "===" operator, whereas equal() uses the "==" operation for comparison.

To test whether a more complex data structure is the same, use deepEqual(). This does
a recursive comparison of the two data structures.

Each of the equality functions has an inverted form which will test for lack of equality:
notEqual(), notStrictEqual() and notDeapEqual(). These take the same paramaters as
the equal versions but test for the inverted cases.

The final assertion is raises() which takes a function as a paramater and expects it to
throw an Error conditon.

To test for events that happen in an asynchronous manor using a return value won't
work. In this case the test must wait for the action to complete. This can be done by a
setting a timeout with setTimeout(), which will run after a set time. Or it can be done
with a callback from some operation such as a ajax load or other event.

Mocking and Stubs
In some cases it will be appropriate for a unit test to run the code the way it will be run
by users in the production system. At other times, that would cause problems or be too
complex. In these cases it is possible to replace the complex object with a simpler object
that can serve to isolate the object under test.

Using mock objects is a way to isolate a compont of the system so that that one com-
ponent can be tested without the complexity of the entire system. If each component
of a system can be tested in isolation, tests of the entire system will be greatly reduced
when the parts are put together the number, because the developer knows from the
simple tests that each component does the correct thing.

For example, if a button is supposed to call a method to cause an object to load some
data when it is clicked, a mocking test could replace the data object with a test that
clicks the button (or calls the click handler) and replaces the store with a simple class
that has an assertion that passes when the correct method is called. This could also be
done with an event, if the class defines a useful event. There is no need in this case to
actually load the data from the server, as we know from a successful mock test that the
button did what it should have done: call the load method. Assuming the data store
load has been tested elsewhere, there is no need to retest it, which would just make the
test suite run slower.

Selenium
While QUnit lets you test Javascript code, Selenium takes a different approach. Sele-
nium tests the user interface by simulating the actions that a user may take. A Selenium
test will consist of a number of steps that run in a browser such as loading a page,

Selenium | 31

http://seleniumhq.org/
http://lib.ommolketab.ir
http//lib.ommolketab.ir


clicking on a particular element, typing something into a text area, and so on. Inter-
spersed with those actions will be assertions to verify the state of the DOM or other
things to be tested . These can include testing that an element or text exists or is absent.

When a Selenium test is run it will actually launch a browser and run it in more or less
the same way that user would. So it is possible to watch the test interacting with the
browser. It is even possible to manually interact with the browser while a test is running
(though this may not be a great idea).

Selenium consists of several, mostly independent parts. One is an IDE implemented as
a browser plugin for Firefox. Another is the Selenium RC server, seleniumrc, a Java
server that can be used to automate running tests in different browsers.

The plugin Selenium IDE for Firefox is a developer's best friend. It allows you to con-
struct tests that are run directly in the browser. The IDE can record the user's actions
and replay them as a test later. It also allows you to step throught a test one line at a
time, which can be very useful for finding timing problems in a test.

By default when recording actions the Selenium IDE will use the ID of
the various HTML elements. In the case where IDs are not explictly
assigned by the programmer some frameworks will assign IDs sequen-
tally as elements are created. These IDs will not be consistant from run
to run, so use some other method to identify elements of interest.

The Selenium IDE outputs tests as HTML files that can be run in the IDE itself in
Firefox. In addition, these HTML files can be run with the Selenium RC component as
a batch job. The Selenium RC server also will allow the HTML tests to be run with any
browser, so it is possible to run these tests with IE, Chrome, Opera, or Safari. The
Selenium RC server can also be controlled by a traditional test from a test running like
phpUnit or jUnit.

The Selenium IDE also is useful for recording web macros in development. For example,
If you are testing a wizard in your web application that displays four or five screens
before the screen that is being debugged, you can use the IDE to create a Selenium script
that you can then invoke as a macro to get you automatically to the point being tested.

If a test works when it is run in single step mode but not normally it
probably needs a few pause statements to allow the browser to catch
up, or even better some waitFor... statements, which will allow the test
and the browser to be in sync.

There are three ways to run tests in Selenium, via the Selenium IDE, from the Selenium
RC test runner, and from a programming language. The IDE is easy to use in an inter-
active setting, but works only with Firefox. The test runner accepts input tests in HTML
format, which can be created in the IDE. Finally it is possible to write tests in a unit

32 | Chapter 3: Testing Javascript applications

http://lib.ommolketab.ir
http//lib.ommolketab.ir


test framework in a programming language such as phpUnit. Using the test runner or
the programming language based test suite allows testing with a full suite of browsers
and can provide reporting and the other functions. This procedure can also be inte-
grated with continous integration tools along with any other tests written in any of the
xUnit frameworks.

A Selenium test is constructed from an HTML file containing a table, each step in the
test being a row in the table. The row consists of three columns: the command to run,
the element on which that will act, and an optional paramater used in some cases. For
example, the third column contains the text to type into an input element while testing
a form.

Unlike a qUint test, a Selenium test is all about the user interface. Thus Selenium is
more about integration testing than unit testing. To test Example 3-1 in Selenium, a
different approach is required from QUnit. While the QUnit test called the handler
function directly, the Selenium test clicks the button and waits for the <div> to show.

This is done in Example 3-3. Each row in the table document performs an action as
part of the test. The first row opens the web page to test, then the second line clicks
the button (which is identified by the element ID). The test then waits for the page to
display the <div>, identified in this case through xpath.

This test tests the same simple script as the qUnit test above. However instead of testing
the function itself it tests the User Interface in a way similar to a human tester may do
so. It opens the page, clicks on the click_me button. Then waits for the target_div div
to be present int he dom. It then asserts that the word "First" appears in the page.

Example 3-3. Simple Selenium Test

          <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head profile="http://selenium-ide.openqa.org/profiles/test-case">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<link rel="selenium.base" href="http://www.example.com/" />
<title>New Test</title>
</head>
<body>
<table cellpadding="1" cellspacing="1" border="1">
<thead>
<tr><td rowspan="1" colspan="3">New Test</td></tr>
</thead><tbody>
<tr>
    <td>open</td>
    <td>/examples/simple.html</td>
    <td></td>
</tr>
<tr>
    <td>click</td>
    <td>click_me</td>
    <td></td>

Selenium | 33

http://lib.ommolketab.ir
http//lib.ommolketab.ir


</tr>
<tr>
    <td>waitForElementPresent</td>
    <td>//div[@id='target_div']</td>
    <td></td>
</tr>
<tr>
    <td>assertTextPresent</td>
    <td>First</td>
    <td></td>
</tr>

<!-- More tests -->
</tbody></table>
</body>
</html>

        

Selenium Commands
Selenium features a rich command language called Selenese to allow the programmer
to create tests. Pretty much any action that a user could take in the browser can be done
in a Selenium command. You can create a Selenium test by creating a script consisting
of a series of actions and tests.

Dragging a file from the desktop to the browser “Drag and
Drop” on page 71 is one thing that can not be done from Selenium,
nor can it be easily tested from qUnit.

With very few exceptions, Selenium commands take as a parameter the location of an
element in the DOM to be acted on. This location can be specified in one of several
ways, including an element ID, an element name, XPath, CSS classes, a JavaScript call
into the DOM, and link text. The options are illustrated in “Selenium Location op-
tions” on page 34.

Using the Element ID will not work in ExtJS, as ExtJS assigns IDs to
elements that will change each time. Use CSS classes or other properties
of the HTML element. To denote buttons, it is often useful to use the
text of the button with xpath like //button[text()='Save']. it is also
possible to select on an attribute like //img[@src='img.png'].

Selenium Location options
ID

Supply an HTML ID:

34 | Chapter 3: Testing Javascript applications

http://seleniumhq.org/docs/04_selenese_commands.htm
http://lib.ommolketab.ir
http//lib.ommolketab.ir


id

Name
Supply an element name (useful for form inputs):

name=username 

XPath
Use XPath to find an element:

//form[@id='loginForm']/input[1]

CSS
Find an element by a CSS Selector, a procedure that's familiar to users of jQuery.
However, the CSS Selector engine in Selenium is more limited than jQuery's:

css=div.x-btn-text

Document
Use the DOM to find an element:

dom=document.getElementById('loginForm') 

Link text
Find by the text in the href attribute (useful for HTML links)

link='Continue'

The Selenium base commands do not include any capability for condi-
tionals or loops. A Selenium HTML file is run sequentally from top to
bottom, ending when an assertion fails or when the last command is
executed. If you need flow control, use the goto_sel_ide.js plugin.

This plugin can be useful when looking for memory leaks or other prob-
lems that may occur in an application that users will run for a long time.
Javascript still has a way to go to escape from the memory leaks that
were not an issue when page reloads were frequent, resetting the state
of Javascript and the DOM.

A large number of commands in Selenium can be used to construct tests. The Selenium
IDE contains a reference for commands, so once you have learned some of the basics
you can easily figure out the correct command for any given circumstance. Table 3-1
shows some of the common Selenium commands. They tend to come in two basic
groups, actions and assertions. Actions include such things as click, type, dblclick,
keydown, keyup and many more. Assertions provide the actual tests that allow Selenium
to find out how user actions affect the page. Assertions can pause a script but make no
changes in the page.

Selenium | 35

http://51elliot.blogspot.com/2008/02/selenium-ide-goto.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir


Table 3-1. Selected Selenium Commands

Command Target Action

open Web page to open Opens a web page

dblclick Element to double-click Double-clicks an element

click Element to click Clicks an element

mouseOver Element over which to move the mouse Replicates a mouseOver event

mouseUp Element over which to let up the mouse button Replicates a mouseUp event

mouseDown Element on which to press the mouse button
down

Replicates a mouseDown event

type Use a xpath or other selector to choose the ele-
ment, The third column is the text to type

Simulates text entry

windowMaximized  Maximizes the current window

refresh  Refreshes the browser. Can be useful for resetting
Javascript State.

dragAndDrop Offset to drag the element, selector is element to
drag.

Drags and drops an element

In ExtJS, or any other custom widget, if a click event does not do what
is expected, try using a mouseDown. To select a row in a grid, for example,
use a mouseDown event instead of a click. When you click with a mouse,
the browser sends 3 events: mouseDown, mouseUp, and click. Different
elements in a User Interface may respond to any of them.

Actions in Selenium all have two forms: a simple form and a second form that will wait
for a page to reload. The waiting form of the click command, for instance, is clickAnd
Wait.

After a sequence of actions, it is necessary to verify that the application actually per-
formed the correct actions. Most tests in Selenium test for the presence or absence of
an element or section of text. For example to test adding a new element to an ExtJS
grid, the test script would go something like this:

• Click the add button.

• Fill out a form giving default values.

• Submit new record to the server.

• Wait for the server to respond and verify that the text is present in the correct grid.

All of the assertions have three basic forms: the basic form, a verify form and a WaitFor
form. The basic command will be similar to assertElementPresent, and will stop a test
when the assertion fails. verifyElementPresent will check whether an element exists,
but let the test continue if it is not. This is useful if there are multiple tests and you don't
want them to stop after one failure. If an action is supposed to have a result that will

36 | Chapter 3: Testing Javascript applications

http://lib.ommolketab.ir
http//lib.ommolketab.ir


be delayed, use waitForElementPresent, which will pause the test script until the con-
dition is met or the test times out. In summary:

assert...
Check that something is true, and stop if it is not.

verify...
Check that something is true, but continue even if it is false.

waitFor..
Wait for an something to happen on the page (often used with Ajax).

Constructing tests With the Selenium IDE
Selenium tests can be constructed by hand, but it is often much easier to automate it.
The Selenium IDE plugin for Firefox will let you record your actions in the browser
and save them as a test. The programmer will still have to put in the assertions and wait
commands manually, and may have to make adjustments to the script that has been
produced. The test is saved as a HTML document which can be checked into version
control and run from the IDE as well as from an automatic test runner.

The IDE is a very nice way to try out options in Selenium. It will also let you create test
scripts and run them directly from the IDE. The Selenium IDE also allows you to control
how fast it executes the scripts, and single step through them.

The left side panel (which is hidden in Figure 3-1) shows a list of all the test cases that
have been defined. They can all be run with the first button on the toolbar (just to the
left of the speed control). The next button to the right executes just one test.

The bottom panel of the Selenium IDE features for tabs (and more can be added with
plugins). The leftmost tab features a log of tests being run. The second tab is a reference
panel. When you select a command from the menu in the middle panel, this tab will
show information about the selected command, including what arguments it takes.

Automatically running tests
It is possible to use one of the popular test suites (such as jUnit or phpUnit) to run
Selenium tests, letting the tests run across multiple browsers and platforms. If you are
running a regular set of unit tests, Selenium tests can be run from your normal test
runner (Example 3-4).

Most or all of what is described here for phpUnit should also work with
minor modifications in all similar test suites for other languages.

Selenium | 37

http://lib.ommolketab.ir
http//lib.ommolketab.ir


These tests will run just like any other test in the test enviroment. Each HTML file will
run as a test in the test suite. (Details of this may vary depending on which test runner
is being used). The test runner will run each of the HTML files in sequence in a manor
similar to what was done in the IDE.

Figure 3-1. Selenium IDE

38 | Chapter 3: Testing Javascript applications

http://lib.ommolketab.ir
http//lib.ommolketab.ir


To run tests from phpUnit one or more test machines need to be designated to run the
browsers. Each test machine needs a copy of the Selenium RC program running as well
as having the browser or browsers to test installed. The seleniumrc binary is a
java .jar file, so it will run on Windows, Linux, or a Mac.

When a test is run in phpUnit, the test class PHPUnit_Extensions_SeleniumTestCase will
contact the seleniumrc program and ask it to start up a browser instance and then send
it commands over a REST interface.

If mulitple browsers are listed in the $browsers static member, or via a phpunit.xml file
(Example 3-5), the PHPUnit_Extensions_SeleniumTestCase class will run each test for
each browser in sequence. In Example 3-4, for instance, it will run the tests on Safari,
Firefox, Chrome, and Internet Explorer. Often it is better to list the browser options in
the phpunit.xml file, because you can then create multiple files to help you change test
options without changing test source code.

The following test just runs one Selenium test from the file seleneseTest.html. However
we could have it automatically run an entire directory of Selenium HTML test files by
setting the $seleneseDirectory property of the test class to the path to the files.

The phpUnit test runner can multiplex selenium tests across multiple browsers. Set the
class static variable $browsers to a list of different browsers, and the test runner will
run each test for each browser.

  public static $seleneseDirectory = '/path/to/files';

Example 3-4. Running Selenium from phpUnit

          <?php
require_once 'PHPUnit/Extensions/SeleniumTestCase.php';
 
class WebTest extends PHPUnit_Extensions_SeleniumTestCase
{
    protected $captureScreenshotOnFailure = TRUE;
    protected $screenshotPath = '/var/www/localhost/htdocs/screenshots';
    protected $screenshotUrl = 'http://localhost/screenshots';
 
    public static $browsers = array(
      array(
        'name'    => 'Safari on MacOS X',
        'browser' => '*safari',
        'host'    => 'mac.testbox',
        'port'    => 4444,
        'timeout' => 30000
      ),
      array(
        'name'    => 'Firefox on Windows',
        'browser' => '*firefox',
        'host'    => 'windows.testbox',
        'port'    => 4444,
        'timeout' => 30000
      ),

Selenium | 39

http://lib.ommolketab.ir
http//lib.ommolketab.ir


      array(
        'name'    => 'Chrome on Windows XP',
        'browser' => '*googlechrome',
        'host'    => 'windows.testbox',
        'port'    => 4444,
        'timeout' => 30000
      ),
      array(
        'name'    => 'Internet Explorer on Windows XP',
        'browser' => '*iexplore',
        'host'    => 'windows.testbox',
        'port'    => 4444,
        'timeout' => 30000
      )
    );
     
    protected function setUp()
    {
        $this->setBrowserUrl('http://www.example.com/');
    }
 
    public function testSeleniumFile()
    {
        $this->open('http://www.example.com/');
        $this->runSelenese('seleneseTest.html');
    }
 
}
?>

        

Example 3-5. phpunit.xml

          <phpunit stopOnFailure="true"
     verbose="true"
     strict="true">
  <php>

  </php>
  <selenium>
    <browser name="Firefox"
         browser="*firefox"
         host="192.168.0.10"
         port="4444"
         timeout="30000"/>
    <browser name="Chrome"
         browser="*chrome"
         host="192.168.0.10"
         port="4444"
         timeout="30000"/>
    <!-- Other Browsers -->
  </selenium>
  <testsuites>

40 | Chapter 3: Testing Javascript applications

http://lib.ommolketab.ir
http//lib.ommolketab.ir


    <testsuite name="Selenium">
      <file>/path/to/MyTest.php</file>
    </testsuite>
  </testsuites>

</phpunit>
        

With all the advantages of Selenium RC, it has one major drawback: it can run only
one test at a time. So if you hae a large test suite and a number of different browsers to
run that test suite, the full test run can take many hours. Selenium Grid provides a
solution to this, letting you run a number of tests in parallel on a group of machines.
The Selenium Grid software along with examples and documentation can be found at
http://selenium-grid.seleniumhq.org/.

If you don't want to build your own test farm, there are cloud selenium farms on the
web that can be used. In addition, it is possible to run Selenium on Amazon's EC2 cloud
service. This can be very useful for occasional users or for a new startup that may not
have the resources to build and maintain a local selenium farm. This can also be very
helpful in seeing how an application will perform over a remote network.

Selenese Command Programing Interface
The Selenium test suite can run a test from a HTML file or directly from the unit test
code. The Selenium RC server also has an API that can be called from unit test code in
several languages. You can write tests for Selenium in PHP, Ruby, Python, Perl, Java,
C#/.NET, and Perl. You can create code test cases for all of these languages via the
Selenium IDE or by hand. The Selenium IDE will generate the skeleton of a test for you.
To do this record a test in the IDE, the choose the output option for the language to
run the test in. The tests will be converted to that language.

To run Selenium on several browsers, you need to set up the Selenium
server. See “Selenium RC and a test farm” on page 45.

Running Selenium directly from a unit test gives you the the full power of the language
of the host language, notably its flow control, while the HTML style tests are much
more limited. By using the API from a server side programming language, it is possible
to create a very rich environment for scripting the web, and of course you have access
to libraries on the server side to check data in a database or access web services. You
can construct a test that will perform some actions in browser, then check the result in
a database or against a log file.

Another advantage of using a server side testing is that if you are using any form of
continuous integration, such CruiseControl or phpUnderControl, the Selenium tests

Selenium | 41

http://selenium-grid.seleniumhq.org/
http://lib.ommolketab.ir
http//lib.ommolketab.ir


appear to the test system as just more tests in whatever language the team is using. In
a team that is using a test framework, this will leverage the existing experience of the
team.

Selenese commands consist in general of actions, assertions, and queries. The actions
generally reflect the basic forms of Selenium actions: click, mouseOver, mouseDown,
type, and so on. The various delayed forms that appear in the Selenium IDE are not
present, but can be easily simulated by using a loop with a sleep function.

Many of the useful utility methods that are present in the HTML selenium test runner
are not present in the server side Selenese interface. Methods such as WaitForElement
Present or WaitForElementNotPresent are not included, but can be easily added in by
creating a custom base class for the tests and adding them there.

Example 3-6. WaitForElementPresent

          

function waitForElementPresent($el, $timeout = 60)
{
    {
      if($this->isElementPresent($el))
        {
          return true;
        }
    sleep(1);  
    }
  $this->fail("Element $el not found");
}

        

Queries allow the programmer to determine the state of the page after actions have
happened. These queries allow the programmer to find out whether an element or piece
of text exists on the page or otherwise find out about the current state of the page.

The Selenese API also features a number of methods to get data from the HTML docu-
ment in the context of a unit test. To test whether a given text is present in the page,
use the method $this->isTextPresent(), which is often quite useful to find out if an
element is present or absent. To find out whether an element exists, use the method
$this->isElementPresent(). To actually retrieve text from the DOM, use the $this-
>getText() method. This will take any form of selector that selenium can accept and
will return the text of that element. If the element is not present, the method will throw
an exception.

The xPath selector matches multiple elements on the page. It will normally return the
first matched element. To find out how many elements are matched, use $this->getX
pathCount().

42 | Chapter 3: Testing Javascript applications

http://lib.ommolketab.ir
http//lib.ommolketab.ir


When building tests in PHP, synchronizing the test actions between the interface in the
browser and the test itself running in PHP can be a challenge. It is intuitive to write a
test that does something such as click one element and then immediately mouse over
another. This will inevitably fail, as the Javascript will take some time (maybe 0.1 sec-
onds) to create a piece of user interface or wait for data to load from the server. There
are two ways to handle this.

The simple way is to place delays in the PHP code. A few well placed sleep() commands
at the right place can cause a test to function correctly. However, this may cause a test
to take longer to run that is necessary. To speed up tests using something like a wait
ForElementPresent() with a 1/10 second delay between testing can cause the script to
run faster as long as there is a way to tell from the DOM when the browser is ready for
the next step in the test.

The second way is to use the method $this->getEval() in the Selenese interface to
evaluate custom Javascript. Pass this method a string that contains the Javascript to be
executed. When you call Javascript via getEval(), it will run in the window context of
the test runner window, not the test window. Therefore, global variables must be pre-
fixed by the global window object, which normally is not required.

In Example 3-7, Selenium executes getEval() in JavaScript to extract the global ses
sion_id variable.

Example 3-7. Running Javascript from Selenese

          

$session_id = $this->getEval('window.session_id'):

        

It is also possible to use Selenium RC to set up manual tests, by having
the script open up the page and perform all the steps leading up to the
point where you need to test things. When it gets to the end point, it
should pause for an extended period of time because the browser will
close when the test ends. At the point that the test stops, a human can
take over the browser and perform any manual actions that might be
needed. This is often helpful when developing a multistep wizard or
similar user interface.

Running QUnit from Selenium
Selenium can run QUnit tests as well. To do so, load the QUnit page in Selenium and
run the tests. It is also possible to choose to only run a subset of tests by passing pa-
rameters to the URL string. By integrating Selenium with QUnit, you can export the
results of browser tests in QUnit into a test runner for continous integration.

Selenium | 43

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Selenium just opens the QUnit URL and then stands back and waits for the test to
finish. To let the test runner know whether the tests passed or failed, QUnit provides
a simple micro format (Example 3-9) that shows how many tests were run and how
many passed or failed. The unit test can then look for this data by an xPath selector
and make sure all tests passed.

In Example 3-8, the PHP program opens up the QUnit test from the start of this chapter
and then waits for the test to run. When the test finishes, the qunit-testresult element
will be inserted into the DOM. At this point Selenium can find the number of tests that
were run and how many passed or failed.

Example 3-8. Selenium test to run QUnit

          <?php
require_once 'PHPUnit/Extensions/SeleniumTestCase.php';

class WebTest extends PHPUnit_Extensions_SeleniumTestCase
{
  function testQUnit()
  {
    //Put the URL of your HTML file with the QUnit test here
    $this->open('http://host.com/simple.html');
    
    $this->waitForElementPresent("//p[@id='qunit-testresult']");
    $failCount  = $this->getText("//p[@id='qunit-testresult']/span[@class='failed']");
    $passCount  = $this->getText("//p[@id='qunit-testresult']/span[@class='passed']");
    $totalCount = $this->getText("//p[@id='qunit-testresult']/span[@class='total']");
    $this->assertEquals($passCount, $totalCount,
                        "Check that all tests passed $passCount of $totalCount passed");
    $this->assertEquals("0", $failCount, 
                        "Checking result of QUnit tests $failCount/$totalCount tests failed");

  }

  function waitForElementPresent($element, $timeout = 60)
  {
    $time = 0;
    while(!$this->isElementPresent($element))
      {
        $time++;
        if($time > $timeout)
        {
            throw New Exception("Timeout: $element not found!");
        }
        sleep(1);
      }
  }
}

        

44 | Chapter 3: Testing Javascript applications

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Example 3-9. QUnit Result Micro format

          <p id="qunit-testresult" class="result">
   Tests completed in 221 milliseconds.<br/>
   <span class="passed">1</span> tests of
   <span class="total">2</span> passed,
   <span class="failed">1</span> failed.
 </p>

        

Example 3-10. PHP code to extract data from QUnit

          <?php
$failCount  = $this->getText("//p[@id='qunit-testresult']/span[@class='failed']");
$passCount  = $this->getText("//p[@id='qunit-testresult']/span[@class='passed']");
$totalCount = $this->getText("//p[@id='qunit-testresult']/span[@class='total']");
$this->assertEquals($passCount, $totalCount,
                        "Check that all tests passed $passCount of $totalCount passed");
$this->assertEquals("0", $failCount, 
                        "Checking result of QUnit tests $failCount/$totalCount tests failed");

        

Selenium RC and a test farm
It is important to make sure that an application runs well not just on one browser, but
on a wide number of browsers and platforms. In most cases you can assume that your
application may be run on Windows XP, Windows Vista, Windows 7, MacOS X, and
Linux. In addition, the users may be using some combination of Firefox, Chrome,
Internet Explorer, Safari and Opera, and probably several different versions of each.

The implementations of JavaScript and various interfaces are similar among these dif-
ferent browsers, and using a framework like jQuery will smooth over some of the dif-
ferences, but the browsers are still not exactly the same. So code that works well in
Firefox may suddenly break in Chrome or Safari. And, of course, code could will work
well in one version of a browser but not on an older or newer version. So testing across
a wide matrix of browsers is vital. However, it is probably too much to expect a QA
team to do this manfully, hence the need for automation.

Selenium RC makes it possible to test all of these various combinations using a network
of machines. Each test machine must have Java installed. In many cases Java will be
installed by default, but if it is not, download and install it. Then download the Sele-
nium RC package from http://seleniumhq.org/download/ and unpack it. On each server,
start the Selenium server jar with the command shown bellow. It is probably a good
idea to have the Selenium server start up automatically on machine boot in the case of
a machine that will be a member of a test farm. Normally the Selenium server will be
installed with reasonable defaults, but it offers a number of command-line options that

Selenium | 45

http://seleniumhq.org/download/
http://lib.ommolketab.ir
http//lib.ommolketab.ir


allow some degree of customization. Specifically, you can change the port from the
default 4444, if needed, with the -port option. This can be used to run several instances
of the server on one server in order to test on several browsers at once.

java -jar selenium-server.jar [-port 4444]

It is not necessary to use a separate physical machine for each test server.
Any of the common virtual machine technologies can work well for this.
A reasonably powerful server with enough RAM should be able to run
a small but useful virtual test farm.

If you need to test your application on Android or iOS Selenium, can do that as well.
There is an Android Driver for Selenium http://code.google.com/p/selenium/wiki/An
droidDriver as well as an iPhone driver http://code.google.com/p/selenium/wiki/IPhone
Driver. Note that in order to run the iPhone driver you need to have a Mac as well as
the iPhone development set up. Because the Selenium driver is not in the iPhone store,
you need to be able to install it on your phone with a provisioning profile, or use the
simulator in XCode.

46 | Chapter 3: Testing Javascript applications

http://code.google.com/p/selenium/wiki/AndroidDriver
http://code.google.com/p/selenium/wiki/AndroidDriver
http://code.google.com/p/selenium/wiki/IPhoneDriver
http://code.google.com/p/selenium/wiki/IPhoneDriver
http://lib.ommolketab.ir
http//lib.ommolketab.ir


CHAPTER 4

Local Storage

The web browser provides Javascript a wonderful environment for building applica-
tions that run in the browser. Using ExtJS or jQuery, it is possible to build an application
that for many uses can rival what can be done in a desktop application, and provide a
method of distribution that is about as simple as it gets. But however nice the browser
is in terms of providing a user experience, used to fall flat when it comes to data storage.

Historically, browsers did not have any way to store data. They were in effect the ulti-
mate thin client. The closest that could happen was the HTTP cookie mechanism,
which allows a piece of data to be attached to each HTTP request. However, cookies
suffer from several problems. First of all, each cookie is sent back and forth with every
request. So the browser sends the cookie for each Javascript file, image, Ajax request,
and so on. This can add a lot of bandwidth use for no good reason. Secondly, the cookie
specification tried to make it so that a cookie could be shared between different sub
domains. If a company had app.test.com and images.test.com, a cookie could be set
to be visible to both. The problem with this is that outside of the USA, three-part
domain names become common. For example it would be possible to set a cookie for
all of the hosts in .co.il which would allow a cookie to leak to almost every host in
Israel. And it is not possible to simply require a three-part domain name whenever the
name contains a country suffix, because some countries such as Canada do not follow
the same convention.

Having local storage on the browser can be a major advantage in terms of speed. A
normal Ajax query can take anywhere from half a second to several seconds to execute,
depending on the server. However, even in the best possible case it can be quite slow.
A simple ICMP ping between my office in Tel Aviv and a server in California will take
an average of about 250ms. Of that 250ms, a large part is probably due to basic physical
limitations: data can travel down the wire at just some fraction of the speed of light. So
there is very little that can be done to make that go faster, as long as the data has to
travel between browser and sever.

Local storage options are a very good option for data that is static or mostly static. For
example, many applications have a list of countries as part of their data. Even if the list

47

http://lib.ommolketab.ir
http//lib.ommolketab.ir


includes some extra information, such as whether a product is being offered in each
country, the list will not change very often. In this case it often works to have the data
preloaded into a Local Storage object, and then do a conditional reload when necessary
so that the user will get any fresh data, but not have to wait for the current data.

Local Storage is, of course, also essential for working with a web application that may
be offline. Although Internet access may seem to be everywhere these days, it should
not be regarded as universal, even on smart phones. Users with devices such as the iPod
touch will have access to the Internet only where there is WiFi, and even smart phones
like the iPhone or Android will have dead zones where there is no access.

With the development of HTML 5, a serious movement has grown to provide the
browser with a way to create a persistent local storage, but the results of this movement
have yet to gel. There are currently at least three different proposals for how to store
data on the client.

In 2007, as part of Gears, Google introduced a browser-based SQLite database. Webkit-
based browsers, including Chrome, Safari, and the browsers on the iPhone and Android
phones, have implemented a version of the Gears SQLite database. However, SQLite
was dropped from the HTML5 proposal because it is a single-sourced component.

The localStorage mechanism provides a Javascript object that persists across web re-
loads. This mechanism seems to be reasonably well agreed on and stable. localStor
age is good for storing small-sized data such as session information or user preferences.

This chapter explains how to use current localStorage implementations. In the fol-
lowing chapter, we'll look at a more complicated and sophisticated form of local storage
that has appeared on some browsers, IndexedDB.

The localStorage and sessionStorage Objects
Modern browsers provide two objects to the programmer for storage, localStorage and
sessionStorgage. Each can hold data as keys and values. They have the same interface
and work in the same way, with one exception. The localStorage object is persistent
across browser restarts, while the sessionStorage object resets itself when a browser
session restarts. This can be when the browser closes or a window closes. Exactly when
this happens will depend on the specifics of the browser.

Setting and getting these objects is pretty simple, as shown in Example 4-1.

Example 4-1. Accessing localStorage

//set 
localStorage.sessionID = sessionId;
localStorage.setItem('sessionID', sessionId);

//get

48 | Chapter 4: Local Storage

http://lib.ommolketab.ir
http//lib.ommolketab.ir


var sessionId;
sessionId = localStorage.sessionID;
sessionId = localStorage.getItem('sessionId');

localStorage.sessionId = undefined;
localStorage.removeItem('sessionId');

      

Browser storage, like cookies, implements a "same origin" policy, so different web sites
can't interfere with each other or read each other's data. But both of the storage objects
in this section are stored on the user's disk (as cookies are), so a sophisticated user can
find a way to edit the data. Chrome's developer tools allow a programmer to edit the
storage object, and you can edit it in Firefox via Firebug or some other tool. So while
other sites can't sneak data into the storage objects, these objects still should not be
trusted.

Cookies are burdened with certain restrictions: they are limited to about 4KB in size
and must be transmitted to the server with every Ajax request, greatly increasing net-
work traffic. The browser's localStorage is much more generous. The HTML5 speci-
fication does not list an exact size limit for its size, but most browsers seem to limit it
to about 5 MB per web host. The programmer should not assume a very large storage
area.

Data can be stored in a storage object with direct object access or with a set of access
functions. The session object can store only strings, so any object stored will be type
cast to a string. This means that an object will be stored as [object Object], which is
probably not what you want. So to store an object or array, convert it to JSON first.

Whenever a value in a storage object is changed, it fires a storage event. This event will
show the key, its old value, and its new value. A typical data structure is Exam-
ple 4-2. Unlike some events, such as clicks, storage events cannot be prevented. There
is no way for the application to tell the browser to not make a change. The event simply
informs the application of the change after the fact.

Example 4-2. Storage Event Interface

var storageEvent = {
    key: 'key',
    oldValue: 'old',
    newValue: 'newValue',
    url: 'url',
    storageArea: storage // the storage area that changed
};

      

The localStorage and sessionStorage Objects | 49

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Webkit provides a screen in its developer tools where a programmer can view and edit
the localStorage and sessionStorage objects (Figure 4-1). From the Developer tools,
click on the Storage tab. It will show the localStorage and sessionStorage objects for
a page. The Storage screen is also fully editable: keys can be added, deleted and edited
there.

Although Firebug does not provide an interface to the localStorage and sessionStor
age objects as Chrome and other Webkit-based browsers do, the objects can be accessed
via the Javascript console, and you can add, edit, and delete keys there. Given time, I
expect someone will write a Firebug extension to do this.

Of course, it is possible to write a customized interface to view and edit the storage
objects on any browser. Create a widget on screen that exposes the objects using the
getItem and removeItem calls shown in Example 4-1 and allow editing through text
boxes. The skeleton of a widget is shown in Example 4-3.

Example 4-3. Storage Viewer

(function createLocalStorageViewer()
{
  $('<table></table>').attr(
  {
    "id": "LocalStorageViewer",
    "class": 'hidden viewer'
  }).appendTo('body');

Figure 4-1. Chrome Storage Viewer

50 | Chapter 4: Local Storage

http://lib.ommolketab.ir
http//lib.ommolketab.ir


  localStorage.on('update', viewer.load);

  var viewer =
  {
    load: function loadData()
    {
      var data, buffer;
      var renderLine = function (line)
      {
        return "<tr key='{key}' value='{value}'>\n".populate(line) + 
          "<td class='remove'>Remove Key</td>" + 
          "<td class='storage-key'>{key}</td><td>{value}</td></tr>".populate(line);
      };

      buffer = Object.keys(localStorage).map(function (key)
      var rec =
      {
        key: key,
        value: localStorage[data]
      };
      return rec;
      });

  };

  $("#LocalStorageViewer").html(buffer.map(renderLine).join(''));

  $("#LocalStorageViewer tr.remove").click(function ()
  {
    var key = $(this).parent('tr').attr('key').remove();
    localStorage[key] = undefined;
  });

  $("#LocalStroageViewer tr").dblclick(function ()
  {
    var key = $(this).attr('key');
    var value = $(this).attr('value');
    var newValue = prompt("Change Value of " + key + "?", value);
    if (newValue !== null)
    {
      localStorage[key] = newValue;
    }
  });
};
}());

      

Using localStorage in ExtJS
ExtJS, some examples of which appeared in earlier chapters, is a very popular JavaScript
framework allowing very sophisticated interactive displays. This sections shows how
to use localStorage with ExtJS.

The localStorage and sessionStorage Objects | 51

http://lib.ommolketab.ir
http//lib.ommolketab.ir


One nice feature of ExtJS is that many of its objects can remember their state. For
example, the ExtJS grid object allows the user to resize columns, hide and show them,
and reorder them, and these changes are remembered and redisplayed when a user
comes back to the application later. This allows each user to customize the way the
elements of an application work.

ExtJS provides an object to save state, but uses cookies to store the data. A complex
application can create enough state to exceed the size limits of cookies. An application
with a few dozen grids can overflow the size of a cookie, which can lock up the appli-
cation. So it would be much nicer to use the localStorage, taking advantage of its much
larger size and avoiding the overhead of sending the data to the server on every request.

Setting up a custom state provider object is in fact pretty easy. The provider in Exam-
ple 4-4 extends the generic provider object and must provide three methods: set,
clear, and get. These methods simply read and write the data into the store. In Exam-
ple 4-4 I have chosen to index the data in the store with the rather simple method of
using the string state_ with the state ID of the element being saved. This is a reasonable
method.

Example 4-4. ExtJS Local State Provider

Ext.ux.LocalProvider = function() {
    Ext.ux.LocalProvider.superclass.constructor.call(this);
};

Ext.extend(Ext.ux.LocalProvider, Ext.state.Provider, {
    //************************************************************
    set: function(name, value) {
        if (typeof value == "undefined" || value === null) {
            localStorage['state_' + name] = undefined;
            return;
        }
        else {
            localStorage['state_' + name] = this.encodeValue(value);
        }
    },

    //************************************************************
    // private
    clear: function(name) {
        localStorage['state_' + name] = undefined;
    },

    //************************************************************
    get: function(name, defaultValue) {
        return Ext.value(this.decodeValue(localStorage['state_' + name]), defaultValue);
    }
});

// set up the state handler
Ext.onReady(function setupState() {
    var provider = new Ext.ux.LocalProvider();

52 | Chapter 4: Local Storage

http://lib.ommolketab.ir
http//lib.ommolketab.ir


    Ext.state.Manager.setProvider(provider);
});

        

It would also be possible to have all the state data in one large object and to store it
into one key in the store. This has the advantage of not creating a large number of
elements in the store, but makes the code more complex. In addition, if two windows
try to update the store, one could clobber the changes made by the other. There is no
great solution to the issue of race conditions here. In general in places where it can be
a problem it is probably better to use IndexedDB or some other solution.

Offline Loading With a Data Store
When some of the persistent data used in an application will be relatively static, it can
make sense to load it to local storage for faster access. In this case, the Ext.data.Json
Store object will need to be modified so that its load() method will look for the data
in the localStorage area before attempting to load the data from the server. After load-
ing the data from localStorage, Ext.data.JsonStore should call the server to check
whether the data has changed. By doing this, the application can make the data available
to the user right away at the cost of possibly short term inconsistency. This can provide
make a user interface feel faster to the user and reduce the amount of bandwidth that
the application uses.

For most requests, the data will not have changed, so using some form of ETag for the
data makes a great deal of sense. The data is requested from the server with a HTTP
GET request and an If-None-Match header. If the server determines that the data has
not changed, it can send back a 304 Not Modified response. If the data has changed,
the server sends back the new data, and the application loads in into both the
Ext.data.JsonStore object and the sessionStorage object.

The Ext.data.PreloadStore object stores data into the session cache as one large JSON
object (Example 4-5). It further wraps the data that the server sends back in a JSON
envelope, which allows it to store some meta data with it. In this case, the ETag data
is stored as well as the date when the data is loaded.

Example 4-5. Ext.data.PreloadStore offline data format

{
    "etag": "25f9e794323b453885f5181f1b624d0b",
    "loadDate": "26-jan-2011",
    "data": {
        "root": [{
            "code": "us",
            "name": "United States"
        },
        {
            "code": "ca",
            "name": "Canada"

The localStorage and sessionStorage Objects | 53

http://lib.ommolketab.ir
http//lib.ommolketab.ir


        }]
    }
}

        

When building an ETag, make sure to use a good hash function. MD5
is probably the best choice. SHA1 can also be used, but since it produces
a much longer string it is probably not worthwhile. In theory, it is pos-
sible to get a MD5 collision, but in practice for cache control it is prob-
ably not something to worry about.

Data in the localStorage object can be changed in the background. As I already ex-
plained, the user can change the data from the Chrome Developer tools or from the
Firebug command line. Or it can just happen unexpectedly because the user has two
browsers open to the same application. So it is important for the Store to listen for an
update event from the localStorage object.

Most of the work is done in the beforeload event handler. This handler checks the data
store for a cached copy of the data, and if it is there, loads it into the store. If there is
data present, the handler will reload the data as well, but use the Function.defer()
method to delay the load until a time when the system has hopefully finished loading
the web page, so that doing the load will be less likely to interfere with the user.

The store.doConditionalLoad() method makes an Ajax call to the server to load the
data. It includes the If-None-Match header so that, if the data has not changed, it will
load the current data. It also includes a force option that will cause the beforeload
handler to actually load new data and not try to refresh the store from the localStor
age cached version of the object.

I generally define constants for SECOND, MINUTE, and HOUR simply to make the code more
readable.

Example 4-6. Ext.data.PreloadStore

Ext.extend(Ext.data.PreloadStore, Exta.data.JsonStore, {
    indexKey: '',
    
    //default index key
    loadDefer: Time.MINUTE,
    // how long to defer loading the data
    listeners: {
        load: function load(store, records, options) {
            var etag = '25f9e794323b453885f5181f1b624d0b';
            var jsonData = this.reader.jsonData;
            var data = {
                etag: etag,
                date: new date(),
                data: jsonData

54 | Chapter 4: Local Storage

http://lib.ommolketab.ir
http//lib.ommolketab.ir


            };
            sessionStorage[store.indexKey] = Ext.encode(data);

        },
        beforeload: function beforeLoad(store, options) {
            var data = sessionStorage[store.indexKey];
            if (data === undefined || options.force) {
                return true; // Cache miss, load from server 
            }
            var raw = Ext.decode(data);
            store.loadData(raw.data);
            // Defer reloading the data until later
            store.doConditionalLoad.defer(store.loadDefer, store, [raw.etag]);
            return false;
        }
    },
    doConditionalLoad: function doConditionalLoad(etag) {
        //TODO check that this works
            this.proxy.headers["If-None-Match"] = etag; 
            this.load({force: true});
        });
    },
    forceLoad: function() {
        // Pass in a bogus ETag to force a load
        this.doConditionalLoad('');
    }
});

        

Storing Changes for a Later Server Sync
In the event that an application may be used offline, or with a flaky connection to the
Internet, it can be nice to provide the user a way to save her changes without actually
needing the network to be present. To do this, write the changes in each record to a
queue in the localStorage object. When the browser is online again, the queue can be
pushed to the server. This is similar in intent to a transaction log as used in a database.

A save queue could look like Example 4-7. Each record in the queue represents an
action to take on the server. The exact format will of course be determined by the needs
of a specific application.

Example 4-7. Save Queue

[
  {
      "url": "/index.php",
      "params": {}
  },
  {
      "url": "/index.php",
      "params": {}
  },

The localStorage and sessionStorage Objects | 55

http://lib.ommolketab.ir
http//lib.ommolketab.ir


  {
      "url": "/index.php",
      "params": {}
  }
]
        

Once the web browser is back online, it will be necessary to process the items in the
queue. Example 4-8 takes the queue and sends the first element to the server. If that
request is a success, it will take the next element and continue walking down the queue
until the entire queue has been sent. Even if the queue is long, this process will execute
it with minimal effect on the user because Ajax processes each item in an asynchronous
manner. To reduce the number of Ajax calls it would also be possible to change this
code to send the queue items in groups of say five at a time

Example 4-8. Save Queue

var save = function save(queue)
{
  if (queue.length > 0)
  {
    $.ajax(
    {
      url: 'save.php',
      data: queue.slice(0, 5),
      success: function (data, status, request)
      {
        save(queue.slice(5));
      }
    });
  }
};

        

JQuery Plugins
If the uncertainty of all the client-side storage options is enough to drive you crazy, you
have other options. As with many things in Javascript, a bad and inconsistent interface
can be covered up with a module that provides a much better interface. Here are two
such modules that can make life easier.

DSt
DSt http://github.com/gamache/DSt is a simple library that wraps the localStorage ob-
ject. DSt can be a free-standing library or work as a JQuery plugin. It will automatically
convert any complex object to a JSON structure.

56 | Chapter 4: Local Storage

http://github.com/gamache/DSt
http://lib.ommolketab.ir
http//lib.ommolketab.ir


DSt can also save and restore the state of a form element or an entire form. To save and
restore an element, pass the element or its ID to the DSt.store() method. To restore it
later, pass the element to the DSt.recall() method.

To store the state of an entire form, use the DSt.store_form() method. It takes the ID
or element of the form itself. The data can be restored with the DSt.populate_form()
method.

Example 4-9. DSt Interface

$.DSt.set('key', 'value');
var value = $.DSt.get('key');

$.DSt.store('element'); // Store the value of a form element
$.DSt.recall('element'); // Recall the value of a form Element

$.DSt.store_form('form');
$.DSt.populate_form('form');

        

jStore
If you don't want to venture to figure out which storage engines are supported on which
browsers and create different code for each case, there is a good solution: the jStore
plugin for jQuery. This supports localStorage, sessionStorage, Gears SQLite, and
HTML 5 SQLite, as well as Flash Storage and IE 7's proprietary solution.

The jStore plugin has a simple interface that allows the programmer to store name/
value pairs in any of its various storage engines. It provides one set of interfaces for all
the engines, so the program can degrade gracefully when needed in situations where a
storage engine doesn't exist on a given browser

The jStore plugin provides a list of engines that are available in the jQuery.jStore.Avail
ability instance variable. The program should select the engine that makes the most
sense.

For applications that require multi browser support this can be a useful addition. See
the jStore web page for more details.

JQuery Plugins | 57

http://twablet.com/docs.html?p=jstore
http://lib.ommolketab.ir
http//lib.ommolketab.ir


http://lib.ommolketab.ir
http//lib.ommolketab.ir


CHAPTER 5

IndexedDB

The Local Storage Interface (Chapter 4) provides a very nice interface for storing small
amounts of data, however the browser limits this storage space to 5mb in many cases.
If the storage needs of an application go beyond that, or if the application needs to able
to have query access to structured data, Local Storage is not the best choice. In this
case, having a more robust strorage mechanism can be useful for the application de-
veloper. IndexedDB provides this mechanism on mny browsers. For example a pro-
grammer may store product catalog data into an IndexedDB store so that when the
user searches for an item, the server does not need to make a trip to the server to find
the data for a particular item.

IndexedDB is a NoSQL database that will feel familiar to people who have used such
products as MongoDB or CouchDB. A program can store Javascript data directly into
an IndexedDB data store.

IndexedDB has been in Firefox from version 4 on. It has also been introduced into
Google Chrome starting with version 11. It will probably be available in other browsers
in the next year or two. Formally, IndexedDB is now a draft proposal from the W3C.

Because IndexedDB is supported by only two browsers at this point, use
should probably be restricted to internal applications where you can
limit use to browsers of your choice. Using it in a general app should be
done with extreme caution, as Microsoft Internet Explorer, Opera, and
Safari do not support this feature yet (at least as of July 2011).

Like localStorage, IndexedDB has a strict same origin policy. So a database created by
one page can not be accessed by pages on other hosts. This provides a level of security
for data, in that it is protected from scripts running on other pages. But any script
running on the page that created the database has full access to the database, and of
course the user has access to the data.

IndexedDB has several advantages over SQLite. First of all, its native data storage for-
mat is a Javascript object. There is no need to map a Javascript object into a SQL table

59

http://dvcs.w3.org/hg/IndexedDB/raw-file/tip/Overview.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir


structure, which is always a poor fit and can allow for SQL Injection attacks. Injection
attacks can't happen with IndexedDB, though in some cases XSS could be a problem,
if a user manages to inject Javascript into the store and have it put back into a page.

The IndexedDB data store provides a set of interfaces to store Javascript objects on a
local disk. Each object must have a key by which objects can be retrieved, and may also
have secondary keys.

To show how to use IndexedDB I will develop a small application that uses IndexedDB
to store and work with a set of data. In this case it will show a limited index of O'Reilly
books. Each book will have a record in the format as in Example 5-1. In this case there
will be indexes on the title and price fields so that the user can search on

Example 5-1. Setting the transaction version

{
    "title": "Real World Haskell",
    "price": 49.95,
    "price_can": 49.95,
    "authors": [
        "Bryan O'Sullivan",
        "John Goerzen",
        "Don Stewart"
    ],
    "cover_animal": "Rhinosorus Beatle",
    "cover_url": "http://....",
    "topics": ["Haskell"]
}

    

IndexedDB keeps applications and related data stores in sync as they evolve, through
a built-in versioning system. Each Datastore has a version that the an application can
check when it loads. If the version is not current, the application can then take appro-
priate actions to make it current by creating new object stores and indexes.

Versions should be changed when a new data store is being added, or an index is being
added. When an Index or Store is removed then a version must also be changed.

Version should changes as the needs of an application change. In our example the initial
indexes are on the Title and the price. However it is possible that after the application
has been launched that someone wishes to add an index on the topics field, so users
can search by that field. This will require a new version of the store to add the index.
The program when loaded can check the version number and know that if it is version
1.0 that it should run the upgrade to 1.1 which has the new index.

Example 5-2. Setting the transaction version

// TODO: Add a new index on the topics field

    

60 | Chapter 5: IndexedDB

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Interactions with IndexedDB must be done by way of transactions. This because the
IndexedDB interface is asynchronous, and IndexedDB can be accessed from a web
worker or a second window running another thread (each window in Javascript runs
its own thread). So even though simulaneous accesses will be rare, it is possible for
more than one Javascript thread to access a given IndexedDB database at the same time,
and the interface must protect against race conditions.

The IndexedDB interface spec includes a synchronous version of the
interface that can be used in Web Workers, however it has not been
implemented in browsers yet. In addition using it will mean that any
code which uses it can not be reused between a WebWorker and non
WebWorker contexts.

The fundemental unit of data storage in IndexedDB is the database. A database in
IndexedDB is roughly comparable to a database in a relational product like MySQL.
Each IndexedDB database contains one or more Object Stores, which can be considered
equivalent to tables in a SQL database. However, unlike a SQL database, an Object
Store has no fixed schema.

Each record in an Object Store is a key/value pair, where the key is the primary index
and the value is a Javascript object. Any Javascript object that can be serialized can be
inserted into the Object Store.

Closures and functions in general can not be stored in IndexedDB

The first step in using the IndexedDB is to create a new database. To do that, just pick
a name and request that it be opened. If the Database does not exist, it will be created.
If it does exist, it will be opened.

To access the database, call the IndexedDB open method:

    indexedDB.open(db)
  

Note that in older versions of Firefox and Chrome the IndexedDB interface may be
mozIndexedDB or webkitIndexedDB, so be sure to check which interfaces exist and use the
approprate ones. This chapter will use indexedDB exclusively.

After opening a database, you need to create a transaction object. The call creating this
object will take a list of object stores to be used, as well as an optional mode variable
and timeout. The mode variable can be IDBTranscation.READ_ONLY, IDBTransca
tion.READ_WRITE, or IDBTranscation.VERSION_CHANGE, the default being IDBTransca

IndexedDB | 61

http://lib.ommolketab.ir
http//lib.ommolketab.ir


tion.READ_ONLY. The timeout is specified in milliseconds, or can be set to 0 for no time
out. The

In a server side database an administrator can check if the orginziational state of the
database is correct when software is updated. In IndexedDB the datastore is being run
on the user's computer out there on the net. As such the program itself must be able to
check if the store is setup correctly and if it is not fix it.

IndexedDB does not specify a format for versions, nor does it require that they be in
order. It just records the current version and then allows the programmer to work with
that data. A good approach would be to have methods to change from each version to
the next, and when a page loads check what version is current and roll forward to the
most recent. If there is no version, start with the initial version. So in an old project a
first time visitor may get a sequence of versions like this: 1.0 -> 1.1 -> 2.0 -> 3.0 -
> 4.0 -> 4.1 -> 5.0.

In this evolution each new version will introduce a change in the stores or indexes. For
example it may be that in version 3.0 it was found that a specific store needed a new
index, so it was added, but the feature that needed it is removed in version 5.0 so that
index can then be removed.

To facilitate this IndexedDB supports a versioning operation. Each version of the soft-
ware that has different needs for an object store must have a version that is set with the
the db.setVersion() method.

the db.setVersion(version) method creates a VERSION_CHANGE transaction that is the
only place where Object stores and indexes can be created, changed or deleted. Thus
ensuring that the state of an Object Store is consistent with the version that has been
set. Thus the program can assume that if the store says it is version 3.0 that it will have
the object stores and indexes that go with version 3.0.

Example 5-3. Setting the transaction version

if (db.version !== "1.0") {
    var request = db.setVersion("1.0");
    request.onsuccess = function (event) {
        var store = db.createObjectStore("calendar", {
            keyPath: "startDate"
        });
    };
}

    

It's a good practice to include a chain of update operations. So if a user shows up with
version 1.0 of the schema and the current version is 4.0, the application in his browser
will run the code to upgrade from 1.0 to 2.0, then 2.0 to 3.0, and finally 3.0 to 4.0.

62 | Chapter 5: IndexedDB

http://lib.ommolketab.ir
http//lib.ommolketab.ir


An IndexedDB transaction is contained in a Javascript function. When the function
completes the transaction is commited. To abort a transaction call the abort() method.
(What object does that work on?, will using throw work?).

Adding and Updating Records
All data being added to a IndexedDB database must be done inside a transaction, as I
explained earlier. This provides safety from other Javascript processes that may try to
modify that same data. Even though JavaScript is single threaded, it is possible to open
up the datastore from a web worker or from a second window in the same browser
both would be able to modify data at the same time.

Data is added to a store with the store.put() or store.add() methods, which take a
Javascript Object to be added to the data store. The difference between store.put()
and store.add() is that put can also update existing data. An attempt to add an object
whose key already exists will fail.

The store.put() method returns a transaction object, for which you can define three
callbacks. The main callback you need is onsuccess, which will be called if the trans-
action is successful. Example 5-4 shows a typical sequence of events: a store.put() call
attempts to add a new entry to a calendar, and on success, the callback redraws the
calendar visible to the user.

The other two callbacks concern transaction failures. If the database refuses to handle
a transaction, onerror will be called, while if the transaction is aborted onabort will be
called. A transaction can be aborted with the abort() method of the transaction object.

Example 5-4. Putting data

calendar.indexedDB.addCalendar = function (calendarEntry) {
    var db = indexedDB.db;
    var trans = db.transaction(["calendar"], IDBTransaction.READ_WRITE, 0);
    var store = trans.objectStore("calendar");
    calendarEntry.timeStamp = new Date().getTime();
    var request = store.put(calendarEntry);

    request.onsuccess = function (e) {
        redrawCalendar();
    };

    request.onerror = function (e) {
        console.log(e.value);
    };
};

      

Adding and Updating Records | 63

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Adding Indexes
Indexes can be added or removed only in a setVersion transaction. It is possible to
check the current version of a store on a customer's computer and, if needed, bring it
up to the current version. For example, version 1.0 of the software there have two stores,
while in version 1.1 a third store has been added and one of the origninal tables has
had a new index added. By checking the version, your code can know if it should apply
any needed updates or if the user's datastore is set up correctly.

One key difference between a datastore like IndexedDB and most other data storage is
that IndexedDB runs on the customer's browser, so updating it requires a little more
thought than a data storage mechanism that runs on a small set of servers in a central
location. The Javascript code must be able to cope with the possibility that the user
may have an out-of-date store and update on the fly.

An index can be created with the data store in the createObjectStore() method. But it
can also be added later with the store.createIndex() method. This method takes three
parameters:

name
The name of the index.

keypath
The path to the data to be indexed.

unique
An optional boolean that causes a unique index to be created. If a unique index is
created with non-unique data it will raise a CONSTRAIN_ERR exception.

An index that is no longer needed can be removed with the store.deleteIndex(name)
method. This method takes the same name that was used with store.createIndex()
and will delete the index.

Example 5-5. Adding an Index

var request = db.setVersion("1.1");
request.onsuccess = function (event) {
    var objectStore = db.createObjectStore("customers", {
        keyPath: "with"
    });
    objectStore.createIndex("with", "with", {
        unique: false
    });
};

      

64 | Chapter 5: IndexedDB

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Retrieving data
Of course, being able to add data to a store would not be of much use if it could not
be pulled back out in useful ways to be displayed or otherwise processed. Again create
a store object but unlike the add method here we are going to create a IDBKeyRange
object that can specify bounds on our query. The IDBKeyRange object is then passed to
the store.openCursor method which returns a cursor. The Cursor object will call its
onsuccess method when the data has been retrieved.

The success handler will recieve an event object that will contain the first record of the
result set. The success method should then process this data and call the result.con
tinue() method which will cause indexeddb to call the success handler again with the
next element in the result set.

In Example 5-5 The data is extracted using a cursor. The cursor iterates over over the
lines of the result set until there are no more left. In this example each line is rendered
into HTML and added to an element.

Example 5-6. Listing Data

      

Mozilla has also implemented a getAll() method on the objectStore which will return
the entire contents of the store as an array. This is not part of the IndexedDB standard
and they warn that it may go away in future, so use with caution. But if you need to get
the entire contents of a store as an array this is the way to do it.

Of course there are times when you might not want every record in a store, or even
most of them but just one, In this case using one of the indexes that have been defined
on the data makes sense. The index.get() method will return one row of data as
matched by an index. This is useful for a unique index.

Example 5-7. Quering an Index

var index = objectStore.index("startDate");
index.get(date).onsuccess = function (event) {
    $('.alert').html("EVENT: " + event.targt.result.what).fadeIn(500);
};

      

Other times it may be useful to get a range of items from the store. In Example 5-8 The
query will find all events in the calendar that are with "Bill". However the IDBKeyR
ange object can also specify ranges as well as upper and lower bounds for a query. To
specify a lower bound of "Bill" use the method IDBKeyRange.lowerBound("Bill"), by
adding a second element of true it is possible to make it show all items greater than
"Bill". Similarly IDBKeyRange.upperBound() will specify all items less than its value in-

Retrieving data | 65

http://lib.ommolketab.ir
http//lib.ommolketab.ir


clusive or not as needed. The IDBKeyRange.bound("Ashdod", "Tel Aviv") method would
give us a list of all items between the cities of Ashdod and Tel Aviv.

Example 5-8. Quering and Index by Range

var withBill = IDBKeyRange.only("Bill");
index.openCursor(withBill).onsuccess = function (event) {
    var cursor = event.target.result;
    if (cursor) {
        alert("Name: " + cursor.key + ", SSN: " + cursor.value.ssn + ", email: " + cursor.value.email);
        cursor.
        continue ();
    }

      

Deleting data
Deleting data from an object store is also pretty easy. Each object store has a
delete() method that can be called with the index of the items to be deleted. The store
will then delete those items and call the callback.

Example 5-9. Deleting Data

var request = db.transaction([datastore], IDBTransaction.READ_WRITE).objectStore(store).delete(key);
request.onsuccess = function (evt) {
    console.log("Key Removed");
};

  

Handling Errors
Each element in the IndexedDB interface features an optional on onerror handler which
will be called in the case of some sort of error. These error events also bubble. So if an
error is called on an insert and not handled it will then move up to the Store and then
to the database object. In Example 5-10 is presented a very simple error handler that
will just log errors to the firebug console.

Example 5-10. Error

db.onerror = function (evt) {
    console.error(evt);
};

    

66 | Chapter 5: IndexedDB

http://lib.ommolketab.ir
http//lib.ommolketab.ir


CHAPTER 6

Files

For obvious reasons, the browser has historically had very limited ability to access the
files system. HTML forms have been able to upload files, and certain HTTP headers
make it possible for a user to download files from the server. But outside of those specific
features, the browser has not been able to access files on the local file system. In general
this is a good thing. I don't want every web page I visit to be able to look around my
hard drive!

Some of the new features HTML5 give the browser limited access to the file system.
Newer browsers allow Javascript to access the files via the exiting form file input. His-
torically a browser could upload a file from a form, but now it is possible to use the
data from the file directly in Javascript. In addition, the browser now lets you drag files
from your desktop to a web application. Google's gmail uses this feature to allow the
user to attach files. This had been done with Flash previously, but now can be done
with just JavaScript.

This does not create any new security problems, because the application already had
access to this data by uploading it to the server then downloading it again into the
browser.

As of this writing these features are supported in Firefox, Chrome, and Opera. For
Safari and Internet Explorer the Flash plugin will work to allow file drag and drop.

Blobs
Javascript has always been good at working with strings and numbers, but binary data
has never been its strong point. But recently, it has added a blob data type and interfaces
to work with blobs ("binary large objects"). JavaScript sees a blob as a big chunk of raw
data. So the amount of actual manipulation that JavaScript can do on a blob is actually
somewhat limited. However, blobs are very important for moving binary data around.
Blobs can be read from and written to files (“Working With Files” on page 69), used
as URL's, saved in the IndexedDB (Chapter 5 on page 59), passed to and from a Web
Worker (Chapter 8).

67

http://lib.ommolketab.ir
http//lib.ommolketab.ir


You can create a new blob with the BlobBuilder interface. This creates a basic empty
BlobBuilder, to which is it possible to append a string, an existing blob, or binary data
from an ArrayBuffer. The BlobBuilder.getBlob() method returns the actual blob.

BlobBuilder is called MozBlobBuilder in Firefox, as of version 6, and WebKitBlob
Builder in Safari Nightly builds and Chrome as of version 8.

In Example 6-1 raw PNG data is passed to a BlobBuilder Object to create a blob which
is then turned into a URL. The URL object can be set at the src attribute of an image
tag to display in the dom.

Example 6-1. Creating a Blob URL from raw data

/*global window, $, BlobBuilder, document, XMLHttpRequest */
/*jslint onevar: false, white: false */

function makePNG(pngData)
{
  var BlobBuilder = window.BlobBuilder || window.MozBlobBuilder || window.WebKitBlobBuilder;

  var blob = new BlobBuilder();
  blob.append(pngData);
  var url = blob.getBlob('image/png').createObjectURL();
  return url;
}

      

You can extract a section of the blob with the slice() method. Because slice has
different parameters from the array and string methods of the same name, it has been
renamed to mozSlice() on Firefox and webkitSlice() on Chrome. Whatever name the
browser requires, the method returns the extracted data as a new blob. Taking a slice
is the only access that the blob API does allows to the raw data of the blob.

If a blob contains data that needs to be loaded as if it were a URL it can be turned into
something that can be used as a url with the createObjectURL() method. This returns
an Object that can be assigned to HTML tag attribute that expects a URL. For example
a Blob that contains image data can be assigned to the src attribute of an <img> tag to
display the image.

When done with a URL, it is important to deallocate it manually, because Javascript
will not be able to determine when to garbage collect this object. To do this, use the
revokeBlobURL() method. Blob URL's have the same origin as the creating script, so
They can be used pretty flexiably in places where the Browser's Same Oragin policy can
be a problem. The browser will also revoke all blob URL's when the user navigates away
from the page.

68 | Chapter 6: Files

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Working With Files
For many years, HTML forms have been able to include a file type as a form element
that allows the user to specify a file to upload to the server. The browser does not allow
Javascript to set this field, for fear that it could somehow force the upload of a file it
shouldn't. However, new JavaScript APIs allow you to read the contents of files from
the local system that have been added to the form element by the user.

If you have a form with a file upload field, it will provide a FileList object. Each element
of the FileList object is a File object. A file object provides the user with the file's
name, MIME type, size, and Last Modified Date. The full path is not exposed in Java-
script, but can be seen in Firebug.

The file pointed to by a File Object can be read in full by the FileReader Object, or in
sections by using the .slice() method. To upload a very large file, such as a video, it
may make sense to chop the file up into smaller parts and upload each part to the server
instead of trying to upload a single file that may be a few hundred megabytes. It should
also be noted that many servers, by default, limit file upload sizes to a few tens of
megabytes.

By using the FileReader interface, your program can read the contents of the file. All
of these methods return void and the data will be delivered after the browser finishes
reading the file into memory, with the onload handler. This aynchronous operation is
important because it can take some time for a very large file to be read into the browser.

The FileReader API has four options for reading in data:

FileReader.readDataAsURL()
Transforms a file to a URL so it can be used in the page, the resulting object will
contain the full data of the file.

FileReader.readAsText()
Returns the data as a string. By default, the text is encoded as UTF-8, but you can
specify a different format.

FileReader.readAsBinaryString()
Returns the data as a binary string, with no attempt to interpret the contents.

FileReader.readAsArrayBuffer()
Returns the data as an ArrayBuffer.

Example 6-2 shows an example of a Drop handler. Drag and Drop find handling will
be introduced fully in “Drag and Drop” on page 71. For this example the thing to
understand is that the function is called by the event handler with a list of files in the
form of a FileList object. The first file in the list is then displayed by the browser by
creating a URL on the fly and adding it to an <img> tag.

Working With Files | 69

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Example 6-2. Appending an image to a document

var el = document.getElementById('dropzone'); 
el.addEventListener('drop', function (evt) {
    var file = evt.dataTransfer.file[0];
    file.readDataAsURL();
    file.onload = function (img)
    {
        $('div.images').append('<img>').attr({src: img});
    };
});

      

Uploading Files
Being able to drag a file from the desktop to the browser is a nice trick, but if you can't
somehow upload it to the server it looses a lot of its use. Newer versions of the
XMLHttpRequest interface provide a way to do just that. Using the FormData interface, a
program can wrap up files and send them to the server. XHMLHttpRequest also provides
a few callbacks where you can offer feedback to the user. An onprogress event returns
the number of bytes that have been sent and the total size of the upload, which can let
you display a progress bar during large uploads. An oncomplete??? event is called when
the upload is finished.

When you upload files with XMLHttpRequest, the server will see the upload in the same
interfaces that would be used with a standard <input type='file' multiple > form
interface. So the server side code for this should be be the same standard code for file
uploads that has been in use since the form element was introduced.

Example 6-3 shows an example of code to upload files over Ajax. It uses the FormData
object to wrap up the files which are then sent to the server.

Example 6-3. Uploading files with Ajax

function upload(files){
var uploadBlob = function uploadBlob(files, onload) {
   var xhr = new XMLHttpRequest();
   xhr.open('POST', params.url, true);
   xhr.onload = onload;
   xhr.send(files);
};

var formData = new FormData();
files.map(function (file) {
   formData.append(file.fileName, file);
   return file;
});

uploadBlob(files, function (){ 
   alert("Upload Finished");

70 | Chapter 6: Files

http://lib.ommolketab.ir
http//lib.ommolketab.ir


});
}

      

Drag and Drop
HTML 5 has increased support for drag-and-drop. It is now possible to drag and drop
one or more files from the desktop to the browser and give Javascript access to the
contents of those files. This could be used, for example, by a file manager to upload
files to a server, or by a graphics program to manipulate images. A social network site
could allow a user to drag images to your browser, and then crop, scale, rotate, and
preview them in the browser before uploading them to the server. This could save server
resources by providig it with smaller images.

The File APIs, for security reasons, will not let you upload a directory
structure, but just a list of simple files. If you are building a file manager,
you can of course have the user upload an archive file (ZIP, RAR, tar,
etc.) and have the server expand it. There are libraries to unpack most
archive formats in most of the popular server side languages.

To implement drag-and-drop, add a listener to the drop event of the DOM element that
is the drop target. The event handler you specify will be passed an argument that will
have a list of files in it that contains all of the files that have been dragged. Note that
this object looks like an array, in that it has numeric keys and a length property. How-
ever it is not actually an array, and trying to call map or any of the other array operators
on it will not work.

Selenium can not drag a file from the desktop to the browser, so there
is no way to automatically test drag-and-drop with Selneium.

Putting it all together
Example 6-4 To put all of this together a more complete example that will designate
an area of the web page as a drop zone. Then when a file is dropped it is packaged with
the FormData object and then upload it via the XMLHttpRequest Object. It also shows a
progress indicator to give the user feedback on what is happening.

Example 6-4. Uploading files

/*global $, FormData,alert, document, XMLHttpRequest */
/*jslint onevar: false, white: false */

Putting it all together | 71

http://lib.ommolketab.ir
http//lib.ommolketab.ir


(function () {
    var toArray = function toArray(files) {
        var output = [];
        for (var i = 0, f; f = files[i]; i += 1) {
            output.push(f);
        }
        return output;
    };

    var updateProgress = function (state) {
        var progress = $('progress#progress');
        progress.attr('max', 100);
        if (state === 'start') {
            return progress.fadeIn(500);
        }
        else if (state === 'stop') {
            return progress.fadeOut(500);
        }
        // use the jQuery UI Progress bars
        return progress.attr('value', state);
    };

    var uploadBlob = function uploadBlob(params) {
        var xhr = new XMLHttpRequest();
        xhr.open('POST', params.url, true);
        xhr.onload = params.success;

        // Listen to the upload progress.
        xhr.upload.onprogress = params.progress;

        xhr.send(params.blob);
        return params;
    };

    var fileupload = function fileupload() {

        var el = document.getElementById('dropzone');
        var stopEvent = function (evt) {
            evt.stopPropagation();
            evt.preventDefault();
        };
        el.addEventListener('dragover', stopEvent, false);

        el.addEventListener('drop', function (evt) {
            stopEvent(evt);

            var files = toArray(evt.dataTransfer.files);

            updateProgress('start');
            var packageFiles = function (files) {
                var formData = new FormData();
                files.map(function (file) {
                    formData.append(file.fileName, file);
                    return file;

72 | Chapter 6: Files

http://lib.ommolketab.ir
http//lib.ommolketab.ir


                });

                var block = {
                    url: '/upload.php',
                    success: function () {
                        updateProgress('done');
                    },
                    progress: function (evt) {
                        updateProgress(100 * (evt.loaded / evt.total));
                    },
                    blob: formData
                };
                return block;
            };
            uploadBlob(packageFiles(files));
        }, false);
    };
    //run setup 
    fileupload();
}());

      

Filesystem
The idea of a browser allowing Javascript to access the filesystem is enough to send
anyone who thinks about security into a panic. There are many things on any user's
hard drive that the one would not want the browser to be able to access.

Google Chrome allows Javascript to access a sandboxed file system on the user's com-
puter. If you want to run the FileSystem API from inside a web page, Chrome must be
started with the  --unlimited-quota-for-files flag. However, if you are building an
app for the Google web store then you can access this API by specifying unlimitedStor
age in the store manifest file.

While LocalStorage and IndexedDB allow a Javascript program to store objects in a
database, the FileSystem API is useful for storing large binary objects. For example, if
you're building a video app it may be useful to store working images on a filesystem.
Other use cases could include Streaming video, games with lots of media assets, image
editing, or audio applications. In short, this interface will be a good fit for any appli-
cation that needs to store a lot of data locally, on a short-term or long-term basis.

Because the Filesystem API is only supported in Chrome, and only when
the user has loaded a trusted app, it is somewhat beyond the scope of
this book. A full treatment can be found in the book  Using the HTML5
Filesystem API.

Filesystem | 73

http://oreilly.com/catalog/0636920021360/
http://oreilly.com/catalog/0636920021360/
http://lib.ommolketab.ir
http//lib.ommolketab.ir


http://lib.ommolketab.ir
http//lib.ommolketab.ir


CHAPTER 7

Take it Offline

The Internet may seem to be always on these days but, let's be honest, its not. There
are times and places when even the most modern mobile devices are out of range of the
network for one reason or another.

Chapter 4 looked at how to have data stored local to the browser so that it does not
require network access to use. However if the web page on which the application is
hosted is not available, having the data handy will be of no use.

With more and more of the modern application infrastructure moving into the browser,
being able access this software at any time has become of critical importance. The
problem is that the standard web application assumes that many componenets includ-
ing JavaScript Sources, HTML, Images, CSS and so forth will be loaded with the web
page. In order to be able to use those resources when the user does not have access to
the internet requires that copies of those files be stored locally, and used by the browser
when needed. HTML 5 provides the ability for a programmer give the browser a man-
ifest of files that should be loaded and saved. The browser will be able to access these
files even when there is no network connection to the server.

The files listed in the manifest will also be loaded from the local disk even if the browser
is online. Thus giving the end user the experince of the ultimate Content Delivery Net-
work.

As long as the browser is online when a page is loaded it will check the manifest file
with the server. If the manifest file has changed the browser will attempt to redownload
all the files listed for download in the manifest. Once all the files in the manifest have
been downloaded the browser will update the file cache to show the new files.

Introduction to the Manifest File
The ability to access files while offline was one of the features introduced by Google in
Gears. The user provided a manifest as a JSON file, which then directed the browser
to load other required files offline. When the browser next visited that page, the files

75

http://lib.ommolketab.ir
http//lib.ommolketab.ir


would be loaded from the local disk instead of from the network. When the version
field of the manifest file was updated, Gears would check all the files in the manifest
for updates.

The HTML 5 manifest is similar in idea but somewhat different in implementation.
One nice thing about it is that you can implement a manifest in an application without
using any JavaScript code, which gears did require. To do so, add the manifest attribute
containing the name of the manifest file to the document's <html> tag (Example 7-1).
The manifest file must be served with the mime type text/cache-manifest. This can be
done via the web server configuration files. For the Apache web server add the following
line to the config file. For other web servers, consult the server's documentation. The
file name does not matter as long as the file has the correct mime type, but cache.man
ifest seems to be a good default choice.

Example 7-1. HTML manifest declaration

<!DOCTYPE HTML>
<html manifest="/cache.manifest">
<body>
        ...
</body>
</html>

      

To setup the mime type with the Apache web server add a line like this to the Apache
config files. For other web servers see the documentation for the relivant server.

AddType text/cache-manifest  .manifest 

Structure of the Manifest file
The format of the manifest file is in fact pretty simple. The first line must be just the
words CACHE MANIFEST. After that comes a list of files, one per line, to include in the
manifest (Example 7-2). Comments can marked with the pound (#) character.

The manifest will cache HTTP GET requests, while POST, PUT, and DELETE will still
go to the network. If the page has an active manifest file all GET requests will be directed
to local storage. But for some files, offline access does not make sense. These can include
various server resources such as Ajax calls, or collection of documents that could get
so large as to overflow the cache area. These files can be included in a NETWORK section
of the manifest. Any URLs in the NETWORK section will bypass the cache and load directly
from the server. The HTML5 manifest requires that any non included files be explictly
opted out of the manifest.

In other cases, you may wish to provide different content depending on whether the
user is offline or online. The manifest provides a FALLBACK section for such resources.
The user will be shown different content, depending on whether the browser has a

76 | Chapter 7: Take it Offline

http://lib.ommolketab.ir
http//lib.ommolketab.ir


connection to the internet or not. On each line of the FALLBACK section, the first file is
loaded from the server when a connection is available, and the second file is loaded
locally when the connection is not available.

Both the NETWORK and FALLBACK sections list file paterns, not specific files. So it is possible
to list entire directories or URL paths here, as well as file types such as images (for
instance, *.jpg).

Example 7-2. Manifest File

CACHE MANIFEST
# 11 October 2010
/index.php
/js/jquery.js
/css/style.css
/images/logo.png

NETWORK:
/request.php

FALLBACK:
/about.html /offline-about.html

        

Updates to the manifest
The browser will update the files in the manifest whenever the manifest file itself
changes. There are several ways to handle this. It is possible to add a version number
in a comment in the file. If the project is making use of a version controll system like
Subversion, you can use the version number tag for this.

The problem with using a version number from a version control system is that it
requires a programmer to remember to update that file every time any file in the system
changes. It would be much better to create an automated system that updates the
manifest file whenever a file listed in it changes, and run that script as part of a de-
ployment procedure.

For instance, you could write a script that checks all the files in the manifest for changes
and then change the manifest file itself when one of the files changes. A simple way to
do this is to write a script that loops over all the files in the manifest, then does an MD5
checksum on each one, then puts a final checksum into the manifest file. This will
ensure that any changes will cause the manifest file to update.

This script is probably too slow to run from the web server, as running it hundreds of
times a second would be overkill. However, it can be efficiently run in the development
environment, one option would be to have it run from an editor when a file is saved.
Or run it as part of the check-in process for a version control system.

Introduction to the Manifest File | 77

http://lib.ommolketab.ir
http//lib.ommolketab.ir


In Example 7-3 we parse the manifest file and do a few things with it. The program
uses the Symfony Yaml Library to load a list of files to use as a manifest. As a bonus,
the program first checks that no file has been included more than once. It also checks
that every file exists, because missing files will break the manifest. By adding each file's
MD5 as a comment after the filename, the script makes sure that any updated file will
cause a manifest change so that the browser will update its content. It takes a datafile
in the format of Example 7-5. Example 7-3 will output a manifest file with the MD5
hash as a comment in the file, as in Example 7-4.

Example 7-3. Automatically updating a manifest file

 <?php

header('Content-Type: text/cache-manifest');
echo ("CACHE MANIFEST\n");
$files = sfYaml::load('manifest.yml');
$hashes = '';
$files = unique($files);

foreach($files->cache as $file)
  {
    if(file_exists($file))
      {
    echo $file."\n";
    $hashes .=md5_file($file);
      }
  }
echo "\nNETWORK:\n"
foreach ($files->network as $file)
{
  echo $file. "\n";
}

echo "\nFALLBACK:\n"
foreach ($files->fallback as $file)
{
  echo $file. "\n";
}

echo "# HASH: ". md5($hashes) . "\n";
        

Example 7-4. Manfiest with MD5 Hash

CACHE MANIFEST
index.html
css/style.js
js/jquery.js
js/myscript.js

NETWORK:
network/file

FALLBACK:

78 | Chapter 7: Take it Offline

http://components.symfony-project.org/yaml
http://lib.ommolketab.ir
http//lib.ommolketab.ir


/avatars/ /offline-avatars/offline.png

#HASH: 090c7e8fe42c16777fba844f835e839b

        

Example 7-5. The data for Example 7-3

files:
  - index.html
  - css/style.css
  - js/jquery.js
  - js/myscript.js

network:
  - network/file

faillback: 
  - /avatars/ /offline-avatars/offline.png
        

The manifest is not always very good about updating when you think it
should. Even with a new version of a manifest, it can often take some
time to update the content in the browser. Unless you set the cache
control headers, the browser will not download the manifest again until
several hours after it was last downloaded. Make sure that the cache
control headers don't cause the browser to only download the file, say,
every five years, or use the ETag header. Or better yet have the server
set a no cache header. Be sure to test well.

Events
When the browser loads a page with a manifest file, it will fire a checking event on the
window.applicationCache object. This event will fire whether or not the page has been
visited before.

If the cache has not been seen before, the browser will fire a downloading event, and
start to download the files. This event will also fire if the manifest file has changed. If
the manifest has not changed the browser will fire a noupdate event.

As the browser downloads the files, it fires a series of progress events. These can be
used if you wish to provide some form of feedback to the user to let her know that
software is downloading.

Once all the files have downloaded the cached event is fired.

If anything goes wrong, the browser will fire the error event. This can be the result of
the HTML page having a problem, the manifest being defective or failing to download,
or any resource listed in the manifest failing to download. If a single file is missing from
the manifest, it won't download any of the files in the manifest. In the case of a manifest

Events | 79

http://lib.ommolketab.ir
http//lib.ommolketab.ir


that is being changes if there is a bad link the old versions of the file will be retained.
In the case of a new manifest the browser may just ignore the manifest. However it is
possible that not all browsers or browser versions will be conistent on this point. Having
an automatic test to validate all the URLS in a manifest is a good idea. This can be a
very hard error to cache as there may be very little visible evidence of what went wrong.
Catching the error object and presenting it to the user would be a good idea, as would
some form of automatic testing for bad links.

In Google Chrome, the developer tools can show a list of files in the manifest (Fig-
ure 7-1). Under the Storage tab, the Application Cache item will show the status of
various items.

It is a good idea during development to turn off the manifest file, and
enable it only once the project is ready to go live. Using the cache can
make it very hard to develop the application if changes don't appear
quickly.

Debugging Manifest Files
Manifest files provide a particular debugging challenge. It can be the source of several
special classes of bugs.

The first and most obvious bug is to include missing files in the manifest. If a file is
included in the page and it is not in the manifest, it will not be loaded by the page, in
the same way a missing file on the server will not be downloaded.

Many Selenium tests will not explicity test for correct styles and the presense of images,
so it is quite possible an application missing a CSS file or image will still work to the
extent that it is normally tested in Selenium. In an application that includes resources
from outside web servers, those must also be whitelisted in the manifest file.

A further complication comes in some browsers, including Firefox, that make the
manifest an opt-in feature. So a Selenium test may not opt into it, which would make
the entire test moot. In order to test this in Firefox, it will be nessary to set up a Firefox
profile in which the application cache is on by default. To do this:

• Quit Firefox completely.

• Start up Firefox from a command line with the -profileManager switch. This will
give a dialog like Figure 7-2. Save the custom profile.

• Restart Firefox. Go to the Firefox options menu, select the Advanced tab and under
that the Network tab (Figure 7-3), and turn off the "Tell me when a website asks
to store data for offline use" option.

Now, when starting up the selenium RC server, use an option like this:

80 | Chapter 7: Take it Offline

http://lib.ommolketab.ir
http//lib.ommolketab.ir


java -jar selenium-server.jar -firefoxProfileTemplate
    

For full details on Firefox profiles, see http://support.mozilla.com/en-US/kb/Managing
+profiles.

A second class of problems can occur when the manifest is updated and the browser
does not reflect the update. Normally, it will take a minute or two after loading a page
for the browser to update the file cache, and the browser will not check the cache until
the page is loaded. So if the server is updated, the browser will not have the new version

Figure 7-1. Chrome storage viewer

Debugging Manifest Files | 81

http://support.mozilla.com/en-US/kb/Managing+profiles
http://support.mozilla.com/en-US/kb/Managing+profiles
http://lib.ommolketab.ir
http//lib.ommolketab.ir


until the user visits the page. This can cause problems if there has been an update on
the server that will cause the application in the browser to fail, such as a change in how
the Ajax protocall.

When the user visits the page (assuming of course that the browser is online), the
browser will fetch the manifest file from the server. However, if the manifest file has a
cache control header set on it, the browser may not check for a new version of the
manifest. For example, if the file has a header that says that the browser should check
for updates only once a year (as is sometimes common on web servers), the browser
will not reload the manifest file. So it is very important to ensure that the manifest file
itself is not cached by the browser, or if it is cached it is done only via an ETag.

The browser can always prevent cacheing of the manifest file by giving the URL with
a query string attached as in cache.manifest?load=1. If the manifest file is a static text
file the query string will be ignored but the browser will not know that and will force
the server to send a fresh copy.

Different web browsers, and even different versions of a single browser, may update
the manifest file somewhat differently. So it is very important to test any application
using a manifest file very carefully across different browsers and browser versions.

Figure 7-2. Firefox Custom Profile Dialog

82 | Chapter 7: Take it Offline

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Figure 7-3. Firefox options

Debugging Manifest Files | 83

http://lib.ommolketab.ir
http//lib.ommolketab.ir


http://lib.ommolketab.ir
http//lib.ommolketab.ir


CHAPTER 8

Splitting Up Work Through Web
Workers

Javascript has, since its inception, run in a single thread. With small applications, this
was practical but now with larger and larger applications it has limits. As more and
more Javascript is run, the application will start to block waiting for code to finish.

Javascript runs code from an event loop that takes events off a queue of all the events
that have happened in the browser. Whenever the Javascript runtime is idle, it will take
the first event off the queue and run the handler that goes with that event (Fig-
ure 8-1). As long as those handlers run quickly, this makes for a responsive user expe-
rience.

In the past few years, the competition between browsers has in part revolved around
speed of Javascript. In Chrome and Firefox, Javascript can now run go as much as one
hundred times faster as it did back in the days of IE 6. Because of this, it is possible to
squeeze more into the Event loop.

Thankfully, most things that Javascript has to do are fast. They tend to be on the order
of manipulating some data and passing it into the DOM or making an Ajax call. So the
model in Figure 8-1 works pretty well. For things that would take longer than a fraction
of a second to compute, there are a number of tricks. The main one is to break the
computation up into small steps and run each one as an independent job on the queue.
Each step ends with a call to the next step after a short delay, say 1/100 of a second.
This prevents the task from locking up the event queue. But it still fundamentally un-
satisfactory, as puts the work of the task scheduler onto the programmer.

If the time steps are too small, computation can still clog up the event queue and cause
other task to lag behind. So things will still happen, but the user will feel the lag as the
system fails respond right away to clicks and other user-visible activities. On the other
hand, if the steps between actions are too large, the computation will take a very long
time to complete causing the user to wait for her results.

85

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Google Gears created the idea of the "Worker Pool," which has turned into the HTML5
Web Worker. The interfaces are somewhat different, but the basic ideas are the same.
A worker is a separate Javascript process that can perform computations and pass
messages back and forth with the main process and other workers. A Web Worker
differs from a thread in Java or Python in one key aspect of design: there is no shared
state. The workers and the main Javascript instance can communicate only by passing
messages.

That one difference leads to a number of key programming practices, mostly simpler
than thread programming. Web Workers have no need for mutexes, locks, or syn-
chronization. Deadlocks and race conditions can't occur. This also means you can use
the huge number of Javascript packages out there without worry whether they are
thread safe. The only changes to the browser's Javascript environment are a few new
methods and events.

Each worker (including the main window) maintains an independent event loop.
Whenever there is no code running, Javascript runtime returns to this event loop. At
this point the runtime will take the first message out of the queue. If there are no events
in the queue, it will wait until an event arrives and then handle it. If some piece of code
is running for a long time, no events will be handled until that piece of code is finished.

Figure 8-1. Event Loop

86 | Chapter 8: Splitting Up Work Through Web Workers

http://lib.ommolketab.ir
http//lib.ommolketab.ir


In the main window, this will result in the browser user interface locking up. (Some
browsers will offer to let you stop Javascript at this point.) In a worker, a long task will
keep the worker from accepting any new events. However the main window, and any
other workers, will continue to be responsive.

This design choice does, however, place some restrictions on the worker processes
themselves. First, workers do not have access to the DOM. This also means that a
worker can't use the Firebug console interface, as Firebug communicates with Java-
script by way of the DOM. Finally, Javascript debuggers cannot access workers, so
there is no way to step through code or do any of the other things that would normally
be done in the debugger.

Web Worker Use Cases
The types applications traditionally run on the Web, and the limitations of the web
browser environment, limited the computational needs that would call for a Web
Worker. Until recently, most web applications manipulated small amounts of data that
mostly consisted of text and numbers. In these cases, a Web Worker type of construct
is of limited use. Now Javascript is asked to do a lot more, and many common situations
can benefit from spawning new tasks.

Graphics
The HTML5 <svg> and <canvas> tags allow Javascript to manipulate images, a poten-
tially heavy task computationally Although web browsers have been able to display
images since the release of the Mosaic browser around 1993, the browsers couldn't
manipulate those images. If a web programmer wanted to take an image and distort it,
overlay it transparently, and so forth, it could not be done in the browser. In the
<img> tag, all the browser could do is substitute a different image by changing the src
attribute, or change the displayed size of the image. However the browser had no way
of knowing what the image was or accessing the raw data that made up the image.

The recently added <canvas> tag makes it possible to import an existing image into a
canvas and export the raw data back into Javascript for processing, as long as the image
was loaded from the same server as the page it is on. It is also possible to export a frame
from a video in the HTML5 <video> tag. *

Once the data has been extracted from a graphic, you can pass it to a worker for post
processing. This could be useful for doing anything from cleaning up an image to doing
a Fourier transform on a scintific data set. Canvas makes it possible to build complex
image editing through various filters written in Javascript, which should often use Web
Workers for better performance.

* See HTML5 Canvas by Steve Fulton and Jeff Fulton (O'Reilly) for more information on the graphics in
HTML5.

Web Worker Use Cases | 87

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Maps
In addition to graphics, Javascript has APIs now for handing map data. Being able to
import a map from the Internet and find out the user's current location via geolocation
allows a wide range of web application services.

Suppose you build a route finder into a mobile browser. It would be very nice to be
able to take your phone and tell it you wish to go to "#14 King George St, Tel Aviv"
and have the browser figure out where you are, direct you to the nearest bus stop, and
tell you that you should take the number 82 bus to get there from the diamond district
in Ramat Gan.

An even more complex version of that software might check traffic to tell you that a
different bus might take a more round-about route and leave you a block from your
destination, but probably run faster by missing a major traffic snarl.

Using Web Workers
To start up a web worker, create a new Worker object and pass, as the parameter to the
call, the file that contains the code (Example 8-1). This will create a worker from the
source file.

Example 8-1. Worker Example

$(document).ready(function (){
   var worker = new Worker('worker.js');
   worker.onmessage = function (event){
       console.info(event);
   };
   worker.postMessage("World" );
});

The browser will load the worker, run any code that is not in an event handler, and
then launch the event loop to wait for events. As in a normal window environment any
code that is not inside an event handler will be run at this point. The main event to be
concerned with is the message event, which is how you send data to the worker. The
data from the main thread is held in the event.data field. The worker should process
this data and then send it back with the self.postMessage() method.

The Worker Environment
Web workers run in a pretty minimal environment. Many of the familiar objects and
interfaces of Javascript in the browser are missing, including the DOM, the document
object, and the window object.

In addition to the standard ECMA script objects like String, Array, and Date, the fol-
lowing objects and interfaces are available to the web worker:

88 | Chapter 8: Splitting Up Work Through Web Workers

http://lib.ommolketab.ir
http//lib.ommolketab.ir


• The navigator object, which contains four properties: appName, appVersion, user
Agent. and platform

• The location object, with all properties read-only.

• The self object, which is the worker object.

• The importScripts() method

• The XMLHttpRequest interface for doing Ajax methods

• setTimeout() and setInterval()

• The close() method, which ends the worker process

ECMAscript 5 JSON interfaces can also be used as they are part of the langauge not
the Browser enviroment. Furthermore, the worker can import library scripts from the
server with the importScripts() method. This method takes a list of one or more files,
which are then loaded. This has the same effect as using a <script> tag in the main user
interface thread. Unlike most methods in Javascript, importScripts is blocking. The
function will not return until all the listed scripts have been loaded. importScripts will
execute the loaded files in the order in which they were specified to the command.

While localStorage and sessionStorage are not accessable from the web worker, Index-
edDB databases are.Chapter 5 on page 59 In addition the IndexedDB Spec says that
the blocking forms of calls can be used in a web worker (but not in the main window).
So in the case of a worker using IndexedDB to manipulate data it would make sense to
load the new data into the database and then send an "updated" message to the main
window or other workers to let them know to take any needed actions.

Worker Communication
The main event that concerns a worker is the message event, which is sent to the worker
from the postMessage method in the main Javascript context to pass information. In
Firefox, it is possible to pass complex Javascript objects. However, Chrome and Safari
support only simple data, such as strings, Booleans, and numbers. It is good practice
to encode all data into JSON before sending it to a web worker.

The worker can send data back to the main thread via the same postMessage method.
Receive it back in the main thread via the worker.onmessage handler.

The model for worker communication is that the main task creates the worker, after
which they pass messages back and forth as shown in Figure 8-2.

Web Worker Fractal Example
Example 8-1 is the "Hello World" of Web Workers. A more complex example is called
for. Figure 8-3 shows a visual representation of a Mandelbrot set computed in a web
worker. Here the worker and the main thread split up the work to draw the fractal. The

Web Worker Fractal Example | 89

http://lib.ommolketab.ir
http//lib.ommolketab.ir


worker does the actual work of computing the Mandelbrot set, while the front-end
script takes that raw data and displays it in the canvas.

The front-end script (Example 8-2) sets up the canvas element and scales it to fit in the
page. Then it creates an object to wrap the worker interface. The wrapper object creates
the worker in the wrapper's run() method, passing to the worker a parameter block
that tells it what chunk of the Mandelbrot set to compute.

Figure 8-2. Worker Communication

Figure 8-3. Mandelbrot Example

90 | Chapter 8: Splitting Up Work Through Web Workers

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The draw method takes the data, scales it to fit onto the canvas, sets a color, and then
draws the pixel.

The HTML Canvas does not have a draw pixel command, so to draw a
pixel we must draw a square of size 1 and offset it by half a pixel from
the spot where we want it to show up. So to draw a pixel at 20,20 it
should be at 19.5,19.5 to 20.5, 20.5. The locations on the canvas grid
are not the pixels on the screen but the points between them.

The onmessage handler then waits for events to be sent from the worker. If the event
type is draw, the handler calls the method to draw the new data into the canvas. If the
event is log, it is logged to the Javascript console via console.info(). This provides a
very simple method to log status information from a worker.

The startWorker method aliases the this to a local variable named that. This is because
this is not lexically scoped like other JavaScript variables. To allow the inner function
to have access to that object, which it will need to draw a pixel, it is nessary to alias it
to a lexically scoped variable. By convention that variable is often called that.

Example 8-2. Mandelbrot Front End

var drawMandelSet = function drawMandelSet(){

    var mandelPanel = $('body');

    var width = mandelPanel.innerWidth();
    var height = mandelPanel.innerHeight();
 
    var range = [{
        x: -2,
        y: -1.4
    }, {
        x: 5,
        y: 1.4
    }];
    
    $('canvas#fractal').height(height + 100);
    $('canvas#fractal').width(width  - 50);
    var left = 0;
    var top = 0;
    
    var canvas = $("canvas#fractal")[0];
    var ctx = canvas.getContext("2d");
    var params = {
        range: range,
        startx: 0.0,
        starty: 0.0,
        width: width,
        height: height

Web Worker Fractal Example | 91

http://lib.ommolketab.ir
http//lib.ommolketab.ir


    };
    var y_array = [];

    var worker = {
        params: params,
        
        draw: function draw(data){
            data.forEach(function d(point){
                if (this.axis.x[point.drawLoc.x] === undefined) {
                    this.axis.x[point.drawLoc.x] = point.point.x;
                }
                if (this.axis.y[height - point.drawLoc.y] === undefined) {
                    this.axis.y[height - point.drawLoc.y] = point.point.y;
                }
                
                ctx.fillStyle = pickColor(point.escapeValue);
                ctx.fillRect(point.drawLoc.x + 0.5, height - point.drawLoc.y + 0.5, 1, 1);
            }, this);
        },
        
        axis: {
            x: [],
            y: [],
            find: function(x, y){
                return new Complex(this.x[x], this.y[y]);
            },
            
            reset: function(){
                this.x = [], this.y = [];
            }
        },
        myWorker: false,
        
        run: function startWorker(params){
            this.myWorker = new Worker("js/worker.js");
            
            var that = this;
            this.myWorker.postMessage(JSON.stringify(params));
            
            this.myWorker.onmessage = function(event){
            
                var data = JSON.parse(event.data);
                if (data.type === 'draw') {
                    that.draw(JSON.parse(data.data));
                }
                else 
                    if (event.data.type === 'log') {
                        console.info(event);
                    }
            };
        }
    };
    
    worker.run(params);
    return worker;

92 | Chapter 8: Splitting Up Work Through Web Workers

http://lib.ommolketab.ir
http//lib.ommolketab.ir


};

$(document).ready(drawMandelSet);

Function.prototype.createDelegate = function createDelegate(scope){
    var fn = this;
    return function(){
        fn.call(scope, arguments);
    };
};

function pickColor(escapeValue){
    if (escapeValue === Complex.prototype.max_iteration) {
        return "black";
    }

    var tone = 255 - escapeValue * 10; 
    var colorCss = "rgb({r},{g},{b})".populate({
        r: tone,
        g: tone,
        b: tone
    });
    return colorCss;
}

String.prototype.populate = function populate(params) {
    var str = this.replace(/\{\w+\}/g, function stringFormatInner(word) {
        return params[word.substr(1, word.length - 2)];
    });
    return str;
};

The actual worker itself is very simple Example 8-3 It just loads up a few other files and
then waits for a message to be sent from the User Interface. When it gets one, it starts
the computation.

Example 8-3. Mandelbrot Computation

importScripts('function.js','json2.js', 'complex.js','computeMandelbrot.js', 'buildMaster.js');

onmessage = function(event){
    var data = typeof event.data === 'string'? JSON.parse(event.data) :  event.data; 
    buildMaster(data);
};

The build function (Example 8-4) loops over the grid of points for the Mandelbrot set,
computing the escape value for each point(Example 8-5. After every 200 points, the
build function sends the results of its computation back to the main thread for drawing,
and then zeroes out its internal buffer of computed points. This way, instead of waiting
for the entire grid to be drawn at once, the user sees the image build progressively.

Web Worker Fractal Example | 93

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Example 8-4. Mandelbrot Build

var chunkSize = 200;
function buildMaster(data){

    var range = data.range;
    var width = data.width;
    var height = data.height;
    var startx = data.startx;
    var starty = data.starty;
    var dx = (range[1].x - range[0].x) / width;
    var dy = (range[1].y - range[0].y) / height;
    
    
    function send(line){
        var lineData = JSON.stringify(line.map(function makeReturnData(point){
            return {
                drawLoc: point.drawLoc,
                point: point.point,
                escapeValue: point.point.mandelbrot()
            };
        }));
        
        var json = JSON.stringify({
            type: 'draw',
            data: lineData
        });
        postMessage(json);
    };
    
    
    function xIter(x, maxX, drawX){
        var line = [];
        var drawY = starty;
        var y = range[0].y;
        var maxY = range[1].y;
        
        while (y < maxY) {
            if (line.length % chunkSize === chunkSize - 1) {
                send(line);
                line = [];
                
            }
            var pt = {
                point: new Complex(x, y),
                drawLoc: {
                    x: drawX,
                    y: drawY
                }
            };
            line.push(pt);
            y += dy;
            drawY += 1;
        }
        send(line);
        if (x < maxX && drawX < width) {

94 | Chapter 8: Splitting Up Work Through Web Workers

http://lib.ommolketab.ir
http//lib.ommolketab.ir


            xIter.defer(1, this, [x + dx, maxX, drawX + 1]);
        }
    }
    
    xIter(range[0].x, range[1].x, startx);
    
}

Example 8-5. Mandelbrot Computation

Complex.prototype.max_iteration = 255 * 2;
Complex.prototype.mandelbrot = function(){

    var x0 = this.x;
    var y0 = this.y;
    var x = x0;
    var y = y0;
    var count;
    var x_, y_;
    var max_iteration = this.max_iteration;
    function inSet(x, y){
        return x * x + y * y < 4;
    }
    count = 0;
    while (count < max_iteration && inSet(x, y)) {
        x_ = x * x - y * y + x0;
        y_ = 2 * x * y + y0;
        count += 1;
        x = x_;
        y = y_;
    }
    
    return count;
};

The final part of this application is the actual mathematical computation of the Man-
delbrot set shown in Example 8-5. This function is done as a while loop instead of a
pure function as in “Functional Programming” on page 12, because Javascript does not
support tail recursion. Doing this as a recursive function would be more elegant, but
would risk causing a stack overflow.

While the worker is doing the calculation of the Mandelbrot set, its main event look is
blocked. So It is not possible for the UI process to send it a new computation task, or
more correctly stated, the worker will not accept the new task until the current task is
finished.

To interrupt or change a worker's behavior—for instance, to let the user in the user
interface thread select which area of the Mandelbrot set to draw and then request that
the worker draw that area—there are a few ways to go about it.

Web Worker Fractal Example | 95

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The simplest method would be to kill the worker and create a new one. This has the
advantage that the new worker starts off in a clean state and there can be nothing left
over from the prior runs. On the other hand, it also means that the worker has to load
all the scripts and data from scratch. So if the worker has a long start-up time, this is
probably not the best approach.

The second method is a little more complex: manage the task queue manually through
your program. Have a data structure in the main thread or a worker that keeps a list of
blocks of data to compute. When a worker needs a task, it can send a message to that
queue object and have a task sent to it. This creates more complexity but has several
advantages. First, the worker does not need to be restarted when the application needs
it to do something different. Secondly it allows the use of multiple workers. Each worker
can query the queue manager when it needs the next part of the problem.

You could also have the master task send a large number of events to the worker in
sequence, However, this has the problem that there is no way from Javascript to clear
the event queue. So having a job queue that can be managed seems to be the best
approach. We'll explore this solution in the following section.

Using Multiple Web Workers
There is no requirement that an application restrict itself to one Web Worker. Javascript
is quite happy to let you start up a reasonable number of workers. Of course, this makes
sense only if the problem can be easily partitioned into several workers, but many
problems can be.

Each worker is an independent construction, so it is possible to create several workers
from the same source code, or to create several workers that work independently.

Workers are a reasonably heavy construct in Javascript, so it is probably a bad idea to
create more than, say, ten workers on a given task. However, the optimal number is
probably dependent on the user's browser and hardware as well as the task to be per-
formed.

Testing and Debugging Web Workers AKA SHOOT ME NOW!
Over the last ten years the tools for Javascript debugging have gotten quite good. Fire-
bug and Chrome Developer Tools both are first-rate debugging tools that can be used
for testing Javascript applications. Unfortunately, neither can access code running in a
Web Worker. So you can't set break points or step through your code in a worker. Nor
do workers show up in the list of loaded scripts that appear in the respective script tags
of Firebug and Chrome. Nor can Selenium or QUnit tests directly test worker code
running in a web worker.

96 | Chapter 8: Splitting Up Work Through Web Workers

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Errors in a worker are reported back to the console in Firefox and Chrome. Of course,
in many cases knowing which line and file the error occurred at does not help all that
much, as the actual bug was somewhere else.

Chrome does provide the programmer a method for debugging web workers. The
Chrome Developer Tools script panel contains a Web Workers check box. This option
causes Chrome to simulate a worker using an iframe.

A pattern for degredation
Being able to use web workers to pull complex tasks out of the user's browser task offers
great power for the programmer. Firefox has supported wokers since version 3.5 and
Chrome has supported wokers since version 4.0. Similarly Safari and Opera have sup-
ported workers for some time. However as of now Microsoft Internet Exporer does not
support web workers, (though it may appear in IE version 10, nor does Safari on iOS
so it is not possible to support workers on the iPad/iPod/iPhone platform.

What would be ideal would be a library that would enable a programmer to abstract
out the code to be run into a function or module and a runner that would run that code
in a web worker if avalable and via a setTimeout method. Furthermore it would be able
to provide a common set of interfaces that could be used for the various interactions
such as posting a message back to the main application.

Such a library should always use feature detection rather than browser detection to
figure out which version of the code to run. While right now a given browser may or
may not support web workers in the future that will change and a library needs to be
able to work with those changes.

The actual function to do the work in this pattern will be called repeatedly with the run
state as a parameter, it should do whatever processing it needs to do and return a
modified state parameter which will be used to call it again until it finishes its job and
calls the stop() method or is otherwise interupted. The run function ( Example 8-6)
should be treated as a pure function, it should only process its inputs and return a value
but not effect any change in global state as depending on if is running as a worker or
not it will have a different set of interfaces avalable to it.

Example 8-6. Run

var run = function run(state)
{
   
    // do something to modify the state
    return state;
}

When running in a worker (Example 8-7) the run function can be run from inside a
standard loop. The system is setup via a postMessage call with some initial parameters

A pattern for degredation | 97

http://lib.ommolketab.ir
http//lib.ommolketab.ir


which are then passed as the inital state to the run method. That method will be re-
peatedly called by the while loop until it calls the stop function, at which point the state
will be posted back to the main message.

Example 8-7. Run

//TODO setup code here
var runner = {
    stop: false,
    postMessage: function (message){
       // fill this in
    },

    stop: function (){
    this.stop = true;
    },
    error: function(error){
      this.stop = true;
    },

    setup: function(run)
    {
       this.run  = run;
       this.execute();
    },
  
    execute: function ()
    {
        var state;
    while(!this.stop)
        {
       state = this.run.apply(this, [state]);
        }
    this.postMessage(state);
    }
};

When Web Workers are not avalable then the run function must be presented with the
same interface. (Example 8-8) Once again it will call the run function with a state
parameter which should be returned. However as this is not a web worker it will then
call the window.setTimeout() method to deplay the next itteration by some amount of
time and call the function again.

Communications between the simulated web worker and the main body of the code is
also somewhat different. As there is no postMessage method with a callback then the
runner must simulate it by presenting a mechanism to register a callback that can take
the same parameters as the WebWorker's onmessage handler.

Example 8-8. Run

98 | Chapter 8: Splitting Up Work Through Web Workers

http://lib.ommolketab.ir
http//lib.ommolketab.ir


var runner = {
    stop: false,
    // over ride this function
    onmessage: function(){},
    postMessage: function (message){
      this.onmessage(message);
    },

    stop: function (){
    this.stop = true;
    },
    error: function(error){
      this.stop = true;
    },

    setup: function(run, state)
    {
       this.run  = run;
       this.state = state;
       this.execute();
    },
  
    execute: function ()
    {
    var that = this;

    setTimeout(function runItterator(){    
        that.state = that.run.apply(that, [that.state]);
        if(that.stop)
        {
           that.postMessage(that.state);
        }
        else
        {
           that.execute();
        }
    }, 250);
    }
};

This model of how to make code portable between a web worker and reguarl JavaScript
is presented as a model and not a full solution. It is missing some features such as
loading code. It is also missing a way to call an asycronous method such as an ajax call
and resume processing when done. This would be nessary as while in general Web-
Workers are designed for processor intensive work there will be times when access to
an Ajax Call or indexedb makes sense.

Libraries for Web Workers
When programming Javascript in the main thread, programmers use a library such as
jQuery to improve the API and to hide differences between browsers. For use with Web
Workers, there is a jQuery extension called jQuery Hive that provides much of this

Libraries for Web Workers | 99

http://github.com/rwldrn/jquery-hive
http://lib.ommolketab.ir
http//lib.ommolketab.ir


functionality. Hive includes the PollenJS library in the main Javascript thread. The
library includes interfaces to create workers.

Hive will also encode and decode messages between the main thread and worker if
needed. In some browsers (notably Firefox), complex data can be sent over the post
Message interface. However, in some versions of Chrome and Safari, postMessage will
handle only a string or other simple data.

Hive also includes a subset of the jQuery API in the worker itself. The most important
methods in the Hive API are $.get() and $.post(), which mirror the APIs in jQuery.
If a worker needs to access the server via Ajax, for instance, using Hive will make your
life much easier.

Hive also includes access to a persistent storage interface via $.storage. To set a value,
use $.storage(name, value). Calling $.storage(name) without the second value para-
mater will return the existing value, if set.

Also included in Hive are $.decode() and $.encode(), which can be used to encode or
decode JSON messages.

100 | Chapter 8: Splitting Up Work Through Web Workers

http://lib.ommolketab.ir
http//lib.ommolketab.ir


CHAPTER 9

Web Sockets

HTTP is a request and response protocal. It was designed to request files and still
operates around the ideas of file requests. For the type of application that has to load
data and then save it later this works pretty well.

However for an application that needs real time data from the server this works quite
poorly. Many classes of applications require real time, or semi-real time access to the
server. Applications such as chat, or those that share data in real time like many of the
Google Office applications really need a way for the server to push data to the browser
when things happen on the server. There are a few ways to do this with HTTP, but
none of them really work well.

Some applications, such as gmail, simply make a large sequence of http requests, more
than one a second Figure 9-1. This has a lot of overhead and is not a particularly efficiant
way to poll the server. It can also create a huge amount of server load as for each request
there is a setup and tear down that may need to happen on the server. Plus there is the
network overhead of HTTP headers, as well as user authentication. The HTTP headers
can add a few hundred bytes to each request. In a busy server this can add a significant
amount of load to the servers and network.

A second method is to open up a HTTP request to the server, and let it hang open,
When the server needs to send some data it will send it to the client and then close the
HTTP request. At this point the browser will open up a new connection and repeat.
Depending on the specific server technology employed this can still cause a significant
load on the server as a large pool of threads and connections are kept running, even if
in a waiting state, though this would be less of an issue using a non blocking server
such as Node.JS. There is a further complication in that the browser may only allow a
limited number of Ajax requests to a given server at a time, so by holding a request or
two open it may cause other things to block, making this less than an optimal way to
do things.

HTML5 introduces the idea of Web Sockets, which greatly resemble TCP/IP sockets
in how they work. A socket is opened by the browser back to the server from which it
was loaded and can be kept open until it is no longer needed and explicitly closed. A

101

http://lib.ommolketab.ir
http//lib.ommolketab.ir


socket is a bi directional real time data channel, while a HTTP request is a simple polling
system. If you were to send each keystroke to the server over HTTP with Ajax then
there would probably be an overhead of 300-400 bytes at a minumum, maybe as much
as a kilobyte or two with cookies for each keystroke. With a socket there is no HTTP
headers so much of that overhead will just go away. The overhead would be reduced
to just a few bytes.

As of this writting (August 2011) Web sockets are supported by Chrome version 8 and
later and Safari version 5. As of Firefox version 6 WebSockets are avalable, but the
constructor is MozWebSockets. Opera has implemented the web sockets spec but leave
it turned off by default pending security issues being worked out. For browsers that do
not support WebSockets there are fallbacks using classic HTTP or Flash that can work.

Figure 9-1. Firebug in gmail

102 | Chapter 9: Web Sockets

http://lib.ommolketab.ir
http//lib.ommolketab.ir


There are also some libraries such as socket.io that will provide a constant interface for
WebSockets and the fallback to older style HTTP communications for browsers that
may not support WebSockets. It is also possible to emulate web sockets via Flash for
browsers that do support flash but not web sockets.

The Web Sockets specification document also appears to be a work in progress. While
web sockets have been deployed in several browsers there is still very little documen-
tation on how to implement them. There have also been several earlier versions of of
the web sockets standard that are not always compatable.

The Web Sockets Interface
To open up a web socket create a web socket by creating a Web Socket object. As a
paramater pass a Web socket URL. Unline a HTTP method a web socket URL will start
with "ws" or "wss" for a secure web socket that will use SSL similar to HTTPS under Ajax.

    var socket = new WebSocket("ws://example.com/socket");

Once a socket connection is opened the socket's socket.onopen() callback will be called
to let the program know that all is ready. When the socket closes the
socket.onclose() method will be called. If the browser wishes to close the socket it
should call socket.close().

To send data over the socket use the socket.send("data") method. This will send the
data to the server over the wire. Data is limited to strings so encoding the data to JSON,
XML or other data interchange format will be needed if the data is more complex than
simple strings. In addition sockets are text only so if binary data must be sent it should
be encoded into text in some method.

The WebSocket Protocal
A web socket connection starts out much like a HTTP connection. It opens a connec-
tion on port 80 (ws) or 443 (wss) to the server, however in addition to the standard
HTTP headers it also includes some new headers that tell the server that this is a Web
socket connection and not a HTTP connection. It also includes some handshaking
bytes which are used to provide some security. Since the Web Socket protcall uses ports
80 and 443 most proxies and firewalls should deal with it correctly. Web sockets can
also specify a different port in the same way that a HTTP protocall can, but like an Ajax
call the Web Socket must be on the same port as the web server that spawned it.

Once a connection is setup both ends can send data over it. A Web socket datagram
starts with a null byte (0x00) and then ends with a 0xFF byte. In between these two
markers can be any valid UTF-8 string. Binary is not supported at this time. To send
binary some form of encoding would be needed. The Web Socket does not care what
kind of text is sent over it. It is up to the Server and the Client to agree on data formats.

The WebSocket Protocal | 103

http://socket.io
http://lib.ommolketab.ir
http//lib.ommolketab.ir


Normally data will probably be JSON or XML, but there is no reason that some other
format could not be used if desired.

Web Socket Example
To illistrate how to use websockets consider a simple example in Example 9-1. Here a
very simple Javascript function opens up a socket to a server which serves up stock
prices. It sends a stock ticker symbol which it is interested in (IBM). The server then
will find a price for that stock and send it back to the client as a JSON. The server could
be setup to poll every 5 seconds for a new price and send it to the client when it changes.
The client will just refresh the element every time the price changes.

The browser code for working with Web Sockets Example 9-1 should look pretty fa-
milar to any programmer who has worked with AJAX. A Web Socket object is created
with the appropriatate URL. Once the Socket is opened (be sure to wait for it to open).
Data can be sent via the socket.send event to the server. When the server sends data
back to the browser the socket.onmessage event is called with the string in the data field
of the event object. In this case the data is a JSON so it can be parsed with the standard
browser JSON parsing methods and then displayed in the browser.

Example 9-1. Socket Client Example

$(function ()
{
  var socket = new WebSocket('ws://localhost/stockprice');
 
  // wait for socket to open 
  socket.onopen = function ()
  {
    socket.send(JSON.stringify(
    {
      ticker: "ibm"
    }));
  };

  socket.onmessage = function (msg)
  {
    var prices = $.parseJSON(msg.data);
    var html = "IBM: " + prices.ibm;
    $('div.prices').html(html);
  }
});

      

The WebSocket client does not make much sense without a server to go with it. In
general WebSockets lend themselves well to event driven data such as a shared docu-
ment, Stock Ticker or chat service. While PHP has often been the standby of web server

104 | Chapter 9: Web Sockets

http://lib.ommolketab.ir
http//lib.ommolketab.ir


development in this case having a language with a programming model setup for long
running processes and events makes more sense.

There are several good choices here. Node.js works well, and has the advantage of being
Javascript which the web programmer will already be familar with. Other possibilities
include Erlang and Yaws which has a web socket interface and has a multi processor
model that could be idea for this kind of programming. There are also a number of
options for Java and the other languages of the JVM including Scala, Clojure and so
on. There are also implementations for Ruby and probably most of the .net/CLR lan-
guages. In truth most languages that are used for web server programming will be able
to use Web Sockets.

In this example, done in node.js, a server is setup using the websocket-server package
which can be found via NPM or on github. The server waits for a connection on port
8080 and when one comes in it calls the callback. That connection callback waits for
a message to arive via the connection object. In this example it then sets calls a higher
order function tickerUpdate which somehow finds stock prices and when the relivant
stock symbol has changed it calls the callback which sends the new price back to the
client. For a fuller guide to programming Node see "Node: Up and Running" by Tom
Hughes-Croucher.

Example 9-2. Socket Server Example

        var ws = require("websocket-server");

var server = ws.createServer();

server.addListener("connection", function (connection)
{
  connection.addListener("message", function (msg)
  {
    var tickerSymbol = msg.ticker;
    tickerUpdate(tickerSymbol, function (price)
    {
      var msg =
      {
      };
      msg[tickerSymbol] = price;
      server.send(connection.id, JSON.stringify(msg));
    });
  });
});

server.listen(8080);

      

Web Socket Example | 105

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Web Socket Protocal
While most of the time the low level details of web sockets will not of great concern to
the programmer, The interfaces in the browser and on the server will take care of the
details and just provide an API which can send data.

That being said sometimes it may be useful to know the low level details of how things
to work, to understand why something is not working, or to implent a Web Socket
Client in some other enviroment. Web Sockets carry data between browser and server
using a TCP socket instead of a HTTP envelope. However it is important to understand
how a socket is setup. When the browser tries to open a socket it sends what looks like
a HTTP GET request but with a few extra headers Example 9-3.

After the connection has been setup then frames of data are sent back and forth. Each
frame is started with a null byte 0x00 and ends with a 0xFF byte. Inside the envelope is
data in UTF-8 format.

Example 9-3. Socket Headers

        GET /socket HTTP/1.1
Upgrade: WebSocket
Connection: Upgrade
Oragin: http://www.test.com
Host: www.test.com
Content-Length: 0

      

There are server side implementations for Web Sockets that will work with Python,
Ruby, Erlang, Node.JS, Java as well as other languages. Example 9-4 shows a very trivial
hello world type websocket interface in Ruby. The state of libaries for WebSockets is
advancing and there are packages in various states of developmet for pretty much all
the major languages used in web development. In general the server side of the web
sockets equation will be dictated by the other needs of a project. As such it make sense
to find the web sockets package for the enviorment that is being used by a given project.

Ruby's Event Machine also provides an ideal platform for working with web sockets,
as the programmer is given an event based interface. Here is a very simple implemen-
tation written in Ruby to show how to use a WebSocket interface.

Example 9-4. Ruby Event Machine Web Socket handler

        require 'em-websocket'
 
EventMachine::WebSocket.start(:host => "0.0.0.0", :port => 8080) do |ws|
  ws.onopen    { ws.send "Hello Client!"}
  ws.onmessage { |msg| ws.send "Pong: #{msg}" }
  ws.onclose   { puts "WebSocket closed" }
end

106 | Chapter 9: Web Sockets

http://lib.ommolketab.ir
http//lib.ommolketab.ir


 
                                                             

      

Web Socket Protocal | 107

http://lib.ommolketab.ir
http//lib.ommolketab.ir


http://lib.ommolketab.ir
http//lib.ommolketab.ir


CHAPTER 10

New Tags

In addition to a lot of new interfaces for working with data, HTML5 also introduces a
number of new HTML tags that can be used in a web page to enhance the application
developer's ability to put out a quality application.

Tags for Applications
A common task in any application is to give the user feedback on how far along a long-
running task is. This lets the user know that her task is moving and that something
didn't freeze up. It is possible to show a progress meter by using a few <div> elements
and some custom CSS, but HTML5 standardizes the procedure and look through a
new <progress> tag. As of this writing, the tag is supported in Firefox and Chrome. It
offers two attributes to make it easy to visualize progress to the user: value to show the
current value of the progress bar and max show the maximum value.

In order to show a progress indication to users of legacy browsers, it is recomended
that you include some form of text inside a <span> element inside the progress bar.

Example 10-1 shows the code for a progress bar at 20% completion. Example 6-4 in
Chapter 6 shows how JavaScript can update the attributes as events in the program
indicate progress. The progress bar can also be styled with CSS like any other HTML
element.

Example 10-1. Progress indicator

<!DOCTYPE html>
<html>
  <head>
    <title>Progress</title>
  </head>
  <body>
    <progress value="20" max="100">
      <span>running</span>
    </progress>
  </body>

109

http://lib.ommolketab.ir
http//lib.ommolketab.ir


</html>

      

If the <progress> element can be used to show a running event, the <meter> element
can be used to show a static value such as how full a disk is or how much money has
been raised for a fundraising goal.

The meter tag can take a few parameters, including min, max, low, high, optimum, and
value. All of these should be set to numeric values. The min and max values show the
ends of the range of values, whereas the value attribute shows the current value. The
high, low, and optimum allow the tag to sub segment the range. Through CSS, you can
style values different parts of the ranges with different looks.

Like the <progress> tag, the <meter> tag should be wrapped around a <span> that can
show the data to browsers that do not support this tag. Currently, Chrome supports
this tag, as does Opera. Other browsers may follow at some point.

Example 10-2. Meter indicator

<!DOCTYPE html>
<html>
  <head>
    <title>Meter</title>
  </head>
  <body>
    <meter min="0" value="20" max="100">
      <span>20%</span>
    </meter>
  </body>
</html>

      

Accessibility Through WAI-ARIA
For those that may have physical disabilities, using a web application (or any other GUI
application) can prove to be a great challange. So HTML5 defines Accessible Rich
Internet Applications. It is directed particularly at the sight-impaired (which may in-
clude people who for some reason till use a non-graphic browser). By adding attributes
to tags in an application, you may help these users access its contents.

This section is not a full guide to making an accessible application, which could fill a
book of its own. The basic idea of WAI-ARIA is that it adds symantac meening to
elements on the page that can be read by a screen reader to let a user who is visually
impaired have context for what is happening on a page. This sort of text has been
supported for some time by the alt attribute on <img> tags and the title attribute on
<hr> tags.

110 | Chapter 10: New Tags

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The most common attribute in WAI-ARIA is the role attribute. This provides context
for elements. In HTML, tags such as <span> and <li> are used for many different
things, from navigation to actual lists. By adding a role attribute, you can help the
screen reader make sense of all of this.

Example 10-3. WAI-ARIA

<!DOCTYPE html>
<html>
  <head>
    <title>Meter</title>
  </head>
  <body>
   <ul id="tree1"
      role="tree" 
      tabindex="0" 
      aria-labelledby="label_1">
  <li role="treeitem" tabindex="-1" aria-expanded="true">Fruits</li>
  <li role="group">
    <ul>
      <li role="treeitem" tabindex="-1">Oranges</li>
      <li role="treeitem" tabindex="-1">Pineapples</li>
      ...
    </ul>
  </li>
</ul>
</body>
</html>

      

http://stackoverflow.com/questions/4176844/can-someone-explain-the-html5-aria-
attribute

Microdata
Sometimes it is useful to add machine-readable data to a set of HTML tags. For exam-
ple, you can use this procedure in a template to encode data into a page that can later
be read by Javascript. To enable such procedures in a standardized way, HTML5 cre-
ated the concept of microdata, which can be added to HTML5 tags.

Traditionally, HTML tags give information about how information should be format-
ted on screen, but not about the information itself. A program can look at a <li> tag
and know it is an item in a list, but not what kind of list. Is it a list of books for sale, or
people who attended an event? By adding microdata it is possible to give context to
that data, which can later be used programaticly.

In general, microdata tags will probably be used in web pages more than in applications,
but applications that run as plugins to a page, or administer a page in other ways, may
be called upon to use microdata. One can imagine an HTML5 application that serves

Microdata | 111

http://lib.ommolketab.ir
http//lib.ommolketab.ir


as an administrative panel for a company's web site and offers spaces where a sales
manager could put in microdata tags that give items for sale a context for for Google
Search or for Javascript programs from an external vendor that may be added to a web
page.

In truth, microdata is pretty simple: just a few extra attibutes with standardized names
attached to HTML tags, and some interfaces to work with that data attribute.

To designate a section of a page that will use microdata, give the enclosing element an
itemscope. The vocabulary for the microdata is defined by using the itemtype attibute
with a URL that defines the vocabulary. Within that, data is tagged by marking the
enclosing HTML tag with the itemprop attribute.

A number of predefined vocabularies can be found at http://www.data-vocabulary
.org. These include specs for Events, Organizations, People, Products, Revies, Review-
Aggregates, Breadcrumbs, Offers, and Offer-Aggregates. Google will understand these
syntaxes to enhance search results.

In theory there should be interfaces in the DOM to parse microdata, but as of now they
are not ready yet and implementation can be spotty. Thankfully, microdata is just
HTML attributes, so it can be easily parsed and processed with CSS selectors via the
DOM interface or with jQuery.

New Form Types
HTML 5 enhances the classic form that has been in HTML since the early 1990s with
a bunch of new form types. Most of these are variations on the classic <input
type="text"> tag that has been in use since the beginning. These new form types provide
some much needed flexability in the types of input a form can take, and the interface
it provides.

In many cases, on a mobile device, changing the input type will also cause the device
to put up a custom keyboard to enable the user to enter the right kind of data. For
instance, if type is set to number, the device can put up a numeric keypad. For a type of
tel, the device can put up a numeric keypad that looks a little different but is optimized
for entering phone numbers. For a type of email, the keyboard will be a standard
QWERTY keyboard but modified for the entry of email addresses.

One input type that is especialy useful for smartphone applications is the Speech input
type: <input type="text" x-webkit-speech/>. The speech tag will take what the user
said and translate it into text. My Android phone, for instance, has a Google Search
widget that can search by voice. The speech tag still allows the user to type text normally
as well. When the user speaks, the input will fire the webkitspeechchange event, which
can be used to interact with the user.

112 | Chapter 10: New Tags

http://www.data-vocabulary.org
http://www.data-vocabulary.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir


Be warned that for users who speak English with foreign or other non-
standard accents, this tag may prove very difficult to use. Many of my
Israeli and Russian coworkers find that these inputs are not very useful.
It may also have limited support for languages other than English. So if
your application's users speak, for example, Polish or Hebrew, the tag
may or may not be useful.

HTML5 adds the ability for a form element to be required. If the required attribute is
set and the element is blank then it can be styled in css with the :invalid selector.

To display a slider that can be used to allow the user to pick from a range of values, use
the range type. Specify a min and max values as well as a starting value.

Other input types are pretty simple and mostly allow the programmer to specify what
kind of data in expected, and have the browser mark a field as invalid if it is not correct.
Here is a table showing some of the possible options.

Table 10-1. Form Inputs

Type Use Notes

email Email Addresses  

date Dates min and max can specify a range

time Time of Day min and max can specify a range

tel Telephone numbers pattern to specify format via Regular Expression

color Colors Format like #BBBBBB

number Numbers Will show up and down arrows

search Search min and max can specify a range

Audio and Video
HTML5 also provides new support for audio and video via the <audio> and <video>
tags. These tags should be familar to anyone who has used the html <img> tag in that
the audio source or video source is set with the src attribute. Both can be set to display
controlls with the controls attributes. Audio and video can also be controlled with
JavaScript and styled with CSS.

A full description of how to script HTML5 media is beyond the scope of this book, but
can be found in the book "HTML5 Media" by Shelly Powers.

Canvas & SVG
In addition to providing sound and video support HTML5 provides support for build-
ing graphics in the browser with both Canvas and SVG. Classic HTML can display
images but Canvas and SVG can do much more.

Canvas & SVG | 113

http://lib.ommolketab.ir
http//lib.ommolketab.ir


SVG is an XML standard for Scalable Vector Graphics which is to say that images
created in SVG can be scaled and rotated and manipulated. In addition each element
in a SVG image is an element in the DOM. SO it is possible to say create a circle in SVG
that can have standard JavaScript event handlers attached to it. Elements in SVG can
also be manipulated as parts of the DOM, elements can be addede, removed, or changed
directly with the DOM or with jQuery. SVG elements can also be styled with CSS like
any other HTML element. SVG is covered in depth in other books including "HTML5
Graphics with SVG & CSS3" by Kurt Cagle.

Canvas was initially created by Apple for use with OS X and moved into Safari, it has
from Safari moved into most of the other browsers. Canvas provides a 2D drawing
surface which on which the code can render images. This was used in “Web Worker
Fractal Example” on page 89 to draw a mandelbrot set, but its full power is much greater
than that. For a full treatment see "HTML5 Canvas" by Steve Fulton and Jeff Fulton.

In addition to the 2D canvas a 3D canvas based on WebGL has stared bo be imple-
mented in a number of browsers. For demos and a tutorial look at the HTML5 Rocks
tutorial. http://www.html5rocks.com/en/tutorials/three/intro/.

Geolocation
The World Wide Web is by definition world wide, but there are many things on it that
are local. If I am searching for a pizza place I probably want one that is near where I
am located. Geolocation lets the browser determine the user's location by one of several
mechanisms. If GPS is avalable (as it is on many smart phones) it will use that to get a
location that is probably accurate to a few meters. If there is no GPS access then the
browser can try to use information from Cell Towers or WiFi hubs, these methods may
not be as accurate but often are good enough. If the goal is to find a local pizza place
knowing the location to a few blocks is probably good enough. In most cases the Ge-
olocation API will require the user to approve the request.

To get the user's position call the getCurrentPosition() method with two callbacks,
one for a successful location and one for an error. In the case that the browser was able
to find the user's location it will return with the Latitude and Longitude, altidue if it
can figure it out as well as an accuracy parameter. If there is an error it will call with
one of several error conditions.

    navigator.geolocation.getCurrentPosition(userLocationCallback, errorCallback);
  

New CSS
In additon to new JavaScript interfaces and new HTML tags HTML5 also adds a bunch
of new CSS selectors, including :nth-child() and :first-child as well as the CSS neg-

114 | Chapter 10: New Tags

http://www.html5rocks.com/en/tutorials/three/intro/
http://lib.ommolketab.ir
http//lib.ommolketab.ir


ation operator :not() which can be used like :not(.box). These should allow developers
to have more controll over presentation of their applications.

In addition to new selectors HTML5 includes support for Web Fonts in CSS. It is now
posible to define a new font in CSS and includ a True Type Font file in the css to get a
specific look.

HTML5 CSS also includes some other pretty cool features, it is possible to be more
specific in Text Overflow, to set Opacity of an object in the DOM, setup Text Strokes,
specify color by HSL and a lot more. Of course like everything else in HTML5 not aqll
of these are supported in all browsers.

New CSS | 115

http://lib.ommolketab.ir
http//lib.ommolketab.ir


http://lib.ommolketab.ir
http//lib.ommolketab.ir


APPENDIX

JavaScript Tools You Should Know

JavaScript is a young language in many ways. Although, it has been around for about
15 years, only recently has it has been used for large-scale projects. So the tools to help
programmers do robust, debuggable programming are still being developed. Here are
a few you should strongly consider using.

JSLint
This is Douglas Crockford's JavaScript syntax checker. JSLint can test JavaScript
code for all manner of possible problems. You can run JSLint from the web site
(http://jslint.com) or locally. There is a Drag and Drop widget in the Yahoo widget
set, and you can run it from the command line with Rhino (discussed later). A
simple Bash script will make this easy to run (Example A-1). You can even hook
JSLint into your editor.

If you use one tool for JavaScript, it should be this one. To understand why, read
Crockford's JavaScript: The Good Parts (O'Reilly). That book will describe in detail
why JSLint makes the choices it does. It will catch many, very common JavaScript
bugs and should be considered a key part of every JavaScript programmers tool
chain.

To configure JSLint on a per-file basis, you can put comments at the top of the file.
These can turn options on or off in the file as well as tell JSLint about global vari-
ables that are defined else where.

Example A-1. JSLint shell wrapper

        #!/bin/bash

java -jar ~/bin/rhino/js.jar ~/bin/jslint.js $1

      

117

http://jslint.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir


JSMin
It's a fact of life for the JavaScript programmer that our programs are downloaded
in source form to the user's web browser. This can be sped up by minification.
JSMin performs a number of actions on a file, such as removing comments and
white space. After running JSMin files generally are about 30% of their original
size. This means that many fewer bytes have to be transmitted to the client.

JSMin is a one way process, so make sure you have a copy of your
files around. It also should not be used in development, as it makes
debugging very difficult. And before running JSMin, make sure to
run JSLint.

JSBeautifier
If your JavaScript code tends to get messy, JSBeautifier is a good tool to know
about. It takes a JavaScript file and reformats it according to some basic rules. You
can run this from the web site or using Rhino from a command line on your desk-
top. All the JavaScript code in this book has been formatted with this tool.

JSBeautifier can take a number of command-line options to specify indentation
style and bracket style. Indentation can be by tabs or spaces. The -i option controls
indentation level.

JSBeautifier can also format JSON strings. Since it is written in Javascript, you can
embed it in other JavaScript programs. If you need to display a JSON structure at
some point to a user, you can use this library to pretty-print it (Example A-2).

Example A-2. JavaScript Pretty Printer

        #!/bin/bash

cp $1 $1.bak
export WORKING_DIR=`pwd`
cd    ~/bin/js-buautify

java -jar ~/bin/rhino/js.jar  beautify-cl.js -d ~/bin/js-buautify/  -i 1 -b -p -n $WORKING_DIR/$1 > /tmp/$1
 
mv /tmp/$1 $WORKING_DIR/$1

      

Emacs JS2 mode
Emacs JS2 mode is a very nice framework for JavaScript editing. For those who
already live in Emacs, this is very helpful.

Aptana
For those who wish to have a full IDE to develop JavaScript in, Aptana is a good
choice. Aptana is a verion of Eclipse customized for JavaScript. It has a lot of op-
tions that can be customized.

118 | Appendix: JavaScript Tools You Should Know

http://jsbeautifier.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir


Aptana will reformat code, but it sometimes does so in strange ways
—not bad, so much as just a little different.

YSlow
In a large web application, it is not unusual for loading to go slowly. If this is
happening, you can use this tool along with Firebug to find out where the bottle-
necks are. The tool goes along with the book High Performance Web Sites, which
was written by the creator of YSlow. It covers much more than JavaScript, because
it shows when each file is transmitted as part of the web page.

FireRainbow
This is a Firebug plugin that colorizes JavaScript in the Firebug script tab. It's a
very nice way to make code a little easier to read in the debuger.

Speed Tracer
This is a Google Chrome plugin that lets you know what the browser is spending
time on. Before you spend a few days optimizing JavaScript, find out if it will ac-
tually help. If CSS is the real bottleneck, this will tell you!

CoffeeScript
CoffeeScript is a cool new language that uses JavaScript as a compile target. If you
like functional programming, this should interest you. It has been getting a solid
following of late. There are several CoffeeScript books out or in the works. Cof-
feeScript claims to produce code that will always pass JSLint validation.

ClojureScript
If you like Lisp, check out ClojureScript, which is a compiler that will compile the
Clojure dielect of Lisp into Javascript. It comes from Rich Hickey, who created
Clojure.

Rhino
Rhino is a Java-based JavaScript implementation. If you want to build tools to run
on a command line in JavaScript, this is the tool for the job. A number of JavaScript
programs, such as JSLint, will run under Rhino as well as the browser. In adddition,
Rhino can be used to allow JavaScript to script Java objects, which can be pretty
useful.

Node.js
Node.js is a new server-side platform being developed. It uses the JavaScript event
loop to create a nonblocking server that can handle a great number of requests very
efficently. Watch this project for cool things in the future.

JavaScript Tools You Should Know | 119

http://jashkenas.github.com/coffee-script/
https://github.com/clojure/clojurescript
http://nodejs.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir


http://lib.ommolketab.ir
http//lib.ommolketab.ir

	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. The Web as Application Platform
	Developing Web Applications
	Adding Power to Web Applications

	Chapter 2. The Power of JavaScript
	JavaScript's Triumph
	Non-blocking I/O and Callbacks
	Lambda Functions Are Powerful
	Closure
	Functional Programming
	Prototypes and How to Expand Objects
	Expanding Functions with Prototypes
	Currying and Object Parameters
	Array iteration operations
	You Can Extend Objects, Too

	Chapter 3. Testing Javascript applications
	QUnit
	A Simple Example
	Testing with QUnit
	Mocking and Stubs

	Selenium
	Selenium Commands
	Constructing tests With the Selenium IDE
	Automatically running tests
	Selenese Command Programing Interface
	Running QUnit from Selenium
	Selenium RC and a test farm


	Chapter 4. Local Storage
	The localStorage and sessionStorage Objects
	Using localStorage in ExtJS
	Offline Loading With a Data Store
	Storing Changes for a Later Server Sync

	JQuery Plugins
	DSt
	jStore


	Chapter 5. IndexedDB
	Adding and Updating Records
	Adding Indexes
	Retrieving data
	Deleting data
	Handling Errors

	Chapter 6. Files
	Blobs
	Working With Files
	Uploading Files
	Drag and Drop
	Putting it all together
	Filesystem

	Chapter 7. Take it Offline
	Introduction to the Manifest File
	Structure of the Manifest file
	Updates to the manifest

	Events
	Debugging Manifest Files

	Chapter 8. Splitting Up Work Through Web Workers
	Web Worker Use Cases
	Graphics
	Maps

	Using Web Workers
	The Worker Environment
	Worker Communication

	Web Worker Fractal Example
	Using Multiple Web Workers
	Testing and Debugging Web Workers AKA SHOOT ME NOW!
	A pattern for degredation
	Libraries for Web Workers

	Chapter 9. Web Sockets
	The Web Sockets Interface
	The WebSocket Protocal
	Web Socket Example
	Web Socket Protocal

	Chapter 10. New Tags
	Tags for Applications
	Accessibility Through WAI-ARIA
	Microdata
	New Form Types
	Audio and Video
	Canvas & SVG
	Geolocation
	New CSS

	Appendix. JavaScript Tools You Should Know

