downloaded from: lib.ommolkefab.ir

LEARNING
GAME PROGRAMMING

A Hands-on Guide to Building Online Games Using Canvas, SVG, and WebGL

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Learning HTMLS
Game
Programming

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Addison-Wesley Learning Series

s m \M }

LEARNING

LEARNIN LEARNING ANDRODI

1] D
GAME PROGRAMMING GAME PROGRAMMING

& Hangy- G Gusde b2 Objaciive-C for Mat and &% Dveiapers .
& Manss-on Guide ta Building Yeur First #hene Game . A Hands.On Guide in Budding Yeur First Andreid Game
: . \
A \ 1
ROD STROUGO
MICHAEL DALEY 8 ¥ WENDERLICH 3

vvAddison-Wesley

Visit informit.com/learningseries for a complete list of available publications.

The Addison-Wesley Learning Series is a collection of hands-on programming
guides that help you quickly learn a new technology or language so you can
apply what you've learned right away.

Each title comes with sample code for the application or applications built in
the text. This code is fully annotated and can be reused in your own projects
with no strings attached. Many chapters end with a series of exercises to
encourage you to reexamine what you have just learned, and to tweak or
adjust the code as a way of learning.

Titles in this series take a simple approach: they get you going right away and
leave you with the ability to walk off and build your own application and apply
the language or technology to whatever you are working on.

vAddison-Wesley informiTeom | Safari’

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

nloaded from: lib.ommolketab.ir

Learning HTMLS
Game
Programming

A Hands-on Guide to Building Online
Games Using Canvas, SVG, and WebGL

James L. Williams

vvAddison-Wesley

Upper Saddle River, NJ - Boston - Indianapolis - San Francisco
New York + Toronto + Montreal + London + Munich - Paris + Madrid
Cape Town - Sydney - Tokyo - Singapore + Mexico City

loaded from: lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publish-
er was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw
Library of Congress Cataloging-in-Publication Data:

Williams, James L. (James Lamar), 1981-

Learning HTML5 game programming : a hands-on guide to building online games using
Canvas, SVG, and WebGL / James L. Williams.

p. cm.

ISBN 978-0-321-76736-3 (pbk. : alk. paper) 1. Computer games—Programming. 2.
HTML (Document markup language) |. Title.

QA76.76.C672W546 2011

794.8'1526—dc23

2011027527

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For information regarding permis-
sions, write to:

Pearson Education, Inc.

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax (617) 671-3447

ISBN-13: 978-0-321-76736-3
ISBN-10: 0-321-76736-5

Text printed in the United States on recycled paper at RR Donnelly in Crawfordsville,
Indiana.

First printing September 2011

downloaded from: lib.ommolkefab.ir

Associate
Publisher

Mark Taub

Senior Acquisitions
Editor

Trina MacDonald
Development
Editor

Songlin Qiu

Managing Editor
Kristy Hart

Project Editor
Anne Goebel

Copy Editor
Bart Reed

Indexer
Tim Wright

Proofreader
Sheri Cain

Technical
Reviewers

Romin Irani

Pascal Rettig
Robert Schwentker

Publishing
Coordinator

Olivia Basegio

Cover Designer
Chuti Prasertsith

Senior Compositor
Gloria Schurick

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

To Inspiration

Came over for a midnight rendezvous
And is gone by morning as if by cue

—Author

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Table of Contents

Chapter 1 Introducing HTML5 1
Beyond Basic HTML 1
JavaScript 1
AJAX 2
Bridging the Divide 2
Google Gears 3
Chrome Frame 3

Getting Things Done with WebSockets and
Web Workers 4

WebSockets 4
Web Workers 4
Application Cache 5
Database APl 6
WebSQL API 6
IndexedDB APl 7
Web Storage 7
Geolocation 8
Getting Users’ Attention with Notifications 10
Requesting Permission to Display Notifications
Creating Notifications 11
Interacting with Notifications 12
Media Elements 13
Controlling Media 13
Handling Unsupported Formats 14
HTML5 Drawing APls 15

Canvas 15
SVG 16
WebGL 16

Conveying Information with Microdata 16

Chapter 2 Setting Up Your Development
Environment 19
Development Tools 19
Installing Java 19

downloaded from: lib.ommolkefab.ir

11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Installing the Eclipse IDE and Google Plugin
Google Web Toolkit 22
Web Server Tools and Options 23
Google App Engine 23
Opera Unite 23
Node.js and RingoJS 23
Browser Tools 24
Inside the Chrome Developer Tools 24
Chrome Extensions 25
Safari Developer Tools 26
Firebug 26
HTML5 Tools 27
Processing)S 27
Inkscape 27
SVG-edit 27
Raphaél 28
3D Modeling Tools 29
Blender 29

Chapter 3 Learning JavaScript 31

What Is JavaScript? 31
JavaScript’s Basic Types 31
Understanding Arithmetic Operators 32
Understanding JavaScript Functions 32
Functions as First-class Objects 33
Comparison Operators 34

Conditional Loops and Statements 35
Controlling Program Flow with Loops 36

Contents

20

Delayed Execution with setTimeout and setinterval 38

Creating Complex Objects with Inheritance and
Polymorphism 38

Making Inheritance Easier with the Prototype
Library 39

Learning JQuery 41
Manipulating the DOM with Selectors 42
JQuery Events 43
AJAX with JQuery 43
Cross-Site Scripting 44

Vii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

viii Contents

JSON: The Other JavaScript Format 44
JavaScript Outside of the Browser 45
Mobile Platforms 45
JavaScript as an Intermediary Language 45
JavaScript on the Desktop 46
Server-Side JavaScript 48

Chapter 4 How Games Work 51
Designing a Game 51
Writing a Basic Design Document 51
Deciding on a Game Genre 52
The Game Loop 53
Getting Input from the User 53

Representing Game Objects with Advanced
Data Structures 54

Making Unique Lists of Data with Sets 54
Creating Object Graphs with Linked Lists 56
Understanding the APIs in Simple Game Framework 57
Core APl 57
Components APl 58
Resources APl and Networking APIs 58
Building Pong with the Simple Game Framework 59
Setting Up the Application 59
Drawing the Game Pieces 61

Making Worlds Collide with Collision Detection and
Response 63

Understanding Newton’s Three Laws 63
Making the Ball Move 64

Advanced Collision Detection and Particle Systems
with Asteroids 66

Creating Competitive Opponents with Artificial
Intelligence 67

Adding Al to Pong 68
Advanced Computer Al with Tic-Tac-Toe 68

Chapter 5 Creating Games with the Canvas Tag 71
Getting Started with the Canvas 71
Drawing Your First Paths 72
Drawing Game Sprites for Tic-Tac-Toe 73

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Contents ix

Drawing Objects on the Canvas with Transformations 75

Ordering Your Transformations 76

Saving and Restoring the Canvas Drawing State 77
Using Images with the Canvas 78

Serving Images with Data URLs 78

Serving Images with Spritesheets 78

Drawing Images on the Canvas 78
Animating Objects with Trident.js 79

Creating Timelines 80

Animating with Keyframes 81

Creating Nonlinear Timelines with Easing 81

Animating Game Objects with Spritesheets 83
Simulating 3D in 2D Space 84

Perspective Projection 84

Parallaxing 85

Creating a Parallax Effect with JavaScript 85
Creating Copy Me 87

Drawing Our Game Objects 87

Making the Game Tones 88

Playing MIDI Files in the Browser 89

Playing Multiple Sounds at Once 90

Playing Sounds Sequentially 91

Drawing Our Game Text 91

Styling Text with CSS Fonts 92

Chapter 6 Creating Games with SVG and
RaphaélJS 95

Introduction to SVG 95

First Steps with RaphaéllS 97
Setting Up Our Development Environment 97
Drawing the Game Board 98
Drawing Game Text 99

Custom Fonts 100
Specifying Color 103
Loading Game Assets 104
Converting SVG Files to Bitmap Images 105

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

X Contents

Creating Our Game Classes 105
Shuffling Cards 107
Drawing and Animating Cards 107
Creating Advanced Animations 110
Paths 110
moveto and lineto 110
curveto 111
Exporting Paths from an SVG File 112
Animating Along Paths 113
Extending Raphaél with Plugins 113
Adding Functions 113
SVG Filters 113
Speed Considerations 114

Chapter 7 Creating Games with WebGL and
Three.js 117
Moving to Three Dimensions 118

Giving Your Objects Some Swagger with Materials and
Lighting 119
Understanding Lighting 120
Using Materials and Shaders 120
Creating Your First Three.js Scene 122
Setting Up the View 123
Viewing the World 128
Loading 3D Models with Three.js 129
Programming Shaders and Textures 131
Using Textures 134
Creating a Game with Three.js 136
Simulating the Real World with Game Physics 137
Revisiting Particle Systems 140
Creating Scenes 141
Selecting Objects in a Scene 142
Animating Models 142
Sourcing 3D Models 143
Benchmarking Your Games 144
Checking Frame Rate with Stats.js 144
Using the WebGL Inspector 145

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Contents Xi

Chapter 8 Creating Games Without JavaScript 147
Google Web Toolkit 147
Understanding GWT Widgets and Layout 148
Exposing JavaScript Libraries to GWT with JSNI 149
RaphaélGWT 150
Adding Sound with gwt-html5-media 151
Accessing the Drawing APIs with GWT 151
CoffeeScript 153
Installing CoffeeScript 153
Compiling CoffeeScript Files 153
A Quick Guide to CoffeeScript 154
Basics 154
Functions and Invocation 154
Aliases, Conditionals, and Loops 156
Enhanced for Loop and Maps 156
Classes and Inheritance 157
Alternate Technologies 158
Cappuccino 158
Pyjamas 158

Chapter 9 Building a Multiplayer Game Server 161
Introduction to Node.js 161
Extending Node with the Node Package Manager 162
Managing Multiple Node Versions 162
Making Web Apps Simpler with ExpressJS 163
Serving Requests with URL Routing 163
Managing Sessions 165

Understanding the ExpressJS Application
Structure 165

Templating HTML with CoffeeKup 166
Persisting Data with Caching 168
Managing Client/Server Communication 169
Communicating with Socket.I0 169

Setting Up a Simple Socket.|O Application with
Express 170

Making Web Sockets Simpler with NowJS 171
Debugging Node Applications 172

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Xii Contents

Creating a Game Server 173
Making the Game Lobby 173
Creating Game Rooms with NowJS Groups 174

Managing Game Participants and Moving Between
Game Rooms 175

Managing Game Play 175

Chapter 10 Developing Mobile Games 179
Choosing a Mobile Platform 179

i0S 179
Android 180
WebOS 180

Windows Phone 7 180

Flick, Tap, and Swipe: A Quick Guide to Mobile
Gestures 181

Deciding Between an Application and a Website 181
Storing Data on Mobile Devices 183

Relaxing in Your Lawnchair: An Easier Way to
Store Data 183

Getting Started with Lawnchair 184

Client-Side Scripting Simplified with JQuery and
Zepto 185

Using JQuery Variants 185
Using Zepto.js 187
Architecting Your Applications with JoApp 187
Choosing an Application Framework 188
PhoneGap 188
Diving into the PhoneGap APIs 189
Appcelerator Titanium 191
Diving into the Appcelerator Titanium APls 191

Packaging Android Applications with Titanium and
PhoneGap 191

Packaging an Application with Titanium 193
Packaging an Application with PhoneGap 195

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Contents

Chapter 11 Publishing Your Games 199
Optimizing Your Game’s Assets 199
Minification with Google Closure Compiler 199

Running Applications Offline with Application
Cache 201

Hosting Your Own Server 203
Deploying Applications on Hosted Node.js Services 204
Publishing Applications on the Chrome Web Store 205
Describing Your Application’s Metadata 206
Deploying a Hosted Application 207
Deploying a Packaged Application 208
Testing Your Applications Locally 208

Uploading Your Application to the Chrome Web
Store 208

Configuring Your Application 210

Deciding Between Packaged and Hosted
Chrome Apps 212

Publishing Applications with TapJS 212
Creating a TapJS Application 213
Packaging an Application for TapJS 215
Publishing a TapJS Application to Facebook 215
Publishing Games with Kongregate 217
Publishing HTML5 Applications to the Desktop 217

Index 219

Xiii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Preface

I wrote this book to scratch an itch, but also because I could see the potential in the (at
the time) nascent HTML5 gaming community. I wanted to help developers navigate the
wilderness of HTMLS5 and learn about Canvas, WebGL, and SVG, along with best prac-
tices for each.

It sometimes took a bit of discussion to convince developers that HTML5 wasn’t just
a plaything. They were surprised to learn they could have rich content with all the
niceties of a desktop application—such as double buffering, hardware acceleration, and
caching inside the confines of the browser without a plugin. Many of them considered
Flash as the sole option. It was interesting to watch the tides turn from “Flash for every-
thing” to “Use Flash only where there are HTML5 gaps.”

During my writing of this book, the ecosystem around HTML5 game programming
has rapidly evolved and matured. I am sure the technologies will continue to evolve, and
I look forward to the advances the next year brings.

Key Features of This Book

This book covers areas contained in the “loose” definition of HTML5, meaning the
HTMLS5 specification, WebGL, SVG, and JavaScript as they pertain to game program-
ming. It includes sections on the math behind popular game eftects, teaching you the
hard way before providing the one to two lines of code solution. For those who are still
getting accustomed to JavaScript, there is a chapter on alternative languages that can be
used to produce games. These include languages that run directly in the JavaScript
engine, those that compile to JavaScript, or those that are a combination of the two.
Server-side JavaScript has taken the programming world by storm in recent months. For
games, it presents an extra level of flexibility to structure games. Logic can start in a self-
contained client instance and then progress to a scalable server instance with few changes
in code. The book closes with a discussion of how and where you might publish your
games. You have a multitude of choices for game engines and libraries. All the libraries
used in this book are unobtrusive in their handling of data, and you could easily take the
lessons learned and apply them to other libraries. This book does not discuss the low-
level details of WebGL, instead opting for the use of a high-level library that permits
low-level API access when needed. The goal of this book is to get you quickly up and
running, not to teach you all there is to know about WebGL, which could be a book all
by itself.

Target Audience for This Book

This book is intended for application developers who use or would like to learn how to
use HTML5 and associated web technologies to create interactive games. It assumes
knowledge of some programming languages and some basic math skills.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Code Examples and Exercises for This Book

The code listings as well as the answers for the exercises included in this book are avail-
able on the book’s website.You can download chapter code and answers to the chapter
exercises (if they are included in the chapter) at http://www.informit.com/title/
9780321767363. The code listings are also available on Github at https://github.com/
jwill/html5-game-book.

downloaded from: lib.ommolkefab.ir

http://www.informit.com/title/9780321767363
http://www.informit.com/title/9780321767363
https://github.com/jwill/html5-game-book
https://github.com/jwill/html5-game-book
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Acknowledgments

I have several people to thank for this book. The Pearson team (including Trina
MacDonald, Songlin Qiu, and Olivia Basegio) has been invaluable during the project.
Their goal is to make one’s work that much more awesome, and I think they succeeded.
‘Writing a book on a topic that’s evolving rapidly involves a certain measure of guessing
where the market will go. 'm glad to have had technical reviewers (Romin Irani, Pascal
Rettig, and Robert Schwentker) who shared my passion for the subject matter, gave me
speedy and precise feedback, and validated my predictions when I was right, yet got me
back on track when I veered slightly off course. And lastly, to my family and friends who
listened patiently without judgment, let me off easy when I flaked, and other times
forced me to take a break; thanks, I needed that.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

About the Author

James L. Williams is a developer based in Silicon Valley and frequent conference speak-
er, domestically and internationally. He was a successful participant in the 2007 Google
Summer of Code, working to bring easy access to SwingLabs UI components to
Groovy. He is a co-creator of the Griffon project, a rich desktop framework for Java
applications. He and his team, WalkIN, created a product on a coach bus while riding to
SXSW and were crowned winners of StartupBus 2011. His first video game was Buck
Rogers: Planet of Zoom on the Coleco Adam, a beast of a machine with a blistering
3.58MHz CPU, a high-speed tape drive, and a propensity to erase floppy disks at bootup.
He blogs at http://jameswilliams.be/blog and tweets as @ecspike.

downloaded from: lib.ommolkefab.ir

http://jameswilliams.be/blog
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

This page intentionally left blank

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1

Introducing HTML5

H TMLS5 is a draft specification for the next major iteration of HTML. It represents a
break from its predecessors, HTML4 and XHTML. Some elements have been removed
and it is no longer based on SGML, an older standard for document markup. HTML5
also has more allowances for incorrect syntax than were present in HTMLA4. It has rules
for parsing to allow different browsers to display the same incorrectly formatted docu-
ment in the same fashion. There are many notable additions to HTML, such as native
drawing support and audiovisual elements. In this chapter, we discuss the features added
by HTMLS5 and the associated JavaScript APIs.

Beyond Basic HTMIL

HTML (Hypertext Markup Language), invented by Tim Berners-Lee, has come a long
way since its inception in 1990. Figure 1-1 shows an abbreviated timeline of HTML from
the HTML5R ocks slides (http://slides.html5rocks.com/#slide3).

Although all the advancements were critical in pushing standards forward, of particular
interest to our pursuits is the introduction of JavaScript in 1996 and AJAX in 2005. Those
additions transformed the Web from a medium that presented static unidirectional data,
like a newspaper or book, to a bidirectional medium allowing communication in both
directions.

JavaScript

JavaScript (née LiveScript and formally known as ECMAScript) started as a scripting lan-
guage for the browser from Netscape Communications. It is a loosely typed scripting
language that is prototype-based and can be object-oriented or functional. Despite the
name, JavaScript is most similar to the C programming language, although it does inherit
some aspects from Java.

The language was renamed JavaScript as part of a marketing agreement between Sun
Microsystems (now Oracle Corporation) and Netscape to promote the scripting language
alongside Sun’s Java applet technology. It become widely used for scripting client-side

downloaded from: lib.ommolkefab.ir

http://slides.html5rocks.com/#slide3
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2

Chapter 1 Introducing HTML5

Rough Timeline of Web Technologies

1991 ‘WML

1994 ‘wtmi2

1996 css1 + Javascript
1997 ‘wtMLa

1998 css2

2000 ‘xHTML1

2002 Tableless Web Design
2005 niax

2009 v

Figure 1-1 HTML timeline

web pages, and Microsoft released a compatible version named JScript, with some addi-
tions and changes, because Sun held the trademark on the name “JavaScript.”

AJAX

AJAX (Asynchronous JavaScript and XML) started a new wave of interest in JavaScript
programming. Once regarded as a toy for amateurs and script kiddies, AJAX helped
developers solve more complex problems.

At the epicenter of AJAX is the XMLHttpRequest object invented by Microsoft in the
late 1990s. xXMLHttpRequest allows a website to connect to a remote server and receive
structured data. As opposed to creating a set of static pages, a developer was empowered to
create highly dynamic applications. Gmail, Twitter, and Facebook are examples of these
types of applications.

We are currently in the midst of another JavaScript renaissance, as the major browser
makers have been using the speed of their JavaScript engines as a benchmark for compar-
ison. JavaScript as a primary programming language has found its way into server-side
web components, such as Node.js, and mobile application frameworks, such as WebOS
and PhoneGap.

Bridging the Divide
Even the best of standards takes a while to gain uptake. As a means to not let the lack of

features limit innovation, Google created Chrome Frame and Google Gears (later, simply
Gears) to bring advanced features to older browsers.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Bridging the Divide

Google Gears

Google Gears, which was initially released in May 2007, has come to define some of the
advanced features of the HTMLS5 draft specification. Before the advent of HTML5, many
applications used Gears in some way, including Google properties (Gmail, YouTube, Doc,
Reader, and so on), MySpace, Remember the Milk, and WordPress, among others. Gears
is composed of several modules that add functionality more typical of desktop applica-
tions to the browser. Let’s take a moment and talk about some of its features.

In its first release, Gears introduced the Database, LocalServer, and WorkerPool mod-
ules. Gears’ Database API uses an SQLite-like syntax to create relational data storage for
web applications. The data is localized to the specific application and complies with gen-
eralized cross-site scripting rules in that an application cannot access data outside its
domain. The LocalServer module enables web applications to save and retrieve assets to a
local cache even if an Internet connection is not present. The assets to serve from local
cache are specified in a site manifest file. When an asset matching a URL in the manifest
file is requested, the LocalServer module intercepts the request and serves it from the
local store.

The WorkerPool module helps address one of the prevalent problems with JavaScript-
intensive websites: long-running scripts that block website interaction. A website by
default has a single thread to do its work. This is generally not a problem for very short,
bursty actions (such as simple DOM manipulation) that return quickly. Any long-running
task, such as file input/output or trying to retrieve assets from a slow server, can block
interaction and convince the browser that the script is unresponsive and should be force-
fully ended. The WorkerPool module brought the concept of multithreading computing
to the browser by letting your WorkerPool create “workers” that can execute arbitrary
JavaScript. Workers can send and receive messages to and from each other, provided they
are in the same WorkerPool, so they can cooperate on tasks. Workers can work cross-
origin but inherit the policy from where they are retrieved. To account for the fact that
several properties such as Timer and HttpRequest are exposed by the window object,
which is not accessible to workers, Gears provides its own implementations.

Another API of interest is the Geolocation API. The Geolocation API attempts to get a
fix on a visitor by using available data such as the IP address, available Wi-Fi routers with
a known location, cell towers, and other associated data.

Google ceased principal development of Gears in November 2009 and has since
shifted focus to getting the features into HTML5. Thankfully, all these features we’ve dis-
cussed found their way into HTMLS5 in some shape or form.

Chrome Frame

Chrome Frame is a project that embeds Google Chrome as a plugin for Internet Explorer
6 and higher versions, which have weak HTMLS5 support. Chrome Frame is activated
upon recognition of a meta tag. Chrome Frame currently does not require admin rights
to be installed, thus opening opportunities on systems that are otherwise locked down.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4

Chapter 1 Introducing HTML5

You can find more information about Chrome Frame at http://code.google.com/
chrome/chromeframe/.

Getting Things Done with WebSockets and Web
Workers

One of the additions to HTMLS5 is APIs that help the web application communicate and
do work. WebSockets allow web applications to open a channel to interact with web
services. Web Workers permit them to run nontrivial tasks without locking the browser.

WebSockets

WebSockets allow applications to have a bidirectional channel to a URI endpoint. Sock-
ets can send and receive messages and respond to opening or closing a WebSocket.
Although not part of the specification, two-way communication can be achieved in sev-
eral other ways, including Comet (AJAX with long polling), Bayeux, and BOSH.

Listing 1-1 shows the code to create a WebSocket that talks to the echo server end-
point. After creating the socket, we set up the functions to be executed when the socket is
opened, closed, receives a message, or throws an error. Next, a “Hello World!” message is
sent, and the browser displays “Hello World!” upon receipt of the return message.

Listing 1-1 WebSocket Code for Echoing a Message

var socket = new WebSocket (ws://websockets.org:8787/echo);
socket.onopen = function(evt) { console.log("Socket opened");};
socket.onclose = function(evt) {console.log("Socket closed");};
socket.onmessage = function(evt){console.log(evt.data);};
socket.onerror = function(evt) {console.log("Error: "+evt.data);};

socket.send("Hello World!");

Web Workers

Web Workers are the HTML5 incarnation of WorkerPools in Google Gears. Unlike
WorkerPools, we don’t have to create a pool to house our Web Workers. Listing 1-2 shows
the code to create a simple worker and set a function for it to execute upon receipt of a
message. Listings 1-2 and 1-3 show the HTML code for creating a web page with a Web
Worker that displays the current date and time on two-second intervals.

Listing 1-2 Web Page for Requesting the Time

<!DOCTYPE HTML>
<html>
<head>
<title>Web Worker example</title>

downloaded from: lib.ommolkefab.ir

http://code.google.com/chrome/chromeframe/
http://code.google.com/chrome/chromeframe/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Application Cache

</head>

<body>
<p>The time is now: </p>
<script>
var worker = new Worker('worker.js');
worker.onmessage = function (event) {

document.getElementById('result').innerText = event.data;

bi
</script>

</body>

</html>

The associated JavaScript worker.js file is shown in Listing 1-3.

Listing 1-3 Worker.js File for Getting a Date and Time

setInterval (function() {w
postMessage(new Date());
}, 2000);

In the two listings, we see that workers can send messages using postMessage () and
can listen for messages on the closure onmessage. We can also respond to errors and termi-
nate workers by passing a function to onerror and executing terminate (), respectively.

Workers can be shared and send messages on MessagePorts. As with other aspects of
the Web Worker spec, this portion is in a state of flux and somewhat outside the needs of
the examples in this book. Therefore, using SharedWorkers is left as an exercise for the
reader to investigate.

Application Cache

Application Cache provides a method of running applications while oftline, much like the
LocalServer feature in Gears. A point of distinction between the two features is that
Application Cache doesn’t use a JSON file, using a flat file instead to specify which files
to cache. A simple manifest file to cache assets is shown in Listing 1-4.

Listing 1-4 Sample Application Manifest

CACHE MANIFEST

above line is required, this line is a comment
mygame/game.html

mygame/images/imagel.png
mygame/assets/sound2.ogg

The Application Cache has several events it can respond to: onchecking, error,
cached, noupdate, progress, updateready, and obsolete.You can use these events to

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

6

Chapter 1 Introducing HTML5

keep your users informed about the application’s status. Using the Application Cache can
make your game more tolerant to connectivity outages, and it can make your users happy
by letting them start game play quicker (after the assets are cached). Also, if you choose,
Application Cache can be used to allow users to play your game offline. Don’t worry too
much about it right now. In Chapter 11, “Publishing Your Games,” we discuss using the
Application Cache in more detail.

Database API

At present, there are multiple ways to store structured data using HTML5, including the
‘WebSQL API implemented by Webkit browsers and the competing IndexedDB API
spearheaded by Firefox.

WebSQL API

WebSQL provides structured data storage by implementing an SQL-like syntax. Currently,
implementations have centralized around SQLite, but that isn’t a specific requirement.

There isn’t a “createDatabase” function in WebSQL. The function openDatabase opti-
mistically creates a database with the given parameters if one doesn’t already exist. To cre-
ate a database name myDB, we would need to make a call in the form

var db = openDatabase("myDB", "1.0", "myDB Database", 100000);

where we pass "myDB" as the name, assign the version "1.0", specify a display name of
"myDB Database", and give it an estimated size of 100KB. We could have optionally spec-
ified a callback to be executed upon creation. Figure 1-2 shows the content of the
Chrome Developer Tools Storage tab, which we will cover in more detail in Chapter 2,
“Setting Up Your Development Environment,” after executing the preceding line of code.

Figure 1-2 Storage tab showing a created database

In the window to the right, we can run arbitrary SQL code, as shown in Figure 1-3,
where we created a table, inserted some information, and ran a query.

DATABASES

Figure 1-3 Storage tab showing SQL statements

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Web Storage

Although not universally supported, the specification does call out the existence of
both asynchronous and synchronous database connections and transactions. Our current
example creates an asynchronous connection; to create a synchronous one, we would call
openDatabaseSync with the same parameters. After the initial connection, there is no dis-
tinction when it comes to database transactions besides calling transaction(...) for
read/write transactions and readTransaction for read-only transactions.

A word of caution: Synchronous connections are not well supported and, in general,
you should structure your code to run asynchronously.

IndexedDB API

IndexedDB stores objects directly in object stores. This makes it easier to implement
JavaScript versions of NoSQL databases, like those of the object databases MongoDB,
CouchDB, and SimpleDB. At the time of this writing, the implementations of the APIs
weren’t synchronized and used different naming schemes and strictness to the specifica-
tion. The Internet Explorer implementation requires an ActiveX plugin. I encourage you
to check out http://nparashuram.com/trialtool/index.html#example=/ttd/Indexed DB/
all.html to see some examples in action on Firefox, Chrome, and Internet Explorer. The
Chrome code in most cases will work seamlessly on Safari.

Web Storage

Web Storage provides several APIs for saving data on the client in a fashion similar to
browser cookies. There is a Storage object for data that needs to persist between restarts
named localStorage and one for data that will be purged once the session ends named
sessionStorage. The data is stored as key/value pairs. These two objects implement the
functions listed in Table 1-1.

Table 1-1 Web Storage Functions
Function Name Description

setItem(key:String, value) Creates a key/value pair given the specified values.
Some implementations require the value to be a string.

getItem(key:String) Returns the item specified by the given key.
removeItem(key:String) Removes the item identified by the given key.
clear() Clears all key/value pairs from the Storage object.
key(index:long) Returns the key for the specific index.

Each Storage object also has a length property indicating the number of present
key/value pairs.

downloaded from: lib.ommolkefab.ir

http://nparashuram.com/trialtool/index.html#example=/ttd/IndexedDB/all.html
http://nparashuram.com/trialtool/index.html#example=/ttd/IndexedDB/all.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

8 Chapter 1 Introducing HTML5

Web Storage offers a more fluent API we can use in lieu of the getItem and setItem
functions listed in Table 1-1.The alternate API uses an array-like means of referencing a
key.To set a localStorage key/value pair with the values of 2 hometown newspaper, we
could use the following, for example:

localStorage['newspaper'] = 'The Baltimore Sun';

Likewise, we could retrieve that value with just the left half of the preceding expression:

localStorage['newspaper'];

In the context of game programming, we could use Web Storage to store user high
scores as well as data for saved games.

Geolocation

The Geolocation API doesn’t have an explicit function to ask for the user’s permission to
track his or her position. Instead, the browser handles this transparently for us. When the
Geolocation API first requests position information from a website for which it doesn’t
have permission, a contextual pop-up appears to request permission from the user.

We can check to see if the browser supports the Geolocation API by checking for the
following object:

navigator.geolocation
If it resolves to a non-null value, we have the ability to geolocate.
The calculated position of a user is defined by the Position object, which contains a

Coordinates object named coords and a timestamp indicating when the fix was retrieved.
Table 1-2 shows the properties of the coords object.

Table 1-2 Coordinates Object Properties

Property Name Return Value Description

latitude double The latitude of the position fix.
longitude double The longitude of the position fix.
altitude double The altitude of the position fix in meters.

If this is unavailable, the value will be null.
accuracy double The margin of error of the lat-long fix in meters.

If this is unavailable, the value will be null.
altitudeAccuracy double The margin of error of the altitude value.

If this is unavailable, the value will be null.
heading double The direction in which the device is traveling

in degrees (0° to 360°, inclusive). If this is

unavailable, the value will be NaN.

speed double The speed in meters that the device is traveling.
If this is unavailable, the value will be null.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Geolocation

After we have verified that geolocation is available, obtaining a position fix on a device
is simple. We just call getCurrentPosition with either one, two, or three parameters,
corresponding to the functions to run if getting a fix is successful, if it fails, and the
options on the request, respectively.

Listing 1-5 shows the code needed to retrieve a location, draw it on a map with a
marker, and draw a proximity circle around the marker.

Listing 1-5 Drawing a Map with Geolocation

if (navigator.geolocation) {
navigator.geolocation.getCurrentPosition(function(pos) {
var latitude = pos.coords.latitude;
var longitude = pos.coords.longitude;

var options = {
position:new google.maps.LatLng(latitude, longitude)
,title:"Your location"};

var marker = new google.maps.Marker (options);

var circle = new google.maps.Circle({
map:map, radius:pos.coords.accuracy

)i

circle.bindTo('center', marker, 'position');

marker.setMap(map);

map.setCenter(new google.maps.LatLng(latitude, longitude));
b
function(error) {

console.log(error.message);

)i

After verifying that geolocation is available, we first attempt to retrieve a fix on the
position of the device. In this example, we are passing in the two parameter functions of
getCurrentPosition to execute if successful, an error occurs, or if the user declines
geolocation. After getting the latitude and longitude portions, we create a marker cen-
tered at that position with the title “Your location.” To the marker, we attach a circle
whose radius is equivalent to the accuracy of the position fix. Lastly, if there is an error,
our error-handling function prints out the error message to the console. Figure 1-4 shows
a sample position fix using the OpenStreetMap tile set.

Although we did not use it, we could have also specified an options object that indi-
cates several preferences on the retrieved data. We could also set up a listener to execute
every time there is a position change returned from the watchPosition function. Geolo-
cation is an expensive APIL. Use it judiciously and don’t be afraid to cache the location.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

10

Chapter 1 Introducing HTML5

Figure 1-4 Geolocation from the browser

We could use geolocation to create localized leader boards, or on a multiplayer server
to match players who are physically close to one another.

Getting Users’ Attention with Notifications

In HTMLA4, the options to communicate messages to the user were limited. You could
show the user an alert window or show a message in a div element. Showing an alert
window is well supported on all browsers, but it is highly disruptive. It is something that
requires immediate attention and doesn’t let you move on until you have handled it. One
sure way to annoy a user is by making him lose a life because some message obscured his
view. Showing a message in a div element fares slightly better, but there isn’t a standard
way to add them.These types of messages can be easily ignored. On one side we have
notifications that crave attention, and on the other we have notifications that can be easily
ignored. There has to be a middle ground. Enter web notifications.

On the Mac OS X and Ubuntu platforms natively, and with a plugin on Windows, an
application can send configurable messages to users and notify them of events or changes
it deems important. An example of such a notification is shown in Figure 1-5.

Test Message

Figure 1-5 Desktop notification message

Like their desktop counterparts, web notifications can contain an image along with a
contextual message.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Getting Users’ Attention with Notifications 11

Requesting Permission to Display Notifications

Before we can display notifications to users, we first have to get their permission. Explicit
permission protects the users from being bombarded with unwanted notifications. We can
request permission to display notifications by executing the following:

window.webkitNotifications.requestPermission();
This will show a contextual message in the browser to allow the user to approve or

deny access, as shown in Figure 1-6. Instead of a no-argument function call, we can also
pass a function to execute when the user responds to the prompt.

@ Allow www.google.com to show desktop notifications? ‘Al[nw‘ | Deny | x ‘

Figure 1-6 Web notification permissions message

We can likewise verify permission by running the following command:

window.webkitNotifications.checkPermission();

In this case, checkPermission() returns an integer that indicates the permission level,
as shown in Table 1-3.

Table 1-3 Notification Permission Level

Constant Name Value
PERMISSION_ALLOWED 0
PERMISSION_UNKNOWN 1
PERMISSION_DENIED 2

Looking at the name, you would expect notifications to work in at least the major
Webkit browsers, namely Chrome and Apple Safari. Although Safari uses Webkit, it
doesn’t implement the Notification API. If the spec is implemented globally, the name-
space could presumably change from webkitNotifications to simply notifications.

Creating Notifications

You can create two types of notifications: simple and HTML. Simple notifications display
a simple message with an optional title and icon image, whereas HTML notifications dis-
play an arbitrary URL. For example, we can create a simple notification by executing the
following;:

var msg = window.webkitNotifications.createNotification(
'', 'Test Notification', 'Hello World'
)i

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

12 Chapter 1 Introducing HTML5

Our notification will have the title “Test Notification” with the message “Hello
World.” Because we passed an empty string for the icon image, the API omits it. We can
do this for any other parameter. Do this to hide parameters you don’t want displayed.
Passing no value to the function will cause a text message of “undefined” or a broken
image link. Figure 1-7 shows our notification running in the browser. As you can see, it
is pretty Spartan, and we have no control over the design besides the parameters we
passed it.

Test Notification
Hello World

Figure 1-7 Simple web notification

As mentioned before, HTML notifications can get their content from an arbitrary
URL such as a website or an image. The function just takes the desired URL to display in
the form:

var msg =window.webkitNotifications.createHTMLNotification(
'http://example.com’
)i

HTML notifications give you no means to resize them, and unless the URL has code
to optimize the notification for small screens, scroll bars will probably be included. On a
1680x1050 screen, the default size seems to be approximately 300 pixels wide by 50 pix-
els high, but because the notifications API is still a draft at the time of this writing, that is
certainly subject to change. Until fine-grained height and width attributes are added, stick
with simple notifications.

Interacting with Notifications

The resulting notification has two basic functions for controlling it: show(), which sur-
faces the notification to the user, and cancel (), which hides the notification if it’s cur-
rently visible or prevents it from being displayed if it is not visible. Web notifications can
also execute functions in response to notification events. Table 1-4 shows a list of the
applicable functions you can specify to respond to events.

Table 1-4 Web Notification Functions

Function Description
Name
onclick This function will execute if the notification is clicked and the underlying plat-

form supports it. Avoid this event if at all possible.

onclose This function will execute after the close event is fired. This could be when
the user closes the notification or if it is closed programmatically.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Media Elements 13

Table 1-4 Web Notification Functions
Function Description
Name

ondisplay This function will execute after the show() function is called and the notifica-
tion is visible to the user.

onerror This function executes after show() is called in the event of an error.

You can check the current status of the draft specification at http://dev.chromium.
org/developers/design-documents/desktop-notifications/api-specification.

Media Elements

When HTML was originally designed, it was concerned with mostly textual links. Native
display of images would come much later. It is not hard to understand why you would
need a plugin or browser extension to play audio or video. In most cases, this meant
Flash. HTMLS5 has tried to address that issue with the inclusion of the audio and video
tags.

The audio and video tags allow us to play media in the browser natively. Also, a group
of properties can be set to control playback. Here is the most basic HTML form for
embedded media (in this case, an audio file):

<audio src="song.mp3" autoplay />
This creates an audio HTML element, assigns the source to song.mp3, and instructs
the page to “autoplay” the content. It is equivalent to the following JavaScript code:

var song = new Audio();
song.src = "song.mp3";
song.autoplay = true;
song.load();

Controlling Media

In addition to the autoplay attribute listed in the previous example, several other attri-
butes can be used to control our media. For example,

<video src="vid.avi" controls />

or

var vid = new Video();
vid.src = "vid.avi";
vid.controls = true;

tells the browser to provide a default set of controls for starting and pausing playback, set-
ting the volume level, and seeking in the stream. In the absence of such a property, the

downloaded from: lib.ommolkefab.ir

http://dev.chromium.org/developers/design-documents/desktop-notifications/api-specification
http://dev.chromium.org/developers/design-documents/desktop-notifications/api-specification
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

14 Chapter 1 Introducing HTML5

developer can provide a custom set of controls using the JavaScript functions and proper-
ties listed in Tables 1-5 and 1-6.

Table 1-5 Media Tag Functions

Function
Name

play()

pause()

load()

Description

Starts playing the media from the current position and sets the paused prop-
erty to false

Halts playing the media and sets the paused property to true
Resets the element and applies any settings, such as pre-fetching

Table 1-6 Media Element Properties

Property
Name

currentTime
duration

loop

autoplay

muted

Accepted Description
Values
integer Sets the position in the media stream for playback

N/A (read-only) Indicates the length of the source media in seconds

true or false Specifies whether or not to play the media from the
beginning when the end of the stream is reached

true or false Specifies whether or not to play the media as soon as
possible

true or false Specifies whether or not to set the volume at 0.0

The list of properties has been truncated for brevity and usefulness. To see a full list of
available properties, check out the HTMLS5 draft spec at http://dev.w3.org/html5/spec.

Handling Unsupported Formats

At the time of this writing, the audio and video elements in different browsers don’t nec-
essarily all support the same types of audio and video.The reason a particular browser
doesn’t support a particular format might be due to the age of the format, competition
with an endorsed format, or patent restrictions that the browser’s parent company doesn’t
want to deal with. Media tags have several methods to deal with this.

Listing Multiple Sources
Instead of specifying a single source, the developer can choose to list multiple sources to

let the browser choose the appropriate one to use. The following snippet lists two sources

downloaded from: lib.ommolkefab.ir

http://dev.w3.org/html5/spec
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

HTML5 Drawing APIs 15

for a video tag and the fallback message if neither format is supported or the browser
doesn’t support the video tag.

<video>
<source src="video.ogv" />
<source src="video.avi" />
<!— Neither is supported, can show message or fallback to Flash —>
<div>Use a modern browser</div>
</video>

Although listing multiple sources is an option for a static page, it’s not great for appli-
cations with dynamic content. For those instances, using the tool Modernizr is recom-
mended. We’ll discuss Modernizr in more detail in Chapter 2, but consider this a primer.

Using Modernizr
Modernizr (www.modernizr.com) inspects browser capabilities at runtime and injects the
properties into a JavaScript object.To see whether the browser can play audio or video,
we would check the value of Modernizr.audio or Modernizr.video to see if it evaluates
to true.

Checking support for a particular format is slightly difterent. Verifying support for
MP23 files is done by checking the value of Modernizr.audio.mp3, but the value returned
isn’t true or false. The HTML5 spec states that the browser should return its confidence

99 ¢¢

level that it can play the format. The return value will be “probably,” “maybe,” or an
empty string. When we use Modernizr.audio.mp3 in a conditional clause, any non-

empty value is treated as true and the empty string is treated as false.

CSS3

CSS3 doesn't fit the scope of this book, and readers are encouraged to explore the specifi-
cation if they are interested in it. Like HTML5, CSS3 extends its predecessor (CSS2) by
adding new features and codifying previous proposals, such as web fonts and speech, which
were introduced in previous versions but not widely supported. A useful website for further
information is http://www.css3.info.

HTML5 Drawing APIs

An interesting area of the HTML5 spec is the new drawing APIs. Canvas, SVG, and
WebGL provide bitmapped, vector, and three-dimensional drawing capabilities, respec-
tively.

Canvas

The canvas element started its life as an Apple extension to Webkit, the layout engine
powering Safari and Chrome, to display Dashboard gadgets and additions to the Safari
browser. It was later adopted by Opera, Firefox, and related browsers, eventually becoming
a component of the HTMLS5 specification. The beta release of Internet Explorer 9 (IE9)

downloaded from: lib.ommolkefab.ir

www.modernizr.com
http://www.css3.info
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

16

Chapter 1 Introducing HTML5

has brought native support to all major browsers, although support in IE9 is not as com-
plete as the aforementioned browsers.

The canvas element can be most simply described as a drawable region with height
and width attributes using JavaScript as the medium to draw and animate complex graph-
ics such as graphs and images. A full set of 2D drawing functions is exposed by the
JavaScript language. Given the close relationship between JavaScript and ActionScript, a
Flash drawing or animation using ActionScript can be easily ported to JavaScript with
only moderate effort. Canvas will be covered in more detail in Chapter 5, “Creating
Games with the Canvas Tag.”

SVG

SVG (Scalable Vector Graphics) is a mature W3C specification for drawing static or ani-
mated graphics. The ability to inline SVG without the use of an object or embed tag was
added in HTML5.Vector graphics use groupings of mathematics formulas to draw primi-
tives such as arcs, lines, paths, and rectangles to create graphics that contain the same qual-
ity when rendered at any scale. This is a marked benefit over images whose discernible
quality degrades when they are displayed at a scale larger than that for which they were
designed.

SVG takes a markedly different approach from the canvas element in that it represents
drawings in XML files instead of purely in code. XML is not the more concise represen-
tation of data, so a file may contain many repeated sections. This can be addressed by
compressing the file, which can greatly reduce its size. As with the canvas element, inter-
action can be scripted using JavaScript. Prior to IE9, IE supported an incompatible vector
format called VML. As of IE9, all major desktop browsers support a fairly common feature
set of SVG 1.1. Chapter 6, “Creating Games with SVG and RaphaélJS,” puts SVG front
and center.

WebGL

WebGL is a JavaScript API for 3D drawing that enables the developer to assess graphics
hardware and control minute details of the rendering pipeline. It is managed by the
Khronos group and shares much of its syntax with OpenGL 2.0 ES. At the time of this
writing, WebGL is not supported in Internet Explorer 6+ or the stable branches of Opera
and Safari. It is available in the stable builds of Firefox and Chrome/Chromium and in
development builds of Opera and Safari. Chapter 7, “Creating Games with WebGL and
Three js,” dives into WebGL.

Conveying Information with Microdata

A web application or API parsing a page can interpret HTML marked up with microdata
and respond to it. For instance, a search engine that returns results marked up with micro-
data could be parsed by a browser extension or script to better present the data to a visu-

ally impaired or colorblind user. Microformats are a preceding concept that serves the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Summary

same goal. One key difference between microformats and HTML5 microdata is the way
that the data is denoted. As shown in Listing 1-6, microformats use the class property of
an object to indicate the fields on an object.

Listing 1-6 hCard Microformat Example

<div class="vcard">

<div class="fn">James Williams</div>

<div class="org">Some Company</div>

<div class="tel">650-555-3055</div>

http://example.com/
</div>

Microdata uses the same concept with slightly different notation. Instead of marking
properties using classes, the itemprop keyword is used. The keyword itemscope marks an
individual unit. At its core, microdata is a set of name/value pairs composed into items.
Listing 1-7 shows a microdata example. The itemtype property indicates a definition of
the object and specifies valid properties.You could use microdata to encode the names
and scores on a leader board page or instructions and screenshots from a game.

Listing 1-7 Microdata Example

<p itemprop="address" itemscope
itemtype="http://data-vocabulary.org/Address">

1600 Amphitheatre Parkway

Mountain View,
CA

94043

USA

</p>

Summary

HTMLS5 marks a groundbreaking change in how we interact with the browser. This
chapter highlighted the major additions that apply to our needs.You learned how Google
Chrome Frame brings HTMLS5 features to IE browsers as well as the multiple ways to
draw assets.

In exploring HTMLS5, in addition to its drawing APIs, you learned about features that
allow you to run computationally heavy tasks without blocking the browser, setting up

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

18 Chapter 1 Introducing HTML5

bidirectional communications channels between applications, and enabling offline execu-
tion of applications.
You can download chapter code at www.informit.com/title/9780321767363.

downloaded from: lib.ommolkefab.ir

www.informit.com/title/9780321767363
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2

Setting Up Your Development
Environment

One of the great things about HTMLS5 is that having a computer with a reliable Inter-
net connection is the main barrier to starting development. All the other tools you will
need can be obtained freely on the Internet. Some specialized applications require a
license, but we will focus on their free counterparts.

In this chapter, you will install the tools needed to make applications for HTML5
games. We will also examine some of these tools in detail.

Development Tools

Some developers swear by a bare-bones command-line editor, such as emacs, vim, and
(one of my personal favorites) Redcar. However, for medium to large projects, as the
number of files increases, using an Integrated Development Environment (IDE) brings
numerous advantages, including easier file management and renaming, code-hinting and
syntax checking, and automated builds. Because of its great extensibility and because we
will be using it for our Java-specific examples, we will be installing the Eclipse IDE and
the Java platform upon which it runs. Although installing Java and Eclipse is optional for
the basic examples, our examples involving the Google Web Toolkit (GWT) will require
Java to be installed. Feel free to substitute your own preferred tool chain.

Installing Java

As mentioned before, Eclipse and GWT run on Java. They require Java 5 SDK or higher.
Generally, most people will have a fairly recent version of Java on their machines.You can
find out if you have the proper Java SDK installed by running the following at a com-
mand prompt:

$ javac -version

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

20

Chapter 2 Setting Up Your Development Environment

If that command fails, you don’t have the Java SDK installed. However, if you get a
response similar to the following snippet, with a number of 1.5 or higher, you are good
to go:
javac 1.6.0_17

For the Mac platform, the Java SDK comes preinstalled on versions prior to OS X 10.7
(codenamed Lion). Computers using OS X version 10.5 (codenamed Leopard) already
have Java 1.5, and those with version 10.6 (codenamed Snow Leopard) have Java 1.6.

Windows users can download an executable of the Java SDK from http://java.sun.
com/javase/downloads/index.jsp, making sure to select a download that includes the
“JDK.” Once the file is downloaded, executing it will install Java.

Java installation on Linux is a bit trickier. Although installation differs slightly from dis-
tribution to distribution, Java 6—compatible binaries are available in the package managers
of all major distributions. Failing that, you can install Java using the downloads on
Sun/Oracle’s website.

Installing the Eclipse IDE and Google Plugin

Eclipse is a multipurpose IDE primarily used by Java developers. Eclipse is modular in
design and has a plugin architecture that exposes new features to the IDE. Due to this
plugin architecture, there is support for other programming languages, including C++,
Python, Ruby, and PHP. It also forms the basis for many specialized IDEs, some of which
we will explore later in this chapter.

The installation of the Eclipse IDE is rather straightforward on all platforms. Figure
2-1 shows the Eclipse loading screen. Instead of an installer application, the Eclipse foun-
dation (the makers of Eclipse) ships a self-contained archive file.You download the
archive and extract it somewhere on your machine, and you are ready to go.You can
download the latest version of Eclipse at http://www.eclipse.org/downloads/. Make
sure you grab the package “Eclipse IDE for Java Developers.”

GALILEO

F .
ecHpse

Figure 2-1 Eclipse loading screen

downloaded from: lib.ommolkefab.ir

http://www.eclipse.org/downloads/
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Development Tools

After you have Eclipse installed, double-click the executable file (possibly eclipse.exe

or simply eclipse) to open it. If you have come back to this section from one of the later

chapters dealing with the App Engine, you might want to change the perspective to the

Java Perspective by selecting Window | Open Perspective | Java.To get App Engine inte-

gration in Eclipse, you have to install several packages. Here are the steps to follow:

1.

Select Help | Install New Software. There might be an option titled “Software
Updates” instead.

. Click the Add button to add a new software site.You can alternatively install the

package from your hard drive, but adding a site allows Eclipse to routinely check
for software updates.

. You can name the site anything you want because it is just an identifier for house-

keeping purposes. I titled it “Google App Engine Plugin” in Figure 2-2. Add one of
the following URLs to the Location text box and click OK (check
code.google.com for versions higher than 3.5):

= For Eclipse 3.5 (Galileo): http://dl.google.com/eclipse/plugin/3.5
= For Eclipse 3.4 (Ganymede): http://dl.google.com/eclipse/plugin/3.4
= For Eclipse 3.3 (Europa): http://dl.google.com/eclipse/plugin/3.3

Check the boxes next to “Google Plugin for Eclipse” and “Google Web Toolkit,” as
shown in Figure 2-3, and then click Next.You can install support for Google Web
Toolkit at this time as well. Your versions might be higher.

. Confirm that the two plugins appear in the list under Install Details and then click

Next.

Review the licenses and indicate that you agree to the terms by clicking the appro-
priate radio button. The Google Plugin has several Eclipse dependencies, so don’t
be alarmed if you see several other plugins listed. After you have downloaded the
required packages, Eclipse will prompt you to restart it. When it returns, you’ll be
all set.

Add Site
Name: Coogle App Engine Plugin (Local...)
Location: http://fdl.google.com/eclipse/plugin/3.5 (Archive...)
@;l (cancel) (OK

Figure 2-2 Eclipse Add Site dialog panel

downloaded from: lib.ommolkefab.ir

21

http://dl.google.com/eclipse/plugin/3.5
http://dl.google.com/eclipse/plugin/3.4
http://dl.google.com/eclipse/plugin/3.3
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

22 Chapter 2 Setting Up Your Development Environment
faNe Install
Available Software
Check the items that you wish to install. > |
) -
Work with: | Google - http://dl.google.com/eclipse/plugin/3.6 L] ¢ Add...

Find more software by working with the “Available Software Sites" preferences.

type filter text

Name Version
™ ¥ 00 Plugin
[} L} Google Plugin for Eclipse 3.6 2.3.1.r36v201105191508
g L} Google App Engine Java SDK 1.5.0 1.5.0r36v201105191508
[} L} Google Web Toolkit SDK 2.3.0 2.3.0r36v201105191508
~—selectAll) (DeselectAll) G
(Selectall (Deselect All 3items selacted
Details

Thisis a set of SDKs that can be used with the plugin.

4 Show only the latest versions of available software (] Hide items that are already installed
™ Group items by category What is already installed?

™ Contact all update sites during install to find required software

@ <Back (Gancel) Finish

Figure 2-3 Eclipse Available Software dialog panel

Google Web Toolkit

The Google Web Toolkit (GWT) is a set of libraries that allows developers to write rich
Internet applications in the Java programming language and have them converted into
cross-platform Asynchronous JavaScript and XML (AJAX) applications without worrying
about the individual quirks or incompatibilities of the target browsers. This allows devel-
opers to write an application from front to back in the same language.

If Java isn’t your cup of tea, open-source ports of GWT are available for Python and
Ruby called Pyjamas and Ruby]S, respectively. The ports tend to lag quite a bit behind
the most recent version of GW'T, so we won't be using them directly in any examples.
However, much of the core GWT code will have similar Pyjamas code.You can find
more information about Pyjamas and Ruby]S at http://code.google.com/p/pyjamas and
http://rubyforge.org/projects/rubyjs/, respectively.

GWT requires at least Java 1.5 to be installed on the target machine.You can install
GWT by downloading it from http://code.google.com/webtoolkit/download.html and
extracting it somewhere on your machine. The Google Plugin for Eclipse supports GWT,
so revisit the previous section to see the instructions for installing the plugin.

Chapter 8, “Creating Games Without JavaScript,” will cover using GWT with Canvas,
WebGL, and SVG in more detail.

downloaded from: lib.ommolkefab.ir

http://code.google.com/p/pyjamas
http://rubyforge.org/projects/rubyjs/
http://code.google.com/webtoolkit/download.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Web Server Tools and Options 23

Web Server Tools and Options

Unless you plan to keep your game all to yourself or to package it as a mobile applica-
tion, chances are that you will need a web server of some shape or form. In this section,
we will discuss some of the options for deploying your game.

Google App Engine

Google App Engine is a hosting environment for Java and Python that permits you to
host your application on Google’s infrastructure. In theory, your application can scale
almost infinitely. To operate in this way, there are some trade-offs, such as the use of an
untraditional data store, limited access to the file system, and special APIs for authentica-
tion, mail, and fetching. One of the other benefits of the App Engine is that you can
write applications using Rhino, the Java platform implementation of JavaScript, so that
you can run JavaScript from back to front. Using App Engine also gives you a little extra
value from installing Eclipse. The Google plugin lets you deploy to App Engine with just
a couple button clicks.

You can install Google App Engine or read about the plugin for Eclipse at
http://code.google.com/appengine/.

Opera Unite

The Opera browser, since version 10.0, has packaged an embedded web service called
Opera Unite. Unite has built-in applications for streaming files and sharing photos, chat-
ting, and hosting a site. To host a website, you would normally have to register a domain,
find a web host, and upload your files. Unite lets you do this all with the click of a but-
ton. When you start the Unite service, it registers your computer with a proxy server run
by Opera. Thus, visitors to

http:// your_device.your_username.operaunite.com/

(where your_device 1s the name of your computer)

get routed correctly. The proxy server allows you to set up a service without having to
punch a hole through your router. Unite’s web server runs using server-side JavaScript
and allows file system access.You can even package and publish your game so that others
can install it without needing to connect to your Unite instance.

Unite is great for putting something out there to share with friends or testers, but it
requires the browser to be running, so it isn’t a great option for anything that needs 24/7
uptime. We will discuss packaging applications for distribution in Chapter 11, “Publishing
Your Games.”

Node.js and RingoJS

Ringo]S is a web framework that runs on Rhino and implements specifications and pro-
posals from the Common]JS API. Given that JavaScript evolved into being without a dis-
crete spec, Common]S seeks to set standards for things that may have been originally
outside the scope of a JavaScript application—such as access to the local file system.

downloaded from: lib.ommolkefab.ir

http://code.google.com/appengine/
http://your_device.your_username.operaunite.com/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

24

Chapter 2 Setting Up Your Development Environment

Node.js and Ringo]S both implement parts of Common]S, with Ringo]S being a bit
more API-compliant. One major point of divergence is that Node.js runs on Google’s
V8-engine, which powers JavaScript support in Google Chrome and is implemented in
C++.

We will discuss server-side JavaScript, specifically Node.js, in more detail in Chapter 9,
“Building a Multiplayer Game Server.”

Browser Tools

An important piece in developing HTMLS5 applications is a browser that implements
most of the spec and has decent debugging tools. Google Chrome, Mozilla Firefox (and
its derivatives), Apple Safari, and Opera have outstanding HTML5 compliance and
debugging tools. Internet Explorer 9, which was released in March 2011, is much more
HTMLS5 standards-compliant than its predecessor, but it lags in terms of support com-
pared to the aforementioned browsers.

Inside the Chrome Developer Tools

Using Chrome’s debugger tools, we can dynamically inspect the page’s DOM, view
resource loading times, and run arbitrary JavaScript. We can view the Developer Tools
console for any page by selecting View | Developer | Developer Tools. Figure 2-4 shows
the console window for Google.com. With the Elements tab selected, we have a nested
view of the DOM with associated styles for the document elements. Hovering over an
element tag will highlight it in the browser window. This is really useful when trying to
figure out which element is the one that is off by several pixels.

2
L |
|

I o e Ll e o e [Reans e

stebigoagle fadeleve

Figure 2-4 Chrome Developer Tools Elements tab

The other two tabs in the Developer Tools console that are incredibly useful to game
developers are the Resources and JavaScript Console tabs. The Resources tab, shown in
Figure 2-5, allows you to track on an asset-by-asset basis what exactly is slowing your
gadget from showing in Waves quickly. The first time you run it on a new site, you can
decide to activate it just for this session or forever. Resource tracking does a bit of over-
head to page loading times, so it is best to use it sparingly.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Browser Tools 25

2D | Documests Sayleshorts mages Aerigts XHA fosts Other

) e
i

<3| Wit v gogle comy

<) ik

AR
| o,

. | e legallany
= | e
B, © e

[T - 1 -
@ 1 ¥ 15 Sert by Newpame Tems §]

Figure 2-5 Chrome Developer Tools Resources tab

The last tab I'll highlight in this section is the JavaScript Console tab, as shown in
Figure 2-6. For those of us who aren’t exactly JavaScript gurus, it’s a godsend because it,
along with the console.log() command, frees us from the most dreaded acts in pro-
gramming: println (or in this case, alert) debugging.You can also use it to inspect the
DOM programmatically or run arbitrary JavaScript.

e

@ Tha page an b e gaagie.cam

Figure 2-6 Chrome Developer Tools Console tab

Chrome Extensions

Similar to the Eclipse IDE, the functionality of Google Chrome can be enhanced and
extended with extensions. Extensions range in purpose from RSS readers and site-specific
enhancements or notifiers to games. A full list can be found at https://chrome.google.
com/extensions. Let’s take a moment to call out a couple that will make our lives a little
bit easier in creating gadgets.

We can install these extensions in Chrome by clicking the Install button from the
Chrome Extensions page, as shown in Figure 2-7, and following the prompts. Two useful
plugins for developers are JSONView and YSlow. JSONView allows you to view JSON
data formatted to increase readability. YSlow analyzes web pages and gives tips on how to
improve performance.

downloaded from: lib.ommolkefab.ir

https://chrome.google.com/extensions
https://chrome.google.com/extensions
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 2 Setting Up Your Development Environment

Install Chrome Editor?

This extension needs access to:

Your data on interactivedesignr.com and
www.interactivedesignr.com

Your browsing history

(" Cancel) (Install)

Figure 2-7 Installing a Chrome extension

Safari Developer Tools

The Developer tools in Apple’s Safari are quite similar to their counterparts in Google
Chrome. By default, they are hidden to the end user.

To enable them, select Preferences in your title or icon bar and navigate to the
Advanced tab. As shown in Figure 2-8, make sure that “Show Develop menu in menu
bar” is checked. Visit the previous section on the Chrome Developer tools for an
overview of what is present.

800 Advanced

A S

General Appearance Bookmarks Tabs RSS AutoFill Security

Universal Access: || Never use font sizes smaller than 9~

[l Press Tab to highlight each item on a webpage
Option-Tab highlights each item.

Style sheet: | None Selected =]

g [>
Proxies: [Change Settings... |

Eshuw Develop menu in menu bar ®

Figure 2-8 Enabling the Developer menu

Firebug

Firebug is an extension for Mozilla Firefox that allows developers to debug a website’s
HTML, CSS, and JavaScript. Although originally designed for Firefox, Firebug also has a
“Lite” version that will run in Google Chrome and complements the tools already pres-
ent in that browser.

You might have noticed that the core components and tabs of Firebug look very
similar to those of Chrome and Safari. As in Chrome, there are add-ons for Firefox and
Firebug to expose more developer capabilities (such as DOM manipulation and intro-
spection) for several programming languages (such as PHP and Python).You can find
instructions on installing Firebug or Firebug Lite by visiting http://getfirebug.com.

downloaded from: lib.ommolkefab.ir

http://getfirebug.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

HTML5 Tools 27

HTML5 Tools

In this section, we will discuss some tools that allow us to easily create assets for our
games. In the case of Raphaél and Processing]S, these are lightweight graphics libraries.

ProcessinglJS

Processing]S is a JavaScript library that can act as an abstraction layer over the canvas tag
to draw primitives, respond to user interaction, and draw and manipulate images. Process-
ing]S was created in the summer of 2008 by John Resig, the creator of the popular
JavaScript library jQuery, who ported it from of the similarly named Processing Java
Library. As a result, the functions and API calls are syntactically identical to the Java ver-
sion. Likewise, many of the Java samples can be ported with no code changes. It must,
however, be noted that Processing]S doesn’t implement the full Java API. This doesn’t
matter that much for our purposes because most of those features would be things we
would rather do with WebGL.

You can view some examples and the API reference at http://processingjs.org.

Inkscape

Inkscape is a mature cross-platform vector graphics editor using SVG. It is comparable to
the commercial applications Adobe lustrator and Core] DRAW. Although the most
recent release is only 0.48, there has been a vibrant community dating back to its incep-
tion in 2003.The version number is more of an indication of how much of the SVG 1.1
spec the application implements. Although it doesn’t support the complete SVG spec, and
some might argue that no application does, the Inkscape community has made up for this
with plugins that enhance the platform.

You can download the application at http://inkscape.org.

SVG-edit

SVG-edit is a web-based, JavaScript-powered, SVG creation tool. SVG-edit is great for
simplified drawings that will have a limited amount of effects applied to them.The inter-
face, as shown in Figure 2-9, has controls for creating text and simple primitives as well as
embedding images.

If you have to create, say, a checkerboard in a pinch, SVG-edit would be great for that.
It doesn’t include file management and is only able to display the raw SVG code for you
to copy and paste into a text editor, as shown in Figure 2-10.

You can download the source or try it online at http://code.google.com/p/svg-edit/.

downloaded from: lib.ommolkefab.ir

http://processingjs.org
http://inkscape.org
http://code.google.com/p/svg-edit/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

28 Chapter 2 Setting Up Your Development Environment

P @ @l 9] @

QIT Sy | ll_"F‘
oMz ¢~

Figure 2-9 SVG-edit interface

nnmmuug ¥ :
.con/ -

idthe"646" haigl
Created with SVG
<titlesLayer 1=/titles
<reft ide"sug 1" height="159" widthe"176" y="101" ="43" stroke-width="5° stroke="#S00000° fillm"#FrFocea"/»
| <o
/svg

Figure 2-10 SVG-edit code view

Raphael

In the two previous sections, we discussed lightweight and advanced tools for creating
SVG files using a user interface. Those are appropriate for games where all the assets are
pre-fabricated—for a chess game, for example. For SVG games where assets would need
to be created dynamically or for those developers who prefer to use code to create SVG
graphics, there is Raphaél. Raphaél is a JavaScript library that provides primitive shape,
font, and animation support and is evaluated to embedded SVG at runtime. There is also a

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

3D Modeling Tools 29

compatibility layer that renders using Vector Markup Language (VML) if the browser
implements VML in lieu of SVG (namely, IE browsers prior to IE9). Raphaél can be
downloaded at http://raphaeljs.com/.

We will take advantage of these tools in Chapter 6, “Creating Games with SVG and
Raphaél]S.”

3D Modeling Tools

In Chapter 7,“Creating Games with WebGL and Three.js,” we will discuss creating games
using WebGL. We need tools to create assets for those games. In the games industry, that
usually means applications such as 3D Studio Max and Maya. With prices ranging from
just south of a thousand dollars to more than several thousand dollars, these applications
can be cost prohibitive for the hobbyist game programmer. As is the case with commercial
vector graphics applications, very capable open-source applications are available to fill this
need for the hobbyist or professional.

Blender

Blender, shown in Figure 2-11, is a cross-platform open-source 3D modeling, rendering,
and animation application. Among its features are cloth, skeletal, and rigid body simula-
tion, texturing, particle dynamics, and compositing. Blender can import and export to
many different graphics file formats. It also has a Python API that can be used to extend
the application. Blender has been used in pre- and post-production on several television
commercials, television shows, and feature films.

You can find out more information about Blender and download it at http://blender.
org.

[§ |~ Fir Add Timeline Gamo Fender Holp [=[58.2-Model | | 1% orgedsE Vo | Fah | O83-1|Lan |

|3 o] = view 5ot ovioct |12 oojectwove <[[= | iAo |

I e [k

Figure 2-11 Blender interface

downloaded from: lib.ommolkefab.ir

http://raphaeljs.com/
http://blender.org
http://blender.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

30 Chapter 2 Setting Up Your Development Environment

Summary

In this chapter, we identified some of the tool and frameworks that will best serve our
needs in creating HTML5 games. We installed the Java SDK and the Eclipse IDE and also
discussed the SVG and 3D modeling tools and libraries we will use throughout the book
to create assets for our games.

You can download chapter code at www.informit.com/title/9780321767363.

downloaded from: lib.ommolkefab.ir

www.informit.com/title/9780321767363
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

3

Learning JavaScript

Although the title of the book explicitly calls out SVG, HTML5 Canvas, and WebGL,
they wouldn’t be able to do much without the help of JavaScript. SVG, Canvas, and
WebGL need JavaScript to drive the interactions between the user and the game.
JavaScript also provides the basis for libraries and languages such as GWT and Coftee-
Script, which are referenced later in the book. Nodejs, also covered later in the book,
uses JavaScript to run server-side code. In this chapter, we will cover the basics of
JavaScript, along with some useful utilities and libraries that will aid in creating games,
and use a JavaScript library to create your first game.

What Is JavaScript?

JavaScript is a loosely typed dynamic language that began its life as a Netscape Commu-
nications project named LiveScript. It was renamed to JavaScript roughly around the time
plugin support for the Java programming language was added to Netscape, much to the
chagrin of developers everywhere. Despite the name, JavaScript and Java are only loosely
related in that both of them are influenced by C and share some of the same keywords
and structures.

JavaScript’s Basic Types
Certain types of objects are guaranteed to exist in every JavaScript implementation. They
can also be thought of as the building blocks to create other types of objects. The
JavaScript basic types are as follows:

= Array—A collection of things.

= Boolean—A value of true or false.

= Function—A piece of code that does some work.

= Number—Examples include 42, 3.54¢-3, and 3.14159.

= String—A collection of characters in single or double quotes, such as “Hello”.

= Object—The base type from which all other types descend.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

32

Chapter 3 Learning JavaScript

= undefined—The referenced object doesn’t exist.

= null—The object exists with no value, but JavaScript makes a specific distinction as
to if the object exists and has no value or if it doesn’t know about the object. If you
execute the code

var X = null;

you are telling JavaScript that you are defining an object that doesn’t have a value at
this time but might be used in the future. On the other hand, if you just execute

var x;

the value of x, in this case, would be undefined.

Understanding Arithmetic Operators

We learned in the first grade that the basic arithmetic operators are +,—, /,*, and = for
adding, subtracting, dividing, multiplying, and assigning values. Although the first four are
generally used for numeric values, some programming languages allow you to redefine
how they interact with user-defined objects. JavaScript isn’t one of those languages.You
should stay away from using the operators on your objects unless they are Numbers; this
way, you'll avoid unexpected results. For example, given that adding two Strings together
concatenates them, you might expect that subtracting them will remove an instance of the
second String from the first. That’s how it works in some other languages, but not in
JavaScript. JavaScript throws Exceptions after trying to evaluate them as Numbers.

Understanding JavaScript Functions

Let’s begin by looking at the simple JavaScript function shown in Listing 3-1. In the code,
we first declare a function named HelloWorld (which prints “Hello, World!” to the con-
sole) and then we execute it.

Listing 3-1 Hello World JavaScript

function HelloWorld() {
console.log("Hello, World!");

}
HelloWorld();

The function keyword tells the application running the code that the enclosed code will
do some task. In this case, our function doesn’t take in any parameters to manipulate or
use to do its work or return anything. Some other programming languages require speci-
fying a return type for the object the function will return. In JavaScript, however, regard-
less of whether the function returns anything, we always start its declaration with the
function keyword. Listing 3-2 shows a function that takes two values and adds them
together.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

What Is JavaScript? 33

Listing 3-2 Adding Two Objects

function add(one, two) {
return one + two;

This listing introduces two new concepts: function parameters and the return keyword.
Function parameters give us a way to provide data that the function needs to do its work,
and the return keyword sends us an object after the work is completed. If we call the
function

add(23, 43);

it returns 66. We can also call it with any other object, such as a String, and it concate-
nates the String values that describe those objects.

Functions as First-class Objects

Functions in JavaScript not only can be executed, they can also be constructed and modi-
fied at runtime, assigned to variables, and returned by other functions. Objects with the
latter capabilities (everything but the ability to be executed) are known as first-class
objects. These capabilities give us a structure that roughly approximates the class key-
word from other programming languages such as Java and C#. In those languages, classes
define a prototype for the variables and functions that objects of those classes will contain.
Also, functions, even if they have some first-class citizen properties, are not allowed to be
nested in one another. In this capacity, JavaScript straddles the line between classes and
functions, so some refer to a function that returns the same type as itself as a class. Listing
3-3 shows a car “class” that contains functions to start, accelerate, and apply the brakes.

Listing 3-3 JavaScript car “Class”

function Car() {

var self = this;

self.speed = 0;

self.start = function() {
console.log("Car started.");

}

self.accelerate = function() {
self.speed = self.speed + 10;
console.log("Speed is now:"+self.speed+ " mph");

}

self.applyBrakes = function() {
self.speed = 0;
console.log("Brakes applied.");

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

34

Chapter 3 Learning JavaScript

One thing to note from this listing is that we are using an alternate form to declare our
function by defining variables that will hold the functions and then assigning anonymous
functions to them.We can create a instance of Car and start it by executing the following:

myCar = new Car();
myCar.start();

The key difference from before is that instead of executing the function directly, we are
requesting to have an instance, or copy, of it stored into the global variable mycar. This
allows us to call member functions on the object. Another new concept is assigning vari-
ables using the var keyword. Using var is generally optional, but it does affect variable
scope. A variable’s scope determines the visibility, and as a result, the value held in it. Let’s
say that outside of the car function we had a variable named self declared using the fol-
lowing code:

self = "me

The self variable with the value "me" is declared with a global scope and is viewable
anywhere; however, the self that car uses is only visible to functions inside car.The
object that the this keyword points to can change based on where it is called from.
Using a local self variable gives us assurance that the calls within the object will func-
tion properly.

Comparison Operators

Comparison operators test whether two objects are equal or their relative value. For
example, we could use the operators shown in Table 3-1 to test whether the String "abc"”
is equal to "def" by executing

"abc" == "def"

The result would be false.

Table 3-1 Comparison Operators

Operator Description

! Reverses the result of a logic operator, making a true value false and vice versa.
&& Both sides of the expression must resolve to true in order for true to be returned.

| If either side of the expression resolves to true, then true will be returned.

, Returns true if the two objects are equal. == attempts to forcefully convert both
objects into the same type and then compares them. === requires that the objects
be the same type.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Conditional Loops and Statements 35
Table 3-1 Comparison Operators

Operator Description
1=, 1== Returns true if the two objects are not equal. ! = attempts to forcefully convert

both objects into the same type and then compares them. !== requires that the

objects be the same type.
< Returns true if the object on the right is greater than that on the left.
> Returns true if the object on the right is less than that on the left.
<= Returns true if the object on the right is greater or equal to that on the left.

Here are several peculiarities when testing things that aren’t numbers:

» True, often evaluated to 1, is always greater than false, which evaluates to 0.

» A String is less than another String if it occurs lexicographically before it in the
dictionary.

» Comparisons on Arrays compare the indexes of both arrays, and all values must sat-
isty the condition.

» Undefined == null returns true, but undefined === null returns false because unde-
fined and null are two different types.

In most cases, using ==, ===, 1=, and !=== for types that aren’t Strings, Numbers, or
Booleans will yield unexpected results, so if we need to test identity (which is whether
the two objects point to the same instance) or equality, we’ll write our own explicit
equals function.

Conditional Loops and Statements

Comparison operators and expressions give us a means to compare objects, and condi-
tional loops and statements give us a way to use that information to execute code.The
first we’ll cover is the if-else statement, which allows us to make a set of comparisons,
one by one. Listing 3-4 shows a couple if statements in practice.

Listing 3-4 if-else Statements

if (name == "John") {
if (age < 18)
console.log("Age is less than 18");
else if (age < 35)
console.log("Age is somewhere between 18 and 35");
else console.log("Age is greater than 35");
} else {
console.log("User is not named John");

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

36

Chapter 3 Learning JavaScript

In the listing, we first check to see if the value stored in the variable name is equal to
John. If not, an appropriate message is printed to the console. If the variable name is equal
to John, we execute a series of comparisons to determine the age range, preemptively
stopping when the expression evaluates to true. Each subsequent else only executes if
the preceding if statement has failed. This switch-case statement is a fancier type of i
statement that checks the value of a single variable for equality with a range of values. We
could use a bunch of if statements to do the same thing, but switch-case is more con-
cise. Listing 3-5 shows the general form of a switch-case statement.

Listing 3-5 General Form of a switch-case Statement

switch (<expression>) {

case valuel:
codeToExecutel();
break;

case value2:
codeToExecute2();
break;

default:
codeToExecute3();
break;

The values listed in the case statements can be strings, numbers, or Booleans. The break
keyword prevents subsequent case statements from being evaluated and prevents their
code from being executed. default provides the code to execute when the expression
doesn’t match any case.

Controlling Program Flow with Loops

Eventually we will need to run blocks of code over and over again. Although copying and
pasting the code blocks over and over again does work, it becomes fairly messy when you
have to change that code. And it looks very amateurish. Loops allow you to run specific
blocks of code given some pre- or post-conditions.

while Loops

while loops run a specific block of code until some expression is no longer true. For
example, we could create the variable count with an initial value of 0, printing the count
to the console and incrementing count until it is equal to 10. Listing 3-6 shows the code
for that while loop.

Listing 3-6 Sample while Loop

var count = 0;
while (count < 10) {
console.log("The count is now:"+count);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Conditional Loops and Statements 37

count++;

It is useful to note that if the condition tested by the while loop evaluates to false on the
first attempt, the code block never runs. The do-while loop, on the other hand, is a vari-
ant of the traditional while loop that ensures the code block executes at least once.
Listing 3-7 shows a do-while loop that executes exactly once due to a nonsense compar-
ison. As opposed to starting the expression with the while keyword and expression to
evaluate, we start with the do keyword and the while clause comes at the end.

Listing 3-7 Sample do-while Loop

do {
console.log ("This loop executes only once.");
} while (1 != 1);

for Loops

while and do-while loops allow us to test a single condition. for loops give us a way to
control the flow a bit more. JavaScript for loops mirror the form of Java for loops, start-
ing with the for keyword followed by initialization expression(s), test condition(s), and
the looping interval. Listing 3-8 shows the while loop shown in Listing 3-7 adapted to a
for loop.

Listing 3-8 Sample for Loop

for (var count = 0; count < 10; count++) {
console.log("The count is now:"+count);

Each of the expressions in the for loop are optional. We could break out the initialization
expression as we did in the while loop, increment the count in the code block, or omit
all three to create an infinite loop. Listing 3-9 shows these variants in code.

Listing 3-9 More for Loops

/* Loop 1 */
var count = 0;
for (; count<10;) {
console.log("The count is now:"+count);

count++;
}
/* Loop 2 */
for (7 i) {
/* For demonstration purposes only, don’t ever do this. */
}

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

38

Chapter 3 Learning JavaScript

Delayed Execution with setTimeout and setInterval

The fact that JavaScript runs in a single thread drives many design choices in the lan-
guage.You'll see later in this chapter how various libraries use events to notify applica-
tions that something notable has happened. Another means to accommodate this
single-threadedness is to use the setTimeout function to kick off some arbitrary code
sometime in the future. Listing 3-10 shows the code to print the current date and time to
the console after a 1,000 milliseconds.

Listing 3-10 Example of setTimeout

setTimeout (function() {
console.log(new Date());
}, 1000
)i

setTimeout executes once and it’s done. If we need to repeatedly run the same code over
and over again, we can have each setTimeout create a new setTimeout. However, a
more concise way would be to use setInterval. Besides using setInterval in place of
setTimeout, the method calls are identical. setInterval will attempt to run the code
every X milliseconds. JavaScript will make its best effort to honor the requests to execute
code.The code within setInterval needs to perform reasonably well. Long-running
tasks set to a short interval could delay execution of subsequent iterations until the first
one 1s done. clearTimeout and clearInterval cancel the next execution of
setTimeout and setInterval, respectively. They do not affect the code that might be
currently running.

Creating Complex Objects with Inheritance and
Polymorphism

As mentioned earlier in the chapter, JavaScript uses functions to expose the concept of
object-oriented programming language classes. Another set of features for programming
languages that use classes includes the ability to create classes that derive properties and
functions from other classes and the ability for objects of multiple classes to respond to
the same method signatures. These features are known as inheritance and poly-
morphism.

The easy way to decipher inheritance is the “is-a” relationship. Continuing our exam-
ple from earlier in the chapter, a Toyota is a (inherits from) car. JavaScript adds properties
or functions to objects using the dot syntax. Using the prototype keyword, we can mod-
ify all instances of a particular type. Listing 3-11 shows the declaration of two classes: car
and Toyota. After declaring the car object, we next assign its prototype (its functions and
properties) to Toyota. Next, the constructor for the Toyota type is created and overrides
the versions provided by car. If we call go on a Toyota object, it uses the Toyota version

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Creating Complex Objects with Inheritance and Polymorphism

instead of the one from car.That is polymorphism at work. As long as the object extends
from car, we can be guaranteed that functions and properties created in the base type will
have some sort of value. As shown in the last few lines of the listing, we can use the key-
word instanceof to determine what type of object we have. Given the code we wrote, it
will evaluate to true when checked against car and Toyota.

Listing 3-11 JavaScript Inheritance

function Car() {
var self = this;
self.type = "Car"
self.go = function() {
console.log("Going...");
bi
bi
Toyota = function() {};
Toyota.prototype = new Car();
Toyota.prototype.constructor = function() {
var self = this;
self.type = "Toyota";
self.go = function() {
console.log("A Toyota car is going...");

}i

Toyota.prototype.isJapaneseCar = true;

var t = new Toyota();
console.log(t instanceof Toyota);
console.log(t instanceof Car);

Making Inheritance Easier with the Prototype Library

Prototype (www.prototypejs.org) is a library for JavaScript that makes object-oriented
programming a little bit easier. The inheritance and polymorphism support it provides
isn’t all that much different from what you have learned by using the prototype keyword
directly. Prototype does give us a more concise and readable way of doing inheritance.
Using the class object and its function create is the principal way we will interact with
Prototype. Listing 3-12 revises our inheritance example for use with Prototype. The ini-
tialize function is where we put any setup code we would like to execute when the
object is instantiated. Even if it will be empty, we must specify one in our classes. When
we create the Toyota class, we add an extra parameter to the function signature to indi-
cate the class from which the child will inherit.

downloaded from: lib.ommolkefab.ir

39

www.prototypejs.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

40 Chapter 3 Learning JavaScript

Listing 3-12 Inheritance with Prototype

var Car = Class.create({
initialize: function() {
this.type = "Car";
Iy
go: function() {
console.log("Going...");

i

var Toyota = Class.create(Car, {

initialize: function() {
this.type = "Toyota";
this.isJapaneseCar = true;

Iy
go: function() {

console.log("A Toyota car is going...");
}

i

In neither our raw prototype nor the more spiffy Prototype version can we call the
function in the parent that we overloaded in the child. That’s because when you modify
the prototype, you don’t keep a copy of what it used to point to. Although sometimes it
might be useful to totally handle the inputs and outputs in the child layer, there are occa-
sions when you might want a parent class to handle some basic common data before
sending the rest to the specific child class to finish up. In object-oriented programming
languages such as Java and C#, you would use an object named super or base to refer-
ence the parent class. In those languages, the reference to the parent class is transparently
created for you, and you can use it without any modifications to function signatures. In
Prototype, however, for any function that we want to call the parent class, we need to add
$super to the beginning of its parameter list. Thankfully, this doesn’t change how the
function is called by your code. One key change that should be noted is that unlike in the
languages that get this capability for free, the $super object is a link to the parent func-
tion and not the parent object. A child’s go function can only call the parent’s go function
explicitly; all other parent functions are hidden if they are overloaded. Listing 3-13 shows
how we would modify our Toyota class to call the go function of car before calling its
own. Executing the go function on the Toyota class will print “Going...” and then “A
Toyota car is going...” to the console.

Listing 3-13 Calling a super Function with Prototype

var Toyota = Class.create(Car, {

initialize: function() {
this.type = "Toyota";
this.isJapaneseCar = true;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Learning JQuery 41

b
go: function($super) {

$super();

console.log("A Toyota car is going...");
}

)i

Learning JQuery

An important utility in your JavaScript toolset is JQuery (http://jquery.com/) and its
variants. That’s not to say that a comparable JavaScript framework won't serve our needs,
but JQuery boasts a very active development community with a multitude of plugins,
some of which, as you will see in Chapter 10, “Developing Mobile Games,” are targeted
toward mobile development. It is also widely recognized as the most popular JavaScript
framework. JQuery uses a global object, $, that exposes functions to inspect and alter the
Document Object Model (DOM), handle events, and process AJAX requests. There is
even a plugin that exposes a 2D game engine called gameQuery (http://gamequery.
onaluf.org/).

One of the most important functions you will learn in JQuery is the ready function,
which delays execution of the enclosed JavaScript until the document is fully loaded.
Listing 3-14 shows the code to print “Hello World!” to the console when the document
has finished loading. The ready function ensures that we don’t try to reference any DOM
elements before they are instantiated.

Listing 3-14 JQuery ready Function

<html>
<head>
<script type="text/javascript">
$ (document) .ready(function () {
console.log ("Hello World!");
i
</script>
</head>
<body></body>
</html>

downloaded from: lib.ommolkefab.ir

http://jquery.com/
http://gamequery.onaluf.org/
http://gamequery.onaluf.org/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

42

Chapter 3 Learning JavaScript

Selector
#id
element

.class

[attribute="value"]

teq(n)

reven
:odd
parent descendants

parent > child

selectorl,selector2,
selector3

Manipulating the DOM with Selectors

Another important concept of JQuery is selectors. Selectors give us a way to reach deep
into the object graph with commands as simple as retrieving all the anchor tags in a doc-
ument or as complex as retrieving the third td element inside a table that is inside a div.
The selector syntax melds those of CSS and XPath (a language for querying XML docu-
ments) with some JQuery-specific syntax. Table 3-2 shows some common selectors.

Table 3-2 Some Common JQuery Selectors

Description
Returns the element that matches the given ID
Returns all elements of the given type

Returns all elements that have the CSS class applied to
them

Returns all elements that have a matching attribute value.

Returns the element in the set that equals index n (zero-
indexed)

Returns even-numbered elements in the given set
Returns odd-numbered elements in the given set
Returns the descendents of the parent element or selector

Returns only the first-level children of the parent element or
selector

Returns a combined list of the results from all the given
selectors

Selectors can be chained together, so we could find the div element with the id

$("div[id="'header']")

$ (#header)

“header” by executing the selector for an element and then the selector for an attribute:

Alternatively, we could simply execute the following:

After we have an element or set of elements returned by a selector, we can manipulate
them in several ways, including but not limited to the following:

» Adding, removing, or modifying CSS styles and attributes

= Adding or removing child elements

» Adding animated transitions and effects

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Learning JQuery 43

JQuery Events

Instead of busily waiting for something to happen, JavaScript uses events to notify us of
changes. This frees up the application to do other things while there are no events to
process and to not lose cycles constantly checking for input. It’s more of a “don’t call us,
we’ll call you” model. Because you can’t usually predict where or when these events will
be fired, the way to be notified of changes is to bind, or attach, a function to be called
whenever the event is fired. JQuery has a generalized bind function that can generically
handle any event type and a set of specific functions for common event types such as
click, double-click, key up, and so on. Listing 3-15 shows two equivalent methods of
binding (or attaching) a click handler to an element with the id “menuBar,” which
might be represented in HTML code as follows:

<div id="menuBar>/* Stuff here */</div>

We will revisit this concept in Chapter 10.

Listing 3-15 Examples of JQuery Event Binding

/* Method 1 */

$("#menuBar").bind("click", function() {
console.log("Clicked on menu bar.");

b

/* Method 2 */

$("#menuBar").click(function() {
console.log("Clicked on menu bar.");

)i

AJAX with JQuery

Eventually every web application is going to need to retrieve assets of some sort that
don’t reside on the local server. AJAX (Asynchronous JavaScript and XML) allows you to
send a request for a document and be notified when the data has been fully retrieved or
sent. As was the case with browser events, JQuery has several diftferent forms. For the sake
of simplicity, we will assume that there isn’t a need for any advanced features such as
authentication, headers, and cross-domain requirements. JQuery’s API provides options
for AJAX requests that rival full-blown server-side frameworks and languages. Listing 3-
16 shows a generalized method to execute an AJAX request. In it, we pass off a map of
key/value pairs to the ajax function indicating the specifics of our AJAX request. There
are shortcut methods for common GET (get) and POST (post) as well as for retrieving
data as JSON (getJSON) or as a script (getScript). JQuery also fires events for the differ-
ent portions of the AJAX request life cycle.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

44

Chapter 3 Learning JavaScript

Listing 3-16 JQuery AJAX: POST and GET

$.ajax({
type: "GET",
url:"request.html",
success: function(data) {
console.log(data);
}
})i

Cross-Site Scripting

Generally, websites are prevented from making AJAX calls that didn’t originate from the
same domain, which is known as the same-origin policy. Cross-site scripting is a type
of injection attack where a malicious user exploits a flaw in a website’s design to inject
code that executes as if it came from the same domain. The ability to retrieve assets from
other websites and web services becomes extra important when sending and receiving
data from them.

JSON: The Other JavaScript Format

JSON, or JavaScript Object Notation, is a data exchange format that is less verbose than
XML and as a result is more lightweight and easier to transfer. [SON is more human
readable and writeable than XML and less prone to errors. Every JSON object can be
composed of five types:

= null

= Number

= String

= Array

= Object (a set of key/value pairs bounded by curly braces)

Table 3-3 shows some sample JSON and its corresponding XML code.You can see

that the JSON code reduces the amount of repetition caused by all the greater-than and
less-than symbols while keeping a sense of structure.

Table 3-3 Comparing JSON and XML

JSON Code XML Code
{ <car>
"make":"Chevrolet", <make>Chevrolet</make>
"model":"Cavalier", <model>Cavalier</model>
"year":2002 <year>2002</year>
} </car>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

JavaScript Outside of the Browser 45

Although the name of the technology hasn’t changed, JSON is a return type or has
replaced XML in many AJAX requests. Being a text-based file format, JSON does share
some of the drawbacks of XML—namely that it isn’t efficient at storing binary data.
There are ways to accommodate this particular drawback, such as passing URIs to binary
data instead of the data itself or base64-encoding the data, if possible.

JSONP, or JSON with padding, is a workaround for AJAX’s same-origin policy. The
source field of the <script> tag in HTML is one place where the same-origin policy
doesn’t apply. With JSONP, we construct a URI to retrieve not data, but arbitrary
JavaScript for the browser to evaluate. Properly formatted JSON can also be valid
JavaScript code. The returned content is generally wrapped in a function call and can
contain a mix of JSON and explicit JavaScript code or no JSON at all. Listing 3-17 shows
a JSONP request written in HTML code. The jsonp portion usually indicates the name
of the function call that encapsulates the returned data. The query parameter could
instead be callback or not specified at all. The important thing is that the requesting
website has an idea of how the function will be named.

Listing 3-17 JSONP Example

<script type="text/javascript"
src="http://www.example.com/GetTimeLine?UserId=johndoe&jsonp=getData">
</script>

JSONP exploits a necessary loophole to the same-origin policy and is itself open to
being exploited. Any content could be injected into a site if it uses JSONP, possibly
exposing sensitive data.

JavaScript Outside of the Browser

JavaScript began its life as a tool that lived in the confines of browser web pages. In recent
years, it has expanded its reach to platforms outside its usual stomping grounds. Let’s
briefly discuss a few of them.

Mobile Platforms

WebOS, created by Palm for its Pre devices and now led by Hewlett-Packard, has the dis-
tinction of being the only mobile device operating system that uses JavaScript as its pri-
mary programming language. Titanium Appcelerator, which we will discuss in Chapter
10, uses JavaScript to create native Android and 1OS applications.

JavaScript as an Intermediary Language

A new crop of languages and libraries use alternative languages that can be compiled or
converted into JavaScript, making it a sort of bytecode or intermediate language for the
browser. Some of these tools and languages include CofteeScript and Google Web Toolkit
(GWT), a Ruby/Python inspired scripting language and a web framework for creating

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

46

Chapter 3 Learning JavaScript

AJAX applications with Java, respectively. Both CofteeScript and GWT will be covered in
Chapter 8, “Creating Games Without JavaScript.” Here’s a list of some of the languages
and tools that won’t be covered in this book but I encourage interested developers to
check out:

= Cappuccino/Objective-] (http://cappuccino.org)
= Echo3 (http://echo.nextapp.com)

= Vaadin (http://vaadin.com)

= OpenLaszlo (http://www.openlaszlo.org)

= Pyjamas (http://pyjs.org)

JavaScript on the Desktop

Since the creation of the Mozilla Firefox web browser, JavaScript desktop applications
have been in mainstream use. They are now primed to make a play for the desktop, as
they have already conquered the browser space. In this section, we’ll cover some of the
notable frameworks from a high level.

XULRunner (https://developer.mozilla.org/en/xulrunner) is a runtime environment
created by Mozilla that most notably powers the Firefox web browser and many of
Morzilla’s suite of applications, including the Mozilla Sunbird (calendar/scheduling) and
Morzilla Thunderbird (e-mail). XULRunner uses some C++ code to run the JavaScript
engine named SpiderMonkey, but all interaction with the user is conducted via
JavaScript. There is also a plugin format called XPI that allows developers to extend the
capabilities of their application with packaged JavaScript and assets. XUL and XBL (XML
User Interface Language and XML Binding Language, respectively), which determine the
layout, look, and interactivity of applications, round out the core features in XULRunner.
Several other companies and open-source projects are using XULRunner to package
cross-platform applications. Some of the more popular ones are Miro, the Internet TV
application, and Songbird, a media library management application whose feature set
rivals that of iTunes.

GLUEscript (http://gluescript.sourceforge.net) is a desktop framework that is an evo-
lution of a port of wxWidgets to JavaScript. wxWidgets is a C++-based cross-
platform desktop framework that has bindings for many different programming lan-
guages. The reasoning is that once you learn the structure of a wxWidgets application in
one language, you will be able to use wxWidgets in other languages with less of a learn-
ing curve. GLUEscript uses Mozilla’s SpiderMonkey engine for its JavaScript layer. Above
that layer, all user interface code and logic is in pure JavaScript.

XULJet (http://code.google.com/p/xuljet) is a desktop framework that runs on top of
XULRunner. Although the code calls XUL on the backend, developers use a domain-
specific language that is based on XUL. This allows developers to co-mingle Ul code and
logic. Whether that is the most appropriate thing to do—versus having a clear separation

downloaded from: lib.ommolkefab.ir

http://cappuccino.org
http://echo.nextapp.com
http://vaadin.com
http://www.openlaszlo.org
http://pyjs.org
https://developer.mozilla.org/en/xulrunner
http://gluescript.sourceforge.net
http://code.google.com/p/xuljet
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

JavaScript Outside of the Browser 47

of Model-View-Controller—is outside the scope of this book. However, it does make for
less-verbose and more-readable user interfaces. Listings 3-18 and 3-19 show equivalent
XUL code and XULJet DSL code.

Listing 3-18 XUL Code

<vbox>
<toolbox>
<menubar>

<menu label="File" accesskey="f">

<menupopup>

<menuitem label="Close" oncommand="window.close() />

</menupopup>
</menu>
</menubar>
</toolbox>
<vbox align="center" pack="center", flex="1">

<description id="descId" >Press the button</description>
<button label="OK" oncommand='this["desc"].value = this.message’ />

</vbox>
<statusbar>
<statusbarpanel flex=1 label="Ready" />
</statusbar>
</vbox>

Listing 3-19 XULJet DSL Code

vbox ({flex: 1},
toolbox (
menubar (
menu({label: "File", accesskey: "f"},

menupopup (
menuitem({label: "Close", oncommand: "window.close()"}))))),

vbox({align: "center", pack: "center", flex: 1},

description({bind: "desc"}, "Press the button"),

button({label: "OK", oncommand: function() {

this["desc"].value = this.message}})),

statusbar (

statusbarpanel({flex: 1, label: 'Ready...'})))

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

48

Chapter 3 Learning JavaScript

Server-Side JavaScript

JavaScript is supported in many browsers, but unlike other programming languages, no
single organization steered or shaped it for much of its life. As a result, although many
applications claim JavaScript support, their implementations might not always be compat-
ible. Also, as a browser technology, there 1sn’t support for things such as interacting with
the file system, package management, and creating desktop applications. The goal is to
provide a common set of specifications that developers can implement so that compliant
applications and frameworks can interact with each other and share code.

In the past few years, server-side JavaScript (or JavaScript run outside the browser) has
become more popular as a means to run web applications. Thanks in part to the Rhino
programming language, which is a version of JavaScript built to run on the Java Virtual
Machine (JVM), there are many runtimes for server-side JavaScript. Most of these run-
times tap into the web server support in Java and allow the user to call them using
JavaScript-like code.

Ringo]S is a fairly mature JVM-based runtime that uses Rhino as its main program-
ming language. Node.js is another popular server-side JavaScript runtime that uses
Google’s V8 JavaScript engine to execute code.

Modules provide a way to encapsulate functionality into a single file or namespace so
that it can be used across many applications. Unlike functions written for the browser that
attach to the window object, Ringo]S and Node js functions attach to the exports object.
Listing 3-20 shows a simple function to reverse a string.You can see that as far as the dec-
laration of the function is concerned, nothing has changed. We have merely added a line
to say that in the exports namespace, the function will have the name reverseString.

Listing 3-20 Example Module

function reverseString(text) {
var reversed = "";

for (var i = text.length-1; i>=0; i-) {
reversed += text[i];

}

return reversed;

}

exports.reverseString = reverseString;

Summary

In this chapter, we discussed JavaScript and its accompanying ecosystem. No longer is the
language relegated to running client scripts in the browser. It is being used as a server-side
language, as an intermediary language, and to create mobile applications. The ever-
increasing speed of JavaScript engines means that JavaScript will continue to permeate

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Exercises 49

more areas of development. A proper foundation in JavaScript is the key to making
HTML5 games. Even if you use an alternate language, that language will compile down
to JavaScript. JavaScript is the lingua franca of the Web.

Exercises

What keyword allows you to extend objects in JavaScript?
What does the $super object in Prototype have access to?

Explain the difference between == and ===.

b=

Write a function that checks every five seconds if it is 12 midnight. Hint: Use
getHours () and getMinutes().

You can download chapter code and the answers to the chapter exercises at
www.informit.com/title/9780321767363.

downloaded from: lib.ommolkefab.ir

www.informit.com/title/9780321767363
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

This page intentionally left blank

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

A

How Games Work

Trying to define exactly what a game is and isn’t is much more difficult than it seems.
Although we may think of games as being purely for competition or entertainment, they
actually encompass a lot more. A simulation that determines whether a building is con-
structed soundly could be thought of a game, as can trying to predict how people will
react to certain stimuli. The best all-inclusive definition I could come up with is that a
game is a form of interaction with goals and structure. Building upon the lessons we
learned about Prototype and its approach to object-oriented programming, we will be
using the Prototype-based Simple Game Framework (SGF) to create the games in this
chapter. SGF was chosen because the API is complete yet small, hiding enough low-level
details for us to build up easy wins before we delve into more complex topics later in
the book. SGF mustn’t be thought of as the end-all and be-all of game engines. After all,
a quick visit to http://devmaster.com shows that dozens if not hundreds of options are
out there.

Designing a Game

One of the most important things you can do before you sit down to code a game is to
plan out what it does. For a large game such as World of Warcraft, this design document
would be many pages long and discuss different areas, worlds, and scenarios. But for our
purposes, the design documents will be fairly short. In some cases, they could fit on a
sticky note. However, they are nevertheless important to create. With an undefined goal,
you never know when you have met it.

Writing a Basic Design Document

The design document is a contract for how your game will work and allows you to have
a record for the future of all your thoughts when beginning the project. How else will
you remember why the Whosits are green and the Whatsits are blue and how they each
respond to power-ups? If you are creating a game that includes characters, you could also
include character studies that outline their motivations and back story. At minimum, the
design document should contain the following elements:

downloaded from: lib.ommolkefab.ir

http://devmaster.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

52

Chapter 4 How Games Work

= The rules of play
= The tagline
= The title or working title of the game

These elements should be prioritized in that order as well. Game play rules form the
basis of a good game. A great title and tagline can only go so far to help out a crappy
game. The game play rules describe how play begins, how it ends, and how any positive
and negative actions are rewarded and penalized, respectively. For the game Pong, which
will incidentally be the first game we create, the design document might be something
like this:

= Two players are represented by rectangular paddles that can move only up and down.

= A ball can be hit between the two paddles and can bounce oft the top and bottom
walls of the playing area.

= The left and right bounds of the playing area do not make the ball bounce off them
as the top and bottom walls do.

= The player must defend his area by hitting the ball into the other player’s area.

= A point is scored for the other competitor when a paddle doesn’t prevent the ball
from moving off the playing area bounds.

A tagline describes your game succinctly for people who have never seen it before. It
can also draw upon familiar experiences of the prospective user while also introducing
something new—for example, “Soccer in space.” Besides some tiber-rich people, some
astronauts, and some cosmonauts, we can’t claim to have experienced what it feels like to
be outside Earth’s atmosphere. But many of us have played soccer (or football for the non-
U.S. readers). We can understand some of the conditions arising from the familiar experi-
ence of soccer played in an unknown setting. There might be the lack of gravity to
contend with, possible differences in how the ball moves because of the lack of an atmos-
phere, or maybe the need for temporary power-ups to counteract the bulkiness of the
flight suits.

Deciding on a Game Genre

Games generally fall into a particular genre or type that describes some of its basic char-
acteristics. The video game industry has dozens if not hundreds of genres and subgenres.
The games in this book will fall into the casual game genre. Casual games in many cases
have less processor-intensive graphics and effects, shorter levels, and a smaller learning
curve. The major subgenres of the casual gaming space in the past couple of years have
been as follows:

= Puzzle games

= Hidden object games

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Designing a Game 53

= Adventure games

» Strategy games (including click/time management, such as Diner Dash and
Farmville)

» Arcade and action games
= Word and trivia games

» Card and board games

The lower processor and graphics thresholds make it easier for a newcomer to break
into this area.You don’t need a sea of 2D and 3D artists. You can get by on some pro-
gramming skill, an idea, and a friend who can draw a little.

The Game Loop

Excuse the cliché, but the game loop is where the magic happens. Much of the time the
user will spend interacting with your game will be inside the game loop. Each run of the
game loop may execute any of the following limited list of actions:

» Retrieving user input, such as pressing buttons or directional keys
= Receiving input from opponents (computer or human)

» Updating player and enemy positions and alive state

= Starting or stopping sound effects and background music

» Drawing the world with the updated positions and states of the players

These actions are often completed many times a second and sometimes at different
intervals. The human eye has a limit as to the number of frames it can see, so we might
only redraw the screen 30 to 60 times a second, but for we might check for user input
100 times a second. It all depends on the conditions of the game.

Getting Input from the User

User input will usually be transmitted via the keyboard, mouse, or possibly a game con-
troller. Our applications will receive the status as numeric values corresponding the ASCII
codes for letters and numbers. JavaScript can also tell us if modifier keys such as Ctrl and
Shift were pressed at the same time. In Chapter 3,“Learning JavaScript,” we talked briefly
about how you can capture these events using JQuery. Because input is very important to
them, many game engines and libraries provide some helper functions to encapsulate get-
ting input from the player.You will see this first hand when we create games for this
chapter.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

54 Chapter 4 How Games Work

Representing Game Objects with Advanced Data
Structures

You learned in Chapter 3 that JavaScript provides us with several core object types. We
will use all of them, but in many cases they won’t be enough. Most importantly, in addi-
tion to specific game objects such as Rectangles, Circles, and Sprites, we need more com-
plex structures to hold them. Arrays allow us to hold a list of things, but their functions
are pretty basic. What if we wanted a Set class that only stores unique objects? What
about a class that stores an object graph between different points? For each of these we
will have to roll our own.

Making Unique Lists of Data with Sets

Sets are collections that have no duplicate values. The object that holds a single deck of
playing cards or a grocery list could be implemented as a set. At the core of our imple-
mentation is an array, which works behind the scenes to store our objects. Enforcing
uniqueness means that if we use types that aren’t Strings, Numbers, or Booleans, we
should make sure the object we insert into the set implements its own equals method.
Listing 4-1 shows the code for a set class and for adding an equals method to Number so
that you can use Numbers seamlessly in sets. If you want to use Strings, the same thing
would have to be done.

Listing 4-1 JavaScript Set Class

var Set = Class.create({
initialize: function () {
this.rawArray = [];
Iy
add: function (object) {
if (this.contains(object) == undefined) ({
this.rawArray.push(object);
}
b
get: function (index) {
return this.rawArray[index];
Iy
remove: function (object) {
var index = this.contains(object);
if (index != undefined)
this.rawArray.remove(index);
Iy
contains: function (obj) {
for (var i = 0; i < this.rawArray.length; i++) {
var obj2 = this.rawArray[i];
if (obj.equals(obj2))
return i;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Representing Game Objects with Advanced Data Structures 55
}
return undefined;
}
i
Number.prototype.equals = function (obj) {
return this == obj;
}

Now that we have a way to store unique values, it would be nice to be able to sort
them. Trick-based card games, such as Hearts and Spades, are some examples that jump to
mind where a sorted set might be desired. JavaScript doesn’t allow us to use operations
such as <, >, >=and so on, with our custom types also known as operator overload-
ing. We can get around this limitation by using a concept from Java called Comparator,
which is a contract, or interface, that requires any class implementing it to have a function
that takes two objects as parameters and returns a negative number, zero, or a positive
number if the first object is less than, equal to, or greater than the other parameterized
object. Whereas in Java, the function would have to be named “compare,” we don’t have
that requirement in JavaScript, and the function doesn’t even need to be a member of the
class. We can see in Listing 4-2 how this might be implemented for a card class that’s
sorted by suit and rank. Like we saw earlier with the equals method, primitive types
don’t have their own compare methods. primitiveCompare works for all primitive types
(Booleans, Numbers, and Strings).

Listing 4-2 JavaScript Comparator

primitiveCompare = function (sl, s2) {
if (sl == s2)
return 0;
else if (sl < s2)
return -1;
else return 1;

}
compare = function (obj, obj2) {
if (primitiveCompare(obj.getSuit(), obj2.getSuit()) == 0){
return primitiveCompare(obj.getOrd(), obj2.getOrd());
} else
return primitiveCompare(obj.getSuit(), obj2.getSuit())
}

With all the components in place, we can now sort our objects. We can sort an array
by executing this:

set.sort (compare)

To sort another object that is backed by an array, simply provide a pass-through
method to invoke the sort. The default sort algorithm in most JavaScript engines will

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

56

Chapter 4 How Games Work

serve your needs well for the amount of data you’ll probably be sorting. If you notice
your sort becoming slow, you can always implement your own. Many resources can be
found online that explain the different sort algorithms along with what conditions are the
best for each one.

Creating Object Graphs with Linked Lists

Linked lists are another common advanced data structure consisting of objects that each
contain a reference, or link, to the next one of more objects in list. Singly linked lists will
only link from parent to child, so you have to traverse all the objects (commonly called
“nodes”) until you reach the one you want. A node in a doubly linked list contains both a
reference to the preceding and next nodes. Linked lists are useful for objects that have
some sort of implicit hierarchy. For example, you could use a linked list to hold the com-
ponents of a robotic arm. The upper arm is the parent of the lower arm, just as the lower
arm is the parent of the hand, and so on. Listing 4-3 shows the code to create a singly
linked list.

Listing 4-3 JavaScript Linked List

var Node = Class.create({
initialize: function (val) {
this.value = val;
this.next = null;
b
addChild: function(node) {
this.next = node;

}

})i

var LinkedList = Class.create({
initialize: function () {

this.root = new Node(null);
this.size = 0;
s
add: function (object) {
obj = this.root
while (obj.next!= null) {
obj = obj.next;

obj.next = new Node(object)
}
i

Linked lists are used extensively for artificial intelligence (AI), which we will discuss
later in this chapter. With a linked list, you can represent all the possible states of a game,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Understanding the APIs in Simple Game Framework 57

and in evaluating each one, the computer can backtrack and try other paths, eventually
coming to the optimal solution.

Understanding the APIs in Simple Game
Framework

As mentioned before, SGF builds on the Prototype JavaScript framework to create its
game objects. Another interesting feature is that SGF can use the same game logic and
assets as well as execute in the browser or on desktop Java. It does this by taking advantage
of the Rhino programming language, JavaScript on the Java platform, and a Java backend
API mirroring the HTML version. It is able to run anywhere that has a JavaScript engine.
One key difference between SGF and the techniques we will examine later in the book is
that SGF doesn’t use the canvas tag in any way. It instead uses div and img elements
along with CSS styles to create game play. Even though this is a book about HTML5,
having backward compatibility is an important consideration, and there will be occasions
when you might want to mix techniques. For your convenience, SGF has been bundled
with the source code for this chapter. but you can also download a possibly newer version
at http://sgfjs.org/. Let’s briefly discuss its APIs.

Core API

The Core API is where the magic happens. It manages the interactions between the key-
board, mouse, and our games, renders our frames, and provides an interface for adding
new events to subscribe to using the Observer pattern (http://en.wikipedia.org/wiki/
Observer_pattern). The classes and namespace are listed here:

» Game

= Input

= SGF (namespace)
= EventEmitter

m Screen

Game and Input are the two classes in this area that we will use the most. The Game
class is a container for all our game objects and manages our game loop by calling the
render and update functions on the objects. We can also set our frames per second,
which is the number of times we’d like the game to update its state. The Game class also
exposes functions to load fonts, other JavaScript files, and sounds.

The Input class, as you might guess, gives us a means to get the mouse clicks, mouse
movement, and key presses at any given time. isKeyDown is the only instance function we
need to worry about and is incidentally the only instance function. We can use it with the
preset class properties for common keystrokes, such as the mouse and directional keys, or
with key codes from other buttons on the keyboard.

The sGF namespace provides only two (but very important) functions. The first is the
log function, which is an alias for the native logging function on the platforms that SGF

downloaded from: lib.ommolkefab.ir

http://sgfjs.org/
http://en.wikipedia.org/wiki/Observer_pattern
http://en.wikipedia.org/wiki/Observer_pattern
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

58 Chapter 4 How Games Work

supports. In the case of JavaScript, it is console.log. The second function the SGF name-
space provides is require, which is a method that only imports the components you
need into your application. In a basic SGF game, all classes are hidden by default and you
must use require to make them available for use. EventEmitter and Screen won'’t be
used directly in any of this chapter’s games, so learning about them will be left as an exer-
cise for the interested reader.

Components API

Whereas the Core API controls how the objects interact with each other, the Compo-
nents API specifies how they are drawn. Here are the classes in this API:

= Component
= Container
= Shape

= Rectangle
= Sprite

= DumbContainer

Component is a class from which all SGF-viewable game objects extend. It can’t be
instantiated directly but rather represents a contract that the objects must follow.
Component contains properties to specify an object’s dimensions, orientation, depth (z-
index), and its own render and update functions. The container class is a concrete sub-
class of Component. It implements all of Component’s methods and can hold other
Component objects and their subclasses. Container could be used to animate many differ-
ent objects at once to create interesting simulations. Shape is another class that exists only
to provide a contract, giving its children access to a color property in addition to the
ones available in Component. Rectangle is a child of Shape. Sprite is a class that repre-
sents a single rendered image in a game. These images usually come in what are called
spritesheets, providing all the images to create an animation—similar to a flipbook. We
will talk about the nuts and bolts of sprites in Chapter 5, “Creating Games with the
Canvas Tag.” Figure 4-1 shows the Components API classes and their descendants.

Resources APl and Networking APIls

Games would look rather boring if we were stuck with the default system font and solid
colors for objects. SGF’s Resources API gives you the ability to load custom fonts and
images to use with your games. Because we will be covering much of this content in
greater detail in Chapter 5, we will defer talking about this for now.

SGF has the capability to connect to other clients or servers using its built-in Client
class and either the corresponding Server class or another WebSocket server. Mentioned
for sake of completeness when talking about SGE we won'’t cover any of the networking
capabilities in this chapter. The API documentation has some sample code, and it might

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Building Pong with the Simple Game Framework

Component
Sprite Container Shape
\4 \ 4
DumbContainer Rectangle

Figure 4-1 Components API classes and descendents

be beneficial to review the networking material in Chapter 9, “Building a Multiplayer
Game Server,” that specifically deals with socket. 10 before trying to make SGF games
“network capable.”

Building Pong with the Simple Game Framework

Pong is often thought of as the game programming version of “Hello, World!” It is a 2D
form of ping-pong (table tennis). The game that helped launch the video game industry
has a retro look that hides its complexity. In coding Pong, we have to manage game state,
track scoring, track game components, and perform collision detection and response.

Setting Up the Application

Listing 4-4 shows the scaffolding HTML code we need to embed our application in a
web page. The stylesheet designation, the contents of which are shown in Listing 4-5, are
extra important. SGF uses HTML div elements to draw its graphics. This element has an
intrinsic desire to take up as little space as possible. The stylesheet tells the browser to allo-
cate the indicated dimensions for our game, whether we are using it or not. Another
notable piece of code is the following in the script tag:

data-screen="screen"

It tells SGF which div will hold the game. If we omit it, the game is added to the
body of the page.

Listing 4-4 Pong HTML Host Page Code

<!DOCTYPE HTML>
<html>
<head>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

60 Chapter 4 How Games Work
<title>Pong</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<!-- For IE. Force the browser to the most current rendering mode. -->
<meta http-equiv="X-UA-Compatible" content="IE=edge" >
<!-- A few basic styles. These are NOT mandatory for SGF... -->

<link href="styles.css" type="text/css" rel="stylesheet" />

<script type="text/javascript" src="js/SGF.js"

data-debug="true"
data-prototype="1lib/prototype.js"
data-swfobject="1lib/swfobject.js"
data-screen="screen"
data-game="Pong"></script>

</head>

<body>

<div id="screen"></div>
</body>
</html>

Listing 4-5 Pong CSS Code

body {
margin:0 0 0 0;
width:100%;

height:100%;
text-align:center;

}

#screen {
width:400px;
height:400px;
border:Solid 1px #000000;
margin:0 auto;

}

Listing 4-6 shows the beginnings of our game. All SGF games require a main.js file
that contains the outermost logic to run the game. In the listing, we can see that we are
retrieving several objects from the SGF namespace and are setting up game properties
such as the height, width, and input instance. Lastly, we retrieve a script for our Paddle
class and draw a paddle on the screen at (0,150). After you understand this bit of code, we
can move on to creating our game pieces.

Listing 4-6 Pong main.js

// Import required classes
var Game = SGF.require("Game");

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Building Pong with the Simple Game Framework

var Input = SGF.require("Input");
var Rectangle = SGF.require('Rectangle");
var Label = SGF.require("Label");
// Get a reference to our Game instance
var myGame = Game.getInstance();
// Get a reference to our game's Input instance
var myInput = myGame.input;
var game height = 400;
var game width = 400;
myGame.getScript("Paddle.js", function(){
// left paddle
myGame.leftPaddle = new Paddle();
myGame.leftPaddle.setPosition(0, 150);
myGame .addComponent (myGame.leftPaddle);

Drawing the Game Pieces

Our easiest game pieces to draw are the paddles. We begin with the Rectangle class and
extend it with a couple of methods. In our constructor (initialize), we set up the
width, height, and color of the paddle. We have convenience functions for getting and set-
ting the position, but the real stars are the checkInput and update functions. checkInput
looks for key presses of the up- and down-arrow keys from the keyboard. When a key
press is detected, it adjusts the paddle’s y position by 10 pixels to the north or south. There
are conditions to keep the paddle within the bounds of the game board. Finally, our
update function fires many times every second to see if there has been input from the
user. Pong is a two-player game, so we created our paddles to respond to the up- and
down-arrow keys or the A and Z keys. The code for the full Paddle class is shown in
Listing 4-7.

Listing 4-7 Paddle.js

// Paddle.js
var Paddle = Class.create(Rectangle, {

initialize: function($super)
$super();
this.height = 100;
this.width = 20;
this.color = "0011FF";
this.isPlayerOne = true;

b

setPosition: function(x, y){
this.x = x;
this.y = y;

}I

downloaded from: lib.ommolkefab.ir

61

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

62 Chapter 4 How Games Work

getPosition: function(){
return {
'x': this.x,
'y': this.y

b
setIsPlayerOne: function(bool){

this.isPlayerOne = bool;
b
checkInput: function(){

if (this.isPlayerOne == false) {

if (myInput.isKeyDown(Input.KEY UP)) {
if (this.y > 0) {
this.y = this.y - 10;

}
}
else
if (myInput.isKeyDown(Input.KEY DOWN)) {
// x,y are taken from the left corner
if (this.y < game_height - this.height)
this.y = this.y + 10;
}
}
else {
if (myInput.isKeyDown(65)) { // 'A'
if (this.y > 0) {
this.y = this.y - 10;
}
}
else
if (myInput.isKeyDown(90)) { // 'Z'
// %,y are taken from the left corner
if (this.y < game_height - this.height)
this.y = this.y + 10;
}
}

b
update: function(){
this.checkInput();
}
})i

You might have noticed that our check for the lower bounds does an adjustment for
the height of the paddle. That is because, as shown in Figure 4-2, screen coordinates start

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Making Worlds Collide with Collision Detection and Response 63

with (0,0) in the upper-left corner and extend the right and bottom of the screen with
positive x and v, respectively.

(0,0 positive x

Y

positive y

Figure 4-2 Screen coordinate system

Making Worlds Collide with Collision Detection
and Response

Before we get to adding our Ball object and making it bounce around the screen, let’s
take a slight detour and talk about what makes it actually work. As you are reading this,
even if you sitting relatively still, there are many forces acting upon you. This isn’t meant
to be an exhaustive discussion but seeks to be just enough to explain the concepts. Isaac
Newton—that’s right, the falling apple guy—described the laws of universal gravitation
and motion that shape our understanding of how objects interact with each other in the
physical world.

Understanding Newton’s Three Laws

Newton’s first law deals with inertia and states that an object at rest will stay at rest and
that an object in motion will stay in motion at the same velocity (speed and direction)
and direction until an unbalanced force is acted upon it. In the context of our Pong
game, our ball wants to continue moving and will do so until it encounters a force (for
example, a paddle or wall) that is too great to permit the ball from continuing on the
intended path.

Newton’s second law deals with momentum. Momentum is the product of mass (the
matter present in an object) and its velocity. The equation you might have heard of is

F=ma

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

64

Chapter 4 How Games Work

or Force = mass times acceleration (rate of velocity change over time). Put another way,
applying a net force to an object will proportionately affect the object’s acceleration. Even
though it may be coming at you fast, a soccer ball that you kick with your foot involves
applying enough force on the ball to overcome its momentum toward you and cause it to
move in the opposite direction.

Newton’s third law states that for every action, there is a equal and opposite reaction.
There is no such thing as a unidirectional force. If you are pushing a ball, it is exerting the
same force upon you, but the momentum (second law) might be different for you and
the ball.

You may not have realized it, but the hit game Angry Birds uses physics for all of its
game play. For the few of you may have not encountered it yet, Angry Birds involves using
a slingshot to launch different types of birds toward targets and enemies. When you
launch a bird, you are putting a net force on it. From the time a bird leaves the slingshot
until it hits the target, gravity is constantly acting upon it. Eventually the upward momen-
tum and acceleration imparted by the slingshot succumbs to gravity and the bird begins
to descend. The path of its motion is a parabolic arc, as shown in Figure 4-3.When you
jump in the air, you are moving in a parabolic arc.

Figure 4-3 Parabolic movement

Some of the Angry Birds characters have different characteristics, such as being able to
increase velocity mid-flight, thus causing more destruction. Another bird is armed with a
fairly heavy egg that, when dropped, causes the bird to soar into the sky (its upward accel-
eration is affected by the drop in mass).

To keep things simple for our Pong game, we won't be doing realistic physics for our
collisions. If we chose to do so, we would have to take the preceding laws and some oth-
ers (such as the Law of Reflection) into account. I don’t know about you, but making a
100% realistic Pong game is effort I'd rather conserve for a cooler idea. However, the lack
of real physics doesn’t mean that we won’t make a fun game.

Making the Ball Move

Our ball is constrained to four diagonal directions: NW, NE, SW, and SE. In the
Direction class, we have a map of the directions the ball can move, one pixel either
north or south and one pixel either east or west, as shown in Listing 4-8. Our game

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Making Worlds Collide with Collision Detection and Response 65

updates itself 30 times per second, so we can think of our velocity as 30 pixels/sec in one
of the four directions.

Listing 4-8 Ball Directions

this.directions = [
{code:'SE','x"':-1,"'y"':-1},
{code:'sw','x"':1,'y"':-1},
{code:'NE', 'x"':-1,"'y":1},
{code:'NW','x":1,'y"':1},

The Ball class uses the “velocities” in that map to move the object on the screen, as
shown in Listing 4-9. Using a multiplier for the x or y displacement allows us to simulate
a greater range of motion and dynamism with the ball’s movement.

Listing 4-9 Ball Class update Function

update: function(){
this.checkCollisions();
pos = this.getPosition()

this.setPosition(pos.x - 2 * this.direction.getX(),
pos.y - 3 * this.direction.getY())

if (this.x < 0) {
myGame.ScoreBoard.scoreRight.incrementScore();
this.resetBall();

}

else if (this.x > game_width) {
myGame.ScoreBoard.scoreLeft.incrementScore()
this.resetBall();

To simulate the ball bouncing off a wall or paddle, we check the Ball’s x and y posi-
tions relative to other objects in space. If a collision is detected, the appropriate vector is
reversed. We are giving up a little bit of the precision to make the code simpler. Therefore,
when the conditions are just right, collisions may fail to fire. This mainly occurs around
the other edges of the paddles, but is rare. The collision-detection code for the game is
shown in Listing 4-10.

Listing 4-10 Ball Collision Detection

checkCollisions: function(){
// Collisions with paddles
//check left

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

66 Chapter 4 How Games Work

var leftPaddleX = myGame.leftPaddle.getPosition().x;
var leftPaddleY = myGame.leftPaddle.getPosition().y;
var rightPaddleX = myGame.rightPaddle.getPosition().x;
var rightPaddleY = myGame.rightPaddle.getPosition().y;

if (this.y >= leftPaddleY && this.y <= leftPaddleY +
wmyGame.leftPaddle.height)

if (this.x == leftPaddleX + myGame.leftPaddle.width)
this.direction.flipEastWest();
// check right

if (this.y >= rightPaddleY && this.y <= rightPaddleYy +
wmyGame.leftPaddle.height)

if (this.x == rightPaddleX - myGame.rightPaddle.width)
this.direction.flipEastWest();
// Collisions with walls
if (this.y <= 0 || this.y >= game_height - 20)
this.direction.flipNorthSouth()

Advanced Collision Detection and Particle Systems with
Asteroids

Particle systems are a type of simulation that animates many objects based on forces in
nature. Explosions, confetti cannons, and pellets from a shotgun are all particle systems at
work. They can also use some of the advanced data structures we discussed earlier in the
chapter. World forces can act on the particles individually or as a group. Let’s begin by
looking at a particle system inspired by something from everyday life—a water faucet. We
learned in Chemistry class that the smallest thing we can label as water is a molecule of
two hydrogen atoms and one oxygen atom. When you turn on the faucet, hundreds of
thousands of water molecules, which are under pressure (thus giving them enough energy
to make it to your home), rush into your sink. Once in the sink, they might move up the
sides or spill over onto the floor. We can ignore or highlight forces in particle systems as
we please.

Asteroids is an arcade game where the player controls a spaceship floating out in space
in an asteroid field. The player must use his rockets to break up and destroy asteroids
hurtling toward him. This gives us a great opportunity to make some limited particle sys-
tems. After the first hit, our larger asteroids split into three smaller pieces. A further hit to
those asteroids yields two more of the smallest asteroids. The smallest asteroids disappear
from the game after being hit. Listing 4-11 shows the code to spawn or destroy asteroids
when they are hit. To increase code reuse, we encapsulated the creation of each genera-
tion of asteroids into a separate function. Not shown in the snippet is the
pickSpeedandDirection function. It picks a random change in x and y to be applied for
the lifetime of the asteroid.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Creating Competitive Opponents with Artificial Intelligence 67

Listing 4-11 Spawning New Asteroids

explodeOrDestroy: function() {
if (this.generation == 0) {
// remove this asteroid and create 3 smaller ones
this.spawnAsteroids(1l, 75, 3);
myGame . removeComponent (this) ;
} else if (this.generation == 1) {
// remove this asteroid and create 2 smaller ones
this.spawnAsteroids(2, 50, 2);
myGame . removeComponent (this);
} else myGame.removeComponent (this);
}
spawnAsteroids: function (generation, size, num) {
for (var i = 0; i<num; i++) {
var asteroid = new Asteroid();
asteroid.width = size;
asteroid.height = size;
asteroid.x = this.x;
asteroid.y = this.y
asteroid.generation = generation;
asteroid.pickSpeedAndDirection();
myGame .addComponent (asteroid) ;

Creating Competitive Opponents with Artificial
Intelligence

Artificial intelligence (Al), as it pertains to gaming, is the ability for applications to simu-
late sentience by using code to interact and possibly analyze surroundings and competi-
tors. Whether you have realized it or not, you've encountered a bit of Al in even the most
ancient games. Take, for instance, the Super Mario franchise. In the original Super Mario
game, Goombas were about as dumb as you could get; they make their way from point A
to point B, reversing course if they bumped into another object or enemy that wasn’t
Mario or Luigi. Left to their own devices, they would walk off cliffs into the great abyss.
A little bit higher on the Al food chain are level bosses, such as Bowser, at the end of the
castle levels. He can do rudimentary tracking of your position and attempt to attack you.
One of the most intelligent enemies in the Super Mario franchise are Boos. Boos are
ghost-like creatures that can chase and attack you when your back is turned and, in some
cases, can evade you.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

68

Chapter 4 How Games Work

Adding Al to Pong

For our simple Pong game, we can create Al opponents with multiple levels of complexity
pretty quickly. We can do that by giving the computer player periodic access to the ball’s
position or by giving it a range of values, and it has to guess where the ball might be.
Listing 4-12 shows some code that allows the computer player to “sense” the ball’s posi-
tion. In it, we retrieve the ball’s current y position and calculate a target y position by sub-
tracting half the height of the paddle. This is an attempt to make the ball strike the middle
of the paddle. Remember that coordinates are computed from the top left, so we need
this adjustment to avoid a mis-hit. To make the computer movement smoother, the incre-
ments are reduced from 10 to 3. Given that the computer player gets the ball’s position 30
times a second, it can easily defend its area.

Listing 4-12 Pong Computer Al

update: function() {
if (this.isPlayerOne == true) {
var y = myGame.ball.y;
var currentY = this.y

targetY = y - this.height/2

if (targetY > this.y)
this.y = this.y + 3;
else if (targetY < this.y)
this.y = this.y - 3;
} else this.checkInput();
}

Advanced Computer Al with Tic-Tac-Toe

To avoid having to use images or fancy CSS effects to represent the X’s and O’ in a game
of tic-tac-toe, we are going to use solid colors: red for O’ (the lighter hue in the figure)
and blue for X’s. Figure 4-4 shows a game board where a player has just won.

One thing that tic-tac-toe has in common with some other two-player games, such as
chess, Othello, and checkers, is that they are all zero-sum finite deterministic games. That’s
a really spiffy way to say the following:

= For any move, what benefits Player A will come at some cost to Player B.

All possible game states are known to both players.

= There is a limited number of game states/decisions/moves to be made and they can
be enumerated.

= There are no variables that introduce randomness to the game.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Creating Competitive Opponents with Artificial Intelligence 69

Tic-Tac-Toe

Figure 4-4 Tic-tac-toe winning game

Given the processing power to do so, a computer can calculate all possible moves that a
player might take (like the Deep Blue chess-playing computer that beat a chess grandmas-
ter). This method is known as “brute force.” It’s similar to trying to crack someone’s pass-
word by trying every word in the dictionary. It is very effective but also time consuming.

Knowing the moves a player might take means nothing if you can’t evaluate them.The
Al algorithm for these types of games calculates several (up to thousands of) combinations
of moves that the computer and player could make. It gives each move a score based on
whether it helps it to win or lose. When choosing a possible move for the opponent, it
assumes that the opponent will always choose the best move. This algorithm is known as
Minimax. Without any constraints on it, 2 Minimax algorithm will try to brute force its
way to a solution—and JavaScript doesn’t like it. When trying to evaluate a game with
few moves, it can easily use up all the space that the browser gave it to run. One method
to combat this is to set a depth limit. After some testing, I settled on 200.This gives the
algorithm a chance to evaluate a bunch of boards but doesn’t have a perceptible lag.
Because it can’t evaluate all boards, sometimes it makes suboptimal moves.

Our miniMax function begins by seeing if we can evaluate the current board for a
score. We have three designated scores: 1 for a win by the current player, -1 for an oppo-
nent win, and 0 for either no perceptible best move or depthLimit is reached. If we
can’t decide on a score and haven’t reached the depthLimit, we make a copy of the
game board and find the possible moves. Next, we iterate over that list of moves and
recursively call miniMax again, this time from the opponent’s viewpoint. When we
receive a score, we compare it to the best score, saving it if need be. When the function
has completed, the computer player will play the best move for it to take from all the
possibilities it has attempted. The code for the Minimax algorithm is shown in Listing
4-13. Although we leave it in the main code file, the miniMax function would be a great
candidate for a Worker.

Listing 4-13 Minimax Algorithm

miniMax: function(board, currentPlayer) {
if (this.currentDepth == this.depthLimit)
return 0;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

70 Chapter 4 How Games Work
if (TTT.checkForWin(board) == currentPlayer)
return 1;
if (TTT.checkForWin(board) == this.getOtherPlayer(currentPlayer))
return -1;

this.currentDepth++;

var best = -10;

var bestMove = null;

var clone = TTT.cloneGameBoard(board);

var moves = TTT.generateMovesFromBoard(clone, currentPlayer);

for (var i = 0; i<moves.length; i++) {
var m = moves[i]
clone[m[0]][m[1]] = currentPlayer;
var value = -this.miniMax(clone, this.getOtherPlayer(currentPlayer));
//reset board
clone[m[0]][m[1]] = "";
if (value > best) {
best = value;
bestMove = m;

}

}

if (best == -10)
return 0

return bestMove;

Summary

In this chapter, we created our first game using the Simple Game Framework. We also
dove into the fundamentals of what makes games tick, touching on the process of plan-
ning our games. The lessons learned in this chapter will serve us well for the duration of
the book.

Exercises
1. Why are 2D games easier to code than 3D?

2. How is a game of checkers or tic-tac-toe different from a game of poker?

3. Are leaves on a tree a particle system? Explain why or why not.

You can download chapter code and answers to the chapter exercises at www.
informit.com/title/9780321767363.

downloaded from: lib.ommolkefab.ir

www.informit.com/title/9780321767363
www.informit.com/title/9780321767363
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

5

Creating Games with
the Canvas Tag

The Canvas (that is, the canvas tag) is what many think about when HTMLS5 is men-
tioned. Instead of creating a bunch of div elements with contained images with CSS to
simulate movement and game play, you can use canvas to provide a surface to draw
objects on the screen. Neither method is easier or harder, but each has different consider-
ations. The Canvas has some built-in translation, rotation, scaling, and clipping, whereas
with divs you have to handle transformations yourself. However, one advantage that
games using div and CSS have over the Canvas is that older browsers, such as Internet
Explorer 6, are supported. Hopefully, as more browsers become HTML5 compliant, this
will become less of an issue.

Getting Started with the Canvas

Unlike with some other technologies, you don’t need to include any extra libraries to use
the Canvas. As long as you have an HTML5-compliant browser and a text editor, you
have all you need to get up and running. As mentioned before, the Canvas is a drawing
area on a web page. The first thing that we need to do is to create that area. We can do
that by creating a canvas tag and setting the height, width, and (optionally) the ID:

<canvas id="c" height="400" width="400"></canvas>

As you probably have guessed, this line of code draws a 400-pixel-by-400-pixel square
Canvas with an ID of “c.” Your next guess might be that we could start using the Canvas
by running something like

var canvas = document.getElementById("c");

and then drawing with the canvas object. Close, but not quite. What is not apparent at
first glance is that the Canvas acts as a container for drawing APIs, which we will actually
use directly. WebGL, which we discuss in Chapter 7,“Creating Games with WebGL and
Three.js,” uses the same HTML tag but a difterent drawing API. Continuing with our

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

72

Chapter 5 Creating Games with the Canvas Tag

code example, to retrieve the 2D context (or the interface for drawing), we need to call
getContext on the Canvas:

var context = canvas.getContext(“2d”);

Now we can begin drawing graphics.

Not all of the world’s graphics are driven by rectangles. No matter how little artistic
ability you have, you will eventually need a way to create complex shapes. Paths are how
we can create shapes using lines and arcs. The concept of paths pops up several times in
the different technologies in this book. Let’s take the time to learn about them with a
simple example, and the next occasions with be total child’s play.

Although they can be as simple as a straight line, paths form complex shapes by accu-
mulating instructions one after another until the final shape is drawn. Any path consists of
three primitive types:

= Lines
= Arcs

= Curves

If you think about objects in real life, they are composed of these three types. As I'm
writing this chapter, I'm looking out the window at a street lamp and some tree planters.
If you take a cross-section of these items, you will see those primitive path components,
which can be spun around a center point or repeatedly drawn along a path to create a
three-dimensional shape. Engineers using Computer Aided Design (CAD) employ these
primitives to prototype the parts for the car you drive or the bike you ride.

Drawing Your First Paths

After creating a canvas object and retrieving the context, the first thing we need to do to
draw a path is to call the aptly named beginPath() function, which clears the stack of
any other paths we might have been drawing. This is important to do because path
instructions are cumulative, and all paths for a given canvas tag draw using the same con-
text. The next thing we need to do is to move to the point where we would like to begin
drawing. Calling moveTo () with an x position and y position does just that.You can think
of this as picking up the pen from the paper in order to draw another shape. Once the
“pen” is in place, calling 1ineTo() with x and y positions places the pen down on the
paper and draws a line to that point. The last thing we need to do is to stroke the lines we
have drawn.You can think of the moveTo and lineTo instructions as tracings on the
paper, and the stroke instruction is for going back and filling in the lines now that we
know where we want them. We can use this knowledge to draw our game board for the
tic-tac-toe game, as shown in Listing 5-1. It consists of two parallel vertical lines and two
parallel horizontal lines to form a grid of nine spaces.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Listing 5-1 Drawing the Game Board for Tic-Tac-Toe

Getting Started with the Canvas

self.drawGameBoard = function() {

var

ctx.

ctx.
.1ineTo(200,600);

ctx

ctx.
ctx.

ctx.
ctx.

ctx.
ctx.

ctx.

ctx = self.context;

beginPath();

moveTo(200,0);

moveTo(400,0);

1ineTo(400,600);

moveTo(0,200);
1lineTo(600,200);

moveTo(0,400);
1lineTo(600,400);

stroke();

Drawing Game Sprites for Tic-Tac-Toe

Now that the game board is squared away, we need to draw the sprites to play the game.
Let’s start with the Xs.
‘We can again use paths for X’s. They are drawn by starting at a point, drawing a line

indicated by an offset to the right and down, picking up the “pen,” moving up by that

same number of units, and then drawing a line that is down and to the left this time.

To make things simple for our game sprites, the game board was set at 600 by 600 pix-

els. That gives us a 200-pixel square for each space. We don’t want to the sprites to touch

the dividing lines, so all the lines are drawn just short of the edges. Listing 5-2 shows the

code to draw an X on the canvas.

Listing 5-2 Drawing an X for Tic-Tac-Toe

ctx.
ctx.

ctx.
ctx.
ctx.
ctx.

ctx

lineWidth = 2;
beginPath();

moveTo(10,10);
lineTo(190,190);

moveTo(190,10);
lineTo(10,190);
.stroke();

downloaded from: lib.ommolkefab.ir

73

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

74

Chapter 5 Creating Games with the Canvas Tag

Drawing our O’ requires using arcs. The most simple arc is a shape that we see every
day—a circle. A circle is defined by a center point and a given distance (or radius) from
that center point; the line that is drawn about that center point keeps the same radial dis-
tance. The arc function can draw a segment of a circle as well as a full circle, so we have
to indicate the starting and ending angles along with an optional clockwise or counter-
clockwise flag.

You might have learned in Geometry class a little of the math used to calculate the
surface area of shapes, the area and circumference of circles, and things like that. If you've
forgotten it all, rest assured. We will only be using the fundamentals for now. One impor-
tant concept from Geometry class is the calculation of angles. Instead of using degrees, we
use radians. So for a full revolution about a point, we say that we are rotating 27 (or 2
times pi) as opposed to 360 degrees. Pi is a mathematical constant representing the ratio
of any circle’s circumference, or the distance of the line around a circle’s edge to its diam-
eter, which is twice the distance from any point on the edge to the center point. Pi,
which equals roughly 3.14159... can’t be represented cleanly as a decimal number, so it is
much simpler to denote the approximation by using the symbol. Table 5-1 shows some
common angles in both their degree and radian representations.

Table 5-1 Common Angles in Degrees and Radians

Number of Degrees Representation in Radians
0° 0]

45° /4

90° /2

180° I

270° 3n/2

360° 2n

If you need an angle that isn't listed in the chart, you can convert from degrees to radi-
ans by using the following formula.You don’t have to worry about remembering pi
because JavaScript stores the value in the Math.PI.

angle in radians = (angle in degrees) * (pi / 180)

The following snippet shows the code needed to draw our O’s. The circle is drawn by
selecting a center point and radius and drawing from 0 to 2*T radians. In keeping with
the size of our X’s and game board, the radius is 90 pixels, giving a diameter of 180 pixels.
It looks nicer than 190 pixels, and that’s what programming is about. In other words,
sometimes the mathematically correct solution isn’t always the most pleasing.

ctx.linewWidth = 2;
ctx.beginPath();

ctx.arc(100,100, 90, 0, 2*Math.PI);
ctx.stroke();

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Drawing Objects on the Canvas with Transformations 75

Drawing Objects on the Canvas with
Transformations

On a traditional Tic-Tac-Toe game board, there are nine possible spots where an X or an
O could go. We could just create functions that explicitly draw the objects in each spot,
but that wouldn’t be efficient. Instead, we can use translation to move the entire drawing
plane from the origin to our desired point, draw our object, and then move the drawing
plane back. This allows us to reuse the same code if we decided to make a 4x4 grid
instead of a 3X3 grid.

A matrix is a collection of rows and columns of numbers that define the location,
scale, and orientation of an object in space. For anything but translation, we would use a
2X2 matrix to represent transformations. But before we get to the more complex exam-
ples, let’s start out with translation.

To translate an object currently located at (x,y) by (xr, yr) relative units, we would add
two 2X1 matrices together, as shown in Figure 5-1. In this figure, we have a point located
at (0,5) that we want to move 5 units to the left and 5 units down.

0 -5 -5
+
5 5 10
Figure 5-1 Translation of an object
For scaling, shearing, and rotation, we have to multiply matrices. This is also where our

2X2 matrices come into play. Figure 5-2 shows the role of each position in the matrix.

scale-x skew-y
skew-x scale-y

Figure 5-2 Definitions of the positions in
a 2x2 matrix

The most basic matrix we could use is the Identity matrix, as shown in Figure 5-3.
The interesting property about the Identity matrix is that for any other matrix, multiply-

ing it by the identity will return the original matrix. We can see from the figure that it
represents a scale of 1 on the x and y axes with no skewing.

1 0
0 1

Figure 5-3 Identity matrix

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

76 Chapter 5 Creating Games with the Canvas Tag

Let’s put the Identity matrix to the test by demonstrating multiplication. To multiply a
2X2 matrix by a 2X1 matrix, we would follow the order indicated in Figure 5-4.You can
also see in this figure that the Identity matrix’s property holds true.

A BI|E AE + BF
C D||F CE + DF

Figure 5-4 Matrix multiplication

Looking again at Figure 5-2, we can easily discern how to do scaling or skewing by
placing our scale or skew constants in the proper slots. Rotation, however, is a bit more
complicated.

Figures 5-5 and 5-6 show the matrixes needed to multiply by the vector representing
some point to rotate it theta degrees about its center.

cos 0 sin 6
-sin 0 cos 0

Figure 5-5 Counterclockwise rotation

cos 0 -sin 0
sin cos 0

Figure 5-6 Clockwise rotation

Ordering Your Transformations

Similar to the order of operations mnemonic device “Please Excuse My Dear Aunt Sally”
(which represents parentheses, exponents, multiplication, division, addition, and subtrac-
tion), transformations have to be applied in a specific order; otherwise, unexpected results
will occur. The issue at hand is that each subsequent matrix that is multiplied builds upon
and distorts the result of the final position. The general order is scaling, rotation, and then
translation.

For example, let’s say you want to draw a box at location (10,10) and you want to
rotate it 2 radians around its center. The current matrix is located at (0,0), as is the box’s
center. You would rotate the box using the desired amount and then translate it to
(10,10). To move it a further 3 radians, you use the inverse order, translating the object
back to the origin and applying the rotation before translating it to its desired location.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Drawing Objects on the Canvas with Transformations 77

When a person does a back flip in real life, he is rotating about his current position. To
account for this in a game, we must move the object to the origin, do the rotation, and
then translate the object back to its original position.

The Canvas allows us to set the transformation matrix directly by calling
setTransform and transform. setTransform sets the matrix to the identity before set-
ting the transformation, whereas transform creates a product of the current matrix and
the developer-provided matrix. Luckily for us, canvas has first-class support for transla-
tion, rotation, and scaling using translate, rotate, and scale. Both translate and
scale take x and y parameters, whereas rotate takes an angle to rotate the matrix in
radians.

Saving and Restoring the Canvas Drawing State

The last thing we need to properly transform objects is a way save and restore the Canvas
state. We need to save and restore the transformation matrix so that we properly isolate
transformations from one object affecting those that are drawn after it. save and restore
do just that. Their combined functionality is similar to hitting a save point in a game,
going down a fork in the road to retrieve some sort of power-up, being able to restore the
state to return to the fork, and keep the power-up.

These functions save and restore not only the current transformation matrix but also
the clipping region and several properties, including strokestyle, fillStyle,
globalAlpha, lineWidth, lineCap, lineJoin, miterLimit, shadowOffsetX,
shadowOffsetY, shadowBlur, shadowColor, font, textAlign,
globalCompositeOperation, and textBaseline. Listing 5-3 shows our updated function
for drawing O sprites and properly handling translation.

Listing 5-3 Drawing Several O’s

self.drawOSprite = function(x, y) {
var ctx = self.context;

// Save the canvas state and translate
ctx.save();
ctx.translate(x,y);

ctx.lineWidth = 2;
ctx.beginPath();

ctx.arc(100,100, 90, 0, 2*Math.PI);
ctx.stroke();

// Restore canvas state
ctx.restore();

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

78

Chapter 5 Creating Games with the Canvas Tag

Using Images with the Canvas

For every image your game uses, another hit is incurred against the server to retrieve it.
‘We already know from basic HTML how to use the img tag. In this section, we look at a
couple more ways to use images in our applications.

Serving Images with Data URLs

Data URIs provide a way to include the data for a file inline in HTML code.The contents
of the file then get retrieved when the HTML is downloaded, thus reducing the number
of hits to the server and theoretically the wait time. The general format is as follows:

data:[<mime type>][;charset=<charset>][;base64],<encoded data>

Here is a simple data URI inside an image tag:

<img src= “
wAAACWAAAAAD wAOAAACGISPCaG9rhhEcppg8dSQO9+AUUCWpOVOBQA” />

Let’s examine this URI. The original file is a GIF so mime type is set to image/gif.
The MIME type would be image/png, for example, to reflect that the source file is PNG.
charset refers to the character set of the file if the source is a text file. The source file
isn’t text, in this case, so we omit charset. If both the MIME type and character set are
omitted, the default values will be text/plain for the MIME type and us-asc1I for the
character set. The next component, ;base64, indicates whether the data is Base64
encoded. Base64 is used when you need to transmit binary data over a medium that is
more tailored to transmitting text. It is also used sometimes to do basic password encod-
ing for web services. Base64 encoding formats data using A—Z, a—z, and 0-9, plus two
additional printable characters, generally + and /. Many tools on the Web will convert
image files to data URIs. The website www.sveinbjorn.org/dataurlmaker offers a
web-based application along with links to desktop applications.

Serving Images with Spritesheets

Trying to load a bunch of image files, even if they are small in size, can be very taxing on
a server and cause your users to wait a really long time. Spritesheets solve this by packag-
ing the images for many files into one. They are generally used for a large number of
small images of a similar size. Images are padded to have uniform dimensions and can be
retrieved using the images’ calculated coordinates. Image-editing applications such as
GIMP, ImageMagick, and Photoshop can create them for you, and certain web services
can create them as well. Spritesheets can be combined with data URIs.

Drawing Images on the Canvas

Now that we have our images loaded, we need a way to draw them.The Canvas has a
function appropriately named drawImage with several variants. All our examples assume
we have retrieved an image from an image tag using document.getElementById, pulled

downloaded from: lib.ommolkefab.ir

www.sveinbjorn.org/dataurlmaker
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Animating Objects with Trident.js 79

it from the document.images collection, or created the image directly in JavaScript using
Image() and adding a src URI to it.
The simplest variant is

drawImage(image, x, y)

which draws the image in its entirety with its current size with its left-upper corner at
(xy)-
The second variant is

drawImage(image, x, y, width, height)

which, like the first variant, draws the entire image. The last two parameters scale the
drawn image in the Canvas.
The last variant is the most powerful and has the most parameters:

drawImage(image, sx, sy, sWidth, sHeight, dx, dy, dwidth, dHeight)

This one allows you to use only parts of the source image and do scaling on the Canvas.
sx and sy refer to the left-upper corner of the image slice. All data in the bounds of (sx,sy)
and (sx+sWidth, sy+sHeight) is drawn. On the Canvas, the image is drawn in the area of
(dx,dy) and (dx+dWidth, dy+dHeight).

Animating Objects with Trident.js

Trident.js (https://github.com/kirillcool/trident-js) is an animation library for JavaScript
created by Kirill Grouchnikov that was ported from his Java library of the same name.
The main focus of the library comes from the timeline, not that much unlike one in a
video-editing program, allowing us to transition between different states with keyframes.
Easing functions allow objects to move in a more life-like manner. Many timelines with
different functions can operate simultaneously or in a specific order, one at a time. This is
the main reason Trident.js was selected over the myriad of possibilities when it comes to
JavaScript animation libraries.

Trident, at present, uses setTimeout instead of requestAnimationFrame.
requestAnimationFrame determines whether to draw an object based on if the browser
window is obscured of if the page is currently rendering, and it caps the refresh rate to
60Hz. setTimeout does none of this. It tries to render as much as possible even if the app
is still rendering or not in view. Trident is a multipurpose animation library. setTimeout
can be applicable to both DOM- and Canvas-based animation. requestAnimationFrame
cannot. It might seem that the use of setTimeout disqualifies Trident before it even gets
out of the gate. The feature that redeems it is the ability to pause a timeline. This, along
with the other features, temper the disadvantages of using setTimeout.

downloaded from: lib.ommolkefab.ir

https://github.com/kirillcool/trident-js
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

80

Chapter 5 Creating Games with the Canvas Tag

Creating Timelines

The most basic timeline in Trident.js has a duration over which it will run and an object
and property to interpolate. The interpolator tells Trident.js how to make intermediary
values and optional starting and ending values. Timelines work by periodically waking up,
or pulsing, to check how much time has passed and adjusting values appropriately.
Although there is no guarantee on the frequency or time period of timeline pulses, for
most applications, they perform reasonably well and regularly. These attributes are affected
by the load on the client machine and what is being run on each pulse. Listing 5-4 shows
some code to create a timeline.

Listing 5-4 A Timeline to Interpolate Text Size

var rolloverTimeline = new Timeline(myspan.style);
rolloverTimeline.addPropertiesToInterpolate([
{ property: "font-size", from:16, to: 36,
interpolator: new IntPropertyInterpolator()}

1)i

rolloverTimeline.duration = 2000;

First, we instantiate a timeline, assigning the element and property that will be modi-
fied. In this case, it is the style field of an element with the ID “myspan.” Next, we added
the properties that will be modified. In the code, we state that the font size will range
from 16 to 36 units and to interpolate the values as integers. Lastly, we set the duration of
the animation to be 2 seconds (in milliseconds).

As opposed to constantly monitoring the state of the interpolated properties, which
could cause the page to become unresponsive anyways, Trident.js fires a timeline pulse
or an instant in time in which wakes up, checks the state, and modifies it as needed.
Unlike the Java version of Trident, which has a pulse rate of once every 40 ms, the pulse
rate of Trident.js depends on the system load and the runtime environment. That being
said, JavaScript engines in browsers are getting faster and faster with every iteration.
Given the proper load, I wouldn’t expect it to get too bogged down. We can also use a
timeline to control our game loop.You can see this in action in this chapter’s Copy Me
game source code.

The last thing we need to do is to add a way to start our animation. I decided to put
the start and reverse functions on onmouseover and onmouseout in a span element, as
shown in Listing 5-5. Thanks to timeline pulses, the reverse action starts relatively quickly
after onmouseout is fired. In addition to play and playReverse, there is also a replay
function we could use as well to interact with the timeline.

Listing 5-5 Starting and Reversing a Timeline

<span id="myspan"
onmouseover="rolloverTimeline.play();"
onmouseout="rolloverTimeline.playReverse();">Some text

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Animating Objects with Trident.js 81

In addition to integers, we could also interpolate over floating-point numbers or even
R GB color values. We just need to set the appropriate “from” and “to” values with a dif-
ferent interpolator: IntPropertyInterpolator, FloatPropertyInterpolator, or
RGBPropertyInterpolator, respectively. We aren’t limited to HTML elements. Trident
can also interpolate properties on JavaScript objects.

Animating with Keyframes

Normal timelines transitions between the beginning and ending points without any con-

trol over any intermediary value. Keyframes provide a way to indicate what a value should
be at a given point on the timeline. A new field called goingThrough is where you would
specify the values on the range from 0 (beginning of timeline) to 1 (end of timeline).You

can see keyframes in action in Listing 5-6.

Listing 5-6 Animating a Timeline with Keyframes

var keyframeTimeline = new Timeline(keyframespan.style);
keyframeTimeline.addPropertiesToInterpolate([
{ property: "font-size", from:16, to:36,
interpolator: new IntPropertyInterpolator()

}l
property:"color",
goingThrough: {
0: "rgb(0,0,0)",
0.4:"rgb(0,255,0)",
1:"rgb(200,140,140)"
}l
interpolator: new RGBPropertyInterpolator()
}

1)i

keyframeTimeline.duration = 3000;

Creating Nonlinear Timelines with Easing

By default in Trident.js, object and transitions happen at an equal rate of speed from start
to finish. This is not what we usually see in real life. Friction, inertia, and other forces are
in play that will cause an object to accelerate, decelerate, or bounce. Although doing pre-
cise physics calculations is outside the scope of this chapter, we can use easing functions to
bring our animations somewhat close to what is expected. Given a ball that moves up and
down on the y-axis, Figure 5-7 shows regular linear motion where every unit of time
passed corresponds to one unit of movement on the y-axis. Figure 5-8 shows a bounce
effect. We can see a couple of rebounds along the y-axis. Also notice the sharp decline on
some of the segments, which corresponds to a faster speed.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

82 Chapter 5 Creating Games with the Canvas Tag

Figure 5-7 Graph of linear motion

Figure 5-8 Graph of a bounce easing function

Trident.js, at the time of this writing, ha