
Programming SQL Server 2005

By Bill Hamilton

...

Publisher: O'Reilly

Pub Date: February 2006

Print ISBN-10: 0-596-00479-6

Print ISBN-13: 978-0-59-600479-8

Pages: 586

Table of Contents | Index

SQL Server 2005, Microsoft's next-generation data management and analysis solution, represents a
huge leap forward. It comes with a myriad of changes that deliver increased security, scalability,
and power--making it the complete data package. Used properly, SQL Server 2005 can help
organizations of all sizes meet their data challenges head on.

Programming SQL Server 2005 from O'Reilly provides a practical look at this updated version of
Microsoft's premier database product. It guides you through all the new features, explaining how
they work and how to use them. The first half of the book examines the changes and new features
of the SQL Server Engine itself. The second addresses the enhanced features and tools of the
platform, including the new services blended into this popular version. Each chapter contains
numerous code samples-written in C# and compiled using the Visual Studio 2005 development
environment-that show you exactly how to program SQL Server 2005.

Programming SQL Server 2005 can help you:

Build, deploy, and manage enterprise applications that are more secure, scalable, and reliable

Maximize IT productivity by reducing the complexity of building, deploying, and managing
database applications

Share data across multiple platforms, applications, and devices to make it easier to connect
internal and external systems

Because the goal of Programming SQL Server 2005 is to introduce all facets of Programming SQL
Server 2005, it's beneficial to programmers of all levels. The book can be used as a primer by
developers with little or no experience with SQL Server, as a ramp up to the new programming
models for SQL Server 2005 for more experienced programmers, or as background and primer to
specific concepts.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Any IT professional who wants to learn about SQL Server 2005's comprehensive feature set,
interoperability with existing systems, and automation of routine tasks will find the answers in this
authoritative guide.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Programming SQL Server 2005

By Bill Hamilton

...

Publisher: O'Reilly

Pub Date: February 2006

Print ISBN-10: 0-596-00479-6

Print ISBN-13: 978-0-59-600479-8

Pages: 586

Table of Contents | Index

 Programming SQL Server 2005

 Preface

 What You Need to Use This Book

 Conventions Used in This Book

 How to Contact Us

 Safari® Enabled

 Acknowledgments

 Chapter 1. Introduction

 Section 1.1. Contents of This Book

 Section 1.2. What's Not in This Book

 Chapter 2. Tools and Utilities

 Section 2.1. SQL Server Management Studio

 Section 2.2. SQL Server Configuration Manager

 Section 2.3. SQL Server Surface Area Configuration

 Section 2.4. Database Engine Tuning Advisor

 Section 2.5. SQL Server Profiler

 Section 2.6. SQL Server Business Intelligence Development Studio

 Section 2.7. Visual Studio 2005

 Section 2.8. New Command-Line Utilities

 Chapter 3. T-SQL Enhancements

 Section 3.1. New Data Types

 Section 3.2. T-SQL Language Enhancements

 Section 3.3. Data Definition Language (DDL) Triggers

 Section 3.4. Metadata

 Chapter 4. Introduction to Common Language Runtime (CLR) Integration

 Section 4.1. CLR Integration Design Objectives

 Section 4.2. Enabling CLR Integration

 Section 4.3. Required .NET Namespaces

 Section 4.4. Types of CLR Routines

 Section 4.5. Hello World Example

 Section 4.6. DDL Support for CLR Integration

 Section 4.7. ADO.NET In-Process Extensions Supporting CLR Programming

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 4.8. Custom Attributes for CLR Routines

 Section 4.9. SQL Server Data Types in the .NET Framework

 Section 4.10. Testing and Debugging CLR Routines

 Chapter 5. Programming SQL Server CLR Routines

 Section 5.1. Scalar-Valued Functions

 Section 5.2. Table-Valued Functions

 Section 5.3. Stored Procedures

 Section 5.4. User-Defined Aggregate Functions

 Section 5.5. User-Defined Types

 Section 5.6. Triggers

 Chapter 6. .NET Client-Side Programming

 Section 6.1. SQL Native Client Programming

 Section 6.2. SQLXML 4.0

 Section 6.3. Exception Message Box

 Chapter 7. XML Data

 Section 7.1. xml Data Type

 Section 7.2. Creating xml Data Type Instances

 Section 7.3. XML Data Type Methods

 Section 7.4. Viewing XML Data as Relational Data

 Section 7.5. Indexing XML Data

 Section 7.6. Managing XML Schema Collections

 Section 7.7. XQuery Support

 Section 7.8. XML Data Manipulation Language

 Section 7.9. XML Results Using the FOR XML Clause

 Section 7.10. XML Catalog Views

 Chapter 8. Native XML Web Services

 Section 8.1. Open Standards

 Section 8.2. Creating a Web Service

 Section 8.3. Creating the HTTP Endpoint and Exposing a Web Method Example

 Section 8.4. SOAP Request and Response Messages

 Section 8.5. Managing HTTP Endpoints

 Chapter 9. SQL Server Management Objects (SMO)

 Section 9.1. SMO Object Model

 Section 9.2. Creating an SMO Project in Visual Studio .NET

 Section 9.3. A Simple SMO Application

 Chapter 10. SQL Server Management Objects (SMO) Instance Classes, Part 1

 Section 10.1. Programming SMO Instance Classes for Administering Data Storage Objects

 Section 10.2. SMO Instance Classes for Administering Data Storage Objects Reference

 Chapter 11. SQL Server Management Objects (SMO) Instance Classes, Part 2

 Section 11.1. Programming SMO Instance Classes for Administering Database Objects Not Used for Data Storage

 Section 11.2. SMO Instance Classes for Administering Objects Not Used for Data Storage Reference

 Chapter 12. SQL Server Management Objects (SMO) Utility Classes

 Section 12.1. Scripting

 Section 12.2. Backing Up and Restoring Data

 Section 12.3. Transferring Data

 Section 12.4. Tracing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 12.5. Database Mail

 Chapter 13. Programming Windows Management Instrumentation (WMI)

 Section 13.1. Programming SMO WMI Classes

 Chapter 14. SQL Server Reporting Services (SSRS)

 Section 14.1. Getting Started

 Section 14.2. Integrating Reports into Applications

 Section 14.3. Reporting Services Extensions

 Chapter 15. SQL Server Integration Services (SSIS)

 Section 15.1. Architecture

 Section 15.2. Tools

 Section 15.3. Programming SSIS

 Chapter 16. SQL Server Agent

 Section 16.1. Programming SQL Server Agent

 Chapter 17. Service Broker

 Section 17.1. Architecture

 Section 17.2. Programming Service Broker

 Chapter 18. Notification Services

 Section 18.1. Architecture

 Section 18.2. Creating a Notification Services Application

 Section 18.3. Programming Notification Services

 Chapter 19. Replication

 Section 19.1. Programming Replication

 Chapter 20. SQL Server Analysis Services (SSAS)

 Section 20.1. Before You Begin

 Section 20.2. SSAS Overview

 Section 20.3. SSAS Database

 Section 20.4. SSAS Languages

 Section 20.5. Development

 Section 20.6. Accessing Data by Using ADOMD.NET

 Section 20.7. Administering SSAS Objects

 Chapter 21. SQL Server Mobile Edition

 Section 21.1. Environments

 Section 21.2. Prerequisites

 Section 21.3. Programming SQL Server Mobile

 Appendix A. ADO.NET 2.0

 Section A.1. Data Provider Enumeration and Factories

 Section A.2. Data Provider Enhancements

 Section A.3. Disconnected Class Enhancements

 About the Author

 Colophon

 Index

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Programming SQL Server 2005
by Bill Hamilton

Copyright © 2006 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Jeff Pepper

Production Editor: Adam Witwer

Production Services: Argosy Publishing

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrators: Robert Romano, Jessamyn Read, and Lesley Borash

Printing History:

February 2006: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. Programming SQL Server 2005, the image of an arctic cod, and related trade
dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-00479-6

[M]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Preface
You don't have to be an experienced SQL Server 2005 programmer to use this book; it is designed
for users of all levels. You also do not need any experience with SQL Server 2000, as programming
SQL Server 2005 is different in nearly every way from programming SQL Server 2000. You do need
an understanding of fundamental relational database concepts. Basic knowledge of T-SQL also helps.

The goal of this book is to introduce all facets of programming SQL Server 2005 to developers. This
book can be used either as a primer by developers with little or no experience with SQL Server, as a
ramp-up to the new programming models for SQL Server 2005 for more experienced SQL Server
developers, or as background and primer to specific concepts.

The code in this book is available for download on the O'Reilly web site
(http://www.oreilly.com/catalog/progsqlsvr), so you don't need to retype it to follow the examples.
Only code that is important to illustrate specific concepts is listed in this book, but enough code is
presented to let you use the book without loading the actual code. The book does not list user
interface code or code generated automatically by Visual Studio .NET.

http://www.oreilly.com/catalog/progsqlsvr
http://lib.ommolketab.ir
http://lib.ommolketab.ir

What You Need to Use This Book

To run the samples in this book, you need a computer running Windows 2000 SP4 or later, Microsoft
.NET Framework 2.0 (installed with SQL Server 2005), and SQL Server 2005Developer, Standard, or
Enterprise Edition.

Most of the examples in this book use C# code and Visual Studio 2005. It is easiest to use Visual
Studio 2005 to compile and execute the examples in the book. However, you can compile the
samples in this book by using the C# command-line compiler (csc.exe) included with the .NET
Framework.

Some of the examples in this book require the AdventureWorks sample database, which ships with
SQL Server 2005 but is not installed automatically. Follow the product documentation to install the
AdventureWorks database during the SQL Server 2005 installation or to install it in an existing
installation. Other examples in this book require a database called ProgrammingSqlServer2005 that
you should createthis new database is used to minimize the impact of the examples on the
AdventureWorks database installation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text

Indicates menu titles, menu options, menu buttons, and keyboard accelerators (such as Alt and
Ctrl)

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames, directories,
and Unix utilities

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions, types, classes,
namespaces, methods, modules, properties, parameters, values, objects, events, event
handlers, XML tags, HTML tags, macros, databases, the contents of files, or the output from
commands

Constant width italic

Shows text that should be replaced with user-supplied values

Code

Indicates source codeeither C# or T-SQL

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information.
You can access this page at:

http://www.oreilly.com/catalog/progsqlsvr

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
our web site at:

http://www.oreilly.com

http://www.oreilly.com/catalog/progsqlsvr
http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book,
that means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Acknowledgments

This book wouldn't have been possible without the help of many people. I'd like to thank my editors
Jeff Pepper, Ralph Davis, and Jonathan Gennick for making this book better. Thanks to reviewers
Louis Davidson, Vyas Kondreddi, Deac Lancaster, Alex Lim, and Josh Sackett for providing valuable
technical feedback. I'd like to thank the production teamAdam Witwer, Nancy Kotari, and Bill
McManusfor putting everything together. I'd also like to thank Jan Shanahan at Microsoft for
promptly and patiently answering questions while SQL Server 2005 evolved. Of course, none of this
would be necessary without the SQL Server 2005 team at Microsoftyou built a great piece of
software. Finally, thank you, Molly, my friends, and my familyyou are what matter most.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 1. Introduction
Microsoft SQL Server 2005 is the latest relational database server product from Microsoft, updating
Microsoft SQL Server 2000. SQL Server 2005 adds new functionality and improves the performance,
reliability, programmability, and usability of SQL Server 2000.

This book describes and shows how to program SQL Server 2005. Generally, the discussions cover
the entire topic, because most aspects of programming SQL Server 2005 are new. Examples include
using .NET Framework Common Language Runtime (CLR) assemblies to create SQL Server objects,
such as stored procedures and triggers, and using SQL Server Management Objects (SMO) to
programmatically create, modify, delete, and manage databases, tables, and other SQL Server
objects. In the case of Transact-SQL (T-SQL) and ADO.NET 2.0, only enhancements are described
and demonstrated. The SQL Server Analysis Services (SSAS) coverage provides a broad introduction
to SSAS that should help you to understand what SSAS is, what its key parts are, and how to get
started with SSAS programmingthe topic is simply too large to do more than that here.

From a programming perspective, new SQL Server 2005 features include the following:

Tools and utilities

A new IDE called SQL Server Management Studio for managing SQL Server topologies,
databases, and objects; and a collection of new tools for tuning, profiling, and developing SQL
Server 2005 solutions.

Data types

New support for storing and working with native XML data and large binary data.

T-SQL enhancements

New support for Data Definition Language (DDL) triggers, event notifications, bulk operations,
recursive queries, and distributed queries, and introduction of new operators.

Programmability enhancements

New support for developing database objects such as stored procedures, triggers, and user-
defined functions using .NET programming languages. SQL Native Client (SQLNCLI) combines
and replaces the native OLE DB provider for SQL Server and the ODBC provider with a single
standalone API. SQLXML 4.0 enhances SQLXML 3.0 with support for new SQL Server 2005 XML
data capabilities and SQLNCLI.

XML support

http://lib.ommolketab.ir
http://lib.ommolketab.ir

New support for the xml data type used to natively store XML fragments and documents and
for manipulating xml data type instances with XML Query Language (XQuery) and XML Data
Manipulation Language (DML).

Native XML web services

New support lets SQL Server accept SOAP requests so that you can execute queries without a
middle-tier application server such as Internet Information Server (IIS).

SQL Management Objects (SMO)

Extends and supersedes Distributed Management Objects (DMO) for configuring and managing
all aspects of SQL Server instances.

SQL Server Integration Services (SSIS)

A new technology for building data integration solutions and workflow solutions. SSIS replaces
Data Transformation Services (DTS) introduced in SQL Server 2000.

SQL Server Reporting Services (SSRS)

A server-based reporting technology that supports authoring, distributing, managing, and
accessing reports. SSRS was introduced in SQL Server 2000 and has been significantly
enhanced in SQL Server 2005.

SQL Server Notification Services

A new built-in technology for building applications that creates and sends messages to
subscribers according to a schedule or in response to events.

SQL Server Service Broker

A new technology for building scalable, loosely coupled, distributed applications using message-
based communications.

Replication Management Objects (RMO)

Extends and supersedes the DMO replication capabilities for configuring and managing all
aspects of SQL Server replication.

SQL Server Agent

Automates administrative tasks by running jobs, monitoring SQL Server, and processing alerts.
SQL Server 2005 introduces new SMO classes for creating and managing SQL Server Agent.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SQL Server Mobile Edition

Provides relational database functionality for mobile devices in a compact footprint with a
programming model consistent with SQL Server 2005. Update to SQL Server 2000 Windows CE
Edition 2.0.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.1. Contents of This Book

This book is organized into 20 chapters (plus this introduction, and an appendix), each of which
focuses on a SQL Server 2005 programming topic. In some cases, more than one chapter is used to
cover different aspects of a single topic. Each chapter contains code samples showing you how to
program SQL Server 2005. Code samples are written in C# and compiled using the Visual Studio
2005 development environment. To give you an overview of this book's contents, the following list
summarizes each chapter:

Chapter 2, Tools and Utilities

This chapter provides an overview of new and enhanced tools and command-line utilities in SQL
Server 2005. This chapter describes:

SQL Server Management Studio, the new IDE for managing SQL Server 2005 objects

SQL Server Configuration Manager, used to manage SQL Server 2005 services

SQL Server Surface Area Configuration Manager, used to manage the available features,
services, and remote connectivity of a SQL Server 2005 instance for security purposes

Database Engine Tuning Advisor, used to improve query processing without requiring a
detailed understanding of the database structure or how query processing actually occurs

SQL Server Profiler, used to monitor query processing for auditing, debugging, and tuning
purposes

SQL Server Business Intelligence Development Studio, used to develop SQL Server 2005
solutionsAnalysis Services, Integration Services, and Reporting Serviceswith an IDE
similar to that of Visual Studio 2005

Visual Studio .NET 2005, used for developing CLR routines and solutions for
programmatically administering SQL Server 2005

The new command-prompt utilities included with SQL Server 2005

Chapter 3, T-SQL Enhancements

This chapter describes the new SQL Server 2005 data types that handle XML and large binary
data; enhancements to the T-SQL programming language; new DDL triggers; and new catalog
views that replace information schema views in SQL Server 2005 as a mechanism to retrieve
metadata about SQL Server objects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 4, Introduction to Common Language Runtime (CLR) Integration

SQL Server 2005 hosts the .NET Framework CLR in the Database Engine. This arrangement
lets you create database objects such as stored procedures, functions, and triggers in
programming languages supported by the CLR; you are no longer limited to creating these
objects in T-SQL. This chapter introduces programming, testing, debugging, deploying, and
securing CLR routines.

Chapter 5, Programming SQL Server CLR Routines

This chapter shows how to program the different types of CLR routinesscalar-valued functions,
table-valued functions, stored procedures, user-defined aggregate functions, user-defined
types, and both DML and DDL triggers.

Chapter 6, .NET Client-Side Programming

SQL Server 2005 introduces SQL Native Client (SQLNCLI). It replaces the OLE DB provider for
SQL Server and the ODBC provider with a single standalone API that combines their
functionality into a single DLL. SQL Server 2005 also introduces SQLXML 4.0, which provides
client-side functionality for developing applications that access XML data from SQL Server,
process that data, and return the data back to the server. SQLXML 4.0 enhances the
functionality of SQLXML 3.0 with support for new XML and web services functionality. This
chapter describes SQLNCLI and SQLXML 4.0 programming.

Chapter 7, XML Data

SQL Server 2005 introduces native support for XML data storage and processing. Most
significantly, a new xml data type stores typed (having an XML schema) and untyped XML
fragments and documents. You can manipulate xml data type instances using either XQuery or
XML DML. SQL Server also lets you map relational data to XML data, making it easy to work
with a mix of data types. This chapter discusses programmatically creating and manipulating
xml data type instances and mapping XML data to relational data.

Chapter 8, Native XML Web Services

SQL Server 2005 supports native web services, so you can send SOAP messages directly to
SQL Server 2005 to execute T-SQL statements, stored procedures, and scalar-valued user-
defined functions (UDFs). This chapter shows how to create and manage HTTP endpoints,
expose web service methods, work with SOAP request and response messages, work with
SOAP sessions, and monitor SOAP requests for performance.

Chapter 9, SQL Server Management Objects (SMO)

SQL Server 2005 introduces SQL Management Objects (SMO)a collection of namespaces used
for programmatically managing all aspects of SQL Server 2005. SMO supersedes the database
management functionality of SQL DMO used to manage SQL Server 2000. This chapter
describes the SMO object model and shows how to create a simple SMO application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 10, SQL Server Management Objects (SMO) Instance Classes, Part 1

SMO contains a class hierarchy that matches the SQL Server database hierarchy. This chapter
describes the SMO classes used to administer database objects that store and access data,
such as tables, indexes, triggers, and stored procedures. It also shows how to use the SMO
classes programmatically to administer these objects. In addition, it shows how to subscribe to
SMO events and handle exceptions.

Chapter 11, SQL Server Management Objects (SMO) Instance Classes, Part 2

SMO contains classes for administering database objects that do not store or access data, such
as data and log files, logins, users, roles, and .NET Framework assemblies. This chapter
describes how to use these classes programmatically.

Chapter 12, SQL Server Management Objects (SMO) Utility Classes

SMO utility classes are used to perform tasks that are independent of a SQL Server instance.
These classes include scripting, backup and restore, transfer, mail, and tracing classes. This
chapter shows how to use these classes programmatically.

Chapter 13, Programming Windows Management Instrumentation (WMI)

WMI can be used to manage SQL Server services, network settings, and server alias settings.
This chapter describes the classes that you use to access WMI and shows you how to program
these classes.

Chapter 14, SQL Server Reporting Services (SSRS)

SSRS provides a reporting environment that runs on top of IIS. You can build reports from any
data sourcefor example, relational, multidimensional, or XMLthat can be accessed using a .NET
managed data provider, OLE DB provider, or ODBC provider. Reports can be accessed through
a parameterized URL or by using the report viewer control in either a Windows Forms or Web
Forms application. This chapter shows you how to build, configure, access, and incorporate
reports into your applications.

Chapter 15, SQL Server Integration Services (SSIS)

SSIS is a platform for building data-integration and workflow solutions in which you can merge
data from different data sources, populate data warehouses, standardize data, and perform
administrative operations such as backing up, loading, and copying data. This chapter provides
an overview of SSIS and demonstrates SSIS managed-code programming.

Chapter 16, SQL Server Agent

SQL Server Agent automates administrative tasks by running jobs, monitoring SQL Server, and
processing alerts. SMO contains classes used to manage all aspects of SQL Server Agent. This
chapter describes SQL Server Agent and the SMO class hierarchy for SQL Server Agent and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

shows how to programmatically create and manage SQL Server Agent objects.

Chapter 17, Service Broker

Service Broker is a technology that helps you build scalable, loosely coupled database
applications. Service Broker provides a message-based communications platform that is used
to integrate independent applications and components. SMO contains classes used to manage
all aspects of Service Broker. This chapter describes Service Broker and the SMO class
hierarchy for Service Broker and shows how to programmatically create and use a Service
Broker service.

Chapter 18, Notification Services

Notification Services is a programming framework for creating applications that generate and
send messages to subscribers on a variety of devices, either according to a schedule or in
response to events. Notification Services is integrated into SQL Server 2005 rather than being
distributed as a download component, as was the case with SQL Server 2000. SMO contains
classes used to administer all aspects of Notification Services. This chapter describes
Notification Services and the SMO class hierarchy for Notification Services and shows how to
programmatically create and manage Notification Services objects.

Chapter 19, Replication

Replication copies and distributes data and database objects between databases and provides a
mechanism to keep the data synchronized. SQL Server 2005 introduces SQL Server Replication
Management Objects (RMO), a collection of namespaces used to program all aspects of SQL
Server 2005 replication. RMO replaces the replication management capabilities of SQL DMO,
used to manage replication in SQL Server 2000. This chapter describes the RMO object model
and shows you how to program replication using RMO classes.

Chapter 20, SQL Server Analysis Services (SSAS)

SSAS provides online analytical processing (OLAP) and data-mining functionality using a
combination of client- and server-side components. This chapter describes SSAS, shows how to
programmatically query data and metadata, and explains how to programmatically administer
SSAS instances and objects.

Chapter 21, SQL Server Mobile Edition

SQL Server Mobile Edition lets you run relational database applications on mobile devices by
providing relational database functionality in a compact footprint with a programming model
consistent with SQL Server 2005. SQL Server Mobile is an update to SQL Server Windows CE.
This chapter describes SQL Server Mobile, shows how to create and manage databases and
database objects, and explains how to read, update, and synchronize data programmatically.

Appendix, ADO.NET 2.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ADO.NET 2.0 is a collection of classes that lets .NET applications consistently access data
stored in a wide variety of data sources. ADO.NET is used to retrieve, manipulate, and update
data stored in supported data sources including SQL Server, Oracle, and data sources exposed
through OLE DB. ADO.NET 2.0 is an update to ADO.NET introduced with Visual Studio .NET
2002. This appendix describes new functionality, support, and features of ADO.NET 2.0.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.2. What's Not in This Book

This book is not a reference, although some reference material is included where it helps explain
concepts. Detailed reference information is available in Microsoft SQL Server 2005 Books Online,
which is installed by default with SQL Server 2005 and accessed by selecting Start All Programs

 Microsoft SQL Server 2005 Documentation and Tutorials SQL Server Books Online. This
book does not cover SQL Server 2005 administration or migrating from SQL Server 2000 to SQL
Server 2005.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 2. Tools and Utilities
SQL Server 2005 introduces new and enhanced tools and command-line utilities. This chapter
provides an overview of those tools and utilities. It focuses on new features and enhancements, and
information most relevant to programming SQL Server and programmatically administering SQL
Server. For detailed information about these tools and utilities, see Microsoft SQL Server 2005 Books
Online.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1. SQL Server Management Studio

SQL Server Management Studio is an integrated environment for accessing, configuring, managing,
and administering SQL Server and for developing SQL Server objects. Management Studio works with
all SQL Server components, including Report Services, Data Transformation Services, SQL Server
Mobile, and Notification Services.

SQL Server Management Studio combines the features of Enterprise Manager,
Query Analyzer, and Analysis Manager in SQL Server 2000 and adds new
functionality.

Launch SQL Server Management Studio by selecting Start All Programs Microsoft SQL
Server 2005 SQL Server Management Studio from the taskbar. The Connect to Server dialog box
opens, prompting you for server information and credentials. Fill in the required information and click
the Connect button. Figure 2-1 shows SQL Server Management Studio.

SQL Server Management Studio displays two panes by default:

Object Explorer

Document (initially a single Summary Page)

These and other windows can be added using the View menu. The various windows are described in
the following subsections.

Figure 2-1. SQL Server Management Studio

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1.1. Registered Servers

The Registered Servers window lists servers that you have previously registered, optionally organized
into server groupsa hierarchical structure used to help manage registered servers. A registered
server preserves connection information and lets you easily determine whether the servers are
running, access Object Explorer and Query Editor for the servers, and provide user-friendly names
together with detailed descriptions for the servers.

The toolbar below the main menu lets you switch between the five types of registered servers that
you can manage (listed in order from left to right):

Database Engine

Stores, processes, and secures data

Analysis Services

Online analytical processing (OLAP) and data-mining functionality

Reporting Services

Web-enabled reports that connect to a variety of data and content sources, publish reports in
various formats, and manage security and subscriptions

SQL Server Mobile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Relational-database functionality in a compact footprint suitable for mobile devices with a
programming model consistent with SQL Server 2005

Integration Services

Packages that extract, transform, and load (ETL) data for use by data integration solutions and
data warehousing

You can also switch the type of registered server by using the View Registered Server Types
menu item.

The Registered Servers context menu has the options described in Table 2-1.

Table 2-1. Registered Server context menu items

Menu Item Description

Connect Adds the selected server to the Object Explorer window.

Start Starts the selected SQL Server instance.

Stop Stops the selected SQL Server instance.

Pause
Pauses the selected SQL Server instance. A paused instance lets
connected users complete tasks but does not allow new connections.

Resume Resumes the paused SQL Server instance.

Restart Restarts the selected SQL Server instance.

Start/Stop Service and
Change Accounts

Lets you configure the SQL Server service.

SQL Server Configuration
Manager

Opens SQL Server Configuration Manager (described later in this
chapter).

New Lets you create a new server group or register a server.

Edit Lets you configure either a server group or a registered server.

Update Local Server
Registration

Automatically registers all local server instances.

Move To Moves a registered server to another server group.

Delete Removes a registered server.

Import Imports a previously exported server information file.

Export
Exports registered server information to a file for either a single server
or a group of servers.

Previously Registered
Servers

Imports servers registered by SQL Server 2000.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1.2. Object Explorer

Object Explorer connects to Database Engine, Analysis Services, Integration Services, Reporting
Services, and SQL Server Mobile instances. It organizes all objects on the database instance into a
tree hierarchy and lets you manage them. Object Explorer is visible by default. Select View
Object Explorer if it is not visible.

The toolbar at the top of the Object Explorer window has five buttons (described from left to right):

Connect

Connects a server instance to Object Explorer. Click the Connect button and select a server
type from the drop-down menu. The Connect to Server dialog box opens, prompting for server
information and credentials. Fill in the required information and click the Connect button in the
dialog box. Alternatively, you can right-click a server name in the Registered Servers window
and select Connect Object Explorer from the context menu. You can also double-click a
server instance in the Registered Servers window to connect it to Object Browser.

Disconnect

Disconnects a server instance from Object Explorer. Select the server instance to disconnect
and click the Disconnect button.

Stop

Stops the current Object Explorer action.

Refresh

Refreshes a tree node. Alternatively, you can right-click the node and select Refresh from the
context menu, or select View Refresh from the SQL Server Management Studio menu.
Object Explorer items do not automatically refresh, to improve performance and to conserve
system resources.

Filter

Returns a subset of items in a folder. When you click the Filter button, the Object Explorer
Filter Settings dialog is displayed, as shown in Figure 2-2. The Filter button is enabled only
when an object type (folder) node is selected in Object Explorerit is not enabled when a specific
object, such as a server instance, database, or table, is selected.

Figure 2-2. Object Explorer Filter Settings dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The dialog box in Figure 2-2 is displayed when you select the Tables node of the
AdventureWorks database and click the Filter button. Setting the Schema to HumanResources in
the filter criteria limits the tables displayed in the Tables node of the AdventureWorks database
to those in the HumanResources schema, as shown in Figure 2-3.

Figure 2-3. Filtered table node

The word "filtered" is displayed in parentheses to indicate that the table list is filtered. Also,
when the Tables node is filtered, the Filter button on the Object Explorer toolbar is depressed.
To clear the filter, click the Filter button and then click the Clear Filter button in the Object
Explorer Filter Settings dialog box. You can also right-click the filtered node and select Filter

 Remove Filter from the context menu.

Only one item can be selected at a time in the Object Explorer tree view. The Summary Page lets you
select multiple items and perform actions on the selected group. Open the Summary Page by
selecting View Summary from the main Management Studio menu or by clicking the Summary
button on the Standard toolbar.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To hide system objects in Object Explorer, select Tools Options from the Management Studio
menu, select Environment General from the tree in the left panel of the Options dialog box, and
then check the Hide System objects in Object Explorer checkbox. You must restart SQL Server
Management Studio for the changes to take effect.

The following subsections describe the types of nodes in Object Explorer and the activities that you
can perform at each type of node.

2.1.2.1. Database server instance

The database server instance represents a SQL Server installation. The context menu for the
database server instance lets you connect to and disconnect from a server, register a new server,
create a query, manage the SQL Server service for the instance, refresh the tree hierarchy, and
manage the properties for the server.

2.1.2.2. Databases node

The Databases node contains system databases, database snapshots, and user databases. Database
snapshots are new in SQL Server 2005 and let you create a read-only static view of a database.
Create a snapshot by using the CREATE DATABASE T-SQL statement with the AS SNAPSHOT clause.

Figure 2-4 shows the hierarchy of objects under the Databases node.

From the Databases node you can create a new database, attach a database by selecting its
database files, or restore a database, file, or file group.

You can create a query from a named database node. Right-click on the database node and select
New Query from the context menu to launch Query Editor . Query Editor opens a code pane in which
you can enter T-SQL statements. After you execute the statement by selecting Query Execute
from the main menu, by right-clicking in the Query Editor code pane and selecting Execute from the
context menu, or by pressing F5, two additional tabs are displayed:

Results

Displays the result of a query

Messages

Displays information and error messages

Query Editor is shown in Figure 2-5.

Query Designer is a visual tool that lets you design SELECT, INSERT, UPDATE, and DELETE DML
statements. After you open Query Editor, you can launch Query Designer either by selecting Query

 Design Query in Editor from the SQL Server Management Studio menu or by right-clicking the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Query Editor code pane and selecting Design Query in Editor from context menu. The Add Table
dialog box is displayed, letting you select tables to query; you can also add or remove tables while
you are designing the query. Once you click the Close button, Query Designer shows three
panesdiagram, criteria, and SQLas shown in Figure 2-6.

You can create the query by using the three panes at the same time. Right-click in the diagram area
(top pane) to open a context menu that lets you change the query type, add tables, and change the
grouping of results. Relationships are created automatically if they exist in the database. You can also
drag one or more columns from one table to another to create relationships between tables. Select
columns to display in the query by using the checkboxes next to the column names.

Once you have completed the query design, click the OK button to transfer the generated T-SQL to
Query Editor, where you can execute the query. Select the T-SQL in Query Editor, open Query
Designer, and the selected T-SQL will be parsed automatically into a diagram.

Figure 2-4. Object Explorer Databases node hierarchy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 2-5. Query Editor

Figure 2-6. Query Designer

You can create database diagrams from the Database Diagrams node (refer to Figure 2-4). Select

http://lib.ommolketab.ir
http://lib.ommolketab.ir

New Database Diagram from the context menu to launch Database Diagram Designer, a visual tool
that lets you create, edit, and delete tables, columns, indexes, constraints, and relationships. You can
automatically create one or more diagrams for an existing databaseSQL Server keeps diagrams
synchronized with the database. Figure 2-7 shows part of a database diagram for the AdventureWorks
database.

If you are creating a diagram for the first time in a database, you are prompted
with "This database does not have one or more of the support objects required
to use database diagramming. Do you wish to create them?" You must click Yes
to create database diagrams.

Figure 2-7. Database Diagram Designer

You can also create a new table or edit an existing table by using Table Designer . Select New Table
or Modify, respectively, from the Table context menu. Table Designer has two panes. The upper pane
is a grid in which each row describes a column in the table. The lower pane shows additional column
properties for the column selected in the upper grid. Figure 2-8 shows Table Designer for the
Person.Contact table in the AdventureWorks database.

You can use Table Designer to modify indexes, constraints, and relationships by selecting the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

appropriate option from the context menu.

Figure 2-8. Table Designer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can view and modify data in the table by selecting Open Table from the table's context menu.
This brings up a data grid for the table. Figure 2-9 shows the data grid for the Person.Contact table
in the AdventureWorks database.

Figure 2-9. Table data viewer and editor

Other nodes in the Databases hierarchy allow you to create, manage, and drop the objects within the
node as well as perform other object-specific tasks.

2.1.2.3. Security node

The Security node lets you manage server logins, server roles, and credentials. Figure 2-10 shows
the hierarchy of objects under the Security node.

Figure 2-10. Object Explorer Security node hierarchy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1.2.4. Server Objects node

The Server Objects node lets you manage backup devices, endpoints, linked servers, and server DDL
triggers. Figure 2-11 shows the hierarchy of objects under the Server Objects node.

Figure 2-11. Object Explorer Server Objects node hierarchy

2.1.2.5. Replication node

The Replication node lets you manage local publications and subscriptions. Figure 2-12 shows the
hierarchy of objects under the Replication node.

Figure 2-12. Object Explorer Replication node hierarchy

2.1.2.6. Management node

The Management node lets you manage maintenance plans, server logs, Database Mail, the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Distributed Transaction Coordinator, Full-Text Search, and legacy objects. It also provides access to
Activity Monitor, which provides information about processes and locks. Figure 2-13 shows the
hierarchy of objects under the Management node.

2.1.2.7. Notification Services node

The Notification Services node lets you manage Notification Services instances.

2.1.2.8. SQL Server Agent node

The SQL Server Agent node lets you manage jobs, alerts, operators, and proxies and provides access
to SQL Server Agent error logs and the SQL Server Agent Job Activity Monitor. Figure 2-14 shows the
hierarchy of objects under the SQL Server Agent node.

Figure 2-13. Object Explorer Management node hierarchy

Figure 2-14. Object Explorer SQL Server Agent node hierarchy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1.3. Template Explorer

Script templates contain T-SQL statements for performing a variety of common tasks. Open
Template Explorer by selecting View Template Explorer from the main menu or by clicking the
Template Explorer button on the Standard toolbar. Figure 2-15 shows the Template Explorer window.

Figure 2-15. Template Explorer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Template Explorer uses a tree structure to organize templates into folders. The bottom of the window
saves a list of recently used templates.

The toolbar at the top of the Template Explorer window has three buttons that let you select
templates for Database Engine, Analysis Server, or SQL Server Mobile, respectively.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Templates are parameterized to help you customize the code. Parameter definitions follow the format
<parameter_name,data_type,value>, with values as follows:

parameter_name

The name of the parameter

data_type

The data type of the parameter

value

The value used to replace every instance of the parameter in the script

The create database template (from the Database folder) follows:

 -- ===
 -- Create database template
 -- ===
 USE master
 GO

 -- Drop the database if it already exists
 IF EXISTS (
 SELECT name
 FROM sys.databases
 WHERE name = N'<Database_Name, sysname, Database_Name>'
)
 DROP DATABASE <Database_Name, sysname, Database_Name>
 GO

 CREATE DATABASE <Database_Name, sysname, Database_Name>
 GO

This script has a single parameter, <Database_Name, sysname, Database_Name>. To replace the
parameter, select Query Specify Values for Template Parameters from the main menu, or click
the corresponding button on the SQL Editor toolbar. This displays the Specify Values for Template
Parameters dialog box, shown in Figure 2-16.

Figure 2-16. Specify Values for Template Parameters dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Replace the value of the Database_Name parameter with the value ProgrammingSqlServer2005 and click
the OK button. The script is updated for the parameter value as follows:

 -- ===
 -- Create database template
 -- ===
 USE master
 GO

 -- Drop the database if it already exists
 IF EXISTS (
 SELECT name
 FROM sys.databases
 WHERE name = N'ProgrammingSqlServer2005'
)
 DROP DATABASE ProgrammingSqlServer2005
 GO

 CREATE DATABASE ProgrammingSqlServer2005
 GO

Note that once you set a parameter value, it is permanently replaced and can no longer be accessed.

You can create custom templates in Template Explorer, as well. Follow these steps:

Select the node in which you want to create the template.1.

Right-click in the Template Explorer window and select New Template from the context
menu.

2.

Enter the name for the new template.3.

Right-click the template and select Edit from the context menu (or double-click the template).4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.

Complete the required information in the Connect to Database Engine dialog box and click the
Connect button.

4.

Create the script. Insert parameters using the <parameter_name,data_type,value> syntax
described earlier in this section. You can leave blank data_type and value (i.e., <myParameter,

>).

5.

Save the template by selecting File Save from the main menu or by clicking the Save
button on the Standard toolbar.

6.

2.1.4. Solution Explorer

The Solution Explorer window of SQL Server Management Studio lets you view and manage items
associated with a script project. Open Solution Explorer by selecting View Solution Explorer from
the main menu.

SQL Server Management Studio lets you create three types of projectsSQL Server Scripts, Analysis
Services Scripts, and SQL Server Mobile Scripts. You can group multiple projects into a solution. A
project contains itemsconnection information, queries, scripts (sets of T-SQL statements stored in a
file), and miscellaneous files relevant to the project. Solution Explorer lets you open each item in an
appropriate editor. The property window located by default in the window below the Solution Explorer
window lets you view and manage item properties.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2. SQL Server Configuration Manager

SQL Server 2005 runs as a collection of servicesapplication types that run in the system background.
SQL Server Configuration Manager is a Microsoft Management Console (MMC) snap-in that lets you
start, stop, pause, resume, restart, and configure services, including:

SQL Server

SQL Server Agent

SQL Server Analysis Services

SQL Server Browser

SQL Server Full-Text Search

SQL Server Integration Services

SQL Server Reporting Services

Start SQL Server Configuration Manager by selecting Start All Programs Microsoft SQL
Server 2005 Configuration Tools SQL Server Configuration Manager from the taskbar. Figure
2-17 shows SQL Server Configuration Manager.

Figure 2-17. SQL Server Configuration Manager

In addition to managing services, SQL Server Management Studio lets you manage server and client
network protocolsyou can enable or disable protocols and force protocol encryptionand manage
server aliases.

SQL Server Configuration Manager combines the functionality of the following: Server Network Utility,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Client Network Utility, and Service Manager from SQL Server 2000.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.3. SQL Server Surface Area Configuration

SQL Server Surface Area Configuration lets you enable, disable, start, and stop features, services,
and remote connectivity of SQL Server 2005 installationsthis helps to secure both local and remote
systems.

Start SQL Server Surface Area Configuration Manager by selecting Start All Programs
Microsoft SQL Server Configuration Tools SQL Server Surface Area Configuration from the
taskbar.

The sac.exe command-line utility imports Microsoft SQL Server 2005 surface settings so that you can
apply them to other SQL Server instances. The utility is in the C:\Program Files\Microsoft SQL
Server\90\Shared directory (assuming that you installed SQL Server to the default directory).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.4. Database Engine Tuning Advisor

Database Engine Tuning Advisor (DTA) helps you improve query processing without requiring you to
understand the database structure or how SQL Server processes queries. DTA helps you select and
create an optimal set of indexes, indexed views, and partitions. It analyzes a workloada set of T-SQL
statements that runs against the databaseagainst the implementation of one or more databases and
recommends changes to the database that reduce the estimated workload cost of the query
optimizer. These modifications include adding, deleting, or modifying clustered indexes, nonclustered
indexes, indexed views, and partitions.

You launch Database Engine Tuning Advisor in one of three ways:

Select Start All Programs Microsoft SQL Server 2005 Performance Tools
Database Engine Tuning Advisor from the taskbar.

From the SQL Server Management Studio menu, select Tools Database Engine Tuning
Advisor.

Run the command-line tool dta.exe.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.5. SQL Server Profiler

SQL Trace captures database-engine events in real time to a trace file. Traces are based on event
class instances that you choose to monitor. Trace information is used to monitor and assess
performance, audit activity, and debug SQL statements and stored procedures. Traces are usually
managed and accessed through SQL Server Profiler, a graphical user interface to SQL Trace.

SQL Server Profiler lets you create and manage traces, create trace templates, and replay trace
results. With SQL Server Profiler, you can monitor how queries are resolved and capture SQL Server
events from the Database Engine or Analysis Services to a trace file for analysis. You can later replay
the trace events to help diagnose problems.

You launch SQL Server Profiler in one of three ways:

Select Start All Programs Microsoft SQL Server 2005 Performance Tools SQL
Server Profiler from the taskbar.

From SQL Server Management Studio, select Tools SQL Server Profiler.

Run the command-line tool profiler90.exe.

SQL Server Management Objects (SMO) provides classes that can be used to create and manage
traces for SQL Server or Analysis Server. They are discussed in detail in Chapter 12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.6. SQL Server Business Intelligence Development
Studio

SQL Server Business Intelligence Development Studio is a development IDEsimilar to Visual Studio
2005for developing Analysis Services, Integration Services, and Reporting Services projects. Business
Intelligence (BI) Development Studio lets you develop these projects independently of the server and
organize groups of projects into solutions. BI Development Studio lets you deploy projects to testing,
staging, and production servers.

BI Development Studio functionality is added to Visual Studio 2005 on
computers where Visual Studio 2005 is installed.

Launch BI Development Studio by selecting Start All Programs Microsoft SQL Server
SQL Server Business Intelligence Development Studio from the taskbar. BI Development Studio has
five main windows:

Designer

Designs and creates objects in the project; provides a code view and design view of each
object appropriate to the object type.

Solution Explorer

Manages projects in the solution.

Properties

Views and modifies properties of an object.

Toolbox

Contains controls available for an object. Controls are often available only in the design view.

Output

Displays output, debugging, error, and other information during compilation and execution of
the solution.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 2-18 shows the BI Development Studio with a sample Analysis Services project loaded.

Figure 2-18. Business Intelligence Development Studio with sample
Analysis Services project loaded

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.7. Visual Studio 2005

SQL Server 2005 hosts the .NET Common Language Runtime (CLR) in the Database Engine. This lets
you create database objects such as functions, stored procedures, triggers, user-defined data types,
and user-defined aggregate functions in programming languages supported by the CLR. Visual Studio
2005 supports CLR integration into SQL Server with a new project type named SQL Server Project.
Once the compiled assembly for a SQL Server project is registered with SQL Server, the database
objects in the assembly can be used the same way as if they had been created using T-SQL.
Chapters 4 and 5 discuss SQL Server 2005 CLR integration and programming database objects using
Visual Studio 2005.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.8. New Command-Line Utilities

SQL Server 2005 introduces the new command-line utilities described in Table 2-2.

Table 2-2. New SQL Server command-line utilities

Utility Description

sqlcmd
Executes T-SQL statements, system procedures, and script files from the command
prompt. The sqlcmd utility is described further later in this section.

sqlwb Launches SQL Server Management Studio from the command prompt.

profiler90 Launches SQL Server Profiler from the command prompt.

dta Launches Database Engine Tuning Advisor from the command prompt.

dtexec
Used to configure and execute an SSIS package loaded from a database, the SSIS
package store, or the file system.

dtutil
Used to manage and verify existence of an SSIS package stored in the SQL Server msdb
database, the SSIS package store, or the file system.

tablediff Used to compare the data in two tables for nonconvergence.

2.8.1.

2.8.1.1. SQL Server command-line tool (sqlcmd utility)

The SQL Server command-line tool lets you execute T-SQL statements, system procedures, and
script files from the command prompt. The sqlcmd utility replaces the osql and isql utilities. sqlcmd
uses OLE DB to communicate with the SQL Server Database Engine instead of using ODBC or DB-
Library APIs.

Regular command mode in SQL Server Management Studio uses the .NET
SqlClient provider for execution in regular and command mode, whereas sqlcmd
uses the OLE DB provider. As a result, it is possible to get different results
when executing the same query, because different default options might apply.

The following example connects to the default instance of SQL Server and executes a query against
the AdventureWorks database. Open a Command Prompt dialog box (Start All Programs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Accessories Command Prompt) and execute the following command:

 sqlcmd -q "SELECT TOP 3 ContactID, FirstName, LastName FROM
 AdventureWorks.Person.Contact"

The console output is shown in Figure 2-19.

The -q switch executes the specified query. The -? switch returns information about all switches for
the sqlcmd utility. For a complete overview of the sqlcmd utility and its switches, see Microsoft SQL
Server 2005 Books Online.

Figure 2-19. sqlcmd example

Alternatively, you can start sqlcmd and execute the preceding query in a batch with the following
commands:

 sqlcmd
 SELECT TOP 3 ContactID, FirstName, LastName FROM AdventureWorks.Person.Contact"
 GO

Figure 2-20 shows the sqlcmd batch.

Figure 2-20. SqlCmd batch example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The QUIT or EXIT command exits sqlcmd batch mode.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 3. T-SQL Enhancements

SQL Server 2005 extends the T-SQL language in several significant ways:

New XML and large object data types

New and enhanced language capabilities, including support for recursive queries and improved
error handling

Data Definition Language (DDL) triggers

Catalog views to access metadata

This chapter discusses these enhancements and changes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.1. New Data Types

SQL Server 2005 introduces the xml data type and large value data types. The xml data type
supports storing XML documents and fragments in the database. Large value data
typesvarchar(max), nvarchar(max), and varbinary(max)extend the storage capacity of varchar,
nvarchar, and varbinary data types up to 231 bytes of data.

3.1.1. The xml Data Type

The built-in xml data type stores XML documents and fragments natively as a column, variable,
parameter, or function return type. A schema can be associated with an xml data type to validate
each instance of the typethe XML instance is then typed. An XML instance without a schema is
untyped. xml data types can be manipulated using XQuery and XML DML. Columns of xml data type
can be indexed.

Chapter 7 provides an in-depth look at support for XML data in SQL Server 2005.

3.1.2. Large Value Data Types

SQL Server 2000 has varchar, nvarchar, and varbinary variable-length data types:

varchar

Variable-length non-Unicode data with a maximum length of 8,000 bytes

nvarchar

Variable-length Unicode data with a maximum length of 4,000 bytes

varbinary

Variable-length binary data with a maximum length of 8,000 bytes

SQL Server 2005 introduces large value data typesvarchar(max), nvarchar(max), and
varbinary(max). You use the max specifier to extend the storage capability of varchar, nvarchar, and
varbinary data types to 231 bytes in the varchar and varbinary data types and to 230 bytes of
Unicode data in the nvarchar data type.

In earlier versions of SQL Server, you specified these types as varchar(n), nvarchar(n), and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

varbinary(n), where n is an integer specifying the in-row storage limit for large character, Unicode,

and binary dataup to 8000 bytes for varchar and varbinary and 4000 bytes for nvarchar. If you
needed to store more data, you had to use the large object (LOB) data typestext, ntext, and
imagewith reduced functionality.

In SQL Server 2005, use varchar(max), nvarchar(max), and varbinary(max)
instead of the text, ntext, and image data types, which are slated to be
deprecated in a future version of SQL Server.

Large value data types behave in the same way as their smaller counterparts. They are supported for
the cursor FETCH statement, for chunked updates through the .WRITE clause, after trigger references
in inserted and deleted tables, and with built-in string functions such as LEN and SUBSTR. Large value
data types also do not suffer from some of the restrictions of LOB typesthey can be used as variables
in batches and scripts, for example.

Use the .WRITE clause in an UPDATE statement to modify part of the value stored in a varchar(max),
nvarchar(max), or varbinary(max) column in a table or a view. The .WRITE clause syntax is as
follows:

 .WRITE (expression, @Offset, @Length)

The .WRITE clause replaces a section of the value in a large value data type column starting at
@Offset for @Length units with the value expression.

The following example demonstrates the .WRITE clause. First create a table with a single
varchar(max) column and add a row to it using the following statement:

 USE ProgrammingSqlServer2005

 CREATE TABLE WriteMethodDemoTable(
 ID int,
 varcharMaxCol varchar(max)
)

 INSERT INTO WriteMethodDemoTable (ID, varcharMaxCol)
 VALUES (1, 'Imagine this is a very long non-Unicode string.')

 INSERT INTO WriteMethodDemoTable (ID, varcharMaxCol)
 VALUES (2, 'Imagine this is another very long non-Unicode string.')

Next, query the table, execute the .WRITE clause, and requery the table using the following
statement:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SELECT * FROM WriteMethodDemoTable

 UPDATE WriteMethodDemoTable
 SET varcharMaxCol .WRITE('n incredibly', 17, 5)
 WHERE ID = 1

 SELECT * FROM WriteMethodDemoTable

Results are shown in Figure 3-1.

Figure 3-1. Results from .WRITE clause example

For more information about the .WRITE clause, see Microsoft SQL Server 2005 Books Online.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2. T-SQL Language Enhancements

SQL Server 2005 includes significant enhancements to the T-SQL language:

The enhanced TOP clause supports using an expression to specify the number of rows or percent
of rows returned in the result set.

The new TABLESAMPLE clause returns a random sample of rows from the result set.

The new OUTPUT clause returns a result set containing the rows affected by an INSERT, UPDATE, or
DELETE statement.

Common table expressions (CTEs) let you create a temporary named result set from a query,
which simplifies tasks such as recursive queries.

New SOME, ANY, and ALL operators compare the values in a column with a scalar value.

The new PIVOT operator rotates a table, turning unique values in column rows into multiple
columns in the result set, while the new UNPIVOT operator turns multiple columns in a result set
into rows.

The new APPLY operator invokes a table-valued function for each row in a result set.

The new EXECUTE AS clause defines the user execution context of T-SQL statements.

The new ROW_NUMBER(), DENSE_RANK(), and NTILE() ranking functions are added to the RANK
function that exists in SQL Server 2000.

New support for structured exception handling using trY...CATCH blocks.

This section details these enhancements.

3.2.1. TOP

The TOP clause limits the number of rows returned in a result set. SQL Server 2005 enhances the TOP
clause to allow an expression to be used as the argument to the TOP clause instead of just a constant
as was the case in SQL Server 2000. The TOP clause can be used in SELECT, INSERT, UPDATE, and
DELETE statements.

The TOP clause syntax is:

 TOP (expression) [PERCENT] [WITH TIES]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

where:

expression

Specifies the number of rows to return or the percentage of rows in the result set to return.
Parentheses are required around the expression if it is not a constant.

PERCENT

Specifies that the query should return a percent of rows from all rows processed rather than a
specific number of rows.

WITH TIES

Specifies that additional rows having the same ORDER BY clause column values as the last row
of the result set should be returned if they exist even though this causes the number of rows
returned to be greater than specified by expression. (An example will clarify this shortly.)

The following query shows the enhanced functionality by returning the 10 products with the highest
list price from the Product table in AdventureWorks. A variable is used to specify the number of rows.

 USE AdventureWorks

 DECLARE @n int;
 SET @n = 10;

 SELECT TOP(@n)
 ProductID, Name, ProductNumber, ListPrice
 FROM Production.Product
 ORDER BY ListPrice DESC

Results are shown in Figure 3-2.

Figure 3-2. Results from TOP clause example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following example shows the effect of the WITH TIES clause:

 USE AdventureWorks

 SELECT TOP(6) WITH TIES
 ProductID, Name, ProductNumber, ListPrice
 FROM AdventureWorks.Production.Product
 ORDER BY ListPrice DESC

Results are shown in Figure 3-3.

Figure 3-3. Results from TOP WITH TIES clause example

Although six rows were specified in the TOP clause, the WITH TIES clause causes the SELECT TOP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

statement to return an additional three rows having the same ListPrice as the value in the last row
of the SELECT TOP statement without the WITH TIES clause.

3.2.2. TABLESAMPLE

The TABLESAMPLE clause returns a random, representative sample of the table expressed as either an
approximate number of rows or a percentage of the total rows. Unlike the TOP clause, TABLESAMPLE
returns a result set containing a sampling of rows from all rows processed by the query.

The TABLESAMPLE clause syntax is:

 TABLESAMPLE [SYSTEM] (sample_number [PERCENT | ROWS])

 [REPEATABLE (repeat_seed)]

where:

SYSTEM

An ANSI SQL keyword that specifies a database server-dependent sampling method. Although
other databases support additional sampling methods that are database server-independent
(e.g., DB2 supports BERNOULLI), SYSTEM is the only method supported by SQL Server 2005 and
the default value if not specified.

sample_number[PERCENT | ROWS]

A numeric expression that specifies the number of rows to return or the percentage of rows in
the result set to return.

REPEATABLE (repeat_seed)

The seed used to select rows to be returned in the sample. REPEATABLE indicates that the
selected sample can be returned more than once. If the same seed is used, the same rows will
be returned each time the query is run as long as no changes have been made to the data in
the table.

The following example returns a sample result set containing the top 10 percent of rows from the
Contact table:

 SELECT ContactID, Title, FirstName, MiddleName, LastName
 FROM Person.Contact
 TABLESAMPLE (10 PERCENT)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The sample of rows is different every time. Adding the REPEATABLE clause as shown in the next code
sample returns the same sample result set each time as long as no changes are made to the data in
the table:

 SELECT ContactID, Title, FirstName, MiddleName, LastName
 FROM Person.Contact
 TABLESAMPLE (10 PERCENT)

 REPEATABLE (5)

The TABLESAMPLE clause cannot be used with views or in an inline table-valued function.

3.2.3. OUTPUT

The OUTPUT clause returns information about rows affected by an INSERT, UPDATE, or DELETE
statement. This result set can be returned to the calling application and used for requirements such
as archiving or logging.

The syntax of the OUTPUT clause is:

 <OUTPUT_CLAUSE> ::=
 {

 OUTPUT <dml_select_list> [,...n]

 INTO @table_variable
 }

 <dml_select_list> ::=

 { <column_name> | scalar_expression }

 <column_name> ::=

 { DELETED | INSERTED | from_table_name } . { * | column_name }

where:

@table_variable

A table variable into which the result set is inserted. The table variable must have the same
number of columns as the OUTPUT result set, excluding identity and computed columns (which
must be skipped).

<dml_select_list>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An explicit column reference (column_name) or a combination of symbols and operators that
evaluates to a single value (scalar_expression).

<column_name>

An explicit column reference.

Qualify the column with the DELETED or INSERTED keyword if it references the table being
modified.

from_table_name specifies the table used to provide criteria for the update or delete operation.

As an example, you can use the following steps to delete several rows from a table while using the
OUTPUT clause to write the deleted values into a Log table variable:

In a new database named ProgrammingSqlServer2005, create a table called OutputTest and add
three rows to it:

 USE ProgrammingSqlServer2005

 CREATE TABLE OutputTest
 (
 ID int NOT NULL,
 Description varchar(max) NOT NULL,
)

 INSERT INTO OutputTest (ID, Description) VALUES (1, 'row 1')
 INSERT INTO OutputTest (ID, Description) VALUES (2, 'row 2')
 INSERT INTO OutputTest (ID, Description) VALUES (3, 'row 3')

1.

Execute the following query to delete the row with ID = 1 from the OutputTest table. Use the
OUTPUT clause to write the deleted row to the @DeleteLog table variable.

 DECLARE @DeleteLog AS TABLE (LogID INT, LogEntry VARCHAR(MAX))

 DELETE OutputTest
 OUTPUT DELETED.ID, DELETED.Description INTO @DeleteLog
 WHERE ID = 1

 SELECT * FROM @DeleteLog

The last line in the query displays the log result set in the @DeleteLog table variable after the
row is deleted from the OutputTest table, as shown in Figure 3-4.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 3-4. Results from OUTPUT clause example

When the OUTPUT clause is used for an UPDATE command, both a DELETED and INSERTED table are
availablethe DELETED table contains the values before the update and the INSERTED table contains the
values after the update.

3.2.4. Common Table Expressions (CTEs)

A common table expression (CTE) is a temporary named result set derived from a simple query
within the scope of a SELECT, INSERT, DELETE, UPDATE, or CREATEVIEW statement. A CTE can reference
itself to create a recursive CTE. A CTE is not stored and lasts only for the duration of its containing
query.

The CTE syntax is:

 [WITH <common_table_expression> [, ...n]]

 <common_table_expression>::=

 expression_name [(column_name [, ...n])]
 AS

 (query_definition)

where:

expression_name

Specifies the name of the CTE.

column_name

Specifies the column name in the CTE, unique within the definition. The number of column
names must match the number of columns returned by the CTE query query_definition. The

list of column names is optional if distinct names are returned for all columns in the CTE query.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

query_definition

Specifies the SELECT statement that populates the CTE.

The following query uses a CTE to display the number of employees directly reporting to each
manager in the Employee table in AdventureWorks:

 USE AdventureWorks;

 WITH ManagerEmployees(ManagerID, EmployeesPerManager) AS
 (
 SELECT ManagerID, COUNT(*)
 FROM HumanResources.Employee
 GROUP BY ManagerID
)
 SELECT ManagerID, EmployeesPerManager
 FROM ManagerEmployees
 ORDER BY ManagerID

The query returns the results partially shown in Figure 3-5.

Figure 3-5. Results from CTE example

Although this example can be accomplished without a CTE, it is useful to illustrate the basic syntax of
a CTE.

The WITH clause requires that the statement preceding it be terminated with a
semicolon (;).

The next example uses a recursive CTE to return a list of employees and their managers:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 USE AdventureWorks;

 WITH DirectReports(
 ManagerID, EmployeeID, Title, FirstName, LastName, EmployeeLevel) AS
 (
 SELECT
 e.ManagerID, e.EmployeeID, e.Title, c.FirstName, c.LastName,
 0 AS EmployeeLevel
 FROM HumanResources.Employee e
 JOIN Person.Contact AS c ON e.ContactID = c.ContactID
 WHERE ManagerID IS NULL

 UNION ALL

 SELECT e.ManagerID, e.EmployeeID, e.Title, c.FirstName, c.LastName,
 EmployeeLevel + 1
 FROM HumanResources.Employee e
 INNER JOIN DirectReports d ON e.ManagerID = d.EmployeeID
 JOIN Person.Contact AS c ON e.ContactID = c.ContactID
)
 SELECT *
 FROM DirectReports

The query returns the results shown in Figure 3-6.

Figure 3-6. Results from recursive CTE example

A recursive CTE must contain at least two CTE query definitionsan anchor member and a recursive
member. The UNION ALL operator combines the anchor member with the recursive member.

The first SELECT statement retrieves all top-level employeesthat is, employees without a manager
(ManagerID IS NULL). The second SELECT statement after the UNION ALL operator recursively retrieves
the employees for each manager (employee) until all employee records have been processed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finally, the last SELECT statement retrieves all the records from the recursive CTE, which is named
DirectReports.

You can limit the number of recursions by specifying a MAXRECURSION query hint. The following
example adds this hint to the query in the previous example, limiting the result set to the first three
levels of employeesthe anchor set and two recursions:

 USE AdventureWorks;

 WITH DirectReports(
 ManagerID, EmployeeID, Title, FirstName, LastName, EmployeeLevel) AS
 (
 SELECT e.ManagerID, e.EmployeeID, e.Title, c.FirstName, c.LastName,
 0 AS EmployeeLevel
 FROM HumanResources.Employee e
 JOIN Person.Contact AS c ON e.ContactID = c.ContactID
 WHERE ManagerID IS NULL

 UNION ALL

 SELECT e.ManagerID, e.EmployeeID, e.Title, c.FirstName, c.LastName,
 EmployeeLevel + 1
 FROM HumanResources.Employee e
 INNER JOIN DirectReports d ON e.ManagerID = d.EmployeeID
 JOIN Person.Contact AS c ON e.ContactID = c.ContactID
)
 SELECT *
 FROM DirectReports
 OPTION (MAXRECURSION 2)

The query results are a subset of the result set in the previous example, and are limited to an
EmployeeLevel of 0, 1, or 2. The error message shown in Figure 3-7 is also displayed, indicating that
the recursive query was stopped before it completed:

Figure 3-7. Message from MAXRECURSION clause in recursive CTE
example

3.2.5. SOME and ANY

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The SOME and ANY operators are used in a WHERE clause to compare a scalar value with a single-
column result set of values. A row is returned if the scalar comparison with the single-column result
set has at least one match. SOME and ANY are semantically equivalent.

The syntax of the SOME and ANY operators is:

 <scalar_expression> { = | <> | != | > | >= | !> | < | <= | !<}

 {SOME | ANY} {subquery}

where:

<scalar_expression>

A T-SQL expression.

{ = | <> | != | > | >= | !> | < | <= | !<}

A comparison operator.

<subquery>

A query that returns a single-column result set. The data type of the column must match that
of the scalar expression.

The following query returns from the Person.Address table in AdventureWorks all the employee
addresses that are in Canada:

 USE AdventureWorks

 SELECT AddressLine1, City
 FROM Person.Address
 WHERE StateProvinceID = ANY
 (SELECT StateProvinceID
 FROM Person.StateProvince
 WHERE CountryRegionCode = 'CA')

Partial results are shown in Figure 3-8.

Figure 3-8. Results from ANY clause example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2.6. ALL

Use the ALL operator in a WHERE clause to compare a scalar value with a single-column result set. A
row is returned if the scalar comparison to the single-column result set is true for all values in the
column.

The syntax of the ALL operator is:

 <scalar_expression> { = | <> | != | > | >= | !> | < | <= | !<}

 {SOME | ANY} {subquery}

where:

<scalar_expression>

A T-SQL Server expression.

{ = | <> | != | > | >= | !> | < | <= | !<}

A comparison operator.

<subquery>

A query that returns a single column. The data type of the column must be implicitly
convertible to the data type of the scalar expression.

The following query returns all the employee addresses that are not in Canada:

 USE AdventureWorks

 SELECT AddressLine1, City
 FROM Person.Address
 WHERE StateProvinceID != ALL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 (SELECT StateProvinceID
 FROM Person.StateProvince
 WHERE CountryRegionCode = 'CA')

Partial results are shown in Figure 3-9.

Figure 3-9. Results from ALL clause example

3.2.7. PIVOT and UNPIVOT

The PIVOT and UNPIVOT operators manipulate a table-valued expression into another table. These
operators are essentially opposites of each otherPIVOT takes rows and puts them into columns,
whereas UNPIVOT takes columns and puts them into rows.

PIVOT rotates unique values in one column into multiple columns in a result set.

The syntax of the PIVOT operator is:

 <pivoted_table> ::=

 table_source PIVOT <pivot_clause> table_alias

 <pivot_clause> ::=

 (aggregate_function (value_column)

 FOR pivot_column

 IN (<column_list>)
)

 <column_list> ::=

 column_name [, ...]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

where:

table_source

The table, view, or derived table to use in the T-SQL statement.

table_alias

An alias for table_sourcethis is required for PIVOT operators.

aggregate_function

A system- or user-defined aggregate function. COUNT(*) is not allowed.

value_column

The column containing the pivoted value.

pivot_column

The column containing the values into which the value_column aggregate values are grouped.

These values are the pivot columns.

<column_list>

The pivot column names of the output table.

The following example sums the total orders by each employee in AdventureWorks for the years 2002,
2003, and 2004; pivots the total amount by year; and sorts the result set by employee ID:

 USE AdventureWorks

 SELECT EmployeeID, [2002] Y2002, [2003] Y2003, [2004] Y2004
 FROM
 (SELECT YEAR(OrderDate) OrderYear, EmployeeID, TotalDue
 FROM Purchasing.PurchaseOrderHeader) poh
 PIVOT
 (
 SUM(TotalDue)
 FOR OrderYear IN
 ([2002], [2003], [2004])
) pvt
 ORDER BY EmployeeID

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Partial results are shown in Figure 3-10.

The PIVOT operator specifies the aggregate function, in this case SUM(TotalDue), and the column to
pivot on, in this case OrderYear. The column list specifies that pivot columns 2002, 2003, and 2004 are
displayed.

UNPIVOT does the opposite of PIVOT, rotating multiple column values into rows in a result set. The only
difference is that NULL column values do not create rows in the UNPIVOT result set.

The following is the syntax of the UNPIVOT operator:

 <unpivoted_table> ::=

 table_source UNPIVOT <unpivot_clause> table_alias

 <unpivot_clause> ::=

 (value_column FOR pivot_column IN (<column_list>))

 <column_list> ::=

 column_name [, ...]

Figure 3-10. Results from PIVOT operator example

The arguments are the same as those for the PIVOT operator.

The following example unpivots the results from the previous example:

 USE AdventureWorks

 SELECT EmployeeID, OrderYear, TotalDue

 FROM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 (
 SELECT EmployeeID, [2002] Y2002, [2003] Y2003, [2004] Y2004
 FROM
 (SELECT YEAR(OrderDate) OrderYear, EmployeeID, TotalDue
 FROM Purchasing.PurchaseOrderHeader) poh
 PIVOT
 (
 SUM(TotalDue)
 FOR OrderYear IN
 ([2002], [2003], [2004])
) pvt

) pvtTable

 UNPIVOT

 (

 TotalDue FOR OrderYear IN (Y2002, Y2003, Y2004)

) unpvt

 ORDER BY EmployeeID, OrderYear

The unpivot code added to the previous example is in bold. Partial results are shown in Figure 3-11.

The UNPIVOT operator clause specifies the value to unpivot, in this case TotalDue, and the column to
unpivot on, in this case OrderYear. As expected, the results match the pivoted column values in the
previous example.

Figure 3-11. Results from UNPIVOT operator example

3.2.8. APPLY

The APPLY operator invokes a table-valued function for each row returned by an outer table
expression of a query. The table-valued function is evaluated for each row in the result set and can
take its parameters from the row.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There are two forms of the APPLY operatorCROSS and OUTER. CROSSAPPLY returns only the rows from
the outer table where the table-value function returns a result set. OUTERAPPLY returns all rows,
returning NULL values for rows where the table-valued function does not return a result set.

The syntax for the APPLY operator is:

 {CROSS | OUTER} APPLY {table_value_function}

where:

table_value_function

Specifies the name of a table-valued function

Let's walk through an example using the APPLY operator to return sales order detail records from
AdventureWorks for a sales order header where the order quantity is at least the minimum quantity
specified. You can do this using a traditional JOIN. However, this example uses the APPLY operator
and the following table-valued function:

 USE AdventureWorks
 GO

 CREATE FUNCTION tvfnGetOrderDetails
 (@salesOrderID [int], @minOrderQuantity [smallint])
 RETURNS TABLE
 AS
 RETURN
 (
 SELECT *
 FROM Sales.SalesOrderDetail
 WHERE
 SalesOrderID = @salesOrderID AND
 OrderQty > @minOrderQuantity
)

You must add a GO command after the USE statement, because the
CREATEFUNCTION must be the first statement in a query batch.

The following CROSSAPPLY query returns the SalesOrderID and OrderDate from the SalesOrderHeader
together with the ProductID for lines where more than one item was ordered:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 USE AdventureWorks

 SELECT soh.SalesOrderID, soh.OrderDate,
 sod.ProductID, sod.OrderQty
 FROM Sales.SalesOrderHeader soh

 CROSS APPLY
 tvfnGetOrderDetails(soh.SalesOrderID, 1) sod
 ORDER BY soh.SalesOrderID, sod.ProductID

Partial results are shown in Figure 3-12.

Figure 3-12. Results from CROSS APPLY operator example

The result set contains only sales order detail rows where more than one item is ordered. Sales order
43660 does not have any detail lines with more than one item ordered, so the CROSS APPLY operator
does not return a row for that order.

Change the query to use the OUTER APPLY operator:

 USE AdventureWorks

 SELECT soh.SalesOrderID, soh.OrderDate, sod.ProductID, sod.OrderQty
 FROM Sales.SalesOrderHeader soh
 OUTER APPLY tvfnGetOrderDetails(soh.SalesOrderID, 1) sod
 ORDER BY soh.SalesOrderID

The results are similar to those returned using the CROSS APPLY operator, except that order 43660 is
now included in the result set, with NULL values for the two columns from the table-value function.
Partial results are shown in Figure 3-13.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 3-13. Results from OUTER APPLY operator example

3.2.9. EXECUTE AS

SQL Server 2005 lets you define the execution context of the following user-defined modules:
functions, stored procedures, queues, and triggers (both DML and DDL). You do this by specifying the
EXECUTEAS clause in the CREATE and ALTER statements for the module. Specifying the execution
context lets you control the user account that SQL Server uses to validate permissions on objects
referenced by the modules.

The syntax of the EXECUTEAS clause is given next for each of the categories items for which you can
define the execution context:

Functions, stored procedures, and DML triggers:

 EXECUTE AS { CALLER | SELF | OWNER | 'user_name' }

DDL triggers with database scope:

 EXECUTE AS { CALLER | SELF | 'user_name' }

DDL triggers with server scope:

 EXECUTE AS { CALLER | SELF | 'login_name' }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Queues:

 EXECUTE AS { SELF | OWNER | 'user_name' }

where:

CALLER

Statements inside the module execute in the context of the caller of the module. CALLER is the
default for all modules except for queues for which the CALLER context is not valid.

SELF

Statements inside the module execute in the context of the person creating or altering the
module. SELF is the default for queues.

OWNER

Statements inside the module execute in the context of the current owner of the module.

'user_name'

Statements inside the module execute in the context of the user specified in 'user_name'.

'login_name'

Statements inside the module execute in the context of the SQL Server login specified in
'login_name'.

For more information about specifying execution context, see Microsoft SQL Server 2005 Books
Online.

3.2.10. New Ranking Functions

SQL Server 2005 introduces three new ranking functions : ROW_NUMBER(), DENSE_RANK(), and NTILE(
). This is in addition to the RANK() function available in SQL Server 2000.

3.2.10.1. ROW_NUMBER()

The ROW_NUMBER() function returns the number of a row within a result set starting with 1 for the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

first row. The ROW_NUMBER() function does not execute until after a WHERE clause is used to select the
subset of data.

The ROW_NUMBER() function syntax is:

 ROW_NUMBER() OVER ([<partition_by_clause>] <order_by_clause>)

where:

<partition_by_clause>

Divides the result set into groups to which the ROW_NUMBER() function is applied. The function
is applied to each partition separately; computation restarts for each partition.

<order_by_clause>

Specifies the order in which the sequential ROW_NUMBER() values are assigned.

The following example returns the row number for each contact in AdventureWorks based on the
LastName and FirstName:

 USE AdventureWorks

 SELECT ROW_NUMBER() OVER(ORDER BY LastName, FirstName),
 ContactID, FirstName, LastName
 FROM Person.Contact

Partial results are shown in Figure 3-14.

Figure 3-14. Results from ROW_NUMBER() function example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following example uses the PARTITION BY clause to rank the same result set within each
manager:

 USE AdventureWorks

 SELECT ManagerID, ROW_NUMBER()
 OVER(PARTITION BY ManagerID ORDER BY LastName, FirstName),
 e.ContactID, FirstName, LastName
 FROM HumanResources.Employee e
 LEFT JOIN Person.Contact c
 ON e.ContactID = c.ContactID

Partial results are shown in Figure 3-15.

Figure 3-15. Results from PARTITION BY clause example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The row numbers now restart at 1 for each manager. The employees are sorted by last name and
then first name for each manager group.

3.2.10.2. DENSE_RANK()

The DENSE_RANK() function returns the rank of rows in a result set without gaps in the ranking . This
is similar to the RANK() function except that in cases where more than one row receives the same
ranking, the next rank value is the rank of the tied group plus 1 rather than the next row number.

The DENSE_RANK() function syntax is:

 DENSE_RANK() OVER ([<partition_by_clause>] <order_by_clause>)

where:

<partition_by_clause>

Divides the result set into groups to which the ROW_NUMBER() function is applied. The function
is applied to each partition separately; computation restarts for each partition.

<order_by_clause>

Specifies the order in which the sequential DENSE_RANK() values are assigned.

The following example shows the difference between DENSE_RANK() and the RANK() function by
ranking contacts in AdventureWorks based on last name:

 USE AdventureWorks

 SELECT
 DENSE_RANK() OVER(ORDER BY LastName) DenseRank,
 RANK() OVER(ORDER BY LastName) Rank,
 ContactID, FirstName, LastName
 FROM Person.Contact

Partial results are shown in Figure 3-16.

Figure 3-16. Results from DENSE_RANK() function example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2.10.3. NTILE()

The NTILE() function returns the group in which a row belongs within an ordered distribution of
groups. Group numbering starts with 1.

The NTILE() function syntax is:

 NTILE(n) OVER ([<partition_by_clause>] <order_by_clause>)

where:

n Specifies the number of groups that each partition should be divided into.

<partition_by_clause>

Divides the result set into groups to which the NTILE() function is applied. The function is
applied to each partition separately; computation restarts for each partition.

<order_by_clause>

Specifies the column used to define the groups to which the NTILE() function is applied.

The following query distributes product list prices from AdventureWorks into four groups:

 USE AdventureWorks

 SELECT NTILE(4) OVER (ORDER BY ListPrice) GroupID,
 ProductID, Name, ListPrice
 FROM Production.Product
 WHERE ListPrice > 0
 ORDER BY Name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Partial results are shown in Figure 3-17.

Figure 3-17. Results from NTILE() function example

If the number of rows is not evenly divisible by the number of groups, the size of the groups will
differ by one.

3.2.11. Error Handling

SQL Server 2005 introduces structured exception handling similar to that found in C#. A group of T-
SQL statements can be enclosed in a trY block. If an error occurs within the trY block, control is
passed to a CATCH block containing T-SQL statements that handle the exception. Otherwise execution
continues with the first statement following the CATCH block. If a CATCH block executes, control
transfers to the first statement following the CATCH block once the CATCH block code completes.

A TRY...CATCH block does not trap warningsmessages with severity of 10 or loweror errors with a
severity level greater than 20errors that typically terminate the Database Engine task.

trY...CATCH blocks are subject to the following rules:

A trY block must be followed immediately by its associated CATCH block.

Each trY...CATCH block must be contained in a single batch, stored procedure, trigger, or
function. A trY block cannot span multiple batchesfor example, more than one BEGIN...ELSE
block or IF...ELSE block.

trY...CATCH blocks can be nested.

You can use a GOTO statement to transfer control within a trY or CATCH block or to exit a TRY or
CATCH block. You cannot use a GOTO statement to enter a TRY or CATCH block.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The trY...CATCH syntax is:

 BEGIN TRY

 { sql_statement | sql_statement_block }
 END TRY
 BEGIN CATCH

 { sql_statement | sql_statement_block }
 END CATCH

where:

sql_statement

A T-SQL statement

sql_statement_block

A group of T-SQL statements enclosed in a BEGIN...END block

For example, the Employee table in AdventureWorks has a check constraint that the Gender column
can contain only M or F. The following statement updates the Gender for the employee with EmployeeID
= 1 with the invalid value X:

 USE AdventureWorks

 BEGIN TRY
 UPDATE HumanResources.Employee
 SET Gender = 'X'
 WHERE EmployeeID = 1;
 END TRY
 BEGIN CATCH
 SELECT ERROR_NUMBER() ErrorNumber,
 ERROR_STATE() ErrorState,
 ERROR_SEVERITY() ErrorSeverity,
 ERROR_MESSAGE() ErrorMessage;
 END CATCH

Executing this code returns a result set containing error information:

Column Value

ErrorNumber 547

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Column Value

ErrorState 0

ErrorSeverity 16

ErrorMessage UPDATE statement conflicted with CHECK constraint
'CK_Employee_Gender'. The conflict occurred in database
'AdventureWorks', table 'Employee', column 'Gender'.

As shown in the example, you can use the following functions to return information about the error
caught by a CATCH block:

ERROR_MESSAGE()

Diagnostic information about the error. These messages often contain substitution variables
that allow specific information, such as the database object that caused the error, to be
included in the message.

ERROR_NUMBER()

The unique error number of the error. The ERROR_NUMBER() function returns the last error
number every time it is called. This is different from @@ERROR, which works only if it immediately
follows the error or is the first statement in the CATCH block.

ERROR_SEVERITY()

The severity level of the error. Error severities range from 0 to 24. Error levels 0 to 9 are
warnings or informational.

ERROR_STATE()

The state of the error. A state code uniquely identifies specific conditions that cause errors with
the same error number.

ErrorState 0

ErrorSeverity 16

ErrorMessage UPDATE statement conflicted with CHECK constraint
'CK_Employee_Gender'. The conflict occurred in database
'AdventureWorks', table 'Employee', column 'Gender'.

As shown in the example, you can use the following functions to return information about the error
caught by a CATCH block:

ERROR_MESSAGE()

Diagnostic information about the error. These messages often contain substitution variables
that allow specific information, such as the database object that caused the error, to be
included in the message.

ERROR_NUMBER()

The unique error number of the error. The ERROR_NUMBER() function returns the last error
number every time it is called. This is different from @@ERROR, which works only if it immediately
follows the error or is the first statement in the CATCH block.

ERROR_SEVERITY()

The severity level of the error. Error severities range from 0 to 24. Error levels 0 to 9 are
warnings or informational.

ERROR_STATE()

The state of the error. A state code uniquely identifies specific conditions that cause errors with
the same error number.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.3. Data Definition Language (DDL) Triggers

Data Manipulation Language (DML) triggers are fired on actions that cause a change to the data in a
table or a viewINSERT, UPDATE, or DELETE. SQL Server 2005 introduces Data Definition Language
(DDL) triggers that fire in response to DDL statements that change the database schema or database
server. These statements include CREATE, ALTER, DROP, GRANT, DENY, and REVOKE. DDL triggers are
typically used for auditing and logging.

The syntax for a DDL trigger is:

 CREATE TRIGGER trigger_name
 ON { ALL SERVER | DATABASE }

 [WITH <ddl_trigger_option> [...,n]]

 { FOR | AFTER } { event_type | event_group } [,...n]

 AS { sql_statement [...n] | EXTERNAL NAME < method specifier > }
 [;]

 <ddl_trigger_option> ::=
 [ENCRYPTION]

 [EXECUTE AS Clause]

 <method_specifier> ::=

 assembly_name.class_name.method_name

where:

trigger_name

The name of the trigger.

ON { ALL SERVER | DATABASE }

Defines the scope of the DDL trigger.

Triggers scoped as ALL SERVER fire whenever event_type or event_group happens anywhere in

the current server. You must have at least CONTROL SERVER permission on the server to create a
DDL trigger with server scope.

Triggers scoped as DATABASE fire whenever event_type or event_group occurs in the current

database.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<ddl_trigger_option>

The WITH ENCRYPTION clause encrypts the CREATE TRIGGER statement body and prevents it from
being accessed through catalog views or from being published as part of SQL Server
replication.

The EXECUTE AS clause specifies the security context under which the trigger is executed.

{ FOR | AFTER }

FOR specifies that the trigger fires for each row affected by the triggering statement.

AFTER specifies that the trigger fires only when all operations in the triggering SQL statement
have executed successfully. All referential cascade actions and constraint checks must also
succeed. AFTER is the default.

event_type

A T-SQL event that causes the DDL trigger to fire once the event has finished executing. For a
complete list of event types that are valid for use in DDL triggers, see Microsoft SQL Server
2005 Books Online.

event_group

The name of a predefined grouping of T-SQL events. The DDL trigger fires after any one of the
events in event_group finishes executing. For a complete list of event groups that are valid for

use in DDL triggers, see Microsoft SQL Server 2005 Books Online.

sql_statement

T-SQL that specifies both the conditions under which the DDL trigger is fired and the T-SQL
that specifies the action or actions to be taken when the trigger fires.

<method_specifier>

Specifies the method of a registered assembly to bind with the trigger for CLR triggers.
Creating CLR triggers is discussed in detail in Chapter 5.

As an example, look at the process for creating a DDL trigger to log CREATE TABLE and DROP TABLE
operations to a log table:

Execute the following query to create a table named DdlLog in the ProgrammingSqlServer2005
databasecreate the database if you haven't previously. The DdlLog table will store the
CREATE_TABLE and DROP_TABLE event information.

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 USE ProgrammingSqlServer2005

 CREATE TABLE DdlLog
 (
 LogID int IDENTITY(1,1) NOT NULL,
 LogEntry xml NOT NULL,
 CONSTRAINT PK_Log PRIMARY KEY CLUSTERED
 (
 LogID ASC
)
)

Create a DDL trigger that will log created and dropped tables:

 USE ProgrammingSqlServer2005
 GO

 CREATE TRIGGER LogTableActivity
 ON DATABASE
 FOR CREATE_TABLE, DROP_TABLE
 AS
 INSERT INTO DdlLog (LogEntry)
 VALUES
 (
 EVENTDATA()
)

The EVENTDATA function returns information about database or server events. The function is
called when the event notification fires. For events that fire a DDL trigger, the EVENTDATA
function returns a value of xml type that contains:

The time of the event.

The System Process ID (SPID) of the connection during which the trigger executed.

The type of event that fired the trigger.

Additional information depending on the event type. For details about the schemas for
specific event types, see the EVENtdATA (transact-SQL) entry in Microsoft SQL Server 2005
Books Online.

2.

Execute the following T-SQL statement to create and then drop a table named TestTable:

 USE ProgrammingSqlServer2005

 CREATE TABLE TestTable

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 (
 TestID int NOT NULL
)

 DROP TABLE TestTable

Examine the table DdlLog. It contains two rows with details about the DDL CREATE_TABLE and
DROP_TABLE events:

 <EVENT_INSTANCE>
 <EventType>CREATE_TABLE</EventType>
 <PostTime>2005-09-15T22:23:06.030</PostTime>
 <SPID>51</SPID>
 <ServerName>WHAMILTONXP</ServerName>
 <LoginName>DANTECONSULTING\WHamilton</LoginName>
 <UserName>dbo</UserName>
 <DatabaseName>ProgrammingSqlServer2005</DatabaseName>
 <SchemaName>dbo</SchemaName>
 <ObjectName>TestTable</ObjectName>
 <ObjectType>TABLE</ObjectType>
 <TSQLCommand>
 <SetOptions ANSI_NULLS="ON" ANSI_NULL_DEFAULT="ON" ANSI_PADDING="ON"
 QUOTED_IDENTIFIER="ON" ENCRYPTED="FALSE" />
 <CommandText>CREATE TABLE TestTable
 (
 TestID int NOT NULL
)

 </CommandText>
 </TSQLCommand>
 </EVENT_INSTANCE>

 <EVENT_INSTANCE>
 <EventType>DROP_TABLE</EventType>
 <PostTime>2005-09-15T22:23:06.063</PostTime>
 <SPID>51</SPID>
 <ServerName>WHAMILTONXP</ServerName>
 <LoginName>DANTECONSULTING\WHamilton</LoginName>
 <UserName>dbo</UserName>
 <DatabaseName>ProgrammingSqlServer2005</DatabaseName>
 <SchemaName>dbo</SchemaName>
 <ObjectName>TestTable</ObjectName>
 <ObjectType>TABLE</ObjectType>
 <TSQLCommand>
 <SetOptions ANSI_NULLS="ON" ANSI_NULL_DEFAULT="ON" ANSI_PADDING="ON"
 QUOTED_IDENTIFIER="ON" ENCRYPTED="FALSE" />
 <CommandText>DROP TABLE TestTable
 </CommandText>
 </TSQLCommand>

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </EVENT_INSTANCE>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.4. Metadata

SQL Server 2005 introduces catalog views an interface to server metadata which expose information
about database objects including tables, views, columns, indexes, and stored procedures. Catalog
views expose user-available catalog metadata and are the most efficient way to get, transform, and
present catalog metadata. Catalog views can be queried using a SELECT statement in the same way
as any other database view and return data as standard result sets. Catalog views are often joined in
queries to retrieve complex metadata.

Like information schema viewsanother way to retrieve metadatacatalog views expose metadata
independently of the underlying implementation of catalog tables. If the underlying catalog tables
change, applications that rely on catalog views will not be affected. Unlike information schema views,
catalog views expose metadata specific to SQL Server.

Catalog views do not contain data about replication, backup, database maintenance plans, or SQL
Server Agent data.

The following query uses a catalog view to retrieve information about all the tables in the
AdventureWorks database. One record is returned in the result set for each table.

 SELECT * FROM sys.tables

More information about specific catalog views appears throughout the book. For a complete list of
catalog views and their organization, see Microsoft SQL Server 2005 Books Online.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 4. Introduction to Common
Language Runtime (CLR) Integration
The .NET Framework Common Language Runtime (CLR) is an environment that executes compiled
code written in programming languages such as C# and VB.NET. The code is compiled to a file called
an assembly that contains the compiled code together with an assembly manifest. The manifest
contains metadata about the assembly, including types, methods, and inheritance relationships. Code
running within the CLR is called managed code.

The CLR provides services such as automatic garbage collection, security support, and runtime type
checking. Because the compiled code is executed by the CLR rather than directly by the operating
system, managed code applications are platform- and language-independent.

SQL Server 2005 hosts the CLR in the Database Engine. This is called CLR integration. CLR
integration lets you create database objects such as functions, stored procedures, triggers, user-
defined types (UDTs), and user-defined aggregate (UDA) functions in programming languages
supported by the CLR. Managed code running in SQL Server-hosted CLR is referred to as a CLR
routine.

Prior to SQL Server 2005, the main way that SQL Server was extended was using extended stored
procedures which let you create external routines using programming languages such as C. Extended
stored procedures are used like regular stored procedures, however can have performance problems
such as memory leaks and can cause the server to become unreliable. CLR integration lets you
extend SQL Server with the safety and reliability of T-SQL and with the flexibility of extended stored
procedures.

Managed code uses code access security (CAS) to control what operations assemblies can perform.
CAS secures the code running within SQL Server and prevents the code from adversely affecting the
operating system or the database server.

Generally, you should use T-SQL when the code in the routines primarily performs data access. CLR
routines are best for CPU-intensive calculations and for supporting complex logic that would
otherwise be difficult to implement using T-SQL.

The components needed to develop CLR routines are installed with SQL Server 2005. Although SQL
Server 2005 ships with the .NET Framework and command-line compilers for C# and VB.NET, as well
as a Visual Studio .NET IDE that lets you build Analysis Services and Reporting Services projects, you
need to install Visual Studio 2005 to create CLR routines in Visual Studio 2005.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.1. CLR Integration Design Objectives

Microsoft identifies the design objectives of SQL Server 2005 CLR integration as follows:

Reliability

CLR routines cannot perform operations that compromise the integrity of the Database Engine
process, nor are they allowed to overwrite Database Engine memory buffers and internal data
structures.

Scalability

SQL Server and the CLR have different models for threading, scheduling, and memory
management. The design goal is to ensure scalability when user code calls APIs for threading,
synchronization primitives, and memory.

Security

User code running in the database must follow SQL Server authentication and authorization
rules for accessing database objects. Additionally, administrators must be able to control
access to operating system resources from code running within the database.

Performance

User code running in the database must perform at least as well as equivalent implementations
through native Database Engine functionality or T-SQL.

The CLR provides the following services to achieve these design objectives:

Type-safe verification

After assemblies are loaded into the CLR but before they are compiled, the code is verified to
ensure access to memory structures only in well-defined wayscode that passes this verification
is type-safe.

Application domains

Application domains are execution spaces within a host process where assemblies are loaded,
unloaded, and executed. They provide isolation between executing assemblies.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code access security

CAS applies permissions to code to control the operations that the code can perform and the
system resources it can access based on the identity of the code.

Host Protection Attributes (HPA)

HPA is a mechanism to annotate .NET-managed APIs with attributes of interest to host CLRs
such as SQL Server. The host CLR can deny user code calls to APIs that are on a prohibited list.

SQL Server 2005 hosts the CLR in the Database Engine, effectively acting as the operating system for
the CLR. The design goals for SQL Server 2005 CLR integration for reliability, scalability, and security
are accomplished as follows:

Reliability

You cannot always recover from critical exceptions in .NET-managed code when a thread abort
exception is raised. If there is any shared state in the application domain in which the thread
abort exception occurs, the SQL Server-hosted CLR unloads that application domain, thereby
stopping database transactions running in it.

Scalability

The CLR calls SQL Server APIs to create threads and calls SQL Server synchronization objects
to synchronize threads. All threads and synchronization objects are known to SQL Server, so it
can effectively schedule non-CLR threads, detect and remove deadlocks involving CLR
synchronization objects, and detect and handle CLR threads that have not yielded in a
reasonable amount of time.

The CLR calls SQL Server primitives to allocate and deallocate memory. This lets SQL Server
stay within its configured memory limitsSQL Server can reject CLR memory requests when
memory is constrained or ask the CLR to reduce its memory use as necessary.

Security

When a SQL Server registered assembly is created or altered, you can specify one of three
permissions sets for the assembly: SAFE, EXTERNAL-ACCESS, or UNSAFE. SQL Server uses
permission sets to set CAS permissions when the assembly executes. The three permission sets
are described in Table 4-1.

Table 4-1. SQL Server CLR routine permission sets

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Permission
set

Description

SAFE

SAFE assemblies can access data from local SQL Server databases and can execute
computations and business logic not involving resources outside the local databases.

SAFE assemblies cannot access external system resources such as files, networks,
environment variables, or the registry.

The SAFE permission set can only be applied to code that is verifiably type-safe. It is
the default permission set and the most restrictive.

EXTERNAL-

ACCESS

EXTERNAL-ACCESS allows assemblies to access certain external system resources such
as files, networks, environment variables, and the registry in addition to the access
provided by the SAFE permission set.

The EXTERNAL-ACCESS permission set can only be applied to code that is verifiably
type-safe.

UNSAFE

UNSAFE assemblies have unrestricted access to resources both inside of and outside
of SQL Server. An UNSAFE assembly can call unmanaged code.

Only a database administrator can register an UNSAFE assembly.

The SQL Server-hosted CLR imposes the following security-related programming restrictions:

Code marked SAFE or EXTERNAL-ACCESS cannot use static data members and variables.

Calls cannot be made to .NET Framework API types or members annotated with the
ExternalProcessMgmt, MayLeakOnAbort, SharedState, or Synchronization host protection
attributes (HostProtectionAttribute)this prevents code in assemblies marked as SAFE or
EXTERNAL-ACCESS from calling APIs that might cause resource leaks on termination, that enable
sharing state, or that perform synchronization.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.2. Enabling CLR Integration

CLR integration is turned off by default in SQL Server 2005. Use the sp_configure system stored
procedure to enable CLR integration, as shown here:

 sp_configure 'clr enabled', 1
 GO
 RECONFIGURE
 GO

The clr enabled server configuration option specifies whether .NET assemblies can be run by SQL
Server (0 = do not allow; 1 = allow). The change takes effect immediately after sp_configure and
reconfigure are executedthe server does not need to be restarted.

You need ALTER SETTINGS permissions at the server level to enable CLR integration.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.3. Required .NET Namespaces

The components needed to create simple CLR routines are installed with SQL Server 2005 in the .NET
Framework assembly named System.Data.dllpart of the base class library of the .NET Framework
and located in both the Global Assembly Cache (GAC) and in the
<windir>\Microsoft.NET\Framework\<version> directory. The key namespaces in this assembly are
described in Table 4-2.

Table 4-2. .NET namespaces for CLR routines

System.Data.dll
namespaces

Description

System.Data Classes that comprise the ADO.NET architecture

System.Data.Sql Classes that support SQL Server 2005-specific functionality

Microsoft.SqlServer.Server

Classes that support .NET CLR functionality inside SQL Server CLR
routinesuser-defined functions (UDFs), stored procedures, UDA
functions, UDTs, and triggers

System.Data.SqlTypes Classes that support native SQL Server data types

System.Data.SqlClient .NET Frameworks data provider for SQL Server

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.4. Types of CLR Routines

SQL Server 2005 CLR integration lets you build database objects using .NET languages. Once a .NET
Framework assembly is registered with SQL Server, you can create CLR routines that can be used
anywhere a T-SQL equivalent routine can be used. Table 4-3 describes the available CLR routines.

Table 4-3. Types of CLR routines

Database object
.NET Framework
assembly type

Description

Scalar-valued
function

Public static method A UDF that returns a single value.

Table-valued
function

Public static method A UDF that returns a table as the result set.

Stored procedure Public static method
A routine that returns tabular result sets and messages to
the client, invokes DDL and DML statements, and returns
output parameters.

User-defined
aggregate
function

Class or structure
A UDA function that operates on values in a set of rows
and returns a scalar.

User-defined type Class or structure
Complex data types complete with methods that extend
the scalar type system in SQL Server.

Trigger (DML and
DDL)

Public static method
A type of stored procedure that automatically runs when a
DML or DDL event occurs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.5. Hello World Example

This section shows how to create, configure, and use a SQL Server CLR routine by way of a sample
CLR stored procedure that returns the text message "Hello world." This example is followed by an
example that shows how to create the same .NET Framework assembly using a command-line
compiler.

Follow these steps in Visual Studio 2005 to create the .NET Framework assembly containing the CLR
stored procedure:

Select File New Project.1.

Select SQL Server Project in the New Project dialog box, shown in Figure 4-1, name it
HelloWorld, specify the location, and click OK.

Figure 4-1. New Project dialog box

2.

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Because the stored procedure will not be accessing any data, click Cancel in the Add Database
Reference dialog box, shown in Figure 4-2.

Figure 4-2. Add Database Reference dialog box

3.

In Solution Explorer, right-click the HelloWorld project and select Add Stored Procedure
from the context menu, as shown in Figure 4-3.

Figure 4-3. Add Stored Procedure menu item

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the Add New Item dialog box, shown in Figure 4-4, select the Stored Procedure template.
Enter the name HelloWorldStoredProcedure.cs and click Add.

5.

Add the following line of code to the HelloWorldStoredProcedure() method in
HelloWorldStoredProcedure.cs:

 SqlContext.Pipe.Send("Hello world.\n");

The complete code should now be as follows:

 using System;
 using System.Data;

6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 using System.Data.Sql;
 using System.Data.SqlTypes;
 using Microsoft.SqlServer.Server;

 public partial class StoredProcedures
 {
 [SqlProcedure]
 public static void HelloWorldStoredProcedure()
 {
 SqlContext.Pipe.Send("Hello world.\n");
 }
 };

Figure 4-4. Add New Item dialog box

Build the solution by selecting Build Build Solution from the Visual Studio 2005 main menu,
by clicking the Build Solution button on the Build toolbar, or by right-clicking the HelloWorld
project in Solution Explorer and selecting Build from the context menu. The stored procedure is
compiled into an assembly called HelloWorld.dll in the bin\Debug subdirectory.

7.

Once the stored procedure is compiled, you need to register the assembly with SQL Server before
you can access the CLR stored procedure. This walkthrough and many of the examples in this book
use a database called ProgrammingSqlServer2005. Follow these steps to register the assembly with
SQL Server:

Right-click the ProgrammingSqlServer2005 database in Object Explorer and select New Query
from the context menu, as shown in Figure 4-5.

1.

Register the assembly HelloWorld.dll with the SQL Server assembly name HelloWorld by
executing the following T-SQL statement:

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 USE ProgrammingSqlServer2005
 GO

 CREATE ASSEMBLY HelloWorld
 FROM 'C:\PSS2005\HelloWorld\HelloWorld\bin\Debug\HelloWorld.dll'

Figure 4-5. New Query menu item

The SQL Server assembly name and the .NET Framework assembly DLL name do not have to be
the same. The SQL Server assembly name must be unique in the database.

You can confirm that the assembly is registered by expanding the Databases
ProgrammingSqlServer2005 Programmability Assemblies node in the Object Explorer
tree view, as shown in Figure 4-6.

Figure 4-6. Object Explorer Assemblies node

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Create a CLR stored procedure called HelloWorldSP based on the HelloWorld StoredProcedure(
) static method in the HelloWorld.dll assembly registered in Step 2. Execute the following
query:

3.

 CREATE PROCEDURE HelloWorldSP
 AS
 EXTERNAL NAME HelloWorld.StoredProcedures.HelloWorldStoredProcedure

The EXTERNAL NAME clause has three parts, separated by periods:

The SQL Server registered assembly name (from Step 2)HelloWorld

The class name in the .NET Framework assemblyStoredProcedures

The name of the public static method implementing the stored
procedureHelloWorldStoredProcedure()

You can confirm that the stored procedure was created by expanding the Databases
ProgrammingSqlServer2005 Stored Procedure node in the Object Explorer tree view, as shown in
Figure 4-7.

Figure 4-7. Object Explorer Stored Procedures node

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can now use the stored procedure just as you would use any other stored procedure.

Execute the HelloWorldSP stored procedure with the following T-SQL statement:

 EXEC HelloWorldSP

The results follow:

 Hello world.

The results are exactly the same as they would be if you had created and executed the following T-
SQL stored procedure:

 CREATE PROCEDURE HelloWorldSP2
 AS
 PRINT 'Hello world.'

Once you have finished with the sample, you can remove the CLR stored procedure and registered
.NET Framework assembly by executing the following statements:

 DROP PROCEDURE HelloWorldSP

 DROP ASSEMBLY HelloWorld

4.5.1. Command-Line Compiler

http://lib.ommolketab.ir
http://lib.ommolketab.ir

While the examples in this book use Visual Studio 2005, you can create the program files using any
text editor and compile them using a .NET command-line compiler. SQL Server 2005 installs .NET
Framework redistribution files, including command-line language compilersfor example csc.exe for C#
and vbc.exe for VB.NET. The command-line compilers are installed in the directory
C:\<windir>\Microsoft.NET\Framework\<version>, where:

<windir>

The directory in which your version of Windows is installedoften WINDOWS or WINNT

<version>

The .NET Framework version

To use the compiler, add the directory containing the compiler to your Path environment system
variable defined in the System variables list box accessed through Control Panel System
Advanced Environment Variables.

To use the command-line C# compiler to compile the HelloWorldStoredProcedure.cs file created in
the previous section, execute the following command:

 csc /target:library /out:HelloWorld.dll HelloWorldStoredProcedure.cs

The /target compiler flag instructs the compiler to build a DLL. The /out flag instructs the compiler to
override the default DLL name HelloWorldStoredProcedure.dll with the name HelloWorld.dll. For
more information about Visual Studio .NET compilers and compiler flags, consult the Microsoft
Developer Network (MSDN).

Once you have compiled the .NET Framework assembly, you register it and CLR routines in the same
way as if you had used the Visual Studio 2005 compiler.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.6. DDL Support for CLR Integration

SQL Server introduces new T-SQL statements to create and manage .NET assemblies and UDTs, and
enhances other T-SQL statements to create and manage functions, stored procedures, triggers, and
UDA functions created from CLR assemblies. These statements are described in Table 4-4.

Table 4-4. New and changed T-SQL statements to support CLR
integration

Scope
DDL
statement

New T-SQL
statement

Description

.NET Framework
assembly

CREATE

ASSEMBLY
Yes Loads assembly into SQL Server.

ALTER

ASSEMBLY
Yes Changes a loaded assembly.

DROP

ASSEMBLY
Yes Unloads an assembly from SQL Server.

User-defined
aggregate function

CREATE

AGGREGATE
Yes

Creates a UDA function in a SQL Server
database from a UDA function implemented
as a class in a .NET Framework assembly.

The assembly containing the class must first
be registered in SQL Server with the CREATE
ASSEMBLY T-SQL statement.

DROP

AGGREGATE
Yes

Removes a UDA function from a SQL Server
database.

User-defined type

CREATE TYPE No

Creates a UDT in a SQL Server database from
a type implemented as a class or structure in
a .NET Framework assembly.

The assembly containing the class or
structure must first be registered in SQL
Server with the CREATE ASSEMBLY T-SQL
statement.

 DROP TYPE No Removes a UDT from a SQL Server database.

Stored procedure

CREATE

Creates a stored procedure in a SQL Server
database from a CLR stored procedure
implemented as a method in a .NET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Scope
DDL
statement

New T-SQL
statement

Description

CREATE

PROCEDURE
No

implemented as a method in a .NET
Framework assembly.

The assembly containing the method must
first be registered in SQL Server with the
CREATE ASSEMBLY T-SQL statement.

ALTER

PROCEDURE
No

Changes a stored procedure previously
created with the CREATE PROCEDURE T-SQL
statement.

DROP
PROCEDURE

No
Removes a stored procedure from a SQL
Server database.

User-defined function
(scalar-valued or
table-valued)

CREATE

FUNCTION
No

Creates a UDF in a SQL Server database from
a CLR UDF implemented as a method in a
.NET Framework assembly.

The assembly containing the method must
first be registered in SQL Server with the
CREATE ASSEMBLY T-SQL statement.

ALTER

FUNCTION
No

Changes a UDF previously created with the
CREATE FUNCTION T-SQL statement.

DROP

FUNCTION
No Removes a UDF from a SQL Server database.

Trigger

CREATE

TRIGGER
No

Creates a DML or DDL trigger in a SQL Server
database from a CLR trigger implemented as
a method in a .NET Framework assembly.

The assembly containing the method must
first be registered in SQL Server with the
CREATE ASSEMBLY T-SQL statement.

ALTER

TRIGGER
No

Changes a trigger previously created with the
CREATE TRIGGER T-SQL statement.

 DROP TRIGGER No
Removes a trigger from a SQL Server
database.

The statements are described in detail in the following subsections. Chapter 5 presents in-depth
discussions and examples of creating these objects in C#.

4.6.1. CLR Routine Metadata

Catalog views return metadata used by the SQL Server 2005 Database Engine. The sys.all_objects
catalog view returns a row for each user-defined object and system object in the current database.
The type column specifies the object typethe CLR routine type values are shown in Table 4-5.

CREATE

PROCEDURE
No

implemented as a method in a .NET
Framework assembly.

The assembly containing the method must
first be registered in SQL Server with the
CREATE ASSEMBLY T-SQL statement.

ALTER

PROCEDURE
No

Changes a stored procedure previously
created with the CREATE PROCEDURE T-SQL
statement.

DROP
PROCEDURE

No
Removes a stored procedure from a SQL
Server database.

User-defined function
(scalar-valued or
table-valued)

CREATE

FUNCTION
No

Creates a UDF in a SQL Server database from
a CLR UDF implemented as a method in a
.NET Framework assembly.

The assembly containing the method must
first be registered in SQL Server with the
CREATE ASSEMBLY T-SQL statement.

ALTER

FUNCTION
No

Changes a UDF previously created with the
CREATE FUNCTION T-SQL statement.

DROP

FUNCTION
No Removes a UDF from a SQL Server database.

Trigger

CREATE

TRIGGER
No

Creates a DML or DDL trigger in a SQL Server
database from a CLR trigger implemented as
a method in a .NET Framework assembly.

The assembly containing the method must
first be registered in SQL Server with the
CREATE ASSEMBLY T-SQL statement.

ALTER

TRIGGER
No

Changes a trigger previously created with the
CREATE TRIGGER T-SQL statement.

 DROP TRIGGER No
Removes a trigger from a SQL Server
database.

The statements are described in detail in the following subsections. Chapter 5 presents in-depth
discussions and examples of creating these objects in C#.

4.6.1. CLR Routine Metadata

Catalog views return metadata used by the SQL Server 2005 Database Engine. The sys.all_objects
catalog view returns a row for each user-defined object and system object in the current database.
The type column specifies the object typethe CLR routine type values are shown in Table 4-5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 4-5. CLR object type values

sys.all_objects type column value CLR object type

AF Aggregate function

FS Scalar-valued function

FT Table-valued function

PC Stored procedure

TA Trigger

For example, the following T-SQL statement returns information about all CLR stored procedures in
the AdventureWorks database:

 USE AdventureWorks
 GO

 SELECT * FROM sys.all_objects
 WHERE type='PC'

The sys.all_objects catalog view does not return information for DDL triggers. Use the sys.triggers
catalog view instead to return information for all DML and DDL triggers in the current database.

The sys.all_objects catalog view does not return information for UDTs. The sys.types catalog view
returns information for all system and user-defined types in the current database. The
sys.assembly_types catalog view returns information for all CLR UDTs.

SQL Server 2005 provides catalog views that contain information about registered assemblies and
CLR functions, stored procedures, triggers, UDTs, and UDA functions defined from registered
assemblies. These catalog views are described in Table 4-6 and detailed in the following subsections.

Table 4-6. Catalog views returning metadata about registered .NET
Framework assemblies and CLR routines

Catalog view Description

sys.assemblies A row for each assembly registered in the current database

sys.assembly_files A row for each file that makes up an assembly

sys.assembly_modules A row for each function, CLR stored procedure, or trigger

sys.assembly_references A row for each pair of assemblies directly referencing each other

sys.assembly_types A row for each CLR UDT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.6.1.1. sys.assemblies

The sys.assemblies catalog view contains a row for each assembly registered in the current
database. Table 4-7 describes the columns in this view.

Table 4-7. sys.assemblies catalog view columns

Column name Description

name The name of the assembly, unique within the schema.

principal_id The ID of the principal that owns the schema.

assembly_id The assembly ID number, unique within a database.

permission_set The code access permissions for the assembly; one of the following numeric
values:

1 = Safe Access

2 = External Access

3 = Unsafe Access

permission_set_desc A description of code access permissions specified by the value of the
permission_set column; one of the following string values: SAFE_ACCESS,
EXTERNAL_ACCESS, or UNSAFE_ACCESS.

is_visible A numeric value indicating the visibility of the assembly:

0 = The assembly can be called only by other assemblies.

1 = The assembly can be used to create CLR UDFs, stored procedures,
triggers, UDTs, and UDA functions.

clr_name Canonical string that uniquely identifies the assembly. The string encodes the
simple name, version number (version), culture (culture), public key
(publickeytoken), and architecture (processorarchitecture) of the assembly.

create_date The date that the assembly was created or registered.

The following T-SQL statement returns a result set of all the CLR assemblies registered in the current
database:

 SELECT * FROM sys.assemblies;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.6.1.2. sys.assembly_files

The sys.assembly_files catalog view contains a row for each file in each registered assembly in the
current database. Table 4-8 describes the columns in this view.

Table 4-8. sys.assembly_files catalog view columns

Column
name

Description

assembly_id The ID of the assembly to which the file belongs.

name The name of the assembly file.

file_id The ID of the file, unique within an assembly. The root assembly has a file ID of 1.
Files added to the assembly have a file ID of 2 or greater.

content The binary contents of the file.

4.6.1.3. sys.assembly_modules

The sys.assembly_modules catalog view contains a row for each CLR function (scalar-valued, table-
valued, and aggregate), stored procedure, or trigger defined in a .NET Framework assembly in the
current database. Table 4-9 describes the columns in this view.

Table 4-9. sys.assembly_modules catalog view columns

Column name Description

object_id The ID of the module (CLR routine), unique within the database.

assembly_id The ID of the assembly from which the module was created.

assembly_class The name of the class within the assembly that defines the module.

assembly_method The name of the method within the assembly_class that defines this

module. This value is NULL for aggregate functions.

null_on_null_input Indicates whether the module returns NULL if any arguments are

NULL.

execute_as_principal_id The database principal ID for the execution context. If this value is NULL,
the execution context is CALLER.

4.6.1.4. sys.assembly_references

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The sys.assembly_references catalog view contains a row for each pair of assemblies registered in
the current database where one assembly directly references another. Table 4-10 describes the
columns in this view.

Table 4-10. sys.assembly_references catalog view columns

Column name Description

assembly_id The ID of the assembly that has a reference to another assembly

referenced_assembly_id The ID of the assembly being referenced

4.6.1.5. sys.assembly_types

The sys.assembly_types catalog view contains a row for each UDT in the current database that is
defined in a CLR assembly. Table 4-11 describes the columns in this view.

Table 4-11. sys.assembly_types catalog view columns

Column name Description

<inherited_columns> Columns inherited from sys.types catalog view

assembly_id The ID of the assembly from which the UDT was created

assembly_class The name of the class within the assembly that defines the UDT

is_binary_ordered Indicates whether sorting the bytes of the type is equivalent to sorting
the type using comparison operators

is_fixed_length Indicates whether the length of the type is the same as the maximum
length (max_length in sys.types)

prog_id The ProgID of the type exposed to COM

assembly_qualified_name The assembly qualified type name

4.6.2. Assembly Management

A .NET Framework assembly contains classes and methods that can implement CLR routines in SQL
Server 2005. You first have to register the assembly with SQL Server by using the CREATE ASSEMBLY
T-SQL statement as you did earlier in the "Hello World Example" section. A registered assembly can
be modified using the ALTER ASSEMBLY statement, or removed from the server using the DROP
ASSEMBLY statement. These three new T-SQL statements are described in the following subsections.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.6.2.1. CREATE ASSEMBLY

The CREATE ASSEMBLY T-SQL statement registers a .NET Framework assembly as an object within SQL
Server from which CLR stored procedures, UDFs, triggers, UDA functions, and UDTs can be created.

The CREATE ASSEMBLY syntax is:

 CREATE ASSEMBLY assembly_name

 [AUTHORIZATION owner_name]

 FROM { client_assembly_specifier | assembly_bits [,...n] }
 [WITH PERMISSION_SET = { SAFE | EXTERNAL_ACCESS | UNSAFE }]

 client_assembly_specifier :: =

 '[\\computer_name\]share_name\[path\]manifest_file_name'

 | '[local_path\]manifest_file_name'

 assembly_bits :: =

 { varbinary_literal | varbinary_expression }

where:

assembly_name

Specifies the name of the assembly, which must be unique within the database.

AUTHORIZATION owner_name

Specifies the name of the user or role that is the owner of the assembly. If not specified,
ownership is assigned to the current user.

FROM

Specifies the .NET Framework assembly to load.

client_assembly_specifier

Specifies the local path or Universal Naming Convention (UNC) network location where the
assembly is located and the manifest filename for the assembly. Multimodule assemblies are
not supported. Dependent assemblies are either automatically uploaded from the same location
or loaded from the current database if owned by the same principalCREATE ASSEMBLY fails if
either is not possible.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

assembly_bits

Specifies a list of binary values that make up the assembly and its dependent assemblies. The
root-level assembly must be specified first followed by the dependent assemblies in any order.

PERMISSION_SET = { SAFE | EXTERNAL_ACCESS | UNSAFE }

Specifies the code-access security when SQL Server accesses the assembly. If not specified,
the default is SAFE.

Multiple versions of the same assembly can be uploaded to the server. These assemblies must have
different version numbers or cultures and must be registered using unique assembly names within
SQL Server.

4.6.2.2. ALTER ASSEMBLY

The ALTER ASSEMBLY T-SQL statement modifies the properties of an assembly previously registered
using the CREATE ASSEMBLY statement and refreshes the assembly with the latest version.

The ALTER ASSEMBLY syntax is:

 ALTER ASSEMBLY assembly_name

 [FROM { client_assembly_specifier | assembly_bits [,...n] }]

 [WITH assembly_option [,...n]]

 [DROP FILE { file_name [,...n] | ALL }]
 [ADD FILE FROM
 {

 client_file_specifier [AS file_name]

 | file_bits AS file_name
 } [,...n]]

 client_assembly_specifier :: =

 '\\computer_name\share-name\[path\]manifest_file_name'

 | '[local_path\]manifest_file_name'

 assembly_bits :: =

 { varbinary_literal | varbinary_expression }

 assembly_option :: =
 PERMISSION_SET { SAFE | EXTERNAL_ACCESS | UNSAFE }
 | VISIBILITY { ON | OFF }]
 | UNCHECKED DATA

where:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

assembly_name

Specifies the name of the registered assembly to alter.

FROM

Specifies the .NET Framework assembly to refresh with the latest copy.

DROP FILE { file_name [,...n] | ALL }

Removes the file associated with the assembly or all files associated with the assembly. DROP
FILE executes before ADD FILE if both are specified.

ADD FILE FROM { client_file_specifier [AS file_name] | file_bits AS file_name }

Uploads a file that is to be associated with the assembly from the location specified by the
client_file_specifier argument or from the binary values that make up the file specified by
the file_bits argument. The file_name argument specifies the name to use to store the file in
SQL Server. If the file_name argument is not specified with a client_file_specified
argument, the filename part of the client_file_specifier is used as the name in SQL Server.

VISIBILITY { ON | OFF }

Specifies whether the assembly can be used to create CLR stored procedures, functions,
triggers, UDTs, and UDA functions. Assemblies with VISIBILITY = OFF can be called only by
other assemblies . The default VISIBILITY is ON.

UNCHECKED DATA

Alters the assembly even if there are tables with columns or check constraints that reference
methods in the assembly or if there are CLR UDTs that are dependent on the assembly and use
User-Defined serialization format. Only members of db_owner and db_ddlowner can specify this
option.

Other arguments are the same as defined for the CREATE ASSEMBLY statement.

Executing ALTER ASSEMBLY does not affect currently executing sessions running the assembly being
alteredthey complete using the unaltered assembly. A new application domain is created running the
latest bits for new users of the assembly.

If the FROM clause is not specified, the assembly is refreshed with the latest copy of the assembly
rebinding CLR routines to the latest implementation in the assembly.

4.6.2.3. DROP ASSEMBLY

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The DROP ASSEMBLY statement removes an assembly previously registered with the CREATE ASSEMBLY
statement. The assembly and all of its associated files are removed from the database.

The DROP ASSEMBLY syntax is:

 DROP ASSEMBLY assembly_name
 [WITH NO DEPENDENTS]

where:

assembly_name

Specifies the name of the registered assembly to drop

WITH NO DEPENDENTS

Specifies that dependent assemblies are not to be dropped

Executing DROP ASSEMBLY does not affect currently executing sessions running the assembly being
droppedthey run to completion. New attempts to invoke code in the assembly fail.

You cannot drop an assembly that is referenced by another assembly or that is used by a CLR
function, stored procedure, trigger, UDT, or UDA function.

4.6.3. User-Defined Functions

A user-defined function (UDF) is a routine written by the user that returns either a scalar value
(scalar-valued function) or a table (table-valued function). SQL Server 2005 functions can be created
directly from T-SQL statements or from methods in a registered .NET Framework assembly.

UDFs are created, changed, and removed in SQL Server using the CREATE FUNCTION, ALTER FUNCTION,
and DROP FUNCTION T-SQL statements. These statements have been enhanced in SQL Server 2005 to
support CLR UDF management. The following subsections describe the enhancements.

4.6.3.1. CREATE FUNCTION

The CREATE FUNCTION T-SQL statement has been enhanced in SQL Server 2005 to let you create a
CLR scalar-valued or table-valued UDF from a UDF implemented as a method in a .NET Framework
assembly. You must first register the assembly using the CREATE ASSEMBLY statement. The CREATE
FUNCTION syntax for creating CLR UDFs follows:

 CREATE FUNCTION [schema_name.] function_name (

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [{ @parameter_name [AS] [type_schema_name.] scalar_parameter_data_type }
 [,...n]])

 RETURNS { scalar_return_data_type | TABLE clr_table_type_definition }

 [WITH clr_function_option [[,] ...n]]

 [AS] EXTERNAL NAME method_specifier [;]

 method_specifier ::=

 assembly_name.class_name.method_name

 clr_table_type_definition ::=

 ({ column_name data_type }[,...n])

 clr_function_option ::=
 [RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT]

 | [EXECUTE_AS_Clause]

where:

[schema_name.] function_name

Specifies the name of the CLR UDF to create.

@parameter_name [AS] [type_schema_name.] scalar_parameter_data_type

Defines zero or more parameters for the UDF:

@parameter_name

Specifies the name of a parameter for the function. Specify a parameter using an
ampersand (@) as the first character. DEFAULT parameters cannot be specified for CLR
UDFs.

[type_schema_name.] scalar_parameter_data_type

Specifies the parameter data type and optionally its schema. This can be any scalar data
type supported by SQL Server except timestamp. The return value data type can also be
a CLR UDT. char, varchar, and ntext data types cannot be specified for CLR scalar-
valued UDFsuse nchar and nvarchar instead.

scalar_return_data_type

Specifies the data type of the return value of a scalar-valued UDF. This can be any scalar data
type supported by SQL Server except text, ntext, image, and timestamp. The return value data
type can also be a CLR UDT. char and varchar data types cannot be specified for CLR scalar-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

valued UDFsuse nchar and nvarchar instead.

clr_table_type_definition

Defines the CLR table returned from a table-valued UDF:

column_name

Specifies the name of the column in the table.

data_type

Specifies the data type of the columntimestamp and UDTs are not supported.

clr_function_option

Specifies the OnNullCall attribute of a scalar-valued function:

RETURNS NULL ON NULL INPUT

Specifies that SQL Server does not execute the function and returns NULL as the result of
the function if any of the input arguments are NULL.

CALLED ON NULL INPUT

Specifies that SQL Server executes the function even if one or more input arguments are
NULL.

If not specified, the default is CALLED ON NULL INPUT.

The CREATE FUNCTION value of the OnNullCall attribute takes precedence over the method's
OnNullCall attribute if specified in the .NET code.

EXECUTE_AS_Clause

Specifies the security execution context for the UDF.

method_specifier

Specifies the method in the .NET Framework assembly that implements the UDF:

assembly_name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Specifies the name of the registered assembly that contains the method implementing
the CLR UDF.

class_name

Specifies the name of the class in the assembly that implements the CLR UDF. The class
name can be namespace-qualified, in which case it must be enclosed in brackets ([]).

method_name

Specifies a public static method of the class that implements the CLR UDF functionality.

4.6.3.2. ALTER FUNCTION

The ALTER FUNCTION T-SQL statement has been enhanced in SQL Server 2005 to let you modify a CLR
UDF previously created using the CREATE FUNCTION statement. The ALTER FUNCTION syntax for creating
CLR UDFs follows:

 ALTER FUNCTION [schema_name.] function_name

 ({ @parameter_name [AS] [type_schema_name.] scalar_parameter_data_type }
 [,...n])

 RETURNS { scalar_return_data_type | TABLE <clr_table_type_definition> }

 [WITH clr_function_option [,...n]]

 [AS] EXTERNAL NAME method_specifier

 method_specifier ::=

 [assembly_schema.] assembly_name.class_name.method_name

 clr_table_type_definition :: =

 ({ column_name data_type } [,...n])

 clr_function_option ::=
 [RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT]

 | [EXECUTE_AS_Clause]

The arguments are the same as for the CREATE FUNCTION statement discussed in the preceding
section.

4.6.3.3. DROP FUNCTION

The DROP FUNCTION T-SQL statement removes one or more UDFs previously created using the CREATE

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FUNCTION statement. The SQL Server 2005 DROP FUNCTION statement is the same as in SQL Server
2000. It now supports removing CLR UDFs.

The DROP FUNCTION syntax is:

 DROP FUNCTION { [schema_name.] function_name } [,...n]

DROP FUNCTION will fail if T-SQL functions or views in the database created with SCHEMABINDING or
indexed computed columns reference this function.

4.6.4. Stored Procedures

A stored procedure is a saved collection of T-SQL statements or a reference to a CLR method that
optionally takes and returns arguments and returns one or more result sets of data. SQL Server 2005
stored procedures can be created directly from T-SQL statements or from methods in registered .NET
Framework assemblies.

Stored procedures are created, updated, and removed using the CREATE PROCEDURE, ALTER PROCEDURE,
and DROP PROCEDURE T-SQL statements. These statements have been enhanced in SQL Server 2005 to
support CLR stored procedure management. The following subsections describe these enhancements.

4.6.4.1. CREATE PROCEDURE

The CREATE PROCEDURE T-SQL statement has been enhanced in SQL Server 2005 to let you create a
CLR stored procedure from a stored procedure implemented as a method in a .NET Framework
assembly. You must first register the assembly using the CREATE ASSEMBLY statement as you did
earlier in the "Hello World Example" section. The enhancements supporting CLR stored procedures
are highlighted in the CREATE PROCEDURE syntax that follows:

 CREATE PROC [EDURE] [schema_name.] procedure_name

 [{ @parameter [type_schema_name.] data_type }

 [VARYING] [= default] [[OUT [PUT]] [,...n]

 [WITH <procedure_option> [,...n]
 [FOR REPLICATION]

 AS { sql_statement [...n] | method_specifier }

 procedure_option ::=
 [ENCRYPTION]
 [RECOMPILE]
 [EXECUTE_AS_Clause]

 sql_statement ::=

 { [BEGIN] statements [END] }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 method_specifier

::= EXTERNAL NAME
assembly_name.class_name.method_name

where the new arguments are as follows:

method_specifier

Specifies the method in the .NET Framework assembly that implements the stored procedure:

assembly_name

Specifies the name of the registered assembly that contains the method implementing
the stored procedure.

class_name

Specifies the name of the class in the assembly that implements the stored procedure.
The class name can be namespace-qualified, in which case it must be enclosed in
brackets ([]).

method_name

Specifies the name of the public static method implementing the CLR stored procedure.

4.6.4.2. ALTER PROCEDURE

The ALTER PROCEDURE T-SQL statement has been enhanced in SQL Server 2005 to let you modify a
CLR stored procedure previously created using the CREATE PROCEDURE statement. The enhancements
supporting CLR stored procedures are highlighted in the ALTER PROCEDURE syntax that follows:

 ALTER PROC [EDURE] [schema_name.] procedure_name

 [{ @parameter [type_schema_name.] data_type }

 [VARYING] [= default] [[OUT [PUT]] [,...n]

 [WITH procedure_option [,...n]]
 [FOR REPLICATION]
 AS

 { sql_statement [...n] | method_specifier }

 procedure_option ::=
 [ENCRYPTION]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [RECOMPILE]

 [EXECUTE_AS_Clause]

 sql_statement ::=
 { [BEGIN] statements [END] }

 method_specifier

::= EXTERNAL NAME [
assembly_schema.

]
assembly_name.class_name.method_name

where the new arguments are as follows:

method_specifier

Specifies the method in the .NET Framework assembly that implements the stored procedure:

assembly_schema

Specifies the schema name for the assembly. If not specified, assembly_name must match

an assembly in either the current user's schema or in the dbo schema.

assembly_name

Specifies the name of the registered assembly that contains the method that implements
the stored procedure.

class_name

Specifies the name of the class in the assembly that implements the stored procedure.
The class name can be namespace-qualified, in which case it must be enclosed in
brackets ([]).

method_name

Specifies the name of the public static method implementing the CLR stored procedure.

4.6.4.3. DROP PROCEDURE

The DROP PROCEDURE T-SQL statement removes one or more stored procedures previously created
using the CREATE PROCEDURE statement. The SQL Server 2005 DROP PROCEDURE statement is the same

http://lib.ommolketab.ir
http://lib.ommolketab.ir

as in SQL Server 2000. It now supports removing CLR stored procedures.

The DROP PROCEDURE syntax is:

 DROP PROCEDURE { [schema_name.] procedure } [,...n]

4.6.4.4. Metadata

The sys.procedures catalog view contains a row for each stored procedure in the current database.
The view inherits columns from the sys.objects and sys.all_objects catalog views, so you can limit
the rows returned to CLR stored procedures by filtering on the type column, as shown in the following
statement:

 SELECT * FROM sys.procedures
 WHERE type='PC'

The WHERE clause specifying the type PC returns CLR stored procedures. Specifying type P returns SQL
stored procedures.

4.6.5. User-Defined Aggregate Functions

User-defined aggregate (UDA functions compute a value over a group in a result set. SQL Server
2005 UDA functions can be created directly from T-SQL statements or from a class in a registered
.NET Framework assembly.

UDA functions are created and removed in SQL Server using the CREATE AGGREGATE and DROP
AGGREGATE T-SQL statements. These statements have been enhanced in SQL Server 2005 to support
CLR UDA function management. The following subsections describe the enhancements.

4.6.5.1. CREATE AGGREGATE

The CREATE AGGREGATE T-SQL statement creates a UDA function from an implementation by a class in
a registered assembly. The assembly must first be registered using the CREATE ASSEMBLY statement.

The CREATE AGGREGATE syntax is:

 CREATE AGGREGATE [schema_name.] aggregate_name

 ..(@parameter input_sqltype)

 RETURNS return_sqltype

 EXTERNAL NAME assembly_name [.class_name]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 input_sqltype ::=

 ..system_scalar_type | { [udt_schema_name.] udt_type_name }

 return_sqltype ::=

 ..system_scalar_type | { [udt_schema_name.] udt_type_name }

where:

[schema_name.] aggregate_name

Specifies the name of the CLR aggregate function to create.

@parameter input_sqltype

Specifies the name of a parameter in the CLR aggregate function. The name must be prefixed
with an ampersand (@). A parameter can specify a constant only, and not the names of
database objects such as table names and columns names.

EXTERNAL NAME assembly_name [.class_name]

Specifies the registered .NET Framework assembly and optionally the name of the class in the
assembly that implements the CLR aggregate function. If class_name is not specified, it defaults
to aggregate_name.

system_scalar_type

Specifies a SQL Server scalar data type for the input or return value.

[udt_schema_name.] udt_type_name

The name of a CLR UDT in SQL Server. If the schema name is not specified, it defaults to the
schema of the current user.

4.6.5.2. DROP AGGREGATE

The DROP AGGREGATE T-SQL statement removes a UDA function previously created using the CREATE
AGGREGATE statement.

The DROP AGGREGATE syntax follows:

 DROP AGGREGATE [schema_name.] aggregate_name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

where:

[schema_name.] aggregate_name

Specifies the name of the UDA function to remove.

The DROP AGGREGATE statement does not execute if there are views, functions, or stored procedures
created with schema binding that reference the UDA function.

4.6.6. User-Defined Types

SQL Server 2000 supports user-defined types (UDTs), also known as alias types. You create these
by using the sp_addtypes system stored procedure. They are derived from SQL Server built-in data
types and optionally have integrity constraints called rules.

SQL Server 2005 extends UDT functionality by letting you define CLR UDTs from a class in a
registered .NET Framework assembly. A CLR UDT can store multiple items and expose methods,
properties, and attributes. You can use a UDT as the data type for a column in a table, as a T-SQL
variable, or as a parameter for stored procedures or functions.

UDTs are created and removed in SQL Server using the CREATE TYPE and DROP TYPE T-SQL
statements. These statements have been enhanced in SQL Server 2005 to support CLR UDT
management. The following subsections describe the enhancements.

4.6.6.1. CREATE TYPE

The CREATE TYPE statement has been enhanced in SQL Server 2005 to let you create a CLR UDT from
a type implemented as a class or structure in a .NET Framework assembly. You must first register
the assembly using the CREATE ASSEMBLY statement. The enhancements supporting CLR UDTs are
highlighted in the CREATE TYPE syntax that follows:

 CREATE TYPE [schema_name.] type_name

 { FROM base_type

 [(precision [, scale])]
 [NULL | NOT NULL]

 | EXTERNAL NAME assembly_name [. class_name] }

where:

[schema_name.] type_name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Specifies the name of the CLR UDT to create.

assembly_name

Specifies the name of the registered assembly that implements the CLR UDT.

class_name

Specifies the name of the class that implements the CLR UDT. The class name can be
namespace-qualified, in which case it must be enclosed in brackets ([]).

4.6.6.2. DROP TYPE

The DROP TYPE T-SQL statement removes a UDT previously created using the CREATE TYPE statement.
The SQL Server 2005 DROP TYPE statement is the same as in SQL Server 2000. It now supports
removing CLR UDTs .

The DROP TYPE syntax is:

 DROP TYPE [schema_name.] type_name

where:

[schema_name.] type_name

Specifies the name of the UDT to remove

DROP TYPE will not execute if there are tables in the database with columns of the UDT, if there are
columns of the sql_variant data type that contain the UDT, or if there are functions, stored
procedures, or triggers in the database created with the WITH SCHEMABINDING clause that use variables
or parameters of the UDT.

4.6.6.3. Metadata

The sys.assembly_types catalog view contains a row for all CLR UDTs in the current database. The
view inherits all columns from the sys.types catalog view.

4.6.7. Triggers

A trigger is a type of stored procedure that executes in response to one or more specific database

http://lib.ommolketab.ir
http://lib.ommolketab.ir

events. DML triggers execute when data is modified using T-SQL DML statements such as INSERT,
UPDATE, or DELETE. DDL triggers execute when database objects are modified using T-SQL DDL
statements such as CREATE, ALTER, and DROP. SQL Server 2005 DML and DDL triggers can be created
directly from T-SQL statements or from methods in a registered .NET Framework assembly.

Triggers are created, changed, and removed using the CREATE TRIGGER, ALTER TRIGGER, and DROP
TRIGGER T-SQL statements. These statements have been enhanced in SQL Server 2005 to support
CLR trigger management. The following subsections describe the enhancements.

4.6.7.1. CREATE TRIGGER

The CREATE TRIGGER T-SQL statement has been enhanced in SQL Server 2005 to let you create a CLR
DML or DDL trigger from a trigger implemented as a method in a .NET Framework assembly. You
must first register the assembly using the CREATE ASSEMBLY statement. The enhancements supporting
CLR triggers are highlighted in this section.

The CREATE TRIGGER syntax for DML triggers is:

 CREATE TRIGGER [schema_name.]trigger_name
 ON { TABLE | VIEW }

 [WITH dml_trigger_option [,...n]]
 { FOR | AFTER | INSTEAD OF }
 { [INSERT] [,] [UPDATE] [,] [DELETE] }
 [WITH APPEND]
 [NOT FOR REPLICATION]

 AS { sql_statement [...n] | EXTERNAL NAME method specifier }

 dml_trigger_option ::=
 [ENCRYPTION]

 [EXECUTE AS Clause]

 method_specifier

::=
assembly_name.class_name.method_name

The CREATE TRIGGER syntax for DDL triggers is:

 CREATE TRIGGER trigger_name
 ON { ALL SERVER | DATABASE }

 [WITH <ddl_trigger_option> [,...n]]

 { FOR | AFTER } { event_type | event_group } [,...n]

 AS { sql_statement [...n] | EXTERNAL NAME <method specifier> }

 ddl_trigger_option ::=
 [ENCRYPTION]

 [EXECUTE AS Clause]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 method_specifier

::=
assembly_name.class_name.method_name

where the new arguments for both DML and DDL triggers are:

method_specifier

Specifies the method in the .NET Framework assembly that implements the trigger:

assembly_name

Specifies the name of the registered assembly that contains the method that implements
the trigger.

class_name

Specifies the name of the class in the assembly that implements the CLR trigger. The
class name can be namespace-qualified, in which case it must be enclosed in brackets
([]).

method_name

Specifies the public static method of the class that implements the CLR trigger
functionality.

4.6.7.2. ALTER TRIGGER

The ALTER TRIGGER T-SQL statement has been enhanced in SQL Server 2005 to let you modify a CLR
DML or DDL trigger previously created using the CREATE TRIGGER statement. The enhancements
supporting CLR triggers are highlighted in this section.

The ALTER TRIGGER syntax for DML triggers follows:

 ALTER TRIGGER schema_name.trigger_name
 ON (TABLE | VIEW)

 [WITH dml_trigger_option [...,n]]
 (FOR | AFTER | INSTEAD OF)
 { [DELETE] [,] [INSERT] [,] [UPDATE] }
 [NOT FOR REPLICATION]

 AS { sql_statement [...n] | EXTERNAL NAME method specifier }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 dml_trigger_option ::=
 [ENCRYPTION]
 [EXECUTE AS Clause]

 method_specifier

::=
[assembly_schema.] assembly_name.class_name.method_name

The ALTER TRIGGER syntax for DDL triggers follows:

 ALTER TRIGGER trigger_name
 ON { DATABASE | ALL SERVER }

 [WITH ddl_trigger_option [...,n]]

 { FOR | AFTER } { event_type [,...n] | event_group }

 AS { sql_statement | EXTERNAL NAME method specifier }

 ddl_trigger_option ::=
 [ENCRYPTION]

 [EXECUTE AS Clause]

 method_specifier

::= [
assembly_schema.

]
assembly_name.class_name.method_name

The new arguments for both DML and DDL triggers are the same as for the CREATE TRIGGER
statement discussed in the preceding section.

4.6.7.3. DROP TRIGGER

The DROP TRIGGER T-SQL statement removes one or more DML or DDL triggers previously created
using the CREATE TRIGGER statement. The SQL Server 2005 DROP TRIGGER statement is the same as in
SQL Server 2000. It now supports removing CLR triggers.

The DROP TRIGGER syntax for DML triggers is:

 DROP TRIGGER schema_name.trigger_name [,...n]

The DROP TRIGGER syntax for DDL triggers is:

 DROP TRIGGER trigger_name [,...n]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ON { DATABASE | ALL SERVER }

4.6.7.4. Metadata

The sys.triggers catalog view contains a row for each trigger in the current database. You can limit
the rows returned to CLR triggers by filtering on the type column, as shown in the following
statement:

 SELECT * FROM sys.triggers
 WHERE type='TA'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.7. ADO.NET In-Process Extensions Supporting CLR
Programming

ADO.NET has four main in-process functional extensions that are used when programming .NET
Framework routines. The SqlContext object provides access to context information, to a SqlPipe
object for sending results to the client, and to a SqlTriggerContext object that provides information
about the operation that caused a trigger to fire. The fourththe SqlDataRecord objectreturns to the
caller a custom result set from a stored procedure. These four extensions are discussed in the
following subsections.

4.7.1. SqlContext Object

Managed code is invoked in the server whenever a CLR routine is executed. Code running on the
server executes in the context of the caller connection, so the CLR code needs access to the caller
context. The SqlContext class in the Microsoft.SqlServer.Server namespace abstracts the context
of the caller and provides access to the context components through its public static properties,
described in Table 4-12.

Table 4-12. SqlContext public properties

Property Return type Description

IsAvailable bool Indicates whether the code that is
executing is running inside SQL
Server. If TRue, other members of
SqlContext can be accessed. If
false, all other properties will throw
InvalidOperationException when
accessed, and any attempts to open
a connection using the context
connection = true attribute in the
connection string will fail.

Pipe SqlPipe A path for messages and result sets
to flow to the client.

triggerContext SqlTriggerContext Provides access to information
about the operation that caused a
DML or DDL trigger to fire. Also
provides a map of the updated
columns.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Return type Description

You can retrieve TRiggerContext
only within a CLR trigger.

WindowsIdentity System.Security.Principal.WindowsIdentity Provides access to an impersonation
token representing the Windows
identity of the caller if the client
that initiated execution of the
stored procedure or function
connected to SQL Server using
integrated authentication. null is
returned if the caller was
authenticated using SQL Server
authentication and the code cannot
impersonate the caller.

The SQL Server process account is
the context for all CLR code invoked
inside of SQL Server. The
impersonation token is used to let
the code perform actions using the
identity of the caller instead of the
identity of the process account.

Only assemblies marked with
EXTERNAL_ACCESS or UNSAFE
permission can access the
WindowsIdentity property.

You obtain an in-process connection using the new connection context connection string keyword.
For example:

 SqlConnection conn = new SqlConnection("context connection=true")

4.7.2. SqlPipe Object

Use the SqlPipe object to send messages and result sets from a CLR stored procedure to the calling
client. The SqlPipe object cannot be directly instantiated. You obtain the SqlPipe object using the
Pipe property of the SqlContext object within the body of a CLR routine, as shown in the "Hello World
Example" section earlier in this chapter. The SqlPipe class has the public properties and methods
described in Table 4-13.

Table 4-13. SqlPipe public properties and methods

You can retrieve TRiggerContext
only within a CLR trigger.

WindowsIdentity System.Security.Principal.WindowsIdentity Provides access to an impersonation
token representing the Windows
identity of the caller if the client
that initiated execution of the
stored procedure or function
connected to SQL Server using
integrated authentication. null is
returned if the caller was
authenticated using SQL Server
authentication and the code cannot
impersonate the caller.

The SQL Server process account is
the context for all CLR code invoked
inside of SQL Server. The
impersonation token is used to let
the code perform actions using the
identity of the caller instead of the
identity of the process account.

Only assemblies marked with
EXTERNAL_ACCESS or UNSAFE
permission can access the
WindowsIdentity property.

You obtain an in-process connection using the new connection context connection string keyword.
For example:

 SqlConnection conn = new SqlConnection("context connection=true")

4.7.2. SqlPipe Object

Use the SqlPipe object to send messages and result sets from a CLR stored procedure to the calling
client. The SqlPipe object cannot be directly instantiated. You obtain the SqlPipe object using the
Pipe property of the SqlContext object within the body of a CLR routine, as shown in the "Hello World
Example" section earlier in this chapter. The SqlPipe class has the public properties and methods
described in Table 4-13.

Table 4-13. SqlPipe public properties and methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Description

IsSendingResults
Indicates whether the pipe is in the process of sending a result set, blocking it
from use.

Method

ExecuteAndSend() Executes a command specified as a SqlCommand object argument. The results
are sent directly back to the client.

Send() Three overloads send one of the following to the client:

string (informational messageequivalent to T-SQL PRINT statement)

SqlDataRecord object (single-row result set)

SqlDataReader object (multiple-row result set)

SendResultsEnd() Marks the end of a custom result set from a stored procedure initiated by the
SendResultsStart() method. Sets the SqlPipe object back to a state where
other methods can be called on it. This method can be called only after
SendResultsStart() is called.

SendResultsRow() Sends a row of data contained in a SqlDataRecord object to the client. This
method can be called only after SendResultsStart() is called. Each row must
conform to the SqlDataRecord argument describing the row that is supplied to
the SendResultsStart() method.

SendResultsStart(

)
Marks the start of a custom result set from a stored procedure. This method
takes a SqlDataRecord argument to construct the metadata that describes the
result set. All rows in the result set subsequently sent to the client using the
SendResultsRow() method must conform to this metadata.

4.7.3. SqlTriggerContext Object

The SqlTriggerContext class provides context information about the CLR DML or DDL trigger. The
SqlTriggerContext object cannot be directly instantiated. You obtain the SqlTrigger object using the
triggerContext property of the SqlContext object within the body of a CLR trigger. The
SqlTriggerContext class has the public properties and methods described in Table 4-14.

Table 4-14. SqlTriggerContext public properties and methods

Property Description

ColumnCount The number of columns potentially affected by the UPDATE operation that caused
the DML trigger to fire.

Eventdata A SqlXml object containing XML describing the triggering operation for a DDL
trigger.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Description

triggerAction The type of action that caused the trigger to fire. This is one of the
triggerAction enumeration values.

IsUpdatedColumn(

)
Indicates whether a column specified by its ordinal was modified by the UPDATE
operation that caused the DML trigger to fire.

4.7.4. SqlDataRecord Object

The SqlDataRecord class represents a single row of data together with its metadata. The class allows
stored procedures to return custom result sets to the client using the Send() or SendResultsRow()
methods of the SqlPipe object.

You instantiate a SqlDataRecord object by passing to the constructor a SqlMetaData object array that
contains an element of metadata for each column in the row. Each SqlMetaData object defines a
column name, column type, and possibly other column attributes. For example, the following code
defines a SqlDataRecord containing two columns:

 SqlMetaData[] md = new SqlMetaData[2];
 md[0] = new SqlMetaData("intCol", SqlDbType.Int);
 md[1] = new SqlMetaData("stringCol", SqlDbType.NVarChar, 50);
 SqlDataRecord row = new SqlDataRecord(md);

The SqlDataRecord class has accessor methods that let you get and set column values. This is similar
to a DataReader except that you can write column values in addition to reading them. For example,
the following code fills the two columns in the SqlDataRecord object defined in the preceding
example:

 row.SetSqlInt32(0, 1);
 row.SetSqlString(1, "Record 1");

triggerAction The type of action that caused the trigger to fire. This is one of the
triggerAction enumeration values.

IsUpdatedColumn(

)
Indicates whether a column specified by its ordinal was modified by the UPDATE
operation that caused the DML trigger to fire.

4.7.4. SqlDataRecord Object

The SqlDataRecord class represents a single row of data together with its metadata. The class allows
stored procedures to return custom result sets to the client using the Send() or SendResultsRow()
methods of the SqlPipe object.

You instantiate a SqlDataRecord object by passing to the constructor a SqlMetaData object array that
contains an element of metadata for each column in the row. Each SqlMetaData object defines a
column name, column type, and possibly other column attributes. For example, the following code
defines a SqlDataRecord containing two columns:

 SqlMetaData[] md = new SqlMetaData[2];
 md[0] = new SqlMetaData("intCol", SqlDbType.Int);
 md[1] = new SqlMetaData("stringCol", SqlDbType.NVarChar, 50);
 SqlDataRecord row = new SqlDataRecord(md);

The SqlDataRecord class has accessor methods that let you get and set column values. This is similar
to a DataReader except that you can write column values in addition to reading them. For example,
the following code fills the two columns in the SqlDataRecord object defined in the preceding
example:

 row.SetSqlInt32(0, 1);
 row.SetSqlString(1, "Record 1");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.8. Custom Attributes for CLR Routines

The .NET CLR is extended using attributesdescriptive keywords saved in the assembly metadata that
provide additional information for programming constructs. The custom attributes used with SQL
Server 2005 CLR routines are defined in the Microsoft.SqlServer.Server namespace. Table 4-15
describes custom attributes used with SQL Server CLR routines.

Table 4-15. Custom attributes for CLR routines

Attribute CLR routine Description

SqlFacet UDT Specifies details about the return type of a UDT.

SqlFunction UDF Indicates that the method should be registered as a UDF.

SqlMethod UDT
Specifies the determinism and data access properties of
methods in a UDT.

SqlProcedure
Stored
procedure

Indicates that the method should be registered as a
stored procedure.

SqlTrigger Trigger
Indicates that the method should be registered as a
trigger.

SqlUserDefinedAggregate UDA
Indicates that the method should be registered as a
UDA.

SqlUserDefinedType UDT
Indicates that the class or structure should be registered
as a UDT.

These attributes are discussed in detail in Chapter 5 in the specific sections about the .NET
Framework routines that use them.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.9. SQL Server Data Types in the .NET Framework

The System.Data.SqlTypes namespace is part of the base class library of the .NET Framework. The
namespace provides data types that map closely to native SQL Server data types. There are
differences between SqlTypes data types and .NET Framework data types:

SqlTypes data types support NULL values while .NET Framework data types do not. All arithmetic
and bitwise operators and most functions return NULL if any SqlTypes operands or arguments
are NULL.

SqlTypes provides a SqlBoolean data type that represents a tristate logical valueTRue, false,
and null (unknown value).

The .NET Framework Decimal data type and the corresponding SQL Server Decimal data type
have different maximum values. The Decimal data type assumes maximum precision, whereas
the SqlDecimal data type and the SQL Server Decimal data type have the same maximum
precision, scale, and semantics.

Exceptions are thrown for all overflow and underflow errors and divide-by-zero errors when
using SqlTypes data types. This behavior is not guaranteed with .NET Framework data types.

Table 4-16 lists SQL Server data types and their equivalents in the System.Data.SqlTypes namespace
and in the .NET Framework.

Table 4-16. SQL Server, System.Data.SqlTypes, and .NET Framework data
type equivalents

SQL Server data
type

System.Data.SqlTypes data
type

.NET Framework data type

varbinary SqlBytes, SqlBinary Byte[]

binary SqlBytes, SqlBinary Byte[]

image None None

varchar None None

char None None

nvarchar SqlChars, SqlString String, Char[]

nchar SqlChars, SqlString String, Char[]

text None None

ntext None None

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SQL Server data
type

System.Data.SqlTypes data
type

.NET Framework data type

uniqueidentifier SqlGuid Guid

rowversion None Byte[]

bit SqlBoolean Boolean

tinyint SqlByte Byte

smallint SqlInt16 Int16

int SqlInt32 Int32

bigint SqlInt64 Int64

smallmoney SqlMoney Decimal

money SqlMoney Decimal

numeric SqlDecimal Decimal

decimal SqlDecimal Decimal

real SqlSingle Single

float SqlDouble Double

smalldatetime SqlDateTime DateTime

datetime SqlDateTime DateTime

sql_variant None Object

User-defined type
(UDT)

None
Same class bound to the type in the
registered assembly or dependent assembly

table None None

cursor None None

timestamp None None

xml SqlXml None

uniqueidentifier SqlGuid Guid

rowversion None Byte[]

bit SqlBoolean Boolean

tinyint SqlByte Byte

smallint SqlInt16 Int16

int SqlInt32 Int32

bigint SqlInt64 Int64

smallmoney SqlMoney Decimal

money SqlMoney Decimal

numeric SqlDecimal Decimal

decimal SqlDecimal Decimal

real SqlSingle Single

float SqlDouble Double

smalldatetime SqlDateTime DateTime

datetime SqlDateTime DateTime

sql_variant None Object

User-defined type
(UDT)

None
Same class bound to the type in the
registered assembly or dependent assembly

table None None

cursor None None

timestamp None None

xml SqlXml None

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.10. Testing and Debugging CLR Routines

SQL Server 2005 lets you debug both T-SQL database objects and CLR routines. SQL Server 2005
does not ship with a debugger, so you must use Visual Studio 2005.

Follow these steps to use the Visual Studio 2005 debugger to step through source code for registered
CLR assemblies when executing T-SQL statements using .NET Framework routines:

Add the PDB filea file containing debugging and project state informationto the registered
assembly. For example, to add the PDB file to the HelloWorld stored procedure project in the
"Hello World Example" section earlier in this chapter, execute the following T-SQL statement:

 ALTER ASSEMBLY HelloWorld
 ADD FILE FROM 'C:\PSS2005\HelloWorld\HelloWorld\bin\Debug\HelloWorld.pdb'

1.

In the Visual Studio 2005 IDE, select Debug Attach to Process.2.

Check the "Show processes from all users" checkbox in the Attach to Process dialog box.3.

Select sqlservr.exe from the Available Processes list box. Click the Attach button and close the
dialog box.

4.

Set a breakpoint in the source code at the following line:

 SqlContext.Pipe.Send("Hello world.\n");

5.

Execute the stored procedure from SQL Server Management Studio:

 exec HelloWorldSP

Execution will stop at the breakpoint you set in the Visual Studio IDE.

6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 5. Programming SQL Server CLR
Routines
This chapter demonstrates how to create each type of SQL Server 2005 CLR routine: user-defined
functions (scalar-valued functions and table-valued functions), stored procedures, user-defined
aggregate (UDA) functions, user-defined types (UDTs), and both DML and DDL triggers. All examples
in this section use Visual Studio 2005 to create and compile the CLR routines. If you don't have Visual
Studio 2005, you can use the C# command-line compiler (csc.exe) discussed in Chapter 4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.1. Scalar-Valued Functions

A scalar-valued function (SVF) is a user-defined function (UDF) that returns a single value. Scalar-
valued functions can take arguments and return values of any scalar data type supported by SQL
Server except rowversion, text, ntext, image, timestamp, table, or cursor.

An SVF is implemented as a method of a class in a .NET Framework assembly. The return value of
the method must be compatible with the SQL Server data type that the method returns. Table 4-16
lists SQL Server data types and their equivalent CLR data types.

You identify a .NET SVF or TVF by annotating the method where you implement the function with the
SqlFunction attribute. In addition to indicating that the method should be registered as a function,
the SqlFunction attribute can be used to define characteristics of the function. The SqlFunction
attribute has the following syntax:

 SqlFunction [(function-attribute [,...])]

 function-attribute::=
 IsDeterministic = {true | false}
 | DataAccess = { DataAccessKind.None | DataAccessKind.Read }
 | SystemDataAccess = { SystemDataAccessKind.None | SystemDataAccessKind.Read }
 | IsPrecise = { true | false }

 | FillRowMethodName = string

 | Name = string

 | TableDefinition = string

where:

IsDeterministic

Specifies whether the function always returns the same output values for the same set of input
values and the same database state. This allows the server to do performance optimizations.
The default value is false.

DataAccess = { DataAccessKind.None | DataAccessKind.Read }

Specifies the type of data access the function requires if it accesses data on the local SQL
Server or on a remote server if transaction integration is required. The DataAccess argument
takes one of two values of the DataAccessKind enumeration:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DataAccessKind.None

The function does not access data

DataAccessKind.Read

The function only reads data

The DataAccess property should be set to DataAccessKind.Read if a T-SQL statement is
executed inside a CLR SVF or TVF routine.

User-defined functions cannot insert, update, or delete data.

SystemDataAccess = { SystemDataAccessKind.None | SystemDataAccessKind.Read }

Specifies the type of data access the function requires if it accesses data stored in the system
catalogs or virtual system tables. The SystemDataAccess argument takes one of the two values
of the SystemDataAccessKind enumeration:

SystemDataAccessKind.None

The function does not access data. This is the default value.

SystemDataAccessKind.Read

The function only reads data.

IsPrecise

Specifies whether the return value of the function depends on imprecise calculations involving
single or double data types (float or real in SQL Server). This property is used to determine
whether the computed columns using the function can be indexed. The default value is false.

FillRowMethodName

Specifies the name of the method used by a table-valued function to fill a row of data in the
table returned by the function. Fill row methods are discussed in the next section, "Table-
Valued Functions."

Name

Specifies the name with which the function should be registered in SQL Server.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TableDefinition

Specifies the layout of the table returned by a table-valued function.

The following example creates, registers, and executes a scalar-valued function. This function returns
the total for a specific sales order by summing the LineTotal values in the Sales.SalesOrderDetail
table in AdventureWorks for a specified sales order ID. Follow these steps:

Using the Visual Studio 2005 IDE, create a new SQL Server project named ScalarUdf.1.

Create a user-defined function item in the project by right-clicking on the project in Solution
Explorer and selecting Add User-Defined function from the context menu. Name the
function SumLineTotal and click the Add button.

2.

Add the following using directive to access the ADO.NET namespace:

 using System.Data.SqlClient;

3.

Modify the SqlFunction attribute to indicate that the function will be reading data:

 [SqlFunction(DataAccess = DataAccessKind.Read)]

4.

Change the return type of the SumLineTotal() method from SqlString to SqlMoney to match
the data type of the LineTotal column being summed. Add an int argument named
salesOrderID to the SumLineTotal() method.

5.

Add code to the SumLineTotal() method to perform the calculation. The complete code follows:

 using System;
 using System.Data;
 using System.Data.Sql;
 using System.Data.SqlTypes;
 using Microsoft.SqlServer.Server;
 using System.Data.SqlClient;

 public partial class UserDefinedFunctions
 {
 [SqlFunction(DataAccess = DataAccessKind.Read)]
 public static SqlMoney SumLineTotal(int salesOrderID)
 {
 using (SqlConnection conn =
 new SqlConnection("context connection=true"))
 {
 conn.Open();

6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SqlCommand cmd = new SqlCommand(
 "SELECT SUM(LineTotal) " +
 "FROM Sales.SalesOrderDetail " +
 "WHERE SalesOrderID=" + salesOrderID, conn);

 return (decimal)cmd.ExecuteScalar();
 }
 }
 }

The function reads data from SQL Server, so the DataAccess property of the SqlFunction
attribute is set to DataAccessKind.Read.

Notice that the return value is decimal, which is compatible with the SQL Server Money type.
Table 4-16 lists SQL Server data types and their equivalent CLR data types.

Build the solution.7.

In SQL Server Management Studio, register the assembly and create the scalar-valued function
by executing this query:

 USE AdventureWorks
 GO

 CREATE ASSEMBLY ScalarUdf
 FROM 'C:\PSS2005\ScalarUdf\ScalarUdf\bin\Debug\ScalarUdf.dll'
 GO

 CREATE FUNCTION SumLineTotal(@salesOrderID int)
 RETURNS MONEY
 AS EXTERNAL NAME ScalarUdf.UserDefinedFunctions.SumLineTotal

8.

Execute the scalar-valued function with the following T-SQL statement:

 SELECT dbo.SumLineTotal(43660)

The results are shown in Figure 5-1.

9.

Figure 5-1. Results for scalar-valued function example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.2. Table-Valued Functions

A table-valued function (TVF) is a UDF that returns a table. A TVF is implemented as a method of a
class in a .NET Framework assembly that returns data as an IEnumerable or IEnumerator object. The
columns of the return table cannot include timestamp columns or non-Unicode string data columns
such as char, varchar, and text.

CLR TVFs are similar to their T-SQL counterpartsthe main difference is that a T-SQL TVF temporarily
stores results in an intermediate table, whereas a CLR TVF streams results back to the consumer. As
a result, a T-SQL TVF supports constraints and unique indexes on the result set, whereas a CLR TVF
can be consumed incrementally once the first row is availablethe result set does not have to be fully
materialized before returning values.

The following example creates, registers, and executes a table-valued function that returns a table
containing the Name, Length, and ModifiedDate for each file in a specified directory. Follow these
steps:

Enumerators

The IEnumerator interface supports simple iteration over a nongeneric collection. It is the
base interface for all nongeneric enumerators . An enumerator can read the data in the
underlying collection but cannot be used to modify the data. IEnumerator has one public
property, Current, and two public methods, MoveNext() and Reset(). Initially the
enumerator is positioned before the first element in the collection.

The Current property returns an object containing the current element in the
collection. You must advance the enumerator from its initial position to the first
element in the collection by calling MoveNext() before reading the value of the
Current property. Reading the Current property when the enumerator is not
positioned on an element in the collection (before the first element or after the last
element) returns an InvalidOperationException.

The MoveNext() method advances the enumerator to the next element in the
collection. MoveNext() returns TRue if the enumerator was successfully advanced
and false if the enumerator has passed the end of the collection.

The Reset() method sets the enumerator to the initial position before the first
element in the collection.

The IEnumerable interface has a single method, GetEnumerator(), which returns an
IEnumerator object.

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using the Visual Studio 2005 IDE, create a new SQL Server project named TableUdf.1.

Create a user-defined function item in the project. Name the function ReadDirectoryFileInfo.2.

Replace the code in the class with the following code:

 using System;
 using System.Collections;
 using System.Data;
 using System.Data.Sql;
 using System.Data.SqlTypes;
 using Microsoft.SqlServer.Server;
 using System.IO;

 public partial class UserDefinedFunctions
 {
 [SqlFunction(FillRowMethodName = "FillRow", TableDefinition =
 "FileName nvarchar(256), Size int, DateModified datetime")]
 public static IEnumerator ReadDirectoryEntries(string path)
 {
 return new DirectoryLoader(path);
 }

 private static void FillRow(object obj, out SqlString fileName,
 out SqlInt64 fileLength, out SqlDateTime dateModified)
 {
 if (obj != null)
 {
 DirectoryEntry de = (DirectoryEntry)obj;
 fileName = de._fileName;
 fileLength = de._fileLength;
 dateModified = de._fileDateModified;
 }
 else
 {
 fileName = SqlString.Null;
 fileLength = SqlInt64.Null;
 dateModified = SqlDateTime.Null;
 }
 }
 }

 public partial class DirectoryLoader : IEnumerator
 {
 // array that stores the directory entries
 private FileInfo[] fia;
 private int index = -1;

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public DirectoryLoader(string path)
 {
 string[] files = Directory.GetFiles(path);
 fia = new FileInfo[files.Length];
 for (int i = 0; i < files.Length; i++)
 fia[i] = new FileInfo(files[i]);
 }

 public object Current
 {
 get
 {
 if (index != -1)
 return new DirectoryEntry(fia[index].Name,
 fia[index].Length, fia[index].LastWriteTime);
 else
 return null;
 }
 }

 public bool MoveNext()
 {
 if (index == fia.Length - 1)
 return false;

 index++;
 return true;
 }

 public void Reset()
 {
 index = -1;
 }
 }
 public partial class DirectoryEntry

 {
 internal string _fileName;
 internal long _fileLength;
 internal DateTime _fileDateModified;

 public DirectoryEntry(string fileName, long fileLength,
 DateTime fileDateModified)
 {
 _fileName = fileName;
 _fileLength = fileLength;
 _fileDateModified = fileDateModified;
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The code contains three classesUserDefinedFunctions, which implements the TVF, and two
helper classes:

UserDefinedFunctions

The method ReadDirectoryEntries() implements the TVF. It is annotated with the
SqlFunction attribute described in the preceding section, "Scalar-Valued Functions." The
SqlFunction attribute identifies the public method FillRow() as the method that SQL
Server uses to map the current enumerator element to a row in the table that is returned
from the TVF. The SqlFunction attribute also specifies the TableDefinition property,
which defines the record in the table returned from the TVF.

DirectoryLoader

The enumerator that creates a collection of directory entries for a path specified as an
argument to its constructor. The contents of the directory are stored in a FileInfo array
named fia. The Current property of the enumerator returns a DirectoryEntry instance
containing the filename, file length, and date modified.

DirectoryEntry

Defines a class used to store the current element in the directory enumerator.

Build the solution.4.

In SQL Server Management Studio, register the assembly and create the table-valued function
by executing this query:

 USE ProgrammingSqlServer2005
 GO

 ALTER DATABASE ProgrammingSqlServer2005
 SET TRUSTWORTHY ON
 GO

 CREATE ASSEMBLY TableUdf
 FROM 'C:\PSS2005\TableUdf\TableUdf\bin\Debug\TableUdf.dll'
 WITH PERMISSION_SET = EXTERNAL_ACCESS
 GO

 CREATE FUNCTION ReadDirectoryEntries(@path nvarchar(256))
 RETURNS TABLE
 (FileName nvarchar(256), Length bigint, DateModified datetime)
 AS
 EXTERNAL NAME TableUdf.UserDefinedFunctions.ReadDirectoryEntries

5.

6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice that the assembly is registered with EXTERNAL_ACCESS permission set to allow it to access
the file system.

Execute the table-valued function with the following T-SQL statement:

 SELECT * FROM ReadDirectoryEntries('c:\')

The results are shown in Figure 5-2.

6.

Figure 5-2. Results for TVF example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.3. Stored Procedures

Stored procedures are routines that return tabular result sets, messages, and output parameters to the
client and invoke DML and DDL statements. A CLR stored procedure is implemented as a public static
method of a class in a .NET Framework assembly. The method is either void or returns an integer that is
the return code from the stored procedure. A method declared void implicitly returns a stored procedure
return code of 0 .

You identify a stored procedure by annotating the method that implements the stored procedure with the
SqlProcedure attribute. The SqlProcedure attribute indicates that the method should be registered as a
stored procedure. The SqlProcedure attribute has the following syntax:

 SqlProcedure [(procedure-attribute [,...])]

 procedure-attribute::=

 Name = "procedure name"

where:

Name

Specifies the name of the stored procedure.

Arguments to the stored procedure method can be any native SQL Server data type that has an equivalent
in managed code.

CLR stored procedures can return information to the client as messages, tabular result sets, and output
parameters. Send messages and tabular result sets using one of the Send() methods of the SqlPipe object
or using the ExecuteAndSend() method of the SqlPipe object. The SqlPipe object is described in Chapter 4
. Output parameters are arguments that are passed in the same way as other output arguments (i.e.,
using the out keyword in C#).

The following example creates, registers, and executes a stored procedure that returns a tabular result set
of all employees that work a specified shift from the HumanResources.Shift table in AdventureWorks . The
stored procedure takes the shift ID as its only argument. Follow these steps:

Using the Visual Studio 2005 IDE, create a new SQL Server project named StoredProcedure .1.

Create a stored procedure item in the project. Name the item EmployeesInShift.cs .2.

Replace the EmployeesInShiftCode.cs code with the following:3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.

 using System;
 using System.Data;
 using System.Data.Sql;
 using Microsoft.SqlServer.Server;
 using System.Data.SqlTypes;
 using System.Data.SqlClient;

 public partial class StoredProcedures
 {
 [SqlProcedure]
 public static void EmployeesInShift(int shiftID)
 {
 using (SqlConnection conn = new SqlConnection("context connection=true"))
 {
 conn.Open();
 SqlCommand cmd = new SqlCommand(
 "SELECT e.* FROM HumanResources.Employee e " +
 "JOIN HumanResources.EmployeeDepartmentHistory h " +
 "ON e.EmployeeID = h.EmployeeID " +
 "WHERE h.ShiftID = " + shiftID, conn);
 SqlContext.Pipe.ExecuteAndSend(cmd);
 }
 }
 };

The EmployeesInShift() method implements the stored procedure and is annotated with the
StoredProcedure attribute.

The tabular result set is returned to the client using the ExecuteAndSend() method of the SqlPipe
object that executes a command and sends the tabular result set directly to the client. The method
takes a single parameter that is a SqlCommand object associated with the context connection.
Alternatively, you can send a tabular result set to the client using either the Send(SqlDataReader) or
Send(SqlDataRecord) method of the SqlPipe object. The following line of code replaces the
ExecuteAndSend() method used in this example with the Send(SqlDataReader) method:

 SqlContext.Pipe.Send(cmd.ExecuteReader());

The Send() methods lets you manipulate the data before you send it to the client but is slightly
slower because of additional overhead.

3.

Build the solution.4.

Register the assembly and create the stored procedure by executing the following T-SQL statement in
SQL Server Management Studio:

5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 USE AdventureWorks
 GO

 CREATE ASSEMBLY EmployeeInShift
 FROM 'C:\PSS2005\StoredProcedure\StoredProcedure\bin\Debug\StoredProcedure.dll'
 GO

 CREATE PROCEDURE EmployeeByShiftSP
 @shiftID int
 AS EXTERNAL NAME EmployeeInShift.StoredProcedures.EmployeesInShift

5.

Execute the stored procedure:

 EXEC EmployeeByShiftSP @shiftID=1

The resulting set is all of the employees for the specified shift ID. Partial results are shown in Figure
5-3 .

6.

Figure 5-3. Results for stored procedure example that returns a tabular result
set

The following CLR stored procedure example returns an output parameter, a message, and a return code:

Add the following method to the StoredProcedure class created in the preceding example:

 [SqlProcedure]
 public static int EmployeeByShift2SP(out int outputVal)
 {
 outputVal = 10;
 SqlContext.Pipe.Send("Test message.");
 return 5;
 }

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The limit for the return string is 8000 characters. Extra characters are truncated.

Build the solution.2.

Update the assembly registration in SQL Server and create the new stored procedure by executing
this T-SQL statement:

 ALTER ASSEMBLY EmployeeInShift
 FROM 'C:\PSS2005\StoredProcedure\StoredProcedure\bin\Debug\StoredProcedure.dll'
 GO

 CREATE PROCEDURE EmployeeByShift2SP
 @outputVal int OUT
 AS EXTERNAL NAME EmployeeInShift.StoredProcedures.EmployeeByShift2SP

3.

Execute the stored procedure:

 DECLARE @returnCode int
 DECLARE @outputVal int

 EXEC @returnCode = EmployeeByShift2SP @outputVal OUTPUT

 PRINT 'Return code = ' + CAST(@returnCode AS CHAR(5))
 PRINT 'Output value @outputVal = ' + CAST(@outputVal AS CHAR(5))

Results are shown in Figure 5-4 .

4.

Figure 5-4. Results for stored procedure example that returns an output
parameter, a message, and a return code

The following CLR stored procedure example returns a result set containing a single row of data created
dynamically by the stored procedure, as shown next.

Add the following method to the StoredProcedure class created in the preceding example:1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [SqlProcedure]
 public static void DynamicSingleRow()
 {
 SqlMetaData
[] md = new SqlMetaData[2];
 md[0] = new SqlMetaData("intCol", SqlDbType.Int);
 md[1] = new SqlMetaData("stringCol", SqlDbType.NVarChar, 50);

 SqlDataRecord
 row = new SqlDataRecord(md);
 row.SetSqlInt32(0, 1);
 row.SetSqlString(1, "Record 1");

 SqlContext.Pipe.Send(row);
 }

The method uses the SqlMetaData class to define the schema of the result set row. The row is created
as an instance of the SqlDataRecord class. The row values are filled using the Set() methods of
SqlDataRecord . The Set() methods take two argumentsan ordinal specifying the column number
and the value. Finally, an overload of the SqlPipe.Send() method is used to return the instance of
the SqlDataRecord class as the result set row.

You cannot extend this example to return a result set containing multiple rows since a new result set
is returned each time the Send() method is called. The next example shows how to return a
dynamically created result set containing multiple rows.

1.

Build the solution.2.

Update the assembly registration in SQL Server and create the new stored procedure by executing
this T-SQL statement:

 ALTER ASSEMBLY EmployeeInShift
 FROM 'C:\PSS2005\StoredProcedure\StoredProcedure\bin\Debug\StoredProcedure.dll'
 GO

 CREATE PROCEDURE DynamicSingleRow
 AS EXTERNAL NAME EmployeeInShift.StoredProcedures.DynamicSingleRow

3.

Execute the stored procedure:

 EXEC DynamicSingleRow

4.

Results are shown in Figure 5-5 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following CLR stored procedure example returns a result set containing two rows of data created
dynamically by the stored procedure:

Add the following method to the StoredProcedure class created in the preceding example:

 [SqlProcedure]
 public static void DynamicMultiRow()
 {

Figure 5-5. Results for stored procedure example that returns a
dynamically created single-row result set

 SqlMetaData[] md = new SqlMetaData[2];
 md[0] = new SqlMetaData("intCol", SqlDbType.Int);
 md[1] = new SqlMetaData("stringCol", SqlDbType.NVarChar, 50);

 SqlDataRecord row = new SqlDataRecord(md);
 SqlContext.Pipe.SendResultsStart(row);

 // create and send the first record
 row.SetSqlInt32(0, 1);
 row.SetSqlString(1, "Record 1");
 SqlContext.Pipe.SendResultsRow(row);

 // create and send the second record
 row.SetSqlInt32(0, 2);
 row.SetSqlString(1, "Record 2");
 SqlContext.Pipe.SendResultsRow(row);

 SqlContext.Pipe.SendResultsEnd();
 }

The SqlResultsStart() , SqlResultsSend() , and SqlResultsEnd() methods of the SqlPipe class
are used to send dynamically created result sets containing multiple rows. The SqlResultsStart()
method takes a SqlMetaData array argument from which the schema of the result set is inferred. The
SqlResultsRow() method is called for each row to return in the result set. It can be called any time
after SqlResultsStart() is called and before SqlResultsEnd() is called marking the end of the result

1.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

set.

Build the solution.2.

Update the assembly registration in SQL Server and create the new stored procedure by executing
this T-SQL statement:

 ALTER ASSEMBLY EmployeeInShift
 FROM 'C:\PSS2005\StoredProcedure\StoredProcedure\bin\Debug\StoredProcedure.dll'
 GO

 CREATE PROCEDURE DynamicMultiRow
 AS EXTERNAL NAME EmployeeInShift.StoredProcedures.DynamicMultiRow

3.

Execute the stored procedure:

 EXEC DynamicMultiRow

4.

Results are shown in Figure 5-6 .

Figure 5-6. Results for stored procedure example that returns a dynamically
created multi-row result set

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.4. User-Defined Aggregate Functions

A user-defined aggregate (UDA) function returns a scalar result that is the result of a calculation on
values in a set of rows. Examples of such functions include built-in SQL Server aggregate functions
such as SUM, AVG, MIN, and MAX. A CLR UDA function is implemented as a structure or class in a .NET
Framework assembly. A CLR UDA function can be invoked in T-SQL statements with the same rules
that apply to system aggregate functions.

To implement a CLR UDA function, you have to write only the code that implements the accumulation
logiciteration over the result set and computing accumulated values are managed by the query
processor. Specifically, you must implement an aggregation contract that defines mechanisms to
save the intermediate state of the aggregation and to accumulate new values. This aggregation
contract consists of four methods:

public void Init()

Invoked once for each group that the query processor is aggregating to initialize the aggregate
computation. This method should clean up previous uses of the instance, because the query
processor can choose to reuse an instance of an aggregate class to compute aggregates for
multiple groups.

public void Accumulate(input_type value)

The query processor invokes this method to accumulate aggregate values. The method is
invoked for each value in the group being accumulated. The input_type argument is the
managed SQL Server data type equivalent to the native SQL Server data type specified by the
argument.

public void Merge(udagg_class value)

Used to merge a second instance of this aggregate class with the current instance. The query
processor can invoke this method to merge partial computations of an aggregate on group
partitions.

public return_type Terminate()

Completes the aggregation and returns the result. The return_type is a managed SQL Server
data type equivalent to the return_sqltype specified in the CREATE AGGREGATE T-SQL statement
used to create the CLR aggregate function.

You identify a UDA function by annotating the implementing class with the SqlUserDefinedAggregate
attribute, which indicates that a class should be registered as a UDA function. The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SqlUserDefinedAggregate attribute has the following syntax:

 SqlUserDefinedAggregate [(aggregate-attribute [,...])]

 aggregate-attribute::=
 Format = {Native | UserDefined}
 IsInvariantToDuplicates
 = {true | false}
 IsInvariantToNulls = {true | false}
 IsInvariantToOrder = {true | false}
 IsNullIfEmpty = {true | false}
 | MaxByteSize

 = n

where:

Format = {Native | UserDefined}

Specifies the serialization format for the typeeither Native or UserDefined.

Native serialization uses a simple algorithm to efficiently serialize the type. Native serialization
is recommended for simple types containing only fields of the following types: bool, byte,
sbyte, short, ushort, int, uint, long, ulong, float, double, SqlByte, SqlInt16, SqlInt32,
SqlInt64, SqlDateTime, SqlSingle, SqlDouble, SqlMoney, and SqlBoolean. Native serialization
can also contain UDTs that use Native serialization.

Native serialization has the following requirements:

All the fields of the type must be blittabledata types that have a common representation
in both managed and unmanaged memory and therefore do not need to be converted
when passed between managed and unmanaged code. The following types from the
System namespace are blittable: Byte, SByte, UInt16, Int32, UInt32, Int64, IntPtr, and
UIntPtr. One-dimensional arrays of blittable types and formatted value types containing
only blittable types are also blittable.

The type must not specify the MaxByteSize property.

The type must not have any fields that are not serialized.

UserDefined serialization controls the serialization through code and has the following
requirements:

You must specify the MaxByteSize property of the SqlUserDefinedAggregate attribute.

The class or structure implementing the type must implement the Read() and Write()
methods of the IBinarySerializable interface to read and write the byte stream.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsInvariantToDuplicates

Specifies whether the aggregate is invariant to duplicates. For example, MAX and MIN are
invariant to duplicates, and AVG and SUM are not.

IsInvariantToNulls

Specifies whether the aggregate is invariant to nulls. For example, MAX and MIN are invariant to
nulls, and COUNT is not (since nulls are included in the count).

IsInvariantToOrder

Specifies whether the aggregate is invariant to the order of the values. Specifying true gives
the query optimizer more flexibility in choosing an execution plan and can result in improved
performance.

IsNullIfEmpty

Specifies whether the aggregate returns a null reference if no values are accumulated.
Otherwise the value that the initialized value of the variable returned by the Terminate()
method is returned.

MaxByteSize

The maximum size of the UDT instance. MaxByteSize must be specified if the Format property is
set to UserDefined.

The following example creates, registers, and executes a UDA function that returns the sum of a
SqlMoney column in a table. Follow these steps:

Using the Visual Studio 2005 IDE, create a new SQL Server project named Uda.1.

Create an aggregate item in the project. Name the item SumMoney.cs. Empty code blocks are
created for the four required methods.

2.

Replace the code in SumMoney.cs with the following code:

 using System;
 using System.Data;
 using System.Data.Sql;
 using System.Data.SqlTypes;
 using Microsoft.SqlServer.Server;

 [Serializable]
 [SqlUserDefinedAggregate(Format.Native)]

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public struct SumMoney
 {
 private SqlMoney sum;

 public void Init()
 {
 sum = 0;
 }

 public void Accumulate(SqlMoney Value)
 {
 sum += Value;
 }

 public void Merge(SumMoney Group)
 {
 sum += Group.sum;
 }

 public SqlMoney Terminate()
 {
 return sum;
 }
 }

Build the solution.4.

In SQL Server Management Studio, register the assembly and create the UDA function by
executing the following statement:

 USE AdventureWorks
 GO

 CREATE ASSEMBLY SumMoney
 FROM 'C:\PSS2005\Uda\Uda\bin\Debug\Uda.dll'
 GO

 CREATE AGGREGATE SumMoneyUda
 (@Value money)
 RETURNS money
 EXTERNAL NAME SumMoney.SumMoney

5.

Execute the aggregate function on the Sales.SalesOrderHeader table in Aventure-Works:

 SELECT dbo.SumMoneyUda(SubTotal), dbo.SumMoneyUda(TaxAmt),
 dbo.SumMoneyUda(Freight), dbo.SumMoneyUda(TotalDue)

6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 FROM Sales.SalesOrderHeader

The results shown in Figure 5-7 are returned (which are the same as the totals returned by the
built-in SUM function).

Figure 5-7. Results for UDA function example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.5. User-Defined Types

In addition to supporting native and simple types as in previous versions of SQL Server, SQL Server
2005 lets you define CLR user-defined types (UDTs). This lets you extend the built-in data types and
define complex data types. A CLR UDT can be used in all contexts where a SQL Server system type
can be used.

A CLR UDT is implemented as a class in a .NET Framework assembly. Identify a CLR UDT by
annotating the class that implements the UDT with the SqlUserDefinedType attribute, which indicates
that a class should be registered as a UDT. The SqlUserDefinedType attribute has the following
syntax:

 SqlUserDefinedType [(udt-property [,...])]

 udt-property::=
 Format = { Native | UserDefined }
 | MaxByteSize

= n
 | IsByteOrdered
= { true | false }
 | ValidationMethod

 = string
 | IsFixedLength = { true | false }

 | Name = string

where:

Format = { Native | UserDefined }

The serialization format of the UDT. For more information about these two values, see the
Format property for the SqlUserDefinedAggregate attribute in the "User-Defined Aggregate
Functions" section earlier in this chapter.

If the UDT is defined in a class rather than a structure, and if the Format property is Native, a
StructLayout attribute must be specified and set to LayoutKind.Sequential. This forces the
members in the class to be serialized in the same order in which they appear in the class.

MaxByteSize

Specifies the maximum size of an instance of the UDT between 1 and 8000 bytes. You must

http://lib.ommolketab.ir
http://lib.ommolketab.ir

specify MaxByteSize if the Format property is set to UserDefined. Do not specify MaxByteSize if
the Format property is set to Native.

IsByteOrdered

Specifies how binary comparisons are performed on the UDT by SQL Server. When
IsByteOrdered is TRue, the UDT is ordered in the same way as its serialized binary
representation and can be used to order the data. The following features are supported on the
UDT column in a table when IsByteOrdered is true:

Creating an index on the column

Creating primary and foreign key constraints, and CHECK and UNIQUE constraints on the
column

Using the column in T-SQL ORDER BY, GROUP BY, and PARTITION BY clauses

Using comparison operators in T-SQL statements on the column

ValidationMethod

Specifies the method used to validate instances of the UDT when the data is deserialized from a
binary value. The converted method returns a Boolean indicating whether the UDT instance is
valid.

The database engine automatically converts binary values to UDT values. The database engine
prevents invalid values in the database by checking whether values are appropriate for the
serialization format of the type and that the value can be deserialized. Default checking might
be inadequate when, for example, UDT values are constrained by a value set or a range.

IsFixedLength

Specifies whether all instances of the UDT are the same length. If the IsFixedLength property
is true, all instances of the UDT must have the length, in bytes, specified by the MaxByteSize
property. The property is used only when the Format property is set to UserDefined.

Name

Specifies the name of the type.

When a field, method, or property is referenced as part of a query, the T-SQL type of the return
value is inferred from the return type. The SqlFacet attribute can be used to return additional
information about the return type of a non-void UDT expressionthe SqlFacet attribute does not
constrain the specific values that can be stored in the type. The syntax of the SqlFacet attribute is as
follows:

 SqlFacet[(facet-attribute [,...])]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 facet-attribute::=
 IsFixedLength = { true | false }
 | MaxSize

= { n }
 | Precision

 = { n }
 | Scale

 = { n }
 | IsNullable
 = { true | false }

where:

IsFixedLength

Specifies whether the return type is a fixed length. IsFixedLength must be set to false if the
MaxSize property is set to -1. The default value is false.

MaxSize

Specifies the maximum size of the return type in bytes for binary types and characters for
character field types. The default is 4000 for Unicode character types and 8000 for binary
types. The value -1 indicates a large character or binary type.

Precision

Specifies the precision (number of digits in the number) of the return type as a value from 1 to
38. This property is used only with numeric types. Scale must be specified if Precision is
specified. The default value is 38.

Scale

Specifies the scale (number of digits to the right of the decimal point) of the return type as a
value from 0 to 38. This property is used only with numeric types. Precision must be specified
if Scale is specified. The default value is 0.

IsNullable

Indicates whether the value of the return type can be null. The default is TRue.

The properties specified for the SqlFacet attribute must be compatible with the return type. Table 5-
1 shows SqlFacet properties that can be specified for each return type.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 5-1. Allowable SqlFacet properties by return type

Type IsFixedLength MaxSize Precision Scale IsNullable

SqlBoolean N N N N Y

SqlByte N N N N Y

SqlInt16 N N N N Y

SqlInt32 N N N N Y

SqlInt64 N N N N Y

SqlSingle N N N N Y

SqlDouble N N N N Y

SqlDateTime N N N N Y

SqlMoney N N N N Y

SqlGuid N N N N Y

SqlDecimal N N Y Y Y

SqlString Y Y N N Y

SqlBinary Y Y N N Y

SqlXml N N N N Y

SqlBytes Y Y N N Y

SqlChars Y Y N N Y

SqlUtcDateTime N N N N Y

SqlDate N N N N Y

SqlTime N N N N Y

Embedded UDTs N N N N Y

string Y Y N N Y

Byte[] Y Y N N Y

Char[] Y Y N N Y

decimal N N Y Y N

You must do the following when you define a CLR UDT:

Annotate the class with the SqlUserDefinedType attribute.

Specify the Serializable attribute, indicating that the UDT can be serialized.

Implement the System.Data.SqlTypes.INullable interface so that the UDT can recognize a null
value. This means that the UDT must implement a static IsNull property that returns a Boolean
indicating whether the instance of the UDT is null.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Implement a public static property named Null that returns a null instance of the UDT.

Implement public static ToString() and Parse() methods to convert to and parse from a
string representation of the type. The Parse() method takes a single argument of type
SqlString.

Implement the IXmlSerializable interface if all public fields and properties are XML serializable
or marked with the XmlIgnore attribute. The IXmlSerializable interface provides custom XML
serialization and deserialization by explicitly defining how an object is serialized and deserialized
by the XmlSerializer class. The IXmlSerializable interface has three methods: GetSchema(),
ReadXml(), and WriteXml().

Implement Read() and Write() methods if user-defined serialization is specified by
implementing the IBinarySerialize interface.

A CLR UDT has the following restrictions:

Public names cannot exceed 128 characters in length and must conform to SQL Server naming
rules for identifiers.

Only fields, properties, and methods defined in the type are callable from T-SQL. SQL Server is
not aware of the inheritance hierarchy among UDTs .

Members other than the class constructor cannot be overloaded.

Static members must be declared either as constants or as read-only when the assembly
permission is specified as SAFE or EXTERNAL_ACCESS.

The SqlMethod attribute is used to define characteristics of a UDT method or property. The syntax of
the SqlMethod attribute is as follows:

 SqlMethod [(method-attribute [,...])]

 method-attribute::=

 function_attribute

 | IsMutator
 = { true | false }
 | OnNullCall = { true | false }
 | InvokeIfReceiverIsNull= { true | false }

where:

function_attribute

The SqlMethod attribute inherits all properties of the SqlFunction attribute discussed in the
"Scalar-Valued Functions" section earlier in this chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsMutator

Specifies whether the method can modify the UDT instance. SQL Server looks for the IsMutator
property of the SqlMethod attribute on void public methods in the UDT. If the IsMutator
property is true on a void method, SQL Server marks the method as a mutatora method that
causes state change in the instance. Mutator methods are not allowed in queriestheir use is
restricted to assignment statements or data modification statements. The default value of the
IsMutator property is false.

OnNullCall

Specifies whether the method is evaluated if one or more null arguments are supplied. If
false, the method returns null without evaluating the method if one or more of the arguments
are null. If true, the method is evaluated regardless of whether arguments are null. The
default value is true.

InvokeIfReceiverIsNull

Specifies whether SQL Server should invoke the method on a null reference. A value of true
invokes the method on a null reference. The default value is false.

The following example creates, registers, and uses a UDT that defines a polygon and implements a
single method that returns the area of the polygon as a double. Follow these steps:

Using the Visual Studio 2005 IDE, create a new SQL Server project named PolygonUdt.1.

Create an aggregate item in the project. Name the item Polygon.cs. Empty code blocks are
created for the four required methods.

2.

Replace the code in Polygon.cs with the following code:

 using System;
 using System.Data;
 using System.Data.Sql;
 using System.Data.SqlTypes;
 using Microsoft.SqlServer.Server;

 [Serializable]
 [SqlUserDefinedType(Format.Native)]
 public struct Polygon : INullable
 {
 private bool isNull;

 private int numberSides;
 private double sideLength;

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public override string ToString()
 {
 if (this.isNull)
 return "null";
 else
 return string.Format("{0} sides each {1} units long",
 numberSides, sideLength);
 }

 public bool IsNull
 {
 get
 {
 return isNull;
 }
 }

 public static Polygon Null
 {
 get
 {
 Polygon p = new Polygon();
 p.isNull = true;

 return p;
 }
 }

 public static Polygon Parse(SqlString s)
 {
 if (s.IsNull || s.Value.ToLower().Equals("null"))
 return Null;

 string[] sa = s.ToString().Split(',');
 if (sa.Length != 2)
 return Null;

 Polygon p = new Polygon();

 try
 {
 p.numberSides = int.Parse(sa[0]);
 p.sideLength = double.Parse(sa[1]);

 if (p.numberSides > 2 && p.sideLength > 0)
 return p;
 else
 return Null;
 }
 catch (Exception)
 {
 return Null;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }

 public int NumberSides
 {
 get { return numberSides; }
 set
 {
 if (value > 2)
 {
 numberSides = value;
 isNull = false;
 }
 else
 isNull = true;
 }
 }

 public double SideLength
 {
 get { return sideLength; }
 set
 {
 if (value > 0)
 {
 sideLength = value;
 isNull = false;
 }
 else
 isNull = true;
 }
 }

 [SqlMethod]
 public double Area()
 {
 if (!isNull)
 return .25 * numberSides * Math.Pow(sideLength, 2) *
 (1 / Math.Tan(Math.PI / numberSides));
 else
 return 0;
 }

 [SqlMethod(IsMutator = true, OnNullCall = false)]
 public void SetValue(int numberSides, double sideLength)
 {
 if (numberSides > 2 && sideLength > 0)
 {
 this.numberSides = numberSides;
 this.sideLength = sideLength;
 this.isNull = false;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 else
 isNull = true;
 }
 }

The UDT is implemented as a struct marked with both a Serializable attribute and a
SqlUserDefinedType attribute specifying Native serialization. A UDT must support both XML and
binary serialization.

The UDT contains two private fieldsnumberSides and sideLength. The NumberSides and
SideLength properties are used to get and set the value of these fields.

The UDT implements the INullable interface with the method IsNull(), which simply returns
the value of a private field, isNull, that keeps track of whether the polygon UDT is null. The
UDT also implements the Null() method, which instantiates and returns a null instance of the
Polygon UDT.

The UDT implements the required ToString() and Parse() methods. The ToString() method
displays the value of the polygon as a string. The Parse() method converts a string to the
polygon UDT and is used by the SQL Server CONVERT and CAST functions.

The UDT implements two methods. The Area() method returns the area of the polygon. The
SetValue() method changes the number of sides and the length of the sides in the polygon
UDT.

Build the solution.4.

Register the assembly and create the polygon UDT by executing the following T-SQL statement
in SQL Server Management Studio:

 USE ProgrammingSqlServer2005
 GO

 CREATE ASSEMBLY Polygon
 FROM 'C:\PSS2005\PolygonUdt\PolygonUdt\bin\Debug\PolygonUdt.dll'
 GO

 CREATE TYPE Polygon
 EXTERNAL NAME Polygon

5.

Execute the following T-SQL statements:

 DECLARE @p Polygon

 SET @p = CONVERT(Polygon, '5, 4.2')

 PRINT @p.IsNull

6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 PRINT @p.ToString()
 PRINT @p.NumberSides
 PRINT @p.SideLength
 PRINT @p.Area()

 SET @p.SetValue(7, 3)
 PRINT @p.ToString()
 PRINT @p.Area()

The results are shown in Figure 5-8.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.6. Triggers

A trigger is a type of stored procedure that executes automatically when an event occurs. SQL Server has two
types of triggers :

Data Manipulation Language (DML) trigger

Executes when INSERT , UPDATE , and DELETE commands modify data in a table or view.

Figure 5-8. Results for UDT example

Data Definition Language (DDL) trigger

Executes in response to a DDL statement that is often used to make database schema changes.
Examples include the CREATE , ALTER , and DROP statements.

A CLR trigger is implemented as a method of a class in a .NET Framework assembly.

The following two sections discuss creating CLR DML and DDL triggers .

5.6.1. DML Triggers

A CLR trigger is implemented as a public static void method in a .NET Framework assembly. You identify a
CLR DML trigger by marking the method that implements the trigger with the SqlTrigger attribute, which
indicates that a method should be registered as a DML trigger. The SqlTrigger attribute has the following
syntax:

 SqlTrigger [(trigger-attribute [,...])]

 trigger-attribute::=

 Target = "table-name"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 | Event = "trigger-type update-action [, ...]"

 trigger-type::=
 FOR | AFTER | INSTEAD OF

 update-action::=
 UPDATE | DELETE | INSERT

where:

Target = "table-name "

Specifies the table to which the trigger applies

trigger-type

Specifies the type of trigger

update-action

Specifies the DML action that activates the triggerUPDATE , DELETE , or INSERT

You can use the triggerAction property of the SqlTriggerContext class instead of the SqlTrigger attribute.
This is discussed later in this section in the example about creating a DDL trigger.

The following example creates update, insert, and delete DML triggers that log updates, inserts, and deletes
to a table named Volume . These events are logged to a table named VolumeAudit . The example then
registers the triggers and shows the results of executing DML statements against the Volume table. Follow
these steps:

Execute the following T-SQL statements to create the Volume and VolumeAudit tables that are the target
and logging destination of the triggers:

 USE ProgrammingSqlServer2005
 GO

 CREATE TABLE Volume
 (
 ID int NOT NULL,
 Length float NOT NULL,
 Width float NOT NULL,
 Height float NOT NULL,
 Volume float NOT NULL CONSTRAINT DF_Area_Area DEFAULT ((0)),

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 CONSTRAINT PK_Volume PRIMARY KEY CLUSTERED
 (
 ID ASC
)
)
 GO

 CREATE TABLE VolumeAudit
 (
 Action varchar(50) NOT NULL,
 Description varchar(max) NOT NULL
)

Using the Visual Studio 2005 IDE, create a new SQL Server project named DmlTrigger .2.

Create a trigger item in the project. Name the item VolumeTriggers.cs .3.

Replace the code in VolumeTriggers.cs with the following code:

 using System;
 using System.Data;
 using System.Data.Sql;
 using Microsoft.SqlServer.Server;
 using System.Data.SqlClient;
 using System.Collections;

 public partial class Triggers
 {
 [SqlTrigger (Target="Volume", Event="FOR INSERT")]
 public static void InsertTrigger()
 {
 using (SqlConnection conn = new SqlConnection("context connection=true"))
 {
 SqlDataAdapter da = new SqlDataAdapter("SELECT * FROM INSERTED",
 conn);
 DataTable dt = new DataTable();
 da.Fill(dt);

 SqlCommand cmd = new SqlCommand();
 cmd.Connection = conn;
 conn.Open();
 foreach (DataRow row in dt.Rows)
 {
 int id = (int)row[0];
 double length = (double)row[1];
 double width = (double)row[2];
 double height = (double)row[3];
 double volume = length * width * height;

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 string audit = string.Format("ID = {0}, Length = {1}, " +
 "Width = {2}, Height = {3}",
 id, length, width, height);

 cmd.CommandText = "INSERT INTO VolumeAudit VALUES ('INSERTED', '" +
 audit + "')";
 cmd.ExecuteNonQuery();

 cmd.CommandText = "UPDATE Volume SET Volume = " + volume +
 " WHERE ID = " + id;
 cmd.ExecuteNonQuery();

 SqlPipe pipe = SqlContext.Pipe;
 pipe.Send("Row inserted: " + audit);
 }
 }
 }

 [SqlTrigger(Target = "Volume", Event = "FOR UPDATE")]
 public static void UpdateTrigger()
 {
 using (SqlConnection conn = new SqlConnection("context connection=true"))
 {
 SqlDataAdapter da = new SqlDataAdapter("SELECT * FROM DELETED",
 conn);
 DataTable dtDel = new DataTable();
 da.Fill(dtDel);
 da = new SqlDataAdapter("SELECT * FROM INSERTED", conn);
 DataTable dtIns = new DataTable();
 da.Fill(dtIns);

 SqlCommand cmd = new SqlCommand();
 cmd.Connection = conn;
 conn.Open();
 for (int i = 0; i < dtDel.Rows.Count; i++)
 {
 DataRow rowDel = dtDel.Rows[i];
 int delId = (int)rowDel[0];
 double delLength = (double)rowDel[1];
 double delWidth = (double)rowDel[2];
 double delHeight = (double)rowDel[3];
 double delVolume = (double)rowDel[4];

 string delAudit = string.Format("ID = {0}, Length = {1}, " +
 "Width = {2}, Height = {3}, Volume = {4}",
 delId, delLength, delWidth, delHeight, delVolume);

 DataRow rowIns = dtIns.Rows[i];
 int insId = (int)rowIns[0];
 double insLength = (double)rowIns[1];
 double insWidth = (double)rowIns[2];
 double insHeight = (double)rowIns[3];

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 double insVolume = insLength * insWidth * insHeight;

 string insAudit = string.Format("ID = {0}, Length = {1}, " +
 "Width = {2}, Height = {3}, Volume = {4}",
 insId, insLength, insWidth, insHeight, insVolume);

 cmd.CommandText = "UPDATE Volume SET Volume = " + insVolume +
 " WHERE ID = " + insId;
 cmd.ExecuteNonQuery();

 cmd.CommandText = "INSERT INTO VolumeAudit VALUES " +
 "('UPDATED', 'Original: " + delAudit + "; " + "New: " +
 insAudit + "')";
 cmd.ExecuteNonQuery();

 SqlPipe pipe = SqlContext.Pipe;
 pipe.Send("Row updated: Original: " + delAudit + "; " + "New: " +
 insAudit);
 }
 }
 }

 [SqlTrigger(Target = "Volume", Event = "FOR DELETE")]
 public static void DeleteTrigger()
 {
 using (SqlConnection conn = new SqlConnection("context connection=true"))
 {
 SqlDataAdapter da = new SqlDataAdapter("SELECT * FROM DELETED",
 conn);
 DataTable dt = new DataTable();
 da.Fill(dt);

 SqlCommand cmd = new SqlCommand();
 cmd.Connection = conn;
 conn.Open();
 foreach(DataRow row in dt.Rows)
 {
 int id = (int)row[0];
 double length = (double)row[1];
 double width = (double)row[2];
 double height = (double)row[3];
 double volume = (double)row[4];

 string audit = string.Format("ID = {0}, Length = {1}, " +
 "Width = {2}, Height = {3}, Volume = {4}",
 id, length, width, height, volume);

 cmd.CommandText = "INSERT INTO VolumeAudit VALUES ('DELETED', '"
 + audit + "');";
 cmd.ExecuteNonQuery();

 SqlPipe pipe = SqlContext.Pipe;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 pipe.Send("Row deleted: " + audit);
 }
 }
 }
 }

Build the solution.

Each of the three triggers is marked with the SqlTrigger attribute that specifies the Volume table as the
target of the trigger together with the event that causes each trigger to execute.

5.

In SQL Server Management Studio, register the assembly and create the DML insert, update, and delete
triggers by executing the following query:

 USE ProgrammingSqlServer2005
 GO

 CREATE ASSEMBLY VolumeTriggers
 FROM 'C:\PSS2005\DmlTrigger\DmlTrigger\bin\Debug\DmlTrigger.dll'
 GO

 CREATE TRIGGER VolumeInsertTrigger
 ON Volume
 FOR INSERT
 AS
 EXTERNAL NAME VolumeTriggers.Triggers.InsertTrigger
 GO

 CREATE TRIGGER VolumeUpdateTrigger
 ON Volume
 FOR UPDATE
 AS
 EXTERNAL NAME VolumeTriggers.Triggers.UpdateTrigger
 GO

 CREATE TRIGGER VolumeDeleteTrigger
 ON Volume
 FOR DELETE
 AS
 EXTERNAL NAME VolumeTriggers.Triggers.DeleteTrigger
 GO

6.

Execute the following T-SQL statements to insert two rows into the Volume table:

 INSERT INTO Volume (ID, Length, Width, Height) VALUES (1, 2.2, 3.4, 5.7)
 INSERT INTO Volume (ID, Length, Width, Height) VALUES (2, 6, 2, 5.4)

7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The results are shown in Figure 5-9 .

Figure 5-9. Results for DML trigger example

The output is generated by the following code in the insert DML trigger:

 pipe.Send("Row inserted: " + audit);

The VolumeAudit table now contains the following records:

Action Description

INSERTED ID = 1, Length = 2.2, Width = 3.4, Height = 5.7

UPDATED
 Original: ID = 1, Length = 2.2, Width = 3.4, Height = 5.7, Volume = 0;
 New: ID = 1, Length = 2.2, Width = 3.4, Height = 5.7, Volume = 42.636

INSERTED ID = 2, Length = 6, Width = 2, Height = 5.4

UPDATED
 Original: ID = 2, Length = 6, Width = 2, Height = 5.4, Volume = 0;
 New: ID = 2, Length = 6, Width = 2, Height = 5.4, Volume = 64.8

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Although the update trigger on the Volume table updates the Volume table, the query is
not recursive as long as the RECURSIVE_TRIGGERS database option is set to OFF this is
the default. You can check the status of all database options by executing the following
T-SQL statement:

 SELECT * FROM sys.databases

The is_recursive_triggers_on column contains the setting of the RECURSIVE_TRIGGERS
option for each database.

You can change the value of a database option using the ALTER DATABASE statement.
For example, execute the following T-SQL statement to change the recursive trigger
behavior for the ProgrammingSqlServer2005 database to ON :

 ALTER DATABASE ProgrammingSqlServer2005
 SET RECURSIVE_TRIGGERS ON

There are four recordstwo inserted by the insert DML trigger and two inserted by the update DML trigger
when the insert DML trigger updates the Volume field.

Execute the following T-SQL statement to update the first of the two rows previously inserted into the Volume
table:

 UPDATE Volume
 SET Length = 1, Width = 4, Height = 7.2
 WHERE ID = 1

The output follows:

 Row updated:
 Original: ID = 1, Length = 2.2, Width = 3.4, Height = 5.7, Volume = 42.636;
 New: ID = 1, Length = 1, Width = 4, Height = 7.2, Volume = 28.8

 (1 row(s) affected)

The VolumeAudit table now contains a new record inserted by the update DML trigger:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Action Description

UPDATED

 Original: ID = 1, Length = 2.2, Width = 3.4, Height = 5.7,
 Volume = 42.636;
 New: ID = 1, Length = 1, Width = 4, Height = 7.2, Volume = 28.8

Execute the following T-SQL statement to delete the two rows from the Volume table:

 DELETE FROM Volume

The output follows:

 Row deleted: ID = 2, Length = 6, Width = 2, Height = 5.4, Volume = 64.8
 Row deleted: ID = 1, Length = 1, Width = 4, Height = 7.2, Volume = 28.8

 (2 row(s) affected)

The VolumeAudit table now contains two new records inserted by the delete DML trigger:

Action Description

DELETED ID = 2, Length = 6, Width = 2, Height = 5.4, Volume = 64.8

DELETED ID = 1, Length = 1, Width = 4, Height = 7.2, Volume = 28.8

5.6.2. DDL Triggers

A CLR trigger is implemented as a public static void method in a .NET Framework assembly. Instead of
using the SqlTrigger attribute to define events for which a DDL trigger executes, the SqlTriggerContext is
used to get context information about the trigger. This SqlTriggerContext class cannot be instantiated
directlycall the TRiggerContext property of the SqlContext class to get an instance.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The SqlTriggerContext class has a TRiggerAction property that indicates the action that caused a trigger to
fire. For DML triggers, the value can be triggerAction.Update , triggerAction.Insert , or
TRiggerAction.Delete . There are many DDL trigger actionssee Microsoft SQL Server 2005 Books Online for a
complete list.

The following example creates, registers, and demonstrates a CLR DDL trigger that logs CREATE_TABLE and
DROP_TABLE events to a table named Log . Follow these steps:

Create a table named Log to store the DDL event information in:

 USE ProgrammingSqlServer2005
 GO

 CREATE TABLE Log
 (
 LogID int IDENTITY(1,1) NOT NULL,
 LogEntry varchar(max) NOT NULL,
 CONSTRAINT PK_Log PRIMARY KEY CLUSTERED
 (
 LogID ASC
)
)

1.

Using the Visual Studio 2005 IDE, create a new SQL Server project named DdlTrigger .2.

Create a trigger item in the project. Name the item LogTableActivityTrigger.cs .3.

Replace the code in LogTableActivityTrigger.cs with the following code:

 using System;
 using System.Data;
 using System.Data.Sql;
 using Microsoft.SqlServer.Server;
 using System.Data.SqlClient;

 public partial class Triggers
 {
 public static void LogTableActivityTrigger()
 {
 SqlTriggerContext tc = SqlContext.TriggerContext;
 using (SqlConnection conn = new SqlConnection("context connection=true"))
 {
 conn.Open();
 SqlCommand cmd = new SqlCommand();
 cmd.Connection = conn;

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (tc.TriggerAction == TriggerAction.CreateTable ||
 tc.TriggerAction == TriggerAction.DropTable)
 {
 cmd.CommandText = "INSERT INTO Log VALUES " +
 "('" + tc.EventData.Value + "')";
 cmd.ExecuteNonQuery();
 }
 }
 }
 }

A single DDL trigger is defined in the triggers class. The trigger checks the triggerAction property of
the SqlTriggerContext and then logs the Eventdata for the event that caused this trigger to fire. In this
example, it is not necessary to check the trigger context, as all events for which the trigger is registered
in Step 6 execute the same code to log the event. You could use the triggerAction property to perform
different actions for each of the different events that a DDL trigger is registered to handle.

Build the solution.5.

Register the assembly and create the DDL trigger by executing this statement in SQL Server
Management Studio:

 USE ProgrammingSqlServer2005
 GO

 CREATE ASSEMBLY DdlTrigger
 FROM 'C:\PSS2005\DdlTrigger\DdlTrigger\bin\Debug\DdlTrigger.dll'
 GO

 CREATE TRIGGER LogTableActivity
 ON DATABASE
 FOR CREATE_TABLE, DROP_TABLE
 AS
 EXTERNAL NAME DdlTrigger.Triggers.LogTableActivityTrigger
 The CREATE TRIGGER statement creates a DDL trigger that executes when
 CREATE TABLE and DROP TABLE DDL statements are executed.

6.

Execute the following T-SQL statement to create and then drop a table named TestTable :

 USE ProgrammingSqlServer2005
 GO

 CREATE TABLE TestTable
 (
 TestID int NOT NULL,
 CONSTRAINT PK_TestTable PRIMARY KEY CLUSTERED
 (

7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 TestID ASC
)
)
 GO

 DROP TABLE TestTable
 GO

The Log table contains two rows, shown here, containing details about the DDL CREATE_TABLE and
DROP_TABLE events:

 <EVENT_INSTANCE>
 <EventType>CREATE_TABLE</EventType>
 <PostTime>2005-06-15T13:57:10.733</PostTime>
 <SPID>54</SPID>
 <ServerName>BILLHAMILTON1</ServerName>
 <LoginName>BILLHAMILTON1\whamilton</LoginName>
 <UserName>dbo</UserName>
 <DatabaseName>ProgrammingSqlServer2005</DatabaseName>
 <SchemaName>dbo</SchemaName>
 <ObjectName>TestTable</ObjectName>
 <ObjectType>TABLE</ObjectType>
 <TSQLCommand>
 <SetOptions ANSI_NULLS="ON" ANSI_NULL_DEFAULT="ON" ANSI_PADDING="ON"
 QUOTED_IDENTIFIER="ON" ENCRYPTED="FALSE" />
 <CommandText>
 CREATE TABLE TestTable
 (
 TestID int NOT NULL,
 CONSTRAINT PK_TestTable PRIMARY KEY CLUSTERED
 (
 TestID ASC
)
)
 </CommandText>
 </TSQLCommand>
 </EVENT_INSTANCE>

 <EVENT_INSTANCE>
 <EventType>DROP_TABLE</EventType>
 <PostTime>2005-06-15T13:57:10.937</PostTime>
 <SPID>54</SPID>
 <ServerName>BILLHAMILTON1</ServerName>
 <LoginName>BILLHAMILTON1\whamilton</LoginName>
 <UserName>dbo</UserName>
 <DatabaseName>ProgrammingSqlServer2005</DatabaseName>
 <SchemaName>dbo</SchemaName>
 <ObjectName>TestTable</ObjectName>
 <ObjectType>TABLE</ObjectType>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <TSQLCommand>
 <SetOptions ANSI_NULLS="ON" ANSI_NULL_DEFAULT="ON" ANSI_PADDING="ON"
 QUOTED_IDENTIFIER="ON" ENCRYPTED="FALSE" />
 <CommandText>
 DROP TABLE TestTable
 </CommandText>
 </TSQLCommand>
 </EVENT_INSTANCE>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6. .NET Client-Side Programming
This chapter describes SQL Server 2005 client-side programming technologies. These include:

SQL Native Client programming

Replaces the SQL OLE DB and SQL ODBC drivers; uses Microsoft Data Access Components
(MDAC) and implements functionality supporting new features in SQL Server 2005.

SQLXML 4.0

Updates SQLXML 3.0 to accommodate new features in SQL Server 2005.

Exception Message Box programming

Extends the functionality of the regular message box in the System.Windows.Forms.MessageBox
class to make it easier for you to control and to provide detailed information to users.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.1. SQL Native Client Programming

Microsoft SQL Server 2005 introduces SQL Native Client, which is designed to simplify native access
to data in SQL Server 7.0 or later using either OLE DB or ODBC. SQL Native Client replaces the SQL
OLE DB provider and the SQL ODBC driver with a standalone API that combines both the SQL OLE DB
provider and SQL ODBC driver functionality into a single DLL. The individual data access technologies
are now referred to as SQL Native Client (OLE DB) and SQL Native Client (ODBC). Additionally, SQL
Native Client supports new SQL Server 2005 enhancements, as described in Table 6-1.

Table 6-1. SQL Native Client support for new functionality in SQL Server
2005 (continued)

Function Description

xml data type Supports the SQL Server 2005 xml data type for columns, variable,
parameters, and return types

Large value types Supports SQL Server large-object data typesvarchar(max),
nvarchar(max), and varbinary(max)

User-defined types (UDTs) Supports using UDTs in the SQL Server database

Multiple Active Result Sets
(MARS)

Supports multiple result sets using a single SQL Server connection

Snapshot isolation Supports snapshot isolation level in SQL Server 2005

Asynchronous operations Allows methods to return immediately without blocking the calling
thread

Database mirroring Supports mirrored SQL Server 2005 databases

Query notifications Supports client notifications when result sets are modified

Bulk copy Supports transferring large amounts of data into or out of SQL Server

Password expiration Supports handling expired passwords in SQL Server 2005 without
administrator involvement

If you are developing a new application or modifying an existing application
written in a managed programming language such as C# or VB.NET, you
should use a .NET Framework data provider for the database. Use SQL Native
Client to access new features of SQL Server 2005 and also to access data
sources using OLE DB or ODBC from other applications such as COM-based
applications.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SQL Native Client is a separate product from MDAC, but it lets you evolve new data access
functionality in applications without changing existing MDAC components. Although SQL Native Client
uses MDAC, it is not dependent on a specific version of MDAC and can be used with any version
installed with Windows 2000 SP3 or later. SQL Native Client does not include user-accessible
functionality that already exists in the base MDAC components, such as connection pooling, ADO
support, memory management, or client-side cursor supportit uses MDAC to provide that
functionality. MDAC does not support enhancements in SQL Server 2005.

SQL Native Client components are installed by default with SQL Server 2005. These components are
described in Table 6-2.

Table 6-2. SQL Native Client components

Component Description Directory

SQLNCLI.dll Contains all SQL Native Client functionality,
including both the OLE DB provider and ODBC
provider.

<windows>\system32

SQLNCLIR.rll The resource file for SQLNCLI.dll. <windows>\system32

SQLNCLI.h Contains all definitions needed to use SQL Native
Client. Replaces both the ODBCSS.h and
SQLOLEDB.h header files.

Program Files\Microsoft SQL
Server\90\SDK\Include

SQLNCLI.lib The library file needed to call the ODBC Bulk Copy
Program (BCP) functions in SQL Native Client.

Program Files\Microsoft SQL
Server\90\SDK\Lib

You need to redistribute SQL Native Client with your application so that it installs on client computers.
An installation package named SQLNCLI.msi is included on the SQL Server 2005 installation CD, in
the Tools\Setup directory. The ReadmeSQL2005.htm file in the Tools directory of the installation CD
discusses client- and server-side prerequisites and provides installation instructions.

See Microsoft SQL Server 2005 Books Online for information about SQL Native
Client (OLE DB) and SQL Native Client (ODBC) programming.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.2. SQLXML 4.0

SQL Server 2005 introduces SQLXML 4.0, which provides functionality found in previous releases and adds
support for new SQL Server 2005 XML and web service functionality. SQLXML 4.0 is installed automatically
with SQL Server 2005. You can also install SQLXML on clients' computers from the installation program
sqlxml4.msi you will also need to install MSXML 6.0 from the installation program msxml6.msi . These
installation programs are on the SQL Server 2005 installation disk in the Tools\Setup subdirectory.

SQLXML 4.0 provides client-side XML functionality for writing applications that access XML data from SQL
Server, process it, and send updated data back to the server. SQLXML bridges relational data to XML data in
SQL Server. SQLXML is used to query relational data using T-SQL and return XML results, query relational
data with XPath, and update relational data using XML. In addition to facilitating working with relational data
as XML, SQLXML lets you execute XML template queriesqueries embedded in a dynamic XML documentand
server-side XPath queries in SQL Server 2005. The SQL Server .NET data provider, without SQLXML, does
not provide this capability.

SQLXML 4.0 supports both the SQL Native Client and SQLOLEDB providers. The SQL Native Client provider is
recommended, because it supports new SQL Server 2005 features such as the xml data type.

6.2.1. SQLXML Managed Classes

SQLXML managed classes expose SQLXML 4.0 functionality within .NET applications. The SQLXML managed
classes provide methods to execute commands (SqlXmlCommand), create parameters for commands
(SqlXmlParameter), and interact with the DataSet class (SqlXmlAdapter). These classes are described in the
following subsections.

6.2.1.1. SqlXmlCommand

The SqlXmlCommand class executes a T-SQL command, stored procedure, XPath command, XML template file,
UpdateGram, or DiffGram against a database. (UpdateGrams and DiffGrams are discussed later in this
chapter.)

The constructor for the SqlXmlCommand object is:

 SqlXmlCommand(string connectionString)

where connectionString is an OLE DB connection string identifying the provider, server, database, and login

information. For example:

 Provider=SQLNCLI;Server=(local);database=AdventureWorks;Integrated Security=SSPI

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You should normally set the Provider property of the connection to SQLNCLI, because the SQL Native Client
data provider supports new SQL Server 2005 features such as the xml data type.

The SqlXmlCommand class has the public methods described in Table 6-3 .

Table 6-3. SqlXmlCommand class public methods

Method Description

ClearParameters() Removes SqlXmlParameter objects created for the command object

CreateParameter() Creates and returns a SqlXmlParameter object for the command object

ExecuteNonQuery() Executes the command and returns nothing

ExecuteStream() Returns a new Stream object containing the results of a query

ExecuteToStream(Stream) Returns results to an existing Stream object

ExecuteXmlReader() Returns an XmlReader object containing the results of a query

The SqlXmlCommand class has the public properties described in Table 6-4 .

Table 6-4. SqlXmlCommand class public properties

Property Description

BasePath A directory path used to resolve a relative mapping schema path (specified by the
SchemaPath property), a relative XSL file path (specified by the XslPath property), or an
external schema reference in an XML template (specified using the mapping-schema
attribute).

ClientSideXml Specifies whether the result set is converted to XML on the client side (middle tier).

CommandStream A file containing the text of the command to execute. If a CommandStream file is used,
only DiffGram , Template , and UpdateGram update CommandType values are allowed.

CommandText The command text to execute. You can execute stored procedures with the
SqlXmlCommand object by specifying the command text as follows:

 EXEC storedProcedureName [? [, ... n]]

where the question mark (?) represents one or more parameters: instances of the
SqlXmlParameter class, discussed in the next section.

CommandType The type of command to execute. One of the following values from the
SqlXmlCommandType enumeration:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Description

Sql

A T-SQL command (text or stored procedure)

XPath

An XPath command

Template

An XML template

TemplateFile

An XML template at the specified path

UpdateGram

An UpdateGram

Diffgram

A DiffGram

Namespaces The namespaces for an XPath query.

OutputEncoding The encoding for the returned stream. UTF-8 is the default.

RootTag The root-level tag for returned XML results. If the command results in an XML
fragment, this property can be used to make it a valid XML document.

SchemaPath The name of the mapping schema for an XPath query, including the directory path. The
path can be absolute or relative. If it is relative, the BasePath property is used to
resolve the relative path.

XslPath The name of the XSL transformation file, including the directory path to apply to the
XML result set. The path can be absolute or relative. If it is relative, the BasePath
property is used to resolve the relative path.

6.2.1.2. SqlXmlParameter

SqlXmlCommand objects support parameterized command text and stored procedure queries. Call the
CreateParameter() method of the SqlXmlCommand class to create a parameter. The SqlXmlParameter class
has the public properties described in Table 6-5 .

Sql

A T-SQL command (text or stored procedure)

XPath

An XPath command

Template

An XML template

TemplateFile

An XML template at the specified path

UpdateGram

An UpdateGram

Diffgram

A DiffGram

Namespaces The namespaces for an XPath query.

OutputEncoding The encoding for the returned stream. UTF-8 is the default.

RootTag The root-level tag for returned XML results. If the command results in an XML
fragment, this property can be used to make it a valid XML document.

SchemaPath The name of the mapping schema for an XPath query, including the directory path. The
path can be absolute or relative. If it is relative, the BasePath property is used to
resolve the relative path.

XslPath The name of the XSL transformation file, including the directory path to apply to the
XML result set. The path can be absolute or relative. If it is relative, the BasePath
property is used to resolve the relative path.

6.2.1.2. SqlXmlParameter

SqlXmlCommand objects support parameterized command text and stored procedure queries. Call the
CreateParameter() method of the SqlXmlCommand class to create a parameter. The SqlXmlParameter class
has the public properties described in Table 6-5 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 6-5. SqlXmlParameter class public properties

Property Description

Name Gets or sets the name of the parameter

Value Gets or sets the value of the parameter

6.2.1.3. SqlXmlAdapter

The SqlXmlAdapter class is similar to the DataAdapter class. It provides a mechanism to load XML data into a
DataSet and subsequently update the database with changes made offline to the data in the DataSet .

The SqlXmlAdapter has the following public constructors:

 SqlXmlAdapter(SqlXmlCommand command)

 SqlXmlAdapter(string commandText, SqlXmlCommandType commandType,

 string connectionString)

 SqlXmlAdapter(Stream commandStream, SqlXmlCommandType commandType,

 string connectionString)

The SqlXmlAdapter has the public methods described in Table 6-6 .

Table 6-6. SqlXmlAdapter public properties

Method Description

Fill() Executes a SqlXmlCommand object and loads the result set returned by that command into a
DataSet object.

Update(
)

Propagates disconnected changes made to the DataSet object back to the database server

6.2.2. Using SQLXML Managed Classes

This section contains examples showing how to use the SQLXML managed classes to retrieve, process,
output, and update data.

Your Visual Studio 2005 projects require a reference to the Microsoft.Data.SqlXml
namespace to use SQLXML managed classes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.2.2.1. Executing a query

The following example reads the top two employees from the HumanResources.Employee table in
AdventureWorks into a Stream object:

 using System;
 using System.IO;
 using Microsoft.Data.SqlXml;

 class Program
 {
 static void Main(string[] args)
 {
 SqlXmlCommand cmd = new SqlXmlCommand("Provider=SQLNCLI;Server=(local);" +
 "database=AdventureWorks;Integrated Security=SSPI");
 cmd.CommandText = "SELECT TOP 2 * FROM HumanResources.Employee " +
 "FOR XML AUTO";
 Stream stream = cmd.ExecuteStream();

 StreamReader sr = new StreamReader(stream);
 string s = sr.ReadToEnd();

 Console.WriteLine(s);
 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

The example uses the StreamReader class to read the Stream into a string that is then output to the console.
Results follow:

 <HumanResources.Employee EmployeeID="1" NationalIDNumber="14417807"
 ContactID="1209" LoginID="adventure-works\guy1" ManagerID="16"
 Title="Production Technician- WC60" BirthDate="1972-05-15T00:00:00"
 MaritalStatus="M" Gender="M" HireDate="1996-07-31T00:00:00"
 SalariedFlag="0" VacationHours="21" SickLeaveHours="30"
 CurrentFlag="1" rowguid="AAE1D04A-C237-4974-B4D5-935247737718"
 ModifiedDate="2004-07-31T00:00:00"/>
 <HumanResources.Employee EmployeeID="2" NationalIDNumber="253022876"
 ContactID="1030" LoginID="adventure-works\kevin0" ManagerID="6"
 Title="Marketing Assistant" BirthDate="1977-06-03T00:00:00"
 MaritalStatus="S" Gender="M" HireDate="1997-02-26T00:00:00"
 SalariedFlag="0" VacationHours="42" SickLeaveHours="41"
 CurrentFlag="1" rowguid="1B480240-95C0-410F-A717-EB29943C8886"
 ModifiedDate="2004-07-31T00:00:00"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.2.2.2. Using parameters in a query

The following example uses a parameterized query to read the data for an employee:

 using System;
 using System.IO;
 using Microsoft.Data.SqlXml;

 class Program
 {
 static void Main(string[] args)
 {
 SqlXmlCommand cmd = new SqlXmlCommand("Provider=SQLNCLI;Server=(local);" +
 "database=AdventureWorks;Integrated Security=SSPI");
 cmd.CommandText = "SELECT * FROM HumanResources.Employee " +
 "WHERE EmployeeID=? FOR XML AUTO";
 // create the parameter to read data for EmployeeID = 5
 SqlXmlParameter parm = cmd.CreateParameter();
 parm.Value = "5";
 Stream stream = cmd.ExecuteStream();

 StreamReader sr = new StreamReader(stream);
 string s = sr.ReadToEnd();

 Console.WriteLine(s);
 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

OLE DB queries use a question mark (?) placeholder to identify parameters in the
query. The parameters in the query string are replaced in the same order in which
they are created from the SqlXmlCommand object using the CreateParameter()
method.

Formatting with the FOR XML Clause

SQL Server 2005 lets you format the results of a T-SQL query into an XML document on either
the server side or client side. You do this by using the SELECT statement's FOR XML clause. You
can specify one of three FOR XML modes for server-side XML formatting:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RAW

A single <row> element is returned in the XML document for each row in the result set.

AUTO

An XML document is returned with a hierarchy automatically created based on the way
the SELECT statement is specified. Nested FOR XML queries can overcome the limitations
for the hierarchy that is automatically generated.

EXPLICIT

An XML document is returned based on shape information in the query. Shape
information lets you manipulate result set rows into hierarchies. EXPLICIT mode lets you
create complex, custom XML structures for the result set.

Client-side XML formatting formats a SQL query's result set into XML at the client rather
than at the SQL Server. There are three client-side FOR XML modes:

RAW

Identical to server-side RAW mode.

NESTED

Similar to server-side AUTO mode with the following exceptions:

A query against a view returns the base table name as the element name when
using client-side formatting. When using server-side formatting, the view name is
returned as the element name.

A query against an aliased table returns the base table name as the element name
when using client-side formatting. When using server-side formatting, the table
alias is returned as the element name.

EXPLICIT

Similar to server-side EXPLICIT mode.

You cannot use client-side formatting with queries that return multiple result sets. However, in
an XML template, you can specify more than one <sql:query> block, each containing a query
that returns a single result set.

If you specify FOR XML AUTO mode in a query, XML formatting occurs on the server even if
client-side formatting is otherwise specified.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The results follow:

 <HumanResources.Employee EmployeeID="5" NationalIDNumber="480168528"
 ContactID="1009" LoginID="adventure-works\thierry0" ManagerID="263"
 Title="Tool Designer" BirthDate="1949-08-29T00:00:00" MaritalStatus="M"
 Gender="M" HireDate="1998-01-11T00:00:00" SalariedFlag="0"
 VacationHours="9" SickLeaveHours="24" CurrentFlag="1"
 rowguid="1D955171-E773-4FAD-8382-40FD898D5D4D"
 ModifiedDate="2004-07-31T00:00:00"/>

6.2.2.3. Handling an exception

The following example shows how to handle a SqlXmlException exception. This example modifies the
example in the preceding sectionthe parameter expected in the query string is no longer created and, as a
result, the code raises an exception when executed.

 using System;
 using System.IO;
 using Microsoft.Data.SqlXml;

 class Program
 {
 static void Main(string[] args)
 {
 SqlXmlCommand cmd = new SqlXmlCommand("Provider=SQLNCLI;Server=(local);" +
 "database=AdventureWorks;Integrated Security=SSPI");
 cmd.CommandText = "SELECT * FROM HumanResources.Employee " +
 "WHERE EmployeeID=? FOR XML AUTO";

 try
 {
 stream = cmd.ExecuteStream();

 StreamReader sr = new StreamReader(stream);
 string s = sr.ReadToEnd();

 Console.WriteLine(s);
 }
 catch (SqlXmlException ex)
 {
 Console.WriteLine(ex.Message);
 }

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Results are shown in Figure 6-1 .

Figure 6-1. Results for exception handling example

6.2.2.4. Retrieving an XmlReader object

The following example reads the data for the first two employees from the HumanResources.Employee table in
AdventureWorks into an XmlTextReader object:

 using System;
 using Microsoft.Data.SqlXml;
 using System.Xml;

 class Program
 {
 static void Main(string[] args)
 {
 SqlXmlCommand cmd = new SqlXmlCommand("Provider=SQLNCLI;Server=(local);" +
 "database=AdventureWorks;Integrated Security=SSPI");
 cmd.CommandText = "SELECT TOP 2 * FROM HumanResources.Employee " +
 "FOR XML
 AUTO";
 XmlReader xr = cmd.ExecuteXmlReader();

 using (XmlTextWriter xtw = new XmlTextWriter(Console.Out))
 {
 xtw.WriteNode(xr, false);
 xtw.Flush();
 }

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

The example uses an XmlTextWriter object to output the results in the XmlReader object to the console.
Results follow:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <HumanResources.Employee EmployeeID="1" NationalIDNumber="14417807"
 ContactID="1209" LoginID="adventure-works\guy1" ManagerID="16"
 Title="Production Technician- WC60" BirthDate="1972-05-15T00:00:00"
 MaritalStatus="M" Gender="M" HireDate="1996-07-31T00:00:00" SalariedFlag="0"
 VacationHours="21" SickLeaveHours="30" CurrentFlag="1"
 rowguid="AAE1D04A-C237-4974-B4D5-935247737718"
 ModifiedDate="2004-07-31T00:00:00" />
 <HumanResources.Employee EmployeeID="2" NationalIDNumber="253022876"
 ContactID="1030" LoginID="adventure-works\kevin0" ManagerID="6"
 Title="Marketing Assistant" BirthDate="1977-06-03T00:00:00"
 MaritalStatus="S" Gender="M" HireDate="1997-02-26T00:00:00" SalariedFlag="0"
 VacationHours="42" SickLeaveHours="41" CurrentFlag="1"
 rowguid="1B480240-95C0-410F-A717-EB29943C8886"
 ModifiedDate="2004-07-31T00:00:00" />

6.2.2.5. Processing an XML result set on the client

The following example returns a result set and uses the ClientSideXml property of the SqlXmlCommand object
to process the results at the client side. It produces an XML document formatted using the FOR XML NESTED
mode.

 using System;
 using System.IO;
 using Microsoft.Data.SqlXml;

 class Program
 {
 static void Main(string[] args)
 {
 Stream stream;
 SqlXmlCommand cmd = new SqlXmlCommand("Provider=SQLNCLI;Server=(local);" +
 "database=AdventureWorks;Integrated Security=SSPI");
 cmd.CommandText = "SELECT TOP 2 * FROM HumanResources.Employee " +
 "FOR XML NESTED";
 cmd.ClientSideXml = true;
 stream = cmd.ExecuteStream();

 StreamReader sr = new StreamReader(stream);
 string s = sr.ReadToEnd();

 Console.WriteLine(s);
 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can also specify a stored procedure that returns a regular non-XML result set. Results follow:

 <Employee EmployeeID="1" NationalIDNumber="14417807" ContactID="1209"
 LoginID="adventure-works\guy1" ManagerID="16"
 Title="Production Technician - WC60" BirthDate="1972-05-15T00:00:00"
 MaritalStatus="M" Gender="M" HireDate="1996-07-31T00:00:00"
 SalariedFlag="0" VacationHours="21" SickLeaveHours="30" CurrentFlag="1"
 rowguid="AAE1D04A-C237-4974-B4D5-935247737718"
 ModifiedDate="2004-07-31T00:00:00"/>
 <Employee EmployeeID="2" NationalIDNumber="253022876" ContactID="1030"
 LoginID="adventure-works\kevin0" ManagerID="6"
 Title="Marketing Assistant" BirthDate="1977-06-03T00:00:00"
 MaritalStatus="S" Gender="M" HireDate="1997-02-26T00:00:00"
 SalariedFlag="0" VacationHours="42" SickLeaveHours="41" CurrentFlag="1"
 rowguid="1B480240-95C0-410F-A717-EB29943C8886"
 ModifiedDate="2004-07-31T00:00:00"/>

6.2.2.6. Filling a DataSet

The following example uses an XmlDataAdapter object to fill a DataSet object:

 using System;
 using Microsoft.Data.SqlXml;
 using System.Data;

 class Program
 {
 static void Main(string[] args)
 {
 SqlXmlCommand cmd = new SqlXmlCommand("Provider=SQLNCLI;Server=(local);" +
 "database=AdventureWorks;Integrated Security=SSPI");
 cmd.CommandText = "SELECT TOP 2 * FROM HumanResources.Employee " +
 "FOR XML AUTO";

 DataSet ds = new DataSet();
 SqlXmlAdapter da = new SqlXmlAdapter(cmd);
 da.Fill(ds);

 foreach (DataRow row in ds.Tables[0].Rows)
 Console.WriteLine("{0} {1}", row["EmployeeID"], row["Title"]);

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Results are shown in Figure 6-2 .

Figure 6-2. Results for filling a DataSet example

6.2.2.7. Applying an XSLT transformation to the XML result set

The following example applies an XSLT transformation to the XML result set containing the top 10 employees
from the HumanResources.Employee table in AdventureWorks . The XSL file named C:\PSS2005\Employee.xsl
follows:

 <?xml version='1.0' encoding='UTF-8'?>
 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:output method="html"/>
 <xsl:template match='*'>
 <xsl:apply-templates />
 </xsl:template>
 <xsl:template match='HumanResources.Employee'>
 <TR>
 <TD><xsl:value-of select='@EmployeeID'/></TD>
 <TD><xsl:value-of select='@Title'/></TD>
 </TR>
 </xsl:template>
 <xsl:template match='/'>
 <HTML>
 <HEAD/>
 <BODY>
 <TABLE>
 <TR>
 <TH>Employee ID</TH>
 <TH>Title</TH>
 </TR>
 <xsl:apply-templates select='ROOT'/>
 </TABLE>
 </BODY>
 </HTML>
 </xsl:template>
 </xsl:stylesheet>

The code that generates the HTML file by applying the XSLT file Employee.xsl (stored in the C:\PSS2005
directory) follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 using System;
 using System.IO;
 using Microsoft.Data.SqlXml;

 class Program
 {
 static void Main(string[] args)
 {
 SqlXmlCommand cmd = new SqlXmlCommand("Provider=SQLNCLI;Server=(local);" +
 "database=AdventureWorks;Integrated Security=SSPI");
 cmd.CommandText = "SELECT TOP 10 * FROM HumanResources.Employee " +
 "FOR XML AUTO";
 cmd.CommandType
 = SqlXmlCommandType.Sql;
 cmd.RootTag
 = "ROOT";
 cmd.XslPath
 = @"C:\PSS2005\Employee.xsl";

 Stream s = cmd.ExecuteStream();
 byte[] b = new byte[s.Length];
 s.Read(b, 0, b.Length);
 FileStream fs = new FileStream(@"C:\PSS2005\Employee.html",
 FileMode.OpenOrCreate);
 fs.Write(b, 0, b.Length);
 fs.Flush();
 }
 }

The CommandType property of the SqmXmlCommand object is set to SqlXmlCommandType.Sql from the values
described in Table 6-4 . This specifies that the SQL command in the CommandText property is processed. The
ExecuteStream() method of the SqlXmlCommand object returns the results of executing the commandin this
case a SQL queryas a Stream object.

The RootTag property of the SqlXmlCommand object specifies the root element for the XML generated by the
queryin this case ROOT , which matches the xsl:apply-templates select element in the XSLT transformation
file. The XslPath property specifies the full name of the XSLT transformation file to applythe path to the file
can be absolute or relative.

An excerpt from the resulting HTML file, named C:\PSS2005\Employee.html , follows:

 <HTML>
 <HEAD>
 <META http-equiv="Content-Type" content="text/html; charset=utf-8">
 </HEAD>
 <BODY>
 <TABLE>
 <TR>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <TH>Employee ID</TH>
 <TH>Title</TH>
 </TR>
 <TR>
 <TD>1</TD>
 <TD>Production Technician - WC60</TD>
 </TR>
 <TR>
 <TD>2</TD>
 <TD>Marketing Assistant</TD>
 </TR>
 <TR>

 ...

 <TR>
 <TD>10</TD>
 <TD>Production Technician - WC10</TD>
 </TR>
 </TABLE>
 </BODY>
 </HTML>

Figure 6-3 shows the file displayed in Internet Explorer.

6.2.3. Annotated Mapping Schemas

An XML schema defines the structure of an XML document and any constraints on the data in the document.
In an XML schema, the <xs:schema> element encloses the schema. The <xs:schema> element also contains
attributes that define the namespace that the schema is in, as well as namespaces used in the schema. A
valid XSD schema is derived from the XML schema namespace at http://www.w3.org/2001/XMLSchema and
must have the <xs:schema> element defined as follows:

 <xs:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

Annotations are attributes used to map XML data to database tables and columns in a relational database,
and to specify relationships between and constraints on multiple tables within an XSD schema. These
mapping schemas let you do the following:

Use XML template queries against XML views returned by the XSD schema and return the results as an
XML document. Template queries are discussed later in this chapter in the section "XML Template
Queries ."

Figure 6-3. Results for applying an XSLT transformation example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use UpdateGrams to modify data in a SQL Server database. UpdateGrams are discussed later in this
chapter in the section "UpdateGrams ."

Bulk load XML data into a SQL Server database. Bulk loading data is discussed in Chapter 7 .

Annotations are defined in the urn:schemas-microsoft-com:mapping-schema namespace. Adding this
namespace to the <xs:schema> element is the easiest way to specify the namespace:

 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

You can specify any prefix (instead of sql) for the namespace.

You can easily create an XSD schema using XML Schema Designer in Visual Studio 2005. For example, to
create a schema for the HumanResources.Employee table in AdventureWorks , follow these steps:

Create a new a project in Visual Studio 2005.1.

2.

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

Right-click the project in Solution Explorer and select Add New Item from the context menu to
open the Add New Item dialog box.

2.

Select the XML schema template, give it the name Vendor.xsd , and click the Add button. The XML
Schema designer surface is opened empty.

3.

Open the Server Explorer window by selecting View Server Explorer from the main menu.4.

Add a data connection to the AdventureWorks database, if it does not exist, by right-clicking the Data
Connections node and selecting Add Connection in Server Explorer. Complete the Add Connection
dialog box and click the OK button.

5.

Drag the Employee (HumanResources) table in Server Explorer onto the XML Schema Designer surface
Employee.xsd .

6.

Right-click the XML Schema Designer surface and select View Code from the context menu to view the
XSD schema that follows:

 <?xml version="1.0" encoding="utf-8"?>
 <xs:schema id="Employee"
 targetNamespace="http://tempuri.org/Employee.xsd" elementFormDefault="qualified"
 xmlns="http://tempuri.org/Employee.xsd"
 xmlns:mstns="http://tempuri.org/Employee.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xs:element name="Document">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="Employee">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="EmployeeID" type="xs:int" />
 <xs:element name="NationalIDNumber" type="xs:string" />
 <xs:element name="ContactID" type="xs:int" />
 <xs:element name="LoginID" type="xs:string" />
 <xs:element name="ManagerID" type="xs:int" minOccurs="0" />
 <xs:element name="Title" type="xs:string" />
 <xs:element name="BirthDate" type="xs:dateTime" />
 <xs:element name="MaritalStatus" type="xs:string" />
 <xs:element name="Gender" type="xs:string" />
 <xs:element name="HireDate" type="xs:dateTime" />
 <xs:element name="SalariedFlag" type="xs:boolean" />
 <xs:element name="VacationHours" type="xs:short" />
 <xs:element name="SickLeaveHours" type="xs:short" />
 <xs:element name="CurrentFlag" type="xs:boolean" />
 <xs:element name="rowguid" type="xs:string" />
 <xs:element name="ModifiedDate" type="xs:dateTime" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>

7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <xs:unique name="DocumentKey1">
 <xs:selector xpath=".//mstns:Employee" />
 <xs:field xpath="mstns:EmployeeID" />
 </xs:unique>
 </xs:element>
 </xs:schema>

You can add annotations to this XSD schema and remove schema information that you do not need. The
following example shows the same schema with sql:relation and sql:field mappings added and
unnecessary information removed. Note the addition of the highlighted mapping-schema namespace in the
xs:schema element.

 <xs:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xs:element name="Employee" sql:relation="HumanResources.Employee">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="EmployeeID" type="xs:int" sql:field="EmployeeID" />
 <xs:element name="NationalIDNumber" type="xs:string"
 sql:field="NationalIDNumber" />
 <xs:element name="ContactID" type="xs:int" sql:field="ContactID" />
 <xs:element name="LoginID" type="xs:string" sql:field="LoginID" />
 <xs:element name="ManagerID" type="xs:int" sql:field="ManagerID" />
 <xs:element name="Title" type="xs:string" sql:field="Title" />
 <xs:element name="BirthDate" type="xs:date" sql:field="BirthDate" />
 <xs:element name="MaritalStatus" type="xs:string"
 sql:field="MaritalStatus" />
 <xs:element name="Gender" type="xs:string" sql:field="Gender" />
 <xs:element name="HireDate" type="xs:date" sql:field="HireDate" />
 <xs:element name="SalariedFlag" type="xs:boolean"
 sql:field="SalariedFlag" />
 <xs:element name="VacationHours" type="xs:int"
 sql:field="VacationHours" />
 <xs:element name="SickLeaveHours" type="xs:int"
 sql:field="SickLeaveHours" />
 <xs:element name="CurrentFlag" type="xs:boolean"
 sql:field="CurrentFlag" />
 <xs:element name="rowguid" type="xs:string" sql:field="rowguid" />
 <xs:element name="ModifiedDate" type="xs:date"
 sql:field="ModifiedDate" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>

If the sql:field attribute is not specified for a field element or attribute, that element is automatically
mapped to a column that has the same name, if one exists. The annotations in the example are actually

http://lib.ommolketab.ir
http://lib.ommolketab.ir

unnecessary, because field elements and columns all have the same name.

The case-sensitivity of the table and field names defined by the sql:relation and sql:field attributes is
determined by whether SQL Server is using case-sensitive collation.

Table 6-7 describes the most common mapping schema annotations.

Table 6-7. SQL Server 2005 mapping schema annotations

Annotation Description

sql:encode Specifies that an element or attribute mapped to a BLOB-type column is returned as
a URL to the field rather than as Base64-encoded data within the XML document.

sql:field Maps an element to a field in the table specified by the sql:relation attribute for
the parent element.

sql:guid Specifies that a GUID-type column value is used in the UpdateGram for that column
rather than the value provided in the UpdateGram.

sql:hide Hides an element or attribute specified in the schema in the resulting XML
document.

sql:identity Specifies for an identity-type column how the column is updated using an
UpdateGram.

sql:inverse Specifies that the UpdateGram should invert the update order of the parent-child
relationship specified in a sql:relationship element. This overcomes primary
key/foreign key violations when used with an UpdateGram or bulk load operation.

sql:is-constant Specifies an element that does not map to a column in a table but is included in the
XML document output.

sql:key-fields Specifies columns that uniquely identify rows within a table.

sql:limit-field Specifies that an attribute or element contains a limiting value specified using the
sql:limit-value annotation.

sql:limit-value Specifies the limit value in the column specified by the sql:limit-field annotation.

sql:mapped Specifies whether elements are mapped to a table or column and whether they
appear in the XML document output. The annotation takes the value 0 for false or 1
for true.

sql:max-depth Specifies maximum depth in recursive relationships specified in the schema.

sql:overflow-
field

Specifies the column that contains overflow dataunconsumed data from the source
XML column.

sql:prefix Prepends ID , IDREF , and IDREFS with a string prefix to ensure uniqueness within an
XML document.

sql:relation Maps an XML item to the specified table in the database.

sql:relationship Specifies a relationship for a table (sql:relation) element using parent , child ,
parent-key , and child-key attributes to define the relationship.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Annotations are used to define the relational hierarchy of the data based on the relationships of the
underlying tables. Specify a <sql:relationship> element for each relationship in the <xs:appinfo> element
within the <xs:annotation> element in the XSD schema. The following code snippet defines a parent-child
relationship between the Sales.Customer and Sales.SalesOrderHeader tables in AdventureWorks :

 <xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="Customer-SalesOrderHeader"
 parent="Sales.Customer"
 parent-key="CustomerID"
 child="Sales.SalesOrderHeader"
 child-key="CustomerID" />
 </xsd:appinfo>
 </xsd:annotation>

Add the <xsd:annotation> element immediately following the <xs:schema> element.

Table 6-8 describes annotation attributes used to define an XSD relationship.

Table 6-8. sql:relationship annotation attributes

sql:relationship
annotation attribute

Description

name Unique name within the XSD schema for the relationship.

parent Specifies the parent table. This element is optionalthe parent will be inferred
from the hierarchy if the parent attribute is missing.

parent-key Specifies the parent key. Separate field names with a space if the key has
more than one field.

child Specifies the child table.

child-key Specifies the child key that maps to the parent key. Separate field names
with a space if the key has more than one field.

For more information about XSD schemas, see Microsoft SQL Server 2005 Books
Online.

6.2.4. XML Template Queries

An XML template query is an XML document with one or more T-SQL or XPath queries inside. An XML
template query lets you query an XML document using T-SQL or XPath. The syntax is:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <rootName xmlns:sql="urn:schemas-microsoft-com:xml-sql" [sql:xsl="stylesheet"] >
 [<sql:header>

 [<sql:param name="paramName">paramValue</sql:param> [... n]]
 </sql:header>]

 <sql:query client-side-xml="n">>

 tsqlQuery [... n]
 </sql:query> [... n]

 <sql:xpath-query mapping-schema="annotatedSchemaFile">

 xpathQuery
 </sql:xpath-query>

 </rootname>

where:

rootName

Specifies the name of the top-level element.

stylesheet

Specifies the name of the XSLT stylesheet to apply to the result set before returning the formatted
results to the client. If an XSLT stylesheet is specified, the results are transformed before they are
returned to the client as formatted results.

<sql:param name= "paramName ">paramValue </sql:param>

Specifies optional parameter values for parameterized T-SQL queries and stored procedures.

tsqlQuery

Specifies one or more T-SQL statements making up a batch. You can also specify one or more
<sql:query> elements (i.e., one or more T-SQL statement batches).

annotatedSchemaFile

Specifies a reference to an annotated XSD schema. Annotated XML-Data Reduced (XDR) schemas are
also supported for backward compatibility.

xpathQuery

Specifies an XPath query. A discussion about XPath queries is beyond the scope of this book. For

http://lib.ommolketab.ir
http://lib.ommolketab.ir

information about XPath queries, see XPath and XPointer (O'Reilly, 2002) or the W3C XPath
Specification at http://www.w3.org/TR/1999/PR-xpath-19991008.html .

The following example uses an XML template file containing a T-SQL query to return an XML document
containing data about the top two employees in the HumanResources.Employee table in AdventureWorks . The
XML template containing the T-SQL query follows:

 <ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:query>
 SELECT TOP 2 * FROM HumanResources.Employee FOR XML AUTO
 </sql:query>
 </ROOT>

The code that executes the query in the XML template file (stored in the C:\PSS2005 directory) follows:

 using System;
 using System.IO;
 using Microsoft.Data.SqlXml;

 class Program
 {
 static void Main(string[] args)
 {
 SqlXmlCommand cmd = new SqlXmlCommand("Provider=SQLNCLI;Server=(local);" +
 "database=AdventureWorks;Integrated Security=SSPI");
 cmd.CommandType = SqlXmlCommandType.TemplateFile;
 cmd.CommandText = @"C:\PSS2005\TopTwoEmployeesTemplate.xml";

 Stream stream = cmd.ExecuteStream();

 StreamReader sr = new StreamReader(stream);
 string s = sr.ReadToEnd();

 Console.WriteLine(s);
 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

The results follow:

 <ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <HumanResources.Employee EmployeeID="1" NationalIDNumber="14417807"
 ContactID="1209" LoginID="adventure-works\guy1" ManagerID="16"
 Title="Production Technician - WC60" BirthDate="1972-05-15T00:00:00"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MaritalStatus="M" Gender="M" HireDate="1996-07-31T00:00:00" SalariedFlag="0"
 VacationHours="21" SickLeaveHours="30" CurrentFlag="1"
 rowguid="AAE1D04A-C237-4974-B4D5-935247737718"
 ModifiedDate="2004-07-31T00:00:00"/>
 <HumanResources.Employee EmployeeID="2" NationalIDNumber="253022876"
 ContactID="1030" LoginID="adventure-works\kevin0" ManagerID="6"
 Title="Marketing Assistant" BirthDate="1977-06-03T00:00:00"
 MaritalStatus="S" Gender="M" HireDate="1997-02-26T00:00:00" SalariedFlag="0"
 VacationHours="42" SickLeaveHours="41" CurrentFlag="1"
 rowguid="1B480240-95C0-410F-A717-EB29943C8886"
 ModifiedDate="2004-07-31T00:00:00"/>
 </ROOT>

The CommandType property of the SqmXmlCommand object is set to SqlXmlCommandType.TemplateFile from the
values described in Table 6-4 . This specifies that the template file at the location specified by the
CommandText property is executed. The ExecuteStream() method of the SqlXmlCommand object returns the
results of executing the commandin this case a query in an XML template fileas a Stream object.

The next example shows how to execute an XPath query against a mapping schema for the
HumanResources.Employee table in the AdventureWorks database. The mapping schema follows:

 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="Employee" sql:relation="HumanResources.Employee">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="EmployeeID" type="xsd:int" sql:field="EmployeeID" />
 <xsd:element name="NationalIDNumber" type="xsd:string"
 sql:field="NationalIDNumber" />
 <xsd:element name="ContactID" type="xsd:int" sql:field="ContactID" />
 <xsd:element name="LoginID" type="xsd:string" sql:field="LoginID" />
 <xsd:element name="ManagerID" type="xsd:int" sql:field="ManagerID" />
 <xsd:element name="Title" type="xsd:string" sql:field="Title" />
 <xsd:element name="BirthDate" type="xsd:date" sql:field="BirthDate" />
 <xsd:element name="MaritalStatus" type="xsd:string"
 sql:field="MaritalStatus" />
 <xsd:element name="Gender" type="xsd:string" sql:field="Gender" />
 <xsd:element name="HireDate" type="xsd:date" sql:field="HireDate" />
 <xsd:element name="SalariedFlag" type="xsd:boolean"
 sql:field="SalariedFlag" />
 <xsd:element name="VacationHours" type="xsd:int"
 sql:field="VacationHours" />
 <xsd:element name="SickLeaveHours" type="xsd:int"
 sql:field="SickLeaveHours" />
 <xsd:element name="CurrentFlag" type="xsd:boolean"
 sql:field="CurrentFlag" />
 <xsd:element name="rowguid" type="xsd:string" sql:field="rowguid" />
 <xsd:element name="ModifiedDate" type="xsd:date"
 sql:field="ModifiedDate" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>

The code that returns an XML document containing data for the employee with EmployeeID = 2 uses an
XPath query and the preceding mapping file (stored in the C:\PSS2005 directory):

 using System;
 using System.IO;
 using Microsoft.Data.SqlXml;

 class Program
 {
 static void Main(string[] args)
 {
 SqlXmlCommand cmd = new SqlXmlCommand("Provider=SQLNCLI;Server=(local);" +
 "database=AdventureWorks;Integrated Security=SSPI");
 cmd.CommandText = @"Employee[EmployeeID=2]";
 cmd.CommandType = SqlXmlCommandType.XPath;
 cmd.RootTag = "ROOT";
 cmd.SchemaPath = @"C:\PSS2005\Employee.xsd";

 Stream stream = cmd.ExecuteStream();

 StreamReader sr = new StreamReader(stream);
 string s = sr.ReadToEnd();

 Console.WriteLine(s);
 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

The results follow:

 <?xml version="1.0" encoding="utf-8" ?>
 <ROOT>
 <Employee>
 <EmployeeID>2</EmployeeID>
 <NationalIDNumber>253022876</NationalIDNumber>
 <ContactID>1030</ContactID>
 <LoginID>adventure-works\kevin0</LoginID>
 <ManagerID>6</ManagerID>
 <Title>Marketing Assistant</Title>
 <BirthDate>1977-06-03</BirthDate>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <MaritalStatus>S</MaritalStatus>
 <Gender>M</Gender>
 <HireDate>1997-02-26</HireDate>
 <SalariedFlag>0</SalariedFlag>
 <VacationHours>42</VacationHours>
 <SickLeaveHours>41</SickLeaveHours>
 <CurrentFlag>1</CurrentFlag>
 <rowguid>1B480240-95C0-410F-A717-EB29943C8886</rowguid>
 <ModifiedDate>2004-07-31</ModifiedDate>
 </Employee>
 </ROOT>

The CommandType property of the SqmXmlCommand object is set to SqlXmlCommandType.Xpath from the values
described in Table 6-4 . This specifies that the XPath command in the CommandText property is executed. The
ExecuteStream() method of the SqlXmlCommand object returns the results of executing the commandin this
case an XPath queryas a Stream object.

6.2.5. UpdateGrams

An UpdateGram is an XML template used to insert, update, or delete data in the database. An UpdateGram
uses mapping information provided in the annotated XML (XSD or XDR) schema. The UpdateGram format is:

 <ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">

 <updg:sync [mapping-schema= "AnnotatedSchemaFile.xml"] >
 <updg:before>
 ...
 </updg:before>
 <updg:after>
 ...
 </updg:after>
 </updg:sync>
 </ROOT>

where the following elements are defined in the urn:schemas-microsoft-com:xml-updategram namespace:

<sync>

Contains one or more pairs of <before> and <after> blocks. These blocks must be specified as pairs,
even if they are empty. An UpdateGram can contain multiple <sync> blocks, each of which is treated
as a transactional unit.

mapping-schema= "AnnotatedSchemaFile.xml "

Optionally specifies an annotated XSD or XDR mapping schema file used to map elements and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

attributes in the <before> and <after> blocks to tables and columns in the database.

<before>

Contains the original version (before state) of the record instance.

<after>

Contains the updated version (after state) of the record instance.

An UpdateGram uses the operations described in Table 6-9 .

Table 6-9. UpdateGram operations

Operation Description

insert The record is inserted if it appears only in the <after> block.

update The record is updated if it appears in the <before> block with a corresponding record in the
<after> block. The record is updated to the values specified in the <after> block.

delete The record is deleted if it appears only in the <before> block.

The UpdateGram mapping to the database can be implicit or explicitly specified using an XSD or XDR
schema. Implicit mapping maps each element in the <before> and <after> elements to a table, and each
attribute of the <before> and <after> elements to a column in the table.

Explicit mapping uses the annotated schema file specified by the mapping-schema attribute of the <sync>
element to map elements and attributes in the <before> and <after> elements to tables and columns in the
database. The path of the mapping schema file is specified relative to the location of the UpdateGram.

The examples in this section use a table named UpdateGramTable . Create the table using the following T-
SQL statement:

 USE ProgrammingSqlServer2005

 CREATE TABLE UpdateGramTable
 (
 ID int,
 Name varchar(50)
)

The following code executes an UpdateGram. To process the three UpdateGrams that follow the code,
replace the full filename of the UpdateGram file passed into the StreamReader constructor with the name of
each of the three UpdateGram files in the order in which they appear.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 using System;
 using System.IO;
 using Microsoft.Data.SqlXml;

 class Program
 {
 static void Main(string[] args)
 {

 StreamReader sr = new StreamReader(@"C:\PSS2005\UpdateGram.xml");
 string s = sr.ReadToEnd();
 sr.Close();

 SqlXmlCommand cmd = new SqlXmlCommand("Provider=SQLNCLI;Server=(local);" +
 "database=ProgrammingSqlServer2005;Integrated Security=SSPI");
 cmd.CommandType = SqlXmlCommandType.UpdateGram;
 cmd.CommandText = s;

 cmd.ExecuteNonQuery();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

The CommandType property of the SqmXmlCommand object is set to SqlXmlCommandType.UpdateGram from the
values described in Table 6-4 . This specifies that the UpdateGram in the CommandText property is processed.
The ExecuteNonQuery() method of the SqlXmlCommand object executes the commandin this case, processes
the UpdateGramand returns nothing.

The following UpdateGram inserts three records into the table UpdateGramTable :

 <ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync >
 <updg:before>
 </updg:before>
 <updg:after>
 <UpdateGramTable ID="1" Name="Record 1"/>
 <UpdateGramTable ID="2" Name="Record 2"/>
 <UpdateGramTable ID="3" Name="Record 3"/>
 </updg:after>
 </updg:sync>
 </ROOT>

The following UpdateGram deletes the record with ID = 2 from the table UpdateGramTable :

 <ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <updg:sync >
 <updg:before>
 <UpdateGramTable ID="2" Name="Record 2"/>
 </updg:before>
 <updg:after>
 </updg:after>
 </updg:sync>
 </ROOT>

The following UpdateGram updates the record with ID = 3 in the table UpdateGramTable :

 <ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync >
 <updg:before>
 <UpdateGramTable ID="3" Name="Record 3"/>
 </updg:before>
 <updg:after>
 <UpdateGramTable ID="3" Name="Updated Record 3"/>
 </updg:after>
 </updg:sync>
 </ROOT>

6.2.6. DiffGrams

A DiffGram is an XML document format introduced with the DataSet in Visual Studio .NET 1.0 and used to
synchronize offline changes made to data with a database server or other persistent store using a
DataAdapter . The DiffGram format is:

 <?xml version="1.0"?>
 <diffgr:diffgram
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
 xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <DataInstance>
 ...

 </DataInstance>
 [<diffgr:before>
 ...
 </diffgr:before>]
 </diffgr:diffgram>

where:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

< DataInstance >

Contains the most recent version of all data, including unchanged data and any changes made offline
by the client

<before>

Contains the original data instances (records) for data that has been updated or deleted

The DiffGram uses the following XML annotations that are defined in the urn:schemas-microsoft-com:xml-
diffgram-v1 namespace:

id

Associates data instance elements in the <DataInstance> and <before> blocks

hasChanges

Specified as inserted or modified on elements in the <DataInstance> block for inserted or updated
records

parentID

Specifies parent-child relationships within the <before> block, and is used to determine the order in
which updates are processed

A DiffGram identifies whether records are unchanged, deleted, updated, or inserted according to the rules
described in Table 6-10 .

Table 6-10. DiffGram record status rules

Record
Status

Description

unchanged Element exists in the <DataInstance> block but not in the <before> block.

inserted Element exists in the <DataInstance> block but not in the <before> block. The element in the
<DataInstance> block has the hasChanges attribute set to inserted .

updated Element exists both in the <DataInstance> block and the <before> block. The records are
associated using the id annotation, and the hasChanges attribute is set to modified on the
element in the <DataInstance> block.

deleted Element exists only in the <before> block.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Examples of using a DiffGram from SQLXML 4.0 managed classes to modify data in the database follow. The
examples use a table named DiffGramTable . Create the table using the following T-SQL statement:

 USE ProgrammingSqlServer2005

 CREATE TABLE DiffGramTable
 (
 ID int,
 Name varchar(50)
)

The examples in this section also use an XSD annotated mapping schema named DiffGramTable.xsd for the
table DiffGramTable :

 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="DiffGramTable" sql:relation="DiffGramTable">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ID" type="xsd:int" sql:field="ID" />
 <xsd:element name="Name" type="xsd:string" sql:field="Name" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>

The following code executes a DiffGram. To process the three DiffGrams that follow the code, replace the full
filename of the DiffGram file passed into the highlighted StreamReader constructor with the name of each of
the three DiffGram files in the order in which they appear.

 using System;
 using System.IO;
 using Microsoft.Data.SqlXml;

 class Program
 {
 static void Main(string[] args)
 {
 StreamReader sr = new StreamReader(@"C:\PSS2005\DiffGram.xml");
 string s = sr.ReadToEnd();
 sr.Close();

 SqlXmlCommand cmd = new SqlXmlCommand("Provider=SQLNCLI;Server=(local);" +
 "database=ProgrammingSqlServer2005;Integrated Security=SSPI");
 cmd.CommandType = SqlXmlCommandType.DiffGram;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 cmd.CommandText = s;

 cmd.ExecuteNonQuery();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

The CommandType property of the SqmXmlCommand object is set to SqlXmlCommandType.DiffGram from the values
described in Table 6-4 . This specifies that the DiffGram in the CommandText property is processed. The
ExecuteNonQuery() method of the SqlXmlCommand object executes the commandin this case processes the
DiffGramand returns nothing.

The following DiffGram inserts three records into the table DiffGramTable . Note that the hasChanges
attribute is set to "inserted" .

 <ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql"
 sql:mapping-schema="c:\PSS2005\DiffGramTable.xsd">
 <diffgr:diffgram xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
 xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">
 <DocumentElement>
 <DiffGramTable diffgr:id="DiffGramTable1" msdata:rowOrder="0"
 diffgr:hasChanges="inserted">
 <ID>1</ID>
 <Name>Record 1</Name>
 </DiffGramTable>
 <DiffGramTable diffgr:id="DiffGramTable2" msdata:rowOrder="1"
 diffgr:hasChanges="inserted">
 <ID>2</ID>
 <Name>Record 2</Name>
 </DiffGramTable>
 <DiffGramTable diffgr:id="DiffGramTable3" msdata:rowOrder="2"
 diffgr:hasChanges="inserted">
 <ID>3</ID>
 <Name>Record 3</Name>
 </DiffGramTable>
 </DocumentElement>
 </diffgr:diffgram>
 </ROOT>

The following DiffGram deletes the record with ID = 2 from the table DiffGramTable . In this case,
hasChanges is not used.

 <ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql"
 sql:mapping-schema="c:\PSS2005\DiffGramTable.xsd">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <diffgr:diffgram xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
 xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">
 <DocumentElement>
 </DocumentElement>
 <diffgr:before>
 <DiffGramTable diffgr:id="DiffGramTable2" msdata:rowOrder="1">
 <ID>2</ID>
 <Name>Record 2</Name>
 </DiffGramTable>
 </diffgr:before>
 </diffgr:diffgram>
 </ROOT>

The following UpdateGram updates the record with ID = 3 in the table UpdateGramTable . Here, hasChanges is
set to ="modified" .

 <ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql"
 sql:mapping-schema="c:\PSS2005\DiffGramTable.xsd">
 <diffgr:diffgram xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
 xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">
 <DocumentElement>
 <DiffGramTable diffgr:id="DiffGramTable2" msdata:rowOrder="1"
 diffgr:hasChanges="modified">
 <ID>3</ID>
 <Name>Updated Record 3</Name>
 </DiffGramTable>
 </DocumentElement>
 <diffgr:before>
 <DiffGramTable diffgr:id="DiffGramTable2" msdata:rowOrder="1">
 <ID>3</ID>
 <Name>Record 3</Name>
 </DiffGramTable>
 </diffgr:before>
 </diffgr:diffgram>
 </ROOT>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.3. Exception Message Box

The exception message box API is installed with the SQL Server 2005 graphical components. It is
implemented in the ExceptionMessageBox class in the Microsoft.SqlServer.MessageBox namespace and
enhances the standard message box implemented in the System.Windows.Forms.MessageBox class. The
ExceptionMessageBox class includes the following enhanced functionality:

You can display up to five custom buttons.

You can display custom text and symbols in the message box.

The user can copy all information from the message box to the clipboard.

You can display underlying error information in a hierarchical tree view, which the user can
navigate.

The user can decide whether the message should be displayed for subsequent occurrences of the
same exception.

The user can access online help for the exception by using a help link associated with the
exception.

The following example shows how to use the exception message box within a .NET application. The
example executes a RAISERROR T-SQL statement as the source of the error.

From Visual Studio 2005 main menu, select File New Project and create a new Windows
Application project. Name the project ExceptionMessageBoxProject .

1.

Add a reference to the Microsoft.ExceptionMessageBox.dll assembly. You might have to browse
for itthe default installation directory is C:\Program Files\Microsoft SQL
Server\90\SDK\Assemblies .

2.

Add a using directive for the exception message box namespace to Form1.cs :

 using Microsoft.SqlServer.MessageBox;

3.

Add a button named raiseExceptionButton to Form1 . In the click event handler for the button,
add code to raise a SQL server error using the RAISERROR T-SQL statement in a try block and
code to display the exception message box in the catch block. The complete code for this
example follows:

 using System;

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 using System.Collections.Generic;
 using System.ComponentModel;
 using System.Data;
 using System.Drawing;
 using System.Text;
 using System.Windows.Forms;

 using Microsoft.SqlServer.MessageBox;
 using System.Data.SqlClient;

 namespace ExceptionMesageBoxProject
 {
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void raiseExceptionButton_Click(object sender, EventArgs e)
 {
 SqlConnection conn = new SqlConnection("Data Source=(local);" +
 "Integrated Security=SSPI;Initial Catalog=AdventureWorks");
 conn.Open();

 SqlCommand cmd = new SqlCommand(
 "RAISEERROR('Test error', 15, 1)", conn);

 try
 {
 cmd.ExecuteNonQuery();
 }
 catch (Exception ex)
 {
 // create the exception message box and set some options
 ExceptionMessageBox emb = new ExceptionMessageBox(ex);
 emb.Buttons = ExceptionMessageBoxButtons.Custom;
 emb.SetButtonText("Custom Button 1", "Custom Button 2",
 "Custom Button 3");
 emb.DefaultButton = ExceptionMessageBoxDefaultButton.Button2;
 emb.Symbol = ExceptionMessageBoxSymbol.Question;
 emb.ShowCheckBox = true;
 emb.Show(this);

 // display the button that was clicked
 MessageBox.Show("You clicked " +
 emb.CustomDialogResult.ToString());
 }
 finally
 {
 conn.Close();
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }
 }

Run the example. When you click the button, the exception message box is displayed, as shown
in Figure 6-4 .

5.

Figure 6-4. Exception message box

The Show() method of the ExceptionMessageBox class takes the parent window (type IWin32Window)
as its only argument. Passing this as the parent makes the exception message box a child of the
active windowthis is usually the desired behavior.

You can specify up to five custom buttons using overloads of the ExceptionMessageBox constructor or
using the overloaded SetButtonText() methodboth take the button text for up to five custom buttons
as arguments. The CustomDialogResult property indicates which custom button was clicked.

This example displays the optional checkbox on the exception message box. The checkbox lets the
user control whether the message box is displayed for subsequent occurrences of the same exception.

Clicking the Show Technical Details icon (rightmost icon in the toolbar at the bottom left of the
message box) brings up the Advanced Information dialog box, containing a hierarchy of error
information that the user can drill down through, as shown in Figure 6-5 .

Figure 6-5. Advanced information for exception message box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An ExceptionMessageBox instance has public properties that let you control its appearance and
functionality, as described in Table 6-11 .

Table 6-11. ExceptionMessageBox instance properties

Property Description

Beep Gets or sets whether to play a sound when the
message box is displayed.

Buttons Gets or sets the buttons to display in the message
box. A value from the ExceptionMessageBoxButtons
enumeration.

Caption Gets or sets the caption for the exception message
box.

CheckBoxRegistryKey Gets or sets the registry key that specifies the initial
checkbox value if the ShowCheckBox property is TRue .
This property is used together with the
CheckBoxRegistryValue property.

CheckBoxRegistryMeansDoNotShowDialog Gets or sets whether the registry value indicated by
the CheckBoxRegistryKey and CheckBoxRegistryValue
properties indicates that the user decided not to view
the message.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Description

CheckBoxRegistryValue Gets or sets the registry value that specifies the
initial checkbox value if the ShowCheckBox property is
TRue . This property is used together with the
CheckBoxRegistryKey property.

CheckBoxText Gets or sets the text to display for the checkbox on
the exception message box when the ShowCheckbox
property is true .

CustomDialogResult Gets the custom message box button that was
clicked. This is a value from the
ExceptionMessageBoxDialogResult enumeration. None
is returned if the Buttons property is not set to
ExceptionMessageBoxButtons.Custom .

CustomSymbol Gets or sets a Bitmap to use as the symbol on the
message box.

Data Gets an IDictionary interface for help link and
advanced information details associated with the top-
level message.

DefaultButton Gets or sets the default button in the message box
when Buttons is ExceptionMessageBoxButtons.Custom
. A value from the
ExceptionMessageBoxDefaultButton enumeration.

DefaultDialogResult Gets or sets the value as a member of the
DialogResult enumeration returned by the Show()
method when the user has specified not to show the
dialog box for subsequent occurrences of the same
message.

Font Gets or sets the font used in the message box.

HelpLink Gets or sets a link to a help file or web page as help
as additional help to the top-level message.

InnerException Gets or sets the inner exception of the message box
as an Exception instance.

IsCheckBoxChecked Gets or sets whether the checkbox on the exception
message box is checked when the
ShowCheckboxProperty is true .

Message Gets or sets the exception (as an Exception instance)
for the message box.

MessageLevelDefault Gets or sets the number of message levels to display
in the message box.

Options Gets or sets display options for the message box
using values in the ExceptionMessageBoxOptions
enumeration.

CheckBoxRegistryValue Gets or sets the registry value that specifies the
initial checkbox value if the ShowCheckBox property is
TRue . This property is used together with the
CheckBoxRegistryKey property.

CheckBoxText Gets or sets the text to display for the checkbox on
the exception message box when the ShowCheckbox
property is true .

CustomDialogResult Gets the custom message box button that was
clicked. This is a value from the
ExceptionMessageBoxDialogResult enumeration. None
is returned if the Buttons property is not set to
ExceptionMessageBoxButtons.Custom .

CustomSymbol Gets or sets a Bitmap to use as the symbol on the
message box.

Data Gets an IDictionary interface for help link and
advanced information details associated with the top-
level message.

DefaultButton Gets or sets the default button in the message box
when Buttons is ExceptionMessageBoxButtons.Custom
. A value from the
ExceptionMessageBoxDefaultButton enumeration.

DefaultDialogResult Gets or sets the value as a member of the
DialogResult enumeration returned by the Show()
method when the user has specified not to show the
dialog box for subsequent occurrences of the same
message.

Font Gets or sets the font used in the message box.

HelpLink Gets or sets a link to a help file or web page as help
as additional help to the top-level message.

InnerException Gets or sets the inner exception of the message box
as an Exception instance.

IsCheckBoxChecked Gets or sets whether the checkbox on the exception
message box is checked when the
ShowCheckboxProperty is true .

Message Gets or sets the exception (as an Exception instance)
for the message box.

MessageLevelDefault Gets or sets the number of message levels to display
in the message box.

Options Gets or sets display options for the message box
using values in the ExceptionMessageBoxOptions
enumeration.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Description

ShowCheckBox Gets or sets whether to show the checkbox on the
exception message boxthe checkbox lets the user
control whether the message box is displayed for
subsequent occurrences of the same exception.

ShowToolbar Gets or sets whether to display the toolbar with the
help, copy, and show advanced information buttons.

Symbol Gets or sets the symbol to display in the message
box using a value from the
ExceptionMessageBoxSymbol enumeration.

Text Gets or sets the text to display in the message box.

UseOwnerFont Gets or sets whether to retrieve and use the font of
the parent window as the font for the message box.

ShowCheckBox Gets or sets whether to show the checkbox on the
exception message boxthe checkbox lets the user
control whether the message box is displayed for
subsequent occurrences of the same exception.

ShowToolbar Gets or sets whether to display the toolbar with the
help, copy, and show advanced information buttons.

Symbol Gets or sets the symbol to display in the message
box using a value from the
ExceptionMessageBoxSymbol enumeration.

Text Gets or sets the text to display in the message box.

UseOwnerFont Gets or sets whether to retrieve and use the font of
the parent window as the font for the message box.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 7. XML Data
SQL Server 2005 provides extensive support for XML data storage and processing. You can store XML
documents and fragments natively as columns and T-SQL variables of the new xml data type. xml
data type columns can be indexed, typed according to an XML schema, and manipulated using
XQuery and XML Data Manipulation Language (DML).

A relational model is particularly suited to data that is highly structured with a well-known, well-
defined schema. XML data, on the other hand, is suitable to handling data with a flexible, evolving, or
unknown structure. XML is also well suited to storing data that represents a containment hierarchy.

Some reasons to store data as XML include the following:

Using the administrative capabilities of SQL Server to manage your XML data

Efficiently sharing, querying, and making fine-grained modifications to your XML data

Ensuring that data is validated against an existing XML schema

In addition to natively storing XML data, SQL Server 2005 lets you map relational data to XML data
using XQuery extension functions and map XML data to relational data using the FOR XML clause.

SQL Server 2005 includes SQLXML 4.0. This extends and enhances the client-side XML functionality
introduced in SQLXML 3.0, which shipped as a web release after the release of SQL Server 2000.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.1. xml Data Type

The new xml data type supports storing both XML documents and fragments in the database. An XML
fragment is an XML instance that does not have a single top-level (root) element. You can create
columns, parameters, and variables of the new xml type and store XML instances in them. xml data
type instances have a maximum size of 2GB.

An XML schema collection can be associated with a column, parameter, or variable of xml data type.
An xml data type with an associated schema is referred to as being typed. The XML schema validates
xml data type instances against constraints and provides data type information about the elements
and attributes in the instance. The schema also helps SQL Server optimize data storage. The XML
schema collection must be registered with SQL Server before it can be used to create typed xml
instances. Registration is described in the "Managing XML Schema Collections" section later in this
chapter.

If you want to use xml data type query methods against xml data type columns or variables, or want
to create or rebuild indexes on XML data type columns, you must set the SQL Server 2005 database
configuration options listed in Table 7-1. By default, the values are set as required. They may be
changed using the SET statement. You can check the values for each database by executing the
following T-SQL query:

 SELECT * FROM sys.databases

Table 7-1. SQL Server 2005 database configuration option settings for
using xml data type query methods

SET option Required value

ANSI_NULLS ON

ANSI_PADDING ON

ANSI_WARNINGS ON

ARITHABORT ON

CONCAT_NULL_YIELDS_NULL ON

NUMERIC_ROUNDABORT OFF

QUOTED_IDENTIFIER ON

7.1.1. Creating xml Data Type Columns and Variables

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following subsections describe how to create xml data type columns and T-SQL variables.

7.1.1.1. Columns

Use the CREATE TABLE statement to create a table that contains one or more xml data type columns.
The syntax for creating a table with an xml data type column is:

 CREATE TABLE table_name (
 ...

 xml_column_name xml

 [[DOCUMENT | CONTENT] (schema_name.xml_schema_collection_name)],

 ...
)

where:

table_name

The name of the table in the database.

xml_column_name

The name of the xml data type column in the table.

[DOCUMENT | CONTENT]

The DOCUMENT facet constrains the typed xml data type instance to allow only a single top-level
element.

The CONTENT facet explicitly allows the typed xml data type instance to have zero or more top-
level elements and text nodes in top-level elements. The default is CONTENT.

schema_name

The XML schema in the XML schema collection to associate with the xml data type column.

xml_schema_collection_name

The name of an existing XML schema collection.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following example creates a table named xmlTest that has an untyped xml data type column
named xmlCol. The example also creates a clustered primary key on the ID column for use in later
examples.

 USE ProgrammingSqlServer2005

 CREATE TABLE xmlTable
 (
 ID int NOT NULL,
 xmlCol xml,
 CONSTRAINT PK_xmlTable
 PRIMARY KEY CLUSTERED (ID)
)

You can query the sys.columns catalog view to get information about the xml data type columns in a
database. The following query returns the xml data type columns in a database:

 USE AdventureWorks

 SELECT o.name, c.* FROM sys.columns c
 JOIN sys.objects o ON c.object_id = o.object_id
 WHERE EXISTS
 (SELECT * FROM sys.types t
 WHERE c.system_type_id = t.system_type_id AND
 name='xml')

Partial results for running the query against the AdventureWorks database are shown in Figure 7-1.

Figure 7-1. Results for sys.columns catalog view example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This query joins the sys.columns catalog view to the sys.objects catalog view to return the table or
view that the xml data type column belongs to as the first column in the result set. The EXISTS clause
filters the results to include only xml data types.

7.1.1.2. Variables

The DECLARE statement is used to create T-SQL variables . The syntax for creating an xml data type
variable is:

 DECLARE variable_name [AS] xml

 [([DOCUMENT | CONTENT] schema_name.xml_schema_collection_name)]

where:

variable_name

The name of the xml data type variable. The variable name must be prefixed with an
ampersand (@).

The other parameters are the same as those discussed in the preceding "Columns" section.

The following example uses an xml data type variable to insert a row into the xmlTable created in the
preceding "Columns" section:

 USE ProgrammingSqlServer2005

 DECLARE @xmlVar xml
 SET @xmlVar = '<rootNode><childElement/></rootNode>'

 INSERT INTO xmlTable (ID, xmlCol)
 VALUES (1, @xmlVar)

The following example creates a stored procedure to modify a row in the xmlTable table:

 USE ProgrammingSqlServer2005
 GO

 CREATE PROCEDURE updateXmlTable
 @ID int,
 @xmlCol xml
 AS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 BEGIN
 UPDATE xmlTable
 SET xmlCol = @xmlCol
 WHERE ID = @ID
 END

Execute the stored procedure using the following code to update the xmlCol value for the row with ID
= 1:

 USE ProgrammingSqlServer2005

 SELECT * FROM xmlTable

 EXEC updateXmlTable 1, '<newRootNode><newChildElement/></newRootNode>'

 SELECT * FROM xmlTable

The before and after result sets returned by the query are shown in Figure 7-2.

Figure 7-2. Result sets for stored procedure using xml data type example

7.1.2. Limitations

The xml data type has the following limitations :

It cannot be stored in a sql_variant instance.

It cannot be cast or converted to the text or ntext data types.

It does not support PRIMARY KEY, FOREIGN KEY, UNIQUE, COLLATE, or RULE constraints.

Only string data types can be cast to an xml data type.

It cannot be compared or sorted and, as a result, cannot be used in a GROUP BY clause.

It cannot be used in distributed partitioned views. Partitioned views join horizontally partitioned

http://lib.ommolketab.ir
http://lib.ommolketab.ir

data from a set of member tables, making it appear as one table. In a distributed partitioned
view, at least one of the tables resides on a remote server instance.

It cannot be used as a parameter to any scalar built-in function other than ISNULL, COALESCE, or
DATALENGTH.

It cannot be used as a key column in an index.

XML declaration processing instructions (PIs) (<?xml ... ?>) are not preserved when the XML
instance is stored in the database. All other PIs in the XML instance are preserved.

The order of attributes in XML instances stored in xml type columns is not preserved.

By default, insignificant whitespace is not preserved. Whitespace can be preserved for an xml
data type instance by specifying the optional style argument to the CONVERT function.

Single quotation marks (') and double quotation marks (") around attribute values are not
preserved because the data is stored as name/value pairs in the database.

Namespace prefixes are not preserved and may change when xml data type instances are
retrieved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.2. Creating xml Data Type Instances

You can create instances of XML data by casting or converting from strings. You can even take
advantage of implicit casting by simply using a string in place of an xml type value. The next two
subsections go into more detail on these topics, and the third shows you how to bulk load XML data.
A fourth way to create a value of xml type is to issue a SELECT statement with a FOR XML clause. You'll
find that method discussed in detail in "XML Results Using the FOR XML Clause" later in this chapter.

7.2.1. Casting and Converting Strings

You can cast or convert (CONVERT function) any string data type instance[n][var]char, [n]text,
varbinary, and imageto an xml data type instance. Untyped data is checked to ensure that it is well
formed. Instances of typed XML data are validated against the associated schema.

The XML parser discards insignificant whitespace when converting string data types to xml data
types when either of the following is true:

The xml:space attribute is not defined on an element or its ancestors.

The xml:space attribute defined on an element or one of its ancestors has the value of default.

You can override the default whitespace handling behavior by setting the optional style (third)
parameter of the CONVERT function to 1. You cannot override the default whitespace handling when
using the CAST function to cast a string data type instance to an xml data type instance.

The following example inserts a row into the xmlTable table created in the "Creating xml Data Type
Columns and Variables" section earlier in this chapter. The example specifies the style attribute
(third argument) of the CONVERT function to preserve whitespace when converting a string to an xml
data type instance.

 USE ProgrammingSqlServer2005

 INSERT INTO xmlTable (ID, xmlCol)
 VALUES (2, CONVERT(xml, '<rootNode2> <childElement/> </rootNode2>', 1))

If the style argument is not specified or set to 0, the xml data type instance will be stripped of
whitespace and stored as follows:

 <rootNode2><childElement/></rootNode2>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.2.2. Constant Assignment

A string constant can be used where an xml data type instance is expected. An implicit cast to the
xml data type is performed. If the xml data type is typed, the XML in the string is validated against
the associated XML schema. The following example implicitly casts a string to an xml data type
variable:

 DECLARE @xmlVar xml
 SET @xmlVar = '<rootNode><childElement/></rootNode>'

 SELECT @xmlVar

The xml data type instance is returned as shown in Figure 7-3.

Figure 7-3. Results for xml constant assignment example

7.2.3. Bulk Loading Data with OPENROWSET

Enhanced OPENROWSET functionality in SQL Server 2005 lets you bulk load XML from files into xml data
type columns. The syntax for the OPENROWSET statement for bulk loading data is as follows:

 OPENROWSET

 (BULK 'data_file',

 { FORMATFILE = 'format_file_path' [<bulk_options>]
 | SINGLE_BLOB | SINGLE_CLOB | SINGLE_NCLOB }
 })

 <bulk_options> ::=
 [, CODEPAGE

 = { 'ACP' | 'OEM' | 'RAW' | 'code_page' }]
 [, ERRORFILE

 = 'file_name']
 [, FIRSTROW

 = first_row]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [, LASTROW

 = last_row]
 [, MAXERRORS

 = maximum_errors]
 [, ROWS_PER_BATCH

 = rows_per_batch]

where:

BULK 'data_file'

Uses a BULK rowset provider from the data file with the full path specified by data_file.

FORMATFILE

Specifies the full path of the format filea file that defines column types in the result set. XML
and non-XML format file types are supported. The non-XML format file is the same as that used
with bcp.exe or the BULK INSERT statement. See Microsoft SQL Server 2005 Books Online for
more information.

The format file is not needed when SINGLE_BLOB, SINGLE_CLOB, or SINGLE_NCLOB is specified.

< bulk_options>

Specifies one or more of the following options for the BULK option:

CODEPAGE = { 'ACP' | 'OEM' | 'RAW' | ' code_page' }

The codepage of the data in the data file. CODEPAGE is relevant only if the data contains
char, varchar, or text columns with character values less than 32 or greater than 127.

ERRORFILE

The full path to the file used to log nonconforming rowsrows that are not loaded.

FIRSTROW

The number of the first row to load. The default value is 1, meaning the first row in the
data file.

LASTROW

The number of the last row to load. The default value is 0, meaning the last row in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

data file.

MAXERRORS

The maximum number of syntax errors or nonconforming rows before OPENROWSET
returns an error. The default value is 10.

ROWS_PER_BATCH

OPENROWSET always bulk loads a data file as a single batch. ROWS_PER_BATCH specifies the
approximate number of rows in the data file and is used by the query processor as a hint
for allocating resources in the query plan. The default value is 0, meaning that
ROWS_PER_BATCH is not known.

SINGLE_BLOB

Returns the contents of the data file as a single-column, single-row result set of the
varbinary(max) data type.

SINGLE_CLOB

The data file is read as ASCII and returned as a single-column, single-row result set of
the varchar(max) data type.

SINGLE_NCLOB

The data file is read as UNICODE and returned as a single-column, single-row result set
of the nvarchar(max) data type.

The following example bulk loads data from the following tab-delimited file OpenRowSetData.txt.
Make sure that the ID and ValueCol values are separated with a tab.

 1 Value 1
 2 Value 2
 3 Value 3
 4 Value 4

First create the table, OpenRowSetTable, that will be the destination for the bulk-loaded data by
executing the following statement:

 USE ProgrammingSqlServer2005

 CREATE TABLE OpenRowSetTable
 (

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ID int,
 ValueCol varchar(50)
)

Create a non-XML format file named OpenRowSetData.fmt that describes the data being bulk loaded:

 9.0
 2
 1 SQLCHAR 0 12 "\t" 1 ID ""
 2 SQLCHAR 0 50 "\r\n" 2 ValueCol SQL_Latin1_General_CP1_CI_AS

Executing the following OPENROWSET statement loads the data using the non-XML format file into the
OpenRowSetTable table:

 INSERT INTO OpenRowSetTable(ID, ValueCol)
 SELECT rs.ID, rs.ValueCol
 FROM OPENROWSET(BULK N'C:\PSS2005\OpenRowSet\OpenRowSetData.txt',
 FORMATFILE = N'C:\PSS2005\OpenRowSet\OpenRowSetData.fmt') AS rs

Examining the OpenRowSetTable table reveals four rows, as shown in Figure 7-4.

Next, you will bulk load the data from the text file to the OpenRowSetTable table using an XML format
file. Create the following XML format file and name it OpenRowSetData.xml:

Bulk Copy Format Files

You need a bulk copy format file to bulk load data in a file to columns in a table. The
format file defines the file layout and other characteristics of the data in the file. There
are two format file styles: non-XML and XML.

You can use the bcp utility to generate either a non-XML or an XML format file. The
following statement generates a non-XML format file for the table OpenRowSetTable
created in this section:

 bcp.exe ProgrammingSqlServer2005.dbo.OpenRowSetTable format nul -f
 OpenRowSetData.fmt -T -c

where the options are the following:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<databaseName.schemaName.tableName>

Specifies the fully qualified table from which the format file is generated.

format nul -f <filename>

Instructs the bcp utility to generate a non-XML format file.

-T

Specifies that the bcp utility connects to the SQL Server using a trusted connection.
If -T is not specified, you must specify -U and -P (username and password) to log
in.

-c

Specifies that the data in the bulk load file is character data. -n is used to specify
native types.

Adding the -x flag to the preceding bcp.exe command generates an XML format file:

 bcp.exe ProgrammingSqlServer2005.dbo.OpenRowSetTable format nul -f
 OpenRowSetData.fmt -x -T -c

For more information about using the bcp utility to generate format files, see Microsoft
SQL Server 2005 Books Online.

 <?xml version="1.0"?>
 <BCPFORMAT xmlns="http://schemas.microsoft.com/sqlserver/2004/bulkload/
 format" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <RECORD>
 <FIELD ID="1" xsi:type="CharTerm" TERMINATOR="\t" MAX_LENGTH="12"/>
 <FIELD ID="2" xsi:type="CharTerm" TERMINATOR="\r\n" MAX_LENGTH="50"
 COLLATION="SQL_Latin1_General_CP1_CI_AS"/>
 </RECORD>
 <ROW>
 <COLUMN SOURCE="1" NAME="ID" xsi:type="SQLINT"/>
 <COLUMN SOURCE="2" NAME="ValueCol" xsi:type="SQLVARYCHAR"/>
 </ROW>
 </BCPFORMAT>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Bulk load the data using the XML format file into the OpenRowSetTable table using the same statement
as before but specifying the XML format file:

 INSERT INTO OpenRowSetTable(ID, ValueCol)
 SELECT rs.ID, rs.ValueCol
 FROM OPENROWSET(BULK N'C:\PSS2005\OpenRowSet\OpenRowSetData.txt',
 FORMATFILE = N'C:\PSS2005\OpenRowSet\OpenRowSetData.xml') AS rs

Figure 7-4. Results for bulk load example

The OpenRowSetTable now contains eight rows.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.3. XML Data Type Methods

The xml data type provides helper methods to query xml data type columns and variables. Internally,
the xml data type methods are treated as subqueries. As a result, an xml data type method cannot be
used in a PRINT statement or in a GROUP BY clause.

The examples in this section use a table called xmldtmTable. Create this table and add two rows to it
by executing the following statement:

 USE ProgrammingSqlServer2005

 CREATE TABLE xmldtmTable
 (
 ID int,
 xmlCol xml,
 CONSTRAINT PK_xmldtmTable
 PRIMARY KEY CLUSTERED (ID)
)

 INSERT INTO xmldtmTable (ID, xmlCol)
 VALUES (1, '<root><childElement1 value="1"/><childElement2 value="2"/></root>')

 INSERT INTO xmldtmTable (ID, xmlCol)
 VALUES (2, '<root><childElement value="1"/><childElement value="2"/></root>')

The T-SQL statement creates a table with the two rows shown in Figure 7-5.

Figure 7-5. Results for XML data type methods example

The xml data type methods are described in the following subsections.

7.3.1. query()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The xml data type query() method queries an xml data type instance and returns an untyped xml
data type instance. The query() syntax is:

 query(XQuery
)

where:

XQuery

An XQuery expression that queries for XML nodes in an xml data type instance

The following example uses the query() method to extract the childElement2 element from the xml
data type instance in the column xmlCol for ID = 1:

 SELECT xmlCol.query('/root/childElement2')
 FROM xmldtmTable
 WHERE ID = 1

The result set is shown in Figure 7-6.

Figure 7-6. Result set for query() method example

7.3.2. value()

The xml data type value() method performs a query against an xml data type instance and returns
a scalar value of SQL data type. The value() method syntax is:

 value(XQuery, SQLType)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

where:

XQuery

An XQuery expression that retrieves data from the xml data type instance. An error is returned
if the expression does not return at least one value.

SQLType

A string literal of the SQL data type to be returned. SQLType cannot be an xml, CLR UDT,

image, text, ntext, or sql_variant data type.

The value() method uses the T-SQL CONVERT function implicitly to convert the result of the XQuery
expression to the SQL data type.

The following example uses the value() method to extract the attribute value from the xml data
type instance in the column xmlCol for ID = 1:

 SELECT xmlCol.value('(/root/childElement2/@value)[1]', 'int') Value
 FROM xmldtmTable
 WHERE ID = 1

The result set is shown in Figure 7-7.

Figure 7-7. Result set for value() method example

The value() operator requires a single operand, so [1] is required to specify the first childElement2.
The value attributes could be accessed for other childElement2 elements, if they existed, using the
appropriate index.

7.3.3. exist()

The xml data type exist() method returns a value indicating whether an XQuery expression against
an xml data type instance returns a nonempty result set. The return value is one of the following:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1

The XQuery expression returns at least one XML node.

0

The XQuery expression returns an empty result set.

NULL

The xml data type instance against which the query is executed is NULL.

The exist() method syntax is:

 exist (XQuery)

where:

XQuery

An XQuery expression

The following example uses the exist() method to determine whether the attribute value from the
xml data type instance in the column xmlCol is a specified value for ID = 1:

 SELECT xmlCol.exist('/root/childElement2[@value=1]')
 FROM xmldtmTable
 WHERE ID = 1

The result is shown in Figure 7-8.

Figure 7-8. Result for exist() method example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The value of 0 means that the attribute value does not have the value 1. If the exist() method is
changed to exist('/root/childElement2[@value=2]'), the result is 1.

7.3.4. modify()

The xml data type modify() method modifies the content of an xml data type instance. The modify(
) method syntax follows:

 modify (XML_DML)

where:

XML_DML

An XML Data Manipulation Language statement. The XML DML statement inserts, updates, or
deletes nodes from an xml data type instance.

The modify() method can only be used in the SET clause of an UPDATE statement.

XML DML and the modify() method are discussed in more detail in the "XML Data Manipulation
Language" section later in this chapter.

7.3.5. nodes()

The xml data type nodes() method shreds an xml data type instance into relational data by
identifying nodes that will be mapped to a new row. The nodes() syntax is:

 nodes (XQuery) as Table(Column)

where:

XQuery

An XQuery expression that constructs nodes that are subsequently exposed as a result set

Table

The table name for the result set

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Column

The column name for the result set

The following example uses the nodes() method to return the value attributes for each child element
childElement as an int:

 SELECT T.C.value('@value', 'int') AS Value
 FROM xmldtmTable
 CROSS APPLY xmlCol.nodes('/root/childElement') AS T(C)
 WHERE ID = 2

The result set is shown in Figure 7-9.

Figure 7-9. Result set for nodes() method example

The CROSS APPLY operator lets you invoke the nodes() method for each row returned by the query.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.4. Viewing XML Data as Relational Data

OPENXML is a T-SQL function that provides access to in-memory XML documents through a mechanism
similar to a relational result set. OPENXML can be used in SELECT and SELECT INTO statements wherever
rowset providers such as a table or view, or the OPENROWSET function, can appear.

Before you can use OPENXML, you must call the system stored procedure sp_xml_preparedocument to
parse the XML document and return the handle of the parsed internal representation of the
document. The document handle is passed to OPENXML, which provides a relational rowset view of the
document.

The syntax of the OPENXML keyword is:

 OPENXML(idoc,

 rowpattern, [flags
])

 [WITH (<schemaDeclaration> [,...n] | tableName)]

 <schemaDeclaration> ::=

 colName colType [colPattern | metaProperty]

where:

idoc

The document handle of the internal representation of the XML document. The handle is
obtained using the sp_xml_preparedocument system stored procedure.

rowpattern

The XPath pattern that identifies the nodes in the XML document to be processed as rows.

flags

Optionally specifies the mapping between the XML data and the rowset, and how the spillover
column should be filled. The flags option is a byte created from the values described in Table

7-2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 7-2. OPENXML flags option values

Value Description

0
Defaults to attribute-centric mapping. 0 is the default if the flags option is not

specified.

1 Attribute-centric mappingXML attributes map to the columns defined in
schemaDeclaration . When combined with XML_ELEMENTS, attribute-centric mapping is
applied first followed by element-centric mapping for all unmapped columns.

2 Element-centric mappingXML elements map to the columns specified in
schemaDeclaration. When combined with XML_ATTRIBUTES, element-centric mapping is
applied first followed by attribute-centric mapping for all unmapped columns.

8 In the context of retrieval, indicates that consumed data should not be copied to the
overflow property @mp:xmltext. This flag can be combined with XML_ATTRIBUTES or
XML_ELEMENTS.

schemaDeclaration

The schema definition, in the form where:

colName

The name of the column in the rowset.

colType

The SQL data type of the column in the rowset.

colPattern

An XPath pattern specifying how XML nodes are mapped to columns in the rowset. The
colPattern mapping overrides the mapping specified by the flags option.

metaProperty

An OPENXML metaproperty that lets you extract information about XML nodes, including
relative position and namespace information.

tableName

A table name can be specified instead of a schema definition if a table with the desired schema
exists and column patterns are not needed.

If the WITH clause is not specified, the results are returned in edge table format instead of a rowset

http://lib.ommolketab.ir
http://lib.ommolketab.ir

format. An edge table represents an XML document in a single table with the structure described in
Table 7-3.

Table 7-3. Edge table schema

Column
name

Data
type

Description

id bigint Unique ID of the XML document node. The root node has an id value of 0.
Negative values are reserved.

parentid bigint The ID of the parent node. The root node has a parentid value of NULL.

nodetype int The node type based on XML DOM node type numbering, where 1 =
element node; 2= attribute node; 3 = text node.

localname nvarchar The local name of the element or attribute. The localname value is NULL if
the DOM object does not have a name.

prefix nvarchar The namespace prefix of the node name.

namespaceuri nvarchar The namespace URI of the node. The namespaceuri value is NULL if a
namespace is not present.

datatype nvarchar The actual data type of the element or attribute, and NULL otherwise. The
data type is inferred from the inline DTD or schema.

prev bigint The node ID of the previous sibling element. The prev value is NULL if
there is no direct previous sibling.

text ntext The element content or attribute value in text form. The text value is
NULL if the edge table does not need a value for the entry.

The syntax of the sp_xml_preparedocument system stored procedure is:

 sp_xml_preparedocument hDoc
 OUTPUT

 [, xmlText

] [, xpathNamespaces]

where:

hDoc

The handle to the parsed internal representation of the XML document

xmlText

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The original XML document

xPathNamespaces

The namespaces used in row and column XPath expressions in OPENXML

Once you have finished using the internal representation of the document, call the
sp_xml_removedocument system stored procedure to remove it and invalidate the document handle.
The syntax of sp_xml_removedocument is:

 sp_xml_removedocument hDoc

where:

hDoc

The handle to the parsed internal representation of the XML document

The following example uses OPENXML to extract manufacturing location information for product model
7 from the Instructions xml data type column in the Production.ProductModel table in
AdventureWorks. An excerpt of the data follows:

 <root xmlns="http://schemas.microsoft.com/sqlserver/2004/07/
 adventure-works/ProductModelManuInstructions">
 Adventure Works CyclesFR-210B Instructions for Manufacturing HL Touring
 FrameSummaryThis document contains manufacturing instructions for
 manufacturing the HL Touring Frame, Product Model 7. Instructions are

 ...

 <Location LaborHours="2.5" LotSize="100" MachineHours="3" SetupHours="0.5"
 LocationID="10">Work Center - 10 Frame FormingThe following instructions
 pertain to Work Center 10. (Setup hours = .5, Labor Hours = 2.5,
 Machine Hours = 3, Lot Sizing = 100)
 <step>Insert
 <material>aluminum sheet MS-2341</material>
 into the
 <tool>T-85A framing tool</tool>
 .
 </step>

 ...

 </Location>
 <Location LaborHours="1.75" LotSize="1" MachineHours="2" SetupHours="0.15"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 LocationID="20">Work Center 20 - Frame WeldingThe following instructions
 pertain to Work Center 20. (Setup hours = .15, Labor Hours = 1.75,
 . </Location>

 ...

 </root>

Execute the following statement to extract manufacturing location information for product model ID 7
as a tabular result set. Note that you must enter the emphasized line in the example on a single line
rather than on two lines, done here only to fit the page width.

 USE AdventureWorks

 DECLARE @idoc int
 DECLARE @instructions xml
 SET @instructions = (SELECT Instructions FROM Production.ProductModel
 WHERE ProductModelID = 7)

 EXEC sp_xml_preparedocument @idoc OUTPUT, @instructions,
 N'<root xmlns:ns="http://schemas.microsoft.com/sqlserver/2004/07/
 adventure-works/ProductModelManuInstructions" />'

 SELECT * FROM OPENXML
(@idoc, N'/ns:root/ns:Location')
 WITH (
 LaborHours float N'@LaborHours',
 LotSize float '@LotSize',
 MachineHours float '@MachineHours',
 SetupHours float '@SetupHours',
 LocationID int '@LocationID'
)

 EXEC sp_xml_removedocument @idoc

The result set is shown in Figure 7-10.

Figure 7-10. Result set for OPENXML example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.5. Indexing XML Data

xml data type instances are stored as binary large objects (BLOB) in xml data type columns. If these
columns are not indexed, they must be shredded at runtime for each row in the table to evaluate a
query. This can be costly, especially with large xml data type instances or a large number of rows in
the table. Building primary and secondary XML indexes on xml data type columns can significantly
improve query performance.

Shredding is the process of mapping and converting an XML document into
tables in a relational database.

An xml data type column can have one primary XML index and multiple secondary XML indexes,
where:

Primary XML index

A relational index on the shredded and persisted representation of all tags, values, and paths of
XML instances in the xml data type column. The index creates several rows of data for each
instance in the column.

A primary XML index requires a clustered index on the primary key of the table containing the
xml data type being indexed.

Secondary XML index

Further improves performance for specific types of queries. A primary XML index must exist on
the xml data type column before a secondary XML index can be created.

There are three types of secondary XML indexes:

PATH index

Optimizes queries based on path expressions

VALUE index

Optimizes value-based queries for paths that include wildcards or are not fully specified

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PROPERTY index

Optimizes queries based on properties in a specific XML instance stored in a column

An XML index can be created only on a single xml data type column. XML indexes cannot be created
on the following:

A non-xml data type column

An xml data type column in a view

A table-valued variable with xml data type columns

An xml data type variable

A computed xml data type column

A relational index cannot be created on an xml data type column.

You must set the SQL Server 2005 options listed in Table 7-4 when creating or rebuilding an XML
index on an xml data type column. If these options are not set, you will not be able to create or
rebuild the XML index, and you will not be able to insert values into or modify values in indexed xml
data type columns.

Table 7-4. SQL Server 2005 option settings for creating and rebuilding an
index on an XML column

SET option Required value

ANSI_NULLS ON

ANSI_PADDING ON

ANSI_WARNINGS ON

ARITHABORT ON

CONCAT_NULL_YIELDS_NULL ON

NUMERIC_ROUNDABORT OFF

QUOTED_IDENTIFIER ON

Primary and secondary indexes on xml data type columns are created, changed, and dropped
similarly to indexes on non-xml data type columns. The following subsections describe managing
indexes on xml data type columns.

7.5.1. Creating an XML Index

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The CREATE INDEX statement is used to create a new primary or secondary XML index on an xml data
type column. The syntax is:

 CREATE [PRIMARY] XML INDEX index_name

 ON <object> (xml_column_name)

 [USING XML INDEX xml_index_name
 [FOR { VALUE | PATH | PROPERTY }]

 [WITH (<xml_index_option> [,...n])]
 [;]

 <object> ::=

 { [database_name . [schema_name] . | schema_name .] table_name }

 <xml_index_option> ::=
 {
 PAD_INDEX = { ON | OFF }

 | FILLFACTOR = fillfactor
 | SORT_IN_TEMPDB = { ON | OFF }
 | STATISTICS_NORECOMPUTE = { ON | OFF }
 | DROP_EXISTING = { ON | OFF }
 | ALLOW_ROW_LOCKS = { ON | OFF }
 | ALLOW_PAGE_LOCKS = { ON | OFF }

 | MAXDOP = max_degree_of_parallelism
 }

where:

[PRIMARY] XML INDEX

The xml data type column on which to create the index. If PRIMARY is specified, a clustered
index is created on the column. Each xml data type column can have one primary and multiple
secondary indexes. A primary index must exist on an xml data type column before a secondary
index can be created on the column.

index_name

The name of the index, which must be unique within the table. A primary XML index name
cannot begin with the following characters: #, ##, @, or @@.

<object> :: = { [database_name. [schema_name] . | schema_name .] table_name }

The object to be indexed, fully qualified or not, where:

database_name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The name of the database.

schema_name

The name of the schema to which the table belongs.

table_name

The name of the table to be indexed.

xml_column_name

The xml data type column on which to create the index.

USING XML INDEX xml_index_name

The primary XML index used to create the secondary XML index.

FOR { VALUE | PATH | PROPERTY }

The type of secondary XML index to create, where:

VALUE

Creates a VALUE secondary XML index on the VALUE, HID, PK, and XID columns of the
primary XML index.

PATH

Creates a PATH secondary XML index on the HID, VALUE, PK, and XID columns of the
primary XML index.

PROPERTY

Creates a PROPERTY secondary XML index on the PK, HID, VALUE, and XID columns of the
primary XML index and includes the LVALUE and LVALUEBIN columns.

<xml_index_option> ::=

Options used to create the XML index, where:

PAD_INDEX = { ON | OFF }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Specifies index padding. If PAD_INDEX is ON, the FILLFACTOR is used to compute the
padding (free space) applied to intermediate-level pages of the index. The default is OFF.

FILLFACTOR

Specifies the percentage of free space, as an integer value from 1 to 100, that should be
left in the leaf level of each index page during index creation or change.

SORT_IN_TEMPDB = { ON | OFF }

Specifies whether to store sort results in tempdb. The default is OFF, meaning that
intermediate sort results are stored in the same database as the index.

STATISTICS_NORECOMPUTE = { ON | OFF }

Specifies whether out-of-date distribution statistics are automatically recomputed. The
default is OFF, enabling automatic statistics updating.

DROP_EXISTING = { ON | OFF }

Specifies whether the existing XML index is automatically dropped and rebuilt. The
default is OFF, meaning that an error is returned if the specified index name already
exists.

ALLOW_ROW_LOCKS = { ON | OFF }

Specifies whether row locks are allowed when accessing the index. The default is ON,
meaning that row locks are allowed.

ALLOW_PAGE_LOCKS = { ON | OFF }

Specifies whether page locks are allowed when accessing the index. The default is ON,
meaning that page locks are allowed.

MAX_DOP

Overrides the maximum degree of parallelism for the duration of the index operation by
limiting the number of processors used in a parallel plan execution. Parallel indexing
operations and parallel query processing are available only in SQL Server 2005
Enterprise Edition.

A table must have a clustered primary key with less than 16 columns in it before a primary XML index
can be created.

The following example creates a primary XML index on the xmlCol xml data type column in the
xmlTable table created in the "Creating xml Data Type Columns and Variables" section earlier in this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

chapter:

 CREATE PRIMARY XML INDEX xmlColIndex
 ON xmlTable(xmlCol)

The following example creates a secondary VALUE index on the xmlCol column:

 CREATE XML INDEX xmlColValueIndex
 ON xmlTable(xmlCol)
 USING XML INDEX xmlColIndex
 FOR VALUE

7.5.2. Altering an XML Index

The ALTER INDEX statement is used to modify an existing XML index created using the CREATE INDEX
statement. The syntax is:

 ALTER INDEX { index_name | ALL }

 ON <object>
 { REBUILD

 [WITH (<rebuild_index_option> [,...n])]
 | DISABLE

 | SET (<set_index_option> [,...n])
 }
 [;]

 <object> ::=
 {

 [database_name. [schema_name] . | schema_name.]

 table_or_view_name
 }

 <rebuild_index_option > ::=
 {
 PAD_INDEX = { ON | OFF }

 | FILLFACTOR = fillfactor
 | SORT_IN_TEMPDB = { ON | OFF }
 | STATISTICS_NORECOMPUTE = { ON | OFF }
 | ALLOW_ROW_LOCKS = { ON | OFF }
 | ALLOW_PAGE_LOCKS = { ON | OFF }

 | MAXDOP = max_degree_of_parallelism
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <set_index_option>::=
 {
 ALLOW_ROW_LOCKS= { ON | OFF }
 | ALLOW_PAGE_LOCKS = { ON | OFF }
 | STATISTICS_NORECOMPUTE = { ON | OFF }
 }

The arguments are described in the "Creating an XML Index" subsection earlier in this section. You
need supply arguments only for index characteristics that you are changing.

7.5.3. Dropping an XML Index

The DROP INDEX statement is used to remove one or more XML indexes from the database. The
syntax is:

 DROP INDEX

 { index_name ON <object> [,...n] }

 <object> ::=
 {

 [database_name. [schema_name] . | schema_name.]

 table_or_view_name
 }

The arguments are described in the "Creating an XML Index" subsection earlier in this section.

The following example drops the secondary value index created on the xmlTable table in the
"Creating an XML Index" subsection earlier in this section:

 DROP INDEX xmlColValueIndex ON xmlTable

7.5.4. Viewing XML Indexes

The xml_indexes catalog view returns information about primary and secondary XML indexes in a
database. The following query returns the XML indexes on the Individual table in AdventureWorks:

 USE AdventureWorks

 SELECT o.name TableName, xi.*

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 FROM sys.xml_indexes xi
 JOIN sys.objects o ON xi.object_id = o.object_id
 WHERE o.name = 'Individual'

Partial results are shown in Figure 7-11.

Figure 7-11. Results for viewing XML indexes example

In the example, the sys.xml_indexes catalog view is joined to the sys.objects catalog view to return
as the first column in the result set the table that the index belongs to.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.6. Managing XML Schema Collections

An XML schema collection is a metadata object in the database that contains one or more XML
Schema Definition (XSD) language schemas. It is used to validate xml data type instances. You can
associate XML schema collections with xml data type instances in columns or variables. An XML
schema collection associated with an xml data type column validates the column instance data
against the schemathe data is stored in the database if it conforms. XML schema collections are
managed similarly to other database objects, using CREATE, ALTER and DROP T-SQL statements. The
following subsections describe commands to create, modify, delete, and interrogate XML schema
collections.

7.6.1. Creating XML Schema Collections

The CREATE XML SCHEMA COLLECTION statement is used to import XML schemas into the database. The
syntax is:

 CREATE XML SCHEMA COLLECTION [<relational_schema

>.]sql_identifier AS expression

where:

relational_schema

The name of the relational schema. If not specified, the default relational schemadbo by
defaultis used.

sql_identifier

The name of the XML schema collection.

expression

The XML schema specified as a string constant or scalar variable of [n]varchar, [n]varbinary,
or xml type.

The following example creates an XML schema collection for a Contact xml data type. The schema
specifies that a contact has an element named Contact with three attributes: FirstName, LastName,
and PhoneNumber.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 USE ProgrammingSqlServer2005

 CREATE XML SCHEMA COLLECTION ContactSchemaCollection AS
 N'<?xml version="1.0" encoding="utf-16"?>
 <xs:schema targetNamespace="http://tempuri.org/ContactSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 xmlns="http://tempuri.org/ContactSchema"
 xmlns:mstns="http://tempuri.org/ContactSchema"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Contact">
 <xs:complexType>
 <xs:sequence>
 </xs:sequence>
 <xs:attribute name="FirstName" type="xs:string" />
 <xs:attribute name="LastName" type="xs:string" />
 <xs:attribute name="PhoneNumber" type="xs:string" />
 </xs:complexType>
 </xs:element>
 </xs:schema>'

You can view the new XML schema collection in Object Explorer in SQL Server Management Studio by
selecting Databases ProgrammingSqlServer2005 Programmability Types XML
Schema Collections.

The following example creates a table with a single xml data type column named Contact. The
Contact column is typed using the ContactSchemaCollection XML schema collection.

 USE ProgrammingSqlServer2005

 CREATE TABLE Contacts
 (
 Contact xml (ContactSchemaCollection)
)

You insert data into a typed xml data type column in the same way as for an untyped xml data type
column. The following statement adds a contact:

 INSERT INTO Contacts (Contact)
 VALUES ('<Contact xmlns="http://tempuri.org/ContactSchema"
 FirstName="John" LastName="Doe" PhoneNumber="555-555-5555" />')

An error results if the data you try to insert or update in a column does not conform to the XML

http://lib.ommolketab.ir
http://lib.ommolketab.ir

schema. For example, the following statement incorrectly specifies an attribute named Phone instead
of PhoneNumber:

 INSERT INTO Contacts (Contact)
 VALUES ('<Contact xmlns="http://tempuri.org/ContactSchema"
 FirstName="John" LastName="Doe" Phone="555-555-5555" />')

Executing the statement returns the message shown in Figure 7-12.

Figure 7-12. Message for XML schema violation example

7.6.2. Modifying XML Schema Collections

The ALTER XML SCHEMA COLLECTION statement lets you add new schemas to an existing XML schema
collection created previously with the CREATE XML SCHEMA COLLECTION statement. The syntax is:

 ALTER XML SCHEMA COLLECTION [relational_schema

.]sql_identifier

 ADD 'Schema Component
'

where:

relational_schema

The name of the relational schema. If not specified, the default relational schemadbo by
defaultis used.

sql_identifier

The name of the XML schema collection to add the XML schema to.

Schema Component

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The XML schema to insert into the schema collection, specified as a string constant or scalar
variable of [n]varchar, [n]varbinary, or xml type.

7.6.3. Removing XML Schema Collections

The DROP XML SCHEMA COLLECTION statement deletes an entire XML schema collection previously
created using the CREATE XML SCHEMA COLLECTION statement. All components of the XML schema
collection are dropped. The syntax is:

 DROP XML SCHEMA COLLECTION [relational_schema.]sql_identifier

where:

relational_schema

The name of the relational schema. If not specified, the default relational schemadbo by
defaultis used.

sql_identifier

The name of the XML schema collection to drop.

The DROP XML SCHEMA COLLECTION statement is a transactional operation that can be rolled back if
performed inside of a transaction.

You cannot drop an XML schema collection that is in usethat is, if any of the following are true:

It is associated with an xml data type column or parameter.

It is specified in a table constraint.

It is referenced in a schema-bound function or stored procedure.

The ContactSchemaCollection XML schema collection is used by the Contacts table, so you must
make the Contact column untyped by executing an ALTER TABLE T-SQL statement before you can
remove the XML schema collection. The following code example uses the ALTER TABLE statement to
untype the Contact column in the Contacts table:

 ALTER TABLE Contacts ALTER COLUMN Contact xml

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can also drop either the Contact column or the Contacts table to remove the association with the
XML schema collection. Once the XML schema collection is no longer associated with the Contact
column, you can remove the XML schema collection by executing the DROP XML SCHEMA COLLECTION T-
SQL statement, as shown in the following example:

 DROP XML SCHEMA COLLECTION ContactSchemaCollection

7.6.4. Viewing XML Schema Collections

The catalog view xml_schema_collections enumerates the XML schema collections in a database, as
shown in the following example:

 USE AdventureWorks

 SELECT s.name SchemaName, xsc.name XmlSchemaCollectionName
 FROM sys.xml_schema_collections xsc
 JOIN sys.schemas s ON xsc.schema_id = s.schema_id

The result set is shown in Figure 7-13.

Figure 7-13. Result set for XML schema collections example

The xml_schema_namespace intrinsic function reconstructs the XML schema collection from the schema
components stored in the database and returns an xml data type instance. The syntax of the
xml_schema_namespace function is:

 xml_schema_namespace (schemaName,

 xmlSchemaCollectionName,

 [targetNamespace])

http://lib.ommolketab.ir
http://lib.ommolketab.ir

where:

schemaName

The name of the XML schema in the xmlSchemaCollection

xmlSchemaCollectionName

The name of the XML schema collection

targetNamespace

The namespace URI within the XML schema collection

You can run this function against any of the rows returned by the previous query except the row
representing the sys.sys schema collection. For example:

 SELECT xml_schema_namespace('Person', 'AdditionalContactInfoSchemaCollection')

The result set is an xml data type instance that contains the Person schema in the
AdditionalContactInfoSchemaCollection XML schema collection. A fragment of the result set is
shown in Figure 7-14.

Figure 7-14. Fragment of results for view XML schema collection example

7.6.5. Managing XML Schema Collection Permissions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The XML schema collection permission model lets you do the following:

Grant, revoke, and deny a user (principal) permission to create and use XML schema collections

Transfer ownership of XML schema collections

Use the XML schema collection objects to type xml data type columns, variables, and
parameters or to constrain tables or columns

7.6.5.1. Granting permissions

You can grant a user permission to create an XML schema collection by granting the user CREATE XML
SCHEMA COLLECTION permission on the database together with ALTER permission either on the schema
or on the database.

For existing XML schema collection objects, you can grant CONTROL, TAKE OWNERSHIP, ALTER, EXECUTE,
REFERENCES, or VIEW DEFINITION permissions using the GRANT T-SQL statement.

For more information about the GRANT T-SQL statement, see Microsoft SQL
Server 2005 Books Online.

7.6.5.2. Revoking permissions

You can revoke permission to create an XML schema collection in one of the following ways:

Revoke a user's ALTER permission on the schema. The user will no longer be able to create an
XML schema collection in the relational schema.

Revoke a user's ALTER permission on the database. The user will no longer be able to create an
XML schema collection anywhere in the database.

Revoke either CREATE XML SCHEMA COLLECTION or ALTER ANY XML SCHEMA COLLECTION from the
user. This prevents the user from importing an XML schema collection in the database.

For existing XML schema collection objects, you can revoke CONTROL, TAKE OWNERSHIP, ALTER, EXECUTE,
REFERENCES, or VIEW DEFINITION permissions by using the REVOKE T-SQL statement.

For more information about the REVOKE T-SQL statement, see Microsoft SQL
Server 2005 Books Online.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.6.5.3. Denying permissions

You can deny permission to create an XML schema collection in one of the following ways:

Deny the user's ALTER permission on the schema. The user will no longer be able to create an
XML schema collection anywhere in the relational schema.

Deny the user's CONTROL permission on the schema.

Deny the user's ALTER ANY SCHEMA permission on the database. The user will no longer be able
to create an XML schema collection anywhere in the database.

For existing XML schema collection objects, you can revoke CONTROL, TAKE OWNERSHIP, ALTER, EXECUTE,
REFERENCES, or VIEW DEFINITION XML schema collection permissions by using the DENY T-SQL
statement.

For more information about the DENY T-SQL statement, see Microsoft SQL
Server 2005 Books Online.

7.6.6. Limitations of XML Schema Collections

XML schema validation of xml data type columns is subject to some limitations:

xsi:schemaLocation and xsi:noNamespaceSchemaLocation attribute values are ignored.

The <xsd:include> element is not allowed.

The <xsd:unique>, <xsd:key>, and <xsd:keyref> constraints are not supported.

Canonical representations of values in the XML document must not violate a pattern restriction
for its type.

The processContents attribute of wildcard elements (<xsd:any> and <xsd:anyAttribute>) does
not support laxit must be set to skip or strict.

The <xsd:redefine> element is not supported.

Types derived from xs:QName using an XML schema restriction element are not supported.

Schemas containing list types with union type items are not supported.

<xsd:simple> types are restricted as described in Table 7-5.

Table 7-5. <xsd:simple> types

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Simple
type

Restriction

duration The year part must be in the range -231 to 231 - 1.

The month, day, hour, minute, and second parts must all be in the range 0 to 9999.

The second part has an additional three digits of precision after the decimal point.

dateTime The year part must be in the range -9999 to 9999.

The month part must be in the range 1 to 12.

The day part must be in the range 1 to 31 and must be a valid calendar date.

The hour part must be in the range -14 to 14.

date The year part must be in the range -9999 to 9999.

The month part must be in the range 1 to 12.

The day part must be in the range 1 to 31 and must be a valid calendar date.

gYearMonth The year part must be in the range -9999 to 9999.

gYear The year part must be in the range -9999 to 9999.

gMonthDay The month part must be in the range 1 to 12.

The day part must be in the range 1 to 31.

gDay The day part must be in the range 1 to 31.

gMonth The month part must be in the range 1 to 12.

decimal Must conform to the format of the SQL Server numeric data typeup to 38 digits of
precision are allowed with up to 10 of those being fractional.

Variable precision decimal values are not supported.

float Must conform to the format of the SQL Server real data type.

double Must conform to the format of the SQL Server float data type.

string Must conform to the format of the SQL Server nvarchar(max) data type.

anyURI Cannot be more than 4000 Unicode characters in length.

xs:decimal instanced values are represented internally by SQL server as data type numeric (38,
10). Variable precision decimals are not supported.

Time zone information for date, time, and dateTime simple types is normalized to Greenwich
Mean Time (GMT). The GMT zone is added to data that does not have a time zone.

The length, minLength, and maxLength facets are stored as a long data type.

The minOccurs and maxOccurs attributes must fit in 4-byte integers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Schema component identifiers are limited to a length of 1000 Unicode characters.
Supplementary character pairs used in some languages are not supported within identifiers.

The NaN simple type value is not supported.

XML schemas having types that have pattern facets or enumerations that violate those facets
are rejected.

A schema containing an <xsd:choice> particle must either have children or explicitly define its
minOccurs attribute with a value of 0.

block and final attributes cannot have repeated values.

The namespace attribute for <xsd:any> cannot be an empty string. Explicitly specify the
namespace as ##local to indicate an unqualified element or attribute.

The uniqueness of the ID attribute is enforced only for the <xsd:attribute> component and not
for the <xsd:element> component. The ID attribute for <xsd:attribute> must be unique within
the schema collection.

The NOTATION type is not supported.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.7. XQuery Support

XQuery is a language for querying XML data. SQL Server 2005 supports a subset of XQuery for
querying the xml data type. The implementation is aligned with the July 2004 draft of XQuery. For
more information about using the XQuery language, see the World Wide Web Consortium (W3C) web
site at http://www.w3.org/TR/2004/WD-xquery-20040723/ and Microsoft SQL Server 2005 Books
Online.

7.7.1. xml Data Type Functions

The XQuery functions described in Table 7-6 can be used with XQuery against the xml data type.
These functions are part of the http://www.w3.org/2004/07/xpath-functions namespace. The W3C
specification uses a namespace prefix of fn: for these functions. However, use of fn: is not required
in the SQL Server 2005 implementation.

Table 7-6. XQuery functions

Category
XQuery
function

Description

Numeric ceiling Returns the smallest integer that is not smaller than the argument

 floor Returns the largest integer that is not larger than the argument

 round Returns the integer closest to the argument

String concat
Returns a string concatenation of zero or more string

arguments

 contains Returns an xs:boolean value indicating whether a string

argument contains a string specified by a second argument

 substring Returns the specified part of a string argument

 string-length Returns the length of a string argument

Booleans not Returns a Boolean value for the logical NOT of a Boolean argument

Nodes number Returns the numeric value of a specified node

Context last
Returns an unsigned integer indicating the number of items in the
sequence currently being processed

position Returns an unsigned integer indicating the number position of the

context item in the sequence currently being processed

http://www.w3.org/TR/2004/WD-xquery-20040723/
http://www.w3.org/2004/07/xpath-functions
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Category
XQuery
function

Description

Sequences empty
Returns a Boolean value indicating whether the specified sequence
is an empty sequence

 distinct-values
Returns a sequence containing the distinct values in a specified
sequence

Aggregate count Returns the number of items in a specified sequence

 avg Returns the average of the values in a specified sequence

 min Returns the smallest value in a specified sequence

 max Returns the largest value in a specified sequence

 sum Returns the sum of the values in a specified sequence

Constructor
Constructor
Functions

Creates an instance of any XSD built-in or user-defined atomic type

Data
accessor

string
Returns the string representation of a node or atomic value
argument

 data Returns the typed value of the specified node

The following query uses XQuery to retrieve the work center having the most labor hours for each
product from the Instructions xml data type column in the Production.ProductModel table in
AdventureWorks. Note that you must enter the emphasized line in the example on a single line.

 USE AdventureWorks

 SELECT ProductModelID, Name,
 Instructions.query('
 declare namespace AWMI=
 "http://schemas.microsoft.com/sqlserver/2004/07/
 adventure-works/ProductModelManuInstructions";
 for $Location in /AWMI:root/AWMI:Location
 where $Location/@LaborHours = max(/AWMI:root/AWMI:Location/@LaborHours)
 return <Location WCID="{ $Location/@LocationID }"
 LaborHrs="{ $Location/@LaborHours }" />') Result
 FROM Production.ProductModel
 WHERE Instructions IS NOT NULL

Partial results are shown in Figure 7-15.

Figure 7-15. Results for XQuery example

Sequences empty
Returns a Boolean value indicating whether the specified sequence
is an empty sequence

 distinct-values
Returns a sequence containing the distinct values in a specified
sequence

Aggregate count Returns the number of items in a specified sequence

 avg Returns the average of the values in a specified sequence

 min Returns the smallest value in a specified sequence

 max Returns the largest value in a specified sequence

 sum Returns the sum of the values in a specified sequence

Constructor
Constructor
Functions

Creates an instance of any XSD built-in or user-defined atomic type

Data
accessor

string
Returns the string representation of a node or atomic value
argument

 data Returns the typed value of the specified node

The following query uses XQuery to retrieve the work center having the most labor hours for each
product from the Instructions xml data type column in the Production.ProductModel table in
AdventureWorks. Note that you must enter the emphasized line in the example on a single line.

 USE AdventureWorks

 SELECT ProductModelID, Name,
 Instructions.query('
 declare namespace AWMI=
 "http://schemas.microsoft.com/sqlserver/2004/07/
 adventure-works/ProductModelManuInstructions";
 for $Location in /AWMI:root/AWMI:Location
 where $Location/@LaborHours = max(/AWMI:root/AWMI:Location/@LaborHours)
 return <Location WCID="{ $Location/@LocationID }"
 LaborHrs="{ $Location/@LaborHours }" />') Result
 FROM Production.ProductModel
 WHERE Instructions IS NOT NULL

Partial results are shown in Figure 7-15.

Figure 7-15. Results for XQuery example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.7.2. xml Data Type Operators

The XQuery operators described in Table 7-7 can be used in queries that run against xml data type
instances.

Table 7-7. XQuery operators

Category Operators

Numeric +, -, *, div, mod

Value comparison eq, ne, lt, gt, le, ge

General comparison =, !=, <, >, <=, >=

7.7.3. Using XQuery Extension Functions to Bind Relational Data Inside
XML Data

In addition to xml data type methods, SQL Server provides two XQuery extension
functionssql:column() and sql:variable()to bind relational data inside XML data. These functions
bring in data from a non-xml data type column or from a T-SQL variable so that you can investigate
or manipulate the relational data as you would an xml data type instance. Bound relational data is
read-only.

The XQuery extension functions cannot be used to reference data in columns or
variables of xml, CLR UDT, timestamp, text, ntext, sql_variant, or image data
types.

7.7.3.1. sql:column() function

The sql:column() function exposes relational data from a non-xml data type column, letting you

http://lib.ommolketab.ir
http://lib.ommolketab.ir

return relational data as part of an XML result set. The syntax is:

 sql:column(columnName
)

where:

columnName

The name of a column in the row being processed

The following example adds the ProductionModelID and Name columns and the SQL variable
@laborHourTarget to the XML result containing the maximum labor hours for each product model
from the Instructions xml data type column. Note that you must enter the emphasized line in the
example on a single line.

 USE AdventureWorks

 DECLARE @laborHourTarget int;
 SET @laborHourTarget = 2.5;

 SELECT Instructions.query('
 declare namespace pmmi="http://schemas.microsoft.com/sqlserver/
 2004/07/adventure-works/ProductModelManuInstructions";
 <ProductModel
 ProductModelID= "{ sql:column("pm.ProductModelID") }"
 Name= "{ sql:column("pm.Name") }"
 LaborHourTarget= "{ sql:variable("@laborHourTarget") }" >
 { attribute MaxLaborHours {max(/pmmi:root/pmmi:Location/@LaborHours)} }
 </ProductModel>
 ') AS Result
 FROM Production.ProductModel pm
 WHERE Instructions IS NOT NULL

Partial results are shown in Figure 7-16.

Figure 7-16. Results for sql:column() function example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.7.3.2. sql:variable() function

The sql:variable() function used in the preceding example exposes data in a non-xml data type T-
SQL variable inside XML . The syntax is:

 sql:variable(variableName
)

where:

variableName

The name a T-SQL variable

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.8. XML Data Manipulation Language

XML DML extends the XQuery language to support data modification in xml data type instances. XML
DML adds the insert, delete, and replace value of keywords to the XQuery language.

The examples in the subsections that follow use a table named xmldmlTable. Create this table by
executing the following statement:

 USE ProgrammingSqlServer2005

 CREATE TABLE xmldmlTable
 (
 ID int,
 xmlCol xml,
 CONSTRAINT PK_xmldmlTable
 PRIMARY KEY CLUSTERED (ID)
)

The added XML DML keywords are used to modify xml data type instances as detailed in the following
three subsections.

7.8.1. insert

The XML DML insert statement inserts one or more nodes as child nodes or siblings of a specified
node in an xml data type instance. The syntax for the insert keyword follows:

 insert Expression1
 ({as first | as last} into | after | before

 Expression2)

where:

Expression1

A constant XML instance or an XQuery expression identifying one or more nodes to insert. It
cannot resolve to the root (/) node. If multiple nodes are specified by the constant XML

http://lib.ommolketab.ir
http://lib.ommolketab.ir

instance, they must be enclosed in parentheses and separated by commas.

into

Nodes identified by Expression1 are inserted as child nodes of the node identified by
Expression2 .

{ as first | as last }

If the node identified by Expression2 already has one or more child nodes, you must use either

the as first or as last keywords to specify the location in which to insert the new child
nodeseither at the beginning or at the end of the child list.

The as first and as last keywords are ignored when inserting attributes.

after

Nodes identified by Expression1 are inserted as siblings immediately after the node identified
by Expression2. The after keyword cannot be used to insert attributes.

before

Nodes identified by Expression1 are inserted immediately before the node identified by
Expression2. The before keyword cannot be used to insert attributes.

Expression2

A constant XML instance or an XQuery expression identifying a single existing node. Nodes
identified by Expression1 are inserted relative to this node. The insert fails if Expression2

identifies more than one node.

The following example creates a record in the xmldmlTable with ID = 1 and the xmlCol xml data type
column set to a simple XML document. The example then adds a child element named childElement0
as the first child of the root node using an insert XML DML statement.

 INSERT INTO xmldmlTable (ID, xmlCol)
 VALUES (1, '<root><childElement1 value="1"/></root>')

 SELECT xmlCol FROM xmldmlTable WHERE ID = 1

 UPDATE xmldmlTable
 SET xmlCol.modify('insert <childElement0 value="0"/> as first into (/root)[1]')
 WHERE ID = 1

 SELECT xmlCol FROM xmldmlTable WHERE ID = 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Two result sets are returned, as shown in Figure 7-17.

The first result set shows the xmlCol value before the XML DML insert. The second result set after
the insert XML DML command shows the new childelement0 element as the first child of the root
element.

Figure 7-17. Results for XML DML insert example

7.8.2. delete

The XML DML delete statement deletes one or more nodes from an xml data type instance. The
syntax of the delete keyword is:

 delete Expression

where:

Expression

An XQuery expression specifying one or more nodes to delete. All nodes specified by the
XQuery expression and all contained (child) nodes are deleted. The expression cannot be the
root (/) node.

The following example creates a record in the xlmdmlTable with ID = 2. It assigns the elements
childElement1 and childElement2 to the xlmCol column, then deletes childElement1.

 INSERT INTO xmldmlTable (ID, xmlCol)
 VALUES (2, '<root><childElement1 value="1"/>
 <childElement2 value="2"/></root>')

 SELECT xmlCol FROM xmldmlTable WHERE ID = 2

 UPDATE xmldmlTable
 SET xmlCol.modify('delete (/root/childElement1)')

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 WHERE ID = 2

 SELECT xmlCol FROM xmldmlTable WHERE ID = 2

Two result sets are returned, as shown in Figure 7-18.

Figure 7-18. Results for XML DML delete example

The first result set shows the xmlCol value before the XML DML delete. The second result set after
the delete XML DML command shows the removal of the childelement1 element from the root
element.

7.8.3. replace value of

The XML DML replace value of statement updates the value of a node in an xml data type instance.
The syntax of replace value of is:

 replace value of Expression1 with Expression2

where:

Expression1

A constant XML instance or an XQuery expression identifying a single node to update. An error
will result if multiple nodes are specified. Expression1 must identify an element with simply

typed content, a text node, or an attribute nodespecifying a union type, complex type,
processing instruction, document node, or comment node will return an error.

Expression2

The new value of the node. When updating a type xml data type instance, Expression2 must

http://lib.ommolketab.ir
http://lib.ommolketab.ir

have the same subtype as Expression1.

The following example updates the value attribute for element childElement1:

 INSERT INTO xmldmlTable (ID, xmlCol)
 VALUES (3, '<root><childElement1 value="1"/></root>')

 SELECT xmlCol FROM xmldmlTable WHERE ID = 3

 UPDATE xmldmlTable
 SET xmlCol.modify('replace value of (/root/childElement1/@value)[1] with "100"')
 WHERE ID = 3

 SELECT xmlCol FROM xmldmlTable WHERE ID = 3

Two result sets are returned, as shown in Figure 7-19. The first result set shows the xmlCol value
before the XML DML replace value of. The second result set after the replace value of XML DML
command shows the value attribute of the childElement1 element changed from 1 to 100.

Figure 7-19. Results for XML DML replace value of example

7.8.4. XML DML Limitations and Restrictions

XML DML cannot be used to insert, delete, or modify the following:

xmlns, xmlns.*, or xml:base attributes in either typed or untyped xml data type instances.

xsi:nil or xsi:type attributes in typed xml data type instances.

Additionally, XML DML has the following restriction:

The xml:base attribute cannot be inserted into either typed or untyped xml data type instances.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.9. XML Results Using the FOR XML Clause

You can return the result set of a SELECT statement as XML by specifying the FOR XML clause in the
query. The FOR XML clause was introduced in SQL Server 2000. SQL Server 2005 enhances the
functionality, as discussed in the "FOR XML Updates and Enhancements" section later in this chapter.
The FOR XML clause syntax is:

 [FOR { BROWSE | <XML> }]

 <XML> ::=
 XML
 {

 { RAW [('ElementName')] | AUTO }
 [

 <CommonDirectives>

 [, { XMLDATA | XMLSCHEMA [(TargetNameSpaceURI)]}]
 [, ELEMENTS [XSINIL | ABSENT]
]
 | EXPLICIT
 [

 <CommonDirectives>
 [, XMLDATA]
]

 | PATH [('ElementName')]
 [

 <CommonDirectives>
 [, ELEMENTS [XSINIL | ABSENT]]
]
 }

 <CommonDirectives> ::=
 [, BINARY BASE64]
 [, TYPE]

 [, ROOT [('RootName')]]

where:

RAW[(' ElementName')]

Transforms each row in the result set into an XML element with the name specified in the
ElementName parameter. The identifier defaults to <row> if the ElementName parameter is not

http://lib.ommolketab.ir
http://lib.ommolketab.ir

specified.

AUTO

Returns the query results as a simple, nested XML hierarchy. Each table in the FROM clause with
at least one column selected is returned as an XML element.

XMLDATA

Returns an inline XML-Data Reduced (XDR) schema in the returned XML.

XMLSCHEMA [(TargetNameSpaceURI)]

Returns an inline XSD Schema prepended to the resulting XML document. If the
TargetNameSpaceURI argument is specified, the specified namespace is returned in the schema.
You cannot use the XMLSCHEMA directive with the ROOT directive or when a row tag name is
specified.

ELEMENTS [XSINIL | ABSENT]

Specifies that columns are returned as subelements rather than mapped to attributes. The
ELEMENTS option is supported only for RAW, AUTO, and PATH modes.

The XSINIL option specifies that an element with the xsi:nil attribute set to true is created for
a column with a NULL value. If not specified, or the ABSENT option is specified, no element is
created for a column with a NULL value.

EXPLICIT

Explicitly specifies the XML hierarchy for the query result.

PATH

A simpler way than EXPLICIT mode to specify the XML hierarchy for the result set. PATH uses
nested FOR XML queries to mix elements and attributes and to specify the nesting used to
represent complex properties. Attributes must appear before other node types in the same
level.

BINARY BASE64

Specifies that any binary data returned by the query is represented in Base64-encoded format.
This option must be specified when returning binary data using RAW or EXPLICIT mode. By
default, binary data is returned as a reference in AUTO mode.

TYPE

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Specifies that the results of the query are returned as an xml data type instance.

ROOT[(' RootName')]

Adds a single top-level (root) element to the returned XML result with the name specified by
the RootName argument. If the RootName argument is not specified, the name of the top-level

element defaults to root.

7.9.1. Some FOR XML Examples

The examples in this subsection show the effect of the FOR XML clause on the result set returned by
the following SELECT statement:

 USE AdventureWorks

 SELECT TOP 2 DepartmentID, Name
 FROM HumanResources.Department

The SELECT statement without the FOR XML clause returns the ID and name of the top two
departments, as shown in Figure 7-20.

Figure 7-20. Results for SELECT example

Now add the FOR XML RAW clause to the statement:

 SELECT TOP 2 DepartmentID, Name
 FROM HumanResources.Department
 FOR XML RAW

The result set is a single row with one xml data type column containing the XML fragment shown in
Figure 7-21.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 7-21. Results for FOR XML example

Add the ROOT directive to the FOR XML clause to add a root node Departments and turn the XML
fragment into an XML document:

 SELECT TOP 2 DepartmentID, Name
 FROM HumanResources.Department
 FOR XML RAW, ROOT ('Departments')

The results are shown in Figure 7-22.

Specifying the XMLSCHEMA directive returns an inline XSD schema in the result set:

 SELECT TOP 2 DepartmentID, Name
 FROM HumanResources.Department
 FOR XML RAW, XMLSCHEMA

Figure 7-22. Results for FOR XML with ROOT directive example

The results are shown in Figure 7-23.

Figure 7-23. Results for FOR XML with XMLSCHEMA directive

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following example uses AUTO mode to return sales order information:

 SELECT soh.SalesOrderID, soh.OrderDate, soh.CustomerID,
 sod.ProductID, sod.OrderQty
 FROM Sales.SalesOrderHeader soh, Sales.SalesOrderDetail sod
 WHERE soh.SalesOrderID = sod.SalesOrderID
 FOR XML AUTO

Partial results are shown in Figure 7-24.

One element is created for each table specified in the FROM clause, with the table aliases specified in
the FROM clause used as element names. AUTO mode uses the column order in the SELECT statement to
nest elements in the XML document hierarchy. Values of selected columns are added to the elements
as attributes. The ORDER BY clause is needed to ensure that all child elements are nested under a
single parent element.

The following example uses PATH mode to return contact information for vendors:

 SELECT
 v.VendorID "@ID",
 v.Name "@Name",
 c.FirstName "Contact/First",
 c.LastName "Contact/Last"
 FROM Purchasing.Vendor v, Purchasing.VendorContact vc, Person.Contact c
 WHERE v.VendorID = vc.VendorID AND vc.ContactID = c.ContactID
 ORDER BY v.Name
 FOR XML PATH ('Vendor')

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 7-24. Results for FOR XML with AUTO mode example

Partial results are shown in Figure 7-25.

Figure 7-25. Results for FOR XML with PATH mode example

The ampersand (@) preceding the VendorID and Name column names results in the output of attributes
in the XML document. The slash (/) in the FirstName and LastName column names results in the
output of XML subelements in the XML document.

The following example uses EXPLICIT mode to return contact information for vendors:

 SELECT DISTINCT
 1 AS Tag,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 NULL AS Parent,
 v.VendorID AS [Vendor!1!ID],
 v.Name AS [Vendor!1!Name],
 NULL AS [Contact!2!FirstName],
 NULL AS [Contact!2!LastName]
 FROM Purchasing.Vendor v, Purchasing.VendorContact vc, Person.Contact c
 WHERE v.VendorID = vc.VendorID AND vc.ContactID = c.ContactID

 UNION ALL

 SELECT
 2 AS Tag,
 1 AS Parent,
 v.VendorID,
 v.Name,
 c.FirstName,
 c.LastName
 FROM Purchasing.Vendor v, Purchasing.VendorContact vc, Person.Contact c
 WHERE v.VendorID = vc.VendorID AND vc.ContactID = c.ContactID

 ORDER BY [Vendor!1!ID], [Contact!2!LastName]
 FOR XML EXPLICIT

Partial results are shown in Figure 7-26.

Figure 7-26. Results for FOR XML with EXPLICIT mode example

The Tag and Parent metacolumns determine the XML document hierarchy. Columns are selected at
each level of the hierarchy and combined into a nested XML document using the UNION ALL operator.
The column name syntax is elementName! elementLevel!attributeName.

7.9.2. FOR XML Support for SQL Server Data Types

The following SQL Server data types have limitations or special handling as described when used with

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the FOR XML clause:

xml

If an xml data type is specified in the SELECT clause, column values are mapped to and
serialized as elements in the returned XML regardless of whether the ELEMENTS directive is
specified. XML declarations in the xml data type column are not serialized.

User-Defined Types (UDT)

CLR UDTs are not supported.

String

Whitespace characters in the data are entitized. For example, carriage returns, tabs, and line
feeds are converted to , 	, and
, respectively.

timestamp

timestamp data type instances are treated as varbinary(8) data and are always Base 64
encoded. If an XSD or XSR schema is requested, it reflects this.

7.9.3. FOR XML Updates and Enhancements

SQL Server 2005 updates and enhances FOR XML functionality in SQL Server 2000 as described in the
following list:

TYPE directive

In SQL Server 2000, a FOR XML query returns results either as a text or image type. In SQL
Server 2005, the TYPE directive lets you return a result set from a FOR XML query as an xml
data type.

RAW mode enhancements

RAW mode now lets you specify the row element name, retrieve element-centric XML, and
specify the root element for the XML result.

AUTO mode enhancements

AUTO mode shapes the returned XML hierarchy by comparing columns in adjacent rows in the
query. In SQL Server 2000, ntext, text, and image data types are not compared. In SQL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Server 2005, xml data type columns are also not compared. The new varchar(max),
nvarchar(max), and varbinary(max) data types are compared.

Derived table support has been improved, allowing it to be used to group columns from
different tables under the same element while hiding the join from the AUTO mode shaping
mechanism.

EXPLICIT mode enhancements

EXPLICIT mode now supports the CDATA directive with an element name and the xsi:nil
column mode.

Nested queries

Using the xml data type and the TYPE directive in FOR XML queries lets you further process the
XML result set on the server. This lets you build nested FOR XML queries.

Generating elements for NULL values

The XSINIL parameter of the ELEMENTS directive lets you create elements for NULL column
values. These elements have an xsi:nil attribute set to TRue.

Inline XSD and XDR schema generation

A query with a FOR XML clause can return an inline schema in the XML returned.

Specify the XMLSCHEMA keyword to return an XSD schema. XMLSCHEMA can be specified only in
RAW or AUTO mode, not in EXPLICIT mode. A nested FOR XML query that specifies the TYPE
directive returns an untyped xml data type instance.

Specify the XMLDATA keyword in the FOR XML clause to return an XDR schema. The XDR schema
does not support all new data types and enhancements in SQL Server 2005. Specifically:

XDR does not support FOR XML query result sets that include xml data type columns.

The varchar(max), nvarchar(max), and varbinary(max) data types are mapped to
varchar(n), nvarchar(n), and varbinary(n).

When compatibility mode is set to 90, timestamp values are treated as varbinary(8) data
and Base64-encoded when binary base64 is specified, and URL-encoded in AUTO mode
when binary base64 is not specified.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.10. XML Catalog Views

The catalog views described in Table 7-8 return information about the xml entities in a database.

Table 7-8. Catalog views for XML entities

Catalog view Description

sys.xml_attributes A row per xml component that is an attribute (symbol_space = A).

This view inherits from sys.xml_components.

sys.xml_component_placements A row per placement for xml components.

sys.xml_components A row per component of an XML schema.

sys.xml_elements A row per xml component that is an element (symbol_space = E).

This view inherits from sys.xml_components.

sys.xml_facets A row per facet of an xml-type definition.

This view inherits from sys.xml_components.

sys.xml_indexes A row per xml index.

This view inherits from sys.indexes.

sys.xml_model_groups A row per xml component that is a Model-Group (symbol_space =
M).

This view inherits from sys.xml_components.

sys.xml_schema_collections A row per XML schema collection.

sys.xml_schema_components A row per XML schema component.

sys.xml_schema_namespaces A row per XSD-defined XML namespace.

sys.xml_types A row per xml component that is a Type (symbol_space = T).

This view inherits from sys.xml_components.

sys.xml_wildcard_namespaces A row per enumerated namespace for an xml wildcard.

sys.xml_wildcards A row per xml component that is an Attribute-Wildcard (kind V) or
Element-Wildcard (kind W) both with symbol_space = N.

This view inherits from sys.xml_components.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 8. Native XML Web Services
SQL Server 2005 supports native XML web services for both SOAP 1.1 and SOAP 1.2 clients. The SQL
Server Database Engine can be configured as an HTTP listener, allowing heterogeneous clients to
access its data. You can send SOAP message requests to SQL Server over HTTP to execute T-SQL
batch statements (with or without parameters), stored procedures, extended stored procedures, and
scalar-valued user-defined functions (UDFs).

In SQL Server 2000, web service support is provided by SQLXML 3.0 and Internet Information
Services (IIS), as well as the Microsoft Data Access Components (MDAC) stack installed on the client
to access SQL Server. The inclusion of native web services in SQL Server 2005 allows a much wider
group of clients to access the database, consistent with the platform and operating system
interoperability goals for web services.

A client needs only HTTP and XML to access web services exposed by SQL Server 2005. This
broadens access to SQL Server data across the extended enterprise from heterogeneous
environments, including Unix and Linux systems and mobile devices. SQL Server 2005 includes built-
in security measures to control client access.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.1. Open Standards

SQL Server 2005 native XML web services are based on the following open standards :

Hypertext Transfer Protocol (HTTP)

A platform-independent protocol for exchanging data. HTTP is the underlying protocol for the
Web. HTTP defines the format for messages, how they are transmitted, and the actions that
web servers and browsers should take in response to the message commands.

Native HTTP support in SQL Server 2005 requires the kernel-mode HTTP listener (http.sys),
which is available only in Windows Server 2003 or Windows XP SP2 or later. The HTTP
Configuration Utility (httpcfg.exe) is used to configure http.sys.

Simple Object Access Protocol (SOAP)

A lightweight XML-based messaging protocol used to encode web service request and response
information and transmit that information over a network. SOAP is platform- and operating
system-independent and can be transported over a variety of Internet protocols, including
HTTP, TCP, and SMTP.

Web Service Description Language (WSDL)

An XML document format that describes the capabilities of a web service.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.2. Creating a Web Service

Follow these steps to create an XML web service in SQL Server 2005:

Establish an HTTP endpoint on the SQL Server instance. An endpoint is an interface through
which HTTP-based clients can query the server. You establish an endpoint by using the CREATE
ENDPOINT T-SQL DDL statement.

1.

Expose stored procedures or UDFs as web methods. You do this by defining existing stored
procedures or UDFs for web access by using either the CREATE ENDPOINT or ALTER ENDPOINT T-
SQL DDL statement.

2.

Create the WSDL that describes the web service and make it available to clients, allowing them
to access the web service. The WSDL can be generated by SQL Server or you can custom-build
it.

3.

The next section in this chapter gives an example of how to create a web service in SQL Server 2005.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.3. Creating the HTTP Endpoint and Exposing a Web
Method Example

The example in this section creates a stored procedure and defines an HTTP SOAP endpoint with a single
web method that accesses the stored procedure. A .NET client is created to call the stored procedure via
a web service call and to display the results.

Follow these steps to create the endpoint and expose a web method:

Create a stored procedure to return purchase orders for a specific employee, or all purchase orders
if an employee is not specified. Execute the following query in the AdventureWorks database to
create the stored procedure:

 USE AdventureWorks

 CREATE PROCEDURE GetPurchaseOrder
 @EmployeeID [int] = NULL
 WITH EXECUTE AS CALLER
 AS
 IF @EmployeeID IS NOT NULL
 BEGIN
 SELECT * FROM Purchasing.PurchaseOrderHeader
 WHERE EmployeeID = @EmployeeID
 END
 ELSE
 SELECT * FROM Purchasing.PurchaseOrderHeader

1.

Create an HTTP SOAP endpoint named GetPurchaseOrderEndpoint to expose this stored procedure
as a web method named GetPurchaseOrder . The following T-SQL statement creates the HTTP
endpoint with a single web method:

 USE AdventureWorks

 CREATE ENDPOINT GetPurchaseOrderEndpoint
 STATE = STARTED
 AS HTTP (
 path = '/sql/GetPurchaseOrder',
 AUTHENTICATION = (INTEGRATED),
 PORTS = (CLEAR)
)
 FOR SOAP(

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 WEBMETHOD 'GetPurchaseOrder'
 (NAME = 'AdventureWorks.dbo.GetPurchaseOrder',
 SCHEMA = STANDARD),
 BATCHES = ENABLED,
 WSDL = DEFAULT,
 SCHEMA = STANDARD,
 DATABASE = 'AdventureWorks',
 NAMESPACE = 'http://tempUri.org/'
)

Under Windows XP, you cannot create endpoints using port 80 if IIS is running,
because IIS listens on port 80 . You can either stop the World Wide Web Publishing
service or create the endpoint on a port other than 80 by specifying the CLEAR_PORT
clause in the CREATE ENDPOINT or ALTER ENDPOINT statement.

Stop the World Wide Web Publishing service by selecting Start Administrative
Tools Services. In the Services dialog box, right-click World Wide Web
Publishing and choose Stop from the context menu.

Creating and managing HTTP endpoints is described in detail in the "Creating an HTTP Endpoint " section
later in this chapter.

You can confirm that the endpoint has been created by querying the catalog view sys.http_endpoints :

 SELECT * FROM sys.http_endpoints

You can confirm the existence of the web method by querying the catalog view sys.endpoint_webmethods
:

 SELECT * FROM sys.endpoint_webmethods

Catalog views that contain information about the HTTP endpoints defined in the SQL Server instance are
described in the "Endpoint Metadata " section later in this chapter.

This permission controls whether a principal can see metadata for a specific endpoint:

 { GRANT | DENY | REVOKE | } ON ENDPOINT::endPointName

 TO server_principal

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This permission does not give the principal access to the endpoint.

The next step is to consume this web method. The following example uses a C# .NET client. Follow these
steps in Visual Studio 2005:

From the Visual Studio 2005 menu, select File New Project.1.

In the New Project dialog box, select Visual C# in the tree view and Windows Application from the
installed templates.

2.

Specify where you want to save the project. Name the project GetPurchase-OrderSoapApp . Click
OK.

3.

In the Solution Explorer window, right-click References and select Add Web Reference from the
context menu.

4.

In the Add Web Reference dialog box, enter http://localhost/sql/GetPurchaseOrder?wsdl . You can
specify a server name instead of localhost if your SQL Server is not local. Figure 8-1 shows that
the GetPurchaseOrder() method is available, together with sqlbatch() , which permits ad hoc
queries to be executed.

5.

Change the Web reference name listbox to GetPurchaseOrderWS . Click the Add Reference button.6.

Double-click Form1 in Solution Explorer to open the Form Designer.7.

Add a DataGridView control to the form. Uncheck the Enable Adding, Enable Editing, and Enable
Deleting checkboxes. Set the Name property to PODataGridView .

8.

Add a Label control to the form. Set the Text property to Employee ID: .9.

Add a TextBox control to the form. Set the Name property to employeeIDTextBox .10.

Add a Button control to the form. Set the Text property to Go and the Name property to goButton .

Figure 8-2 shows the completed form.

11.

Double-click the goButton to add a click event handler named goButton_Click for the button.12.

Add the following code to the goButton_Click event handler:

GetPurchaseOrderWS.GetPurchaseOrderEndpoint proxy =
 new GetPurchaseOrderWS.GetPurchaseOrderEndpoint();
proxy.Credentials = System.Net.CredentialCache.DefaultCredentials;

Figure 8-1. Adding a web reference for GetPurchaseOrder()

13.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 8-2. Web client application user interface

object[] results;

int employeeID = -1;
try
{
 employeeID = int.Parse(employeeIDTextBox.Text);
}
catch (Exception) { }

// execute the GetPurchaseOrder() method passing in either null or
// an Employee ID
if (employeeID != -1)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 results = proxy.GetPurchaseOrder(employeeID);
else
 results = proxy.GetPurchaseOrder(System.Data.SqlTypes.SqlInt32.Null);

// iterate over the array of objects returned from the web service and
// handle each of them
foreach (object o in results)
{
 if (o.GetType().IsPrimitive)
 MessageBox.Show("SP Return Code = " + o);
 else
 switch (o.GetType().ToString())
 {
 case "System.Data.DataSet":
 // cast the object to a DataSet and fill the DataGridView
 PODataGridView.DataSource = ((DataSet)o).Tables[0];
 break;
 case "GetPurchaseOrderSoapApp.GetPurchaseOrderWS.SqlRowCount":
 MessageBox.Show("RowCount = " +
 ((GetPurchaseOrderSoapApp.GetPurchaseOrderWS.SqlRowCount)o).Count);
 break;
 }
}

Execute the application. Enter a value for the Employee ID (for example, 244), or leave it blank to
retrieve all employees. Click the Go button, and the DataGridView is filled with the DataSet returned
by the web method. Results for Employee ID = 244 are shown in Figure 8-3 .

14.

Figure 8-3. Results for web service example

8.3.1. SQL Batches

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Web-service endpoints can be configured to support ad hoc queries. The BATCHES language-specific
argument for SOAP in the CREATE ENDPOINT and ALTER ENDPOINT configures this. You execute an ad hoc
query by calling the sqlbatch() method of the HTTP endpoint, passing in the queries (multiple queries
must be separated with semicolons) and any parameters.

In a SOAP SQL batch request, the SOAP <body> element contains a single, <sqlbatch> . This element has
two child elements:

<BatchCommands >

Specifies the query, or multiple queries separated by semicolons (;).

<Parameters >

Specifies an optional list of parameters. Each parameter is specified as a <SqlParameter> child
element of the <Parameters> element. For each parameter, you must pass the parameter name as
the name attribute of the <Parameter> element and the parameter value as a <Value> child
element of the <Parameter> element.

The following example demonstrates ad hoc query support by altering the preceding client. This new
version returns the purchase orders for an employee using an ad hoc query instead of the
GetPurchaseOrder() web method. Replace the code for the goButton_Click event handler with the
following code:

int employeeID = -1;
try
{
 employeeID = int.Parse(employeeIDTextBox.Text);
}
catch (Exception) { }

// execute the query only if a valid employee ID is entered
if (employeeID != -1)
{
 GetPurchaseOrderWS.GetPurchaseOrderEndpoint proxy =
 new GetPurchaseOrderWS.GetPurchaseOrderEndpoint();
 proxy.Credentials = System.Net.CredentialCache.DefaultCredentials;

 // SQL parameterized command that returns purchase orders for an employee
 string commandText = "SELECT * FROM Purchasing.PurchaseOrderHeader " +
 "WHERE EmployeeID = @employeeID FOR XML AUTO";

 // create the employee ID parameter
 GetPurchaseOrderWS.SqlParameter[] parm =
 new GetPurchaseOrderWS.SqlParameter[1];
 parm[0] = new GetPurchaseOrderWS.SqlParameter();
 parm[0].name = "employeeID";
 parm[0].Value = employeeID;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 parm[0].sqlDbType = GetPurchaseOrderWS.sqlDbTypeEnum.Int;
 parm[0].direction = GetPurchaseOrderWS.ParameterDirection.Input;

 // call the web service sqlbatch method to execute the ad hoc query
 object[] results = proxy.sqlbatch(commandText, ref parm);

 // iterate over the array of objects returned from the web service and
 // handle each of them
 foreach (object o in results)
 {
 if (o.GetType().IsPrimitive)
 MessageBox.Show("Return Code = " + o);
 else
 switch (o.GetType().ToString())
 {
 case "System.Xml.XmlElement":
 // retrieve the XmlElement and convert to a DataSet
 System.Xml.XmlElement xmlResult = (System.Xml.XmlElement)o;
 System.Xml.XmlNodeReader xnr =
 new System.Xml.XmlNodeReader(xmlResult);
 DataSet ds = new DataSet();
 ds.ReadXml(xnr);
 PODataGridView.DataSource = ds.Tables[0];

 break;
 case "GetPurchaseOrderSoapApp.GetPurchaseOrderWS.SqlRowCount":
 MessageBox.Show("RowCount = " +
 ((GetPurchaseOrderSoapApp.GetPurchaseOrderWS.SqlRowCount)
 o).Count);
 break;
 }
 }
}

The results are the same as in the previous example, except that you must specify an employee ID.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.4. SOAP Request and Response Messages

When you are building a Visual Studio .NET application, Visual Studio .NET creates the necessary
proxy class so that you can call a web service method almost exactly like you call any other method.
The Visual Studio .NET application automatically builds the SOAP envelope for the request, and SQL
Server processes the request, returning results in an object array or a single DataSet object.

If you are building an application that builds its own SOAP requests and processes its own SOAP
responses, you need to understand the SOAP request and response message structures and the
SOAP fault message structure. For more information, see Microsoft SQL Server 2005 Books Online.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.5. Managing HTTP Endpoints

An HTTP endpoint is an interface through which HTTP-based clients send queries to the server. You
must use the CREATE ENDPOINT T-SQL statement to configure the SQL Server instance to listen
natively for HTTP requests before you can send a native HTTP/SOAP request to the server.

SQL Server HTTP endpoints can listen and receive requests on any valid port including TCP port 80the
same port used by the IIS World Wide Web Publishing service. Each URLwhether used for an HTTP
endpoint or by IISis registered with the Windows operating system through the system HTTP listener
process (http.sys).

This section discusses how to create, change, and remove endpoints, and how to grant and change
permissions on endpoint objects.

8.5.1. Creating an HTTP Endpoint

An endpoint is an interface on which the server listens for HTTP requests from clients. The CREATE
ENDPOINT T-SQL statement creates and configures an endpoint and web methods exposed by the
endpoint.

The syntax for the CREATE ENDPOINT statement is:

CREATE ENDPOINT endPointName [AUTHORIZATION login]
STATE = { STARTED | STOPPED | DISABLED }
AS { HTTP | TCP } (

 <protocol_specific_arguments>
)
FOR { SOAP | TSQL | SERVICE_BROKER | DATABASE_MIRRORING } (

 <language_specific_arguments>
)

where:

endPointName

The name of the endpoint being created.

AUTHORIZATION login

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The SQL Server or Windows account that is assigned ownership of the new endpoint. The caller
must have IMPERSONATE permissions on the specified login to specify AUTHORIZATION. If this

clause is omitted, the caller becomes the owner.

You can reassign ownership of an endpoint with the ALTER ENDPOINT statement.

STATE = { STARTED | STOPPED | DISABLED }

The state of the endpoint when created.

STARTED

The endpoint is started and listening for requests.

DISABLED

The endpoint is disabled and does not respond to requests.

STOPPED

The endpoint is stopped and returns an error in response to requests.

STOPPED is the default state.

Use the ALTER ENDPOINT statement to change the state of an endpoint.

AS { HTTP | TCP } (<protocol_specific_arguments>)

Specifies the transport protocol to useHTTP or TCP. The AS clause specifies transport protocol-
specific information for the endpoint, including the listening port, the authentication method,
and a list of IP addresses that are restricted from accessing the endpoint.

The AS clause is described in the following subsection, "Protocol-specific arguments."

FOR { SOAP | TSQL | SERVICE_BROKER | DATABASE_MIRRORING } (
<language_specific_arguments>)

Specifies the payload typeSOAP, TSQL, SERVICE_BROKER, or DATABASE_MIRRORING. The FOR clause
defines the payload and specifies additional SOAP configuration information, such as whether
ad hoc queries are allowed, whether to return the XSD schema for the result set, and how to
handle invalid characters in the XML.

The FOR clause is described in the upcoming subsection "Language-specific items."

8.5.1.1. Protocol-specific arguments

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The syntax for HTTP protocol-specific items in the AS clause is:

 <AS HTTP_protocol_specific_arguments

> ::= AS HTTP (PATH = 'url', AUTHENTICATION =({ BASIC | DIGEST | INTEGRATED |
NTLM | KERBEROS } [,...n]), PORTS = ({ CLEAR | SSL} [,... n]) [SITE = {'*' | '+' |
'webSite' },] [, CLEAR_PORT = clearPort] [, SSL_PORT = SSLPort] [, AUTH_REALM = {
'realm' | NONE }] [, DEFAULT_LOGON_DOMAIN = { 'domain' | NONE }] [, RESTRICT_IP =
{ NONE | ALL }] [, COMPRESSION = { ENABLED | DISABLED }] [, EXCEPT_IP = ({ <4-
part-ip> | <4-part-ip>:<mask> } [,...n])])

where:

PATH

The URL path for the endpoint on the host computer specified by the SITE argument. The PATH
together with the SITE argument specifies the URL that the client uses to send HTTP SOAP
requests to the server.

For example, in the URL http://<site>/<path>, site is the computer specified by the SITE
argument and path is the URL specified by the PATH argument.

AUTHENTICATION

The authentication method for the endpointone or more of BASIC, DIGEST, INTEGRATED, NTLM, or
KERBEROS. (If you specify more than one authentication method, separate the methods with
commas).

Authentication is discussed in detail in the "Endpoint Authentication" section later in this
chapter.

PORTS = ({ CLEAR | SSL} [,...n])

One or more listening ports for the endpoint. The listening ports can be CLEAR, SSL, or both. If
CLEAR is specified, incoming requests must use standard HTTP requests (http://). If SSL is
specified, incoming requests must use Secure HTTP requests (https://).

SITE = {'*' | '+' | ' webSite' }

The name of the host computer. Either a specific hostname webSite or one of two wildcards can
be specified:

Plus sign (+)

Specifies listening on all possible hostnames for the computer

http://<site>/<path>
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Asterisk (*)

Specifies listening on all possible hostnames for the computer that are not otherwise
explicitly reserved

If the SITE argument is not specified, the default value is asterisk (*).

CLEAR_PORT

The listening clear port number, if the PORTS argument specifies clear port listening (PORTS =
CLEAR). The default value is 80 if CLEAR_PORT is not explicitly specified.

SSL_PORT

The listening SSL port number, if the PORTS argument specifies SSL port listening (PORTS =
SSL). The default value is 443 if SSL_PORT is not explicitly specified.

AUTH_REALM = { ' realm' | NONE }

The hint returned to the client as part of the HTTP challenge for digest authentication
(AUTHENTICATION = DIGEST). The default value is NONE.

DEFAULT_LOGIN_DOMAIN{ ' domain' | NONE }

The default login domain for basic authentication (AUTHENTICATION = BASIC). The default value
is NONE.

RESTRICT_IP = { NONE | ALL }

This parameter together with EXCEPT_IP specifies which IP addresses can send requests to an
endpoint:

NONE

Indicates that all IP addresses except the list specified by the EXCEPT_IP parameter can
send requests to the endpoint.

ALL

Indicates that only IP addresses specified in the EXCEPT_IP parameter can send requests
to the endpoint (i.e., all IP addresses are restricted except for the list defined by the
EXCEPT_IP parameter).

The default is NONE, allowing all IP addresses to send requests to the endpoint.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

COMPRESSION = { ENABLED | DISABLED }

Specifies whether the endpoint honors gzip-encoded requests and returns compressed
responses. The default value is DISABLED, indicating that gzip requests are not honored.

EXCEPT_IP = ({ < 4-part-ip> | < 4-part-ip>:<mask> } [,...n])

A list of IP addresses that together with the RESTRICT_IP argument specifies which IP addresses
are either allowed to send or not allowed to send requests to the endpoint.

The syntax for TCP protocol-specific items in the AS clause is:

<AS TCP_protocol_specific_arguments

> ::= AS TCP (LISTENER_PORT = listenerPort [, LISTENER_IP = ALL | (<4-part-ip> |
<ip_address_v6>)] [, RESTRICT_IP = ALL | NONE] [, EXCEPT_IP = ({ <4-part-ip> |
<4-part-ip>:<mask> } [,...n])]

where:

LISTENER_PORT

The listening port number for the TCP/IP protocol. The default value is 4022.

LISTENER_IP = ALL | (< 4-part-ip> | < ip_address_v6>)

The IP address that the endpoint listens on. The default value is ALL, meaning the endpoint will
accept a connection on any valid IP address.

RESTRICT_IP

The RESTRICT_IP clause is described in the preceding discussion about HTTP protocol-specific
items.

EXCEPT_IP

The EXCEPT_IP clause is described in the preceding discussion about HTTP protocol-specific
items.

8.5.1.2. Language-specific arguments

The syntax for SOAP language-specific arguments is:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<FOR SOAP_language_specific_arguments

> ::= FOR SOAP([{ WEBMETHOD ['namespace' .] 'method_alias' (NAME =
'database.owner.name' [, SCHEMA = { NONE | STANDARD | DEFAULT }] [, FORMAT = {
ALL_RESULTS | ROWSETS_ONLY | NONE}]) } [,...n]] [BATCHES = { ENABLED |
DISABLED }] [, WSDL = { NONE | DEFAULT | 'sp_name' }] [, SESSIONS = { ENABLED |

DISABLED }] [, LOGIN_TYPE = { MIXED | WINDOWS }] [, SESSION_TIMEOUT =
timeoutInterval | NEVER] [, DATABASE = { 'database_name' | DEFAULT } [,
NAMESPACE = { 'namespace' | DEFAULT }] [, SCHEMA = { NONE | STANDARD }] [,

CHARACTER_SET = { SQL | XML }] [, MAX_SOAP_HEADERS_SIZE = { int | DEFAULT }])

where:

WEBMETHOD ['namespace' .] ' method_alias'

A method for which you can send SOAP requests to the endpoint. Each WEBMETHOD clause
describes a single method. However, an endpoint can expose multiple methods. The ALTER
ENDPOINT statement can be used to add or remove web methods from an existing endpoint.

If the namespace is not specified, the namespace of the endpoint is used.

NAME = ' database.owner.name'

The name of the stored procedure or UDF corresponding to the web method. The NAME must be
specified as a three-part name in the format database.owner.name.

SCHEMA = {NONE | STANDARD | DEFAULT}

Specifies whether an inline XSD schema is returned in the SOAP response from the web
method.

NONE

The web method is omitted from the schema if one is sent in the SOAP response.

STANDARD

An XSD schema is not returned with the SOAP response.

DEFAULT

The value specified for the endpoint SCHEMA option determines whether an XSD schema is
returned.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FORMAT= { ALL_RESULTS | ROWSETS_ONLY | NONE }

Specifies whether the row count, error messages, and warnings are returned with the result
set.

ALL_RESULTS

The row count, error messages, and warnings are returned with the result set in the
SOAP response.

ROWSETS_ONLY

Only the result set is returned in the SOAP response.

NONE

SOAP-specific markup is suppressed from the SOAP response.

The default value is ALL_RESULTS.

BATCHES = { ENABLED | DISABLED }

Specifies whether ad hoc SQL requests are supported on the endpoint through the sqlbatch()
method. The default value is DISABLED.

Ad hoc SQL requests are detailed earlier in this chapter in the section "SQL Batches."

WSDL = { NONE | DEFAULT | ' sp_name' }

Specifies whether a WSDL document is generated and returned for WSDL queries submitted to
the endpoint.

NONE

No WSDL file is generated or returned for WSDL queries to the endpoint.

DEFAULT

The default WSDL file is generated and returned for WSDL queries to the endpoint.

'sp_name'

A custom WSDL file generated by the stored procedure sp_name is returned for WSDL
queries on the endpoint.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SESSIONS = { ENABLED | DISABLED }

Specifies whether SQL Server allows sessionsmultiple SOAP request/response pairs identified as
part of a single SOAP session. The default value is DISABLED.

LOGIN_TYPE = { MIXED | WINDOWS }

The SQL Server authentication mode for the endpoint. LOGIN_TYPE is used only to further
restrict the authentication mode for endpoints based on the authentication mode selected when
the SQL Server instance was installed.

WINDOWS

Only Windows authentication is used.

MIXED

Either SQL or Windows authentication is used. Mixed authentication cannot be used if it
was not selected as the global authentication mode when SQL Server was installed. An
endpoint using SQL Server-based authentication must be configured to use an SSL port.

The default value is WINDOWS.

SESSION_TIMEOUT = int | NEVER

The time, in seconds, after which a SOAP session expires at the server if no requests (identified
by a session ID in the SOAP header) are made. After the session times out, subsequent
requests with the expired session ID return a SOAP fault. The SOAP session never expires if a
value of NEVER is specified for SESSION_TIMEOUT.

DATABASE = { ' database_name' | DEFAULT }

The database in which the operation is executed. If not specified or if DEFAULT is specified, the
default database for the login is used.

NAMESPACE = { 'namespace' | DEFAULT }

The namespace for the endpoint. If not specified or if specified as DEFAULT, http://tempuri.org
is used.

SCHEMA = { NONE | STANDARD }

Specifies whether an XSD schema is returned by the endpoint with the SOAP result sent to the
client.

http://tempuri.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

STANDARD

An inline schema is included in the SOAP response.

NONE

The inline schema is not included in the SOAP response.

An inline schema is required to load SOAP results into a .NET DataSet object.

The default is STANDARD.

CHARACTER_SET = { SQL | XML }

Specifies the behavior if the results of an operation include characters that are not valid in XML.

XML

An error is returned if the result includes invalid XML characters.

SQL

Invalid characters are encoded as character references and returned in the resultsthis
might result in invalid XML.

The default value is XML.

MAX_SOAP_HEADERS_SIZE = { int | DEFAULT }

Specifies the maximum size, in bytes, of the SOAP header within the SOAP envelope. The
server throws a parsing error if the SOAP header is larger than the specified value. The
maximum header size is 8KB if DEFAULT is specified or if a value is not specified.

The syntax for Service Broker-specific items is:

<FOR SERVICE_BROKER_language_specific_arguments

> ::= FOR SERVICE_BROKER ([AUTHENTICATION = { WINDOWS [{ NTLM |
KERBEROS | NEGOTIATE }] | CERTIFICATE certificateName | WINDOWS [{ NTLM |
KERBEROS | NEGOTIATE }] CERTIFICATE certificateName | CERTIFICATE
certificateName WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }] }] [, ENCRYPTION

= {DISABLED | SUPPORTED | REQUIRED } [ALGORITHM {RC4 | AES | AES RC4 | RC4
AES }]] } [, MESSAGE_FORWARDING = { ENABLED | DISABLED }] [,
MESSAGE_FORWARD_SIZE = forwardSize])

http://lib.ommolketab.ir
http://lib.ommolketab.ir

where:

AUTHENTICATION

The TCP/IP authentication requirements for connections for the endpointeither WINDOWS or
CERTIFICATE. The default is WINDOWS. If both authentication methods are specified, they are
attempted in the order specified until one succeeds or both fail.

WINDOWS

Windows Authentication is used to authenticate the endpoints users. You can optionally
specify an authorization methodNTLM, KERBEROS, or NEGOTIATEto force Windows
Authentication to use that authorization method. If you specify NEGOTIATE, the endpoint
uses Windows negotiating protocol to select either NTLM or Kerberos. NEGOTIATE is the
default authorization method.

CERTIFICATE

Endpoint connects using the specified certificate to establish identity for authorization.
The endpoint needs a certificate with the public key for the specified certificate.

ENCRYPTION = {DISABLED | SUPPORTED | REQUIRED }

Specifies whether encryption is used in the process.

DISABLED

Data sent over the connection is not encrypted.

SUPPORTED

Data is encrypted if the opposite endpoint connection specifies SUPPORTED or REQUIRED.

REQUIRED

Data must be encrypted. The opposite endpoint must specify SUPPORTED or REQUIRED for
the ENCRYPTION option.

The default is REQUIRED.

ALGORITHM

Specifies the encryption algorithm. If both endpoints specify different encryption algorithms,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the accepting endpoint prevails.

MESSAGE_FORWARDING = { ENABLED | DISABLED }

Specifies whether messages received by the endpoint for services located elsewhere are
forwarded.

ENABLED

Messages are forwarded if a forwarding address is available.

DISABLED

Messages for services located elsewhere are discarded.

The default value is DISABLED.

MESSAGE_FORWARD_SIZE

Specifies the maximum amount of storage, in megabytes, allocated for use by the endpoint for
storing messages that will be forwarded.

The syntax for database mirroring-specific items is:

<FOR DATABASE_MIRRORING_language_specific_arguments

> ::= FOR DATABASE_MIRRORING ([AUTHENTICATION = { WINDOWS [{ NTLM |
KERBEROS | NEGOTIATE }] | CERTIFICATE certificateName }] [[,] ENCRYPTION = {

DISABLED |SUPPORTED | REQUIRED } [ALGORITHM { RC4 | AES | AES RC4 | RC4 AES
}]] } [,] ROLE = { WITNESS | PARTNER | ALL })

where:

AUTHENTICATION

The AUTHENTICATION clause is described in the preceding discussion about Service Broker-
specific items.

ENCRYPTION = { DISABLED |SUPPORTED | REQUIRED }

The ENCRYPTION clause is described in the preceding discussion about Service Broker-specific
items.

ROLE = { WITNESS | PARTNER | ALL }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Specifies the database mirroring role or roles that the endpoint supports in the SQL Server
mirroring process.

WITNESS

The endpoint performs the role of witness in the mirroring process.

PARTNER

The endpoint performs the role of partner in the mirroring process.

ALL

The endpoint performs the role of both witness and partner in the mirroring process.

8.5.2. Altering an ENDPOINT

The ALTER ENDPOINT statement lets you change an existing endpointyou can add methods to the
endpoint, change or drop existing endpoint methods, and change properties of the endpoint.

In the ALTER ENDPOINT statement, specify only properties that you want to updateunspecified
properties will remain unchanged.

Endpoints can be altered by members of the sysadmin role, the owner of the endpoint, or by users
granted ALTER ANY ENDPOINT permission or ALTER ON ENDPOINT permission for the specific endpoint.
The ALTER AUTHORIZATION statement changes the owner of an existing endpointthis command is
discussed in the "Endpoint Authentication" section later in this chapter.

Most of the clauses and arguments for the ALTER ENDPOINT statement are the same as those for the
CREATE ENDPOINT statement, discussed in the previous section. Only different arguments and clauses
are discussed in this section.

The syntax for the ALTER ENDPOINT statement is:

ALTER ENDPOINT endPointName

[AFFINITY = { NONE | <64bit_integer> | ADMIN }]
[STATE = { STARTED | STOPPED | DISABLED }]
AS { TCP | HTTP } (

 <protocol_specific_items>)
FOR { SOAP | TSQL | SERVICE_BROKER | DATABASE_MIRRORING } (

 <language_specific_items>)

where:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AFFINITY

Specifies the endpoint affinity.

STATE

The STATE argument is the same as described in the discussion for the CREATE ENDPOINT
statement earlier in this chapter.

If the state is changed to DISABLED, the server needs to be restarted for the change to take
effect.

8.5.2.1. Protocol-specific items

The syntax for HTTP protocol-specific items is:

<AS HTTP_protocol_specific_arguments

> ::= AS HTTP (PATH = 'url', AUTHENTICATION = ({ BASIC | DIGEST | NTLM |
KERBEROS | INTEGRATED } [,...n]), PORTS = ({ CLEAR | SSL } [,...n]) [SITE = { '*' | '+'
| 'webSite' } ,] [, CLEAR_PORT = clearPort] [, SSL_PORT = SSLPort] [, AUTH_REALM
= { 'realm' | NONE }] [, DEFAULT_LOGON_DOMAIN = { 'domain' | NONE }] [,
RESTRICT_IP = { NONE | ALL }] [, COMPRESSION = { ENABLED | DISABLED }] [, ADD
EXCEPT_IP = ({ <4-part-ip> | <4-part-ip>:<mask> } [,...n]) [, DROP EXCEPT_IP = ({
<4-part-ip> | <4-part-ip>:<mask> } [,...n]))

where:

ADD EXCEPT_IP

Adds IP addresses to the IP addresses in the EXCEPT_IP parameter for the endpoint.

The RESTRICT_IP parameter specified in the CREATE ENDPOINT statement controls whether
requests from these IP addresses are allowed or denied access to the endpoint.

DROP EXCEPT_IP

Removes IP addresses from the IP addresses in the EXCEPT_IP parameter for the endpoint.

The RESTRICT_IP parameter specified in the CREATE ENDPOINT statement controls whether
requests from these IP addresses are allowed or denied access to the endpoint.

The syntax for TCP protocol-specific items is:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<AS TCP_protocol_specific_arguments> ::=
AS TCP (
 LISTENER_PORT = listenerPort
 [, LISTENER_IP = ALL | (<4-part-ip> | <ip_address_v6>)]
 [, RESTRICT_IP = ALL | NONE]
 [, EXCEPT_IP = ({ <4-part-ip> | <4-part-ip>:<mask> } [,...n])]
)

8.5.2.2. Language-specific items

The syntax for SOAP language-specific items is:

<FOR SOAP_language_specific_arguments

> ::= ([{ ADD WEBMETHOD ['namespace' .] 'method_alias' (NAME =
'database.owner.name' [, SCHEMA = {NONE | STANDARD | DEFAULT }] [, FORMAT = {
ALL_RESULTS | ROWSETS_ONLY }]) } [,...n]] [{ ALTER WEBMETHOD [' namespace' .]
'method_alias' (NAME = 'database.owner.name' [, SCHEMA = {NONE | STANDARD |
DEFAULT}] [, FORMAT = { ALL_RESULTS | ROWSETS_ONLY }]) } [,...n]] [{ DROP
WEBMETHOD ['namespace' .] 'method_alias' } [,...n]] [BATCHES = { ENABLED |
DISABLED }] [, WSDL = { NONE | DEFAULT | 'sp_name' }] [, SESSIONS = { ENABLED |
DISABLED }] [, SESSION_TIMEOUT = int] [, DATABASE = { 'database_name' | DEFAULT
} [, NAMESPACE = { 'namespace' | DEFAULT }] [, SCHEMA = { NONE | STANDARD }] [,

CHARACTER_SET = { SQL | XML }])

where:

ADD WEBMETHOD

Adds a method to the endpoint.

ALTER WEBMETHOD

Changes the definition of an existing method on the endpoint.

DROP WEBMETHOD

Removes an existing method from the endpoint.

The syntax for Service Broker-specific items is:

<FOR SERVICE_BROKER_language_specific_arguments

> ::= FOR SERVICE_BROKER ([AUTHENTICATION = ENABLED | REQUIRED* | NONE] [

http://lib.ommolketab.ir
http://lib.ommolketab.ir

, MESSAGE_FORWARDING = ENABLED | DISABLED*] [, MESSAGE_FORWARD_SIZE =
forwardSize)

The syntax for database mirroring-specific items is:

<FOR DATABASE_MIRRORING_language_specific_arguments

> ::= FOR DATABASE_MIRRORING ([ENCRYPTION = ENABLED | DISABLED] | ROLE =
WITNESS | PARTNER | ALL)

8.5.3. Dropping an ENDPOINT

The DROP ENDPOINT statement removes an existing endpoint. Endpoints can be dropped by members
of the sysadmin role, the owner of the endpoint, or users granted CONTROL permission on the
endpoint.

The DROP ENDPOINT statement syntax is:

DROP ENDPOINT endPointName

where:

endPointName

The name of the endpoint to remove.

8.5.4. Endpoint Authentication

Each endpoint is configured for an authentication type and access permissions that allow users to
connect to the endpoint.

A user must be an authenticated Windows usereither a trusted Windows user or a member account
on the local computerto access an endpoint. Anonymous authentication on an endpoint is not
supported.

The AUTHENTICATION clause in the CREATE ENDPOINT and ALTER ENDPOINT statements specifies how
endpoint authentication is performed. The following authentication types are supported:

BASIC

An HTTP 1.1 authentication mechanism that uses an authentication header containing a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Base64-encoded username and password separated by a colon (:). The credentials must map
to a valid Windows account. Because Base64 encoding can easily be decoded, SQL Server
requires that a Secure Sockets Layer (SSL) port be used for the HTTP connectionBASIC
authentication is not allowed for endpoints where the PORTS value is CLEAR.

DIGEST

An HTTP 1.1 authentication mechanism consisting of a username and password hashed with
the MD5 algorithm. The server has access to either the actual password or an MD5 hash of the
password, allowing the client to prove the password without actually sending it to the server.
The credentials must map to a valid Windows domain accountlocal users are not supported for
digest authentication.

NTLM

The authentication mechanism supported by Windows 9x and Windows NT 4.0. NTLM is an
encrypted challenge/response protocol that uses a domain name, username, and one-way
password hash.

Although Microsoft Kerberos is the protocol of choice, NTLM is provided for backward
compatibility.

KERBEROS

An Internet standard mutual-authentication mechanism between client and server designed for
use over an open or unsecured network. Clients obtain an authentication ticket from a
Kerberos Key Distribution Center (KDC) and present that ticket to servers when connections
are established. Kerberos is supported in Windows 2000 or later by the Security Support
Provider Interface (SSPI).

To use Kerberos authentication, you must register a service principal name (SPN) with the SQL
Server account that it is running on by using the SetSPN.exe tool. For more information, see
Microsoft SQL Server 2005 Books Online.

INTEGRATED

The endpoint can respond to either Kerberos or NTLM authentication-type challenges. The
server tries to authenticate the client using the authentication type that the client uses in the
authentication request.

Native HTTP SOAP can user either Windows user and group accounts or SQL Server logins as security
principals. You control this via the LOGIN_TYPE value in the SOAP language-specific arguments for the
CREATE ENDPOINT or ALTER ENDPOINT statement.

If SQL logins are used, your application must use WS-Security headers to submit the SQL username
and password login credentials to the server for SQL Server authentication .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WS-Security is an open-standard set of SOAP extensions used to build secure
web services and to implement message content integrity and confidentiality.

For more information about WS-Security, get the latest draft from the
Organization for the Advancement of Structured Information Standards
(OASIS) web site at http://www.oasis-open.org.

To use SQL Server authentication, the following conditions must be met:

The SQL Server installation is mixed mode, supporting both Windows and SQL logins.

The endpoint is configured with LOGIN_TYPE = MIXED and PORTS = (SSL).

Endpoint permissions have been granted to the appropriate SQL Server logins.

A generic WS-Security header that can be used in a SOAP request header to transport SQL Server
authentication credentials is:

<SOAP-ENV:Header>
 <wsse:Security
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/
 oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken>

 <wsse:Username>sqlLoginUserName</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/
 oasis-200401-wss-username-token-profile-1.0#PasswordText">

 sqlLoginPassword
 </wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
</SOAP-ENV:Header>

The <wsse:UserName> element contains the SQL Server user login name, and the <wsse:Password>
element contains the password for the login.

8.5.5. Managing Permissions on Endpoints

Endpoint permissions specify whether a login can create, alter, connect, or transfer ownership of an
endpoint. Requests against endpoints can be executed by members of the sysadmin role, the owner
of the endpoint, or users granted CONNECT permission on the endpoint.

All T-SQL statements governing permissions must be executed on the master database. This section
discusses the statements used for managing endpoint permissions.

http://www.oasis-open.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The prototypes in the subsections use the following arguments:

server_principal

The principal to which the permission is granted, denied, or revoked. server_principal is one

of the following:

A SQL Server login

A SQL Server login created from a Windows login

A SQL Server login mapped to a certificate

A SQL Server login mapped to an asymmetric key

endPointName

The name of the endpoint for which the permission is granted.

8.5.5.1. Create permission

A server-scoped permission controls whether a login can create an endpoint object. The syntax is:

{ GRANT | DENY | REVOKE } CREATE ENDPOINT TO server_principal

8.5.5.2. Alter permission

You can assign permissions to a user to alter an endpoint in three different ways:

At the server scope. Granting this permission lets the login alter or drop any endpoint on the
server:

{ GRANT | DENY | REVOKE } ALTER ANY ENDPOINT TO server_principal

For a specific endpoint. Granting this permission lets the login alter or drop a specific endpoint
on the server:

{ GRANT | DENY | REVOKE } ALTER ON ENDPOINT::endPointName TO server_principal

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.5.5.3. Control permission

This permission lets the principal alter or drop a specific endpoint on the server and transfer its
ownership:

{ GRANT | DENY | REVOKE } CONTROL ON ENDPOINT::endPointName TO server_principal

8.5.5.4. Connect permission

This permission controls whether a login can execute requests against a specific endpoint:

{ GRANT | DENY | REVOKE } CONNECT ON ENDPOINT::endPointName TO server_principal

8.5.5.5. Take Ownership permission

This permission controls whether a user specified in the AUTHORIZATION clause of a CREATE ENDPOINT
or ALTER ENDPOINT statement can take ownership of an endpoint:

{ GRANT | DENY | REVOKE } TAKE OWNERSHIP ON ENDPOINT::endPointName TO

 server_principal>

8.5.6. Endpoint Metadata

You can query the catalog views described in Table 8-1 for information about all endpoints defined in
the system.

Table 8-1. Catalog views for endpoint information

Catalog view Description

sys.database_mirroring_endpoints General endpoint information and detailed database
mirroring-specific information for each database
mirroring endpoint in the system

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Catalog view Description

sys.endpoints General information about each HTTP endpoint in the
system, including the name, ID, principal ID, protocol,
type, and state information

sys.endpoint_webmethods Detailed information for each SOAP method defined on a
SOAP-enabled HTTP endpoint

sys.http_endpoints General endpoint information and HTTP-specific
information, including site information and authentication
type for endpoints in the system that use HTTP

sys.tcp_endpoints General endpoint information and TCP-specific
information for endpoints in the system that use TCP

sys.service_broker_endpoints General endpoint information and Service Broker-specific
information for each Service Broker endpoint in the
system

sys.soap_endpoints General endpoint information and SOAP-specific
information for each endpoint in the system that carries a
SOAP payload

sys.via_endpoints General endpoint information and Virtual Interface
Adapter (VIA)-specific information for each VIA endpoint
in the system

sys.endpoints General information about each HTTP endpoint in the
system, including the name, ID, principal ID, protocol,
type, and state information

sys.endpoint_webmethods Detailed information for each SOAP method defined on a
SOAP-enabled HTTP endpoint

sys.http_endpoints General endpoint information and HTTP-specific
information, including site information and authentication
type for endpoints in the system that use HTTP

sys.tcp_endpoints General endpoint information and TCP-specific
information for endpoints in the system that use TCP

sys.service_broker_endpoints General endpoint information and Service Broker-specific
information for each Service Broker endpoint in the
system

sys.soap_endpoints General endpoint information and SOAP-specific
information for each endpoint in the system that carries a
SOAP payload

sys.via_endpoints General endpoint information and Virtual Interface
Adapter (VIA)-specific information for each VIA endpoint
in the system

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 9. SQL Server Management
Objects (SMO)

SQL Server Management Objects (SMO) is a collection of namespaces introduced in SQL Server 2005
for programming all aspects of SQL Server 2005 management. SMO supersedes SQL Server
Distributed Management Objects (SQL-DMO). Besides extending SQL-DMO functionality, SMO is
easier to use. SMO adds functionality to support new SQL Server 2005 features, in addition to
providing all SQL-DMO functionality.

SMO uses SQL-DMO terminology where possible to facilitate the migration. However, some DMO
properties have been moved or renamed in the transition. For more information, see the Microsoft
SQL Server 2005 Books Online section "SMO Mapping to DMO."

There is no way to upgrade a SQL-DMO application to SMOthe application must be rewritten. SMO
applications can interface with both SMO and SQL-DMO within the same process.

SMO is compatible with SQL Server 2000 and SQL Server 7.0. This allows you to use SMO to manage
environments with a mix of different SQL Server versions. You cannot use SMO to manage a
database with compatibility level 60 (SQL Server version 6.0) or 65 (SQL Server version 6.5).

SMO uses the SQL Server data provider (System.Data.SqlClient) to communicate with SQL Server
instances. SMO clients must have SQL Server Native Client installed. SQL Server Native Client ships
with both SQL Server 2005 and .NET Framework 2.0 and is described in more detail in Chapter 6.

SMO clients require one of the following operating systems: Windows NT 4.0 SP5 or later, Windows
2000, Windows XP, or Windows Server 2003. SMO clients also require MDAC 9.0, which ships with
SQL Server 2005.

SMO assemblies are installed automatically as part of the Client Tools option when installing SQL
Server 2005. The default installation directory is C:\Program
Files\MicrosoftSQLServer\90\SDK\Assemblies.

This chapter introduces SMO, provides an overview of the SMO object, model and demonstrates a
simple SMO programming example. The next four chapters explore SMO programming in detail:

Chapter 10, SQL Server Management Objects (SMO) Instance Classes, Part 1

SMO contains a class hierarchy that matches the SQL Server database hierarchy. This chapter
describes the SMO classes used to administer database objects that store and access data,
such as tables, indexes, triggers, and stored procedures. It also shows how to use the SMO
classes programmatically to administer these objects. In addition, it shows how to subscribe to
SMO events and handle exceptions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 11, SQL Server Management Objects (SMO) Instance Classes, Part 2

SMO contains classes for administering database objects that do not store or access data, such
as data and log files, logins, users, roles, and .NET Framework assemblies. This chapter
describes how to use these classes programmatically.

Chapter 12, SQL Server Management Objects (SMO) Utility Classes

SMO utility classes are used to perform tasks that are independent of a SQL Server instance.
These classes include scripting, backup and restore, transfer, mail, and tracing classes. This
chapter shows how to use these classes programmatically.

Chapter 13, Programming Windows Management Instrumentation (WMI)

WMI can be used to manage SQL Server services, network settings, and server alias settings.
This chapter describes the SMO classes that you use to access WMI and shows you how to
program these classes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.1. SMO Object Model

The SMO object model contains two types of classes:

Instance classes

Form a hierarchy that matches the database server object hierarchy. The top object is a SQL
Server instance represented by the Server object. Under this object is a hierarchy of instance
objects, including databases, tables, columns, indexes, and stored procedures. Instance classes
are discussed in detail in Chapters 10 and 11.

Utility classes

Perform specific tasks and are independent of the server instance. Utility classes are discussed
in detail in Chapters 12 and 13.

SMO has a collection of namespaces that represent different areas of functionality. These are
described in Table 9-1.

Table 9-1. SMO namespaces

Namespace Description

Microsoft.SqlServer.Management.Common Classes common to SMO and Replication
Management Objects (RMO)primarily
classes used to establish a connection to
a SQL Server instance

Microsoft.SqlServer.Management.Nmo Classes used to develop and administer
Notification Services instances and
applications

Microsoft.SqlServer.Management.Smo Instance classes, utility classes, event
handlers, exceptions, and enumerations
used to programmatically control SQL
Server

Microsoft.SqlServer.Management.Smo.Agent Classes that represent SQL Server Agent

Microsoft.SqlServer.Management.Smo.Broker Classes that represent Service Broker

Microsoft.SqlServer.Management.Smo.Mail Classes that represent Database Mail

Microsoft.SqlServer.Management.Smo.RegisteredServers Classes that represent registered servers
and schemas

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Namespace Description

Microsoft.SqlServer.Management.Smo.Wmi Classes that provides programmatic
access to the WMI provider for
Configuration Management

Microsoft.SqlServer.Management.Trace Classes that provide programmatic
access for tracing and recording events,
manipulating and analyzing trace logs,
and replaying trace events

Microsoft.SqlServer.Management.Smo.Wmi Classes that provides programmatic
access to the WMI provider for
Configuration Management

Microsoft.SqlServer.Management.Trace Classes that provide programmatic
access for tracing and recording events,
manipulating and analyzing trace logs,
and replaying trace events

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.2. Creating an SMO Project in Visual Studio .NET

This example shows you how to build a simple C# SMO Console application using Visual Studio 2005.
Follow these steps:

Select File New Project from the Visual Studio 2005 main menu.1.

In the New Project dialog box, select Visual C# as the project type and select Console
Application from the installed templates.

2.

Enter a name for the project and specify the location in which to save the project. Click OK.3.

Right-click References in the Solution Explorer window. Select Add Reference from the context
menu.

4.

In the Add Reference dialog box, add a reference to the
Microsoft.SqlServer.ConnectionInfo.dll and Microsoft.SqlServer.Smo.dll assemblies.

5.

Click OK to close the dialog box and add the references.6.

In the Solution Explorer window, right-click the file Program.cs. Select View Code from the
context menu.

7.

Expose SMO types by adding the following using directives to the code:

 using Microsoft.SqlServer.Management.Smo;
 using Microsoft.SqlServer.Management.Common;

Add using directives for any other types that you need access to.

8.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.3. A Simple SMO Application

This example displays the product title for the local SQL Server instance and the hardware platform
for the computer running the SQL Server instance. You need a reference to the
Microsoft.SqlServer.ConnectionInfo.dll and Microsoft.SqlServer.Smo.dll assemblies to compile
and execute this example.

 using System;

 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");
 Console.WriteLine("Product: " + server.Information.Product);
 Console.WriteLine("Platform: " + server.Information.Platform);

 Console.WriteLine(Environment.NewLine +
 "Press any key to continue.");
 Console.ReadKey();
 }
 }

The console output looks something like the output shown in Figure 9-1.

Figure 9-1. Console output for a simple SMO application

The Information property of the Server class returns an Information object that exposes information
about the SQL Server instance through its properties.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 10. SQL Server Management
Objects (SMO) Instance Classes, Part 1
SMO instance classes form a hierarchy matching the database server hierarchy. The top SMO objects
are SQL Server instances represented by the Server object, under which is a hierarchy of instance
objects that includes databases, tables, columns, indexes, and stored procedures.

This chapter provides an overview of the SMO instance classes for administering database objects
that are used to store data. Following this overview, the chapter shows how to use these classes
programmatically, how to subscribe to SMO events, and how to handle SMO exceptions. The chapter
concludes with a reference to all SMO classes used to programmatically administer data storage
objects . Chapter 11 covers SMO classes for administering database objects that are not used to
store data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.1. Programming SMO Instance Classes for
Administering Data Storage Objects

The following SQL Server objects are considered to store data. They are used to identify the SMO
instance classes that administer SQL Server data storage objects.

SQL Server instances

Databases

Schemas

Tables

Views

Columns

Indexes

Foreign keys

Check constraints

Rules

Stored procedures, extended stored procedures, and numbered stored procedures

DML and DDL triggers

User-defined aggregates, user-defined functions, and user-defined types

Data types

System data types

Figure 10-1 shows the relationship between SMO instance classes used to administer the preceding list
of SQL Server objects. A reference to these classes is included in the "SMO Instance Classes for
Administering Data Storage Objects Reference " section, later in this chapter.

The following subsections show how to programmatically use SMO instance classes for data storage.
The examples in this section are all built using Visual Studio 2005. You need a reference to the
following assemblies to compile and run the examples:

Microsoft.SqlServer.ConnectionInfo

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Microsoft.SqlServer.Smo

Additional assembly references for examples will be indicated where required.

10.1.1. Connecting to and Disconnecting from SQL Server

This example demonstrates how to instantiate an SMO instance class and iterate through a collection.
The example connects to the local SQL Server instance, lists the databases on the instance, and
disconnects from the instance:

 using System;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server();

 DatabaseCollection dbs = server.Databases;

 foreach (Database db in dbs)
 Console.WriteLine(db.Name);

 server.ConnectionContext.Disconnect();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

Figure 10-1. SMO instance classes for data storage hierarchy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Results are shown in Figure 10-2 .

The Server class is the top-level class in the SMO hierarchy, and represents a SQL Server instance. The
Server instance is used to access the collection of Database objects in the DatabaseCollection object
and enumerate the names of the databases on the server. The SMO classes used to manage SQL
Server databases are described later in the chapter, in the section "SMO Instance Classes for
Administering Data Storage Objects Reference ."

Figure 10-2. Results for listing server databases example

The ServerConnection object (represented by the Server.ConnectionContext property) contains the
information needed to connect to and disconnect from a SQL Server instance. You can reuse a
ServerConnection object, which is helpful if the connection information that it contains is extensive.
You do not need to call the Connect() method on the ServerConnection object. SMO will automatically
open and close a connection to the server as required. The Disconnect() method of the
ServerConnection class explicitly disconnects the connection instead of simply allowing it to disconnect
automatically when the connection goes out of scope.

The Server object constructor has three overloads. The default constructor (used in the preceding
example) automatically tries to connect to the default SQL Server instance with default connection
settings.

The second overload specifies the SQL Server instance name as a constructor argument, as shown in
the following example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Server server = new Server("localhost");

The third overload creates the Server object by using a ServerConnection object, as shown in the
following example:

 ServerConnection sc = new ServerConnection();
 sc.ServerInstance = "localhost";
 Server server = new Server(sc);

10.1.2. Navigating the Server Hierarchy

This example iterates over all databases on the local SQL Server instance, listing the tables and
columns in each:

 using System;
 using System.Data;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");

 foreach (Database db in server.Databases)
 {
 Console.WriteLine("DATABASE: " + db.Name);
 foreach (Table t in db.Tables)
 {
 Console.WriteLine(" TABLE: " + t.Name);
 Console.WriteLine(" COLUMNS:");
 foreach (Column c in t.Columns)
 Console.WriteLine(" " + c.Name);
 }
 Console.WriteLine();
 }

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Partial results are shown in Figure 10-3 .

Figure 10-3. Partial results for navigating server hierarchy example

The Database object exposes a collection of Table objects representing the tables in the database. Each
Table object in turn exposes a collection of Column objects representing the columns in the table.
Accessing the other collections of data storage objects is similar to accessing the Table and Column
collections. Figure 10-1 , earlier in the chapter, shows the class hierarchy, which will help you
understand the relationships among the classes, and the "SMO Instance Classes for Administering Data
Storage Objects Reference " section, later in this chapter, provides more detailed information.

10.1.3. Enumerating Database Properties

This example enumerates the properties of the AdventureWorks database on the local SQL Server
instance, using the Database.Properties collection:

 using System;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");

 DatabaseCollection dbs = server.Databases;
 Database db = dbs["AdventureWorks"];
 foreach (Property p in db.Properties)
 Console.WriteLine(p.Name + ": " + p.Value);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

Results are shown in Figure 10-4 .

10.1.4. Enumerating Database Objects

This example enumerates all objects in the AdventureWorks database:

 using System;
 using System.Data;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");

 Database db = server.Databases["AdventureWorks"];

 using (DataTable dt = db.EnumObjects())
 {
 foreach (DataRow row in dt.Rows)
 {
 for (int i = 0; i < dt.Columns.Count; i++)
 Console.WriteLine(dt.Columns[i].ColumnName +
 ": " + row[i]);
 Console.WriteLine();
 }
 }

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

Figure 10-4. Results for enumerating database properties example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Partial results are shown in Figure 10-5 .

Figure 10-5. Results for enumerating database example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The EnumObjects() method of the Database class returns a DataTable with the columns described in
Table 10-1 .

Table 10-1. DataTable columns returned by Database.EnumObjects()

Column Description

DatabaseObjectTypes A value from the DatabaseObjectTypes enumeration identifying the object type

Schema The schema to which the database object belongs

Name The name of the database object

Urn The Uniform Resource Name (URN) for the database object

The EnumObjects() method has three overloads. Besides the no-argument version that you've just
seen, there are two that let you specify the type of object to enumerate as a value from the
DatabaseObjectTypes enumeration. The following are the prototypes for the EnumObjects() methods:

 Database.EnumObjects()
 Database.EnumObjects(DatabaseObjectTypes)
 Database.EnumObjects(DatabaseObjectTypes, SortOrder)

where:

DatabaseObjectTypes

Enumeration of database object typesfor example, All , DatabaseRole , Schema , Table , and View
. If not specified, the default is All . For a complete list, see Microsoft SQL Server 2005 Books
Online.

SortOrder

Enumeration of sort ordersName , Schema , Type , and Urn .

For example, the following line of code returns information about tables in the database:

 db.EnumObjects(DatabaseObjectTypes.Table)

DatabaseObjectTypes enumeration values can be logically OR ed to return a table containing multiple
object types.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.1.5. Creating a Database Object

This example demonstrates how to create new SMO instance objects . It creates a table named
SmoTestTable in the ProgrammingSqlServer2005 database. The table contains two columns, with a
primary key index on the first. You need to add a reference to Microsoft.SqlServer.SqlEnum to compile
and execute this example.

 using System;
 using System.Data;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");
 Database db = server.Databases["ProgrammingSqlServer2005"];

 // create a table
 Table t = new Table(db, "SmoTestTable");

 DataType dt = new DataType(SqlDataType.Int);
 Column c = new Column(t, "ID", dt);
 c.Nullable = false;
 t.Columns.Add(c);

 dt = new DataType(SqlDataType.VarChar, 100);
 c = new Column(t, "Name", dt);
 t.Columns.Add(c);

 t.Create();

 // create a primary key index on the table
 Index i = new Index(t, "PK");
 IndexedColumn ic = new IndexedColumn(i, "ID");
 i.IndexedColumns.Add(ic);
 i.IndexKeyType = IndexKeyType.DriPrimaryKey;
 i.Create();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

The process for creating SMO instance objects typically follows the pattern in this example:

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Instantiate the SMO instance object.1.

Set the mandatory properties of the object.2.

Call the Create() method of the object.3.

In this example, a new table is created by instantiating a Table object, passing in arguments for the
database in which the table is created and the name of the table. Columns are added to the table by
instantiating a Column object, passing in arguments for the table to which you are adding them, the
name of the column, and the data type as a DataType instance. Finally, the table is created in the
database by calling the Create() method of the Table object.

The primary key index is created by instantiating an Index , passing in arguments for the table in
which the index is created and the name of the index. A column is added as part of the index by
instantiating an IndexedColumn object, passing in arguments for the index to which it is added, and the
name of the column. Next, you specify the type of index you want by setting the IndexKeyType
property to a value from the IndexKeyType enumerationDriPrimaryKey , DriUniqueKey , or None .
Finally, you create the index by calling the Create() method of the Index object.

The Alter() method of SMO instance objects is used to update the object properties with new values.
The Drop() method of SMO instance objects is used to drop the object.

10.1.6. Checking Database Table Integrity

This example checks the integrity of all tables and their indexes in AdventureWorks and writes the
errors (if any) to the console:

 using System;
 using System.Collections.Specialized;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");

 DatabaseCollection dbs = server.Databases;
 Database db = dbs["AdventureWorks"];

 StringCollection sc = db.CheckTables(RepairType
.None);

 foreach (object o in sc)
 Console.WriteLine("{0}", o);

 Console.WriteLine("Press any key to continue.");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Console.ReadKey();
 }
 }

There is no output from this example unless you run it against a corrupted database, in which case the
errors are output to the console.

The CheckTables() method of the Database class tests the database pages implementing storage for
all tables and indexes defined on tables. The CheckTables() method takes a single argumenta value
from the RepairType enumeration described in Table 10-2 .

Table 10-2. RepairType enumeration

Value Description

AllowDataLoss Attempt to repair all data pages even if data is lost.

Fast Repair data pages in fast mode. This option is for backward compatibility.

None Do not repair data pages.

Rebuild Repair data pages by rebuilding them.

The CheckTables() method is implemented using the T-SQL DBCC CHECKDB statement. The
StringCollection returned from the method is a collection of error messages returned by DBCC
CHECKDB . The database must be in single-user mode to use any of the three repair options (other than
None).

10.1.7. Transacting SMO Operations

SMO commands can be wrapped in transactions so that multiple commands either succeed or fail as a
group. This example transacts a set of SMO commands that creates a table named SmoTestTable in the
ProgrammingSqlServer2005 database. If the user enters a Y at the prompt, the transaction commits and
the table is created. Otherwise, the transaction rolls back.

 using System;
 using System.Data;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");
 server.ConnectionContext.BeginTransaction();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Database db = server.Databases["ProgrammingSqlServer2005"];

 // create a table
 Table t = new Table(db, "SmoTestTable2");

 DataType dt = new DataType(SqlDataType.Int);
 Column c = new Column(t, "ID", dt);
 c.Nullable = false;
 t.Columns.Add(c);

 dt = new DataType(SqlDataType.VarChar, 100);
 c = new Column(t, "Name", dt);
 t.Columns.Add(c);

 t.Create();

 Console.WriteLine("Commit new table (Y/N)?");
 ConsoleKeyInfo cki = Console.ReadKey();

 if ((char)cki.Key == 'Y')
 {
 server.ConnectionContext.CommitTransaction();
 Console.WriteLine(Environment.NewLine + "Table created.");
 }
 else
 {
 server.ConnectionContext.RollBackTransaction();
 Console.WriteLine(Environment.NewLine + "Table not created.");
 }

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

The Server class exposes a ServerConnection object through its ConnectionContext property. The
ServerConnection object lets you programmatically interrogate and manage the connection with the
SQL Server instance. ServerConnection also provides support for transactions through its
BeginTransaction() , CommitTransaction() , and RollbackTransaction() methods.

10.1.8. Capture Mode

SMO applications can capture and record T-SQL statements that are equivalent to the operations
performed by the SMO statements. This example captures the T-SQL commands generated by SMO
programming and outputs them to the console window:

 using System;
 using System.Data;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");
 server.ConnectionContext.SqlExecutionModes
 = SqlExecutionModes.CaptureSql;
 server.ConnectionContext.Connect();

 Database db = server.Databases["ProgrammingSqlServer2005"];

 // create a table
 Table t = new Table(db, "SmoTestTable");

 DataType dt = new DataType(SqlDataType.Int);
 Column c = new Column(t, "ID", dt);
 c.Nullable = false;
 t.Columns.Add(c);

 dt = new DataType(SqlDataType.VarChar, 100);
 c = new Column(t, "Name", dt);
 t.Columns.Add(c);

 t.Create();

 // create a primary key index on the table
 Index i = new Index(t, "PK");
 IndexedColumn ic = new IndexedColumn(i, "ID");
 i.IndexedColumns.Add(ic);
 i.IndexKeyType = IndexKeyType.DriPrimaryKey;
 i.Create();

 // output the captured T-SQL
 foreach (string s in server.ConnectionContext.CapturedSql.Text)
 Console.WriteLine(s);

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

Results are shown in Figure 10-6 .

This example uses the same table creation code as the example in the "Creating a Database Object "
section. The generated T-SQL code is captured and output. It is not sent to the server and it is not
executed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The mode is controlled by the SqlExecutionModes property of the Server object ConnectionContext . It
takes a value from the SqlExecutionModes enumeration that specifies whether the code is executed
(ExecuteSql), captured (CaptureSql), or both (ExecuteAndCaptureSql).

Figure 10-6. Results for capturing T-SQL example

Captured SQL is written to the CapturedSql object (exposed as a property of the Server object's
ConnectionContext) and accessed through the CapturedSql.Text property, which exposes it as a
StringCollection object.

10.1.9. Event Notification

Events let you monitor the SQL Server Database Engine. Event monitoring can be set up for the
following SMO instance classes, some of which are not described until Chapter 11 :

Server
Database
Schema
Table
View
Index
Stored procedure
DML and DDL triggers
User-defined functions
User-defined types
Synonyms
Logins
Users
SQL assemblies
Application roles
Certificates
Partition functions and schemes

Subscribing to events for the different SMO instance classes follows a similar pattern:

Instantiate an event set object.1.

2.

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

Add events for which you want notification to this event set.2.

Instantiate an event-handler delegate and create the method that will handle the events.3.

Call the SubscribeToEvents() method to specify the events to receive with the event set from
Step 1.

4.

Call the StartEvents() method to start receiving events.5.

Call the StopEvents() method to stop receiving events. Call the Unsubscribe-FromEvents()
method or the UnsubscribeAllEvents() method to clear some or all event settings and remove
some or all event handlers.

6.

This example shows how to configure a database-event handler and subscribe to it. You need to add a
reference to Microsoft.SqlServer.SqlEnum to compile and execute this example.

 using System;
 using System.Data;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server();
 Database db = server.Databases["ProgrammingSqlServer2005"];

 DatabaseEventSet des = new DatabaseEventSet();
 des.CreateTable = true;
 des.DropTable = true;
 ServerEventHandler seh = new ServerEventHandler(OnDatabaseEvent);
 db.Events.SubscribeToEvents(des, seh);

 db.Events.StartEvents();

 // create a table with a single column
 Table t = new Table(db, "SmoTestTable3");

 DataType dt = new DataType(SqlDataType.Int);
 Column c = new Column(t, "ID", dt);
 c.Nullable = false;
 t.Columns.Add(c);

 t.Create();

 // drop the table
 t.Drop();

 db.Events.StopEvents();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }

 protected static void OnDatabaseEvent(object sender, ServerEventArgs e)
 {
 if (e.EventType.ToString() == "CreateTable")
 Console.WriteLine("A table named " +
 e.Properties["ObjectName"].Value + " was created.");
 else if (e.EventType.ToString() == "DropTable")
 Console.WriteLine("A table named " +
 e.Properties["ObjectName"].Value + " was dropped.");
 }
 }

Results are shown in Figure 10-7 .

Figure 10-7. Results for database event example

The SubscribeToEvents() method of the DatabaseEvents object (exposed through the Events property
of the Database class) takes two argumentsa DatabaseEventSet object that specifies the events to
monitor, and a ServerEventHandler delegate that handles the database events with the
OnDatabaseEvent() method.

Alternatively, the DatabaseEventSet object can be created from the sum of the corresponding
properties in the DatabaseEvent class, as shown in the following code:

 DatabaseEventSet des = DatabaseEvent.CreateTable + DatabaseEvent.DropTable;

10.1.10. Handling Exceptions

This example shows how to catch and handle an SMO exception. An exception is raised when an
attempt is made to create the database AdventureWorks , which already exists.

 using System;
 using System.Data;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");

 Database db = new Database(server, "AdventureWorks");
 try
 {
 db.Create();
 Console.WriteLine(Environment.NewLine +
 "Database created. Press any key to continue.");
 }
 catch (SmoException
 ex)
 {
 Console.WriteLine(ex.SmoExceptionType
.ToString());
 Console.WriteLine(ex.Message);
 if (ex.InnerException != null)
 Console.WriteLine(ex.InnerException.Message);
 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 }

 Console.ReadKey();
 }
 }

Results are shown in Figure 10-8 .

Figure 10-8. Results for handling a database exception example

The SmoException class in the Microsoft.SqlServer.Management.Smo namespace represents an
exception raised during a SMO operation. The SmoException class inherits from the Exception class and
has additional public properties, listed in Table 10-3 .

Table 10-3. SmoException class additional public properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Description

HelpLink The help link for more information from Microsoft about the SMO exception.

ProductName The name of the product that caused the SMO exception.

SmoExceptionType
The type of SMO exception. This is a value from the SmoExceptionType
enumeration.

The SmoExceptionType enumeration values are described in Table 10-4 .

Table 10-4. SmoExceptionType enumeration

Value Description

CollectionNotAvailableException
Attempting to retrieve a collection that is not
available.

FailedOperationException An operation fails.

InternalEnumeratorException An error occurs during an enumeration operation.

InternalSmoErrorException An internal SMO exception occurs.

InvalidConfigurationFileEnumeratorException An invalid configuration file is encountered.

InvalidPropertyUsageEnumeratorException An object property is accessed incorrectly.

InvalidQueryExpressionEnumeratorException An invalid query expression is encountered.

InvalidSmoOperationException An invalid SMO operation is called.

InvalidVersionEnumeratorException The version is not valid.

InvalidVersionSmoOperationException An invalid version of an SMO operation is called.

MissingObjectException An object is missing.

PropertyCannotBeRetrievedException A property cannot be retrieved.

PropertyNotSetException A property value has not been set and is required to
be set.

PropertyReadOnlyException Attempt to set a read-only property.

PropertyTypeMismatchException Attempt to set a property with a value having an
incorrect data type.

PropertyWriteException An error occurs updating the value of a property.

ServiceRequestException An error occurs during a service request.

SmoException An SMO exception occurs.

UnknownPropertyEnumeratorException An unknown property enumerator is encountered.

UnknownPropertyException An unknown property is requested.

UnknownTypeEnumeratorException An unknown type enumerator is encountered.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value Description

UnsupportedFeatureException An unsupported feature is requested.

UnsupportedObjectNameException An object name is not supported.

UnsupportedVersionException An unsupported version of SQL Server is
encountered.

WrongPropertyValueException A property is assigned an incorrect value.

The exception classes derived from the SmoException class have the same names as the SMO exception
types listed in Table 10-4 . For example, there is a class named CollectionNotAvailableException that
is derived from the SmoException class.

UnsupportedFeatureException An unsupported feature is requested.

UnsupportedObjectNameException An object name is not supported.

UnsupportedVersionException An unsupported version of SQL Server is
encountered.

WrongPropertyValueException A property is assigned an incorrect value.

The exception classes derived from the SmoException class have the same names as the SMO exception
types listed in Table 10-4 . For example, there is a class named CollectionNotAvailableException that
is derived from the SmoException class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.2. SMO Instance Classes for Administering Data
Storage Objects Reference

This section describes the SMO classes used to administer SQL Server objects that store data. The
classes are arranged into functional groups. A hierarchical diagram of these classes is shown in Figure
10-1, earlier in this chapter.

10.2.1. SQL Server Instances

The SMO classes used to manage SQL Server instances are described in Table 10-5.

Table 10-5. SMO classes for managing a SQL Server instance

Class Description

Information

Represents nonconfigurable information about the SQL Server instance. The
Information property of the Server class returns an Information object for
the SQL Server instance.

Server Represents a SQL Server instance.

ServerActiveDirectory Represents Active Directory settings for a SQL Server instance. The
ActiveDirectory property of the Server class returns a
ServerActiveDirectory object for the SQL Server instance.

ServerEvent Represents a SQL Server event that can be included in a ServerEventSet
object.

ServerEventArgs Represents the arguments used to report a server event.

ServerEvents Represents the settings required for SQL Server event notification. The
ServerEvents object is obtained using the Events property of the Server
object and cannot be created as a standalone object.

The SubscribeToEvents() method of the ServerEvents class specifies the
events to receive as either a ServerEventSet or ServerTraceEventSet
object.

ServerEventSet Represents a set of SQL Server events as ServerEvent objects.

ServiceMasterKey Represents the service master key for the SQL Server instance. The
ServiceMasterKey property of the Server class returns a ServiceMasterKey
object for the SQL server instance.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

ServerProxyAccount Represents a SQL Server proxy account permitting impersonation of job-
step execution. The ProxyAccount property of the Server class returns a
ServerProxyAccount object for the SQL server instance.

ServerTraceEvent Represents a SQL Server trace event. The ServerTraceEvent class contains
a property for each trace event that the server can respond to.

ServerTraceEventSet Represents a set of SQL Server trace events.

Settings Represents configurable settings about the SQL Server instance. The
Settings property of the Server class returns a Settings object for the SQL
Server instance.

10.2.2. Databases

The SMO classes used to manage SQL Server databases are described in Table 10-6.

Table 10-6. SMO classes for managing databases

Class Description

Database Represents a SQL Server database.

DatabaseActiveDirectory Represents Active Directory settings for a database. The ActiveDirectory
property of the Database class returns a DatabaseActiveDirectory object
for the database.

DatabaseCollection Represents a collection of databases as Database objects. The Databases
property of the Server class returns the databases defined on the SQL
Server instance.

DatabaseEvent Represents a SQL Server database event that can be included in a
DatabaseEventSet object.

DatabaseEventArgs Represents the arguments used to report a database event.

DatabaseEvents Represents the settings required for SQL Server database-event
notification. The DatabaseEvents object is obtained using the Events
property of the Database object and cannot be created as a standalone
object.

The SubscribeToEvents() method of the DatabaseEvents class specifies
the events to receive as a DatabaseEventSet object.

DatabaseEventSet Represents a set of SQL Server database events as a DatabaseEvent
object

DatabaseOptions Represents SQL Server database options. The DatabaseOptions property
of the Database class returns a DatabaseOptions object for the database.

ServerProxyAccount Represents a SQL Server proxy account permitting impersonation of job-
step execution. The ProxyAccount property of the Server class returns a
ServerProxyAccount object for the SQL server instance.

ServerTraceEvent Represents a SQL Server trace event. The ServerTraceEvent class contains
a property for each trace event that the server can respond to.

ServerTraceEventSet Represents a set of SQL Server trace events.

Settings Represents configurable settings about the SQL Server instance. The
Settings property of the Server class returns a Settings object for the SQL
Server instance.

10.2.2. Databases

The SMO classes used to manage SQL Server databases are described in Table 10-6.

Table 10-6. SMO classes for managing databases

Class Description

Database Represents a SQL Server database.

DatabaseActiveDirectory Represents Active Directory settings for a database. The ActiveDirectory
property of the Database class returns a DatabaseActiveDirectory object
for the database.

DatabaseCollection Represents a collection of databases as Database objects. The Databases
property of the Server class returns the databases defined on the SQL
Server instance.

DatabaseEvent Represents a SQL Server database event that can be included in a
DatabaseEventSet object.

DatabaseEventArgs Represents the arguments used to report a database event.

DatabaseEvents Represents the settings required for SQL Server database-event
notification. The DatabaseEvents object is obtained using the Events
property of the Database object and cannot be created as a standalone
object.

The SubscribeToEvents() method of the DatabaseEvents class specifies
the events to receive as a DatabaseEventSet object.

DatabaseEventSet Represents a set of SQL Server database events as a DatabaseEvent
object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

DatabaseOptions Represents SQL Server database options. The DatabaseOptions property
of the Database class returns a DatabaseOptions object for the database.

MasterKey Represents the database master key used to symmetrically encrypt and
decrypt the private key of certificates. The MasterKey property of the
Database class returns a MasterKey object for the database.

10.2.3. Tables

The SMO classes used to manage SQL Server tables are described in Table 10-7.

Table 10-7. SMO classes for managing tables

Class Description

Table Represents a table.

TableCollection Represents a collection of tables as Table objects. The Tables property of the
Database class returns the tables defined in the database.

TableEvent Represents a SQL Server table event that can be included in a TableEventSet
object.

TableEvents Represents the settings required for SQL Server table-event notification. The
TableEvents object is obtained using the Events property of the Table object and
cannot be created as a standalone object.

The SubscribeToEvents() method of the TableEvents class specifies the events to
receive as a TableEventSet object.

TableEventSet Represents a set of SQL Server table events as TableEvent objects.

10.2.4. Columns

The SMO classes used to manage SQL Server columns are described in Table 10-8.

Table 10-8. SMO classes for managing columns

Class Description

Column Represents a column.

ColumnCollection Represents a collection of columns as Column objects.

The Columns property of the Table class returns the collection of columns in the

DatabaseOptions Represents SQL Server database options. The DatabaseOptions property
of the Database class returns a DatabaseOptions object for the database.

MasterKey Represents the database master key used to symmetrically encrypt and
decrypt the private key of certificates. The MasterKey property of the
Database class returns a MasterKey object for the database.

10.2.3. Tables

The SMO classes used to manage SQL Server tables are described in Table 10-7.

Table 10-7. SMO classes for managing tables

Class Description

Table Represents a table.

TableCollection Represents a collection of tables as Table objects. The Tables property of the
Database class returns the tables defined in the database.

TableEvent Represents a SQL Server table event that can be included in a TableEventSet
object.

TableEvents Represents the settings required for SQL Server table-event notification. The
TableEvents object is obtained using the Events property of the Table object and
cannot be created as a standalone object.

The SubscribeToEvents() method of the TableEvents class specifies the events to
receive as a TableEventSet object.

TableEventSet Represents a set of SQL Server table events as TableEvent objects.

10.2.4. Columns

The SMO classes used to manage SQL Server columns are described in Table 10-8.

Table 10-8. SMO classes for managing columns

Class Description

Column Represents a column.

ColumnCollection Represents a collection of columns as Column objects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

The Columns property of the Table class returns the collection of columns in the
table.

The Columns property of the View class returns the collection of columns in the
view.

DefaultConstraint Represents a default constraint on a column. A default constraint specifies the
value to use for a column if a value is not specified when a row is inserted. The
DefaultConstraint object is accessed through the DefaultConstraint property
of the Column class.

10.2.5. Views

The SMO classes used to manage SQL Server views are described in Table 10-9.

Table 10-9. SMO classes for managing views

Class Description

View Represents a view.

ViewCollection Represents a collection of views defined on a table as View objects. The Views
property of the Database class returns the views defined in the database.

ViewEvent Represents a SQL Server view event that can be included in a ViewEventSet object.

ViewEvents Represents the settings required for SQL Server view-event notification. The
ViewEvents object is obtained using the Events property of the View object and
cannot be created as a standalone object.

The SubscribeToEvents() method of the ViewEvents class specifies the events to
receive as a ViewEventSet object.

ViewEventSet Represents a set of SQL Server view events as ViewEvent objects.

10.2.6. Indexes

The SMO classes used to manage SQL Server indexes are described in Table 10-10.

Table 10-10. SMO classes for managing indexes

Class Description

Index Represents an index.

The Columns property of the Table class returns the collection of columns in the
table.

The Columns property of the View class returns the collection of columns in the
view.

DefaultConstraint Represents a default constraint on a column. A default constraint specifies the
value to use for a column if a value is not specified when a row is inserted. The
DefaultConstraint object is accessed through the DefaultConstraint property
of the Column class.

10.2.5. Views

The SMO classes used to manage SQL Server views are described in Table 10-9.

Table 10-9. SMO classes for managing views

Class Description

View Represents a view.

ViewCollection Represents a collection of views defined on a table as View objects. The Views
property of the Database class returns the views defined in the database.

ViewEvent Represents a SQL Server view event that can be included in a ViewEventSet object.

ViewEvents Represents the settings required for SQL Server view-event notification. The
ViewEvents object is obtained using the Events property of the View object and
cannot be created as a standalone object.

The SubscribeToEvents() method of the ViewEvents class specifies the events to
receive as a ViewEventSet object.

ViewEventSet Represents a set of SQL Server view events as ViewEvent objects.

10.2.6. Indexes

The SMO classes used to manage SQL Server indexes are described in Table 10-10.

Table 10-10. SMO classes for managing indexes

Class Description

Index Represents an index.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

IndexCollection Represents a collection of indexes as Index objects.

The Indexes property of the Table class returns the collection of indexes
defined on a table.

The Indexes property of the View class returns the collection of indexes
defined on a view.

The Indexes property of the UserDefinedFunction class returns the
collection of indexes defined on a user-defined function.

IndexedColumn Represents a column in an index.

IndexedColumnCollection Represents a collection of index columns as IndexColumn objects. The
IndexColumns property of the Index class returns the collection of columns
in the index.

IndexEvents Represents the setting required for SQL Server index-event notification.
The IndexEvents object is obtained using the Events property of the Index
object and cannot be created as a standalone object.

The SubscribeToEvents() method of the IndexEvents class specifies the
events to receive as an ObjectEventSet object.

10.2.7. Foreign Keys

A foreign-key constraint is a column or combination of columns used to enforce a link between two
tables. The column or columns that make up the primary key in one table are referenced by a column
or columns in a second table. The column or columns in the second table constitute a foreign key.
The SMO classes used to manage SQL Server foreign-key constraints are described in Table 10-11.

Table 10-11. SMO classes for managing foreign keys

Class Description

ForeignKey Represents a foreign key.

ForeignKeyCollection Represents a collection of foreign keys as ForeignKey objects. The
ForeignKeys property of the Table class returns the collection of
foreign keys defined on the table.

ForeignKeyColumn Represents a column in a foreign key.

ForeignKeyColumnCollection Represents a collection of foreign-key columns as ForeignKeyColumn
objects. The Columns property of the ForeignKey class returns the
collection of columns in the foreign key.

IndexCollection Represents a collection of indexes as Index objects.

The Indexes property of the Table class returns the collection of indexes
defined on a table.

The Indexes property of the View class returns the collection of indexes
defined on a view.

The Indexes property of the UserDefinedFunction class returns the
collection of indexes defined on a user-defined function.

IndexedColumn Represents a column in an index.

IndexedColumnCollection Represents a collection of index columns as IndexColumn objects. The
IndexColumns property of the Index class returns the collection of columns
in the index.

IndexEvents Represents the setting required for SQL Server index-event notification.
The IndexEvents object is obtained using the Events property of the Index
object and cannot be created as a standalone object.

The SubscribeToEvents() method of the IndexEvents class specifies the
events to receive as an ObjectEventSet object.

10.2.7. Foreign Keys

A foreign-key constraint is a column or combination of columns used to enforce a link between two
tables. The column or columns that make up the primary key in one table are referenced by a column
or columns in a second table. The column or columns in the second table constitute a foreign key.
The SMO classes used to manage SQL Server foreign-key constraints are described in Table 10-11.

Table 10-11. SMO classes for managing foreign keys

Class Description

ForeignKey Represents a foreign key.

ForeignKeyCollection Represents a collection of foreign keys as ForeignKey objects. The
ForeignKeys property of the Table class returns the collection of
foreign keys defined on the table.

ForeignKeyColumn Represents a column in a foreign key.

ForeignKeyColumnCollection Represents a collection of foreign-key columns as ForeignKeyColumn
objects. The Columns property of the ForeignKey class returns the
collection of columns in the foreign key.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.2.8. Check Constraints

Check constraints limit the values that can be stored in a column based on a logical expression that
returns either TRue or false. A column can have multiple check constraints, and a check constraint
can be applied to multiple columns. The SMO classes used to manage SQL Server check constraints
are described in Table 10-12.

Table 10-12. SMO classes for managing check constraints

Class Description

Check Represents a check constraint.

CheckCollection Represents a collection of check constraints as Check objects.

The Checks property of the Table class returns the collection of check constraints
defined on a table.

The Checks property of the UserDefinedFunction class returns the collection of
check constraints defined on a user-defined function.

10.2.9. Rules

A rule is used to restrict the values in a column. The SMO classes used to manage SQL Server rules
are described in Table 10-13.

Table 10-13. SMO classes for managing rules

Class Description

Rule Represents the attributes of a rule.

RuleCollection Represents a collection of rules as Rule objects. The Rules property of the Database
class returns the collection of rules defined on the database.

Rules are included for backward compatibility and will be removed in a future
version of SQL Server. Use a check constraint instead of a rule in new
development.

10.2.10. Stored Procedures

The SMO classes used to manage SQL Server stored procedures are described in Table 10-14.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 10-14. SMO classes for managing stored procedures

Class Description

StoredProcedure Represents a stored procedure.

StoredProcedureCollection Represents a collection of stored procedures as
StoredProcedure objects. The StoredProcedures property of
the Database class returns the collection of stored procedures
in the database.

StoredProcedureEvent Represents a stored-procedure event that can be included in
a StoredProcedure EventSet object.

StoredProcedureEvents Represents the settings required for SQL Server stored-
procedure event notification. The StoredProcedureEvents
object is obtained using the Events property of the
StoredProcedure object and cannot be created as a
standalone object.

The SubscribeToEvents() method of the
StoredProcedureEvents class specifies the events to receive
as a StoredProcedureEventSet object.

StoredProcedureEventSet Represents a set of stored-procedure events as
StoredProcedureEvent objects.

StoredProcedureParameter Represents a parameter for a stored procedure.

StoredProcedureParameterCollection Represents a collection of stored-procedure parameters as
StoredProcedureParameter objects. The Parameters property
of the StoredProcedure class returns the collection of
parameters for the stored procedure.

10.2.11. Numbered Stored Procedures

The SMO classes used to manage SQL Server numbered stored procedures are described in Table 10-
15.

Table 10-15. SMO classes for managing numbered stored procedures

Class Description

NumberedStoredProcedure Represents a numbered stored procedure.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

NumberedStoredProcedureCollection Represents a collection of numbered stored
procedures as NumberedStoredProcedure objects.
The NumberedStoredProcedures property of the
StoredProcedure class returns the collection of
numbered stored procedures.

NumberedStoredProcedureParameter Represents a parameter for a numbered stored
procedure.

NumberedStoredProcedureParameterCollection Represents a collection of numbered stored-
procedure parameters as
NumberedStoredProcedureParameter objects. The
Parameters property of the NumberedStoredProcedure
class returns the collection of parameters for the
numbered stored procedure.

Numbered stored procedures are included for backward compatibility and will
be removed in a future version of SQL Server. Do not use them in new
development.

10.2.12. Extended Stored Procedures

The SMO classes used to manage SQL Server extended stored procedures are described in Table 10-
16.

Table 10-16. SMO classes for managing extended stored procedures

Class Description

ExtendedStoredProcedure Represents an extended stored procedure.

ExtendedStoredProcedureCollection Represents a collection of extended stored procedures as
ExtendedStoredProcedure objects. The
ExtendedStoredProcedures property of the Database class
returns the collection of extended stored procedures in a
database.

Extended stored procedures are included for backward compatibility and will be
removed in a future version of SQL Server. Do not use them in new
development.

NumberedStoredProcedureCollection Represents a collection of numbered stored
procedures as NumberedStoredProcedure objects.
The NumberedStoredProcedures property of the
StoredProcedure class returns the collection of
numbered stored procedures.

NumberedStoredProcedureParameter Represents a parameter for a numbered stored
procedure.

NumberedStoredProcedureParameterCollection Represents a collection of numbered stored-
procedure parameters as
NumberedStoredProcedureParameter objects. The
Parameters property of the NumberedStoredProcedure
class returns the collection of parameters for the
numbered stored procedure.

Numbered stored procedures are included for backward compatibility and will
be removed in a future version of SQL Server. Do not use them in new
development.

10.2.12. Extended Stored Procedures

The SMO classes used to manage SQL Server extended stored procedures are described in Table 10-
16.

Table 10-16. SMO classes for managing extended stored procedures

Class Description

ExtendedStoredProcedure Represents an extended stored procedure.

ExtendedStoredProcedureCollection Represents a collection of extended stored procedures as
ExtendedStoredProcedure objects. The
ExtendedStoredProcedures property of the Database class
returns the collection of extended stored procedures in a
database.

Extended stored procedures are included for backward compatibility and will be
removed in a future version of SQL Server. Do not use them in new
development.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.2.13. DML Triggers

The SMO classes used to manage SQL Server DML triggers are described in Table 10-17.

Table 10-17. SMO classes for managing DML triggers

Class Description

trigger Represents a DML trigger.

triggerCollection Represents a collection of triggers as trigger objects.

The triggers property of the Table class returns the collection of triggers
defined on a table.

The triggers property of the View class returns the collection of triggers defined
on a view.

triggerEvents Represents the settings required for SQL Server trigger-event notification. The
TRiggerEvents object is obtained using the Events property of the TRigger
object and cannot be created as a standalone object.

The SubscribeToEvents() method of the triggerEvents class specifies the
events to receive as an ObjectEventSet object.

10.2.14. DDL Triggers

The SMO classes used to manage server- and database-scoped DDL triggers are described in Table
10-18.

Table 10-18. SMO classes for managing DDL triggers

Class Description

DatabaseDdlTrigger Represents a DDL trigger scoped to the database.

DatabaseDdlTriggerCollection Represents a collection of DDL triggers scoped to the database as
DatabaseDdlTrigger objects. The triggers property of the Database
class returns the collection of triggers scoped to a database.

DatabaseDdlTriggerEvent Represents a database DDL trigger event that can be included in a
DatabaseDdlEventSet object.

DatabaseDdlTriggerEventSet Represents a set of database DDL trigger events as
DatabaseDdlTriggerEvent objects.

ServerDdlTrigger Represents a DDL trigger scoped to the SQL Server instance.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

ServerDdlTriggerCollection Represents a collection of DDL triggers scoped to the SQL Server
instance as ServerDdlTrigger objects. The triggers property of the
Server class returns the collection of triggers scoped to the SQL
Server instance.

ServerDdlTriggerEvent Represents a server DDL trigger event that can be included in a
ServerDdlEventSet object.

ServerDdlTriggerEventSet Represents a set of server DDL trigger events as
ServerTriggerEvent objects.

10.2.15. User-Defined Objects

The SMO classes used to manage user-defined aggregates, user-defined functions, and user-defined
types are described in Table 10-19.

Table 10-19. SMO classes for managing user-defined objects

Class Description

UserDefinedAggregate Represents a user-defined aggregate.

UserDefinedAggregateCollection Represents a collection of user-defined aggregates as
UserDefinedAggregate objects. The
UserDefinedAggregates property of the Database class
returns the collection of user-defined aggregates in a
database.

UserDefinedAggregateParameter
Represents a parameter used with a user-defined
aggregate.

UserDefinedAggregateParameterCollection Represents a collection of user-defined aggregate
parameters as UserDefinedAggregateParameter objects.
The UserDefinedAggregateParameters property of the
UserDefinedAggregate class returns the collection of
parameters for the user-defined aggregate.

UserDefinedDataType Represents a user-defined type based on a SQL Server
data type.

UserDefinedDataTypeCollection Represents a collection of user-defined types as
UserDefinedDataType objects. The
UserDefinedDataTypes property of the Database class
returns the collection of user-defined types in a
database.

UserDefinedFunction Represents a user-defined function.

ServerDdlTriggerCollection Represents a collection of DDL triggers scoped to the SQL Server
instance as ServerDdlTrigger objects. The triggers property of the
Server class returns the collection of triggers scoped to the SQL
Server instance.

ServerDdlTriggerEvent Represents a server DDL trigger event that can be included in a
ServerDdlEventSet object.

ServerDdlTriggerEventSet Represents a set of server DDL trigger events as
ServerTriggerEvent objects.

10.2.15. User-Defined Objects

The SMO classes used to manage user-defined aggregates, user-defined functions, and user-defined
types are described in Table 10-19.

Table 10-19. SMO classes for managing user-defined objects

Class Description

UserDefinedAggregate Represents a user-defined aggregate.

UserDefinedAggregateCollection Represents a collection of user-defined aggregates as
UserDefinedAggregate objects. The
UserDefinedAggregates property of the Database class
returns the collection of user-defined aggregates in a
database.

UserDefinedAggregateParameter
Represents a parameter used with a user-defined
aggregate.

UserDefinedAggregateParameterCollection Represents a collection of user-defined aggregate
parameters as UserDefinedAggregateParameter objects.
The UserDefinedAggregateParameters property of the
UserDefinedAggregate class returns the collection of
parameters for the user-defined aggregate.

UserDefinedDataType Represents a user-defined type based on a SQL Server
data type.

UserDefinedDataTypeCollection Represents a collection of user-defined types as
UserDefinedDataType objects. The
UserDefinedDataTypes property of the Database class
returns the collection of user-defined types in a
database.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

UserDefinedFunction Represents a user-defined function.

UserDefinedFunctionCollection Represents a collection of user-defined functions as
UserDefinedFunction objects. The
UserDefinedFunctions property of the Database class
returns the collection of user-defined functions in a
database.

UserDefinedFunctionEvent Represents a SQL Server user-defined function event
that can be included in a UserDefinedFunctionEventSet
object.

UserDefinedFunctionEvents Represents the settings required for SQL Server user-
defined function event notification. The
UserDefinedFunctionEvents object is obtained using the
Events property of the UserDefinedFunction object and
cannot be created as a standalone object.

The SubscribeToEvents() method of the
UserDefinedFunctionEvents class specifies the events to
receive as an UserDefinedFunctionEventSet object.

UserDefinedFunctionEventSet Represents a set of user-defined function events as
UserDefinedFunctionEvent objects.

UserDefinedFunctionParameter Represents a parameter for a user-defined function.

UserDefinedFunctionParameterCollection Represents a collection of user-defined function
parameters as UserDefinedFunctionParameter objects.
The Parameters property of the UserDefinedFunction
class returns the collection of parameters for the user-
defined function.

UserDefinedType Represents a user-defined type based on a .NET data
type.

UserDefinedTypeCollection Represents a collection of user-defined types as
UserDefinedType objects. The UserDefinedTypes
property of the Database class returns the collection of
user-defined types in a database.

UserDefinedTypeEvents Represents the settings required for SQL Server user-
defined type event notification. The
UserDefinedTypeEvents object is obtained using the
Events property of the UserDefinedType object and
cannot be created as a standalone object.

The SubscribeToEvents() method of the
UserDefinedTypeEvents class specifies the events to
receive as an ObjectEventSet object.

10.2.16. Data Types

UserDefinedFunction Represents a user-defined function.

UserDefinedFunctionCollection Represents a collection of user-defined functions as
UserDefinedFunction objects. The
UserDefinedFunctions property of the Database class
returns the collection of user-defined functions in a
database.

UserDefinedFunctionEvent Represents a SQL Server user-defined function event
that can be included in a UserDefinedFunctionEventSet
object.

UserDefinedFunctionEvents Represents the settings required for SQL Server user-
defined function event notification. The
UserDefinedFunctionEvents object is obtained using the
Events property of the UserDefinedFunction object and
cannot be created as a standalone object.

The SubscribeToEvents() method of the
UserDefinedFunctionEvents class specifies the events to
receive as an UserDefinedFunctionEventSet object.

UserDefinedFunctionEventSet Represents a set of user-defined function events as
UserDefinedFunctionEvent objects.

UserDefinedFunctionParameter Represents a parameter for a user-defined function.

UserDefinedFunctionParameterCollection Represents a collection of user-defined function
parameters as UserDefinedFunctionParameter objects.
The Parameters property of the UserDefinedFunction
class returns the collection of parameters for the user-
defined function.

UserDefinedType Represents a user-defined type based on a .NET data
type.

UserDefinedTypeCollection Represents a collection of user-defined types as
UserDefinedType objects. The UserDefinedTypes
property of the Database class returns the collection of
user-defined types in a database.

UserDefinedTypeEvents Represents the settings required for SQL Server user-
defined type event notification. The
UserDefinedTypeEvents object is obtained using the
Events property of the UserDefinedType object and
cannot be created as a standalone object.

The SubscribeToEvents() method of the
UserDefinedTypeEvents class specifies the events to
receive as an ObjectEventSet object.

10.2.16. Data Types

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The SMO class used to manage SQL Server data types are described in Table 10-20.

Table 10-20. SMO classes for managing data types

Class Description

DataType Represents a SQL Server data type.

The DataType property of the following classes returns a DataType object representing its
data type:

Column

NumberedStoredProcedureParameter

StoredProcedureParameter

UserDefinedAggregate

UserDefinedAggregateParameter

UserDefinedFunction

UserDefinedFunctionParameter

10.2.17. System Data Types

The SMO classes used to manage SQL Server system data types are described in Table 10-21.

Table 10-21. SMO classes for managing system data types

Class Description

SystemDataType Represents a system data type.

SystemDataTypeCollection Represents a collection of system data types as SystemDataType objects.
The SystemDataTypes property of the Server class returns the collection
of system data types defined on a SQL Server instance.

10.2.18. Schemas

A schema is an ownership context for SQL Server objects such as tables, views, and stored
procedures. The SMO classes used to manage SQL Server schemas are described in Table 10-22.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 10-22. SMO classes for managing schemas

Class Description

Schema Represents a SQL Server schema.

SchemaCollection Represents a collection of schemas as Schema objects. The Schemas property of
the Database class returns the schemas defined for a database.

SchemaEvents Represents the setting required for SQL Server schema-event notification. The
SchemaEvents object is obtained using the Events property of the Schema object
and cannot be created as a standalone object.

The SubscribeToEvents() method of the SchemaEvents class specifies the events
to receive as an ObjectEventSet object.

10.2.19. SQL Server Objects

The SMO classes used to manage SQL Server objects are described in Table 10-23.

Table 10-23. SMO classes for managing SQL Server objects

Class Description

ObjectAlteredEventArgs Represents the arguments passed by the event that is raised when an
object is altered.

ObjectCreatedEventArgs Represents the arguments passed by the event that is raised when an
object is created.

ObjectDroppedEventArgs Represents the arguments passed by the event that is raised when an
object is dropped.

ObjectEvent Represents a SQL Server object event that can be included in an
ObjectEventSet object.

ObjectEventSet Represents a set of object events as ObjectEvent objects.

ObjectPermission Represents a SQL Server object permission.

ObjectPermissionInfo Represents information about a SQL Server object permission.

ObjectPermissionSet Represents a set of SQL Server object permissions as ObjectPermission
objects.

ObjectProperty Represents a set of attributes for a SQL Server object property.

ObjectRenamedEventArgs Represents the arguments passed by the event that is raised when an
object is renamed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 11. SQL Server Management
Objects (SMO) Instance Classes, Part 2
This chapter provides an overview of the SMO instance classes for administering database objects
that do not store data. Following this overview, the chapter shows how to use these classes
programmatically. Chapter 10 covers SMO classes for administering database objects that do store
data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.1. Programming SMO Instance Classes for
Administering Database Objects Not Used for Data Storage

The following SQL Server objects are considered not to store data. They identify the SMO instance
classes that administer them.

Server configuration
Registered servers
Linked servers
Database defaults
Data files, log files, and filegroups
Partition functions and schemes
Logins
Users
Server, database, and application roles
Server and database permissions
.NET Framework assemblies
Endpoints
XML schemas
Languages
Statistics
Certificates
Credentials
Symmetric and asymmetric keys
Synonyms
System- and user-defined messages
Full-Text Search
OLE DB provider

A reference to the SMO classes that implement this functionality is included in the "SMO Instance
Classes for Administering Objects Not Used for Data Storage Reference " section at the end of this
chapter.

This section shows how to programmatically use SMO instance classes that are not used for data
storage. The examples in this section are all built using Visual Studio 2005. You need a reference to the
following assemblies to compile and run the examples:

Microsoft.SqlServer.ConnectionInfo

Microsoft.SqlServer.Smo

Additional assembly references for examples will be indicated where required.

11.1.1. Registered Server and Server Groups

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Registered servers let you save connection information for SQL Servers. Server groups create a
hierarchy similar to an operating system directory to facilitate organization of registered servers. You
can view registered servers and server groups in the Registered Servers pane in SQL Server
Management Studio.

The SMO RegisteredServer class represents a registered server. Similarly, the ServerGroup class
represents a group of registered servers. These classes reside in the
Microsoft.SqlServer.Management.Smo.RegisteredServers namespace. The static
SqlServerRegistrations property of the SmoApplication class representing the SMO application contains
collections of both registered servers and server groups called RegisteredServers and ServerGroups .
The following example enumerates registered servers and server groups using these collections.

The SMO classes used to manage registered servers and server groups are described in Table 11-2 in
the section "SMO Instance Classes for Administering Objects Not Used for Data Storage Reference "
later in the chapter.

 using System;
 using System.Data;
 using System.Collections;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;
 using Microsoft.SqlServer.Management.Smo.RegisteredServers;

 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("---SERVER GROUPS---");
 foreach (ServerGroup sg in
 SmoApplication.SqlServerRegistrations.ServerGroups)
 {
 Console.WriteLine(sg);
 foreach (RegisteredServer rs in sg.RegisteredServers)
 Console.WriteLine(" " + rs.Name);
 }

 Console.WriteLine(Environment.NewLine + "---REGISTERED SERVERS---");
 foreach (RegisteredServer rs in
 SmoApplication.SqlServerRegistrations.RegisteredServers)
 Console.WriteLine(rs.Name);

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

Sample results are shown in Figure 11-1 , indicating that one server group and one server are defined.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 11-1. Results for enumerating server groups and servers example

11.1.2. Managing Logins

This example reads the Logins property of the Server object. Logins is a collection of Login objects,
representing all the logins defined on the target server. A Login object represents a SQL Server login
account granted access to SQL Server through either Windows or SQL Server standard authentication.

For each Login object found in the Logins collection, the example displays the login name (Login.Name),
the default database (Login.DefaultDatabase), and the login mode (Login.WindowsLoginAccessType).

The SMO classes used to manage logins are described in Table 11-8 in the section "SMO Instance
Classes for Administering Objects Not Used for Data Storage Reference ," later in this chapter.

You need to add a reference to the Microsoft.SqlServer.SqlEnum assembly to compile and execute this
example.

 using System;
 using System.Data;
 using System.Collections;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");

 foreach (Login l in server.Logins)
 {
 Console.WriteLine("Name: " + l.Name);
 Console.WriteLine("DefaultDatabase: " + l.DefaultDatabase);
 Console.WriteLine("WindowsLoginAccessType:" +
 l.WindowsLoginAccessType);
 Console.WriteLine();
 }

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

Partial results are shown in Figure 11-2 .

Figure 11-2. Partial results for enumerate logins example

The results are the same as opening the Security Logins node in the Object Explorer window of SQL
Server Management Studio.

This example creates a new login called TestLogin . It does so by instantiating a Login object, setting its
LoginType to LoginType.SqlLogin , and then invoking its Create() method.

 using System;
 using System.Data;
 using System.Collections;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");

 Login l = new Login(server, "TestLogin");
 l.LoginType = LoginType.SqlLogin;
 l.Create("tempPassword");

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

If you specify a LoginType of SqlLogin , you must set the Password property using one of the overloads
of the Create() method. If you specify a LoginType of WindowsUser , you must specify the server name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and the Windows account name as the login account name argument to the Login class constructor. The
following lines of code create a Windows user login:

 Login l = new Login(server, @"serverName\windowsAccountName");
 l.LoginType = LoginType.WindowsUser;
 l.Create();

11.1.3. Managing Users

This example enumerates the Users property of a Database object representing the AdventureWorks
database. Users is a collection of User objects, which represent SQL Server userssecurity principals used
for controlling access permission within a database. While you create logins at the server level, users
map to a single SQL Server login in the database where the user is defined. The DatabaseMapping class
describes how logins map to database users.

For each user in the Database.Users collection, the example displays the username (User.Name),
creation date (User.CreateDate), associated login (User.Login), and user type (User.UserType).

The SMO classes used to manage users are described in Table 11-9 in the section "SMO Instance
Classes for Administering Objects Not Used for Data Storage Reference ," later in this chapter.

You need to add a reference to the Microsoft.SqlServer.SqlEnum assembly to compile and execute this
example.

 using System;
 using System.Data;
 using System.Collections;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");
 Database db = server.Databases["AdventureWorks"];

 foreach (User u in db.Users)
 {
 Console.WriteLine("Name: " + u.Name);
 Console.WriteLine("CreateDate: " + u.CreateDate);
 Console.WriteLine("Login: " + u.Login);
 Console.WriteLine("UserType: " + u.UserType);
 Console.WriteLine();
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

Results are shown in Figure 11-3 .

Figure 11-3. Results for enumerate users example

The results are the same as opening the Security Users node for a database in the Object Explorer
window of SQL Server Management Studio.

This example creates a new user, TestUser , in the AdventureWorks database and associates it with the
TestLogin SQL Server login account created in the example earlier in this section. It does so by
instantiating a new User object, setting its Login property to the string "TestLogin" , and then calling its
Create() method.

 using System;
 using System.Data;
 using System.Collections;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");
 Database db = server.Databases["ProgrammingSqlServer2005"];

 User u = new User(db, "TestUser");
 u.Login = "TestLogin";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 u.Create();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

11.1.4. Managing Roles

This example enumerates the roles in the AdventureWorks database. It does so by reading the Roles
property of the Database object. Each element in the Roles collection is a DatabaseRole object. The
example displays the name (DatabaseRole.Name), creation date (DatabaseRole.CreateDate), and owner
(DatabaseRole.Owner) for each DatabaseRole object, and also prints the role members by calling the
DatabaseRole.EnumMembers() method.

The SMO classes used to manage server roles are described in Table 11-10 . The SMO classes used to
manage database roles are described in Table 11-11 . Both tables are located in the section "SMO
Instance Classes for Administering Objects Not Used for Data Storage Reference ," later in this chapter

You need to add a reference to the Microsoft.SqlServer.SqlEnum assembly to compile and execute this
example.

 using System;
 using System.Data;
 using System.Collections;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");
 Database db = server.Databases["AdventureWorks"];

 foreach (DatabaseRole dr in db.Roles)
 {
 Console.WriteLine("Name: " + dr.Name);
 Console.WriteLine("CreateDate: " + dr.CreateDate);
 Console.WriteLine("Owner: " + dr.Owner);
 Console.WriteLine("Members:");
 foreach(string s in dr.EnumMembers())
 Console.WriteLine(" " + s);
 Console.WriteLine();
 }

 Console.WriteLine("Press any key to continue.");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Console.ReadKey();
 }
 }

Partial results are shown in Figure 11-4 .

Figure 11-4. Results for enumerate roles example

The results are the same as opening the Security Roles Database Roles node for a database in
the Object Explorer window of SQL Server Management Studio.

This example adds the user TestUser created in an example earlier in this section to the
db_backupoperator role. It does so by calling the AddToRole() method of the User class.

 using System;
 using System.Data;
 using System.Collections;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");
 Database db = server.Databases["ProgrammingSqlServer2005"];

 User u = db.Users["TestUser"];
 u.AddToRole("db_backupoperator");

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

Alternatively, you can instantiate a specific DatabaseRole object and add the user to the role by using
the AddMember() method:

 DatabaseRole r = db.Roles["db_backupoperator"];
 r.AddMember("TestUser");

11.1.5. Managing Server Permissions

This example grants, denies, and revokes server permissions to and from the SQL server login account
TestLogin created in the "Managing Logins " section earlier in this chapter. It uses several SMO classes
to accomplish this:

Server

Exposes methods Grant() , Deny() , Revoke() , and EnumServerPermissions() used to retrieve
and specify server permissions.

ServerPermissionInfo

Captures the set of server permissions returned by EnumServerPermissions() .

ServerPermissionSet

Passes a set of server permissions to the Server methods Grant() , Deny() , and Revoke() .

ServerPermission

Represents a single permission in a set of server permissions.

The SMO classes used to manage server permissions are described in Table 11-12 in the section "SMO
Instance Classes for Administering Objects Not Used for Data Storage Reference ," later in this chapter.

 using System;
 using System.Data;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");

 ServerPermissionInfo[] spi;
 ServerPermissionSet sps;

 spi = server.EnumServerPermissions("TestLogin");
 for (int i = 0; i < spi.Length; i++)
 Console.WriteLine(spi[i].ToString());
 Console.WriteLine();

 // grant "create any database"
 sps = new ServerPermissionSet(ServerPermission.CreateAnyDatabase);
 server.Grant(sps, "TestLogin");

 // deny "view any database"
 sps = new ServerPermissionSet(ServerPermission.ViewAnyDatabase);
 server.Deny(sps, "TestLogin");

 spi = server.EnumServerPermissions("TestLogin");
 for (int i = 0; i < spi.Length; i++)
 Console.WriteLine(spi[i].ToString());
 Console.WriteLine();

 // revoke previous grant and deny
 sps = new ServerPermissionSet(new ServerPermission[] {
 ServerPermission.CreateAnyDatabase, ServerPermission.ViewAnyDatabase});
 server.Revoke(sps, "TestLogin");

 spi = server.EnumServerPermissions("TestLogin");
 for (int i = 0; i < spi.Length; i++)
 Console.WriteLine(spi[i].ToString());
 Console.WriteLine();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

Results are shown in Figure 11-5 .

Figure 11-5. Results for managing server permissions example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.1.6. Enumerating .NET Framework Assemblies

SQL Server 2005 through CLR integration lets you create database objects such as functions, stored
procedures, triggers, user-defined data types, and user-defined aggregate functions from .NET
Framework assemblies.

The following example outputs a list of all .NET Framework assemblies defined in the AdventureWorks
database and lists the files associated with each. It does so by enumerating the Assemblies property of
the Database object, which is a collection of SqlAssembly objects. SqlAssembly in turn contains a
collection called SqlAssemblyFiles , whose elements are SqlAssemblyFile objects.

The SMO classes used to manage .NET Framework assemblies are described in Table 11-15 in the
section "SMO Instance Classes for Administering Objects Not Used for Data Storage Reference ," later in
this chapter.

 using System;
 using System.Data;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");
 Database db = server.Databases["AdventureWorks"];

 foreach (SqlAssembly sa in db.Assemblies)
 {
 Console.WriteLine(sa.Name + " " + sa.CreateDate);
 foreach (SqlAssemblyFile saf in sa.SqlAssemblyFiles)
 Console.WriteLine(" " + saf.Name);
 }

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Results are shown in Figure 11-6 .

Figure 11-6. Results for enumerate assemblies example

The SqlAssembly class has methods that let you create, alter, and drop .NET Framework assemblies
from the database.

11.1.7. Statistics

Statistics contain information about the distribution of values in a column. The query optimizer uses
statistics to calculate the optimal query plan. Specifically, statistics help it estimate the cost of using an
index or column to evaluate the query.

When the AUTO_CREATE_STATISTICS database option is set to ON (the default), SQL Server automatically
stores statistical information about indexed columns and columns without indexes that are used in a
predicate. You might need to manually define statistics, especially if you have disabled automatic
statistics on SQL Server. When the AUTO_UPDATE_STATISTICS database option is set to ON (the default),
SQL Server periodically updates the statistics as data in the underlying tables changes. Out-of-date
statistics can cause the query optimizer to make suboptimal decisions about how to process a query.
SQL Server 2005 introduces the AUTO_UPDATE_STATISTICS_ASYNC database option, which, when set to ON
(the default is OFF), allows for asynchronous automatic updating of statistics. This lets queries continue
to use out-of-date statistical information while it is being updated, rather than blocking the query until
the update is complete.

You can view the status of the statistics database options by querying the sys.databases catalog view:

 SELECT name,
 is_auto_create_stats_on,
 is_auto_update_stats_on,
 is_auto_update_stats_async_on
 FROM sys.databases

This example uses SMO to display the columns in each statistics counter on the
HumanResources.Employee table in AdventureWorks . It instantiates a Table object representing
HumanResources.Employee . The Table object exposes the statistic counters defined for the table as a
collection of Statistic objects. The example scans this collection, enumerating the StatisticColumns
object containing the collection of columns defined in the statistics counter.

The SMO classes used to manage statistics are described in Table 11-19 in the section "SMO Instance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Classes for Administering Objects Not Used for Data Storage Reference ," later in this chapter.

 using System;
 using System.Data;
 using System.Collections;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");
 Database db = server.Databases["AdventureWorks"];
 Table t = db.Tables["Employee", "HumanResources"];

 StatisticCollection sc = t.Statistics;
 for (int i = 0; i < sc.Count; i++)
 {
 Console.WriteLine(sc[i].Name);
 foreach (StatisticColumn scol in sc[i].StatisticColumns)
 Console.WriteLine(" " + scol.Name);

 Console.WriteLine();
 }

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

Results are shown in Figure 11-7 .

Figure 11-7. Results for displaying statistics counter columns example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This example creates a new statistics counter named IX_Employee_ContactID on the ContactID column
of the HumanResources.Employee table in AdventureWorks . It first creates a Table object representing
this table. Next it instantiates a new Statistic object, and then associates it with ContactID in a new
StatisticColumn object. It adds this StatisticColumn object to the StatisticColumns collection of the
Statistic object. Finally, it calls Statistic.Create() .

 using System;
 using System.Data;
 using System.Collections;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");
 Database db = server.Databases["AdventureWorks"];
 Table t = db.Tables["Employee", "HumanResources"];

 Statistic s = new Statistic(t, "IX_Employee_ContactID");
 StatisticColumn sc = new StatisticColumn(s, "ContactID");
 s.StatisticColumns.Add(sc);
 s.Create();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

You can see the new statistics counter by opening the Databases AdventureWorks Tables
HumanResources.Employee Statistics node in the Object Explorer window of SQL Server
Management Studio.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This following code drops the statistics counter IX_Employee_ContactID created in the preceding
example:

 using System;
 using System.Data;
 using System.Collections;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");
 Database db = server.Databases["AdventureWorks"];
 Table t = db.Tables["Employee", "HumanResources"];

 t.Statistics["IX_Employee_ContactID"].Drop();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

11.1.8. Synonyms

A synonym is a database object that provides an alternate name for another database object either on
the local server or on a remote server. From a design point of view, a synonym provides a layer of
abstraction that allows changes to be made to underlying objects without affecting client applications. A
synonym can be created for the following database objects:

Tables, including global and local temporary tables

Views

SQL scalar functions, inline table-valued functions, table-valued functions, and stored procedures

CLR stored procedures, scalar functions, table-valued functions, and aggregate functions

Replication-filter procedures

Extended stored procedures

A synonym cannot reference a user-defined aggregate function. A synonym object cannot be the base
object for another synonym.

This example creates a synonym for the HumanResources.Employees table and uses the synonym to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

query the table. It instantiates a new Synonym object, associating it with the AdventureWorks database. It
then sets several relevant properties:

Schema and BaseSchema are both set to "HumanResources" .

BaseDatabase is set to the AdventureWorks database.

BaseObject is set to the name of the underlying object, in this case the Employee table.

Finally, it calls the Synonym.Create() method.

The SMO classes used to manage synonyms are described in Table 11-23 in the section "SMO Instance
Classes for Administering Objects Not Used for Data Storage Reference ," later in this chapter.

 using System;
 using System.Data;
 using System.Data.SqlClient;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");
 Database db = server.Databases["AdventureWorks"];
 Synonym s = new Synonym(db, "EmployeeSynonym");
 s.Schema = "HumanResources";
 s.BaseDatabase = "AdventureWorks";
 s.BaseSchema = "HumanResources";
 s.BaseObject = "Employee";
 s.Create();

 SqlConnection conn = new SqlConnection(
 "Data Source=localhost;Integrated Security=SSPI;" +
 "Initial Catalog=AdventureWorks");
 SqlDataAdapter da = new SqlDataAdapter(
 "SELECT TOP 5 EmployeeID, LoginID, Title " +
 "FROM HumanResources.EmployeeSynonym", conn);
 DataTable dt = new DataTable();
 da.Fill(dt);

 foreach (DataRow row in dt.Rows)
 Console.WriteLine(row["EmployeeID"] + ", " +
 row["LoginID"] + ", " + row["Title"]);

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Results are shown in Figure 11-8 .

Figure 11-8. Results for synonym example

You can see the new synonym by opening the Databases AdventureWorks Synonyms node in
the Object Explorer window of SQL Server Management Studio.

The following code drops the synonym named EmployeeSynonym created in the preceding example:

 using System;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");
 Database db = server.Databases["AdventureWorks"];

 db.Synonyms["EmployeeSynonym", "HumanResources"].Drop();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

11.1.9. Messages

The sys.messages catalog view contains a row for each system-defined and user-defined message in the
SQL Server instance. Messages with IDs less than 50001 are reserved for system messages. Catalog
views are the recommended mechanism for accessing information in system tables. The
sys.sysmessages view contains similar information as the sys.messages catalog view and is provided for
backward compatibility.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The SMO class representing a system message is SystemMessage . The Server object exposes the
collection of SystemMessage objects through its SystemMessages property. The following example
enumerates the c ollection of system messages for the local machine, and lists the ID, language ID, and
text for each of them.

The SMO classes used to manage messages are described in Tables 11-24 and 11-25 . Both tables are
located in the section "SMO Instance Classes for Administering Objects Not Used for Data Storage
Reference ," later in this chapter.

 using System;
 using System.Data;
 using System.Collections;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");
 foreach (SystemMessage sm in server.SystemMessages)
 Console.WriteLine(sm.ID + "[" + sm.Language + "]: " + sm.Text);
 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

Partial results are shown in Figure 11-9 .

The following code directly accesses the message with an ID of 105:

 Server server = new Server("localhost");
 SystemMessage sm = server.SystemMessages[105, "us_english"];

In addition to an indexer, the SystemMessageCollection class also has two methods for getting a specific
SystemMessage object. The methods are ItemByIdAndLanguage() and ItemByIdAndLanguageID() , both
of which take two arguments, like the indexer. The first argument is the message ID for both methods.
The second argument specifies the language as a string for the first method and as a language ID for
the second method.

The sys.syslanguages catalog view contains a row for each language installed on the SQL Server
instance. The SystemMessage indexer and the accessor methods require either the language ID (langid
column) or name (name column) from this table as the language argument.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 11-9. Partial results for enumerating messages example

Working with user-defined messages is similar to working with system-defined messages with the
exception that you can create, alter, and drop them using the UserDefinedMessage class. The following
example shows how:

 Server server = new Server("localhost");
 UserDefinedMessage udm = new UserDefinedMessage(server, 50001,
 "us_english", 1, "test user-defined message", false);
 udm.Create();

The following code drops the user-defined message:

 Server server = new Server("localhost");
 UserDefinedMessage udm = server.UserDefinedMessages[50001, "us_english"];
 udm.Drop();

11.1.10. Full-Text Search

Full-Text Search lets you index text data in SQL Server and perform linguistic searches against the
words and phrases in the data by using rules of the language that the data is in. You can create full-text
indexes on char , varchar , and nvarchar data type columns, as well as columns that contain formatted
binary data stored in varbinary(max) or image columns. You can build a full-text index on a table that
has a single unique column that does not allow NULL values.

A full-text index stores information about significant words in a column.

A full-text index catalog contains zero or more full-text indexes. Each catalog contains indexing
information for one or more tables in the database.

This example creates a full-text index on the Description column of the Production.ProductDescription

http://lib.ommolketab.ir
http://lib.ommolketab.ir

table in AdventureWorks . These are the steps:

It instantiates a FullTextCatalog object, sets its IsDefault property to true , and then calls its
Create() method.

1.

It associates a Table object with Production.ProductDescription .2.

It instantiates a FullTextIndex object, linking it to the Table created in Step 2.3.

It creates a FullTextIndexColumn object tied to the Description column.4.

It adds the FullTextIndexColumn object created in Step 4 to the IndexedColumns collection of the
FullTextIndex object created in Step 3.

5.

It sets the CatalogName property of the FullTextIndex object to point to the FullTextCatalog
object created in Step 1.

6.

It calls the Create() method of the FullTextIndex object.7.

The SMO classes used to manage Full-Text Search catalogs and indexes are described in Table 11-26 in
the section "SMO Instance Classes for Administering Objects Not Used for Data Storage Reference ,"
later in this chapter.

 using System;
 using System.Data;
 using System.Collections;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");
 Database db = server.Databases["AdventureWorks"];

 FullTextCatalog ftc = new FullTextCatalog(db, "PSS2005_AW_Catalog");
 ftc.IsDefault = true;
 ftc.Create();

 Table t = db.Tables["ProductDescription", "Production"];
 FullTextIndex fti = new FullTextIndex(t);
 fti.IndexedColumns.Add(new FullTextIndexColumn(fti, "Description"));
 fti.UniqueIndexName = "PK_ProductDescription_ProductDescriptionID";
 fti.CatalogName = "PSS2005_AW_Catalog";
 fti.Create();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }

You can see the new full-text index by opening the Databases AdventureWorks Storage
Full Text Catalogs node in the Object Explorer window of SQL Server Management Studio.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.2. SMO Instance Classes for Administering Objects
Not Used for Data Storage Reference

This section describes the classes used to administer SQL Server SMO instance classes that are not
used to store data. The classes are arranged into functional groups.

11.2.1. Server Configuration

The SMO classes used to manage configuration information for a SQL Server instance are described
in Table 11-1.

Table 11-1. SMO classes for managing SQL Server configuration

Class Description

ConfigProperty Represents configuration option information.

ConfigPropertyCollection Represents a collection of ConfigProperty objects. The Properties
property of the Configuration class returns the collection of
configuration.

Configuration Represents configuration information for a SQL Server instance. The
configuration information object for a configuration option setting is
exposed through the properties of the Configuration object that returns
a ConfigProperty object.

The Configuration object is accessed through the Configuration
property of the Server class.

11.2.2. Registered Servers

Registered servers let you save connection information for SQL Server instances. Server groups
create a hierarchy similar to an operating system directory to facilitate organization of registered
servers. Registered servers and server groups can be viewed in the Registered Servers view in SQL
Server Management Studio.

The SMO classes used to manage registered SQL servers and server groups are described in Table
11-2. These classes are located in the Microsoft.SqlServer.Management.Smo.RegisteredServers
namespace.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 11-2. SMO classes for managing registered servers and server
groups

Class Description

RegisteredServer Represents a registered SQL Server.

RegisteredServerCollection Represents a collection of registered SQL Servers as RegisteredServer
objects.

The RegisteredServers property of the ServerGroup class returns a
RegisteredServerCollection object containing SQL servers included in
the parent server group.

The RegisteredServers property of the
SmoApplication.SqlServerRegistrations class returns a
RegisteredServerCollection object containing SQL servers defined on
the SmoApplication object.

ServerGroup Represents a group of registered SQL Server instances.

ServerGroupCollection Represents a collection of registered SQL Server groups as
ServerGroup objects. The ServerGroups property of the
SmoApplication.SqlServerRegistrations class returns a
ServerGroupCollection object containing SQL server groups defined
on the SmoApplication object.

11.2.3. Linked Servers

A linked server is a database system other than SQL Server that is linked to a SQL Server instance
through an OLE DB driver. The SMO classes used to manage linked servers are described in Table 11-
3.

Table 11-3. SMO classes for managing linked servers

Class Description

LinkedServer Represents a database system other than SQL Server.

LinkedServerCollection Represents a collection of linked servers as LinkedServer objects.
The LinkedServers property of the Server class returns the collection
of linked servers registered with the SQL Server instance.

LinkedServerLogin Represents a SQL Server logon account that has permission to
connect to a linked server.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

LinkedServerLoginCollection Represents a collection of linked server logins as LinkedServerLogin
objects. The LinkedServerLogins property of the LinkServer class
returns the collection of linked server logins defined on the linked
server.

11.2.4. Database Defaults

The SMO classes used to manage database defaults are described in Table 11-4.

Table 11-4. SMO classes for managing database defaults

Class Description

Default Represents a SQL Server database default.

DefaultCollection Represents a collection of database defaults as Default objects. The Defaults
property of the Database class returns the collection of defaults defined on the
database.

11.2.5. Files and Filegroups

A SQL Server database is mapped over a series of operating system files with data files and log files
always stored in separate files. Data can be mapped to both a single primary data file (.mdf file),
which is the starting point for all database operations, and optional secondary data files (.ndf files).
Log files contain information used to recover the database and are mapped to one or more operating
system files (.ldf files).

Filegroups are used to group together database objects and files for allocation and administrative
purposes. Log files are not part of a filegroup and are managed separately from the data space.

The SMO classes used to manage data files, log files, and filegroups are described in Table 11-5.

Table 11-5. SMO classes for managing files and filegroups

Class Description

DataFile Represents a SQL Server data file.

DataFileCollection Represents a collection of data files as DataFile objects. The Files property
of the FileGroup class returns the collection of data files defined in the
filegroup.

FileGroup Represents a SQL Server filegroup.

LinkedServerLoginCollection Represents a collection of linked server logins as LinkedServerLogin
objects. The LinkedServerLogins property of the LinkServer class
returns the collection of linked server logins defined on the linked
server.

11.2.4. Database Defaults

The SMO classes used to manage database defaults are described in Table 11-4.

Table 11-4. SMO classes for managing database defaults

Class Description

Default Represents a SQL Server database default.

DefaultCollection Represents a collection of database defaults as Default objects. The Defaults
property of the Database class returns the collection of defaults defined on the
database.

11.2.5. Files and Filegroups

A SQL Server database is mapped over a series of operating system files with data files and log files
always stored in separate files. Data can be mapped to both a single primary data file (.mdf file),
which is the starting point for all database operations, and optional secondary data files (.ndf files).
Log files contain information used to recover the database and are mapped to one or more operating
system files (.ldf files).

Filegroups are used to group together database objects and files for allocation and administrative
purposes. Log files are not part of a filegroup and are managed separately from the data space.

The SMO classes used to manage data files, log files, and filegroups are described in Table 11-5.

Table 11-5. SMO classes for managing files and filegroups

Class Description

DataFile Represents a SQL Server data file.

DataFileCollection Represents a collection of data files as DataFile objects. The Files property
of the FileGroup class returns the collection of data files defined in the
filegroup.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

FileGroup Represents a SQL Server filegroup.

FileGroupCollection Represents a collection of filegroups as FileGroup objects. The FileGroups
property of the Database class returns the collection of filegroups defined on
the database.

LogFile Represents a SQL Server log file.

LogFileCollection Represents a collection of log files as LogFile objects. The LogFiles property
of the Database class returns the collection of log files defined on the
database.

11.2.6. Partition Functions

Partitioning a database splits large tables into smaller tables to improve performance and simplify
maintenance. A partition function maps each row of a table or index into a partition based on the
values of a specified column. A partition is scoped at the database level.

The SMO classes used to manage partition functions are described in Table 11-6.

Table 11-6. SMO classes for managing partition functions

Class Description

PartitionFunction Represents a partition function.

PartitionFunctionCollection Represents a collection of partition functions as
PartitionFunction objects. The PartitionFunctions
property of the Database class returns the collection of
partition functions defined on the database.

PartitionFunctionEvents Represents the settings required for SQL Server partition
function event notification. The PartitionFunctionEvents
object is obtained using the Events property of the
PartitionFunction object and cannot be created as a
standalone object.

PartitionFunctionParameter Represents a partition function parameter.

PartitionFunctionParameterCollection Represents a collection of partition function parameters as
PartitionFunctionParameter objects. The
PartitionFunctionParameters property of the
PartitionFunction class returns the collection of partition
function parameters defined on the partition function.

11.2.7. Partition Schemes

FileGroup Represents a SQL Server filegroup.

FileGroupCollection Represents a collection of filegroups as FileGroup objects. The FileGroups
property of the Database class returns the collection of filegroups defined on
the database.

LogFile Represents a SQL Server log file.

LogFileCollection Represents a collection of log files as LogFile objects. The LogFiles property
of the Database class returns the collection of log files defined on the
database.

11.2.6. Partition Functions

Partitioning a database splits large tables into smaller tables to improve performance and simplify
maintenance. A partition function maps each row of a table or index into a partition based on the
values of a specified column. A partition is scoped at the database level.

The SMO classes used to manage partition functions are described in Table 11-6.

Table 11-6. SMO classes for managing partition functions

Class Description

PartitionFunction Represents a partition function.

PartitionFunctionCollection Represents a collection of partition functions as
PartitionFunction objects. The PartitionFunctions
property of the Database class returns the collection of
partition functions defined on the database.

PartitionFunctionEvents Represents the settings required for SQL Server partition
function event notification. The PartitionFunctionEvents
object is obtained using the Events property of the
PartitionFunction object and cannot be created as a
standalone object.

PartitionFunctionParameter Represents a partition function parameter.

PartitionFunctionParameterCollection Represents a collection of partition function parameters as
PartitionFunctionParameter objects. The
PartitionFunctionParameters property of the
PartitionFunction class returns the collection of partition
function parameters defined on the partition function.

11.2.7. Partition Schemes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A partition scheme maps partitions of a partitioned table or index to filegroups. The SMO classes used
to manage partition schemes are described in Table 11-7.

Table 11-7. SMO classes for managing partition schemes

Class Description

PartitionScheme Represents a partition scheme.

PartitionSchemeCollection Represents a collection of partition schemes as
PartitionScheme objects. The PartitionSchemes property of
the Database class returns the collection of partition schemes
defined on the database.

PartitionSchemeEvents Represents the settings required for SQL Server partition
scheme event notification. The PartitionSchemeEvents object
is obtained using the Events property of the PartitionScheme
object and cannot be created as a standalone object.

The SubscribeToEvents() method of the
PartitionSchemeEvents class specifies the events to receive
as an ObjectEventSet object.

PartitionSchemeParameter Represents a partition scheme parameter.

PartitionSchemeParameterCollection Represents a collection of partition scheme parameters as
PartitionSchemeParameter objects. The
PartitionSchemeParameters property of both the Table and
Index classes returns the collection of partition scheme
parameters defined on the table or index.

11.2.8. Logins

The SMO classes used to manage logins are described in Table 11-8.

Table 11-8. SMO classes for managing logins

Class Description

DatabaseMapping Represents a SQL Server database mapping of logins to database users for each
database.

The EnumDatabaseMappings() method of the Login class returns an array of
DatabaseMapping objects for the login account.

Login Represents a SQL Server login account granted access to SQL Server through
either Windows or SQL Server standard authentication.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

LoginCollection Represents a collection of Login objects. The Logins property of the Server class
returns a LoginsCollection object containing all login accounts defined on the SQL
Server instance.

LoginEvents Represents the settings required for SQL Server login event notification. The
LoginEvents object is obtained using the Events property of the Login object and
cannot be created as a standalone object.

The SubscribeToEvents() method of the LoginEvents class specifies the events to
receive as an ObjectEventSet object.

11.2.9. Users

The SMO classes used to manage users are described in Table 11-9.

Table 11-9. SMO classes for managing users

Class Description

User Represents a SQL Server usera security principal used for controlling access
permission within a database. While a login is created at the server level, a user
maps to a single SQL Server login in the database in which the user is defined.

UserCollection Represents a collection of User objects. The Users property of the Database class
returns a UserCollection object containing all users defined for the database.

UserEvents Represents the settings required for SQL Server user event notification. The
UserEvents object is obtained using the Events property of the User object and
cannot be created as a standalone object.

The SubscribeToEvents() method of the UserEvents class specifies the events to
receive as an ObjectEventSet object.

UserOptions Represents a set of configurable server options relating to users. The UserOptions
object is obtained using the UserOptions property of the Server object and cannot
be created as a standalone object.

11.2.10. Server Roles

The SMO classes used to manage server roles are described in Table 11-10.

Table 11-10. SMO classes for managing server roles

LoginCollection Represents a collection of Login objects. The Logins property of the Server class
returns a LoginsCollection object containing all login accounts defined on the SQL
Server instance.

LoginEvents Represents the settings required for SQL Server login event notification. The
LoginEvents object is obtained using the Events property of the Login object and
cannot be created as a standalone object.

The SubscribeToEvents() method of the LoginEvents class specifies the events to
receive as an ObjectEventSet object.

11.2.9. Users

The SMO classes used to manage users are described in Table 11-9.

Table 11-9. SMO classes for managing users

Class Description

User Represents a SQL Server usera security principal used for controlling access
permission within a database. While a login is created at the server level, a user
maps to a single SQL Server login in the database in which the user is defined.

UserCollection Represents a collection of User objects. The Users property of the Database class
returns a UserCollection object containing all users defined for the database.

UserEvents Represents the settings required for SQL Server user event notification. The
UserEvents object is obtained using the Events property of the User object and
cannot be created as a standalone object.

The SubscribeToEvents() method of the UserEvents class specifies the events to
receive as an ObjectEventSet object.

UserOptions Represents a set of configurable server options relating to users. The UserOptions
object is obtained using the UserOptions property of the Server object and cannot
be created as a standalone object.

11.2.10. Server Roles

The SMO classes used to manage server roles are described in Table 11-10.

Table 11-10. SMO classes for managing server roles

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

ServerRole Represents a server security role.

ServerRoleCollection Represents a collection of server roles as ServerRole objects. The Roles
property of the Server class returns the collection of roles defined on the SQL
Server instance.

11.2.11. Database Roles

The SMO classes used to manage database roles are described in Table 11-11.

Table 11-11. SMO classes for managing database roles

Class Description

DatabaseRole Represents a SQL Server database security role.

DatabaseRoleCollection Represents a collection of DatabaseRole objects. The Roles property of the
Database class returns a DatabaseRoleCollection object containing all
roles defined for the database.

11.2.12. Server Permissions

The SMO classes used to manage server permissions are described in Table 11-12.

Table 11-12. SMO classes for managing server permissions

Class Description

ServerPermission Represents a server permission. A ServerPermissionSet object containing a
set of ServerPermission objects is used to specify permissions for the Grant(
), Deny(), and Revoke() methods of the Server object.

ServerPermissionInfo Represents information about a server-level permission for a database
server. The EnumServerPermissions() method of the Server class returns
permission information as an array of ServerPermissionInfo objects.

ServerPermissionSet Represents a set of server permissions. The ServerPermissionSet class is
used to specify multiple permissions for the Grant(), Deny(), and Revoke(
) methods of the Server object.

11.2.13. Database Permissions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The SMO classes used to manage database permissions are described in Table 11-13.

Table 11-13. SMO classes for managing database permissions

Class Description

DatabasePermission Represents a SQL Server database permission. A DatabasePermissionSet
object containing a set of DatabasePermission objects is used to specify
permissions for the Grant(), Deny(), and Revoke() methods of the
Database object.

DatabasePermissionInfo Represents information about a server-level permission for a database
server. The EnumDatabasePermissions() method of the Database class
returns permission information as an array of DatabasePermissionInfo
objects.

DatabasePermissionSet Represents a set of database permissions. The DatabasePermissionSet
class is used to specify multiple permissions for the Grant(), Deny(), and
Revoke() methods of the Database object.

11.2.14. Application Roles

The SMO classes used to manage application roles are described in Table 11-14.

Table 11-14. SMO classes for managing application roles

Class Description

ApplicationRole Represents an application security role used to set privileges from an
application.

ApplicationRoleCollection Represents a collection of application roles as ApplicationRole objects.
The ApplicationRoles property of the Database class returns the
collection of roles defined on the database.

ApplicationRoleEvents Represents the settings required for SQL Server application role event
notification. The ApplicationRoleEvents object is obtained using the
Events property of the ApplicationRole object and cannot be created
as a standalone object.

The SubscribeToEvents() method of the ApplicationRoleEvents class
specifies the events to receive as an ObjectEventSet object.

11.2.15. .NET Framework Assemblies

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SQL Server 2005, through CLR integration, lets you create database objects such as functions, stored
procedures, triggers, user-defined data types, and user-defined aggregate functions from .NET
Framework assemblies . The SMO classes used to manage .NET Framework assemblies are described
in Table 11-15.

Table 11-15. SMO classes for managing .NET Framework assemblies

Class Description

SqlAssembly Represents a .NET Framework assembly.

SqlAssemblyCollection Represents a collection of .NET Framework assemblies as SqlAssembly
objects. The Assemblies property of the Database class returns a
SqlAssemblyCollection object containing all .NET Framework
assemblies defined on the database.

SqlAssemblyEvent Represents an assembly event. The SqlAssemblyEvent class contains a
property for each event that the database can respond to.

SqlAssemblyEvents Represents the settings required for SQL Server assembly event
notification. The SqlAssemblyEvents object is obtained using the Events
property of the SqlAssembly object and cannot be created as a
standalone object.

The SubscribeToEvents() method of the SqlAssemblyEvents class
specifies the events to receive as an SqlAssemblyEventSet object.

SqlAssemblyEventSet Represents a set of SQL Server database events and is used to specify
the set of events for the DatabaseEvent class.

SqlAssemblyFile Represents the binary file that stores a .NET Framework assembly.

SqlAssemblyFileCollection Represents a collection of .NET Framework assembly files as
SqlAssemblyFile objects. The SqlAssemblyFiles property of the
SqlAssembly class returns a SqlAssemblyFileCollection object
containing all files associated with the .NET Framework assemblies.

11.2.16. Endpoints

An endpoint is a service that can listen natively for requests. An endpoint can expose methods to
calling clients. Endpoints can use either an HTTP or TCP protocol, and handle SOAP, Service Broker,
T-SQL, or database mirroring payloads. The SMO classes used to manage endpoints are described in
Table 11-16.

Table 11-16. SMO classes for managing endpoints

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

DatabaseMirroringPayload Represents a SQL Server database mirroring payload. The
DatabaseMirroring property of the Payload class returns a
DatabaseMirroringPayload object representing the database
mirroring payload for the endpoint.

Endpoint Represents a SQL Server endpoint service.

EndpointCollection Represents a collection of endpoints as Endpoint objects. The
Endpoints property of the Server class returns the collection of
endpoints defined on the SQL Server instance.

EndpointProtocol Represents an endpoint protocol. The Protocol property of the
Endpoint class returns a Protocol object representing the protocol
for the endpoint.

HttpProtocol Represents an HTTP protocol. The Http property of the Protocol
class returns an HttpProtocol object representing the HTTP protocol.

Payload Represents an HTTP endpoint payload. The Payload property of the
Endpoint class returns a Payload object representing the payload for
the endpoint.

Protocol Represents a protocol used by an endpoint.

ServiceBrokerPayload Represents a SQL Server Service Broker payload. The ServiceBroker
property of the Payload class returns a ServiceBrokerPayload object
representing the Service Broker payload for the endpoint.

SoapPayload Represents a SQL Server SOAP payload. The Soap property of the
Payload class returns a SoapPayload object representing the SOAP
payload for the endpoint.

SoapPayloadMethod Represents a SOAP payload method.

SoapPayloadMethodCollection Represents a collection of SOAP payload methods as
SoapPayloadMethod objects. The SoapPayloadMethods property of the
SoapPayload class returns the collection of SOAP payload methods
defined for the SOAP payload.

TcpProtocol Represents a TCP protocol. The Tcp property of the Protocol class
returns a TcpProtocol object representing the TCP protocol.

11.2.17. XML Schemas

XML schemas are used to validate XML documents and data type instances and to define complex
XML data types. The SMO classes used to manage XML schemas are described in Table 11-17.

Table 11-17. SMO classes for managing XML schemas

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

XmlSchemaCollection Represents a collection of XML namespaces.

XmlSchemaCollectionCollection Represents a collection of XML namespaces as
XmlSchemaCollection objects. The XmlSchemaCollections property
of the Database class returns the collection of XML namespaces
defined on the database.

11.2.18. Languages

The SMO classes used to manage supported languages are described in Table 11-18.

Table 11-18. SMO classes for managing supported languages

Class Description

Language Represents a SQL Server language.

LanguageCollection Represents a collection of SQL Server languages as Language objects. The
Languages property of the Server class returns the collection of languages
supported by the SQL Server instance.

11.2.19. Statistics

Statistics contain information about the distribution of values in a column. This information is used to
calculate optimal query plans. The SMO classes used to manage SQL Server statistics are described
in Table 11-19.

Table 11-19. SMO classes for managing statistics

Class Description

Statistic Represents a SQL Server statistics counter.

StatisticCollection Represents a collection of SQL Server statistic counters as Statistic
objects. The Statistics property of the Table class returns a
StatisticCollection object containing all statistics counters defined
for the table.

StatisticColumn Represents a column defined in a SQL Server statistics counter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

StatisticColumnCollection Represents a collection of columns defined in a SQL Server statistics
counter as StatisticColumn objects. The StatisticColumns property of
the Statistic class returns a StatisticColumnCollection object
containing all statistic columns defined in the statistics counter.

StatisticEvents Represents the setting required for SQL Server statistic-event
notification. The StatisticEvents object is obtained using the Events
property of the Statistic object and cannot be created as a
standalone object.

The SubscribeToEvents() method of the StatisticEvents class
specifies the events to receive as an ObjectEventSet object.

11.2.20. Certificates

A certificate is a digitally signed statement that binds the value of a public key to a person, service,
or device that holds the corresponding private key. The SMO classes used to manage certificates are
described in Table 11-20.

Table 11-20. SMO classes for managing certificates

Class Description

Certificate Represents a SQL Server certificate.

CertificateCollection Represents a collection of SQL Server certificates as Certificate objects.
The Certificates property of the Database class returns the collection of
certificates defined on a database.

CertificateEvents Represents the settings required for SQL Server certificate event
notification. The CertificateEvents object is obtained using the Events
property of the Certificate object and cannot be created as a standalone
object.

The SubscribeToEvents() method of the CertificateEvents class specifies
the events to receive as an ObjectEventSet object.

11.2.21. Credentials

A credential contains authentication information needed to connect to a secured resource outside of
SQL Server. A credential can be associated with multiple SQL Server logins, but a login can only be
mapped to one credential. The SMO classes used to manage credentials are described in Table 11-21.

StatisticColumnCollection Represents a collection of columns defined in a SQL Server statistics
counter as StatisticColumn objects. The StatisticColumns property of
the Statistic class returns a StatisticColumnCollection object
containing all statistic columns defined in the statistics counter.

StatisticEvents Represents the setting required for SQL Server statistic-event
notification. The StatisticEvents object is obtained using the Events
property of the Statistic object and cannot be created as a
standalone object.

The SubscribeToEvents() method of the StatisticEvents class
specifies the events to receive as an ObjectEventSet object.

11.2.20. Certificates

A certificate is a digitally signed statement that binds the value of a public key to a person, service,
or device that holds the corresponding private key. The SMO classes used to manage certificates are
described in Table 11-20.

Table 11-20. SMO classes for managing certificates

Class Description

Certificate Represents a SQL Server certificate.

CertificateCollection Represents a collection of SQL Server certificates as Certificate objects.
The Certificates property of the Database class returns the collection of
certificates defined on a database.

CertificateEvents Represents the settings required for SQL Server certificate event
notification. The CertificateEvents object is obtained using the Events
property of the Certificate object and cannot be created as a standalone
object.

The SubscribeToEvents() method of the CertificateEvents class specifies
the events to receive as an ObjectEventSet object.

11.2.21. Credentials

A credential contains authentication information needed to connect to a secured resource outside of
SQL Server. A credential can be associated with multiple SQL Server logins, but a login can only be
mapped to one credential. The SMO classes used to manage credentials are described in Table 11-21.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 11-21. SMO classes for managing credentials

Class Description

Credential Represents a SQL Server credential.

CredentialCollection Represents a collection of SQL Server credentials as Credential objects. The
Credentials property of the Server class returns the collection of credentials
defined on the SQL Server instance.

11.2.22. Keys

The SMO classes used to manage asymmetric and symmetric keys are described in Table 11-22.

Table 11-22. SMO classes for managing keys

Class Description

AsymmetricKey Represents a SQL Server asymmetric key.

AsymmetricKeyCollection Represents a collection of asymmetric keys as AsymmetricKey objects.
The AsymmetricKeys property of the Database class returns the collection
of asymmetric keys defined on the database.

SymmetricKey Represents a SQL Server symmetric key.

SymmetricKeyCollection Represents a collection of symmetric keys as SymmetricKey objects. The
SymmetricKeys property of the Database class returns the collection of
symmetric keys defined on the database.

SymmetricKeyEncryption Represents the type of encryption (asymmetric, certificate, password, or
symmetric) used when encrypting a symmetric key object.

The AddKeyEncryption() method of the SymmetricKey Class adds a type
of encryption to the symmetric key.

11.2.23. Synonyms

A synonym is a database object that provides an alternate name for a database object either on the
local server or on a remote server. The SMO classes used to manage SQL Server synonyms are
described in Table 11-23.

Table 11-23. SMO classes for managing synonyms

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

Synonym Represents a SQL Server synonym.

SynonymCollection Represents a collection of SQL Server synonyms as Synonym objects. The
Synonyms property of the Database class returns a SynonymCollection object
containing synonyms defined on the database.

SynonymEvents Represents settings required for SQL Server synonym event notification.

11.2.24. System Messages

The SMO classes used to manage system messages are described in Table 11-24.

Table 11-24. SMO classes for managing system messages

Class Description

SystemMessage Represents a system message defined on a SQL Server instance.

SystemMessageCollection Represents a collection of SQL Server system messages as SystemMessage
objects. The SystemMessages property of the Server class returns a
SystemMessageCollection object containing all system messages defined
on the SQL server instance.

11.2.25. User-Defined Messages

The SMO classes used to manage user-defined error and warning messages are described in Table
11-25.

Table 11-25. SMO classes for managing user-defined messages

Class Description

UserDefinedMessage Represents a user-defined message on a SQL Server instance.

UserDefinedMessageCollection Represents a collection of SQL Server user-defined messages as
UserDefinedMessage objects. The UserDefinedMessages property of
the Server class returns a UserDefinedMessageCollection object
containing all user-defined messages defined on the SQL server
instance.

11.2.26. Full-Text Search

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Full-Text Search lets you perform linguistic searches against the words and phrases in your data. The
SMO classes used to manage Full-Text Search catalogs and indexes are described in Table 11-26.

Table 11-26. SMO classes for managing Full-Text Search

Class Description

FullTextCatalog Represents a full-text catalog letting you programmatically create,
manage, and configure the catalog.

FullTextCatalogCollection Represents a collection of full-text catalogs as FullTextCatalog
objects. The FullTextCatalogs property of the Database class
returns a FullTextCatalogCollection object containing all full-text
catalogs defined on the database.

FullTextIndex Represents a full-text index letting you programmatically create,
manage, and configure the index.

The FullTextIndex property of the Table or View class returns the
full-text index on the table or view.

FullTextIndexColumn Represents a column in a full-text index letting you
programmatically create, manage, and configure the column.

FullTextIndexColumnCollection Represents a collection of full-text index columns as
FullTextIndexColumn objects. The IndexedColumns property of the
FullTextIndex class returns a FullTextIndexColumnCollection
object containing all columns defined on the full-text index.

FullTextService Provides programmatic access to the Full-Text Search settings.
The FullText property of the Server class returns the full-text
service implementation for the SQL Service instance.

11.2.27. OLE DB Providers

The SMO classes used to manage SQL Server OLE DB providers are described in Table 11-27.

Table 11-27. SMO classes for managing OLE DB Providers

Class Description

OleDbProviderSettings Represents the settings for a SQL Server OLE DB provider.

OleDbProviderSettingsCollection Represents a collection of OleDbProviderSettings objects. The
OleDbProviderSettings property of the Settings class returns
the collection of OLE provider settings defined on the SQL Server
instance. The Settings property of the Server class returns a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description instance. The Settings property of the Server class returns a
Settings object representing a set of configurable settings on
the SQL Server instance.

instance. The Settings property of the Server class returns a
Settings object representing a set of configurable settings on
the SQL Server instance.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 12. SQL Server Management
Objects (SMO) Utility Classes
SMO utility classes perform specific tasks and are work independently of the SQL Server instance.
SMO utility classes can be grouped according to their function:

Database scripting operations

Backup and restore databases

Transfer schema and data between database instances

Trace and trace replay operations

Administering the Database Mail subsystem

The sections in this chapter describe these SMO utility classes and shows how to use them through
programming examples.

There are three more SMO utility classes that are discussed in later chapters:

SMO classes used to administer SQL Server Agent are covered in Chapter 16.

SMO classes used to administer Service Broker are covered in Chapter 17.

SMO classes used to administer Notification Services are covered in Chapter 18.

The examples in this section are all built using Visual Studio 2005. The examples need a reference to
the following assemblies:

Microsoft.SqlServer.ConnectionInfo

Microsoft.SqlServer.Smo

Additional assembly references will be given for examples in which the assemblies are required.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.1. Scripting

You can document a database schema by generating T-SQL scripts for the different objects. Possible
uses for these scripts include the following:

As a backup, allowing objects to be recreated if necessary

To create development, testing, staging, and production environments

SQL Server Management Studio lets you script selected database objects. You can choose to use
either a manual process or the Generate SQL Server Scripts Wizard.

The SMO classes used for scripting operations are described in Table 12-1 . These classes are located
in the Microsoft.SqlServer.Management.Smo namespace.

Table 12-1. SMO classes for scripting operations

Class Description

Scripter

Provides programmatic access to scripting settings and functionality,
including finding dependencies, outputting scripts, and managing the
context of a scripting operation.

ScriptingErrorEventArgs
Represents the arguments used to report an error during a scripting
operation. ScriptingErrorEventArgs is derived from EventArgs .

ScriptingOptions
Represents options for scripting operations. These options identify the
SQL Server items to script and control the scripting operation.

ScriptOption
Represents a SQL Server scripting option. The ScriptOption class
contains a property for each type of SQL Server item that can be scripted.

This section shows how to programmatically use SMO scripting classes. You need to add a reference
to the Microsoft.SqlServer.SmoEnum assembly to compile and execute the examples in this section.

A Uniform Resource Name (URN) address uniquely identifies each SQL Server object. The first
example and the next one use URNs to specify which objects to script.

The first example shows how to use the Scripter class to script the objects in the AdventureWorks
database:

 using System;
 using System.Data;
 using System.Collections.Specialized;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");
 Database db = server.Databases["AdventureWorks"];

 Scripter scripter = new Scripter(server);
 StringCollection sc = scripter.Script(new Urn[] { db.Urn });

 foreach (string s in sc)
 Console.WriteLine(s);

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

Results are shown in Figure 12-1 .

Figure 12-1. Results for scripting AdventureWorks database objects

The Script() method of the Scripter class generates T-SQL that can be used to create SQL Server

http://lib.ommolketab.ir
http://lib.ommolketab.ir

objects identified by either a SqlSmoObject array, Urn array, or UrnCollection object passed as an
argument to the constructor. The Script() method returns the T-SQL as a StringCollection object.
The Options property exposes a ScriptingOptions object that lets you control scripting operations.

The following example scripts all tables in AdventureWorks :

 using System;
 using System.Data;
 using System.Collections.Specialized;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");
 Database db = server.Databases["AdventureWorks"];

 UrnCollection urnc = new UrnCollection();
 foreach (Table t in db.Tables)
 urnc.Add(t.Urn);

 Scripter scripter = new Scripter(server);
 StringCollection sc = scripter.Script(urnc);

 foreach (string s in sc)
 Console.WriteLine(s);

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

Partial results are shown in Figure 12-2 .

Figure 12-2. Results for scripting AdventureWorks tables using
UrnCollection class example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Script() method of the Scripter class is overloaded. In addition to accepting a UrnCollection
object as shown in the preceding example, it can also take a list of objects as a Urn array or a
SqlSmoObject array.

The SMO classes used to manage URN addresses are described in Table 12-2 .

Table 12-2. SMO classes for managing URN addresses

Class Description

Urn Represents a URN address

UrnCollection Represents a collection of Urn objects

The SqlSmoObject class is a generic class that represents all SQL Server objects. The following
example uses the SqlSmoObject class to produce the same result as the preceding example:

 using System;
 using System.Data;
 using System.Collections.Specialized;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");
 Database db = server.Databases["AdventureWorks"];

 Table[] ta = new Table[db.Tables.Count];

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 db.Tables.CopyTo(ta, 0);
 SqlSmoObject[] ssoa = new SqlSmoObject[db.Tables.Count];
 Array.Copy(ta, ssoa, ta.Length);

 Scripter scripter = new Scripter(server);
 StringCollection sc = scripter.Script(ssoa);

 foreach (string s in sc)
 Console.WriteLine(s);

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

Partial results are shown in Figure 12-3 .

The static EnumDependencies() method of the Scripter class returns a UrnCollection object that
contains the specified object and either its parents or children, depending on the value of the second
argument from the DependencyType enumeration.

The following example uses the EnumDependencies() method to script the first table in
AdventureWorks and its child objects:

 using System;
 using System.Data;
 using System.Collections.Specialized;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");
 Database db = server.Databases["AdventureWorks"];

 Scripter scripter = new Scripter(server);
 UrnCollection urnc = Scripter.EnumDependencies(
 db.Tables[0], DependencyType.Children);
 StringCollection sc = scripter.Script(urnc);

 foreach (string s in sc)
 Console.WriteLine(s);

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

Figure 12-3. Results for scripting AdventureWorks tables using
SqlSmoObject class example

Results are shown in Figure 12-4 .

The output contains the T-SQL script to generate both the table named AWBuildVersion and its
childrena single update trigger on the table.

The Scripter object raises three types of events, described in Table 12-3 .

Figure 12-4. Results for scripting single AdventureWorks table and its
children example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 12-3. Scripter events

Event Description

DiscoveryProgress Reports progress at intervals during the DiscoverDependencies() method

ScriptingError Reports an error during a scripting operation

ScriptingProgress Reports progress at intervals during the Script() method

This example receives and handles the ScriptingProgress event:

 using System;
 using System.Data;
 using System.Collections.Specialized;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");
 Database db = server.Databases["AdventureWorks"];

 UrnCollection urnc = new UrnCollection();
 foreach (Table t in db.Tables)
 urnc.Add(t.Urn);

 Scripter scripter = new Scripter(server);
 scripter.ScriptingProgress +=

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 new ProgressReportEventHandler(ScriptingProgressEventHandler);
 StringCollection sc = scripter.Script(urnc);

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }

 protected static void ScriptingProgressEventHandler(
 object sender, ProgressReportEventArgs e)
 {
 Console.WriteLine("(" + e.TotalCount + "/" + e.Total + ") " + e.Current);
 }
 }

Partial results are shown in Figure 12-5 .

Figure 12-5. Results for monitoring scripting progress example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.2. Backing Up and Restoring Data

The SMO backup and restore classes serve several purposes:

To back up and restore data and logs

To perform integrity checks

To examine database consistency

The SMO backup and restore classes are described in Table 12-4 . These classes are located in the
Microsoft.SqlServer.Management.Smo namespace.

Table 12-4. SMO classes for managing backup and restore operations

Class Description

Backup Provides programmatic access to SQL Server backup operations.

BackupDevice
Represents a SQL Server backup devicea tape drive or disk drive used in a
backup operation.

BackupDeviceCollection

Represents a collection of backup devices as BackupDevice objects. The
BackupDevices property of the Server class returns the collection of all
backup devices on an instance of SQL Server.

BackupDeviceItem Provides programmatic access to SQL Server backup devices by name.

PercentCompleteEventArgs
Represents the details of the event that occurs when a backup or restore
process reaches a percent-complete marker.

RelocateFile

Provides a mechanism to relocate files during a restore operation. The
RelocateFile class is used with the RelocateFiles property of the Restore
class.

Restore

Provides programmatic access to SQL Server restore operations. The
Restore class lets you restore all or part of a database and transaction log
records, verify the integrity of a backup medium, identify the contents of a
backup medium, and monitor the status of a restore operation.

VerifyCompleteEventArgs
Represents the details of the event that occurs when a backup verification
completes.

This section shows how to use SMO backup and restore classes programmatically.

This example backs up the AdventureWorks database to a file:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 using System;
 using System.Data;
 using System.Collections;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 BackupDeviceItem bdi =
 new BackupDeviceItem("AdventureWorks.bak", DeviceType.File);

 Backup bu = new Backup();
 bu.Database = "AdventureWorks";
 bu.Devices.Add(bdi);
 bu.Initialize = true;

 // add percent complete and complete event handlers
 bu.PercentComplete +=
 new PercentCompleteEventHandler(Backup_PercentComplete);
 bu.Complete +=new ServerMessageEventHandler(Backup_Complete);

 Server server = new Server("localhost");
 bu.SqlBackup(server);

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }

 protected static void Backup_PercentComplete(
 object sender, PercentCompleteEventArgs e)
 {
 Console.WriteLine(e.Percent + "% processed.");
 }

 protected static void Backup_Complete(object sender, ServerMessageEventArgs e)
 {
 Console.WriteLine(Environment.NewLine + e.ToString());
 }
 }

Once complete, the backup file AdventureWorks.bak is located (by default) in the C:\Program
Files\Microsoft SQL Server\MSSQL.1\MSSQL\Backup directory. Results are shown in Figure 12-6 .

Figure 12-6. Results for backup example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Backup class provides programmatic access to SQL Server backup operations. Three properties are
set to configure the Backup object in this example:

Database

Specifies the database to backup

Devices

Sets the backup device as a BackupDeviceItem instance

Initialize

Specifies whether the backup device is initialized as part of the backup operation

There are other optional properties that further control the backup operation.

A PercentCompleteEventHandler is added so that the progress of the backup operation can be displayed
to the console. A ServerMessageEventHandler is added to display the status of the BACKUP DATABASE
operation.

Finally, the SqlBackup() method is called to perform the database backup operation.

The following example restores the backup created in the preceding example:

 using System;
 using System.Data;
 using System.Collections;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 BackupDeviceItem bdi = new BackupDeviceItem(
 "AdventureWorks.bak", DeviceType.File);

 Restore r = new Restore();
 r.Database = "AdventureWorks";
 r.ReplaceDatabase = true;
 r.Devices.Add(bdi);

 //add percent complete and complete event handlers
 r.PercentComplete +=
 new PercentCompleteEventHandler(Restore_PercentComplete);
 r.Complete += new ServerMessageEventHandler(Restore_Complete);

 r.SqlRestore(server);

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }

 protected static void Restore_PercentComplete(
 object sender, PercentCompleteEventArgs e)
 {
 Console.WriteLine(e.Percent + "% processed.");
 }

 protected static void Restore_Complete(object sender, ServerMessageEventArgs e)
 {
 Console.WriteLine(Environment.NewLine + e.ToString());
 }
 }

Results are shown in Figure 12-7 .

The Restore class provides programmatic access to SQL Server restore operations. Three properties are
set to configure the Restore object in this example:

Figure 12-7. Results for restore example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Database property, which specifies the database on which the restore operation runs.

The ReplaceDatabase property, which specifies whether the backup operation creates a new image
of the restored database.

The Devices property, which sets the backup device for the restore operation as a
BackupDeviceItem instance.

There are other optional properties not used in this example that further control the backup operation.

A PercentCompleteEventHandler event handler is added so that the progress of the restore operation can
be displayed to the console. A ServerMessageEventHandler event handler is added to display the details
of the RESTORE DATABASE event.

Finally, the SqlRestore() method is called to perform the database restore operation.

The restore operation requires exclusive access to the database being restored.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.3. Transferring Data

The SMO TRansfer class is used to programmatically transfer (copy) data and schemas within and
between SQL Server instances. This class is in the Microsoft.SqlServer.Management.Smo namespace.

This example shows how to transfer the AdventureWorks database to a new database called
AdventureWorksCopy:

 using System;
 using System.Data;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");
 Database db = server.Databases["AdventureWorks"];

 // create the destination database
 Database dbCopy = new Database(server, "AdventureWorksCopy");
 dbCopy.Create();

 // transfer the data
 Transfer t = new Transfer(db);
 t.CopyAllTables
 = true;
 t.Options.WithDependencies
 = true;
 t.DestinationServer = server.Name;
 t.DestinationDatabase
 = "AdventureWorksCopy";
 t.CopySchema
 = true;
 t.CopyData
 = true;

 // wire up event handler to monitor progress
 t.DataTransferEvent +=
 new DataTransferEventHandler(DataTransferEvent_Handler);

 t.TransferData();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }

 protected static void DataTransferEvent_Handler(
 object sender, DataTransferEventArgs e)
 {
 Console.WriteLine("[" + e.DataTransferEventType + "] " + e.Message);
 }
 }

Partial results are shown in Figure 12-8.

Six properties are set to configure the transfer object in this example:

The CopyAllTables property is set to TRue.

The Options.WithDependencies property is set to true.

The DestinationServer property is set to the name of the destination server for the object copy.
In this case, the destination server is the local server, which is the same as the source server.

The DestinationDatabase property is set to the name of the database on the destination server.

The CopySchema property is set to true.

The CopyData property is set to true.

Figure 12-8. Results for transfer data example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There are other optional properties not used in this example that further control the transfer
operation.

A DataTransfer event handler is added so that the progress as each database is copied is output to
the console window.

Finally, the transferData() method is called to perform the data transfer operation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.4. Tracing

The SMO trace and replay classes provide an interface with which to trace and record events,
manipulate and analyze trace data, and replay recorded trace events. SQL Profiler and the SQL Trace
system stored procedures can also perform these tasks.

The SMO classes used to manage trace and replay operations are described in Table 12-5. These
classes are located in the Microsoft.SqlServer.Management.Trace namespace.

Table 12-5. SMO classes for managing trace and replay operations

Class Description

ReplayEventArgs
Represents arguments used to report events that occur during replay
operations.

traceEventArgs
Represents arguments used to report events that occur during trace
operations.

TRaceFile Represents a trace logfile.

traceReplay Represents a replay operation for trace logfiles and tables.

TRaceReplayOptions

Represents configuration settings for replaying a trace. The Options property
of the traceReplay class returns a traceReplayOptions object for the replay
operation.

TRaceServer Represents a new trace on a SQL Server instance.

traceTable

Represents a table of trace information.

The OutputTable property of the traceReplay class returns a traceTable object
for the replay operation.

The examples in this section show how to programmatically use the SMO trace classes to capture and
replay trace events.

The first example logs the name of the first 20 trace log events to the console using the standard
trace definition file Standard.tdf, installed by default in the C:\Program Files\Microsoft SQL
Server\90\Tools\Profiler\Templates\Microsoft SQL Server\90 directory:

 using System;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 using Microsoft.SqlServer.Management.Trace;

 class Program
 {
 static void Main(string[] args)
 {
 TraceServer ts = new TraceServer();

 ConnectionInfoBase ci = new SqlConnectionInfo("localhost");
 ((SqlConnectionInfo)ci).UseIntegratedSecurity = true;
 ts.InitializeAsReader(ci,
 @"C:\Program Files\Microsoft SQL Server\90\Tools\Profiler\" +
 @"Templates\Microsoft SQL Server\90\Standard.tdf");

 int eventNumber = 0;
 while (ts.Read())
 {
 Console.Write(ts.GetValue(0) + Environment.NewLine);
 eventNumber++;
 if (eventNumber == 20)
 break;
 }
 ts.Close();

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

Results are shown in Figure 12-9.

Figure 12-9. Results for tracing example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The trace definition file determines the information contained in the tracewhich events and what
columns of trace data are captured for each event. This example displays only the first columnthe
name of the trace event. You can get a complete list of columns by viewing the standard definition
file using SQL Server Profiler.

The next example replays an existing trace logfile. Use an existing trace file or create a trace file to
use with SQL Server Profiler by following these steps:

Open SQL Server Profiler by selecting Start Microsoft SQL Server 2005 Performance
Tools SQL Server Profiler.

1.

From the main menu, select File New Trace.2.

Complete the Connect to Server dialog box and click the Connect button.3.

Accept the defaults for the Trace Properties dialog box and click the Run button.4.

Let the trace run for about 20 events and then stop it by selecting File Stop Trace.5.

Save the trace by selecting File Save. Save the trace file as
C:\PSS2005\Trace\TestTrace.trc and click the Save button.

6.

The source code for the example follows:

 using System;
 using System.Data;
 using System.Collections;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;
 using Microsoft.SqlServer.Management.Trace;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 class Program
 {
 static void Main(string[] args)
 {
 TraceReplay tr = new TraceReplay();
 TraceFile tf = new TraceFile();
 tf.InitializeAsReader(@"C:\PSS2005\Trace\TestTrace.trc");
 tr.Source = tf;
 tr.Connection = new SqlConnectionInfo("localhost");
 tr.ReplayEvent += new ReplayEventHandler(tr_ReplayEvent);
 tr.Start();

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }

 static void tr_ReplayEvent(object sender, ReplayEventArgs args)
 {
 Console.WriteLine("--- Record number: " + args.RecordNumber + " ---");
 for (int i = 0; i < args.CurrentRecord.FieldCount; i++)
 Console.WriteLine(args.CurrentRecord[i].ToString());

 Console.WriteLine();
 }
 }

Partial results are shown in Figure 12-10. Of course, your results will be slightly different.

The example displays all of the data in the trace file. In this example, there are 17 records, the last 2
of which are shown.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.5. Database Mail

The SMO SqlMail class gives you programmatic access to configure and monitor the SQL Server
Database Mail subsystem. The SqlMail class does not give you access to mailboxes or the ability to
send or receive mail messages.

For security reasons, Database Mail is inactive by default. You must use either
the SQL Server Surface Area Configuration tool or the Database Mail
Configuration Wizard to enable Database Mail.

A Database Mail profile is a collection of accounts. A Database Mail account contains information for
email servers. An account can be part of one or more profiles.

Applications send email by using profiles rather than accounts. This improves both flexibility and
reliability because accounts can be added to and removed from profiles without changing the
application or its configuration. Profiles can be configured to automatically failover. Users and
applications can have access to one or more profiles.

Profiles are either public or private. Public profiles are defined at the server level and are available to
users in all host databases for sending and receiving email. Private profiles are defined in a specific
database, and access is generally restricted to specific users and roles for sending email using the
profile. Profiles are private by default.

Figure 12-10. Partial results for trace replay example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 12-11 shows the relationship between SMO Database Mail classes.

The SMO Database Mail classes are described in Table 12-6. These classes are in the
Microsoft.SqlServer.Management.Smo.Mail namespace.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 12-11. SMO Database Mail class hierarchy

Table 12-6. SMO classes for Database Mail

Class Description

ConfigurationValue Represents a SQL Server Database Mail configuration option.

ConfigurationValueCollection

Represents a collection of SQL Server Database Mail configuration
options as ConfigurationValue objects. The ConfigurationValues
property of the SqlMail class returns the collection of options
defined on the SQL Server Database Mail subsystem.

MailAccount Represents a SQL Server Database Mail account.

MailAccountCollection

Represents a collection of SQL Server Database Mail accounts as
MailAccount objects. The Accounts property of the SqlMail class
returns the collection of mail accounts defined on the SQL Server
Database Mail subsystem.

MailProfile Represents a SQL Server Database Mail profile.

MailProfileCollection

Represents a collection of SQL Server Database Mail profiles as
MailProfile objects. The Profiles property of the SqlMail class
returns the collection of mail profiles defined on the SQL Server
Database Mail subsystem.

MailServer Represents a SQL Server Database Mail server.

MailServerCollection

Represents a collection of SQL Server Database Mail servers as
MailServer objects. The MailServers property of the MailAccount
class returns the collection of mail servers associated with a mail
account.

SqlMail Represents the SQL Server Database Mail subsystem.

The following example enumerates the SQL Server Database Mail profiles and the accounts within
each profile:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 using System;
 using System.Data;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;
 using Microsoft.SqlServer.Management.Smo.Mail;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");
 SqlMail mail = server.Mail;

 foreach (MailProfile mp in mail.Profiles)
 {
 Console.WriteLine(mp.Name);
 DataTable dt = mp.EnumAccounts();
 foreach (DataRow row in dt.Rows)
 for (int i = 0; i < dt.Columns.Count; i++)
 Console.WriteLine(" " + dt.Columns[i].ColumnName +
 ": " + row[i]);
 Console.WriteLine();
 }

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

Results are shown in Figure 12-12.

Figure 12-12. Results for enumerating SQL Server Database Mail example

The results show that the example SQL Server instance has one profile, named Test profile, that
has one account, named Test account.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Mail property of the Server class returns a SqlMail object that represents the SQL Server
Database Mail subsystem for the server. The Profiles property of the SqlMail class returns a
collection of MailProfile objects representing the mail profiles defined on the mail subsystem. The
EnumAccounts() method of the MailProfile class returns a DataTable object containing information
about the email accounts associated with the profile.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 13. Programming Windows
Management Instrumentation (WMI)
You view and manage SQL Server services, network settings, and server-alias settings using the
Windows Management Instrumentation (WMI) Provider for Configuration Management. The
ManagedComputer class in the Microsoft.SqlServer.Management.Smo.Wmi namespace represents a WMI
installation on a SQL Server instance. It provides access to the WMI Provider for Configuration
Management.

The ManagedComputer class is the top class in the SMO WMI hierarchy, just as the Server class is the
top class in the SMO instance classes. ManagedComputer objects operate independently of Server
objects.

You can use the WMI Provider for Configuration Management in one of three ways:

Use a Windows Management Instrumentation Query Language (WQL) editor or query tool such
as WBEMTest.exe to execute queries.

Use a scripting language such as VBScript, JScript, or Perl in which you can embed and execute
WQL queries.

Use the ManagedComputer class in the Microsoft.SqlServer.Management.Smo.Wmi namespace
from a .NET SMO application.

This book deals only with using the ManagedComputer class in a .NET SMO application. For more
information about the other alternatives, see Microsoft SQL Server 2005 Books Online.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.1. Programming SMO WMI Classes

Figure 13-1 shows the relationship between SMO classes used with the WMI Provider for
Configuration Management.

This section shows how to programmatically use SMO WMI classes. The examples in this section are
all built using Visual Studio 2005. You need a reference to the following assemblies to compile and
run the examples:

Figure 13-1. SMO classes used with the WMI Provider for Configuration
Management

Microsoft.SqlServer.ConnectionInfo

Microsoft.SqlServer.Smo

Microsoft.SqlServer.WmiEnum

Additional assembly references will be indicated for examples in which they are required.

13.1.1. Enumerating the WMI Installation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This example demonstrates how to instantiate a ManagedComputer object and iterate through its
hierarchy of collections to enumerate information about the WMI installation. The example lists client
protocols, connection settings, server aliases, service instances, and services on the local machine.

 using System;
 using System.Data;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;
 using Microsoft.SqlServer.Management.Smo.Wmi;

 class Program
 {
 static void Main(string[] args)
 {
 ManagedComputer mc = new ManagedComputer();

 Console.WriteLine("-Client Protocols-");
 foreach (ClientProtocol cp in mc.ClientProtocols)
 Console.WriteLine(cp.DisplayName + ": " +
 (cp.IsEnabled ? "Enabled" : "Disabled"));

 Console.WriteLine(Environment.NewLine + "-Connection Settings-");
 WmiConnectionInfo wci = mc.ConnectionSettings;
 Console.WriteLine("MachineName = " + wci.MachineName);
 Console.WriteLine("Timeout = " + wci.Timeout);
 Console.WriteLine("Username = " + wci.Username);

 Console.WriteLine(Environment.NewLine + "-Server Aliases-");
 foreach (ServerAlias sa in mc.ServerAliases)
 Console.WriteLine(sa.Name + ": " + sa.State);

 Console.WriteLine(Environment.NewLine + "-Server Instances-");
 foreach (ServerInstance si in mc.ServerInstances)
 Console.WriteLine(si.Name + ": " + si.State);

 Console.WriteLine(Environment.NewLine + "-Services-");
 foreach (Service s in mc.Services)
 Console.WriteLine(s.Name + ": " + s.ServiceState);

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

Results are shown in Figure 13-2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 13-2. Results from enumerating WMI installation

The ManagedComputer class, which represents a WMI installation on a SQL Server instance, has an
overloaded constructor. The overload used in the preceding example takes no arguments and
initializes a new instance for the default SQL Server instance. The other two overloads let you specify
the name of the computer to connect to, and optionally a login name and password. The
ManagedComputer class exposes WMI functionality through the set of properties described in Table 13-
1.

Table 13-1. ManagedComputer class public properties

Property Return value Description

ClientProtocols ClientProtocolCollection
Gets a collection of ClientProtocol objects, each
representing a client protocol defined on the WMI
installation

ConnectionSettings WmiConnectionInfo Gets the connection settings for the WMI installation

Name string Gets the name of the WMI object

Properties PropertyCollection
Gets a collection of Property objects, each
representing a property defined on the WMI object

ServerAliases ServerAliasCollection
Gets a collection of ServerAlias objects, each
representing a server alias on the WMI installation

ServerInstances ServerInstanceCollection
Gets a collection of ServerInstance objects, each
representing an instance of SQL Server on the WMI
installation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Return value Description

Services ServiceCollection
Gets a collection of Service objects, each
representing a SQL Server service on the WMI
installation

State SqlSmoState Gets the state of the WMI object

Urn Urn Gets the URN address for the WMI object

UserData object
Gets or sets user-defined data associated with the
WMI object

Four collections accessed through properties of the ManagedComputer class allow access to most WMI
functionality. These collections expose the objects described further in Table 13-2.

Table 13-2. ManagedComputer class collections

Class Function

ClientProtocol

The ClientProtocol class represents a network protocol installed on a client that
allows communication with a SQL Server instance over a network. The
ClientProtocol class lets you:

Get or set the display name of the protocol

Enable or disable the protocol

Get the network library information file for the protocol as a NetLibInfo object

Get the network library filename for the protocol

Get or set the order in which the protocol is listed and applied relative to the
supported protocols in the ClientProtocolCollection object

Access and modify the collection of attributes (as ProtocolProperty objects)
defined on the protocol

The collection of ClientProtocol objects is accessed through the ClientProtocols
property.

ServerAlias

A server alias is an alternate name that you can use to connect to an instance of
SQL Server. The ServiceAlias class lets you:

Get or set the connection string used by the alias to connect to the SQL
Server instance

Get or set the name of the alias

Get or set the parent (as a ManagedComputer object) of the alias

Services ServiceCollection
Gets a collection of Service objects, each
representing a SQL Server service on the WMI
installation

State SqlSmoState Gets the state of the WMI object

Urn Urn Gets the URN address for the WMI object

UserData object
Gets or sets user-defined data associated with the
WMI object

Four collections accessed through properties of the ManagedComputer class allow access to most WMI
functionality. These collections expose the objects described further in Table 13-2.

Table 13-2. ManagedComputer class collections

Class Function

ClientProtocol

The ClientProtocol class represents a network protocol installed on a client that
allows communication with a SQL Server instance over a network. The
ClientProtocol class lets you:

Get or set the display name of the protocol

Enable or disable the protocol

Get the network library information file for the protocol as a NetLibInfo object

Get the network library filename for the protocol

Get or set the order in which the protocol is listed and applied relative to the
supported protocols in the ClientProtocolCollection object

Access and modify the collection of attributes (as ProtocolProperty objects)
defined on the protocol

The collection of ClientProtocol objects is accessed through the ClientProtocols
property.

ServerAlias

A server alias is an alternate name that you can use to connect to an instance of
SQL Server. The ServiceAlias class lets you:

Get or set the connection string used by the alias to connect to the SQL
Server instance

Get or set the name of the alias

Get or set the parent (as a ManagedComputer object) of the alias

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Function

Get or set the name of the protocol used by the alias

Get or set the SQL Server instance that the alias connects to

Create, refresh, and drop server aliases

The collection of ServerAlias objects is accessed though the ServerAliases
property.

ServerInstance

The ServerInstance class represents an instance of SQL Server and lets you:

Get or set the name of the server instance

Get or set the parent (as a ManagedComputer object) of the server instance

Access and modify the collection of protocols (as a collection of
ServerProtocol objects) defined on the server in the WMI installation

The collection of ServerInstance objects is accessed though the ServerInstances
property.

Service

The Service class represents an instance of a SQL Server service and lets you:

Find out whether the service can be paused or stopped

Get a list of services that are dependent on the service

Get the name and display name of the service

Get the parent of the service (as a ManagedComputer object)

Get the path of the binary file that implements the service

Get the process ID that uniquely identifies the service

Get the account under which the service is running

Get the state of the service (e.g., stopped, paused, running)

Get the method by which the service is started (as a ServiceStartMode
enumeration value)

Get startup parameters for the service

Change the password for the account under which the service is running

Stop, pause, start, and resume the service

Refresh the service

Set the account under which the service runs

Get or set the name of the protocol used by the alias

Get or set the SQL Server instance that the alias connects to

Create, refresh, and drop server aliases

The collection of ServerAlias objects is accessed though the ServerAliases
property.

ServerInstance

The ServerInstance class represents an instance of SQL Server and lets you:

Get or set the name of the server instance

Get or set the parent (as a ManagedComputer object) of the server instance

Access and modify the collection of protocols (as a collection of
ServerProtocol objects) defined on the server in the WMI installation

The collection of ServerInstance objects is accessed though the ServerInstances
property.

Service

The Service class represents an instance of a SQL Server service and lets you:

Find out whether the service can be paused or stopped

Get a list of services that are dependent on the service

Get the name and display name of the service

Get the parent of the service (as a ManagedComputer object)

Get the path of the binary file that implements the service

Get the process ID that uniquely identifies the service

Get the account under which the service is running

Get the state of the service (e.g., stopped, paused, running)

Get the method by which the service is started (as a ServiceStartMode
enumeration value)

Get startup parameters for the service

Change the password for the account under which the service is running

Stop, pause, start, and resume the service

Refresh the service

Set the account under which the service runs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Function

The collection of Service objects is accessed though the Services property.

The SMO classes for WMI are described in Table 13-3.

Table 13-3. SMO classes used with the WMI Provider for Configuration
Management

Class Description

ClientProtocol
Represents a client network protocol that allows the client to
communicate with a SQL Server instance over a network.

ClientProtocolCollection
Represents a collection of client protocols as ClientProtocol
objects. The ClientProtocols property of the ManagedComputer
class returns the client protocols defined on the WMI installation.

ClientProtocolProperty Represents an attribute of a WMI client network protocol.

ClientProtocolPropertyCollection

Represents a collection of client protocol properties as
ClientProtocolProperty objects. The ProtocolProperties
property of the ClientProtocol class returns the attributes of the
client protocol.

IPAddressProperty Represents an attribute of an IP address.

IPAddressPropertyCollection
Represents a collection of IP address properties as
IPAddressProperty objects. The IPAddressProperties property of
the ServerIPAddress class returns the attributes of the IP address.

ManagedComputer Represents a WMI installation on a SQL Server instance.

NetLibInfo
Represents information about a network library file. The
NetLibInfo property of the ClientProtocol class returns the
NetLibInfo object for the protocol.

ServerAlias Represents an alias for a server connection.

ServerAliasCollection
Represents a collection of server aliases as ServerAlias objects.
The ServerAliases property of the ManagedComputer class returns
the server aliases defined on the WMI installation.

ServerInstance Represents a SQL Server instance.

ServerInstanceCollection
Represents a collection of SQL Server instances as ServerInstance
objects. The ServerInstances property of the ManagedComputer
class returns the server instances defined on the WMI installation.

ServerIPAddress
Represents an IP address of a server protocol defined on the WMI
installation.

ServerIPAddressCollection
Represents a collection of IP addresses as ServerIPAddress
objects. The IPAddresses property of the ServerProtocol class
returns the IP addresses defined on the WMI installation.

The collection of Service objects is accessed though the Services property.

The SMO classes for WMI are described in Table 13-3.

Table 13-3. SMO classes used with the WMI Provider for Configuration
Management

Class Description

ClientProtocol
Represents a client network protocol that allows the client to
communicate with a SQL Server instance over a network.

ClientProtocolCollection
Represents a collection of client protocols as ClientProtocol
objects. The ClientProtocols property of the ManagedComputer
class returns the client protocols defined on the WMI installation.

ClientProtocolProperty Represents an attribute of a WMI client network protocol.

ClientProtocolPropertyCollection

Represents a collection of client protocol properties as
ClientProtocolProperty objects. The ProtocolProperties
property of the ClientProtocol class returns the attributes of the
client protocol.

IPAddressProperty Represents an attribute of an IP address.

IPAddressPropertyCollection
Represents a collection of IP address properties as
IPAddressProperty objects. The IPAddressProperties property of
the ServerIPAddress class returns the attributes of the IP address.

ManagedComputer Represents a WMI installation on a SQL Server instance.

NetLibInfo
Represents information about a network library file. The
NetLibInfo property of the ClientProtocol class returns the
NetLibInfo object for the protocol.

ServerAlias Represents an alias for a server connection.

ServerAliasCollection
Represents a collection of server aliases as ServerAlias objects.
The ServerAliases property of the ManagedComputer class returns
the server aliases defined on the WMI installation.

ServerInstance Represents a SQL Server instance.

ServerInstanceCollection
Represents a collection of SQL Server instances as ServerInstance
objects. The ServerInstances property of the ManagedComputer
class returns the server instances defined on the WMI installation.

ServerIPAddress
Represents an IP address of a server protocol defined on the WMI
installation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

ServerIPAddressCollection
Represents a collection of IP addresses as ServerIPAddress
objects. The IPAddresses property of the ServerProtocol class
returns the IP addresses defined on the WMI installation.

ServerProtocol
Represents a server network protocol that allows the server to
communicate with SQL Server clients over a network.

ServerProtocolCollection
Represents a collection of server protocols as ServerProtocol
objects. The ServerProtocols property of the ManagedComputer
class returns the server protocols defined on the WMI installation.

ServerProtocolProperty Represents an attribute of a WMI server network protocol.

ServerProtocolPropertyCollection

Represents a collection of server protocol properties as
ServerProtocolProperty objects. The ProtocolProperties
property of the ServerProtocol class returns the attributes of the
server protocol.

Service Represents an instance of a SQL Server service.

ServiceCollection
Represents a collection of SQL Server services as Service objects.
The Services property of the ManagedComputer class returns the
services defined on the WMI installation.

WmiConnectionInfo
Represents connection information used by a WMI installation. The
ConnectionSettings property of the ManagedComputer class returns
the WmiConnectionInfo object for the WMI installation.

13.1.2. Creating a Server Alias

This example demonstrates how to create new SMO WMI objects. The example creates a new server
alias on the local SQL Server instance. It does so by instantiating a new ServerAlias object,
associating it with the ManagedComputer object that represents WMI, and then invoking the Create()
method of ServerAlias.

 using System;
 using System.Data;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;
 using Microsoft.SqlServer.Management.Smo.Wmi;

 class Program
 {
 static void Main(string[] args)
 {
 ManagedComputer mc = new ManagedComputer();

 ServerAlias sa = new ServerAlias();
 sa.ConnectionString = "1433";

ServerIPAddressCollection
Represents a collection of IP addresses as ServerIPAddress
objects. The IPAddresses property of the ServerProtocol class
returns the IP addresses defined on the WMI installation.

ServerProtocol
Represents a server network protocol that allows the server to
communicate with SQL Server clients over a network.

ServerProtocolCollection
Represents a collection of server protocols as ServerProtocol
objects. The ServerProtocols property of the ManagedComputer
class returns the server protocols defined on the WMI installation.

ServerProtocolProperty Represents an attribute of a WMI server network protocol.

ServerProtocolPropertyCollection

Represents a collection of server protocol properties as
ServerProtocolProperty objects. The ProtocolProperties
property of the ServerProtocol class returns the attributes of the
server protocol.

Service Represents an instance of a SQL Server service.

ServiceCollection
Represents a collection of SQL Server services as Service objects.
The Services property of the ManagedComputer class returns the
services defined on the WMI installation.

WmiConnectionInfo
Represents connection information used by a WMI installation. The
ConnectionSettings property of the ManagedComputer class returns
the WmiConnectionInfo object for the WMI installation.

13.1.2. Creating a Server Alias

This example demonstrates how to create new SMO WMI objects. The example creates a new server
alias on the local SQL Server instance. It does so by instantiating a new ServerAlias object,
associating it with the ManagedComputer object that represents WMI, and then invoking the Create()
method of ServerAlias.

 using System;
 using System.Data;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;
 using Microsoft.SqlServer.Management.Smo.Wmi;

 class Program
 {
 static void Main(string[] args)
 {
 ManagedComputer mc = new ManagedComputer();

 ServerAlias sa = new ServerAlias();
 sa.ConnectionString = "1433";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 sa.Name = "PSS2005 Alias";
 sa.Parent = mc;
 sa.ProtocolName = "tcp";
 sa.ServerName = "locahost";
 sa.Create();

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

Figure 13-3 shows the new alias using the SQL Server Configuration Manager tool (Start
Microsoft SQL Server 2005 Configuration Tools SQL Server Configuration Manager).

Figure 13-3. Creating a server alias results

13.1.3. Starting and Stopping a Service

This example shows how to stop and start a service by stopping and restarting SQL Server Reporting
Services:

 using System;
 using System.Data;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;
 using Microsoft.SqlServer.Management.Smo.Wmi;
 using System.Threading;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 class Program
 {
 static void Main(string[] args)
 {
 ManagedComputer mc = new ManagedComputer();

 Service
 s = mc.Services["ReportServer"];
 Console.WriteLine("ReportServer status: " + s.ServiceState);

 s.Stop();
 Thread.Sleep(10000);
 s.Refresh();
 Console.WriteLine("ReportServer status: " + s.ServiceState);
 s.Start();
 Thread.Sleep(10000);
 s.Refresh();
 Console.WriteLine("ReportServer status: " + s.ServiceState);

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

Results are shown in Figure 13-4.

Figure 13-4. Results from stopping and starting service example

The Service class has methods to control the state of a serviceStart(), Pause(), Resume(), and
Stop(). The AcceptsPause and AcceptsStop properties should be checked before calling Pause() or
Stop() to ensure that the service can be paused or stopped.

The example uses the static Sleep() method of the THRead class to pause for 10 seconds to allow
the service state change operations to complete. The Refresh() method of the Service class
refreshes the SQL Server service to ensure the status is current.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 14. SQL Server Reporting Services
(SSRS)
SQL Server 2005 Reporting Services (SSRS) is a middle-tier server that provides a reporting
environment running on top of Internet Information Services (IIS). You can build reports from any
data source that has a .NET Framework-managed data provider, an OLE DB provider, or an ODBC
provider. This lets you build reports based on relational, multidimensional, and XML data sources
from a wide range of database servers. You can access a report by using a URL, the report viewer
control in either a web or Windows application, or Report Server web services.

SSRS supports tabular, matrix, chart, and free-form report layoutsthe layouts, together with
graphical elements, can be combined in a single report if required. You can include links to additional
information or to related reports and drill-down functionality. Reports can contain both mandatory
and optional parameters. Ad hoc reporting is supported through use of Report Buildera ClickOnce
Windows application that is accessed through the URL
http://<servername>/reportserver/reportbuilder/reportbuilder.application from the report server or
from Report Manager.

SSRS supports a variety of output formats, including HTML 3.2, HTML 4.0, MHTML, PDF, XML, Excel,
CSV, and Image (TIFF). SSRS automatically provides a navigation toolbar for those formats that
support toolbars. Additionally, you can add document maps and bookmarks to facilitate navigation in
large reports.

Three tools are provided for designing reports. Report Designer is a report-authoring application
hosted within Business Intelligence Development Studio. Report Designer lets you define, preview,
and publish reports. Report Designer provides query builders, an expression editor, and wizards to
help you work with images and to create simple reports. Ad hoc reporting is supported by two tools:
Model Designer, which you use to define, edit, and publish report modelsbusiness-oriented
abstractions of underlying data used to help build ad hoc reportsand Report Builder, which you use to
create ad hoc reports based on published report models and manage them as you would any other
reports.

SSRS includes configuration, monitoring, and management tools. Role-based security controls access
to folders, reports, and resources. Report-delivery options include on-demand, through included
SharePoint Web parts that let you view a report from a SharePoint site, automated by subscription,
or automated based on data.

SSRS is an open and extensible reporting platform. You can use the API to develop, install, and
manage SSRS component extensions to support custom-data, delivery, and rendering requirements.
Report Definition Language (RDL) is used to describe the layout and content of a report. RDL is an
XML-based grammar that you can extend to implement custom functionality. RDL can be generated
manually or programmatically using Report Designer.

This chapter discusses how to programmatically access SSRS reports, and how to incorporate them
into your applications. For more information about designing, defining, deploying, delivering, and

http://<servername>/reportserver/reportbuilder/reportbuilder.application
http://lib.ommolketab.ir
http://lib.ommolketab.ir

securing reports, see Microsoft SQL Server 2005 Books Online.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.1. Getting Started

The examples in this chapter use the AdventureWorks database and sample reports. Follow these
instructions to install and deploy the sample reports:

From the Start menu, select Microsoft SQL Server 2005 Documentation and Tutorials
Samples Microsoft SQL Server 2005 Samples to install the sample reports.

1.

Open SQL Server Business Intelligence Development Studio.2.

Open the solution C:\Program Files\Microsoft SQL Server\90\Samples\Reporting
Services\Report Samples\AdventureWorks Sample Reports\AdventureWorks Sample
Reports.sln.

3.

Select the Production solution configuration (instead of the default, Debug) on the standard
toolbar.

4.

From the main menu, select Build Deploy AdventureWorks Sample Reports to publish the
reports.

5.

Open a web browser and navigate to the reports virtual directory of your report server,
http://<servername>/reports. If your report server is on the local machine, enter the URL
http://localhost/reports. The AdventureWorks Sample Reports folder is listed in the Report
Manager contents, as shown in Figure 14-1.

6.

Click the AdventureWorks Sample Reports folder to view the reports it contains. Click one of the
reports to render it.

7.

Figure 14-1. Report Manager

http://<servername>/reports
http://localhost/reports
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.2. Integrating Reports into Applications

SSRS lets you integrate reports into applications in three different ways:

Issue URL -based requests to navigate, access, and view reports. This is the most efficient way to render reports, because URL-
based requests directly access the server. URL-based reports are also easy and efficient to implement. You can use URL-based
requests in both web and Windows applications. In a Windows application, launch a web browser in a separate window or display
the report in the web browser control on the form.

Use the freely distributable report viewer control for Visual Studio 2005 to embed Reporting Services functionality into either a
Windows or web application.

Access the report server through Report Server web service using SOAP over HTTP as the communication interface between the
client and the report server. In addition to providing the capabilities of URL-based requests, the web service exposes report
management functionality that is not available through URL access . This includes content, subscription, and data-source
management. You can use the SOAP API in both Windows and web applications.

A typical enterprise application uses more than one of these methods to meet reporting needs. The three methods are discussed in
more detail in the following subsections.

14.2.1. URL Access

The URL request contains information identifying the report server to use, as well as parameters that are processed by the report
server and that control the formatting and rendering of the report. The parameters, parameter prefixes, and combination of supplied
parameters in the URL determine how the report server handles a specific request. Report server URLs follow W3C/IETF formatting
guidelines:

Parameters are separated by an ampersand (&).

Name-value pairs are separated by an equals sign (=).

The order of parameters is not significant.

For example, enter the URL http://localhost/ReportServer?/AdventureWorksSampleReports/SalesOrderDetail&rs:Command=Render .
The report shown in Figure 14-2 is rendered in the browser.

Figure 14-2. Sales order detail report

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The information in the URL specifies that you want to do the following:

Use the local report server.

Access a report in the report server virtual root named ReportServer.

Access the report named AdventureWorks Sample Reports/Sales Order Detail .

Render the report in the default rendering format for the browser.

The report server URL syntax is:

 protocol://server/virtualroot?[/pathinfo]&[prefix:]param=

 value[&prefix:param=value]...n]

where:

protocol

The URL protocol, usually http or https .

server

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The name of the computer running the report server.

virtualroot

The name of the virtual root of the report server.

pathinfo

The full pathname of the item being accessed from the report server database. The item can be one of four types, described in
Table 14-1 .

Table 14-1. URL item types

Item type Description

Data
Source

Displays the data source if the user is authenticated with Read Contents permission for the data source

Folder
Returns a generic folder-navigation page containing links to subfolders, reports, data sources, and resources in the
folder

Report Renders and returns the specified report

Resource Returns the specified resource for a report

prefix

Accesses a specific process running in the report server. If not specified, the parameter is processed as a report (rs) parameter.
Table 14-2 describes the available prefixes.

Table 14-2. URL parameter prefixes

Parameter
prefix

Description

rc

Specifies device-information settings, including those for reports targeted for the HTML Viewer. HTML device-
information settings are described in Table 14-5 .

The device is specified using the report server rs:Format parameter. Valid values depend on the rendering
extensions installed on the report server. Common devices include HTML 3.2, HTML 4.0, CSV, Excel, Image
(TIFF), MHTML, PDF, and XML.

rs Specifies configuration settings to the report server.

dsu Specifies a username to access a data source.

dsp Specifies a password to access a data source.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

param

The name of the parameter. Parameters control how reports are processed and rendered.

value

The value of the parameter.

Report server parameters are prefixed with rs and are used to control report processing. Table 14-3 describes report server
parameters.

Table 14-3. Report server parameters

Parameter Description

Command

Specifies the type of request made to the report server. Table 14-4 describes possible values.

If the rs:Command parameter is not specified, the report server evaluates the URL and selects the appropriate
command value. Specifying the rs:Command value will improve performance.

Only one rs:Command parameter can be specified in a URL.

Format

Specifies the format for rendering the report. The ListExtensions() method of the ReportingService class (in
the ReportService web service) returns the rendering extensions installed on a report server instance. The
following code snippet shows how:

 ReportingService rs = new ReportingService();
 rs.Credentials =
 System.Net.CredentialCache.DefaultCredentials;
 Extension[] re =
 rs.ListExtensions(ExtensionTypeEnum.Render);

ParameterLanguage
Specifies the language for URL parameters that is independent of the browser language. The value is a culture
value, such as en-US . The default is the browser language.

Snapshot
Renders the report based on a report-history snapshot. The value of this parameter must be a valid snapshot ID
in the ISO 8601 standard format YYYY-MM-DDTHH:MM:SS .

Table 14-4 describes the rs:Command parameter values .

Table 14-4. rs:Command parameter values

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value Description

GetDataSourceContents
Displays the value of a specified data source as XML. This parameter value corresponds to calling the
GeTDataSourceContents() web-service method.

GetResourceContents
Renders a resource and displays it as HTML. This parameter value corresponds to calling the
GetresourceContents() web-service method.

ListChildren
Displays children for the item passed in the URL. This parameter value corresponds to calling the
ListChildren() web-service method.

Render Renders the specified report. This parameter value corresponds to calling the Render() web-service method.

For example, entering this URL in your browser will display all child items of the AdventureWorks Sample Reports folder:
http://localhost/reportserver?/AdventureWorksSampleReports&rs:Command=ListChildren .

HTML device-information settings control how the report is rendered in HTML format. HTML device-information settings, and other
device-information settings, are prefixed with rc . Table 14-5 describes HTML device-information settings. See Microsoft SQL Server
2005 Books Online for details about settings for other devices.

Table 14-5. HTML device-information settings

Parameter Description

BookmarkID The bookmark ID to jump to in the report.

DocMap
Specifies whether the report document map is visible. The value true displays the document map and the value
false hides it. The default value is TRue .

DocMapID The document map ID to scroll to in the report.

EndFind
The last page in the report to search. The default value is the current page. Use this parameter together with the
StartFind parameter.

FallbackPage The number of the page to display if a search or document map selection fails. The default is the current page.

FindString The text to search for in the report. The default value is an empty string.

GetImage The icon for the HTML Viewer user interface.

HTMLFragment
Specifies whether an HTML fragment is created instead of a full HTML document. The HTML fragment omits the
<HTML> and <BODY> HTML tags. The default value is false .

Icon The icon for the specified rendering extension.

JavaScript Specifies whether JavaScript is supported in the rendered report.

LinkTarget
The target for hyperlinks in the report. This value can be a specific window or frame, a new window by setting the
parameter value to _blank , or the values _self , _parent , and _top .

Parameters
Specifies whether the parameters area of the toolbar is visible. The value true displays the parameters area and the
value false hides it. The default value is TRue .

ReplacementRoot
The path used for prefixing the value of the HRef attribute of A elements in the HTML report returned by the server.
By default, the server provides this value.

http://localhost/reportserver?/AdventureWorksSampleReports&rs:Command=ListChildren
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Parameter Description

Section
The page in the report to display. The default value is 1 . The last page is displayed if the parameter value is greater
than the number of pages in the report.

StartFind
The first page in the report to search. The default value is the current page. Use this parameter together with the
EndFind parameter.

StreamRoot
The path used for prefixing the value of the src attribute of the IMG element in the HTML report returned by the
server. By default, the server provides this value.

StyleSheet The stylesheet to apply to the HTML Viewer.

StyleStream
Specifies whether styles and scripts are created as a separate stream instead of in the document. The value TRue
creates a separate stream and the value of false puts styles and scripts in the document. The default value is false
.

Toolbar
Specifies whether the toolbar is visible. The value true displays the toolbar for rendering formats that support a
toolbar. The value false hides the toolbar. The default value is true .

Type The short name of the browser as defined in browscap.ini .

Zoom
The report zoom value. The value can be a percent integer or the string constant Page Width or Whole Page . The
default value is the percent integer 100 .

You can use a report server parameter to control the rendering format for the report. The URL http://localhost/reportserver?
/AdventureWorksSampleReports/CompanySales&rs:Command=Render&rs:Format=IMAGE renders the report as a TIFF image. The URL
http://localhost/reportserver?/AdventureWorksSampleReports/CompanySales&rs:Command=Render&rs:Format=XML renders the
report as an XML file.

HTML device-information settings control how the report is displayed in a browser. The URL http://localhost/reportserver?
/AdventureWorksSampleReports/CompanySales&rs:Command=Render&rc:Toolbar=false&rc:Zoom=200 renders the report at twice the
default size without a toolbar.

Report parameters are passed in the URL as name-value pairs separated by an equals sign (=) . Pass a null parameter using the
syntax parameterName:isNull=true . Note that report parameters are not prefixed. For example, the report Employee Sales Summary
takes three parameters: ReportMonth (integer), ReportYear (integer), and EmpID (string). When you run the report normally, the RDL
populates the employee drop-down list using the DataSet named SalesEmps . This corresponds to the following query:

 SELECT E.EmployeeID, C.FirstName + N' ' + C.LastName AS Employee
 FROM HumanResources.Employee E
 INNER JOIN Sales.SalesPerson SP ON E.EmployeeID = SP.SalesPersonID
 INNER JOIN Person.Contact C ON E.ContactID = C.ContactID
 ORDER BY C.LastName, C.FirstName

We need to run this query to determine the employee ID for each employee. Jillian Carson has employee ID 277. The URL:

http://localhost/reportserver?
/AdventureWorksSampleReports/EmployeeSalesSummary&rsCommand=Render&EmpID=277&ReportMonth=7&ReportYear=2002

sets the report parameters to return the sales summary report for Jillian Carson for July 2002.

Section
The page in the report to display. The default value is 1 . The last page is displayed if the parameter value is greater
than the number of pages in the report.

StartFind
The first page in the report to search. The default value is the current page. Use this parameter together with the
EndFind parameter.

StreamRoot
The path used for prefixing the value of the src attribute of the IMG element in the HTML report returned by the
server. By default, the server provides this value.

StyleSheet The stylesheet to apply to the HTML Viewer.

StyleStream
Specifies whether styles and scripts are created as a separate stream instead of in the document. The value TRue
creates a separate stream and the value of false puts styles and scripts in the document. The default value is false
.

Toolbar
Specifies whether the toolbar is visible. The value true displays the toolbar for rendering formats that support a
toolbar. The value false hides the toolbar. The default value is true .

Type The short name of the browser as defined in browscap.ini .

Zoom
The report zoom value. The value can be a percent integer or the string constant Page Width or Whole Page . The
default value is the percent integer 100 .

You can use a report server parameter to control the rendering format for the report. The URL http://localhost/reportserver?
/AdventureWorksSampleReports/CompanySales&rs:Command=Render&rs:Format=IMAGE renders the report as a TIFF image. The URL
http://localhost/reportserver?/AdventureWorksSampleReports/CompanySales&rs:Command=Render&rs:Format=XML renders the
report as an XML file.

HTML device-information settings control how the report is displayed in a browser. The URL http://localhost/reportserver?
/AdventureWorksSampleReports/CompanySales&rs:Command=Render&rc:Toolbar=false&rc:Zoom=200 renders the report at twice the
default size without a toolbar.

Report parameters are passed in the URL as name-value pairs separated by an equals sign (=) . Pass a null parameter using the
syntax parameterName:isNull=true . Note that report parameters are not prefixed. For example, the report Employee Sales Summary
takes three parameters: ReportMonth (integer), ReportYear (integer), and EmpID (string). When you run the report normally, the RDL
populates the employee drop-down list using the DataSet named SalesEmps . This corresponds to the following query:

 SELECT E.EmployeeID, C.FirstName + N' ' + C.LastName AS Employee
 FROM HumanResources.Employee E
 INNER JOIN Sales.SalesPerson SP ON E.EmployeeID = SP.SalesPersonID
 INNER JOIN Person.Contact C ON E.ContactID = C.ContactID
 ORDER BY C.LastName, C.FirstName

We need to run this query to determine the employee ID for each employee. Jillian Carson has employee ID 277. The URL:

http://localhost/reportserver?
/AdventureWorksSampleReports/EmployeeSalesSummary&rsCommand=Render&EmpID=277&ReportMonth=7&ReportYear=2002

sets the report parameters to return the sales summary report for Jillian Carson for July 2002.

http://localhost/reportserver?/AdventureWorksSampleReports/CompanySales&rs:Command=Render&rs:Format=XML
http://localhost/reportserver?
http://localhost/reportserver?/AdventureWorksSampleReports/CompanySales&rs:Command=Render&rs:Format=XML
http://localhost/reportserver?
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The preceding examples show how to request a report using a URL. This is equivalent to an HTTP GET method . You can also request a
report using an HTTP POST method, which transfers the parameter name/value pairs in the HTTP header instead of the URL. Using an
HTTP POST method overcomes the maximum allowable URL length limit in cases where a parameter list is long, and is also more secure
because the user cannot directly modify the parameter names and values. The following HTML returns the same sales summary report
for Jillian Carson for July 2002 as in the preceding example but uses an HTTP POST method:

 <form id="postRenderForm"
 action="http://localhost/reportserver?/AdventureWorks Sample Reports/
 Employee Sales Summary" method="post" target="_self">
 <input type="hidden" name="rs:Command" value="Render"/>
 <input type="hidden" name="EmpID" value="277"/>
 <input type="hidden" name="ReportMonth" value="7"/>
 <input type="hidden" name="ReportYear" value="2002"/>
 <input type="submit" value="Render"/>
 </form>

14.2.2. Report Viewer Control

The report viewer control is a freely distributable control that ships with Visual Studio 2005. The control is called ReportViewer and is in
the Data section of the Toolbox in the Visual Studio 2005 IDE.

Use the control by dragging it onto either a Windows form or a web form surface. The ReportViewer control menu prompts you to either
"Choose Report" from a drop-down list or "Design a new report." Click "Design a new report" to bring up Report Designer. Select
<Server Report> , and you are prompted for the Report Server Url and the Report Path . Fill in these values and run the applicationthe
report appears in the control.

For example, set the value of Report Server Url to http://localhost/reportserver and the Report Path to /AdventureWorks Sample
Reports/Company Sales . Run the applicationif you created a Windows Forms application, the resulting output will look like Figure 14-3 .

Figure 14-3. AdventureWorks 2002-2003 company sales report

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The report server and report path can be specified at runtime through the properties of the ServerReport object exposed by the
ServerReport property of the control, as shown in the following code snippet:

 reportViewer1.ServerReport.ReportServerUrl =
 new Uri(@"http://localhost/reportserver");
 reportViewer1.ServerReport.ReportPath =
 @"/AdventureWorks Sample Reports/Company Sales";

14.2.3. Report Server Web Service

SSRS provides full access to report server functionality through Report Server web services . The web service provides methods and
properties for both report executioncontrolling the processing and rendering of reportsand report management.

You can develop Reporting Services applications that use Report Server web services with the .NET Framework, by using the Reporting
Services script environment and the rs utility (rs.exe), or by using any development tools capable of invoking SOAP methods. This
section discusses only the first approach. For information on the other two approaches, see Microsoft SQL Server 2005 Books Online.

These are the steps you follow to create an application that uses Report Server web services (you'll build a real example shortly):

1.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Create a new Windows application in Visual Studio 2005.1.

Using Solution Explorer, add a web reference to the ReportService web service from the local machine. Do this by right-clicking
the Web References node in Solution Explorer and selecting Add Web Reference from the context menu. This displays the Add Web
Reference dialog box, Start Browsing for Web Services page, shown in Figure 14-4 .

2.

Click the "Web services on the local machine" link to display the dialog box shown in Figure 14-5 .3.

Click the ReportService service to display the dialog box shown in Figure 14-6 .

Specify ReportService in the Web reference name listbox and click the Add Reference button.

4.

Add a using directive to the top of the class for the ReportService web service. For example, if you named the application MyApp ,
the using directive would be as follows:

 using MyApp.ReportService;

5.

Create an instance of the proxy class, as shown in the following snippet:

 ReportingService rs = new ReportingService();

6.

Pass authentication credentials to the web service. The following code passes default Windows credentials:

 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

Figure 14-4. Start Browsing for Web Services page

7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Call report server web service methods from your application. Once the proxy is instantiated and the caller is authenticated, this is
done in the same way as with any .NET Framework method.

8.

As an example, let's build a Windows Forms application that presents a drop-down list of the reports available in the AdventureWorks
Sample Reports folder, as shown in Figure 14-7 .

When you select a report from the list and click the Render button, the report is saved to a web page (HTML) file. Note that if you select
a report that requires parameters, such as Employee Sales Summary , a ReportParameterValueNotSetException is raised. The
ParameterValue array argument is always passed as null to keep this example simple.

To build the example, create a Windows application named ReportServerWebService . Add a listbox to the form and name it
reportListBox . Add a button to the form and name it renderButton . Add a web reference to the ReportService web service and give it
the name ReportService . Copy the following code into the form:

 using System;
 using System.Collections.Generic;
 using System.ComponentModel;
 using System.Data;
 using System.Drawing;

Figure 14-5. Web Services on the Local Machine page

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 using System.Text;
 using System.Windows.Forms;
 using System.IO;

 using ReportServerWebService.ReportService;

 namespace ReportServerWebService
 {
 public partial class MainForm : Form
 {
 private string reportPath = @"/AdventureWorks Sample Reports";

 public MainForm()
 {
 InitializeComponent();
 }

 private void MainForm_Load(object sender, EventArgs e)
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 CatalogItem[] cis = rs.ListChildren(reportPath, false);
 foreach (CatalogItem ci in cis)
 {
 if(ci.Type == ItemTypeEnum.Report)
 reportListBox.Items.Add(ci.Name);
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 14-6. "ReportingService" Description page

Figure 14-7. AdventureWorks sample reports viewer

 private void renderButton_Click(object sender, EventArgs e)
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (reportListBox.SelectedIndex >= 0)
 {
 string reportName =
 reportListBox.Items[reportListBox.SelectedIndex].ToString();

 SaveFileDialog sfd = new SaveFileDialog();
 sfd.Filter = "Web page format (*.html)|*.html";
 sfd.FileName = reportName;
 if (sfd.ShowDialog() == DialogResult.OK)
 {
 string renderFileName = sfd.FileName;

 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 string reportFullName = reportPath + "/" + reportName;
 string format = "HTML4.0";
 string historyID = null;
 string deviceInfo = null;
 ParameterValue[] pv = null;
 DataSourceCredentials[] dsc = null;
 string showHideToggle = null;
 string encoding;
 string mimeType;
 ParameterValue[] parameterUsed = null;
 Warning[] warning = null;
 string[] streamIds = null;
 byte[] report;

 try
 {
 report = rs.Render(reportFullName, format, historyID,
 deviceInfo, pv, dsc, showHideToggle, out encoding,
 out mimeType, out parameterUsed, out warning,
 out streamIds);

 using (FileStream fs = File.OpenWrite(renderFileName))
 fs.Write(report, 0, report.Length);
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Error);
 }
 }
 }
 }
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Running the example launches the application window with a listbox containing the available reports. Select the Company Sales report
and click the Render button. The report is saved as Company Sales.html in the location you specify. An excerpt from this file follows:

 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
 <html>
 <head>
 <title>
 Company Sales
 </title>
 <META http-equiv="Content-Type" content="text/html; charset=utf-8">
 <META http-equiv="Content-Style-Type" content="text/css">
 <META http-equiv="Content-Script-Type" content="text/javascript">

 ...

 <IMG BORDER="0" SRC="http://localhost/ReportServer?%2f
 AdventureWorks+Sample+Reports%2fCompany+Sales&
 rs:Command=Get&rc:GetImage=9.00.1399.00TogglePlus.gif"/>
 Bikes</DIV></TD>
 <TD class="a17"><DIV class="a16">$26,664,534</DIV></TD>
 <TD class="a17"><DIV class="a16">$35,199,346</DIV></TD></TR>
 <TR VALIGN="top"><TD WIDTH="0" style="HEIGHT:6.35mm"></TD>
 <TD class="a8" COLSPAN="2"><DIV class="a10">
 <a href="http://localhost/ReportServer?%2f
 AdventureWorks+Sample+Reports%2fCompany+Sales&
 rc%3aZoom=200&rc%3aSection=0&rs%3aFormat=HTML4.0&
 rs%3aShowHideToggle=368&rs%3aSnapshot%3aisnull=True">
 <IMG BORDER="0" SRC="http://localhost/ReportServer?%2f
 AdventureWorks+Sample+Reports%2fCompany+Sales&rs:Command=Get&
 rc:GetImage=9.00.1399.00TogglePlus.gif"/>
 Accessories</DIV></TD>
 <TD class="a17"><DIV class="a16">$93,797</DIV></TD>
 <TD class="a17"><DIV class="a16">$595,014</DIV></TD></TR></TABLE></TD></TR>
 <TR><TD style="HEIGHT:1.59mm"></TD></TR></TABLE></DIV></TD>
 <TD WIDTH="100%" HEIGHT="0"></TD></TR><TR>
 <TD WIDTH="0" HEIGHT="100%"></TD></TR></TABLE></DIV>
 </body>
 </html>

Figure 14-8 shows the report when opened in Internet Explorer.

The Render() method takes arguments that identify the report and specify how to render the results to a byte stream that can be
saved to a file or displayed.

Device-information settings are passed to the Render() method as a <DeviceInfo> XML element. HTML device-information settings are
described in Table 14-5 , earlier in the chapter. For example, to zoom the report 200%, set the deviceInfo argument of the Render()

method to the following:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <DeviceInfo>
 <Zoom>200</Zoom>
 </DeviceInfo>

Figure 14-8. Results for rendering a report to a file example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.3. Reporting Services Extensions

SQL Server Reporting Services is designed to be extensible. The
Microsoft.ReportingServices.DataProcessing namespace contains interfaces that let you extend
Reporting Services to integrate custom data into your reports. The
Microsoft.ReportingServices.Interfaces namespace contains interfaces that let you extend
Reporting Services delivery mechanisms and build custom security extensions for Reporting Services.
The Microsoft.Reporting.ReportRendering namespace contains classes and interfaces that let you
extend the report-rendering capabilities of Reporting Services. For more information about
developing Reporting Services extensions, see Microsoft SQL Server 2005 Books Online.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 15. SQL Server Integration
Services (SSIS)

SQL Server Integration Services (SSIS) is a platform for building data integration and workflow
solutions and extract, transform, and load (ETL) solutions for data warehousing. Common integration
scenarios include merging data from heterogeneous data sources, populating data warehouses and
data marts, standardizing data, and performing administrative functions such as backing up, copying,
and loading data.

SQL Server 2005 provides graphical tools for constructing data integration solutions. You can also
construct, maintain, manage, and run data integration programmatically using either native or
managed code. This chapter provides an overview of SSIS and demonstrates SSIS managed-code
programming.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.1. Architecture

SSIS consists of four key parts:

Integration Services service

Manages storage of packages and monitors running Integration Services packages.

Integration Services object model

Comprises native and managed APIs for accessing Integration Services tools, command-line
utilities, and custom applications.

Integration Services runtime

Saves the layout of packages, runs packages, and supports logging, breakpoints, configuration,
connections, and transactions. SSIS runtime executables are the packages, containers, tasks,
and event handlers that perform workflow functionality.

Data flows

Move data from source to destination with optional transformation. There are three types of
data-flow componentssource, transformation, and destination (load).

15.1.1. SSIS Objects

The SSIS object model is built on eight primary objects:

Package

A collection of connections, control-flow elements, data-flow elements, event handlers,
variables, and configurations either created using SSIS graphical-design tools or built
programmatically.

Control flow

Tasks, containers, and constraints that connect executables into an ordered flow.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Data flow

Sources and destinations that extract and load the data, data transformations, and paths
linking sources, transformations, and destinations. The data flow is created within a data-flow
taskan executable that creates, orders, and runs the data flow.

Connection manager

Defines the connection string for accessing data that tasks, transformations, and event
handlers in the package use.

Event handler

A workflow that runs in response to events raised by a package, task, or container.

Configuration

A set of name-value pairs that defines the properties of the package and its tasks, containers,
variables, connections, and event handlers when the package runs. Separating configuration
from the package lets you change the properties of the package without changing the package.
These objects also facilitate deploying packages from development servers to production
servers and moving packages between servers/environments.

Log provider

Defines the destination type and format used to log runtime information for packages,
containers, and tasks.

System and user-defined variables

Stores values that SSIS packages, tasks, and event handlers use at runtime and exposes
information about packages at runtime.

Figure 15-1 shows the relationship between the SSIS objects.

The following subsections describe each of these objects in more detail.

15.1.2. Control-Flow Elements

SSIS provides three different types of control-flow elements that can be nested:

Figure 15-1. SSIS object relationship

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Containers

Provide structures for grouping tasks and implementing repeating control flow in packages.
SSIS provides three types of containers :

Foreach Loop container

Repeats control flow for each element in a collection.

For Loop container

Repeats control flow while a test expression evaluates as TRue.

Sequence container

Defines a subset of the control flow in a package. This lets you manage and execute a
group of executables (tasks and containers) as a single unit.

Tasks

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Provide functionality within the package. SSIS provides seven types of tasks:

Workflow tasks

Communicate with other processes to run packages or programs, send and receive
messages between packages, send email messages, read Windows Management
Instrumentation (WMI) data, and monitor WMI events.

Data-flow tasks

Define and run data flows that extract, transform, and load data.

Data-preparation tasks

Copy files and directories, download files and data, save data returned by web methods,
and manipulate XML documents.

SQL Server tasks

Access, copy, create, modify, and delete SQL Server data and objects.

Analysis Services tasks

Create, modify, delete, and process Analysis Services objects. Analysis Services is
discussed in Chapter 20.

Scripting tasks

Extend package functionality with custom scripts.

Maintenance tasks

Perform numerous administrative functionsback up the database, check database
integrity, execute SQL Service Agent jobs, execute T-SQL statements, clean up history,
notify operators, rebuild and reorganize indexes, shrink databases, and update statistics.

Precedent constraints

Connect containers and tasks within packages in an ordered flow. You can control the sequence
of execution and specify conditions that determine whether containers and tasks run.

15.1.3. Data-Flow Components

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Data-flow components are connected within a data-flow task using integration service paths. These
paths map the outputs of one data-flow component to the inputs of the next data-flow component in
the data-flow task. SSIS provides three types of data-flow components:

Source

Retrieve data from an external data source available to components in the data flow. A source
has one or more outputs that make source columns available to the next component in the
data flow, and can have one or more error outputs. SSIS provides the sources described in
Table 15-1. You can develop custom sources if these do not meet your needs.

Table 15-1. SSIS data-flow sources

Source Description

DataReader Data from a .NET Framework data provider

Excel Data from an Excel file

Flat File Data from a flat file

OLE DB Data from an OLE DB provider

Raw File Raw data from a file

Script Component Data from the results of executing a script

XML Data from an XML file

Transformation

Performs tasks such as updating, aggregating, cleaning, distributing, and merging data. A
transformation can have single or multiple inputs and outputs depending on the task it
performs, and can also have one or more error outputs. SSIS provides business intelligence,
row, rowset, split and join transformations, as well as other miscellaneous transformations. You
can develop custom transformations if these do not meet your needs. See Microsoft SQL Server
2005 Books Online for more information about the built-in transformations.

Destination

Loads data from a data flow into external data sources or creates an in-memory DataSet.
Destinations have one or more inputs and optionally one or more error outputs. SSIS provides
the destinations described in Table 15-2. You can develop custom destinations if these do not
meet your needs.

Table 15-2. SSIS data-flow destinations

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Destination Description

Data Mining Model Training Trains a data-mining model

DataReader Exposes data through an ADO.NET DataReader interface

Dimension Processing Loads and processes an Analysis Services dimension

Excel Loads an Excel file

Flat File Loads a flat file

OLE DB Loads an OLE DB data destination

Partition Processing Loads and processes an Analysis Services partition

Raw File Loads a raw file

Recordset Exposes data through an ADO.NET Recordset

Script Component Loads data using a script

SQL Server Mobile Loads a SQL Server Mobile database

SQL Server Destination Bulk loads data to a SQL Server 2005 table or view

15.1.4. Connection Managers

A connection manager describes the connection to a data source for accessing data that tasks,
transformations, and event handlers in the package use. SSIS creates the connections when a
package runs. You can define multiple connections for a package. SSIS provides the connection
manager types described in Table 15-3.

Table 15-3. SSIS connection manager types

Type Description

ADO Connects to a data source using ADO

ADO.NET Connects to a data source using the ADO.NET data provider

EXCEL Connects to an Excel file

FILE Connects to a single file or folder

FLATFILE Connects to data in a single flat file

FTP Connects to an FTP server

HTTP Connects to a web service or web site

MSMQ Connects to a Microsoft Message Queue (MSMQ) queue

MSOLAP90 Connects to an instance of Analysis Services or to an Analysis Services project

MULTIFILE Connects to multiple files and folders

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Type Description

MULTIFLATFILE Connects to data in multiple flat files

ODBC Connects to a data source using ODBC

OLEDB Connects to a data source using OLE DB

SMOServer Connects to SQL Server Management Objects (SMO)

SMTP Connects to an SMTP server

SQLMOBILE Connects to a SQL Server Mobile database

WMI Connects to a WMI server

15.1.5. Events

SSIS executablespackages, Foreach Loop containers, For Loop containers, Sequence containers, and
task host containersraise events at runtime. You can write custom event handlers to extend package
functionality and simplify administration. If an event does not have a handler, the event bubbles up
to the next container in the package hierarchy until it is finally raised to the package. Table 15-4
describes the SSIS runtime events.

Table 15-4. SSIS runtime events

Event Description

OnError Raised by an executable when an error occurs

OnExecStatusChanged Raised by an executable when its execution status changes

OnInformation
Raised by an executable during validation and execution to report
information

OnPostExecute Raised by an executable immediately after it finishes running

OnPostValidate Raised by an executable immediately after it finishes validating

OnPreExecute Raised by an executable immediately before it starts running

OnPreValidate Raised by an executable immediately before it starts validating

OnProgress Raised by an executable when progress has been made during execution

OnQueryCancel Raised by an executable to determine whether it should stop running

OnTaskFailed Raised by a task when it fails

OnVariableValueChanged Raised by an executable when the value of a variable changes

OnWarning Raised by an executable when a warning occurs

MULTIFLATFILE Connects to data in multiple flat files

ODBC Connects to a data source using ODBC

OLEDB Connects to a data source using OLE DB

SMOServer Connects to SQL Server Management Objects (SMO)

SMTP Connects to an SMTP server

SQLMOBILE Connects to a SQL Server Mobile database

WMI Connects to a WMI server

15.1.5. Events

SSIS executablespackages, Foreach Loop containers, For Loop containers, Sequence containers, and
task host containersraise events at runtime. You can write custom event handlers to extend package
functionality and simplify administration. If an event does not have a handler, the event bubbles up
to the next container in the package hierarchy until it is finally raised to the package. Table 15-4
describes the SSIS runtime events.

Table 15-4. SSIS runtime events

Event Description

OnError Raised by an executable when an error occurs

OnExecStatusChanged Raised by an executable when its execution status changes

OnInformation
Raised by an executable during validation and execution to report
information

OnPostExecute Raised by an executable immediately after it finishes running

OnPostValidate Raised by an executable immediately after it finishes validating

OnPreExecute Raised by an executable immediately before it starts running

OnPreValidate Raised by an executable immediately before it starts validating

OnProgress Raised by an executable when progress has been made during execution

OnQueryCancel Raised by an executable to determine whether it should stop running

OnTaskFailed Raised by a task when it fails

OnVariableValueChanged Raised by an executable when the value of a variable changes

OnWarning Raised by an executable when a warning occurs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.1.6. Package Configurations

SSIS provides package configurations for updating property values at runtime. Each package
configuration is a property-value pair. Configurations simplify deploying packages to multiple servers,
simplify moving packages between servers, and add flexibility to packages by allowing configuration
properties to be easily changed. SSIS supports the package-configuration types described in Table
15-5.

Table 15-5. SSIS package-configuration types

Type Description

XML configuration
file

Configuration information is stored in an XML file, which can contain multiple
configurations.

Environment variable Configuration information is stored in an environment variable.

Registry entry Configuration information is stored in the registry.

Parent package
variable

Configuration information is stored in a variable in the package.

SQL Server table
Configuration information is stored in a SQL Server table, which can contain
multiple configurations.

15.1.7. Log Providers

SSIS includes log providers that implement logging in packages, containers, and tasks to help you
audit and troubleshoot. SSIS offers five log providers, as described in Table 15-6. You can develop
custom log providers if these do not meet your needs.

Table 15-6. Log providers

Provider ProgID Description

Text file DTS.LogProviderTextFile.1 Writes log entries to a text file in comma-separated
value (CSV) format

SQL Server
Profiler

DTS.LogProviderSQLProfiler.1 Writes log entries to SQL Server traces that can be
viewed using SQL Server Profiler

SQL Server DTS.LogProviderSQLServer.1 Writes log entries to the sysdtslog90 table in a SQL
Server 2005 database

Windows
Event log

DTS.LogProviderEventLog.1 Writes log entries to the Application log in the
Windows Event log on the local computer

XML file DTS.LogProviderXMLFile.1 Writes log entries to an XML file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.1.8. Variables

Variables store values that SSIS packages, tasks, and event handlers use at runtime. SSIS supports
two types of variables : user-defined variables and system variables. User-defined variables are
defined by package developers, and system variables are defined by SSIS. You can create user-
defined variables for all SSIS container typespackages, Foreach Loop containers, For Loop containers,
Sequence containers, tasks, and event handlers. Variables are scoped within the scope of a container
and are accessible to the children of the container. A variable can raise an event when its value
changes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.2. Tools

SQL Server 2005 provides the following tools for designing and managing Integration Services:

Business Intelligence Development Studio

Helps to develop, test, debug, and deploy integration packages.

SQL Server 2005 Management Studio

Manages packages in production.

SSIS Designer

A graphical tool in Business Intelligence Development Studio that is used to construct control
flows and data flows in packages, add event handlers to the packages and package objects,
view package contents, and view execution progress of packages.

Integration Services Wizards

Wizards for copying data between data sources, constructing simple packages, creating
package configurations, deploying Integration Services projects, and migrating SQL Server
2000 DTS packages.

Command-line utilities

Tools to manage packages, specify package runtime configuration, and run packages from the
command line, as described in Table 15-7.

Table 15-7. SSIS command-line utilities

Command-line
utility

Description

dtexecui Specifies runtime configuration and runs an existing package on the local
computer

dtexec Configures and runs an existing package stored in a SQL Server database, the
SSIS package store, and the filesystem

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Command-line
utility

Description

dtutil Manages, copies, deletes, moves, and verifies the existence of existing packages
stored in a SQL Server database, the SSIS package store, and the filesystem

dtutil Manages, copies, deletes, moves, and verifies the existence of existing packages
stored in a SQL Server database, the SSIS package store, and the filesystem

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.3. Programming SSIS

SSIS lets you programmatically create, load, modify, and execute packages, as well as other objects,
including connection managers, log providers, and enumerators. In this section, you'll see how to
program SSIS in managed code.

There are two engines that you program against when developing SSIS solutions:

Runtime engine

Manages packages and the execution infrastructure

Data-flow engine

Supports the data-flow task used to extract, transform, and load data

The following two sections contain examples that show how to programmatically perform common tasks
when programming against these two engines.

All examples in this section are built using Visual Studio 2005. Each example needs a reference to the
Microsoft.SqlServer.ManagedDTS assembly. Additional assembly references are indicated for examples in
which they are required.

15.3.1. Control-Flow Programming

Control-flow programming uses the SSIS object model to build packages, add stock and custom tasks,
connect tasks, and run packages. Control-flow programming also lets you build objects such as
connection managers, variables, log providers, enumerators, event handlers, and configuration files. The
following subsections show how.

15.3.1.1. Creating a package

This example creates an empty packagethe top-level container for all other SSIS objects:

 using System;

 using Microsoft.SqlServer.Dts.Runtime;

 class Program
 {
 static void Main(string[] args)
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // create an empty package
 Package p = new Package();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

The Package class represents the package container and exposes collections of other containers,
connections, tasks, log providers, variables, configurations, precedence constraints, and event handlers.

15.3.1.2. Saving a package

This example creates an empty package and saves it to disk using the Application class:

 using System;

 using Microsoft.SqlServer.Dts.Runtime;

 class Program
 {
 static void Main(string[] args)
 {
 // create an empty package
 Package p = new Package();

 // save the package to the File System folder
 Application a = new Application();
 a.SaveToDtsServer(p, null, @"File System\TestPackage", "localhost");

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

Results are shown in Figure 15-2 .

Figure 15-2. Results for saving package example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

After running this example, you can view the package in the Object Explorer window in SQL Server
Management Studio. Select View Registered Server Types Integration Services from the main
menu. In the Registered Servers window, right-click the SSIS server and select Connect Object
Explorer from the context menu. In the Object Explorer window, expand the Stored Packages File
System node for the Integration Services instance, as shown in Figure 15-3 .

Figure 15-3. Viewing packages using Object Explorer

By default, package (.dtsx) files in the File System node are saved in C:\Program Files\Microsoft SQL
Server\90\DTS\Packages . You can open the file using Business Intelligence Studio or you can reload the
file programmatically, as described in the next section.

The Application class discovers, accesses, and manages Package objects and provides access to
information about the system and available components through its properties.

15.3.1.3. Loading a package

This example loads the package named TestPackage (created in the preceding example) from disk:

 using System;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 using Microsoft.SqlServer.Dts.Runtime;

 class Program
 {
 static void Main(string[] args)
 {
 // load the package to the File System folder
 Application a = new Application();
 Package p = a.LoadFromDtsServer(@"File System\TestPackage",
 "localhost", null);

 Console.WriteLine("Package: " + p.CreationName + " " +
 p.Name + " loaded.");

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

Results follow in Figure 15-4 .

Figure 15-4. Results for loading a package example

15.3.1.4. Adding a task to the package

This example creates a package and adds a ForLoop container and a SendMail task to it. A SQLTask task is
added to the ForLoop container.

 using System;

 using Microsoft.SqlServer.Dts.Runtime;

 class Program
 {
 static void Main(string[] args)
 {
 // create an empty package
 Package p = new Package();

 // add a foreach loop
 ForLoop fl = (ForLoop)p.Executables.Add("STOCK:ForLoop");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // add a SQL task to the ForLoop
 fl.Executables.Add("STOCK:SQLTask");

 // add a send mail task
 p.Executables.Add("STOCK:SendMailTask");

 // enumerate the tasks in the package
 foreach (Executable e in p.Executables)
 {
 if (e.ToString() == "Microsoft.SqlServer.Dts.Runtime.TaskHost")
 {
 Console.WriteLine(((TaskHost)e).InnerObject.GetType().ToString());
 }
 else if (e.ToString() == "Microsoft.SqlServer.Dts.Runtime.ForLoop")
 {
 // enumerate the tasks in the ForLoop container
 Console.WriteLine(e.ToString());
 foreach (Executable e2 in ((ForLoop)e).Executables)
 Console.WriteLine(" " +
 ((TaskHost)e2).InnerObject.GetType().ToString());
 }
 }

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

The output is shown in Figure 15-5 .

Figure 15-5. Output for adding tasks example

The output from the example enumerates the tasks once after they have been created. Enumerating
tasks is discussed in the section "Enumerating task properties ," later in this chapter.

You can add tasks to Package , Sequence , ForLoop , ForEachLoop , and DtsEventHandler objectsthese
objects are all containers. Each container has an Executables collection containing Executable objects.

You add an object to a container by calling the Add() method of the container object. The Remove()
method removes objects from the container. The Add() method takes a single string parameter that
contains the CLSID , PROGID , or STOCK moniker, or a CreationName that identifies the task or container.
Table 15-8 describes the SSIS tasks.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 15-8. SSIS tasks

STOCK name Description

ActiveXScriptTask Creates and uses ActiveX scripts created in SQL Server 2000.

This feature is intended only for backward compatibility and will be
removed in the next version of SQL Server.

BulkInsertTask Runs bulk inserts.

DMQueryTask Runs prediction queries based on data-mining models built in Analysis
Services.

Exec80PackageTask Runs packages created in SQL Server 2000 as part of a workflow.

ExecutePackageTask Runs other SSIS packages as part of a workflow.

ExecuteProcessTask Runs an application or batch file as part of a workflow.

FileSystemTask Runs a command against the filesystem.

FtpTask Uses FTP to download and upload files and manage directories.

MessageQueueTask Sends or receives messages to and from an MSMQ queue.

PipelineTask Moves data between source and destination with optional
transformation.

ScriptTask Runs custom code to perform functions not available using the built-in
SSIS tasks.

SendMailTask Sends an email message.

SQLTask Executes T-SQL commands.

transferDatabaseTask Transfers databases from one SQL Server instance to another.

transferErrorMessagesTask Copies user-defined error messages from one SQL Server instance to
another.

transferJobsTask Transfers SQL Server Agent jobs from one SQL Server instance to
another.

TRansferLoginsTask Transfers logins from one SQL Server instance to another.

transferSqlServerObjectsTask Copies SQL Server objects from one SQL Server instance to another.

transferStoredProceduresTask Copies stored procedures from the master database of one SQL Server
instance to another.

WebServiceTask Runs a web method and stores the results in a specified location.

WmiDataReaderTask Configures and runs a WMI query.

WmiEventWatcherTask Runs a WMI query and waits for events associated with the query.

XMLTask Retrieves, manipulates, and saves XML documents stored in files.

The container classes described in Table 15-9 have the same collections as the Package class, letting you

http://lib.ommolketab.ir
http://lib.ommolketab.ir

nest tasks within the package to an arbitrary depth. You have already encountered the Executables
collection; more of the collections will appear throughout the remainder of this chapter.

Table 15-9. SSIS containers

STOCK name Description

ForEachLoop Defines an iterative workflow using the for each iteration element.

ForLoop Defines an iterative workflow using the for iteration element.

Sequence Defines a control flow that is a subset of the workflow of the parent container.

15.3.1.5. Adding a connection manager

This example creates a package and adds a SQL Server ADO.NET connection manager to it:

 using System;

 using Microsoft.SqlServer.Dts.Runtime;

 class Program
 {
 static void Main(string[] args)
 {
 // create an empty package
 Package p = new Package();

 Console.WriteLine("Beginning number of connections: " +
 p.Connections.Count);

 // add a connection to AdventureWorks
 ConnectionManager cm;
 cm = p.Connections.Add("ADO.NET");
 Console.WriteLine("Connection added.");
 // configure connection
 cm.ConnectionString = "Data Source=localhost;" +
 "Integrated Security=SSPI;Initial Catalog=AdventureWorks";

 Console.WriteLine("Ending number of connections: " + p.Connections.Count);

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

Results are shown in Figure 15-6 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 15-6. Results for adding connection manager example

The ConnectionManager class represents a connection to a data source. The connection type is specified as
an argument to the constructor from the connection types described in Table 15-3 . It provides a layer of
abstraction so that you can interact with a variety of data sources in a consistent manner. The
Connections property of the Package class exposes the collection of connection managers associated with
the Package class. The ConnectionInfos property of the Application class returns a collection of
information about connections installed on the computer as ConnectionInfo objects.

The runtime engine manages connections for the package as it runs so that you do not need to perform
tasks such as opening and closing connections.

15.3.1.6. Running a package

This example creates a package with a SQLTask task and runs the package. You need to add a reference
to the Microsoft.SqlServer.SQLTask assembly to build and execute this example.

 using System;

 using Microsoft.SqlServer.Dts.Runtime;
 using Microsoft.SqlServer.Dts.Tasks.ExecuteSQLTask;

 class Program
 {
 static void Main(string[] args)
 {
 // create an empty package
 Package p = new Package();

 // add a connection manager
 ConnectionManager cm = p.Connections.Add("ADO.NET");
 cm.Name = "CM_ProgrammingSqlServer2005";
 cm.ConnectionString = "Data Source=localhost;" +
 "Integrated Security=SSPI;Initial Catalog=ProgrammingSqlServer2005";

 // add a SQL task to the package
 Executable e = p.Executables.Add("STOCK:SQLTask");
 TaskHost th = (TaskHost)e;
 ExecuteSQLTask est = (ExecuteSQLTask)th.InnerObject;
 est.Connection = cm.Name;
 est.SqlStatementSourceType = SqlStatementSourceType.DirectInput;
 est.SqlStatementSource = "CREATE TABLE TestTable " +

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "(ID int NOT NULL, Description nchar(100))";

 // run the package
 DTSExecResult r = p.Execute();

 // check the status and result of the package run
 Console.WriteLine("Status: " + p.ExecutionStatus.ToString());

 if (r == DTSExecResult.Success)
 Console.WriteLine("Package executed successfully.");

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

Results are shown in Figure 15-7 .

Figure 15-7. Results for running a package example

Running the package creates the table TestTable in the ProgrammingSqlServer2005 database when the
package runs.

The example creates a Package object and a ConnectionManager object containing connection information
to the ProgrammingSqlServer2005 database. A SQL task executable is added to the package by passing
the string STOCK:SQLTask to the Add() method of the Executables collection for the package. The
Executable object is cast to a TaskHost object, which is then cast to a ExecuteSQLTask object. The SQL
task is configured by setting properties of the ExecuteSQLTask object.

The TaskHost class is a wrapper for a task. It is used to retrieve additional properties of and methods on
the task. The InnerObject property of the TaskHost class accesses the task object, and can be cast to the
specific type of task.

SSIS executable objects implement an Execute() method that runs the executable. The ExecutionStatus
property of a container returns a value from the DTSExecStatus enumeration, described in Table 15-10 ,
indicating the status of the task execution.

Table 15-10. DTSExecStatus enumeration

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name Description

Abend The task terminated abnormally because of an internal error.

Completed The task completed and returned either a Failure or Success result for the execution result
(DTSExecResult).

Executing The task is running.

None The task is idle.

Suspended The task is suspended.

Validating The task is validating .

The Execute() method of a container returns a value from the DTSExecResult enumeration, described in
Table 15-11 , indicating the result of executing the package.

Table 15-11. DTSExecResult enumeration

Name Description

Canceled The task was cancelled.

Completion The task ran to completion.

Failure The task failed.

Success The task succeeded.

15.3.1.7. Validating a package

This example creates and validates a package. You need to add a reference to the
Microsoft.SqlServer.SQLTask assembly to build and execute this example.

 using System;

 using Microsoft.SqlServer.Dts.Runtime;
 using Microsoft.SqlServer.Dts.Tasks.ExecuteSQLTask;

 class Program
 {
 static void Main(string[] args)
 {
 // create an empty package
 Package p = new Package();

 // add a connection manager
 ConnectionManager cm = p.Connections.Add("ADO.NET");
 cm.Name = "CM_ProgrammingSqlServer2005";
 cm.ConnectionString = "Data Source=localhost;" +

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "Integrated Security=SSPI;Initial Catalog=ProgrammingSqlServer2005";

 // add a SQL task to the package
 Executable e = p.Executables.Add("STOCK:SQLTask");
 TaskHost th = (TaskHost)e;
 ExecuteSQLTask est = (ExecuteSQLTask)th.InnerObject;
 est.Connection = cm.Name;
 est.SqlStatementSourceType = SqlStatementSourceType.DirectInput;
 est.SqlStatementSource = "CREATE TABLE TestTable " +
 "(ID int NOT NULL, Description nchar(100))";

 // validate the package
 DTSExecResult r = p.Validate(p.Connections, p.Variables, null, null);
 Console.WriteLine("Validation result: " + r);

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

The output is shown in Figure 15-8 .

Figure 15-8. Output for validate package example

The Package class and other containers have a Validate() method that validates dependencies and
settings for the object to verify that it will successfully execute. The method ensures that required values
are set and contain appropriate values. When connections are validated, a connection to the data is not
actually made and data at the data source is not checked. The Validate() method can raise and log
events.

15.3.1.8. Enumerating task properties

This example creates a package, adds a transferDatabaseTask task to it, and enumerates the task
properties. You need to add a reference to the Microsoft.SqlServer.TransferDatabase assembly to
compile and run this example.

 using System;

 using Microsoft.SqlServer.Dts.Runtime;
 using Microsoft.SqlServer.Dts.Tasks.TransferDatabaseTask;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 class Program
 {
 static void Main(string[] args)
 {
 // create an empty package
 Package p = new Package();

 Executable e = p.Executables.Add("STOCK:TransferDatabaseTask");

 TaskHost th = (TaskHost)e;
 TransferDatabaseTask tdt = (TransferDatabaseTask)th.InnerObject;
 Console.WriteLine("Type = " + tdt.GetType().ToString());
 Console.WriteLine("Version = " + tdt.Version);
 Console.WriteLine();

 foreach (DtsProperty dp in th.Properties)
 Console.WriteLine(dp.Name + " = " + dp.GetValue(th));

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

Results are shown in Figure 15-9 .

The Properties collection of DtsProperty objects for the TaskHost class exposes a container-specific
collection of properties. The property values are accessed by calling the GetValue() method of the
DtsProperty class.

15.3.1.9. Connecting tasks

This example creates a package, adds two tasks, and sets a constraint that does not allow the second
task to execute until the first completes:

 using System;

 using Microsoft.SqlServer.Dts.Runtime;

 class Program
 {
 static void Main(string[] args)
 {
 // create an empty package
 Package p = new Package();

 // create the tasks
 Executable e1 = p.Executables.Add("STOCK:TransferDatabaseTask");
 Executable e2 = p.Executables.Add("STOCK:SendMailTask");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 15-9. Results for enumerating task properties example

 // create the precedence constraint
 PrecedenceConstraint pc = p.PrecedenceConstraints.Add(e1, e2);
 pc.Name = "e1 before e2 precedence constraint";
 pc.Value = DTSExecResult.Completion;

 foreach (PrecedenceConstraint pc1 in p.PrecedenceConstraints)
 {
 Console.WriteLine(pc1.Name);
 Console.WriteLine(" From: " +
 ((TaskHost)pc1.PrecedenceExecutable).InnerObject);
 Console.WriteLine(" To: " +
 ((TaskHost)pc1.ConstrainedExecutable).InnerObject);
 }

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

Results are shown in Figure 15-10 .

Figure 15-10. Results for connecting tasks example

The PrecedenceConstraint class configures precedence between two containers. The Add() method for
the PrecedenceConstraints collection for a container takes two argumentsthe executable before the
constraint and the executable after the constraint. The Value property of the PrecedenceConstraints
collection specifies the constraint typea value from the DTSExecResult enumeration described in Table 15-
11 .

15.3.1.10. Using variables

You can use variables to dynamically set values in packages, containers, tasks, and event handlers. This
example adds a user variable to an empty package and iterates over all variables in the package:

 using System;

 using Microsoft.SqlServer.Dts.Runtime;

 class Program
 {
 static void Main(string[] args)
 {
 // create an empty package
 Package p = new Package();

 // create a variable
 p.Variables.Add("Variable1", false, "", 1);

 foreach (Variable v in p.Variables)
 Console.WriteLine(v.Name + " = " + v.Value +
 " [" + v.DataType + "]");

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The output is shown in Figure 15-11 .

Figure 15-11. Output for add variable example

The Variables property of container objects accesses the collection of Variable objects for the container.
You can see the variable named Variable1 that was added programmatically in the output.

SSIS provides two default namespaces for variables. The User namespace is the default location for
variables created programmatically. The System namespace contains variables that store information
about the running package and its objects.

15.3.1.11. Configuring a package

This example creates a configuration file for a new package. You need to create the directory
C:\PSS2005\Packages or specify a different location to run the examples in this section.

 using System;

 using Microsoft.SqlServer.Dts.Runtime;

 class Program
 {
 static void Main(string[] args)
 {
 string packagePath = @"C:\PSS2005\Packages\";

 // create an empty package
 Package p = new Package();
 // enable configurations
 p.EnableConfigurations = true;
 p.ExportConfigurationFile(packagePath + "SamplePackageConfig.xml");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // create a variable
 Variable v = p.Variables.Add("Variable1", false, "", 1);

 // create the configuration file
 Configuration
 c = p.Configurations.Add();
 c.ConfigurationString = "SamplePackageConfig.xml";
 c.ConfigurationType
 = DTSConfigurationType
.ConfigFile;
 c.Description = "Sample configuration file";
 c.PackagePath = v.GetPackagePath();

 // save the package with the configuration file to an XML file
 Application a = new Application();
 a.SaveToXml(packagePath + "SamplePackage.xml", p, null);

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

Running the example creates the configuration file shown in Figure 15-12 .

The Configuration class represents information about how a package is configured. The Configurations
class represents a collection of Configuration objects. The Package class exposes its collection of
configurations through the Configurations property.

The EnableConfigurations property of the Package class indicates whether a package supports loading
configuration files when the package is loaded. If the value of EnableConfigurations is false , the
package uses configuration values persisted within the package. The ExportConfigurationFile()
method of the Package class creates an XML file containing all deployable variables in the package. You
can see this in the <DTS:Configuration> element in the XML in Figure 15-12 .

The ConfigurationType property of the Configuration class specifies the way in which configuration
information is stored. The property takes a value from the DTSConfigurationType enumeration, described
in Table 15-12 . The ConfigurationString property specifies the location of the configuration.

Table 15-12. DTSConfigurationType enumeration

Value Description

ConfigFile Configuration file

EnvVariable Environment variable

IConfigFile Environment variable that contains information about the configuration flat file

IParentVariable Environment variable that contains information about the package variable

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value Description

IRegEntry Environment variable that contains information about the registry entry

ISqlServer Environment variable that contains information about the SQL Server instance

ParentVariable Package variable

RegEntry Registry entry

SqlServer SQL Server msdb database

Figure 15-12. Package configuration file example

Finally, the SaveToXml() method of the Application class saves the package and configuration

IRegEntry Environment variable that contains information about the registry entry

ISqlServer Environment variable that contains information about the SQL Server instance

ParentVariable Package variable

RegEntry Registry entry

SqlServer SQL Server msdb database

Figure 15-12. Package configuration file example

Finally, the SaveToXml() method of the Application class saves the package and configuration

http://lib.ommolketab.ir
http://lib.ommolketab.ir

information to the SamplePackage.xml file.

This example loads the package created in the preceding example and displays the configuration
information:

 using System;

 using Microsoft.SqlServer.Dts.Runtime;

 class Program
 {
 static void Main(string[] args)
 {
 string packagePath = @"C:\PSS2005\Packages\";

 Application a = new Application();
 Package p = a.LoadPackage(packagePath + "SamplePackage.xml", null);

 // output the user variables
 foreach (Variable v in p.Variables)
 {
 if (!v.SystemVariable)
 Console.WriteLine(v.Name + " = " + v.Value);
 }

 // output the configurations
 Console.WriteLine();
 foreach (Configuration c in p.Configurations)
 {
 Console.WriteLine("ConfigurationString = " + c.ConfigurationString);
 Console.WriteLine("ConfigurationType = " + c.ConfigurationType);
 Console.WriteLine("CreationName = " + c.CreationName);
 Console.WriteLine("Description = " + c.Description);
 Console.WriteLine("ID = " + c.ID);
 Console.WriteLine("Name = " + c.Name);
 Console.WriteLine("PackagePath = " + c.PackagePath);
 }

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

Results are shown in Figure 15-13 .

Figure 15-13. Results for loading package configuration file example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.3.1.12. Handling events

The SSIS runtime provides a set of events that occur before, during, and after the validation and
execution of a package, as described in Table 15-4 . You can create event handlers that execute a
workflow when an event is raised. The events can be captured either by implementing the IDTSEvents
interface in a class or by creating a DtsEventHandler object in the workflow.

The first example shows how to use the IDTSEvents interface:

 using System;

 using Microsoft.SqlServer.Dts.Runtime;

 class Program : DefaultEvents
 {
 static void Main(string[] args)
 {
 // create an empty package
 Package p = new Package();

 // ... build the package

 // execute the package providing an instance of the Program class
 // as an argument
 Program program = new Program();
 DTSExecResult r = p.Execute(null, null, program, null, null);

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }

 public override void OnPreExecute(Executable exec, ref bool fireAgain)
 {
 Console.WriteLine("Event: OnPreExecute");
 }
 }

The output is shown in Figure 15-14 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 15-14. Output from IDTSEvents example

You can receive event notifications during execution or validation of a container by building a class that
implements the IDTSEvents interface. You can also derive a class from the DefaultEvents class and
override the events you are interested in handling this is the approach used in this example. You need to
create an instance of the Program class and provide it as the third argument to the Execute() method of
the package to receive event notifications.

The second example creates a DtsEventHandler object and uses it to handle the OnTaskFailed event. You
need to add a reference to the Microsoft.SqlServer.SQLTask assembly to compile and run this example.

 using System;

 using Microsoft.SqlServer.Dts.Runtime;
 using Microsoft.SqlServer.Dts.Tasks.ExecuteSQLTask;

 class Program
 {
 static void Main(string[] args)
 {
 // create an empty package
 Package p = new Package();

 // add a connection manager
 ConnectionManager cm = p.Connections.Add("ADO.NET");
 cm.Name = "CM_ProgrammingSqlServer2005";
 cm.ConnectionString = "Data Source=localhost;" +
 "Integrated Security=SSPI;Initial Catalog=ProgrammingSqlServer2005";

 // add a SQL task to the package
 Executable e = p.Executables.Add("STOCK:SQLTask");
 TaskHost th = (TaskHost)e;
 ExecuteSQLTask est = (ExecuteSQLTask)th.InnerObject;
 est.Connection = cm.Name;
 est.SqlStatementSourceType = SqlStatementSourceType.DirectInput;
 est.SqlStatementSource = "CREATE TABLE TestTable2 " +
 "(ID int NOT NULL, Description nchar(100))";

 // add the event handler
 DtsEventHandler deh = (DtsEventHandler)p.EventHandlers.Add("OnTaskFailed");

 // Add task to fire when the event handler executes
 Executable e2 = deh.Executables.Add("STOCK:SQLTask");
 TaskHost th2 = (TaskHost)e2;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ExecuteSQLTask est2 = (ExecuteSQLTask)th2.InnerObject;
 est2.Connection = cm.Name;
 est2.SqlStatementSourceType = SqlStatementSourceType.DirectInput;
 est2.SqlStatementSource = "CREATE TABLE TestTable3 " +
 "(ID int NOT NULL, Description nchar(100))";

 DTSExecResult r = p.Execute();
 Console.WriteLine("Status: " + r.ToString());

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

You need to run this example twice:

The first run successfully creates a table named TestTable2 in the ProgrammingSqlServer2005
database. The OnTaskFailed event handler never executes, because no task in the package failed
when the package was runthe table TestTable3 is not created. Confirm that table TestTable2 exists
and table TestTable3 does not exist by using Object Explorer in SQL Server Management Studio.

1.

The second run tries but fails to create the table TestTable2 , because it already exists from the
previous package run. The failure causes the OnTaskFailed event handler to run, creating
TestTable3 . Confirm that both TestTable2 and TestTable3 exist.

2.

The DtsEventHandler class represents a container that runs when specific events occur. You create and
add workflow for the event handler in the same way as for any other container.

15.3.1.13. Logging

This example enables logging for a package and writes log information to an XML file. You need to create
the directory C:\PSS2005\Logs to compile and execute this example.

 using System;
 using System.IO;

 using Microsoft.SqlServer.Dts.Runtime;

 class Program
 {
 static void Main(string[] args)
 {
 // create an empty package
 Package p = new Package();

 // add a file connection manager
 ConnectionManager cm = p.Connections.Add("FILE");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 cm.Name = "Logging";
 cm.ConnectionString = @"C:\PSS2005\Logs\TestLog.xml";

 // enable logging
 p.LoggingMode = DTSLoggingMode.Enabled;

 // create a log provider in the package and select it for logging
 LogProvider lp = p.LogProviders.Add("DTS.LogProviderXmlFile.1");
 lp.ConfigString = cm.Name;
 p.LoggingOptions.SelectedLogProviders.Add(lp);
 // set the events to include in the logging
 p.LoggingOptions.EventFilterKind = DTSEventFilterKind.Inclusion;
 p.LoggingOptions.EventFilter =
 new string[] { "OnPreExecute", "OnPostExecute", "OnTaskFailed" };

 // run the package
 DTSExecResult r = p.Execute();
 Console.WriteLine("Status: " + r);

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

The log file C:\PSS2005\Logs\TestLog.xml is shown in Figure 15-15 .

The LogProvider class contains information about a log provider for a container. The LogProviders
property of the Package class exposes the collection of all log providers associated with the package. The
Add() method of the LogProviders class adds the specified log provider to the collection of log providers.
The log provider is specified by passing either the ProgID or ClassID of one of the five included log
providers or of a custom log provider as the argument to the Add() method. Table 15-6 lists included log
providers and corresponding ProgIDs. The ConfigString property supplies configuration information
specific to the log provider. The XML log provider used in this example and most log providers use the
ConfigString property to specify a ConnectionManager object used to connect to the log destination.

The LogProviderInfos property of the Application class returns a collection of
information about log providers installed on the computer.

The LoggingMode property of each container specifies whether event information for the container is
logged. It takes a value from the DTSLoggingMode enumerationDisabled , Enabled , or UseParentSetting .
If LoggingMode is not specified, it defaults to the logging mode of the parent container. The package is the
top-level container, and its LoggingMode property defaults to Disabled . Each provider has different
configuration options set through the ConfigString property.

The LoggingOptions.EventFilter property of the container takes a string array of events that you want
to log. The LoggingOptions.EventFilterKind property takes a value from DTSEventFilterKind indicating
whether the array of events is included or excluded from logging. Logging can be further filtered by

http://lib.ommolketab.ir
http://lib.ommolketab.ir

setting columns in the DTSEventColumnFilter structure to TRue or false to select whether the columns are
logged, and assigning the structure to LoggingOptions using the SetColumnFilter() method.

15.3.2. Data-Flow Programming

A data flow lets you load, transform, and save data. You build a data flow by adding pipeline
componentsdata-flow sources, transformations, and destinationsto the data flow, and then configuring
and connecting the components.

Figure 15-15. Results for logging to XML file example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This example enumerates the available pipeline componentsdata-flow sources, transformations, and
destinations:

 using System;

 using Microsoft.SqlServer.Dts.Runtime;

 class Program
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 static void Main(string[] args)
 {
 Application a = new Application();

 foreach (PipelineComponentInfo pci in a.PipelineComponentInfos)
 {
 Console.WriteLine(pci.Name);
 Console.WriteLine(" " + pci.ComponentType);
 Console.WriteLine(" " + pci.CreationName);
 Console.WriteLine(" " + pci.Description);
 Console.WriteLine();
 }

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

Partial results are shown in Figure 15-16 .

Figure 15-16. Results for enumerating pipeline components example

The Application class exposes a PipelineComponentInfos collection. It contains a PipelineComponentInfo
object for each installed pipeline component. The ComponentType property of the PipelineComponentInfo
class identifies the type of component as a value from the DTSPipelineComponent
enumerationDestinationAdapter , SourceAdapter , transform , or View .

Data-flow programmingprogrammatically constructing and configuring a data flow, developing custom
source, transformation, and load components that participate in the data flow, and programming custom
data-flow componentsis beyond the scope of this chapter. See Microsoft SQL Server 2005 Books Online
for more information about these topics.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 16. SQL Server Agent
SQL Server Agent automates administrative tasks by running jobs, monitoring SQL Server, and
processing alerts.

You can define jobs and their schedules, alerts, and operators by using Object Explorer in SQL Server
Management Studio, by using T-SQL scripts, or by using SQL Server Management Objects (SMO).
Using SMO is the focus of this chapter.

SQL Server Agent is disabled by default. Start SQL Server Agent by connecting to a server instance in
Object Explorer. Right-click the SQL Server Agent node and click Start on the context menu to start
SQL Server Agent.

Set SQL Server Agent to start automatically by launching SQL Server Configuration Manager from
Microsoft SQL Server 2005 Configuration Tools. Select SQL Server 2005 Services in the left
panel, right-click SQL Server Agent from the list of services in the right panel, and select Properties
from the context menu to launch the SQL Server Agent Properties dialog box. Select the Service tab
and change the Start Mode to Automatic.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.1. Programming SQL Server Agent

Figure 16-1 shows the key SMO SQL Server Agent classes and defines the relationships between
them.

These classes are in the Microsoft.SqlServer.Management.Smo.Agent namespace.

The rest of this chapter presents programming examples that show how to use SMO SQL Server
Agent classes and provides descriptions of the classes. You need a reference to the following
assemblies to compile and run the examples:

Microsoft.SqlServer.ConnectionInfo

Microsoft.SqlServer.Smo

Microsoft.SqlServer.SmoEnum

Microsoft.SqlServer.SqlEnum

Figure 16-1. SQL Server Agent class hierarchy

16.1.1. Creating a Job

A SQL Server Agent job specifies a series of job steps (actions) that SQL Server Agent performs
according to a schedule, in response to an alert, or by executing the sp_start_job stored procedure.
This example creates a SQL Server Agent job named TestJob. The job has a single job step named
TestJob that runs a database consistency check on the AdventureWorks database.

 using System;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;
 using Microsoft.SqlServer.Management.Smo.Agent;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("(local)");
 JobServer jobServer = server.JobServer;

 // create the job
 Job j = new Job(jobServer, "TestJob");
 j.Create();

 // set the execution target server (same as sp_add_jobserver)
 j.ApplyToTargetServer("(local)");

 // create the job step
 JobStep js = new JobStep(j, "Step 1");
 js.SubSystem = AgentSubSystem.TransactSql;
 js.Command = "DBCC CHECKDB('AdventureWorks') WITH NO_INFOMSGS";
 js.OnFailAction = StepCompletionAction.QuitWithFailure;
 js.Create();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

You must specify the server by using the string (local) if the job is to run on
the local server. The string localhost will not work.

In this example, a job step is added to the job by creating a JobStep object and adding it to the job
by passing a reference to the job in the JobStep constructor.

After you run the example, expand and refresh the SQL Server Agent Jobs node in Object
Explorer to show the new job TestJob. Right-click the TestJob node and select Properties from the
context menu to show the Job Properties dialog box. Select the Steps page to display the single step
you added to the job, as shown in Figure 16-2.

Figure 16-2. Job Properties dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The SubSystem property of the JobStep class specifies the SQL Server subsystem that is used by the
job step. It is a value from the AgentSubSystem enumeration described in Table 16-1. In this example,
the single step added uses the Transact SQL subsystem.

Table 16-1. AgentSubSystem enumeration

Value SQL Server subsystem

ActiveScripting Active Scripting

AnalysisCommand Analysis Command

AnalysisQuery Analysis Query

CmdExec Operating System Command executive

Distribution Distribution Agent

LogReader Log Reader Agent

Merge Merge Agent

QueueReader Queue Reader Agent

Snapshot Snapshot Agent

Ssis SQL Server Integration Services (SSIS)

TRansactSql Transact-SQL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SMO has classes used to manage SQL Server Agent jobs, job steps, job categories, filters, and
schedules. These classes are described in Table 16-2.

Table 16-2. SMO classes for administering SQL Server Agent jobs

Class Description

Job Represents a SQL Server Agent job.

JobCategory Represents attributes that allow jobs to be categorized.

JobCategoryCollection

Represents a collection of job categories as JobCategory objects. The
JobCategories property of the JobServer class returns the job categories
defined on SQL Server Agent.

JobCollection
Represents a collection of jobs as Job objects. The Jobs property of the
JobServer class returns the jobs defined on SQL Server Agent.

JobFilter
Represents constraints used to restrict output of the EnumJobs() method of
the JobServer class.

JobHistoryFilter
Represents constraints used to restrict output of the EnumJobHistory()
method of the JobServer class.

JobSchedule Represents a SQL Server Agent job schedule.

JobScheduleCollection

Represents a collection of job schedules as JobSchedule objects.

The SharedSchedule property of the JobServer class returns the shared
schedules defined on SQL Server Agent.

The JobSchedules property of the Job class returns the job schedules
assigned to the job.

JobServer Represents the SQL Server Agent subsystem.

JobStep Represents a SQL Server Agent job step.

JobStepCollection
Represents a collection of job steps as JobStep objects. The JobSteps
property of the Job class returns the job steps defined for the job.

16.1.2. Running a Job

This example runs the job created in the preceding example:

 using System;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;
 using Microsoft.SqlServer.Management.Smo.Agent;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("(local)");
 JobServer jobServer = server.JobServer;

 Job j = jobServer.Jobs["TestJob"];
 j.Start();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

The Start() method of the Job class runs the job. If you open SQL Server Agent Job Activity
Monitor by selecting SQL Server Agent Job Activity Monitor in Object Explorer, you will see that
the job TestJob is executing, as shown in Figure 16-3. You have to click the Refresh button on the
toolbar to update the status.

Figure 16-3. SQL Server Agent Job Activity Monitor

You can view the history for the job TestJob by right-clicking the SQL Server Agent Jobs
TestJob node in Object Explorer and then selecting View History from the context menu.

16.1.3. Creating a Schedule

A SQL Server Agent schedule specifies when a job runseither whenever SQL Server Agent starts,
whenever CPU utilization is at a level defined as idle, at a specified date and time, or on a recurring
basis. This example creates a job schedule that runs once daily at 4:00 A.M. A later example
associates this schedule with the job named TestJob created in the first example in this section.

 using System;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;
 using Microsoft.SqlServer.Management.Smo.Agent;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("(local)");
 JobServer jobServer = server.JobServer;

 JobSchedule js = new JobSchedule(jobServer, "TestSchedule");
 js.FrequencyTypes = FrequencyTypes.Daily;
 js.FrequencyInterval = 1;
 js.ActiveStartTimeOfDay = TimeSpan.FromHours(4);
 js.IsEnabled = true;
 js.Create();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

After you run this program, you can view and manage the new schedule by right-clicking the SQL
Server Agent Jobs node in Object Explorer and selecting Manage Schedules from the context
menu.

The schedule is defined using the properties of the JobSchedule class described in Table 16-3.

Table 16-3. Properties of the JobSchedule class used to define schedule

Property Description

ActiveEndDate The date and time when the schedule ends.

ActiveEndTimeOfDay The time when the schedule stops for the day.

ActiveStartDay The date and time when the schedule starts.

ActiveStartTimeOfDay The time when the schedule starts for the day.

FrequencyInterval

The frequency interval that specifies how often the job is scheduled to
run. The FrequencyInterval property is relative to the value of the
FrequencyTypes property.

FrequencyRecurrenceFactor
The number of weeks or months between scheduled jobs having
weekly or monthly frequency

FrequencyRelativeIntervals The value of a day relative to the first day of the month.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Description

FrequencySubDayIntervals
The time (hours or minutes) between scheduled jobs having daily
frequency, with a frequency subday type of hour or minute.

FrequencySubDayTypes

The unit of time used to specify the interval between scheduled jobs
having daily frequency. The value is from the FrequencySubDayTypes
enumerationHour, Minute, Once, or Unknown.

FrequencyTypes

The frequency specifying how often the schedule executes. The value
is from the FrequencyTypes enumerationAutoStart, Daily, Monthly,
MonthlyRelative, OneTime, OnIdle, Unknown, or Weekly.

16.1.4. Scheduling a Job

This example associates the job named TestJob, created in the first example in this section, with the
schedule named TestSchedule, created in the preceding section:

 using System;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;
 using Microsoft.SqlServer.Management.Smo.Agent;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("(local)");
 JobServer jobServer = server.JobServer;

 JobSchedule js = jobServer.SharedSchedules["TestSchedule"];
 Job j = jobServer.Jobs["TestJob"];
 j.AddSharedSchedule(js.ID);

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

The AddSharedSchedule() method of the Job class associates the schedule with the job. The method
uses the schedule ID number to identify the schedule.

After you run this program, you can see that job TestJob is associated with the schedule
TestSchedule by right-clicking the SQL Server Agent Jobs TestJob node in Object Explorer
and selecting Properties from the context menu. This opens the Job Properties dialog box. Select the
Schedules page to view the list of schedules for the job. You can also right-click the SQL Server Agent

FrequencySubDayIntervals
The time (hours or minutes) between scheduled jobs having daily
frequency, with a frequency subday type of hour or minute.

FrequencySubDayTypes

The unit of time used to specify the interval between scheduled jobs
having daily frequency. The value is from the FrequencySubDayTypes
enumerationHour, Minute, Once, or Unknown.

FrequencyTypes

The frequency specifying how often the schedule executes. The value
is from the FrequencyTypes enumerationAutoStart, Daily, Monthly,
MonthlyRelative, OneTime, OnIdle, Unknown, or Weekly.

16.1.4. Scheduling a Job

This example associates the job named TestJob, created in the first example in this section, with the
schedule named TestSchedule, created in the preceding section:

 using System;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;
 using Microsoft.SqlServer.Management.Smo.Agent;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("(local)");
 JobServer jobServer = server.JobServer;

 JobSchedule js = jobServer.SharedSchedules["TestSchedule"];
 Job j = jobServer.Jobs["TestJob"];
 j.AddSharedSchedule(js.ID);

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

The AddSharedSchedule() method of the Job class associates the schedule with the job. The method
uses the schedule ID number to identify the schedule.

After you run this program, you can see that job TestJob is associated with the schedule
TestSchedule by right-clicking the SQL Server Agent Jobs TestJob node in Object Explorer
and selecting Properties from the context menu. This opens the Job Properties dialog box. Select the
Schedules page to view the list of schedules for the job. You can also right-click the SQL Server Agent

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Jobs node and select Manage Schedules from the context menu. This opens the Manage
Schedules dialog box. Click the value in the Jobs in schedule column to display the Jobs Referencing a
Schedule dialog box, which lists the jobs associated with the schedule.

16.1.5. Creating an Operator

A SQL Server Agent operator defines contact information for a SQL Server administrator. An alert can
notify using email, a pager through email, or net send. This example creates an operator named Test
Operator and assigns an email address to the operator:

 using System;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;
 using Microsoft.SqlServer.Management.Smo.Agent;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("(local)");
 JobServer jobServer = server.JobServer;

 Operator o = new Operator(jobServer, "Test Operator");
 o.EmailAddress = "test@operator.org";
 o.Enabled = true;
 o.Create();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

The EmailAddress, NetSendAddress, and PagerAddress properties of the Operator class specify the
address for the operator for the different communication options.

After you run this program, you can view the new operator by refreshing and expanding the SQL
Server Agent Operators node.

The SMO classes used to manage SQL Server Agent operators are described in Table 16-4.

Table 16-4. SMO classes for administering SQL Server Agent operators

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

Operator Represents a SQL Server Agent operator.

OperatorCategory Represents attributes that allow operators to be categorized.

OperatorCategoryCollection

Represents a collection of operator categories as OperatorCategory
objects. The OperatorCategories property of the JobServer class
returns the operator categories defined on SQL Server Agent.

OperatorCollection

Represents a collection of operators as Operator objects. The
Operators property of the JobServer class returns the operators
defined on SQL Server Agent.

16.1.6. Creating an Alert

A SQL Server Agent alert specifies an automatic response to a specific conditioneither a SQL Server
event, a SQL Server performance condition, or a Windows Management Instrumentation (WMI)
event. The alert either notifies one or more operators or runs a job.

This example creates an alert that emails the operator named Test Operator, created in the
preceding example, when an error with a severity of 20 is encountered:

 using System;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;
 using Microsoft.SqlServer.Management.Smo.Agent;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("(local)");
 JobServer jobServer = server.JobServer;

 Alert a = new Alert(jobServer, "Test Alert");
 a.Severity = 20; // Fatal error in current process
 a.Create();

 a.AddNotification("Test Operator", NotifyMethods.NotifyEmail);

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

After you run this program, you can view the new alert by refreshing and expanding the SQL Server

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Agent Alerts node.

Execute the following T-SQL statement to trigger the alert:

 RAISERROR ('test error', 20, 1) WITH LOG

The following message is displayed as a result of the error:

 Msg 2745, Level 16, State 2, Line 1
 Process ID 59 has raised user error 50000, severity 20. SQL Server is
 terminating this process.
 Msg 50000, Level 20, State 1, Line 1
 test error
 Msg 0, Level 20, State 0, Line 0
 A severe error occurred on the current command. The results, if any,
 should be discarded.

You can check that the alert Test Alert occurred by right-clicking the SQL Server Agent Alerts
 Test Alert node in Object Explorer and selecting Properties from the context menu. Select the

History page in the Alert Properties dialog box to see the date of the last alert, the date of the last
response, and the total number of occurrences.

When creating an alert, you must specify one of the following:

A non-zero message ID

A non-zero severity

A non-null performance condition

A non-null WMI namespace and query

SQL Server Agent Mail is turned off by default. To enable it, right-click the SQL
Server Agent node in Object Explorer and select Properties from the context
menu. Next, select the Alert System page in the SQL Server Agent Properties
dialog box, check the Enable mail profile checkbox, and complete the rest of the
Mail Session section of the dialog page.

The SMO classes used to manage SQL Server Agent alerts are described in Table 16-5.

Table 16-5. SMO classes for administering SQL Server Agent alerts

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

Alert Represents a SQL Server alert.

AlertCategory Represents attributes that allow alerts to be categorized.

AlertCategoryCollection

Represents a collection of alert categories as AlertCategory objects. The
AlertCategories property of the JobServer class returns the alert
categories defined on SQL Server Agent.

AlertCollection
Represents a collection of alerts as Alert objects. The Alerts property of
the JobServer class returns the alerts defined on SQL Server Agent.

AlertSystem

Represents defaults for all alerts defined on a SQL Server instance. The
AlertSystem property of the JobServer class returns the alert system
information defined on SQL Server Agent.

16.1.7. Creating a Proxy Account

A SQL Server Agent proxy account defines a security context in which a job step can run. This
example creates a proxy account named Test Proxy, gives the public database role access to the
proxy, and lets job steps use the Active Scripting and Operating System (CmdExec) subsystems:

 using System;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo;
 using Microsoft.SqlServer.Management.Smo.Agent;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("(local)");
 JobServer jobServer = server.JobServer;

 ProxyAccount p = new ProxyAccount(jobServer, "Test Proxy");
 // see note below about credentials
 p.CredentialName = "Test Credential";
 p.IsEnabled = true;
 p.Create();

 // give the public database role access to the proxy account
 p.AddMsdbRole("public");

 // allow Active Scripting and Operating System
 p.AddSubSystem(AgentSubSystem.ActiveScripting);
 p.AddSubSystem(AgentSubSystem.CmdExec);

 Console.WriteLine("Press any key to continue.");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Console.ReadKey();
 }
 }

You must create a credential before creating a proxy. Credentials contain
authentication information that authenticated SQL Server users require to
access resources outside of SQL Serveron the local machine or on the network
domain. The credential used to create the proxy must be for a valid Windows
user. Add credentials from Object Explorer in SQL Server Management Studio
by selecting Security Credentials New Credential in Object Explorer.
Alternatively, you can add and manage credentials by using the SMO
Credential class, discussed in Chapter 11.

After you run the code, you can view the proxies by refreshing and opening either the SQL Server
Agent Proxies ActiveXScript node or the SQL Server Agent Proxies Operating
System (CmdExec) node in Object Explorer.

Assign a proxy to a job step by using the ProxyName property of the JobStep class. The
AgentSubSystem property of the ProxyAccount class specifies the SQL Server subsystems that can be
used by the proxy. You can give SQL login, database role, or server role principals access to the
proxy account by using the AddLogin(), AddMsdbRole(), or AddServerRole() methods,
respectively, of the ProxyAccount class.

The SMO classes used to manage SQL Server Agent proxies are described in Table 16-6.

Table 16-6. SMO classes for administering SQL Server Agent proxy
accounts

Class Description

ProxyAccount Represents a SQL Server Agent proxy account.

ProxyAccountCollection

Represents a collection of proxy accounts as ProxyAccount objects. The
ProxyAccounts property of the JobServer class returns the proxy accounts
defined on SQL Server Agent.

16.1.8. Multiserver Environments

A master server defines SQL Server Agent jobs that are run on remote (target) servers. A target
server downloads and executes jobs defined on a master server. Target servers are defined only on a
master SQL Server Agent. For information about setting up a multiserver administration group, see
Microsoft SQL Server 2005 Books Online.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Target server instances are automatically populated when you connect to a SQL Server instance
defined as a master in a multiserver administration group. The SMO target server objects let you
retrieve information about a target server and set the location for a target server. The SMO classes
used to manage SQL Server Agent target servers are described in Table 16-7.

Table 16-7. SMO classes for administering SQL Server Agent target
servers

Class Description

TargetServer

Represents a target server for multiserver administration on SQL
Server Agent. The TargetServer object is obtained using an item
from the TargetServerCollection object returned by the
TargetServers property of the JobServer object and cannot be
created as a standalone object.

TargetServerCollection

Represents a collection of target servers as TargetServer objects.
The TargetServers property of the JobServer class returns the target
servers defined on SQL Server Agent.

TargetServerGroup
Represents a target server group for multiserver administration on
SQL Server Agent.

TargetServerGroupCollection

Represents a collection of target server groups as TargetServerGroup
objects. The TargetServerGroups property of the JobServer class
returns the target server groups defined on SQL Server Agent.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 17. Service Broker
SQL Server 2005 introduces Service Broker a technology that is part of the Database Engine that
helps you to build scalable, loosely coupled database applications. Service Broker provides a
message-based communications platform that integrates independent application components.
Service Broker makes it easier to build distributed applications by providing an asynchronous
programming framework that includes queuing and reliable messaging. Service Broker can be used
both for applications that use a single SQL Server instance and for applications that are distributed
across multiple instances. The Service Broker Framework provides a T-SQL Data Manipulation
Language (DML) interface for sending and receiving streams of asynchronous messages.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.1. Architecture

Before you look at the message flow within a Service Broker solution, there are some key Service
Broker terms with which you should be familiar.

A message is a unit of information exchanged between applications that use Service Broker.
Internally, a message is stored in SQL Server as a varbinary(max) data type. Each message has a
message type that defines the name and type of data that a message contains. Each message has a
unique identity. Each message also has a unique sequence number within its conversation, which is
used to enforce message ordering.

A conversation is a reliable, persistent communications channel made up of a series of messages.
Messages are guaranteed to arrive in the order in which they were sent and are guaranteed to arrive
exactly once.

A conversation group is a set of related conversations for completing a specific task. A conversation
group is defined by a participant and is not shared between participants in a conversationeach
participant can group conversations as needed. Service Broker automatically adds a conversation
group identifier to messages in related conversations. A conversation group facilitates the
coordination of the messages within related conversations. A conversation group is associated with a
specific service, and all conversations within the conversation group are messages to and from that
service.

A contract specifies the message types used to perform a specific task and the message types that
each participant in a conversation can use.

An application sends a message to a servicea collection of related tasksand receives messages from a
queue, which holds messages in a database. Generally, one queue is used per service, although it is
possible to share a queue across multiple services. A service specifies the contracts for which it is the
target. A target service is an address that accepts requests for tasks identified by the contract
specified by the service. An initiating service is the return address for a conversation with a target
service.

A dialog is a conversation between two services. Dialogs use the message conversation identifier and
sequence number to identify related messages and put them in the correct order. In this way, dialogs
provide exactly-once-in-order message delivery. The initiator begins a dialog, and the target accepts
the conversation started by the initiator.

Message delivery between applications is asynchronous and transactional. If a transaction rolls back,
all Service Broker operations within the transaction are rolled back, including send and receive
operations.

A route specifies where to deliver messages and specifies a service name, a broker instance identifier
that uniquely identifies a Service Broker database, and a network address. SQL Server uses the
service name and broker instance specified when a conversation is started to determine the route for
a conversation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A remote service binding relates a local database user, the certificate for the user, and the name of a
remote service and is used to provide dialog security for conversations that target a remote service.

Figure 17-1 shows the flow of messages from an initiating client to a target, which processes the
message and responds to the client.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.2. Programming Service Broker

SMO Service Broker classes are used to manage Service Broker objects programmatically. SMO
Service Broker classes do not support creating conversations or sending and receiving messages. You
send and receive streams of asynchronous messages using T-SQL DML statements, which are
discussed in the "Implementing a Service Broker Service " section later in this chapter. Figure 17-2
shows the relationship between SMO classes for Service Broker programming .

Figure 17-1. Service Broker message flow

The remainder of this chapter contains examples that show how to use the SMO Service Broker classes
and provides descriptions of the classes. You need a reference to the following assemblies to compile
and run the examples:

Microsoft.SqlServer.ConnectionInfo

Microsoft.SqlServer.ServiceBrokerEnum

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Microsoft.SqlServer.Smo

The ServiceBroker object described in is the top-level class in the SMO Service Broker class hierarchy
and represents the implementation of Service Broker on a SQL Server database. The ServiceBroker
property of the Database class returns the Service Broker implementation on a database.

17.2.1. Enumerating Service Broker Objects

This example enumerates all Service Broker objectsmessage types, contracts, queues, services,
routes, and remote service bindings:

 using System;

 using Microsoft.SqlServer.Management.Smo;
 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo.Broker;

 class Program

Figure 17-2. Service Broker class relationships

 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");
 Database db = server.Databases["AdventureWorks"];
 ServiceBroker
 sb = db.ServiceBroker;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Console.WriteLine("MESSAGE TYPES:");
 foreach (MessageType mt in sb.MessageTypes)
 Console.WriteLine(" " + mt.Name);

 Console.WriteLine(Environment.NewLine + "CONTRACTS:");
 foreach (ServiceContract sc in sb.ServiceContracts)
 Console.WriteLine(sc.Name);

 Console.WriteLine(Environment.NewLine + "QUEUES:");
 foreach (ServiceQueue sq in sb.Queues)
 Console.WriteLine(" " + sq.Name);

 Console.WriteLine(Environment.NewLine + "SERVICES:");
 foreach (BrokerService bs in sb.Services)
 Console.WriteLine(" " + bs.Name);

 Console.WriteLine(Environment.NewLine + "ROUTES:");
 foreach (ServiceRoute sr in sb.Routes)
 Console.WriteLine(" " + sr.Name);

 Console.WriteLine(Environment.NewLine + "REMOTE SERVICE BINDINGS:");
 foreach (RemoteServiceBinding rsb in sb.RemoteServiceBindings)
 Console.WriteLine(" " + rsb.Name);

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

Results are shown in Figure 17-3 .

The ServiceBroker class exposes a set of collections of the following Service Broker objects: message
types, contracts, queues, services, routes, and remote service bindings. A discussion of the classes
used to programmatically manage these objects follows.

The classes used to manage Server Broker message types are described in Table 17-1 .

Figure 17-3. Results for enumerating Service Broker objects example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 17-1. SMO classes for administering Service Broker message types

Class Description

MessageType Represents a message type.

MessageTypeCollection

Represents a collection of message types as MessageType objects. The
MessageTypes property of the ServiceBroker class returns the
message types defined on a Service Broker instance.

MessageTypeEvents

Represents the settings required for message type event notification.
The BrokerServiceEvents object is obtained using the Events property
of the MessageType object and cannot be created as a standalone
object.

The SubscribeToEvents() method of the BrokerServiceEvents class
specifies the events to receive as an ObjectEventSet object.

MessageTypeMapping
Represents a relationship between a message type and a service
contract.

MessageTypeMappingCollection

Represents a collection of message type mappings as
MessageTypeMapping objects. The MessageTypeMappings property of
the ServiceContract class returns the message types defined on a
service contract.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The classes used to manage Server Broker service contracts programmatically are described in Table
17-2 .

Table 17-2. SMO classes for administering Service Broker service contracts

Class Description

ServiceContract Represents a contract.

ServiceContractCollection

Represents a collection of contracts as ServiceContract objects.
The ServiceContracts property of the ServiceBroker class
returns the contracts defined on a Service Broker instance.

ServiceContractEvents

Represents the settings required for service contract event
notification. The ServiceContractEvents object is obtained using
the Events property of the ServiceContract object and cannot be
created as a standalone object.

The SubscribeToEvents() method of the ServiceContractEvents
class specifies the events to receive as an ObjectEventSet object.

ServiceContractMapping
Represents a collection of contracts mapped to the Service
Broker service.

ServiceContractMappingCollection

Represents a collection of service contract mappings as
ServiceContractMapping objects. The ServiceContractMappings
property of the BrokerService class returns the contracts
mapped to the Service Broker instance.

The classes used to manage Server Broker message queues programmatically are described in Table
17-3 .

Table 17-3. SMO classes for administering Service Broker message queues

Class Description

ServiceQueue Represents a message queue.

ServiceQueueCollection

Represents a collection of queues as ServiceQueue objects. The Queues
property of the ServiceBroker class returns the queues defined on a Service
Broker instance.

ServiceQueueEvents

Represents the settings required for service queue event notification. The
ServiceQueueEvents object is obtained using the Events property of the
ServiceQueue object and cannot be created as a standalone object.

The SubscribeToEvents() method of the ServiceQueueEvents class specifies
the events to receive as a ServiceEventSet object.

ServiceQueueEvent
Represents a service queue event that can be included in a
ServiceQueueEventSet object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

ServiceQueueEventSet Represents a set of service queue events as ServiceQueueEvent objects.

The classes used to programmatically manage Server Broker services are described in Table 17-4 .

Table 17-4. SMO classes for managing Service Broker services

Class Description

BrokerService Represents a Service Broker service.

BrokerServiceCollection

Represents a collection of Service Broker services as BrokerService
objects. The Services property of the ServiceBroker class returns the
Service Broker services defined on a Service Broker implementation.

BrokerServiceEvents

Represents the settings required for Service Broker service event
notification. The BrokerServiceEvents object is obtained using the Events
property of the BrokerService object and cannot be created as a
standalone object.

The SubscribeToEvents() method of the BrokerServiceEvents class
specifies the events to receive as an ObjectEventSet object.

The SMO classes used to manage Server Broker routes programmatically are described in Table 17-5 .

Table 17-5. SMO classes for administering Service Broker routes

Class Description

ServiceRoute Represents a Service Broker route.

ServiceRouteCollection

Represents a collection of routes as ServiceRoute objects. The Routes
property of the ServiceBroker class returns the routes defined on a Service
Broker instance.

ServiceRouteEvents

Represents the settings required for service route event notification. The
ServiceRouteEvents object is obtained using the Events property of the
ServiceRoute object and cannot be created as a standalone object.

The SubscribeToEvents() method of the ServiceRouteEvents class specifies
the events to receive as an ObjectEventSet object.

The SMO classes used to manage Server Broker remote service bindings programmatically are
described in Table 17-6 .

Table 17-6. SMO classes for administering Service Broker remote service

ServiceQueueEventSet Represents a set of service queue events as ServiceQueueEvent objects.

The classes used to programmatically manage Server Broker services are described in Table 17-4 .

Table 17-4. SMO classes for managing Service Broker services

Class Description

BrokerService Represents a Service Broker service.

BrokerServiceCollection

Represents a collection of Service Broker services as BrokerService
objects. The Services property of the ServiceBroker class returns the
Service Broker services defined on a Service Broker implementation.

BrokerServiceEvents

Represents the settings required for Service Broker service event
notification. The BrokerServiceEvents object is obtained using the Events
property of the BrokerService object and cannot be created as a
standalone object.

The SubscribeToEvents() method of the BrokerServiceEvents class
specifies the events to receive as an ObjectEventSet object.

The SMO classes used to manage Server Broker routes programmatically are described in Table 17-5 .

Table 17-5. SMO classes for administering Service Broker routes

Class Description

ServiceRoute Represents a Service Broker route.

ServiceRouteCollection

Represents a collection of routes as ServiceRoute objects. The Routes
property of the ServiceBroker class returns the routes defined on a Service
Broker instance.

ServiceRouteEvents

Represents the settings required for service route event notification. The
ServiceRouteEvents object is obtained using the Events property of the
ServiceRoute object and cannot be created as a standalone object.

The SubscribeToEvents() method of the ServiceRouteEvents class specifies
the events to receive as an ObjectEventSet object.

The SMO classes used to manage Server Broker remote service bindings programmatically are
described in Table 17-6 .

Table 17-6. SMO classes for administering Service Broker remote service

http://lib.ommolketab.ir
http://lib.ommolketab.ir

bindings

Class Description

RemoteServiceBinding
Represents the settings that Service Broker uses for security and
authentication when communicating with a remote service.

RemoteServiceBindingCollection

Represents a collection of remote service bindings as
RemoteServiceBinding objects. The RemoteServiceBindings
property of the ServiceBroker class returns the remote service
bindings defined on a Service Broker instance.

RemoteServiceBindingEvents

Represents the settings required for remote service binding event
notification. The RemoteServiceBindingEvents object is obtained
using the Events property of the RemoteServiceBinding object and
cannot be created as a standalone object.

The SubscribeToEvents() method of the
RemoteServiceBindingEvents class specifies the events to receive as
an ObjectEventSet object.

17.2.2. Implementing a Service Broker Service

This example sets up Service Broker objects used in the examples later in this chapter. The following
objects are created:

Request and response message types, using the MessageType class.

A contract that maps the request and response message types to initiator and target roles, using
the ServiceContract and MessageTypeMapping classes.

Initiator and target queues, using the ServiceQueue class.

Request and response services, using the BrokerService class. These services are associated with
the appropriate contract by using the ServiceContractMapping class.

The source code follows:

 using System;

 using Microsoft.SqlServer.Management.Smo;
 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Management.Smo.Broker;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("localhost");
 Database db = server.Databases["ProgrammingSqlServer2005"];

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ServiceBroker sb = db.ServiceBroker;

 // create the request and response message types
 MessageType requestMessage = new MessageType(sb, "HelloWorldRequest");
 requestMessage.MessageTypeValidation = MessageTypeValidation.Xml;
 requestMessage.Create();
 MessageType responseMessage = new MessageType(sb, "HelloWorldResponse");
 responseMessage.MessageTypeValidation = MessageTypeValidation.Xml;
 responseMessage.Create();

 // create the service contract
 ServiceContract contract = new ServiceContract(sb, "HelloWorldContract");
 contract.MessageTypeMappings.Add(new MessageTypeMapping(
 contract, "HelloWorldRequest", MessageSource.Initiator));
 contract.MessageTypeMappings.Add(new MessageTypeMapping(
 contract, "HelloWorldResponse", MessageSource.Target));
 contract.Create();

 // create the queues
 ServiceQueue initiatorQueue = new ServiceQueue(sb, "HelloWorldInitiator");
 initiatorQueue.Create();
 ServiceQueue targetQueue = new ServiceQueue(sb, "HelloWorldTarget");
 targetQueue.Create();

 // create the services
 BrokerService requestService =
 new BrokerService(sb, "HelloWorldRequestService");
 requestService.QueueName = "HelloWorldTarget";
 requestService.ServiceContractMappings.Add(
 new ServiceContractMapping(requestService, "HelloWorldContract"));
 requestService.Create();

 BrokerService responseService =
 new BrokerService(sb, "HelloWorldResponseService");
 responseService.QueueName = "HelloWorldInitiator";
 responseService.ServiceContractMappings.Add(
 new ServiceContractMapping(responseService, "HelloWorldContract"));
 responseService.Create();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

You can view the newly created objects in Object Explorer in SQL Server Management Studio by
opening the Databases ProgrammingSqlServer2005 Service Broker node.

This example does not specify all of the possible properties when creating the objects. For example,
the message owner is not specified and defaults to the Windows account. The rest of the discussion for
this example describes a generic approach for creating the different objects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Creating a message type defines the name of the message, the owner of the message type as a
database user or role, and how the message is validated as a value from the MessageTypeValidation
enumeration, as described in Table 17-7 .

Table 17-7. MessageTypeValidation enumeration

Value Description

Empty Message body must be null.

None Validation is not performed.

Xml Message body must contain well-formed XML.

XmlSchemaCollection

Message body must contain XML that validates against the XML schema
collection specified for the message type by the
ValidationXmlSchemaCollection property.

Creating a contract defines the name of the contract, the owner of the contract as a database user or
role, message types included in the contract, and which endpoints (MessageSource.Initiator ,
MessageSource.InitiatorAndTarget , or MessageSource.Target) can send each message type.

Creating a queue defines the name of the queue, the status (indicating whether the queue is available
for use), the retention (specifying whether messages are removed from the queue once retrieved),
and, optionally, a stored procedure that runs when a message arrives on the queue, to process the
message automatically.

Creating a service defines the name of the service, the owner of the service as a database user or role,
the queue that receives messages for the service, and the name of one or more contracts for which the
service is a target. The service can initiate conversations only if no contracts are specified.

Creating a route defines the name of the route, the owner of the route as a database user or role, the
name of the remote service that the route points to, the database that hosts the target service, the
length of time that SQL Server retains the route in the routing table, and network addresses for the
route.

Additionally, the other object you can create is a remote service binding. Creating a remote service
binding defines the name of the remote service binding, the owner of the binding as a database user or
role, the database principal that owns the certificate associated with the remote service, and the
remote service to bind to the user.

The preceding example corresponds to the following T-SQL DML batch:

 USE [ProgrammingSqlServer2005]
 GO

 CREATE MESSAGE TYPE [HelloWorldRequest] VALIDATION = WELL_FORMED_XML
 CREATE MESSAGE TYPE [HelloWorldResponse] VALIDATION = WELL_FORMED_XML

 CREATE CONTRACT [HelloWorldContract]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 (
 [HelloWorldRequest] SENT BY INITIATOR,
 [HelloWorldResponse] SENT BY TARGET
)

 CREATE QUEUE [HelloWorldInitiator]
 CREATE QUEUE [HelloWorldTarget]

 CREATE SERVICE [HelloWorldRequestService] ON QUEUE [HelloWorldTarget]
 (
 [HelloWorldContract]
)

 CREATE SERVICE [HelloWorldResponseService] ON QUEUE [HelloWorldInitiator]
 (
 [HelloWorldContract]
)

The following T-SQL batch starts a conversation from the HelloWorldRequestService service to the
HelloWorldResponseService service by using the HelloWorldContract and sends a message of type
HelloWorldRequest by using the conversation:

 BEGIN TRANSACTION
 DECLARE @conversationHandle uniqueidentifier

 BEGIN DIALOG @conversationHandle
 FROM SERVICE [HelloWorldRequestService]
 TO SERVICE 'HelloWorldResponseService'
 ON CONTRACT [HelloWorldContract]
 WITH ENCRYPTION = OFF;

 SEND ON CONVERSATION @conversationHandle
 MESSAGE TYPE [HelloWorldRequest]
 (
 CAST(N'<Request>Hello world request</Request>' AS XML)
)
 COMMIT

The BEGIN DIALOG T-SQL statement starts a conversation between two services. The new converstation
is assigned a system-generated conversation handle with a data type of uniqueidentifier . All
messages are part of a conversation. You can specify a conversation group when starting a
conversation. If one is not specified, SQL Server automatically creates a new conversation group for
the new conversation.

The SEND T-SQL statement sends a message to a service using an existing conversationthe
conversation that the message belongs to is identified by a conversation handle such as the one
returned by the BEGIN DIALOG statement in the preceding example. If the SEND statement is not the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

first statement in a batch, you must terminate the preceding T-SQL statement with a semicolon (;).

The following T-SQL batch retrieves the first message from the HelloWorldInitiator queue. If the
message type name is HelloWorldRequest , a response is sent (again using a SEND T-SQL statement) as
part of the conversation initiated in the preceding example and the conversation is ended.

 DECLARE @conversationHandle uniqueidentifier
 DECLARE @message_body nvarchar(MAX)
 DECLARE @message_type_name sysname;

 BEGIN TRANSACTION;

 RECEIVE TOP(1)
 @message_type_name = message_type_name,
 @conversationHandle = conversation_handle,
 @message_body = message_body
 FROM [HelloWorldInitiator]

 IF @message_type_name = 'HelloWorldRequest'
 BEGIN
 SEND ON CONVERSATION @conversationHandle
 MESSAGE TYPE [HelloWorldResponse]
 (
 CAST(N'<Response>Hello world response</Response>' AS XML)
);
 END CONVERSATION @conversationHandle;
 END
 COMMIT

The RECEIVE T-SQL statement retrieves one or more messages from a message queue. A RECEIVE
statement can specify a conversation handle or conversation group ID to retrieve specific messages.
The RECEIVE statement has an optional WAITFOR clause that specifies the length of time to wait for a
message. The RECEIVE statement removes the message from the queue unless the RETENTION property
of the queue is set to on . If the RECEIVE statement is not the first statement in a batch, you must
terminate the preceding statement with a semicolon.

The END CONVERSATION T-SQL statement ends one side of an existing conversation. A conversation ends
when initiator and target both end the conversation or when the conversation expires, specified by the
LIFETIME argument in the BEGIN DIALOG T-SQL statement. When a conversation ends, Service Broker
removes all messages for the conversation from the service queue.

You can use the BEGIN CONVERSATION TIMER T-SQL statement to start a timer. When the timer expires,
a message of the type http://schemas.Microsoft.com/SQL/ServiceBroker/Messages/DialogTimer is put
on the local queue for the conversation. Each side of the conversation has its own conversation timer.

You can also use the GET trANSMISSION STATUS T-SQL statement to return a description of the last
transmission error for one side of a conversation. An empty string is returned if the last transmission
succeeded.

You can see the message by querying the HelloWorldTarget queue, using a SELECT T-SQL statement:

http://schemas.Microsoft.com/SQL/ServiceBroker/Messages/DialogTimer
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SELECT * FROM HelloWorldTarget

Service Broker manages the contents of the queue. So, although you can issue SELECT statements to
query the contents of the queue, the queue cannot be the target of an INSERT , UPDATE , or DELETE
statement.

This T-SQL batch retrieves a response message from the HelloWorldTarget queue, outputs the
response, and ends the conversation:

 DECLARE @conversationHandle uniqueidentifier
 DECLARE @message_body nvarchar(MAX)
 DECLARE @message_type_name sysname;

 BEGIN TRANSACTION;

 RECEIVE TOP(1)
 @message_type_name = message_type_name,
 @conversationHandle = conversation_handle,
 @message_body = message_body
 FROM [HelloWorldTarget]

 IF @message_type_name = 'HelloWorldResponse'
 BEGIN
 PRINT @message_type_name;
 PRINT @conversationHandle;
 PRINT @message_body;

 END CONVERSATION @conversationHandle;
 END
 COMMIT

Results are shown in Figure 17-4 .

Figure 17-4. Results for retrieve response example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 18. Notification Services

Notification Services is a programming framework based on XML and T-SQL. It is used to create
applications that generate and send messages to subscribers. Notifications can be sent according to a
schedule, or in response to conditions or events. Notifications can be sent using built-in or custom
delivery protocols. They can be delivered to messaging systems such as email or cell phones.

Notification Services applications have a variety of uses, including:

Customer applications

Notify customers about statuses, service changes, or products that might meet a customer's
criteria

Business applications

Monitor line-of-business data, company operations, and business intelligence data

Employee applications

Connect employees as part of workflow or keep them updated with timely information

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.1. Architecture

Notification Services applications are based on a subscriber/subscription model. Here are some key
terms used to describe the entities participating in a Notification Services application:

Subscriber

A user or application that requests and receives the notification

Subscription

A request for information, delivery mechanism, and destination for requested notifications

Event

A piece of information or an occurrence in which the subscriber is interested

Notification

A message containing the information requested by the subscriber in the subscription

Figure 18-1 shows the relationship between these entities.

Figure 18-1. Relationship between Notification Services entities

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Notification Services platform stores system data, and it generates and distributes notifications.
It comprises the following:

Notification Services engine, which contains the provider host, generator, and distributor

Notification Services database

A Notification Services application is hosted in a Notification Services instance. The application
generates and sends messages to the application's subscribersusers or other applications. The
subscriber creates subscriptions to the application. The application monitors and collects events .
Notification Services matches subscriptions to events and generates, formats, and sends a
notification to the subscriber when an event and subscription match. The application database stores
event, subscription, and notification data and metadata about the Notification Services application.
The applications in a Notification Services instance can share subscribers and delivery mechanisms,
which allows them to be administered as a group.

A subscription management application manages subscriber and subscription information in
Notification Services. Subscription management is the process of managing the subscribers, the
information they are interested in (subscriptions), and where to send notifications (device
information). Subscription management is handled by a Windows or web application that uses
subscription management objects supplied in the Notification Services Management Objects (NMO)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

classesa collection of classes used to create and administer Notification Services instances and
applications programmatically. The subscription management classes are used to write and read
subscriber, subscription, and subscriber device data from Notification Services.

To support both Notification Services applications and subscription management applications,
Notification Services provides an API that stores and retrieves subscriber and subscription
information, collects and stores event data, matches subscriptions and events to generate
notifications, formats the event data into messages according to delivery protocol, and sends
messages to subscribers. The remainder of this section describes this process in more detail.

An event provider collects event data from various sources and submits this data to a Notification
Services application, which uses one or more event providers . Notification Services ships with three
standard event providers:

File System Watcher event provider

Triggered when an XML file is added to a watched directory. The ClassName for this event
provider is FileSystemWatcherProvider.

SQL Server event provider

Uses a T-SQL query to get information from a database and create Notification Services events
based on the result. The ClassName for this event provider is SQLProvider.

Analysis Services event provider

Uses a static or dynamic multidimensional expression (MDX) query to get information from an
Analysis Services cube, and creates Notification Services events based on the results. SQL
Services Analysis Services (SSAS) and MDX queries are discussed in Chapter 18. The ClassName
for this provider is AnalysisServicesProvider.

You can develop a custom event provider if the standard event providers do not meet your needs.

An event provider is either hosted or nonhosted. A hosted event provider runs within Notification
Services, either continuously or according to a schedule. Nonhosted event providers run as external
applications and submit events on their own schedule.

An event class represents one type of event that can be submitted to a Notification Services
application and used to generate notifications. An event class definition includes field names and data
types for the event and supporting data. The event class is used to implement the underlying SQL
Server database objects for storing the event data and supporting data.

An event chronicle is a supplemental storage tables for event data. An event chronicle is generally
used to store most-recent event data to support scheduled subscriptions . This data is updated as it
changes and used whenever a scheduled subscription is evaluated. An event chronicle rule contains
the T-SQL queries that maintain the event chronicle data in the underlying SQL Server tables.

A subscription class represents one type of subscription to a Notification Services application. The
subscription class definition includes both fields for storing subscription data and a notification
generation rule that matches events to subscription data. The subscription class is used by SQL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Server to implement the underlying database objects for storing the subscription data and supporting
data.

Once events are collected by the event provider, the generator processes subscriptions against those
events by applying notification generation rules . The generator settings include which computer runs
the generator and how many threads the generator can use when it processes application rules.

A notification class represents one type of notification produced by a Notification Services application.
The notification class definition includes fields and data types defining the data that is sent to
subscribers, information about the content formatter, and information about how the delivery
protocols are used to deliver notifications. The notification class is used to implement the underlying
SQL Server database objects for storing the notification data and supporting data.

A distributor is run by the Notification Services engine and governs notification formatting and
delivery. Every distributor quantuma configurable intervalthe distributor looks for a work itema group
of notificationsto process. If the distributor finds a work item, it calls the content formatter to
transform the notification data and send the formatted notifications to the subscriber using the
specified delivery protocol.

The content formatter transforms raw notification data into readable messages in each combination
of subscriber locale and device. A content formatter is required for each combination of locale and
device. The formatted message can contain raw notification data, dynamic formatted data that is
calculated at formatting time, and static text specified by the content formatter.

A delivery channel represents a delivery endpoint. Formatted notifications are sent to one or more
delivery channels . These in turn package the notifications into delivery protocol packets and send
them to the services that deliver the notification messages to a subscriber. Notification Services
includes the following standard delivery protocols:

Simple Mail Transfer Protocol (SMTP)

Creates and routes notification messages for delivery by an SMTP service.

File protocol

Creates and routes notifications to a text file; intended for application testing.

You can develop a custom delivery protocol if the standard ones do not meet your requirements.

In addition to standard message-by-message formatting and delivery, Notification Services offers two
options: digest delivery, which groups multiple notification messages to a subscriber into a single
message, and multicast delivery, which sends a single notification to multiple subscribers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.2. Creating a Notification Services Application

You can create and configure Notification Services instances and applications by using XML
configuration files and SQL Server 2005 Management Studio, or programmatically by using NMO. An
application created and configured using XML configuration files can be managed programmatically
using NMO. The next section, "Programming Notification Services," discusses programming using
NMO.

You need to perform the following tasks to create and configure a Notification Services application
using XML configuration files:

Create and configure the Notification Services instance. You can do this in one of two ways:

Create an instance configuration file (ICF) for the Notification Services instance. An ICF is
an XML file that describes a Notification Services instance. The ICF names the instance and
contains metadata about the instance, the SQL Server instance that hosts the instance
database, delivery protocols, delivery channels, and encryption. The configuration file also
lists applications hosted in the instance.

Use NMO to programmatically configure the Notification Services instance.

1.

Create and configure the Notification Services application. This includes the structure of events,
subscriptions, and notifications; configuration information for the distributor and generator; and
application execution settings. You can create and configure an application in one of two ways:

Create an application definition file (ADF) for the Notification Services application. An ADF
is an XML file that contains metadata defining a Notification Services application. An ADF is
required for each application hosted in the Notification Services instance.

Use NMO to configure the Notification Services instance programmatically.

2.

Create a subscription management application that lets users sign up and manage their
subscriptions and target devices.

3.

Create a subscription management application using NMO subscription management classes.4.

Create custom event providers, content formatters, and delivery protocols as required.5.

Deploy the Notification Services application.6.

For more information about creating and using ICF and ADF files and the schemas for each file type,
see Microsoft SQL Server 2005 Books Online.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.3. Programming Notification Services

You can build a Notification Services solution by configuring the Notification Services instance in the IDF file
and defining an ADF for the application, as described in the preceding section. Alternatively, you can use
NMO classes to configure the instance and define the instance. Programming with NMO classes is the focus
of this section.

NMO contains classes that are used to programmatically create and administer Notification Services
instances and applications. Figure 18-2 shows the relationship between NMO classes.

The NMO namespace Microsoft.SqlServer.Management.Nmo contains classes used to develop Notification
Services instances and applications. The Microsoft.SqlServer.NotificationServices namespace contains
classes and interfaces for developing custom event providers, content formatters, and delivery protocols. It
also contains the subscription management interfaces.

The remainder of this chapter describes the NMO classes and provides examples that show how to use
them. You need a reference to the following assemblies to compile and run the examples:

Microsoft.SqlServer.ConnectionInfo

Microsoft.SqlServer.NotificationServices

Microsoft.SqlServer.Smo

NotificationServices is the top-level class in the NMO class hierarchy and represents a Notification
Services server.

Figure 18-2. NMO class hierarchy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.3.1. Creating a Notification Services Application and Service

This section creates a complete Notification Services application that creates file and email notifications
based on changes in a stock price. For the purpose of this example, the stock price information is limited to
a stock ticker symbol and price. Two subscribers are createdone that is notified by entries in a text file and
one that is notified using email. Each of the two users monitors a single stockticker symbols ABC and DEF .

This section shows the application that creates the StockWatch Notification Services application and adds
two subscribers and a subscription for each. Subsequent sections discuss the different parts of the
application in detail.

Follow these steps to create the StockWatch Notification Services application with two subscribers and a
subscription for each, start the service, and generate notifications:

Create a Visual Studio 2005 C# console application in the C:\PSS2005 directory. Name the project
NotificationServices .

1.

Add the following references to the project:

Microsoft.SqlServer.ConnectionInfo

Microsoft.SqlServer.NotificationServices

Microsoft.SqlServer.Smo

2.

Replace the code in Program.cs with the code in Example 18-1 . This code is explained in detail
throughout the rest of this chapter.

Example 18-1. Notification Services example

using System;

using Microsoft.SqlServer.Management.Smo;
using Microsoft.SqlServer.Management.Nmo;
using ns = Microsoft.SqlServer.NotificationServices;

class Program
{
 private static Instance nsi;
 private static Application a;

 private const string baseDirectoryPath = @"C:\PSS2005\NotificationServices";

 private const string nsServer = "NSServerName";

 private const string serviceUserName = "NSUSerName";

 private const string servicePassword = "NSPassword";

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 static void Main(string[] args)
 {
 Server server = new Server("(local)");

 // create a new instance
 NotificationServices ns = server.NotificationServices;
 nsi = new Instance(ns, "StockWatch");

 CreateDeliveryChannel();

 // create a new application in the StockWatch instance
 a = new Application(nsi, "StockWatchApp");
 a.BaseDirectoryPath = baseDirectoryPath;

 CreateEventClass();
 CreateSubscriptionClass();
 CreateNotificationClass();
 CreateHostedEventProvider();
 CreateGenerator();
 CreateDistributor();
 CreateVacuumSchedule();

 a.QuantumDuration = new TimeSpan(0, 0, 15);
 a.PerformanceQueryInterval = new TimeSpan(0, 0, 5);
 a.SubscriptionQuantumLimit = 1;
 a.ChronicleQuantumLimit = 1;
 a.VacuumRetentionAge = new TimeSpan(0, 0, 1);

 nsi.Applications.Add(a);

 Console.WriteLine("Added application.");

 nsi.Create();
 nsi.RegisterLocal(serviceUserName, servicePassword);
 nsi.Enable();

 Console.WriteLine("Application enabled." + Environment.NewLine);

 CreateSubscriber();
 CreateSubscription();

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }

 private static void CreateDeliveryChannel()
 {
 DeliveryChannelArgument dca;
 // add file delivery channel
 DeliveryChannel dcFile =
 new DeliveryChannel(nsi, "StockWatchFileDeliveryChannel");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 dcFile.ProtocolName = "File";
 dca = new DeliveryChannelArgument(dcFile, "FileName");
 dca.Value = baseDirectoryPath + @"\Notifications\FileNotifications.txt";
 dcFile.DeliveryChannelArguments.Add(dca);
 nsi.DeliveryChannels.Add(dcFile);
 Console.WriteLine("Added delivery channel: " + dcFile.Name);

 // add email delivery channel
 DeliveryChannel dcEmail =
 new DeliveryChannel(nsi, "StockWatchEmailDeliveryChannel");
 dcEmail.ProtocolName = "SMTP";
 nsi.DeliveryChannels.Add(dcEmail);
 Console.WriteLine("Added delivery channel: " + dcEmail.Name);
 }

 private static void CreateEventClass()
 {
 EventClass ec = new EventClass(a, "StockWatchEvents");

 EventField ef;
 ef = new EventField(ec, "Symbol");
 ef.Type = "nvarchar(6)";
 ec.EventFields.Add(ef);
 ef = new EventField(ec, "Price");
 ef.Type = "float";
 ec.EventFields.Add(ef);

 a.EventClasses.Add(ec);

 Console.WriteLine("Added event class: " + ec.Name);
 }

 private static void CreateSubscriptionClass()
 {
 SubscriptionClass sc = new SubscriptionClass(a, "StockWatchSubscriptions");

 SubscriptionField sf;
 sf = new SubscriptionField(sc, "DeviceName");
 sf.Type = "nvarchar(255)";
 sc.SubscriptionFields.Add(sf);
 sf = new SubscriptionField(sc, "SubscriberLocale");
 sf.Type = "nvarchar(10)";
 sc.SubscriptionFields.Add(sf);
 sf = new SubscriptionField(sc, "Symbol");
 sf.Type = "nvarchar(6)";
 sc.SubscriptionFields.Add(sf);
 sf = new SubscriptionField(sc, "Price");
 sf.Type = "float";
 sc.SubscriptionFields.Add(sf);

 SubscriptionEventRule ser =
 new SubscriptionEventRule(sc, "StockWatchSubscriptionsEventRule");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ser.Action = @"INSERT INTO StockWatchNotifications (" +
 "SubscriberId, DeviceName, SubscriberLocale, Symbol, Price) " +
 "SELECT s.SubscriberId, s.DeviceName, s.SubscriberLocale, " +
 "e.Symbol, e.Price " +
 "FROM StockWatchEvents e, StockWatchSubscriptions s " +
 "WHERE e.Symbol = s.Symbol";

 ser.EventClassName = "StockWatchEvents";

 sc.SubscriptionEventRules.Add(ser);

 a.SubscriptionClasses.Add(sc);

 Console.WriteLine("Added subscription class: " + sc.Name);
 }

 private static void CreateNotificationClass()
 {
 NotificationClass nc = new NotificationClass(a, "StockWatchNotifications");

 NotificationField nf;
 nf = new NotificationField(nc, "Symbol");
 nf.Type = "nvarchar(6)";
 nc.NotificationFields.Add(nf);
 nf = new NotificationField(nc, "Price");
 nf.Type = "float";
 nc.NotificationFields.Add(nf);

 ContentFormatter cf = new ContentFormatter(nc, "XsltFormatter");

 ContentFormatterArgument cfa;
 cfa = new ContentFormatterArgument(cf, "XsltBaseDirectoryPath");
 cfa.Value = a.BaseDirectoryPath + @"\AppDefinition";
 cf.ContentFormatterArguments.Add(cfa);
 cfa = new ContentFormatterArgument(cf, "XsltFileName");
 cfa.Value = "StockWatch.xslt";
 cf.ContentFormatterArguments.Add(cfa);

 nc.ContentFormatter = cf;
 nc.DigestDelivery = true;

 ProtocolField pf;

 // add file notification class protocol
 NotificationClassProtocol ncpFile =
 new NotificationClassProtocol(nc, "File");

 pf = new ProtocolField(ncpFile, "Symbol");
 pf.FieldReference = "Symbol";
 ncpFile.ProtocolFields.Add(pf);
 pf = new ProtocolField(ncpFile, "Price");
 pf.FieldReference = "Price";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ncpFile.ProtocolFields.Add(pf);

 nc.NotificationClassProtocols.Add(ncpFile);

 // add email notification class protocol
 NotificationClassProtocol ncpEmail =
 new NotificationClassProtocol(nc, "SMTP");

 pf = new ProtocolField(ncpEmail, "Subject");
 pf.SqlExpression = "'Stock watch: ' + CONVERT(nvarchar(30), GETDATE())";
 ncpEmail.ProtocolFields.Add(pf);
 pf = new ProtocolField(ncpEmail, "BodyFormat");
 pf.SqlExpression = "'html'";
 ncpEmail.ProtocolFields.Add(pf);
 pf = new ProtocolField(ncpEmail, "From");
 pf.SqlExpression = "'notification@StockWatchService.com'";
 ncpEmail.ProtocolFields.Add(pf);
 pf = new ProtocolField(ncpEmail, "Priority");
 pf.SqlExpression = "'Normal'";
 ncpEmail.ProtocolFields.Add(pf);
 pf = new ProtocolField(ncpEmail, "To");
 pf.SqlExpression = "DeviceAddress";
 ncpEmail.ProtocolFields.Add(pf);

 nc.NotificationClassProtocols.Add(ncpEmail);

 nc.ExpirationAge = new TimeSpan(1, 0, 0);

 a.NotificationClasses.Add(nc);

 Console.WriteLine("Added notification class: " + nc.Name);
 }

 private static void CreateHostedEventProvider()
 {
 HostedEventProvider hep = new HostedEventProvider(a, "StockWatchHEP");
 hep.ClassName = "FileSystemWatcherProvider";
 hep.SystemName = nsServer;

 HostedEventProviderArgument hepa;
 hepa = new HostedEventProviderArgument(hep, "WatchDirectory");
 hepa.Value = baseDirectoryPath + @"\Events";
 hep.HostedEventProviderArguments.Add(hepa);
 hepa = new HostedEventProviderArgument(hep, "SchemaFile");
 hepa.Value = baseDirectoryPath + @"\AppDefinition\EventsSchema.xsd";
 hep.HostedEventProviderArguments.Add(hepa);
 hepa = new HostedEventProviderArgument(hep, "EventClassName");
 hepa.Value = "StockWatchEvents";
 hep.HostedEventProviderArguments.Add(hepa);

 a.HostedEventProviders.Add(hep);
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private static void CreateGenerator()
 {
 // create a new generator for the application
 Generator g = new Generator(a, "StockWatchGenerator");
 g.SystemName = nsServer;
 a.Generator = g;

 Console.WriteLine("Created generator: " + g.Name);
 }

 private static void CreateDistributor()
 {
 Distributor d = new Distributor(a, "StockWatchDistributor");
 d.SystemName = nsServer;
 d.QuantumDuration = new TimeSpan(0, 0, 15);
 a.Distributors.Add(d);

 Console.WriteLine("Added distributor: " + d.Name);
 }

 private static void CreateVacuumSchedule()
 {
 VacuumSchedule vs = new VacuumSchedule(a, "StockWatchVacuumSchedule");
 vs.StartTime = new TimeSpan(0, 0, 0);
 a.VacuumSchedules.Add(vs);

 Console.WriteLine("Added vacuum schedule: " + vs.Name);
 }

 private static void CreateSubscriber()
 {
 ns.NSInstance swnsi = new ns.NSInstance("StockWatch");

 ns.Subscriber s;
 ns.SubscriberDevice sd;

 // create a subscriber
 s = new ns.Subscriber(swnsi);
 s.SubscriberId = @"KristinHamilton";
 s.Add();
 Console.WriteLine("Added subscriber: " + s.SubscriberId);

 // create a file subscriber device
 sd = new ns.SubscriberDevice();
 sd.Initialize(swnsi);
 sd.DeviceName = "StockWatchSubscriberDevice";
 sd.SubscriberId = "KristinHamilton";
 sd.DeviceTypeName = "File";
 sd.DeviceAddress = "KristinH@StockWatch.ns";
 sd.DeliveryChannelName = "StockWatchFileDeliveryChannel";
 sd.Add();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Console.WriteLine("Added subscriber file device.");

 // create a subscriber
 s = new ns.Subscriber(swnsi);
 s.SubscriberId = @"TonyHamilton";
 s.Add();
 Console.WriteLine("Added subscriber: " + s.SubscriberId);

 // create an email subscriber device
 sd = new ns.SubscriberDevice();
 sd.Initialize(swnsi);
 sd.DeviceName = "StockWatchSubscriberDevice";
 sd.SubscriberId = "TonyHamilton";
 sd.DeviceTypeName = "Email";
 sd.DeviceAddress = "TonyH@StockWatchNS.ns";
 sd.DeliveryChannelName = "StockWatchEmailDeliveryChannel";
 sd.Add();
 Console.WriteLine("Added subscriber email device.");
 }

 private static void CreateSubscription()
 {
 ns.NSInstance swnsi = new ns.NSInstance("StockWatch");
 ns.NSApplication a = new ns.NSApplication(swnsi, "StockWatchApp");

 ns.Subscription s;

 // add subscriptions
 s = new ns.Subscription();
 s.Initialize(a, "StockWatchSubscriptions");
 s.SetFieldValue("DeviceName", "StockWatchSubscriberDevice");
 s.SetFieldValue("SubscriberLocale", "en-us");
 s.SubscriberId = "KristinHamilton";
 s.SetFieldValue("Symbol", "ABC");
 s.SetFieldValue("Price", "0.00");
 s.Add();
 Console.WriteLine("Added subscription: " + s.SubscriberId);

 s = new ns.Subscription();
 s.Initialize(a, "StockWatchSubscriptions");
 s.SetFieldValue("DeviceName", "StockWatchSubscriberDevice");
 s.SetFieldValue("SubscriberLocale", "en-us");
 s.SubscriberId = "TonyHamilton";
 s.SetFieldValue("Symbol", "DEF");
 s.SetFieldValue("Price", "0.00");
 s.Add();
 Console.WriteLine("Added subscription: " + s.SubscriberId);
 }
}

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Replace the following string constant values in lines 13 to 15:

NSServerName

The server that runs the Notification Services engine components. Use the name of the local
computer for this example.

NSUserName

The account the NS$StockWatch service runs under.

NSPassword

The password for the NSUserName account.

4.

Compile and execute the code. The results are shown in Figure 18-3 .

Figure 18-3. Results for Notification Services example

5.

Two databases are created when the NMO application is runStockWatchNSMain and
StockWatchStockWatchApp . Ensure that the service login account specified in Step 4 has at least the
NSRunService database role membership for both of these databases.

6.

Refresh the Notification Services node in Object Explorer in SQL Server Management Studio to view
the new Notification Services service, as shown in Figure 18-4 .

Figure 18-4. Results for StockWatch service example

7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Right-click the StockWatch service and select Start from the context menu to start the service.8.

Right-click the StockWatch service and select Properties from the context menu to display the
Instance Properties dialog box, shown in Figure 18-5 .

Figure 18-5. StockWatch application instance properties

9.

Select the Windows Services page to display the service status, as shown in Figure 18-6 . The service
should be running.

10.

Ensure that the SMTP servicea component of Internet Information Services (IIS)is installed and
started. For more information, see Microsoft SQL Server 2005 Books Online.

11.

Create the following three folders in the C:\PSS2005\NotificationServices directory:12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AppDefinition

The folder containing the XSLT transformation file used to format notifications (StockWatch.xslt
in this example) and the schema for the event data (EventSchema.xsd in this example). These
two files are discussed in Steps 13 and 14.

Events

The folder in which event data is placed as XML files (named EventData.xml in this example).

Notifications

The folder in which file notifications are created.

Figure 18-6. StockWatch Windows Services instance properties

12.

Create a file named EventSchema.xsd , as shown in Example 18-2 , in the
C:\PSS2005\NotificationServices\AppDefinition folder. This file describes the schema of the event
data in the EventData.xml file described in Step 15.

Example 18-2. EventSchema.xsd

13.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="event" sql:relation="FlightEvents">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Symbol" type="xsd:string" />
 <xsd:element name="Price" type="xsd:float" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Create a file named StockWatch.xslt , as shown in Example 18-3 , in the
C:\PSS2005\NotificationServices\AppDefinition folder. This file is used to format the notification data
for both file and email notifications.

Example 18-3. StockWatch.xslt

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="notifications">
 <html>
 <body>
 StockWatch Price Update

 <xsl:apply-templates/>

 <i>SQL Server StockWatch Notification Services</i>

 </body>
 </html>
 </xsl:template>

 <xsl:template match="notification">
 The price of <xsl:value-of select="Symbol" /> is now
 $<xsl:value-of select="Price" />.

 </xsl:template>
</xsl:stylesheet>

14.

Create a file named EventData.xml , as shown in Example 18-4 , in the
C:\PSS2005\NotificationServices folder. This XML file contains the event data. In this example, the
events for symbols ABC and DEF have subscriptions and generate notifications. The event for symbol
GHI has no subscriptions and does not generate a notification.

Example 18-4. EventData.xml

15.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<eventData>
 <event>
 <Symbol>ABC</Symbol>
 <Price>3.83</Price>
 </event>
 <event>
 <Symbol>DEF</Symbol>
 <Price>5.75</Price>
 </event>
 <event>
 <Symbol>GHI</Symbol>
 <Price>1.22</Price>
 </event>
</eventData>

Copy the EventData.xml file into the C:\PSS2005\NotificationServices\Events folder to submit events.
The File System Watcher event provider reads data from the application, submits the data to the
application StockWatchApp , and changes the extension of the event datafile to .done once the file is
processed. If there is an error processing the file, the extension of the datafile is changed to .err .

16.

After less than a minute, a notification file named FileNotification.txt is created in the
C:\PSS2005\NotificationServices\Notifications folder, as shown in Figure 18-7 .

Figure 18-7. FileNotification.txt

17.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The email message shown in Figure 18-8 is also generated. It appears in the
C:\Inetpub\mailroot\Queue folder briefly as a file with an .eml extension and is then moved to the
C:\Inetpub\mailroot\Badmail folder because the email address is not valid. To deliver the email,
change the email address for the user TonyHamilton in the CreateSubscriber() method of Example
18-1 to a valid email address by changing the DeviceAddress property of the SubscriberDevice object
for that user.

Notice that both the file and email notifications are formatted using the XSLT transformation
StockWatch.xslt , discussed in Step 14.

The remainder of this chapter discusses the code that creates the StockWatch service, subscribers, and
subscriptions.

18.3.2. Creating a Notification Services Instance and Application

The Notification Services instance named StockWatch and a Notification Services application named
StockWatchApp are created in the Main() method of Example 18-1 . The code followsthe code that creates
the Notification Services instance and application is highlighted:

 static void Main(string[] args)
 {
 Server server = new Server("(local)");

Figure 18-8. StockWatch notification email

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // create a new instance
 NotificationServices ns = server.NotificationServices;
 nsi = new Instance(ns, "StockWatch");

 CreateDeliveryChannel();

 // create a new application in the StockWatch instance
 a = new Application(nsi, "StockWatchApp");
 a.BaseDirectoryPath = baseDirectoryPath;

 CreateEventClass();
 CreateSubscriptionClass();
 CreateNotificationClass();
 CreateHostedEventProvider();
 CreateGenerator();
 CreateDistributor();
 CreateVacuumSchedule();

 a.QuantumDuration = new TimeSpan(0, 0, 15);
 a.PerformanceQueryInterval = new TimeSpan(0, 0, 5);
 a.SubscriptionQuantumLimit = 1;
 a.ChronicleQuantumLimit = 1;
 a.VacuumRetentionAge = new TimeSpan(0, 0, 1);

 nsi.Applications.Add(a);

 Console.WriteLine("Added application.");

 nsi.Create();
 nsi.RegisterLocal(serviceUserName, servicePassword);
 nsi.Enable();

 Console.WriteLine("Application enabled." + Environment.NewLine);

 CreateSubscriber();
 CreateSubscription();

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }

The NotificationServices object represents a Notification Services server. The Instances property of the
NotificationServices class returns an InstanceCollection object containing a collection of Notification
Services instances as Instance objects. At a minimum, you must define a DeliveryChannel object and an
Application object to create an Instance objectin this example, this is done by the
CreateDeliveryChannel() and Main() methods.

The RegisterLocal() method of the Instance class registers an instance of Notification Services on the
local computer. This is the same as registering a Notification Services instance using SQL Server
Management Studio by right-clicking the Notification Services instance and selecting Tasks Register

http://lib.ommolketab.ir
http://lib.ommolketab.ir

from the context menu. You can also register a Notification Services instance by using the nscontrol
register command. Registering an instance creates or updates registry entries for the instance, creates
performance counters, and optionally creates a Windows Service to run the instance.

The Enable() method of the Instance class enables all instance and application components, allowing
event collection, notification generation, notification distribution, and subscription management. A
NotificationServices instance is disabled when you create it.

The NMO classes used to manage Notification Services instances are described in Table 18-1 .

Table 18-1. NMO classes for managing Notification Services instances

Class Description

Instance Represents a Notification Services instance.

InstanceCollection Represents a collection of instances as Instance objects. The Instances property of
the NotificationServices class returns the Notification Services instances on the
server.

The Application object represents a Notification Services application. At a minimum, you must define a
Generator object and a Distributor object for an Application objectin this example, this is done by the
CreateGenerator() and CreateDistributor() methods.

This example configures the Application object by setting the following properties:

BaseDirectoryPath

Specifies the base directory path for the ADF

QuantumDuration

Specifies how frequently the generator tries to process work

PerformanceQueryInterval

Specifies how frequently the application updates its performance counters

SubscriptionQuantumLimit

Specifies how far the logical clock can fall behind the real-time clock before skipping subscription rule
firings

ChronicleQuantumLimit

Specifies how far the logical clock can fall behind the real-time clock before skipping event chronicle

http://lib.ommolketab.ir
http://lib.ommolketab.ir

firings

VacuumRetentionAge

Specifies the minimum age at which event and notification data is considered obsolete and can be
removed

The NMO classes used to manage Notification Services applications are described in Table 18-2 .

Table 18-2. NMO classes for managing applications

Class Description

Application Represents a Notification Services application.

ApplicationCollection Represents a collection of Notification Services applications as Application
objects. The Applications property of the Instance class returns the Notification
Services applications hosted on the Notification Services instance.

18.3.3. Creating a Delivery Channel

A file delivery channel named StockWatchFileDeliveryChannel and an email delivery channel named
StockWatchEmailDeliveryChannel are created in the CreateDeliveryChannel() method of Example 18-1 .
The code follows:

 private static void CreateDeliveryChannel()
 {
 DeliveryChannelArgument dca;
 // add file delivery channel
 DeliveryChannel dcFile =
 new DeliveryChannel(nsi, "StockWatchFileDeliveryChannel");
 dcFile.ProtocolName = "File";
 dca = new DeliveryChannelArgument(dcFile, "FileName");
 dca.Value = baseDirectoryPath + @"\Notifications\FileNotifications.txt";
 dcFile.DeliveryChannelArguments.Add(dca);
 nsi.DeliveryChannels.Add(dcFile);
 Console.WriteLine("Added delivery channel: " + dcFile.Name);

 // add email delivery channel
 DeliveryChannel dcEmail =
 new DeliveryChannel(nsi, "StockWatchEmailDeliveryChannel");
 dcEmail.ProtocolName
 = "SMTP";
 nsi.DeliveryChannels.Add(dcEmail);
 Console.WriteLine("Added delivery channel: " + dcEmail.Name);
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You have to add at least one delivery channel to a Notification Services instance before creating it. The
ProtocolName property of the DeliveryChannel object must be set to SMTP , File , or the name of a custom
delivery protocol.

The NMO classes used to manage delivery channels are described in Table 18-3 .

Table 18-3. NMO classes for managing delivery channels

Delivery channel Description

DeliveryChannel Represents a delivery channel.

DeliveryChannelArgument Represents a name-value pair specifying delivery channel
configuration and authentication information for the delivery
service.

DeliveryChannelArgumentCollection Represents a collection of delivery channel arguments as
DeliveryChannelArgument objects. The DeliveryChannelArguments
property of the DeliveryChannel class returns the delivery channel
arguments for the delivery channel.

DeliveryChannelCollection Represents a collection of delivery channels as DeliveryChannel
objects. The DeliveryChannels property of the Instance class
returns the delivery channels for the Notification Services instance.

18.3.4. Creating an Event Class

An event class named StockWatchEvents is created in the CreateEventClass() method of Example 18-1 .
The code follows:

 private static void CreateEventClass()
 {
 EventClass ec = new EventClass(a, "StockWatchEvents");

 EventField ef;
 ef = new EventField(ec, "Symbol");
 ef.Type = "nvarchar(6)";
 ec.EventFields.Add(ef);
 ef = new EventField(ec, "Price");
 ef.Type = "float";
 ec.EventFields.Add(ef);

 a.EventClasses.Add(ec);

 Console.WriteLine("Added event class: " + ec.Name);
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An event class represents a type of event used by a Notification Services application. The event class has
two fieldsSymbol of type nvarchar(6) and Price of type float .

The NMO classes for managing event classes, fields, and chronicles are described in Table 18-4 .

Table 18-4. NMO classes for managing events

Class Description

EventChronicle Represents an event chronicle.

EventChronicleCollection Represents a collection of event chronicles as EventChronicle objects. The
EventChronicles property of the EventClass class returns the event chronicles
for the event class.

EventChronicleRule Represents an event chronicle maintenance query that the generator runs.

EventClass Represents an event class.

EventClassCollection Represents a collection of event classes as EventClass objects. The
EventClasses property of the Application class returns the event classes for
the Notification Services application.

EventField Represents a field in an event class schema.

EventFieldCollection Represents a collection of event class schema fields as EventField objects.
The EventFields property of the EventClass class returns the event fields for
the event class.

18.3.5. Creating a Subscription Class and Subscription Event Rule

A subscription class with a single subscription event rule is created in the CreateSubscriptionClassMethod(
) method of Example 18-1 . The code follows:

 private static void CreateSubscriptionClass()
 {
 SubscriptionClass sc = new SubscriptionClass(a, "StockWatchSubscriptions");

 SubscriptionField sf;
 sf = new SubscriptionField(sc, "DeviceName");
 sf.Type = "nvarchar(255)";
 sc.SubscriptionFields.Add(sf);
 sf = new SubscriptionField(sc, "SubscriberLocale");
 sf.Type = "nvarchar(10)";
 sc.SubscriptionFields.Add(sf);
 sf = new SubscriptionField(sc, "Symbol");
 sf.Type = "nvarchar(6)";
 sc.SubscriptionFields.Add(sf);
 sf = new SubscriptionField(sc, "Price");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 sf.Type = "float";
 sc.SubscriptionFields.Add(sf);

 SubscriptionEventRule ser =
 new SubscriptionEventRule(sc, "StockWatchSubscriptionsEventRule");
 ser.Action = @"INSERT INTO StockWatchNotifications (" +
 "SubscriberId, DeviceName, SubscriberLocale, Symbol, Price) " +
 "SELECT s.SubscriberId, s.DeviceName, s.SubscriberLocale, " +
 "e.Symbol, e.Price " +
 "FROM StockWatchEvents e, StockWatchSubscriptions s " +
 "WHERE e.Symbol = s.Symbol";

 ser.EventClassName = "StockWatchEvents";

 sc.SubscriptionEventRules.Add(ser);

 a.SubscriptionClasses.Add(sc);

 Console.WriteLine("Added subscription class: " + sc.Name);
 }

A SubscriptionClass object defines a type of subscription within a Notification Services application. The
SubscriptionField objects added to the Subscription object represent fields in the subscription class
schema. A SubscriptionChronicle object lets you store subscription information outside of tables used by
the subscription classthis example does not use a subscription chronicle.

The NMO classes for managing, subscription chronicles subscription classes, and subscription fields are
described in Table 18-5 .

Table 18-5. NMO classes for managing subscription chronicles, classes, and
fields

Class Description

SubscriptionChronicle Represents a subscription chronicle.

SubscriptionChronicleCollection Represents a collection of subscription chronicles as
SubscriptionChronicle objects. The SubscriptionChronicles property
of the SubscriptionClass class returns the subscription chronicles for
the subscription class.

SubscriptionClass Represents a subscription class.

SubscriptionClassCollection Represents a collection of subscription classes as SubscriptionClass
objects. The SubscriptionClasses property of the Application class
returns the subscription classes for the Notification Services
application.

SubscriptionField Represents a field in the subscription class schema.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

SubscriptionFieldCollection Represents a collection of fields as SubscriptionField objects. The
SubscriptionFields property of the SubscriptionClass class returns
the fields for the subscription class schema.

A SubscriptionEventRule object represents a rule that uses T-SQL queries to generate notifications when
event batches arrive. The Action property represents the T-SQL query for the SubscriptionEventRule
object. In this example, notifications are generated when the ticker symbol of an event matches the ticker
symbol specified in a subscription.

The NMO classes for managing the different types of subscription rules are described in Table 18-6 .

Table 18-6. NMO classes for managing subscription rules

Class Description

SubscriptionConditionEventRule Represents a subscription rule that the generator runs
against subscriptions that use conditions to generate
notifications.

SubscriptionConditionEventRuleCollection Represents a collection of subscription condition event
rules as SubscriptionConditionEventRule objects. The
SubscriptionConditionEventRules property of the
SubscriptionClass class returns the subscription
condition event rules for the subscription class.

SubscriptionConditionScheduledRule Represents a subscription rule that the generator runs
against scheduled subscriptions that use conditions to
generate notifications.

SubscriptionConditionScheduledRuleCollection Represents a collection of subscription condition
scheduled rules as
SubscriptionConditionScheduledRule objects. The
SubscriptionConditionScheduledRules property of the
SubscriptionClass class returns the subscription
condition scheduled rules for the subscription class.

SubscriptionEventRule Represents an event rule that contains simple (not
conditional) actions.

SubscriptionEventRuleCollection Represents a collection of subscription event rules as
SubscriptionEventRule objects. The
SubscriptionEventRules property of the
SubscriptionClass class returns the subscription event
rules for the subscription class.

SubscriptionScheduledRule Represents a scheduled rule that contains actions that
do not use conditions to generate notifications.

SubscriptionFieldCollection Represents a collection of fields as SubscriptionField objects. The
SubscriptionFields property of the SubscriptionClass class returns
the fields for the subscription class schema.

A SubscriptionEventRule object represents a rule that uses T-SQL queries to generate notifications when
event batches arrive. The Action property represents the T-SQL query for the SubscriptionEventRule
object. In this example, notifications are generated when the ticker symbol of an event matches the ticker
symbol specified in a subscription.

The NMO classes for managing the different types of subscription rules are described in Table 18-6 .

Table 18-6. NMO classes for managing subscription rules

Class Description

SubscriptionConditionEventRule Represents a subscription rule that the generator runs
against subscriptions that use conditions to generate
notifications.

SubscriptionConditionEventRuleCollection Represents a collection of subscription condition event
rules as SubscriptionConditionEventRule objects. The
SubscriptionConditionEventRules property of the
SubscriptionClass class returns the subscription
condition event rules for the subscription class.

SubscriptionConditionScheduledRule Represents a subscription rule that the generator runs
against scheduled subscriptions that use conditions to
generate notifications.

SubscriptionConditionScheduledRuleCollection Represents a collection of subscription condition
scheduled rules as
SubscriptionConditionScheduledRule objects. The
SubscriptionConditionScheduledRules property of the
SubscriptionClass class returns the subscription
condition scheduled rules for the subscription class.

SubscriptionEventRule Represents an event rule that contains simple (not
conditional) actions.

SubscriptionEventRuleCollection Represents a collection of subscription event rules as
SubscriptionEventRule objects. The
SubscriptionEventRules property of the
SubscriptionClass class returns the subscription event
rules for the subscription class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

SubscriptionScheduledRule Represents a scheduled rule that contains actions that
do not use conditions to generate notifications.

SubscriptionScheduledRuleCollection Represents a collection of scheduled rules as
SubscriptionScheduledRule objects. The
SubscriptionScheduledRules property of the
SubscriptionClass class returns the scheduled rules for
the subscription class.

18.3.6. Creating a Notification Class, Content Formatter, and Notification
Class Protocol

A notification class named StockWatchNotifications , a content formatter named XsltFormatter , and two
notification class protocols named File and SMTP are created in the CreateNotificationClass() method of
Example 18-1 . The code follows:

 private static void CreateNotificationClass()
 {
 NotificationClass nc = new NotificationClass(a, "StockWatchNotifications");

 NotificationField nf;
 nf = new NotificationField(nc, "Symbol");
 nf.Type = "nvarchar(6)";
 nc.NotificationFields.Add(nf);
 nf = new NotificationField(nc, "Price");
 nf.Type = "float";
 nc.NotificationFields.Add(nf);

 ContentFormatter cf = new ContentFormatter(nc, "XsltFormatter");

 ContentFormatterArgument cfa;
 cfa = new ContentFormatterArgument(cf, "XsltBaseDirectoryPath");
 cfa.Value = a.BaseDirectoryPath + @"\AppDefinition";
 cf.ContentFormatterArguments.Add(cfa);
 cfa = new ContentFormatterArgument(cf, "XsltFileName");
 cfa.Value = "StockWatch.xslt";
 cf.ContentFormatterArguments.Add(cfa);

 nc.ContentFormatter = cf;
 nc.DigestDelivery = true;

 ProtocolField pf;

 // add file notification class protocol
 NotificationClassProtocol ncpFile =
 new NotificationClassProtocol(nc, "File");

SubscriptionScheduledRule Represents a scheduled rule that contains actions that
do not use conditions to generate notifications.

SubscriptionScheduledRuleCollection Represents a collection of scheduled rules as
SubscriptionScheduledRule objects. The
SubscriptionScheduledRules property of the
SubscriptionClass class returns the scheduled rules for
the subscription class.

18.3.6. Creating a Notification Class, Content Formatter, and Notification
Class Protocol

A notification class named StockWatchNotifications , a content formatter named XsltFormatter , and two
notification class protocols named File and SMTP are created in the CreateNotificationClass() method of
Example 18-1 . The code follows:

 private static void CreateNotificationClass()
 {
 NotificationClass nc = new NotificationClass(a, "StockWatchNotifications");

 NotificationField nf;
 nf = new NotificationField(nc, "Symbol");
 nf.Type = "nvarchar(6)";
 nc.NotificationFields.Add(nf);
 nf = new NotificationField(nc, "Price");
 nf.Type = "float";
 nc.NotificationFields.Add(nf);

 ContentFormatter cf = new ContentFormatter(nc, "XsltFormatter");

 ContentFormatterArgument cfa;
 cfa = new ContentFormatterArgument(cf, "XsltBaseDirectoryPath");
 cfa.Value = a.BaseDirectoryPath + @"\AppDefinition";
 cf.ContentFormatterArguments.Add(cfa);
 cfa = new ContentFormatterArgument(cf, "XsltFileName");
 cfa.Value = "StockWatch.xslt";
 cf.ContentFormatterArguments.Add(cfa);

 nc.ContentFormatter = cf;
 nc.DigestDelivery = true;

 ProtocolField pf;

 // add file notification class protocol
 NotificationClassProtocol ncpFile =
 new NotificationClassProtocol(nc, "File");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 pf = new ProtocolField(ncpFile, "Symbol");
 pf.FieldReference = "Symbol";
 ncpFile.ProtocolFields.Add(pf);
 pf = new ProtocolField(ncpFile, "Price");
 pf.FieldReference = "Price";
 ncpFile.ProtocolFields.Add(pf);

 nc.NotificationClassProtocols.Add(ncpFile);

 // add email notification
 class protocol
 NotificationClassProtocol ncpEmail =
 new NotificationClassProtocol(nc, "SMTP");

 pf = new ProtocolField(ncpEmail, "Subject");
 pf.SqlExpression = "'Stock watch: ' + CONVERT(nvarchar(30), GETDATE())";
 ncpEmail.ProtocolFields.Add(pf);
 pf = new ProtocolField(ncpEmail, "BodyFormat");
 pf.SqlExpression = "'html'";
 ncpEmail.ProtocolFields.Add(pf);
 pf = new ProtocolField(ncpEmail, "From");
 pf.SqlExpression = "'notification@StockWatchService.com'";
 ncpEmail.ProtocolFields.Add(pf);
 pf = new ProtocolField(ncpEmail, "Priority");
 pf.SqlExpression = "'Normal'";
 ncpEmail.ProtocolFields.Add(pf);
 pf = new ProtocolField(ncpEmail, "To");
 pf.SqlExpression = "DeviceAddress";
 ncpEmail.ProtocolFields.Add(pf);

 nc.NotificationClassProtocols.Add(ncpEmail);

 nc.ExpirationAge = new TimeSpan(1, 0, 0);

 a.NotificationClasses.Add(nc);

 Console.WriteLine("Added notification class: " + nc.Name);
 }

The NotificationClass object represents a type of notification supported by a Notification Services
application. A NotificationField object represents a field in a notification class schema. The notification
class in this example has two fieldsSymbol of type nvarchar(6) and Price of type float .

The NMO classes for managing notification classes and fields are described in Table 18-7 .

Table 18-7. NMO classes for managing notification classes and fields

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

NotificationClass Represents a notification class.

NotificationClassCollection Represents a collection of notification classes as
NotificationClass objects. The NotificationClasses property of
the Application class returns the notification classes for the
Notification Services application.

NotificationComputedField Represents a computed field in a notification class schema.

NotificationComputedFieldCollection Represents a collection of computed fields as
NotificationComputedField objects. The
NotificationComputedFields property of the NotificationClass
class returns the computed fields for the notification class.

NotificationField Represents a noncomputed field in a notification class schema.

NotificationFieldCollection Represents a collection of fields as NotificationField objects.
The NotificationFields property of the NotificationClass class
returns the fields for the notification class.

A content formatter formats notifications for a notification class. Each notification class has one content
formatter that can perform different formatting based on field values in the notification. The content
formatter takes three arguments:

XsltBaseDirectoryPath

The root directory for all XSLT files.

XsltFileName

The name of the XSLT file used to transform raw notification data into formatted data for notification
delivery.

DisableEscaping

An optional Boolean argument indicating that the event data contains either HTML or XML data
preventing further transformation. The default value is false .

The NMO classes for managing content formatters are described in Table 18-8 .

Table 18-8. NMO classes for managing content formatters

Class Description

ContentFormatter Represents a content formatter. The ContentFormatter property of
the NotificationClass class returns the content formatter for the
notification class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

ContentFormatterArgument Represents a name-value pair for a content formatter initialization
argument.

ContentFormatterArgumentCollection Represents a collection of initialization arguments as
ContentFormatterArgument objects. The
ContentFormatterArguments property of the ContentFormatter class
returns the initialization arguments for the content formatter.

A notification class protocol represents a delivery protocol for a notification class. A ProtocolField object
represents a protocol header field used by some delivery protocols . Protocol field headers are different for
file and email notificationexamine the code and examine the file and email notifications shown in Figure 18-
7 and Figure 18-8 to see the result of setting the protocol fields. The value of the ProtocolField object is
set using either the SqlExpression or FieldReference property. This lets you use either a T-SQL expression
or a notification field to define a protocol field value.

The NMO classes for managing protocols are described in Table 18-9 .

Table 18-9. NMO classes for managing protocols

Class Description

NotificationClassProtocol Represents a delivery protocol for a notification class.

NotificationClassProtocolCollection Represents a collection of notification class protocols as
NotificationClassProtocol objects. The
NotificationClassProtocols property of the NotificationClass
class returns the delivery classes for the notification class.

ProtocolDefinition Represents a custom delivery protocol.

ProtocolDefinitionCollection Represents a collection of custom delivery protocols as
ProtocolDefinition objects. The ProtocolDefinitions property of
the Instance class returns the custom delivery protocols for the
Notification Services instance.

ProtocolField Represents a protocol header field.

ProtocolFieldCollection Represents a collection of protocol header fields as ProtocolField
objects. The ProtocolFields property of the
NotificationClassProtocol class returns the protocol header
fields for the delivery protocol.

ProtocolRetrySchedule Represents a retry schedule interval.

ProtocolRetryScheduleCollection Represents a collection of retry schedule intervals as
ProtocolRetrySchedule objects. The ProtocolRetrySchedules
property of the NotificationClassProtocol class returns the retry
schedules for notifications sent using the delivery protocol.

18.3.7. Creating an Event Provider

ContentFormatterArgument Represents a name-value pair for a content formatter initialization
argument.

ContentFormatterArgumentCollection Represents a collection of initialization arguments as
ContentFormatterArgument objects. The
ContentFormatterArguments property of the ContentFormatter class
returns the initialization arguments for the content formatter.

A notification class protocol represents a delivery protocol for a notification class. A ProtocolField object
represents a protocol header field used by some delivery protocols . Protocol field headers are different for
file and email notificationexamine the code and examine the file and email notifications shown in Figure 18-
7 and Figure 18-8 to see the result of setting the protocol fields. The value of the ProtocolField object is
set using either the SqlExpression or FieldReference property. This lets you use either a T-SQL expression
or a notification field to define a protocol field value.

The NMO classes for managing protocols are described in Table 18-9 .

Table 18-9. NMO classes for managing protocols

Class Description

NotificationClassProtocol Represents a delivery protocol for a notification class.

NotificationClassProtocolCollection Represents a collection of notification class protocols as
NotificationClassProtocol objects. The
NotificationClassProtocols property of the NotificationClass
class returns the delivery classes for the notification class.

ProtocolDefinition Represents a custom delivery protocol.

ProtocolDefinitionCollection Represents a collection of custom delivery protocols as
ProtocolDefinition objects. The ProtocolDefinitions property of
the Instance class returns the custom delivery protocols for the
Notification Services instance.

ProtocolField Represents a protocol header field.

ProtocolFieldCollection Represents a collection of protocol header fields as ProtocolField
objects. The ProtocolFields property of the
NotificationClassProtocol class returns the protocol header
fields for the delivery protocol.

ProtocolRetrySchedule Represents a retry schedule interval.

ProtocolRetryScheduleCollection Represents a collection of retry schedule intervals as
ProtocolRetrySchedule objects. The ProtocolRetrySchedules
property of the NotificationClassProtocol class returns the retry
schedules for notifications sent using the delivery protocol.

18.3.7. Creating an Event Provider

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A hosted event provider is created in the CreateHostedEventProvider() method of Example 18-1 . The
code follows:

 private static void CreateHostedEventProvider()
 {
 HostedEventProvider
 hep = new HostedEventProvider(a, "StockWatchHEP");
 hep.ClassName = "FileSystemWatcherProvider";
 hep.SystemName = nsServer;

 HostedEventProviderArgument hepa;
 hepa = new HostedEventProviderArgument(hep, "WatchDirectory");
 hepa.Value = baseDirectoryPath + @"\Events";
 hep.HostedEventProviderArguments.Add(hepa);
 hepa = new HostedEventProviderArgument(hep, "SchemaFile");
 hepa.Value = baseDirectoryPath + @"\AppDefinition\EventsSchema.xsd";
 hep.HostedEventProviderArguments.Add(hepa);
 hepa = new HostedEventProviderArgument(hep, "EventClassName");
 hepa.Value = "StockWatchEvents";
 hep.HostedEventProviderArguments.Add(hepa);

 a.HostedEventProviders.Add(hep);
 }

Event providers collect event data and submit it to an event class. Hosted event providers are run by the
Notification Services engine. Nonhosted event providers, on the other hand, run outside of the engine, and
have no interaction with Notification Services.

The ClassName property of the HostedEventProvider class specifies the class that implements the event
provider. Notification Services has three built-in event providers, described in the "Architecture " section
earlier in this chapter. You can also use a custom event provider. This example uses the File System
Watcher event provider (with a ClassName of FileSystemWatcherProvider) , which gathers events of the
StockWatchEvents event class from a file in the C:\PSS2005\NotificationServices\Events directory. The
event file must conform to the schema defined in the
C:\PSS2005\NotificationServices\AppDefinition\EventsSchema.xsd file.

The NMO classes for managing hosted and nonhosted event providers are described in Table 18-10 .

Table 18-10. NMO classes for managing hosted and nonhosted event
providers

Class Description

HostedEventProvider Represents a hosted event provider for a Notification Services
application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

HostedEventProviderArgument Represents a name-value pair specifying hosted event provider
configuration.

HostedEventProviderArgumentCollection Represents a collection of hosted event provider arguments as
HostedEventProviderArgument objects. The
HostedEventProviderArguments property of the
HostedEventProvider class returns the hosted event provider
arguments for the hosted event provider.

HostedEventProviderCollection Represents a collection of hosted event providers as
HostedEventProvider objects. The HostedEventProviders
property of the Application class returns the hosted event
providers for the Notification Services application.

NonHostedEventProvider Represents a nonhosted event provider.

NonHostedEventProviderCollection Represents a collection of nonhosted event providers as
NonHostedEventProvider objects. The NonHostedEventProviders
property of the Application class returns the nonhosted event
providers for the Notification Services application.

18.3.8. Creating a Generator

A generator named StockWatchGenerator is created in the CreateGenerator() method of Example 18-1 .
The code follows:

 private static void CreateGenerator()
 {
 // create a new generator for the application
 Generator g = new Generator(a, "StockWatchGenerator");
 g.SystemName = nsServer;
 a.Generator = g;

 Console.WriteLine("Created generator: " + g.Name);
 }

The Generator object represents the generator for a Notification Services application. The Generator
property of the Application class returns the generator for the application. You have to specify the
Generator property of the Application object before adding the application to the Notification Services
instance. An application has only one generator, which handles rule processing for the application.

The SystemName property of the Generator class must be specified, and cannot be any of the following:
localhost , . , an IP address, or any string containing a backslash (\).

18.3.9. Creating a Distributor

HostedEventProviderArgument Represents a name-value pair specifying hosted event provider
configuration.

HostedEventProviderArgumentCollection Represents a collection of hosted event provider arguments as
HostedEventProviderArgument objects. The
HostedEventProviderArguments property of the
HostedEventProvider class returns the hosted event provider
arguments for the hosted event provider.

HostedEventProviderCollection Represents a collection of hosted event providers as
HostedEventProvider objects. The HostedEventProviders
property of the Application class returns the hosted event
providers for the Notification Services application.

NonHostedEventProvider Represents a nonhosted event provider.

NonHostedEventProviderCollection Represents a collection of nonhosted event providers as
NonHostedEventProvider objects. The NonHostedEventProviders
property of the Application class returns the nonhosted event
providers for the Notification Services application.

18.3.8. Creating a Generator

A generator named StockWatchGenerator is created in the CreateGenerator() method of Example 18-1 .
The code follows:

 private static void CreateGenerator()
 {
 // create a new generator for the application
 Generator g = new Generator(a, "StockWatchGenerator");
 g.SystemName = nsServer;
 a.Generator = g;

 Console.WriteLine("Created generator: " + g.Name);
 }

The Generator object represents the generator for a Notification Services application. The Generator
property of the Application class returns the generator for the application. You have to specify the
Generator property of the Application object before adding the application to the Notification Services
instance. An application has only one generator, which handles rule processing for the application.

The SystemName property of the Generator class must be specified, and cannot be any of the following:
localhost , . , an IP address, or any string containing a backslash (\).

18.3.9. Creating a Distributor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A distributor named StockWatchDistributor is created in the CreateDistributor() method of Example 18-
1 . The code follows:

 private static void CreateDistributor()
 {
 Distributor d = new Distributor(a, "StockWatchDistributor");
 d.SystemName = nsServer;
 d.QuantumDuration = new TimeSpan(0, 0, 15);
 a.Distributors.Add(d);

 Console.WriteLine("Added distributor: " + d.Name);
 }

The Distributor object represents a distributor for a Notification Services application. Each application
must have one distributor that controls formatting and distribution of notifications. If an application has
multiple distributors, each one must be installed on a different server. The QuantumDuration property
specifies the distributor work item polling interval, which is 15 seconds in this example.

The NMO classes for managing distributors are described in Table 18-11 .

Table 18-11. NMO classes for managing distributors

Class Description

Distributor Represents a distributor for a Notification Services application.

DistributorCollection Represents a collection of distributors as Distributor objects. The Distributors
property of the Application class returns the distributors used to distribute
notifications to delivery channels for the Notification Services application.

18.3.10. Creating a Vacuum Schedule

A vacuum schedule named StockWatchVacuumSchedule is created in the CreateVacuumSchedule() method
of Example 18-1 . The code follows:

 private static void CreateVacuumSchedule()
 {
 VacuumSchedule vs = new VacuumSchedule(a, "StockWatchVacuumSchedule");
 vs.StartTime = new TimeSpan(0, 0, 0);
 a.VacuumSchedules.Add(vs);

 Console.WriteLine("Added vacuum schedule: " + vs.Name);
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Vacuuming removes old event and notification data from the application database on a daily schedule. The
StartTime property specifies the daily time in Universal Coordinated Time (UTC) for the data removal
process to start. Although specifying a vacuum schedule is optional, old data is not removed from the
database if a vacuum schedule is not specified.

The NMO classes for managing vacuum schedules are described in Table 18-12 .

Table 18-12. NMO classes for managing vacuum schedules

Class Description

VacuumSchedule Represents a data removal schedule.

VacuumScheduleCollection Represents a collection of data removal schedules as VacuumSchedule objects.
The VacuumSchedules property of the Application class returns the data
removal schedules for the application.

18.3.11. Creating a Subscriber and Subscriber Device

Two subscribers, each with a single subscriber device, are created in the CreateSubscriber() method of
Example 18-1 . The code follows:

 private static void CreateSubscriber()
 {
 ns.NSInstance swnsi = new ns.NSInstance("StockWatch");

 ns.Subscriber s;
 ns.SubscriberDevice sd;

 // create a subscriber
 s = new ns.Subscriber(swnsi);
 s.SubscriberId = @"KristinHamilton";
 s.Add();
 Console.WriteLine("Added subscriber: " + s.SubscriberId);

 // create a file subscriber device
 sd = new ns.SubscriberDevice();
 sd.Initialize(swnsi);
 sd.DeviceName = "StockWatchSubscriberDevice";
 sd.SubscriberId = "KristinHamilton";
 sd.DeviceTypeName = "File";
 sd.DeviceAddress = "KristinH@StockWatch.ns";
 sd.DeliveryChannelName = "StockWatchFileDeliveryChannel";
 sd.Add();
 Console.WriteLine("Added subscriber file device.");

 // create a subscriber
 s = new ns.Subscriber(swnsi);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 s.SubscriberId = @"TonyHamilton";
 s.Add();
 Console.WriteLine("Added subscriber: " + s.SubscriberId);

 // create an email subscriber device
 sd = new ns.SubscriberDevice
();
 sd.Initialize(swnsi);
 sd.DeviceName
 = "StockWatchSubscriberDevice";
 sd.SubscriberId
 = "TonyHamilton";
 sd.DeviceTypeName
 = "Email";
 sd.DeviceAddress
 = "TonyH@StockWatchNS.ns";
 sd.DeliveryChannelName
 = "StockWatchEmailDeliveryChannel";
 sd.Add();
 Console.WriteLine("Added subscriber email device.");
 }

The NSInstance class represents a Notification Services instance that is registered in the Windows registry.

The Subscriber class represents a subscriber in a Notification Services instance. The
SubscriberEnumeration class represents a collection of subscribers as Subscriber objects in a Notification
Services instance.

The SubscriberEnumeration class is used to retrieve a Subscriber object from the collection of subscribers
to the Notification Services instance. The Delete() method removes a subscriber, the Add() method adds
a subscriber, and the Update() method updates the information for an existing subscriber. The following
code deletes the subscriber AnySubscriber from a Notification Service instance named HelloWorld :

 NSInstance nins = new NSInstance("HelloWorld");
 SubscriberEnumeration se = new SubscriberEnumeration(nins);
 se["AnySubscriber"].Delete();

The SubscriberDevice class represents a device that can receive notifications. A single subscriber device is
added to each subscriber. Each subscriber device specifies the following properties:

DeviceName

The name of the subscriber device.

SubscriberId

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The ID of the subscriber with which the subscriber device is associated.

DeviceTypeName

The name of the device type for the subscriber device.

DeviceAddress

The address used to contact the device.

DeliveryChannelName

The name of the delivery channel that the device uses. This example assigns the
StockWatchFileDeliveryChannel delivery channel to one subscriber and the
StockWatchEmailDeliveryChannel delivery channel to the otherthese delivery channels are created in
the code described in the "Creating a Delivery Channel " section earlier in this chapter.

The SubscriberDeviceEnumeration class is used to retrieve a SubscriberDevice object from the collection of
devices for a subscriber. The Delete() method removes a device, the Add() method adds a device, and
the Update() method updates the information for an existing device.

18.3.12. Creating a Subscription

Two subscriptions are created in the CreateSubscription() method of Example 18-1 . The code follows:

 private static void CreateSubscription()
 {
 ns.NSInstance swnsi = new ns.NSInstance("StockWatch");
 ns.NSApplication a = new ns.NSApplication(swnsi, "StockWatchApp");

 ns.Subscription s;

 // add subscriptions
 s = new ns.Subscription();
 s.Initialize(a, "StockWatchSubscriptions");
 s.SetFieldValue("DeviceName", "StockWatchSubscriberDevice");
 s.SetFieldValue("SubscriberLocale", "en-us");
 s.SubscriberId = "KristinHamilton";
 s.SetFieldValue("Symbol", "ABC");
 s.SetFieldValue("Price", "0.00");
 s.Add();
 Console.WriteLine("Added subscription: " + s.SubscriberId);

 s = new ns.Subscription();
 s.Initialize(a, "StockWatchSubscriptions");
 s.SetFieldValue("DeviceName", "StockWatchSubscriberDevice");
 s.SetFieldValue("SubscriberLocale", "en-us");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 s.SubscriberId = "TonyHamilton";
 s.SetFieldValue("Symbol", "DEF");
 s.SetFieldValue("Price", "0.00");
 s.Add();
 Console.WriteLine("Added subscription: " + s.SubscriberId);
 }

The NSApplication class represents a Notification Services application. The Subscription class represents a
subscription in a Notification Services application. Both subscriptions use the subscriber device named
StockWatchSubscriberDevice created in the "Creating a Subscriber and Subscriber Device " section earlier
in this chapter. The subscription for KristinHamilton is for events for ticker symbol ABC , while the
subscription for subscriber TonyHamilton is for events for ticker symbol DEF . The results can be seen in the
notifications shown in Figures 18-7 and 18-8 .

The SubscriptionEnumeration class represents a collection of subscriptions as Subscription objects in a
Notification Services application. Use the Subscrip-tionEnumeration class to iterate over a collection of
subscriptions for an application and manage the individual subscriptions in the collection. These two classes
are implemented in the Microsoft.SqlServer.NotificationServices namespace.

18.3.13. Enumerating a Notification Services Instance Database

This example enumerates the filegroup, database files, and logfiles for the StockWatch Notification Services
instance created in Example 18-1 :

 using System;

 using Microsoft.SqlServer.Management.Smo;
 using Microsoft.SqlServer.Management.Nmo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("(local)");
 NotificationServices ns = server.NotificationServices;
 Instance ins = ns.Instances["StockWatch"];

 InstanceDatabaseOptions ido = ins.InstanceDatabaseOptions;
 Console.WriteLine("INSTANCE DATABASE OPTIONS:");
 Console.WriteLine(" Name: " + ido.Name);
 Console.WriteLine(" DefaultFileGroup: " + ido.DefaultFileGroup);

 Console.WriteLine(Environment.NewLine + "FILE GROUPS:");
 foreach (InstanceDatabaseFileGroup idfg in ido.InstanceDatabaseFileGroups)
 {
 Console.WriteLine(" Name: " + idfg.Name);

 Console.WriteLine(Environment.NewLine + "DATABASE FILES");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 foreach (InstanceDatabaseFile idf in idfg.InstanceDatabaseFiles)
 Console.WriteLine(" Name: " + idf.Name);
 }

 Console.WriteLine(Environment.NewLine + "LOG FILES:");
 foreach (InstanceDatabaseLogFile idlf in ido.InstanceDatabaseLogFiles)
 Console.WriteLine(" Name: " + idlf.Name);

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

Results are shown in Figure 18-9 .

Each Notification Services instance has one database that can optionally contain one or more filegroups. If
you define filegroups, one must be called PRIMARY . Use SQL Server Management Studio if you need to alter
the Notification Services instance database after creating the instance.

Figure 18-9. Results for enumerating a Notification Services instance
database example

The NMO classes for managing the instance database, filegroups, files, and logfiles are described in Table
18-13 .

Table 18-13. NMO classes for managing instance databases

Instance Description

InstanceDatabaseFile Represents an instance database file.

InstanceDatabaseFileCollection Represents a collection of instance databases as
InstanceDatabase objects. The InstanceDatabaseFiles property of
the InstanceDatabaseFileGroup class returns the instance
databases in the instance database filegroup.

InstanceDatabaseFileGroup Represents an application database filegroup.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Instance Description

InstanceDatabaseFileGroupCollection Represents a collection of instance database filegroups as
InstanceDatabaseFileGroup objects. The
InstanceDatabaseFileGroups property of the
InstanceDatabaseOptions class returns the instance database
filegroups in the application.

InstanceDatabaseLogFile Represents an instance database logfile.

InstanceDatabaseLogFileCollection Represents a collection of instance database logfiles as
InstanceDatabaseLogFile objects. The InstanceDatabaseLogFiles
property of the InstanceDatabaseOptions class returns the
instance database logfiles in the application.

InstanceDatabaseOptions Represents database options for the instance database. The
InstanceDatabaseOptions property of the Instance class returns
the database properties for the instance.

18.3.14. Enumerating a Notification Services Application Database

This example enumerates the filegroup, database files, and logfiles for the HelloWorldApp Notification
Services application created in Example 18-1 :

 using System;

 using Microsoft.SqlServer.Management.Smo;
 using Microsoft.SqlServer.Management.Nmo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("(local)");
 NotificationServices ns = server.NotificationServices;
 Instance ins = ns.Instances["StockWatch"];
 Application a = ins.Applications["StockWatchApp"];

 ApplicationDatabaseOptions ado = a.ApplicationDatabaseOptions;
 Console.WriteLine("APPLICATION DATABASE OPTIONS:");
 Console.WriteLine(" Name: " + ado.Name);
 Console.WriteLine(" DefaultFileGroup: " + ado.DefaultFileGroup);

 Console.WriteLine(Environment.NewLine + "FILE GROUPS:");
 foreach (ApplicationDatabaseFileGroup adfg in
 ado.ApplicationDatabaseFileGroups)
 {
 Console.WriteLine(" Name: " + adfg.Name);

 Console.WriteLine(Environment.NewLine + "DATABASE FILES");

InstanceDatabaseFileGroupCollection Represents a collection of instance database filegroups as
InstanceDatabaseFileGroup objects. The
InstanceDatabaseFileGroups property of the
InstanceDatabaseOptions class returns the instance database
filegroups in the application.

InstanceDatabaseLogFile Represents an instance database logfile.

InstanceDatabaseLogFileCollection Represents a collection of instance database logfiles as
InstanceDatabaseLogFile objects. The InstanceDatabaseLogFiles
property of the InstanceDatabaseOptions class returns the
instance database logfiles in the application.

InstanceDatabaseOptions Represents database options for the instance database. The
InstanceDatabaseOptions property of the Instance class returns
the database properties for the instance.

18.3.14. Enumerating a Notification Services Application Database

This example enumerates the filegroup, database files, and logfiles for the HelloWorldApp Notification
Services application created in Example 18-1 :

 using System;

 using Microsoft.SqlServer.Management.Smo;
 using Microsoft.SqlServer.Management.Nmo;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server("(local)");
 NotificationServices ns = server.NotificationServices;
 Instance ins = ns.Instances["StockWatch"];
 Application a = ins.Applications["StockWatchApp"];

 ApplicationDatabaseOptions ado = a.ApplicationDatabaseOptions;
 Console.WriteLine("APPLICATION DATABASE OPTIONS:");
 Console.WriteLine(" Name: " + ado.Name);
 Console.WriteLine(" DefaultFileGroup: " + ado.DefaultFileGroup);

 Console.WriteLine(Environment.NewLine + "FILE GROUPS:");
 foreach (ApplicationDatabaseFileGroup adfg in
 ado.ApplicationDatabaseFileGroups)
 {
 Console.WriteLine(" Name: " + adfg.Name);

 Console.WriteLine(Environment.NewLine + "DATABASE FILES");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 foreach (ApplicationDatabaseFile adf in adfg.ApplicationDatabaseFiles)
 Console.WriteLine(" Name: " + adf.Name);
 }

 Console.WriteLine(Environment.NewLine + "LOG FILES:");
 foreach (ApplicationDatabaseLogFile adlf in
 ado.ApplicationDatabaseLogFiles)
 Console.WriteLine(" Name: " + adlf.Name);

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

Results are shown in Figure 18-10 .

Figure 18-10. Results for enumerating a Notification Services application
database example

Each Notification Services application has one database that can optionally contain one or more filegroups.
If you define filegroups, one must be called PRIMARY . Use SQL Server Management Studio if you need to
alter the application database after creating the instance.

The NMO classes for managing the application database, filegroups, files, and logfiles are described in Table
18-14 .

Table 18-14. NMO classes for managing application databases

Class Database

ApplicationDatabaseFile Represents an application database file.

ApplicationDatabaseFileCollection Represents a collection of application databases as
ApplicationDatabaseFile objects. The
ApplicationDatabaseFiles property of the
ApplicationDatabaseFileGroup class returns the application
databases in the application database filegroup.

ApplicationDatabaseFileGroup Represents an application database filegroup.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Database

ApplicationDatabaseFileGroupCollection Represents a collection of application database filegroups as
ApplicationDatabaseFileGroup objects. The
ApplicationDatabaseFileGroups property of the
ApplicationDatabaseOptions class returns the application
database filegroups in the application.

ApplicationDatabaseLogFile Represents an application database logfile.

ApplicationDatabaseLogFileCollection Represents a collection of application database logfiles as
ApplicationDatabaseLogFile objects. The
ApplicationDatabaseLogFiles property of the
ApplicationDatabaseOptions class returns the application
database logfiles in the application.

ApplicationDatabaseOptions Represents database options for the application database. The
ApplicationDatabaseOptions property of the Application class
returns the database properties for the application.

ApplicationDatabaseFileGroupCollection Represents a collection of application database filegroups as
ApplicationDatabaseFileGroup objects. The
ApplicationDatabaseFileGroups property of the
ApplicationDatabaseOptions class returns the application
database filegroups in the application.

ApplicationDatabaseLogFile Represents an application database logfile.

ApplicationDatabaseLogFileCollection Represents a collection of application database logfiles as
ApplicationDatabaseLogFile objects. The
ApplicationDatabaseLogFiles property of the
ApplicationDatabaseOptions class returns the application
database logfiles in the application.

ApplicationDatabaseOptions Represents database options for the application database. The
ApplicationDatabaseOptions property of the Application class
returns the database properties for the application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 19. Replication
Replication copies and distributes data and database objects from one database to another and
provides a mechanism to keep the data synchronized. Data can be replicated from server to server or
from server to client.

Before you look at programming replication, there are some key terms with which you should be
familiar:

Publisher

A SQL Server instance that makes its data available through replication, detects changes to the
data, and maintains information about one or more publications and articles.

Distributor

A SQL Server instance that stores replication metadata for one or more publishers. Each
distributor has a distribution database that stores history data, transactions, and metadata.
When a single SQL Server instance acts as both publisher and distributor, the distributor is
called a local distributor. When the publisher and distributor are on different SQL Server
instances, the distributor is called a remote distributor.

Subscriber

A SQL Server instance that receives replicated data.

Publication

A collection of one or more articles. A publication can be either pushed to the subscriber or
pulled by the subscriber.

Article

A database object included in a publication.

Subscription

A request for the publication that defines where and when the publication will be received.

SQL Server 2005 provides three types of replication :

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Snapshot

Distributes data as it appears at a moment in time. The entire snapshot is generated and sent
to subscribers when synchronization occurs and is not monitored for updates to the published
data.

Transactional

Schema and data changes are sent to subscribers when they occur. Data changes are applied
to the subscriber data in the same order and within the same transaction boundaries in which
they occurred at the publisher, guaranteeing transactional consistency within each publication.
Transactional replication usually starts with a snapshot of the schema and data, and is typically
used in server-to-server replication scenarios.

Merge

Schema and data changes are tracked with triggers. Data is synchronized when the subscriber
connects to the publisher; all changes made since the last synchronization occurred are
included. Merge replication typically starts with a snapshot of the schema and data, and is
normally used in server-to-client replication scenarios.

You can implement and administer replication by using SQL Server Management Studio, by using
Windows Synchronization Manager, or programmatically by using replication APIs. The rest of this
chapter discusses the third option, programmatic implementation and administration of replication.
For more information about the other two methods, consult Microsoft SQL Server 2005 Books Online.

Replication uses a set of programs called agents to perform tasks associated with replication. The
agents are described in the "Agents Supporting Replication" sidebar.

Implementing replication involves five steps:

Configure the publisher and distributor.1.

Define the publicationdatabase objects, type of replication, and filteringand the type of
replication.

2.

Identify a location for storing snapshot files and define when initial synchronization will occur.3.

Create subscriptions.4.

Synchronize the data, including the initial synchronization to the snapshot.5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.1. Programming Replication

SQL Server Replication Management Objects (RMO) is a collection of namespaces introduced in SQL
Server 2005 for programming all aspects of SQL Server 2005 replication. RMO supersedes replication
functionality in SQL-DMO. RMO is

Agents Supporting Replication

Replication uses a set of programs called agents to perform tasks associated with
replication . A description of these agents follows:

Replication Distribution Agent

Applies the initial snapshot to the subscriber and moves transactions from the
distribution database to a subscriber. Runs at the distributor for push subscriptions
and at the subscriber for pull subscriptions. Used with snapshot and transactional
replication.

Replication Log Reader Agent

Moves transactions marked for replication from the transaction log on the publisher
to the distribution database. Used with transactional replication.

Replication Merge Agent

Applies the initial snapshot to the subscriber and reconciles and updates both the
subscriber and publisher with changes that occur. Runs at the distributor for push
subscriptions and at the subscriber for pull subscriptions. Used with merge
replication.

Replication Queue Reader Agent

Moves changes made at the subscriber back to the publisher. Runs at the
distributor and is used with transactional replication with the queued updating
option.

Replication Snapshot Agent

Prepares snapshot files that contain the schema and initial data for published

http://lib.ommolketab.ir
http://lib.ommolketab.ir

tables, stores the files in the snapshot folder, and records synchronization jobs in
the database. Runs at the distributor and is used with all types of replication.

compatible with SQL Server 2000 and SQL Server 7.0, which lets you manage replication in
environments having a mix of different SQL Server versions.

The following subsections provide examples that show how to use the replication classes and include
descriptions of the classes. The examples use merge replication, but transactional replication is
similar. You need a reference to the following assemblies to compile and run the examples:

Microsoft.SqlServer.ConnectionInfo

Microsoft.SqlServer.Replication .NET Programming Interface

Additional assembly references are indicated for examples in which they are required.

The ReplicationServer object described in is the top-level class in the RMO class hierarchy. It
represents a SQL Server instance involved in replication. The server can take the role of distributor,
publisher, subscriber, or a combination of those roles.

19.1.1. Prerequisites

Most of the examples in this chapter build on each other. There are a few things you need to do
before you start.

Disable replication if it is enabled. This will let you run the first two examples, which install a
distributor and create a publisher. To disable replication, right-click the Replication node in Object
Explorer in SQL Server Management Studio, select Disable Replication from the context menu, and
follow the instructions in the wizard.

Create a database named ReplicationDestination by right-clicking the Databases node in Object
Explorer and selecting New Database from the context menu. In the New Database dialog box, set
the Database name listbox to ReplicationDestination , accept the defaults, and click OK to create
the database.

Ensure that the setup is correct by following these steps:

Right-click the Databases node in Object Explorer and select Refresh from the context menu.1.

Expand the Databases node in Object Explorer by clicking the plus sign next to it.2.

Right-click the Replication node in Object Explorer and select Refresh from the context menu.3.

Expand the Replication node in Object Explorer by clicking the plus sign next to it.4.

Right-click the Replication node in Object Explorer.5.

The context menu should appear as shown in Figure 19-1 . You should also see the new
ReplicationDestination database.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.1.2. Installing a Distributor

This example shows how to install a distributor onto the local SQL Server instance. It instantiates a
ServerConnection object representing the local machine, and then creates a ReplicationServer object
based on this ServerConnection object.

The next object created is a DistributionDatabase object, called distribution and linked to the
ServerConnection object named sc . A distribution database stores replication information on the
distributor.

Finally, the InstallDistributor() method of the ReplicationServer class installs a distributor onto
the currently connected or remote SQL Server instance. The distribution database is created as a
system database. The password for the InstallDistributor() method must conform to your
password policy.

The source code for the example follows:

 using System;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Replication;

Figure 19-1. Prerequisite configuration

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 class Program
 {
 static void Main(string[] args)
 {
 ServerConnection sc = new ServerConnection("localhost");
 // create the distributor
 ReplicationServer dist = new ReplicationServer(sc);

 // install the distributor
 DistributionDatabase dDb = new DistributionDatabase(
 "distribution", sc);
 dist.InstallDistributor("password1", dDb);

 sc.Disconnect();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

Once you have executed the example, confirm that the distributor has been installed by right-clicking
the Replication node in Object Explorer. The context menu should appear as shown in Figure 19-2 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Configure Distribution context menu item is replaced by two new menu itemsDistributor
Properties and Disable Publishing and Distribution.

Figure 19-2. Replication context menu after installing a distributor

You can see the new distribution database in Object Explorer in SQL Server Management Studio by
right-clicking the Replication node and selecting Distributor Properties from the context menu. The
distributor properties are displayed in the Distributor Properties dialog box, shown in Figure 19-3 .

The RMO classes used to programmatically manage distribution and distributor objects are described
in Table 19-1 .

Table 19-1. RMO classes for managing distribution databases

Class Description

DistributionDatabase Represents a distribution database that stores replication
information on the distributor.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

DistributionDatabaseCollection Represents a collection of DistributionDatabase objects. The
DistributionDatabases property of the ReplicationServer class
returns a DistributionDatabaseCollection object containing all
distribution databases on the distributor.

19.1.3. Creating a Publisher

This example creates a publisher on the local SQL Server instance. The example instantiates a
DistributionPublisher object and associates it with the target ServerConnection object. The
DistributionPublisher class represents a computer that acts as both a publisher and a distributor.

Figure 19-3. Distributor Properties dialog box

Next, several properties of the DistributionPublisher object are set, and then its Create() method
is called. The DistributionDatabase property links this DistributionPublisher object with the
DistributionDatabase object you created in the previous example. The PublisherSecurity property
accesses the security context as a ConnectionSecurityContext object. It is used by the replicating
agent to connect to the distribution publisher. The ConnectionSecurityContext object specifies an
authentication mode and, if SQL Server authentication is used, the login and password. This example
uses Windows authentication.

DistributionDatabaseCollection Represents a collection of DistributionDatabase objects. The
DistributionDatabases property of the ReplicationServer class
returns a DistributionDatabaseCollection object containing all
distribution databases on the distributor.

19.1.3. Creating a Publisher

This example creates a publisher on the local SQL Server instance. The example instantiates a
DistributionPublisher object and associates it with the target ServerConnection object. The
DistributionPublisher class represents a computer that acts as both a publisher and a distributor.

Figure 19-3. Distributor Properties dialog box

Next, several properties of the DistributionPublisher object are set, and then its Create() method
is called. The DistributionDatabase property links this DistributionPublisher object with the
DistributionDatabase object you created in the previous example. The PublisherSecurity property
accesses the security context as a ConnectionSecurityContext object. It is used by the replicating
agent to connect to the distribution publisher. The ConnectionSecurityContext object specifies an
authentication mode and, if SQL Server authentication is used, the login and password. This example
uses Windows authentication.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Before you execute this example, replace the ServerName argument in the

DistributionPublisher constructor with the name of your database server and
create the directory C:\PSS2005\Replication .

The source code for the example follows:

 using System;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Replication;

 class Program
 {
 static void Main(string[] args)
 {
 ServerConnection sc = new ServerConnection("(local)");

 DistributionPublisher dp = new DistributionPublisher(

 "ServerName", sc);
 dp.DistributionDatabase = "distribution";
 dp.WorkingDirectory = @"C:\PSS2005\Replication
";
 dp.PublisherSecurity.WindowsAuthentication = true;
 dp.Create();

 sc.Disconnect();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

Once you have executed the example, confirm that the publisher has been created by right-clicking
the Replication node in Object Explorer. The context menu should appear as shown in Figure 19-4 . A
new context item, Publisher Properties, has been added.

Figure 19-4. Replication context menu after creating a publisher

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The RMO classes used to manage publishers programmatically are described in Table 19-2 .

Table 19-2. RMO classes for managing publishers

Class Description

DistributionPublisher Represents a computer that acts as both publisher and
distributor.

DistributionPublisherCollection Represents a collection of DistributionPublisher objects.
The DistributionPublishers property of the
ReplicationServer class returns a
DistributionPublisherCollection object containing all
publishers that use the SQL Server instance as a distributor.

PublisherConnectionSecurityContext Represents login information when connecting to a publisher
server instance. The PublisherSecurity property of the
PullSubscription class returns the security context used by
the synchronization agent when connecting to the publisher.

As mentioned earlier in the section, the PublisherSecurity property of the PublisherSubscriber class
accesses the security context as a ConnectionSecurityContext object that is used by the replicating

http://lib.ommolketab.ir
http://lib.ommolketab.ir

agent to connect to the distribution publisher. The RMO class used to programmatically manage
security context information is described in Table 19-3 .

Table 19-3. RMO class for managing connection security context
information

Class Description

ConnectionSecurityContext Represents information for connecting to SQL Server replication
publishers, distributors, and subscribers. The connection security
context information specifies an authentication mode and, if SQL Server
authentication is used, the login and password.

19.1.4. Enabling a Database for Publication

This example enables the AdventureWorks database for merge publication. It does so by creating a
ReplicationDatabase object and associating it with the AdventureWorks database.
ReplicationDatabase represents a replication database, either a publisher or a subscriber.

The EnableMergePublishing and EnableTransPublishing properties of the ReplicationDatabase class
control whether a database is available for merge and transactional replication publication.

The source code for the example follows:

 using System;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Replication;

 class Program
 {
 static void Main(string[] args)
 {
 ServerConnection sc = new ServerConnection("localhost");

 ReplicationDatabase rDb = new ReplicationDatabase(
 "AdventureWorks", sc);
 rDb.EnabledMergePublishing = true;

 sc.Disconnect();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The code in this example only enables the merge publishing of the
AdventureWorks database. It does not actually publish anything. Subsequent
examples will show you how to publish an article.

After you run the code, confirm that the AdventureWorks database is enabled for merge publication by
selecting Replication Publisher Properties in Object Explorer and then selecting the Publication
Databases page. Figure 19-5 shows AdventureWorks enabled for merge publication.

19.1.5. Creating a Publication

This example creates a merge publication named AdventureWorks_MergePub for the AdventureWorks
database. It does so by instantiating a MergePublication object and then setting its Name ,
DatabaseName , ConnectionContext , and Status properties. Finally, it invokes its Create() method.

The source code for the example follows:

 using System;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Replication;

 class Program
 {
 static void Main(string[] args)
 {
 ServerConnection sc = new ServerConnection("localhost");

 MergePublication mp = new MergePublication();
 mp.Name = "AdventureWorks_MergePub";
 mp.DatabaseName = "AdventureWorks";
 mp.ConnectionContext = sc;

Figure 19-5. Publisher Properties dialog box showing AdventureWorks
database

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 mp.Status = State.Active;
 mp.Create();

 sc.Disconnect();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

After executing this example, you can view the new publication in Object Explorer by refreshing and
expanding the Replication Local Publications node in Object Explorer, as shown in Figure 19-6 .

The publication will not publish anything, because no articles have been defined
for it. The next section,"Creating an Article ," defines an article to publish.

The RMO classes used to manage publications are described in Table 19-4 .

Figure 19-6. Results for creating a publication example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 19-4. RMO classes for managing publications

Class Description

DistributionPublication Represents read-only information about the distributor image
of a snapshot, transactional, or merge publication.

DistributionPublicationCollection Represents a collection of DistributionPublication objects.
The DistributionDatabases property of the
DistributionPublisher class returns a
DistributionPublicationCollection object containing all
distribution publications defined on the distribution database.

MergeDynamicSnapshotJob Represents information about the Snapshot Agent job that
generates the snapshot data for a subscription to a merge
publication with a parameterized row filter. The
EnumDynamicSnapshotJobs() method of the MergePublication
class returns an ArrayList object of dynamic snapshot jobs for
the merge publication.

MergePartition Represents information about a subscriber partition for a
merge publication with a parameterized row filter. The
EnumMergePartitions() method of the MergePublication class
returns an ArrayList object of subscriber partitions for the
merge publication.

MergePublication Represents a merge publication. The EnumMergePublications(
) method of the ReplicationDatabase class returns an
ArrayList object of merge publications that use the replication
database.

MergePublicationCollection Represents a collection of MergePublication objects.

The MergePublications property of the ReplicationDatabase
class returns a MergePublicationCollection object containing
all merge publications defined on the replication database.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description all merge publications defined on the replication database.

The MergePublications property of the DistributionPublisher
class returns a MergePublicationCollection object containing
all merge publications defined on the distribution publisher.

PublicationAccess Represents login information in the publication access list (PAL)
for a publication.

transPublication Represents a transactional or snapshot publication.

TRansPublicationCollection Represents a collection of TRansPublication objects.

The TRansPublications property of the ReplicationDatabase
class returns a TRansPublicationCollection object containing
all transactional and snapshot publications defined on the
replication database.

The transPublications property of the DistributionPublisher
class returns a transPublicationCollection object containing
all transactional and snapshot publications defined on the
distribution publisher.

19.1.6. Creating an Article

This example creates an article named Article_1 in the AdventureWorks_MergePub merge publication
created in the preceding section, "Creating a Publication ." The steps are the same as you've seen
previously:

Instantiate the appropriate object, in this case a MergeArticle object (which represents an
article in a merge publication).

1.

Set the appropriate properties.2.

Call the object's Create() method.3.

The properties of interest for a MergeArticle object are as follows:

Name

The name under which SQL Server stores the article

PublicationName

The name of the merge publication through which the article is exposed for replication

all merge publications defined on the replication database.

The MergePublications property of the DistributionPublisher
class returns a MergePublicationCollection object containing
all merge publications defined on the distribution publisher.

PublicationAccess Represents login information in the publication access list (PAL)
for a publication.

transPublication Represents a transactional or snapshot publication.

TRansPublicationCollection Represents a collection of TRansPublication objects.

The TRansPublications property of the ReplicationDatabase
class returns a TRansPublicationCollection object containing
all transactional and snapshot publications defined on the
replication database.

The transPublications property of the DistributionPublisher
class returns a transPublicationCollection object containing
all transactional and snapshot publications defined on the
distribution publisher.

19.1.6. Creating an Article

This example creates an article named Article_1 in the AdventureWorks_MergePub merge publication
created in the preceding section, "Creating a Publication ." The steps are the same as you've seen
previously:

Instantiate the appropriate object, in this case a MergeArticle object (which represents an
article in a merge publication).

1.

Set the appropriate properties.2.

Call the object's Create() method.3.

The properties of interest for a MergeArticle object are as follows:

Name

The name under which SQL Server stores the article

PublicationName

The name of the merge publication through which the article is exposed for replication

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DatabaseName

The name of the underlying database

ConnectionContext

The ServerConnection object representing the target machine

SourceObjectName

The name of the object in the database

SourceObjectOwner

The name of the owner (schema) of the database object being published

The source code for the example follows:

 using System;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Replication;

 class Program
 {
 static void Main(string[] args)
 {
 ServerConnection sc = new ServerConnection("localhost");

 MergeArticle ma = new MergeArticle();
 ma.Name = "Article_1";
 ma.PublicationName = "AdventureWorks_MergePub";
 ma.DatabaseName = "AdventureWorks";
 ma.ConnectionContext = sc;
 ma.SourceObjectName = "Vendor";
 ma.SourceObjectOwner = "Purchasing";
 ma.Create();

 sc.Disconnect();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

After running the code, you can see the publication by right-clicking the Replication Local
Publications [AdventureWorks]: AdventureWorks_MergePub node in Object Explorer and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

selecting Properties from the context menu. Select the Articles page in the Publication Properties
dialog box to view the articles to publish, as shown in Figure 19-7 .

Figure 19-7. Results for creating an article example

The RMO classes used to manage publications are described in Table 19-5 .

Table 19-5. RMO classes for managing articles

Class Description

ArticleConflict Represents information about the merge replication conflict table.
The EnumConflictTables() method of the ReplicationDatabase
object returns an ArrayList object of conflict information for all
merge publications and subscriptions.

DistributionArticle Represents read-only information about the distributor image of a
snapshot, transactional, or merge article.

DistributionArticleCollection Represents a collection of DistributionArticle objects. The
DistributionArticles property of the DistributionPublication
class returns a DistributionArticleCollection object containing
all distribution articles defined on the distribution publication.

MergeArticle Represents an article in a merge publication. The EnumArticles()
method of the MergePublication class returns an ArrayList object
of articles in the publication.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

MergeArticleCollection Represents a collection of MergeArticle objects. The MergeArticles
property of the MergePublication class returns a
MergeArticleCollection object containing all articles in the merge
publication.

MergeJoinFilter Represents a join filter or logical record relationship between merge
articles. The EnumMergeJoinFilters() method of the MergeArticle
class returns an ArrayList object of join filters defined for the
merge article.

transArticle Represents an article in either a transactional or snapshot
publication. The EnumArticles() method of the TRansPublication
class returns an ArrayList object of articles in the publication.

TRansArticleCollection Represents a collection of transArticle objects. The transArticles
property of the transPublication class returns a
transArticleCollection object containing all articles in the
transactional or snapshot publication.

19.1.7. Enumerating Items Available for Replication

This example enumerates the tables and columns available for replication in the AdventureWorks
database. It does so using the EnumReplicationTables() method on the ReplicationDatabase class.
This method returns an ArrayList object of ReplicationTable objects. The example then scans this
ArrayList object and calls the EnumReplicationColumns() method for each ReplicationTable object.
For each column reported, the example displays the column's name and data type.

The source code for the example follows:

 using System;
 using System.Collections;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Replication;

 class Program
 {
 static void Main(string[] args)
 {
 ServerConnection sc = new ServerConnection("localhost");
 ReplicationDatabase rDb = new ReplicationDatabase(
 "AdventureWorks", sc);

 ArrayList ta = rDb.EnumReplicationTables();
 for (int i = 0; i < ta.Count; i++)
 {
 ReplicationTable t = (ReplicationTable)ta[i];
 Console.WriteLine(t.OwnerName + "." + t.Name);

MergeArticleCollection Represents a collection of MergeArticle objects. The MergeArticles
property of the MergePublication class returns a
MergeArticleCollection object containing all articles in the merge
publication.

MergeJoinFilter Represents a join filter or logical record relationship between merge
articles. The EnumMergeJoinFilters() method of the MergeArticle
class returns an ArrayList object of join filters defined for the
merge article.

transArticle Represents an article in either a transactional or snapshot
publication. The EnumArticles() method of the TRansPublication
class returns an ArrayList object of articles in the publication.

TRansArticleCollection Represents a collection of transArticle objects. The transArticles
property of the transPublication class returns a
transArticleCollection object containing all articles in the
transactional or snapshot publication.

19.1.7. Enumerating Items Available for Replication

This example enumerates the tables and columns available for replication in the AdventureWorks
database. It does so using the EnumReplicationTables() method on the ReplicationDatabase class.
This method returns an ArrayList object of ReplicationTable objects. The example then scans this
ArrayList object and calls the EnumReplicationColumns() method for each ReplicationTable object.
For each column reported, the example displays the column's name and data type.

The source code for the example follows:

 using System;
 using System.Collections;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Replication;

 class Program
 {
 static void Main(string[] args)
 {
 ServerConnection sc = new ServerConnection("localhost");
 ReplicationDatabase rDb = new ReplicationDatabase(
 "AdventureWorks", sc);

 ArrayList ta = rDb.EnumReplicationTables();
 for (int i = 0; i < ta.Count; i++)
 {
 ReplicationTable t = (ReplicationTable)ta[i];
 Console.WriteLine(t.OwnerName + "." + t.Name);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ArrayList ca = t.EnumReplicationColumns();
 for (int j = 0; j < ca.Count; j++)
 {
 ReplicationColumn c = (ReplicationColumn)ca[j];
 Console.WriteLine(" " + c.Name + " " + c.Datatype);
 }

 Console.WriteLine(Environment.NewLine);
 }

 sc.Disconnect();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

Partial results are show in Figure 19-8 .

Figure 19-8. Results for enumerating items available for replication
example

The RMO classes used to manage replication items are described in Table 19-6 .

Table 19-6. RMO classes for managing objects being replicated

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

HeterogeneousColumn Represents a column in a table on a non-SQL Server publisher.
The EnumHeterogeneouscolumns() method of the
ReplicationServer class returns an ArrayList object of
heterogeneous columns in a table that can be replicated.

HeterogeneousTable Represents a table on a non-SQL Server publisher. The
EnumHeterogeneousTables() method of the ReplicationServer
class returns an ArrayList object of heterogeneous tables that
can be replicated.

IdentityRangeInfo Represents identity range management settings for a published
article when the source table contains an identity column. The
EnumIdentityRangeInfo() method of the ReplicationTable class
returns an ArrayList object of identity range information about
articles based on the table.

ReplicationColumn Represents information about a column (in a table) required for
replication. The EnumReplicationColumns() method of the
ReplicationTable class returns an ArrayList object of columns
that can be replicated.

ReplicationDatabase Represents a replication database, either publication or
subscription.

ReplicationDatabaseCollection Represents a collection of replication databases. The
EnumReplicationDatabases() method of the ReplicationServer
class returns an ArrayList object of all databases enabled for
replication on the replication server.

ReplicationSchemaBoundView Represents information about a schema-bound view required for
replication. The EnumReplicationSchemaBoundViews() method of
the ReplicationDatabase class returns an ArrayList object of
schema-bound views that can be replicated.

ReplicationStoredProcedure Represents information about a stored procedure required for
replication. The EnumReplicationStoredProcedures() method of
the ReplicationDatabase class returns an ArrayList object of
stored procedures that can be replicated.

ReplicationTable Represents information about a table required for replication. The
EnumReplicationTables() method of the ReplicationDatabase
class returns an ArrayList object of tables that can be
replicated.

ReplicationUserDefinedAggregate Represents information about a user-defined aggregate required
for replication. The EnumReplicationUserDefinedAggregates()
method of the ReplicationDatabase class returns an ArrayList
object of user-defined aggregates that can be replicated.

ReplicationUserDefinedFunction Represents information about a user-defined function required
for replication. The EnumReplicationUserDefinedFunctions()
method of the ReplicationDatabase class returns an ArrayList
object of user-defined functions that can be replicated.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

ReplicationView Represents information about a user-defined view required for
replication. The EnumReplicationViews() method of the
ReplicationDatabase class returns an ArrayList object of views
that can be replicated.

19.1.8. Filtering an Article

This example partitions the article created in the "Creating an Article" section earlier in this chapter
both horizontally (row-based) and vertically (column-based). It does so by using the MergeArticle
class, which exposes one property and two methods of interest.

The FilterClause property of the MergeArticle class defines subsets of rows that are available for the
article, similar to horizontally partitioning the data. The syntax of the filter clause follows that of a T-
SQL WHERE clause without the word WHERE . In this example, the full WHERE clause is WHERE
CreditRating = 1 AND PreferredVendorStatus = 'true' . Only records matching this criterion will be
published.

The AddReplicatedColumns() and RemoveReplicatedColumns() methods add columns to and remove
columns from the article, similar to vertically partitioning the data. Only columns that are nullable or
defined with a default value can be removed from a vertical partition. This example removes the
PurchasingWebServiceURL column from the article.

The source code for the example follows:

 using System;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Replication;

 class Program
 {
 static void Main(string[] args)
 {
 ServerConnection sc = new ServerConnection("localhost");
 ReplicationDatabase rDb = new ReplicationDatabase(
 "AdventureWorks", sc);

 MergeArticle ma = rDb.MergePublications["AdventureWorks_MergePub"].
 MergeArticles
["Article_1"];
 ma.FilterClause = "CreditRating = 1 AND PreferredVendorStatus = 'true'";
 ma.RemoveReplicatedColumns(new string[] {"PurchasingWebServiceURL"});

 sc.Disconnect();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();

ReplicationView Represents information about a user-defined view required for
replication. The EnumReplicationViews() method of the
ReplicationDatabase class returns an ArrayList object of views
that can be replicated.

19.1.8. Filtering an Article

This example partitions the article created in the "Creating an Article" section earlier in this chapter
both horizontally (row-based) and vertically (column-based). It does so by using the MergeArticle
class, which exposes one property and two methods of interest.

The FilterClause property of the MergeArticle class defines subsets of rows that are available for the
article, similar to horizontally partitioning the data. The syntax of the filter clause follows that of a T-
SQL WHERE clause without the word WHERE . In this example, the full WHERE clause is WHERE
CreditRating = 1 AND PreferredVendorStatus = 'true' . Only records matching this criterion will be
published.

The AddReplicatedColumns() and RemoveReplicatedColumns() methods add columns to and remove
columns from the article, similar to vertically partitioning the data. Only columns that are nullable or
defined with a default value can be removed from a vertical partition. This example removes the
PurchasingWebServiceURL column from the article.

The source code for the example follows:

 using System;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Replication;

 class Program
 {
 static void Main(string[] args)
 {
 ServerConnection sc = new ServerConnection("localhost");
 ReplicationDatabase rDb = new ReplicationDatabase(
 "AdventureWorks", sc);

 MergeArticle ma = rDb.MergePublications["AdventureWorks_MergePub"].
 MergeArticles
["Article_1"];
 ma.FilterClause = "CreditRating = 1 AND PreferredVendorStatus = 'true'";
 ma.RemoveReplicatedColumns(new string[] {"PurchasingWebServiceURL"});

 sc.Disconnect();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }

You can examine the article by right-clicking the Replication Local Publications
[AdventureWorks]: AdventureWorks_MergePub node in Object Explorer and selecting Properties from
the context menu. Then select the Articles page to see that the PurchasingWebServiceURL column has
been removed from the article, as shown in Figure 19-9 .

Figure 19-9. Publication Properties dialog box

You can examine the filter you added by selecting the Filter Rows page in the Publication Properties
dialog box, selecting the Vendor (Purchasing) filtered tables, and clicking the Edit button to open the
Edit Filter dialog box, as shown in Figure 19-10 .

19.1.9. Registering a Subscriber

This example creates a subscriber named Subscriber_1 . It does so by using the
RegisteredSubscriber class in a very simple manner:

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It instantiates the RegisteredSubscriber object, associating it with the ServerConnection object
that represents the target SQL Server.

1.

It calls its Create() method.2.

The source code for the example follows:

 using System;

 using Microsoft.SqlServer.Management.Common;

Figure 19-10. Edit Filter dialog box

 using Microsoft.SqlServer.Replication;

 class Program
 {
 static void Main(string[] args)
 {
 ServerConnection sc = new ServerConnection("localhost");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 RegisteredSubscriber rs = new RegisteredSubscriber("Subscriber_1", sc);
 rs.Create();

 sc.Disconnect();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

The sp_helpsubscriberinfo system stored procedure returns information about
registered subscribers.

The RMO classes used to manage subscribers are provided for backward compatibility, as it is no
longer necessary to explicitly register a subscriber at the publisher in SQL Server 2005. These classes
are described in Table 19-7 .

Table 19-7. RMO classes for managing subscribers

Class Description

RegisteredSubscriber Represents a subscriber registered at a publisher or distributor.
The EnumRegisteredSubscribers() method of the
DistributionPublisher and ReplicationServer classes returns an
ArrayList object of registered subscribers.

RegisteredSubscriberCollection The RegisteredSubscribers property of the
DistributionPublisher and ReplicationServer classes returns a
RegisteredSubscriberCollection object containing all registered
subscribers.

19.1.10. Creating a Subscription

This example creates a pull merge subscription for the publication AdventureWorks_MergePub created
in the section "Creating a Publication ," earlier in this chapter. It does so in the usual manner, but
with one additional method call:

It instantiates a MergePullSubscription object.1.

It sets properties as appropriate.2.

It calls the object's Create() method.3.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.

3.

It calls its Refresh() method.4.

The properties that the example sets are as follows:

ConnectionContext

The target SQL Server instance.

DatabaseName

The name of the subscription database.

PublisherName

The name associated with the DistributionPublisher object when it was created.

PublicationDBName

The name the publisher has assigned to the database.

PublicationName

The name assigned to the publication.

SubscriberType

A value from the MergeSubscriberType enumeration.

CreateSyncAgentByDefault

Setting this property of the MergePullSubscription class creates the agent job used to
synchronize the subscription.

There are two additional steps you must perform:

Configure the MergePublication object so that it allows pull.1.

Register the merge pull subscription at the publisher.2.

These are the steps to configure the MergePublication object (AdventureWorks_MergePub) to allow
pull, and to register the subscription:

1.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Instantiate a MergePublication object and associate it with AdventureWorks_MergePub .1.

Load the publication's properties.2.

Make sure the Attributes property indicates that the publication supports pull.3.

If the publication does not support pull, change the Attributes , and then call
CommitPropertyChanges() and Refresh() on the MergePublication object.

4.

Call the MakePullSubscriptionWellKnown() method on the MergePublication object.5.

Before you execute this example, replace the ServerName argument used to set

the MergePullSubscription.PublisherName property and used in the
MergePublication.MakePullSubscription() method with the name of your
database server.

The source code for the example follows:

 using System;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Replication;

 class Program
 {
 static void Main(string[] args)
 {
 ServerConnection sc = new ServerConnection("localhost");

 // create the pull subscription
 MergePullSubscription mps = new MergePullSubscription();
 mps.ConnectionContext = sc;

 mps.PublisherName = "ServerName";
 mps.PublicationDBName = "AdventureWorks";
 mps.PublicationName = "AdventureWorks_MergePub";
 mps.DatabaseName = "ReplicationDestination";
 mps.SubscriberType = MergeSubscriberType.Local;
 mps.CreateSyncAgentByDefault = true;
 mps.Create();

 MergePublication mp = new MergePublication(
 "AdventureWorks_MergePub", "AdventureWorks", sc);
 mp.LoadProperties();

 // allow pull if not already allowed
 if ((mp.Attributes & PublicationAttributes.AllowPull) == 0)
 {
 mp.Attributes = mp.Attributes | PublicationAttributes.AllowPull;
 mp.CommitPropertyChanges();
 mp.Refresh();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 // register the merge pull subscription at the publisher
 mp.MakePullSubscriptionWellKnown(

 "ServerName", "ReplicationDestination",
 mps.SyncType, mps.SubscriberType, mps.Priority);

 sc.Disconnect();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

To examine the subscription, refresh and expand the Replication Local Subscriptions node in
Object Explorer, right-click the [ReplicationDestination] - [ServerName].[AdventureWorks]:

AdventureWorks_MergePub local subscription, and select Properties from the context menu to display
the Subscription Properties dialog box. Figure 19-11 shows the details of the new subscription.

Setting the CreateSyncAgentByDefault property of the MergePullSubscription class creates the agent
job used to synchronize the subscription. Open the SQL Server Agent jobs by selecting SQL Server
Agent Jobs and you will see that a new merge replication job has been created.

The RMO classes used to manage subscriptions are described in Table 19-8 .

Table 19-8. RMO classes for managing subscriptions

Class Description

DistributionSubscription Represents read-only information about the distributor image
of a snapshot or transactional subscription. Use this class to
create a subscription to a heterogeneous publication.

DistributionSubscriptionCollection Represents a collection of DistributionSubscription objects.
The DistributionSubscriptions property of the
DistributionPublication class returns a
DistributionPublicationCollection object containing all
distribution subscriptions defined on the distribution
publication.

LastValidationDateTime Represents the date and time of the last merge subscription
validation.

MergePullSubscription Represents a pull subscription to a merge publication.

The EnumMergePullSubscriptions property of the
ReplicationDatabase class returns an ArrayList object of all
merge pull subscriptions that use the database.

MergePullSubscriptionCollection Represents a collection of MergePullSubscription objects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

The MergePullSubscriptions property of the
ReplicationDatabase class returns a
MergePullSubscriptionCollection object containing all merge
pull subscriptions defined on the replication database.

MergeSubscription Represents a subscription to merge publication.

MergeSubscriptionCollection Represents a collection of MergeSubscription objects.

The MergeSubscriptions property of the ReplicationDatabase
class returns a MergeSubscriptionCollection object
containing all merge push subscriptions defined on the
replication database.

SubscriptionBackupInformation Represents information for backup devices used for setting an
"initial from backup" subscription.

SubscriberSubscription Represents a lightweight object of limited subscription
information on the subscribing server.

transPullSubscription Represents a pull subscription to a transactional or snapshot
publication. The EnumTRansPullSubscriptions property of the
ReplicationDatabase class returns an ArrayList object of all
merge pull subscriptions that use the database.

transPullSubscriptionCollection Represents a collection of transPullSubscription objects.

The transPullSubscriptions property of the
ReplicationDatabase class returns a
transPullSubscriptionCollection object containing all
transactional and snapshot pull subscriptions defined on the
replication database.

transSubscription Represents a subscription to a transactional or snapshot
publication.

transSubscriptionCollection Represents a collection of TRansSubscription objects. The
TRansSubscriptions property of the ReplicationDatabase
class returns a transSubscriptionCollection object
containing all transactional or snapshot subscriptions defined
on the replication database.

19.1.11. Generating the Initial Snapshot

This example generates the initial snapshot used to initialize the subscriber for a new subscription. It
uses the SnapshotGenerationAgent class, which represents the Snapshot Agent. It creates an instance
of this class, and then sets the following properties:

Publisher

The name given to the distribution publisher

The MergePullSubscriptions property of the
ReplicationDatabase class returns a
MergePullSubscriptionCollection object containing all merge
pull subscriptions defined on the replication database.

MergeSubscription Represents a subscription to merge publication.

MergeSubscriptionCollection Represents a collection of MergeSubscription objects.

The MergeSubscriptions property of the ReplicationDatabase
class returns a MergeSubscriptionCollection object
containing all merge push subscriptions defined on the
replication database.

SubscriptionBackupInformation Represents information for backup devices used for setting an
"initial from backup" subscription.

SubscriberSubscription Represents a lightweight object of limited subscription
information on the subscribing server.

transPullSubscription Represents a pull subscription to a transactional or snapshot
publication. The EnumTRansPullSubscriptions property of the
ReplicationDatabase class returns an ArrayList object of all
merge pull subscriptions that use the database.

transPullSubscriptionCollection Represents a collection of transPullSubscription objects.

The transPullSubscriptions property of the
ReplicationDatabase class returns a
transPullSubscriptionCollection object containing all
transactional and snapshot pull subscriptions defined on the
replication database.

transSubscription Represents a subscription to a transactional or snapshot
publication.

transSubscriptionCollection Represents a collection of TRansSubscription objects. The
TRansSubscriptions property of the ReplicationDatabase
class returns a transSubscriptionCollection object
containing all transactional or snapshot subscriptions defined
on the replication database.

19.1.11. Generating the Initial Snapshot

This example generates the initial snapshot used to initialize the subscriber for a new subscription. It
uses the SnapshotGenerationAgent class, which represents the Snapshot Agent. It creates an instance
of this class, and then sets the following properties:

Publisher

The name given to the distribution publisher

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PublisherDatabase

The name of the database being published for replication

Publication

The name of the publication

Figure 19-11. Subscription Properties dialog box

Distributor

The name of the distributor (in this case, the same as Publisher)

PublisherSecurityMode

A value from the SecurityMode enumeration (SecurityMode.Integrated in this case)

DistributorSecurityMode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A value from the SecurityMode enumeration (SecurityMode.Integrated in this case)

ReplicationType

A value from the ReplicationType enumeration (ReplicationType.Merge in this case)

The last step is to call the GenerateSnapshot() method of the SnapshotGenerationAgent . In this
case, GenerateSnapshot() runs the Snapshot Agent synchronously to generate the initial snapshot
for the merge publication named AdventureWorks_MergePub .

You need to add a reference to the Microsoft.SqlServer.Replication.dll
assembly, installed by default in the C:\Program Files\Microsoft SQL
Server\90\SDK\Assemblies directory, to compile and execute this example.
Before you execute this example, replace the ServerName argument used to set

the SnapshotGenerationAgent.Publisher and
SnapshotGenerationAgent.Distributor properties with the name of your
database server.

The source code for the example follows:

 using System;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Replication;

 class Program
 {
 static void Main(string[] args)
 {
 SnapshotGenerationAgent sga = new SnapshotGenerationAgent();

 sga.Publisher = "ServerName";
 sga.PublisherDatabase = "AdventureWorks";
 sga.Publication = "AdventureWorks_MergePub";

 sga.Distributor = "ServerName";
 sga.PublisherSecurityMode = SecurityMode.Integrated;
 sga.DistributorSecurityMode = SecurityMode.Integrated;
 sga.ReplicationType = ReplicationType.Merge;
 sga.GenerateSnapshot();

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

Partial results are shown in Figure 19-12 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The StartSnapshotGenerationAgentJob() method of the MergePublication and transPublication
classes generates a snapshot asynchronously.

19.1.12. Synchronizing a Subscription to an Initial Snapshot

This example uses the snapshot created in the preceding section, "Generating the Initial Snapshot ,"
to initialize the subscriber when the data is first synchronized.

Before you execute this example, replace the ServerName argument used to set

the MergePullSubscription.PublisherName property with the name of your
database server.

Figure 19-12. Partial results for generating initial snapshot example

The source code for the example follows:

 using System;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Replication;

 class Program
 {
 static void Main(string[] args)
 {
 ServerConnection sc = new ServerConnection("localhost");

 MergePullSubscription mps = new MergePullSubscription();
 mps.ConnectionContext = sc;
 mps.DatabaseName = "ReplicationDestination";

 mps.PublisherName = "ServerName";
 mps.PublicationDBName = "AdventureWorks";
 mps.PublicationName = "AdventureWorks_MergePub";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 mps.LoadProperties();
 mps.SynchronizeWithJob();

 sc.Disconnect();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

After you run this code, the table named Vendor is created in the subscriber database
ReplicationDestination .

The SynchronizeWithJob() method of the MergeSubscription , MergePullSubscription ,
transSubscription , and TRansPullSubscription classes starts the Merge Agent job to synchronize
the subscription. The snapshot is transferred to and applied to the subscriber when the subscription is
first synchronized.

If you select View Synchronization Status from the context menu for the local subscription, the status
of the last synchronization indicates something similar to the following:

 Applied the snapshot and merged 0 data change(s) (0 insert(s), 0 update(s),
 0 delete(s), 0 conflict(s)).

If you run the code a second time, the snapshot is not applied and the status of the last
synchronization indicates something similar to this:

 Merge completed with no data changes processed.

Replication allows multiple nodes to make data changes, so it is possible that changes made at one
node may conflict with changes made at another.

The RMO classes used to manage merge and transactional replication conflict information are
described in Table 19-9 .

Table 19-9. RMO classes for managing replication conflicts

Class Description

MergeConflictCount Represents conflict count information for a table article in merge replication.
The EnumMergeConflictCounts() method of the ReplicationDatabase class
returns an ArrayList object of conflicts in a merge publication or subscription
database.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

transConflictCount Represents conflict count information for a table article in transactional
replication. The EnumtransConflictCounts() method of the
ReplicationDatabase class returns an ArrayList object of conflicts in a
transactional publication or subscription database.

19.1.13. Retrieving Agent History

This example displays status information about the last synchronization job that was run. It uses the
LastAgentJobHistoryInfo() method of the MergePullSubscription class, which returns this
information as an AgentJobHistoryInfo object. This class represents the results from the last run of
the replication agent. It then shows the LastRunDateTime and Status properties of this object.

Before you execute this example, replace the ServerName argument used to set

the MergePullSubscription.PublisherName property with the name of your
database server.

The source code for the example follows:

 using System;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Replication;

 class Program
 {
 static void Main(string[] args)
 {
 ServerConnection sc = new ServerConnection("localhost");

 MergePullSubscription mps = new MergePullSubscription();
 mps.ConnectionContext = sc;
 mps.DatabaseName = "ReplicationDestination";

 mps.PublisherName = "ServerName";
 mps.PublicationDBName = "AdventureWorks";
 mps.PublicationName = "AdventureWorks_MergePub";
 mps.LoadProperties();

 AgentJobHistoryInfo ajhi = mps.LastAgentJobHistoryInfo();
 Console.WriteLine("Last Run Date/Time: " + ajhi.LastRunDateTime);
 Console.WriteLine("Status: " + ajhi.Status);

 sc.Disconnect();

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();

transConflictCount Represents conflict count information for a table article in transactional
replication. The EnumtransConflictCounts() method of the
ReplicationDatabase class returns an ArrayList object of conflicts in a
transactional publication or subscription database.

19.1.13. Retrieving Agent History

This example displays status information about the last synchronization job that was run. It uses the
LastAgentJobHistoryInfo() method of the MergePullSubscription class, which returns this
information as an AgentJobHistoryInfo object. This class represents the results from the last run of
the replication agent. It then shows the LastRunDateTime and Status properties of this object.

Before you execute this example, replace the ServerName argument used to set

the MergePullSubscription.PublisherName property with the name of your
database server.

The source code for the example follows:

 using System;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Replication;

 class Program
 {
 static void Main(string[] args)
 {
 ServerConnection sc = new ServerConnection("localhost");

 MergePullSubscription mps = new MergePullSubscription();
 mps.ConnectionContext = sc;
 mps.DatabaseName = "ReplicationDestination";

 mps.PublisherName = "ServerName";
 mps.PublicationDBName = "AdventureWorks";
 mps.PublicationName = "AdventureWorks_MergePub";
 mps.LoadProperties();

 AgentJobHistoryInfo ajhi = mps.LastAgentJobHistoryInfo();
 Console.WriteLine("Last Run Date/Time: " + ajhi.LastRunDateTime);
 Console.WriteLine("Status: " + ajhi.Status);

 sc.Disconnect();

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }

Results are shown in Figure 19-13 .

Figure 19-13. Results for retrieving agent history example

The RMO classes used to manage agents are described in Table 19-10 .

Table 19-10. RMO classes for managing agents

Class Description

AgentJobHistoryInfo Represents the results from the last run of the replication agent. The
LastAgentJobHistoryInfo property of the MergePullSubscription and
transPullSubscription classes returns an AgentJobHistoryInfo object
with information about the last synchronization agent job that was run.

AgentProfile Represents a replication agent profile. The EnumAgentProfiles()
method of the ReplicationServer class returns an ArrayList object of
all replication agent profiles supported on the server.

Replication agent profiles define default values when agent jobs get
created.

AgentProfileParameter Represents a parameter in a replication agent profile. The
EnumParameter() method of the AgentProfile class returns an
ArrayList object of information about parameters for the replication
agent profile.

AgentProfileParameterInfo Represents information about a replication agent parameter. The
EnumParameter() method of the AgentProfile class returns an
ArrayList object of information about parameters for the replication
agent profile.

19.1.14. Specifying a Replication Schedule

This example sets the subscription created in the "Creating a Subscription " section to pull replication
data from the publication every five minutes. It does so by setting several properties of the
MergePullSubscription object:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AgentSchedule.FrequencyType

Takes a value from the ScheduleFrequencyType enumeration (ScheduleFrequency-Type.Daily in
this case).

AgentSchedule.FrequencySubDay

Takes a value from the ScheduleFrequencySubDay enumeration (Schedule-
FrequencySubDay.Minute in this case).

AgentSchedule.FrequencySubDayInterval

Specifies the number of units of the AgentSchedule.FrequencySubDay . This example sets
replication to occur every one hour.

The last step is to call the CommitPropertyChanges() method on the MergePull-Subscription object.

Before you execute this example, replace the ServerName argument used to set

the MergePullSubscription.PublisherName property with the name of your
database server.

The source code for the example follows:

 using System;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Replication;

 class Program
 {
 static void Main(string[] args)
 {
 ServerConnection sc = new ServerConnection("localhost");

 MergePullSubscription mps = new MergePullSubscription();
 mps.ConnectionContext = sc;
 mps.DatabaseName = "ReplicationDestination";

 mps.PublisherName = "ServerName";
 mps.PublicationDBName = "AdventureWorks";
 mps.PublicationName = "AdventureWorks_MergePub";
 mps.LoadProperties();
 mps.AgentSchedule.FrequencyType = ScheduleFrequencyType.Daily;
 mps.AgentSchedule.FrequencySubDay = ScheduleFrequencySubDay.Hour;
 mps.AgentSchedule.FrequencySubDayInterval = 1;
 mps.CommitPropertyChanges();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 sc.Disconnect();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

After you execute the example, confirm the new job schedule in Object Explorer by refreshing SQL
Server Agent Jobs, right-clicking the ServerName -AdventureWorks-AdventureWorks_MergePub-
ServerName -ReplicationDestination-0 job, and selecting Properties from the context menu to open

the Job Properties dialog box, shown in Figure 19-14 .

Figure 19-14. Job Properties dialog box

Select the Schedules page and then click the Edit button to display the Job Schedules Properties
dialog box, shown in Figure 19-15 .

Figure 19-15. Job Schedule Properties dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The RMO classes used to manage replication agents are described in Table 19-11 .

Table 19-11. RMO classes for managing replication agents

Class Description

ReplicationAgentSchedule Represents the schedule for a replication agent job. The
AgentSchedule property of the MergePullSubscription and
transPullSubscription classes returns an AgentSchedule object.

ReplicationStatusAndWarning Represents replication agent status information and threshold
monitor warnings.

19.1.15. Validating Subscriber Data

This example validates the subscription to the AdventureWorks_MergePub publication created in the
earlier "Creating a Publication " section. It first calls the Validate-Subscription() method of the
MergePublication class, which marks the subscription for validation in the next synchronization. It
then forces synchronization by calling MergePullSubscription.SynchronizeWithJob() .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Before you execute this example, replace the ServerName argument used in the

MergePublication.ValidateSubscription() constructor and to set the
MergePullSubscription.PublisherName property with the name of your
database server.

The source code for the example follows:

 using System;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Replication;

 class Program
 {
 static void Main(string[] args)
 {
 ServerConnection sc = new ServerConnection("localhost");

 // mark the subscription for validation
 MergePublication mp = new MergePublication();
 mp.ConnectionContext = sc;
 mp.Name = "AdventureWorks_MergePub";
 mp.DatabaseName = "AdventureWorks";
 mp.LoadProperties();

 mp.ValidateSubscription("ServerName", "ReplicationDestination",
 ValidationOption.Checksum80);

 // synchronize the subscription.
 MergePullSubscription mps = new MergePullSubscription();
 mps.ConnectionContext = sc;
 mps.DatabaseName = "ReplicationDestination";

 mps.PublisherName = "ServerName";
 mps.PublicationDBName = "AdventureWorks";
 mps.PublicationName = "AdventureWorks_MergePub";
 mps.LoadProperties();
 mps.SynchronizeWithJob();

 sc.Disconnect();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

The ValidateSubscription() method of the MergePublication class marks the subscription for
validation in the next synchronization. To view the subscription, refresh and expand the Replication

 Local Subscriptions node in Object Explorer, right-click the [ReplicationDestination] - [ServerName

http://lib.ommolketab.ir
http://lib.ommolketab.ir

].[AdventureWorks]: AdventureWorks_MergePub local subscription, and select View Job History from
the context menu to display the Log File Viewer dialog box . The results of the validation appear in the
details for the job in the bottom pane, as shown in Figure 19-16 .

Figure 19-16. Log File Viewer dialog box

19.1.16. Monitoring Replication

This example displays summary and detailed merge session information using three classes:

MergeSubscriberMonitor

Represents server-side monitoring of merge publication subscriptions.

MergeSessionSummary

Represents Merge Agent session information. An array of MergeSessionSummary objects is
returned by a call to the MergeSubscriberMonitor.GetSessionsSummary() method.

MergeSessionDetail

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Represents information about a step in a Merge Agent session. An array of MergeSessionDetail
objects is returned by a call to the MergeSubscriberMonitor.GetSessionDetails() method.

The example shows the StartTime , Duration , and Status properties of each MergeSessionSummary
object. It also obtains details about each step by calling MergeSubscriberMonitor.GetSessionDetails(
) , and displays the DetailType and Message properties.

Before you execute this example, replace the ServerName argument used to set

the MergeSubscriberMonitor.Publisher property with the name of your
database server.

The source code for the example follows:

 using System;

 using Microsoft.SqlServer.Management.Common;
 using Microsoft.SqlServer.Replication;

 class Program
 {
 static void Main(string[] args)
 {
 ServerConnection sc = new ServerConnection("localhost");
 MergeSubscriberMonitor msm = new MergeSubscriberMonitor(sc);

 msm.Publisher = "ServerName";
 msm.Publication = "AdventureWorks_MergePub";
 msm.PublisherDB = "AdventureWorks";
 msm.SubscriberDB = "ReplicationDestination";

 // display the merge session summary information
 MergeSessionSummary[] mssa = msm.GetSessionsSummary();
 foreach (MergeSessionSummary mss in mssa)
 {
 Console.WriteLine(mss.StartTime + ", " + mss.Duration + ", " +
 mss.Status);

 // display the merge session detail information for the session
 MergeSessionDetail[] msda = msm.GetSessionDetails(mssa[0].SessionId);
 foreach (MergeSessionDetail msd in msda)
 Console.WriteLine(" " + msd.DetailType + ": " + msd.Message);

 Console.WriteLine();
 }

 sc.Disconnect();

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }

Partial results are shown in Figure 19-17 .

Figure 19-17. Results for monitoring replication example

The RMO classes used to manage monitors and access merge session information are described in
Tables 19-12 and 19-13 .

Table 19-12. RMO classes for managing monitors

Class Description

MergeSubscriberMonitor Represents server-side monitoring of subscriptions to merge
publications.

MonitorThreshold Represents a threshold metric used to monitor a publication. The
EnumMonitorThresholds() method of the PublicationMonitor class
returns an ArrayList object of monitor thresholds defined for the
publication.

PendingCommandInfo Represents information about pending commands for a subscription
to a transactional publication. The transPendingCommandInfo
property of the PublicationMonitor class returns information about
pending commands for a subscription.

PublicationMonitor Represents publisher-side monitoring of a publication.

PublicationMonitorCollection The PublicationMonitors property of the PublisherMonitor class
returns a PublicationMonitorCollection object containing
information about monitors defined for the publication.

PublisherMonitor Represents distributor-side monitoring of a publisher.

PublisherMonitorCollection The PublisherMonitors property of the ReplicationMonitor class
returns a PublisherMonitorCollection object containing information
about monitors used to monitor publishers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

ReplicationMonitor Represents a monitor for a replication server.

TRacerToken Represents tracer token information. The EnumtracerTokens()
method of the PublicationMonitor class returns an ArrayList object
of tracer tokens that have been inserted into the monitored
transactional publication.

Table 19-13. RMO classes for managing merge session information

Class Description

MergeSessionDetail Represents information about a step in a Merge Agent session. The
GetSessionDetails() method of the MergeSubscriberMonitor class returns an
array of MergeSessionDetail objects containing detailed Merge Agent
information.

MergeSessionError Represents information about errors during a Merge Agent session. The Errors
property of the MergeSessionSummary class returns a MergeSessionError
object.

MergeSessionSummary Represents Merge Agent session information.

19.1.17. Business Logic Handlers

You can execute business logic in managed code assemblies during the merge synchronization
process to provide custom handling for conditions during synchronization, such as data changes,
conflicts, and errors. These assemblies are called business logic handlers . You can use COM-based
resolverseither custom or those supplied with SQL Server 2005for the same purpose.

The RMO classes used to manage business logic handlers and COM-based resolvers are described in
Table 19-14 .

Table 19-14. RMO classes for managing business logic handlers and COM-
based resolvers

Class Description

BusinessLogicHandler Represents server registration for the managed code assembly implementing
a business logic handler. The EnumBusinessLogicHandlers() method of the
ReplicationServer class returns an ArrayList object of business logic
handlers registered at the server.

CustomResolver Represents a COM-based resolver registration at a server used for merge
replication. The EnumCustomResolvers() method of the ReplicationServer
class returns an ArrayList object of custom conflict resolvers registered on
the SQL Server instance.

ReplicationMonitor Represents a monitor for a replication server.

TRacerToken Represents tracer token information. The EnumtracerTokens()
method of the PublicationMonitor class returns an ArrayList object
of tracer tokens that have been inserted into the monitored
transactional publication.

Table 19-13. RMO classes for managing merge session information

Class Description

MergeSessionDetail Represents information about a step in a Merge Agent session. The
GetSessionDetails() method of the MergeSubscriberMonitor class returns an
array of MergeSessionDetail objects containing detailed Merge Agent
information.

MergeSessionError Represents information about errors during a Merge Agent session. The Errors
property of the MergeSessionSummary class returns a MergeSessionError
object.

MergeSessionSummary Represents Merge Agent session information.

19.1.17. Business Logic Handlers

You can execute business logic in managed code assemblies during the merge synchronization
process to provide custom handling for conditions during synchronization, such as data changes,
conflicts, and errors. These assemblies are called business logic handlers . You can use COM-based
resolverseither custom or those supplied with SQL Server 2005for the same purpose.

The RMO classes used to manage business logic handlers and COM-based resolvers are described in
Table 19-14 .

Table 19-14. RMO classes for managing business logic handlers and COM-
based resolvers

Class Description

BusinessLogicHandler Represents server registration for the managed code assembly implementing
a business logic handler. The EnumBusinessLogicHandlers() method of the
ReplicationServer class returns an ArrayList object of business logic
handlers registered at the server.

CustomResolver Represents a COM-based resolver registration at a server used for merge
replication. The EnumCustomResolvers() method of the ReplicationServer
class returns an ArrayList object of custom conflict resolvers registered on
the SQL Server instance.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For more information about implementing custom business logic using business logic handlers or
COM-based resolvers, see Microsoft SQL Server 2005 Books Online.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 20. SQL Server Analysis Services
(SSAS)
SQL Server Analysis Services (SSAS) provides online analytical processing (OLAP) and data mining
functionality using a combination of client- and server-side components.

A data warehouse is a data repository used to overcome issues arising from performing strategic
analysis on data in an online transaction processing (OLTP) database. An OLTP database supports the
day-to-day business activity of the organization and is configured to let applications write data for a
single transaction as quickly as possible. A data warehouse provides users easy access to information
used to make strategic business decisions.

Dimension tables store information used to categorize and hierarchically organize the information
stored in fact tables. The columns of a dimension table are called attributes . Attributes are used to
hierarchically organize the rows of dimension tables in a way that is meaningful for business users.

OLAP is a combination of products and processes used to aggregate large amounts of heterogeneous
data and interactively examine the results in a dimensional model. OLAP evolved from the need to
interactively examine large volumes of data warehouse information.

Like a data warehouse, OLAP uses dimensional modeling to represent data. Unlike a data warehouse,
which typically uses a relational database to store and access data, OLAP uses cubesmultidimensional
data structures organized hierarchically along a business attribute for each dimension of the cube,
with each cell containing one or more measures.

This chapter provides an overview of SSAS, the languages used with SSAS, programmatically
querying data and metadata, and programmatically administering an SSAS instance and its objects.
Because SSAS is a very large topic, the goal of this chapter is simply to provide an introduction to
key elements and concepts. See Microsoft SQL Server 2005 Books Online for in-depth information
about SSAS.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.1. Before You Begin

The examples in this chapter use the sample Adventure Works DW (Standard Edition or Enterprise
Edition) SSAS database. If this is not installed, follow the instructions in the topic "Running Setup to
Install AdventureWorks Sample Databases and Samples" in Microsoft SQL Server 2005 Books Online.

You have to process the database prior to using it. Right-click the database in Object Explorer and
select Process from the context menu.

View the SSAS databases in Object Explorer to ensure that the Adventure Works DW database is
available by following these steps:

Open SQL Server Management Studio.1.

Select View Registered Server Types Analysis Services.2.

Right-click the Analysis Services server in the Registered Servers window and click Connect
Object Explorer from the context menu.

3.

Expand the Databases node under the registered Analysis Services server to display the newly
deployed Analysis Services Tutorial database, as shown in Figure 20-1.

4.

Figure 20-1. Object Explorer view of Analysis Services Tutorial database

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.2. SSAS Overview

A data warehouse combines data from multiple sources into a single homogenous repository that is
organized for efficient analytical query processing rather than transaction processing. Data
warehouses use dimensional modeling to represent business information. Data is stored in two types
of tablesfact tables and dimension tables .

Fact tables contain numeric performance information from transactional data. The columns of a fact
table are one of two typesmeasures or attributes. A measure is quantitative business data and is
usually numeric. An attribute is used to associate the measures with a row in the dimension table.

Multidimensional data is represented by structures called cubes, each representing a set of data
called a measure, hierarchically organized by one or more dimensions. Dimensions organize data
within a cube by using hierarchies and attributes instead of tables. Cubes are typically built from data
in relational data sources. A member is an item in a dimension that represents one or more data
instances, similar to records in a relational database.

A hierarchy organizes the members of a dimension into one or more levels, and lets you navigate and
aggregate data within the cube. Each attribute in a hierarchy definition corresponds to a level in the
hierarchy from the most summarized down to the most detailed. For example, you can have a
Geography dimension that organizes the hierarchy into levels based on Country, State, and City
attributes. The member in the lowest level is called a leaf member, and other members are called
nonleaf members.

Multiple data values called measures exist at each intersection of the dimensions. A measure is a
special dimension that represents the data organized according to the other dimensions in the cube.
Every cube must have a measure dimension. Calculated measures can be created that derive from
existing measures.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.3. SSAS Database

An SSAS database is a container for all objects required for an SSAS solution, as described in Table
20-1.

Table 20-1. SSAS database objects

Database
object

Description

Data source Encapsulates provider-specific connection information used to access source data.

Data-source
view

A logical model based on one or more data sources creating a layer of abstraction to
the source data.

Cube
Multidimensional data structure organized hierarchically along a business attribute
and providing an easy and responsive mechanism for querying data.

Dimension
A combination of hierarchies and attributes used to categorize data according to
areas of interest within a cube.

Data-mining
structure

A data structure that defines the data domain from which data-mining models are
built. The data-mining structure contains mining structure columns that describe the
data in the data source.

Data-mining
model

Data from the data-mining structure processed using an algorithm that identifies
rules and patterns for populating the mining model.

Role Used to manage security for databases, cubes, and mining models.

Assembly CLR managed code that extends the business functionality of MDX and DMX.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.4. SSAS Languages

SSAS provides the following languages used to query and manipulate data and schemas:

Multidimensional Expressions (MDX)

Used to refine, work with, and retrieve data from multidimensional objects

Data Mining Extensions (DMX)

Used to create and work with data-mining models

XML for Analysis (XMLA)

Open-standard, SOAP-based protocol for accessing standard multidimensional data sources,
including SSAS data sources, on the Web

Analysis Services Scripting Language (ASSL)

Used to create, manage, and deploy SSAS objects

The following subsections describe the SSAS languages.

20.4.1. Multidimensional Expressions (MDX)

A relational database represents two-dimensional data defined by columns and rows. The intersection
of a column and row identifies a field containing a single data value. T-SQL statements query
relational data by using SELECT queries, specifying columns to retrieve and limiting values retrieved
by using a WHERE clause.

MDX is a statement-based scripting language used to define, retrieve, and manipulate
multidimensional objects and data. Although MDX is similar to T-SQL, it is not an extension to T-SQL.
The MDX language provides the following:

A Data Manipulation Language (DML) used to retrieve and manipulate data from
multidimensional objects

A Data Definition Language (DDL) used to create, alter, and drop multidimensional objects

A scripting language used to manage scope, context, and control flow within MDX scripts

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Operators and functions, both built-in and user-defined, for manipulating data retrieved from
multidimensional objects

Each MDX expression has a SELECT clause to request data, a FROM clause to identify the data source,
and a WHERE clause to filter data. These elements, together with other keywords, are used to extract
multidimensional data from cubes and manipulate the data retrieved through a set of built-in or user-
defined functions. MDX also provides a DDL to manage SSAS objects.

MDX returns the results of a query against a cube in a structure called a cellset, which is analogous to
the result set returned by T-SQL statements issued against relational data sources. A cube contains a
collection of cells, and the intersection point of a member from each dimension of the cube defines a
cell. A cell contains one measure together with its properties, such as the data type and format. A
tuple is an expression that contains an ordered collection of one member of each dimension uniquely
identifying a cell. A set is an ordered collection of tuples .

A SELECT statement is used in MDX to retrieve data from cubes. A simple SELECT statement contains a
SELECT clause and a FROM clause with an optional WHERE clause.

The following example executes an MDX SELECT query against the Adventure Works cube in the
Adventure Works DW database. Right-click that database in Object Explorer and select New Query
MDX from the context menu. Execute the following query to retrieve a cellset from the Adventure
Works cube:

 SELECT {[Measures].[Sales Amount], [Measures].[Gross Profit Margin]} ON COLUMNS,
 {[Product].[Product Model Categories].[Category]} ON ROWS
 FROM [Adventure Works]
 WHERE ([Sales Territory Country].[United States])

Results are shown in Figure 20-2.

Figure 20-2. Results for MDX query example

The preceding example defines two query axesSales Amount and Gross Profit Margin as columns
and [Product].[Product Model Categories].[Category] as a rowand restricts the data returned from
the measure to the United States.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In T-SQL, the fields specified in a SELECT statement, together with a WHERE clause, are used to limit
the data retrieved by a query. In MDX, the SELECT clause specifies the dimensions and members
returned, which are referred to as the query axis dimensions. The WHERE clause restricts the data
returned in the cellset to specific dimensions and member criteria, which are referred to as the slicer
axis dimensions.

The SELECT clause determines the query axesthe edgesof the cellset returned by an MDX query. Each
axis dimension is associated with a number, starting with 0 and incrementing sequentially with no
breaks. The first five axes can be referred to by the aliases COLUMNS, ROWS, PAGES, SECTIONS, and
CHAPTERS. If you specify more than two dimensions in the query, you will not be able to see those
dimensions in the Results window in SQL Server Management Studio.

You can use a calculated measure in a query by specifying it using a WITH MEMBER clause, as shown in
the following example:

 WITH MEMBER [Measures].[Total Amount] AS
 '[Measures].[Sales Amount] + [Measures].[Tax Amount]'
 SELECT {[Measures].[Total Amount]} ON COLUMNS,
 {[Product].[Product Model Categories].[Category]} ON ROWS
 FROM [Adventure Works]
 WHERE ([Sales Territory Country].[United States])

Results are shown in Figure 20-3.

Figure 20-3. Results for MDX query using WITH MEMBER clause example

20.4.2. Data Mining Extensions (DMX)

DMX is a language used to create new data-mining model structures, train models, manage models,
and browse and predict against models. DMX consists of DML statements, DDL statements, functions,
and operators.

The OLE DB for Data Mining specification defines a structure in which to store the definition of a
mining model and a language for creating, managing, and working with data-mining models. You can
use DMX with this structure to create and work with models.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There are two types of DMX statementsdata manipulation and data definition. Use DMX data-
manipulation statements to browse and create predictions against existing models. Use DMX data-
definition statements to create, import, export, and drop mining models and mining structures from a
database.

You create a new DMX statement by right-clicking an SSAS database in Object Explorer and selecting
New Query DMX from the context menu. As an example, execute the following DMX data-
manipulation statement to return information about the mining model schema rowset for the
Forecasting mining model:

 SELECT MODEL_CATALOG, MODEL_NAME, ATTRIBUTE_NAME, NODE_NAME,
 NODE_UNIQUE_NAME, NODE_DISTRIBUTION
 FROM [Forecasting].CONTENT

Results are shown in Figure 20-4.

20.4.3. XML for Analysis (XMLA)

XMLA is a SOAP-based XML protocol used for universal data access to any standard multidimensional
data source on the Web. XMLA lets you explore and query multidimensional data through web
services.

The XMLA open specification has two methodsDiscover and Executethat handle incoming and
outgoing information on an SSAS instance. The Discover method returns information and metadata
from a web service. The Execute method lets you run commands against XMLA data sources.

Figure 20-4. Results for DMX data-manipulation statement example

XMLA is the native protocol for SQL Server 2005 and is used by client applications to communicate
with SSAS instances. SSAS uses XMLA exclusively when communicating with client applications, and
significantly extends the XMLA 1.1 specification for this purpose.

The following example shows an Execute XMLA query that is the same as the first query in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"Multidimensional Expressions (MDX)" section earlier in this chapter. Create a new XMLA query in
SQL Server Management Studio by right-clicking the SSAS instance and selecting New Query
XMLA from the context menu.

 <Execute xmlns="urn:schemas-microsoft-com:xml-analysis">
 <Command>
 <Statement>
 SELECT {[Measures].[Sales Amount], [Measures].[Gross Profit Margin]}
 ON COLUMNS,
 {[Product].[Product Model Categories].[Category]} ON ROWS
 FROM [Adventure Works]
 WHERE ([Sales Territory Country].[United States])
 </Statement>
 </Command>
 <Properties>
 <PropertyList>
 <Catalog>Adventure Works DW Standard Edition</Catalog>
 <Format>Multidimensional</Format>
 <AxisFormat>ClusterFormat</AxisFormat>
 </PropertyList>
 </Properties>
 </Execute>

The results are returned in the <CellData> element of the XML document partially shown in Figure
20-5.

The next example uses a Discover XMLA query to return the available data sources for the SSAS
server and information required to connect to them:

 <Discover xmlns="urn:schemas-microsoft-com:xml-analysis">
 <RequestType>DISCOVER_DATASOURCES</RequestType>
 <Restrictions>
 </Restrictions>
 <Properties>
 </Properties>
 </Discover>

Figure 20-5. Partial results for XMLA Execute method example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The results are returned in the <row> element of the XML document partially shown in Figure 20-6.

Figure 20-6. Partial results for XMLA Discover method example

The RequestType parameter specifies the type of information the Discover method should return. The
Restrictions parameter filters the returned result set based on column values. The Properties
element specifies properties of the Discover method.

20.4.4. Analysis Services Scripting Language (ASSL)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ASSL is a dialect for SOAP messages used by client applications to communicate with SSAS instances.
ASSL has two parts:

A DDL that defines an SSAS instance, the database, and the database objects contained in the
instance. Client applications use the DDL to describe, create, alter, and deploy SSAS objects.

A command language that sends actions to an SSAS instance using XMLA.

For more information about ASSL, see Microsoft SQL Server 2005 Books Online.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.5. Development

You create an Analysis Services database by using SQL Server Management Studio. Right-click the
Database folder for the Analysis Server instance and select New Database from the context menu to
open the New Database dialog box. Although you cannot create an Analysis Services database by
using Business Intelligence Development Studio or Visual Studio 2005, you can define objects on an
existing Analysis Services database by using either SQL Server Management Studio or Business
Intelligence Development Studio.

You develop, deploy, and manage SSAS solutions by using Business Intelligence Development Studio
and SQL Server Management Studio. You use Business Intelligence Development Studio to create
business intelligence solutionseither SSAS or report projects. You use SQL Server Management Studio
to administer Analysis Services instances and manage and create Analysis Services objects using
SSAS Scripts Projects. These project types are described in the following subsections.

20.5.1. SSAS Project

An SSAS project contains object definitions such as data sources, data-source views, dimensions, and
cubes for a single SSAS database stored in XML files. These projects are part of SSAS solutions that
can contain projects from other SQL Server components. You can create an SSAS project that is
independent of a specific SSAS instance by using Business Intelligence Development Studio.

20.5.2. SSAS Scripts Project

An SSAS Scripts Project contains scripts written in MDX, DMX, and XMLA. SSAS Scripts Projects let
you group related scripts for development and administrative purposes. You can create an SSAS
Scripts Project with SQL Server Management Studio.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.6. Accessing Data by Using ADOMD.NET

ADOMD.NET is a .NET Framework data provider that lets client applications access multidimensional
data sources such as SSAS. ADOMD.NET uses XMLA 1.1 to communicate with data sources. The
ADOMD.NET namespace is Microsoft.AnalysisServices.AdomdClient , which is implemented in the
Microsoft.AnalysisServices.AdomdClient.dll assembly. This is located by default in the C:\Program
Files\Microsoft.NET\ADOMD.NET\90 directory.

This section shows how to use ADOMD.NET to retrieve data and metadata from an SSAS instance. You
need a reference to the Microsoft.AnalysisServices.AdomdClient assembly to compile and run the
examples.

20.6.1. Querying an SSAS Database

This section shows how to use ADOMD.NET to retrieve multidimensional data from a managed client
application.

The first example shows how to use the ADOMD.NET data provider to retrieve data from the Adventure
Works cube by using an MDX query that populates a data reader:

 using System;
 using System.Data;

 using Microsoft.AnalysisServices.AdomdClient;

 class Program
 {
 static void Main(string[] args)
 {
 AdomdConnection conn = new AdomdConnection(
 "Data Source=localhost;Catalog=Adventure Works DW Standard Edition");
 conn.Open();

 string commandText = "SELECT {[Measures].[Sales Amount], " +
 "[Measures].[Gross Profit Margin]} ON COLUMNS, " +
 "{[Product].[Product Model Categories].[Category]} ON ROWS " +
 "FROM [Adventure Works] " +
 "WHERE ([Sales Territory Country].[United States])";

 AdomdCommand cmd = new AdomdCommand(commandText, conn);
 AdomdDataReader dr = cmd.ExecuteReader(CommandBehavior.CloseConnection);

 // output the rows in the DataReader
 while (dr.Read())
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 for (int i = 0; i < dr.FieldCount; i++)
 Console.Write(dr[i] + (i == dr.FieldCount - 1 ? "" : ", "));

 Console.WriteLine();
 }
 dr.Close();
 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

The results shown in Figure 20-7 correspond to those from executing the same query in the
"Multidimensional Expressions (MDX) " section earlier in this chapter.

Figure 20-7. Results for ADOMD.NET query example

The AdomdConnection class represents a connection to a multidimensional data source. The
AdomdDataReader class retrieves a forward-only, read-only stream of data from a data source and is
similar to other data reader classes in ADO.NET. The stream of results is returned as the query
executes, letting you access data as soon as the first row is available, rather than waiting for the entire
set of results to be returned. The AdomdDataReader object is created by calling the Execute() or
ExecuteReader() method of the AdomdCommand object. The Read() method of the AdomdDataReader
object retrieves the next row of results.

The CellSet class in ADOMD.NET is an in-memory cellset that can be manipulated while disconnected
and later synchronized to the data source. The CellSet class is analogous to the DataSet class in
ADO.NET. This example shows how to use the CellSet class to manipulate data extracted from the
Adventure Works cube:

 using System;
 using System.Data;

 using Microsoft.AnalysisServices.AdomdClient;

 class Program
 {
 static void Main(string[] args)
 {
 AdomdConnection conn = new AdomdConnection(
 "Data Source=localhost;Catalog=Adventure Works DW Standard Edition");
 conn.Open();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 string commandText = "SELECT {[Measures].[Sales Amount], " +
 "[Measures].[Gross Profit Margin]} ON COLUMNS, " +
 "{[Product].[Product Model Categories].[Category]} ON ROWS " +
 "FROM [Adventure Works] " +
 "WHERE ([Sales Territory Country].[United States])";

 AdomdCommand cmd = new AdomdCommand(commandText, conn);
 CellSet cs = cmd.ExecuteCellSet();

 // iterate over the rows and column positions
 foreach (Position pRow in cs.Axes
[1].Positions)
 {
 foreach (Position pCol in cs.Axes[0].Positions)
 {
 // get the formatted value based on the row and column positions
 Console.Write(
 cs[pCol.Ordinal, pRow.Ordinal].FormattedValue + ", ");
 }
 Console.WriteLine();
 }

 conn.Close();

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

Results are shown in Figure 20-8 .

Figure 20-8. Results for ADOMD.NET CellSet example

The results correspond to those from the first query executed in the "Multidimensional Expressions
(MDX) " section earlier in this chapter.

The CellSet class contains a collection of Cell objects hierarchically organized to the tuples and axes
specified by the Axes and FilterAxis properties. The cells in the cellset are accessed by index, a pair of
indexes corresponding to the column and row, or an array of indexes corresponding to the dimensions
of the cellset containing more than two dimensions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following example retrieves a cellset as an XmlReader object and uses an XmlDocument object to
output the contents of the XmlReader object to the console:

 using System;
 using System.Data;
 using System.Xml;

 using Microsoft.AnalysisServices.AdomdClient;

 class Program
 {
 static void Main(string[] args)
 {
 AdomdConnection conn = new AdomdConnection(
 "Data Source=localhost;Catalog=Adventure Works DW Standard Edition");
 conn.Open();

 string commandText = "SELECT {[Measures].[Sales Amount], " +
 "[Measures].[Gross Profit Margin]} ON COLUMNS, " +
 "{[Product].[Product Model Categories].[Category]} ON ROWS " +
 "FROM [Adventure Works] " +
 "WHERE ([Sales Territory Country].[United States])";

 AdomdCommand
 cmd = new AdomdCommand(commandText, conn);
 XmlReader xr = cmd.ExecuteXmlReader();
 XmlDocument xd = new XmlDocument();
 xd.Load(xr);
 Console.WriteLine(xd.InnerXml);

 xr.Close();
 conn.Close();
 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

The data portion of the resulting XML document is shown in Figure 20-9 .

Figure 20-9. Results for ADOMD.NET XmlDocument example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The ExecuteXmlReader() property of the AdomdCommand class returns the cellset as an XmlReader object.
As with the example in the "XML for Analysis (XMLA) " section earlier in this chapter, the results are
returned in the <CellData> element of the XML document.

20.6.2. Retrieving Schema Information

A schema rowset contains metadata, monitoring, and support information from an SSAS instance. This
section shows how to use ADOMD.NET to retrieve schema information from a managed client
application.

This example shows how to use the AdomdDataReader class to get schema information about a cellset:

 using System;
 using System.Data;

 using Microsoft.AnalysisServices.AdomdClient;

 class Program
 {
 static void Main(string[] args)
 {
 AdomdConnection conn = new AdomdConnection(
 "Data Source=localhost;Catalog=Adventure Works DW Standard Edition");
 conn.Open();

 string commandText = "SELECT {[Measures].[Sales Amount], " +
 "[Measures].[Gross Profit Margin]} ON COLUMNS, " +
 "{[Product].[Product Model Categories].[Category]} ON ROWS " +
 "FROM [Adventure Works] " +
 "WHERE ([Sales Territory Country].[United States])";

 AdomdCommand cmd = new AdomdCommand(commandText, conn);
 AdomdDataReader dr = cmd.ExecuteReader(CommandBehavior.CloseConnection);

 // retrieve the schema information into a table
 DataTable dt = dr.GetSchemaTable();

 foreach (DataRow row in dt.Rows)
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 foreach (DataColumn col in dt.Columns)
 Console.WriteLine(col.ColumnName + " = " + row[col].ToString());

 Console.WriteLine();
 }

 dr.Close();

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

Partial results are shown in Figure 20-10 .

Figure 20-10. Partial results for retrieving cellset schema example

The GetSchemaTable() method of the AdomdDataReader class returns a DataTable object containing
schema information about the cellset. Each row of the DataTable corresponds to a column in the
cellset. The columns of the DataTable contain properties for the cellset column.

The connection to the SSAS instance can also be used to retrieve schema information for the objects in
an SSAS instance. This example shows how:

 using System;
 using System.Data;

 using Microsoft.AnalysisServices.AdomdClient;

 class Program
 {
 static void Main(string[] args)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {
 AdomdConnection conn = new AdomdConnection(
 "Data Source=localhost;Catalog=Analysis Services Tutorial");
 conn.Open();
 DataSet ds = conn.GetSchemaDataSet(AdomdSchemaGuid.Dimensions, null);

 DataTable dt = ds.Tables[0];
 foreach(DataRow row in dt.Rows)
 {
 foreach (DataColumn col in dt.Columns)
 Console.WriteLine(col.ColumnName + " = " + row[col].ToString());

 Console.WriteLine();
 }

 conn.Close();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

Partial results are shown in Figure 20-11 .

Figure 20-11. Partial results for retrieving schema information example

The GetSchemaDataSet() method of the AdomdConnection class returns schema information for the
objects specified by the method arguments. The preceding example uses an overload of the
GetSchemaDataSet() method that takes two arguments. The first argument identifies the object type
by using its GUID as a static field from the AdomdSchemaGuid class. The second contains an array of
restrictions used to return information for a subset of the objects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.7. Administering SSAS Objects

SSAS supports administration APIs that you can use to create or modify SSAS objects, process SSAS
objects, and manage SSAS instances. This section describes Analysis Management Objects (AMO)
and Decision Support Objects (DSO) .

20.7.1. Analysis Management Objects (AMO)

AMO is a .NET Framework assembly containing a hierarchy of classes that lets you programmatically
create, modify, and process SSAS objects and manage SSAS instances. The AMO namespace is
Microsoft.AnalysisServices, implemented in the Microsoft.AnalysisServices.dll assembly, which
is located by default in the C:\Program Files\Microsoft SQL Server\90\SDK\Assemblies directory.

This example shows how to use AMO objects to retrieve information about key collections in an SSAS
databasein this case, the Adventure Works DW database. You need a reference to the
Microsoft.AnalysisServices assembly to compile and run the example.

 using System;
 using System.Data;

 using Microsoft.AnalysisServices;

 class Program
 {
 static void Main(string[] args)
 {
 Server server = new Server();
 server.Connect(
 "Data Source=localhost;Catalog=Adventure Works DW Standard Edition");
 Database db = server.Databases["Adventure Works DW Standard Edition"];

 Console.WriteLine("DATA SOURCES:");
 foreach (DataSource ds in db.DataSources)
 Console.WriteLine(ds.Name);

 Console.WriteLine(Environment.NewLine + "DATA SOURCE VIEWS:");
 foreach (DataSourceView dsv in db.DataSourceViews)
 Console.WriteLine(dsv.Name);

 Console.WriteLine(Environment.NewLine + "CUBES:");
 foreach (Cube c in db.Cubes)
 Console.WriteLine(c.Name);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Console.WriteLine(Environment.NewLine + "DIMENSIONS:");
 foreach (Dimension d in db.Dimensions)
 Console.WriteLine(d.Name);

 Console.WriteLine(Environment.NewLine + "MINING STRUCTURES:");
 foreach (MiningStructure ms in db.MiningStructures)
 Console.WriteLine(ms.Name);

 Console.WriteLine(Environment.NewLine + "ROLES:");
 foreach (Role r in db.Roles)
 Console.WriteLine(r.Name);

 Console.WriteLine(Environment.NewLine + "ASSEMBLIES:");
 foreach (Assembly a in db.Assemblies)
 Console.WriteLine(a.Name);

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

Results are shown in Figure 20-12.

Figure 20-12. Results for AMO example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Server class is the top-level class in the AMO class hierarchy and represents the implementation
of SSAS. Call the Connect() method of the Server class to connect to an SSAS instance. The
Databases property of the Server class contains a collection of databases in the SSAS instance as
Database objects. The Database class exposes a collection of properties that provides access to
collections of objects in the database, including data sources, data-source views, cubes, dimensions,
mining structures, roles, and assemblies. These collections and their objects have methods and
properties used to query and manipulate the database objects.

20.7.2. Decision Support Objects (DSO)

DSO is a COM library that you can use to create applications that programmatically administer SSAS
objects. You should use AMO instead of DSO in new applications and migrate existing applications to
AMO, because DSO will be removed in the next version of SQL Server. For more information about
DSO, see Microsoft SQL Server 2005 Books Online.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 21. SQL Server Mobile Edition
Microsoft SQL Server Mobile Edition (SQL Server Mobile) is the update to Microsoft SQL Server 2000
Windows CE Edition 2.0 (SQL Server CE). It extends enterprise solutions to applications running on a
device by delivering relational database functionality in a compact footprint and by providing a
consistent programming model. SQL Server Mobile is typically used on devices that run Windows CE
5.0, Windows XP Tablet PC Edition, Mobile Pocket PC, or Mobile Smartphone. You can also run SQL
Server Mobile on a desktop Windows operating system for development and testing purposes.

SQL Server Mobile is integrated with the .NET Compact Frameworka subset of the .NET Framework
that provides a hardware-independent environment for running applications on resource-constrained
computing devices. SQL Server Mobile can be deployed as part of a Microsoft .NET Compact
Framework application or independently on a smart device. The .NET Compact Framework Data
Provider for SQL Server Mobile in the namespace System.Data.SqlServerCe provides access to data
from .NET Compact Framework applications.

Remote data access and merge replication deliver data from SQL Server to SQL Server Mobile on
supported devices. This data can be manipulated offline and later synchronized to the server when a
connection is available.

A SQL Server Mobile database is stored in a file with a .sdf extension. A SQL Server Mobile database
can be up to 4GB in size. Devices running SQL Server Mobile can access and modify the data, as can
desktop computers running SQL Server Management Studio. SQL Server Mobile supports multiuser
database access.

You can use SQL Server Management Studio to administer a SQL Server Mobile database. SQL
Server Mobile management functionality in SQL Server Management Studio is limited to a subset of
the capabilities for managing a SQL Server 2005 database. Many tasks cannot be performed using
graphical tools but must instead be accomplished using T-SQL commands. SQL Server Management
Objects (SMO) is not supported by SQL Server Mobile.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.1. Environments

SQL Server Mobile includes both a client environment, where the application is hosted and offline data
is stored, and a server environment, which serves as a central repository for data. Connectivity
technologies provide periodic data synchronization between client and server environments . The
following subsections describe the client and server environments.

21.1.1. Client

The client environment includes the SQL Server Mobile instance and the client application developed
using the .NET Compact Framework.

The SQL Server Mobile client environment includes the following:

Tools for setup, configuration, data access, and data modification.

APIs to develop applications that access SQL Server Mobile data.

The query processor, which parses, compiles, optimizes, and executes SQL expressions,
queries, and commands. The SQL grammar supported by SQL Server Mobile is a subset of T-
SQL supported by SQL Server 2005.

SQL Server Mobile Database Engine, which manages the data store and tracks inserted,
deleted, and modified records to support replication or remote data access (RDA) connectivity.

SQL Server Mobile Client Agent, which supports connectivity by implementing the Replication,
RemoteDataAccess, and Engine objects and lets you programmatically control connections to SQL
Server.

21.1.2. Server

The server environment includes the following:

SQL Server 2005, which provides server-side storage, management, and analysis of data.

SQL Server Mobile Server Agent, which handles HTTP data and schema transfer requests made
by SQL Server Mobile Client Agent.

Internet Information Services (IIS), which provides the protocol that client devices use to
connect to servers to transfer and exchange data using replication or RDA.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.2. Prerequisites

The following are prerequisites for developing SQL Server Mobile applications:

Windows 2000 SP4 or later, Windows XP SP1 or later, or Windows Server 2003.

Visual Studio 2005 in the development environment.

.NET Framework 2.0 in the server environment.

Microsoft ActiveSync 3.7.1 or later in the development and server environments. ActiveSync is
available as a free download from Microsoft.

If you are using Windows XP SP2, you need to configure the Windows Firewall to allow HTTP access.
Follow these steps:

Select Control Panel Windows Firewall.1.

Select the Advanced tab in the Windows Firewall dialog box.2.

Click the Settings button in the Network Connection Settings frame.3.

Select the Services tab.4.

Check the Web Server (HTTP) checkbox.5.

Click the OK button on both dialog boxes to make the changes.6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.3. Programming SQL Server Mobile

The SQL Server Mobile data provider classes in the Microsoft.Data.SqlServerCe namespace provide
programmatic access to SQL Server Mobile databases from a managed application running on a
supported device. The classes are similar to the classes in the .NET data provider for SQL Server.
They let you connect to a SQL Server Mobile database, execute commands, retrieve result sets,
refresh result sets, work with data offline, and synchronize local updates with the database. The data
provider for SQL Server Mobile does not support batch queries or nested transactions.

The following subsections provide examples that show how to use the SQL Server Mobile classes and
include descriptions of the classes. You need a reference to the System.Data.SqlServerCe assembly to
compile and run the examples. To add the reference, select Microsoft SQL Mobile from the .NET tab
of the Add Reference dialog box in Visual Studio 2005.

21.3.1. Creating a Database

This example creates a database named TestDb.sdf:

 using System;

 using System.Data.SqlServerCe;

 class Program
 {
 static void Main(string[] args)
 {
 SqlCeEngine engine = new SqlCeEngine(
 "data source=TestDb.sdf; database password=password;");
 engine.CreateDatabase();
 engine.Dispose();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

Running the example creates the mobile database (.sdf file) in the bin\Debug folder (if you compile a
debug version of the example).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can connect to this database in SQL Server Management Studio. From the
main menu, select View Registered Server Types SQL Server Mobile .
Right-click SQL Server Mobile Edition Databases in the Registered Servers
window and select Server Registration from the context menu to open the New
Server Registration dialog box. Complete the Database file field with the full
path to the TestDb.sdf file and the Password field with the password. Click the
Save button to register the mobile database.

The local connection string that can be specified either in the SqlCeEngine class constructor or using
the LocalConnectionString property has properties described in Table 21-1.

Table 21-1. SQL Server Mobile connection string properties

Property Description

autoshrink

threshold

Percent of free space allowed in the database before autoshrink starts. The
default value is 60. A value of 100 disables autoshrink.

data source Name of the SQL Server Mobile database file (.sdf) and, optionally, specifies the
absolute path.

database

password
Database password up to 40 characters long. If not specified, the default is no
password.

A database password cannot be recovered if lost.

default lock

timeout
Length of time, in milliseconds, that a transaction will wait for a lock. The default
value is 2000.

default lock

escalation
Number of locks a transaction will acquire before escalating from row to page or
from page to table. The default value is 100.

encrypt database Boolean value specifying whether the database is encrypted. You must specify a
password to enable database encryption. The default value is false.

If the database password is lost, the data cannot be retrieved.

flush interval Interval before all committed transactions are committed to disk, in seconds.
The default value is 10.

locale

identifier
Locale ID (LCID) to use with the database.

max buffer size Largest amount of memory, in kilobytes, that SQL Server Mobile can use before
it starts flushing data changes to disk. The default value is 640.

max database

size
Maximum size of the database file, in megabytes. The default value is 128.

mode Specifies how the database is opened. The options are:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Description

Read Write

Opens the database so that other processes can open and modify the
database

Read Only

Opens a read-only copy of the database

Exclusive

Opens the database so that other processes cannot open or modify the
database

Shared Read

Opens the database so that other processes are allowed read-only access
to the database

The default mode is Read Write.

temp file

directory
Location of the temporary database. The data source is used for temporary
storage if a temporary database is not specified.

temp file max

size
Maximum size of the temporary database file, in megabytes. The default value is
128.

The classes used to manage SQL Server Mobile databases and access data in a SQL Server Mobile
database are described in Table 21-2. The data access classes are similar to those for the SQL Server
data provider. Corresponding classes are prefixed by SqlCe instead of Sqlfor example,
SqlCeConnection instead of SqlConnection.

Table 21-2. SQL Server Mobile data provider classes

Class Description

SqlCeCommand T-SQL statement to execute against a database.

SqlCeCommandBuilder Automatically creates single-table commands based on a
SELECT query. Also used to update a database with changes
made to a DataTable or DataSet object using a data adapter.

SqlCeConnection Connection to the SQL Server Mobile database.

SqlCeDataAdapter Used to fill a DataTable or DataSet object and subsequently
update the database with changes made offline.

Read Write

Opens the database so that other processes can open and modify the
database

Read Only

Opens a read-only copy of the database

Exclusive

Opens the database so that other processes cannot open or modify the
database

Shared Read

Opens the database so that other processes are allowed read-only access
to the database

The default mode is Read Write.

temp file

directory
Location of the temporary database. The data source is used for temporary
storage if a temporary database is not specified.

temp file max

size
Maximum size of the temporary database file, in megabytes. The default value is
128.

The classes used to manage SQL Server Mobile databases and access data in a SQL Server Mobile
database are described in Table 21-2. The data access classes are similar to those for the SQL Server
data provider. Corresponding classes are prefixed by SqlCe instead of Sqlfor example,
SqlCeConnection instead of SqlConnection.

Table 21-2. SQL Server Mobile data provider classes

Class Description

SqlCeCommand T-SQL statement to execute against a database.

SqlCeCommandBuilder Automatically creates single-table commands based on a
SELECT query. Also used to update a database with changes
made to a DataTable or DataSet object using a data adapter.

SqlCeConnection Connection to the SQL Server Mobile database.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Description

SqlCeDataAdapter Used to fill a DataTable or DataSet object and subsequently
update the database with changes made offline.

SqlCeDataReader Provides access to a result set as a forward-only stream of
data rows.

SqlCeEngine Represents the SQL Server Mobile Database Engine. Used to
create, modify, and manage a SQL Server Mobile database.

SqlCeError Information about a specific SqlCeException object returned
by the SQL Server Mobile data provider.

SqlCeErrorCollection Collection of all errors generated by the SQL Server Mobile
data provider.

SqlCeException The exception raised when the provider returns a warning or
error from the SQL Server Mobile database.

SqlCeFlushFailureEventArgs Data for a flush failure (FlushFailure) event.

SqlCeFlushFailureEventHandler The method that handles the FlushFailure event.

SqlCeInfoMessageEventArgs Data for a warning (InfoMessage) event from the database.

SqlCeInfoMessageEventHandler The method that handles the InfoMessage event.

SqlCeLockTimeoutException The exception raised when a lock timeout occurs.

SqlCeParameter A parameter to a SQL command (SqlCeCommand).

SqlCeParameterCollection A collection of parameter (SqlCeParameter) objects and their
mappings to columns.

SqlCeRemoteDataAccess A remote data access instance.

SqlCeReplication A replication instance.

SqlCeResultSet An updateable, bindable, scrollable cursor.

SqlCeRowUpdatedEventArgs Data for the row updated (RowUpdated) event that occurs
when a row in the database is updated using a data
adapter.

SqlCeRowUpdatedEventHandler The method that handles the RowUpdated event.

SqlCeRowUpdatingEventArgs Data for the row updating (RowUpdating) event that occurs
before a row in the database is updated using a data
adapter.

SqlCeRowUpdatingEventHandler The method that handles the RowUpdating event.

SqlCeTransaction A SQL transaction.

SqlCeTransactionInProgressException The exception raised when an attempt is made to modify a
database while a transaction is in progress.

SqlCeUpdatableRecord A row of updateable data from the database. The
SqlCeResult set contains a collection of
SqlCeUpdatableRecord objects.

SqlCeDataAdapter Used to fill a DataTable or DataSet object and subsequently
update the database with changes made offline.

SqlCeDataReader Provides access to a result set as a forward-only stream of
data rows.

SqlCeEngine Represents the SQL Server Mobile Database Engine. Used to
create, modify, and manage a SQL Server Mobile database.

SqlCeError Information about a specific SqlCeException object returned
by the SQL Server Mobile data provider.

SqlCeErrorCollection Collection of all errors generated by the SQL Server Mobile
data provider.

SqlCeException The exception raised when the provider returns a warning or
error from the SQL Server Mobile database.

SqlCeFlushFailureEventArgs Data for a flush failure (FlushFailure) event.

SqlCeFlushFailureEventHandler The method that handles the FlushFailure event.

SqlCeInfoMessageEventArgs Data for a warning (InfoMessage) event from the database.

SqlCeInfoMessageEventHandler The method that handles the InfoMessage event.

SqlCeLockTimeoutException The exception raised when a lock timeout occurs.

SqlCeParameter A parameter to a SQL command (SqlCeCommand).

SqlCeParameterCollection A collection of parameter (SqlCeParameter) objects and their
mappings to columns.

SqlCeRemoteDataAccess A remote data access instance.

SqlCeReplication A replication instance.

SqlCeResultSet An updateable, bindable, scrollable cursor.

SqlCeRowUpdatedEventArgs Data for the row updated (RowUpdated) event that occurs
when a row in the database is updated using a data
adapter.

SqlCeRowUpdatedEventHandler The method that handles the RowUpdated event.

SqlCeRowUpdatingEventArgs Data for the row updating (RowUpdating) event that occurs
before a row in the database is updated using a data
adapter.

SqlCeRowUpdatingEventHandler The method that handles the RowUpdating event.

SqlCeTransaction A SQL transaction.

SqlCeTransactionInProgressException The exception raised when an attempt is made to modify a
database while a transaction is in progress.

SqlCeUpdatableRecord A row of updateable data from the database. The
SqlCeResult set contains a collection of
SqlCeUpdatableRecord objects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.3.2. Maintaining a Database

The SqlCeEngine class public properties and methods used to create and manage SQL Server Mobile
databases are described in Table 21-3.

Table 21-3. SqlCeEngine class properties and methods

Constructor Description

SqlCeEngine Takes an optional argument specifying the connection string to the SQL
Server Mobile database.

Property

LocalConnectionString The connection string to the SQL Server Mobile database. The connection
string properties are described in Table 21-1.

Methods

Compact() Reclaims space in the database file and changes properties of the database
specified in the local connection string.

CreateDatabase() Creates a new database.

Repair() Attempts to repair a corrupted database.

Shrink() Reclaims space in the database file.

Verify() Verifies that the database is not corrupted.

The examples in this section show how to maintain a SQL Server Mobile database using the
SqlCeEngine class.

21.3.2.1. Verifying and repairing

This example verifies that a database is not corrupted. If the database is corrupted, it is repaired.

 using System;

 using System.Data.SqlServerCe;

 class Program
 {
 static void Main(string[] args)
 {
 // connect to the database
 SqlCeEngine engine = new SqlCeEngine(
 "data source=TestDb.sdf; database password=password;");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // check if the database is corrupted and repair if it is
 if (!engine.Verify())
 {
 engine.Repair(null, RepairOption.RecoverCorruptedRows);
 Console.WriteLine("Database repaired.");
 }

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

This example connects to the SQL Server Mobile database created in the preceding example. The
Verify() method of the SqlCeEngine class checks the checksum for each database page to
determine whether the database file is corrupt. A corrupt database file returns false and should be
repaired using the Repair() method of the SqlCeEngine class. Repair() takes a single argument
from the RepairOption enumerationeither DeleteCorruptedRows or RecoverCorruptedRows. The
RecoverCorruptedRows option causes the engine to try to recover data from corrupted pages.
However, the data is not guaranteed to be free of corruption. The DeleteCorruptedRows option results
in data that is free of corruption, but because corrupt data is discarded, significant data can be lost.

21.3.2.2. Reclaiming space

The internal structure of a SQL Server Mobile database can become fragmented over time, resulting
in wasted space. You can use the Shrink() or Compact() method of the Engine class to reclaim the
space:

 engine.Shrink();

The Shrink() method of the SqlCeEngine class is used to reclaim wasted space in the .sdf file. The
Compact() method is described in the following subsection.

You can configure the database to automatically shrink when a fragmentation threshold is exceeded
by setting the autoshrink threshold property (described in Table 21-1) in the
LocalConnectionString property of the SqlCeEngine object.

21.3.2.3. Modifying properties

The Compact() method of the SqlCeEngine class reclaims space in the database just as the Shrink(
) method does, but also lets you change database connection settings by specifying them in an
optional argument. For example, the following statement changes the database password to
newPassword:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 engine.Compact("database password=newPassword;");

21.3.2.4. Backing up and restoring

SQL Server Mobile is file based, so you can perform some common database tasks using the
filesystem. You can back up a database by closing all open connections to it and copying the .sdf
database file. Similarly, you can restore the database by copying the backup .sdf file to its original
location.

You drop a database by closing all connections to it and deleting the .sdf file using the filesystem
APIs. For example, the following statement deletes the database named TestDb.sdf created at the
beginning of this section:

 System.IO.File.Delete("TestDb.sdf");

21.3.3. Creating, Altering, and Dropping Database Objects

Because SQL Server Mobile does not support SMO, you create a table by executing T-SQL DDL
commands using the ExecuteNonQuery() method of the SqlCeCommand class. This example creates a
table named TestTable containing two columns:

 using System;

 using System.Data.SqlServerCe;

 class Program
 {
 static void Main(string[] args)
 {
 SqlCeConnection conn = new SqlCeConnection(
 "data source=TestDb.sdf; database password=password;");
 conn.Open();

 SqlCeCommand cmd = new SqlCeCommand(
 "CREATE TABLE TestTable(ID int, Description nvarchar(100))",
 conn);
 cmd.ExecuteNonQuery();
 conn.Close();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The example uses SqlCeConnection and SqlCeCommand objects to execute the CREATE TABLE T-SQL
command against the SQL Server Mobile database. This is similar to how you would accomplish the
same task in SQL Server using SqlConnection and SqlCommand objects.

21.3.4. Reading and Updating Data

This example adds two rows to the SQL Server Mobile table named TestTable created in the
preceding example. The example then reads the new rows from the database and outputs them to
the console.

You execute queries against a SQL Server Mobile database by using the SQL Server Mobile database
classes similarly to using the SQL Server data provider against a SQL Server 2005 database. This
example uses a SqlCeDataAdapter object to do the following:

Retrieve the contents of the table named TestTable into a DataTable object. Because TestTable
has no rows, the DataTable object will have no rows.

Add two rows to the DataTable object.

Update the SQL Server Mobile database with the new rows.

The example then uses a SqlCeDataReader object to display the rows added to the table from the
database.

 using System;
 using System.Data;

 using System.Data.SqlServerCe;

 class Program
 {
 static void Main(string[] args)
 {
 // create a data adapter and configure a command builder
 // to update the database
 SqlCeDataAdapter da = new SqlCeDataAdapter(
 "SELECT * FROM TestTable",
 "data source=TestDb.sdf; database password=password;");
 SqlCeCommandBuilder cb = new SqlCeCommandBuilder(da);

 // retrieve the results from the database into a DataTable
 DataTable dt = new DataTable();
 da.Fill(dt);

 // add two rows to the DataTable
 dt.Rows.Add(new object[] { 1, "Row 1 description" });

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 dt.Rows.Add(new object[] { 2, "Row 2 description" });

 // update the database with the new rows
 da.Update(dt);

 // create a connection for the data reader
 SqlCeConnection conn = new SqlCeConnection(
 "data source=TestDb.sdf; database password=password;");
 conn.Open();

 // create the data reader
 SqlCeCommand cmd = new SqlCeCommand(
 "SELECT * FROM TestTable", conn);
 SqlCeDataReader dr = cmd.ExecuteReader();

 // output the rows to the console
 while (dr.Read())
 Console.WriteLine(dr["ID"] + ", " + dr["Description"]);

 // clean up
 dr.Close();
 conn.Close();

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
 }

The console output is shown in Figure 21-1.

Figure 21-1. Results from reading and updating data example

21.3.5. Error Handling

A SqlCeException object is created when a data provider for SQL Server mobile encounters an error.
These exceptions are handled in a typical manner. The following example catches a SqlCeException
object, raised because a nonexistent table is queried, and returns details about the exception:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 using System;

 using System.Data.SqlServerCe;

 class Program
 {
 static void Main(string[] args)
 {
 SqlCeConnection conn = new SqlCeConnection(
 "data source=TestDb.sdf; database password=password;");
 conn.Open();
 SqlCeCommand cmd = new SqlCeCommand("SELECT * FROM Table1", conn);

 try
 {
 SqlCeDataReader dr = cmd.ExecuteReader();
 }
 catch (SqlCeException
 ex)
 {
 foreach (SqlCeError sce in ex.Errors)
 {
 Console.WriteLine("HResult = {0:X}", sce.HResult);
 Console.WriteLine("Message = {0}", sce.Message);
 Console.WriteLine("NativeError = {0:X}", sce.NativeError);
 Console.WriteLine("Source = {0}", sce.Source);
 Console.WriteLine();
 }
 }
 finally
 {
 conn.Close();
 }

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
 }

The console output is shown in Figure 21-2.

Figure 21-2. Results from error handling example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The SqlCeException class inherits from the Exception class and adds the several properties described
in Table 21-4.

Table 21-4. SqlCeException class properties

Property Description

Errors A collection of SqlCeError objects, each containing details about an exception
generated by the SQL Server Mobile data provider.

HResult The hrESULTa numeric value that corresponds to a specific exception. This
corresponds to the value of the HResult property for the first SqlCeError object in
the SqlCeErrorCollection collection returned by the Errors property.

InnerException Inherited from Exception class.

Message The description for the first SqlCeError object in the SqlCeErrorCollection
collection returned by the Errors property.

NativeError The native error number for the first SqlCeError object in the
SqlCeErrorCollection collection returned by the Errors property.

Source The name of the provider that caused the exception. This corresponds to the value
of the Source property for the first SqlCeError object in the SqlCeErrorCollection
collection returned by the Errors property.

StackTrace Inherited from Exception class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix A. ADO.NET 2.0

ADO.NET is a set of classes that gives .NET applications access to relational, XML, and application
data. The classes let you connect to data sources such as SQL Server and Oracle, as well as to data
sources exposed through OLE DB and ODBC, and XML data. After you connect to these data sources,
the ADO.NET classes let you retrieve, manipulate, and update data.

This appendix describes the new functionality, support, and features in ADO.NET 2.0.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.1. Data Provider Enumeration and Factories

Data providers in ADO.NET 1.0 and 1.1 are a set of provider-specific classes that implemented
generic interfaces. These interfaces can be used to write code that is data provider independent. For
example, the data connection classes in the Microsoft SQL Server data provider (SqlConnection) and
the Microsoft Oracle data provider (OracleConnection) both implement the IDbConnection interface.
Code based on the IDbConnection interface that is common to both classes, rather than a database-
specific instance of a data provider, is independent of the data provider and therefore not dependent
on the underlying database. The disadvantage of the interface approach is that you cannot use the
interface to access any database-specific features implemented as members of the data provider
class but not defined as part of the interfacethe ChangeDatabase() method of the Oracle data
provider, for example.

ADO.NET 2.0 introduces the Common Model, based on the Factory design pattern, which uses a
single API to access databases having different providers. Data provider factories let your code work
with multiple data providers without choosing a specific provider. The factory class creates and
returns a strongly typed, provider-specific object based on information in the request. This lets you
write data provider-independent code and select the provider at runtime. Using the Common Model,
it becomes easier to write an application to support multiple databases.

The DbProviderFactories class in the System.Data.Common namespace lets you retrieve information
about installed .NET data providers. The static GetFactoryClasses() method returns a DataTable
object containing information about the installed data providers that implement the abstract base
class DbProviderFactory, with the schema described in Table A-1.

Table A-1. DataTable schema for GetFactoryClasses() method results

Column name Description

Name Data provider name.

Description Data provider description.

InvariantName A unique identifier for a data provider registered in machine.config in the
<system.data><DbProviderFactories> element. For example, the invariant
name for SQL Server is System.Data.SqlClient.

The invariant name is used to programmatically refer to the data provider.

AssemblyQualifiedName Fully qualified name of the data provider factory classenough information
to instantiate the object.

The following console application uses the DbProviderFactories class to get information about the
installed data providers:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

using System;
using System.Data;
using System.Data.Common;
class Program
{
 static void Main(string[] args)
 {
 DataTable dt = DbProviderFactories.GetFactoryClasses();
 foreach (DataRow row in dt.Rows)
 Console.WriteLine("{0}\n\r {1}\n\r {2}\n\r {3}\n\r",
 row["Name"], row["Description"], row["InvariantName"],
 row["AssemblyQualifiedName"]);

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
}

The output is similar to that shown in Figure A-1.

The providers listed in Figure A-1 correspond to the DbProviderFactories element in machine.config,
shown in the following excerpt:

<system.data>
 <DbProviderFactories>
 <add name="Odbc Data Provider" invariant="System.Data.Odbc"
 description=".Net Framework Data Provider for Odbc"
 type="System.Data.Odbc.OdbcFactory, System.Data, Version=2.0.0.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089" />
 <add name="OleDb Data Provider" invariant="System.Data.OleDb"
 description=".Net Framework Data Provider for OleDb"
 type="System.Data.OleDb.OleDbFactory, System.Data, Version=2.0.0.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089" />
 <add name="OracleClient Data Provider" invariant="System.Data.OracleClient"
 description=".Net Framework Data Provider for Oracle"
 type="System.Data.OracleClient.OracleClientFactory, System.Data.OracleClient,
 Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" />
 <add name="SqlClient Data Provider" invariant="System.Data.SqlClient"
 description=".Net Framework Data Provider for SqlServer"
 type="System.Data.SqlClient.SqlClientFactory, System.Data, Version=2.0.0.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089" />
 <add name="SQL Server CE Data Provider"
 invariant="Microsoft.SqlServerCe.Client" support="3F7"
 description=".NET Framework Data Provider for Microsoft SQL Server 2005
 Mobile Edition" type="Microsoft.SqlServerCe.Client.SqlCeClientFactory,
 Microsoft.SqlServerCe.Client, Version=9.0.242.0, Culture=neutral,
 PublicKeyToken=89845dcd8080cc91" />
 </DbProviderFactories>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</system.data>

Figure A-1. Information about installed data providers

The static GetFactory() method of the DbProviderFactories class takes a single argumenteither a
DataRow object from the table returned by the GetFactoryClasses() method or a string containing
the invariant name of the providerand returns a DbProviderFactory instance for that data provider.

The DbProviderFactory class is an abstract base class that every ADO.NET 2.0 data provider must
implement. DbProviderFactory is a data provider-independent class that provides a strongly typed
object based on information supplied at runtime. The provider-specific classes derived from
DbProviderFactory installed with .NET Framework 2.0 are listed in Table A-2.

Table A-2. Provider-specific classes derived from DbProviderFactory
installed with .NET Framework 2.0

Factory class Description

System.Data.Odbc.OdbcFactory Used to create instances of ODBC provider classes

System.Data.OleDb.OleDbFactory Used to create instances of OLE DB provider classes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Factory class Description

System.Data.OracleClient.OracleClientFactory Used to create instances of Oracle provider classes

System.Data.SqlClient.SqlClientFactory
Use to create instances of SQL Server provider
classes

The DbProviderFactory class has public methods, listed in Table A-3, that are used to create the
provider-specific class instances.

Table A-3. DbProviderFactory class public methods

Method Description

CreateCommand Returns a DbCommand instancethe base class for strongly typed
command objects

CreateCommandBuilder Returns a DbCommandBuilder instancethe base class for strongly
typed command builder objects

CreateConnection Returns a DbConnection instancethe base class for strongly typed
connection objects

CreateConnectionStringBuilder Returns a DbConnectionStringBuilder instancethe base class for
strongly typed connection string builder objects

CreateDataAdapter Returns a DbDataAdapter instancethe base class for strongly typed
data adapter objects

CreateDataSourceEnumerator Returns a DbDataSourceEnumerator instancethe base class for
strongly typed data source enumerator objects

CreateParameter Returns a DbParameter instancethe base class for strongly typed
parameter objects

CreatePermission Returns a CodeAccessPermission instancethe base class for strongly
typed code access permission objects

The following console application shows how to create an instance of the SqlClientFactory class and
use it to output the top 10 rows from the Person.Contact table in AdventureWorks:

using System;
using System.Data;
using System.Data.Common;

class Program
{
 static void Main(string[] args)
 {
 // create factory using the invariant name
 DbProviderFactory f =

System.Data.OracleClient.OracleClientFactory Used to create instances of Oracle provider classes

System.Data.SqlClient.SqlClientFactory
Use to create instances of SQL Server provider
classes

The DbProviderFactory class has public methods, listed in Table A-3, that are used to create the
provider-specific class instances.

Table A-3. DbProviderFactory class public methods

Method Description

CreateCommand Returns a DbCommand instancethe base class for strongly typed
command objects

CreateCommandBuilder Returns a DbCommandBuilder instancethe base class for strongly
typed command builder objects

CreateConnection Returns a DbConnection instancethe base class for strongly typed
connection objects

CreateConnectionStringBuilder Returns a DbConnectionStringBuilder instancethe base class for
strongly typed connection string builder objects

CreateDataAdapter Returns a DbDataAdapter instancethe base class for strongly typed
data adapter objects

CreateDataSourceEnumerator Returns a DbDataSourceEnumerator instancethe base class for
strongly typed data source enumerator objects

CreateParameter Returns a DbParameter instancethe base class for strongly typed
parameter objects

CreatePermission Returns a CodeAccessPermission instancethe base class for strongly
typed code access permission objects

The following console application shows how to create an instance of the SqlClientFactory class and
use it to output the top 10 rows from the Person.Contact table in AdventureWorks:

using System;
using System.Data;
using System.Data.Common;

class Program
{
 static void Main(string[] args)
 {
 // create factory using the invariant name
 DbProviderFactory f =

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DbProviderFactories.GetFactory("System.Data.SqlClient");

 DbConnection conn = f.CreateConnection();
 conn.ConnectionString = "Data Source=localhost;" +
 "Integrated Security=SSPI;Initial Catalog=AdventureWorks";

 DbCommand selectCommand = conn.CreateCommand();
 selectCommand.CommandText = "SELECT TOP 10 " +
 "FirstName, LastName, EmailAddress " +
 "FROM Person.Contact ORDER BY LastName";

 DataTable dt = new DataTable();

 DbDataAdapter da = f.CreateDataAdapter();
 da.SelectCommand = selectCommand;
 da.Fill(dt);

 foreach (DataRow row in dt.Rows)
 Console.WriteLine(row[0] + ", " + row[1] + ", " + row[2]);

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
}

Results are shown in Figure A-2.

Figure A-2. Results for SqlClientFactory example

The code is database-independent, with the exception of the invariant name of the provider and the
connection string, highlighted in the preceding example. These arguments would normally be
retrieved from a configuration file or similar mechanism rather than hardcoded, to make the
application truly database-independent.

The ConfigurationManager class in the System.Configuration namespace provides access to
application configuration information. The ConnectionStrings() method returns a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ConnectionStringSettingsCollection instance containing the connection strings for the application,
each one corresponding to a named connection string in the <connectionStrings> section of the
application configuration file.

This example shows how to retrieve a connection string from the configuration file. First create a new
console application project in Visual Studio .NET. Select Add New Item Application
Configuration File to add a new application configuration file named App.config. Add a connection
string to the filethe following snippet shows the completed configuration file with the connection
string named MyConnection highlighted:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <connectionStrings>
 <add name="MyConnection" connectionString="Data Source=localhost;
 Integrated Security=SSPI;Initial Catalog=AdventureWorks"
 providerName="System.Data.SqlClient" />
 </connectionStrings>
</configuration>

The following code retrieves the connection string from the configuration file. You need to add a
reference to the System.Configuration assembly to compile and execute this example.

using System;
using System.Collections;
using System.Data.SqlClient;

using System.Configuration;

class Program
{
 static void Main(string[] args)
 {
 //// get the configuration string from the config file
 Configuration c =
 ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.None);

 ConnectionStringsSection css = c.ConnectionStrings;
 for (int i = 0; i < css.ConnectionStrings.Count; i++)
 {
 Console.WriteLine(css.ConnectionStrings[i].Name);
 Console.WriteLine(" " + css.ConnectionStrings[i]);
 Console.WriteLine();
 }

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Results are shown in Figure A-3.

Figure A-3. Results for retrieving configuration strings from application
configuration file example

Two connection strings are retrieved. The first is the default string defined in the Machine.config file,
as shown in the excerpt that follows:

 <connectionStrings>
 <add name="LocalSqlServer" connectionString="data source=.\SQLEXPRESS;
 Integrated Security=SSPI;
 AttachDBFilename=|DataDirectory|aspnetdb.mdf;
 User Instance=true" providerName="System.Data.SqlClient" />
 </connectionStrings>

DbConnectionStringBuilder is a helper class used to construct provider-specific connection strings.
You supply the connection string name-value pairs to the Add() method and retrieve the connection
string using the ConnectionString property. You could change the previous example so that it
constructs the connection string using the connection string builder, and then assign it to the
ConnectionString property of the connection with the following code:

using System;
using System.Data;
using System.Data.Common;
using System.Data.SqlClient;

class Program
{
 static void Main(string[] args)
 {
 // build the connection string
 DbConnectionStringBuilder csb = new DbConnectionStringBuilder();
 csb["Data Source"] = "localhost";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 csb["Integrated Security"] = "SSPI";
 csb["Initial Catalog"] = "AdventureWorks";

 // create a connection using the connection string
 SqlConnection conn = new SqlConnection();
 conn.ConnectionString = csb.ConnectionString;

 // output the connection string
 Console.WriteLine(csb.ConnectionString);

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
}

Results are shown in Figure A-4.

Figure A-4. Results for DbConnectionStringBuilder example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.2. Data Provider Enhancements

ADO.NET 2.0 introduces new features and enhancements to .NET Framework data providers, which
are used to connect to data sources, execute commands, retrieve data, and update data. The
following subsections describe the key changes.

A.2.1. Asynchronous Processing

ADO.NET 2.0 supports asynchronous programming for data retrieval. This lets you delegate long-
running data-processing tasks to a background thread while allowing the user interface to remain
responsive. Standard asynchronous processing techniques include callbacks, wait handles, and polling
. The SqlCommand class has six methods that support asynchronous processing, described in Table A-
4.

Table A-4. SqlCommand class methods for asynchronous processing
(continued)

Asynchronous
method

Description

BeginExecuteNonQuery Starts the asynchronous execution of the T-SQL statement or stored
procedure for the SqlCommand object. The method returns an IAsyncResult
object that can be used to poll for or wait for results, or to invoke the
EndExecuteNonQuery() method.

Each call to a BeginExecuteNonQuery() method must be paired with the
EndExecuteNonQuery() method that completes the operation.

EndExecuteNonQuery Completes the asynchronous execution of the T-SQL statement or stored
procedure started using the BeginExecuteNonQuery() method of the
SqlCommand object. The command returns the number of rows affected by
the command.

BeginExecuteReader Starts the asynchronous execution of the T-SQL statement or stored
procedure for the SqlCommand object. The method returns an IAsyncResult
object that can be used to poll for or wait for results, or to invoke the
EndExecuteReader() method.

Each call to a BeginExecuteReader() method must be paired with the
EndExecuteReader() method that completes the operation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Asynchronous
method

Description

EndExecuteReader Completes the asynchronous execution of the T-SQL statement or stored
procedure started using the BeginExecuteReader() method of the
SqlCommand object. The command returns a SqlDataReader object
containing one or more result sets.

BeginExecuteXmlReader Starts the asynchronous execution of the T-SQL statement or stored
procedure for the SqlCommand object. The method returns an IAsyncResult
object that can be used to poll for or wait for results, or to invoke the
EndExecuteXmlReader() method.

Each call to a BeginExecuteXmlReader() method must be paired with the
EndExecuteXmlReader() method that completes the operation.

EndExecuteXmlReader Completes the asynchronous execution of the T-SQL statement or stored
procedure started using the BeginExecuteXmlReader() method of the
SqlCommand object. The command returns an XmlReader object.

The asynchronous command Begin/End pairs for the SqlCommand object work similarly to each other.
The examples in this section that use one of the pairs can be transferred easily to one of the other
pairs.

You must add the Asynchronous Processing=true attribute to the SQL Server connection string to use
any of the asynchronous methods.

The IAsyncResult interface stores state information about the asynchronous operation and provides a
synchronization object that lets threads get signaled when the operation completes. Table A-5 lists
the public properties exposed by the IAsyncResult interface.

Table A-5. Public properties of IAsyncResult interface

Property Description

AsyncState
Returns a user-defined object that contains information about or qualifies
an asynchronous operation

AsyncWaitHandle
Returns a WaitHandle object used to wait for an asynchronous operation
to complete

CompletedSynchronously
A bool indicating whether the asynchronous operation completed
synchronously

IsCompleted A bool indicating whether the asynchronous operation has completed

The following Windows application uses an asynchronous data reader to get a result set containing all
rows in the Person.Contact table in the AdventureWorks database. A WAITFOR T-SQL statement is used
to delay the processing of the SELECT statement for five seconds to demonstrate the background
processing of the query. After five seconds, the program executes the T-SQL statement to retrieve all

EndExecuteReader Completes the asynchronous execution of the T-SQL statement or stored
procedure started using the BeginExecuteReader() method of the
SqlCommand object. The command returns a SqlDataReader object
containing one or more result sets.

BeginExecuteXmlReader Starts the asynchronous execution of the T-SQL statement or stored
procedure for the SqlCommand object. The method returns an IAsyncResult
object that can be used to poll for or wait for results, or to invoke the
EndExecuteXmlReader() method.

Each call to a BeginExecuteXmlReader() method must be paired with the
EndExecuteXmlReader() method that completes the operation.

EndExecuteXmlReader Completes the asynchronous execution of the T-SQL statement or stored
procedure started using the BeginExecuteXmlReader() method of the
SqlCommand object. The command returns an XmlReader object.

The asynchronous command Begin/End pairs for the SqlCommand object work similarly to each other.
The examples in this section that use one of the pairs can be transferred easily to one of the other
pairs.

You must add the Asynchronous Processing=true attribute to the SQL Server connection string to use
any of the asynchronous methods.

The IAsyncResult interface stores state information about the asynchronous operation and provides a
synchronization object that lets threads get signaled when the operation completes. Table A-5 lists
the public properties exposed by the IAsyncResult interface.

Table A-5. Public properties of IAsyncResult interface

Property Description

AsyncState
Returns a user-defined object that contains information about or qualifies
an asynchronous operation

AsyncWaitHandle
Returns a WaitHandle object used to wait for an asynchronous operation
to complete

CompletedSynchronously
A bool indicating whether the asynchronous operation completed
synchronously

IsCompleted A bool indicating whether the asynchronous operation has completed

The following Windows application uses an asynchronous data reader to get a result set containing all
rows in the Person.Contact table in the AdventureWorks database. A WAITFOR T-SQL statement is used
to delay the processing of the SELECT statement for five seconds to demonstrate the background
processing of the query. After five seconds, the program executes the T-SQL statement to retrieve all

http://lib.ommolketab.ir
http://lib.ommolketab.ir

rows into a DataReader object, and then calls the HandleCallback() callback to display the number of
rows in a message box.

Create a new .NET Windows project. Replace the code in Form1.cs with the following code. There are
no other user interface elements to this sample.

using System;
using System.Windows.Forms;
using System.Data;
using System.Data.SqlClient;

namespace ADONET20Win
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 // use a delegate to display the results from the
 // async read since it is likely on a different thread and
 // cannot interact with the form
 private delegate void DisplayResultsDelegate(string results);

 // delegate to display results
 private void DisplayResults(string results)
 {
 MessageBox.Show(results);
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 SqlConnection conn = new SqlConnection();
 conn.ConnectionString = "Data Source=localhost;" +
 "Integrated Security=SSPI;" +
 "Initial Catalog=AdventureWorks;" +
 "Asynchronous Processing=true";

 string cmdText = "WAITFOR DELAY '00:00:05';" +
 "SELECT * FROM Person.Contact;";
 SqlCommand cmd = new SqlCommand(cmdText, conn);

 conn.Open();
 // start the async operation. The HandleCallback() method
 // is called when the operation completes in 5 seconds.
 cmd.BeginExecuteReader(
 new AsyncCallback(HandleCallback), cmd);
 }

 private void HandleCallback(IAsyncResult asyncResult)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {
 // get the original object
 SqlCommand cmd = (SqlCommand)asyncResult.AsyncState;

 int rowCount = 0;
 // get the data reader returned from the async call
 using (SqlDataReader dr = cmd.EndExecuteReader(asyncResult))
 {
 // iterate over the reader
 while (dr.Read())
 {
 // do some work with the reader

 rowCount++;
 }
 }

 cmd.Connection.Close();

 string results = "Rows in Person.Contact: " + rowCount;

 // output the number of rows using the delegate described
 // earlier in this sample
 DisplayResultsDelegate del =
 new DisplayResultsDelegate(DisplayResults);
 this.Invoke(del, results);
 }
 }
}

The next example is a Windows application that polls the IAsyncResult interface using its IsComplete
property to determine when the operation is complete. The example is similar to the previous
example except that the user can click a button to check the status of the asynchronous operation.
The status is displayed in a message box and is either false if the query is still running or true if it
has completed. After completion, the number of rows in the data reader returned from the query is
also displayed.

Create a new .NET Windows project. Open Form1 in the designer and add two buttons to the form:
one with Name = getDataButton and Caption = Get Data, and the other with Name =
checkStatusButton and Caption = Check Status. Replace the code in Form1.cs with the following
code. Run the application and click the Get Data button. Click the Check Status button periodically to
check whether the query has completed. The number of rows is returned when the query has
completed.

using System;
using System.Windows.Forms;
using System.Data;
using System.Data.SqlClient;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

namespace ADONET20Win
{
 public partial class Form1 : Form
 {
 IAsyncResult asyncResult;
 SqlCommand cmd;

 public Form1()
 {
 InitializeComponent();
 }

 private void getDataButton_Click(object sender, EventArgs e)
 {
 SqlConnection conn = new SqlConnection();
 conn.ConnectionString = "Data Source=localhost;" +
 "Integrated Security=SSPI;" +
 "Initial Catalog=AdventureWorks;" +
 "Asynchronous Processing=true";

 string cmdText = "WAITFOR DELAY '00:00:10';" +
 "SELECT * FROM Person.Contact;";
 cmd = new SqlCommand(cmdText, conn);

 conn.Open();
 // start the async operation. The HandleCallback method
 // will be called when it completes.
 asyncResult = cmd.BeginExecuteReader();
 }

 private void checkStatusButton_Click(object sender, EventArgs e)
 {
 string status = "Query complete: " + asyncResult.IsCompleted;

 if (asyncResult.IsCompleted)
 {
 int rowCount = 0;
 // get the data reader returned from the async call when
 // the operation is complete
 using (SqlDataReader dr = cmd.EndExecuteReader(asyncResult))
 {
 // iterate over the reader
 while (dr.Read())
 {
 // do some work with the reader

 rowCount++;
 }
 }

 cmd.Connection.Close();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 status += Environment.NewLine + "Rows returned: " + rowCount;
 }

 MessageBox.Show(status);
 }
 }
}

The callback and polling techniques shown in the preceding examples are useful when you are
processing one asynchronous operation at a time. The wait model lets you process multiple
simultaneous asynchronous operations. The wait model uses the AsyncWaitHandle property of the
IAsyncResult instance returned from the BeginExecuteNonQuery(), BeginExecuteReader(), or
BeginExecuteXmlReader() method of the SqlCommand object.

The WaitAny() and WaitAll() static methods of the WaitHandle class monitor and wait for the
completion of asynchronous operations. The WaitAny() method waits for any of the asynchronous
operations to complete or time outyou can process the results and continue to wait for the next
operation to either complete or time out. The WaitAll() method waits for all of the processes in the
array of WaitHandle instances to complete or time out before continuing.

The following console application demonstrates using the WaitAny() method for asynchronous
command processing:

using System;
using System.Data.SqlClient;
using System.Threading;

class Program
{
 static void Main(string[] args)
 {
 string connectionString =
 "Data Source=localhost;" +
 "Integrated Security=SSPI;" +
 "Initial Catalog=AdventureWorks;" +
 "Asynchronous Processing=true";

 Random rnd = new Random((int)DateTime.Now.Ticks);

 // create an array of commands with "n" members
 int n = 10;
 SqlConnection[] conn = new SqlConnection[n];
 SqlCommand[] cmd = new SqlCommand[n];
 string[] cmdText = new string[n];
 IAsyncResult[] asyncResult = new IAsyncResult[n];
 WaitHandle[] wh = new WaitHandle[n];

 for (int i = 0; i < n; i++)
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // each command waits randomly for between 1 and 10 seconds
 cmdText[i] = "WAITFOR DELAY '00:00:" +
 rnd.Next(1, 10) + "';";

 conn[i] = new SqlConnection(connectionString);
 conn[i].Open();
 cmd[i] = new SqlCommand(cmdText[i], conn[i]);
 asyncResult[i] = cmd[i].BeginExecuteNonQuery();

 wh[i] = asyncResult[i].AsyncWaitHandle;
 }

 // wait for all processes to complete, outputing completion
 for (int i = 0; i < n; i++)
 {
 int index = WaitHandle.WaitAny(wh);
 int result = cmd[index].EndExecuteNonQuery(asyncResult[index]);
 Console.WriteLine("Completed command " + index +
 ": " + cmd[index].CommandText);
 conn[index].Close();
 }

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
}

The preceding example creates an array of 10 WAITFOR T-SQL statements of random duration
between 1 and 10 seconds and displays a line to the console as each of them completes. Figure A-5
shows sample output.

Figure A-5. Results for WaitAny() method example

The wait all model waits for the completion of all processes. The method returns true if every
element in the WaitHandle array receives a signal within the timeout time span (in this example,
20000 milliseconds, or 20 seconds). Otherwise, false is returned.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following console application demonstrates using the WaitAll() method for asynchronous
command processing:

using System;
using System.Data.SqlClient;
using System.Threading;

class Program
{
 static void Main(string[] args)
 {
 string connectionString =
 "Data Source=localhost;" +
 "Integrated Security=SSPI;" +
 "Initial Catalog=AdventureWorks;" +
 "Asynchronous Processing=true";

 Random rnd = new Random((int)DateTime.Now.Ticks);

 // create an array of commands with "n" members
 int n = 10;
 SqlConnection[] conn = new SqlConnection[n];
 SqlCommand[] cmd = new SqlCommand[n];
 string[] cmdText = new string[n];
 IAsyncResult[] asyncResult = new IAsyncResult[n];
 WaitHandle[] wh = new WaitHandle[n];

 for (int i = 0; i < n; i++)
 {
 // each command waits for randomly between 1 and 10 seconds
 cmdText[i] = "WAITFOR DELAY '00:00:" +
 rnd.Next(1, 10) + "';";

 conn[i] = new SqlConnection(connectionString);
 conn[i].Open();
 cmd[i] = new SqlCommand(cmdText[i], conn[i]);
 asyncResult[i] = cmd[i].BeginExecuteNonQuery();

 wh[i] = asyncResult[i].AsyncWaitHandle;
 }

 // wait for all processes to complete and output results
 bool result = WaitHandle.WaitAll(wh, 20000, false);
 if (result)
 {
 for (int i = 0; i < n; i++)
 {
 int recAff = cmd[i].EndExecuteNonQuery(asyncResult[i]);
 conn[i].Close();
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Console.WriteLine("Completed all commands successfully.");
 }
 else
 Console.WriteLine("Timeout error.");

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
}

The preceding example creates an array of 10 WAITFOR T-SQL statements of random duration
between 1 and 10 seconds and displays a line to the console indicating when all of them have
completed, as shown in Figure A-6.

Figure A-6. Results for WaitAll() method example

See MSDN for more information about the WaitAny() and WaitAll() methods.

A.2.2. Support for SQL Server Notifications

SQL Server 2005 and ADO.NET 2.0 let you ask for a notification if executing the same command to
retrieve data would generate a different result set. This happens, for example, if another user has
changed the data since the current user fetched it. This capability is built on top of the new queuing
functionality in SQL Server 2005. The two classes that support notifications are SqlDependency and
SqlNotificationRequest . A discussion and example of each follows.

Both examples use a table called Contact. Create the table and add two records to it with the
following query:

USE ProgrammingSqlServer2005

CREATE TABLE Contact(
 ID int NOT NULL,
 FirstName varchar(50) NOT NULL,
 LastName varchar(50) NOT NULL,
 CONSTRAINT [PK_Contact] PRIMARY KEY CLUSTERED

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 (
 [ID] ASC
) ON [PRIMARY]
) ON [PRIMARY]
GO

INSERT INTO Contact (ID, FirstName, LastName) VALUES (1, 'John', 'Doe');
INSERT INTO Contact (ID, FirstName, LastName) VALUES (2, 'Jane', 'Smith');

SQL Server 2005 databases do not have Service Broker enabled by default, for security reasons.
Enable Service Broker for the ProgrammingSqlServer2005 database by executing the following T-SQL
statement:

ALTER DATABASE ProgrammingSqlServer2005 SET ENABLE_BROKER

You can confirm that Service Broker is now enabled for the database by using the
DATABASEPROPERTYEX function, as shown in the following T-SQL statement:

SELECT DATABASEPROPERTYEX('ProgrammingSqlServer2005', 'IsBrokerEnabled')

The function returns 0 for false and 1 for true.

The SqlDependency class lets you create an object to detect changes in the query result. In this
example, you create a SqlDependency instance. You then register to receive notifications of changes
to the result set through the OnChanged event handler. Follow these steps:

Create a SqlConnection object and a SqlCommand object with the query that you want to monitor
for changes.

1.

Create a SqlDependency object and bind it to the SqlCommand object.2.

Subscribe an event handler to the OnChanged event of the SqlDependency object.3.

Execute the SqlCommand object using any Execute() method.4.

The following example shows how to monitor and handle notifications using the SqlDependency class.
For notifications to work, you must specify the database owner as part of the table name and a list of
columns in the queryspecifying all columns using an asterisk (*) will not work.

using System;
using System.Data;
using System.Data.Common;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

using System.Data.SqlClient;

class Program
{
 static void Main(string[] args)
 {
 string connString = "Data Source=localhost;Integrated Security=SSPI;" +
 "Initial Catalog=ProgrammingSqlServer2005;";

 // create the connection and the command to monitor for changes
 SqlConnection conn = new SqlConnection(connString);
 SqlCommand cmd = new SqlCommand(
 "SELECT ID, FirstName, LastName FROM dbo.Contact", conn);

 // create the SqlDependency object and bind it to the command
 SqlDependency d = new SqlDependency(cmd);
 d.OnChange += new DEFANGED_OnChangeEventHandler(d_OnChange);
 SqlDependency.Start(connString);
 Console.WriteLine("Notification handler configured.");

 // create the DataReader
 conn.Open();
 SqlDataReader dr = cmd.ExecuteReader();
 while (dr.Read())
 {
 // process the DataReader row
 }
 dr.Close();

 Console.WriteLine(Environment.NewLine + "Press any key to end.");
 Console.ReadKey();

 conn.Close();
 }

 static void d_OnChange(object sender, SqlNotificationEventArgs e)
 {
 Console.WriteLine(Environment.NewLine + "SqlDependency.OnChange event");
 Console.WriteLine(" Source = " + e.Source);
 Console.WriteLine(" Type = " + e.Type);
 Console.WriteLine(" Info = " + e.Info);
 }
}

Run the example and, while it is running, add a row to the Contact table. The results are shown in
Figure A-7.

Figure A-7. Results for SqlDependency event example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The SqlNotificationRequest class lets you execute a command so that SQL Server generates a
notification when query results change. Unlike the SqlDependency class, once the notification is
created, you do not have to maintain the SqlNotificationRequest object. You simply query your
queue for notifications as you need to. This model is particularly useful in a disconnected
environment.

You must first create a queue and a service to receive the notification messages, as shown in the
following T-SQL statement:

USE ProgrammingSqlServer2005
GO

CREATE QUEUE ContactQueue

CREATE SERVICE ContactNotification
 ON QUEUE ContactQueue
 ([http://schemas.microsoft.com/SQL/Notifications/PostQueryNotification]);

CREATE ROUTE ContactQueueRoute
 WITH SERVICE_NAME = 'ContactNotification', ADDRESS = 'LOCAL';

This T-SQL block does three things:

Creates a queue named ContactQueue to hold Service Broker messages.

Creates a service named ContactNotification used by Service Broker to deliver messages to
the ContactQueue queue in the SQL Server database.

Creates a route used by Service Broker to route messages to the correct SQL Server for the
service.

After setting up the queue, service, and route, you need to bind a SqlNotificationRequest object to
the SqlCommand object containing your query. This means that when a T-SQL statement is executed,
SQL Server keeps track of the query and sends a notification to the SQL Server queue specified in the
notification request if a change is detected.

To do this, build a console application to create the notification as follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

using System;
using System.Data;
using System.Data.Common;
using System.Data.SqlClient;
using System.Data.Sql;

class Program
{
 static void Main(string[] args)
 {
 SqlConnection conn = new SqlConnection("Data Source=localhost;" +
 "Integrated Security=SSPI;" +
 "Initial Catalog=ProgrammingSqlServer2005;");

 SqlCommand cmd = new SqlCommand(
 "SELECT ID, FirstName, LastName FROM dbo.Contact", conn);

 // create the SqlNotificationRequest and bind to the command
 SqlNotificationRequest nr = new SqlNotificationRequest();
 nr.UserData = Guid.NewGuid().ToString();
 nr.Options = "Service=ContactNotification
; " +
 "Local Database = ProgrammingSqlServer2005";
 nr.Timeout = Int32.MaxValue;
 cmd.Notification = nr;
 Console.WriteLine("Notification handler configured.");

 // create a data reader
 conn.Open();
 SqlDataReader dr = cmd.ExecuteReader();
 while (dr.Read())
 {
 // ... do some work with the data reader
 }

 Console.WriteLine("Press any key to end.");
 Console.ReadKey();

 conn.Close();
 }
}

When you run the example, SQL Server creates a new query-notification subscription. Any changes
to the data that affect the results of the query SELECT ID, FirstName, LastName FROM dbo.Contact
produce a notification.

While the example is running, add a record to the contact table using SQL Management Studio. The
notifications are delivered to the ContactNotification service. The ContactNotification service uses
the queue ContactQueue to store the notifications. You can retrieve those messages by using the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

following T-SQL statement:

SELECT * FROM ContactQueue

As the example shows, you must specify three properties for the SqlNotificationRequest object:

UserData

The application-specific identifier for the notification

Options

The Service Broker service name where the notification messages are posted

Timeout

The length of time, in seconds, that SQL Server waits for a change to occur before timing out

A.2.3. Multiple Active Result Sets

Multiple Active Result Sets (MARS) allows multiple commands to be executed on a single connection
against a SQL Server 2005 database. Each command requires its own SqlCommand object and adds an
additional session to the connection. You must enable MARS by setting the MultipleActiveResultSets
key in the connection string to true.

The following console application queries AdventureWorks and returns the top 10 sales order headers
and the sales order details for each header. A single connection is used with two command objects to
create the DataReader objects.

using System;
using System.Data.SqlClient;

class Program
{
 static void Main(string[] args)
 {
 // open a connection
 SqlConnection conn = new SqlConnection();
 conn.ConnectionString = "Data Source=localhost;" +
 "Integrated Security=SSPI;Initial Catalog=AdventureWorks;" +
 "MultipleActiveResultSets=true";
 conn.Open();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // create a DataReader with the top 10 sales header records
 SqlCommand cmdHeader = conn.CreateCommand();
 cmdHeader.CommandText =
 "SELECT TOP 10 SalesOrderID, TotalDue FROM Sales.SalesOrderHeader";
 using (SqlDataReader drHeader = cmdHeader.ExecuteReader())
 {
 while (drHeader.Read())
 {
 int salesOrderID = (int)drHeader["SalesOrderID"];
 Console.WriteLine("{0}\t{1}",
 salesOrderID, drHeader["TotalDue"]);

 // create a DataReader with detail for the sales order
 SqlCommand cmdDetail = conn.CreateCommand();
 cmdDetail.CommandText = "SELECT ProductID, OrderQty FROM " +
 "Sales.SalesOrderDetail WHERE SalesOrderID=" + salesOrderID;
 using (SqlDataReader drDetail = cmdDetail.ExecuteReader())
 {
 while (drDetail.Read())
 Console.WriteLine("\t{0}\t{1}",
 drDetail["ProductID"], drDetail["OrderQty"]);
 drDetail.Dispose();
 }
 Console.WriteLine();
 }
 }

 conn.Close();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
}

Partial results are shown in Figure A-8.

Figure A-8. Partial results for MARS example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.2.4. Bulk Copy

Bulk copy is a high-performance mechanism for transferring large amounts of data into a database
table or view. In ADO.NET 2.0, you can bulk copy data into SQL Server from either a DataTable or
DataReader object using the new SqlBulkCopy class in the System.Data.SqlClient namespace. This
class supports both single and multiple bulk copy operations within either dedicated (by default) or
existing transactions.

Table A-6 describes the key methods and properties of the SqlBulkCopy class.

Table A-6. Key methods and properties of the SqlBulkCopy class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constructors Description

SqlBulkCopy(SqlConnection
conn)

SqlBulkCopy(string
connString)

SqlBulkCopy(string
connString,

SqlBulkCopyOptions options)

SqlBulkCopy(string
connString,

SqlBulkCopyOptions options,

SqlTransaction, tx)

Creates a new instance of the SqlBulkCopy class, where:

conn

A SqlConnection instance.

connString

A SQL Server connection string.

options

Bitwise flag that specifies options for the SqlBulkCopy()
method from the SqlBulkCopyOptions enumeration. See MSDN
for more information.

tx

An existing transaction (as a SqlTransaction object) in which
the bulk copy takes place.

Properties

BatchSize
The number of rows in each batch sent to the server. The default is
0, indicating that the rows are written in a single batch.

BulkCopyTimeout Number of seconds for the bulk copy to complete before it times out.

ColumnMappings
A collection of SqlBulkCopyColumnMapping objects that defines the
mapping of columns from the source data object to the destination
table.

DestinationTableName The name of the destination table on the server.

NotifyAfter
The number of rows to process before generating a notification
event. The default is 0, indicating that notifications are not sent.

Methods

Close() Closes the SqlBulkCopy instance.

WriteToServer()
Copies all rows in the data source object (DataReader or DataTable)
to the destination table.

In general, an application performs the following steps to bulk copy data:

Retrieve the data to copy into a DataTable or DataReader object.1.

2.

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

Connect to the destination database server.2.

Create and configure the SqlBulkCopy object.3.

Call the WriteToServer() method of the SqlBulkCopy object.4.

Call the Close() method of the SqlBulkCopy object or dispose of the SqlBulkCopy object.5.

The following example copies all rows in the Person.Address table in the AdventureWorks database to
a new table called Address (without a schema) in the ProgrammingSqlServer2005 database. Follow
these steps:

Create a SQL Server 2005 database called ProgrammingSqlServer2005 if you haven't already
created it.

1.

Execute the following T-SQL command to create the Address table in the
ProgrammingSqlServer2005 database:

USE ProgrammingSqlServer2005

CREATE TABLE [Address](
 [AddressID] [int] IDENTITY(1,1) NOT NULL,
 [AddressLine1] [nvarchar](60) NOT NULL,
 [AddressLine2] [nvarchar](60) NULL,
 [City] [nvarchar](30) NOT NULL,
 [StateProvinceID] [int] NOT NULL,
 [PostalCode] [nvarchar](15) NOT NULL,
 [rowguid] [uniqueidentifier] ROWGUIDCOL NOT NULL,
 [ModifiedDate] [datetime] NOT NULL)

2.

Create a Windows console application named BulkCopy.3.

Copy the following code into Program.cs. Change the highlighted connection strings if
necessary.

using System;
using System.Data;
using System.Data.SqlClient;

class Program
{
 static void Main(string[] args)
 {
 // get data from the source server using a data reader
 SqlConnection srcConn = new SqlConnection();
 srcConn.ConnectionString = "Data Source=localhost;" +
 "Integrated Security=SSPI;" +

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "Initial Catalog=AdventureWorks;";
 srcConn.Open();

 SqlCommand cmd =
 new SqlCommand("SELECT * FROM Person.Address;", srcConn);
 IDataReader dr = cmd.ExecuteReader();

 // connection to the destination server
 SqlConnection dstConn = new SqlConnection();
 dstConn.ConnectionString = "Data Source=localhost;" +
 "Integrated Security=SSPI;" +
 "Initial Catalog=ProgrammingSqlServer2005;";
 dstConn.Open();

 // bulk copy the data to the destination table
 using (SqlBulkCopy bcp = new SqlBulkCopy(dstConn))
 {
 bcp.DestinationTableName = "Address";
 bcp.WriteToServer(dr);
 }
 dstConn.Close();

 dr.Close();
 srcConn.Close();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
}

Execute the application. The rows from the Person.Address table in the AdventureWorks
database are bulk copied into the Address table in the ProgrammingSqlServer2005 database.

5.

If the column names in the source and destination table do not match, you need to map the columns
by using the SqlBulkCopyColumnMapping class. Each SqlBulkCopyColumnMapping instance defines a
map between a column in the bulk copy source and the destination. Add the mapping instances by
using the Add() method of the ColumnMappings property of the SqlBulkCopy object before calling the
WriteToServer() method.

For example, if you change the name of the address line fields from AddressLine1 and AddressLine2
to AddressLine1a and AddressLine2a, you must add the following mapping code before you call the
WriteToServer() method:

bcp.ColumnMappings.Add(
 new SqlBulkCopyColumnMapping("AddressID", "AddressID"));
bcp.ColumnMappings.Add(
 new SqlBulkCopyColumnMapping("AddressLine1", "AddressLine1a"));
bcp.ColumnMappings.Add(
 new SqlBulkCopyColumnMapping("AddressLine2", "AddressLine2a"));

http://lib.ommolketab.ir
http://lib.ommolketab.ir

bcp.ColumnMappings.Add(
 new SqlBulkCopyColumnMapping("City", "City"));
bcp.ColumnMappings.Add(
 new SqlBulkCopyColumnMapping("StateProvinceID", "StateProvinceID"));
bcp.ColumnMappings.Add(
 new SqlBulkCopyColumnMapping("PostalCode", "PostalCode"));
bcp.ColumnMappings.Add(
 new SqlBulkCopyColumnMapping("rowguid", "rowguid"));
bcp.ColumnMappings.Add(
 new SqlBulkCopyColumnMapping("ModifiedDate", "ModifiedDate"));

Mappings can be specified by ordinal or column name, but all mappings must be specified in the same
way. If the ColumnMapping collection is not empty, every column must be mapped whether their
names match or not.

The SqlBulkCopy class supports transactions that are dedicated to the bulk copy operation, and can
also use existing transactions. Dedicated transactions are used by default, as shown in the preceding
example. The bulk copy is committed or rolled back automatically.

You can perform a bulk copy within an existing transaction, making the bulk copy part of the
transaction together with other operations. This Windows application is similar to the previous
example. It performs a bulk copy within a transaction. It also uses a DataTable object as the data
source instead of a DataReader object.

using System;
using System.Data;
using System.Data.SqlClient;

class Program
{
 static void Main(string[] args)
 {
 SqlConnection srcConn = new SqlConnection();
 srcConn.ConnectionString = "Data Source=localhost;" +
 "Integrated Security=SSPI;" +
 "Initial Catalog=AdventureWorks;";

 SqlCommand cmd =
 new SqlCommand("SELECT * FROM Person.Address;", srcConn);
 SqlDataAdapter da = new SqlDataAdapter(cmd);
 DataTable dt = new DataTable();
 da.Fill(dt);

 // connection to the destination server
 SqlConnection dstConn = new SqlConnection();
 dstConn.ConnectionString = "Data Source=localhost;" +
 "Integrated Security=SSPI;" +
 "Initial Catalog=ProgrammingSqlServer2005;";
 dstConn.Open();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // create the transaction on the destination connection
 SqlTransaction tx = dstConn.BeginTransaction();
 try
 {
 // ... do some work using the transaction (tx)

 // bulk copy the data to the destination table within
 // the transaction (tx)
 using (SqlBulkCopy bcp =
 new SqlBulkCopy(dstConn, SqlBulkCopyOptions.Default, tx))
 {
 bcp.DestinationTableName = "Address";
 bcp.WriteToServer(dt);
 }

 tx.Commit();
 }
 catch
 {
 tx.Rollback();
 }

 dstConn.Close();

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
}

A.2.5. Support for New SQL Server Large-Value Data Types

SQL Server 2005 introduces large-value data typesvarchar(max), nvarchar(max), and varbinary(max)
which allow storage of values up to 232 bytes in size. These types simplify working with large object
(LOB) data working with large-value data types is the same as working with the smaller-value data
types (varchar, nvarchar, and varbinary). Large-value data types can be used as column types and
as variables, and they can be specified as input and output parameters without special handling. You
can return a large-value data type in a SqlDataReader object or use a large-value data type to fill a
DataTable object using a SqlDataAdapter object.

The limitations of the large-value data types are as follows:

A sql_variant type cannot contain a large-value data type.

A large-value data type cannot be specified as a key column in an index or used as a
partitioning key column.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.2.6. Support for SQL Server User-Defined Types

SQL Server 2005 introduces user-defined types (UDTs). These extend SQL Server data types by
letting you define both custom data structures containing one or more data types and objects
containing one or more data types together with behaviors. UDTs can be used everywhere that SQL
Server system data types can be used, including as variables or arguments or in column definitions.

You can create a UDT by using any language supported by the .NET Common Language Runtime
(CLR). UDTs are defined as a class or structuredata is exposed as fields or properties, whereas
behaviors are defined by methods.

Once a UDT is compiled into a .NET assembly, you must register the assembly in SQL Server by using
the CREATE ASSEMBLY T-SQL statement. You must then create the UDT in SQL Server by using the
CREATE TYPE T-SQL statement before you can use the UDT.

A.2.7. Support for Snapshot Isolation in Transactions

SQL Server 2005 introduces support for snapshot isolation row locking. When snapshot isolation is
enabled, updated row versions for each transaction are maintained in the tempdb system database.
Each transaction is identified by a unique transaction sequence number, which is recorded together
with the updated row versions. A transaction works with the most recent row versions having
transaction sequence numbers prior to the sequence number of the current transactiontransaction
sequence numbers that are greater than the current transaction sequence number indicate that the
transactions occurred after the current transaction started, and thus are ignored. The result is that all
queries in the transaction see a consistent view of the database at the moment the transaction
started. No locks are acquired, which allows multiple simultaneous transactions to execute without
blocking or waiting. This improves performance and significantly reduces the chance of a deadlock.
Snapshot isolation uses optimistic concurrencyif an attempt is made to update data that has been
modified since it was last read, the transaction will roll back and an error will be raised.

You can reduce the chance of update conflict by using locking hints in a T-SQL statement or at the
beginning of a transaction. For example, the UPDLOCK hint locks rows selected in a statement and
blocks attempts to update them before the statement completes. Hints should be used
sparinglyexcessive hints might suggest a problem with the application design.

Snapshot isolation is explicitly enabled for each database by setting the ALLOW_TRANSACTION_ISOLATION
option to ON. You also need to set the READ_COMMITTED_SNAPSHOT option to ON to allow access to
versioned rows under the default READ_COMMITTED isolation level. If the READ_COMMITTED_SNAPSHOT
option is set to OFF, you must explicitly set the isolation level when initiating a transaction, as shown
in the following code snippet:

SqlTransaction tx = conn.BeginTransaction(IsolationLevel.Snapshot);

A.2.8. Database Mirroring Support

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Database mirroring lets you keep an up-to-date copy of a database on a standby server. The two
copies of the database provide high availability and redundancyif the primary database fails, the
mirror can quickly be promoted to take its place. The .NET Data Provider for SQL Server implicitly
supports database mirroringonce the SQL Server 2005 database has been configured, database
mirroring is automatic and is transparent to the developer.

SQL Server 2005 also supports explicit database mirroring. The SqlConnection object supports the
Failover Partner parameter in the connection string. This lets the client application specify the name
of the failover partner server. In this way, the client application can transparently attempt to
establish a connection with the mirror database if the principal database is unavailable.

The name of the active server for the current connection is always available through the DataSource
property of the SqlConnection instancethis property is updated when a connection is switched to the
mirror server in response to a failover event.

Microsoft does not support database mirroring in the November 7, 2005 release
of SQL Server 2005. As a result, database mirroring should be used only for
evaluation purposes and not in production. Database mirroring is disabled by
default and can be enabled by using trace flag 1400 as a startup parameter.

A.2.9. Server Enumeration

The GetdataSources() method of the SqlDataSourceEnumerator class enumerates active instances of
SQL Server 2000 and later that are installed on your local network. The results are returned in a
DataTable object with the columns shown in Table A-7.

Table A-7. DataTable schema for GetDataSources() method results

Column
name

Description

ServerName Name of the SQL Server.

InstanceName
Name of the server instance. This value is blank if the server is running as the
default instance.

IsClustered Indicates whether the server is part of a cluster.

Version The version number of the server.

The following console application uses the SqlDataSourceEnumerator object to enumerate SQL Server
instances:

using System;
using System.Data;
using System.Data.Sql;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class Program
{
 static void Main(string[] args)
 {
 DataTable dt = SqlDataSourceEnumerator.Instance.GetDataSources();
 foreach (DataRow row in dt.Rows)
 Console.WriteLine("{0}\t{1}\t{2}\t{3}",
 row["ServerName"], row["InstanceName"],
 row["IsClustered"], row["Version"]);

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
}

The output looks similar to Figure A-9.

Figure A-9. Results for SqlDataSourceEnumerator example

The static Instance property of the SqlDataSourceEnumerator class returns an instance of the
enumerator that is used to retrieve information about SQL Server instances.

A.2.10. Support for Retrieving Provider Statistics in SQL Server 2005

The .NET Framework Data Provider for SQL Server supports runtime statistics that expose
information about processing queries in the database.

You must enable statistics by setting the StatisticsEnabled property of the SqlConnection object to
true after the connection has been created. Once statistics are enabled, they can be retrieved into an
IDictionary instance using the RetrieveStatistics() method of the SqlConnection object. The
values in the dictionary are the statistic counter values, and are all of the long data type. The
ResetStatistics() method of the SqlConnection object resets the counters. All statistics are
gathered on a per-connection basis.

The following console application creates a connection, enables statistics, does a bit of work by filling
a DataTable object using a data adapter, and iterates over the dictionary to output the name-value
pair for each counter in the dictionary:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

using System;
using System.Data;
using System.Collections;
using System.Data.SqlClient;

class Program
{
 static void Main(string[] args)
 {
 // open a connection and enable statistics
 using (SqlConnection conn = new SqlConnection())
 {
 conn.ConnectionString = "Data Source=localhost;" +
 "Integrated Security=SSPI;Initial Catalog=AdventureWorks";
 conn.StatisticsEnabled = true;

 // do some work with the connection
 SqlDataAdapter da =
 new SqlDataAdapter("SELECT * FROM Person.Contact", conn);
 DataTable dt = new DataTable();
 da.Fill(dt);

 // get the statistics
 IDictionary d = conn.RetrieveStatistics();
 // move the dictionary keys to an array
 string[] keys = new string[d.Count];
 d.Keys.CopyTo(keys, 0);

 // iterate over the dictionary displaying the key-value pair
 for (int i = 0; i < d.Count; i++)
 Console.WriteLine("{0}\t{1}",
 keys[i], (long)d[keys[i]]);
 }

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
}

Results are shown in Figure A-10.

Figure A-10. Results for retrieving provider statistics example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See MSDN for a complete discussion of the available statistics.

A.2.11. Change Password Support

With SQL Server 2005 and Windows Server 2003 or later, you can programmatically change the
existing password for the user specified in a connection string.

This example changes the password for a login named TestUser. First, create the user login in SQL
Server Management Studio by right-clicking Security Logins in Object Explorer and selecting New
Login from the context menu. In the Login-New dialog box, do the following:

Select the General page on the left side of the dialog box.

Enter TestUser in the Login name listbox.

Select the SQL Server Authentication radio button.

Enter password in both the Password and Confirm Password listboxes.

Uncheck the Enforce password policy checkbox.

Select User Mapping on the left side of the dialog box.

Check the AdventureWorks checkbox in the Users mapped to this login panel.

Click the OK button to create the user.

Create a new console application, replace Program.cs with the following code, and execute the
example:

using System;
using System.Data;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

using System.Collections;
using System.Data.SqlClient;

class Program
{
 static void Main(string[] args)
 {
 string connStringOld = "Data Source=localhost;" +
 "uid=TestUser;pwd=password;Initial Catalog=AdventureWorks";
 SqlConnection.ChangePassword(connStringOld, "password2");
 Console.WriteLine("Password changed to 'password2'.");

 // open a connection
 string connStringNew = "Data Source=localhost;" +
 "uid=TestUser;pwd=password2;Initial Catalog=AdventureWorks";
 SqlConnection conn = new SqlConnection();
 conn.ConnectionString = connStringNew;
 conn.Open();
 Console.WriteLine("Connected with changed password.");

 conn.Close();
 Console.WriteLine("Disconnected.");

 Console.WriteLine(Environment.NewLine + "Press any key to continue.");
 Console.ReadKey();
 }
}

Results are shown in Figure A-11.

Figure A-11. Results for change password example

The ChangePassword() method of the SqlConnection class take two arguments:

A connection string containing the user ID and password. An exception will be thrown if
integrated security is specified in the connection string.

The new password.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The ChangePassword() method can be used to change an expired user password without
administrator intervention. If the password has expired, calling the Open() method of the
SqlConnection object raises a SqlException exception. If the password needs to be reset, the Number
property of the SqlException object will be either 18487 (password expired) or 18488 (password must
be reset before logging in).

A.2.12. Schema Discovery

The new schema discovery API in ADO.NET 2.0 lets you programmatically find and return metadata
about the database for a connection. The database-independent API exposes schema elements,
including tables, columns, and stored procedures.

The data connection exposes five categories of metadata through the GetSchema() method of the
DbConnection class. This returns a DataTable object containing the metadata. It takes one of the five
metadata collection names from the DbMeta-DataCollectionNames class described in Table A-8.

Table A-8. DbMetaDataCollectionNames public fields

Collection name Description

DataSourceInformation Information about the database instance.

DataTypes
Information about data types that the database supports. This includes
information about mapping data-source types to .NET Framework data
types.

MetaDataCollections List of metadata collections available.

ReservedWords List of reserved words in the database.

Restrictions

Array of qualifiers for each metadata collection that can be used to restrict
the scope of information returned. One value is returned per row with the
position of the qualifier in the array specified by the RestrictionNumber
column.

The following example retrieves and outputs the available metadata collections:

using System;
using System.Collections;
using System.Data.SqlClient;
using System.Data;
using System.Data.Common;

class Program
{
 static void Main(string[] args)
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SqlConnection conn = new SqlConnection();
 conn.ConnectionString = "Data Source=localhost;" +
 "Integrated Security=SSPI;Initial Catalog=AdventureWorks";

 conn.Open();
 DataTable dt = conn.GetSchema(
 DbMetaDataCollectionNames.MetaDataCollections);
 conn.Close();

 foreach (DataRow row in dt.Rows)
 {
 Console.WriteLine("{0}; {1}; {2}",
 row[0], row[1], row[2]);
 }

 Console.WriteLine("\n\rPress any key to continue.");
 Console.ReadKey();
 }
}

Results are shown in Figure A-12.

Figure A-12. Results for GetSchema() method example

The DataTable object returned from the GetSchema() method has three columns, as described in
Table A-9.

Table A-9. Columns in DataTable object returned by GetSchema()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Column name Description

CollectionName The metadata collection name

NumberOfRestrictions
The maximum number of qualifiers for a metadata collection that can be
used to restrict the scope of information returned

NumberOfIdentifierParts The maximum number of identifier parts

An overload of the GetSchema() method takes the metadata collection name (one of the
CollectionName values returned by the GetSchema() method) as an argument. For example, the
following statement returns metadata about the tables in the database:

DataTable dt = conn.GetSchema("Tables");

An extract from the result set follows:

TABLE_CATALOG TABLE_SCHEMA TABLE_NAME TABLE_TYPE

AdventureWorks dbo AWBuildVersion BASE TABLE

AdventureWorks dbo DatabaseLog BASE TABLE

AdventureWorks dbo sysdiagrams BASE TABLE

AdventureWorks HumanResources Department BASE TABLE

...

AdventureWorks Sales vSalesPerson VIEW

AdventureWorks Sales
vSalesPersonSales

ByFiscalYears

VIEW

AdventureWorks Sales
vStoreWith

Demographics

VIEW

Another overload of GetSchema() takes a string array of restrictions as a second argument. Call the
GetSchema() method with the DbMetaDataCollectionNames.Restric-tions argument to get a valid list
of restrictions for a metadata collection. There is one row per restrictioneach restriction has a unique
RestrictionNumber value. For example, for the Tables metadata collection in SQL Server, there are
four restrictions:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Restriction name Restriction default Restriction number

Catalog TABLE_CATALOG 1

Owner TABLE_SCHEMA 2

Table TABLE_NAME 3

TableType TABLE_TYPE 4

Continuing with the Tables metadata, the following code snippet uses restrictions to return
information only for views in the Production schema:

string[] r = new string[] {null, "Production", null, "VIEW"};
DataTable dt = conn.GetSchema("Tables", r);

Support for DbConnection.GetSchema() is optional, so a data provider can choose to throw a
NotSupportedException. There is no standard for the information returned when a metadata
collection is queriedtwo providers can return different information (i.e., columns in the DataTable
object) and support different restrictions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.3. Disconnected Class Enhancements

ADO.NET 2.0 introduces new features and enhancements for working with disconnected data. These
changes affect both retrieving and updating data. The following subsections describe the key
changes.

A.3.1. DataSet and DataTable Enhancements

The new DataTableReader class lets you iterate over the rows in a DataTable object in a read-only,
forward-only manner much like a regular DataReader. The DataTableReader object returns the rows
and columns in the same order as in the underlying DataTable object. The DataTableReader returns
only the current version of the row in the DataTable objectrows marked for deletion are skipped over.
The data in the underlying DataTable object can be modified or deleted while the DataTableReader
object is active, and the DataTableReader object will maintain its position and validity.

The DataTableReader object has an overloaded constructorone takes a DataTable object as an
argument and the other takes a DataTable[] object as an argument. The DataTableReader object can
also be constructed by calling the CreateDataReader() method of the DataTable or DataSet class. For
multiple tables, the tables appear in the same order in which they exist in the DataTable array or
DataSet object. The NexTResult() method of the DataTableReader object advances to the next result
set if one exists.

The following console application creates a DataTable object containing all rows in the Person.Contact
table in AdventureWorks, creates a DataTableReader object, and writes the first and last name for
each person to the console window:

using System;
using System.Data;
using System.Data.SqlClient;

class Program
{
 static void Main(string[] args)
 {
 // open a connection
 SqlConnection conn = new SqlConnection();
 conn.ConnectionString = "Data Source=localhost;" +
 "Integrated Security=SSPI;Initial Catalog=AdventureWorks";

 // create a DataTable with the Person.Contact data
 SqlCommand selectCommand = conn.CreateCommand();
 selectCommand.CommandText = "SELECT * FROM Person.Contact";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DataTable dt = new DataTable();

 SqlDataAdapter da = new SqlDataAdapter(selectCommand);
 da.Fill(dt);

 // create a DataTableReader
 DataTableReader dtr = dt.CreateDataReader();

 // iterate over the rows in the DataTableReader and output
 // the first name and last name for each person
 while (dtr.Read())
 Console.WriteLine("{0}\t{1}",
 dtr["FirstName"], dtr["LastName"]);

 Console.WriteLine("Press any key to continue.");
 Console.ReadKey();
 }
}

Results are shown in Figure A-13.

Figure A-13. Results for CreateDataReader() method example

A.3.2. Batch Processing with the DataAdapter

The DataAdapter class in ADO.NET 2.0 lets you group insert, update, and delete operations on a
DataSet object or a DataTable object, instead of sending one row at a time to the server. This
reduces round trips and typically results in performance gains. The SQL Server and Oracle providers
support batch updates.

The UpdateBatchSize property of the DataAdapter object specifies the number of rows to be sent in
each batch. If the UpdateBatchSize property is set to 0, the DataAdapter object uses the largest batch
size that the database server can handle. Extremely large batches can negatively affect
performancethe size of the batch should be tuned for your environment before deploying an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

application.

When batching updates, the UpdatedRowSource property of the DataAdapter object UpdateCommand,
InsertCommand, and DeleteCommand properties must be set to the value UpdateRowSource.None or
UpdateRowSource.OutputParameters. The values UpdateRowSource.FirstReturnedRecord and
UpdateRowSource.Both are both invalid.

When updating rows using the DataAdapter object with batch processing disabled, the RowUpdating
and RowUpdated events are raised for each row processed. When batch processing is enabled, the
RowUpdating event occurs for each row processed, while the RowUpdated event is raised only onceafter
the batch is processed. Because the RowUpdated event is raised only once for all rows in the batch, its
Row property is null. Instead, you can use the CopyToRows() method of the RowUpdatedEventArgs
object to copy the processed rows to a DataRow array, where you can access them.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

About the Author

Bill Hamilton is a software architect specializing in designing, developing, and implementing
distributed applications using .NET and J2EE technologies. Over the last ten years, he has provided
consulting services in B2B, B2C, B2E, data integration, and portal initiatives for banking, retail,
accounting, manufacturing, and financial services. An early technology adopter, he frequently
evaluates, recommends, and helps his clients use new technologies effectively. Bill has designed and
helped build several award-winning software packages. He is the coauthor of ADO.NET in a Nutshell
and the author of ADO.NET Cookbook and NUnit Pocket Reference, all from O'Reilly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Colophon

The animal on the cover of Programming SQL Server 2005 is an arctic cod. The arctic cod
(Boreogadus saida) can be found living in the icy waters off northern Russia, Greenland, Canada, and
Alaska. It is smaller and thinner than its cousin, the Atlantic cod, and characterized by a deeply
forked tail, projecting lower jaw, and the presence of a small-sized "whisker" or barbel beneath its
jaw.

Little is known about the life stages of young arctic cod as they are bred beneath layers of ice in
autumn and winter off the coast of Canada, and from January to February off the coast of Russia. It
is known that females can release between 9,000 to 21,000 eggs, which are then externally fertilized
by the males with a milky substance called milt.

Arctic cod become mature at three years and can measure as long as 15 inches but usually not
longer than a foot. Weight is related to length with a 4-inch fish weighing less than an ounce and an
11-inch fish weighing over six ounces. The body size of the species decreases from north to south so
that Arctic cod in northern waters appear larger than their southern family members.

Arctic cod can be found near the surface waters or as deep as 2,953 feet. In open waters, arctic cod
swim in schools, but closer to the surface, they tend to live in much smaller groups. They can be
found living in narrow spaces of water called "water wedges" between layers of ice. The water
wedges are inaccessible to larger predators such as seals.

Adults have small scales and are brown-colored along their sides and back, with black spots. Fins are
dark and nearly black in color, with a pale edge and a long pale line that runs along the side of the
fish from head to tail. The arctic cod can live up to six years, and scientists can determine their age
by counting the rings that appear in the ear bones of the creatures.

Arctic cod consume mostly plankton, which are tiny marine plants and animals that float near the
surface of ocean water. They are themselves an important part of the food chain, and narwhals,
beluga whales, and seabirds such as murres depend on them as food.

The cover image is from Wood's Animate Creation. The cover font is Adobe ITC Garamond. The text
font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's
TheSans Mono Condensed..

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

" (double quotation marks)

= (equals sign)

' (single quotation marks)

{ as first | as last }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

AcceptsPause property

AcceptsStop property

access

 Activity Monitor

 ADOMD.NET

 CAS

 SQL Native Client programming

 SQL Server Agent

 SQL Server Management Studio

 URL

 XMLA

accounts

 Database Mail

 email

 proxy, creating

 TestLogin SQL Server login

actions (job steps)

Activity Monitor, accessing

ad hoc query support

Add Database Reference dialog box

Add New Item dialog box

Add Stored Procedure menu item

Add Table dialog box

Add() method

adding

 connection managers

 connection strings

 tasks to packages

AddReplicatedColumns() method

addresses, managing URNs

ADF (application definition file)

administration

 SQL Server Management Studio

ADO.NET

 classes, disconnected enhancements

 data providers

 enhancements

 enumeration

 factories

 in-process extensions

ADOMD.NET, accessing data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AdomdConnection class

AdomdDataReader class

AdomdDataReader object

after keyword

agents

 history, retrieving

 managing 2nd

 replication

AgentSchedule.FrequencySubDay property

AgentSchedule.FrequencySubDayInterval property

AgentSchedule.FrequencyType property

AgentSubSystem enumeration

Alert Properties dialog box

alerts

 managing

 SQL Server Agent, creating

aliases, creating

ALL operator

ALTER ASSEMBLY statement

ALTER ENDPOINT statement

ALTER FUNCTION statement

ALTER INDEX statement

ALTER PROCEDURE statement

ALTER statement

ALTER TRIGGER statement

ALTER XML SCHEMA COLLECTION statement

Alter() method

aml data type (T-SQL)

AMO (Analysis Management Objects)

Analysis Services

 connecting

 event providers

 tasks

Analysis Services Scripting Language (ASSL) 2nd

analysis, workload

annotated mapping schemas

annotations

 HPA

ANY operator

application definition file (ADF)

applications

 ADO.NET data providers/factories

 databases

 enumerating

 managing

 Notification Services

 domains, CLR integration

 Notification Services

 architecture

 creating 2nd

 creating instances

 databases

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 programming

 ReportViewer control

 roles

 SMO

 classes

 creating (in Visual Studio.NET)

 SQL Native Client

 SQL Server Mobile

 managing databases

 modifying databases

 prerequisites

 programming

 troubleshooting databases

 updating databases

 SSRS, integrating into

 statements, capturing

APPLY operator

applying

 parameters in queries

 variables in SSIS

architecture

 Notification Services

 Service Broker

 SSIS

Area() method

arguments

 BATCHES language-specific

 endPointName

 LIFETIME

 server_principal

articles

 creating

 filtering

 managing

AS SNAPSHOT clause

assemblies

 .NET Framework

 enumerating

 enumerating

 managing

 sys.assemblies catalog view

assignment

 constants

 permissions

ASSL (Analysis Services Scripting Language) 2nd

asynchronous programming

attributes

 CLR integration, customizing

 HPA

 SASS

 SqlFacet

 SqlFunction

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SqlMethod

 SqlProcedure

 SqlTrigger

 SqlUserDefinedAggregate

 SqlUserDefinedType 2nd

authentication

 endpoints

 replication

AUTHENTICATION clause

AUTO mode

AUTO_CREATE_STATISTICS database option

Axes property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

BACKUP DATABASE operation

backups

 managing

 SMO classes

 SQL Server Mobile

BaseDirectoryPath property

BASIC authentication type

BATCHES language-specific argument

batches, processing

before keyword

BEGIN CONVERSATION TIMER T-SQL statement

BEGIN DIALOG T-SQL statement

BI (Business Intelligence) Development Studio 2nd

BINARY BASE64

binary large objects (BLOB)

binding relational data

blittable fields of type

BLOB (binary large objects)

bulk copy

 format files

BULK INSERT statement

bulk loading data (with OPENROWSET)

BULK option

Business Intelligence (BI) Development Studio 2nd

business logic handlers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

caches, GAC

callbacks

capturing statements

CAS (code access security)

CAST function

casting strings

catalog views 2nd

 endpoints

 messages

 sys.assemblies

 sys.assembly_files

 sys.assembly_modules

 sys.assembly_references

 sys.assembly_types

 XML

 xml_indexes

 xml_schema_collections

cells

CellSet class

certificates, SMO classes

channels, creating delivery

check constraints, SMO classes

CheckTables() method

ChronicleQuantumLimit property

chronicles

 events

 managing

classes 2nd 3rd 4th

 ADO.NET, disconnected enhancements

 AdomdCommand

 AdomdConnection

 AdomdDataReader

 CellSet

 Configuration

 data providers, SQL Server Mobile

 DataAdapter

 DatabaseMapping

 DataSet 2nd

 DataTable

 DataTableReader

 DbConnectionString

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DbMetaDataCollectionNames

 DbProviderFactory

 DirectoryEntry

 DirectoryLoader

 DistributionPublisher

 DtsEventHandler

 events

 creating

 ExceptionMessageBox

 HostedEventProvider

 instance, instantiation

 Job

 JobSchedule

 JobStep

 LogProviders

 ManagedComputer properties

 MergeArticles

 MergePullSubscription

 notification

 creating

 Operator

 PrecedenceConstraint

 ProxyAccount

 RegisteredSubscriber

 Server

 ServerAlias

 ServerConnection

 ServerPermission

 ServerPermissionInfo

 ServerPermissionSet

 Service

 ServiceBroker

 SMO

 backup/restore

 object model

 programming

 programming WMI

 RegisteredServer

 scripting

 SqlMail

 trace/replay

 Transfer

 SmoException

 SqlBilkCopyColumnMapping

 SqlCeEngine 2nd

 SqlClientFactory

 SqlCommand

 SqlContext

 SqlDataRecord 2nd

 SqlDependency

 SqlMetaData

 SqlNotificationRequest

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SqlPipe

 SqlSmoObject

 SqlTriggerContext 2nd

 SQLXML 4.0

 SqlXmlAdapter

 SqlXmlCommand

 SubscriberDevice

 subscriptions

 subscriptions, creating

 UserDefinedFunctions

 XmlReader, retrieving objects

clauses

 .WRITE

 AS SNAPSHOT

 AUTHENTICATION

 EXECUTE AS

 FOR XML 2nd

 OUTPUT

 TABLESAMPLE

 TOP

 WHERE

 operators

clients

 SQL Native Client, programming

 SQL Server Mobile

 SQLXML 4.0

 annotated mapping schemas

 DiffGrams

 managed classes

 template queries

 UpdateGrams

 XML result sets, processing

CLR (Common Language Runtime)

 .NET data types

 ADO.NET in-process extensions

 assembly management

 custom attributes

 DDL

 debugging/testing

 design

 enabling

 Hello World example

 required .NET namespaces

 routines

 stored procedures

 triggers

 UDA functions

 UDFs

 UDTs

code access security (CAS)

CODEPAGE

collections

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Database.Users

 hierarchies, iterating

 iterating

 ServiceBroker class

 XML schemas, managing

colName

colPattern

colType

columnName

columns

 bulk copy format files

 query statistics

 SMO classes

 statistics, viewing

 XML

 bulk loading data

 indexing

 xml data type

command-line compilers

command-line utilities

 SSIS

commands

 MARS

 parameter values

CommandType property 2nd

CommitPropertyChanges() method

Common Model, ADO.NET

common table expressions (CTEs)

Compact() method 2nd

comparing scalar values and result sets

compilers, command-line

components

 data-flow 2nd

 SQL Native Client

ConfigString property

configuration

 alerts, SQL Server Agent

 applications, Notification Services 2nd

 articles

 classes

 notification

 subscriptions

 content formatters

 contracts, Service Broker

 databases

 objects

 SQL Server Mobile 2nd

 xml data type

 delivery channels

 distributors

 events

 classes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 providers

 generators

 instances, Notification Services

 jobs, SQL Server Agent

 native XML web services

 operators, SQL Server Agent

 packages 2nd

 permissions 2nd

 protocols, notification

 proxy accounts, SQL Server Agent

 publications

 publishers

 queries

 queues, Service Broker

 relationships

 replication prerequisites

 routes, Service Broker

 schedules, SQL Server Agent

 servers

 aliases

 SMO classes

 SMO applications (in Visual Studio.NET)

 SQL Server Configuration Manager

 SQL Server Management Studio

 SQL Server Surface Area Configuration

 subscribers

 subscriptions 2nd

 traces

 vacuum schedules

Configuration class

ConfigurationType property

CONNECT permission

Connect() method

ConnectionContext property 2nd

connections

 databases, schema discovery

 management

 adding

 SSIS

 MARS

 Object Explorer

 permissions

 ServerConnection object

 SQL Server Mobile

 strings

 adding

 retrieving

 tasks

ConnectionSecurityContext object

ConnectionStrings() method

constants, assigning

constraints

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 modifying

 precedent, SSIS

ContactNotification service

contacts, defining (SQL Server Agent)

containers

 databases, SASS

 For loops

 Foreach loops

 sequence

 SSIS

 control-flow elements

 precedent constraints

content formatters

 creating

 managing

contracts, Service Broker 2nd

 creating

control-flow

 elements, SSIS

 programming

controls, ReportViewer

conversations, Service Broker

CONVERT function

CopyAllTables property

CopyData property

copying

 bulk copy (ADO.NET)

 schemas

CopySchema property

CREATE AGGREGATE statement

CREATE ASSEMBLY statement

CREATE DATABASE T-SQL statement

create database template

CREATE ENDPOINT statement

CREATE ENDPOINT T-SQL statement

CREATE FUNCTION statement

CREATE INDEX statement

CREATE PROCEDURE statement

CREATE statement

CREATE TABLE statement

CREATE TRIGGER statement

CREATE TYPE statement

CREATE XML SCHEMA COLLECTION statement

Create() method

CreateDataReader() method

CreateDistributor() method 2nd

CreateEventClass() method

CreateGenerator() method 2nd

CreateHostedEventProvider() method

CreateNotificationClass() method

CreateParameter() method

CreateSubscriber() method 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CreateSubscription() method

CreateSubscriptionClassMethod() method

CreateSyncAgentByDefault property

CreateVacuumSchedule() method

credentials

 Security node

 SMO classes

CTEs (common table expressions)

cubes, SASS

Current property

customizing attributes, CLR routines

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

DAT (Database Engine Tuning Advisor)

Data Mining Extensions (DMX) 2nd

data providers

 ADO.NET

 enhancements

 SQL Server Mobile

 statistics, retrieving

data storage objects, managing

data types

 .NET

 FOR XML clause

 large-value

 SMO classes

 T-SQL

 large value

 xml

 xml

 columns

 instances

 limitations

 methods

 variables

data-flow

 components, SSIS 2nd

 programming

 tasks, SSIS

data-preparation tasks

DataAdapter class

Database Diagram Designer

Database Diagrams node

Database Engine

 connecting

Database Engine Tuning Advisor (DTA)

Database Mail, managing

Database property

Database.Users collection

Database_Name parameter

DatabaseMapping class

DatabaseName property 2nd

DATABASEPROPERTYEX function

DatabaseRole object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

databases

 applications

 enumerating

 managing

 create database template

 defaults, SMO classes

 files

 instances, managing

 mirroring

 objects

 creating

 enumerating

 permissions, SMO classes

 properties, enumerating

 proxy accounts, creating

 publication, enabling for

 references, adding

 roles, SMO classes

 SASS

 querying

 retrieving schemas

 schemas, discovery

 servers, instances

 SMO classes

 space, reclaiming

 SQL Server Mobile

 creating 2nd

 managing

 SqlMail class

 synonyms

 tables, checking integrity

 troubleshooting

 updating

 verifying

 xml data type

 columns

 instances

 limitations

 methods

 variables

Databases node

DataSet class 2nd

DataSet objects, filling

DataTable class

DataTableReader class

DbConnectionStringBuilder class

DbMetaDataCollectionNames class

DbProviderFactory class

DDL (Data Definition Language)

 CLR integration

 syntax references

 triggers 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SMO classes

debugging CLR routines

Decision Support Objects (DSO) 2nd

DECLARE statement

default databases, SMO classes

defining

 contacts

 polygons

 schedules

 UDTs

delete statement

deleting

 assemblies

 databases, SQL Server Mobile

 endpoints

 functions

 indexes

 stored procedures

 triggers

 types

 UDA functions

 XML schema collections

delivery channels

 creating

DeliveryChannelName property

DENSE_RANK() function

Deny() method

denying permissions, XML schema collections

deployment, SSRS

design, CLR integration

DestinationDatabase property

destinations, SSIS data-flow components

development, SASS

DeviceAddress property 2nd

DeviceName property

Devices property

DeviceTypeName property

Diagram Designer

dialog boxes

 Add Database Reference

 Add New Item

 Add Table

 Alert Properties

 Edit Filter

 Instance Properties

 Job Properties 2nd

 Job Schedules Properties

 log File Viewer

 Login-New

 New Project

 Publication Properties 2nd

 Specify Values for Templates Parameters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Subscription Properties

dialogs, Service Broker

DiffGrams

DIGEST authentication type

dimension tables 2nd

DirectoryEntry class

DirectoryLoader class

discarding whitespace

Disconnect() method

disconnected class enhancements

disconnecting

discovery, schemas

Distributed Transaction Coordinator, managing

DistributionDatabase object

DistributionPublisher class

Distributor property

distributors

 creating

 installing

DistributorSecurityMode property

DML (Data Manipulation Language)

 triggers

 SMO classes

 XML

DMX (Data Mining Extensions) 2nd

documents

 DiffGrams

 XML

 catalog views

 columns

 DML

 FOR XML clause

 indexing

 instances

 limitations

 methods

 relational data

 variables

 xml data type

 XQuery

domains, CLR integration design

double quotation marks (")

DROP AGGREGATE statement

DROP ASSEMBLY statement

DROP ENDPOINT statement

DROP FUNCTION statement

DROP INDEX statement

DROP PROCEDURE statement

DROP TRIGGER statements

DROP TYPE statement

DROP XML SCHEMA COLLECTION statement

Drop() method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DSO (Decision Support Objects) 2nd

DTSConfigurationType enumeration

DtsEventHandler class

DTSExecStatus enumeration

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

edge tables, formatting

Edit Filter dialog box

<xs:schema> element

<xs:appinfo> element

<xs:annotation> element

<sql:relationship> element

<xsd:annotation> element

<sync> element

<before> element

<after> element

<xsd:simple> element

<BatchCommands> element

<DTS:Configuration> element

<Parameters> elements

elements

 <after>

 <BatchCommands>

 <before>

 <DTS:Configuration>

 <Parameters>

 <sql:relationship>

 <sync>

 <xs:annotation>

 <xs:appinfo>

 <xs:schema>

 <xsd:annotation>

 <xsd:simple>

 control-flow, SSIS

email

 accounts

 alerts, creating

EmailAddress property

Enable() method

EnableConfigurations property

EnableMergePublishing property

EnableTransPublishing property

enabling

 CLR integration

 databases for publication

END CONVERSATION T-SQL statement

endPointName argument

http://lib.ommolketab.ir
http://lib.ommolketab.ir

endpoints

 authentication

 HTTP

 managing

 metadata

 SMO classes

enhancements

 data providers

 FOR XML clause

 T-SQL

 error handling

 ranking functions

 UDTs

EnumAccounts() method

EnumDependencies() method

enumerations

 .NET Framework assembles

 ADO.NET

 AgentSubSystem

 assemblies

 databases

 applications

 objects

 properties

 DTSConfigurationType

 DTSExecStatus

 item replication

 logins

 messages

 MessageTypeValidation

 Notification Services

 objects, Service Broker

 RepairType

 roles

 SmoExceptionType

 task properties

 users

 WMI installations

enumerators

EnumObjects() method

EnumReplicationColumns() method

EnumReplicationTables() method

EnumServerPermissions() method

equals sign (=)

error handling

 SQL Server Mobile

ERRORFILE

ETL (extract, transform, and load) 2nd

events

 alerts, creating

 chronicles

 classes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 creating

 notification

 OnTaskFailed

 providers

 creating

 RESTORE DATABASE

 ScriptingProgress

 SqlDependency class

 SSIS

 handling

ExceptionMessageBox class

exceptions

 handling

 SMO

 SQL Server Mobile

 SqlXmlException

EXECUTE AS clause

Execute() method 2nd

ExecuteAndSend() method

ExecuteReader() method

execution

 queries

 stored procedures

 triggers

 DDL

 DML

exist() method

EXPLICIT

Explicit mode

ExportConfigurationFile() method

exposing web methods

Expression1

Expression2

expressions

 CTEs

 MDX 2nd

 XQuery 2nd

extended stored procedures, SMO classes

extensions

 ADO.NET in-process

 DMX 2nd

 SSRS

 XQuery, binding relational data

extract, transform, and load (ETL) 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

fact tables

factories, ADO.NET

fields

 DbMetaDataCollectionNames

 notification, managing

File System Watcher event provider

files

 ADF

 bulk copy format

 databases

 ICF

 SMO classes

filling DataSet objects

FilterAxis property

filtered table node

filtering articles

firegroups, SMO classes

FIRSTROW

flags option

folders, Template Explorer

For loops, containers

FOR XML clause 2nd

FOR XML NESTED mode

Foreach loops, containers

foreign keys, SMO classes

formatting

 bulk copy format files

 edge tables

 FOR XML clauses

 queries

 relationships

 reports

 serialization

 XML schema collections

fragments (XML)

 columns

 instances

 limitations

 methods

 variables

 xml data type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Full-Text Search

 managing

 SMO classes 2nd

function_attribute property

functions

 CAST

 CONVERT

 DATABASEPROPERTYEX

 DENSE_RANK()

 NTILE()

 partitions, SMO classes

 ranking

 ROW_NUMBER()

 sql:column()

 sql:variable()

 SVFs

 TVFs 2nd

 UDA 2nd

 UDF

 XQuery

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

GAC (Global Assembly Cache)

generating snapshots

generators

 creating

GET TRANSMISSION STATUS T-SQL statement

GetFactoryClasses() method

GetSchema() method

GetSchemaDataSet() method

GetSchemaTable() method

Global Assembly Cache (GAC)

Grant() method

granting permissions, XML schema collections

groups

 conversation, Service Broker

 filegroups, SMO classes

 numbering

 servers, SMO classes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

HandleCallback() method

handling

 errors, SQL Server Mobile

 events, SSIS

 exceptions 2nd

hDoc

Hello World, CLR integration

 example

hierarchies

 collections, iterating

 nodes

 Replication node

 SASS

 servers, navigating

history, retrieving agent

host protection attributes (HPA)

hosted event providers

 managing

HostedEventProvider class

HPA (host protection attributes)

HTML (Hypertext Markup Language), device-information settings

HTTP (Hypertext Transfer Protocol)

 endpoints

HTTP GET method

HTTP POST method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

IAsyncResult interface 2nd

IBinarySerializable interface

ICF (instance configuration file)

idoc option

IEnumerator interface

implementing Service Broker

index_name

indexes

 CREATE INDEX statement

 DAT

 deleting

 Full-Text Search

 modifying 2nd

 query statistics

 SMO classes

 viewing

 XML data

Initialize property

initiating services, Service Broker

initiators, Service Broker

insert statement

installation

 database server instances

 distributors

 exception message boxes

 SQL Native Client

 SQLXML 4.0

 SSRS

 WMI, enumerating

InstallDistributor() method

instance configuration file (ICF)

Instance Properties dialog box

instances

 databases

 enumerating

 managing

 servers

 Notification Services

 creating

 managing

 properties, ExceptionMessageBox class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SASS

 SQL Server

 xml data type

instantiation

 instance classes

 ManagedComputer object

INTEGRATED authentication type

integration

 CLR

 .NET data types

 ADO.NET in-process extensions

 assembly management

 custom attributes

 DDL

 debugging/testing

 design

 enabling

 Hello World example

 required .NET namespaces

 routines

 stored procedures

 triggers

 UDA functions

 UDF

 UDTs

 SSIS

 programming

 tools

 SSRS into applications

Integration Services 2nd

 connecting

 wizards

integrity, checking database tables

interfaces

 catalog views 2nd

 sys.assemblies

 sys.assembly_files

 sys.assembly_modules

 sys.assembly_references

 sys.assembly_types

 IAsyncResult 2nd

 IBinarySerializable

 IEnumerator

 INullable

 IXmlSerializable

 SSPI

into keyword

INullable interface

InvokeIfReceiverIsNull property

IsByteOrdered property

IsComplete property

IsFixedLength property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsInvariantToDuplicates property

IsInvariantToNulls property

IsInvariantToOrder property

IsMutator property

IsNull() method

IsNullable property

IsNullIfEmpty property

isolation, snapshots in transactions

ItemByIdAndLanguage() method

ItemByIdAndLanguageID() method

items

 Add Stored Procedure menu

 adding

 New Query menu

 projects, Solution Explorer

 replication

 enumerating

 managing

iteration

 collections

 hierarchies

IXmlSerializable interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Job class

Job Properties dialog box 2nd

Job Schedules Properties dialog box

jobs

 managing

 SQL Server Agent

 creating

 creating schedules

 properties

 running

 steps (actions)

JobSchedule class

JobStep class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

KDC (Key Distribution Center)

KERBEROS authentication type

Key Distribution Center (KDC)

keys

 MultipleActiveResultSets

 SMO classes

keywords

 after

 before

 into

 OPENXML

 result sets

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

languages

 SASS

 SMO classes

large object (LOB) data

large-value data types (T-SQL) 2nd

LastAgentJobHistoryInfo() method

LASTROW

LastRunDateTime property

leaf members, SASS

legacy objects, managing

levels, SASS

LIFETIME argument

limitations

 xml data type

 XML DML

 XML schema collections

linked servers

 managing

 SMO classes

loading packages, SSIS

LOB (large object) data

local publications, managing

LocalConnectionString property

Log File Viewer dialog box

logging packages, SSIS

LoggingMode property

LoggingOptions.EventFilter property

login

 enumerating

 Security node

 SMO classes 2nd

 TestLogin SQL Server account

Login-New dialog box

Logins property

LogProviders class

logs

 providers, SSIS

 Replication Log Reader Agent

LogTableActivityTrigger.cs

loops

 For, containers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Foreach, containers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

maintenance

 managing

 tasks, SSIS

management

 agents

 alerts

 AMO

 applications

 databases

 Notification Services

 articles

 assemblies

 business logic handlers

 chronicles

 classes

 notification

 SQLXML 4.0

 connections

 adding

 SSIS

 content formatters

 databases

 instances

 SQL Server Mobile

 delivery channels

 distributors

 events, providers

 HTTP

 endpoints

 instances, Notification Services

 logins, SMO classes

 monitors

 NMO

 Notification Services nodes

 objects, SASS

 protocols

 proxy accounts

 publications

 publishers

 Replication node

 replication, agents

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Report Manager

 RMO, programming

 roles, SMO classes

 Server Objects node

 servers, permissions

 Service Broker

 objects

 services

 SMO

 classes

 data storage objects

 not used for data storage reference

 programming

 SMO classes, users

 Solution Explorer

 SQL Server Agent jobs

 SQL Server Configuration Manager

 SQL Server Management Studio

 subscribers

 subscriptions 2nd

 target servers

 Template Explorer

 traces

 URN addresses

 vacuum schedules

 XML schema collections

Management node

mapping UpdateGrams

MARS (Multiple Active Result Sets)

master servers, SQL Server Agent

MaxByteSize property 2nd 3rd

MAXERRORS

MaxSize property

MDX (Multidimensional Expressions)

measures, SASS

members

 recursive

 SASS

MergeArticle class

MergeArticle object

MergePublication object

MergePullSubscription class

MergePullSubscription.SynchronizeWithJob() method

MergeSessionDetail property

MergeSessionSummary property

MergeSubscriberMonitor property

merging

 publications

 creating

 Replication Merge Agent

messages

 Service Broker

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 queues

 types

 SMO classes 2nd

 SOAP

MessageTypeValidation enumeration

metadata

 catalog views

 CLR routines

 endpoints

 schema discovery

 T-SQL

 triggers

 UDTs

metaProperty

methods

 Add()

 AddReplicatedColumns()

 Alter()

 Area()

 CheckTables()

 CommitPropertyChanges()

 Compact() 2nd

 Connect()

 ConnectionStrings()

 Create()

 CreateDataReader()

 CreateDistributor() 2nd

 CreateEventClass()

 CreateGenerator() 2nd

 CreateHostedEventProvider()

 CreateNotificationClass()

 CreateParameter()

 CreateSubscriber() 2nd

 CreateSubscription()

 CreateSubscriptionClassMethod()

 CreateVacuumSchedule()

 Deny()

 Disconnect()

 Drop()

 Enable()

 EnumAccounts()

 EnumDependencies()

 EnumObjects()

 EnumReplicationColumns()

 EnumReplicationTables()

 EnumServerPermission()

 Execute() 2nd

 ExecuteAndSend()

 ExecuteReader()

 exist()

 ExportConfigurationFile()

 GetFactoryClasses

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 GetSchema()

 GetSchemaDataSet()

 GetSchemaTable

 Grant()

 HandleCallback()

 HTTP GET

 HTTP POST

 InstallDistributor

 IsNull()

 ItemByIdAndLanguage()

 ItemByIdAndLanguageID()

 LastAgentJobHistory()

 MergePullSubscription.SynchronizeWithJob()

 modify()

 MoveNext()

 nodes()

 Null()

 Pause()

 public return_type Terminator()

 public void Accumulate()

 public void Init()

 public void Merge()

 queries, xml data type

 query()

 Read()

 Refresh()

 RegisterLocal()

 RemoveReplicated Columns()

 Render()

 Reset()

 ResetStatistics()

 Resume()

 RetrieveStatistics()

 Revoke()

 SaveToXml()

 Script()

 Send() 2nd

 Service class

 SetButtonText()

 SetValue()

 Show()

 Shrink() 2nd

 Sleep()

 SqlBackup()

 SqlBulkCopy

 SqlCeEngine

 SqlCommand class

 SqlRestore()

 SqlResultsEnd()

 SqlResultsRow()

 SqlResultsSend()

 SqlResultStart()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SqlXmlCommand class

 Start() 2nd

 StartEvents()

 Statistic.Create()

 Stop()

 StopEvents()

 SubscribeToEvents()

 SynchronizeWithJob()

 TransferData()

 UnsubscribeAllEvents()

 UnsubscribeFromEvents()

 ValidateSubscription()

 value()

 WaitAll()

 WaitAny()

 web, exposing

 WriteToServer()

 xml data type

mirroring databases

models

 Common Model (ADO.NET)

 objects

 Integration Services

 SSIS

 SMO object

modes

 AUTO

 Explicit

 FOR XML NESTED

 NESTED

 RAW

modify() method

modifying

 assemblies

 databases, SQL Server Mobile

 endpoints

 functions

 indexes

 passwords

 permissions

 properties, SQL Server Mobile

 stored procedures

 triggers

 XML schema collections

monitoring

 events

 managing

 replication

MoveNext() method

Multidimensional Expressions (MDX)

Multiple Active Result Sets (MARS)

multiserver environments, SQL Server Agent

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Name property 2nd

names, URN

namespaces

 required .NET (CLR (integration)

 SMO

 classes

 data storage object management

 not used for data storage reference

 programming

native serialization

native XML web services

 creating

 DDL syntax references

 HTTP endpoints

 open standards

 SOAP messages

 web methods, exposing

navigating server hierarchies

NESTED mode

.NET

 assemblies

 enumerating

 CLR integration

 data types

NetSendAddress property

new features

New Project dialog box

New Query menu item

NMO (Notification Services Management Objects)

nodes

 Database Diagrams

 Databases

 filtered table

 hierarchies

 Management

 Notification Services

 Object Explorer

 Assemblies, Assemblies node, Object Explorer

 Stored Procedures

 Replication 2nd

 Security

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Server Objects

 SQL Server Agent

nodes() method

nonhosted event providers

 managing

nonleaf members, SASS

notification

 classes

 creating

 events

 generation rules

 SQL Server support

Notification Services

 applications

 creating 2nd

 programming

 architecture

Notification Services Management Objects (NMO)

Notification Services node

NSPassword

NSServerName

NSUserName

NTILE() function

NTLM authentication type

Null() method

numbered stored procedures, SMO classes

numbers

 groups

 sequences, Service Broker

nvarchar data type

nvarchar(max)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Object Explorer

 Assemblies node

 packages, viewing

objects

 AdomdDataReader

 AMO

 BLOB

 ConnectionSecurityContext

 DatabaseRole

 databases

 creating

 enumerating

 synonyms

 DataSet, filling

 DistributionDatabase

 DSO 2nd

 legacy, managing

 LOB data

 ManagedComputer, instantiation

 MergeArticle

 MergePublication

 models

 Integration Services

 SSIS

 NMO

 permissions, validating

 ReplicationServer

 RMO, programming

 SASS, managing

 ServerConnection

 Service Broker, enumerating

 SMO

 backup/restore classes

 classes

 data storage management

 not used for data storage reference

 programming

 scripting

 SqlMail

 trace/replay

 transacting operations

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Transfer

 SqlCeDataAdapter

 SqlCeException

 SqlContext

 SqlPipe

 SqlRecordData

 SqlTriggerContext

 SubscribeDevice

 user-defined, SMO classes

 XMLReader class, retrieving

OLAP (online analytical processing)

OLE DB providers

OnChanged event handler

online analytical processing (OLAP)

OnNullCall property

OnTaskFailed event

open standards, native XML web services

OPENROWSET statement

OPENXML keyword

 result sets

operations

 BACKUP DATABASE

 SMO, transacting

Operator class

operators

 ALL

 ANY

 APPLY

 managing

 PIVOT

 SOME

 SQL Server Agent, creating

 UNPIVOT

 XQuery

optimization

 data providers

 disconnected class enhancements

 FOR XML clause

 T-SQL language enhancements

 error handling

 ranking functions

 UDTs

options

 AUTO_DREATE_STATISTICS database

 BULK

 flags

 idoc

 rowpatern

Options property

Options.WithDependencies property

OUTPUT clause

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

packages (SSIS)

 configuring 2nd

 creating

 loading

 logging

 running

 saving

 tasks, adding

 validating

 variables

 viewing

PageAddress property

parameters

 commands, values

 Database_Name

 queries, applying

 servers, reports

 URL, prefixes

partitions

 functions, SMO classes

 schemes, SMO classes

passwords, modifying

PATH

PATH indexes

Pause() method

PercentCompleteEventHandler event handler

performance, CLR integration design

PerformanceQueryInterval property

permissions

 configuring

 CONNECT

 creating

 databases, SMO classes

 endpoints, managing

 objects, validating

 servers

 managing

 SMO classes

 XML schema collections, managing

PIVOT operator

polling

http://lib.ommolketab.ir
http://lib.ommolketab.ir

polygons, defining

PrecedenceConstraint class

precedent constraints, SSIS

Precision property

prefixes, URL parameters

prerequisites, replication

primary XML indexes

processing

 asynchronous

 batches

 queries, DAT

processing on clients

profiles, Database Mail

programmability enhancements

programming

 asynchronous

 control-flow

 data-flow

 Notification

 replication

 Service Broker

 SMO instances classes

 SQL Native Client

 SQL Server Agent

 SQL Server Mobile

 managing databases

 modifying databases

 troubleshooting databases

 updating databases

 SQLXML 4.0

 annotated mapping schemas

 DiffGrams

 managed classes

 template queries

 UpdateGrams

 SSIS

 WMI, SMO classes

projects

 New Project dialog box

 Solution Explorer

properties

 AcceptsPause

 AcceptsStop

 AgentSchedule.FrequencySubDay

 AgentSchedule.FrequencySubDayInterval

 AgentSchedule.FrequencyType

 alerts

 Axes

 BaseDirectoryPath

 ChronicleQuantumLimit

 CommandType 2nd

 ConfigString

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ConfigurationType

 connection strings, SQL Server Mobile

 ConnectionContext 2nd

 CopyAllTables

 CopyData

 CopySchema

 CreateSyncAgentByDefault

 Current

 Database

 DatabaseName 2nd

 databases, enumerating

 DeliveryChannelName

 DestinationDatabase

 DeviceAddress 2nd

 DeviceName

 Devices

 DeviceTypeName

 Distributor

 DistributorSecurityMode

 EmailAddress

 EnableConfigurations

 EnableMergePublishing

 EnableTransPublishing

 ExceptionMessageBox class

 FilterAxis

 function_attribute

 IAsyncResult interface

 Initialize

 instances

 InvokeIfReceiversIsNull

 IsByteOrdered

 IsComplete

 IsFixedLength

 IsInvariantToDuplicates

 IsInvariantToNulls

 isInvariantToOrder

 IsMutator

 IsNullable

 IsNullIfEmpty

 jobs

 JobSchedule class

 LastRunDate

 LocalConnectionString

 LoggingMode

 LoggingOptions.EventFilter

 Login

 ManagedComputer class

 MaxByteSize 2nd 3rd

 MaxSize

 MergeSessionDetail

 MergeSessionSummary

 MergeSubscriberMonitor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Name 2nd

 NetSendAddress

 OnNullCall

 Options

 Options.WithDependencies

 PagerAddress

 PerformanceQueryInterval

 Precision

 ProtocolName

 ProxyName

 Publication

 PublicationDBName

 PublicationName 2nd

 Publisher

 PublisherDatabase

 PublisherName

 PublisherSecurityMode

 QuantumDuration

 ReplicationType

 RETENTION

 RootTag

 Scale

 SourceObjectName

 SourceObjectOwner

 SQL Server Mobile, modifying

 SqlBulkCopy class

 SqlCeEngine

 SqlCeException

 SqlExecutionModes

 SqlFacet attribute

 SqlXmlAdapter class

 SqlXmlCommand class

 SqlXmlParameter class

 Status

 SubscriberId

 SubscriberType

 SubscriptionQuantumLimit

 SystemMessages

 tasks, enumerating

 Timeout

 TriggerAction 2nd

 UpdateBatchSize

 User

 UserData

 VacuumRetentionAge

 ValidationMethod

 Variables

 XslPath

PROPERTY indexes

ProtocolName property

protocols

 delivery

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 managing

 notification, creating

 SOAP

providers

 ADO.NET

data providers

 ADO.NET

providers

 ADO.NET

 enhancements

 events

 creating

 logs, SSIS

 SQL Server Mobile

 statistics, retrieving

proxies, managing

proxy accounts, creating

ProxyAccount class

ProxyName property

public methods, SqlXmlCommand class

public properties

 SqlXmlAdapter class

 SqlXmlCommand class

 SqlXmlParameter

public return_type Terminate() method

public void Accumulate () method

public void Init() method

public void Merge() method

Publication Properties dialog box 2nd

Publication property

PublicationDBName property

PublicationName property 2nd

publications

 creating

 managing 2nd

 merging

Publisher property

PublisherDatabase property

PublisherName property

publishers

 creating

 managing

PublisherSecurityMode property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

ql_identifier

QuantumDuration property

queries

 ad hoc, support

 axis dimensions

 creating

 DAT

 databases, SASS

 executing

 MDX

 New Query menu items

 parameters, applying

 SASS

 statistics

 templates, XML

 xml data type

 XQuery

Query Designer 2nd

Query Editor 2nd

query() method

queues

 messages, Service Broker

 Replication Queue Reader Agent

 Service Broker

 creating

quotation marks

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

ranking

 functions

 rows

RAW mode

RDL (Report Definition Language)

Read() method

reading databases

RECEIVE T-SQL statement

reclaiming database space

records, DiffGrams

recursive members

references, adding databases

Refresh() method

Registered Servers window

registered servers, SMO classes 2nd

RegisteredSubscriber class

RegisterLocal() method

registration

 assemblies

 stored procedures

 subscribers

relational data

 binding

 XML

relational_schema 2nd

relationships

 creating

 modifying

reliability of CLR integration design 2nd

remote connectivity, SQL Server Surface Area Configuration

remote service binding 2nd

RemoveReplicatedColumns() method

removing

 assemblies

 databases, SQL Server Mobile

 endpoints

 functions

 indexes

 stored procedures

 triggers

 types

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 UDA functions

 XML schema collections

Render button

Render() method

rendering reports

repairing databases

RepairType enumeration

replace value of statement

replay classes, SMO

replaying trace results

replication

 agents

 managing

 items

 enumerating

 managing

 monitoring

 programming

 schedules

Replication Distribution Agent

Replication Log Reader Agent

Replication Merge Agent

Replication node

Replication Queue Reader Agent

Replication Snapshot Agent

ReplicationType property

Report Manager

Report Server web services

Reporting Services

 connecting

reports

 server parameters

 SSRS

 installing

 integrating into applications

 URL access

ReportViewer control

requests, SOAP

Reset() method

ResetStatistics() method

responses, SOAP

restarting services

restore classes, SMO

RESTORE DATABASE event

restoring SQL Server Mobile

restrictions

 UDTs

 XML DML

result sets

 FOR XML clause

 MARS

 OPENXML

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 XML

 applying XSLT transformations

results, replaying trace

Resume() method

RETENTION property

RetrieveStatistics() method

retrieving

 agent history

 asynchronous processing

 connection strings

 objects, XmlReader class

 provider statistics

 schemas

returning

 metadata

 rows

Revoke() method

revoking permissions, XML schema collections

RMOs (SQL Server Replication Management Objects), programming

roles

 databases, SMO classes

 enumerating

 servers

 Security node

 SMO classes, managing

RootTag property

rotating values

routes

 creating

 Service Broker 2nd

routines (CLR)

 custom attributes

 debugging/testing

 metadata

ROW_NUMBER() function

rowpattern option

rows

 ranking

 returning

ROWS_PER_BATCH

rules

 events

 chronicles

 creating subscription

 notification generation

 SMO classes

 status, DiffGrams

running

 jobs

 packages

runtime

 events, SSIS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Integration Services

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

SaveToXml() method

saving packages, SSIS

scalability of CLR integration design 2nd

scalar values

Scale property

schedules

 replication

 SQL Server Agent, creating

 vacuum

 creating

 managing

Schema Component

schemaDeclaration

schemaName

schemas

 copying

 databases, retrieving

 discovery

 edge tables

 GetFactoryClasses() method

 SASS

 SMO classes

 XML

 managing

 SMO classes

schemes, partitions

Script() method

scripting

 ASSL 2nd

 projects, Solution Explorer

 SMO utility classes

 tasks, SSIS

ScriptingProgress event

.sdf database files

searching

 Full-Text Search

 managing

secondary XML indexes

security

 CAS

 CLR integration design 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 passwords, modifying

 proxy accounts, creating

 SQL Server Surface Area Configuration

Security node

Security Support Provider Interface (SSPI)

SELECT statement 2nd 3rd

SEND T-SQL statement

Send() method 2nd

sequences

 containers

 numbers, Service Broker

serialization

Server class

Server Objects node

server_principal argument

ServerAlias class

ServerConnection class

ServerConnection object

ServerMessageEventHandler

ServerMessageEventHandler event handler

ServerPermission class

ServerPermissionInfo class

ServerPermissionSet class

servers

 aliases, creating

 database instances

 DDL, managing triggers

 groups, SMO classes

 hierarchies, navigating

 linked, SMO classes

 logs, managing

 managing

 master, SQL Server Agent

 permissions

 managing

 SMO classes

 registered, SMO classes 2nd

 report parameters

 roles

 Security node

 SMO classes, configuring

 SQL Server Mobile

 target, SQL Server Agent

Service Broker

 architecture

 implementing

 objects, enumerating

 programming

Service class

service principal name (SPN)

ServiceBroker class

services

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Analysis Service tasks

 ContactNotification

 Integration Services

 Report Server web service

 Service Broker

 implementing

 managing

 SQL Server Configuration Manager

 SQL Server Surface Area Configuration

 SSIS

 programming

 tools

 starting/stopping

 StockWatch

SetButtonText() method

SetValue() method

Show() method

Shrink() method 2nd

Simple Object Access Protocol (see SOAP)

single quotation marks (')

SINGLE_BLOB

SINGLE_CLOB

SINGLE_NCLOB

Sleep() method

slicer axis dimensions

SMO (SQL Server Management Objects) 2nd

 backup/restore classes

 classes 2nd 3rd

 data storage object management

 exceptions, handling

 not used for data storage reference

 operations, transacting

 programming

 RegisteredServer class

 SQL Server Agent, programming

 SqlMail class

 trace/replay classes

 Transfer class

 utility classes, scripting

 WMI, programming

SmoException class

SmoExceptionType enumeration

snapshots

 generating

 isolation in transactions

 Replication Snapshot Agent

 subscriptions, synchronizing

SOAP (Simple Object Access Protocol)

 messages

Solution Explorer

SOME operator

SourceObjectName property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SourceObjectOwner property

sources, SSIS data-flow components

space, reclaiming databases

Specify Values for Template Parameters dialog box

SPN (server principal name)

SQL Native Client, programming

SQL Server

 data types, FOR XML clause

 event providers

 notification support

 tasks

SQL Server 2005 Management Studio

SQL Server Agent

 node

 programming

SQL Server Business Intelligence Development Studio

SQL Server Configuration Manager

SQL Server Management Studio

SQL Server Mobile 2nd

 applications

 managing databases

 modifying databases

 prerequisites

 programming

 troubleshooting databases

 updating databases

 connecting

 environments

SQL Server Notification Services

SQL Server Profiler

SQL Server Service Broker

SQL Server Surface Area Configuration

sql:column() function

sql:variable() function

sql_identifier

SqlBackup() method

SqlBulkCopy

SqlBulkCopy class

SqlBulkCopyColumnMapping class

SqlCeDataAdapter object

SqlCeEngine class 2nd

SqlCeException object

SqlClientFactory class

sqlcmd utility

SqlCommand class

SqlContext class

SqlDataRecord class 2nd

SqlDependency

SqlDependency class 2nd

SqlExecutionModes property

SqlFacet attribute

SqlFunction attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SqlMail class

SqlMetaData class

SqlMethod attribute

SqlNotificationRequest class

SqlPipe class

SqlProcedure attribute

SqlRestore() method

SqlResultsEnd() method

SqlResultsRow() method

SqlResultsSend() method

SqlResultsStart() method

SqlSmoObject class

SqlTrigger attribute

SqlTriggerContext

SqlTriggerContext class 2nd 3rd

SqlUserDefinedAggregate attribute

SqlUserDefinedType attribute 2nd

SQLXML 4.0

 annotated mapping schemas

 DiffGrams

 managed classes

 template queries

 UpdateGrams

SqlXmlAdapter class

SqlXmlCommand class

SqlXmlException exception

SqlXMlParameter

SqlXmlParameter class

SSAS (SQL Server Analysis Services)

 ADOMD.NET, accessing data

 databases

 development

 languages

 objects, managing

 overview of

SSIS (SQL Server Integration Services)

 architecture

 Designer

 programming

 tools

SSPI (Security Support Provider Interface)

SSRS (SQL Server 2005 Reporting Services)

 applications, integrating into

 extensions

 installing

Start() method 2nd

StartEvents() method

starting services

statements

 ALTER

 ALTER ASSEMBLY

 ALTER ENDPOINT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ALTER FUNCTION

 ALTER INDEX

 ALTER PROCEDURE

 ALTER TRIGGER

 ALTER XML SCHEMA COLLECTION

 BEGIN CONVERSATION TIMER T-SQL

 BEGIN DIALOG T-SQL

 BULK INSERT

 capturing

 CREATE

 CREATE AGGREGATE

 CREATE ASSEMBLY

 CREATE DATABASE T-SQL

 CREATE ENDPOINT

 CREATE ENDPOINT T-SQL

 CREATE FUNCTION

 CREATE INDEX

 CREATE PROCEDURE

 CREATE TABLE

 CREATE TRIGGER

 CREATE TYPE

 CREATE XML SCHEMA COLLECTION

 DECLARE

 delete

 DMX

 DROP AGGREGATE

 DROP ASSEMBLY

 DROP ENDPOINT

 DROP FUNCTION

 DROP INDEX

 DROP PROCEDURE

 DROP TRIGGER

 DROP TYPE

 DROP XML SCHEMA COLLECTION

 END CONVERSATION T-SQL

 GET TRANSMISSION STATUS T-SQL

 insert

 OPENROWSET

 RECIEVE T-SQL

 replace value of

 SELECT 2nd 3rd

 SEND T-SQL

 WAITFOR T-SQL

Statistic.Create() method

statistics

 providers, retrieving

 SMO classes 2nd

 viewing

status

 rules, DiffGrams

 services, viewing

Status property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

StockWatch service

Stop() method

StopEvents() method

stopping services

storage, large-value data types

stored procedures

 CLR integration

 SMO classes

 triggers

 DDL

 DML

strings

 casting

 connections

 adding

 retrieving

 SQL Server Mobile

SubscriberDevice class

SubscriberDevice object

SubscriberId property

subscribers

 creating

 managing

 registering

 validating

SubscriberType property

SubscribeToEvents() method

Subscription Properties dialog box

SubscriptionQuantumLimit property

subscriptions

 classes, creating

 creating 2nd

 managing 2nd 3rd

 snapshots, synchronizing

subscriptions, classes

SVFs (scalar-valued functions)

synchronization

 DiffGrams

 SQL Server Mobile

 subscriptions, snapshots

SynchronizeWithJob() method

synonyms, SMO classes 2nd

sys.assemblies catalog view

sys.assembly_files catalog view

sys.assembly_modules catalog view

sys.assembly_references catalog view

sys.assembly_types catalog view

system data types, SMO classes

system messages, SMO classes

SystemMessages property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

T-SQL (Transact-SQL)

 data types

 large value

 xml

 DDL triggers

 language enhancements

 error handling

 ranking functions

 metadata

Table Designer

tableName

tables

 Add Table dialog box

 bulk copy format files

 CREATE TABLE statement

 CTEs

 databases, checking integrity

 dimension 2nd

 edge, formatting

 fact

 filtered table node

 SMO classes

TABLESAMPLE clause

take ownership permission

target servers, SQL Server Agent

target services, Service Broker

targetNamespace

tasks

 connecting

 packages, adding

 properties, enumerating

 SSIS

Template Explorer

templates

 create databases

 queries, XML

 UpdateGrams

testing CLR routines

TestLogin SQL Server login account

text, Full-Text Search

Timeout property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

tools

 command-line utilities

 ReportViewer control

 sqlcmd utility

 SSIS

TOP clause

trace classes, SMO

traces

transacting SMO objects

transactions, snapshot isolation in

Transfer class

TransferData() method

transformation, SSIS data-flow components

TriggerAction property 2nd

triggers 2nd

 DDL 2nd

 SMO classes

 DML 2nd

troubleshooting

 databases

 checking integrity

 SQL Server Mobile

 error handling

 SSIS, maintenance tasks

tuples

TVFs (table-valued functions) 2nd

TYPE

type-safe verification, CLR integration design

types

 large-value data

 messages, Service Broker

 of CLR routines

 SSIS

 connection managers

 package-configuration

 UDAs

 UDTs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

UDA (user-defined aggregate) functions 2nd

UDFs (user-defined functions)

UDTs (user-defined types) 2nd

 ADO.NET

Universal Coordinated Time (UTC)

UNPIVOT operators

UnsubscribeAllEvents() method

UnsubscribeFromEvents() method

UpdateBatchSize property

UpdateGrams

updating

 databases

 FOR XML clause

URL (Uniform Resource Locator) access

URN (Uniform Resource Name)

 managing

User property

user-defined messages, SMO classes

user-defined objects, SMO classes

UserData property

UserDefinedFunctions class

users

 enumerating

 SMO classes 2nd

UTC (Universal Coordinated Time)

utilities

 command-line

 ReportViewer control

 sqlcmd

 SSIS

utility classes, scripting

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

vacuum schedules

 creating

 managing

VacuumRetentionAge property

ValidateSubscription() method

validating

 object permissions

 packages, SSIS

 subscribers

ValidationMethod property

VALUE indexes

value() method

values

 commands, parameters

 large-value data types

 replace value of statement

 rotating

 scalar, comparing

 SVFs

 table-valued functions

 TVFs

varbinary data type

varbinary(max)

varchar data type

varchar(max)

variableName

variables

 SSIS

 applying

 xml data type

Variables property

verifying databases

viewing

 indexes

 packages, SSIS

 ReportViewer control

 Solution Explorer

 statistics

 status, services

views

 catalog 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 endpoints

 messages

 sys.assemblies

 sys.assembly_files

 sys.assembly_modules

 sys.assembly_references

 sys.assembly_types

 XML

 xml_indexes

 xml_schema_collections

 SMO classes

Visual Studio 2005

Visual Studio.NET, creating SMO applications

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

wait handles

WaitAll() method

WaitAny() method

WAITFOR T-SQL statement

Web Service Definition Language (WSDL)

web services

 native XML

 creating

 DDL syntax references

 HTTP endpoints

 open standards

 SOAP messages

 web methods, exposing

 Report Server

WHERE clause

 operators

whitespace, discarding

windows

 BI Development Studio

 Object Explorer

 Registered Servers

 Solution Explorer

 Template Explorer

wizards, Integration Services

WMI (Windows Management Instrumentation), programming

work items

workflow tasks, SSIS

workload, analyzing

.WRITE clause

WriteToServer() method

WSDL (Web Service Definition Language)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

XML (Extensible Markup Language)

 catalog views

 DML

 FOR XML clause 2nd

 indexing

 native web services

 creating

 DDL syntax references

 HTTP endpoints

 open standards

 SOAP messages

 web methods, exposing

 relational data

 result sets

 applying XSLT transformations

 processing on clients

 schemas

 managing

 SMO classes

 SQLXML 4.0

 annotated mapping schemas

 DiffGrams

 managed classes

 template queries

 UpdateGrams

 support

 xml data type

 columns

 instances

 limitations

 methods

 variables

 XQuery

xml_column_name

XMLA (XML for Analysis) 2nd

XMLDATA

XmlReader class, retrieving objects

xmlSchemaCollectionName

xmlText

xPathNamespaces

XQuery

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 expressions 2nd

XSD (XML Schema Definition)

XslPath property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Programming SQL Server 2005
	Table of Contents
	Programming SQL Server 2005
	Preface
	What You Need to Use This Book
	Conventions Used in This Book
	How to Contact Us
	SafariÂ® Enabled
	Acknowledgments

	Chapter 1. Introduction
	Section 1.1. Contents of This Book
	Section 1.2. What's Not in This Book

	Chapter 2. Tools and Utilities
	Section 2.1. SQL Server Management Studio
	Section 2.2. SQL Server Configuration Manager
	Section 2.3. SQL Server Surface Area Configuration
	Section 2.4. Database Engine Tuning Advisor
	Section 2.5. SQL Server Profiler
	Section 2.6. SQL Server Business Intelligence Development Studio
	Section 2.7. Visual Studio 2005
	Section 2.8. New Command-Line Utilities

	Chapter 3. T-SQL Enhancements
	Section 3.1. New Data Types
	Section 3.2. T-SQL Language Enhancements
	Section 3.3. Data Definition Language (DDL) Triggers
	Section 3.4. Metadata

	Chapter 4. Introduction to Common Language Runtime (CLR) Integration
	Section 4.1. CLR Integration Design Objectives
	Section 4.2. Enabling CLR Integration
	Section 4.3. Required .NET Namespaces
	Section 4.4. Types of CLR Routines
	Section 4.5. Hello World Example
	Section 4.6. DDL Support for CLR Integration
	Section 4.7. ADO.NET In-Process Extensions Supporting CLR Programming
	Section 4.8. Custom Attributes for CLR Routines
	Section 4.9. SQL Server Data Types in the .NET Framework
	Section 4.10. Testing and Debugging CLR Routines

	Chapter 5. Programming SQL Server CLR Routines
	Section 5.1. Scalar-Valued Functions
	Section 5.2. Table-Valued Functions
	Section 5.3. Stored Procedures
	Section 5.4. User-Defined Aggregate Functions
	Section 5.5. User-Defined Types
	Section 5.6. Triggers

	Chapter 6. .NET Client-Side Programming
	Section 6.1. SQL Native Client Programming
	Section 6.2. SQLXML 4.0
	Section 6.3. Exception Message Box

	Chapter 7. XML Data
	Section 7.1. xml Data Type
	Section 7.2. Creating xml Data Type Instances
	Section 7.3. XML Data Type Methods
	Section 7.4. Viewing XML Data as Relational Data
	Section 7.5. Indexing XML Data
	Section 7.6. Managing XML Schema Collections
	Section 7.7. XQuery Support
	Section 7.8. XML Data Manipulation Language
	Section 7.9. XML Results Using the FOR XML Clause
	Section 7.10. XML Catalog Views

	Chapter 8. Native XML Web Services
	Section 8.1. Open Standards
	Section 8.2. Creating a Web Service
	Section 8.3. Creating the HTTP Endpoint and Exposing a Web Method Example
	Section 8.4. SOAP Request and Response Messages
	Section 8.5. Managing HTTP Endpoints

	Chapter 9. SQL Server Management Objects (SMO)
	Section 9.1. SMO Object Model
	Section 9.2. Creating an SMO Project in Visual Studio .NET
	Section 9.3. A Simple SMO Application

	Chapter 10. SQL Server Management Objects (SMO) Instance Classes, Part 1
	Section 10.1. Programming SMO Instance Classes for Administering Data Storage Objects
	Section 10.2. SMO Instance Classes for Administering Data Storage Objects Reference

	Chapter 11. SQL Server Management Objects (SMO) Instance Classes, Part 2
	Section 11.1. Programming SMO Instance Classes for Administering Database Objects Not Used for Data Storage
	Section 11.2. SMO Instance Classes for Administering Objects Not Used for Data Storage Reference

	Chapter 12. SQL Server Management Objects (SMO) Utility Classes
	Section 12.1. Scripting
	Section 12.2. Backing Up and Restoring Data
	Section 12.3. Transferring Data
	Section 12.4. Tracing
	Section 12.5. Database Mail

	Chapter 13. Programming Windows Management Instrumentation (WMI)
	Section 13.1. Programming SMO WMI Classes

	Chapter 14. SQL Server Reporting Services (SSRS)
	Section 14.1. Getting Started
	Section 14.2. Integrating Reports into Applications
	Section 14.3. Reporting Services Extensions

	Chapter 15. SQL Server Integration Services (SSIS)
	Section 15.1. Architecture
	Section 15.2. Tools
	Section 15.3. Programming SSIS

	Chapter 16. SQL Server Agent
	Section 16.1. Programming SQL Server Agent

	Chapter 17. Service Broker
	Section 17.1. Architecture
	Section 17.2. Programming Service Broker

	Chapter 18. Notification Services
	Section 18.1. Architecture
	Section 18.2. Creating a Notification Services Application
	Section 18.3. Programming Notification Services

	Chapter 19. Replication
	Section 19.1. Programming Replication

	Chapter 20. SQL Server Analysis Services (SSAS)
	Section 20.1. Before You Begin
	Section 20.2. SSAS Overview
	Section 20.3. SSAS Database
	Section 20.4. SSAS Languages
	Section 20.5. Development
	Section 20.6. Accessing Data by Using ADOMD.NET
	Section 20.7. Administering SSAS Objects

	Chapter 21. SQL Server Mobile Edition
	Section 21.1. Environments
	Section 21.2. Prerequisites
	Section 21.3. Programming SQL Server Mobile

	Appendix A. ADO.NET 2.0
	Section A.1. Data Provider Enumeration and Factories
	Section A.2. Data Provider Enhancements
	Section A.3. Disconnected Class Enhancements

	About the Author
	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

