
Dojo
Using the Dojo JavaScript Library

to Build Ajax Applications

James E. Harmon

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and
the publisher was aware of a trademark claim, the designations have been printed with
initial capital letters or in all capitals.
The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connec-
tion with or arising out of the use of the information or programs contained herein.
The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:
International Sales
international@pearson.com

Visit us on the Web: www.informit.com/aw
Library of Congress Cataloging-in-Publication Data

Harmon, James Earl.
Using the Dojo Javascript library to build Ajax applications / James Earl Harmon.

p. cm.
Includes index.
ISBN 0-13-235804-2 (pbk. : alk. paper) 1. Ajax (Web site development technology)

2. Java (Computer program language) I. Title.
TK5105.8885.A52H37 2008
006.7’8—dc22

2008021544
Copyright © 2009 Pearson Education, Inc.
All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-132-35804-0
ISBN-10: 0-132-35804-2
Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville,
Indiana.
First printing June 2008

Associate Publisher
Mark Taub

Acquisitions Editor
Debra Williams Cauley

Development Editor
Michael Thurston

Managing Editor
Kristy Hart

Project Editor
Chelsey Marti

Copy Editor
Language Logistics

Indexer
Lisa Stumpf

Proofreader
Kathy Ruiz

Technical Reviewer
Eric Foster-Johnson

Publishing Coordinator
Kim Boedigheimer

Cover Designer
Gary Adair

Senior Compositor
Gloria Schurick

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Contents at a Glance
Foreword xiii

Acknowledgments xv

About the Author xvi

I: A Dojo Tutorial

1 Understanding Dojo: A Tutorial 3

2 Using Dojo for Client-side Validation 25

3 Using Dojo to Work with the Server 35

4 Using Dojo Widgets 51

5 Processing Forms with Dojo 59

II: Dojo Widgets

6 Introduction to Dojo Widgets 67

7 Dojo Form Widgets 91

8 Dojo Layout Widgets 137

9 Other Specialized Dojo Widgets 155

III: Dojo in Detail

10 What Is Dojo? 189

11 Technical Description of Dojo 199

12 Objects and Classes 223

13 Strings and JSON 239

14 Events and Event Handling 249

15 Ajax Remoting 259

16 Working with the DOM 277

17 Testing and Debugging 293

Index 303

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table of Contents

Foreword xiii

Acknowledgments xv

About the Author xvi

I: A Dojo Tutorial

1 Understanding Dojo: A Tutorial 3
1.1 Introduction to the Tutorial 3

1.1.1 Goals for this Tutorial 4

1.1.2 Goals for Using Dojo 4

1.2 A Standard HTML Data Entry Form 5

1.2.1 First and Last Name 6

1.2.2 User Name 7

1.2.3 Email Address 8

1.2.4 Address 8

1.2.5 State 8

1.2.6 City 10

1.2.7 Zip Code 10

1.2.8 Service Date 11

1.2.9 Comments 11

1.3 The Plan for Enhancing the Form 12

1.3.1 Including Dojo in the Form 12

1.3.2 Adding Client-side Validation 13

1.3.3 Adding Server-side Features 13

1.3.4 Using Additional Specialized Dojo Widgets 13

1.3.5 Processing the Form 14

1.4 Getting and Running the Source Code 14

1.5 Tutorial Step 1—Including Dojo 15

1.5.1 Download or Create the Source Files 15

1.5.2 Include the Code for the Dojo Toolkit 19

1.5.3 Include Dojo Style Sheets 20

1.5.4 Review All the Code Changes 21

1.5.5 Run the New Page 22

http://lib.ommolketab.ir
http//lib.ommolketab.ir

viii Contents

2 Using Dojo for Client-side Validation 25
2.1 Validating Form Fields 25

2.2 Tutorial Step 2—Adding Client-side Validation 26

2.2.1 Validate the First Name Field 27

2.2.2 Validating the Last Name Field 30

2.2.3 Validating the User Name Field 31

2.2.4 Validating the Email Address Field 31

2.2.5 Validating the Address Field 32

2.2.6 Validating the City Field 33

2.2.7 Validating the Zip Code Field 33

3 Using Dojo to Work with the Server 35
3.1 Adding Server-side Features 35

3.2 Tutorial Step 3a—Adding Server-side Validation 36

3.2.1 Assign Event Handler Function 36

3.2.2 Make a Call to the Server 38

3.3 Tutorial Step 3b—Retrieving Data from
the Server 43

3.3.1 Select Appropriate Widget for
the City Field 43

3.3.2 Get the Value of State and Send
to the Server 45

4 Using Dojo Widgets 51
4.1 Adding Dojo Widgets to the Page 51

4.1.1 Dijit—The Dojo Widget Module 52

4.2 Tutorial Step 4—Using Dojo Widgets 52

4.2.1 Use the Dojo DateTextBox Widget 53

4.2.2 Use the Dojo Rich Text Editor Widget 55

5 Processing Forms with Dojo 59
5.1 Using Dojo to Process Forms 59

5.2 Tutorial Step 5—Processing the Form 60

5.2.1 Creating a Dojo Form Widget 60

5.2.2 Intercept Form Submission 61

5.2.3 Check That All Form Elements Are Valid 62

5.2.4 Submitting the Form to the Server 63

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ixContents

II: Dojo Widgets

6 Introduction to Dojo Widgets 67
6.1 What Are Widgets? 67

6.2 What Are Dojo Widgets? 68

6.3 Components of a Dojo Widget 70

6.3.1 Widget HTML 70

6.3.2 Widget Styles 74

6.3.3 JavaScript Component of a Widget 76

6.3.4 Dojo Widget Hierarchy 78

6.3.5 Visual Overview of Dojo Widgets 83

6.3.6 Building Your Own Widgets 90

7 Dojo Form Widgets 91
7.1 Standard Forms and Dojo Form Widgets 91

7.1.1 The dijit.form._FormWidget Class 92

7.2 The Dojo Form Widget Explained 94

8 Dojo Layout Widgets 137
8.1 Understanding Page Layout 137

8.1.1 The dijit.layout._LayoutWidget Class 138

8.2 Explanation of Dojo Layout Widgets 139

9 Other Specialized Dojo Widgets 155
9.1 What Are Specialized Widgets? 155

9.2 Menu Widget 156

9.2.1 dijit.Menu 157

9.2.2 dijit.MenuItem 157

9.2.3 dijit.MenuSeparator 157

9.2.4 dijit.PopupMenuItem 158

III: Dojo in Detail

10 What Is Dojo? 189
10.1 History of JavaScript and AJAX 189

10.2 History of Dojo 191

10.3 Purpose of Dojo 191

http://lib.ommolketab.ir
http//lib.ommolketab.ir

x Contents

10.4 Description of Dojo 192

10.5 What Problems Does Dojo Solve? 193

10.6 Who Should Use Dojo? 194

10.7 Licensing 195

10.8 Competitors and Alternatives 195

10.9 The Future of Dojo 197

11 Technical Description of Dojo 199
11.1 What You Get in the Dojo Download 199

11.2 Organization of Dojo Source Code 201

11.2.1 First-level Directories 201

11.2.2 Digging Deeper into the Dojo Directory 202

11.3 Dojo Modules and Features 203

11.3.1 Naming Conventions and Name Space 204

11.3.2 Dojo Base Module 205

11.3.3 Dojo Core Modules 217

12 Objects and Classes 223
12.1 Objects Explained 223

12.1.1 Creating Objects 224

12.1.2 Encapsulation 224

12.1.3 Object Templates 225

12.1.4 JavaScript Prototypes 227

12.2 Using Dojo to Work with Objects 228

12.2.1 Dojo Function: dojo.declare 229

12.3 Defining a Class 229

12.3.1 Superclasses and Inheritance 231

12.3.2 API for dojo.declare 231

12.3.3 Other Dojo Functions 233

12.3.4 Object Graphs and Dot Notation 234

13 Strings and JSON 239
13.1 Text Strings 239

13.1.1 Dojo Function: dojo.string.pad 240

13.1.2 Usage Example for dojo.string.pad 241

13.1.3 Dojo Function: dojo.string.substitute 241

13.1.4 Usage Example for dojo.string.substitute 243

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xiContents

13.2 JSON 244

13.2.1 Dojo Function: dojo.toJson 246

13.2.2 Usage Example for dojo.toJson 246

13.2.3 Dojo Function: dojo.fromJson 247

14 Events and Event Handling 249
14.1 Description of the Event Model 249

14.1.1 What Are Events? 250

14.1.2 Additional Dojo Events 251

14.2 Defining and Assigning Event Handlers 252

14.2.1 Using dojo.connect to Assign
Event Handlers 252

14.2.2 Usage Example for Assigning
Event Handlers 253

14.3 Representing an Event as an Object 254

14.4 Using Aspect Oriented Programming in Dojo 256

15 Ajax Remoting 259
15.1 Remoting 259

15.2 Review of XMLHttpRequest (or XHR for Short) 260

15.2 The dojo.xhrGet Function 261

15.3.1 Parameters in Detail 264

15.4 dojo.xhrPost 264

15.4.1 Usage Example—Error Handling 268

15.5 Working with Forms 269

15.5.1 Dojo Function dojo.formToObject 270

15.5.2 Dojo Function dojo.objectToQuery 271

15.5.3 Dojo Function dojo.formToQuery 272

15.5.4 Dojo Function dojo.formToJson 274

15.5.5 Dojo Function dojo.queryToObject 274

16 Working with the DOM 277
16.1 Finding Needles in the DOM Haystack 277

16.2 Dojo Query 278

16.2.1 CSS Selectors 279

16.2.2 Using Selectors in dojo.query 282

16.2.3 Using DOM Elements Found
by dojo.query 283

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xii Contents

16.3 Animation 283

16.3.1 Understanding Animation 283

16.3.2 Dojo Animation Function 285

16.3.3 Standard Animation Effects 286

17 Testing and Debugging 293
17.1 Testing 293

17.1.1 Unit Testing 294

17.1.2 DOH—The Dojo Unit Testing Framework 294

17.1.3 Other Types of Testing 298

17.2 Logging 298

17.2.1 Basic Logging 299

17.2.2 Advanced Logging 300

Index 303

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Foreword

If there is one lesson to be learned from the Dojo Toolkit, it is “Be careful what you
wish for!”When we first started Dojo, we had the modest goal of creating a JavaScript
toolkit that would be useful and would prevent expert JavaScript developers from having
to reinvent the wheel.With the buzz and excitement that would soon follow with the
emergence of the term Ajax, we quickly found ourselves as the creators of a toolkit used
by thousands and thousands of developers and millions of users in a very short time.

In the case of any project or company that grows much faster than expected, there are
growing pains along the way. It has taken Dojo nearly 18 months to address and solve
most of the issues caused by its rapid success: performance, comprehension, ease of use,
and documentation. Open source projects are notoriously bad at both marketing and
documentation, and Dojo was initially no exception to the rule.With each release from
Dojo 0.9 to 1.1 and beyond, documentation and API viewing tools have improved sig-
nificantly and are now something we’re proud to have rather than being a blemish to the
project.

Above and beyond source code documentation, demos, and great examples is the
need for great books.When learning something new, the most difficult things to learn
are usually the questions you don’t know how to ask.The vernacular and philosophy of
Dojo is very powerful and efficient but often leaves developers new to Dojo not know-
ing where to get started. Dojo in particular and Ajax in general also have the learning
curve of basically needing to understand a wide range of technologies, from server-side
programming languages to JavaScript, CSS, HTML, and the DOM, plus the browser
quirks and inconsistencies across each.Toolkits such as Dojo go to great lengths to rescue
developers from the most common and egregious of these issues, but developers creating
something new will inevitably run into trouble along the way.

There are numerous opportunities for developers and users of Dojo to solve their
problems and get up to speed, from reading this book to online community support, and
the commercial support provided by companies such as SitePen.

Dojo has thrived and succeeded because of its transparent and open development
process.All code is licensed under the AFL and BSD, licenses which are focused on
adoption rather than control.

Contributions have been received from hundreds of individuals and from companies
such as AOL, Google, IBM, Nexaweb, Renkoo, SitePen, Sun,WaveMaker, and many
more.We have a strict but low-barrier contribution policy that requires all source code
contributions to be made through a Contributor License Agreement, ensuring that usage
of Dojo will not cause legal or IP headaches now or in the future.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

And we innovate and experiment more than any other toolkit, introducing features in
DojoX that are far ahead of other toolkits.

I first met James Harmon at a conference when he was giving a talk about Dojo.The
great thing about James’ approach was that he did an amazing job of simplifying the
message.Alex Russell and I have a tendency to beat people over the head with every
feature and every possibility, whereas James was able to distill complex topics down to
easy-to-follow concepts that help people quickly get up to speed with Dojo.

This book takes the same simple approach of clearly explaining how to create web
applications and web sites with Dojo in a manner that should make it easy, even for
developers who are not JavaScript experts, to quickly get up to speed and become
effective with the Dojo Toolkit.

Dylan Schiemann
CEO, SitePen
Cofounder, Dojo Toolkit

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Acknowledgments

It seems like a ridiculous conceit to put only my name on the cover of the book. I've
learned that “it takes a village” to write a book and I'd like to acknowledge some of the
members of my village who have been so helpful with their time and encouragement.
First, thanks to my editor, Debra Williams Cauley, who began by not taking “no” for an
answer (in the nicest way, of course) and continued by expertly guiding me through the
process.

Also, thanks to Debra's team at Prentice-Hall, including those I worked with directly,
Chelsey Marti, Chrissy White, Michael Thurston, and all those who toiled behind the
scenes to get this book into the reader's hands. Eric Foster-Johnson also provided invalu-
able suggestions to the text.

No book on Dojo would have been possible without the Dojo Framework itself.
Thanks to all who've contributed to the project and provided me with help and support
along the way, including Dylan Schiemann,Alex Russell, Karl Tiedt,Adam Peller, Becky
Gibson, Sam Foster, Ben Lowery, and James Burke.And to all the other contributors too
numerous to mention that have made Dojo the great framework it is.

Also thanks to my personal network who gave lots of great advice: Ed Lance,Ted
Rafacz, Max Rahder, Steve Meshner, Bob Phifer, and Will Provost.Thanks to my techni-
cal idols, Douglas Crockford, Jesse James Garret, and the guys at Ajaxian.com who got
me interested in Ajax and JavaScript in the first place.

And special thanks to my wonderful wife, Sonia, who helped me carve out the time
to write this book. I couldn't have done it without you.Your constant support is always
an inspiration to me. I love you.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

About the Author

James E. Harmon is the President and Senior Instructor at Object Training Group in
Chicago. He is an experienced developer who spent a majority of his career building
large scale online applications at Accenture and for several other Web-centric consulting
firms. He now specializes in training Java Developers to be more productive by using the
latest technologies and frameworks.

The book’s web site is http://www.ObjectTrainingGroup.com/dojobook.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

I
A Dojo Tutorial

1 Understanding Dojo: A Tutorial

2 Using Dojo for Client-Side Validation

3 Using Dojo to Work with the Server

4 Using Dojo Widgets

5 Processing Forms with Dojo

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1
Understanding Dojo:

A Tutorial

If you tell me, I’ll soon forget. If you show me, I’ll remember forever.

—Chinese Proverb

In the spirit of the quote that opens this chapter, I believe that a simple demonstration
is one of the best ways to introduce a new technology. So I’m opening this book by pro-
viding a tutorial that will use the Dojo Toolkit to enhance a basic HTML form.This
chapter introduces the tutorial, which continues through Chapter 5,“Processing Forms
with Dojo,” and comprises Part I,“A Dojo Tutorial.”

1.1 Introduction to the Tutorial
Imagine that you are a web developer (which is probably not a stretch if you are reading
this book) and you are being encouraged to add some Ajax features to a site you’re
working on. Maybe the originator of this request is your boss or your boss’s boss, who is
not even sure what Ajax is, let alone what kinds of features might be useful.And maybe
you’re not sure yourself. Imagine that your prior experience has mostly been on the
server-side, developing in Java or some other server-side technology, and your experience
with HTML and JavaScript has been fairly limited.This is the scenario we will explore
over the next several chapters as you are introduced to the Dojo Toolkit.

To further flesh out the scenario, imagine that you’ve heard lots of things about how
powerful the JavaScript programming language can be and that there are a number of
JavaScript libraries and frameworks that can help you take advantage of that power.
You’ve decided to use the Dojo Toolkit because some of the web sites and forums that
you frequent to keep up with the ever-changing IT industry have recommended it.And
you’ve already selected one of the most frequently used pages in your application to be
the first candidate for being “Ajaxified.”

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This tutorial walks you through a number of steps to update the page with Ajax fea-
tures.We will enhance the page in a number of small ways that each address a specific
type of issue.Along the way, we’ll see the kinds of features that Ajax allows us to add to
web pages, and we’ll see exactly how to implement those features using the Dojo Toolkit.

1.1.1 Goals for this Tutorial
The primary goal of this tutorial is to show you how to use the Dojo Toolkit to intro-
duce some common Ajax features into your web pages.The tutorial provides instructions
for picking the low hanging fruit. In other words, it focuses on the features that are fairly
easy to implement and yet provide a substantial return in increased usability.This tutorial
is not meant to demonstrate every feature of Dojo, nor is it intended to exhaustively
cover the features that we implement together.You can think of this tutorial as address-
ing the first phase of web site enhancement.

Another main goal of this tutorial is to implement features in the plainest way.Although
most Dojo features can be implemented either declaratively (in HTML markup) or pro-
grammatically (using JavaScript), we’ll first focus on the declarative technique given that
most web server-side developers are more familiar with HTML markup than with
JavaScript. Of course, we will also use some JavaScript as the glue to tie things together.

1.1.2 Goals for Using Dojo
What do we hope to achieve by using Dojo? First and foremost, we expect that our
pages will be more usable.This might manifest itself in a variety of ways.The page
should be faster. It should be better looking. It should be easier to operate by the user. It
should help the user enter the required information properly, and the page should be
easier to navigate.Yet at the same time, we should not violate any of the user-interface
conventions that users have come to expect when accessing web pages.We should make
significant usability gains without sacrificing anything that the user already depends on.

How do we make these gains in usability? Dojo provides enhancements to the exist-
ing HTML form elements that provide additional functionality.These enhancements
should make the current form elements behave in more useful ways.

Performance can be improved either by making things run faster or by making things
appear to run faster.The ideal way to make a process appear faster is to have the process
run while the user is doing something else rather than just having him wait for the process
to complete.Ajax provides the ideal mechanism to support this technique.We’ll use Dojo
to allow a page to make data requests of the server asynchronously while the user is con-
tinuing to work.The page will appear to the user to be faster and more responsive.

Data validation can be improved by bringing the validation of data closer to the entry
of data. Dojo supports the ability to send small validation requests to the server without
requiring an entire form to be submitted.When appropriate, we might even want to adopt
the desktop application paradigm of validating data on a keystroke by keystroke basis.

We also expect our features to be easy to implement.We want to be able to leverage
what we know about HTML, and when we use JavaScript, the programming model should

4 Chapter 1 Understanding Dojo: A Tutorial

http://lib.ommolketab.ir
http//lib.ommolketab.ir

be consistent and powerful.We expect to write a lot less code than if we were developing
the functionality by writing it all ourselves. Less code means less opportunity for error.As
you learn Dojo, you can expect that what you learn will continue to be useful as you dig
further into Dojo.And when things do become more complex, you will have tools to aid in
debugging. In short, you can expect Dojo to provide a great programming environment.

Finally, we hope to be constantly surprised by the benefits we derive from using Dojo,
obtained without any extra work on our part. For example, we expect that any features
we add will work the same regardless of what browser our users are using.And we expect
our visual elements to support Web Accessibility and Internationalization standards.

We’ve set quite a high bar for Dojo to cross over.We’re asking for a lot and not
expecting to sacrifice much to obtain it. Can Dojo really deliver? Let’s find out.We start
at the beginning by reviewing the page that will be the basis for our enhancements and
identifying the kinds of problems we hope to solve.

1.2 A Standard HTML Data Entry Form
We begin by selecting a page from our application that will be the target for our Dojo
enhancements (see Figure 1.1).This page comes from a hypothetical Customer Service
application for a nation-wide cable company and allows a customer to create an account
and to request service.The tutorial is going to be pretty vague about the operations of
our “business” because, as you probably guessed, this form is being used to highlight
some specific types of functions that many business applications possess. So, if you can
suspend your disbelief for a little while, let’s review the form.

51.2 A Standard HTML Data Entry Form

Figure 1.1 Standard HTML customer entry form

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page has a very basic design—almost no design at all. It uses only a small bit of
styling and is about as plain as you can get.Your pages probably look much better than
this, but we start with this minimal design to keep the examples as simple as possible.

Let’s walk through each of the fields on this form and discuss the usability problems.
A discussion of how Dojo can solve these problems then follows.

1.2.1 First and Last Name
The first data entry field is used to hold the customer’s first name. Straightforward
enough, yet we already have a problem.The label for the field says “First / Last Name:”
and is followed by two text fields for input.Although the user can probably figure out
what the page is asking for, it may be more difficult to understand for screen readers,
which are used by those with visual impairment.

6 Chapter 1 Understanding Dojo: A Tutorial

You could argue that from a usability perspective, this is already a bit confusing.All
the other labels on the page refer to a single text box only, while this label refers to two
text boxes.When a name is separated into two parts, should the last name be entered
before the first name, or the other way round? These are good questions, but we’ll have
to wait for the answers. Remember, we’re just identifying the problems now.We look at
solutions later in the chapter.

Now let’s examine the HTML markup for these fields.

<label for="firstName">First / Last Name: </label>

<input type="text" id="firstName" name="firstName" />

<input type="text" id="lastName" name="lastName" />

You might not have used the <label> tag before, but it can be helpful for improving
your site’s accessibility for the disabled.The tag is useful to screen readers when the label
does not immediately precede the input field, such as when the label is in a different
table cell. It also makes it easier to style all the labels with a single style when using
Cascading Style Sheets (CSS).Another problem is that only one of the fields has a
<label> tag.

Both the first name and last name fields are required. However, in our standard form,
no JavaScript is being used, so how do we make the fields required? There is no HTML
tag or attribute for this, so we’ll depend on the server to do the validation.That means
the user won’t know the fields are required until after submitting the form and receiving
an error message back from the server.

How will the error messages be displayed? Let’s say that the user has entered some
data in the form and pressed the “Submit” button.The browser will make a request to
the server that will then validate the data and return the form back to the browser along
with some error messages. Hopefully the server will also send back the data that the user

http://lib.ommolketab.ir
http//lib.ommolketab.ir

entered so they don’t have to re-enter it. Oftentimes, the error page will display all the
error messages near the top of the page.The page with error messages might appear as
shown in Figure 1.2.

71.2 A Standard HTML Data Entry Form

Figure 1.2 Typical error messages for a form

1.2.2 User Name
Our application will allow the user to sign in and manage his or her account, so we’re

asking the user to create a user name that will be used for that purpose.We ought to
provide him with some guidance for creating a proper name, but that would require us
to add quite a bit of text to the page, so we’ve decided not to.The form simply asks for
a user name and provides a text field.

The HTML markup for this is quite similar to the “First / Last Name:” fields, just a
<label> and <input type="text"> tag as shown here.

<label for="userName">User Name: </label>

<input type="text" id="userName" name="userName" size="20" />

We’ve added a little client-side validation by specifying the size=”20” attribute to
ensure that the user can’t enter a name longer than 20 characters.

A problem with this field involves validation.A user would like to create a short user
name that is easy to remember, but because this is also the goal of every other user, it is
possible that the name might have already been selected. How is the user notified of
this? Again, validation can’t be done until the user submits the page.The server will
check the user name to see if it has already been assigned and, if so, will return a page
that redisplays the form and shows the error message (along with any additional error
messages associated with other fields). It might be helpful also to suggest some alterna-
tives to the user so that he doesn’t keep entering names that have already been taken.
These suggestions should be based on the user’s desired user name.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1.2.3 Email Address
We’d like to communicate with the user through email, so we’ll ask for an address.A

simple text box will be used to let the user enter the email address.

8 Chapter 1 Understanding Dojo: A Tutorial

The HTML markup is shown here and is very similar to the other text fields on the
page.

<label for="email">Email: </label>

<input type="text" id="email" name="email" size="45" />

Again, we’ve enabled some client-side validation by specifying the size of the field.
But is there a way to tell if the email address is valid? There are two types of validation
we could try. First, is the email address in the correct format? For instance, does it con-
tain the “@” symbol? Does it end with a TLD such as “.com”? Second, is it an actual
working email address? Unfortunately, there is no way to determine the latter without
actually creating and sending an email.Though this might be useful for sending the user
a password and letting her validate the user name, it is beyond the scope of what we
want this page to do. So we’ll just focus on confirming that the email address at least
appears to be formatted correctly.

1.2.4 Address
We’ll ask for the first line of the user’s home address and use a regular text box to

capture it.

The HTML is similar to the previous fields.
<label for="address">Address: </label>

<input type="text" id="address" name="address"/>

This field should contain the first line of the customer’s billing address, so we need to
make sure it is entered. It is a required field, but again we’ll have to depend on the server
to perform that validation.

1.2.5 State
We need the user’s state as part of the billing address. Because there are only a limited

number of states, we can use a <SELECT> to provide a pull-down list of states, one of
which can be chosen.A typical example of a pull-down list of states is shown in
Figure 1.3.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 1.3 Pull-down list of states

HTML provides the <SELECT> form element, which can be used to supply a list of
values.A snippet of the markup necessary to create the field is shown here.

<select name="state" >

<option value="AL">Alabama</option>

<option value="AK">Alaska</option>

<option value="AS">American Samoa</option>

<option value="AZ">Arizona</option>

... additional state values not shown ...

</select>

Because there is only a small set of values for state, they can all be shown. For this
field, validation is not a problem, but behavior is. I live in Illinois, and I make frequent
purchases on the Web, so I’m often faced with entering my billing address.When I come
to the state selection field on a form, I first type an “i”, and “Idaho” pops up on the list
because it is the first state that begins with an “i.” Fair enough—even though I don’t live
in Idaho. Next I type an “l” (a lowercase “L”), and “Louisiana” pops up. Now, many fine
people live in Louisiana, but I am not one of them.The problem is that the <SELECT>
tag interprets my typing as two distinct cases of typing the first letter of a word instead
of just one case of typing the first two characters of a single word.When I type “il” I
want to see all the states that begin with the letters “il”, and only Illinois makes that cut.
Unfortunately, this just isn’t how a <SELECT> tag works—it displays “Louisiana” when I
type the “l,” assuming that I’m typing the first letter of the state again.

This isn’t always a problem. Some browser versions do work as we’d like them to
(interpreting the entire string “il” as the first characters of the state), but we need to
have consistent behavior on our page regardless of what browser the page happens to be
running in.

91.2 A Standard HTML Data Entry Form

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1.2.6 City
This is another required field.We’ll use a text box to capture the value from the user.

10 Chapter 1 Understanding Dojo: A Tutorial

The HTML will be the same as we’ve already seen for the other text fields.

<label for="city">City: </label>

<input id="city" name="city"/>

The basic HTML form will not provide any type of validation for this field.
However, couldn’t we have presented the user with a pull-down list of valid cities like
we did for the state selection? There are only a finite number of cities for each state, but
the number isn’t small.Across the entire United States there are somewhere around
30,000 cities. So simply listing all of the values in our page would have increased the size
of the page, making it slower to load. It is also not correct to list all the cities; we must
list only the cities for the state selected by the user.We would need to create some
JavaScript logic to do that, and we’re trying to avoid JavaScript in our simple form.

The usability of the pull-down list would also be problematic. Because there are so
many cities, many of them would start with the same letter.Typing the first letter of the
city would only get the user to the beginning of a long list.The user would have to
scroll down for quite a while to reach certain values—something that would get pretty
tiresome.

1.2.7 Zip Code
Zip code is the final required field for the billing address.We’ll use a text box to cap-

ture the data from the user.

The HTML is the same as for the other text fields.

<label for="zipCode">Zip Code: </label>

<input type="text" id="zipCode" name="zipCode" size="10" /></br>

Validation is required.Again, we’ll depend on the server for making sure the field has
been entered.The server will return a page containing the form, any data entered by the
user, and any validation error messages that are created.Aside from making the field
required, what other validations might be performed? Just like for the email address,
there are two types of validation. Is the data in the right form? And is the data a valid
value?

Zip codes take two forms in the United States.They can be five numeric digits long
or five digits followed by a dash and then four more digits.This means that the entered

http://lib.ommolketab.ir
http//lib.ommolketab.ir

data can either be five characters long or ten characters long. HTML does provide us
with a technique for enforcing a maximum length by using the size attribute. However,
there is no way in HTML to specify a minimum length. Nor is there a way to specify
that a dash is required to separate the two parts of the long style of zip code.The server
can perform all these checks but only after the user has submitted the form.

We could go even further. Like states and cities, the U.S. has a certain finite set of zip
codes.Would we be able to list them in a <SELECT> list? And since we already know the
state and city, could we list just the zip codes that apply? That logic is actually more
complicated than you might think—some cities have multiple zip codes while some zip
codes cross over city boundaries.Also if we expand our geographic reach beyond the
boundaries of the U.S., we’ll discover additional complexities. However, we’ll stay within
the U.S. borders for the sake of keeping our tutorial fairly simple.

We’ve introduced lots of problems with this field. Remember, solutions are suggested
later in the tutorial.

1.2.8 Service Date
Our customers would also like to schedule the start of their cable service, so we pro-

vide a text box where they can enter the starting service date.

111.2 A Standard HTML Data Entry Form

The HTML is the same as we have seen before for the other text fields.

<label for="serviceDate">Service Date:</label>

<input type="text" id="serviceDate" name="serviceDate" size="10"/>

What kinds of validation are required for the service date? Of course, it must be a
valid date, but what format should the date be entered in? We’re not giving the user
guidance.This is clearly a problem. Beyond that, the date should be in the future and not
the past.There might even be dates that should be blocked out such as non-business
days.

Another usability problem with this field is that people can’t easily calculate future
dates.What is the date of the day two weeks from now? Do we just add 14 to the cur-
rent date? Not if the current month ends before we reach that date.And what is the date
of the first Monday three weeks from now? It can be very difficult for the user to calcu-
late dates without having a calendar available.

1.2.9 Comments
Finally we come to the last field on the form—Comments.The user can enter free-

form comments describing how she found out about our service and what kinds of
shows she likes—or anything else she might want to tell us.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

12 Chapter 1 Understanding Dojo: A Tutorial

This is a multi-line text box that allows the use to enter as much or as little text as
she would like.The HTML is shown here.

<label for="comments">Comments:</label>

<textarea name="comments" rows="3" cols="35" id="comments">

</textarea>

This is not a required field, so no validation is necessary.The HTML form element
<textarea> provides some basic text editing capability. It will automatically wrap words
when the user comes to the end of each line. Once the user enters more text than can
fit in the visible portion of the box, a scroll bar automatically appears on the right-hand
edge of the box to allow up and down scrolling. But that’s the extent of its features.
There are no formatting capabilities.

This completes our review of the original HTML form. Now that we’ve cataloged
the many problems with this form, we can plan our strategy for addressing them with
Dojo.

1.3 The Plan for Enhancing the Form
There is a lot of work to do to address all the problems we’ve identified.We need to

create a plan of attack, and the first task is be to organize our problems into some broad
categories.We’ll start with the simplest changes first and gradually move up to more
complicated ones.The categories are listed here. Each category will be a step of the
tutorial.

1. Including Dojo in the form

2. Adding client-side validation

3. Adding server-side features

4. Using additional specialized Dojo widgets

5. Processing the form

Each topic is described in more detail in the following sections.

1.3.1 Including Dojo in the Form
The first step of the tutorial shows you how to add Dojo to a web page and is contained
here in Chapter 1.

Dojo is a library of functions that we can access either programmatically or declara-
tively.We use it programmatically by writing JavaScript, which makes calls to Dojo func-
tions, or declaratively by calling Dojo using HTML markup. But before we can make

http://lib.ommolketab.ir
http//lib.ommolketab.ir

any calls to Dojo, we must make it available to our page. In other words, we must
include Dojo in our web page.This step alone won’t implement any of the many fea-
tures available to us, but without it, we can’t use Dojo at all.

1.3.2 Adding Client-side Validation
The second step of the tutorial focuses on client-side validation and is contained in
Chapter 2,“Using Dojo for Client-side Validation.”

Many of the usability problems we identified were things that could be solved by
providing some validation in the browser. In this step we only address the validation that
doesn’t require communication with the server. Some developers might not even consid-
er these features to be Ajax because there is no server request created. But that would
not be quite accurate.After all,Ajax is a two-sided coin. One side is certainly asynchro-
nous server communication without a page refresh, but the other side of the coin is all
the interactivity and eye candy available by using JavaScript to manipulate the display.

One of the problems we solve in this step is the validation of required data. Rather
than submit the form and asking the server to check that a required field has been
entered, we use JavaScript to test for data before submitting the form.This will make the
application seem faster because the user won’t have to wait for a server response to find
out about bad data.

1.3.3 Adding Server-side Features
The third step of the tutorial focuses on the classic definition Ajax—making calls to the
server without refreshing the page that the user is working on.This topic is covered in
Chapter 3,“Using Dojo to Work with the Server.”

Some of the other problems with our form were caused by forcing a page submit to
validate certain kinds of data. For example, the user name needs to be validated against
existing user names on the server.There is no way to avoid checking the server—that’s
where the data is. But we don’t have to request a whole new page.We can create an Ajax
request just to check the user name, and the server will return just the validation infor-
mation, not an entire new page.This will be quicker and won’t interrupt the user’s flow.

We’ll also make requests to the server to get data based on values entered by the user.
For instance, we can go get a list of cities from the server based on the state selected
from the pull-down list.This step will require some additional scripts on the server to
allow it to respond to these Ajax requests. I’ve created some simple JavaServer Page (JSP)
scripts on the server to allow the examples to work.The scripts are over-simplified but
serve the purpose of demonstrating the features that are discussed in the tutorial.

1.3.4 Using Additional Specialized Dojo Widgets
The fourth step of the tutorial demonstrates some of Dojo’s powerful widgets and is
contained in Chapter 4,“Using Dojo Widgets.”

131.3 The Plan for Enhancing the Form

http://lib.ommolketab.ir
http//lib.ommolketab.ir

14 Chapter 1 Understanding Dojo: A Tutorial

Eye candy is the term some designers use to describe cool visual effects. Drag–and-
drop in Google Maps is at least partly an eye candy feature. Not only does Dojo allow us
to enhance existing HTML form elements, but it also provides entire new visual ele-
ments called widgets, which provide new form elements not available in HTML. For
example, one of the problems with service date was that the user really needs to see a
calendar to pick the date.We can add the Dojo Date Picker widget, which causes a cal-
endar to display right on the page.We can also replace the simple <textarea> element
with a full-blown rich text editor widget.

1.3.5 Processing the Form
The fifth and final step of the tutorial demonstrates form processing and submission and
is discussed in Chapter 5.

The final step of the tutorial deals with treating the form elements as an integrated
whole.We look at how to verify that all the client-side validations have been performed
before the form is submitted, and we see how to submit the form. I hate to ruin the end
of the movie, but here goes (spoiler alert): Dojo will submit the form data as through it
were a regular HTML form. In other words, we won’t have to modify the component
on the server that processes the form data.The server won’t even know that the form
has been “Dojo-ized.”That will save us some work on the server.

1.4 Getting and Running the Source Code
Each step in the tutorial is fully described in this book. However, you might want to
play along at home.All the source code required for the tutorial is available at the web
site for the book, which includes starting code for each step along with the final code
for each step.You can download the starting code and make the changes yourself—or
just download the final code for each step and run it.

You can use whatever editor you like to modify the code. For some of the steps, you
do not even need a web server. However, this is a web application, so some of the fea-
tures do require a server. I’ve created some server components using Java Server Pages
(JSPs).These server components are sufficient only to run the examples and are not sug-
gested or recommended for production systems use.

To run the server code you need a web server that provides a JSP container. I’d rec-
ommend Tomcat, available at the Apache Software Foundation web site.1 Tomcat is free.
However, any web server which supports JSPs will do.The web site for the book also
provides support for running the code along with corrections to the book’s text. Please
check out the website and feel free to contact me.2

1 You can download the Tomcat web server from the following address: http://tomcat.apache.org/.
2 The web site for this book can be found at the following URL:

http://www.objecttraininggroup.com/dojobook.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1.5 Tutorial Step 1—Including Dojo
The purpose of the first step of this tutorial is to make the Dojo Toolkit functions avail-
able to our web page. For now, we can think of Dojo as a JavaScript file that must be
included on our page (and on each page that will use Dojo).This is a simplification.
The Dojo Toolkit actually consists of many files organized in a directory structure.We
explore that in later chapters, but for now we can pretend that Dojo is just a single
JavaScript file.

We include Dojo in our page using the same technique that we would use to include
any JavaScript source file.We will use the <script> tag, which is explained in more
detail shortly.

1.5.1 Download or Create the Source Files
Before we can modify the form to include a <script> tag, we must first create the
form. Just in case any problems have been identified since this book was published, you
might want to check the book’s website.You can also download the source files there.
You’ll need two files:“form.html” and “form.css.”The source code for each file is also
included here in the text.

Following is the code for the form itself.This file should be named “form.html.”

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<!— Dojo Tutorial - Step 1 (form.html) —>

<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />

<title>Customer Entry Form</title>

<!— CSS —>

<link rel="stylesheet" href="form.css" type="text/css" />

</head>

<body>

<div class="formContainer">

<form action="submit.jsp" method="get" name="custForm">

<div class="formTitle">Customer Entry Form</div>

<div class="formRow">

<label for="firstName">First / Last Name: </label>

<input type="text" id="firstName" name="firstName" />

<input type="text" id="lastName" name="lastName" />

</div>

151.5 Tutorial Step 1—Including Dojo

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<div class="formRow">

<label for="userName">User Name: </label>

<input type="text" id="userName" name="userName" size="20" />

</div>

<div class="formRow">

<label for="email">Email: </label>

<input type="text" id="email" name="email" size="35" />

</div>

<div class="formRow">

<label for="address">Address: </label>

<input type="text" id="address" name="address" size="32"/>

</div>

<div class="formRow">

<label for="state">State:</label>

<select name="state" >

<option value="AL">Alabama</option>

<option value="AK">Alaska</option>

<option value="AZ">Arizona</option>

<option value="AR">Arkansas</option>

<option value="CA" selected="selected">California</option>

<option value="CO">Colorado</option>

<option value="CT">Connecticut</option>

<option value="DE">Delaware</option>

<option value="DC">District of Columbia</option>

<option value="FL">Florida</option>

<option value="GA">Georgia</option>

<option value="HI">Hawaii</option>

<option value="ID">Idaho</option>

<option value="IL">Illinois</option>

<option value="IN">Indiana</option>

<option value="IA">Iowa</option>

<option value="KS">Kansas</option>

<option value="KY">Kentucky</option>

<option value="LA">Louisiana</option>

<option value="ME">Maine</option>

<option value="MD">Maryland</option>

<option value="MA">Massachusetts</option>

<option value="MI">Michigan</option>

<option value="MN">Minnesota</option>

<option value="MS">Mississippi</option>

<option value="MO">Missouri</option>

<option value="MT">Montana</option>

<option value="NE">Nebraska</option>

<option value="NV">Nevada</option>

16 Chapter 1 Understanding Dojo: A Tutorial

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<option value="NH">New Hampshire</option>

<option value="NJ">New Jersey</option>

<option value="NM">New Mexico</option>

<option value="NY">New York</option>

<option value="NC">North Carolina</option>

<option value="ND">North Dakota</option>

<option value="OH">Ohio</option>

<option value="OK">Oklahoma</option>

<option value="OR">Oregon</option>

<option value="PA">Pennsylvania</option>

<option value="PR">Puerto Rico</option>

<option value="RI">Rhode Island</option>

<option value="SC">South Carolina</option>

<option value="SD">South Dakota</option>

<option value="TN">Tennessee</option>

<option value="TX">Texas</option>

<option value="UT">Utah</option>

<option value="VT">Vermont</option>

<option value="VA">Virginia</option>

<option value="WA">Washington</option>

<option value="WV">West Virginia</option>

<option value="WI">Wisconsin</option>

<option value="WY">Wyoming</option>

</select>

</div>

<div class="formRow">

<label for="city">City: </label>

<input id="city" name="city"/>

</div>

<div class="formRow">

<label for="zipCode">Zip Code: </label>

<input type="text" id="zipCode" name="zipCode" size="10" />

</div>

<div class="formRow">

<label for="serviceDate">Start Service:</label>

<input type="text" id="serviceDate" name="serviceDate" size="10"/>

</div>

<div class="formRow">

<label for="comments">Comments:</label>

<textarea name="comments" rows="3" cols="35" id="comments">

</textarea>

</div>

171.5 Tutorial Step 1—Including Dojo

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<input type="submit" value="Submit" id="submit" />

<input type="reset" id="reset" value="Cancel" />

</form>

</div>

</body>

</html>

This form refers to a CSS file that can provide some simple styling.This CSS file, which
should be named “form.css,” follows.

/* -

File : form.css

Description : Dojo Tutorial

Last Updated : March 1, 2008

-

*/

.formContainer {

margin: 2px auto;

background: #DBE4FF;

width: 500px;

border-width: 1px;

border-style: solid;

border-color: purple;

padding: 10px;

}

.formTitle {

font-size:24px; font-weight:bold;

padding: 10px;

}

form {

margin-top: 5px;

width: 480px;

}

.formRow {

position:relative;

padding: 4px 0.75em 2px 10em;

}

.formRow label {

position: absolute;

left: 0.75em;

18 Chapter 1 Understanding Dojo: A Tutorial

http://lib.ommolketab.ir
http//lib.ommolketab.ir

float: none;

width: 10em;

display:block;

margin: 0;

}

1.5.2 Include the Code for the Dojo Toolkit
Now we need to add a reference to the Dojo Toolkit to our page. Usually we would do
this by downloading the source from the Dojo web site and putting it on our own site
then linking to it. But one of the goals of this tutorial is to be as simple as possible, so
we’re going to take advantage of a cool technique for referencing the Dojo source files
on the Internet without requiring us to have the source on our own web server.

AOL provides a facility it calls the Content Delivery Network (CDN), which is a
“worldwide geographic edge caching” mechanism for the Internet.This allows super fast
delivery of files to web users from AOL servers that are geographically close to them.
The files are also compressed, which further improves the download speeds.AOL has
generously made this facility available to developers and end users. For more information
on the AOL CDN and Dojo, visit http://dev.aol.com/dojo.

So we can just provide a link to the Dojo files on AOL CDN and do not need to
download them to our site at all. Include the following code in the <head> tag in
“form.html.” Please put this below the ending </head> tag so your code is consistent
with the rest of the tutorial.

<script type="text/javascript"

src="http://o.aolcdn.com/dojo/1.1.0/dojo/dojo.xd.js"

djConfig="parseOnLoad: true"></script>

There are a few caveats.The link provided in the code was for the current version of
Dojo at the time this book was published.A more recent version may be available for
you. If you choose to use a later version, check this book’s web site to see if the source
code has changed.

You don’t have to use the AOL CDN.You can download Dojo to your own server.
This might be a preferable approach, especially during development. It allows you to
look at the Dojo source code and to work offline in case you don’t have an Internet
connection.

Downloading Dojo is easy.You simply point your browser to Dojo’s web site,
http://www.dojotoolkit.org, and look for the download link.The download page con-
tains links to the current version and to older versions.While new versions might pro-
vide you with additional features, they might not necessarily work with the source code
for this tutorial. Just check this book’s web site for updates.

If you choose to download Dojo, the <script> tag for the link will be different.The
following code snippet assumes that you have downloaded the Dojo zip file and
unzipped it to the same directory as your form.

191.5 Tutorial Step 1—Including Dojo

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<script type="text/javascript"

src="dojo-release-1.1.0/dojo/dojo.js"

djConfig="parseOnLoad: true"></script>

The attribute djConfig=”parseOnLoad: true” tells Dojo to search the HTML on
your page for any Dojo widgets you may have added. For this to work, we need to
include the Dojo parser.This is accomplished by adding some JavaScript code to our
page. Include the following code in the <head> tag after the <script> tag that linked
to Dojo.

<script type="text/javascript">

dojo.require("dojo.parser");

</script>

NOTE
This is important—the preceding code containing “dojo.require” must follow the link to
Dojo, not precede it.

1.5.3 Include Dojo Style Sheets
Throughout the tutorial, we add various Dojo widgets to our page.The “look” of the

Dojo widgets is defined through styles specified on a few style sheets that must be added
to our page.The Dojo team has separated the “look” of the widgets into separate style
sheets.This is an outstanding feature of Dojo widgets. It means that you can easily style
the widgets to match the look of your website by overriding the default styles.You’re
not limited to whatever out-of-the-box style that the widgets come with.

The first style sheet,“dojo.css,” overrides some of the styles of standard HTML page
elements such as <body>, <div>, and <form>.There are just a few styles, and they’re
meant to set the style to a plain vanilla look.

The next file,“tundra.css,” defines the style for components of many of the standard
Dojo widgets.The “tundra” theme is one of the three built-in themes available in Dojo.
Why the name tundra? A tundra is the cold, treeless area just below the icecap of the
arctic regions. It consists of the permanently frozen subsoil populated with mosses and
small shrubs. Dojo’s “tundra” theme is meant to be reminiscent of that barren landscape
and provides a minimal palette for the widgets.The “noir” theme is darker (“noir” is a
genre of film that emphasizes starkness and often is filmed in black and white).And the
“soria” theme is brighter (Soria is a city in the sunny north-central region of Spain).

Add the following code to the <head> section of the page to style our widgets and
provide the Dojo tundra theme. Order is not important.

20 Chapter 1 Understanding Dojo: A Tutorial

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<style type="text/css">

@import "http://o.aolcdn.com/dojo/1.1.0/dojo/resources/dojo.css";

@import

"http://o.aolcdn.com/dojo/1.1.0/dijit/themes/tundra/tundra.css";

</style>

The code just given only makes the styles available to the page. Now we must actually
apply the theme to the page by adding a class attribute to the <body> tag as the code
that follows demonstrates.

<body class="tundra">

1.5.4 Review All the Code Changes
We’ve made quite a number of changes to the page, and it might be a little confusing as
to exactly what the page should now look like. Following is a new listing of the top part
of the page so that you can see all the changes.

<!— Dojo Tutorial - Step 1 (form.html) —>

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<!— Dojo Tutorial - Step 1 (form.html) —>

<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />

<title>Customer Entry Form</title>

<!— CSS —>

<link rel="stylesheet" href="../form.css" type="text/css" />

<!— CSS —>

<style type="text/css">

@import "../dojo-release-1.1.0/dojo/resources/dojo.css";

@import "../dojo-release-1.1.0/dijit/themes/tundra/tundra.css";

</style>

<link rel="stylesheet" href="../form.css" type="text/css" />

<script type="text/javascript"

src="../dojo-release-1.1.0/dojo/dojo.js.uncompressed.js"

djConfig="isDebug: true, debugAtAllCosts: true"></script>

<script type="text/javascript">

211.5 Tutorial Step 1—Including Dojo

http://lib.ommolketab.ir
http//lib.ommolketab.ir

dojo.require("dojo.parser");

</script>

</head>

<body class="tundra">

Once all these changes are made, we can run the new page to see what it looks like.

1.5.5 Run the New Page
The new page appears as shown in Figure 1.4.

22 Chapter 1 Understanding Dojo: A Tutorial

Figure 1.4 HTML Customer Entry Form with link to Dojo

Hopefully you’re not too disappointed—the page appears to look almost the same as
the original form.There are some subtle style changes, though, such as the font for the
labels and form title—but nothing dramatic.That is ok.We really haven’t started using
Dojo yet.We’ve just made it available to our page. In the next chapter, we continue on
with step 2 of the tutorial where we implement the client-side validations, which is
when we start to see some exciting stuff.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Summary
We explored Dojo by starting a tutorial that will demonstrate some of its basic features.

The tutorial consists of five steps:

Step 1—Including Dojo (Chapter 1)

Step 2—Adding client-side validation (Chapter 2)

Step 3—Adding server-side features (Chapter 3)

Step 4—Using additional specialized Dojo widgets (Chapter 4)

Step 5—Processing the form (Chapter 5)

We started out by implementing step 1 of the tutorial in this chapter by placing references
to Dojo within our HTML page.

The next chapter continues the tutorial. Now that we’ve made Dojo available to our
page, we can start to use it to do some client-side validation on our text fields.

231.5 Tutorial Step 1—Including Dojo

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2
Using Dojo for Client-side

Validation

To err is human…

—Alexander Pope (1688–1744)

We all make mistakes, so input forms must anticipate that users will inadvertently
enter bad data. Identifying and correcting these mistakes is an important job of an
HTML form, and this chapter describes Dojo features that allow you to easily add vali-
dation.

2.1 Validating Form Fields
Validating input data on web pages is usually a function performed by the server.The
web page allows the user to enter data, and when the Submit button is pressed, the
browser wraps up the data into an HTTP request and sends it to the server.The server
checks each data field to make sure it is valid, and if any problems are found, a new form
along with error messages is sent back to the browser.Wouldn’t it be much more useful
if problems could be detected in the browser before a server request is made? This
approach would provide two primary advantages. It would lighten the load on the serv-
er, and, more importantly, it would notify the user of a problem with a data field almost
immediately after he or she entered the bad data.This supports the truism that errors are
cheapest to fix the closer the detection is to the original creation of the error. For exam-
ple, if there is a problem with a zip code field and the user is notified just after he enters
the bad zip code, then he is still thinking about zip code and can easily make the correc-
tion. If the user isn’t notified until the server response comes back, he’s already stopped

http://lib.ommolketab.ir
http//lib.ommolketab.ir

thinking about zip code—his mind has moved on to other concerns.This problem of
context switching is especially difficult when the server returns errors for many different
fields.

How can we drive validation closer to the entry of the data? There are two primary
techniques available.The first technique involves trying to prevent the error from being
entered at all. For example, if the form requires the user to enter a field that must con-
tain a numeric value of a certain length, we can use the size attribute available in
HTML to specify the maximum amount of characters the user can enter. So the user is
prevented by the browser from entering more characters than are allowed. Following is
an example from our form for the zip code field.

<label for="zipCode">Zip Code: </label>

<input type="text" id="zipCode" name="zipCode" size="10" />

This initial validation markup gives us more optimism than is deserved.We might be
hoping for many other attributes to provide some kind of client-side validation.
Unfortunately, the size attribute is basically the extent of HTML-based validation tech-
niques.There are no markup tags or attributes for minimum size or for data type. Nor is
there a way in HTML to designate that a field is required.

That brings us to the second type of validation available to us in the browser.We can
use JavaScript. Given the power of JavaScript, the sky is the limit in terms of types of
validations we can perform.We can trigger a JavaScript function to run after the user
enters a field, and that function can check to see if data is entered, check for a minimum
or maximum length, or even perform sophisticated pattern matching using regular
expressions.

Problem solved, correct? Not quite.The problem with depending on JavaScript as our
validation technique is that we have to write lots of code to implement the checks.
JavaScript code is required to perform the validation. Other JavaScript code tells the vali-
dation when to run.And even more JavaScript code is needed to display the error mes-
sages back to the user. Code, code, and more code. Suddenly, this approach doesn’t seem
as desirable anymore.

But this is where Dojo can come to the rescue. In this part of the tutorial, we explore
how Dojo can help us with validation by combining the two techniques we’ve dis-
cussed. In other words, we’ll be able to turn on validation by using simple HTML
markup, but we’ll let Dojo provide the complex JavaScript code automatically. Let’s get
started.

2.2 Tutorial Step 2—Adding Client-side
Validation
In this step of the tutorial, we use Dojo to provide basic client-side validations.We look
at a number of useful techniques within the context of making real enhancements to our
form. One by one, we examine the fields that these techniques are appropriate for.

26 Chapter 2 Using Dojo for Client-side Validation

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2.2.1 Validate the First Name Field
Let’s look at the “First Name” field first.What are the validations that we need to apply?
The data on this form feeds into our billing system, so the customer’s name is very
important—the field must be required.Are there any other validations? Not only do we
want to get the data, but also we’d like it to be in a consistent format. Possibly the data
should be stored in all capital letters. Or maybe we want to ensure that the data is not in
all capitals. Let’s choose the latter—but we’ll still want to make sure that at least the first
letter is capitalized.As in many of the issues related to validation, things are more com-
plicated then they might first appear. For example, are we allowing enough room to
enter long names? Will single-word names such as “Bono” be allowed? For our purposes,
we’ll keep it simple.

We turn on validation by using special attribute values in the HTML markup for
these fields.The following code will add validation to the fields.

<label for="firstName">First Name: </label>

<input type="text" id="firstName" name="firstName"

dojoType="dijit.form.ValidationTextBox"

required="true"

propercase="true"

promptMessage="Enter first name."

invalidMessage="First name is required."

trim="true"

/>

The code is formatted to be more readable by using line breaks.To summarize what has
happened:All we’ve done is add some new attributes to the <input> tag for the field.
Each of the new attributes affects the validation in some way.

Notice the following line of code from the preceding example:

dojoType="dijit.form.ValidationTextBox"

This attribute is not a standard HTML <input> tag attribute. Depending on which
editor you are using to modify the file, it may even be highlighted as an error.The
dojoType attribute is only meaningful to the Dojo parser, which was referenced in step
1. Remember the code we needed to include the parser? It is shown here:

dojo.require("dojo.parser");

The parser reads through the HTML and looks for any tag that contains dojoType as
one of its attributes.Then the magic happens.The parser replaces the element with the
Dojo widget specified by dojoType. In this case, the widget
dijit.form.ValidationTextBox is substituted for the Document Object Model
(DOM) element created from the <input> tag.

272.2 Tutorial Step 2—Adding Client-side Validation

http://lib.ommolketab.ir
http//lib.ommolketab.ir

How does Dojo know what to replace the tag with? That is determined by the spe-
cific widget. Each widget behaves a little differently. HTML markup and JavaScript code
is associated with the widget in its definition, and that is how Dojo knows what to
replace the original element with—which brings us to the missing piece of the puzzle.
We need to tell Dojo to include the code for the widget by specifying the widget in
JavaScript.To do that, we include the following JavaScript code after the link to Dojo
and after the reference to the Dojo parser.

dojo.require("dijit.form.ValidationTextBox");

Notice that the name of the widget specified as the value for the dojoType attribute
is the same as the argument for the dojo.require call.This is the linkage that allows
Dojo to associate the HTML markup with the JavaScript code for that widget.

To emphasize this process, let’s review the HTML markup specified in the original
page and then compare it to the HTML markup after the parser runs.To see the original
markup, we merely have to view the source of the file form.html. Seeing the new
markup is a bit harder.The browser converts the original HTML into a DOM tree rep-
resenting the various tags.The Dojo parser modifies the DOM elements using
JavaScript, but the original source for the page is untouched.We need some tool that
will convert the DOM (the browser’s internal representation of the page) back into
HTML for our review.The Firefox browser provides a DOM Inspector to do just that.
An excellent add-on to Firefox, called Firebug, also allows the DOM to be inspected.
Firebug also provides a number of excellent tools for developing web pages such as its
DOM inspection capabilities we can use to inspect the DOM after the Dojo parser has
run—so we can see exactly what it does. But before we see how the DOM changes, let’s
first review the original <input> tag for the first name field.

<input

type="text"

id="firstName"

size="20"

dojoType="dijit.form.ValidationTextBox"

required="true"

propercase="true"

promptMessage="Enter first name."

invalidMessage="First name is required."

trim="true"

/>

The code has been reformatted to make it more readable by adding some line breaks.
The attributes from dojoType through trim are not valid HTML attributes.They are
meaningful only to the Dojo parser and drive some features of the Dojo widget they
pertain to. Now let’s see what the HTML looks like after the parser runs.

28 Chapter 2 Using Dojo for Client-side Validation

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<input

type="text"

tabindex="0"

maxlength="999999"

size="20"

class="dijitInputField dijitInputFieldValidationError dijitFormWidget"

name="firstName"

id="firstName"

autocomplete="off"

style=""

value=""

disabled="false"

widgetid="firstName"

dojoattachevent="onfocus,onkeyup,onkeypress:_onKeyPress"

dojoattachpoint="textbox,focusNode"

invalid="true"

valuenow=""

/>

The preceding code has also been reformatted for readability, adding line breaks and
changing the order of the attributes a little. Notice that a number of valid HTML attrib-
utes have been added to the <input> DOM element such as tabindex, class, auto-
complete, and disabled.And additionally, a number of Dojo-only attributes have been
added such as widgetid, dojoattachevent, dojoattachpoint, invalid, and val-
uenow.We look at these in more detail in Part II,“Dojo Widgets,” but for now it’s
enough just to point out that the parser is rewriting our HTML.The parser is doing
even more work that we can see here. It is associating various event handler functions to
events that might occur on this DOM element. For instance, when the user enters or
changes the value in the field, Dojo functions get called, which perform validation.And
Dojo even creates objects that correspond to the HTML tags.We can’t tell that this is
happening just from seeing the HTML markup, but behind the scenes, that is exactly
what Dojo is doing.

Let’s review the other special Dojo attributes. Each Dojo widget has a set of proper-
ties that control its behavior.These properties are set by various Dojo widget attribute
values.

n The required=”true” attribute setting tells Dojo that this field must be entered.
n The propercase=”true” attribute setting tells Dojo to reformat the field value

entered by the user. In this case, the setting for propercase tells Dojo to make
sure that the first letter is capitalized and subsequent letters are in lowercase. In
other words, Dojo will put the entered value into the format for a typical proper
noun.

292.2 Tutorial Step 2—Adding Client-side Validation

http://lib.ommolketab.ir
http//lib.ommolketab.ir

n The promptMessage=”Enter first name.” attribute setting tells Dojo to dis-
play a message next to the field to instruct the user on what kind of data can be
entered into the field.The prompt message displays while the field is in focus.

n The invalidMessage=”First name is required.” attribute setting causes
Dojo to display a message next to the field if it fails the validation. In our case, if
the user does not enter a value, then a message will appear.

n The trim=”true” attribute setting tells Dojo to remove any leading or trailing
spaces from the entered value before sending it to the server.

Now let’s run the page and see how it behaves. Because this is the first field on the
page, the field gets focus, and the cursor immediately is placed on the input area for the
“First Name” field.

30 Chapter 2 Using Dojo for Client-side Validation

Notice that we get a message box that says “Enter first name.” Dojo calls this a Tool Tip,
and it has dynamic behavior. It is only displayed when the field has focus (the cursor is
in the field), and once the field loses focus, the message disappears.The message appears
on top of any visible element below it, so there is no need to leave room for it when
designing your page.

Try entering different values in the field and then press <tab> to leave the field. For
example, enter “ joe “ and watch it be transformed into “Joe” with leading and trailing
spaces removed and the first letter of the name capitalized.

NOTE:
You might not agree with the various validations I have chosen. For example, one early
review of this text pointed out that “LaToya” would be a hard name to validate. You could
probably make a case for different validations, and I could probably agree with you. But I’ve
chosen the ones I have not only to represent my example application, but also to highlight
certain Dojo features—so I’m sticking to them!

2.2.2 Validating the Last Name Field
The last name field has the same validations as the first name field does.There is

nothing extra to do for this field and nothing new to learn. Just replace the <input> tag
for Last Name with the following code.

<input type="text" id="lastName" name="lastName"

dojoType="dijit.form.ValidationTextBox"

required="true"

propercase="true"

promptMessage="Enter last name."

http://lib.ommolketab.ir
http//lib.ommolketab.ir

invalidMessage="Last name is required."

trim="true"

/>

2.2.3 Validating the User Name Field
We are going to allow the user to manage his or her own account information in our

application.To provide some security we need the user to make up a user name that he
or she can use later to sign on to the system.This field will be required, and we’d like it
to always be entered in lowercase.To validate this field, we’ll use the same Dojo widget
that we’ve already used, dijit.form.ValidationTextBox, but we’ll use a new attrib-
ute called lowercase to force the transformation of the entered data into all lowercase
letters.

There are some additional validations we’d like to do on this field. For instance, is this
user name already assigned to someone else? We could check the server for existing val-
ues. However, because this validation requires interaction with the server, we’ll save it for
step 3 of the tutorial and focus on only the client-side validation right now.

The following HTML markup is needed to enable validation for this field.

<input type="text" id="userName" name="userName"

dojoType="dijit.form.ValidationTextBox"

required="true"

promptMessage="Enter user name."

trim="true"

lowercase="true"

/>

2.2.4 Validating the Email Address Field
We need to communicate with our customers so we’ll get their email addresses.This

will be a required field.We’ll also make it all lowercase for consistency. In addition, we’d
like to make sure that the value entered in this field is also in the correct format for an
email address.There is no way to know if it is a working email until we actually try to
send something to it, but at least we can make sure that it contains a “@” character and
appears to reference a valid domain.

How can we specify the desired format? By using a specialized pattern matching lan-
guage known as regular expressions, we can specify a pattern of characters to check the value
against.We need to build a regular expression to validate for email addresses.At this point
in our discussions, let’s not go on a long detour to discuss the building of these expressions.

NOTE:
Some great information on building regular expressions can be found at the Mozilla
Developer Center at http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:
Global_Objects:RegExp.

312.2 Tutorial Step 2—Adding Client-side Validation

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The following is regular expression that can be used to validate most formats of email
addresses—most because it is surprisingly difficult to validate for all possible email
addresses.This is because of some of the unusual variations such as domains longer than
four characters such as “.museum” or addresses consisting of a sub-domain. But the fol-
lowing regular expression will work for most.

[\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b]+

NOTE:
For more information on validating email addresses, the following link will get you to a Dojo
Forum article describing a regular expression for email: http://dojotoolkit.org/forum/dijit-
dijit-0-9/dijit-support/text-validation.

The ValidationTextBox contains a special property for validating against regular
expressions.The attribute to use is regExp—just specify the regular expression as its
value. Replace the <input> tag for email with the following code in “form.html” to
specify validation for the email address field.

<input type="text" id="email" name="email" size="30"

dojoType="dijit.form.ValidationTextBox"

required="true"

regExp="\b[a-zA-Z0-9._%-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,4}\b"

promptMessage="Enter email address."

invalidMessage="Invalid Email Address."

trim="true"

/>

Validating email addresses is a really interesting subject.There are quite a few variants
to the simple name@company.com format that we often see. For a really thorough dis-
cussion of email, you should review the RFC rules.The following link will get you to
the Wikipedia page that describes email, from which you can link to the official RFC
documents: http://en.wikipedia.org/wiki/E-mail_address.

2.2.5 Validating the Address Field
The address field will contain the first line of the user’s mailing address.We’ll make it
required.We will use the ValidationTextBox, and we have seen all of the attributes
already. Replace the <input> tag for address with the following code.

<input type="text" id="address" name="address" size="30"

dojoType="dijit.form.ValidationTextBox"

required="true"

promptMessage="Enter address."

invalidMessage="Address is required."

trim="true"

/>

32 Chapter 2 Using Dojo for Client-side Validation

http://lib.ommolketab.ir
http//lib.ommolketab.ir

There are many additional validations that can be performed on address data, the
most important being to ensure that the address is an actual address. Standard abbrevia-
tions such as “St” for “Street” could also be allowed.These additional validations could
be done by a number of web services available from the U.S. Postal Service, but that is
really outside the scope of this tutorial.

2.2.6 Validating the City Field
The city field will contain the value for the city in the user’s mailing address.We’ll make
it required.We will use the ValidationTextBox. Replace the <input> tag for address
with the following code.

<input type="text" id="city" name="city" size="30"

dojoType="dijit.form.ValidationTextBox"

required="true"

promptMessage="Enter city."

invalidMessage="City is required."

trim="true"

/>

2.2.7 Validating the Zip Code Field
The zip code field is part of the mailing address and is required.There are some addi-

tional validations we can apply. Our hypothetical company is a U.S. corporation and only
provides service to U.S. customers, so we’ll limit our address to valid U.S. addresses,
which means that the zip code must be in one of two forms. Either it is a 5-digit num-
ber, or it is a 5-digit number followed by a dash and then followed by a 4-digit number.
If we can come up with a regular expression to test for either format, then we’re golden!

Replace the <input> tag for zip code with the following to enable Dojo validation
for this field.

<input type="text" id="zipCode" name="address" size="30"

dojoType="dijit.form.ValidationTextBox"

trim="true"

required="true"

regExp="\d{5}([\-]\d{4})?$"

maxlength="10"

promptMessage="Enter zip code."

invalidMessage="Invalid zip code (NNNNN) or (NNNNN-NNNN)."

/>

An interesting feature of the preceding code is that we’ve got two overlapping valida-
tions.The maxlength attribute prevents the value from being over 10 digits, but so does
that regular expression.What are the implications of this? One could argue that it is inef-
ficient because both validations will be executed. But they each operate differently on
the page, which might justify using both. If the user tries to enter a zip code that is 12

332.2 Tutorial Step 2—Adding Client-side Validation

http://lib.ommolketab.ir
http//lib.ommolketab.ir

digits long, he will be notified as he tries to type the eleventh digit, rather than after typ-
ing all 12 digits and pressing tab to leave the field. By using both techniques, the error is
detected sooner.

NOTE:
This chapter has stopped short of describing validations for the “Start Service” and
“Comments” fields. This is because we will use more advanced Dojo widgets to validate
these fields, which are described in Chapter 4, “Using Dojo Widgets.”

Summary
The Dojo widget dijit.form.ValidationTextBox provides many common client-side
validations. Include the ValidationTextBox by referencing it in the <input> tag for the
field that needs the validation.

dojoType="dijit.form.ValidationTextBox"

Remember to tell the page that it needs the JavaScript code for the widget by coding a call
to the require method somewhere after the call to the Dojo parser.

dojo.require("widget dijit.form.ValidationTextBox");

Additional attributes in the <input> tag specify behavior for the ValidationTextBox. A
few are listed here:

require="true" makes the field required.

trim="true" removes leading blanks.

lowercase="true" converts field to all lower case letters.

We’ve now completed step 2 of the tutorial. The changes we’ve implemented have added
client-side validation to our form. We were able to add validation almost exclusively through
modifying the HTML—only a small amount of JavaScript was necessary to include the Dojo
validation code. Client-side validation is an extremely powerful capability and makes our
page much more usable. Yet by using Dojo, we obtain this power without the corresponding
cost of writing a lot of JavaScript.

In this chapter we’ve focused on functionality that doesn’t require a call to the server.
In the next chapter the server will play a role.We’ll make calls to the server using the
XMLHttpRequest to get data and perform validations. Now that’s Ajax!

34 Chapter 2 Using Dojo for Client-side Validation

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3
Using Dojo to Work

with the Server

You’re gonna have to serve somebody.

—Bob Dylan

This chapter describes how we can use Dojo to communicate with a server.Two of the
primary purposes that the server can fill are to run processes and provide data. Examples
of both of these are provided in this part of the tutorial.

3.1 Adding Server-side Features
Although Dojo calls itself a JavaScript library, it is often categorized as an Ajax library
instead.Though the characterization might not be accurate, it is understandable. Because
there is no “International Organization For the Definition of Ajax,” the term has been
used in a variety of ways. In general, it’s used to refer to web pages that access the server
without benefit of a full page refresh and that perform some snazzy manipulation of the
DOM to make the site more interactive than stodgy old HTML alone can. But still, for
some, we’re only using real Ajax when we’re making server requests.

This chapter deals with making Ajax requests of the server.We examine two kinds of
requests.The first type of request is to ask the server to perform some processing. In this
case, we’ll ask the server to validate user name.The second type of request is to ask the
server to provide some data, which we will then add to the DOM so it is visible to the
user. Our data request will be for a list of cities in a given state.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

NOTE
There are two primary reasons for communicating with the server: (1) to perform validation
and (2) to get data. This part of the tutorial is split into two steps to correspond to each of
these reasons for using the server. The first step, 3a, describes server-side validation. The
second step, 3b, describes getting data from the server.

3.2 Tutorial Step 3a—Adding Server-side
Validation
In this step of the tutorial we use the server to validate some data entered by the user.A
number of interesting questions are addressed. How do we capture the data? At which
point should the server request be made? What should the application do while waiting
for the server to return? How should the server response be handled? As simple as this
scenario might appear, it does introduce a few complexities. Dojo provides flexibility in
coding for these issues, and some common patterns and best practices will emerge.

We can validate that a user name entered by the user is not already assigned to anoth-
er customer. Many applications allow a user to specify a name by which they are known
to the application.This user name allows the user to login to the application to do things
like edit his or her account or see transaction history.The user name must be unique for
each user across the entire system; therefore, it requires server-side validation to ensure
that it hasn’t been assigned to another user.The use case for this scenario might seem
rather simple, but still it introduces some interesting complexities.

3.2.1 Assign Event Handler Function
The process begins with the user entering a desired user name.The user types the char-
acters and at some point is finished. But how do we really know that the user is done
entering data? Is it when the individual stops typing? If so, how long does the applica-
tion wait before deciding that the user is done? We could even perform the validation
after each keystroke. However, this approach has a number of drawbacks.The load on the
server would be needlessly increased.And the user might be subjected to a flurry of
messages describing the intermediate validations. It would be more useful to perform the
validation just once, when the user has completed entry of the data.

A better approach might be to wait until the user exits the field by pressing the Tab
key or even the Enter key.The problem with pressing Enter is that the browser might
interpret this as a form submission (the default behavior for a standard HTML form). By
pressing the Tab key or using the mouse to place the cursor into another field, the user
would be signaling that he is done entering the user name field and wishes to enter data
for a new field.We’ll use this condition as the right time for the validation to be per-
formed.

Now we need to translate the logical event we wish to capture (the user exiting the
field) into an actual event monitored by the browser. JavaScript provides us with two
possible candidate events, onblur and onchange.The onblur event is triggered when

36 Chapter 3 Using Dojo to Work with the Server

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the focus leaves the field, which normally means that the user has pressed the tab key to
move to the next field or used the mouse to click on another field.The onchange event
does almost the same thing.The difference is that if the data did not change, onblur
would still be called anyway, but onchange would not.The first time the user enters this
field, the difference is moot. But if the cursor passes through the field again without the
user changing the data, then the event will be triggered again, and an unnecessary call
will be made to the server. So the most efficient event to use would be onchange.We
need to create a function that will handle the onChange event and we need to call that
function when the event occurs.

At this point we need to discuss the difference between regular JavaScript events and
Dojo events. JavaScript provides a way to assign an event handler (function) to an event
on a DOM element.The code that follows presents an example of this by setting the
onChange attribute to a value of userNameOnChange().This will cause the
userNameOnChange function to execute when the browser detects that the value of the
field has been changed.

<input

type="text"

id="userName"

name="userName"

size="20"

dojoType="dijit.form.ValidationTextBox"

onchange="userNameOnChange()"

/>

The same technique using Dojo appears in the following code.

<input

type="text"

id="userName"

name="userName"

size="20"

dojoType="dijit.form.ValidationTextBox"

onChange="userNameOnChange"

/>

Notice that we are not using the standard function calling syntax in the second
example. In other words, Dojo uses a reference to the function, not a call to the function.
We can tell this because the first example uses double parentheses at the end of the func-
tion name, while the second example does not.Another difference is that the attribute
has a different case—although the spelling is the same, the “C” in the second example is
capitalized.As you might guess, Dojo is intercepting the browser events and calling its
own events.We go into more detail on exactly what Dojo is doing in Part II,“Dojo
Widgets.” But for now, we only have to recognize that Dojo has a slightly different syn-
tax than regular JavaScript for specifying event handler functions.

373.2 Tutorial Step 3a—Adding Server-side Validation

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Let’s put the handler function into a completely separate JavaScript file.This isn’t nec-
essary but will allow us to keep our JavaScript separate from the original HTML file and
will make our code easier to read. Create a new JavaScript file called
“userNameValidation.js” with a function called userNameOnChange.The following code
contains the contents of our new JavaScript file.We enhance it as we progress through
this step of the tutorial.

// define function to be called when username is entered

function userNameOnChange() {

return;

}

We also need to reference the JavaScript file in our page, so we’ll have to add a new
<script> tag to our HTML page to include the new file.The code the follows should
be placed in “form.html.”The order isn’t important, but to facilitate good organization
of our code, we should put it after the <script> tag for including Dojo.

<script type="text/javascript" src="validateUserName.js">

</script>

The first thing you might notice is that the onChange function is called when the
form is first displayed, even before the user has entered any data in the field.The field
doesn’t even have focus yet.This is because the default behavior for a form widget (of
which our widget is a subclass) calls the onChange function when it first sets the value
of the element. So we’ll want to remember to skip our validation if there is no data in
the form yet, as is shown in the following code.The additional code has been bolded for
emphasis.

// define function to be called when username is entered

function userNameOnChange() {

var userName = document.getElementById("userName").value;

if (userName == "") {

console.log("userName is empty");

return;

}

return;

}

Notice that we are using the console.log function to display messages in a special
browser console that is separate from the web page. Logging is a useful technique during
development so that we can see what the program is doing without having to use
JavaScript alert boxes or write to the web page itself.We dig deeper into debugging in
Dojo in Chapter 17,“Testing and Debugging.”

3.2.2 Make a Call to the Server
We’ve placed the hook into the page so that when the user enters or changes the value
of the user name, our handler function will run. But our function is merely a stub—it

38 Chapter 3 Using Dojo to Work with the Server

http://lib.ommolketab.ir
http//lib.ommolketab.ir

doesn’t really do anything. Now, let’s flesh out the function and do the work that needs
to be done.We need to perform the following steps:

1. Get the data entered by the user.

2. Send the data to the server along with a request for the server to validate it.

3. Handle the response from the server.

Additionally, we’ll need to handle the response on the server and then process the
results that come back from the server but that can wait a bit. Let’s concern ourselves
with that at a later stage and start with getting the data.

3.2.2.1 Get the Data Entered by the User
Dojo provides a number of techniques for getting the value of entered data from a

widget. But to understand them, it might be helpful to remind ourselves of how we can
get data from form fields without Dojo, just using plain old JavaScript and the DOM.
The DOM automatically builds references to form elements, and we can use that to get
a value.

var userName = document.form.custForm.userName.value

Another technique is to use the id property of the DOM elements to find the correct
form element. Of course, this will only work if we’ve assigned id properties to the ele-
ments (as we have in our form).

var username = document.getElementById("userName").value

Dojo provides some additional techniques.The DOM gives us a single object to get data
from—the object corresponding to the DOM element for the field. But when using
Dojo, there are two possible objects we could use to get the value.The first object is the
DOM element, as with plain old JavaScript, but Dojo provides a shortcut for referencing
that object. Notice the dojo.byId function in the following code.

var username = dojo.byId("username").value

The second object that Dojo provides is one that is not part of the DOM. It is a separate
object that contains additional properties and functions that don’t exist in the DOM ele-
ment—the Dojo widget object. Every Dojo widget object corresponds to a set of DOM
elements that describe that widget.We need a different Dojo function to access the
widget object.

var userName = dijit.byId("userName").getValue()

Notice in the preceding code that we are referencing a different namespace (that is,
dijit.byId, not dojo.byId).The function dojo.byId returns a reference to a DOM
element.The function dijit.byId returns a reference to the “shadow” object corre-
sponding to each Dojo widget.

Alright already! We’ve got lots of ways to get the data.Which one should we use? “In
for a penny, in for a pound,” as Ben Franklin use to say. Because we’re using Dojo, let’s
really use it.We’ll write our code against the Dojo object whenever possible so we’ll use

393.2 Tutorial Step 3a—Adding Server-side Validation

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the last version discussed—getting the value from the Dojo widget object using the
dijit.byId function.

Let’s add the new code to our userNameOnChange function.We’ll replace the exist-
ing code that assigns userName.The new code is bolded.

// define function to be called when username is entered

function userNameOnChange() {

var userName = dijit.byId("userName").getValue();

if (userName == "") {

console.log("userName is empty");

return;

}

return;

}

3.2.2.2 Send the Data to the Server
Now we’ll send the data to the server.We need to use the XmlHttpRequest (XHR)
object. But rather than use it directly, we’ll take advantage of the function wrapper pro-
vided by Dojo. By using the dojo.getXhr function, we’ll be using the XHR object
indirectly and letting Dojo handle the housekeeping for us. Our code will be simpler
that way.

// define function to be called when username is entered

function userNameOnChange() {

var userName = dijit.byId("userName").getValue();

if (userName == "") {

console.log("userName is empty");

return;

}

dojo.xhrGet({

url: "validateUserName.jsp?userName=" + userName,

handleAs: "json",

handle: userNameValidationHandler

});

}

The dojo.xhrGet function has a very interesting signature. It takes a single object as
an argument, but that object might have a number of properties.And it is specifically
which properties we set and their assigned values that determine how the XHR call is
made.We go into much greater detail in Chapter 15,“Ajax Remoting,” but let’s take a
cursory look at the function now. It might be helpful at this juncture to remind our-
selves of how we would use the XHR directly using JavaScript.

var xhr = new XMLHttpRequest();

xhr.open("GET","validateUserName.jsp?userName=" + userName);

xhr.onreadystatechange = function() {userNameValidationHandler;}

40 Chapter 3 Using Dojo to Work with the Server

http://lib.ommolketab.ir
http//lib.ommolketab.ir

How does our call to dojo.xhrGet differ from the standard usage for XHR? First,
and most obviously, we aren’t creating a new XHR object.The new object does get cre-
ated eventually—somewhere deep in the internals of Dojo (actually not that deep but
more on that later). But we have a simpler syntax using an existing Dojo function.

Second, rather that pass the HTTP message type as a parameter, it is built into the
name of the function.To do an HTTP GET, we use dojo.xhrGet, while to do a POST
we use dojo.xhrPost instead.

Third, and finally, we pass the callback function, userNameValidationHandler, as a
property of our argument object, not by setting an XHR property.There are some bene-
fits that aren’t obvious from viewing this code.When using XHR directly, our callback
method has to test the state and status properties of the XHR object before it can
safely execute the handler code.When using dojo.xhrGet, Dojo will perform the
checks before calling our handler, allowing us to write simple handler code.The less
code we write, the less the potential for error.That’s a good thing, as Martha Stewart
might say.

3.2.2.3 Handle the Response from the Server
The server receives our request, processes it, and returns the response back to the brows-
er.The browser executes a callback function internal to Dojo. Dojo, in turn, calls the
function that we specified as the callback, userNameValidationHandler, in the
dojo.xhrGet function call.All we have to do is code that function.What must this
function do? At a minimum, it should display an error message stating that someone else
has already taken the user name.The following code will display an error message.

function userNameValidationHandler(response) {

// Clear any error messages that may have been displayed

dijit.byId("userName").displayMessage();

if (!response.valid) {

var errorMessage = "User name already taken";

// Display error message as tooltip next to field

dijit.byId("userName").displayMessage(errorMessage);

}

}

Note that we’re making sure to clear the error message first.This is necessary to get rid
of the error message if the user is entering this field a second time after having failed to
enter a valid user name the first time.

There is at least one thorny issue left.What if the call to the server to validate user
name takes a long time—maybe 20 seconds or more? The user might already be enter-
ing the next field.We don’t want to interrupt what the person is doing by switching
focus back to the user name field. But what will they think when an error message sud-
denly appears next to a field they aren’t even working on? We could block the user from
working while the validation is being done by making the XHR call synchronous, but

413.2 Tutorial Step 3a—Adding Server-side Validation

http://lib.ommolketab.ir
http//lib.ommolketab.ir

that could also be frustrating for the user.We’ll discuss this issue further in Part II when
we explore Dojo widgets in more detail.

Our example rests on the assumption that the server can validate the user name.To
do that we’re traveling past the boundaries of Dojo.We assume that there is some
resource on the server called “validateUserName.jsp.”This resource takes the user name
as a parameter and returns a JavaScript Object Notation (JSON) string, defining an
object with a property called valid that might either be true or false. Dojo doesn’t care
how you write this resource or what kind of server it is running on, just so long as the
server can talk HTTP. Following is a simple JSP page that would validate the user name
with a hard coded check to see if the value is “olduser.”As long as it isn’t, then the user
name would be considered valid.This will allow our example to work, but obviously the
server program should be more sophisticated.

<%@ page contentType="text/plain"%>

<%

try {

System.out.println("UserName : " +

request.getParameter("userName"));

if (request.getParameter("userName").equals("olduser")) {

out.println("{valid: false}");

System.out.println("To Browser : false");

} else {

out.println("{valid: true}");

System.out.println("To Browser : true");

}

} catch (Exception ex) {

out.println(ex.getMessage());

ex.printStackTrace();

}

%>

The code will return the following JSON string for invalid user names.

{valid: false}

And for valid user names, the following JSON string will be returned instead.

{valid: true}

You might be wondering how our page can receive JSON and yet never have to
convert it to an object. In our callback function we are able to use the object by refer-
encing response.valid.We’re taking advantage of some Dojo magic. By specifying the
handleAs property and giving it a value of json, we are telling Dojo to expect to
receive a JSON string from the server and to create the object from the JSON string
and pass it to our callback method. Now that really saves us some coding!

42 Chapter 3 Using Dojo to Work with the Server

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3.3 Tutorial Step 3b—Retrieving Data from the
Server
In this step of the tutorial we use the server to return some data back to the browser.We
need to send a state value to the server so that it can determine the cities within that
state.The server will send back the cities, and then we’ll populate the city select list.The
user will be able to select a city from the newly populated pull-down select list.This
approach will work most of the time, but there is a small problem.There are a lot of
cities in the U.S., and it is just possible that we’ve missed one or that a new one has been
incorporated.Therefore, it would be useful to allow the user to type the value of a city
just in case it isn’t in our list.The regular HTML <select> doesn’t allow for this but,
fortunately, the Dojo version does.

Let’s summarize the steps.

1. Select the appropriate Dojo widget to replace the HTML <select> for city.

2. Get the value of state and send it to the server.

3. Process the response from the server

Now let’s drill into the details for each of these steps.

3.3.1 Select Appropriate Widget for the City Field
In the original HTML form for entering customer information, the “City” field is a
textbox in which the user can enter the city by typing it in. Some city names can be
rather long and require a lot of typing, making the entry time consuming and prone to
spelling errors.We could improve the user interface by providing an auto suggest facility
that would list the cities corresponding to the letters typed by the user. For example, if
the user typed “ch,” they would be presented with a list of cities beginning with those
two letters as shown in the following example.

433.3 Tutorial Step 3b—Retrieving Data from the Server

Figure 3.1 Proposed City Section

An additional refinement would be to list only the cities of the state the user selected
from the “State” field. Shall we congratulate ourselves on such a wonderful solution?
Well, let’s not throw a party quite yet.After all, there is no standard HTML widget that
provides the features we so ardently seek. Luckily, we are using Dojo, which just happens
to have a widget called the ComboBox that contains just the features we are looking for.

Let’s replace the standard textbox for city with the Dojo ComboBox.We must make
sure that the code for the widget is included by using the dojo.require statement.
Add the following code to the <script> tag containing the other require statements.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

dojo.require("dijit.form.ComboBox");

Then the Dojo widget must be attached to the DOM by adding the dojoType
attribute to the <input> tag for the “City” field.The following code shows how to
replace the standard textbox with the new Dojo widget.The new code is in bold.

<input type="text" id="city" name="city" title="city"

dojoType="dijit.form.ComboBox"

autoComplete="true"

forceValidOption="false"

/>

The dojoType attribute tells the Dojo parser to attach the widget to the DOM.The
autoComplete attribute tells the widget to automatically include the full text for the
first matching value based on the characters entered by the user. So if the user enters
“ch,” and the first matching city is “Chicago,” then the user can leave the field, and the
widget will assign the entire city name to the field value.This saves the user significant
typing, especially for long city names.

The forceValidOption attribute setting of false allows the user to enter a value
that isn’t included in the select list.This behavior is quite different from a regular select
list, which only allows the user to select one of the listed values. If you want that behav-
ior, simply set the forceValidOption attribute to true. However, in this case, we get
some useful functionality setting it to false because it is possible that the user’s city is not
in our list.

The Dojo ComboBox widget is a great replacement for the standard <select> list. So
why not use it for the “State” field also? Let’s do that! We’ll just make a few changes.
Because the list of possible states is well-known, we’ll force the user to select one from
the list rather than being able to enter a new one.This will require setting the
forceValidOption attribute to true.This widget also provides a neat technique for
entering data, which solves a problem we’ve already discussed.When you type the letters
“il” in the standard <select> list, the state of “Louisiana” is selected because most
browsers treat each letter as the first letter of the state, even though you would have
already typed an “i.” Instead, the Dojo ComboBox uses the entire string to properly select
the intended state of Illinois.

Following is the code to replace the standard select list for state with the new Dojo
widget.The new code is in bold.

<input type="text" id="state" name="state" title="state"

dojoType="dijit.form.ComboBox"

autoComplete="true"

forceValidOption="true"

/>

44 Chapter 3 Using Dojo to Work with the Server

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3.3.2 Get the Value of State and Send to the Server
Now that we’ve got the appropriate widgets for both state and city, we need to focus on
getting the correct data.As we’ve discussed already, we could pre-populate the city list
with all the possible cities in the U.S.The problem is that there are nearly 30,000 of
them, and loading them all would make our page unnecessarily large.The better
approach is to get from the server only the cities found in the specific state selected by
the user.

This introduces a few challenges. First, we must decide how and when to capture the
value of state. Second, we must then make a request to the server to get some city data.
And third, we must populate the city list with just those cities. Let’s just tackle each of
these problems in turn.

Every time the user selects a state, we should repopulate the city list.We’ve already
dealt with this kind of issue for the user name field.We’ll use the onChange event for
the state select list. By assigning an event handler to the event, we’ll be able to capture
the new state value and submit it to the server at just the right point.We’ve already dis-
cussed the issues related with event handlers in step 2 of the tutorial. For more detail go
back and read that step.

Let’s add an event handler to the state field so that every time the value changes, we’ll
call an event handler function that will populate the city list. Let’s name our event han-
dler populateCity,And let’s associate it with the onChange event for the “State” field
using the following code by setting the onChange attribute for the state ComboBox to
the name of the event handler function.The new code is in bold text.

<input type="text" id="state" name="state" title="state"

dojoType="dijit.form.ComboBox"

autoComplete="true"

forceValidOption="true"

onChange="populateCity"

/>

Now whenever the user selects a new state value, the event handler will be called.
This will also work the first time that the user selects a state.The correct event handler
will be called, but what should it do? It needs to get city values, but what is the correct
approach for achieving this? We need to get the value of the state and then send it to the
server. Getting the value of the state is pretty straightforward.We just need to run the
getValue method for the widget, and it will return the selected value.

Once we get the value, life gets more complicated. Our intuition might tell us that
we’ve already solved this problem. In the prior step of the tutorial, we created an XHR
call to the server.We could use that same technique again. However, this time we’re pop-
ulating a Dojo widget that has some data coming back from the server, so our solution
can be simpler. Some Dojo widgets are “bound” to server data.What this means is that
the widgets will automatically make an XHR call to the server and automatically popu-
late themselves with the data returned by the server.This can save us lots of coding.And

453.3 Tutorial Step 3b—Retrieving Data from the Server

http://lib.ommolketab.ir
http//lib.ommolketab.ir

fortunately for us, the ComboBox widget happens to be one of these data bound widget
types.

Although the coding for using data bound widgets can be simpler, it does require us
to understand a new Dojo concept, that of data stores.A former professor of mine was
fond of saying that any problem in Computer Science could be solved simply by wrap-
ping it in an abstraction.That philosophy certainly applies when using Dojo data stores,
which provide a wrapper around various underlying types of data.The data that an
application might use could exist in many places or in many formats.Typically, we would
be getting data from a server, but we might be getting it from a web service instead, or a
legacy application in Cobol, or even a Directory Service.Additionally, the data might
exist in many different possible formats such as XML, JSON, raw text, or some other
proprietary format. It would be very difficult for the Dojo team to create different widg-
ets for all these possible scenarios, so instead Dojo has provided an abstraction layer
between the widget and the data source called the store.

The store provides a consistent set of method calls, or API, which allows the widgets
to communicate with the data source without knowing exactly what kind of data source
they are dealing with.The Dojo team has provided documentation necessary to write a
data source layer because they can’t anticipate all the different data sources that an appli-
cation might communicate with.

However, there are some data sources already defined for us. One of these is the
JSON data source. If your server is providing data in JSON format, you can use the
JSON data source as a way of connecting to that data. How do you use this data source?
The following steps are necessary to bind a data source to a Dojo widget using the data
store layer.

1. Expose the data through an HTTP request on the server.

2. Define the data store Dojo object on the client.

3. Bind the data store to the Dojo widgets that use it.

Now that we know about the existence of data stores, let’s use one.

3.3.2.1 Expose the Data Source
To use some data, we must have access to it. In other words, the server must be able

to provide the data.We’ll expose the data by creating a server resource, which can be
called through either an HTTP GET or POST request and that will return some data in
JSON format.The server resource can use parameters passed in the request to dynami-
cally build the data that is being requested.

For our tutorial, we’ll create a server resource called getCities.jsp, which will take
a state as a parameter and return a list of cities in that state.To make our code simpler,
we’ll only return a list of cities for the state of Illinois.All the other states will just return
a single city called “Anytown.”And for the state of Illinois, we’ll only provide a small
number of the actual cities. Following is the JSP page we need to create to expose our
city data.

46 Chapter 3 Using Dojo to Work with the Server

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<%@ page contentType="text/plain"%>

<%

response.setHeader("Cache-Control","no-cache"); //HTTP 1.1

response.setHeader("Pragma","no-cache"); //HTTP 1.0

response.setDateHeader ("Expires", 0); //prevents caching at the proxy server

%>

<%

String state = request.getParameter("state");

if (state == null) { state = "";}

if (state.equals("Illinois")) {

%>

{identifier:"name",

items: [

{name:"Champaign", label:"Champaign"},

{name:"Chicago", label:"Chicago"},

{name:"Naperville", label:"Naperville"},

{name:"Wheaton", label:"Wheaton"}

]}

<%

} else {

%>

{identifier:"name",

items: [

{name:"Anytown", label:"Anytown"}

]}

<%

}

%>

This is fairly primitive code.The web site for this book contains some additional
examples that show more complete techniques for returning all the cities from all the
actual states.1

The data that comes back from the server for Illinois appears as follows.

{identifier:"name",

items: [

{name:"Champaign", label:"Champaign"},

{name:"Chicago", label:"Chicago"},

{name:"Naperville", label:"Naperville"},

{name:"Wheaton", label:"Wheaton"}

]}

If this data format seems strange to you, it might be that you have not worked with
JavaScript Object Notation (JSON) before. JSON is a technique for representing com-
plex data objects as text strings.Think of it as XML for JavaScript.This JSON string is

473.3 Tutorial Step 3b—Retrieving Data from the Server

1 The web site for the book can be found at http://www.objecttraininggroup.com/dojobook.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

representing an array with four elements, one element for each city. Further, each ele-
ment of that array is also an array that consists of two elements containing values for the
city select list.

Each element corresponds to one option in the <select> list.The object has a prop-
erty called “name,” which contains the string for the value attribute of the <option>
element, which defines each of the items in the select list.This is also the value sent to
the server.The label property contains the string that displays to the user. In this case
both values are the same, but they can be different.

This is the format for JSON data necessary to feed the widget properly.This widget
needs elements with two values where the first value is the value sent to the server when
an item is selected and the second value is the value displayed for the user in the select
list. Part II describes the data format used by various other data enabled Dojo widgets.
For more information on using JSON, see Chapter 13,“Strings and JSON.”

3.3.2.2 Define the Dojo Data Store
For Dojo to be able to automatically use the data from the server, we must create an
object within the browser to represent the data.This object is known as a Dojo data
store.We can get the Dojo parser to create the object for us by declaring the store using
HTML.Although this is the simplest approach, it is also possible for us to create the
object using JavaScript. Because we will create a new data store each time a different
state is selected, we’ll use the programmatic technique for creating the store object.

We’ll add JavaScript code to the “populateCity.js” file referenced as our event handler.
As before, when we create a new JavaScript file, be sure to reference the file using a
script tag as shown in the following code. Place the code after the <script> tag for
including the “validateUserName.js” file.

<script type="text/javascript" src="populateCity.js">

</script>

Now we must create the new file and define the handler function.

function populateCity() {

// Get the new value of state

var selectedState = dijit.byId("state").getValue();

// Build URL to make XHR call to server

var url = "getCities.jsp?state=" + selectedState;

// Build new data store

cityStore = new dojo.data.ItemFileReadStore({url: url});

return;

}

48 Chapter 3 Using Dojo to Work with the Server

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The data store is now created but does not make an XHR request yet.That will only
occur after we bind the data store with the widget.

3.3.2.3 Bind the Data Store to the Widget
To actually cause the data store to get the data from the server, we need to associate it
with the widget that will use the data.All we have to do is assign the value of the store
property of the widget to the data store, and Dojo does all the rest.

We need to add additional code to our event handler to get a reference to the widget
and to assign the new property value.Add the following code that is in bold to your
handler function.

function populateCity() {

// Get the new value of state

var selectedState = dijit.byId("state").getValue();

// Build URL to make XHR call to server

var url = "getCities.jsp?state=" + selectedState;

// Build new data store

cityStore = new dojo.data.ItemFileReadStore({url: url});

// Create a reference to the city widget

var city = dijit.byId("city");

// Clear out any existing values in the widget

city.setDisplayedValue("");

// Assign new data store which will force a new XHR request

city.store = cityStore;

return;

}

This is all that is necessary. By building a new data store to ask for the selected state and
then assigning that data store to the widget, Dojo automatically creates an XHR object
to get data from the server and then populates the widget with that data.With just a few
lines of code we’ve implemented a powerful server lookup feature in our form.

Summary
Dojo can be used to call server resources, which can perform processes or retrieve data.

The Dojo xhrGet and xhrPost functions can be used to provide a wrapper around the
XMLHttpRequest (XHR) object, which can perform a call to the server.

Data stores provide a wrapper around external data retrieved from the server.

Some Dojo widgets can bind with a Dojo data store to automatically retrieve data from the
server and populate the widget.

493.3 Tutorial Step 3b—Retrieving Data from the Server

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This chapter provided insight into a few of the standard Dojo widgets and showed how to
use them to call server processes and to get data. The client-side functionality of the Dojo
widgets was much more powerful than the standard HTML widgets, but we can go even fur-
ther. Although communicating with the server is an important Ajax feature, the flip-side of
the Ajax coin is the ability to create impressive visual elements in the browser. The next
chapter focuses on a few very powerful and visually impressive widgets available in Dojo.

50 Chapter 3 Using Dojo to Work with the Server

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4
Using Dojo Widgets

There is nothing worse than a sharp image of a fuzzy concept.

—Ansel Adams

For better or worse, the Web is a strong visual medium.A web page is a collection of
visual elements that allow the user to view and manipulate information whose best pres-
entation fits the right widget to the right data. In other words, the information cries out
to be displayed in the correct form. Unfortunately, standard HTML only provides a small
set of options for displaying data. Dojo expands our possibilities by providing a robust set
of visual elements, called widgets, which offers us a much richer palette to choose from
for bringing the data and features of our applications to life.

4.1 Adding Dojo Widgets to the Page
Web developers are looking for ways to apply Ajax techniques to their web pages. But
what exactly is Ajax? The original acronym was capitalized as AJAX and stood for
Asynchronous JavaScript and XML. But the meaning has evolved over time. Let me give
you a more current meaning.

Ajax can be described as a two-sided coin. One side of the coin is the ability to
communicate with the server asynchronously without refreshing the page—also known
as the XHR object.This, in many ways, is the essential feature of an Ajax web site
because this is the new paradigm on which many Web 2.0 interfaces are built.The other
side of the Ajax coin is the rich user interface that most Ajax applications provide.To
many, this is the real hallmark of an Ajax application, regardless of how server requests are
made under the hood.A JavaScript library might address either side of this coin, but
Dojo addresses both.We’ve already covered the XHR object, so in this part of the tuto-
rial we focus on the ability of Dojo to provide the rich user interface through its set of
advanced widgets.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4.1.1 Dijit—The Dojo Widget Module
Dojo uses the term dijit to describe its features related to creating and using widgets. Not
only is this a conceptual term, but Dojo also physically organizes these features into a
subdirectory called digit, which is at the root of the dojo directory.Also dijit is the
namespace used to reference widget-related functions.We’ve seen some examples of the
use of the dijit features already, but now we can explore them in a little more detail.
The Dojo team had a number of goals in creating the widget features:

n Create a set of visual widgets that provide useful features beyond the standard
HTML elements.

n Expose the technique for creating Dojo widgets so that developers can extend
existing Dojo widgets or create entirely new widgets based on the same tech-
niques.

n Make the widgets look the same in all the different browsers.
n Ensure that the widgets can support accessibility features for impaired users.
n Provide internationalization support for all the widgets so they can support

multiple languages.

As you work with the Dojo widgets, you will discover that Dojo has achieved these
goals and given developers a powerful toolbox for creating visually sophisticated web
sites. Part II,“Dojo Widgets” explores individual Dojo widgets in greater detail. For now,
let’s explore how to use a couple of the most powerful Dojo widgets by adding them to
our web page.

4.2 Tutorial Step 4—Using Dojo Widgets
In this step of the tutorial, we use Dojo widgets to replace some of the standard HTML
widgets on our page.We’ve already done this in prior steps of the tutorial, so the tech-
nique should be familiar. Our approach will be to add a special attribute, dojoType, to
the standard HTML tag that will be read by the Dojo parser and will cause the
Document Object Model (DOM) element to be enhanced with additional features.That
was a mouthful. More simply, we are just telling Dojo to replace the single DOM ele-
ment representing the standard HTML widget with a more complex set of elements.
This new group of elements, when acting together, provides the functionality for our
Dojo widget.Additionally, Dojo will create a JavaScript object that is not part of the
DOM that will be associated with the new widget.This “shadow” object will contain
properties and methods not available in the DOM elements.

NOTE:
Because Dojo widgets can consist of multiple DOM elements, you’ll want to be sure to
access them using dijit.byId() instead of document.getElementById().

52 Chapter 4 Using Dojo Widgets

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4.2.1 Use the Dojo DateTextBox Widget
Let’s start with the “Service Date” field.This is the date on which the user wishes service
to start.We haven’t seen this field since step 1 of the tutorial, so you might want to take
a look at the original form in Figure 1.1 to refresh your memory. In the original form
the user is presented with a text box containing no validation.As we discussed earlier, a
number of problems exist with this approach, the most obvious of which being that the
user does not know what format in which to enter the date. Beyond that, it is difficult
for people to determine dates without access to a calendar. So it seems obvious that this
widget, the standard HTML textbox, does not fit the function of the data the user needs
to enter.

A more appropriate graphical user interface (GUI) element would provide the user
with a calendar from which he or she could select a date.That would address the format
problem because the user wouldn’t need to enter the date as text.And it would allow the
user see the data in the form most useful for them: a calendar.

Let’s see how we can quickly add this widget to the page.Then we can discuss it in
more detail.

We simply need to add the dojoType attribute to the <input> tag for the element.
We’ll also add a few additional attributes that aren’t required but will provide some use-
ful functionality.The following code shows the attributes to add to the tag. New attrib-
utes are bolded.

<input type="text" id="serviceDate" name="serviceDate" size="10"

dojoType="dijit.form.DateTextBox"

required="true"

promptMessage="Enter service date."

invalidMessage="Invalid date."

/>

The new attributes tell the Dojo parser to replace the standard HTML <input> tag
with the Dojo DateTextBox widget. However, Dojo needs to know where to get the
code for the new widget, so an additional step is necessary.We tell Dojo where to get
the code by including a dojo.require function call passing the widget name as a
parameter.Add the following code to the top of the “form.html” file to the existing
group of require function calls.

dojo.require("dijit.form.DateTextBox");

Notice that the value of the dojoType attribute dijit.form.DateTextBox is the
same as the parameter passed to the dojo.require function.This is the link that allows
Dojo to associate the widget in the <input> tag with the code and additional HTML
associated with the widget.

When we first run the form after making our code changes, it appears that nothing
has changed. Next to the “Service Date” label, what looks like a simple text box is still
displayed.

534.2 Tutorial Step 4—Using Dojo Widgets

http://lib.ommolketab.ir
http//lib.ommolketab.ir

We’ve now added an extremely useful widget to our page with very little effort. But
let’s get a little greedy.What other useful features can take advantage of in this widget?
Let’s consider some additional business rules. For example, the user should not be able to
schedule a date in the past. How can we accomplish this? It turns out that there is an
attribute called constraints that can be used to define valid values for the date. By set-
ting a minimum constraint to the current day, we are excluding prior dates.This can be
done using the constraint attribute as shown in the following code.The new code is
bolded.

<input type="text" id="serviceDate" name="serviceDate" size="10"

dojoType="dijit.form.DateTextBox"

required="true"

promptMessage="Enter service date."

invalidMessage="Invalid date."

constraints="{min:'2007-10-24'}"

/>

However, as soon as we place the cursor in the field, a calendar is automatically dis-
played from which we can select a date.

54 Chapter 4 Using Dojo Widgets

Figure 4.1

Service Date Field With DateTextBox WidgetNot only does a calendar appear, but
also the current date is highlighted. In the preceding example, October 24 is selected, as
shown by the dark background behind that date on the calendar.The user can flip
through the calendar by clicking the back and forward arrows in the upper left and right
of the calendar.When the desired date is visible on the calendar, the user can select it
simply by clicking on the desired day, and the calendar widget automatically fills the text
field with the correct text value for the date.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

554.2 Tutorial Step 4—Using Dojo Widgets

Even through the value of '2007-10-24' appears to be hard-code, you could gener-
ate this dynamically when creating the page on the server so that the current date is
always supplied. Now when the widget appears on the page, prior dates are crossed out
as shown here.

We could go even further. For example, we could exclude weekends. However, we
must be careful. Even if we include business rules for service date in the browser, they
must be re-validated on the server.The server should never trust data from the browser.
A better approach might be to create an XHR request to validate the selected date once
the user enters it.This would allow us to keep the business logic on the server and yet
still give the user the benefit of instant validation without having to submit the entire
form.A number of other useful attributes to control the behavior of the calendar exist
and will be explored in more detail in Part II.

4.2.2 Use the Dojo Rich Text Editor Widget
Now let’s turn our attention to the comment field.This field allows the user to enter
multi-line text comments using the <textarea> HTML tag.This standard HTML tag
provides some simple features such as automatic word wrapping at the end of each line.
But that is about all it offers. If we want to do anything fancy such as changing the font of
the entered characters, making them bold, or putting them in a bulleted list, then we are
out of luck.The standard widget just doesn’t allow for it.Wouldn’t it be nice to have a
powerful text editor that we could insert right into the page? Yes, it would.And Dojo pro-
vides one. It is called dojo.editor, and it provides quite a robust set of default features.

Before exploring the details, let’s just put the default widget onto our page by replac-
ing the existing <textarea> tag.As with the prior widgets, all we really need to do is
add the dojoType attribute in the existing HTML tag.Then we need to make sure the
widget code is included in the page by referencing the widget using dojo.require.
First let’s change the current HTML tag so that the Dojo Rich Text Editor Widget will
be used in its place.

<textarea id="comments" name="comments" height="100px"

dojoType="dijit.Editor"

>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Notice that the widget name is a little different than for the other Dojo widgets we
have used.The Editor is not part of the form package, so we don’t include form in the
widget name.

Now we need to make sure that the code for the widget is available to the Dojo
parser for substitution into the DOM.Add the following code to the top of the
“form.html file” to the existing group of require function calls.

dojo.require("dijit.Editor");

Now when we run the page, we see the new widget. By clicking just below the
widget toolbar, we can enter some instructions regarding service. Figure 4.2 shows the
widget along with some user-entered text concerning the types of service that the per-
son wishes to purchase.

56 Chapter 4 Using Dojo Widgets

Figure 4.2 Text editor widget

As you might have noticed in using the widget, it is hard to figure out exactly where
the text area for the widget begins and ends.To improve the look of the widget, we’ll
enclose it within a div and assign a style to it.We’ll add a solid border around the widg-
et and make the text area have a light background, as shown here.The new markup code
is in bold.

<div style ="border: 1px solid #9B9B9B; background: #FFFFFF;">

<label for="comments">Comments:</label>

<textarea id="comments" name="comments" height="100px"

dojoType="dijit.Editor"

/>

</div>

Now we get a clearer idea of where text can be entered, as shown in the following
screen shot.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Notice how it is now much easier to see where the text area of the widget is.
The toolbar at the top of the widget displays a number of icons that can be used to

provide formatting features. In the given example, the items “HBO” and “Showtime”
were converted into an unordered list by selecting them and then clicking the unordered
list icon.The various icons are explained in Table 4.1.

The default Editor widget provides a number of formatting tools represented by the
icons on the toolbar. But you might not want to make all of the editing features available
to the users of the page. It is possible to specify which tools you would like the editor to
make available by setting the plugins property of the widget, which contains a list of
editing features that should be displayed in the toolbar.Also you might notice that a ver-
tical bar separates some features.This allows related icons to appear together as a group.
The “|” character is used as a separator by default, but any character is allowed.

Following is the definition for an Editor widget that only allows three editing features
(bold, italics, and ordered list/unordered list) with a separator after italics.

<textarea id="comments" name="comments" height="100px"

dojoType="dijit.Editor"

plugin="['bold','italic','|','insertUnorderedList']"

>

Notice that the widget now has a different toolbar and is showing only the features
that we have specified.

574.2 Tutorial Step 4—Using Dojo Widgets

Each of the editing features has an icon and a name that can be used in the value for
the plugins attribute.The following table lists the available editing features along with
their corresponding icons.

Table 4.1 Rich Text Editor Icons

Icon Attribute Value Description

undo Undo last edit.

redo Redo last edit.

cut Cut selected text.

copy Copy selected text.

paste Paste text at cursor.

bold Make selected text bold.

italic Make selected text italicized.

underline Underline selected text.

strikethrough Strike through selected text.

insertOrderedList Turn selected text into an ordered list.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 4.1 Continued

Icon Attribute Value Description

insertUnorderedList Turn selected text into a numbered list.

indent Indent selected text.

outdent Outdent selected text.

justifyLeft Left justify selected text.

justifyRight Right justify selected text.

justifyCenter Center justify selected text.

justifyFull Justify selected text on right and left.

We can specify any combination of editing features in any order.

Summary
Dojo provides a rich set of graphical widgets that can be added to web pages.

Dojo widgets can be placed on a page by adding the dojoType attribute to the HTML tag
for the DOM element to contain the widget.

dojoType="dojo.form.ValidationTextBox"

The Dojo parser reads through the HTML and replaces the DOM element with the specified
Dojo widget everywhere that it finds a dojoType attribute.

The Dojo parser is included in the page by including the following JavaScript code:

dojo.require("dojo.parser")

The Dojo parser needs to know where the code is for every widget it needs to place on the
page. A call to the dojo.require function is required for each type of widget on the
page.

dojo.require("dojo.form.ValidationTextBox")

In this step of the tutorial we added two very powerful widgets to our page. Dojo contains
many more widgets then we’ve seen so far. And although each widget has certain unique
features, all widgets follow a similar structure. The techniques provided here to manipulate
and work with widgets apply to the other Dojo widgets as well. We explore more Dojo
widgets in Part II.

In the next chapter we put the finishing touches on our form and see how we can
submit the form to the server.

58 Chapter 4 Using Dojo Widgets

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5
Processing Forms with Dojo

The job’s not done until the paperwork is complete.

—Anonymous

This chapter finishes up the tutorial.We’ve already added validation, server-side pro-
cessing, and widgets, but there are a few finishing touches required before we can call
our work complete.This chapter describes the remaining problems with the form and
shows us how we can use Dojo to fix them.

5.1 Using Dojo to Process Forms
We are almost done upgrading our form to use Dojo.To some extent, we are done—we
could declare victory and go home or at least submit our changes to production so that
the users could benefit from our wonderful changes.We’ve addressed most of the prob-
lems identified in our analysis of the original HTML page. However, there are a few
remaining issues that are still in need of remediation.

For example, what happens if the user tries to submit the form before entering infor-
mation into all the fields? The way we’ve coded our validations so far requires that the
user actually visit each field.We now need to consider the fields as a whole by making
sure all the validations have been applied before we allow the entire form to be submit-
ted to the server.A plain vanilla HTML form would make a server request once the user
clicks the submit button without regard to the additional validations that could be per-
formed.We’ll use Dojo to intercede in the processing so that it can perform those useful
client-side validations before making an unnecessary request to the server.

A slightly subtler problem involves exactly how the page makes the server request and
also what resource on the server is necessary to respond to that request.A standard
HTML form is submitted to the server when the user clicks the submit button.The
browser knows which server resource to call based on the action attribute of the form

http://lib.ommolketab.ir
http//lib.ommolketab.ir

element. In our example, our form calls the submit.jsp resource on the server as desig-
nated in the code snippet here taken from the form.

<form action="../submit.jsp" method="post" name="custForm">

The browser not only needs to call the correct server process, but it also needs to
wrap up the data entered in the form and send it also. Fortunately, the browser can do
that automatically.The browser iterates through each of the form elements and creates a
name/value pair containing the element’s name and its value at the time the form was
submitted. If the form method is “POST,” then these name/value pairs are hidden in the
body of the HTTP request, and if the form method is “GET,” then the name/value pairs
are appended onto the end of the URL request made to the server.The data will be
URL encoded—the spaces and other special characters have been replaced with their
decimal equivalent.The field name is first and then separated from the value by the “=”
character.Also name/value pairs are separated from each other by the “&” character.

What else do we have left to worry about? For instance, once we upgrade the page
with Dojo, will there be an effect on the data being sent to the server? Will we have to
rewrite some server code to deal with the new data? The short answer is,“No!” In other
words, the same program on the server that currently handles the request can continue
to handle the request once we add Dojo to the page.That will minimize the impact on
adding Dojo to our application.

However, suppose we are willing to do some work on the server by rewriting our
response processes. Could we achieve any benefit by this? We could submit an XHR
request to the server and receive back the response from the server without doing a page
refresh.This might be useful but would require that we create a server process that sim-
ply sends back the error messages instead of trying to replace the entire screen along
with error messages embedded in it.This technique might not be as useful when the
form submission succeeds because we would likely be moving onto an entirely new page
anyway. But as a general technique, this could be very useful.We could submit the form
as an XHR object and process the response without a full page refresh. For the purposes
of this tutorial, we will not rewrite any server processes, so we’ll leave XHR form sub-
mission for a later chapter when we study Remoting in Chapter 15.

5.2 Tutorial Step 5—Processing the Form
In this step of the tutorial we deal with the issues related to the entire form and not just
to individual fields.The first thing to do is convert the standard HTML form into a
Dojo Form widget.

5.2.1 Creating a Dojo Form Widget
We’ve already defined a form on the HTML page. Now we need to convert it to a Dojo
Form widget. It is easy enough for us to do now that we’re familiar with the general
technique for creating Dojo widgets.We simply add the dojoType attribute to the form
element as the following code illustrates (with our required changes in bold).

60 Chapter 5 Processing Forms with Dojo

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<form action="../submit.jsp" method="get" name="custForm"

dojoType="dijit.form.Form"

/>

Of course, we also need to make sure that the Dojo code for the widget is available
to the parser.We’ll add another require statement to our list.

dojo.require("dijit.form.Form");

That’s all there is to it.We’ve now converted the standard HTML form into a Dojo
Form widget.

5.2.2 Intercept Form Submission
The form is now a Dojo widget and possesses some new super powers. It gives us the
ability to intercept the request when a user clicks the Send button so that we can per-
form our own processing. By specifying a special attribute, we can cause the browser to
pass control to a function instead of submitting the request to the server.We’ll set the
value of the execute attribute to the name of a function that we will use to handle the
form submission.

<form action="../submit.jsp" method="get" name="custForm"

dojoType="dijit.form.Form"

execute="processForm"

/>

We need to create a new function called processForm, and we need a place to put
it. So we’ll create a new file called “processForm.js,” and we’ll include it in our page by
using the <script> tag.Add the new <script> tag to the current set of <script>
tags at the top of the page as shown as follows.

<script type="text/javascript" src="validateUserName.js"></script>

<script type="text/javascript" src="populateCity.js"></script>

<script type="text/javascript" src="processForm.js"></script>

For now, let’s just create the stub for the form handler function. Create a file called
“processForm.js” and place it in the same directory as our form. Following is the code
for the stub function.

// Process form

function processForm {

// Re-validate form fields

// Place focus on first invalid field

// If all fields are valid then submit form

}

We’re now ready to implement the function.

615.2 Tutorial Step 5—Processing the Form

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5.2.3 Check That All Form Elements Are Valid
What should we do in our form handler? We need to validate the fields in the form and
notify the user by performing the following actions.

1. Re-validate each of the fields in the form.

2. If an invalid field is found, then display an error message and place the cursor in
the field.

First we need to identify a technique for iterating through the form fields. On each
field, we’ll check to see if the field is valid.This can be easily accomplished by calling the
isValid() method on the form element.This method will return a true if the field is
valid or a false otherwise.

Iteration should stop on the first field that is not valid, and we should display an error
message and place focus on that field. Displaying an error message turns out to be some-
thing that happens automatically. Simply by calling the isValid() method on the
element, the message text specified in the invalidMessage message attribute in the
elements tag will appear. Placing the field in focus is accomplished by executing the
focus() method on the element.

We’ve now walked through the necessary code for implementing the form validation.
Let’s see what it looks like altogether in the following code snippet. Our changes to the
function are shown in bold.

// Process form

function processForm {

// Re-validate form fields

var custForm = dijit.byId(“custForm”);

var firstInvalidWidget = null;

dojo.every(custForm.getDescendants(), function(widget){

firstInvalidWidget = widget;

return !widget.isValid || widget.isValid();

});

if (firstInvalidWidget != null) {

// set focus to first field with an error

firstInvalidWidget.focus();

}

}

Now all that is left is to submit the form in the case where all the fields are valid.

62 Chapter 5 Processing Forms with Dojo

http://lib.ommolketab.ir
http//lib.ommolketab.ir

NOTE
The example provided introduces a new function, dojo.every. This is a special Dojo func-
tion that takes an array of objects as its first parameter and a function as its second
parameter. The function is then run once for every object in the array with the object being
passed as the argument to the function.

5.2.4 Submitting the Form to the Server
The next step is to submit the form to the server. Our risk here is to be too smart for
our own good.What I mean is that we should not over-think things. Based on what we
now know about Dojo, our intuition might suggest that we need to iterate through the
field elements, collect the element values, convert them to JSON, and use xhrGet() to
create an XHR request to the server.While that is certainly an elegant and workable
approach, it is much more complex than is really needed.We can take advantage of the
fact that the browser does all those tasks already when a form is submitted. So all we
have to do is let the browser continue with its normal process of form submission that
we so rudely interrupted.

JavaScript provides us with a direct method for submitting a form. In the DOM, form
objects have a submit() method, which can be used to cause the browser to perform its
normal form submission process.The following code would work.

document.forms.custForm.submit()

However, we can do a little better. Because we are using Dojo, we should use a Dojo
method when one is available.Although not required in this particular case, the Dojo
object that acts as a companion object to the DOM object for this form also contains a
submit method. In general, we should use the Dojo method when available because it
might be providing some extra functionality or performing some cross-browser incom-
patibility checking. So we’ll use the following code instead.

custForm.submit();

And now we’ve submitted the form. But just for completeness, let’s see the
processForm method in its entirety with the final piece of required code in bold.

// Process form

function processForm {

// Re-validate form fields

var custForm = dijit.byId("custForm");

var firstInvalidWidget = null;

dojo.every(custForm.getDescendants(), function(widget){

firstInvalidWidget = widget;

return !widget.isValid || widget.isValid();

635.2 Tutorial Step 5—Processing the Form

http://lib.ommolketab.ir
http//lib.ommolketab.ir

});

if (firstInvalidWidget != null) {

// set focus to first field with an error

firstInvalidWidget.focus();

} else {

custForm.submit();

}

}

The browser will package up the form element values and create an HTTP request
to be sent to the server.This request will not be an XHR request, so we’re expecting
that the server will be sending an entire new page back to the browser. Because we are
using the browser to submit the request, the format of the data is exactly the same as it
would have been before we “Dojo-ized” the form. So we don’t have to modify the serv-
er process in any way, which minimizes the code changes necessary to implement our
new features.As the page works now, the server forwards the user to a completely new
page if the form submission is successful. Eventually, we may decide that we would like
to evolve the server process to return the error messages or submission status only
instead of an entire new page.At that point, we would need to change our form to sub-
mit an XHR request instead and to handle the response on the page. But for now let’s
leave that effort for another day and declare victory on our new form!

Summary
The dojo.form.Form object can be used to replace the standard HTML form object by
adding dojoType=” dojo.form.Form” to the form tag.

We can interrupt the normal form submission performed by the browser by using the exe-
cute attribute of the Dojo form to name a method to be called when the user submits the
form.

To have the browser submit the form, use the submit() method of the Dojo form object.

Now that we’ve seen the general techniques for adding some neat widgets to our
web page, it would be interesting to see all of the kinds of widgets that Dojo provides.
Part II,“Dojo Widgets,” describes many of the widgets available to us right out of the
box with Dojo.We also explore how we can modify and extend the widgets and even
create brand new widgets of our own.

64 Chapter 5 Processing Forms with Dojo

http://lib.ommolketab.ir
http//lib.ommolketab.ir

II
Dojo Widgets

6 Introduction to Dojo Widgets

7 Dojo Form Widgets

8 Dojo Layout Widgets

9 Other Specialized Dojo Widgets

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6
Introduction to Dojo Widgets

Pay no attention to that man behind the curtain!

—The Wizard of Oz

We aren’t going to follow the advice of this quote. In this chapter we pull back the
curtain on Dojo widgets and reveal their secret inner life. It is a life of purpose and utili-
ty achieved with simplicity and yet, like a duck furiously paddling just beneath the water
line, there is lots going on under the surface.We explore the internal workings of Dojo
widgets and acquire a foundation of knowledge for using them effectively.

6.1 What Are Widgets?
Describing exactly what a widget is (and isn’t) turned out to be harder to do than I
thought it would be at first.As I did a little research I came across a wonderful definition
in, of all places, some Red Hat Linux documentation.The definition describes a widget
as “a standardized onscreen representation of a control that may be manipulated by the
user. Scroll bars, buttons, and text boxes are all examples of widgets.”1 What a great
description.

Note
Another interesting fact is that “widget” is short for “window gadget”—who knew?

1. Red Hat Linux 6.2: The Official Red Hat Linux Getting Started Guide: http://www.redhat.com/docs/

manuals/linux/RHL-6.2-Manual/getting-started-guide/ch-glossary.html.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Let’s tease out each of the elements of the definition and see what it means for us.

n A widget is an onscreen control—Widgets are visual elements on the page
that provide a way for the user to manipulate some data or functionality of the
application. One of the simplest widgets is an HTML check box. It appears on the
page, and by checking it, the user is setting some data values that will eventually be
sent to the server.And though a widget must be on the page, it doesn’t necessarily
have to be visible. It may sometimes be temporarily hidden.

n A widget is standardized—The widget should work the same way everywhere
and should have some intuitive or obvious behavior.Also the widget should follow
generally accepted patterns of usage and behavior.Within the Ajax world, this cri-
teria is not always met. Some widgets are used in such a limited role or are so new
that standardized behavior hasn’t been defined yet.

n A widget can be manipulated by the user—The purpose of a widget is to
allow the user to set some data or control the functionality of the system in some
way. So just because there is a visual element on the page doesn’t mean that it is a
widget.

n A widget contains data—Although this isn’t in the definition, it is also a crucial
fact in understanding widgets.A widget contains some state that can be manipulat-
ed. For instance, an image isn’t a widget even though it is an element on the page.
However, a slide show of images is a widget because not only can the user manip-
ulate it, but it also contains state information (the current image in focus, for
example).

Are the existing standard HTML controls such as check boxes and radio buttons also
widgets? I would argue that they certainly are. However, the small number of widgets
provided by HTML don’t give us enough variety.A really good widget matches itself to
the functionality the user expects for a given feature of an application.An excellent
example of this is the “crop” widget in Photoshop.The icon shows a picture of an actual
physical cropping tool used in film-based photography.The icon also allows the user to
set the crop area in a fashion similar to the real tool. However, there is no “cropping”
widget in HTML. Nor are there widgets to match much of the functionality we’d like
to provide in current browser-based applications.There are too many missing widgets
in HTML. Dojo provides some of these “missing widgets” that HTML should have
given us.

6.2 What Are Dojo Widgets?
We just discussed a general definition for widgets, but we can further ask exactly what
Dojo widgets are. First a short definition:A Dojo widget is a collection of DOM ele-
ments and JavaScript objects that work together to provide a single control for manipu-
lating the application.They are combinations of DOM elements on the web page that

68 Chapter 6 Introduction to Dojo Widgets

http://lib.ommolketab.ir
http//lib.ommolketab.ir

act together to provide a visual component that provides the widget characteristics that
we’ve already discussed.The great thing is that you don’t have to write code for them.
Dojo has provided everything you need to add your widget to a web page and start
using it.Although you probably understand what a widget is now and probably already
knew before we defined it, we discuss one of Dojo’s most popular and most complicated
widgets here, the Rich Text Editor. Here’s a picture—which is not only worth a thou-
sand words but will let you edit a thousand words as well!

696.2 What Are Dojo Widgets?

Figure 6.1 Dojo Rich Text Editor widget

This editor is really an HTML <textarea> widget on steroids. It allows you to cre-
ate multi-line text and apply various styles to it. It’s like having a word processor built
right into your web page.

So Dojo widgets are simple to use, are they? We just “add” them to a page? Exactly
how do we do that? Following is an example of HTML markup that places a Dojo
widget on a web page.

<input

type="text"

dojoType="dijit.form.TextBox"

/>

See, it was simple! The only “magic” (if you can even call it that given how simple it
is) is to include the dojoType attribute and name the desired widget.There is one other
small step, and that is to include the code for the widget by putting a
dojo.require("dijit.form.TextBox") statement somewhere in the JavaScript.And
of course, this example doesn’t take full advantage of customizing the widget. It is also
possible to set properties of the widget by using additional attributes in the <input> tag.

Note
Notice how the code is referring to “dijit”? This is the module, known as Dijit, that con-
tains the code and other artifacts for creating Dojo widgets.

There is also a technique for creating Dojo widgets using JavaScript that is quite simple
also.We just create an object using the desired constructor and then add it to the DOM
for the page. Following is an example of how to add a Dojo TextBox to a web page
(this example assumes there is a DOM element named placeHolder to which we can
attach the widget).

new dijit.form.TextBox({}, dojo.byId("placeHolder"));

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The first parameter is an object containing properties of the widget to be created.
Although we’re not setting any in the example, there certainly are many possible proper-
ties that can be used to customize the widget.Also the second parameter is a DOM
element to which we can attach the new widget.Without a reference to an existing
DOM node, the new widget would be created but wouldn’t be part of the page.This
is a common mistake to make when you’re first learning to work with widgets.

Now that we’ve described Dojo widgets in a top-down fashion, if you’re like me, let’s
dive into and explore the technical details.We’ll drill down to the atomic level and see
what elementary substances make up a widget.

6.3 Components of a Dojo Widget
Every Dojo widget consists of three elements, as follows.

n The structure defined in HTML tags
n The look defined in CSS styles
n The behavior defined with events and event handlers in a JavaScript object

Let’s walk through each of these elements in more detail using an actual widget from
Dojo as an example to clarify these areas further.

6.3.1 Widget HTML
A Dojo widget is a collection of DOM elements created from the HTML tags that
describes its structure.The HTML for each widget is contained is a separate file and
saved in a special directory.The following example will describe one HTML file and
identify its location.The example will explain the general technique that all widgets use
to define their structure in HTML.

Let’s start with one of the simplest widgets, a text box.This widget replaces the stan-
dard HTML text field. Following is an example of a simple text field that would allow
the user to type in an address.

Address: <input type="text" name="address" />

This field in this example is preceded by a label that describes the field on the web
page. Figure 6.2 shows how this field would display on a page (in the absence of addi-
tional styling).

70 Chapter 6 Introduction to Dojo Widgets

Figure 6.2 Standard HTML text box

http://lib.ommolketab.ir
http//lib.ommolketab.ir

We’re going to replace this standard HTML widget with the Dojo equivalent, using
the declarative method.This means we’ll use HTML markup within the body of the
page to define the widget.The alternative is to use the programmatic method that uses
JavaScript.The following HTML markup would build the Dojo widget.

(Plain HTML) Address:

<input type="text" name="address" />

(Dojo Widget) Address:

<input type="text" name="address" dojoType="dijit.form.TextBox"/>

I also added some additional HTML to include the regular widget, the Dojo widget,
and just a bit of formatting. Figure 6.3 shows how the original HTML text box and the
Dojo text box would appear.

716.3 Components of a Dojo Widget

Figure 6.3 Dojo text box compared with standard HTML text box

Remember, for the example to work, we’ve got to make sure we’ve included Dojo,
started the parser, and included the widget code.We’ll repeat the code for this here, but
for more detail, see the tutorial in Part I,“A Dojo Tutorial.”

<script type="text/javascript"

src="../dojo-release-1.0.2/dojo/dojo.js"

djConfig="parseOnLoad: true"></script>

<script type="text/javascript">

dojo.require("dijit.form.TextBox");

</script>

There are some obvious differences between the plain HTML widget and the Dojo
widget. For instance, the background color for the Dojo widget is yellow.Why do these
differences exist? To answer that question we need to examine the actual DOM elements
that have been created.We’ll use the Firebug plug-in for Firefox to see the DOM ele-
ments represented as HTML.

(Plain HTML) Address:

<input type="text" name="address"/>

(Dojo Widget) Address:

<input

id="dijit_form_TextBox_2"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

class="dijitTextBox"

type="text"

autocomplete="off"

dojoattachevent="onmouseenter:_onMouse,

onmouseleave:_onMouse,

onfocus:_onMouse,

onblur:_onMouse,

onkeyup,onkeypress:_onKeyPress"

name="address"

dojoattachpoint="textbox,focusNode"

tabindex="0"

widgetid="dijit_form_TextBox_2"

value=""

aaa:valuenow=""

aaa:disabled="false"

style=""/>

Firebug looks at the DOM after it is modified by the JavaScript on the web page and
converts the DOM back to the equivalent HTML.You might expect that the HTML
displayed from Firebug should be the same as the HTML we created in the original
source for the page.And in the case of the HTML for the plain text widget, it is.
However, the Dojo parser looks for Dojo widgets defined in HTML and replaces them
with additional DOM elements and attributes.That is why the HTML we see from
Firebug for the Dojo widget seems so much different from the HTML we typed into
the source page.

Why are the differences there? The obvious answer is that Dojo put them there. But
how? Dojo does it by replacing the entered HTML with alternate HTML, which it calls
a template.The template contains most of the replacement HTML with a few hooks
where Dojo can add some additional information.

Let’s review the HTML template for this widget. First we have to find it.The HTML
markup containing the structure of a widget (its template) can be found by looking for
its “template” directory in the path corresponding to its package name. Our widget is in
the package “dijit.form,” so we should look for the template subdirectory at
“dijit/form/template” as shown in Figure 6.4.The figure shows only the relevant direc-
tories and files, and your directory structure may be slightly different depending on the
version of Dojo you are using.

72 Chapter 6 Introduction to Dojo Widgets

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 6.4 Location of templates directory in dijit.form package

Below is the code in the “TextBox.html” file. It’s been reformatted by adding some
line breaks to make it more readable. Otherwise, the code shown is exactly as what is in
the file.

<input

class="dojoTextBox"

dojoAttachPoint='textbox,focusNode'

name="${name}"

dojoAttachEvent='

onmouseenter:_onMouse,

onmouseleave:_onMouse,

onfocus:_onMouse,

onblur:_onMouse,

onkeyup,onkeypress:_onKeyPress'

autocomplete="off"

type="${type}"

/>

Now we can see why the HTML from Firebug looks different than what we entered
in the source file. It has simply been replaced by the preceding template file. However,
there are a few differences—a few places where Dojo has changed the value in the tem-
plate.The first difference is in the following line from the template file.

name="${name}"

Compare this to the same line from Firebug:

name="address"

736.3 Components of a Dojo Widget

http://lib.ommolketab.ir
http//lib.ommolketab.ir

How did “${name}” from the template get replaced with “address” in the final
HTML? This was done by the Dojo parser, which looks for values in the template and
replaces them with attributes from the actual HTML.The “$” character is a special sym-
bol used to name a variable in the template file that will be replaced with an attribute
value from the HTML markup with the same name. In other words, the name attribute
from the HTML markup in the source was used. Remember, the name attribute was in
the original HTML as shown as follows in bold.

(Plain HTML) Address:

<input type="text" name="address" />

(Dojo Widget) Address:

<input type="text" name=”address” dojoType="dijit.form.TextBox"/>

This value replacement is a general purpose process that can be used to substitute any
attribute value into the template. It is a way of passing data from the HTML markup to
the template.The same mechanism is used to pass type="text" into the template as
well for the assignment of the type="${type}" line.

The id and widgetid attributes in the template are created automatically by Dojo.
They can be assigned by setting the value of these attributes in the markup. In this case,
Dojo made up some values based on a simple naming scheme.

There are also some new attributes that don’t seem to come from the template.These
are autocomplete, tabindex, and value.They have also been added automatically by
Dojo for this widget type. Different widget types also have some unique properties
added.We explore these in later chapters when we examine individual widgets.

We now have a much better idea how Dojo is updating the DOM for this widget.
However, there are still some open issues. For example, why does the text area for the
Dojo widget appear longer and with a slightly different border? We need to examine
how Dojo applies styles to widgets.

6.3.2 Widget Styles
You may have noticed that the Dojo TextBox widget does not look the same as the stan-
dard HTML text box.This is because Dojo has applied some special styling to the widg-
et. One of the three primary elements of every Dojo widget is the set of styles associated
with it. How does the style get applied? We can answer that by examining one of the
attributes in the DOM element for the widget we’ve been discussing.The following
code comes from the HTML defined in the template file for the TextBox Dojo widget.

class="dojoTextBox"

The class attribute is used to associate various styles to the DOM element.The spe-
cific styles are unique to each widget.The TextBox widget uses only a single style, but
many Dojo widgets use multiple styles.The various Dojo widget styles are defined in
CSS files, which can be found in the Dojo directory structure.

74 Chapter 6 Introduction to Dojo Widgets

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Inside the subdirectory “dijit/themes” we can find the file “dijit.css.”This file contains
the styles for most of the Dojo widgets.Additionally, Dojo also provides a number of
alternative themes that can be used to apply additional styling beyond the default.

Figure 6.5 shows a screen shot of the directory structure used to hold the various
style sheets including images used by the styles.

756.3 Components of a Dojo Widget

2. For a more detailed explanation of “em,” you can read the Wikipedia explanation at

http://en.wikipedia.org/wiki/Em_%28typography%29.

Figure 6.5 Location of Dojo widget styles files

We’ll look inside the “dijit.css” file and see if we can find the style information related
to this widget.With just a bit of searching, we can find the following style definitions.

.dijitTextBox,

.dijitComboBox,

.dijitSpinner {

border: solid black 1px;

width: 15em;

}

This code assigns a solid black border to any DOM element whose class is either
dijitTextBox, dijitComboBox, or dijitSpinner. It also assigns these elements a
default width of 15em.The “em” is a unit of measure roughly equivalent to a character
at the current font size.2

You can customize the style of a Dojo widget by adding properties to the appropriate
style. For instance, if we wanted the background color of all TextBox widgets to be yel-
low, we could simply add the background property to the dijitTextBox style.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<style>

.dijitTextBox {

background: yellow;

}

</style>

Of course, you’ll probably want to include this in a separate CSS file so that you can use
it from all your pages.This would allow you to create your own style on top of the Dojo
default style. Dojo has done some of this work for us already.They’ve provided an additional
style called Tundra that you can use as a base or as a model for your own themes.

We’re heading toward a complete understanding of Dojo widgets.Are we there yet?
Not quite.There is one more element we need to review to complete our understanding
of Dojo widgets. Now we’ll look at the JavaScript code associated with each widget we
create.

6.3.3 JavaScript Component of a Widget
A widget is a control that possesses behavior. But where does all that behavior reside?
The functionality of a widget is provided by a JavaScript object associated with the
widget that contains properties and methods not contained in the DOM element.

The JavaScript object is created from a constructor function defined for each widget. In
the example we’ve been following for dijit.form.TextBox, we can find that constructor
function in a file within the “dijit/form” subdirectory. Notice how the widget package
name corresponds to a subdirectory in the Dojo directory structure. Figure 6.6 is a screen-
shot of the directory structure for TextBox showing only the files relevant for our example.

76 Chapter 6 Introduction to Dojo Widgets

Figure 6.6 Location of Dojo widget JavaScript file

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When we open up the “TextBox.js” file we will find the following code near the top
of the file.

dojo.declare(

"dijit.form.TextBox",

dijit.form._FormWidget,

The dojo.declare function will be described in more detail in Chapter 12,
“Objects and Classes,” when we discuss Object Orientation, but here’s a brief description
of it now.The dojo.declare function creates a constructor function that can be used
to build new objects.The first parameter is the name of that constructor function.The
next parameter defines the super class for the object being created.The new object will
inherit all the properties and methods from the super class.Additional code (not shown)
describes properties and methods in the object created by the constructor.To create a
new object after dojo.declare has been defined, you just use the standard JavaScript
technique for object creation using the new keyword.

newWidget = new dijit.form.TextBox();

The variable newWidget will now reference a JavaScript object.This object is not the
DOM element itself, but a separate object associated with the Dojo widget. Like the
wave/particle duality of light, Dojo widgets also have a dual nature existing as both a
DOM element and a JavaScript object.As we’ve already discussed, there are two ways to
create a Dojo widget—declaratively by including HTML markup or programmatically
by using the new keyword as the preceding example shows.When we’re creating the
widget using HTML markup, the Dojo parser automatically creates the widget object for
us. So in both cases, the widget object is built from the constructor, but when using
HTML markup, we don’t have to write the code ourselves.

What kinds of properties and methods are included in the constructor code? It all
depends on the specific functionality of the widget. Each widget constructor is different,
but there are some common characteristics.They all contain the following types of prop-
erties and methods:

n Attributes—An attribute is a property of the object that is used to specify some
behavior or characteristic of the widget. It can be set by passing a parameter when
calling the constructor function or by setting an attribute value in the HTML
markup when declaratively creating the widget. In general, it is set only when the
object is created. However, some widgets allow these properties to be modified by
using special methods following the setter/getter naming convention. For example,
an attribute called value could be set by calling a method named setValue and
passing the new value of the property.This technique is familiar to Java program-
mers who use JavaBeans.You should use these methods when they exist and avoid
setting properties directly in the widget objects.

776.3 Components of a Dojo Widget

http://lib.ommolketab.ir
http//lib.ommolketab.ir

n Behavioral Methods—These are the functions that define the specific behavior
of the widget.These are different for each widget depending on what the widget
does.

n Extension Points—These are really just methods, but they have a special role.
They are meant to be overridden by developers to change the default behavior
of the widget.This is a very powerful feature of Dojo widgets.You don’t have to
just take what you get. Dojo widgets are built with the expectation that you can
modify and extend them.These methods are not called directly but instead are
called by other methods at a certain point in the lifecycle of the object—for
example, when a widget object is created or deleted.The default implementation
of the methods (the code inside them) usually does nothing.They just provide the
developer with a place to add functionality to the object.

We talk about the specific properties and methods for Dojo widgets when we review
each widget in subsequent chapters. But there are some specific examples of these com-
ponents that all widgets share, which we can discuss now.

6.3.4 Dojo Widget Hierarchy
There are many different kinds of Dojo widgets available to us.And although each type
of widget is unique, they share many common features.To understand how a widget
acquires these shared features, we need to understand a little about an object-oriented
programming concept called inheritance.This is the idea that we can build new objects by
inheriting the capabilities of existing objects.All Dojo widgets have some similarities.
One of the most important ways they are similar is that they all descend from a few
classes from which they inherit a number of special properties and methods. In object-
oriented programming languages, these special ancestor objects are knows as abstract
objects because they can’t be built into usable objects themselves.
They are not standalone widgets but act as placeholders for inheritable properties and
methods.

Let’s review Figure 6.7, which allows us to visualize the various widget classes and
their relationships.

78 Chapter 6 Introduction to Dojo Widgets

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 6.7 Dojo widget hierarchy

The diagram shows the overall relationship between the major widget classes.The dia-
gram only shows a highly selective and abbreviated description of the class hierarchy for
widgets.We’ll drill down more into these in later chapters. But I think it would be helpful
now to at least get a brief description of some of the classes shown in the diagram.

n dijit._Widget—This is the root class for the hierarchy. Every widget is a sub-
class of this class.

n dijit._Templated—This class provides methods for subclasses that can be built
from templates of HTML code. Java programmers are accustomed to single
inheritance, but Dojo provides a type of multiple inheritance by allowing an
object to inherit from more than one class.Another way to think of this class is
as an interface.

796.3 Components of a Dojo Widget

dijit._Templated

Interfaces (Mix-Ins)

dijit._Widget

dijit.
layout_LayoutWidget

Other
Specialized Widgets

dijit.
form_FormWidget

dijit._Container

Button
DropDownButton
ComboButton
ToggleButton
CheckBox
RadioButton
TextBox
ValidationTextBox
MappedTextBox
RangeBoundTextBox
NumberTextBox
CurrencyTextBox
TimeTextBox
DateTextBox
ComboBox
FilteringSelect
Form

LayoutContainer
SplitContainer
StackContainer
AccordianContainer
ContentPane
TabContainer

Menu
Toolbar
ProgressBar
Tooltip
TooltipDialog
Dialog
ColorPalette
Tree
Slider
Number Spinner
InlineEditBox
Textarea
Editor

http://lib.ommolketab.ir
http//lib.ommolketab.ir

n dijit._Container—This class provides methods for objects that can contain
other widgets as children.This class can also be thought of as an interface.

n dijit.form._FormWidget—This is the root class for widgets that will appear on
a form.

n dijit.layout._Layout—This is the root class for widgets that provide some
kind of a layout mechanism that can contain other widgets.

n Specialized Widgets—This isn’t an actual Dijit class, but I’m using it as a place-
holder for all the Dojo widgets that are not part of the Form or Layout package.

Figure 6.7 contains many other widget classes besides those just described.We discuss
these in detail in Chapters 7, 8, and 9, but we should describe some of them now.We’ll
start with the most important class, dijit._Widget.

6.3.4.1 dijit._Widget
The abstract class dijit._Widget is the root class from which all widget objects
descend. Notice a few characteristics of the class name that give us hints about its pur-
pose. One is the use of the underscore character in the name.This tells us that this is a
class to be used internally by Dojo—we won’t create instances of this class ourselves as
Dojo users.The other hint is that there is no subpackage name, which tells us that this
class applies to all widgets. So this class is the “mother” of all widgets. It has properties
and methods that are shared by every Dojo widget object that we will create.Table 6.1
shows some of the important ones.

Table 6.1 Key Properties of dijit._Widget Object

Property Description

id This is a unique identifier for the widget that can be
assigned by Dojo or by the developer.

class HTML class attribute.

style HTML style attribute.

title HTML title attribute.

srcNodeRef Reference to the DOM element in the page associated
with this widget prior to processing by the Dojo parser.

domNode This is the root-level DOM element representing this
widget. This is the node that is added to the DOM. This
node may exist without actually yet being associated
with the DOM.

Table 6.2 shows some of the methods in dijit._Widget.

80 Chapter 6 Introduction to Dojo Widgets

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 6.2 Key Methods of dijit._Widget Object

Method Description

create This function creates the widget.

postCreate This is a stub function that you can override to modify
take actions after the widget has been placed in the
DOM. There is no requirement to call this function.

startup This is a life-cycle function that can be called after the
all the widget’s children have been created but not yet
displayed. This is a stub function containing no code.
There is no requirement to call this function.

postMixInProperties This is a life-cycle function that can be used to over-
ride properties in the widget. It is a stub function con-
taining no code. There is no requirement to call this
function.

buildRendering This function actually creates a DOM element for the
widget. This function can also be overridden by code
in the dijit._Templated object, which builds the
DOM element from a template of HTML code. This
function does not add the element to the DOM for
the page.

destroyRecursive Destroy this widget and its descendants.

getDescendants This function returns all the children of this widget.

connect This function is used to associate an event handler
with a function within the widget.

disconnect This function is used to remove an event handler from
the widget. It is the reverse of connect.

It isn’t enough just to know what methods are available in dijit._Widget.We also need
to know when they are called and how. In other words, what are the lifecycle methods
for each and every widget? Fortunately for us, it is pretty easy to create a good idea of the
important methods by looking at the create method for Widget.This is the method
that is called when a widget is created, either by the parser as it works through the
HTML or by the constructor function of the widget we are building programmatically.

Following is the main code from the create method.The code has been reformatted
and some additional comments added to further explain the comments you have read in
these sections.

//mixin our passed parameters

if(this.srcNodeRef && (typeof this.srcNodeRef.id == "string")){

this.id = this.srcNodeRef.id;

}

816.3 Components of a Dojo Widget

http://lib.ommolketab.ir
http//lib.ommolketab.ir

if(params){

dojo.mixin(this,params);

}

this.postMixInProperties();

if(!this.id){

this.id=dijit.getUniqueId(this.declaredClass.replace(/\./g,"_"));

}

dijit.registry.add(this);

this.buildRendering();

// Copy attributes listed in attributeMap into

// the [newly created] DOM for the widget.

. . .

if(this.domNode){

this.domNode.setAttribute("widgetId", this.id);

}

this.postCreate();

// If srcNodeRef has been processed and removed

// from the DOM (e.g. TemplatedWidget) then delete it to allow GC.

if(this.srcNodeRef && !this.srcNodeRef.parentNode){

delete this.srcNodeRef;

}

Let’s walk through each section and describe the key processing steps.

Table 6.3 Key Methods Called as Processing Steps During Widget Creation

postMixInProperties: A stub function that you can override to modify
variables that may have been naively assigned by
the mixInProperties# widget is added to the
manager object here.

buildRendering Method which performs UI initialization including
attachment of additional DOM nodes to the root
DOM element for the widget.

postCreate A stub function that you can override to modify
take actions after the widget has been placed in
the UI.

82 Chapter 6 Introduction to Dojo Widgets

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6.3.4.2 dijit._Templated
This is an interesting class from which many widgets descend. I think of it like an inter-
face in Java.This provides special properties and methods that allow a widget to be creat-
ed from a template (a string of HTML) rather than instantiated programmatically.

6.3.5 Visual Overview of Dojo Widgets
At this point it would be useful to see some of the widgets.This will give you a good
idea of the breadth of the Dojo widget set.The widgets are divided into general cate-
gories that correspond to the way the widgets are packaged. Most of these widgets have
numerous properties that can be set to enable additional functionality.We only show the
simplest version of each widget just to give you an idea of what they do.We drill down
into each widget in subsequent chapters and see their full power.

Many of these examples are modified versions of test pages available in the Dojo dis-
tribution directory at “dijit/tests.”

6.3.5.1 Form and Data Widgets
These widgets appear in the form package.Their basic purpose is to display some data
and provide the user with a way of modifying that data that is appropriate for the
data type.

Table 6.4 Examples of Form Widgets

Description Example

Button

This replaces the standard HTML button.

It looks nicer and has a slightly better
effect on rollover.

DropDownButton

When this button widget is clicked, it will
display whatever widget is defined as
its child. In the example, the leftmost
widget is the widget before it is clicked.
The rightmost example shows the same
widget after it has been clicked. It displays
its child widget, which in this case is a
ColorPalette but could be any valid widget
(menus are very typical).

836.3 Components of a Dojo Widget

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 6.4 Continued

Description Example

ComboButton

This widget combines a regular Button
widget with a DropDownButton widget,
hence the name ComboButton. The
leftmost example shows the widget before
the down arrow is selected. The rightmost
example shows the widget after the down
arrow icon has been checked. The user
can click either on the down arrow icon or
on the button itself.

ToggleButton

This button looks the same as a regular
Button but behaves differently. When the
button is clicked, the button CSS as well
as the icon CSS can change.

CheckBox

This replaces the standard HTML checkbox.
It looks nicer and has a better check icon.

RadioButton

This replaces the standard HTML checkbox.
The advantages are a nicer look and a
better checked icon.

FilteringSelect

This widget is an enhanced version of the
HTML <select> tag. One improvement is
that when text is typed in the field it will be
used to “filter” possible values from the
full list of data. In this example, typing i
causes the widget to only display states
that begin with “I.” The data list could be
static (provided in the HTML page) or could
be acquired from the server using Ajax.

84 Chapter 6 Introduction to Dojo Widgets

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 6.4 Continued

Description Example

NumberSpinner

This is really just a text box for entering
numbers but with a special feature: Up and
down arrow keys can be used to increase
or decrease the value instead of the person
having to type it directly.

Slider

This widget is also a replacement for a
simple numeric text value, but instead of
entering the number directly you drag an
icon (the slider) across a bar of values.
The value for the widget is determined by
the position of the slider on the bar.

Textarea

This widget is a replacement for the
standard HTML <textarea> tag. The
primary additional feature of this widget is
that it “grows” vertically instead of “scrolls”
vertically. As you type, the size of the box
expands to hold the text rather than
displaying scroll bars to the side.

TextBox

This widget is a replacement for the
<input type="text"> HTML tag.

ValidationTextBox

This widget extends TextBox and adds
various kinds of validations including those
for dates, times, and numbers. Messages
and prompts are automatically displayed.

856.3 Components of a Dojo Widget

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 6.4 Continued

Description Example

DateTextBox

This widget extends TextBox by providing
the user with a calendar metaphor for
selecting a date. The widget looks like a
TextBox on the page, but when the field is
in focus, a pop-up calendar appears. This is
a complex widget possessing a number of
controls that allow the user to sequence
through days, weeks, or years. And, of
course, the look is easily customized by
the developer.

6.3.5.2 Layout Widgets
These widgets appear in the layout package.

Table 6.5 Examples of Layout Widgets

Description Example

LayoutContainer

This widget provides a technique for
dividing the page into separate areas for
placing content. The areas can be aligned
to the “top,” “bottom,” “right,” or “left.”
Think of this widget as a replacement for
using a table to provide layout.

SplitContainer

This widget allows the user to define
different areas, either vertically or
horizontally, that can contain content.
Between the areas is a border dragged to
change the relative sizes of the panes.
Any content within a pane can be
automatically reformatted. The callout
is not part of the widget.

86 Chapter 6 Introduction to Dojo Widgets

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 6.5 Continued

Description Example

StackContainer

This is a container that has multiple
children but only displays a single child at
a time. It usually depends on some
external control (like the prior page and
next page buttons in this example) to
allow the user to trigger the display of a
different child. Otherwise, it looks like a
typical ContentPane.

AccordianContainer

This widget acts as a container for its
children. Only one child at a time is
displayed (as with the StackContainer).
However, the controls are built into this
widget and display as pane titles with an
arrow icon that can be used to collapse the
displayed content and expand the hidden
content.

ContentPane

This widget that acts as a container for
other widgets and includes the capability
for dynamically loading content using Ajax.

TabContainer

This widget acts as a container for its
children and only displays a single child at
a time. However, just like the
AccordianContainer, its controls are built in
and appear as tabs. By selecting a
particular tab, the content associated with
that tab is displayed.

876.3 Components of a Dojo Widget

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6.3.5.3 Other Specialized Widgets
These are other widgets.

Table 6.6 Examples of Other Specialized Dojo Widgets

Description Example

InlineEditBox

This widget displays text that will be
highlighted when the user places the
mouse over it. Clicking the highlighted text
causes it to be replaced with a different
widget that can be used for editing. In this
example, the user clicks the word “running”
in the first line, which is then replaced with
a TextBox that the user can enter a new
value in.

Menu

This widget displays a popup menu that
can be nested as deeply as the developer
wants. Menu items can be separated with
a line icon or disabled.

Toolbar

A toolbar presents a series of options or
icons that can display additional content
(including submenus) or trigger some
process to occur.

ProgressBar

This widget is used to represent the
completion state of a process. In this
example, the current state of the widget
is shown as a number (i.e., 10%), and the
bar is partially filled in at the left.

88 Chapter 6 Introduction to Dojo Widgets

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 6.6 Continued

Description Example

Tooltip

This widget displays a popup.

TooltipDialog

Pops up a dialog that appears like a Tooltip.
It may contain any content including a form.
The page behind the widget is still active.

Dialog

This widget provides a pop-up dialog
containing content that may include a form
(as shown in the example). When the dialog
appears, the original page is disabled. This
is sometimes known as a modal dialog.
The page does not become active until the
dialog is dismissed.

ColorPalette

This widget displays color swatches that
can be selected by the user. The widget will
automatically convert the selected color
into its RGB value for use inside the page.

Tree

This widget displays data in a hierarchical
tree with nodes that can be expanded or
collapsed. You can specify an icon for each
node. One of the major features of the tree
widget is the ability to build itself from data
on the server by making Ajax requests when
either the tree is first built or when nodes
are expanded.

896.3 Components of a Dojo Widget

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The visual guide provides a quick introduction to many of the widgets available to
you in Dojo. However, there are some we didn’t cover, which we review in subsequent
chapters.Also remember that Dojo is constantly being improved, and new widgets are
becoming available all the time.

6.3.6 Building Your Own Widgets
Dojo widgets are highly customizable.You can change the way they look by changing
their style properties.You can control their behavior by setting properties and by provid-
ing overrides to the various life-cycle methods. However, sometimes you may just want
to build your own widget.The various base classes such as dijit._Widget,
dijit.form._FormWidget, and dijit.layout._LayoutWidget are perfect starting
points for creating new widget classes of your own.

Summary
The dijit module in Dojo provides a toolbox of widgets that can be easily added to a web
page.

Dojo widgets can be created declaratively by using HTML tags with the dojoType attrib-
ute. For example

<input type="text" dojoType="dijit.form.TextBox" />

Dojo widgets can be created programmatically by using JavaScript by creating new objects
with the Dojo widget constructors (don’t forget to add the object to the DOM). For example

new dijit.form.TextBox({}, dojo.byId("placeHolder"));

Be sure to include the dojo.require statement so that the Dojo parser knows how to
get the code for the widgets you are using on the page. For example

dojo.require("dijit.form.TextBox");

Widgets have three primary components that make them very easy to customize:

n HTML for their structure

n CSS for their styling

n JavaScript for their behavior

Dojo provides many useful widgets right out of the box. See the visual guide in section 6.4
for a quick walkthrough.

Dojo widgets are highly customizable, but you can also build your own using the existing
Dijit base classes such as dijit._Widget, dijit.form._FormWidget, and
dijit.layout._LayoutWidget as a starting point.

Now that we’ve seen how Dojo widgets work in general (and we’ve seen some examples
of specific widgets), we can begin a detailed study of the various widgets available in
Dojo.The next chapter explores each of the Form widgets in detail.

90 Chapter 6 Introduction to Dojo Widgets

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7
Dojo Form Widgets

…and the world was without Form…

—Genesis

As with creation, there was a point when the World Wide Web itself was also without
form, <form> tags that is. But we certainly have them now, and they are the primary
technique for gathering data from the user. Standard HTML provides a number of useful
form widgets such as text boxes, radio buttons, check boxes, and select lists. However,
these widgets are limited and a bit primitive especially considering that users today are
clamoring for Rich Internet Applications with user interfaces rivaling those of some
desktop applications. Dojo provides replacements for these standard widgets along with
many new widgets that can be used in forms to collect information from the user of our
pages.This chapter drills down into the details of the Dojo form widgets.

7.1 Standard Forms and Dojo Form Widgets
To begin our discussion of form widgets, let’s go back to first principles for a moment.
Why do we need forms at all? We need them so that we can capture data from the user
and send it to the server for processing. But we don’t really send forms to the server; we
send the individual data elements. Remember what a query string looks like in a URL?
Here’s an example of something you might see in the address bar of the browser:

submit.jsp?name=Joe&id=123&type=new

In this example we have three data fields being sent from the browser (name, id, and
type) along with their values (“Joe,” 123,“new”). But where is the form? The form is the
aggregation of the data but doesn’t appear as a distinct component in the URL.
However, within the HTML for the page, it certainly has a distinct identity and its own
tag: <form>. We need it so we can specify characteristics of the entire form such as the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

action (server resource to be requested) and the method type (“GET” or “POST”). So
we need a form widget, and Dojo provides one for us that allows us to treat the form as
a Dojo object and gives us a few additional methods that make it easier to use.

However, the real meat in this chapter is in the form element widgets.These are the
components that capture the actual data and associate it with a logical name to be used
on the server.To make this more concrete, let’s look at just one of the name/value pairs
from the prior URL example.

id=123

From this we can tell that there is a field (or variable) called “id,” which was given a
value of “123” by the user.This doesn’t tell us anything about how the user entered the
value. Did they do it by typing it in, selecting it from a pull-down list, or maybe even
just checking a radio button that was associated with the value.The server doesn’t know,
and it doesn’t care—and it shouldn’t.The server just cares about the data value. But for
the user, the “how” is very important.They need a widget that makes it easy and intu-
itive for them to enter the right value.And that is why we need a number of form
widgets—to present different metaphors to the user for entering and validating data. So
for us, a form widget is simply a visual component of the page that captures a single data
value but does it in a way that corresponds to the user’s understanding of the data. For
example, the technique for selecting a data value for a date should be different than that
of selecting an RGB value for color. Each should have its own unique visual metaphor,
and Dojo provides snazzy widgets for both!

Now let’s explore the technical details of the Dojo form widgets.

7.1.1 The dijit.form._FormWidget Class
Form widgets are used to capture entered values from the user so that the data can be
submitted to the server.The simplest examples of these widgets are the replacements for
the standard HTML form elements such as text fields, multi-line text fields, radio but-
tons, check boxes, and select lists. Each acts as an individual data element on a form.
Dojo provides us with souped-up versions of these HTML elements along with some
new widgets that have no HTML counterparts.

Although there are many different Dojo form widgets, they have many common fea-
tures.The Dojo widgets are built using an object-oriented approach, which implies that
a new widget should be able to inherit properties from more general widgets.The most
general widget of all is dijit.form._FormWidget, which can be described as “the
mother of all form widgets.” In other words, any Dojo widget we create in the form
package inherits properties and methods from this class. Remember, inheritance is addi-
tive.A form widget will possesses all the properties and methods in its own class plus any
from the dijit.form._FormWidget class.And also remember that in Chapter 6 we
studied the base class for all widgets: dijit._Widget.The form widget
dijit.form._FormWidget is a subclass of dijit._Widget, so any individual form
widgets would also inherit all dijit._Widget methods and properties.

92 Chapter 7 Dojo Form Widgets

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Let’s review the properties and methods that all widgets have in common by studying
the members of the dijit.form._FormWidget class.We’ll review the key properties
and methods.To see a full list of every property and method, you should review the
source code for the widget.

7.1.1.1 Properties in dijit.form._FormWidget
You may notice that many of the properties have a null value in FormWidget.This is
because they are common properties of all form widgets, but each specific widget must
assign its own value for the property.The reason that they don’t need values in
FormWidget is that we will never build a FormWidget object directly.We’ll build one of
its subclasses.That makes FormWidget an abstract class.

Table 7.1 dijit.form._FormWidget Properties

Property Default Description

baseClass null CSS class for this widget used to associate styles.

alt null Used to assign the alt attribute of the HTML <input>
tag associated with the widget.

value null Used to assign the value attribute of the HTML
<input> tag associated with the widget. This is the
most important property of the widget: its data value.

name null Used to assign the name attribute of the HTML
<input> tag associated with the widget.

tabIndex "0" Used to assign the tabIndex attribute of the HTML
<input> tag associated with the widget. This deter-
mines the order in which the cursor moves through the
fields.

disabled false Determines whether the user can interact with this
widget. A value of true turns the widget off, but it is
still displayed (usually with a different style) while a
value of true makes the widget usable.

We seem to be missing some important properties. For instance, where is the style
property that defines styles for a DOM element? Remember, dijit.form._
FormWidget inherits from dijit._Widget, and it is dijit._Widget that contains the
definition for the style property.

7.1.1.2 Methods in dijit.form._FormWidget
Here are the key methods for dijit.form._FormWidget.Again, these aren’t all the
methods, just the ones I felt were important.There are more in the source code.

937.1 Standard Forms and Dojo Form Widgets

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 7.2 dijit.form._FormWidget Methods

Method Description

setDisabled Turns the widget on or off based on the argument disable. Both
(disable) the DOM element and the widget object are disabled (or

enabled). Following is the key line from the method:
this.domNode.disabled =

this.disabled = disabled;

Notice that both the DOM element and the Dojo widget have a
disabled property that is set to the value of the argument to
this method.

isFocusable() Returns true if focus can be placed on the widget (it is enabled
and visible), otherwise returns false.

focus() Places the widget in focus. This places the cursor on the widget.

onChange(newValue) This is the method that you would override to add your own
behavior to the widget when the user enters some new data. If
you look at the code for this method, you’ll notice that it doesn’t
do anything. It is a stub method that can be replaced by your own
code—although you don’t have to.

setValue(newValue) Programmatically change the value of the widget to newValue.
This is run automatically when the user enters data.

getValue() Returns the current value of the widget.

undo() Resets the value of the widget to the last value passed to the
onChange method. This method allows the developer to back
out a change to setValue without having to write code to store
the old value.

7.2 The Dojo Form Widget Explained
This section provides a detailed write-up, usually two pages long, describing each of the
form widgets in a standard format. But first, the following are some suggestions on how
to use these write-ups, and a description of each of the categories in the write-ups.

Table 7.3 Legend for Dojo Widget Documentation

Widget This is the full name of the widget including the package name. For
Name example, dijit.form.TextBox is the TextBox widget in the package

“dijit.form”. Sometimes you’ll see references to only the name of the widg-
et, but that isn’t completely correct. However, in this version of Dojo, widget
names are unique within a package but also across all the packages.

94 Chapter 7 Dojo Form Widgets

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 7.3 Continued

Super Widgets inherit properties and methods from their super classes. This
Classes shows the class hierarchy for the widget. There are some missing pieces

here. Some of the classes that act as interfaces aren’t shown, such as
dijit._Templated and dijit._Container. Almost all widgets use
these, so showing them would take more space without really adding any
value. When you really need to be sure if these classes are used by a
widget, check the source code.

File This contains the location of the file containing the JavaScript source
Location code for the widget. You don’t need to look at the source code, but here’s

some advice: Don’t be afraid to look at the source code. It is very well
written and very instructive. A wise developer once said that a programmer
who doesn’t read the source code is really no better than one who can’t
read the source code. Let’s not be that developer.

This section also contains the JavaScript code necessary to include this
widget in your page. Declaring the widget in the HTML is not enough.

Usage This describes when you might use the widget and describes the behavior
of the widget.

Display This shows you some examples of what the widget would look like
Examples on your page.

HTML This shows the HTML that you would need to include in your page to
Markup create the widget. Remember, you can create the widget either in HTML
Examples or JavaScript. The HTML markup method is also known as the declarative

method.

JavaScript This shows the JavaScript code you would need to create your widget.
Constructor This is the programmatic method of creating the widget. When you create
Examples a widget this way, it is not automatically included in the DOM; you need to

explicitly attach it; otherwise, it won’t be usable.

Key These are some of the important properties of the widget. I usually only
Properties show properties unique to the class and not the ones that are inherited

from super classes. However, sometimes the really important properties
are the inherited ones so they are listed.

Key Methods These are some of the important methods of the widget.

Key Styles Need explanation from Jim.

Key Events These are some of the important events of the widget.

Notes This contains additional items of interest about the widget.

One final note before we begin the form widget write-ups.The write-ups do not
attempt to document every aspect of each widget.They provide a summary of each
widget.These write-ups balance completeness versus succinctness.When you really need
all the details you should go to the Dojo site to review documentation, the API, and the
forums.You should also dive into the source code.

957.2 The Dojo Form Widget Explained

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Also there are a few form widgets that are more complicated and specialized. I’ve
chosen to put those in Chapter 8,“Dojo Layout Widgets.”These include the Slider,
Number Spinner, InlineEditBox,Textarea, and Editor.

Table 7.4 Explanation of Dojo Form Widgets

96 Chapter 7 Dojo Form Widgets

Widget dijit.form.Button
Name

Super
Classes

File dijit/form/Button.js
Location Use dojo.require("dijit.form.Button");

Usage This class will create a button icon that triggers some behavior when
clicked. This button replaces the standard HTML <button> and can be
used for form submission or anywhere that some action needs to be
initiated by the user.

Display
Examples

HTML Create a simple button.
Markup <button dojoType="dijit.form.Button" label="Click Me" />
Examples

Create a simple button with an icon:
<button dojoType="dijit.form.Button"

label="Click Me" iconClass="circleIcon" />

Example CSS for icon
.circleIcon {

background-image: url(circleIcon.gif);

background-repeat: no-repeat;

width: 16px;

height: 16px;}

Create a simple button with the label defined by placing text in the
tag body:

<button dojoType="dijit.form.Button" onclick="handler">

Click here!

</button>

Note: This example also shows how to create behavior by assigning a func-
tion named handler to the onclick event. It assumes that there is a
function named handler that will execute if the user clicks the button.

dijit._Widget dijit.form._FormWidget

http://lib.ommolketab.ir
http//lib.ommolketab.ir

977.2 The Dojo Form Widget Explained

JavaScript Constructor for creating a new Button with a label of “Click me”:
Constructor new dijit.form.Button({label: "Click me"}, dojo.byId("form1");
Examples

This code automatically adds the widget to an existing widget in the
DOM whose id is “form1”. If you don’t specify a node for attaching the
widget, it will not appear on the page.

Key Property Default Description
Properties label null Button text

showlabel true Label text to be displayed on button

iconClass null CSS class containing icon for button

Key Method Description
Methods setLabel(label) Change the button label to new value label. This

function must be used to change the label once
the button has been created.

Key Style Name Description
Styles dijitButtonText Style for button label text.

Key Event Name Description
Events onClick Clicking the button will cause this event handler to

run. Although this method is really part of
dijit.form._FormWidget, it is included here on
dijit.form.Button because it is the primary
method you typically use for this widget.

Notes You can also attach an onClick event to the widget using JavaScript so
that there is a clear separation between the structure (HTML markup) of
your widget and the behavior (JavaScript). This example assumes there is
a function named handler, and the id of the button is btn1.

dojo.connect(dojo.byId("btn1"), "onclick", handler);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

98 Chapter 7 Dojo Form Widgets

Widget dijit.form.DropDownButton
Name

Super
Classes

File dijit/form/Button.js
Location Use dojo.require("dijit.form.Button");

Usage This class creates a button icon that displays its child element when
clicked. The child element can be any widget type. This widget is named
as it is because it makes the creation of drop-down menus very simple. By
default, the displayed content appears just below the button.

Display
Examples

The examples here show what the widget looks like before it is clicked
and then after. The rightmost image shows how the widget appears after it
is clicked.

HTML Create a DropDownButton with Menu:
Markup <div dojoType="dijit.form.DropDownButton">
Example Menu

<div dojoType="dijit.Menu">

<div dojoType="dijit.MenuItem"

iconClass="dijitEditorIcon dijitEditorIconCut">Cut</div>

<div dojoType="dijit.MenuItem"

iconClass="dijitEditorIcon dijitEditorIconCopy">Copy</div>

<div dojoType="dijit.MenuItem"

iconClass="dijitEditorIcon dijitEditorIconPaste">Paste</div>

</div>

</div>

In this example, the child widget is a dijit.Menu with
dijit.MenuItem widgets attached. Each menu item gets an icon
because of the iconClass property. This is a feature of the Menu widget,
not of the DropDownButton specifically.

dijit._Widget dijit.form._FormWidget dijit.form.Button

http://lib.ommolketab.ir
http//lib.ommolketab.ir

997.2 The Dojo Form Widget Explained

JavaScript Constructor for creating a new DropDownButton with a label of “Menu”:
Constructor btn1 = new dijit.form.DropDownButton({label: "Menu"};
Examples

This code creates the widget, but it must be attached as a child of some
DOM element to be visible on the page.

For this widget to be useful you must also attach a child widget that will
be displayed when the button is activated. Let’s say that you’ve already
created a Menu widget with items on it (see the description for
dijit.Menu for details on how to create menus), and the object name
is menu. The DropDownButton provides a special property to attach
the widget to the button.

btn1.dropDown = menu;

This is necessary because a bit of processing needs to be done to make
the widget hidden, so just adding the new widget as a child of the button
using addChild() wouldn’t be sufficient.

Key Property Default Description
Properties dropDown(child) null Reference to child widget to be

displayed when button is clicked.
Don’t use addChild().

Key There are no additional public methods for this widget, just those
Methods that have been inherited from its super classes.

Key There are no additional public key styles for this widget, just those
Styles that have been inherited from its super classes.

Key There are no additional public events for this widget, just those that have
Events been inherited from its super classes.

Notes The power of this widget comes from its ability to display any other widget
on activation, but its most typical use is to display menus.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

100 Chapter 7 Dojo Form Widgets

Widget dijit.form.ComboButton
Name

Super
Classes

File dijit/form/Button.js
Location Use dojo.require("dijit.form.Button");

Usage This class creates a button combining the features of a
dijit.form.Button and a dijit.form.DropDownButton. When
the user clicks the down arrow icon on this widget, it acts as a
DropDownButton and displays its child widget. When the user clicks
the button outside the down arrow, this widget acts as a Button and
runs its onclick event handler. This is useful when some default behav-
ior can be tied to the button while the child widget asks for or applies
some restrictions or further characteristics for the behavior. A classic
example of this would be where the primary button does a “Save,” but
the child widget performs a “Save” or “Save As…”

Display
Examples

The rightmost widget shows what would display if the user
clicks the down arrow icon on the widget.

HTML Create a ComboButton with a Menu.
Markup <div dojoType="dijit.form.ComboButton">
Examples Save

<div dojoType="dijit.Menu" id="saveMenu1">

<div dojoType="dijit.MenuItem"

iconClass="dijitEditorIcon dijitEditorIconSave">Save
➥</div>

<div dojoType="dijit.MenuItem">Save As</div>

</div>

</div>

Remember to include dojo.require("dijit.Menu") in your page to
use menus.

dijit._Widget dijit.form._FormWidget dijit.form.Button

dijit.form.DropDownButton

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1017.2 The Dojo Form Widget Explained

JavaScript Constructor for creating a new ComboButton with a label of “Click me”:
Constructor new dijit.form.ComboButton({label: "Save"},
Examples dojo.byId("form1");

This code automatically adds the widget to an existing widget in the DOM
whose id is “form1”. If you don’t specify a node for attaching the widget, it
will not appear on the page.

Key There are no additional public properties for this widget, just those that
Properties have been inherited from its super classes.

Key There are no additional public methods for this widget, just those that
Methods have been inherited from its super classes.

Key Style Name Description
Styles dijitButtonText Text for button label.

dijitDownArrowButton Class for the down arrow icon.

Key There are no additional public events for this widget, just those that have
Events been inherited from its super classes.

Notes None

http://lib.ommolketab.ir
http//lib.ommolketab.ir

102 Chapter 7 Dojo Form Widgets

Widget dijit.form.ToggleButton
Name

Super
Classes

File dijit/form/Button.js
Location Use dojo.require("dijit.form.Button");

Usage This class creates a button that can be in two states (checked or not).
Use this widget to provide users with a means of flipping some internal
state. It looks like a regular Button. However, it has a built-in feature to
automatically change the button CSS and icon CSS when it is toggled.

Display
Examples

HTML Create a simple ToggleButton:
Markup <button dojoType="dijit.form.ToggleButton"
Examples iconClass="dijitCheckBoxIcon">

Toggle
</button>

JavaScript Constructor for creating a new ToggleButton with a label of “Click me”:
Constructor new dijit.form.ToggleButton({label: "Toggle"},
Examples dojo.byId("form1");

This code automatically adds the widget to an existing widget in the
DOM whose id is “form1”. If you don’t specify a node for attaching the
widget, it will not appear on the page.

Key Property Default Description
Properties checked false Used to show the state of the widget. If

checked is true the button has been
clicked, and false if it has not. If the
button is clicked again, checked will become
false. Remember, this is a toggle.

iconClass null CSS style describing the icon shown when
the button is clicked.

dijit._Widget dijit.form._FormWidget dijit.form.Button

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1037.2 The Dojo Form Widget Explained

Key Method Description
Methods setChecked(checked) This function sets the property checked to

either true or false determined by the
argument of the method.

Key Style Name Description
Styles dijitButtonText Style for the button label text.

dijitToggleButton Style for the button.

Key Style Name Description
Events dijitButtonText Style for the button label text.

dijitCheckBoxIcon Style for the check box icon (a check).

Notes ToggleButton is a base class for checkboxes and radio buttons.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

104 Chapter 7 Dojo Form Widgets

Widget dijit.form.CheckBox
Name

Super
Classes

File
Location dijit/form/CheckBox.js

Use dojo.require("dijit.form.CheckBox");

Usage This class creates a widget that can be in two states (checked or not).
These widgets can be combined into a group. This is a replacement for
the HTML <input type="checkbox" name="c1"/> tag. Although
only a single widget is required, you would usually use multiple instances
for each possible checkbox item. As with standard HTML, you can use
the same value for the name attribute to link the individual checkboxes
together into a group.

Display
Examples

HTML Create a simple CheckBox.
Markup <input dojoType="dijit.form.CheckBox" checked="checked"
Examples

➥name="c1">

Checked</input>

<input dojoType="dijit.form.CheckBox" name="c1">

Unchecked</input>

<input dojoType="dijit.form.CheckBox" checked="checked"
disabled="disabled" name="c1">

Checked and Disabled
</input>

JavaScript Constructor for creating a new CheckBox:
Constructor new dijit.form.CheckBox({name: "c1", checked: true});
Examples

This constructor only created the CheckBox not the label that usually
goes along with it. You would also have to create the label and attach
both it and the CheckBox to the DOM.

dijit._Widget dijit.form._FormWidget dijit.form.Button

dijit.form.ToggleButton

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1057.2 The Dojo Form Widget Explained

Key Property Default Description
Properties checked false Used to hold the state of the widget. If

checked is true, the button has been
clicked and false if it has not. If the
button is clicked again, checked will become
false. Remember, this is a toggle.

name null Assigns the name attribute in the <HTML>
tag associated with this widget. This is
especially important in this widget because
it is also used to assign multiple instances
of this widget to a single group.

Key Method Description
Methods setChecked(Boolean) Set the property checked to either true

or false based on the argument of the
method.

Key Style Name Description
Styles dijitButtonText Style for the button label text.

dijitCheckBoxIcon Style for the check box icon (a check).

Key Style Name Description
Events onClick Checking the box will cause this event

handler to run. Although this method is
really part of dijit.form._FormWidget,
it is included here because it is the primary
method you typically use for this widget.

Notes Use an <input> tag rather than a <button> tag for
dijit.form.CheckBox.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

106 Chapter 7 Dojo Form Widgets

Widget dijit.form.RadioButton
Name

Super
Classes

File dijit/form/CheckBox.js
Location Use dojo.require("dijit.form.CheckBox");

Usage This class creates a widget that can be in two states (checked or not).
These widgets can be combined into a group. This is a replacement for
the HTML <input type="checkbox" name="c1"/> tag. Although
only a single widget is required, you would usually use multiple instances
for each possible checkbox item. As with standard HTML, you can use
the same value for the name attribute to link the individual checkboxes
together into a group. The difference between this widget and the
CheckBox widget is that only one of the instances in a group of
RadioButton widgets can be checked.

Display
Examples

HTML Create a simple set of RadioButton widgets.
Markup <input type="radio" name="rb" dojoType="dijit.form.

Examples ➥RadioButton"

checked="checked" name="rb1">

Checked

</input>

<input type="radio" name="rb" dojoType="dijit.form.
➥RadioButton">

Unchecked

</input>

<input type="radio" name="rb" dojoType="dijit.form.
➥RadioButton"

disabled="disabled" >

Disabled

</input>

dijit.form.ToggleButton

dijit._Widget dijit.form._FormWidget dijit.form.Button

dijit.form.CheckBox

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1077.2 The Dojo Form Widget Explained

JavaScript Constructor for creating a new RadioButton:
Constructor new dijit.form.Radiobutton({name: "c1", checked: true});
Examples

This constructor only created a single RadionButton widget, not the
label that usually goes along with it. You would also have to create the
label and attach both it and the RadioButton to the DOM.

Key Property Default Description
Properties checked false Used to hold the state of the widget. If

checked is true, the button has been
clicked and false if it has not. If the
button is clicked again, checked will
become false. Remember, this is a toggle.

name null Assigns the name attribute in the <HTML>
tag associated with this widget. This is
especially important in this widget because
it is also used to assign multiple instances
of this widget to a single group.

Key Method Description
Methods setChecked(Boolean) Set the property checked to either true

or false based on the argument of the
method.

Key Style Name Description
Styles dijitButtonText Text for button label.

dijitRadioIcon Style for the radio button icon (a radio
button).

Key Style Name Description
Events onClick Clicking the radio button icon will cause

this event handler to run. Although this
method is really part of
dijit.form._FormWidget, it is
included here because it is the primary
method you typically use for this widget.

Notes None

http://lib.ommolketab.ir
http//lib.ommolketab.ir

108 Chapter 7 Dojo Form Widgets

Widget dijit.form.TextBox
Name

Super
Classes

File dijit/form/TextBox.js
Location Use dojo.require("dijit.form.TextBox");

Usage Creates a generic textbox field. This widget can be used as a replacement
for the <input type="text"> tag. By using the widget instead of the
HTML tag you can get the benefits of consistent styling and a number of
additional useful methods. This widget by itself does not provide any vali-
dation. However, Dojo does provide a number of subclasses of this widget
that do provide lots of validation features. Details for each of these sub-
classes are provided on their own page, but they’re also summarized in
the following table.

TextBox Subclass Purpose

ValidationTextBox Text box providing validation

MappedTextBox Like a ValidationTextBox but also pro-
vides a method to serialize the data value

RangeBoundTextBox Text field with range validation (minimum
and maximum values)

NumberTextBox Text field requiring a numeric data type

CurrencyTextBox Text field with currency validation

TimeTextBox Field that allows for entry of time values

DateTextBox Field that provides a calendar for selecting
a date

Display
Examples

A label would usually be associated with this field but is not part of the
widget itself.

HTML Create a simple TextBox
Markup <input type="text" name="f1" dojoType="dijit.form.TextBox"/>

Examples

dijit._Widget dijit.form._FormWidget

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1097.2 The Dojo Form Widget Explained

JavaScript Constructor for creating a new TextBox
Constructor
Examples new dijit.form.TextBox({}, dojo.byId("form1");

This code automatically adds the widget to an existing widget in the DOM
whose id is “form1”. If you don’t specify a node for attaching the widget,
it will not appear on the page.

Key Property Default Description
Properties trim false If true will cause the widget to remove

any whitespace characters such as spaces
from the beginning and ending of the data.

uppercase false If true will cause the widget to convert all
characters in the data to their upper case
values.

lowercase false If true will cause the widget to convert all
characters in the data to their lower case
values.

propercase false If true will cause the widget to convert the
first character of each word in the data to
upper case like a proper name.

maxLength null Assigns the value of the maxLength HTML
attribute for input tags, which limits the
number of characters that the user can
enter in the field (but doesn’t affect the
size of the field—use CSS for that).

Key Method Description
Methods getDisplayedValue() This function will return the value of

the data being displayed to the user.

getValue() This function will return the internal
data value for the widget.

setValue(value) This function will set the internal
value of the data value for the widget.

setDisplayedValue(value) This function will set the value of the
data being displayed to the user.

format() The internal data value for a widget
may be different than the displayed
value that the user sees. This
function converts the internal value
to the displayed value.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

110 Chapter 7 Dojo Form Widgets

parse() This function takes data entered by
the user and removes the formatting
so that it can be stored as an
internal property of the widget.

filter() A “filter” is the generic term for the
various transformations that can be
performed on the data value for the
widget such as “trim” and “proper-
case”. This function applies to filters
to the displayed data value.

Key Style Name Description
Styles dijitTextBox Text for button label.

Key Style Name Description
Events OnChange Entering data in the field and moving focus

away from the field (i.e. pressing the tab
key) causes this event handler to run.
Although this method is really part of
dijit.form._FormWidget, it is included
here because it is the primary method you
typically use for this widget.

Notes Even though this class is used as a root class for other more useful
validating textbox types, it can still be used by itself and often is when
validation is not required.

The autocomplete property is set to off. This prevents the browser
from displaying suggestions for this field based on previously entered
values.

This widget allows the user to enter a single field. However, you can think
of the data for the entry as being stored in two properties. The first prop-
erty, displayedValue, contains the data as it is entered and seen by
the user. The second property, value, contains the data as it is manipu-
lated by the widget. The parse() method of the widget may transform
the data in some way, and it is run whenever the displayedValue is
changed. The format() method transforms the data in value back to the
format required for display. The methods are intended to be the inverse
of each other. The following diagram depicts this process visually.

The default behavior for these methods is to perform no transformation
so that the internal value is the same as the externally displayed
displayedValue.

displayedValue value

parse()

format()

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1117.2 The Dojo Form Widget Explained

Widget dijit.form.ValidationTextBox
Name

Super
Classes

File dijit/form/ValidationTextBox.js
Location Use dojo.require("dijit.form.ValidationTextBox");

Usage This widget can be used as a replacement for the <input
type="text"> tag, just like TextBox, with the additional benefit that
validations can be automatically applied to the data when it is entered
by the user. Validations can be defined by setting values for certain
properties on the widget. Validation messages will appear as pop-ups
next to the entered fields. Standard validation messages also exist but
can be overridden. You can also define a helpful message that appears
when the field is in focus and no data has been entered. This message
can be defined in the promptMessage property of the widget.

Display
Examples

This widget requires that a value be entered. The prompt message
appears when the widget is in focus and no value has been entered.

HTML Create a simple ValidationTextBox
Markup
Examples <input id="q01" type="text" name="age"

dojoType="dijit.form.ValidationTextBox"

promptMessage="Enter an age between 0 and 120"

required="true" />

JavaScript Constructor for creating a new ValidationTextBox
Constructor
Examples new dijit.form.ValidationTextBox(

{ promptMessage: "Enter an age between 0 and 120",

required: "true"},

dojo.byId("form1");

This code automatically adds the widget to an existing widget in the DOM
whose id is “form1”. If you don’t specify a node for attaching the widget,
it will not appear on the page.

dijit._Widget dijit.form._FormWidget dijit.form.TextBox

http://lib.ommolketab.ir
http//lib.ommolketab.ir

112 Chapter 7 Dojo Form Widgets

Key Property Default Description
Properties required false Set to true to specify that data must be

entered.

promptMessage null Message displayed as a tool tip when
the field is in focus.

invalidMessage null Message displayed when the data in the
field is invalid.

constraints null Object to be passed to the validator
method that contains properties that are
meaningful for certain kinds of validations.
These will be discussed in the various
ValidationTextBox subclasses.

regExp .* A regular expression used to validate the
entered data.

regExpGen null Meant to be overridden by a custom
method that should dynamically generate
a regular expression. This property should
be set instead of regExp because it will
generate a value for regExp.

Key Method Description
Methods validator() This method performs the validations

for the field using the constraints
and regExp properties.

isValid() Runs the validator method to
determine if the data is valid. Returns
true for yes and false for no. This
method can be overridden to provide
even more sophisticated custom
validations.

getErrorMessage() Returns an error message from the
invalidMessage property.

getPromptMessage() Returns the prompt message.

validate() Shows missing or invalid messages
if appropriate and highlights textbox
fields.

displayMessage(msg) Displays message msg as a tool tip.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1137.2 The Dojo Form Widget Explained

Key Style Name Description
Styles dijitInputField Style for data entry area.

dijitTooltip Style for tool tip used for prompt messages
and error messages.

Key Style Name Description
Events onChange Entering data in the field and moving focus

away from the field (i.e. pressing the tab
key) causes this event handler to run.
Although this method is really part of
dijit.form._FormWidget, it is included
here because it is the primary method you
typically use for this widget.

Notes The regular expression validation is extremely powerful. Regular expres-
sions can be created for a huge variety of validations, although they can
be somewhat difficult to work with at first. Regular expression syntax is
beyond the scope of the book, but many good references exist.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

114 Chapter 7 Dojo Form Widgets

Widget dijit.form.MappedTextBox
Name

Super
Classes

File dijit/form/ValidationTextBox.js
Location Use dojo.require("dijit.form.ValidationTextBox");

Usage This widget is the same as ValidationTextBox with a few differences.
Additional methods are provided to allow the entered data to have special
serialization performed and saved in a hidden field. The typical purpose
of this is to allow you to transform the value for the widget before it is
submitted to the server. In other words, this widget actually maps to two
form elements, one of which is a hidden field whose value is passed to
the server. The other element is the field actually entered by the user.

Although it is possible to create widgets from this class it usually isn’t
done. Instead, this is used as a base class for other validation widgets.
You could think of this as an abstract class used to implement
inheritance in the class hierarchy.

Display Not applicable.
Examples

HTML Not applicable.
Markup
Examples

JavaScript Not applicable.
Constructor
Examples

Key
Properties None

Key Method Description
Methods serialize This function takes the value of the

data that was entered by the user
and converts it to another form that
will be saved in a hidden field and
set to the server. This conversion is
called serialization here.

toString String representation of the data
value for the widget.

Key
Styles None

dijit.form.ValidationTextBox

dijit._Widget dijit.form._FormWidget dijit.form.TextBox

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1157.2 The Dojo Form Widget Explained

Key Not applicable.
Events

Notes This widget is used as a base class for other validation wizards and would
probably not be used directly.

You might wonder what the purpose of the serialize method is given
that Dojo form widgets get serialized automatically by the browser on form
submission because they populate the value property of the DOM node.
The serialize method in this widget can be overridden to provide
specialized serialization, transforming the data before submission to the
server. That is the difference.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

116 Chapter 7 Dojo Form Widgets

Widget dijit.form.RangeBoundTextBox
Name

Super
Classes

File dijit/form/ValidationTextBox.js
Location Use dojo.require("dijit.form.ValidationTextBox");

Usage This widget is a subclass of MappedTextBox that provides the ability to
check for a minimum value, a maximum value, or both. Like
MappedTextBox it tends to be used as an abstract class for inheritance
to subclasses and not as a concrete class. In other words, you probably
won’t create widgets from this class directly. You may use it as a super
class to define your own custom widgets. Its two subclasses are
NumberTextBox and TimeTextBox.

Display Not applicable.
Examples

HTML Not applicable.
Markup
Examples

JavaScript Not applicable.
Constructor
Examples

Key Property Default Description
Properties rangeMessage null Contains message to be displayed when

the data value is outside the range of
allowed values as determined by the
rangeCheck method.

constraints null Object to be passed to the validator
method that contains properties that are
meaningful for certain subclasses. See
the subclasses for details.

Key Method Description
Methods rangeCheck(number, This function uses properties in the

constraints) constraints object to validate the data
value number. By default, the function
looks for a min and max property and
compares them to the value of the widget.
This function can be overridden by the
user for more sophisticated validation.

dijit.form.ValidationTextBox

dijit._Widget dijit.form._FormWidget dijit.form.TextBox

dijit.form.MappedTextBox

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1177.2 The Dojo Form Widget Explained

Key Method Description
Methods isInRange() This function returns true if the value of

the widget is in range and false other-
wise. It runs the rangeCheck function.

compare(value1, This function returns one of three values
value2) depending on the relative values of

value1 and value2.

Returns 0 if value1 and value2 are
equal.

Returns a negative number if value2 is
greater than value1.

Returns a positive number if value1 is
greater than value2.

Key None
Styles

Key None
Events

Notes None

http://lib.ommolketab.ir
http//lib.ommolketab.ir

118 Chapter 7 Dojo Form Widgets

Widget dijit.form.NumberTextBox
Name

Super
Classes

File dijit/form/NumberTextBox.js
Location Use dojo.require("dijit.form.NumberTextBox");

Usage This class creates a widget that subclasses RangeBoundTextBox and
allows only numeric values. By inheriting all of the functionality from its
super classes, this widget provides a powerful set of features to provide
for the entry of numeric data. It doesn’t possess any of its own new meth-
ods or properties but overrides a number of inherited methods to provide
some useful numeric validations.

Display
Examples

This figure shows the rangeMessage Tooltip when the entered
data is outside the valid range. Notice also that the field is highlighted,
and there is a special warning message icon at the far right of the field.

HTML Following is the HTML for creating a simple NumberTextBox with a
Markup range validation.
Examples <inputtype="text" name="age"

dojoType="dijit.form.NumberTextBox"

promptMessage="Enter an age"

rangeMessage="Enter an age between 18 and 120"

constraints="{min:18,max:120}"

required="true" />

Notice that the constraints attribute specifies a value within braces:
This is JSON notation for building an object.

dijit.form.ValidationTextBox

dijit._Widget dijit.form._FormWidget dijit.form.TextBox

dijit.form.RangeBoundTextBox

dijit.form.MappedTextBox

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1197.2 The Dojo Form Widget Explained

JavaScript Create a NumberTextBox widget using JavaScript.
Constructor var obj = {

Examples name: "temperature",

value: 98.6,

constraints: {min:90,max:110,places:1},

promptMessage: "Enter a value between 90 and 110",

required: "true" ,

invalidMessage: "Invalid temperature."

};

var f1 = new dijit.form.NumberTextBox(obj, "form1");

Notice that the places property has a value of 1 in the constraint
attribute. This forces the user to type a one decimal digit in the value.

Key Property Default Description
Properties constraints null This is the object that contains properties

used to validate the data for any widget
that is a subclass of ValidationTextBox.
This widget, NumberTextBox, allows the
following properties:

min—Minimum value of data
max—Maximum value of data
places—Number of decimal digits required

All of the constraint properties are optional.

Key None
Methods

Key None
Styles

Key None
Events

Notes None

http://lib.ommolketab.ir
http//lib.ommolketab.ir

120 Chapter 7 Dojo Form Widgets

Widget dijit.form.CurrencyTextBox
Name

Super
Classes

File dijit/form/CurrencyTextBox.js
Location Use dojo.require("dijit.form.CurrencyTextBox");

Usage This class creates a widget that subclasses NumberTextBox. This class
allows only numeric data but also puts a further limitation on the entered
data by requiring that it follow the rules for currency formats. Each
country has a particular format for writing its currency that follows rules
for the number of decimal places, the decimal character, and the separ-
ator characters for thousands. Also a unique symbol can be used such
as “€” for the Euro). The International Standard Organization (ISO)
defines standard codes and formats for describing various currencies.1

Each country is assigned a unique three-character code to identify it (such
as “JPY” for Japan).

Display
Examples

This example displays an amount in Japanese, which is always for-
matted as a whole number without decimal digits. The bottom example
shows what happens when you try to enter decimal digits in a field
expecting an amount in yen.

The symbol for yen is not entered by the user but is supplied
automatically after the data is entered and focus leaves the field.

HTML The following HTML would create a widget for entering an amount in
Markup Japanese yen.
Examples <input id="field1" type="text" name="total"

dojoType="dijit.form.CurrencyTextBox"

required="true"

currency="JPY"/>

The following HTML would create a widget for entering an amount in U.S.
dollars. The user would not be required to enter the decimal digits.

dijit.form.ValidationTextBox

dijit._Widget dijit.form._FormWidget dijit.form.TextBox

dijit.form.RangeBoundTextBox

dijit.form.MappedTextBox

dijit.form.NumberTextBox

1. For a detailed explanation of currency codes, visit the following page on Wikipedia:

http://en.wikipedia.og/siki/ISO_4217

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1217.2 The Dojo Form Widget Explained

<input id="field1" type="text" name="total"

dojoType="dijit.form.CurrencyTextBox"

required="true"

currency="USD"

constraints="{fractional:false}"/>

JavaScript Create a NumberTextBox widget using JavaScript.
Constructor var obj = {

Examples name: "cost",

promptMessage="Enter the item cost."

constraints="{fractional: true}"

currency="USD"

};

var f1 = new dijit.form.CurrencyTextBox(obj);

This widget must still be added to the DOM so it displays on the page.

Key Property Default Description
Properties constraints null This is the object that contains properties

used to validate the entered data. This
widget, CurrencyTextBox, allows the
following properties:

fractional—requires entry of decimal digits
If “fractional” is false or not entered at
all, the user is not required to enter
decimal digits (although they may), and the
decimal digits will be added automatically.

currency null Contains the currency code to be used for
formatting and validating the entered
amount (i.e., “USD” for United States
dollars).

Key None
Methods

Key None
Styles

Key None
Events

Notes None

http://lib.ommolketab.ir
http//lib.ommolketab.ir

122 Chapter 7 Dojo Form Widgets

Widget dijit.form.TimeTextBox
Name

Super
Classes

File dijit/form/TimeTextBox.js
Location Use dojo.require("dijit.form.TimeTextBox");

Usage This class creates a widget that allows the user to enter data represent-
ing time. It also performs validation on the data to ensure that it is a time
value and that it is in an appropriate format. The widget can be configured
so that various time formats can be selected.

Another very useful feature of this widget is its ability to display a scroll-
able list of times from which the user can select a value. So there is no
need to actually type the time. This feature is provided by a special pop-
up widget created from the dijit._TimePicker class.

There are many formatting options for displaying time and date data. Dojo
uses the Unicode locale conventions, which are explained in more detail
at the Unicode Consortium web site. The URL for additional information
on date and time conventions is as follows:

http://www.unicode.org/reports/tr35/#Date_Format_Patterns

Display
Examples

This example shows the widget after the user has clicked in the data
entry area. A popup appears displaying the dijit._TimePicker
widget, which allows the user to select a time from a scrollable list.

The dijit._TimePicker widget will display five hours (although this
example shows three hours for brevity) of times centered around the
current time. Times are selectable in 15-minute increments.

dijit.form.ValidationTextBox

dijit._Widget dijit.form._FormWidget dijit.form.TextBox

dijit.form.RangeBoundTextBox

dijit.form.MappedTextBox

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1237.2 The Dojo Form Widget Explained

HTML Here is the HTML markup for creating a widget to display a time using
Markup the “medium” value for formatLength.
Examples

<input id="time1" type="text" name="time1"

dojoType="dijit.form.TimeTextBox"

constraints="{formatLength:’medium’}"

/>

JavaScript Create a TimeTextBox widget using JavaScript.
Constructor var obj = {

Examples name: "time",

promptMessage="Enter the time.",

constraints="{formatLength: ‘medium’}"

};

var f1 = new dijit.form.TimeTextBox(obj);

This widget must still be added to the DOM so it displays on the page.

Key Property Default Description
Properties constraints null This is the object that contains properties

used to validate the data for any widget that
is a subclass of ValidationTextBox.
This widget, TimeTextBox, allows the
following properties:

min—Minimum value of data
max—Maximum value of data

The format of the date value should be
‘YYYY-MM-DD’.
All of the constraint properties are
optional.

am "AM" Provide an override for the “am” string.

pm "PM" Provide an override for the “pm” string.

timePattern "hh:mm"Specify the string pattern for displaying
time values. Following are some of the
available markers:

H…hours
M…minutes
S…seconds

http://lib.ommolketab.ir
http//lib.ommolketab.ir

124 Chapter 7 Dojo Form Widgets

Key Property Default Description
Properties formatLength short Specify the format to be used when

displaying the time.

Value Resulting Format

short 5:45 PM

medium5:45:31 PM

long 5:45:31 PM Central Standard Time

strict false When true exact matches are required
for white space and abbreviations. When
false requirements are looser.

Key None
Methods

Key None
Styles

Key None
Events

Notes None

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1257.2 The Dojo Form Widget Explained

Widget dijit.form.DateTextBox
Name

Super
Classes

File dijit/form/DateTextBox.js
Location Use dojo.require("dijit.form.DateTextBox");

Usage This class creates a widget that allows the user to enter data represent-
ing a date. It also performs validation on the data to ensure that it is a
properly formatted date value. The widget can be configured so that
various date formats can be specified.

Another very useful feature of this widget is its ability to display a calen-
dar from which the user can select a value. This feature is provided by a
special pop-up widget created from the dijit._Calendar class.

There are many formatting options for displaying time and date data. Dojo
uses the Unicode locale conventions, which are explained in more detail
at the Unicode Consortium web site. The URL for additional information
on date and time conventions is as follows:

http://www.unicode.org/reports/tr35/#Date_Format_Patterns

Display
Examples

This example shows the widget after the user has clicked in the data
entry area. A popup appears displaying the dijit._Calendar widget,
which allows the user to select a date.

HTML Here is the HTML markup for creating a widget for entering date values:
Markup
Examples <input id="date1" type="text" name="date1"

dojoType="dijit.form.DateTextBox"

/>

dijit.form.ValidationTextBox

dijit._Widget dijit.form._FormWidget dijit.form.TextBox

dijit.form.RangeBoundTextBox

dijit.form.MappedTextBox

dijit.form.TimeTextBox

http://lib.ommolketab.ir
http//lib.ommolketab.ir

126 Chapter 7 Dojo Form Widgets

JavaScript Create a DateTextBox widget using JavaScript.
Constructor var obj = {

Examples name: "date",

promptMessage="Enter the date."

};

var f1 = new dijit.form.DateTextBox(obj);

This widget must still be added to the DOM so it displays on the page.

Key Property Default Description
Properties constraints null This is the object that contains properties

used to validate the data for any widget that
is a subclass of ValidationTextBox.
This widget, TimeTextBox, allows the
following properties:

min—Minimum value of data
max—Maximum value of data

All of the constraint properties are optional.

am "AM" Provide an override for the “am” string.

pm "PM" Provide an override for the “pm” string.

datePattern "m/d/yy" Specify the string pattern for displaying
time values. Following are some of the
available markers:

y—years
m—months
d—day

formatLength short Specify the format to be used when
displaying the date.

Value Resulting Format

short 2/1/08

medium Feb 1, 2008

long February 1, 2008

full Friday, February 1, 2008

strict false When true exact matches are
required for white space and
abbreviations. When false
requirements are looser.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1277.2 The Dojo Form Widget Explained

Key
Methods None

Key
Styles None

Key
Events None

Notes None

http://lib.ommolketab.ir
http//lib.ommolketab.ir

128 Chapter 7 Dojo Form Widgets

Widget dijit.form.ComboBox
Name

Super
Classes

File dijit/form/ComboBox.js
Location Use dojo.require("dijit.form.ComboBox");

Usage This class creates a widget that is a combination of a text box and a
select list, hence the name ComboBox. Like a <select> tag, it contains
a list of possible values that can be selected from a pull-down list. And
like a text field, the user can type anything he wants (even if the value is
not in the list).

The list of values can be supplied statically as HTML markup or by
specifying a function that will retrieve data from the server using Ajax.

The widget also has an auto-complete feature. When auto-complete is
enabled for the widget, the user can just type the first few characters
of the field, and the widget displays the first matching value from the
select list.

Display
Examples

By typing an i in the text box the user is forcing the widget to filter out
any option not beginning with an “i.” Also given that auto-complete is
enabled, the first value in the select list that matches “i” is automatic-
ally entered into the text area.

HTML The following HTML markup would create a ComboBox widget showing a
Markup list of states.
Examples <select

dojoType="dijit.form.ComboBox"

name="state"

autoComplete="true">

<option value="blank"></option>

<option value="AL">Alabama</option>

<option value="AK">Alaska</option>

</select>

Most of the state values have been left out for brevity.

dijit.form.ValidationTextBox

dijit._Widget dijit.form._FormWidget dijit.form.TextBox

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1297.2 The Dojo Form Widget Explained

JavaScript The following JavaScript code would create a ComboBox widget with auto-
Constructor complete enabled. The data will be populated from a data store retrieved
Examples from the server when the widget is built.

var st = new dojo.data.ItemFileReadStore({url: ‘states.json’});

cb = new dijit.form.ComboBox({

name: "state",

autoComplete: true,

store: st,

}, dojo.byId("stateList"));

This version of the constructor also automatically adds the widget to the
DOM as a child of the DOM element with an id of “stateList”.

Key Property Default Description
Properties item null This is the item that has been selected or

entered on the widget.

pageSize Infinity This determines the number of
items shown on the pull-down list.

store null This is a reference to the data store that
provides the values for the pull-down list.

query null A data store may have more items than
actually appear on the list. By specifying a
query, the list will show only those items
matching the query.

autocomplete true When true the widget will complete the data
entered by the user by filling in the rest of
the field based on the first match in the list
with whatever characters the user types in
the text box.

searchDelay 100 This property introduces a delay between
when the user types a key and when the
search of the select list is started. The
amount is in milliseconds. This is useful
so that a number of keystrokes can be
buffered, and the search is only started
when the user pauses in their typing.

searchAttr "name" Determines the field from the data store
that is used for matching.

ignoreCase true A value of false forces matching on case
also. Otherwise, case is ignored.

hasDownArrow true A value of true specifies that the text box
will have a down arrow icon. Otherwise, the
text box has no down arrow icon.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

130 Chapter 7 Dojo Form Widgets

Key
Methods None

Key
Styles None

Key
Events None

Notes None

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1317.2 The Dojo Form Widget Explained

Widget dijit.form.FilteringSelect
Name

Super
Classes

File dijit/form/FilteringSelect.js
Location Use dojo.require("dijit.form.FilteringSelect");

Usage This class creates a widget that acts as a replacement for the HTML
<select> tag. It inherits from ComboBox, but only valid options from the
list may be chosen. In other ways, it acts in the same way as ComboBox.
Filtering of the select list is performed based on the characters entered by
the user. The data in the select list may be built with HTML markup or by
using a Dojo data store that can acquire data using Ajax.

Display
Examples

By typing an i in the text box, the user is forcing the widget to filter out
any option not beginning with an “i.”

This example shows what happens when the user types data that can’t
be matched against anything in the select list.

dijit.form.ValidationTextBox

dijit._Widget dijit.form._FormWidget dijit.form.TextBox

dijit.form.MappedTextBox

dijit.form.ComboBox

http://lib.ommolketab.ir
http//lib.ommolketab.ir

132 Chapter 7 Dojo Form Widgets

HTML The following HTML markup would create a FilteringSelect widget
Markup showing a list of states.
Examples

<select

dojoType="dijit.form.FilteringSelect"

name="state"

invalidMessage="Invalid state name"

autoComplete="true">

<option value="blank"></option>

<option value="AL">Alabama</option>

<option value="AK">Alaska</option>

</select>

Most of the state values have been left out for brevity.

JavaScript The following JavaScript code would create a FilteringSelect
Constructor widget with auto-complete enabled. The data will be populated from a
Examples data store retrieved from the server when the widget is built.

var st = new dojo.data.ItemFileReadStore({url: 'states.json'});

cb = new dijit.form.FilteringSelect({

name: "state",

autoComplete: true,

store: st,

}, dojo.byId("stateList"));

This version of the constructor also automatically adds the widget to the
DOM as a child of the DOM element with an id of “stateList”.

Key
Properties Same as for ComboBox.

Key
Methods Same as for ComboBox.

Key
Styles Same as for ComboBox.

Key
Events Same as for ComboBox.

Notes When the user types invalid text, the last correct entry is saved so that
only valid data is ever sent to the server.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1337.2 The Dojo Form Widget Explained

Widget dijit.form.Form
Name

Super
Classes

File dijit/form/Form.js
Location Use dojo.require("dijit.form.Form");

Usage This widget corresponds to the HTML <form> tag. It turns the standard
<form> into a Dojo widget that allows you to use Dojo to manipulate it
and connect events. The other advantage is that you can populate the
values for the form elements using a JSON object or convert the values
of elements in the form into a JSON object. So it makes working with the
form elements as a group much easier.

Display There is not an HTML template associated with this widget, so there is
Examples specific visual display.

HTML <form action="submit.jsp" dojoType="dijit.form.Form"

Markup id="form1" method="POST">

Examples Name: <input type="text" name="name" />

</form>

JavaScript Create a new Form widget.
Constructor
Examples new dijit.form.Form(

{method: "POST", id: "form1", action: "submit.jsp" });

Additionally, you would need to add every child element (form widgets)
that you want in your form to this widget. Given the amount of code you
would need to write to create all the form elements, it is likely that you
would create this widget with HTML markup rather than with JavaScript.

Key Property Default Description
Properties action null Standard <form> property action for

specifying the server resource to be
requested when the form is submitted.

method null Standard <form> property method for
specifying the HTTP message type (GET
or POST).

name null Standard <form> property name for
specifying the name property of the form
DOM element.

target null Standard <form> property target for
the destination for the response from the
server when the form is submitted.

dijit._Widget

http://lib.ommolketab.ir
http//lib.ommolketab.ir

134 Chapter 7 Dojo Form Widgets

Key Method Description
Methods execute Function to be run when user hits

the submit button.

submit Programmatically submit form.

setValues Fill in form values from a JSON
structure. The properties in the JSON
structure should correspond to exist-
ing elements in the form (matched
on the name property in the HTML).

getValues() Returns a JSON string containing
properties created from the form
element names and values. Both
Dojo widget form elements and stan-
dard HTML form elements will be
included in the JSON string.

isValid() Run the isValid method for every
widget in the form. Returns true
only if every widget is valid otherwise
returns false.

Key No corresponding HTML template exists for this widget so there are no
Styles Dojo styles.

Key The primary event for this widget is the submission of the form either
Events through user input by clicking the Submit button or programmatically by

running the submit method for this widget. In both cases, the developer
can provide custom behavior for form submission by overriding the
submit method.

Notes This widget is very useful when you wish to submit the form using Ajax
rather than having the browser submit it automatically.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1357.2 The Dojo Form Widget Explained

Summary
HTML forms allow the web page to capture data from the user.

Standard HTML form elements (text boxes, check buttons, select lists, and so on) provide
very limited functionality.

Dojo provides form widgets that are more feature rich replacements for the standard
HTML elements.

Dojo also provides form widgets that don’t correspond to any existing HTML form ele-
ments.

All form widgets extend dijit.form._FormWidget and reside in the dijit.form
package.

The basic job of a Dojo form widget is to capture some single value from the user by
presenting them with the appropriate widget that corresponds to their usage of the data.
For example, a field representing a date should be presented with a calendar as the
visual representation.

This chapter provides a short write-up for most of the Dojo form widgets containing basic
usage information.

Now that we’ve studied the various form widgets, we can move on to the next major
category of widgets: layout widgets.We use the same approach to analyze them.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8
Dojo Layout Widgets

The world is but a canvas to the imagination.

—Henry David Thoreau

The blank web page is the empty canvas on which you paint your application.Your
brush is HTML markup, and your paint is the various widgets available to you. But lay-
out without structure is chaos.We need a way to organize the visual elements of our site
into a form that has meaning.The various layout widgets provided by Dojo give us that
structure by providing organized containers into which we pour our content. In this
chapter, we explore the various layout widgets provided in Dijit and try to understand
the proper use of each.

8.1 Understanding Page Layout
For many years, the standard technique for laying out a web page was to create a table
with rows and cells that would contain the content. Each page element or widget could
be placed in a single table cell, and by adjusting the height and width of the cells, the
designer could create exactly the look that she desired.As the Cascading Style Sheet
(CSS) specification evolved, it became possible to define layout with CSS properties, and
the use of tables became much less common. But as Ajax techniques became more pop-
ular, and more sophisticated user interfaces became the norm for web sites, it was more
and more necessary to find ways to make working with groups of page elements easier.
One technique was to group elements into <DIV> tags.The <DIV> could be treated as a
single page element and moved, hidden, or styled in a single step. In effect, the <DIV>
tag could act as a container that could hold other elements including complete widgets.
Instead, we’ll use a special Dojo widget, which will act as a container for other widgets.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The community of user interface developers has already developed a set of patterns
for containers in desktop applications. For instance, one of the most useful patterns
involves allowing child widgets to be placed in a container and automatically positioned
to the top, bottom, left, or right sides of the container. This is known as the
BorderLayout container in the Java AWT toolkit, and similar counterparts exist in
many other GUI environments. In addition to this layout container, a number of other
types of containers were also common in desktop applications.

Dojo provides layout container widgets that implement many of the patterns com-
mon in desktop user interfaces. In this chapter we explore those widgets. Let’s start by
examining the common features shared by the various layout containers.As we examine
each of the Dojo container widgets, keep in mind that they contain children, which may
themselves be other container widgets.The most typical child widget is a ContentPane,
which can contain any arbitrary content—which is why we look at that one first.

8.1.1 The dijit.layout._LayoutWidget Class
The first thing to keep in mind when discussing the properties and methods of
LayoutWidget is that it is a subclass of dijit._Widget, so any widget created from
this class also inherits all the properties and methods of dijit._Widget. See Chapter 6,
“Introduction to Dojo Widgets,” to review those properties and methods.

Additionally, dijit.form._LayoutWidget has its own properties and methods and
also inherits methods and properties from dijit._Container and
dijit._Contained. These are the properties and methods we are going to review now.

8.1.1.1 Properties in dijit.layout._LayoutWidget
Much of the functionality derived from the layout widgets actually resides in the widgets
that they contain. Layout widgets are the gift boxes that contain the widgets that we
wish to use. Like a box, one of the most important aspects of a layout container is simply
how large it is.We’ll see that reflected in the properties that allow us to define the size
and placement of a layout container.

The reason that size is such an important consideration for containers is that the size
of the container constrains the size of the child widgets that are displayed within the
container. Usually, HTML works in the opposite way. In other words, most DOM ele-
ments expand to the size of the DOM elements that they contain. But a Dojo container
generally will occupy a fixed portion of the page regardless of how large its children are.

The primary properties for a layout widget define its height and width and its posi-
tion. However, these are style properties not properties of the widget object itself. So you
should define them the way you would define other CSS properties, using stylesheets,
named styles or by adding them as a style property of the widget tag itself as shown:

style="width=95%; height=200px; left=50px; top=75px"

Other properties are inherited from dijit._Widget. Remember that inheritence
allows the object to contain all of the properties and methods of its superclass. For a
refresher on the dijit._Widget class, review Chapter 6.

138 Chapter 8 Dojo Layout Widgets

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8.1.1.2 Methods in dijit.layout._LayoutWidget
Table 8.1 describes the key methods for dijit.layout._LayoutWidget. As discussed
before, these are not necessarily all the methods, just the ones that are most likely to be
useful to a developer.

Except for resize, the methods involve selecting children widgets of the container.

Table 8.1 Methods in dijit.layout._LayoutWidget

Method Description

resize(args) This method will change the size of the layout container
and then redisplay it by running the layout() method.
It takes an argument that contains properties describ-
ing the new size and placement. Notice that the proper-
ty names in the arg object are shorter than their corre-
sponding CSS style names.

The args object should have the following properties:

W—width of the layout container in pixels

h—height of the layout container in pixels

l—left position of the layout container in pixels

t—top position of the layout container in pixels

getPreviousSibling Return the child widget before the current widget
without setting focus to that widget.

getNextSibling Return the child widget after the current child widget
without setting focus to that widget.

addChild(widget) Add a child widget to the container.

removeChild(widget) Remove the child widget specified in the argument as
widget from the container.

getChildren Return a collection of children of the container.

hasChildren Return true if the container has children.

focusNext Change the focus to the child widget that is just after
the widget currently having focus.

focusPrev Change the focus to the child widget that is just before
the widget currently having focus.

focusChild(widget) Set the focus to the child widget specified in the
parameter widget.

8.2 Explanation of Dojo Layout Widgets
Now that we’ve reviewed the properties and methods that are a part of all layout con-
tainer widgets, let’s review the specific container widgets available to us in Dojo.We use
the same format for explaining each widget that was described in Chapter 7,“Dojo
Form Widgets.”

1398.2 Explanation of Dojo Layout Widgets

http://lib.ommolketab.ir
http//lib.ommolketab.ir

140 Chapter 8 Dojo Layout Widgets

Widget dijit.layout.ContentPane
Name

Super
Classes

File dijit/form/ContentPane.js
Location Use dojo.require("dijit.layout.ContentPane");

Usage This class creates a simple container for content. The content can be any
HTML elements or Dojo widgets. It acts like a <DIV>, which can be used
to group child elements so they can be moved and hidden as a single enti-
ty, but it has some advantages. Like a <DIV> it can size itself to the con-
tent. However, if you specify the size of the ContentPane but its children
would display beyond its boundaries, this widget will produce scroll bars
so that the content can be viewed. Any HTML body elements can be put in
the content pane along with Dojo widgets.

ContentPane widgets can be used by themselves but they are typically
children of other layout containers such as LayoutContainer.

The really powerful feature of this widget is that content can be loaded
dynamically from the server using either a property when the widget is
created or running a method after the widget is created. See the Key
Properties and Key Methods sections for more detail.

Display
Examples

This figure shows a ContentPane that contains a number of widgets,
one of which extends beyond the boundaries of the pane so the widget
provides a scroll bar so that all the content is accessible. Also notice
that the second widget is loaded dynamically from the server using an
Ajax request.

dijit._Widget

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1418.2 Explanation of Dojo Layout Widgets

HTML Create a new ContainerPane with three child elements, which are them
Markup selves also ContainerPane widgets. Notice that the second widget has
Examples content that is dynamically loaded from the server.

<div dojoType="dijit.layout.ContentPane"

style="width: 100%; height: 150px;">

<div id="c1" dojoType="dijit.layout.ContentPane">

First Widget

</div>

<div id="c2" dojoType="dijit.layout.ContentPane"

href="dynamic.html">

</div>

<div id="c3" dojoType="dijit.layout.ContentPane">

Third Widget

</div>

</div>

JavaScript The following code will create a content pane and attach it to an existing
Constructor DOM element.
Examples

cp = new dijit.layout.ContentPane({}, dojo.byId("d1"));

cp.setContent('Miscellaneous Content');

Note that the setContent method can be used to create child elements
inside the pane instead of creating new children using their constructors.
This is like using the innerHTML method on a regular DOM element.

Key Property Default Description
Properties href null Reference to server resource

containing dynamic content. The
content will be requested when
the ContentPane is shown.

preload false Determines when the dynamic
content specified by href is
actually fetched from the server.
If preload is true, the
content is fetched when the
ContentPane is created;
otherwise, the content is not
fetched until the ContentPane
is shown.

refreshOnShow false If this property is true, content
will be fetched again every time
the widget is shown.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

142 Chapter 8 Dojo Layout Widgets

Property Property Default Description

loadingMessage "Loading…" Message shown when dynamic
content is being fetched.

errorMessage "Sorry, an Message shown
error if an error occurs while
occurred" fetching dynamic content.

isLoaded false When true, the dynamic content
has been loaded.

Key Method Description
Methods setContent(HTML) To change the innerHTML use

.setContent('new content')

setHref(URL) To do an Ajax update use .setHref('url')

cancel() Running this method will cancel any
outstanding fetches for content.

refresh() Runs the last content fetch again.

Key Style Name Description
Styles

dijitContentPaneLoading Style for content loading message.

dijitContentPaneError Style for content fetch error message.

Key Style Name Description
Events

onLoad This event is called after new content is
fetched and has been completely loaded.

onUnload This event is called before a new fetch of
content is started and before the existing
content is removed.

onDownloadStart This event is called before the fetch of
dynamic content is started.

onContentError This event is called if there is an error creating
the content.

onDownloadError This event is called if there is an error fetching
dynamic content.

onDownloadEnd This event is called after new dynamic content
is fetched.

Notes None

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1438.2 Explanation of Dojo Layout Widgets

Widget dijit.layout.LayoutContainer
Name

Super
Classes

File dijit/form/LayoutContainer.js
Location Use dojo.require("dijit.layout.LayoutContainer");

Usage This class will create a widget that provides compartments for holding
content. The compartments can be formatted using alignment properties.
This is most like the traditional use of the <table> tag to perform
layout. LayoutContainer is an example of a container widget that
displays multiple children at one time.

Display
Examples

In the figure, each of the content blocks is a ContentPane containing a
small amount of text describing its position within the layout.

HTML Create a LayoutContainer widget with all five positions in it containing
Markup content.
Examples <div dojoType="dijit.layout.LayoutContainer"

style=" height: 150px;">

<div id="c1" dojoType="dijit.layout.ContentPane"

layoutAlign="left">

Left Content

</div>

<div id="c2" dojoType="dijit.layout.ContentPane"

layoutAlign="right">

Left Content

</div>

<div id="c3" dojoType="dijit.layout.ContentPane"

layoutAlign="top">

Top Content

</div>

<div id="c4" dojoType="dijit.layout.ContentPane"

layoutAlign="bottom">

Bottom Content

Top ContentLeft Content Right Content

Client Content

Bottom Content

dijit.layout._LayoutWidgetdijit._Widget

http://lib.ommolketab.ir
http//lib.ommolketab.ir

144 Chapter 8 Dojo Layout Widgets

</div>

<div id="c5" dojoType="dijit.layout.ContentPane"

layoutAlign="client">

Client Content

</div>

</div>

JavaScript The following code will create a new LayoutContainer widget and
Constructor add some content to it.
Examples

layout = new dijit.layout.LayoutContainer({}, dojo.byId("d1"));

menu = new dijit.Menu();

menuItem1 = new dijit.MenuItem({label: "Item 1"});

menu.addChild(menuItem1);

layout.addChild(menu);

Note: Although we’re adding a menu in this example, we could be adding
any arbitrary content.

Key
Properties None

Key
Methods None

Key
Styles None

Key
Events None

Notes None

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1458.2 Explanation of Dojo Layout Widgets

Widget dijit.layout.SplitContainer
Name

Super
Classes

File dijit/form/SplitContainer.js
Location Use dojo.require("dijit.layout.SplitContainer");

Usage This class creates a widget that contains child widgets separated by a bar
that can be dragged by using the mouse to change the relative sizes of
the space allocated for the children. Although the children can be widgets
of any type, it is typical that they are themselves other containers.

Display
Examples

This screenshot shows a SplitContainer widget with three widgets as its
contents. The child widgets are separated by a slider bar which can be
moved by the use to change the relative amount of space allocated for
each child.

HTML Create a SplitContainer widget with three children, each of which is
Markup a LayoutContainer widget. The children should display horizontally;
Examples the first child should take up one-sixth of the space, the second child should

take up one-third of the space, and the final child should take up one-half of
the space of the SplitContainer. Note: It is necessary that you supply a
height and width style value for the SplitContainer widget.

<div id="outer"

dojoType="dijit.layout.SplitContainer"

style="width: 100%; height: 150px;"

persist="false"

activeSizing="false">

<div id="c1"

dojoType="dijit.layout.ContentPane"

sizeShare="10">

First Widget

</div>

<div id="c2"

dojoType="dijit.layout.ContentPane"

sizeShare="20">

First Widget

</div>

First Widget Second Widget Third Widget

dijit.layout._LayoutWidgetdijit._Widget

http://lib.ommolketab.ir
http//lib.ommolketab.ir

146 Chapter 8 Dojo Layout Widgets

<div id="c3"

dojoType="dijit.layout.ContentPane"

sizeShare="30">

First Widget

</div>

</div>

JavaScript The following code will create a new SplitContainer widget
Constructor containing two ContentPane widgets.
Examples

container = new dijit.layout.SplitContainer({});

content1 = new dijit.layout.ContentPane({});

container.addChild(content1);

content2 = new dijit.layout.ContentPane({});

container.addChild(content2);

Note: We would still need to add content to each of the
ContentPane widgets.

Key Property Default Description
Properties activeSizing false Determines whether the children com-

partments change size as the slider
is dragged. If true the compartments
change size; if false the compartments
don’t change size until the slider is
released.

sizerWidth 7 The width in pixels of the slide border
between compartments.

orientation "horizontal" The children must be arranged in one
direction, either “horizontal,” which is
the default, or “vertical.”

persist true After the split bar is moved (or
multiple split bars considering one
bar exists between each child), the
position of the bar can be saved as a
cookie so that the user will see the
widget configured the same way when
he comes back to the page.

sizeMin 10 Note: This property is actually a
property of the child widget, not the
SplitContainer widget itself.

This property sets the minimum size
for either the widget or height of the
space allocated to the child widget.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1478.2 Explanation of Dojo Layout Widgets

sizeShare 10 Note: This property is actually a
property of the child widget, not the
SplitContainer widget itself.

This property determines the amount
of space (either horizontally or
vertically) that will be dedicated to the
child widget. The sizeShare proper-
ties for all of the children widgets are
added together to produce a total
weight, and the percentage size of
each widget is based on its
sizeShare relative to the total.

Key Method Description
Methods

addChild Adds an additional widget to the SplitContainer.
The child will be added to the end, and a new split
bar will be displayed between the last widget and the
new one.

removeChild Removes a child widget from the SplitContainer
and closes up the space between the prior and next
child widget.

Key
Styles None

Key
Events None

Notes It is necessary that you supply a size and width value for the
SplitContainer widget.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

148 Chapter 8 Dojo Layout Widgets

Widget dijit.layout.StackContainer
Name

Super
Classes

File dijit/form/StackContainer.js
Location Use dojo.require("dijit.layout.StackContainer");

Usage Creates a widget that can display different panes of content by stacking
the hidden content and providing a control the user can click to display
the hidden content. This widget only displays one child at a time. An
associated widget called StackController is used to provide a
control that allows other panes of content to be selected. It is typical
that the children of this widget are ContentPane widgets.

Display
Examples

Notice that the StackController widgets are buttons, not tabs, and
they could be placed anywhere on the page. The StackController
creates a button for each of the children within the stack. In this
example, the “widget 3” button has been clicked to display the third
child of the container.

HTML Create a StackContainer widget with a StackController. The
Markup widget will contain three children, each of which is a ContentPane.
Examples

<div id="sc" dojoType="dijit.layout.StackContainer"

style="width: 100%; height: 90px;">

<div id="c1" dojoType="dijit.layout.ContentPane"

title="widget 1">

First Widget</div>

<div id="c2" dojoType="dijit.layout.ContentPane"

title="widget 2">

Second Widget</div>

<div id="c3" dojoType="dijit.layout.ContentPane"

dijit.layout._LayoutWidgetdijit._Widget

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1498.2 Explanation of Dojo Layout Widgets

title="widget 3">

Third Widget</div>

</div>

</div>

Notice that the StackController must refer to the StackContainer
that it acts as a controller for. This is accomplished with the
containerId property.

JavaScript The following code will create a new StackContainer widget
Constructor containing two ContentPane widgets.
Examples container = new dijit.layout.StackContainer({});

content1 = new dijit.layout.ContentPane({});

container.addChild(content1);

content2 = new dijit.layout.ContentPane({});

container.addChild(content2);

Note: We would still need to add content to each of the ContentPane
widgets and attach the container to the DOM.

Key
Properties None

Key
Methods None

Key
Styles None

Key
Events None

Notes None

http://lib.ommolketab.ir
http//lib.ommolketab.ir

150 Chapter 8 Dojo Layout Widgets

Widget dijit.layout.AccordionContainer
Name

Super
Classes

File dijit/form/AccordionContainer.js
Location Use dojo.require("dijit.layout.AccordionContainer");

Usage Creates a widget that can display different panes of content by stacking
the hidden content and providing a control the user can click to display
the hidden content.

Most layout containers can contain children of any content type. However,
this widget must have children of type AccordionPane. The reason for
this is that each child must have a title bar with a label and a control.
AccordionPane acts as a wrapper around ContentPane and adds the
additional features for title and control.

This widget contains children of type AccordionPane, which can contain
any content including other layout widgets. When the widget is first built,
one pane is visible, and the other panes are stacked beneath it with only
their controls showing. When the control icon is clicked, the first pane will
close, and the clicked pane will slide open producing an effect like an
accordion being played (hence the name).

Display
Examples

Notice that the Pane Control Icon is different depending on whether the
pane is open or closed. Only one pane may be open at a time. The user
can click anywhere on the pane control to open it (not just on the icon).

HTML Create a new AccordionContainer widget with three children, each
Markup of type AccordionPane.
Examples

<div id="sc" dojoType="dijit.layout.AccordionContainer"

duration="25">

<div id="c1" dojoType="dijit.layout.AccordionPane"

title="Pane 1">

<p style="padding:20px">First Widget</p></div>

dijit.layout._LayoutWidgetdijit._Widget

dijit.layout.StackContainer

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1518.2 Explanation of Dojo Layout Widgets

<div id="c1" dojoType="dijit.layout.AccordionPane"
title="Pane 2">

<p style="padding:20px">Second Widget</p></div>

<div id="c1" dojoType="dijit.layout.AccordionPane"
title="Pane 3">

<p style="padding:20px">Third Widget</p></div>

</div>

JavaScript The following code will create a new AccordionContainer widget
Constructor containing two AccordionPane widgets.
Examples container = new dijit.layout.AccordionContainer({});

content1 = new dijit.layout.AccordionPane({});

container.addChild(content1);

content2 = new dijit.layout.AccordionPane({});

container.addChild(content2);

Note: We would still need to add content to each of the
AccordionPane widgets and attach the container to the DOM.

Key Property Default Description
Properties duration 250 Number of milliseconds from the moment

that the pane control is clicked on a
AccordianPane until the pane is com-
pletely open. The pane slides open during
this interval.

Key Method Description
Methods selectChild Display the child widget widget

(widget) and make it active.

closeChild Close the child widget widget.
(widget)

back() Close the current open child widget and open the
prior child widget and make it active.

forward() Close the current open child widget and open the
next child widget and make it active.

Key
Styles None

Key
Events None

Notes None

http://lib.ommolketab.ir
http//lib.ommolketab.ir

152 Chapter 8 Dojo Layout Widgets

Widget dijit.layout.TabContainer
Name

Super
Classes

File dijit/form/TabContainer.js
Location Use dojo.require("dijit.layout.TabContainer");

Usage This class creates a widget that acts as a container for ContentPane
widgets. A TabController is automatically created to allow each child
ContentPane to be selected. This widget works very much like a
StackContainer except the controller is built automatically and
doesn’t require a separate tag. Also the controller displays as tabs
instead of buttons.

Remember, the content for the tabs is also dynamic and can be retrieved
from the server using an Ajax request when the tab is selected and the
ContentPane is displayed. This is determined by setting the href
property on the ContentPane.

Display
Examples

Notice that in the first example, the Tab 3 has a special icon (a dark
circle with a white X) that allows the user to close the tab so that it
completely disappears from the page.

dijit.layout._LayoutWidgetdijit._Widget

dijit.layout.StackContainer

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1538.2 Explanation of Dojo Layout Widgets

HTML Create a TabContainer with the tabs on top containing three
Markup ContentPane widgets.
Examples <div id="sc1"

dojoType="dijit.layout.TabContainer"

style="width: 100%; height: 10em;">

<div dojoType="dijit.layout.ContentPane" title="Tab 1">

First Content Pane

</div>

<div dojoType="dijit.layout.ContentPane" title="Tab 2">

Second Content Pane

</div>

<div dojoType="dijit.layout.ContentPane" title="Tab 3">

Third Content Pane

</div>

</div>

JavaScript The following code will create a new TabContainer widget containing
Constructor two ContentPane widgets.
Examples container = new dijit.layout.TabContainer({});

content1 = new dijit.layout.ContentPane({});

container.addChild(content1);

content2 = new dijit.layout.ContentPane({});

container.addChild(content2);

Note: We would still need to add content to each of the ContentPane
widgets and attach the container to the DOM.

Key Property Default Description
Properties tabPosition "top" This property determines the position of

the tags relative to the content area.
top
bottom
left-h
right-h

closable false Note: This property is on the child
ContentPane widget and determines
if the tab associated with the widget
has a close icon on it.

By clicking the icon, the tab (and its
contents) will be removed from the
TabContainer.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

154 Chapter 8 Dojo Layout Widgets

Key Method Description

Methods selectChild(widget) Display the child widget widget and
make it active.

closeChild(widget) Close the child widget widget.

back() Close the current open child widget and
open the prior child widget and make
it active.

forward() Close the current open child widget and
open the next child widget and make
it active.

Key
Styles None

Key
Events None

Notes None

Summary
The widgets in the layout package provide containers for other content, usually multiple
instances of content we refer to as a “pane.”

The ContentPane acts as generic holder for other content, which can be fetched from
the server using an Ajax request.

The LayoutContainer allows multiple panes of content to be automatically arranged to
the left, right, top, bottom, and center of the container.

The StackContainer allows multiple panes of content to be stacked so that only one
pane of content is visible at a time. This container also can provide a control to allow the
user to select the pane he or she would like to see.

The SplitContainer allows multiple panes of content to be displayed at the same time
and separated by a bar that can be moved by the user to change the relative amount of
space allocated to each content pane.

The AccordionContainer allows multiple panes of content to be stacked so that only
one pane is visible at a time. Each pane is provided with a control that allows it to be
selected. All the controls are visible even though only one content pane is visible.

The TabContainer allows multiple panes of content to be stacked so that only one pane
is visible. This widget provides a set of tabs, one for each content pane, that allows the
user to select the content pane he wants to see.

Now we can turn our attention to some of the special widgets that don’t fall into the
categories we’ve already reviewed.These are some of the most powerful and interesting
widgets that Dojo provides. So fasten your seatbelt and get ready!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9
Other Specialized

Dojo Widgets

Form follows function—that has been misunderstood. Form and function should be one…

—Frank Floyd Wright

The problem with the standard widgets available in the HTML toolkit (such as text
boxes, radio buttons, and so on) isn’t that they are ineffective themselves: It’s that there
just aren’t enough of them.There are certain functions for which the standard widgets
are a perfect fit.And in those functions they find their proper homes.The purpose of a
widget is to represent some piece of data or process to the user.The degree to which the
widget corresponds to the user’s model of that data or process determines it success.
When widget form and function correspond, the user interface can seem to become
almost transparent, and users no longer perceive themselves as working through widgets
but as working with their content directly.This chapter describes a number of Dojo
widgets that each perform a specialized function to which they are perfectly matched.

9.1 What Are Specialized Widgets?
The widgets described in this chapter each have some unique function.They are not
necessarily the most advanced or complicated of the Dojo widgets, but because of their
uniqueness they have been grouped together.There is no other unifying theme to tie
them together as there was with the form widgets described in Chapter 7,“Dojo Form
Widgets,” or the layout widgets described in Chapter 8,“Dojo Layout Widgets.”

However, we’re not entering terra incognita here.Although the specific function of
the widgets might be unique, they way we construct them and use them will be quite

http://lib.ommolketab.ir
http//lib.ommolketab.ir

familiar.All the widgets in this chapter are descendents of digit._Widget and inherit
all the operations of that mother of all widgets.

This chapter takes the same approach to describing these widgets as have the previous
two chapters: Each widget will be described using the same standard layout as introduced
in Chapter 7—except with the first widget covered in this chapter; it has a little more
detail to be included.

9.2 Menu Widget
Like the animals in Animal Farm, all widgets are equal, but some are more equal than
others.That is, some widgets will probably be used much more often than others. For
this reason and because of involvement of multiple component widgets, some extra time
is spent describing the Menu widget.

One of the most often used features on a web page is navigation. Menus are used for
executing commands and providing links to other web sites and documents, and they
appear on almost every web page on the Net, so you would expect Dojo to have
numerous options for creating menus.And you would be right.

The Dojo Menu widget is really a collection of widgets working together.The base
class for building menus is dijit.Menu.A Menu widget can have MenuItem widgets
as children in addition to two other widgets, dijit.MenuSeparator and
dijit.PopupMenuItem. Figure 9.1 shows the relationship of the components to each
other.

156 Chapter 9 Other Specialized Dojo Widgets

Figure 9.1 Components of a Menu widget

MenuItem

MenuSeparatorMenu

PopupMenuItem

PopupMenuItem
widgets might have
children that are any
of the following:

- MenuItem
- MenuSeparator
- PopupMenuItem

Items that can
appear on a Menu

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1579.2 Menu Widget

9.2.1 dijit.Menu
The dijit.Menu widget is the container for menu elements. It is typically displayed
either by linking it to a button on a Toolbar widget or by associating it with some
other element that can be right-clicked to display the menu.Also by using a mouseover
event, the menu could be displayed when the user rolls over some other widget on the
page.This is a typical technique employed on some sites.

9.2.2 dijit.MenuItem
The dijit.MenuItem widget represents a command or link available on a menu. By
activating the item, the user selects some function to be performed. Menu items can
have a text label, an icon, or both.Tables 9.1 and 9.2 that follow describe the properties
and method of this widget.

Table 9.1 Properties for dijit.MenuItem

Property Default Description

label "" The text containing the displayed label for the item.

iconClass "" If the menu item should also have an icon displayed with it, this
property contains the value for the CSS class describing the icon.

disabled false This property shows whether the item has been deactivated or
not. Disabled items still display, but clicking them does not
trigger their onClick() method.

Table 9.2 Methods for dijit.MenuItem

Method Description

onClick() This is the key event for this widget. It determines the functionality
that the menu item provides. The handler associated with this event
will be executed when the user selects this item by clicking it.

setDisabled() This method will disable a menu item. The item will still display on
the menu but will appear in lighter text to indicate that it is not
active. Also the onClick() event will not be triggered if the user
should click the item.

9.2.3 dijit.MenuSeparator
The dijit.MenuSeparator widget is used to organize the display of menu items. It
creates a gray horizontal line in the list of menu items that separates groups of related
menu items. It can’t receive focus and isn’t clickable. It does provide a class,
dijitMenuSeparatorTop, which can be used to style the link, perhaps changing the
color or making it larger for example. See Figure 9.2 for an example of a menu with
two separators.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 9.2 Example of dijit.MenuSeparator widget

9.2.4 dijit.PopupMenuItem
The dijit.PopupMenuItem widget allows nested menus to be added to a menu.This
widget can then act as a container for other menu elements including MenuItem widg-
ets, MenuSeparator widgets, and even additional PopupMenuItem widgets, which pro-
vide the ability to have as many levels of nested menus as desired.

The standard technique for specifying a popup menu is to include a child
element as the label for the popup and then to include a tag representing the widget to
be shown when the popup is activated. In the case of submenus, the popup widget
would be a digit.Menu as shown in the following code sample.

<div dojoType="dijit.PopupMenuItem">

Submenu Label

<div dojoType="dijit.Menu" id="submenu1" style="display: none;">

<div dojoType="dijit.MenuItem" onClick="sub1Action()">

Submenu Item One Label</div>

<div dojoType="dijit.MenuItem" onClick="sub2Action()">

Submenu Item Two Label</div>

</div>

</div>

The general discussion of the dijit.Menu widget is now complete, so let’s continue
with the standard presentation of the specialized widgets covered in this chapter.

158 Chapter 9 Other Specialized Dojo Widgets

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1599.2 Menu Widget

Widget dijit.Menu
Name

Super
Classes

File dijit/Menu.js
Location Use dojo.require("dijit.Menu");

Usage This class creates a widget containing a list of items that can
be selected to trigger some function.

Display
Examples

This figure shows a Menu widget containing MenuItem widgets,
MenuSeparator widgets, and a PopupMenuItem widget containing a
menu of its own. The widget was activated
by right-clicking its parent <div>.

HTML Create a new Menu widget containing a list of menu items with
Markup separators to group related items. Also include a pop-up menu with a
Examples submenu containing a couple of items.

<div dojoType="dijit.Menu" id="menu1"

contextMenuForWindow="true">

<div dojoType="dijit.MenuItem" >Enabled Item</div>

<div dojoType="dijit.MenuItem" disabled="true">

Disabled Item</div>

<div dojoType="dijit.MenuSeparator"></div>

<div dojoType="dijit.MenuItem"

iconClass="dijitEditorIcon dijitEditorIconCut"

onClick="action1()" label="Cut" disabled="true">

Cut</div>

<div dojoType="dijit.MenuItem"

iconClass="dijitEditorIcon dijitEditorIconCopy"

onClick="action2()">

Copy</div>

<div dojoType="dijit.MenuSeparator"></div>

<div dojoType="dijit.PopupMenuItem">

Submenu Label

<div dojoType="dijit.Menu" id="submenu1">

<div dojoType="dijit.MenuItem"

dijit._Widget

http://lib.ommolketab.ir
http//lib.ommolketab.ir

160 Chapter 9 Other Specialized Dojo Widgets

onClick="subAction1">Submenu Item One</div>

<div dojoType="dijit.MenuItem"

onClick="subAction2()">Submenu Item Two</div>

</div>

</div>

Notice that some of the items are disabled using the attribute
disabled="true".

Also notice the style="display: none;" attribute on the first Menu
widget. This hides the menu of the initial view of the page. The user can
make the menu appear by right-clicking anywhere on the page because of
the contextMenuForWindow="true" attribute.

JavaScript The following code will create a Menu widget with two items.
Constructor
Examples menu1 = new dijit.Menu(

{targetNodeIds:["nodeId"], id:"menu1"});

menu1.addChild(new dijit.MenuItem(

{label:"Menu Item 1", onClick:menuAction1}));

menu1.addChild(new dijit.MenuItem(

{label:"Menu Item 2", onClick:menuAction2}));

Notice that the "nodeId" is the id for the DOM element that the menu
will be attached to. This menu will be a context menu requiring the user
to right-click the parent DOM node.

The functions menuAction1 and menuAction2 will be called when the
user clicks each of the respective menu items.

Key Property Default Description
Properties contextMenuForWindow false When this property is true,

the user may click anywhere
on the page to open the menu.
When the property is false,
the user may only click the
node(s) that this menu is
assigned to.

targetNodeIds [] DOM nodes the Menu widget
should be assigned to.

parentMenu null Reference to the Menu widget
that this widget is part of.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1619.2 Menu Widget

Key Method Description
Methods addChild(Widget) This function adds a child element to the

widget. Use this when manipulating the
widget programmatically.

Key Style Name Description
Styles dijitMenuTable Class for styling table containing menu items.

Key Style Name Description
Events onExecute() Function to be called when a menu item has

been executed.

onCancel() Function to be called when a user cancels a
menu item.

onClose() Function to be called when the menu is
closed.

onOpen() Function to be called when the menu is
opened.

Notes To close the menu, use the <esc> key.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

162 Chapter 9 Other Specialized Dojo Widgets

Widget dijit.Toolbar
Name

Super
Classes

File dijit/Toolbar.js
Location Use dojo.require("dijit.Toolbar");

Usage This class creates a widget that acts as container for buttons. This widget
does not have explicit toolbar items but instead can use any widget as a
toolbar item—although the most typical widget used is dijit.form.
Button. The buttons can then be associated with actions such as the
display of other widgets or the execution of functions. A typical use for this
widget is to provide a horizontal display of command buttons that may
appear either as text or icons. Toolbars often contain buttons that provide
submenus, but the buttons may also execute commands directly.

Like in dijit.Menu, an additional widget, dijit.ToolbarSeparator,
is supplied to visually separate groups of toolbar items.

Display
Examples

This figure shows two examples of the Toolbar widget. The first
contains buttons with text labels. The second contains a mix of buttons,
some with icons and others with text. A number of predefined icons
are available in the tundra theme in the directory “dojo/dijit/themes/
tundra/images.” Notice also the use of the ToolbarSeparator to
visually distinguish groups of related items.

HTML Create a Toolbar widget with two menu items, the first of which uses
Markup an icon only and the second of which uses a text label.
Examples

<div id="toolbar1" dojoType="dijit.Toolbar">

<div dojoType="dijit.form.Button" id="toolbar1.cut"

iconClass="dijitEditorIcon dijitEditorIconCut"

showLabel="false">Cut</div>

<div dojoType="dijit.form.Button" id="toolbar1.paste">

Paste</div>

</div>

Actions would need to be associated with the Button widgets so that
some function is performed when the buttons are clicked.

dijit._Widget

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1639.2 Menu Widget

JavaScript The following code will create a toolbar with two items.
Constructor
Examples menu1 = new dijit.Toolbar({}, dojo.byId("d1"));

menu1.addChild(new dijit.form.Button(

{label:"Item1", onClick:menuAction1}));

menu1.addChild(new dijit.form.Button(

{label:"Item2", onClick:menuAction2}));

Key
Properties None

Key Method Description
Methods addChild(Widget) Function to programmatically add widgets to

the toolbar.

Key
Styles None

Key
Events None

Notes None

http://lib.ommolketab.ir
http//lib.ommolketab.ir

164 Chapter 9 Other Specialized Dojo Widgets

Widget dijit.Dialog
Name

Super
Classes

File dijit/Dialog.js
Location Use dojo.require("dijit.Dialog");

Usage This class creates a widget that displays a ContentPane as a modal
dialog on top of the existing page. The page is deactivated; the user can’t
click anywhere on the page except the dialog. The dialog can contain any
content, including other widgets or forms. When the user completes the
dialog, either by clicking the icon to clear the dialog or clicking a control
that is provided in the dialog content, the widget vanishes, and the
original page becomes active again. When the dialog is activated, it dis-
plays in the center of the page.

A really useful feature of this widget is the ability to load dynamic content
from the server using the href property.

Display
Examples

This figure shows examples of a dialog. Notice that the dialog box
is active, but the page behind it has been “grayed out” to show that it is
inactive. The icon in the upper right of the dialog can be used to hide it.

Note: There is a button showing on the left of the screen shot with a
“Show Dialog” label. Although this is not a part of the dijit.Dialog
widget, it is needed to show the widget. When the Dialog widget is creat-
ed, it is not visible, and some control or process is needed to display it.

HTML Create a Dialog widget with dynamic content coming from the server.
Markup A control will be provided to make the widget visible.
Examples

<button dojoType="dijit.form.Button"

onclick="dijit.byId('dialog1').show()">

Show Dialog

</button>

<div id="dialog1" dojoType="dijit.Dialog" title="dijit.Dialog">

<div>

*** Content of Dialog Box ***

</div>

</div>

dijit._Widget dijit.layout.ContentPane

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1659.2 Menu Widget

The following example also creates a Dialog widget, but in this case, the
content is dynamically loaded from the server.

<button dojoType="dijit.form.Button"

onclick="dijit.byId('dialog2').show()">

Show Dialog

</button>

<div id="dialog2"

dojoType="dijit.Dialog"

href="content.html"

title="Dynamic Content">

</div>

JavaScript The following code will create a Dialog with dynamic content retrieved
Constructor from the server resource “content.jsp.”
Examples

new dijit.Dialog({

title: "Dialog",

href: "content.jsp" });

The Dialog must be connected to the DOM and activated using its
show() method.

Key Property Default Description
Properties open false Is the dialog visible or not?

duration 400 Number of milliseconds from when the dialog
window is started to when it fully appears. It
fades in over this period of time.

href null The URL for the server resource that will
provide the content for the dialog.

title null Text for the title bar of the Dialog widget.

Key Method Description
Methods show() Make the widget visible.

hide() Hide the widget.

Key Style Name Description
Styles dijitDialogPaneContent Style of the ContentPane

containing the widget’s content.

Key Style Name Description
Events onLoad Executes when the content is loaded into the widget.

Notes None

http://lib.ommolketab.ir
http//lib.ommolketab.ir

166 Chapter 9 Other Specialized Dojo Widgets

Widget dijit.TooltipDialog
Name

Super
Classes

File dijit/Dialog.js
Location Use dojo.require("dijit.Dialog");

Usage This class creates a widget that displays a dialog that has the same
appearance as a Tooltip. This dialog slightly differs from a dijit.
Dialog in two primary ways. First, the dialog is not a model; the user
can click on the page behind the dialog, which causes the dialog to be
hidden. Secondly, the dialog contains a marker pointing to the widget that
it is associated with. Regular dijit.Dialog widgets display in the cen-
ter of the page, but a TooltipDialog will appear next to the widget it
is associated with.

This widget is used to capture additional information for a Toolbar com-
mand by providing a form. When used this way, the widget will be hidden
when the form is submitted.

Display
Examples

This figure shows the widget after it has been activated by clicking the but-
ton labeled “Show Tooltip Dialog.” Notice that the widget appears next to
the button with an arrow pointing to the button. The Tooltip will be auto-
matically oriented.

HTML Create a TooltipDialog associated with a button control. When the
Markup user clicks the button, the Tooltip will appear.
Examples

<div dojoType="dijit.form.DropDownButton">

Show Tooltip Dialog

<div id="dialog1"

dojoType="dijit.TooltipDialog" title="Tooltip">

<div>

*** Content of TooltipDialog box ***

</div>

</div>

</div>

Note: The content could be retrieved dynamically from the server.
The content is often a form that requests additional parameters for the
command.

dijit._Widget dijit.layout.ContentPane

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1679.2 Menu Widget

JavaScript This widget would normally be created through HTML markup.
Constructor
Examples

Key
Properties None

Key
Methods None

Key
Styles None

Key
Events None

Notes None

http://lib.ommolketab.ir
http//lib.ommolketab.ir

168 Chapter 9 Other Specialized Dojo Widgets

Widget dijit.Tooltip
Name

Super
Classes

File dijit/Tooltip.js
Location Use dojo.require("dijit.Tooltip");

Usage This class creates a widget that displays a pop-up message next to a
field. The message appears automatically when the field receives focus
and will disappear when focus is gone. The widget displays on top of any
underlying page elements. This widget is similar to a TooltipDialog
except that this widget is best used for a brief helpful display of text or
HTML, while the TooltipDialog can be used to be more interactive,
displaying a form for additional data entry or even displaying other
widgets.

This widget acts as a more powerful replacement for the title attribute
available in HTML.

Display
Examples

This figure shows the Tooltip widget appearing as the field receives
focus.

HTML Create a Tooltip widget and associate it with an existing field.
Markup
Examples

*** Tooltip content ***

The preceding code assumes the existence of a form field with an id of
“field1”.

JavaScript The following code will create a Tooltip.
Constructor
Examples new dijit.Tooltip({

connectId:["id3"],

label:" *** content ***"});

dijit._Widget

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1699.2 Menu Widget

Key Property Default Description
Properties label "" Text of the label on the Tooltip.

showDelay 400 Number of milliseconds from when the
associated widget received focus until the
Tooltip is displayed.

connectId [] Array of widgets that the Tooltip is
associated with.

Key
Methods None

Key Style Name Description
Styles dijitTooltipContents CSS style of content of Tooltip.

Key
Events None

Notes None

http://lib.ommolketab.ir
http//lib.ommolketab.ir

170 Chapter 9 Other Specialized Dojo Widgets

Widget dijit.ProgressBar
Name

Super
Classes

File dijit/ProgressBar.js
Location Use dojo.require("dijit.ProgressBar");

Usage This class creates a widget that displays the completion state a process
using a horizontal bar. This widget only displays the status unlike the
Slider, which can be used as a control to change the status measurement.
Also this widget can be displayed only horizontally. The progress is updat-
ed programmatically by this widget’s update() function.

Display
Examples

This figure shows a progress bar. Notice that there is a darker area within
the progress bar representing the completion status. It takes up 10% of
the space on the progress bar, which is equal to the number displayed in
the center of the bar.

HTML Create a ProgressBar widget.
Markup
Examples <div

dojoType="dijit.ProgressBar"

maximum="100"

progress="10"

id="bar1">

</div>

JavaScript The following code will create a ProgressBar widget.
Constructor
Examples new dijit.ProgressBar({

annotate:"true",

maximum:"50",

progress:"35"},

dojo.byId("d1"))

dijit._Widget

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1719.2 Menu Widget

Key Property Default Description
Properties progress "0" This property contains the value of the

progress. It can be specified as a percent-
age using “nn%” or as an absolute
number, which will be converted into a
percentage of the value specified in the
maximum property.

maximum 100 This property contains the upper limit of
the value used to calculate the percent-
age of progress.

places 0 This property specifies the number of
decimal places to show in the progress
value.

indeterminate false When this property is true, the progress
value is unknown and is not shown.

Key Method Description
Methods update() Function for updating the progress status of the widget.

Key
Styles None

Key
Events None

Notes None

http://lib.ommolketab.ir
http//lib.ommolketab.ir

172 Chapter 9 Other Specialized Dojo Widgets

Widget dijit.ColorPalette
Name

Super
Classes

File dijit/ColorPalette.js
Location Use dojo.require("dijit.ColorPalette");

Usage This class creates a widget that displays a grid containing a selection of
colors, one of which may be selected by the user. There are two built-in
palettes available, the 7 x 10 and the 3 x 4. The specific colors are also
built into the palette. After the user selects a color, the value of the
widget is set to the RGB value of the selected color.

Display
Examples

This figure shows the 7 × 10 version of the widget.

HTML Create a ColorPalette widget.
Markup
Examples <div dojoType="dijit.ColorPalette"

palette="3x4" />

JavaScript The following code will create a ColorPalette.
Constructor
Examples new dijit.ColorPalette({palette:"7x10"}, dojo.byId("d1"))

Key Property Default Description
Properties palette "7 x 10"The 7 x 10 or 3 x 4 values are only valid

ones defined by default.

value null RGB value of the selected color.

Key
Methods None

Key
Styles None

Key Style Name Description
Events onChange() Function called when a color is selected.

Notes None

dijit._Widget

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1739.2 Menu Widget

Widget dijit.Tree
Name

Super
Classes

File dijit/Tree.js
Location Use dojo.require("dijit.Tree");

Usage This class creates a widget that displays a collapsible and expandable
outline structure. Nodes in the tree can be clicked to trigger some action.
Also when nodes are expanded, their content can be dynamically loaded
from the server.

It is possible to build trees programmatically or through HTML, but the
simplest technique is to use a Dojo data store, which can be directly
associated with the widget and populates the widget automatically.

It is also possible to enable a drag and drop mode so that tree items
can be moved from one parent item to another.

Display
Examples

This figure shows fully expanded Tree widget with a number of
levels. Although this example shows text for each tree node, it is also
possible to add an icon.

HTML Create a Tree widget from a Dojo data store.
Markup
Examples <div dojoType="dojo.data.ItemFileReadStore"

jsId="treeStore"

url="tree.json"></div>

<div dojoType="dijit.Tree"

store="treeStore"

query="{type:'category'}"

label="Rocks">

dijit._Widget dijit._TreeNode

http://lib.ommolketab.ir
http//lib.ommolketab.ir

174 Chapter 9 Other Specialized Dojo Widgets

Note: Following is an example of the original JSON content of the data
store corresponding to the Display Example.

{ label: 'name',

identifier: 'name',

items: [

{ name:'Igneous', type:'category'},

{ name:'Metamorphic',

type: 'category',

children: [

{ name:'Slate', type:'subtype' },

{ name:'Gneiss', type:'subtype' },

{ name:'Quartzite', type:'subtype' }

]

},

{ name:'Sedimentary', type: 'category'}

]

}

JavaScript The programmatic construction of this widget is beyond the scope of
Constructor this book. See the Dojo documentation on the web site for more details.
Examples

Key Property Default Description
Properties store null The Dojo data store associated with this widget.

query null The data store associated with this object
should contain objects with a category
property. The query property should specify
a value containing the value of category,
which should be considered first-level items in
the tree.

The following table describes properties for tree nodes themselves which
are of class dijit._TreeNode, which is an internal Dojo function.

Property Default Description

label "" Contains text for label of tree node. Note:
This property belongs to each tree node.

isExpandable true Can the node be expanded?

isExpanded false Has the node been expanded?

Key
Methods None

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1759.2 Menu Widget

Key Style Name Description
Styles dijitTreeLabel CSS class for item text on a tree node.

Key Event Name Description
Events onClick(item, This function is called when the user

node) clicks a tree item.

Notes Tree is a collection of _TreeNodes with the Tree itself being a sub
class of tree node.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

176 Chapter 9 Other Specialized Dojo Widgets

Widget dijit.form.Slider
Name

Super
Classes

File dijit/form/Slider.js
Location Use dojo.require("dijit.form.Slider");

Usage This class creates a horizontal or vertical bar with a slider that can be
moved by the user to select a specific value. The slider bar can have
hash marks on either side that are labeled.

Display
Examples

This slider has hash marks and labels both above and below the bar.

HTML Create a Slider widget.
Markup
Examples <div dojoType="dijit.form.HorizontalSlider" name="horizontal1"

value="10"

maximum="100"

minimum="0"

pageIncrement="100"

showButtons="false"

intermediateChanges="true"

id="slider1"

>

<ol dojoType="dijit.form.HorizontalRuleLabels"

container="topDecoration"

style="height:1.2em;font-size:75%;color:gray;"

count="6" numericMargin="1">

<div dojoType="dijit.form.HorizontalRule"

container="topDecoration" count=6 style="height:5px;">

</div>

</div>

Note: This example places hash marks only on top of the slider bar. It is
also possible to place labeled hash marks below the bar using the same
technique.

dijit._Widget dijit.form.HorizontalSlider

dijit.form.VerticalSlider

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1779.2 Menu Widget

JavaScript Because of the number of components of this widget, it is more typical
Constructor to create it using HTML than to create it programmatically.
Examples

Key Property Default Description
Properties showButtons true Display controls at each end of the bar

for incrementing and decrementing the
slider value. Specifying false for this
property causes the controls not to
display.

minimum 0 The lowest value that the slider can be
set to, even though the slider bar may
appear to be lower.

maximum 100 The highest value that the slider can be
set to, even though the slider bar may
appear to be higher.

discreteValues Infinity Possible number of settings between
the lowest and highest values.

pageIncrement 2 The amount of slider increments or
decrements when the <Page Up> or
<Page Down> keys are used.

clickSelect true Determines if clicking the progress
bar will move the slider handle.

value 0 Initial value setting for the slider.

The following table contains properties for either the HorizontalRule or
the VerticalRule. These are the hash marks that appear to either side
of the slider bar.

Property Default Description
container "" Specifies which set of hash marks this

rule should describe. Possible values
are
topDecoration
bottomDecoration
leftDecoration
rightDecoration

count 3 Number of hash marks.

ruleStyle "" CSS style for hash marks.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

178 Chapter 9 Other Specialized Dojo Widgets

The following table contains properties for either the
HorizontalRuleLabels or the VerticalRuleLabels. These are the
labels that appear on the hash marks on either side of the slider bar.

Property Default Description

container "" Specifies which set of hash mark labels
this rule should describe.
Possible values are
topDecoration
bottomDecoration
leftDecoration
rightDecoration

labels [] Array of labels for hash marks.

labelStyle "" CSS style for the hash mark labels.

Key Method Description
Methods increment() Increase the slider value by one position.

The slider handle will also move.

decrement() Decrease the slider value by one position.
The slider handle will also move.

setValue(value) Change the slider value. The slider handle will
also move to the corresponding position.

Key
Styles None

Key
Events None

Notes None

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1799.2 Menu Widget

Widget dijit.form.NumberSpinner
Name

Super
Classes

File dijit/form/NumberSpinner.js
Location Use dojo.require("dijit.form.NumberSpinner");

Usage This class creates a text box for numbers that contains a control that
allows the user to change the value by clicking the control. The control
consists of an up arrow and down arrow icon. Clicking the up arrow
increases the value, and clicking the down arrow decreases the value.

This is superior to a regular NumberTextBox because it is easier for the
user to make small changes to the value. Also when the controls are held
down, the speed of the change in the value increases.

Display
Examples

The user can increment or decrement the value by clicking the up or
down arrow icons.

HTML Create a NumberSpinner widget.
Markup
Examples <input

dojoType="dijit.form.NumberSpinner"

value="900"

constraints="{max:1550,places:0}"

name="integerspinner1"

id="integerspinner1">

Note: This widget is inherits the constraints property.

JavaScript The following code will create a Tooltip.
Constructor
Examples

Key Property Default Description
Properties smallDelta 1 Amount by which the value of the number

will increase or decrease when increment-
ed or decremented.

largeDelta 10 Amount by which the value of the number
will increase or decrease when the <Page
Up> or <Page Down> keys are used.

dijit._Widget dijit.form.NumberTextBoxMixin

dijit.form._Spinner

http://lib.ommolketab.ir
http//lib.ommolketab.ir

180 Chapter 9 Other Specialized Dojo Widgets

Key
Methods None

Key
Styles None

Key
Events None

Notes This widget is a subclass dijit.form.NumberTextBox, so it inherits
all the validation properties of that type. For simplicity, most of those
properties have not been shown in this example.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1819.2 Menu Widget

Widget dijit.InlineEditBox
Name

Super
Classes

File dijit/InlineEditBox.js
Location Use dojo.require("dijit.InlineEditBox");

Usage This class creates a widget that allows displayed text to be converted
into a text box so that it can be edited by the user.

Display
Examples

This screen shot shows the widget in operation. The first line, “My hobby
is running,” appears as normal displayed text. The second line shows
the text as highlighted when the mouse passes over it. The third line
shows the text box that appears when the editable text is clicked.

HTML Create a InlineEditBox widget.
Markup
Examples <span

dojoType="dijit.InlineEditBox"

editor="dijit.form.TextBox"

width="100px" title="hobby"

style="border-bottom: 1px dashed blue;"

>

running

Note: In this widget, the editable text is underlined with a blue dashed
line to indicate that it is editable.

JavaScript This widget is normally created using HTML.
Constructor
Examples

dijit._Widget

http://lib.ommolketab.ir
http//lib.ommolketab.ir

182 Chapter 9 Other Specialized Dojo Widgets

Key Property Default Description
Properties editing false Specifies whether the widget is

currently in edit mode, false if no.

autoSave true When set to true, the changes
are automatically saved when the
edit box is closed, not just when
the save icon is clicked.

buttonSave "" Text containing label for Save
button.

buttonCancel "" Text containing label for Cancel
button.

renderAsHtml false Property is true if the selected
editor uses HTML rather than just
plain text.

value "" Value of the text string.

editor dijit.form. Widget that will be used as the
TextBox editor for the text.

Key Method Description
Methods cancel() This function cancels the edit session and reverts to

the original value of the text.

Key
Styles None

Key Style Name Description
Events onChange() This function is called when the user changes the

value of the editable text.

Notes Use a style attribute to emphasize the editable word.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1839.2 Menu Widget

Widget dijit.form.Textarea
Name

Super
Classes

File dijit/form/Textarea.js
Location Use dojo.require("dijit.form.TextArea");

Usage This class creates a widget that replaces the standard HTML
<textarea> tag, which allows multi-line input. One of its primary
advantages is that it automatically resizes itself when the amount of text
changes rather than displaying scroll bars as the standard <textarea>
tag does.

Display
Examples

This figure shows the widget with some lines of content. If the
content extended beyond the boundaries of the widget, the size of the
widget would change automatically.

HTML Create a Textarea widget.
Markup
Examples <textarea dojoType="dijit.form.Textarea" name="textArea1">

This is the content of the text area.

</textarea>

JavaScript This widget is normally created with HTML.
Constructor
Examples

Key
Properties None

Key
Methods None

Key
Styles None

Key
Events None

Notes Use the <textarea> tag for this widget.

The standard attributes for specifying the size of the text area in HTML are
“cols” and “rows” corresponding to the number of columns and rows. Do not
use these attributes when using dijit.form.Textarea. Instead, specify
the size of the widget using the style properties “width” and “height.”

dijit.form._FormWidget

http://lib.ommolketab.ir
http//lib.ommolketab.ir

184 Chapter 9 Other Specialized Dojo Widgets

Widget dijit.Editor
Name

Super
Classes

File dijit/Editor.js
Location Use dojo.require("dijit.Editor");

Usage This class creates a widget that acts as a rich text editor allowing multi-
line text with sophisticated editing options. This is a replacement for the
standard HTML <textarea> tag when additional formatting options are
required. Formatting commands and options are available in a customiz-
able toolbar.

Display
Examples

This figure shows the Editor widget. Notice the editing
commands in the toolbar.

HTML Create an Editor widget.
Markup
Examples <textarea dojoType="dijit.Editor"

id="edit1"

height="110px"

>

Content for the text area.

</textarea>

JavaScript The programmatic construction of this widget is beyond the scope of this
Constructor book. See the Dojo documentation on the web site for more details.
Examples

Key Property Default Description
Properties plugins null The list of plugins (editing commands) for

this widget.

extraPlugins null Additional plugins for this widget.

dijit._Widget dijit._editor.RichText

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1859.2 Menu Widget

Key
Methods None

Key
Styles None

Key
Events None

Notes None

Summary
A number of specialized widgets exist in Dojo that provide unique functionality far beyond
the default widgets in HTML.

This chapter covers some of those specialized widgets but not all of them.

New widgets are being developed for Dojo constantly.

We’ve now concluded our exploration of the Dojo widgets.We continue in the next
section of the book by exploring some of the nonvisual elements of Dojo, the features
that augment JavaScript programming.These are the hidden features of Dojo that don’t
impact the visual display of the page directly but make JavaScript programming much
easier.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

III
Dojo in Detail

10 What is Dojo?

11 Technical Description of Dojo

12 Objects and Classes

13 Strings and JSON

14 Events and Event Handling

15 Ajax Remoting

16 Dojo and the DOM

17 Testing and Debugging

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10
What Is Dojo?

There is nothing more difficult to take in hand, more perilous to conduct or more uncertain in its
success than to take the lead in the introduction of a new order of things.

—Niccolo Machiavelli (1469–1527)

It has been said that we can’t understand where we’re going without knowing where
we came from.Why does Dojo exist? What should it be used for? Who should use it?
These are the questions that this chapter will address.We’ll introduce Dojo, describe a bit
of its history and give a view of it from 20,000 feet.The technical details will be left for
a later chapter and for now we’ll focus on the big picture.

10.1 History of JavaScript and AJAX
Because you picked up this book, I’m guessing that you probably already know a little
about Dojo.You probably know that it is a tool for working with JavaScript. So before
we delve into the specific history of Dojo, we should say just a little about JavaScript.

JavaScript is the programming language built into a browser. It has been available in
almost all browsers since 1995. By utilizing JavaScript in a web page you can make your
pages come alive by interacting much more directly with the user. For example,
JavaScript can be used to validate user input, display interesting visual effects, perform
calculations, and respond to user events. In an effort to describe these wonderful features
a new term was even coined—dynamic HTML (DHTML). JavaScript can turn HTML
from a dry, dead, static markup language into a dynamic interactive visual environment
for the user.

If you’re having trouble remembering all the wonderful interactive web sites available
in the 90s, it’s because the nirvana promised by DHTML never quite materialized. It
turned out that DHTML had a number of problems. Different versions of the browsers

http://lib.ommolketab.ir
http//lib.ommolketab.ir

supported different versions of JavaScript.The object used to represent the web page
internally (what we would now call the DOM) also differed from browser to browser,
making it difficult to write JavaScript that could work in any browser. So some develop-
ers avoided using JavaScript at all. Other developers used it but in isolated ways, never
taking full advantage of the language.After the browser wars of the 90s subsided, when
Microsoft and Netscape stopped constantly releasing new versions of their browsers to
introduce some new feature, a Pax Microsoft settled over the land.The early 2000s were
characterized by relative calm in the browser market place, the good news being that the
browser feature set became more settled and consistent, the bad news being that the pace
of new feature introduction slowed enormously.

By the beginning of 2005 some standard patterns for using DHTML had evolved.
Developers would use it to ensure certain kinds of client-side validation. For example,
JavaScript was often used to ensure that the user had entered a required field before a
form was submitted to the server. It was also used to develop stand-alone GUI widgets
such as calendar widgets to be used for selecting dates rather then entering them as
plain text.

Page designers often knew very little about how the DHTML JavaScript worked.
They would often add DHTML to their pages by cutting and pasting from other sites
when they found a feature they liked or by downloading DHTML snippets from a num-
ber of web sites dedicated to providing useful DHTML code. Pages might contain mul-
tiple widgets obtained from different sources that provided some stand-alone feature but
weren’t integrated with each other. Developers didn’t think of JavaScript as a cohesive
full-blown programming model but as more of a primitive scripting language that could
be used to add some neat features here and there in the page.

That all changed in early 2005. Google released a couple of extremely interesting
applications, Google Mail and Google Maps. Both applications behaved much more like
traditional desktop applications with rich user interfaces than like the clunky HTML
applications common at the time. Google Maps especially caused a paradigm shift in
how developers thought about the limitations of user interface by implementing a
sophisticated drag-and-drop capability in the maps. Up until that time, the most popular
mapping sites,Yahoo and MapQuest, allowed a user to move around a map by clicking a
direction icon, which would request an entire new page from the server so that the user
moved from right-to-left or up-and-down in a herky-jerky fashion. Google Map users
could smoothly scroll in any direction, using their mouse without a page being
refreshed.

The new paradigm couldn’t be complete until it was given a name.And that is
exactly what Jesse James Garrett, a San Francisco-based user interface designer, did when
he published a paper on the new techniques and christened them as “AJAX.” He
described a set of technologies that could be used to request data from the server while a
page was displaying the browser without refreshing the page.The data from the server
would then be used to update the display using DHTML. Google had demonstrated
what wondrous pages could now be created, and Jesse had given it a name.The web

190 Chapter 10 What Is Dojo?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

development community was shaken out of its collective slumber and began work on
Web 2.0.AJAX became Ajax—what once was a description for some specific tech-
nology components (Asynchronous JavaScript And XML) became a more general
description of web pages that adopted user interface techniques that had only been seen
before in non-browser applications.

Note that the actual techniques used to implement Ajax had been around for a num-
ber of years and had even been used in a number of web sites.The coinage of the term
“Ajax” helped to popularize the techniques.

The use of JavaScript within web pages exploded, which resulted in a few painful
repercussions. Developers realized that JavaScript was a full-blown programming lan-
guage, not just a toy for script kiddies. It was a mature object-oriented language that
required the developer to understand object-oriented programming techniques.
Unfortunately, developers also realized that many of the tools and libraries that had been
developed in other programming environments had not yet been developed for
JavaScript. In addition, there were still a number of inconsistencies between popular
browser versions in how JavaScript, the Event Model, and the DOM worked.And that
set the stage for the emergence of the Dojo DHTML toolkit.

10.2 History of Dojo
The increasing importance of JavaScript did not go unnoticed. More and more develop-
ers were spending time working with JavaScript and dealing with its many complexities,
idiosyncrasies, and outright bugs. Some of the lead developers in the community were
strategizing on how to address these problems. One particular group of developers
decided the solution might lie in creating their own DHTML library.And in September
2004 the first version of Dojo was released.Although the product was a community
effort,Alex Russell and Dylan Schiemann were among the lead developers. In early
2005, the Dojo foundation was established by Alex and Dylan to manage the ownership
of the product.

Dojo has attracted a large community of both users and developers.As of early 2007,
Dojo had gone through four releases and had been downloaded hundreds of thousands
of times.

You can find more detailed information on the history of Dojo at the web site:
http://www.dojotoolkit.org.

10.3 Purpose of Dojo
The primary purpose in developing Dojo was to address the inadequacies inherent in
JavaScript programming, in other words, to make JavaScript programming easier.

Following are some of the specific goals that the developers wanted to achieve:
n Hiding some of the complexities of writing JavaScript that is compatible across

different browsers

19110.3 Purpose of Dojo

http://lib.ommolketab.ir
http//lib.ommolketab.ir

n Maintaining a small footprint
n Maintaining excellent performance
n Achieving high quality by supporting modern web standards such as

Internationalization and Accessibility
n Being a robust, all-in-one toolkit
n Providing useful widgets
n Providing techniques for creating custom widgets

Although some of these goals are at cross purposes (for example, it is hard both to
have a small footprint and still be robust) Dojo has achieved a harmonious balance.

10.4 Description of Dojo
To quote the web site,“Dojo is an open source, DHTML toolkit written in JavaScript.”
Let’s break this down a bit to understand what it means.We’ll start with the last part of
the statement first.

n Dojo is written in JavaScript. Dojo is all JavaScript and only JavaScript.There is
no plug-in necessary to run Dojo. It runs in the web page just as any JavaScript
you might write yourself.To the browser, the Dojo JavaScript is indistinguishable
from any other JavaScript on the page, whether written by the developer or part
of some other JavaScript framework that might be included. It must be included
on each web page that uses it.There are some advantages to this approach. For
example, Dojo is compatible with any browser that can run modern versions of
JavaScript. However, there are disadvantages also. Dojo can only do what is possible
in native JavaScript. Some other frameworks that require plugins are able to extend
the capabilities of the browser.

n Dojo is a DHTML toolkit. The traditional focus of DHTML was to allow easy
manipulation of a web page to create GUI widgets and visual effects.This included
working with the DOM, the event model, and CSS.That is certainly still the focus
for Dojo.We’ll see many useful functions and object types that can be used to cre-
ate amazing visual effects for your users.

n Dojo is open source. When you download Dojo, you get the entire source.You
can see every line of JavaScript written for Dojo.There is nothing hidden.That
means that the browser also sees the entire source, so a sophisticated user of your
page has access to the original JavaScript source, including not just Dojo, but any
additional JavaScript that you write. Unfortunately, this is an inherent problem
with the Web. It is very difficult to hide anything from the browser.

Also because Dojo provides the source code, you can do almost anything you want
with the toolkit, including changing it. Be warned, however, that this might make
upgrading more difficult later.Also certain legal restrictions may apply when using
Dojo.We’ll discuss those a little later in the section on licenses.

192 Chapter 10 What Is Dojo?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In the next chapter, we begin to drill down into the Dojo source code, but for now,
let’s describe it at a high level. Dojo consists of a set of files that contain JavaScript code.
By including one or more of the files in your web page, you can write JavaScript code
that uses Dojo.This allows you to write much less code than you would normally have
to. Most of the Dojo code contains either functions that your custom code can call or
constructors that allow your custom code to create objects such as GUI widgets. Dojo
functions and constructors don’t contain any magic. If you don’t believe me, you can
check it out yourself—all the source code is there for you to see. It’s all just JavaScript
that you could’ve written yourself, but because of all the hard work of the Dojo com-
munity, you don’t have to.

Dojo functions and constructors run within the browser. Dojo does not provide any
components to run on the server.This makes the Dojo server agnostic. In other words, it
doesn’t care what the server is as long as that server knows how to process HTTP
requests. So web sites can be developed that use Dojo in the browser while the server
may use Java J2EE, PHP, or Ruby on Rails, among others. Because of this, when creating
an application using Dojo, you will also usually need to develop components on the
server side, which respond to Ajax requests from the browser. More on this later, but for
now, just remember that Dojo provides components only for the browser.

10.5 What Problems Does Dojo Solve?
As we’ve said, Dojo was developed to address some of the problems with JavaScript
development. But what, specifically, were those problems? Following is a list of the major
issues that Dojo was created to solve:

n Different browsers support different versions of JavaScript.Without Dojo, you
would need to write code for each of the different browsers that your application
would run in.

n HTML supports only a small set of standard GUI widgets (text, check boxes, radio
buttons, and so on). More sophisticated widgets are needed. For example, choosing
a date from a calendar widget is much easier than just typing in a date and hoping
that the format is correct. Not only does HTML lack many widgets, but it doesn’t
provide a method for building new widgets.

n The Document Object Model (DOM) behaves differently in different browser
versions.

n Event handling is done differently in different versions of the browser.
n The set of classes in native JavaScript is small compared to what was needed.

The last point is especially interesting and can be further explained by an example.
The Java programming language (that’s “Java,” not to be confused with “JavaScript”) con-
tains a little less than 50 different object types in its core package. However, there are an
additional 5,000 object types defined in the class libraries that come with the standard

19310.5 What Problems Does Dojo Solve?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Java development kit. JavaScript also contains somewhat less than 50 standard objects and
object types, but it lacks any standard class libraries to augment that number.We’re not
saying that JavaScript needs another 5,000 data types, but surely it needs more than 50,
and Dojo supplies many of those. Later we talk specifically about what those missing
classes are.

10.6 Who Should Use Dojo?
Dojo can be used by anyone who develops Web pages. But there are three groups for
whom Dojo is an almost perfect fit.The first group is developers who are already writ-
ing complex JavaScript.They are already encountering all the problems that Dojo was
meant to solve. By adopting Dojo, they can increase their productivity and reduce their
level of frustration.And the good news for this group is that they can adopt Dojo as
quickly or as slowly as they wish. Dojo won’t step on any of their existing code because
of its use of a separate namespace. So they can began adding Dojo to existing pages for
new features and to slowly convert their old code as they have time.This is a really
important advantage for Dojo, and makes it easy to get started.You can bite off as much
or as little as you want.

The second group of developers who should be using Dojo are page designers.The
stereotypical page designer has skills in graphic design, page layout, and the use of the
HTML tag language.The skill that they don’t usually possess and often aren’t interested
in acquiring is the ability to write programs.They don’t want to write JavaScript.
However, they would still love to get access to some of the beautiful widgets available on
the Dojo toolkit. Luckily for them, Dojo widgets can be added to a webpage simply
through HTML markup with little or no coding.

The third group of developers who should be using Dojo are server-side developers.
These are the developers responsible for creating the backend part of the web site, the
programs that run on the web server itself.Although we might not think of them as typ-
ically being involved in page design, there is a role for them. Server side developers usu-
ally receive HTML files provided by the page designer and add the extensions that allow
the page to communicate with the backend functionality that the site requires.These
developers might be PHP developers, Ruby on Rails developers, Java developers, or
developers experienced in any of a host of backend technologies available today.They
usually know enough HTML to get by but not much JavaScript. Now with the intro-
duction of Ajax and the focus on creating more dynamic web pages, they’re being asked
to become JavaScript programmers. Given their current responsibilities they can’t really
be expected to become JavaScript experts overnight and to understand all the possible
pitfalls of JavaScript programming that we’ve already discussed.This is where Dojo is the
perfect fit for them. By using the Dojo functions and constructors, these developers can
avoid having to learn all the ins and outs of JavaScript and benefit from the years of
experience already built in to Dojo.

194 Chapter 10 What Is Dojo?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10.7 Licensing
I’m not a lawyer, nor do I play one on TV. So I’m not really one who should be giving
legal advice. But here goes anyway. Dojo is an open source project, and the common
perception of open source projects is that they can be used in any way that you wish.
Developers often think of open source projects as products that they don’t have to
license like they do typical vendor software. However, that perception is wrong.
Open source projects are made available under varying licenses that convey rights and
responsibilities. By using Dojo, you’re accepting one of those licenses, and there are some
restrictions.

Dojo is made available under two licenses.This is known as dual licensing.You’re not,
however, constrained by both licenses, only the license you pick. So whichever one pro-
vides the terms that you are looking for can be used.And there’s no requirement for
notifying Dojo which license you pick.You don’t have to pay any money, sign any con-
tracts, or deal with any paperwork of any kind.

The first license, known as the Academic Free License, allows you to use the code in
both non-profit and commercial applications. Changes that you make to Dojo do not
have to be submitted back to the Dojo community.And there is no requirement that
you make your source code that uses Dojo available to anyone.The intent of the license
is to encourage the adoption of Dojo without adding any unreasonable restraints.

The second license is the modified BSD license. It contains many of the same
covenants as the first license. It allows you to use Dojo, modify it, or package it within
your commercial application without having to submit your changes to Dojo or make
your source code public.

In many ways the purpose of Dojo licensing is not to restrict you as a developer but
simply to protect Dojo.You can’t sue Dojo for bugs that it may have or that you intro-
duce.And you can’t claim that you now own Dojo and start suing anybody else who
uses it.

Disclaimer and fine print: As I’ve already said, I am not a lawyer.This licensing discus-
sion is merely my opinion and represents my understanding.You or your organization
will have to determine which license is appropriate and what restrictions really apply
to you.

10.8 Competitors and Alternatives
Internet applications with sophisticated graphical widgets are also know as Rich Internet
Applications (RIAs). Dojo is an important toolkit for creating RIAs but is not the only
solution. Let’s briefly talk about some of the products that address the same needs as
Dojo.

19510.8 Competitors and Alternatives

http://lib.ommolketab.ir
http//lib.ommolketab.ir

First is a product that is most like Dojo—an open source DHTML toolkit that pro-
vides no server-side components:

n Prototype and script.aculo.us. Prototype is a very popular JavaScript toolkit for
web development. It is open source like Dojo and consists of a single JavaScript
file containing functions and constructors. However, most of the functionality of
Prototype is unrelated to the user interface.That is why it is typical for Prototype
to be used in combination with another JavaScript library called script.aculo.us.
Together, they begin to achieve some of the breadth present in the Dojo toolkit.
However, a number of issues, such as the absence of a separate namespace for
Prototype functions make it less desirable for enterprise development.

Note
Two other very popular toolkits are Yahoo User Interface (YUI) and jQuery.

Next is a product that allows users to develop RIAs but is based on a client-side plugin:
n Adobe Integrated Runtime (AIR). This approach requires a runtime plugin to

be installed on the browser, which is done the first time an Adobe Air application
is run.This product can use its own programming language called ActiveScript,
which is very similar to JavaScript.Although an excellent programming environ-
ment,Adobe is a commercial vendor, and AIR can make use of proprietary com-
ponents on the client (the runtime) and on the server, an approach that many
open source developers disagree with.

Finally, let’s review a product that can also be used to develop RIAs but takes a com-
pletely different technical approach:

n Google Web Toolkit (GWT). This product provides a library of Java classes that
can be used to construct RIAs.The developer writes custom Java classes using the
GWT library and then uses a GWT program to create JavaScript from the Java
code.Yes, you read that correctly. GWT treats the browser as a virtual machine for
JavaScript.As a developer you won’t work with the JavaScript directly, only indi-
rectly as Java.This probably strikes you as a fairly unusual approach, and you may
wonder if it can actually succeed.Well, if any organization can make it succeed,
Google probably can, given their enormous capabilities and resources. It reminds
me of the old joke,“Where does an 800 pound gorilla sleep? Anywhere it
wants to!”

This is a very small and unscientific sampling of the alternatives to Dojo.There are
many more—at last count over 100.You can read about them at the excellent site main-
tained by Michael Mahemoff at http://ajaxpatterns.org.

196 Chapter 10 What Is Dojo?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10.9 The Future of Dojo
While Dojo has existed in some form since 2004, it went through a major change at the
end of 2007 when the 1.0 version of Dojo was released.This was the first version of the
product that the Dojo team felt reached the level of quality necessary to be designated as
the 1.0 version. It is of a consistent high quality, very lightweight, and provides the
important functionality required of a DHTML toolkit.

Dojo has already had a large impact on the web development community, both as a
toolkit used for many applications and as a thought leader that has pushed the frontier of
web development. But what about its future? As Yogi Berra said,“I never make predic-
tions, especially about the future.”We should also be careful in making forward-looking
statements. But I think it is safe to say that with the 1.0 release, the rate of adoption of
Dojo should increase. Because of the robustness and completeness of the Dojo feature
set, we should see further inroads for Dojo into large enterprise shops.And because of
Dojo’s ease of use and small footprint, small to mid-size organizations will also continue
to be drawn to it.And because of the large and sophisticated developer community, I
think we can expect Dojo to evolve and push the boundaries of web development for
the foreseeable future.

Note
As of the final edits of this book, Dojo 1.1.0 was available for download but new versions
are being released frequently. Check the website for the latest news.

Summary
Dojo is an open source toolkit for developing web applications using JavaScript.

Dojo was created to make JavaScript development easier and to solve many of the prob-
lems inherent in JavaScript development.

It consists of files containing JavaScript that can be included in a web page.

Developers write custom code using the Dojo functions and constructors to build their own
functionality.

Dojo does not provide any server-side components. It can be used with any server that
supports HTTP.

The license for Dojo is intended to not be restrictive so that Dojo can be widely adopted.

There are alternatives to Dojo from both open source and commercial organizations.

More information is available at the Dojo web site at http://www.DojoToolkit.org.
The next chapter continues to introduce the Dojo Toolkit, but we change focus from a
general discussion to a more technical discussion.And we start to look at the code. Like
many developers, I don’t really start to understand a new programming environment
until I see the code. So on to the code!

19710.9 The Future of Dojo

http://lib.ommolketab.ir
http//lib.ommolketab.ir

11
Technical Description of Dojo

The devil is in the details.

—Anonymous

This chapter dives into the technical details of the Dojo framework.We review the files
and directories you get when you download Dojo and peak inside to see what treasures
lie there. If you’re like me, when reading a technical book, your eyes quickly pass over
the prose and focus on the code samples—a new programming paradigm just doesn’t
make sense until I see the code.We review some of the basic features of Dojo and
describe others at a high level for subsequent explanation in further chapters.When
you’re through with this chapter, you’ll know what’s inside the pretty gift box that is
Dojo!

Just a reminder:When you’re reading this chapter you might get that “déjà vu all over
again” feeling.After all, you’ve already been introduced to some of these same topics in
the tutorial in Chapters 1 through 5. For example, you’ve probably already downloaded
Dojo for the tutorial.The intent of the chapters in Part III is to dive down deeper than
we could in the tutorial.Think of these chapters as flying over the same terrain but at a
lower altitude so that more of the details are clearer!

11.1 What You Get in the Dojo Download
Before we can examine Dojo, we have to go get it.The most direct technique for down-
loading Dojo is to go to the Dojo web site and look for the download link on the front
page.The link provides us the current stable release for Dojo.The front page also con-
tains a link to the download page, which allows you to get older versions or even ver-
sions that are newer but might not quite be ready for general release yet. Unless you
really need some cutting edge feature in a beta release, your best bet is just to get the
current stable release.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Dojo site is at www.dojotoolkit.org. Here is a current image of the page with
the download icon visible on the right of the screen shot.The callout points to the
download button.

200 Chapter 11 Technical Description of Dojo

Figure 11.1 Screenshot of Dojo home page

You will then be directed to the download page, which will show a huge button
labeled “Download Now.” Click the download button and follow the instructions to save
the file on your computer.The file ends in the extension “.gz,” which means it is an
archive file and you need to unzip it. Most unzip utilities that work with “.zip” files will
also be able to extract “.gz” files as well.

It will create a directory structure where the top-level directory name corresponds to
the version number of the product. Inside that directory will be four subdirectories.
Here’s an image of the directory structure for version 1.1 of Dojo.Your actual version
number may be different, of course.

Figure 11.2 Screenshot of Dojo directory structure

Although it isn’t necessary yet, you may wish to follow along with this text by brows-
ing through the Dojo files on your own computer.At this point, you may put your Dojo
files anywhere and choose your own tools to browse them.As I write this chapter, I’m
using Eclipse to view the directories and read the files.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

11.2 Organization of Dojo Source Code
We’ve now downloaded Dojo, but exactly what is it that we’ve gotten? Dojo is just a
bunch of files organized in a hierarchy of directories and subdirectories.Wow! That’s
helpful. But what kind of files do we have, and what is the scheme used to organize
them? Simply put, most of the files contain JavaScript functions, and they are organized
by module (a group of related functions).Along with the JavaScript files (over 300 of
them) are a handful of files containing such things as license text and other stuff. Let’s
drill down level by level into Dojo and explore what we have.

11.2.1 First-level Directories
The main directory in my downloaded code is called “dojo_1.0” and consists of four
subdirectories.These represent the four major categories of Dojo features. Let’s describe
each subdirectory.

dojo
Here are all of the functions and constructors in Dojo except for the widgets. Some
developers are using Dojo only to get access to the many visually stunning and highly
functional GUI widgets that it provides, so they may be surprised that there is an entire
hidden underworld in Dojo consisting of many functions to make JavaScript coding eas-
ier but that don’t require GUI widgets at all.This directory is where all that under-the-
hood plumbing code resides.

dijit
Here are the Dojo widgets.Why didn’t the creators of Dojo just combine this with the
“dojo” directory? Actually, that is how early versions of Dojo were packaged. But by sep-
arating out the widgets from the rest of the Dojo code, it made Dojo more organized.
And even more importantly, it makes it easier for developers to use just the parts of Dojo
they need.

dojox
These are the extended features of Dojo that, for one reason or another, are not consid-
ered ready to be included in “dojo” or “dijit” yet.The reasons for exclusion.The func-
tions may not be robust enough.They may not be fully internationalized yet, or maybe
they won’t be used by enough developers to justify taking up space in the main “dojo”
directory.Then why include them at all? Well, for those developers who do need them,
the functionality is very powerful and useful. Over time, functions in “dojox” may
migrate into “dojo” or “digit.”

util
These are files needed to perform unit testing on the Dojo functions during develop-
ment.You can also use these features to run unit testing for code that you develop.
Nothing in this directory is needed for an application that is in production.

20111.2 Organization of Dojo Source Code

http://lib.ommolketab.ir
http//lib.ommolketab.ir

11.2.2 Digging Deeper into the Dojo Directory
Now let’s drill down into the second level of directories and files, starting with “dojo.”
Here’s an image of the directory for my version of Dojo.

202 Chapter 11 Technical Description of Dojo

Figure 11.3 Screenshot of dojo-release-1.1.0/dojo Subdirectory

As you can see, this directory is pretty full.At first it may seem like a confusing mix,
but we’ll “peel the onion” one layer at a time so that we can really understand what it
contains. Let’s view the directory from 20,000 feet:There are various subdirectories and
then some JavaScript files along with one text file called “build.txt.”

Let’s start with the most important file first:“dojo.js.”Why is it the most important?
Because it is the first file that you include in your web pages to make Dojo functions
available to your own JavaScript code. But in another way, this specific file isn’t impor-
tant at all.And may not even be used when you first start to use Dojo. Confusing? Yes.A
bit of an enigma inside a conundrum, as the old saying goes.

Why do I say that this file isn’t important at all? Because every function inside this
file really comes from somewhere else.The files in dojo.js are originally contained in
separate files found in the “dojo-release-1.0/dojo/_base” subdirectory. Related functions
are grouped together in a single file.You can think of these individual files as modules,
which is the term Dojo uses.The modules in the “base” directory are ones that the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

designers of Dojo felt should always be available. So the “dojo.js” file is just used as a
convenience to combine all the modules in the “base” directory into a single file that is
easy to include in your pages.And that is why the file isn’t really important—because all
the functions in “dojo.js” also appear in other files.

And the second puzzle:Why might you not even use this file at all? This seems espe-
cially strange given that the file contains the functions that you supposedly always need.
The reason you don’t need dojo.js is that there is a companion file called
dojo.js.uncompressed.js that contains all the same functions.The difference is that
dojo.js contains a compressed version of the JavaScript with all the comments and
extra spacing removed, while dojo.js.uncompressed.js contains comments and spac-
ing so that it is easily readable by a developer (and is more useful when using a line-by-
line debugger—more on that later). So when you first start using Dojo, you’ll want to
use the version that contains comments and white space: "dojo.js.uncompressed.js."

To write code that uses the Dojo functions, you need to include it in each of your
web pages. Following is the code you would use to add Dojo to your page.

<script type="text/javascript"

src="dojo-1.0/dojo/dojo.js.uncompressed.js"

djConfig="isDebug: true, debugAtAllCosts: true"></script>

This code assumes that you have unzipped Dojo to the root of your web application
and that the page is running from that location.Although not required, the <script> tag
also contains an attribute called djConfig, which turns on some additional debugging
messages when something goes wrong.This is a good idea to use when you first start
using Dojo.After you publish the page to production, turn off debugging and use the
compressed version of the code as shown here:

<script type="text/javascript"

src="dojo-1.0/dojo/dojo.js "</script>

Let’s review what we’ve learned so far.The file dojo.js is just a compressed version
of the file dojo.js.uncompressed.js, which is itself a file containing functions defined
in other Dojo files.These are functions the designers felt would be the most often used
features.They even came up with a name to describe this set of functions.They call
them Dojo “base.” If you want to see the original home for these functions, look in the
“_base” directory under the “dojo” directory.

11.3 Dojo Modules and Features
Dojo is organized into modules that contain groups of related functions.A module con-
sists of a JavaScript file with the functions defined within it.The file also contains some
special Dojo functions that register the module with Dojo. Every Dojo module used by
a page must be registered when that page runs. So you’ll see the following code repeated
many times within the Dojo source code (although the specific module being registered
will be different).

20311.3 Dojo Modules and Features

http://lib.ommolketab.ir
http//lib.ommolketab.ir

if(!dojo._hasResource["dojo._base.Color"])

dojo._hasResource["dojo._base.Color"] = true;

dojo.provide("dojo._base.Color");

The preceding code construct appears at the top of every module file and tells Dojo
that a module has been loaded. In this case the loaded module is dojo._base.Color.
This would correspond to a JavaScript file called Color.js in the directory _base
under the dojo subdirectory.A module may have one or many functions within it.
Functions do not require registration individually. Sometimes the module name and the
name of the function are the same, but this is not required.The full name of a function
is derived from the module name plus the function name. For example, the function
fromISOString in the module dojo.date.stamp would be called in your code as
shown in the following example:

var date = dojo.date.stamp.fromISOString()

11.3.1 Naming Conventions and Name Space
It is probably useful to talk about a few naming conventions at this point. Dojo functions
are named with a multi-part convention.The first part of the name is always dojo.This
designates that the function is part of Dojo and not a custom function created by you or
a function from another class library.The advantage of using a separate name space for
Dojo is that it is always clear when reading your code which functions are yours and
which functions belong to Dojo. Furthermore, functions you write will not conflict with
those from Dojo.

The next part of the name is the module and is preceded by a dot. For example,
_base designates that this function is part of the base module.The module name may be
followed by another dot and a sub-module name to further group functions. Otherwise
the third part will be the function or constructor name.A constructor name would be
capitalized.A lowercase name tells us it is a method or non-constructor function.
Function names follow the “Camel Case” convention, which is a technique for creating
names from multi-word descriptions where the words are concatenated together without
spaces or special characters, and the leading letter of each word is lowercase (except for
constructors where the first letter would be capitalized). For example, a method that cal-
culates shipping charges might be called calcShipCharge, using the Camel Case naming
convention. Sometimes, for frequently used functions, a short-cut name is assigned to the
function that omits the module.

Remember, Dojo functions are named with the following conventions:
n The first part is always dojo.
n The second part is the module name.
n The third part is the function, constructor, or sub-module name.

204 Chapter 11 Technical Description of Dojo

http://lib.ommolketab.ir
http//lib.ommolketab.ir

n If the third part of the name is a sub-module, then the fourth part will be the
function or constructor name.

A final note on names:When a leading underscore character is used in a function name,
such as with dojo.parser._nameAnonFunc, the underscore marks the function as being
one that a developer using Dojo would not use directly.The function would be used
internally within the Dojo code. In essence, the underscore makes the function private.

11.3.2 Dojo Base Module
Now that we’ve introduced dojo.js and talked about the “base” features in it without
detailing them, let’s see what kinds of functions are actually included. James Burke pro-
vided an excellent summary of the Dojo base functions in the Dojo forum.1 And
although his description is nearly perfect, I’m going to provide my own summary of it
also.As we review the modules included in Dojo “base,” I’ll just provide a summary
description. Many of these functions will be reviewed in more detail in later chapters.

The term API is used frequently throughout this book.The term is an acronym for
Application Program Interface and usually refers to the set of public functions available
for a library and the exact parameters required to call those functions. Obviously, the
exact Dojo API is extremely important in using Dojo. For many functions, detail on the
API is included, but you should be aware that sometimes the API changes or alternate
variations in the API for a particular function are available.An extremely important and
useful resource to use for understanding the API and identifying variations and changes
is the API documentation available on the Dojo site.2

You’ll notice that in the function names for the functions in base that the second part
of the name, the module, is missing.This is done as a convenience so that the function
names are shorter in your code and yet still long enough to be meaningful.

Let’s start with one of the simplest modules first and then advance to the more com-
plex ones.

11.3.2.1 The dojo.lang Module
This module consists of a number of general functions used in many different contexts.
The module name stands for “language” and is similar in purpose to the “java.lang”
package that may be familiar to Java programmers.Think of them as foundational func-
tions that can be used by other Dojo functions (and available to you in your custom
JavaScript, of course).

20511.3 Dojo Modules and Features

1. Following is the link to James Burke’s summary of the base module features in dojo.js,

http://dojotoolkit.org/2007/08/22/dissecting-0-9s-dojo-js.

2. Following is the link to the online Dojo API documentation. Be aware that this link may be

changed in the future, and you may need to search the site to find it (http://dojotoolkit.org/api).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 11.1 List of dojo.lang Functions

Function Description

dojo.isString() Determines if an object is a String.

dojo.isArray() Determines if an object is an Array.

dojo.isFunction() Determines if an object is a Function.

dojo.isObject() Determines if a reference is to an Object.

dojo.isArrayLike() Determines if a reference is to something that behaves
like an Array.

dojo.isAlien() Determines if a reference is to a Function that does not
properly identify itself as a Function.

dojo.mixin() Adds all the properties and methods from one object
to another object.

dojo.extend() Adds all the properties and methods from one object to the
prototype of another object.

dojo.hitch() Assigns a specific scope to a function so that the function
always executes with that scope.

dojo.partial() Assigns no scope to a function to force the scope to default
to the execution context when the function runs.

dojo.clone() Makes a copy of an object with all its children.

dojo.trim() Trims whitespace from the beginning and end of a string.

11.3.2.2 The dojo.declare Module
This module consists of a single function, dojo.declare, which is used to create con-
structors used to build new objects.This is an extremely useful function but sometimes
difficult to understand if you are new to Object Oriented Programming (OOP).That is
why an entire chapter has been devoted to its use. For an in-depth discussion of OOP
and the dojo.declare function, see Chapter 12,“Objects and Classes.”

11.3.2.3 The dojo.connect Module
This module consists of functions that associate event handlers with events. Event han-
dlers are simply functions that are called automatically when an event is triggered.The
browser itself monitors the actions of the user to detect events.Almost anything the user
does with the keyboard or mouse triggers an event that some event handler can be asso-
ciated with. For instance, when the user places the cursor over a DOM element, an
onmouseover event is triggered for that element.An event will only call the event han-
dler if it has been associated with the event—otherwise nothing happens. For more on
event handlers see Chapter 14,“Events and Event Handling.”

206 Chapter 11 Technical Description of Dojo

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The following table describes functions in the dojo.connect module.As a conven-
ience to allow shorter function names, it is not necessary to specify the module name.

Table 11.2 List of dojo.connect Functions

Function Description

dojo.connect() Creates an association so that a certain function will be
called whenever another function is called.

dojo.disconnect() Removes the association between two functions.

dojo.subscribe() Attaches a listener to a named topic.

dojo.unsubscribe() Removes a listener from a named topic.

dojo.publish() Invokes all listener methods subscribed to a topic.

dojo.connectPublisher() Ensures that every time some function is called, a mes-
sage is published on the topic.

11.3.2.4 The dojo.Deferred Module
This module consists of a single function, dojo.Deferred, which is used to provide
communication between threads.“Threads!?” you might say.“But I thought that
browsers don’t support threading.”And you would be right—except for the
XMLHttpRequest object, which does run in its own separate thread.This function pro-
vides a generic technique for thread notification.And though we don’t quite have one
yet, we’re just starting to hear about the beginnings of a threading model within
JavaScript. So this function will have some special use now and possibly more use in the
future as the threading model evolves.We cover this topic more thoroughly in Chapter
17,“Testing and Debugging.”

11.3.2.5 The dojo.json Module
This module contains functions for working with JavaScript Object Notation (JSON), a
text-based protocol for representing objects. It is quite popular in the JavaScript commu-
nity as a replacement for XML.Table 11.3 summarizes the JSON functions, but we also
cover them in more detail in Chapter 13,“Strings and JSON.”

Table 11.3 List of dojo.json Functions

Function Description

dojo.fromJson() Creates an object from a JSON string.

dojo.toJson() Creates a JSON string from an object.

20711.3 Dojo Modules and Features

http://lib.ommolketab.ir
http//lib.ommolketab.ir

11.3.2.6 The dojo.array Module
This module consists of functions that make it easier to work with array objects and
other objects that have array-like features.Among other things, the functions provide the
capability to easily iterate (loop) through all the elements in an array or iterate just
through certain elements.

Table 11.4 List of dojo.array Functions

Function Description

dojo.indexOf() Returns the first position of a value within an array.

dojo.lastIndexOf() Returns the last position of a value within an array.

dojo.forEach() Provides an array iterator. Assigns a function to be called for
each value in an array. The array value will be passed as an
argument to the function.

dojo.every() Assigns a function to be called for each value in an array. The
array value will be passed as an argument to the function. The
function should return a true or false. If all the function calls
return true, then every() will also return true, otherwise this
function will return false.

dojo.some() Assign a function to be called for each value in an array. The
array value will be passed as an argument to the function. The
function should return a true or false. If any of the function calls
return true, then some() will also return true; otherwise, this
function will return false.

dojo.map() Applies a function to each element of an array and creates an
array with the results.

dojo.filter() Returns a new array with those items that match a condition
implemented by a callback function.

11.3.2.7 The dojo.Color Module
This module consists of functions that allow a developer to represent colors (used inter-
nally by Dojo to perform color transitions).

Table 11.5 List of dojo.Color Functions

Function Description

dojo.Color() Constructor for an object representing a single color.
Allows a color to be represented as a type rather than as
a specific RGB or Hex value.

dojo.blendColors() Calculates a new color value between two given color
values.

208 Chapter 11 Technical Description of Dojo

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 11.5 Continued

Function Description

dojo.colorFromRgb() Returns a CSS style color value given a color value
specified as an RGB color value.

dojo.colorFromHex() Returns a dojo.Color object given a color value
specified as a hex string starting with a # prefix.

dojo.colorFromArray() Returns a dojo.Color object given an array of RGB color
values.

dojo.colorFromString() Returns a dojo.Color object given a string containing
array values, RGB values, or Hex values representing
a color.

11.3.2.8 The dojo.event Module
The way that events are handled differs between browsers.The functions in this module
provide a consistent behavior for events and event handlers. Events and event handling
are covered in much more detail in Chapter 14.

Table 11.6 List of dojo.event Functions

Function Description

dojo.fixEvent() Normalizes properties on the event object including event
bubbling methods, keystroke normalization, and x/y positions.

dojo.stopEvent() Prevents propagation and terminates the default action of the
passed event.

dojo.keys Object containing decimal values for various special keyboard
keys. These are constants that can be used to make JavaScript
code more readable (i.e., event code can refer to BACKSPACE
rather than the decimal value 8). By convention, JavaScript
constants are capitalized.

11.3.2.9 The dojo._base.html Module
This module consists of functions that can manipulate HTML and DOM objects.To
understand how these functions work, you need to understand something called the
“box model,” which describes the components of a DOM element. For illustrative pur-
poses, Figure 11.4 provides a reproduced a diagram showing the box model from the
W3C specification.3

20911.3 Dojo Modules and Features

3. CSS basic box model, Edited by Bert Bos, August 2007, http://www.w3.org/TR/css3-box/

(Working Draft).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 11.4 CSS box model

Some of the functions in this module allow a developer to access or set “box model”
properties for a DOM element.

Table 11.7 List of dojo._base Functions

Function Description

dojo.byId() Returns a DOM node given a string representing the id of the
node. Similar to the $ function in many other class libraries.
Basically, shorthand for document. getElementById(id).

dojo.isDescendant() Given two DOM nodes, returns true if one node is a descendant
of the other.

dojo.setSelectable() By default, browsers allow a user to select any visible portion of
a DOM element. This function can disable that feature or turn it
back on for an individual element.

dojo.place() Insert a new DOM element relative to an existing one using one
of the following controls: before, after, first, or last. First and
last refer to placement in reference to siblings of the node to
be inserted.

dojo.boxModel The box model describes the components of a DOM node and
is documented in the DOM specification. This property specifies
which version of the box model is to be used. The default is
“content-box.” Some Dojo functions depend on which box model
is to be used. The diagram below depicts the standard
“content-box” model for DOM nodes.

210 Chapter 11 Technical Description of Dojo

contentleft

content edge

border edge

padding edge

margin edge

padding

border

margin

top

bottom

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 11.7 Continued

Function Description

dojo.style() Gets or sets the style property of a DOM node. The style prop-
erty is specified in DOM accessor format (borderWidth, not
border-width).

dojo.marginBox() In the box model, the four edges around a DOM element’s mar-
gin are known as its “margin box.” This function allows you to
get or set that value.

dojo.contentBox() In the box model, the four edges around the content of a DOM
element comprise its “content box.” This function allows to you
get or set that value.

dojo.coords() Returns the coordinates for an object. The coordinates include
the “margin box” and the absolute positioning data in the form:
{ l: 50, t: 200, w: 300: h: 150, x: 100, y: 300 }

dojo.hasClass() For a DOM node, returns true if the node contains the specified
class.

dojo.addClass() Adds a class to a DOM node.

dojo.removeClass() Removes a class from a DOM node.

dojo.toggleClass() Adds a class to a DOM node if it is not present and removes
the class if it is present.

11.3.2.10 The dojo._base.NodeList Module
This module consists of functions for working with a list of DOM elements.A NodeList
is a subclass of Array and extends Array to include a plethora of additional handy func-
tions that perform useful manipulations on DOM elements such as chaining, common
iteration operations, animation, and node manipulation. Many of the methods in
NodeList are versions of methods from the array and html modules, given that a
NodeList is really just an array of DOM elements.

The NodeList functions operate a little differently than most other Dojo functions.
Most Dojo functions take the object that they operate upon as an argument. Nodelist
functions work on the object they are part of.To use these functions you must first cre-
ate a new NodeList (or get one back from a function) and then run the functions as
methods on that object. For example, if you wanted to perform some function on a
DOM element with an id of tree, you would use the following code:

el = new dojo.NodeList(dojo.byId("tree"));

el.forEach(function() { // some code; });

Notice how the forEach method is run on el.The el object is not passed as a parame-
ter to forEach.Also the given NodeList only contains a single element even if the
DOM element tree has multiple children.

21111.3 Dojo Modules and Features

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As a convenience, shortcut functions on NodeList provide features that are available
on DOM elements directly. By having the functions also appear on a NodeList, your
code can be smaller and more readable.

Some of the NodeList functions are rather complex, and the brief description next
may seem inadequate.That is why a number of these functions get a more complete treat-
ment later. For example, the animation functions (fadeIn, fadeout, and animateProperty)
are described in more detail in Chapter 16,“Working with the DOM.”

Table 11.8 List of Functions Available on a NodeList Object

Function Description

NodeList() A constructor for building a new object of type NodeList that con-
tains a list of DOM elements. The standard constructor takes an ele-
ment id and creates a NodeList containing that element.

indexOf() Returns the numeric index of the first occurrence of a DOM element
in the NodeList.

lastIndexOf() Returns the numeric index of the last occurrence of a DOM element
in the NodeList.

every() Assign a function to be called for each element in the NodeList.
The element will be passed as an argument to the function. The
function should return a true or false. If all the function calls
return true, then every() will also return true; otherwise, this
function will return false.

some() Assign a function to be called for each element in the NodeList.
The element will be passed as an argument to the function. The
function should return a true or false. If any of the function calls
return true, then some() will also return true; otherwise, this
function will return false.

forEach() Runs a function on each element of a NodeList. This function
returns the NodeList itself to support method chaining.

map() Applies a function to each element of NodeList and creates a new
NodeList with the results.

coords() Returns the coordinates for each element in the NodeList. The
coordinates include the “margin box” and the absolute positioning
data. The function returns an Array not a NodeList.

style() Gets or sets the style property of the first element of the NodeList.
The style property is specified in DOM accessor format
(borderWidth not border-width). When a style value is not
passed to this function, the current style value is returned as a
string.

styles() Gets or sets the style property of the all the elements in the
NodeList. When a style value is not passed to this function, the
current style value for each element is returned as an array of
strings.

212 Chapter 11 Technical Description of Dojo

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 11.8 Continued

Function Description

addClass() Adds a class to each DOM node in NodeList.

removeClass() Removes a specified class from each DOM node in NodeList.

place() This function does quite a bit of heavy lifting. It takes as a parame-
ter a DOM node or CSS3 selector that is used to find a DOM ele-
ment in the document. Then it inserts the entire NodeList into the
document relative to the found element. It inserts the NodeList rel-
ative to the found element based on a position parameter also
passed to this function. Valid values for position are last, end,
first, start, before, or after. The default is end.

connect() This method attaches event handlers to every node in a NodeList.

orphan() Removes nodes from document and returns them as a NodeList
without parents. In other words, this function “orphans” DOM ele-
ments based on a filter passed into the function. All elements pass-
ing the filter are orphaned. When a NodeList is first created, the
nodes in it exist both in the NodeList and in the document object
(so they are on the page). By orphaning some of the nodes, they are
removed from the page but still saved in a new NodeList.

adopt() Places all elements in a specified query or NodeList at a position
relative to the first element in this list. Returns a NodeList of the
adopted elements.

query() Uses a query string to select elements from the NodeList. For each
selected element, all its children are added as elements to a new
NodeList, which is returned by this function. The elements from the
original list that were selected in the query are not returned. The
Dojo documentation refers to this as “flattening” the NodeList.

filter() The function provides a version of the filter function available on
Array objects. It can be called with either a simple query or with a
callback function that is executed against each element in the
NodeList.

addContent() This function takes either a string of HTML or a DOM element and
adds it to each element in the NodeList at a specified position rel-
ative to each element. Valid values for position are last, end,
first, start, before, or after. The default is end.

This function does not add additional elements to the NodeList.
Instead, it adds the elements to document, which changes the dis-
played page.

fadeIn() This function will perform the fade in animation on all the elements
in a NodeList, which will cause the elements to gradually transition
to opaque.

This function returns an array of objects of type dojo._Animation,
which means they must be “played” to run the animation. For exam-
ple, to fade in all the elements in a NodeList, use
fadeIn().play() on the NodeList object.

21311.3 Dojo Modules and Features

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 11.8 Continued

Function Description

fadeOut() This function will perform the fade out animation on all the elements
in a NodeList, which will cause the displayed elements to gradually
transition to transparent.

This function returns an array of objects of type dojo._Animation,
which means they must be “played” to run the animation. For exam-
ple, to fade in all the elements in a NodeList use
fadeOut().play() on the NodeList object.

animateProperty() Returns an animation that will transition the properties of node. This
function takes an animation property and transitions it from a begin-
ning value to an ending value. There are a number of animation
properties such as color and position that will be explained in more
detail in Chapter 16.

This function returns an array of objects of type dojo._Animation,
which means they must be “played” to run the animation. Run the
play() function on the returned object.

onmouseover() Each of these methods is available on NodeList. They take an event
onclick() handler parameter that is assigned to each of the elements in the
onmouseout() NodeList. These functions are available on DOM elements directly
onmousemove() but also having them on NodeList makes the code shorter and
onblur() simpler.
onmousedown()

onmouseup()

onmousemove()

onkeydown()

onkeyup()

onkeypress()

11.3.2.11 The dojo._base.query Module
This module essentially consists of a single function, dojo.query.This may seem a little
unbalanced, especially compared to all the functions in a module like
dojo._base.NodeList. But what you’ll soon see is that this single function is really
quite a monster and extremely powerful.

The Document Object Model (DOM) contains the representation of the web page
and for most pages contains a large number of individual elements, sometimes in the
thousands. Cascading Style Sheets (CSS) introduced a technique for separating the style
of an element from the tag itself but introduced a problem: How could a CSS style be
easily applied to one or more page elements when so many elements existed? This prob-
lem was solved with a pattern matching language called “CSS selectors,” which provided
a syntax for identifying HTML elements based on one of their characteristics such as tag
type, class, or some attribute value.

214 Chapter 11 Technical Description of Dojo

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Many AJAX techniques also require manipulating elements, so it is very useful to be
able to find the few elements you need from the many elements that exist in a typical
DOM.The same solution already developed for applying CSS styles can also be used to
find DOM elements for AJAX.And that is exactly what dojo.query gives us—a tech-
nique for using the CSS selector pattern matching language to find DOM elements.You
specify the selector string, and the function will return an array of elements meeting that
criterion.The array is returned as a NodeList, which is an object type that we’ve already
reviewed and has lots of useful methods.

Following is an example of some code that will search the DOM for all HTML
<div> tag elements that have a class of codeSample.The code returns an object of type
NodeList containing zero or more elements.

nl = dojo.query("div.codeSample")

We’ll explore this function, along with the syntax for CSS selector strings, in Chapter 16.

11.3.2.12 The dojo._base.xhr Module
This module consists of functions for working with the XMLHttpRequest (XHR) object,
the heart of AJAX. Descriptions here will be brief because we spend more time on these
functions in Chapter 15,“Ajax Remoting.”The XHR object is used to send a request to
the server without doing a page refresh. Different types of HTTP requests may be sent,
such as GET and POST.This module provides wrappers that will be used to create the
various types of requests. By providing these wrapper functions, Dojo allows your code
to be simpler and easier to read than if you used the XHR object directly. It is usually
necessary to send some data along with the request.This module also contains a number
of useful functions for manipulating data and transferring it from one common format to
another.

Table 11.9 List of dojo._base.xhr Functions

Function Description

dojo.xhrGet() These functions provide a wrapper around the underlying
dojo.xhrPost() XHR request objects. Data is passed into the request
dojo.xhrDelete() using the content object. Each property in the object will

be converted to a name/value pair.

dojo.rawXhrPost() These functions provide a wrapper around the underlying
dojo.rawXhrPut() XHR request objects. They are termed “raw” because the

data to be placed in the body of the request is passed
directly into the function using the postData property of
the argument object.

21511.3 Dojo Modules and Features

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 11.9 Continued

Function Description

dojo.formToObject() These are various functions that convert between common
dojo.objectToQuery() data formats. See Chapter 15 for more detail.
dojo.formToQuery()

dojo.formToJson()

dojo.queryToObject()

11.3.2.13 The dojo._base.fx Module
This module consists of a number of functions that can be used to provide basic visual
effects on DOM elements.As you can see in Table 11.9, there seems to be a rather limit-
ed number of effects, just fadeIn, fadeout, and animateProperty.Although it may not
at first seem like much, it turns out that one of the functions, animateProperty, is actu-
ally extremely powerful because it lets you work with any CSS property.

Some of these functions may remind you of similar functions associated with
NodeList, and they should considering they are exactly the same! The difference is that
these functions work by being passed a DOM element as the first parameter instead of
operating against an array of DOM elements as they do in NodeList.

The signature for these methods is deceivingly simple.They all take a single object as
their argument.That object, however, can be quite complex. It should always contain a
property called node, which is the id of the element on which to perform the animation.
Other properties control the animation itself.We explore these further in Chapter 16.

Table 11.10 List of dojo._base.fx Functions

Function Description

dojo.fadeIn() This function performs the fade in animation on the
element specified as the node property in the argument
object, which causes the element to gradually transition
to opaque. This function returns an object of type
dojo._Animation, which means it must be “played” to
run the animation.

dojo.fadeOut() This function performs the fade out animation on the
element specified as the node property in the argument
object, which causes the element to gradually transition
to opaque. This function returns an object of type
dojo._Animation, which means it must be “played” to
run the animation.

216 Chapter 11 Technical Description of Dojo

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 11.10 Continued

Function Description

dojo.animateProperty() Returns an animation that will transition the properties of
the specified DOM node. This function takes an animation
property and transitions it from a beginning value to an
ending value. There are a number of animation properties
such as color and position that will be explained in more
detail in Chapter 16. This function returns an object of type
dojo._Animation, which means it must be “played” to
run the animation. Run the play() function on the
returned object.

This ends the discussion of the “base” features. One final note:The technical reason
that these are called “base” functions is that the original code for the features (before
they are aggregated in dojo.js) is contained in the “_base” directory under “dojo,”
hence the name “base.” Let’s consider some additional features next.They’re termed the
“core” functions because they are still important and useful, just not part of “base.”

11.3.3 Dojo Core Modules
As you can see from the prior discussion, Dojo has lots of features in its “base” modules.
But what else is available? The next set of modules gives us additional functionality, but
they are considered to be not quite as essential as “base” features—so they are not
included in the base Dojo file and must be requested explicitly by your page.You must
include these modules in your page by using the dojo.require function and naming
the module containing the functions you wish to include.

For example, the following code shows how to use the “core” function
dojo.string.pad for padding a string containing the text “52” with four leading zeroes.

dojo.require("dojo.string");

empID = dojo.string.pad("52", 4, ‘0’);

Notice that before you could use dojo.string.pad, you needed to include the func-
tions in the string module by using dojo.require.All the other string functions
will be available as well.This is similar to the import statement in Java, with the excep-
tion that require causes Dojo to actually include the JavaScript for the string module
in your page while import just makes the class available at compile time without actually
including it in the byte code.

11.3.3.1 Dojo Modules
The way that files and directories are organized for “core” features is a little more com-
plex than for “base” features.The organization of related JavaScript functions into files
and subdirectories is termed “packaging,” and a single group of related functions is called
a “module.”

21711.3 Dojo Modules and Features

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Dojo features in the base module are included in the single “dojo.js” (or
“dojo.js.uncompressed.js”) files, while “core” features are organized in one of two
different ways.A “core” module may consist of a single JavaScript file within the “dojo”
directory. Or it may consist of a subdirectory under the “dojo” directory.Why two
approaches? The primary purpose is two provide the developer with a fine-grained tech-
nique for including features within a single page. For example, the dojo.date module
contains functions related to dates. However, you’ll notice that these functions are
included in two different JavaScript files (“locale.js” and “stamp.js”) contained in a subdi-
rectory called “date” under the main “dojo” directory.The functions in “locale.js” pro-
vide various internationalization processes on date strings.The functions in “stamp.js”
allow conversion between various common date types.The Dojo architects are anticipat-
ing that developers may often need one or the other of these features sets, but not
usually both.

A developer can include the functions for internationalization with the following
code:

dojo.require("dojo.date.locale");

This would make the functions in “dojo/date/locale.js” available to the page but not
the functions defined in “dojo/date/stamp.js.”To include those you would need to pro-
vide an additional dojo.require statement in your code.

Note: There is a shortcut that provides a technique for including all the files within a
module.You can use the * wildcard.The code that follows would make all the functions
defined in both of the date files available to your page:

dojo.require("dojo.date.*");

Be careful when using this approach.While it will certainly work, the reason that
Dojo organized the functions into two separate files is so that you don’t have to include
both of them. By including both in your page, the page may take longer to load and
execute. So only include both files if you really need to use the functions in them.

You may notice that there is an additional file containing date functions,
“dojo/date.js,” which you may use. It contains functions such as getDaysInMonth(),
which returns the number of days in the same month as a specified Date object.To
include these functions, use the following code:

dojo.require("dojo.date");

Notice that this code does not use the wildcard because it is getting a single specific
file “dojo/date.js.”

Another subtlety in using Dojo modules is that some functions require functions
defined in other modules.Those modules also need to be included in your page for the
code to work properly.The dojo.date.locale functions are examples of this.To work,
they also need the following modules to be included:

218 Chapter 11 Technical Description of Dojo

http://lib.ommolketab.ir
http//lib.ommolketab.ir

n dojo.date

n dojo.cldr.supplemental

n dojo.regexp

n dojo.string

n dojo.i18n

At this point, you may be breaking out into a cold sweat. How can you possibly be
expected to know all the dependencies between various Dojo modules? The good news
as that you don’t have to. Dojo modules contain this information. Near the top of the
file “dojo/date/locale.js” you can find the following lines of code that cause Dojo to
load all the dependent modules:

dojo.require("dojo.date");

dojo.require("dojo.cldr.supplemental");

dojo.require("dojo.regexp");

dojo.require("dojo.string");

dojo.require("dojo.i18n");

We’ve now exhausted the various approaches to including date-related Dojo func-
tions in your page.The date module uses all the various approaches to packaging avail-
able in Dojo and is a good module to study to understand the techniques. However,
most of the modules are simpler. So after you understand how the date module works,
the others will be more obvious.

The Dojo packaging system is very powerful and allows us to achieve the best of all
possible worlds (at least in the context of loading JavaScript files!).

n We can load only the functions we want, keeping our pages small and minimizing
the amount of included JavaScript code.

n We can use functions with dependencies on other modules without knowing what
the dependencies are.

n We can keep the number of require statements small by using the wildcard fea-
tures of module loading.

As a final comment, much thought and effort have gone into the creation of the Dojo
packaging system. It addresses the problems of making complex JavaScript code available
to a web page.You will face the same problems in organizing the JavaScript code that
you write yourself.And the good news is that you can use the Dojo packaging system
on your own code!

11.3.3.2 Dojo Core Features
There are a number of Dojo “core” modules, some of which are so important and useful
that they require their own chapters to describe them. So for now, we examine them at a
summary level, merely describing their purpose without delineating the functions they
contain.

21911.3 Dojo Modules and Features

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 11.11 summarizes the purpose of the primary “core” modules in Dojo. (Note: If
you’re checking for completeness, there are a few modules I’ve skipped because you are
unlikely to use them such as AdapterRegistry).

Table 11.11 Dojo Modules

Module name Description of Module
(used in the require statement)

dojo.back Functions for working with the browser “back” button
and maintains a history of URLs.

dojo.behavior Functions for associating other functions (behaviors)
with DOM elements.

dojo.cookie Functions for reading and writing browser cookies.

dojo.currency Functions for working with numbers that represent cur-
rency.

dojo.data Functions for accessing persistence data sources.

dojo.date Functions for working with Date objects.

dojo.date.locale Functions for internationalizing dates.

dojo.date.stamp Functions for converting between common types of
date formats.

dojo.dnd Functions for implementing “Drag and Drop” capabili-
ties on DOM elements.

dojo.fx Functions for adding visual effects to DOM elements.

dojo.i18n Functions for performing internationalization.

dojo.io Functions for using <iframe> and for generating
<script> tags dynamically.

dojo.number Functions to manipulate and format numbers.

dojo.parser Functions for reading HTML (or the elements created
from HTML) and producing additional objects.

dojo.regexp Functions for using Regular Expressions.

dojo.string Functions for manipulating string objects.

This concludes are introductory discussion of the Dojo “base” and “core” features.As
you can see, Dojo covers a broad range of functionality. Subsequent chapters allow us to
explore these features in more detail and review more examples of actual usage.

220 Chapter 11 Technical Description of Dojo

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Summary
Dojo “base” functions are contained in “dojo.js” and are always available to the page
when using Dojo by using the <script> tag to include the “dojo.js” file.

Dojo “core” features must be explicitly requested by the page using the dojo.require()
function.

The Dojo packaging system allows a web developer to specify which Dojo functions
(and related JavaScript files) are included on a page.

The Dojo packaging system is available to developers to package their own JavaScript
code.

The next chapter provides an overview of using Object Oriented Programming (OOP)
techniques when working with Dojo.This is important because the Dojo features are
exposed to developers as objects. So if you not familiar with OOP, as Bette Davis once
famously said,“Get ready for a bumpy ride.” Only kidding, OOP concepts aren’t really
that difficult, and after you understand them, you’ll be able to program in a new and
useful way.

22111.3 Dojo Modules and Features

http://lib.ommolketab.ir
http//lib.ommolketab.ir

12
Objects and Classes

Crude classifications and false generalizations are the curse of organized life.

—George Bernard Shaw (1856–1950)

Organizing the artifacts of your application into appropriate classes is one of the key
goals of Object Oriented (OO) Analysis and Design. JavaScript is a fully Object
Oriented language, and to achieve its full power we need to take full advantage of its
OO features. However, we’ll see that Dojo provides some additional ways to work with
the OO feature set of JavaScript that you’ll find really helpful when defining new classes
and creating new objects.This chapter explores Objects, the OO features of JavaScript,
and the OO enhancements provided by Dojo.

12.1 Objects Explained
JavaScript is an object oriented language.An application written in JavaScript exists at
run-time as a clamorous conversation of objects interacting with each other through
their method calls.Another way to say this is that in JavaScript “EIAO” (Everything Is
An Object).This view of an application is different than the procedural approach in
which you can think of a program simply as a sequence of instructions (a procedure) to
be executed in sequential order with the occasional detour provided by conditional or
looping statements.You may not have thought of JavaScript as a fully mature object ori-
ented programming environment but, if you haven’t, now is the time to start.

But what is an object? The classical definition in object oriented design describes an
object as a separate entity within an application that implements some behavior and
contains some internal representation of its state.A more concrete way to think about
objects in JavaScript is to describe them as a sequence of run-time memory containing
data and functions that can be referenced and manipulated as a single entity.There are
many objects built into JavaScript such as the “document” object, which encapsulates the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

browser’s internal representation of the current web page (the Document Object Model
or DOM) and contains many methods to allow the DOM to be manipulated in some
way. But the real power in using objects in JavaScript is to create your own custom
objects to represent the various important entities in your application.

12.1.1 Creating Objects
So the first lesson in using objects is to see how you can create objects of your own.
There are many ways of creating objects.The simplest way is to create an object using
the new keyword.

Although it is the simplest, it is also the least functional.An object is a collection of
properties, and in JavaScript these properties can be either pointers to other objects such
as arrays and functions or simple properties like strings and numbers. One of the key pil-
lars of an object oriented programming language is its ability to represent an abstraction.
For instance, a customer application does not consist of little tiny customers running
around inside our computer, but instead it consists of objects representing those cus-
tomers interacting with each other and with other components in the system.

12.1.2 Encapsulation
Another key pillar of object orientation is encapsulation.This is the ability to wall off an
object, separating the inside of the object from the outside world.The inside of an object
is known as its implementation.Access to the outside world is provided through methods
that are called by other objects. For example, an employee object might contain a
method called getAge that returns the age of the employees. But how does the object
implement this function? Does it do it by keeping track of the age of the employee as an
integer and updating this age annually on the employee’s birthday? Or does the object
keep track of the employee’s date of birth and then calculate the employees age each
time that the object is asked to getAge? The answer is that “we don’t know and we
don’t care.”As long as the getAge method always returns the correct age of the employ-
ee, the implementation is not relevant. Over the life of the object, the implementation
could even change to use a better algorithm or improve performance.To the outside
world, as long as the external interface to the object does not change, any part of the
application using the object is unaffected by internal changes in the object’s implementa-
tion.And that is the value of encapsulation—to allow the object to present a public face
to the world while managing its own private concerns.

Let’s explore how the public face of the object is created.The developer of the object
defines properties and methods that will be available in the object. Some properties are
simple data types such as strings or numbers. Other properties are more complex and
may be pointers to other objects.The methods consist of both the internal functions that
the object needs to perform its implementation and the external functions that are avail-
able to the outside world so that the object can be used.A simple customer object might
have properties such as customerID, “customerName, customerType, and
customerStatus.Although it would be possible to change the status of the customer

224 Chapter 12 Objects and Classes

http://lib.ommolketab.ir
http//lib.ommolketab.ir

simply by changing the property, we may choose to implement this by hiding the actual
property that describes status and use a public method such as updateStatus to allow
us to change the way the status is internally represented within the object.

The OO principal of encapsulation defines the technique of hiding some properties
and methods from the outside world while exposing others. In many languages this is
accomplished through the use of a “public” and “private” keyword, which designates
members within the object as being hidden or visible. JavaScript does not implement
public and private directly but does provide a technique for hygiene properties and
methods within an object. In other words, it is possible to have functions defined within
an object that are only callable by other functions within the object and not by external
calls to the object. Douglas Crockford provides an excellent description of how to do
this on his web site:

http://www.crockford.com/javascript/private.html

Because JavaScript objects are mutable (modifiable), new properties and methods can
be added to the object at any time simply by referencing a member and giving it a
value. Our first technique for creating objects is to create a new object using the new
keyword and then to assign various properties using the dot notation.

o1 = new Object();

o1.counter = 0;

o1.incrementCounter = function() {this.counter++;}

The code here creates a new object containing a single property called counter,
which has a starting value of numeric 0.The object also contains a function called
incrementCounter, which adds 1 to the current value of counter.

The problem with this approach is that each time we create a new instance of an
object type, all the properties and methods must be explicitly assigned. If there are any
default values, they must be set.All of the members must be defined, and there is no way
to use existing definitions for these properties and methods.This is a fairly unsatisfactory
approach for most object oriented developers. Given the size and complexity of most
applications today, it is very useful to be able to have a standard template for what a new
instance of an object should look like.This provides for an important level of reuse nec-
essary to ensure our productivity.

12.1.3 Object Templates
There are two primary techniques for providing object templates.The first technique is
to define the template explicitly as its own entity.A blueprint for how to build the
object is created in its own separate file as a class definition.This option is utilized by the
Java programming language by allowing developers to create class definitions in their
own “.java” files.These template blueprints are very much like the blueprint for a house.
When you desire to build a new house, you create the house from an existing blueprint.
There’s no limit to how houses you may create from the same blueprint, just as there is
no limit to how many objects may be created from the class definition.

22512.1 Objects Explained

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Note
Just about every object oriented programming language follows an approach similar to that
used by Java. JavaScript is one of the few exceptions.

In Java, after the new object is created from its class definition, the properties and
methods defined in that object cannot change. No properties can be added or taken
away, and no new methods can be defined or removed.The values of the properties can
be changed, of course, but not the existence of the properties. In Java, class definition
files are compiled and included with the application at runtime, and they can be used
over and over again to create as many instances of an object as the application program-
mer desires.

JavaScript is not constrained by limitation imposed in Java. JavaScript does not use the
class definition technique. JavaScript uses an entirely different approach known as a proto-
type. Rather than creating a new house from an existing blueprint, an existing house is
copied to build a new one. JavaScript objects are built from existing JavaScript objects.
You can think of a prototype as acting as the model for the new object.

While the analogy to building objects in Java is like building houses from blueprints, a
better analogy for JavaScript is the creation of new objects by copying existing objects. If
you copy a 20-page document, your new document will also be 20 pages long, and it
will in turn contain all the text and the typos of the original document.To use the pro-
totype technique for creating new objects, it is necessary to have an existing object con-
taining the properties and methods that you want the new object to possess.

Although the prototype process is the technique that JavaScript uses to build new
objects, it doesn’t implement it as directly as you might expect. For instance, there is no
“clone” or “build from” function or keyword in JavaScript that allows you to directly
build a new object from an existing object. Rather the technique is a little more cir-
cuitous.To define a prototype to be used as a model for creating new objects, an addi-
tional object called the constructor must also be defined.The constructor is a function
used to build and initialize new instances of an object for a given data type.The con-
structor function is called when the new keyword is used in JavaScript.The constructor
function can contain assignments for the properties and methods of the new object.

There are still a few problems with this approach. By defining the functions within
the constructor, we are repeating code for the functions in every instance of an object
that is created from the constructor. Because functions can be rather large and because
there is duplication of the exact same function code in each object, this approach pro-
vides us with objects that are much larger than necessary.And if we desire to remove a
function from each instance of the object or to change the function, it would be neces-
sary to find all the existing objects of that datatype and to explicitly manipulate each one
to either remove or change the function.We would also be missing out on one of our
key pillars of object oriented programming: inheritance. Inheritance is the ability for an
object of one type to inherit properties and methods from an object of their type.

226 Chapter 12 Objects and Classes

http://lib.ommolketab.ir
http//lib.ommolketab.ir

12.1.4 JavaScript Prototypes
Fortunately both of these problems can be solved by using JavaScript prototypes.To
understand prototypes, we first have to discuss constructors.A constructor is an object of
type function that will be executed when we want to create a new instance of an object.
Following is an example of a constructor called DataItem, which can be used to create
an unlimited number of new objects of type DataItem.

function DataItem() {this.counter = 0;}; // Constructor function

d1 = new DataItem(); // Create a new object of type DataItem

d1.counter++; // this increments the counter

In the given code, the object d1 contains the following properties and methods:
{counter: 0}.

The secret to using constructor functions is to make sure that the data type following
the new keyword is the same as the name of the constructor function. By convention, it is
typical to capitalize constructor function names to differentiate them from other functions.

All constructor functions have a property called prototype.This property points to
the object to be used as a model for the new object to be built from the constructor. By
default this prototype object is a simple object that looks very much like the Object
data type. It has a small number of properties and methods.These are the same properties
and methods that appear in the Object object (no that isn’t a typo; there is an object of
type Object, which all other objects inherit from!).The prototype property of the con-
structor function is automatically initialized with a pointer to this empty prototype
object. But it is simple to override the default prototype object with one of our own. By
using the function.prototype reference, we can assign it to an existing object, which
will then act as the model for the new object we want to build.

But even using this technique, the prototype is not used to create the new object. It is
used to contain properties that will be referenced through the new object. For example,
a customer constructor has a reference to a customer prototype that can be used to cre-
ate as many new instances of customer type objects as desired.We could define all the
properties and methods that all customers should have in the customer prototype.You
might think that a new instance of customer would have these properties and methods
copied into it, but you would be wrong.What actually happens is that a new object is
created, and that object has a property that points to its constructor.When a property or
method of customer is referenced in the newly created instance, the JavaScript runtime
environment takes over. It first looks for the property in the object instance, and if it is
there it will use it. But if it is not there, the JavaScript runner works its way up through
the prototype chain until it finds the property or gets to the end of the chain.

For example, if the program needs to reference the customerType property in a new
customer object, we would use the dot notation c.customerType to reference the
property.The JavaScript runner would first look for the property in the customer
object, but it would not find it.Then it would use the object’s constructor property to

22712.1 Objects Explained

http://lib.ommolketab.ir
http//lib.ommolketab.ir

find the constructor function for customer.Then using the constructor functions prop-
erty called prototype, the JavaScript runner would find the prototype object and see if
it had the type property. In our example, customerType would be a property of the
customer prototype object.

Sadly, one solution seems to create a new set of problems for us. Different instances of
objects of Customer type would have the same constructor function, and that single
constructor function would point to a single prototype object. If one instance of an
object changed a property in the customer prototype, then all the instances of the cus-
tomer objects would get that new property.This might not be what we really want to
happen. Instead we may want each instance of the object to get its own values of the
properties.This can be accomplished by assigning the properties directly in the construc-
tor function using the this keyword to prefix the properties as in this.customerType
as the following example demonstrates.

function Customer() { // Constructor function

this.customerType = "RETAIL";

}

You’ll notice that we still want to keep the function definitions within the prototype
because they can be shared between different instances of the Customer objects. One
last twist—the prototype objects also have a property called prototype that can be used
to point to another object that will behave as the first prototype object does. It will be
used by the JavaScript runner to continue to look for properties and methods not
defined in the object itself or in the object’s prototype.This is known as prototype
chaining.

12.2 Using Dojo to Work with Objects
We’ve now reviewed various ways of creating and using objects in JavaScript. But, after
all, this is a Dojo book and not simply a JavaScript book.What role does Dojo play, if
any, in helping us to use objects? There is a certain amount of complexity in using
objects in JavaScript.Your goal may be a simple one: creating a template from which
new objects of a particular type may be built. But JavaScript provides many features for
doing this from the use of prototypes to constructors to private members.Though
JavaScript provides a number of ways to create and use objects, all of them are problem-
atic and inconvenient at best.The developers of Dojo, working to create a JavaScript
toolkit, faced the same problems all JavaScript developers do. Luckily, the Dojo develop-
ers created something better: an idiom and supporting code for defining classes.

Dojo provides value by giving us a standard idiom for defining classes (the templates
from which objects are built).An idiom is a specific syntactic structure for a language.
Dojo provides us with this specific structure in the form of a function call with various
parameters to allow the definition of a class.We will achieve our goal of creating an
object class definition in a single standard Dojo function call.And, drum roll please, that
function is dojo.declare!

228 Chapter 12 Objects and Classes

http://lib.ommolketab.ir
http//lib.ommolketab.ir

12.2.1 Dojo Function: dojo.declare
The dojo.declare function is used to create a constructor that can be used to create
object with the new keyword. It can also automatically create a prototype with properties
and methods.A prototype chain can also be created automatically.This is a very powerful
function and is used extensively throughout the Dojo library code. It is also one of the
most common functions that you will use in your own application code. So spending
some time learning how to use this function properly is certainly time well spent.

Let’s examine a number of typical scenarios that may appear in your application code
when you wish to create a new class definition. First let’s look at the simplest possible
usage for dojo.declare.We’ll create a constructor for a new type of object that doesn’t
even provide any properties, methods, or superclasses for the object.

dojo.declare("DataItem");

d1 = new DataItem();

In the preceding code the object d1 contains the following properties and methods:

{

"preamble": null,

"_initializer": null,

"declaredClass": "DataItem"

}

Calling dojo.declare creates a constructor function that you can use as you would
any normal constructor function.The example shows a constructor named DataItem,
which has been created by Dojo.The following code shows the plain JavaScript tech-
nique for creating constructors as a comparison to the Dojo technique.

function DataItem() {};

d1 = new DataItem();

In this code the object d1 contains the following properties and methods: {}.
The object created using Dojo isn’t exactly the same as the object created through

the regular constructor. It contains a few extra properties (preamble and
_initializer, which we can ignore for now). It also contains a property called
declaredClass, which contains the name of the class we are trying to create.Although
this name is the same as the name of the constructor, we shouldn’t think of it that way.
Think of it as the name of the class definition.

12.3 Defining a Class
Now let’s look at a more complex class definition that contains some properties and
methods.We’ll use a Customer type object for our example.We’ll be providing a custom
definition of all the members (properties and methods) that a Customer object will have.

22912.3 Defining a Class

http://lib.ommolketab.ir
http//lib.ommolketab.ir

var init = function(name) {

this.name = name;

this.status = "ACTIVE";

this.makeInactive = function() {

this.status = "INACTIVE";}

};

dojo.declare("Customer", null, init);

In the preceding code the object d1 contains the following properties and methods:

{

"name": "Tom Jones",

"status": "ACTIVE",

"declaredClass": "Customer",

"preamble": null

}

This constructor will create a new object with some object specific properties and
functions. Unfortunately, there is still a problem.The function makeInactive will exist
in each new object that is created.A better way to define the function would be to put
it on the prototype for the constructor.This could be done inside the init function by
using a reference to “this.constructor.prototype”, but Dojo provides a simpler
method.The following code illustrates how to add members to the prototype by using
the props parameter.

var init = function(name) {

this.name = name;

this.type = "REGULAR";

this.status = "ACTIVE";

};

var props = {

makeInactive: function() {this.status = "INACTIVE";}

};

dojo.declare("Customer", null, init, props);

Now the object is correctly created with the method definition ensconced safely on
the prototype object sharing the single copy of the function among all the instances of
Customer objects.The props parameter contains an object that has members (both
properties and functions) that will be added to the prototype of the constructor only if
the member is not already defined in the object.

230 Chapter 12 Objects and Classes

http://lib.ommolketab.ir
http//lib.ommolketab.ir

12.3.1 Superclasses and Inheritance
One of the most important features of an object orientated language is the ability to
implement inheritance.Think of inheritance as the power to define a new class by
extending an existing class.The existing class is called the superclass, and the new class is
called the subclass.We can implement a hierarchy of classes by continuing to extend the
subclass by defining its own subclass! The benefit is that we can reuse code that we’ve
already written. In the next example, we’ll see how to create a new type of Customer
class called RetailCustomer by using our existing Customer data type. Retail
Customers have some additional properties to identify the state that taxes them and the
discount percentage that we’ll offer them as a special type of customer.

var props = { discountPercent: 0};

var init = function(name, taxingState) {

// "name" parameter is used by superclass constructor

this.type = "RETAIL";

this.status = "ACTIVE";

this.taxingState = taxingState;

};

dojo.declare("RetailCustomer", Customer, init, props);

c1 = new RetailCustomer("ABC Photos", "IL");

When a new RetailCustomer object is created, the constructor for superclass
runs first, and then the init function for the subclass runs. So init can override values
provided by superclass.The superclass function is named so because it acts as an
inheritance mechanism that can be overridden in the subclass.This provides reuse of the
code from the superclass.The init function contains arguments for all the arguments
required by the superclass constructor in addition to any it needs for its own work.
Why not put the property discountPercent in the constructor and assign it to 0
there? That way would work, but by convention we reserve the constructor for proper-
ties that are dependent on what parameters are passed to the constructor when the
object is created. So to be more correct, we should really move the assignment of type
and status from the init function to the props object.

12.3.2 API for dojo.declare
The following table describes the arguments used when calling the dojo.declare
method.The method signature is: dojo.declare(className, superclass, init,
props).

23112.3 Defining a Class

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 12.1 Description of dojo.declare Function

Parameter
Name Parameter Data Type Description and Usage of Parameter

className String Class Name.

The name of the constructor (loosely, a
“class”). All classes are concrete. Abstract
classes are not supported.

superclass Function or Superclass.

Array of Functions If it is an array, the first element is used as
the prototypical ancestor, and any following
functions become mixin ancestors.

Specify null when there is no superclass.
Using null is the equivalent of the no-args
default constructor in Java.

init Function Constructor Function.

An initializer function called when an object is
instantiated from this constructor. Properties
can be added in this function by using the
this keyword. Since all members are added
directly to the new object, use this function
primarily for properties and add functions
using props. Methods could also be added to
the prototype using
“this.prototype.functionName” refer-
ence, but that is not preferred.

This parameter is not required. If the init
parameter passed is not of type Function, it is
treated as the prop parameter instead (the
declare function rearranges the properties),
and then prop is not required.

Why use init? Use init to run some code
when the object is created. This is most like
the constructor method in Java. This function
can also take parameters that would be
passed into it when the constructor is
called—i.e., new Customer(“Tom”, 100)
would pass two parameters into init function.

When using init with superclasses, be sure
and repeat the parameters for the superclass
init function as the first parameters to the
subclass init function.

232 Chapter 12 Objects and Classes

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 12.1 Continued

Parameter
Name Parameter Data Type Description and Usage of Parameter

props Object or Properties object.

Array of Objects An object (or array of objects) whose proper-
ties are copied to the created prototype. The
created object doesn’t directly have these
properties.

The properties are added to the instance of
the object created. Any functions are also
added to the instance. To add functions to the
prototype, add the functions to the array
superclass passed as the second
parameter.

These are like the member declarations in
Java. Properties and methods are declared
but not executed when the object is created.

A form of interfaces can be supported by
adding properties for other object types here.

12.3.3 Other Dojo Functions
In addition to the dojo.declare function, Dojo also provides some other useful functions
for working with objects. If you ever read the source code for the dojo.declare method
(and you should), you’ll see that many of these functions are used internally to implement
the declare function. But there is nothing to prevent you from using them directly, and
they are so useful that you’ll probably find many opportunities to do just that.

Dojo Function: dojo.mixin

Table 12.2 Description of dojo.mixin Function

Method Signature: dojo.mixin(obj, props)

Summary: This method adds all of the properties and methods of one
object to another object. Only members that are actually in the
source property are copied. In other words, members in the pro-
totype are not copied. Also if the target object already has the
member, then it is not copied, even if the value in the source
object is different.

Parameter: obj The object that is to be augmented with additional properties
and methods.

Parameter: props An object containing properties and methods that will be added
to the object referenced by obj.

23312.3 Defining a Class

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Dojo Function: dojo.extends

Table 12.3 Description of dojo.extends Function

Method Signature: dojo.extends(constructor, props)

Summary: This method adds all of the properties and methods of one
object to the prototype of constructor function. The members
are immediately available to any objects already created from
the constructor and all future objects to be created from that
constructor.

Parameter: The constructor function whose prototype is to be augmented
constructor with additional properties and methods.

Parameter: props An object containing properties and methods that will be added
to the object’s prototype referenced by obj.

12.3.4 Object Graphs and Dot Notation
The next group of Dojo functions are needed to make dot notation easier to use. So
we’ll have to discuss dot notation first.And to discuss dot notation, we have to talk about
object graphs. Some of the following will be review for many of you, but it never hurts to
reinforce the concepts of objects.

As has been said before, in JavaScript applications “Everything Is An Object” (EIAO).
For all of us who have drunk of the Object Oriented Kool-Aid (and if you have not,
I can get you some!), we believe that everything in the world can be described as an
object. Leaving the larger existential question alone, we can probably at least agree that
everything in memory during the running of an object oriented application is an object.
And that certainly applies to JavaScript.We can think of our page running within the
browser as consisting of a large number of objects interacting with each other.

Each object is distinct.This is important as it satisfies one of the primary pillars of
object orientation: encapsulation. Encapsulation is the characteristic of allowing a thing
to be separate from all other things. Each object exists as its own capsule (that is, it is
encapsulated). But encapsulation should only go so far. If objects were so perfectly
trapped within their capsules that nothing could get in or out, that they could not see
the properties of other objects or that those other objects could not see their properties
or run their methods, then our application would be pretty useless. It would be like a
box of rocks. Existing in their perfect solid state but not interacting with each other—
and nothing useful could come of it.

To achieve some purpose, the objects must interact with each other, and one way of
doing this is to refer to each other.Think of object A as having a reference to object B.
These references are contained in the properties of objects.

234 Chapter 12 Objects and Classes

http://lib.ommolketab.ir
http//lib.ommolketab.ir

For example, an object representing a Customer may have a property named orders,
which would contain a list of references to Order objects.Although each of the
Customer objects and each of the Order objects are independent instances of objects,
they are related through their references to each other. Imagine the objects as round
spheres floating in the application memory space and the properties as cords connecting
various objects. Now, in this thought experiment, grab an object and pull on it.What
happens? Not only do you retrieve the object you grabbed, but it pulls along all the
objects that it references, and they in turn pull various other referenced objects along
with them.This bundle of objects you have retrieved is called an object graph.And the
single object you grabbed is the root Object. In an object oriented application, there are as
many object graphs as there are objects.And each object graph is “like a box of choco-
lates—you never know what you’re gonna get.”When you pull on an object, you may
just get that single object—or that one and a few others. Or maybe every object in the
system is somehow connected.

Object graphs can be large, complex, and even self-referential.What happens when an
object deep within the graph references an object within its chain or even the root
object? But we’ve gone a bit too far. Let’s return to somewhat simple object graphs that
aren’t too large and don’t have circular references. How do we use object graphs within
a program? How do we reference an object or property deep within the object graph?
Let’s answer these questions with an example.

c1 = new Customer("Tom Jones");

c2 = new LargeCustomer("ABC Photo");

c2.subsidiary = c1;

subName = c2.subsidiary.name;

In this example, the reference c2.subsidiary.name is used to refer to the name
property in the subsidiary object referenced by object c2.This is valid syntax, and this
example works in JavaScript. However, the problem with using dot notation directly in
JavaScript is that if any reference in the chain fails, an error occurs because of a null ref-
erence. In other words, the reference to name will fail if the subsidiary property has
not yet been assigned.And it fails badly, causing a syntax error and ending execution of
any additional JavaScript code.

The fix provided by Dojo for this is to test each reference to make sure an object is
there, and when there isn’t, to return a null immediately.The following functions, which
make use of dot notation, can now be described.

23512.3 Defining a Class

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Dojo Function: dojo.getObject

Table 12.4 Description of dojo.getObject Function

Method Signature: dojo.getObject(name, create, context)

Summary: This method returns a property value from an object graph
using dot notation. It is useful for long reference chains where
it is not certain that each property has a value.

Parameter: name Path of property in the form “a.b.c”.

Parameter: create This parameter is optional and may be true or false.

If true, an object is created for each item referenced in the
chain where an object does not already exist.

Parameter: context Optional. When specified, this is an object to be used as the
root of the object graph; otherwise, dojo.global will be used
as the starting point for the reference.

Dojo Function: dojo.setObject

Table 12.5 Description of dojo.setObject Function

Method Signature: dojo.getObject(name, create, context)

Summary: This method sets a property value in an object graph using dot
notation. It is useful for long reference chains where it is not
certain that each property has a value.

Parameter: name Path of property in the form “a.b.c”.

Parameter: value This is the value that the property specified by name will be
set to.

Parameter: context Optional. When specified, this is an object to be used as the
root of the object graph, otherwise dojo.global will be used
as the starting point for the reference.

Dojo Function: dojo.exists

Table 12.6 Description of dojo.exists Function

Method Signature: dojo.exists(name, object)

Summary: This method returns a boolean value based on whether the
object referenced by the name parameter using dot notation
exists or not. If the object exists, this method returns true oth-
erwise it returns false.

Parameter: name Path of property in the form “a.b.c”.

Parameter: object This parameter is optional. When specified, it is used as the
starting point for the name reference. Otherwise,
dojo.global is used.

236 Chapter 12 Objects and Classes

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Dojo Function: dojo.isObject

Table 12.7 Description of dojo.isObject Function

Method Signature: dojo.isObject(anything)

Summary: This method returns a boolean value based on whether the ref-
erence passed to the method points to an object. A reference
to any object, array, or function will evaluate as true. If the refer-
ence is “undefined,” this method will return false.

Parameter: anything Any reference.

Summary
JavaScript is a fully object oriented language. Wrap your mind around that fact and take
advantage of it!

The function dojo.declare is used to define classes that can be used to create new
objects using the standard JavaScrip keyword new.

Dojo also provides some additional useful functions for working with objects such as

dojo.mixin…Merges the properties of one object with another

dojo.extends…Merges one objects properties with another objects prototype

dojo.setObject…Sets a property within an object graph

dojo.getObject…Gets a property within an object graph

dojo.exists…Tests a property in an object graph for existence

dojo.isObject…Tests a reference to see if it is an object

In the next chapter we’ll discover how to work with Strings, one of the most common
data types used in most applications.

23712.3 Defining a Class

http://lib.ommolketab.ir
http//lib.ommolketab.ir

13
Strings and JSON

Few can touch the magic String, and noisy Fame is proud to win them…

—Oliver Wendell Holmes, 1809–1894

13.1 Text Strings
The manipulation of strings is one of the most common processes performed by most
computer applications. By some estimates, over 30% of the typical program is devoted to
working with strings. Hopefully whatever language you might choose to write your
programs in will provide many varied and robust string manipulation functions and
methods. In this aspect, JavaScript will not disappoint you. JavaScript provides over 20
methods associated with the string object. However, even this seemingly abundant func-
tionality will usually turn out to be not quite enough.

Remember, a good API will allow a programmer to express his programming goals in
as small a coding idiom as possible, usually a single function call. For example, your goal
may be to make sure that a string is of a certain fixed length. Using JavaScript alone, you
could achieve this goal in a small number of lines of code. However, there is no single
function in JavaScript that will let you do this in a single statement. It turns out that
this would be a pretty useful function to have. So Dojo provides it for us with the
dojo.string.pad function. Dojo also provides another string function,
dojo.string.substitute, which will allow you to change a string by substituting
some part of the string for another.

We could imagine lots of additional Dojo functions that could help us achieve string
manipulation goals in a single statement, but the team that developed Dojo also had
some other objectives in mind.They wanted to keep Dojo as small as possible so that it
would load faster and be easy to learn. Dojo has to support objectives that are, at times,
at cross purposes with each other. It should be big enough to be useful (because of its

http://lib.ommolketab.ir
http//lib.ommolketab.ir

breadth) and yet should also be small enough to be useful (because of its small footprint).
In the category of string manipulation, Dojo supports both objectives by depending on
the existing string primitives supported by native JavaScript to be sufficient for most
cases.And for those additional special cases, Dojo provides a few string primitives, the
already mentioned pad and substitute. Let’s now dive more deeply into these Dojo
string functions.

The Dojo string functions are part of “core” not “base.”What this means is that they
are not automatically available when you include the Dojo on your page.They must be
imported using the dojo.require function.This is easy to do by just adding the fol-
lowing code to your page:

dojo.require("dojo.string")

13.1.1 Dojo Function: dojo.string.pad
This function is used to add leading or trailing characters to a string and to ensure that
the string is at least a minimum length.Although it certainly would be possible to
achieve this goal using the existing JavaScript String functions, the dojo.string.pad
function allows us to do it in a single step, resulting in much more readable code. One of
the typical uses for this function is to provide leading zeros on numbers when support-
ing the display of currency, dates, and other specialized number formats.

Following is the API for the dojo.string.pad function:

Table 13.1 Description of dojo.string.pad Function

Method Signature: dojo.string.pad(string, size, char, end)

Summary: Ensure that a string is of at least a specified size by putting
characters at either the beginning or end of the string.

Parameter: string String to be padded.

The string will not be modified. Instead, a new string will be
returned.

Parameter: size Length of the string to be padded.

If the length of the string is already greater than or equal to
“size,” the return string is the same as the original string.

Parameter: char Character used to pad the string.

Optional. If “char” is more than one character in length, it will
still be padded onto the string that would result in a new string
with a length greater than “size.”

Default is 0.

Parameter: end Flag to put padding at beginning or end of string.

Optional. If end is true, padding will be applied to the end of
the string; otherwise, the string will be padded at the beginning.

The default value is false.

240 Chapter 13 Strings and JSON

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This function does not change the string that it is evaluating. Instead, it returns a new
string. Remember, in JavaScript, strings are “immutable.”That means they can’t be
changed, rather a new string must be returned.The Dojo string functions take a string as
a parameter, but they leave that string unchanged.The function returns a new string
instance.This is also the way that the standard JavaScript string functions operate so Dojo
strives to be consistent.

13.1.2 Usage Example for dojo.string.pad
Because the string functions are not included in dojo.js, it is necessary to import them
using the dojo.require function.

dojo.require("dojo.string");

fractional = 27;

pad = 4;

valueParts = dojo.string.pad(fractional, pad, '0', false);

This code takes a string fractional and pads it to a length pad with leading zeros.
Remember, the final parameter false causes the padding to be put at the beginning of
fractional.The string fractional is not modified.The variable valueParts will
now have a value of 0027;. Notice the integer “27” is being automatically converted to
a string.

13.1.3 Dojo Function: dojo.string.substitute
As Murphy said,“If anything can go wrong, it will,” and that is certainly as true in com-
puter applications as in many other of life’s endeavors.A common feature of our code
will be to search for things that go wrong and notify the user with error messages. Error
messages can be both general and specific. For example, if some user input is required
but missing, the user may get a general error message such as “Field missing.” However, it
is usually more helpful to get a specific error message like “Last name is missing.”The
drawback to having very specific error messages is that the number of them can multiply
very quickly, which can be an especially serious problem in JavaScript when we are try-
ing to minimize the size of the page sent to the browser. Storing lots of possible error
messages in the HTML file could cause its size to grow quickly.

Specific error messages often have a common form. Imagine some possible error mes-
sages that might occur in a typical Customer entry form:

Last name required.

First name required.

City required.

All these can be replaced with an error message in the more general form:

${0} required.

24113.1 Text Strings

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Where ${0} is a token that can be replaced with the specific field name when appropri-
ate.This allows the page to display specific error messages that can be very helpful to the
user, while at the same time minimizing the amount of space taken up by JavaScript
code.The 0 in the token represents the first parameter that can be substituted into the
message.Additional tokens could be used to allow more parameters to be substituted
into the message.

File '${0}' is not found in directory '${1}'.

In this case, ${0} would be replaced with a file name, and ${1} would be replaced
with the name of a directory.

File 'George.jpg' is not found in directory 'c:\Pictures'.

Dojo provides a simple string function to make these kinds of parameter replacements
easy.That function is dojo.string.substitute. It not only allows a string to have
parameters injected into it, but it can perform processing on those parameters before the
injection to provide extra formatting. Dojo also makes the token easier to read by using
meaningful strings instead of just numbers as in the following example:

${fieldName} required.

The new token identifier fieldName is more meaningful then 0.
Following is the API description for the “substitute” function:

Table 13.2 Description of dojo.string.substitute Function

Method Signature: dojo.string.substitute(template, map,
transform, thisObject)

Summary: Performs parameterized substitutions on a string.

Parameter: template String containing tokens to be replaced.

Parameter tokens will be represented in template by text in
the form of the form ${key} or ${key:format}. The later
form specifies the name of a formatting function, which can be
applied to the parameter. The name of the formatting function
should correspond to the name in the token.

Parameter: map Object or Array containing values to be substituted into
template. The properties in the object should have names
corresponding to the token values.

Parameter: transform Function used to process the values before they are substituted
into template. The transform function will be run after any
formatting functions.

Parameter: thisObject Object containing the formatting functions to be used for tokens
that are in the form ${key:format}.

Optional. If this parameter is not used, the global namespace
will be used for the location of the formatting functions.

242 Chapter 13 Strings and JSON

http://lib.ommolketab.ir
http//lib.ommolketab.ir

A little more needs to be said about formatting functions.These are custom functions
created to perform various kinds of formatting before the value is substituted into the
template string.The types of formatting functions are completely up to you.You write
them and give them whatever name you wish. Just be sure that the name you give the
function corresponds to the value in the token. For example, ${lastName:upperCase}
would run the upperCase function on the lastName parameter to be substituted into
the template. Formatting functions should take a single unformatted value and return a
formatted value.

13.1.4 Usage Example for dojo.string.substitute
We’ll start with a simple example first. Our template string will provide an error message
for fields that require a dollar amount of at least a certain value.

${fieldName} must be less than ${dollarAmount}

Imagine that a field called “Credit Limit” must have a value less than $1000.00.
Following is a code example for using the substitute function to inject the right val-
ues into this string to get an appropriate error message.

template = "${fieldName} must be less than ${dollarAmount}"

map = new Object();

map.fieldName = "Credit Limit";

map.dollarAmount = "$1000.00";

errorMessage = dojo.string.substitute(template, map);

Notice the correspondence between the key name in the template and the name of
the property in the map object (i.e. ${fieldName} and map.fieldName).The variable
errorMessage will now have a value of “Credit Limit must be greater
than $100";

The dojo.string.substitute function is fairly complicated, so to fully explain it,
we’ll work with a more complex example. Imagine that we have a template string con-
taining two parameters to be replaced.The first parameter will be a field name, and the
second parameter will be a dollar amount, just as before. Now we also want to apply a
function (which we will call ucFirst) to the first parameter to make sure the first letter
is capitalized.We also want to apply a function (which we will call showMoney) to the
second parameter to make sure it is in the form of a dollar amount with two trailing
decimal digits.Additionally, we want to apply a function (which we will call trim) to
remove any leading or trailing spaces in either of the parameters to be injected into our
template.

Following is the template string for the messages:

${fieldName:ucFirst} must be greater than ${dollarAmount:showMoney}

24313.1 Text Strings

http://lib.ommolketab.ir
http//lib.ommolketab.ir

We’ll have to define a few functions and then make the correct call to dojo.string.
substititue. Let’s see what the code will look like.We’ll focus on the code related to the
Dojo function call and leave out some of the detail code for the formatting functions.

dojo.require("dojo.string");

// Define functions

ucFirst = function(value) {

// This function will take a string and make sure the first letter

// of the string is upper case and the subsequent letters

// in the string are lower case.

var newValue = … // this is left as an exercise for the reader

return newValue;

dollarAmount = function(value) {

// This function will take a number and put a dollar sign in front

// of it and ensure that two decimal digits are at the end

var newValue = … // this is left as an exercise for the reader

return newValue;

}

stringTrim = function(value) {

// This function will remove leading and trailing

// spaces from a string

var newValue = … // this is left as an exercise for the reader

return newValue;

}

template = "${fieldname:ucFirst} must be less than
➥${dollarAmount:dollarAmount}"

map = new Object();

map.fieldName = " Credit Limit ";

map.dollarAmount = 1000.00;

errorMessage = dojo.string.substitute(template, map, stringTrim);

The value for errorMessage is "Credit Limit must be less than $1000.00".

13.2 JSON
JavaScript allows us to manipulate strings of generic text, but it also provides for a special
type of text string called JSON, which is an acronym for JavaScript Object Notation.
Now wasn’t that helpful? No? We’ll let’s describe it another way. JSON is a technique for

244 Chapter 13 Strings and JSON

http://lib.ommolketab.ir
http//lib.ommolketab.ir

representing JavaScript objects as text strings.After we convert a JavaScript object to text,
we can transfer that text around the Internet using HTTP, which only allows plain text
to be transmitted. In general, we’ll use JSON to transfer objects back and forth between
the browser to the server.Another use for JSON is to create JavaScript objects using a
more concise format than we get using methods calls. Let’s see an example.We’ll create
two objects using both JavaScript and JSON.

First we’ll view the code for creating an object using JavaScript and the standard
Object Oriented technique.

// create a new object using JavaScript command

object1 = new Object();

object1.id = 100;

object1.name = "ABC Customer";

Now let’s review the code for creating an equivalent object using JSON.

// create a new object using JSON

object2 = {id:100, name:"ABC Customer"};

Both objects are equivalent.They both have the same properties.After the object is
created, there is really no way to tell they were created using different methods. Because
we have two different but seemingly equivalent techniques, which one should you use?
If you want to “be like Mike” and adhere to the conventions used by Dojo, you should
use the JSON technique. Not only is JSON preferred by Dojo users, but it is also the
preferred technique for most JavaScript programmers.

We can choose to use JSON or not when creating objects in JavaScript. But what
options do we have when we want to send those objects to the server or get objects
back from the server? When the browser builds an HTTP request to send to the server,
data can either be sent in the URL (using the GET message type) or within the body of
the request (using the POST message type). However, in either case, the data is sent as
plain text. So we must find a way of converting a JavaScript object from the browser’s
internal format into a plain text string that can be sent using HTTP.

JSON is the perfect solution for this problem.We can represent the object as a JSON
text string and transmit it between the browser and the server.We’ve already seen that
JavaScript provides a syntax for creating an object with JSON, but what about the corre-
sponding syntax to take an object and convert it to JSON? As popular as JSON is within
the JavaScript community, you would expect there would be an easy way to do that. But
you would be wrong. JavaScript does not provide any native function for producing the
JSON equivalent of an object.There is no toJSON method defined for JavaScript. So
someone has to write one. Fortunately, for us, that “someone” is Douglas Crockford. He’s
the source for all things JSON and a fount of general wisdom in his role as an industry
guru. Dojo has taken advantage of his work by providing a few JSON functions based
on his work.

24513.2 JSON

http://lib.ommolketab.ir
http//lib.ommolketab.ir

13.2.1 Dojo Function: dojo.toJson
The Dojo function dojo.toJson will create a text string representing an object in the
form of a JSON string.This process is called serializing the object, and the resulting string
is the “serialization” of the object. Serialization is the computer science term for convert-
ing an object to a series of bytes that can be saved to a file or transmitted across some
connection.

Following is the API for the dojo.toJson function:

Table 13.3 Description of dojo.toJson Function

Method Signature: dojo.toJson(it, prettyPrint)

Summary: This function will return a string containing the JSON repre-
sentation of an object.

Parameter: it Object to be serialized as JSON.

Parameter: prettyPrint Flag to force the JSON text string to be formatted for easier
viewing.

If prettyPrint is true, objects and arrays will be indented to
make the output more readable. The variable
dojo.toJsonIndentStr is used as the indent string.
To use something other than the default (tab), change the
variable before calling dojo.toJson().

Sometimes you would like to provide your own serialization method for turning an
object into JSON.That is supported in Dojo by allowing you to add a function to your
object (or its prototype) called either json or __json. It should take no parameters and
return a string representing the JSON serialization of the object.There is no need to call
the method directly; just use the dojo.toJson function, and it will check to see if
you’ve provided your own custom method and will run it.

13.2.2 Usage Example for dojo.toJson
Let’s create an object and see what the JSON string looks like.

// create a new object using JavaScript command

object1 = new Object();

object1.id = 100;

object1.name = "ABC Customer";

object1.toString = function() {

return "Customer: " + this.name + ", (id: " + this.id + ")"; }

jsonStr = dojo.toJson(object1);

The variable jsonString will now have a value of

{

"id": 100,

246 Chapter 13 Strings and JSON

http://lib.ommolketab.ir
http//lib.ommolketab.ir

"name": "ABC Customer",

"phone": [

"630-555-1212",

"630-555-0000"

],

"address": {

"line1": "123 Main St",

"city": "Chicago",

"state": "IL",

"zipCode": "60540"

}

}

Notice the special syntax for the "phone" array and the included object for
"address".

Notice that even though the object contained a function, toString, it was not serial-
ized. Functions are not serialized by this toJson, although it is perfectly acceptable to
create your own custom json method, which would serialize the functions.

Another “gotcha” when using this function, is to try to serialize an object that has a
reference to itself.You’ll end up causing toJson to fall into an infinite recursion that
will eventually fail by running out of memory.

A final reminder, dojo.toJson is part of Dojo “base,” which means you don’t need a
dojo.require statement to use it.

13.2.3 Dojo Function: dojo.fromJson
Ajax applications submit requests to the server for data.There are many available forms
in which the data may be returned: plain text, name/value pairs, XML, and so on. One
of the most desirable formats for many developers is to have the data returned as a
JSON string, which can then be used to create JavaScript objects in the browser.As sug-
gested before, you might think that turning a JSON string into JavaScript object would
be a native feature of JavaScript. But you’d be wrong.There is a special technique we
need to use to turn JSON into objects.We can’t just assign the string to a reference. It
would be treated as a string.We need to actually execute the JSON string as JavaScript.
Review the following example:

jsonString = '{"id": 100, "name": "ABC Customer", "phone":
➥["630-555-1212", "630-555-0000"], "address": {"line1": "123 Main St",
➥"city": "Chicago", "state": "IL", "zipCode": "60540"}}';

var cust = eval('(' + jsonString + ')');

The variable "cust" now points to an object containing an "id", "name", "phone",
and "address" property.Additionally, the "address" property references an object
containing properties for "line1", "city", "state", and "zipCode".

Simply assigning the string to an object (jsonString) did not result in a creation of
a new object.We have to use the native JavaScript eval function to actually execute the

24713.2 JSON

http://lib.ommolketab.ir
http//lib.ommolketab.ir

JSON string.The problem with this approach is that there is a possible security problem
when we execute arbitrary JavaScript code. So you should first make sure that the string
really is JSON and not some other JavaScript code returned by the server.The technique
for doing that check is a bit involved, and fortunately, not necessary for us. Dojo has
done this for us by providing a function to turn a JSON string into JavaScript objects
and checking the code beforehand.The dojo.fromJson function performs this magic
for us!

Following is the API for the dojo.fromJson function:

Table 13.4 Description of dojo.fromJson Function

Method Signature: dojo.fromJson(json)

Summary: This function takes a string in JSON format and builds new
JavaScript objects from the string.

Parameter: json JSON string

This string must be a properly formatted JSON string. The string
will be evaluated to confirm that it is JSON and then will be exe-
cuted as JavaScript to create new objects.

Note that if the JSON string contains a function definition, the function will be
properly created in the new object.

Usage Example
jsonString = '{"id": 100, "name": "ABC Customer", "phone":
➥["630-555-1212", "630-555-0000"], "address": {"line1": "123 Main St",
➥"city": "Chicago", "state": "IL", "zipCode": "60540"}}';

var cust = dojo.fromJson(jsonString);

The variable "cust" now points to an object containing an "id", "name", "phone",
and "address" property.Additionally, the "address" property references an object
containing properties for "line1", "city", "state", and "zipCode".

Summary
In an effort to maintain a small footprint, Dojo does not provide many additional string
functions. Developers should use the native string functions available in JavaScript.
However, there are a few string functions that Dojo does provide:

dojo.string.pad—Pad a string with extra characters

dojo.string.substitute—Inject parameters into a string template

JSON (JavaScript Object Notation) is a compact method for representing JavaScript objects
as text strings. Use it to send data between the browser and the server when making XHR
requests.

dojo.toJson—Serialize an object into a JSON string

dojo.fromJson—Create new objects from a JSON string

248 Chapter 13 Strings and JSON

http://lib.ommolketab.ir
http//lib.ommolketab.ir

14
Events and

Event Handling

Stuff Happens…Just Handle It

—Unknown

Yes, stuff happens, both in life and in web applications. Users click page elements, enter
data, move the mouse around, and perform myriad other activities. In a more formal
way, we refer to the stuff that happens as “events.”And our response to events can’t be
passive. Our pages must do things to handle the events. Events and event handling and
how Dojo can help are the topics of this chapter.

14.1 Description of the Event Model
In this chapter we examine events and event handling in Dojo. But as we delve into the
Dojo specifics, it is also important to review the techniques for identifying and respond-
ing to events in the standard browser programming model and JavaScript.That way, Dojo
extensions will make more sense.To summarize, we’ll discuss the main topics related to
events and describe the techniques first in plain JavaScript and then using Dojo. I’ll cover
the following topics:

n What are events?
n What are event handlers and how are they assigned?
n How are events represented?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

14.1.1 What Are Events?
The common meaning of events is “stuff that happens.”And this definition can be applied
to the browser programming model as well.There are two primary categories of events—
things that happen to the DOM and things that happen outside the DOM.The first cate-
gory of events is known as DOM events.The second category of events is Browser events.

DOM events include things done to the DOM as a whole or to individual DOM
elements.The classic DOM event occurs when a user clicks a DOM element such as a
button or a link. But there are many other possible events.The browser can detect vari-
ous types of user interaction coming from the keyboard or the mouse.And the user may
interact with any of the DOM elements on the page, even those that don’t appear to
allow user response such as paragraph text or image files.

For example, when a user moves the mouse over some paragraph text, a number of
events are generated. First, when the cursor passes into the area of the screen where the
text is displayed, an onfocus event is generated for that DOM element.As the user con-
tinues to move the mouse, the cursor passes over the text. For each discernable move-
ment of the cursor, the browser generates an onMouseMove event.And when the cursor
moves outside of the boundaries of the paragraph element, an onblur event is generated
by the browser. It is possible to create responses to each of these events.

Note
All events generated by the browser have a name by which they can be identified. For
example clicking an element creates an event named “onclick.”

The situation becomes more complex when we recognize that DOM elements can
be stacked on top of each other and appear in the same space on the web page.The fol-
lowing HTML snippet demonstrates how two different DOM elements can be created
in the same space:

<div id="div1" >

<p>Here's some text</>

</div>

When the cursor is placed over the paragraph text, it is also over the <div> element,
its parent.As the cursor is moved over the paragraph text, events for both the paragraph
and the <div> are generated.And you can cause the page to respond to either or both.

To complicate things further, we should recognize that there is a wide variety of pos-
sible user interactions that the browser can detect in addition to the ones we’ve already
discussed.These include the following events:

n Pressing the mouse button
n Releasing the mouse button
n Pressing a key
n Releasing a key
n Moving the mouse wheel

250 Chapter 14 Events and Event Handling

http://lib.ommolketab.ir
http//lib.ommolketab.ir

And this is still only a subset of the possible events. How many different events might a
web page have? Let’s do a quick and dirty calculation. Imagine a page with 200 DOM
events (not a large page by any means).There are at least 50 types of user interactions
possible with each DOM element. So there are more than 10,000 possible events that
could be identified by the browser that we could write event handlers for.And that
doesn’t include the Browser events.

Aside from DOM events, what other events can be identified? One of the most well
known is the onLoad event, which is triggered when the browser has finished building
the web page from the HTML file received from the server.This event is generated
internally in the browser and is not based on any user input at all.Another type of event,
window.onresize, is created when the user changes the size of the browser window
itself.Although it is based on user activity, it isn’t associated with any specific DOM ele-
ment.

The task of responding to events might now seem immense. But there is some good
news. Even though the universe of possible events on a typical web page might be quite
large, the number of events that we need to respond to is usually rather small.

14.1.2 Additional Dojo Events
Dojo can recognize all the events already described, but it also adds a few events of its
own.The most interesting of these is an event that occurs when a JavaScript function is
executed.This allows developers to use a new programming model called Aspect Oriented
Programming (AOP)—more on this later in the chapter.

Dojo also provides enhancement to some of the standard Browser events such as
onload. In standard JavaScript, the onload event is triggered when the browser has
completed the loading of the web page. But often, you don’t want your code to run
until the page is loaded and Dojo has done all of its setup work, including loading of the
various Dojo packages and the execution of the Dojo page parser. If you simply attach
an event handler to onload, your handler may run before Dojo setup is complete. Dojo
provides a special function for assigning event handlers so that they don’t get executed
until Dojo setup is complete.This is the dojo.addOnLoad function.

The following example shows two techniques for using dojo.addOnLoad.The first line
of code shows how to attach an existing function called eventHandler as an event han-
dler for the Dojo onload event.The subsequent code shows how to attach a line of code
inside an anonymous function, which is then associated with the Dojo onLoad event.

dojo.addOnLoad(eventHandler);

dojo.addOnLoad(function() {

console.log("Dojo setup complete");

});

Now that we understand the events that can occur in a web page, we need to explore
how to respond to them.

25114.1 Description of the Event Model

http://lib.ommolketab.ir
http//lib.ommolketab.ir

14.2 Defining and Assigning Event Handlers
If a tree falls in the forest, does it make a sound? Or more apropos: If an event triggers
no action, is it really an event? Philosophy aside, identifying events is only important
because we want to associate some action with them.These actions are known as event
handlers.They’re the JavaScript functions that execute in response to events.

Let’s explore a simple example.The following function displays a message on the
screen:

function showAlert() {

alert("Hello World");

}

Is this code an event handler? Maybe, but only if it is used to handle an event.
Although that sounds like circular logic, let me explain what I mean.An event handler
can be any function, and the example code certainly is a function.What makes a func-
tion into an event handler is that we tell the browser to call that function when it
detects a certain event. Let’s see how we do that.

Imagine that we would like the showAlert function to run whenever a button on
the web page is clicked.We need to create the DOM element for the button and then
assign an event handler to the event that is generated when the user clicks the button.
The following code shows one technique for creating the element and assigning the
event handler:

<button id="btn1"

onClick="showAlert" >

</button>

Dojo lets us assign event handlers programmatically using JavaScript.

14.2.1 Using dojo.connect to Assign Event Handlers
The dojo.connect method allows us to assign an event handler by naming the
DOM element, the event, and the event handler and passing them as parameters to
dojo.connect.Table 14.1 describes this function in more detail.

Table 14.1 dojo.connect Function for Standard Browser Events

Method Signature: dojo.connect (domNode, event, handler) or

dojo.connect (domNode, event, context, method)

Summary: This function binds an event handler to an event on a DOM node.

Parameter: domNode Reference to the DOM node.

Parameter: event A string containing the description of the event. These are the
same as the standard event properties such as onclick,
onblur, mouseover, and so on.

252 Chapter 14 Events and Event Handling

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 14.1 Continued

Parameter: handler This is a reference to the globally scoped function that is called
when the event is triggered. No parameters for the handler can
be specified because Dojo provides the parameters itself when it
makes the call to the handler.

This property can be either a string naming the function or a ref-
erence to the function.

When Dojo calls the handler, it passes the Dojo event object,
which is described in Table 14.2.

Parameter: context Reference to an object containing the handler function.

Parameter: method A function within the scope of the context object. When context
isn’t specified, global becomes the default scope.

14.2.2 Usage Example for Assigning Event Handlers
Let’s start with a simple example of how to assign an event handler to the onclick
event for a DOM element. First we must have a DOM element.The following code cre-
ates a DOM element for a button:

<button id="button1">

Click Me!

</button>

Next we create an event handler that writes a log message containing the type of the
event:

function handle(event) {

console.log("Running event handler for event type:", event.type);

}

The event handler code has a few interesting features. It takes an argument referenc-
ing the normalized event object created when the event is generated.This is the Dojo
event object, not the raw JavaScript event object.The advantage of using the Dojo ver-
sion is that it is the same regardless of the browser that is being used to run the page.
Another important feature of the event handler function is that it doesn’t return any-
thing.Any data that it returns is ignored.

Next we assign the event handler to the onclick event for the button using the
dojo.connect function:

dojo.connect(dijit.byId('button1'), "onclick", handler);

This code should only be executed after the DOM is fully loaded, Dojo has been

25314.2 Defining and Assigning Event Handlers

http://lib.ommolketab.ir
http//lib.ommolketab.ir

installed, and the DOM has been parsed by Dojo.This is easy to do by using the
dojo.addOnLoad function and calling dojo.connect with an anonymous function
containing the following code:

dojo.addOnLoad(function() {

dojo.connect(dijit.byId('button1'), "onclick", handler);

});

There are a couple of comments I’d like to make concerning this code. First, when
assigning handlers to DOM events, always use dijit.byId, not dojo.byId.The reason
for this is that the Dojo parser might add additional DOM elements to the base DOM
element defined in the HTML. It might be one of those child elements that the event is
triggered on. Don’t try to figure this out; just let Dojo pick the right one by using
dijit.byId.

The second point is that we have a choice when specifying the DOM event name.
We can use the “on” prefix or leave it off. For example, click and onclick are equiva-
lent events. Choose whichever you prefer. I like using onclick just so I can be consis-
tent with the DOM element property names.

To add additional event handlers, just run additional dojo.connect functions.You
can attach an unlimited number of handlers to an event.

dojo.connect(dijit.byId('button1'), "onclick", handler2);

To remove the event handlers, use dojo.disconnect with the same parameters.
Each handler must be removed separately.

14.3 Representing an Event as an Object
A developer doesn’t write code to call the event handlers; the browser does that auto-
matically when an event is generated.That means you can’t control the arguments passed
to the event handler or whether any arguments are passed at all.When an event handler
is called in Firefox, an event object is passed as the parameter.This isn’t true for Internet
Explorer, which requires the event handler function to look up the event object.Also,
the event object itself is slightly different between the two major browsers.

The Dojo event system provides two major benefits over JavaScript. First, it ensures
that an event object is always passed to the handler, regardless of the browser.And sec-
ond, it provides a standard event object that is always the same.This is sometimes
referred to as a “normalized” event object.

Although event handlers receive only a single parameter, the event object, that object
contains multiple properties and methods.The primary purpose of the event object is to
be a wrapper around the event itself, capturing information about the event such as the
DOM element that triggered it and the coordinates of the cursor at the time the event

254 Chapter 14 Events and Event Handling

http://lib.ommolketab.ir
http//lib.ommolketab.ir

occurred.Table 14.2 describes the important properties and methods of the event object.

Table 14.2 Dojo Event Object

Summary: The Dojo event object provides an object wrapper around
the event exposing its important properties and methods.

Property: target DOM node on which the event was triggered.

Property: currentTarget DOM node that is assigned to act as the target DOM node
for the event object. It is usually the same as the target
node but may be assigned to a different node by Dojo.
This is the element you should reference in event
handler code.

Property: layerX This is the X coordinate of the cursor relative to
currentTarget DOM element.

Property: layerY This is the Y coordinate of the cursor relative to
currentTarget DOM element.

Property: pageX This is the X coordinate of the cursor relative to the view-
port at the time the event was created.

The viewport is the area in the browser in which the docu-
ment content is viewed. This doesn’t include sidebar
menus or status lines. It is the space that is available to
the page.

Property: pageY This is the Y coordinate of the cursor relative to the view-
port at the time the event was created.

Property: type The name of the event such as click or mouseover.
This string will not have on at the beginning.

Property: relatedTarget For certain events such as onmouseover and
onmouseout this property references the object that the
mouse moved from. This would be different than the DOM
element on which the event was triggered.

Property: charCode Contains the keycode for key press events.

Function: stopPropagation The JavaScript event model allows event processing to
bubble up to overlapping DOM elements. In other words,
the same event is triggered on the parent element.
Running this function stops that from happening.

Function: preventDefault Some DOM events have a default behavior (such as a
“submit” button submitting the form). Running this
method on an event prevents the default behavior from
occurring.

25514.3 Representing an Event as an Object

http://lib.ommolketab.ir
http//lib.ommolketab.ir

14.4 Using Aspect Oriented Programming
in Dojo
Aspect Oriented Programming (AOP) is a programming technique available in some
languages that allows certain types of program execution to be treated as events to which
event handlers may be applied. For example, let’s define two functions, foo and bar,
which simply write a message to the console as shown in the following code:

function foo() {

console.log("Running foo");

}

function bar() {

console.log("Running bar");

}

Now we need to make sure that every time foo executes, bar is also executed.A
simple way to do this is to add a line of code to the foo method that executes bar, as
shown here:

function foo() {

console.log("Running foo");

bar();

}

Although the solution just provided would work, we’ve hard-coded it.What if we
wanted to make this assignment dynamic? Dojo provides a solution. Dojo can treat the
execution of a function as an event to which we can associate another function as an
event handler.The following version of dojo.connect provides this association:

dojo.connect(null, "foo", null, "bar");

Now whenever we run foo, the function bar automatically runs next.
We’ve now implemented a simple example of AOP. But if you’re new to AOP, you

may be asking:Why in the world would I want to do this? The standard usage of this
approach allows us to dynamically add features that apply to many object types. For
example, if we wanted to add logging to functions, we could do it after the functions
were already written by assigning a log method to each of the functions using AOP
instead of having to add code to each function.

The AOP approach can be better because it doesn’t hard code the logging method to
the target factions and no target function code has to be modified.After all, if you
believe the industry benchmarks, every time you touch code, there is a 5% chance that
you will break something. So if you can avoid modifying the methods, you’re better off.

256 Chapter 14 Events and Event Handling

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In the preceding examples, we used the null parameter.This parameter defines the
scope of the method for either the event or event handler.The null parameter defaults
to the global object so we would be executing globally scoped functions. It is also possi-
ble to watch and execute methods within specific objects. In that case, the null parame-
ters would be replaced by object references.

The following table described the special form of the dojo.connect function needed
to assign AOP advice methods to target methods.

Table 14.3 dojo.connect Function for AOP

Method Signature: dojo.connect (object, method, object,
method)

Summary: This function associates an event handler with the execu-
tion of a method.

Parameter: object Object containing the method whose execution will be
treated as an event. This property contains a reference to
the object.

Parameter: method Method whose execution is treated as an event. The
method name is a string.

Parameter: handlerObject Object containing the method that will act as the event
handler. This property contains a reference to the object.

Parameter: handlerMethod Method that will act as the event handler. The method
name is a string.

Summary
Dojo provides numerous enhancements to the standard browser Event model.

Dojo provides a normalized event object and event handler call.

The dojo.connect functions allow assignment of event handlers. Multiple event handlers
can be assigned to a single event.

The dojo.disconnect function allows event handlers to be removed.

The dojo.addOnLoad function allows assignment of additional event handlers to the
standard browser onload event with the assurance that the event handlers won’t be
called until Dojo is fully loaded and it has parsed the DOM.

Dojo can provide a simple AOP model through the use of dojo.connect to associate one
function with another.

We’ve now concluded our discussion of events. Next we cover one of the biggest
Ajax events of all—calling the server using the XMLHttpRequest object.We use a
slightly friendlier name for this process: remoting.

25714.4 Using Aspect Oriented Programming in Dojo

http://lib.ommolketab.ir
http//lib.ommolketab.ir

15
Ajax Remoting

A fair request should be followed by the deed…

—Dante Alighieri (1265–1321)

When most developers think about Ajax, they are thinking about the
XMLHttpRequest object—the special object that allows JavaScript to make requests of
the server without refreshing the entire page.After the server returns the request, the
response data can be used to manipulate the page in some way. It is this object that is the
key to creating Ajax-enabled web pages.And as you might imagine, Dojo provides pow-
erful functions for creating and working with request objects.This chapter describes
those functions and their uses.

15.1 Remoting
To set the context for this chapter, let’s remind ourselves of the technique used by pre-
Ajax web pages to provide new content.The user clicks a link or a button or maybe
even enters a URL in the address area of the browser.Then the browser sends a request
to the server, possibly even passing some data along, and the server responds with a brand
new web page, which completely replaces the first page. Often, the new page is very
similar to the replaced page. It may have the same heading, footer, and navigation con-
trols. But some part of the page will be different, else why a new page? Wouldn’t it be
more efficient to just replace the part of the page that changed and leave the rest of the
content alone? Of course it would. However, the technique for achieving this wasn’t
widely understood until Jesse James Garret published his article on Ajax back in the day
(February 2005 to be precise1).

1. “Ajax: A New Approach to Web Applications,” by Jesse James Garrett, February 18, 2005,

http://adaptivepath.com/publications/essays/archives/000385.php.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Garret described a technique for making a server request from inside the web page.
The request will return some small amount of data or html rather than an entire new
page.And, even better, this request could be made at the same time that the page is
working, without holding up the operation of the page. In programming terminology,
the request ran in a different thread than the displaying page.The server request was
made “asynchronously” and didn’t interfere with the operation of the page.When the
server returned the response, it could be handled by a local JavaScript function, the
“request handler.” Data returned from the server could be used to update the Document
Object Model (DOM), which resulted in the user seeing something new on the page
without the necessity of the entire page being replaced.

Now we can give a better definition.“Remoting” is the creation and execution of an
asynchronous server request that can be processed without doing a page refresh in the
browser.

15.2 Review of XMLHttpRequest (or XHR
for Short)
JavaScript supports Remoting by providing a special constructor, XMLHttpRequest. By
creating a new object of this type, you can make requests of the server that can provide
data back to you.The following code shows how you can create an XHR request using
JavaScript.

var XHR = new XMLHttpRequest();

XHR.onreadystatechange = handleResponse;

XHR.open('GET', 'getData.html');

XHR.send(null);

This request will run asynchronously.There are two implications of this. First, you
must anticipate what to do as the user continues to use the page while it waits for a
response from the server.And second, you must provide a handler function to run after
the server returns its response.

We’ll ignore the first consideration for now and focus on handling the response from
the server.After the response is returned from the server, the browser interrupts whatever
it is doing and calls the JavaScript function named as the handler for the response. In this
case, we’ve named the event handler handleResponse. Following is a typical example of
what a response handler would look like. Notice that we are checking to make sure that
a complete response has been returned (readyState == 4), and we are verifying that
the response was successful (status == 200).The data received from the server is in
the XHR.responseText property.Although we’re using the data to update the DOM in
this example, there is no limit to what you could do with the data.

260 Chapter 15 Ajax Remoting

http://lib.ommolketab.ir
http//lib.ommolketab.ir

function handleResponse() {

if (XHR.readyState == 4){

if (XHR.status == 200) {

document.getElementById('dataArea').innerHTML = XHR.responseText;

}

}

}

I’ve ignored a few potential problems with this code. For instance, what happens if
we’ve got multiple XHR requests outstanding at the same time? Our globally scoped
XHR object would have conflicts if we used it for two concurrent requests.Also isn’t the
idiom for checking the status and readyState a little verbose? And because a typical
response handler just updates a DOM element, is there a standard idiom we can apply to
do that, too?

These and other issues are addressed by the Dojo functions used as wrappers around
the raw JavaScript XHR object. Let’s review those now.

15.3 The dojo.xhrGet Function
The Dojo function dojo.xhrGet wraps the XMLHttpRequest calls and the creation of
the XHR object just introduced. Under the hood, it does nothing more than we could
do ourselves by coding JavaScript manually, but the amount and the complexity of the
code that it hides is certainly worth the small effort to understand its use.

The first use case for this function we’ll consider is the need to make a request for
some data from the server and use that data to manipulate the DOM.We’ll make an
HTTP request of type GET and ask for a resource on the server called getData.html.
After the response is returned, we’ll use it to update a DOM element called, whose id is
dataArea.

dojo.xhrGet({

url: "getData.html",

handleAs: "text",

load: function(response) {

document.getElementById("dataArea").innerHTML = response;

}

);

A few things you’ll notice right way.We’re only passing a single object as a parameter
to the function call. However, this object contains a number of properties.The object, in
effect, acts as a series of parameters. Instead of passing each parameter individually, we’re
passing them as properties within a single object.The method signature is simple given
that it only takes a single object as a parameter. But knowing what properties to define
in that object and how the properties interrelate can be a bit more difficult.

26115.3 The dojo.xhrGet Function

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In this simple use case, the url property contains the name of the resource on the
server that we are requesting with the XHR request.We don’t specify the HTTP request
type (i.e., GET) because this is already built into the name of the function. For other
HTTP request types, different function names will be used (i.e., xhrPost for POST
requests).The load property contains the function to be called by Dojo when handling
the request.The real request handler is an internal Dojo function assigned when it creates
the XHR object.That handler calls our load handler.The load handler only gets called
once readyState ==4 and status == 200 so we don’t have to perform those checks
ourselves. Our load handler is called by Dojo, which passes response into our function.
The parameter response is the XHR.responseText property from the XHR object.
The handleAs property describes the format of the data returned from the server.

Let’s look at the API for dojo.xhrGet and then look at the properties for the passed
parameter in more detail.

Table 15.1 Description of dojo.xhrGet Function

Method Signature: dojo.xhrGet(args)

Summary: This function will create, send, and handle an XMLHttpRequest
object of HTTP GET request type.

Parameter: args Object containing properties used to configure the XHR object to
be created by Dojo.

To really understand this function we need to look at the possible properties within
the args parameter in more detail.

Table 15.2 Description of Arguments for dojo.xhrGet Function

Property Description

handleAs Describes format of data returned by the request. Acceptable val-
ues are text (default), json, json-comment-optional,
json-comment-filtered, javascript, and xml.

sync Indicates whether the request should be a synchronous request,
which blocks additional execution until the request returns or
whether the request should occur asynchronously so that execu-
tion can continue while the request is being processed by the
server.

The default is “false,” which makes the request asynchronous.

header Object containing HTTP header values. The properties of the
object should correspond to the name of the HTTP header item,
and the value in the property will be the value of the correspon-
ding header item. These values will be added to the actual HTTP
header sent to the server.

form DOM node for a form. Used to extract the values of the form ele-
ments and send to the server.

262 Chapter 15 Ajax Remoting

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 15.2 Continued

Property Description

url String URL representing resource requested on the server.

content Object containing properties with string values. These properties
will be serialized as name1=value2 and passed in the request.

timeout Milliseconds to wait for the response. If this time passes, the
error callback function is executed.

preventCache If “true,” then a dojo.preventCache parameter is sent in the
request with a value that changes with each request (timestamp).
Useful only with GET-type requests. Default is false.

load Function to be called on a successful response. The signature of
the function should be function(response, ioArgs){}.

error Function to be called when the response fails. The signature of
the function should be function(response, ioArgs){}.

handle Function to be called when the response returns in the case
that neither load nor error has been called. The signature of
the function should be function(response, ioArgs){}.

For the load, error, and handle functions, a function is provided that takes
response and ioArgs as parameters.The ioArgs parameter is complex enough that it
deserves its own table to explain its various properties.The table below explains the
ioArgs properties.

Table 15.3 Description of ioArgs Property for dojo.xhrGet Function

ioArgs Properties Descriptions

args The original object argument to the IO call.

xhr For XMLHttpRequest calls only, the XMLHttpRequest object
that was used for the request.

url The final URL used for the call. Many times it will be different
than the original args.url value.

query For non-GET requests, the query string parameters (i.e.,
name1=value1&name2=value2) sent up in the request.

handleAs The type of response data from the server. This designates how
the response should be handled.

id For dojo.io.script calls only, the internal script id used for
the request.

canDelete For dojo.io.script calls only, indicates whether the script tag
that represents the request can be deleted after callbacks have
been called. Used internally to know when cleanup can happen
on JSON requests.

json For dojo.io.script calls only: holds the JSON response
for JSON requests. Used internally to hold on to the JSON
responses. You should not need to access it directly. The same
object should be passed to the success callbacks directly.

26315.3 The dojo.xhrGet Function

http://lib.ommolketab.ir
http//lib.ommolketab.ir

15.3.1 Parameters in Detail
Some of the parameters are so interesting and invoke such useful functionality, that it is
worthwhile to consider them in more detail. Let’s review the handleAs parameter.

15.3.1.1 handleAs Argument to XHR
The handleAs property of the args object tells Dojo what kind of data will be
returned by the XHR request.And not only that, depending on the type of data, Dojo
will perform some processing on it before it is returned to our response handler.The
following table describes the valid handleAs values and explains how Dojo treats each
type of data.

Table 15.4 Description of handleAs Types

handleAs type Description

text The data from the server will be a string of text. When the call-
back function is called, this will be the first parameter
(response).

json The data from the server will be returned as a JSON string, which
will be used to create the object described by the string. The
object will be the first parameter to the callback function.

Note: There are actually two additional handleAs types called
json-comment-optional and json-comment-filtered,
which may be used to prevent JavaScript Hijacking—a security
flaw introduced by allowing the page to eval arbitrary JavaScript
coming from the server. It potentially exposes other objects on
the page.

javascript The data returned from the server will be JavaScript. Dojo will
execute the JavaScript using the eval function.

xml The data returned from the server will be in XML format. The XML
will used to create a DOM object. The object will be the first
parameter to the callback function.

15.4 dojo.xhrPost
The dojo.xhrPost can be used, in many respects, the same way as dojo.xhrGet.That
is, the parameters are almost the same, and the behavior of the function is also almost the
same.The major difference is that the data being sent to the server is handled differently.
In xhrGet, the data is passed back as name/value pairs in the URL itself.

http://www.mydomain.com/getPage.jsp?id=100&name=Joe

In this case, the values for id and name are passed as part of the URL and are known
as the query string.

264 Chapter 15 Ajax Remoting

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In xhrPost, the data is passed within the body of the HTTP request itself. It is not
visible in the URL.This is a much more secure approach in that the browser user can’t
see passed data merely by using the forward and backward keys to see what URLs the
browser has been sending.Also there is no limit to the amount of data that can be passed
within the body of the request.The URL itself is usually limited to about 4000 charac-
ters, usually more than enough but insufficient for some of the edge cases.

Because of this difference in how POST and GET work, there is an additional prop-
erty that can be set in the argument object passed in the call to xhrPost().The
postData property is a string that contains the data to be submitted in the body of the
HTTP POST request built by the XHR request.This is an important property because
it must be set before the xhrPost() function is called.This is something new for many
developers who have become accustomed to the browser automatically formatting and
sending the data when a form is submitted.The following code is typical for submitting
form data through the xhrPost().

dojo.xhrPost({

url: "getData.html",

handleAs: "text",

postData: “id=100&name=Joe”,

load: function(response) {

document.getElementById("dataArea").innerHTML = response;

}

);

Let’s explore a more complicated use case. Imagine that you are responsible for devel-
oping a registration page for users of your web site.Along with the typical demographic
information like name and address, you would also like your users to choose a user name
for future logins to the system. However, because of the popularity of your site, many
common user names have already been taken. In a pre-Ajax implementation of this page,
the system would check the user name when the form was submitted. Submitting a user
name that had already been taken would cause a page to be sent back to the browser
with the appropriate error message.And also sent back would be the values that the user
had already entered so that the user didn’t have to re-enter everything else just to choose
a new user name.

The user would probably still be a little aggravated given that they had already forgot-
ten the other user names they had considered at the time.

Wouldn’t it be better to notify the user of the problem with user name as soon as
they entered the value in the field instead of after submitting the request? Of course! By
making an Ajax request to the server right after the user enters their choice for user
name, the server could return an error message that could be displayed on the form right
away. Following is the HTML that demonstrates how JavaScript could trigger the Ajax
request immediately after the user enters the user name:

26515.4 dojo.xhrPost

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Make up a user name and enter it here:

<input type="text" name="username"

onchange="checkUserName(this.value)"

/>

Notice the event we’re using—onchange.This event is triggered when the user
enters some value in the field and focus moves from the username field to another field.
This is better than using the onblur event because we are sure that the value has
changed and we’re not making unnecessary Ajax requests.This example assumes that
there is a local JavaScript function called checkUserName, which contains the code to
create the XHR request along with an event handler to interpret the response from the
server.There is an even better way to assign an event handler function to the event using
Dojo.We discuss that technique later in Chapter 14,“Events and Event Handling.”

Now let’s look at the event handler function itself.This is the code that gets called
when the browser detects the onchange event.The following code uses dojo.xhrGet
to perform an Ajax request.

function checkUserName(value)

var query = "username=" + value;

query = encodeURIcomponent(query);

dojo.xhrGet({

url: "checkUserName.jsp" + "?" + query,

handleAs: "text",

load: function(response) {

// process server response

// intentionally left empty for now!

}

);

We first create the query string to be sent to the server. If we use POST instead of
GET, we’ll pass the query string as a parameter.The following code uses dojo.xhrPost
to make the Ajax request.

function checkUserName(value)

var query = "username=" + value;

query = encodeURIcomponent(query);

dojo.xhrPost({

url: "checkUserName.jsp",

postData: query,

handleAs: "text",

load: function(response) {

// process server response

// intentionally left empty for now!

}

);

266 Chapter 15 Ajax Remoting

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now, what about processing the response from the server? The prior code examples
did not provide the details on how to manage the response.We need to consider what
kind of responses we can get back from the server. One of the following must be true:
Either the user name is already taken, or it isn’t.We could display a short error message
when the user name is taken. Seems simple enough. However, error processing involves
many edge cases.What about the following issues:

n What if there is a network problem when we submit the request and we never
receive a response from the server?

n What if we are able to reach the server, but the database on the server is temporar-
ily down? The server responds with a status code such as 500.

n What if the user name is available when the Ajax request is made but is then
grabbed by another user before the first user completes his registration by submit-
ting the registration form?

n How do we notify the user of these various error conditions?

These issues can be divided into two broad categories: How do we programmatically
detect error conditions? And how do we notify users of error conditions after they are
detected?

Let’s consider the issue of identifying error conditions first. Dojo has defined different
callback functions to handle various types of responses from the server.Table 15.5 sum-
marizes the callback functions and the error conditions that cause them to be executed.

Table 15.5 Possible Error Conditions for Remoting Requests

Response Condition Callback Function

Server does not return a response, error
either it times out or can’t be
reached.

The function assigned to error will be called if it
has been assigned, otherwise handle will be
called.

Server responds but with a status
code of other than 200 indicating
some sort of server error.

Server responds with a status code load
of 200.

The function assigned to load will be
called if it has been assigned,
otherwise handle will be called.

26715.4 dojo.xhrPost

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 15.5 Continued

Response Condition Callback Function

Any server response. handle

If error or load have been assigned, one of
them will be called. Otherwise, handle will be
called.
If neither error nor load is assigned, handle
can be used to handle all of the server
responses.

When deciding which callback functions to use, keep the following in mind:
n Dojo will only execute a single callback method for each request.
n You must provide the implementation for the callback function. Dojo calls your

implementation but doesn’t really handle it itself.
n You assign the callback function by setting a property in the xhr method

parameter object, either load, error, or handle.
n The objects passed to the callback function are the same, regardless of type of

handler.

15.4.1 Usage Example—Error Handling
In this use case, certain kinds of failure are more serious than others. If the Ajax request
that verifies the user name should fail, the validation can simply be done again when the
full form is submitted. So it may not even be necessary to notify the user that the valida-
tion failed.Also if the validation should succeed, again it is not necessary to notify the
user because no action is required. He or she can just go on happily entering additional
data.Although, it would be possible to reserve the user name on the server so no other
user can get it, which might cause some scalability problems.

But what happens when the validation fails and the user name is not valid? We should
present the user with an error message. But should we return the cursor to the user
name field, interrupting whatever other work the user is then doing? What are the
details of the server’s response that tells the browser that the validation failed? The Ajax
request returns data from the server, but there is no standard for how exactly to show a
validation failure.We’re only limited by our imagination. Following are some of the pos-
sible responses from the server when using Ajax Remoting:

n The server could return a string of data container either the value success or
failure.

n The server could return a value of failure along with a descriptive error
message.

268 Chapter 15 Ajax Remoting

http://lib.ommolketab.ir
http//lib.ommolketab.ir

n The server could return a value of failure along with a descriptive error message
and some suggestions for available user names similar to the one entered by the
user.

Which is the right approach? Well, that is up to you. Neither Ajax nor Dojo proscribes
your actions. However, later when we study Dojo widgets, we’ll see that widgets have a
more standard (but still flexible) way of handling error messages.

15.5 Working with Forms
Many of the pages in a typical business application collect data on forms and send that
data to the server for some kind of processing. So working with form data in JavaScript
is very common. How does the use of Ajax and Dojo influence how we work with
form data? Developers may think that because they are using Ajax to submit data to the
server instead of using the standard form submit that they don’t need to use forms any-
more.This is incorrect for a number of reasons.

Forms will still be used because even though the application may be making Ajax
Remoting requests prior to form submission, the form will usually still be submitted as
the final step of entering data on a page.This reduces the amount of new development
on the server since the service used to process form submission without Ajax has proba-
bly already been coded.

Another reason to continue to use forms in Ajax applications is that forms are just a
darn good way to organize data in the browser. Related data elements can be grouped
together by keeping them within a form tag. Multiple forms can reside on the same
page to separate groups of data.Also the browser gives us some convenient shortcuts for
referencing data fields that are within forms. For example, review the following HTML
snippet that follows. It defines a simple form with two data fields and a submit button.

<form action="submitForm" name="userInfo" method="POST">

First Name: <input type="text" name="firstName"/>

Last Name: <input type="text" name="lastName"/>

<input type="submit">

</form>

When the DOM is built for these fields, they can be referenced by the following
shorthand. Notice how the browser builds a DOM that contains elements with names
corresponding to the existing form and form data elements. Remember, upper/lower
case is important!

firstName = document.userInfo.firstName;

lastName = document.userInfo.lastName;

26915.5 Working with Forms

http://lib.ommolketab.ir
http//lib.ommolketab.ir

And, finally, another good reason to continue to use forms in your application (rather
than just using the <input> tags alone) is that Dojo provides many useful functions for
working with data held in forms, which we discuss now.

15.5.1 Dojo Function dojo.formToObject
Because JavaScript is an Object Oriented programming language, as developers, we natu-
rally want to work with our data as objects. Dojo provides a function (formToObject)
for converting the data in a form to an object so that we can work with it more easily.
Let’s look at the API for dojo.formToObject.

Table 15.6 Description of dojo.formToObject Function

Method Signature: dojo.formToObject(formNode)

Summary: This function will return an object with properties corresponding
to the form fields in the form specified in formNode.

The function returns the values encoded in an HTML form as
string and number properties in an object. Disabled form ele-
ments, buttons, and other non-value form elements are
skipped. Multi-select elements are returned as an array of
string values.

The names of the form elements will be the same as the prop-
erty names in the returned object. Upper and lower case will be
maintained in the property names.

Parameter: formNode DOM form element used to extract form element names and
values.

The formNode may be a reference to a form DOM element. It
may also be a string containing the id of the form element.

One of the most useful features of this function is that the form node can be identi-
fied by either a reference to a DOM node or by the id of the node.

Usage Example
This example assumes the existence of the following form.

<form action="submitForm" name="userInfo" id="form1" method="POST">

First Name: <input type="text" name="firstName"/>

Last Name: <input type="text" name="lastName"/>

<input type="submit">

</form>

Notice how we are now using the id attribute in the form tag.The following func-
tion call returns an object representing the form.

270 Chapter 15 Ajax Remoting

http://lib.ommolketab.ir
http//lib.ommolketab.ir

var userData = dojo.formToObject("form1");

The object userData looks like this:

{"firstName": "Jim Bob", "lastName": "Jones"}

Notice that there is no property for the “submit” button when using
dojo.formToObject.

15.5.2 Dojo Function dojo.objectToQuery
When using XHR to make a server request, it is typical to send some data along.We’ve
already discussed ways of doing this using xhrGet and xhrPost, which both allow
query strings to be passed along either in the URL or the body of the request. Because
the program is probably working with this data in the form of an object, it would be
useful to be able to convert the properties in the object to a query string so they can be
easily used for the XHR functions. Dojo provides a function to do this called
dojo.objectToQuery. Let’s review its API in Table 15.7.

Table 15.7 Description of dojo.objectToQuery Function

Method Signature: dojo.objectToQuery(map)

Summary: This function will return a string containing the properties of an
object as name/value pairs in the form of a URL query.

The query string will be URL-encoded, which means that special
characters will be converted to their URL values (i.e., a space
will be converted to %20).

Parameter: map Object to be copied as a query string. The object should only
contain properties than can be represented as a number of a
text string.

Array properties will get translated to a series of name/value
pairs with the same name corresponding to the name of the
property.

Properties that refer to other objects will be ignored.

Following is an example of an object to be converted along with the conversion:

qObject = new Object();

qObject.id = 100;

qObject.name = "John Smith";

qObject.type = "RETAIL";

qObject.active = true;

qObject.setStatus = function(status) {this.status = status};

qObject.owner = qObject;

var queryString = dojo.objectToQuery(qObject);

27115.5 Working with Forms

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The resulting query string looks as follows:

id=100&

name=John Smith&

status=RETAIL&

active=true&

setStatus=function (status) { this.status = status; }&

owner=[object Object]

Notice a few things about the output.We’ve added line breaks after each name/value
pair to make it easier to read.Also the URI encoding has been removed, again for read-
ability. One of the properties of the object is a function, setStatus. It is converted to its
equivalent string, probably not very useful to send back to the server, but sent it will be.
Also another property, owner, is a reference to an object (in this case, itself). It is convert-
ed to a string, owner=[object Object], which is the default string used to describe an
object.Again, this is probably not very useful information for the server. In general,
objects to be converted to query strings should be maps containing properties that are
either strings, numbers, or booleans.

15.5.3 Dojo Function dojo.formToQuery
When the user clicks a “submit” button on a standard HTML form, the values of the
form elements are automatically converted to a string containing name/value pairs, and
that string is sent to the server either at the end of the URL (for GET requests) or as
part of the HTTP body (for POST requests). However, when creating an Ajax request,
this conversion of form elements does not occur automatically and must be done manu-
ally with JavaScript. Dojo provides a function to do the conversion: dojo.formToQuery.
Following is the API for this function.

Table 15.8 Description of dojo.formToQuery Function

Method Signature: dojo.formToQuery(formNode)

Summary: This function will return an string containing name/value pairs
corresponding to the form elements and values in a form from
the DOM.

The string will be URL-encoded, which means that special char-
acters will be converted to their URL values (i.e., a space will
be converted to %20).

The names of the form elements will be the same as the prop-
erty names in the returned object.

Parameter: formNode Form whose elements will be copied to a string.

The formNode may be a reference to a DOM element, which
is a form. It may also be a string containing the id of the form
element.

272 Chapter 15 Ajax Remoting

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Let’s review the following HTML form and see the resulting query string.

<form action="submitForm" name="userInfo" method="POST">

First Name:

<input type="text" name="firstName" value="Jim Bob"/>

Last Name:

<input type="text" name="lastName" value="Jones"/>

<input type="submit">

</form>

The following code would be used to create the query string representing the form:

query = dojo.formToQuery("userInfo");

The value of the query string would be firstName=Jim%20Bob&lastName=Jones.
Notice that the space in Jim Bob has been replaced with %20.That is URL encoding.
Also notice that the query string does not being with ?.When adding the query string
to the end of a string with a URL, you will have to manually concatenate the ? as in the
following example:

query = dojo.formToQuery("userInfo");

URL = "submitform.jsp" + "?" + query;

When submitting the query data using an Ajax request, just set the postData property.

query = dojo.formToQuery("userInfo");

dojo.xhrPost({

postData: query,

url: "getData.html",

handleAs: "text",

load: function(response) {

document.getElementById("dataArea").innerHTML = response;

}

);

27315.5 Working with Forms

http://lib.ommolketab.ir
http//lib.ommolketab.ir

15.5.4 Dojo Function dojo.formToJson
Because JSON is the lingua franca of the JavaScript world for representing objects, you’ll
find that you often want to use it for formatting data to be sent to the server.This func-
tion will take a form and produce the equivalent JSON object.

Table 15.9 Description of dojo.formToJson Function

Method Signature: dojo.formToJson(formNode)

Summary: This function will return an object with properties corresponding
to the form fields in the form specified in formNode.

Returns the values encoded in an HTML form as string proper-
ties in an object. Disabled form elements, buttons, and other
non-value form elements are skipped. Multiselect elements are
returned as an array of string values.

The names of the form elements will be the same as the
property names in the returned object.

Parameter: formNode Form to be copied to an object.

The formNode may be a reference to a DOM element, which
is a form. It may also be a string containing the id of the form
element.

15.5.5 Dojo Function dojo.queryToObject
Sometimes it is useful to take an existing query string and create a new object that con-
tains properties corresponding to the name/value pairs in the query string.The
dojo.queryToObject function does this.This may be useful when the server sends
back name/value pairs as the XHR response.

Table 15.10 Description of dojo.queryToObject Function

Method Signature: dojo.queryToObject(queryString)

Summary: This function will return an object with properties correspon-
ding to the name/value pairs in a query string. If the query
strings contain multiple values for the name, an array
property will be created for that name.

Parameter: queryString Query string to be used to create a new object containing
properties corresponding to the name/value pairs in the
query.

274 Chapter 15 Ajax Remoting

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Summary
Remoting is the submission of an HTTP request by the browser without refreshing the page
when the response comes back. It is accomplished using the XMLHttpRequest (XHR)
JavaScript Object.

Dojo provides two functions that wrap the creation of an XHR request to make it easier to
use:

dojo.xhrGet…submit an HTTP Get request

dojo.xhrPost…submit an HTTP Post request

Submitting data captured on HTML forms is a typical use for Dojo Remoting. It is typical to
convert the form data into name/value pairs. Dojo provides a number of useful functions
for working with form data and query strings:

dojo.formToObject…Create an object containing properties from form elements

dojo.objectToQuery…Create a query string from object properties

dojo.formToQuery…Create a query string from form elements

dojo.formToJson…Create a JSON string from form elements

dojo.queryToObject…Create an object from name/value pairs in a query string

Once we’ve used Dojo’s excellent remoting capabilities to retrieve some data from
the server, we’ll probably want to update some elements on the page with the new data.
The next chapter shows us how to work with DOM elements.

27515.5 Working with Forms

http://lib.ommolketab.ir
http//lib.ommolketab.ir

16
Working with the DOM

You look mahvelous.

—Billy Crystal (his Saturday Night Live impression of Fernando Lamas)

A web site is defined as much by how it looks as by what it does.And Ajax raises the
bar in the area of user interface and visual design.There is very much an expectation
today that your site should look “mahvelous.” So any good Ajax library worth its salt
should provide us lots of ways of improving the look of a site. Not only does Dojo pro-
vide many full-blown widgets, as we explored in Part II,“Dojo Widgets,” but it also
provides techniques for working with individual DOM elements that may not even be
part of a widget.This chapter explores ways of identifying DOM elements and then
manipulating them in some way—usually by changing some visual aspect.

16.1 Finding Needles in the DOM Haystack
Dojo widgets, which we’ve already discussed in Part II, are certainly part of the DOM.
But what about DOM elements that aren’t associated with widgets? They require some
attention also. Let’s do a quick review to remind us what the DOM is. It stands for
Document Object Model and is the browser’s internal representation of the web page.
We think of a browser as a piece of software that takes an HTML file and displays the
page to the computer monitor.This is known as rendering in display terminology.
However, that understanding of the browser is actually not quite correct.

What a browser really does is take an HTML file and convert it into an internal rep-
resentation of the file called a Document Object Model and then renders the DOM.
Each HTML tag is converted to one or more DOM elements.This may sound like a
distinction without a difference, but it is actually quite important in the Ajax world.After
the DOM is built, it doesn’t have to be static.We can manipulate elements in the DOM,
and the browser will instantly rerender the DOM and change the display that the user

http://lib.ommolketab.ir
http//lib.ommolketab.ir

sees. Now, not all DOM changes necessarily cause the display to change, but that is most
typical. Because Ajax applications rely so heavily on manipulating the DOM, it is impor-
tant for developers to be able to identify DOM elements and to manipulate them. It is
possible to do that using JavaScript alone, but we’ll use Dojo to make it easier. Let’s talk
first about how to find DOM elements.

16.2 Dojo Query
The DOM for a typical page can easily contain hundreds and sometimes even thousands
of elements, also known as element nodes or just plain nodes. If we need to perform some
operation on a subset of elements, we need a way to quickly identify those elements.The
DOM provides us a technique for iterating through itself that involves getting all the
child nodes for each node (beginning with the root node) and looping through them.
When a node also has children, we can iterate through those as well. Eventually we
could walk through the entire DOM tree, testing each element node for whatever prop-
erties we are looking for.This brute force method isn’t very elegant and doesn’t perform
very well.Are there any alternatives?

One technique is to provide direct access to a DOM element by specifying its id
within the HTML as shown below here:

<div id="target"></div>

We can then use the document.getElementById("target") function to reference
the specific DOM element. However, this technique is limited because we can only find
a single element.What about when we want to find a group of elements that possess
some common property? There is another DOM method available to us,
document.getElementsByTag(), which returns an array of the elements for a specific
HTML tag such as <p> for paragraph elements. But this function is limited to only
allowing us to specify a tag.What if we want all the elements that use a particular CSS
style?

Cascading Style Sheets (CSS) already provide a method for finding DOM elements
by using a technique it calls selectors. Selectors are strings that identify DOM elements
that styles should be applied to.The selector syntax is very rich and can be used to find
elements based on a variety of properties. Following is an example of a very simple
selector that might be part of your CSS style sheet:

h1 {color: blue}

This rule finds all the DOM elements for the <h1> tags and sets their color style
property to blue, making the text within the element blue.The “h1” part of the rule is
the selector, which tells the browser which set of DOM elements that the rule applies to.
Selectors are very powerful, but they can only be used when applying styles in CSS.

Wouldn’t it be nice if we could somehow use the CSS selector syntax to retrieve a
list of elements to be used for other purposes? Yes, it would be nice, but that is not part
of the JavaScript language. However, it turns out that Dojo can give us that capability.

278 Chapter 16 Working with the DOM

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The dojo.query() method takes a selector string as an argument and returns a list of
unique DOM elements that match the string.Although this is an extremely powerful
technique, the function call is very simple. But there is a little problem.You need to
understand the selector syntax to use dojo.query(). So even though it isn’t formally
a part of Dojo, let’s spend some time getting to know the selector syntax.This will
be a valuable exercise given that we’ll not only be able to use our knowledge in
dojo.query(), but we’ll also be able to better use CSS selectors for their original
purpose—applying styles in style sheets!

16.2.1 CSS Selectors
There are many types of selectors, and the syntax can be somewhat challenging for the
more advanced ones. But it isn’t important to understand every type of selector.We’ll get
tremendous power by just knowing the basics. So let’s start our review of selectors with
the simplest types and work our way upward from there.

16.2.1.1 Simple Selectors
Let’s review some simple CSS selectors just to get a feel for them.The most basic selec-
tors correspond to HTML tags, such as in the following example:

p {color: blue}

Remember, this selector is just the “p” that begins the line, not the rest of the style
definition.This selector finds all the elements in the DOM created from the <p> tags in
the HTML. If additional elements of type <p> were added to the DOM using
JavaScript, they would be found also.

16.2.1.2 Selector Grouping
Selectors can be put together by separating them with a comma.This is the equivalent of
combining the two sets of elements identified by each individual selector.Any overlap
between the sets would be removed.The new set would not repeat an individual DOM
element even if it had been identified in each individual selector.The following example
shows selector grouping:

p, h1, h2 {color: blue}

This would identify a set of all <p>, <h1>, and <h2> DOM elements.

16.2.1.3 Element ID Selectors
Selectors may identify DOM elements by the id of the element. Place the “#” character
in front of the element id as in the following example:

#target {color: blue}

This example would find the DOM element whose id is “target,” which could be
specified in the HTML sample shown here:

<div id="target"></div>

27916.2 Dojo Query

http://lib.ommolketab.ir
http//lib.ommolketab.ir

16.2.1.4 Class Attribute Selectors
Style properties are often grouped together and named.The following example defines a
class called “plainText,” which can be applied to any element associated with that class.
Use the “.” character at the beginning of the class name.

.plainText {color: blue}

This example would find the DOM element whose class is “plainText” that could be
specified in the HTML sample shown here:

<div id="target" class="plainText"></div>

It is also possible that the class might have been assigned programmatically using
JavaScript.

16.2.1.5 Structural Selectors
Sometimes it is useful to only select an element if it is part of some other element or
element branch.These are called structural selectors. Just list the types separated by spaces
with the highest level element type first. For example, you may want to find paragraph
elements but only if they are part of a div element.The following example shows how
you would do this.

div p {color: blue}

This example would find the DOM element of type p but only if it is a child or
descendent of a div type. In the following HTML code, the first <p> element would be
found, but not the second.

<div><p>Hello</p></div>

<p>Good-bye</p>

16.2.1.6 Attribute Selectors
Element nodes in the DOM can have attributes associated with them. Sometimes you
may want to find all the elements that have a particular attribute or have a particular
value for an attribute.The technique for creating attribute selectors is to include the
attribute name in square brackets:

[height] {color: blue}

This example would find all DOM elements that have a height attribute regardless
of the actual value assigned to height.

One of the most common uses for this selector is to find all the DOM elements that
need to be converted to Dojo widgets. Remember, when we want to replace an element
with a widget, we assign the attribute dojoType to the widget as the following code
demonstrates for a dijit.form.ValidationTextBox widget.

<input type="text" id="firstName" name="firstName"

dojoType="dijit.form.ValidationTextBox"

required="true"

/>

280 Chapter 16 Working with the DOM

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The dojo.parser needs to find all the elements containing an attribute of
dojoType.The following code is taken from the Dojo source code for dojo.parser
and shows the use of an attribute selector to find all the elements that need to be trans-
formed to Dojo widgets.

var list = d.query('[dojoType]', rootNode);

16.2.1.7 Other Selectors
There are many additional selectors available to us. I’ve included a table from the specifi-
cation to give you a flavor of them. Some of the selectors allow a style to be applied to a
specific part of an element (such as the first line).These don’t apply to dojo.query
because it is used to find the element and not to apply the style.

The specification describes more complex selectors, and I’d recommend that you read
the specification for more detail.1

Table 16.1 Other CSS Selectors

Pattern Meaning Type of Selector

* Matches any element. Universal selector

E Matches any E element (i.e., an element Type selectors
of type E).

E F Matches any F element that is a descendant Descendant selectors
of an E element.

E > F Matches any F element that is a child of Child selectors
an element E.

E:first-child Matches element E when E is the first child The :first-child
of its parent. pseudo-class

E:link Matches element E if E is the source anchor The link
E:visited of a hyperlink of which the target is not yet pseudo-classes

visited (:link) or already visited (:visited).

E:active Matches E during certain user actions. The dynamic
E:hover pseudo-classes
E:focus

E:lang(c) Matches element of type E if it is in (human) The :lang()
language c (the document language specifies pseudo-class
how language is determined).

E + F Matches any F element immediately Adjacent selectors
preceded by an element E.

E[foo] Matches any E element with the “foo” Attribute selectors
attribute set (whatever the value).

28116.2 Dojo Query

1. http://www.w3.org/TR/REC-CSS2/selector.html Copyright © World Wide Web Consortium,

(Massachusetts Institute of Technology, Institut National de Recherche en Informatique et en

Automatique, Keio University). All Rights Reserved.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 16.1 Continued

Pattern Meaning Type of Selector

E[foo=”warning”] Matches any E element whose “foo” Attribute selectors
attribute value is exactly equal to
“warning.”

E[foo~=”warning”] Matches any E element whose “foo” Attribute selectors
attribute value is a list of space-separated
values, one of which is exactly equal
to “warning.”

E[lang|=”en”] Matches any E element whose “lang” Attribute selectors
attribute has a hyphen-separated list of
values beginning (from the left) with “en.”

DIV.warning HTML only. The same as Class selectors
DIV[class~=”warning”].

E#myid Matches any E element id equal to “myid.” ID selectors

Dojo also provides support for the CSS 3 Specification that includes some additional
selector types that are beyond the scope of this discussion.Again, more information can
be found in the specification.2

16.2.2 Using Selectors in dojo.query
The technique for using a selector to find a set of DOM elements using Dojo is
straightforward. Just pass the selector as a string to the dojo.query function. For exam-
ple, to find all the <h1> elements, use the following code.

elementList = dojo.query("h1");

More complex selectors require a more complex selector string, but the syntax for
getting the elements is still the same.To find all the paragraph elements that are
descendents of a div element, use the code shown here:

elementList = dojo.query("div p");

And the syntax doesn’t get any more complicated—although the selector strings do!
Here’s another example.This one uses the class attribute selector just described to find all
the elements that are associated with the class “plainText.”

elementList = dojo.query(".plainText");

The dojo.query function is part of base Dojo.This means that you don’t need to
include a dojo.require statement to bring the function into your page. Just call the
function from your code.

282 Chapter 16 Working with the DOM

2. The CSS 3 Specification can be viewed at the following link: http://www.w3.org/TR/2001/

CR-css3-selectors-20011113/.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

16.2.3 Using DOM Elements Found by dojo.query
What can you do with the elements from the DOM after you find them using
dojo.query? The short answer is that you can do anything with them you want.
Typically though, you would probably want to change some style property, move the
elements, make them visible, hide them, or perform some kind of special effect.All these
things can be done using some special features of Dojo known as animation and effects.

16.3 Animation
For me, the term “animation” brings to mind Saturday mornings as a child, being glued
to the television, watching hour after hour of cartoons.And actually, in terms of explain-
ing animation in Dojo, this may be an apt metaphor.Thinking about cartoons will help
us understand some things about animation.

16.3.1 Understanding Animation
A cartoon is a series of fixed images that when, presented in sequence, provide the illu-
sion of movement or action. It turns out that this is exactly the same process used by
Dojo. Let me give you an example.A well-known web design company in Chicago,
37signals, developed a method of highlighting DOM elements whenever they changed
due to an Ajax request.The method requires that the background color of the element
be changed to yellow and then the background color should slowly fade back to white
(or whatever the original background color was).They called this the Yellow Fade
Technique (YFT) for obvious reasons.

Exactly how is the effect performed? We simply set the background color of the ele-
ment to yellow.The following code shows how we would do this for an element whose
id is “div1”:

document.getElementById("div1").style.background = #FFFF00;

To fade the background color back to the original background color, we just have to
do a little math. Remember that the Red/Blue/Green (RGB) color scheme used by the
web consists of hexadecimal representations of each of the colors. So yellow is represent-
ed in the values in Table 16.2.

Table 16.2 Selected RGB Hex and Decimal Values Comparison

Color RGB Hex Value RGB Decimal Value

Red FF 255

Green FF 255

Blue 0 0

We’ll use the decimal values instead of hexadecimal. So the three colors are represent-
ed by the range of numbers from 0 (no color at all) to 255 (full color). I like to think of
each color as a flashlight with 256 different power settings.

28316.3 Animation

http://lib.ommolketab.ir
http//lib.ommolketab.ir

It never strikes me as intuitive, but in the world of computer monitors, red and green
mixed together is yellow! Let’s say the original background color was white (RGB value:
255,255,255).To produce the fade, we simply need to iterate through a series of fixed
values for color until we reach the value we are looking for.

For example, starting with the color yellow and fading back to white, we would loop
through the following values for background color:

255, 255, 0

255, 255, 1

255, 255, 2

And so on and so on, all the way to 255, 255, 255.
At each iteration we would set the new background color and pause for a bit before

moving on to the next value.Think of the browser as showing us 256 distinct images,
each having a different background color for the element we’re working with.We’ll call
each image a frame (as Dojo does), and by iterating quickly through the frames, it would
appear as through the background is fading from yellow to white. So we might use the
following code to perform out looping:

for (i = 0; i < 256; i++) {

color = "rgb('256, 256", + i + "')";

document.getElementById("div1").style.background = color;

}

The problem with this code is that the frames will go by so quickly that we won’t
even get a chance to see them. It will look like the last frame just suddenly appeared. In
other words, the yellow background will appear for only a few milliseconds or not at all.
Also while the JavaScript is performing the loop, no other code execution is possible.
This could be a more serious problem when we use a different property that might
include many more iterations.

Using a special JavaScript function called setTimeOut can solve both these problems.
It allows us to specify a function to be executed and a delay before that function is run.
This allows other JavaScript to run while the browser is waiting for the time-out func-
tion to run again.We’ll modify our code to use this new function:

var FADE_BLUE = 0;

function yellowFade() {

el = document.getElementById("fade_target");

color = "rgb("255, 255, " + FADE_BLUE + ")";

FADE_BLUE = FADE_BLUE + 1;

el.style.background = color;

if (FADE_BLUE >= 256) {

return;

284 Chapter 16 Working with the DOM

http://lib.ommolketab.ir
http//lib.ommolketab.ir

} else {

setTimeout(yellowFade, 1);

}

The function yellowFade would have to been called from somewhere the first time,
but once it starts it runs for a single value of FADE_BLUE and then kicks off another iter-
ation by calling the setTimeout function, which will run one millisecond later. If you
run this code you’ll find that the effect is rather slow because the browser doesn’t run
the code right away; it takes a little longer than a single millisecond to start the next iter-
ation.A better approach would be to lengthen the delay and to increase the increment
size for changing the color. Not too complicated, but more than we really want to deal
with every time we create some kind of visual effect. Isn’t there an easier way? We’ll see
shortly that Dojo provides a wrapper around this technique in the form of the
dojo.animateProperty function. It hides the details of changing the property values
and running the setTimeout function. Let’s explore how we can use this new Dojo
function to simplify the creation of animations.

16.3.2 Dojo Animation Function
Certainly it is possible to use JavaScript to create very complex visual effects just by
using the technique of changing a style property value repeatedly over a period of time.
So we already have in our hands the tool we need to build wonderful special effects.
However, Dojo can make this technique much easier to use by providing a simple func-
tion call to do all the necessary coding for us. Dojo provides a function,
dojo.animateProperty, which does this all for us.

Table 16.3 Description of dojo.animateProperty Function

Method Signature: dojo.animateProperty(node, properties,
duration, rate)

Summary: This function will iterate over values of a property on a DOM
element beginning with the current value (or a stated value) of
the property and extending to the specified ending value in the
arguments. The effect of the iteration is to produce a visual
change to the element.

This function doesn’t perform the animation. It actually returns
an object that represents the animation. To run the animation,
execute the play() method of the returned object.

Parameter: node Id of a DOM element or a DOM node reference.

Parameter: properties An object containing properties with names corresponding to
actual properties within the DOM element’s style object. For
example, this object could have a property called background.
Additionally, each of the properties would reference an object
containing beginning and ending values for the property along
with any unit of measure for that property.

Each property object may have a start, end, and unit property.

28516.3 Animation

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 16.3 Continued

Parameter: duration The time in milliseconds the animation will take to run. This
parameter is optional.

Parameter: rate The time in milliseconds to wait before advancing to next frame.
This parameter is optional.

Following is an example of its use.

var animation = dojo.animateProperty({

node: dojo.byId("target"),

duration: 1500,

properties: {

backgroundColor: { end: "white" }

}

});

animation.play();

This example iterates over a color property from whatever the current background
color is to the color “white,” spanning a time of 1.5 seconds.To the user it looks like the
element’s background color slowly fades to white.The preceding example achieves the
same effect as we built manually in section 16.3.1 by iterating the style.background
property ourselves. However, I think you’ll agree that using the Dojo function simplifies
the code that we have to write.

And although our example is fairly simple, we can use dojo.animateProperty to
provide more complex animations that cycle through multiple style properties at once.
Following is an example from the Dojo documentation that shows just that:

dojo.animateProperty({

node: node, duration:2000,

properties: {

width: { start: '200', end: '400', unit:"px" },

height: { start:'200', end: '400', unit:"px" },

paddingTop: { start:'5', end:'50', unit:"px" }

}

}).play()

This more complex effect will vary three different properties over a period of two
seconds.We now have the tool to create almost any visual effect we can think of but,
even better, Dojo has pre-packaged some standard effects for us.

16.3.3 Standard Animation Effects
Some animations are so common that Dojo provides shortcut functions to create them.
They could be built by running one or more complex dojo.animateProperty func-
tion calls and a varying a number of properties at the same time, but by having a simple
Dojo function with a descriptive name, we can achieve the same goal more directly. For

286 Chapter 16 Working with the DOM

http://lib.ommolketab.ir
http//lib.ommolketab.ir

example, it is often useful in an Ajax application to move a DOM element from one
position on the page to another.We could do this by using dojo.animateProperty
and varying the top and left properties, but instead we can use the dojo.fx.slideTo
function and specify only the final position rather than the starting and ending values of
each property.This and other common effects are contained in the dojo.fx package.
Let’s discuss these functions now.

16.3.3.1 dojo.fx.slideTo

This function allows you to “slide” a DOM element around the screen. Rather than just
redrawing it in a new location, this effect shows the element at intermediate locations so
that it appears to move.

Table 16.4 Description of dojo.fx.slideTo Function

Method Signature: dojo.fx.slideTo(node, left, top, unit)

Summary: This function returns an animation object that will move a DOM
element from its current position to a new position specified by
the arguments.

Parameter: node DOM element to be moved.

Parameter: left The left position to which the element should be moved. This
represents the value of the left style property of the element.
Don’t include the unit of measure.

Parameter: top The top position to which the element should be moved. This
represents the top style property of the object. Don’t include
the unit of measure.

Parameter: unit The units that the left and top properties are specified in (i.e.,
px for pixels).

Following is an example of its use.
dojo.fx.slideTo({

node: dojo.byId("target"),

left:"100",

top:"50",

unit:"px" }).play()

This example moves a DOM element whose id is “target” from whatever its current
position is to a new position where the element’s upper left corner is 50 pixels from the
top border of the browser window and 100 pixels from the left border of the browser
window. Remember that this function simply returns an animation object.To run the
animation you, must execute its play method as shown in the example.

16.3.3.2 dojo.fx.wipeOut

This function may sound like it has something to do with riding a surfboard, but it does
not. However, like a surfer who “wipes out,” the DOM element that this effect operates
on also disappears beneath the waves.Think of this effect as causing the DOM element

28716.3 Animation

http://lib.ommolketab.ir
http//lib.ommolketab.ir

to disappear beginning from the bottom of the element to the top.Another way to pic-
ture this effect is to imagine what would happen if you placed an eraser at the bottom of
the element and “wiped up.”You would be wiping out the element.

Table 16.5 Description of dojo.fx.wipeOut Function

Method Signature: dojo.fx.wipeOut({node, duration, onEnd})

Summary: Returns an animation that will shrink the element from its
current height to 1px and then hide it.

Parameter: DOM element on which the “wipe out” effect will be performed.

node

Parameter: duration Length of time in milliseconds over which the effect will occur.

Parameter: onEnd Function to be executed after the effect is run.

Following is an example of its use.

dojo.fx.wipeOut({

node: dojo.byId("target"),

duration: 500

}).play()

This code causes the DOM element to disappear over a period of half a second (500
milliseconds).The way that it works internally is that the element’s height is changed
from the original height to a new height of zero over the duration of the effect and then
hidden.The original element takes up no space on the page after it is hidden so any
elements below it are moved up as it disappears.

16.3.3.3 dojo.fx.wipeIn

This function is the inverse of the previous function. It causes an element to reappear
after it has been wiped out using the dojo.fx.wipeOut function. However, the result-
ing look might not be exactly what you imagined.The resulting element might have a
smaller height than it did originally.The reason for this is that there are two ways to set
the height of an element.The first uses the height style property and is used to explic-
itly set the height.The second technique is to let the browser figure out what the height
should be based on the content of the element.The Dojo documentation refers to this as
the “natural” height.After the element’s height is set to zero using dojo.fx.wipeOut,
Dojo doesn’t remember the original height, so it allows the browser to recalculate it
using the “natural” method, which may be different than the original height.

288 Chapter 16 Working with the DOM

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 16.6 Description of dojo.fx.wipeIn Function

Method Signature: dojo.fx.wipeIn({node, duration, onEnd})

Summary: Returns an animation that will expand the node defined in
“node” to its natural height and make it visible.

Parameters: node DOM element on which the effect will be performed.

Parameters: duration Length of time in milliseconds over which the effect will occur.

Parameters: onEnd Function to be executed after the effect is run.

Following is an example of its use.

dojo.fx.wipeIn({

node: dojo.byId("target"),

duration: 500

}).play()

This causes the DOM element to reappear over a period of half a second.

16.3.3.4 dojo.fadeOut

This effect causes the element to gradually disappear. It is similar to dojo.fx.wipeOut
in that by the end of the effect the element is no longer visible, but the technique for
achieving that end is different. In this effect, the element becomes less and less opaque
until it is completely invisible. However, it still takes up room on the page so that sur-
rounding elements don’t get rearranged. It uses the opacity style property of the ele-
ment that can range from 1 (completely opaque) to 0 (completely transparent). Notice
that this effect is in Dojo base and not the dojo.fx package, so no dojo.require
statement is necessary to make it available.

Table 16.7 Description of dojo.fx.fadeOut Function

Method Signature: dojo.fadeOut({node, duration, onEnd})

Summary: Returns an animation that will increase the opacity of the speci-
fied element until it is completely transparent.

Parameter: node DOM element on which the effect will be performed.

Parameter: duration Length of time in milliseconds over which the effect will occur.

Parameter: onEnd Function to be executed after the effect is run. This parameter
is optional.

Following is an example of its use.

dojo.fadeOut({

node: dojo.byId("target"),

duration: 500

}).play()

This example will fade the element specified in node over a period of half a second.

28916.3 Animation

http://lib.ommolketab.ir
http//lib.ommolketab.ir

16.3.3.5 dojo.fadeIn

This effect is the reverse of the dojo.fadeOut effect. It causes an element that is cur-
rently invisible to gradually become visible. It uses the reverse technique that
dojo.fadeOut uses. It changes the opacity style property of the element from 0 (fully
transparent) to 1 (fully opaque).The element, even when invisible, still takes up space on
the page, so no rearranging of surrounding elements is necessary. Notice that this effect is
in Dojo base and not the dojo.fx package, so no dojo.require statement is necessary
to make it available.

Table 16.8 Description of dojo.fx.fadeIn Function

Method Signature: dojo.fadeIn({node, duration, onEnd})

Summary: Returns an animation that will decrease the opacity of the spec-
ified element until it is completely visible.

Parameters: node DOM element on which the effect will be performed.

Parameters: duration Length of time in milliseconds over which the effect will occur.

Parameters: onEnd Function to be executed after the effect is run.

Following is an example of its use.

dojo.fadeIn({

node: dojo.byId("target"),

duration: 500

}).play()

This example will gradually make a transparent element visible over a period of half a
second.

16.3.3.6 dojo.fx.chain

This function is not an effect in itself. But it does allow you to use multiple effects
together. Given a series of effects, this function will execute each one in order.The
effects are executed one at a time until the last effect is complete.

Table 16.9 Description of dojo.fx.chain Function

Method Signature: dojo.fx.chain(animations)

Summary: This function will run a series of animations one at a time,
starting a new animation only after the prior animation is
complete.

Parameters: animations An array of animation objects to be executed serially and in
order.

Following is an example of its use.

290 Chapter 16 Working with the DOM

http://lib.ommolketab.ir
http//lib.ommolketab.ir

dojo.fx.chain([

dojo.fx.wipeOut({ node:node }),

dojo.fx.wipeIn({ node:otherNode })

]).play()

This example will hide thefirst element and then show the second element.

16.3.3.7 dojo.fx.combine

This function allows you to combine multiple effects. But while dojo.chain runs the
effects serially, this function runs the effects in parallel so they are executing at the same
time.This function starts each effect in the order specified, and then they run essentially
in parallel.

Table 16.10 Description of dojo.fx.combine Function

Method Signature: dojo.fx.combine(animations)

Summary: This function will execute multiple animations concurrently.

Parameters: animations An array of animation objects to be executed at the same time.

Following is an example of its use.

dojo.fx.combine([

dojo.fx.wipeOut({ node:node }),

dojo.fx.wipeIn({ node:otherNode })

]).play()

This example will hide the first element and show the second element at the same time.

16.3.3.8 dojo.fx.Toggler

Many visual effects have a sort of “equal and opposite” effect that can be associated with
them. For example, dojo.fadeOut makes a DOM element disappear, and dojo.fadeIn
brings it back.We can think of one function as hiding the DOM element and the other
function as showing the element.This is such a common idiom that the Dojo team
decided to encapsulate it in a function, dojo.fx.Toggler.You provide an effect that
“shows” the element and a separate effect that “hides” it.The Toggler object has two
methods, show and hide, which you can run to execute the associated effect.These
effects don’t have to work on the same style properties.The “show” effect could change
the background color property while the hide effect could change the height property.

Table 16.11 Description of dojo.fx.Toggler Function

Method Signature: dojo.fx.Toggler({node, hideFunc, showFunc})

Summary: This function will toggle effects on a single DOM element. The
arguments are passed as a single object with properties. As
with the other effects, this function returns an animation object.
To run the effect, the play() method of the animation object
must be executed.

29116.3 Animation

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 16.11 Continued

Parameters: node DOM element on which the effect will be performed.

Parameters: hideFunc Function to be executed that will “hide” the element.

Parameters: showFunc Function to be executed that will “show” the element.

Following is an example of its use.

var t = dojo.fx.Toggler({

node: dojo.byId("target"),

hideFunc: dojo.fx.wipeOut,

showFunc: dojo.fx.wipeIn

});

t.hide();

t.show();

This example will hide the element and then show the element—usually these
wouldn’t be done together.

Summary
The hallmark of most Ajax applications is their ability to manipulate DOM elements to pro-
vide special visual effects.

Dojo provides a powerful function called dojo.query, which lets a developer use CSS
selectors to find DOM elements.

Dojo provides a function, dojo.animateProperty, which can be used to change the
style properties of a DOM element over a specified interval, producing a variety of visual
effects.

Besides providing a generic function for animation, Dojo also provides a number of stan-
dard visual effects including

dojo.fx.slideTo…move a DOM element

dojo.fx.wipeOut…make a DOM element disappear

dojo.fx.wipeIn…make a DOM element reappear

dojo.fadeOut…make a DOM element gradually fade out

dojo.fadeIn…make a DOM element gradually fade back in

Dojo provides a way of running multiple effects together. Use dojo.chain to run effects
in serial and dojo.combine to run effects in parallel.

We’ve reviewed many of the building blocks for Dojo applications in the past chapters.
After we put them all together into a complete application, we might find that we have a
few errors.The next chapter will discuss tools and techniques in Dojo for finding these
errors and debugging our applications.

292 Chapter 16 Working with the DOM

http://lib.ommolketab.ir
http//lib.ommolketab.ir

17
Testing and Debugging

Manager: Did you test that program?
Programmer:Well, it compiled.

—Both the Manager and Programmer chose to remain anonymous
(but you know who they are).

We’ve probably all made a program change that was so small and so straightforward
that we really didn’t need to test it.And then we lived to regret that decision.Why do
developers often avoid testing? One of the reasons is that it isn’t always easy to do. By
providing tools for making testing easier, Dojo encourages developers to do what they
know they should—test, test, and test.We test to find errors, and after we find them, we
must fix them. In this chapter we explore some special features that Dojo provides to aid
in finding errors and fixing them.

17.1 Testing
It is more important to build quality into our programs than to inspect them for quality
after the fact.We should write our code in such a way that we don’t introduce errors.
Easier said than done, of course.And because of that we still need to inspect our pro-
grams for errors.The classic pattern for inspection testing consists of the following steps:

n Select the thing to test
n Prepare test input
n Prepare expected results
n Execute code
n Compare the actual results to the expected results

http://lib.ommolketab.ir
http//lib.ommolketab.ir

An historic difficulty with this approach was that the pieces of our application that we
could easily execute were usually quite large—often entire programs.That meant that
they required lots of input and generated lots of results. Creating a set of expected results
for a single execution pass and then comparing those results with the expected output
was difficult and time-consuming. Fortunately, a real paradigm shift occurred in under-
standing how to do testing that we still benefit from today.What if our program “pieces”
were much smaller? Then they would require less input and generate fewer results.An
important additional benefit is that when the smaller pieces failed, it would be much
more apparent what went wrong because we would be dealing with a much smaller
amount of code. So a testing approach- was developed that focused on the smallest
pieces of executable code possible.These small pieces were called units, and the approach
became knows as unit testing.

17.1.1 Unit Testing
In the JavaScript world, the best candidate on which to perform testing are object meth-
ods. Methods usually contain a relatively small amount of code (or at least should), and
they return a single object for a set of input parameters.A single unit test should execute
a single method for a given set of parameters and can then be compared to a single
result. By testing at this fine-grained level we can make our output comparison very
simple, and the test either fails or succeeds. Understanding the results of the test becomes
straightforward.

17.1.2 DOH—The Dojo Unit Testing Framework
All right, so unit testing is a good thing. But how do we do it? Remember, we’re from
Dojo, and we’re here to help. Dojo provides an excellent framework for helping us
define and run unit tests.This framework is named “doh.” It is pronounced like Homer
Simpson’s famous exclamation: Doh! (often accompanied by a smack to the forehead).
The Dojo team “eats their own dog food.”That is, in industry parlance, they use doh for
testing. Dojo is delivered with an entire suite of unit test scripts that were run on the
various components of Dojo using doh.And we can also use the doh testing framework
to test custom JavaScript code that we write ourselves.

17.1.2.1 Create a New Unit Test
Unit tests typically follow a pattern. Following are the steps that occur inside almost all
unit test methods:

n Create the object whose method is to be tested.
n Execute the method under test with appropriate parameters and get back a result.
n Compare that result to an expected result.

Sometimes these separate steps are combined together in a line of code, but we can
still think of them as distinct. Let’s see an actual example of creating a unit test. First we

294 Chapter 17 Testing and Debugging

http://lib.ommolketab.ir
http//lib.ommolketab.ir

need an object and method to test.We’ll create an object called StringUtils that has a
method countLetters, which can count the number of occurrences of a letter within a
given string. Following is the code to create the constructor for this object:

function StringUtils() {

this.countLetters = function(string, char) {

var count = 0;

for (i=1; i<=string.length; i++) {

if (string[i] == char) count++;

}

return count;

}

}

This code could be included within the <script> tag of a page or in an included
JavaScript file.To create an instance of the object, we would use the new keyword on the
constructor.

var su = new StringUtils();

We can now test the utility method by running it and seeing what results we get.

result = su.countLetters("hello","o");

The value of result should be “1” because there is one occurrence of the letter “o” in
the string "hello".We could just display the result using an alert box. But instead of
using this informal approach to testing, we’ll create the test as a doh unit test.

var testCase = { runTest: function() {

var su = new StringUtils();

result = su.countLetters("hello","o");

doh.assertEqual(1,result);}

}

We’ve created a new object called testCase that contains a function called runTest.
Note that a unit test in doh is actually a JavaScript object itself.The object must contain
certain properties, one of which must be a function called runTest.This is the function
that will be run by doh and contains the test case itself.There are also other possible
properties such as setUp and tearDown, which are run before and after the test meth-
ods, respectively, and can create and remove objects and other resources that the test
method might need.

The last line of code in the preceding example is especially interesting.This is known
as an assert method and is a standard unit test function that compares the output to
the expected results. For the test to succeed, the assert method must evaluate as true.
Sometimes this results in tests that might appear backwards at first. For example, imagine
that our string utility also has a method called hasLetter that returns a true or false
depending on whether a given letter is in a string. Not only do we want to test for the
true condition when looking for a letter we expect to find, but we also want to test for

29517.1 Testing

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the false condition when the function looks for a letter that it should not find. In that
case, we use the assertFalse method as shown here:

doh.assertFalse(su.hasLetter("cat","z"));

Now we can verify that the function works when it doesn’t find the letter. In the
given example, the function hasLetter returns false, but because the assert function
assertFalse expects a false result, the assert method then returns true, which desig-
nates that the test succeeded!

Use the assert functions to compare values returned or created by your functions
against the values you expect—that is, the values you expect if the function operates
properly.You can then make changes to your JavaScript code and run the tests again. If
all the tests still pass, your change has not introduced any new errors. (Or at least your
changes have not introduced errors for the behavior you test, which may be another
matter entirely.)

There are additional assertion methods, including the following:
n assertEquals…compares expected to actual results
n assertFalse…verifies that argument is false
n assertTrue…verifies that argument is true

17.1.2.2 Register Unit Test
We’ve created the test as an object with a runTest property containing the test case.
You might think that the next step would be to run the test, but we first have to let the
doh unit testing framework know about the test.This is done because often we want to
add lots of tests together before we start running them.To register the test, use the
doh.register() function.

doh.register(testCase);

There are a number of variations of this function.They mostly deal with assigning
this test to a group of tests that can be run together.A group is just a collection of unit
tests identified by a single name. For example, to add this test to a group called
"StringUtilsTest" use the following code.

doh.register("StringUtilsTest", testCase);

17.1.2.3 Run Unit Test
Now we need to run the test case.We can use the doh.run() method to execute all the
tests that have been registered with the framework.

doh.run();

The doh framework will execute all the tests that have been registered and disply the
results.

296 Chapter 17 Testing and Debugging

http://lib.ommolketab.ir
http//lib.ommolketab.ir

17.1.2.4 Review Results of Test
The results of the test will be displayed to the console. If you are using Firebug, the
results will display to the Firebug console; otherwise, they will display at the end of
the web page. Following is a screen shot of the test for the countLetters method in
StringUtils.

29717.1 Testing

Figure 17.1 Example of unit testing output

These results show that no errors have been detected.What is the difference between
errors and failures? Failures occur when an assert method has returned a false value.
Errors occur when the test is not able to run.

So we’ve created a unit test, run it, and reviewed the expected results.And it worked!
So we’re done, right? Not quite. Not only are there other types of tests we can perform,
but we’re not even finished with our unit testing. Let’s review the test condition we’re
checking for. Study the code that is in bold type in the example below.

var testCase = { runTest: function() {

var su = new StringUtils();

result = su.countLetters(“hello”,”o”);

doh.assertEqual(1,result);}

}

We’re checking to see if the countLetters method in StringUtils counts the
correct number of occurrences of the letter “o” within the string "hello".And even
though it worked, the method is not fully tested.We may also want to check boundary
conditions. For example, does our method still work if the letter is at the beginning of
the string? Or at the end? What about if the letter is capitalized in the string? Or when
the letter doesn’t occur at all? Now we can see why doh allows us to register tests within
groups—because we’re going to need more then a single test to feel confident that our
method is correct.And we’ll need a group of tests for each of the other methods in our
object to be tested.

How much testing do we need to do? Dojo provides us with a framework to do unit
testing but does not provide us with actual tests to perform. Creating tests is up to us,
and we have to decide when enough is enough.Testing every possible combination of
inputs for a method usually isn’t practical. Remember the 80/20 rule—most of the ben-
efit of testing can be achieved with a relatively small number of test cases.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

17.1.3 Other Types of Testing
Unit testing alone is not enough. Just because a method seems to perform correctly for a
given input doesn’t mean that we are done testing.We need to perform other types of
tests to ensure the validity of our system. Let’s briefly discuss some of the additional types
of testing you need to do.

Integration testing determines if objects are working well together, not just alone as in
the case of unit testing. Functional testing is used to verify that the object actually per-
forms the function that the user expects it to. Stress testing shows us how our system per-
forms under the stress of a heavy user load or large number of transactions.

Certainly all these types of testing are important and must be done. However, Dojo
doesn’t provide any specific support for these are kinds of testing methodologies, so we
won’t say any more about them here.

Note
Although I said I wouldn’t talk about any other testing tools, I can’t quite help myself.
There is a Firefox plugin called Selenium that is excellent for testing user interaction with
a web application. You can get more information and download the plugin at
http://selenium.openqa.org/.

Next let’s discuss what happens when unit testing shows us that our program is failing
in some way. Does Dojo provide any techniques for debugging our application after a
problem is discovered?

17.2 Logging
When good programs go bad it is helpful to know what they were doing when they
crossed the line.A simple debugging technique is to have the program display some out-
put showing the value of a variable. In JavaScript, this can done by using the alert
method.The following line of code could be put into any function to display the value
of x at the time that the alert method runs.

alert("Value of x: " + x);

This code would create a dialog box that would appear on top of the web page.An
example of an alert box is shown in Figure 17.2.This example assumes that x is used in
the program and has the value 7 at the time the alert statement is executed.

298 Chapter 17 Testing and Debugging

Figure 17.2 Example of alert message

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This technique is sometimes described as “the poor man’s debugger.” It gets the job
done, and it works in all browsers—but there are a few problems. One problem is that
you must be sure to remove the code when deploying the application.Your users cer-
tainly don’t want to see these messages and have their work interrupted.

So our dilemma is that we’d like to write some messages to display the internal state
of our code and have those messages be separate from the output of our page.Also, just
to be greedy, we’d like it if we didn’t have to touch any code to turn the messages off
when we move the program out of development.After all, if we believe the benchmarks,
every time we touch code, there is a 5% chance that we unintentionally break some-
thing, so we need to minimize code changes.

17.2.1 Basic Logging
The solution to our problem is to use logging.You may be familiar with logging in
other environments. For example, Java provides a number of logging frameworks such as
the open source log4j or the new logging framework built right into the JDK. Dojo can
give us some of the same functionality of these existing logging frameworks but within
in the JavaScript environment.

To implement logging, Dojo allows us to write messages to a separate area on our
page called the console.The console will appear at the end of the web page. However, if
we happen to be using Firebug, which is a plug-in for Firefox, Dojo will write log mes-
sages to the Firebug console instead.To add logging to your page, set the isDebug
attribute to true in the <script> tag, which references Dojo as shown in the code
here (the attribute is in bold):

<script type="text/javascript"

src="../dojo-release-1.1.0/dojo/dojo.js.uncompressed.js"

djConfig="parseOnLoad: true, isDebug: true”></script>

Now you can write log messages whenever you want. Insert a call to console.log
anywhere in your JavaScript where you’d like to display the internal state of the program.

console.log("Value of x: ", x);

Now, whenever your program executes the console.log method, output will be
sent to the console.When using Internet Explorer or when using Firefox without
Firebug, the console is attached to the end of the page. Figure 17.3 provides an example
of what the console output would look like in IE.

29917.2 Logging

Figure 17.3 Example of console logging

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can display as many objects in the log message as you like. Simply pass any addi-
tional objects as parameters to the console.log method call.

console.log(a, b, c);

You can easily turn logging off by setting the isDebug attribute to false.

<script type="text/javascript"

src="../dojo-release-1.1.0/dojo/dojo.js.uncompressed.js"

djConfig="parseOnLoad: true, isDebug: false”></script>

Although this is a change to your code, it is certainly small and less invasive then hav-
ing to remove or comment out all the various log messages in your code.And turning
logging back on is a snap. Just set the property back to true.

17.2.2 Advanced Logging
Dojo logging provides some additional methods and configuration options that can be
quite useful.

17.2.2.1 Timer
A very useful feature of the logging mechanism allows us to measure how long it takes
to execute some JavaScript code.We can use a timer that we can turn on using the
console.time() method and then turn off using the console.timeEnd(). Be sure to
pass the name of the timer to the function. By naming the timer, you may have multiple
timings running at one time.The name is arbitrary and is just used to identify the
timing.An example of a simple timer is shown here:

console.time("Timer 1");

// ... some code to be timed

console.timeEnd ("Timer 1");

The amount of time in milliseconds since the timer was started is shown in the
console (see Figure 17.4).

300 Chapter 17 Testing and Debugging

Figure 17.4 Example of timer logging

Using a timer can sometimes be useful, but be careful about certain issues. Don’t
include any user input within the code being timed.Also because of the speed of
JavaScript, single executions of a block of code may not take very much time—often
you’ll see timings of zero as in the preceding example. So repeated executions are usually
necessary before slower code blocks become obvious.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

17.2.2.2 Logging Message Types
There is an interesting variation of the logging framework that allows us to write out
different types of logging messages. Instead of using console.log for all messages, we can
use any of debug, info, warn, or error as the logging method that will write the message
to the console in a different color.This makes viewing a lengthy log file in the console
much easier.Your eyes are immediately drawn to the more important messages first.
Following are examples of writing each of the various types of log messages:

console.error("This is a log message written using console.error()");

console.warn ("This is a log message written using console.warn()");

console.info ("This is a log message written using console.info()");

console.debug("This is a log message written using console.debug()");

console.log ("This is a log message written using console.log()");

The log messages will display in the console as shown in Figure 17.5.

30117.2 Logging

Figure 17.5 Example of different logging message types

The different types of log messages are in different colors.Also there are icons
assigned to some of the types to make them stand out even more. In some logging
frameworks, it is possible to set an option that allows only certain types of messages to
display—this is not yet a feature of the Dojo logging framework.

Summary
Dojo provides a unit testing framework called doh that allows unit tests to be created as
objects that contain a runTest method.

Doh unit tests must be registered using doh.register() and executed using
doh.run().

The console is used to display the results of the unit test execution or in the Firebug con-
sole when using the Firebug plugin for Firefox.

Dojo provides a logging mechanism that will work in most browsers.

The primary logging method is console.log("…log message…").

We’ve now completed our tour of Dojo. Now start developing. Good luck!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

A
AccordianContainer widget, 87

action attribute, 59

adding

client-side validation, 26
address fields, 32-33
city fields, 33
email address fields, 31-32
First Name fields, 27-30
Last Name fields, 30-31
to standard HTML data entry

forms, 13
User Name fields, 31
zip code fields, 33

server-side features to standard HTML
data entry forms, 13

server-side validation, 36
assigning even handler functions,

36-38
making calls to servers, 38-42

widgets to web pages, 51
dijit, 52

address fields

standard HTML data entry forms, 8
validating, 32-33

AIR (Adobe Integrated Runtime), 196

Ajax, 51

history of, 190
remoting, 259-260

Ajax libraries, 35

Ajax Remoting, 268

forms, 269-270
dojo.formToJson, 274
dojo.formToObject, 270
dojo.formToQuery, 272-273
dojo.objectToQuery, 271-272
dojo.queryToObject, 274

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Ajax requests, 35

animation, 283-285

dojo.animateProperty, 285-286
fades, 284
fading background colors, 283
standard animation effects, 286

dojo.fx.chain, 290-291
dojo.fx.combine, 291
dojo.fx.fadeIn, 290
dojo.fx.fadeOut, 289
dojo.fx.slideTo, 287
dojo.fx.toggler, 291-292
dojo.fx.wipeIn, 288-289
dojo.fx.wipeOut, 287-288

AOL, CDN (Content Delivery Network), 19

AOP (Aspect Oriented Programming), 251,
256-257

dojo.connect, 257
API (Application Program Interface), 205

dojo.declare, 231-233
Aspect Oriented Programming. See AOP

assigning

event handler functions, 36-38
event handlers

with dojo.connect, 252-253
usage examples, 253-254

attribute selectors, 280

attributes, 77

action, 59
autoComplete, 44
class, 74
constraints, 54
dojoType, 52-53
execute, 61
forceValidOption, 44
onChange, 45

special Dojo attributes, 29
ValidationTextBox, 34

B
behavioral methods, 78

binding Dojo data stores to widgets, 49

build.txt, 202

buildRendering, 82

Burke, James, 205

Button widget, 83

C
calls to servers, making, 38-42

Cascading Style Sheets (CSS), 137, 214

CDN (Content Delivery Network), 19

CheckBox widget, 84

city fields

standard HTML data entry forms, 10
validating, 33

class attribute, 74

class attribute selectors, 280

classes, 229-230

dijit.form._FormWidget class, 92-93
methods, 93-94
properties, 93

dijit.layout._LayoutWidget, 138
dojo.declare API, 231-233
dojo.extends, 234
dojo.mixin, 233
inheritance, 231
superclasses, 231

client-side validation, adding, 26

address fields, 32-33
city fields, 33
email address fields, 31-32
First Name fields, 27-30

304 Ajax requests

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Last Name fields, 30-31
To standard HTML data entry

forms, 13
User Name fields, 31
zip code fields, 33

code for Dojo Toolkit, including, 19-20

code changes, reviewing in tutorials, 21-22

ColorPalette widget, 89

ComboBox widget, 44

ComboButton widget, 84

comments fields, standard HTML data entry
forms, 11-12

components of Dojo widgets, 70

HTML tags, 70-74
JavaScript, 76-78
styles, 74-76

console.log, 38

console.log method, 299

constraints attribute, 54

Content Delivery Network (CDN), 19

ContentPane widget, 87

counter, 225

create method, Widget, 81

CSS (Cascading Style Sheet), 137, 214

CSS selectors, 279

attribute selectors, 280
class attribute selectors, 280
dojo.query, 282-283
element ID selectors, 279-282
selector grouping, 279
simple selectors, 279
structural selectors, 280

D
data

getting data entered by users, 39-40
sending to servers, 40-41, 45-49

data sources, exposing, 46-48

data validation, improving, 4

DateTextBox widget, 53-55, 86

decimal values, 283

DHTML (dynamic HTML), 189-190

Dialog widget, 89

dijit, 52, 69

first-level directories, 201
dijit.byID(), 52

dijit.ColorPalette, 172

dijit.Dialog, 164-165

dijit.Editor, 184

dijit.form.Button, 96-97

dijit.form.CheckBox, 104-105

dijit.form.ComboBox, 128-129

dijit.form.ComboButton, 100-101

dijit.form.CurrencyTextBox, 120-121

dijit.form.DateTextBox, 125-127

dijit.form.DropDownButton, 98-99

dijit.form.FilteringSelect, 131-132

dijit.form.Form, 133-134

dijit.form.MappedTextBox, 114-115

dijit.form.NumberSpinner, 179-180

dijit.form.NumberTextBox, 118-119

dijit.form.RadioButton, 106-107

dijit.form.RangeBoundTextBox, 116-117

dijit.form.Slider, 176-178

dijit.form.Textarea, 183

dijit.form.TextBox, 108-110

dijit.form.TimeTextBox, 122-124

dijit.form.ToggleButton, 102-103

dijit.form.ValidationTextBox, 111-113

dijit.form._FormWidget, 80

dijit.form._FormWidget class, 92-93

methods, 93-94
properties, 93

305dijit.form._FormWidget class

http://lib.ommolketab.ir
http//lib.ommolketab.ir

dijit.InlineEditBox, 181-182

dijit.layout.AccordionContainer, 150-151

dijit.layout.ContentPane, 140-142

dijit.layout.LayoutContainer, 143-144

dijit.layout.SplitContainer, 145-147

dijit.layout.StackContainer, 148-149

dijit.layout.TabContainer, 152-154

dijit.layout._Layout, 80

dijit.layout._LayoutWidget, 138

methods, 139
dijit.Menu, 157-161

dijit.MenuItem, 157

dijit.MenuSeparator, 157

dijit.PopupMenuItem, 158

dijit.ProgressBar, 170-171

dijit.Toolbar, 162-163

dijit.Tooltip, 168

dijit.TooltipDialog, 166-167

dijit.Tree, 173-175

dijit._Container, 80

dijit._Templated, 79, 83

dijit._Widget, 79-82

methods, 80-81
directories

first-level directories, 201
second-level directories, 202-203

DIV tags, 137

Document Object Model. See DOM

document.getElementById, 278

doh.register(), 296

doh.run, 296

Dojo, 4, 12

description of, 192-193
downloading, 19
future of, 197
goals for using, 4-5

history of, 191
licensing, 195
people who should use Dojo, 194-195
problems Dojo will solve, 193-194
purpose of, 191-192

dojo, first-level directories, 201

Dojo base module, 205

dojo.array module, 208
dojo.color module, 208-209
dojo.connect module, 206
dojo.declare module, 206
dojo.Deferred module, 207
dojo.event module, 209
dojo.json module, 207
dojo.lang module, 205-206
dojo._base.fx module, 216-217
dojo._base.html module, 209-211
dojo._base.NodeList module, 211-214
dojo._base.query module, 214-215
dojo._base.xhr module, 215-216

Dojo core modules, 217-219

features of, 219-220
Dojo data stores, 48-49

binding to widgets, 49
Dojo event objects, 255

Dojo form widgets, 91

creating, 60-61
dijit.form.Button, 96-97
dijit.form.CheckBox, 104-105
dijit.form.ComboBox, 128-129
dijit.form.ComboButton, 100-101
dijit.form.CurrencyTextBox, 120-121
dijit.form.DateTextBox, 125-127
dijit.form.DropDownButton, 98-99
dijit.form.FilteringSelect, 131-132
dijit.form.Form, 133-134

306 dijit.InlineEditBox

http://lib.ommolketab.ir
http//lib.ommolketab.ir

dijit.form.MappedTextBox, 114-115
dijit.form.NumberTextBox, 118-119
dijit.form.RadioButton, 106-107
dijit.form.RangeBoundTextBox,

116-117
dijit.form.TextBox, 108-110
dijit.form.TimeTextBox, 122-124
dijit.form.ToggleButton, 102-103
dijit.form.ValidationTextBox, 111-113
dijit.form._FormWidget class, 92-93

methods, 93-94
properties, 93

explanation of documentation, 94-95
Dojo layout widgets, 138

dijit.layout.AccordionContainer,
150-151

dijit.layout.ContentPane, 140-142
dijit.layout.LayoutContainer, 143-144
dijit.layout.SplitContainer, 145-147
dijit.layout.StackContainer, 148-149
dijit.layout.TabContainer, 152-154
dijit.layout_LayoutWidget, 138

methods, 139
Dojo Menu widgets, 156

dijit.ColorPalette, 172
dijit.Dialog, 164-165
dijit.Editor, 184
dijit.form.NumberSpinner, 179-180
dijit.form.Slider, 176-178
dijit.form.Textarea, 183
dijit.InlineEditBox, 181-182
dijit.Menu, 157-161
dijit.MenuItem, 157
dijit.MenuSeparator, 157
dijit.PopupMenuItem, 158
dijit.ProgressBar, 170-171
dijit.Toolbar, 162-163

dijit.Tooltip, 168
dijit.TooltipDialog, 166-167
dijit.Tree, 173-175

Dojo objects. See objects

Dojo packaging system, 219

Dojo Toolkit, including code for, 19-20

Dojo unit testing framework, 294

creating new unit tests, 294-296
registering unit tests, 296
reviewing results of unit tests, 297
running unit tests, 296

Dojo widgets, 52

components of, 70
HTML tags, 70-74
JavaScript, 76-78
styles, 74-76

creating your own, 90
DateTextBox widget, 53-55
defined, 68-70
hierarchy of, 78-80

dijit._Templated, 83
dijit._Widget, 80-82

Rich Text Editor widget, 55-58
specialized widgets, 80
TextBox widget, 74
visual overview of, 83

form widgets, 83-86
layout widgets, 86-87
specialized widgets, 88-90

dojo.addOnLoad, 251

dojo.animateProperty, 285-286

dojo.array module, 208

dojo.byID(), 52

dojo.color module, 208-209

dojo.connect

AOP, 257
assigning event handlers, 252-253

307dojo.connect

http://lib.ommolketab.ir
http//lib.ommolketab.ir

dojo.connect module, 206

dojo.date.locale functions, 218

dojo.declare, 77

API for, 231-233
objects, 229

dojo.declare module, 206

dojo.Deferred module, 207

dojo.disconnect, 254

dojo.editor, 55

dojo.event module, 209

dojo.every, 63

dojo.exists, 236

dojo.extends, 234

dojo.formToJson, 274

dojo.formToObject, 270

dojo.formToQuery, 272-273

dojo.fromJson, 247-248

usage examples, 248
dojo.fx.chain, 290-291

dojo.fx.combine, 291

dojo.fx.fadeIn, 290

dojo.fx.fadeOut, 289

dojo.fx.slideTo, 287

dojo.fx.toggler, 291-292

dojo.fx.wipeIn, 288-289

dojo.fx.wipeOut, 287-288

dojo.getObject, 236

dojo.isObject, 237

dojo.json module, 207

dojo.lang functions, 206

dojo.lang module, 205-206

dojo.mixin, 233

dojo.objectToQuery, 271-272

dojo.query, selectors, 282-283

dojo.queryToObject, 274

dojo.require function, 53

dojo.setObject, 236

dojo.string.pad, 239-241

usage examples, 241
dojo.string.substitute, 239-243

usage examples, 243-244
dojo.toJson, 246

usage examples, 246-247
dojo.xhrGet, 40-41, 261-263

handleAs, 264
dojo.xhrPost, 264-268

error handling, 268-269
dojo._base.fx module, 216-217

dojo._base.html module, 209-211

dojo._base.NodeList module, 211-214

dojo._base.query module, 214-215

dojo._base.xhr module, 215-216

dojoType attribute, 52-53

dojox, first-level directories, 201

DOM (Document Object Model), 193,
277-278

identifying DOM elements, 278-279
CSS selectors, 279-282
dojo.query, 282-283

dot notation, objects, 234-235

downloading

Dojo, 19
what you get when downloading,

199-200
source files for tutorials, 15-18

DropDownButton widget, 83

dual licensing, 195

dynamic HTML (DHTML), 189

E
Editor widget, 57

EIAO (Everything Is An Object), 234

element ID selectors, 279-282

308 dojo.connect module

http://lib.ommolketab.ir
http//lib.ommolketab.ir

element nodes, 278

email address fields

standard HTML data entry forms, 8
validating, 31-32

encapsulation, objects, 224-225

error conditions, remoting requests, 267

error handling, dojo.xhrPost, 268-269

event handler functions, assigning, 36-38

event handlers, 252

assigning
with dojo.connect, 252-253
usage examples, 253-254

removing, 254
event models, 249

events, 251
defined, 250-251

events, 251

defined, 250-251
representing as objects, 254-255

Everything Is An Object (EIAO), 234

execute attribute, 61

exposing data sources, 46-48

extension points, 78

eye candy, 14

F
fades, 284

fading background colors, 283

features, Dojo core modules, 219-220

fields

address fields, validating, 32-33
city fields, validating, 33
email address fields, validating, 31-32
First Name fields, validating, 27-30
Last Name fields, validating, 30-31

standard HTML data entry forms
address fields, 8
city fields, 10
comments fields, 11-12
email address fields, 8
name fields, 6-7
service date fields, 11
state fields, 8-9
zip code fields, 10-11

User Name fields, validating, 31
validating, 25-26
zip code fields, validating, 33

FilteringSelect widget, 84

Firebug, 28

Firefox plug-ins, Selenium, 298

First Name fields, validating, 27-30

first-level directories, 201

focus() method, 62

forceValidOption attribute, 44

form element widgets, 92

form elements, checking for validity, 62

form fields, validating, 25-26

form submissions, intercepting, 61

forms, 91, 269-270

dojo.formToJson, 274
dojo.formToObject, 270
dojo.formToQuery, 272-273
dojo.objectToQuery, 271-272
dojo.queryToObject, 274
processing, 59-60

checking that all form elements are
valid, 62

creating Dojo Form widgets, 60-61
intercepting form submissions, 61
submitting forms to servers, 63-64

309forms

http://lib.ommolketab.ir
http//lib.ommolketab.ir

standard HTML data entry forms, 5-6
address fields, 8
city fields, 10
comments fields, 11-12
email address fields, 8
name fields, 6-7
service date fields, 11
state fields, 8-9
user names, 7
zip code fields, 10-11

standard HTML data entry forms. See
standard HTML data entry forms

form widgets, 83-86

functional testing, 298

G
Garrett, Jesse James, 190

getValue method, 45

goals

for tutorials, 4
for using Dojo, 4-5

Google Maps, 190

Google Web Toolkit (GWT), 196

grouping selectors, 279

GWT (Google Web Toolkit), 196

H
handleAs, XHR request, 264

hierarchy of Dojo widgets, 78-80

dijit._Templated, 83
dijit._Widget, 80-82

history

of Ajax, 190
of Dojo, 191
of JavaScript, 189-191

HTML tags, Dojo widgets, 70-74

I
icons, Rich Text Editor Widget, 57

identifying DOM elements, 278-279

CSS selectors, 279-282
dojo.query, 282-283

idioms, 228

improving

data validation, 4
performance, 4

incrementCounter, 225

inheritance, classes, 231

InlineEditBox widget, 88

integration testing, 298

intercepting form submissions, 61

ioArgs, 263

isValid() method, 62

J-K
JavaScript

Dojo widgets, 76-78
history of, 189-191
validating form fields, 26

JavaScript Object Notation. See JSON

JavaScript prototypes, objects, 227-228

JSON (JavaScript Object Notation), 47,
207, 244

dojo.fromJson, 247-248
usage examples, 248

dojo.toJson, 246
usage examples, 246-247

JSON format, 46

L
Last Name field, validating, 30-31

layout widgets, 86-87, 137

LayoutContainer widgets, 86

310 forms

http://lib.ommolketab.ir
http//lib.ommolketab.ir

libraries, Ajax libraries, 35

licensing

Dojo, 195
dual licensing, 195

logging, 298-299

advanced logging, 300
logging message types, 301
timers, 300

basic logging, 299-300
logging message types, 301

M
makeInactive, 230

Menu widget, 88

Menu widgets, 156

dijit.ColorPalette, 172
dijit.Dialog, 164-165
dijit.Editor, 184
dijit.form.NumberSpinner, 179-180
dijit.form.Slider, 176-178
dijit.form.Textarea, 183
dijit.InlineEditBox, 181-182
dijit.Menu, 157-161
dijit.MenuItem, 157
dijit.MenuSeparator, 157
dijit.PopupMenuItem, 158
dijit.ProgressBar, 170-171
dijit.Toolbar, 162-163
dijit.Tooltip, 168
dijit.TooltipDialog, 166-167
dijit.Tree, 173-175

message types, logging, 301

methods

behavioral methods, 78
dijit.form.FormWidget, 93-94
dijit.layout._LayoutWidget, 139

dijit.MenuItem, 157
dijit._Widget, 80-81
focus(), 62
getValue, 45
isValid(), 62
submit(), 63

modules, 203-204

Dojo base module, 205
dojo.array module, 208
dojo.color module, 208-209
dojo.connect module, 206
dojo.declare module, 206
dojo.Deferred module, 207
dojo.event module, 209
dojo.json module, 207
dojo.lang module, 205-206
dojo._base.fx module, 216-217
dojo._base.html module, 209-211
dojo._base.NodeList module,

211-214
dojo._base.query module, 214-215
dojo._base.xhr module, 215-216

Dojo core modules, 217-219
features of, 219-220

naming conventions and name space,
204-205

N
name space, modules, 204-205

naming conventions, modules, 204-205

NodeList object, functions, 212

nodes, 278

NumberSpinner widget, 85

311NumberSpinner widget

http://lib.ommolketab.ir
http//lib.ommolketab.ir

O
object graphs, 234-235

Object Oriented (OO) Analysis and
Design, 223

objects, 223-224

creating, 224
Dojo objects, 228

dojo.declare, 229
dojo.exists, 236
dojo.getObject, 236
dojo.isObject, 237
dojo.setObject, 236

dot notation, 234-235
encapsulation, 224-225
JavaScript prototypes, 227-228
object graphs, 234-235
representing events as, 254-255
templates, 225-226

onChange attribute, 37-38, 45

OO (Object Oriented language), 223

P
page layout, 137-138

performance, improving, 4

“poor man’s debugger,” 299

postCreate, 82

postMixInProperties, 82

processing

forms, 59-60
checking that all form elements are

valid, 62
creating Dojo Form widgets, 60-61
intercepting form submission, 61
submitting forms to servers, 63-64

standard HTML data entry forms, 14
ProgressBar widget, 88

properties

dijit.form.FormWidget, 93
dijit.MenuItem, 157

Prototype, 196

prototype chaining, 228

prototypes, JavaScript prototypes (objects),
227-228

R
RadioButton widget, 84

registering unit tests, 296

remoting, 259-260

defined, 260
XMLHttpRequest, 260-261

dojo.xhrGet, 261-264
dojo.xhrPost, 264-269

remoting requests, error conditions, 267

removing event handlers, 254

rendering, 277

representing events as objects, 254-255

requests, Ajax requests, 35

responses from servers, handling, 41-42

retrieving data from servers, 43

getting value of state and sending to
servers, 45-49

selecting widgets, 43-44
reviewing results of unit tests, 297

RGB (Red/Blue/Green), 283

RIAs (Rich Internet Applications), 195-196

Rich Text Editor widget, 55-58

icons, 57
running

pages, tutorials, 22
unit tests, 296

312 object graphs

http://lib.ommolketab.ir
http//lib.ommolketab.ir

S
script tag, 61

script.aculo.us, 196

second-level directories, 202-203

selecting widgets, retrieving data from
servers, 43-44

Selenium, 298

sending data to servers, 40-41, 45-49

serialization, 246

server-side features, adding to standard
HTML data entry forms, 13

server-side validation, adding, 36

assigning event handlers and
functions, 36-38

making calls to servers, 38-42
servers

handling responses from, 41-42
making calls to, 38-42
retrieving data from, 43

getting value of state and sending
to servers, 45-49

selecting widgets, 43-44
sending data to, 40-41, 45-49
submitting forms to, 63-64

service date fields, standard HTML data
entry forms, 11

setTimeOut, 284

simple CSS selectors, 279

Slider widget, 85

source code, tutorials, 14

source files, downloading or creating for
tutorials, 15-18

special Dojo attributes, 29

specialized Dojo widgets, adding to standard
HTML data entry forms, 14

specialized widgets, 80, 88-90, 155-156

Menu widgets, 156
dijit.ColorPalette, 172
dijit.Dialog, 164-165
dijit.Editor, 184
dijit.form.NumberSpinner,

179-180
dijit.form.Slider, 176-178
dijit.form.Textarea, 183
dijit.InlineEditBox, 181-182
dijit.Menu, 157-161
dijit.MenuItem, 157
dijit.MenuSeparator, 157
dijit.PopupMenuItem, 158
dijit.ProgressBar, 170-171
dijit.Toolbar, 162-163
dijit.Tooltip, 168
dijit.TooltipDialog, 166-167
dijit.Tree, 173-175

SplitContainer widget, 86

StackContainer widget, 87

standard animation effects, 286

dojo.fx.chain, 290-291
dojo.fx.combine, 291
dojo.fx.fadeIn, 290
dojo.fx.fadeOut, 289
dojo.fx.slideTo, 287
dojo.fx.toggler, 291-292
dojo.fx.wipeIn, 288-289
dojo.fx.wipeOut, 287-288

standard HTML data entry forms, 5-6

address fields, 8
city fields, 10
client-side validation, adding, 13
comments fields, 11-12
email address fields, 8

313standard HTML data entry forms

http://lib.ommolketab.ir
http//lib.ommolketab.ir

including Dojo in forms, 12-13
name fields, 6-7
processing, 14
server-side features, adding, 13
service date fields, 11
specialized Dojo widgets, adding, 14
state fields, 8-9
user names, 7
zip code fields, 10-11

state fields, standard HTML data entry
forms, 8-9

stress testing, 298

strings, 239-240

dojo.string.pad, 240-241
usage examples, 241

dojo.string.substitute, 241-243
usage examples, 243-244

structural selectors, 280

style sheets, including, 20-21

styles, Dojo widgets, 74-76

submit() method, 63

submitting forms to servers, 63-64

superclasses, 231

T
TabContainer widget, 87

templates, object templates, 225-226

testing, 293-294

Dojo unit testing framework, 294
creating new unit tests, 294-296
registering unit tests, 296
reviewing results of unit tests, 297
running unit tests, 296

functional testing, 298
integration testing, 298

stress testing, 298
unit testing, 294

text strings. See also strings

JSON, 245
dojo.fromJson, 247-248
dojo.toJson, 246-247

Textarea widget, 85

TextBox widget, 74, 85

timers, logging, 300

ToggleButton widget, 84

Tool Tips, 30

Toolbar widget, 88

Tooltip widget, 89

TooltipDialog widget, 89

Tree widget, 89

tutorials

adding client-side validation, 26
address field, 32-33
city field, 33
email address field, 31-32
First Name field, 27-30
Last Name field, 30-31
User Name field, 31
zip code field, 33

Dojo widgets, 52
DateTextBox Widget, 53-55
Rich Text Editor widget, 55-58

goals for, 4
including Dojo, 15

code for Dojo Toolkit, 19-20
downloading or creating source

files, 15-18
style sheets, 20-21

introduction to, 3-4

314 standard HTML data entry forms

http://lib.ommolketab.ir
http//lib.ommolketab.ir

processing forms
checking that all forms elements

are valid, 62
creating Dojo Form widgets, 60-61
intercepting form submission, 61
submitting forms to servers, 63-64

retrieving data from servers, 43
getting value of state and sending

to the server, 45-49
selecting widgets for city field,

43-44
reviewing all code changes, 21-22
running the new page, 22
server-side validation, adding, 36-42
source code, 14

U
unit testing, 294

Dojo unit testing framework, 294
creating new unit tests, 294-296
registering unit tests, 296
reviewing results of unit tests, 297
running unit tests, 296

usage examples

assigning event handlers, 253-254
dojo.formToObject, 270
dojo.fromJson, 248
dojo.string.pad, 241
dojo.string.substitute, 243-244
dojo.toJson, 246-247

User Name field, validating, 31

user names, standard HTML data entry
forms, 7

userNameOnChange(), 37-38

users, getting data entered by, 39-40

util, first-level directories, 201

V
validating form fields, 25-26

validation

checking all form elements, 62
server-side validation, adding, 36-42

ValidationTextBox widget, 85

ValidationTextBox, 32

visual overview of Dojo widgets, 83

form widgets, 83-86
layout widgets, 86-87
specialized widgets, 88-90

W
web pages, adding widgets to, 51

dijit, 52
widgets, 52, 68

adding to web pages, 51
dijit, 52

binding to Dojo data stores, 49
ComboBox, 44
DateTextBox, 53-55
defined, 67-68
Dojo form widgets. See Dojo form

widgets
Dojo layout widgets. See Dojo layout

widgets
Dojo widgets. See Dojo widgets
form element widgets, 92
Form widgets, creating, 60-61
Rich Text Editor, 55-58
selecting for retrieving data from

servers, 43-44
specialized Dojo widgets, 14
specialized widgets. See specialized

widgets

315widgets

http://lib.ommolketab.ir
http//lib.ommolketab.ir

X-Y
XHR (XMLHttpRequest), 260-261

dojo.xhrGet, 261-263
handleAs, 264

dojo.xhrPost, 264-268
error handling, 268-269

XHR objects, 51

xhrGet(), 63

xhrPost, 265

XMLHttpRequest (XHR), 215, 260-261

dojo.xhrGet, 261-263
handleAs, 264

dojo.xhrPost, 264-268
error handling, 268-269

Z
zip code fields

standard HTML data entry forms,
10-11

validating, 33

316 XHR (XMLHttpRequest)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	Table of Contents
	Acknowledgments
	About the Author
	I: A Dojo Tutorial
	1 Understanding Dojo: A Tutorial
	1.1 Introduction to the Tutorial
	1.2 A Standard HTML Data Entry Form
	1.3 The Plan for Enhancing the Form
	1.4 Getting and Running the Source Code
	1.5 Tutorial Step 1—Including Dojo

	2 Using Dojo for Client-side Validation
	2.1 Validating Form Fields
	2.2 Tutorial Step 2—Adding Client-side Validation

	3 Using Dojo to Work with the Server
	3.1 Adding Server-side Features
	3.2 Tutorial Step 3a—Adding Server-side Validation
	3.3 Tutorial Step 3b—Retrieving Data from the Server

	4 Using Dojo Widgets
	4.1 Adding Dojo Widgets to the Page
	4.2 Tutorial Step 4—Using Dojo Widgets

	5 Processing Forms with Dojo
	5.1 Using Dojo to Process Forms
	5.2 Tutorial Step 5—Processing the Form

	II: Dojo Widgets
	6 Introduction to Dojo Widgets
	6.1 What Are Widgets?
	6.2 What Are Dojo Widgets?
	6.3 Components of a Dojo Widget

	7 Dojo Form Widgets
	7.1 Standard Forms and Dojo Form Widgets
	7.2 The Dojo Form Widget Explained

	8 Dojo Layout Widgets
	8.1 Understanding Page Layout

	9 Other Specialized Dojo Widgets
	9.1 What Are Specialized Widgets?
	9.2 Menu Widget

	III: Dojo in Detail
	10 What Is Dojo?
	10.1 History of JavaScript and AJAX
	10.2 History of Dojo
	10.3 Purpose of Dojo
	10.4 Description of Dojo
	10.5 What Problems Does Dojo Solve?
	10.6 Who Should Use Dojo?
	10.7 Licensing
	10.8 Competitors and Alternatives
	10.9 The Future of Dojo

	11 Technical Description of Dojo
	11.1 What You Get in the Dojo Download
	11.2 Organization of Dojo Source Code
	11.3 Dojo Modules and Features

	12 Objects and Classes
	12.1 Objects Explained
	12.2 Using Dojo to Work with Objects
	12.3 Defining a Class

	13 Strings and JSON
	13.1 Text Strings
	13.2 JSON

	14 Events and Event Handling
	14.1 Description of the Event Model
	14.2 Defining and Assigning Event Handlers
	14.3 Representing an Event as an Object
	14.4 Using Aspect Oriented Programming in Dojo

	15 Ajax Remoting
	15.1 Remoting
	15.2 Review of XMLHttpRequest (or XHR for Short)
	15.3 The dojo.xhrGet Function
	15.4 dojo.xhrPost
	15.5 Working with Forms

	16 Working with the DOM
	16.1 Finding Needles in the DOM Haystack
	16.2 Dojo Query
	16.3 Animation

	17 Testing and Debugging
	17.1 Testing
	17.2 Logging

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X-Y
	Z

