
 < Day Day Up >

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

Essential ActionScript 2.0

By Colin Moock

Publisher: O'Reilly

Pub Date: June 2004

ISBN: 0-596-00652-7

Pages: 544

In Essential ActionScript 2.0, bestselling author Colin Moock covers everything you'll need to know
about the new ActionScript language and its methodologies. Experienced Flash developers and
programmers coming from other languages will enjoy the sheer depth of Moocks's coverage. Novice
programmers will appreciate the frequent, low-jargon explanations that are often glossed over by
advanced programming books. Essential ActionScript 2.0 is the one book every ActionScript coder
must own.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

Essential ActionScript 2.0

By Colin Moock

Publisher: O'Reilly

Pub Date: June 2004

ISBN: 0-596-00652-7

Pages: 544

 Copyright

 Foreword

 Preface

 This Book Wants You

 What This Book Is Not

 Who Should (and Shouldn't) Read This Book

 ActionScript 2.0 Versus ActionScript 1.0

 Deciphering Flash Versions

 Example Files and Resources

 Typographical Conventions

 Using Code Examples

 We'd Like to Hear from You

 Acknowledgments

 Part I: The ActionScript 2.0 Language

 Chapter 1. ActionScript 2.0 Overview

 Section 1.1. ActionScript 2.0 Features

 Section 1.2. Features Introduced by Flash Player 7

 Section 1.3. Flash MX 2004 Version 2 Components

 Section 1.4. ActionScript 1.0 and 2.0 in Flash Player 6 and 7

 Section 1.5. Let's Go OOP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Chapter 2. Object-Oriented ActionScript

 Section 2.1. Procedural Programming and Object-Oriented Programming

 Section 2.2. Key Object-Oriented Programming Concepts

 Section 2.3. But How Do I Apply OOP?

 Section 2.4. On with the Show!

 Chapter 3. Datatypes and Type Checking

 Section 3.1. Why Static Typing?

 Section 3.2. Type Syntax

 Section 3.3. Compatible Types

 Section 3.4. Built-in Dynamic Classes

 Section 3.5. Circumventing Type Checking

 Section 3.6. Casting

 Section 3.7. Datatype Information for Built-in Classes

 Section 3.8. ActionScript 2.0 Type Checking Gotchas

 Section 3.9. Up Next: Creating Classes-Your Own Datatypes!

 Chapter 4. Classes

 Section 4.1. Defining Classes

 Section 4.2. Constructor Functions (Take 1)

 Section 4.3. Properties

 Section 4.4. Methods

 Section 4.5. Constructor Functions (Take 2)

 Section 4.6. Completing the Box Class

 Section 4.7. Putting Theory into Practice

 Chapter 5. Authoring an ActionScript 2.0 Class

 Section 5.1. Class Authoring Quick Start

 Section 5.2. Designing the ImageViewer Class

 Section 5.3. ImageViewer Implementation (Take 1)

 Section 5.4. Using ImageViewer in a Movie

 Section 5.5. ImageViewer Implementation (Take 2)

 Section 5.6. ImageViewer Implementation (Take 3)

 Section 5.7. Back to the Classroom

 Chapter 6. Inheritance

 Section 6.1. A Primer on Inheritance

 Section 6.2. Subclasses as Subtypes

 Section 6.3. An OOP Chat Example

 Section 6.4. Overriding Methods and Properties

 Section 6.5. Constructor Functions in Subclasses

 Section 6.6. Subclassing Built-in Classes

 Section 6.7. Augmenting Built-in Classes and Objects

 Section 6.8. The Theory of Inheritance

 Section 6.9. Abstract and Final Classes Not Supported

 Section 6.10. Let's Try Inheritance

 Chapter 7. Authoring an ActionScript 2.0 Subclass

 Section 7.1. Extending ImageViewer's Capabilities

 Section 7.2. The ImageViewerDeluxe Skeleton

 Section 7.3. Adding setPosition() and setSize() Methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 7.4. Autosizing the Image Viewer

 Section 7.5. Using ImageViewerDeluxe

 Section 7.6. Moving Right Along

 Chapter 8. Interfaces

 Section 8.1. The Case for Interfaces

 Section 8.2. Interfaces and Multidatatype Classes

 Section 8.3. Interface Syntax and Use

 Section 8.4. Multiple Type Inheritance with Interfaces

 Section 8.5. Up Next, Packages

 Chapter 9. Packages

 Section 9.1. Package Syntax

 Section 9.2. Defining Packages

 Section 9.3. Package Access and the Classpath

 Section 9.4. Simulating Packages in ActionScript 1.0

 Section 9.5. Just a Little More Theory

 Chapter 10. Exceptions

 Section 10.1. The Exception-Handling Cycle

 Section 10.2. Handling Multiple Types of Exceptions

 Section 10.3. Exception Bubbling

 Section 10.4. The finally Block

 Section 10.5. Nested Exceptions

 Section 10.6. Control Flow Changes in try/catch/finally

 Section 10.7. Limitations of Exception Handling in ActionScript 2.0

 Section 10.8. From Concepts to Code

 Part II: Application Development

 Chapter 11. An OOP Application Framework

 Section 11.1. The Basic Directory Structure

 Section 11.2. The Flash Document (.fla file)

 Section 11.3. The Classes

 Section 11.4. The Document Timeline

 Section 11.5. The Exported Flash Movie (.swf file)

 Section 11.6. Projects in Flash MX Professional 2004

 Section 11.7. Let's See It in Action!

 Chapter 12. Using Components with ActionScript 2.0

 Section 12.1. Currency Converter Application Overview

 Section 12.2. Preparing the Flash Document

 Section 12.3. The CurrencyConverter Class

 Section 12.4. Handling Component Events

 Section 12.5. Components Complete

 Chapter 13. MovieClip Subclasses

 Section 13.1. The Duality of MovieClip Subclasses

 Section 13.2. Avatar: A MovieClip Subclass Example

 Section 13.3. Avatar: The Composition Version

 Section 13.4. Issues with Nested Assets

 Section 13.5. A Note on MovieClip Sub-subclasses

 Section 13.6. Curiouser and Curiouser

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Chapter 14. Distributing Class Libraries

 Section 14.1. Sharing Class Source Files

 Section 14.2. Sharing Classes Without Sharing Source Files

 Section 14.3. Solving Real OOP Problems

 Part III: Design Pattern Examples in ActionScript 2.0

 Chapter 15. Introduction to Design Patterns

 Section 15.1. Bring on the Patterns

 Chapter 16. The Observer Design Pattern

 Section 16.1. Implementing Observer in ActionScript 2.0

 Section 16.2. Logger: A Complete Observer Example

 Section 16.3. Memory Management Issues with Observer

 Section 16.4. Beyond Observer

 Chapter 17. The Singleton Design Pattern

 Section 17.1. Implementing Singleton in ActionScript 2.0

 Section 17.2. The Singleton Pattern in the Logger Class

 Section 17.3. Singleton Versus Class Methods and Class Properties

 Section 17.4. A Warning Against Singletons as Globals

 Section 17.5. On to User Interfaces

 Chapter 18. The Model-View-Controller Design Pattern

 Section 18.1. The General Architecture of MVC

 Section 18.2. A Generalized MVC Implementation

 Section 18.3. An MVC Clock

 Section 18.4. Further Exploration

 Chapter 19. The Delegation Event Model

 Section 19.1. Structure and Participants

 Section 19.2. The Flow of Logic

 Section 19.3. Core Implementation

 Section 19.4. NightSky: A Delegation Event Model Example

 Section 19.5. Other Event Architectures in ActionScript

 Section 19.6. From Some Place to Some OtherPlace

 Part IV: Appendixes

 Appendix A. ActionScript 2.0 Language Quick Reference

 Section A.1. Global Properties

 Section A.2. Global Functions

 Appendix B. Differences from ECMAScript Edition 4

 Colophon

 Index

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Copyright © 2004 O'Reilly Media, Inc.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. Essential ActionScript 2.0, the image of a coral snake, and related trade dress are
trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

 < Day Day Up >

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Foreword
I came to Macromedia in the summer of 2000, shortly after graduating from college, to start working
as a software engineer on the Flash team. In my first days at the company, the team was working
tirelessly to ship Flash 5, and everyone was too busy to give me much work to do, let alone guide me
in the ways of Macromedia corporate life. Little did I realize that as I was learning my way around the
complex C++ architecture of the Flash authoring tool, ActionScript was also beginning its own career
in the web development industry. Flash 5 was a landmark release for the Flash authoring tool: it
brought ActionScript from an interface that required point-and-click interaction to a full-fledged
scripting language based on the ECMAScript standard, with a real text editor. I arrived just as the
Flash team was putting real scripting power in the hands of Flash developers. Over the next two
releases of Flash, I participated in the continuation of that effort, first by producing the ActionScript
debugger in Flash MX and, most recently, by developing the ActionScript 2.0 compiler. My past few
years are inextricably linked to this language, and it has contributed to my growth, just as I have
contributed to its growth.

In the beginning, my feelings about ActionScript were similar to the feelings a lot of traditional
developers have when coming to the language. I found myself comfortable with its flexibility, yet
frustrated with its limitations. I was happy to bring features such as the debugger to life, because it
helped Flash meet my own expectations of a programming environment. I enjoyed working to close
the gaps in Flash's capabilities, feature by feature. With Flash MX, we made strides by greatly
improving the code editor and by enabling users to debug their ActionScript. However, ActionScript
1.0 still had one frustrating limitation that we did not address in Flash MX: it was possible to write
code that employed object-oriented programming (OOP) techniques, but doing so was complex and
unintuitive and not well integrated with Flash concepts like library symbols.

With Flash MX 2004 and ActionScript 2.0, we have arrived at yet another major landmark in
ActionScript's evolution. ActionScript 2.0 offers a more sophisticated syntax for the OOP constructs
that ActionScript has always supported. ActionScript 2.0 is easier to learn than its predecessor, and it
is closer to other industry-standard programming languages, such as Java and C#. It gives
developers the framework needed to build and maintain large, complex applications. In addition, our
implementation required minimal changes to the Flash Player, meaning that ActionScript 2.0 can be
exported to Flash Player 6, which was already nearly ubiquitous at the time of Flash MX 2004's
release.

In the short time that ActionScript has been around, developers have found it to be extraordinarily
powerful. Flash places few constraints on the developer's access to the MovieClip hierarchy and
object model, permitting them to do anything, anywhere. This flexibility has stirred the creativity of
our users, enabling them to grow into ActionScript and experiment with it. However, the lack of
structure in ActionScript 1.0 made applications difficult to scale up, leading to unwieldy projects that
teams found challenging to maintain and organize. It was too easy to write poor code, not to mention
place code in locations almost impossible to find by others unfamiliar with the project. ActionScript
2.0 aspires to address these pitfalls by encouraging a structure that all developers can adhere to and
understand. Moreover, the ActionScript 2.0 compiler provides developers with feedback on errors
that otherwise wouldn't be found until they manifested as bugs at runtime. Still, ActionScript
continues to provide extensive and unique control over graphical elements. We strove to ensure that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ActionScript is a powerful language moving forward, without treading on the toes of already-
seasoned scripters.

ActionScript 2.0 was also the basis for several other notable elements of Flash MX 2004.

The following are all written in ActionScript 2.0:

The second generation of components (i.e., the v2 components)

The new Screens metaphor, which includes Slides and Forms (available only in Flash MX
Professional 2004)

The sophisticated data integration capabilities

The multilingual resource support offered by the Strings panel

Building significant, large-scale features using ActionScript 2.0 provided valuable testing and
validation to those of us working on the compiler and informed many of our design decisions. More
importantly, these features give Flash developers comprehensive, working examples of ActionScript
2.0 in action (see the Macromedia/Flash MX 2004/en/First Run/Classes folder under your
application's installation folder). Likewise, the benefits of ActionScript 2.0 are readily apparent in
these features, which all consist of classes that are well organized in the mx.* class hierarchy. In
addition, it is easier than ever to determine which code corresponds to the different components, as
ActionScript 2.0 has made it possible to eliminate troublesome relics of ActionScript's past, such as
the #initclip pragma (compiler directive).

ActionScript started life as a few scripting commands inserted by mouse clicks. Five years later, it is a
full-featured object-oriented language with which large, complex applications can be developed.
Furthermore, it presents a clean, simple syntax that is easy to read and straightforward for a
beginner to pick up. In my two releases of the Flash authoring tool, I have learned more and more
about ActionScript each step of the way, and now I am proud to have helped redefine it. Colin
Moock's previous book, ActionScript for Flash MX: The Definitive Guide, was indispensable to me,
even as I've worked on the new face of ActionScript. It is the single book you'll find within easy reach
at the desk of every engineer on the Flash team. Many of our engineers here were already looking
forward to this new book, Essential ActionScript 2.0, before it shipped. And with good reason. In this
volume, Moock has once again applied his insightful, conversational style to complex topics, teaching
not only the syntax of ActionScript 2.0 but also the theory and principles of OOP. He has thoroughly
researched the relationships between ActionScript 2.0, its predecessor, and other languages, and he
illustrates their differences in precise detail. Moock's intimate familiarity with Flash and ActionScript is
evident in this instructive and approachable text, which certainly is an essential companion for
anyone wishing to learn and master the ActionScript 2.0 language.

Rebecca Sun
Senior Software Engineer
Macromedia Flash Team
March 2004

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Preface
In September 2003, Macromedia released Flash MX 2004, and, with it, ActionScript 2.0-a drastically
enhanced version of Flash's programming language.

ActionScript 2.0 introduces a formal object-oriented programming (OOP) syntax and methodology for
creating Flash applications. Compared to traditional timeline-based development techniques,
ActionScript 2.0's OOP-based development techniques typically make applications:

More natural to plan and conceptualize

More stable and bug-free

More reusable across projects

Easier to maintain, change, and expand on

Easier to test

Easier to codevelop with two or more programmers

Those are some extraordinary qualities. So extraordinary, in fact, that they've turned this book into
something of a zealot. This book wants you to embrace ActionScript 2.0 with a passion.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

This Book Wants You

This book wants you to use object-oriented programming in your daily Flash work. It wants you to
reap the benefits of OOP-one of the most important revolutions in programming history. It wants
you to understand ActionScript 2.0 completely. And it will stop at nothing to get what it wants.

Here's its plan...

First, in Part I, The ActionScript 2.0 Language, this book teaches you the fundamentals of object-
oriented concepts, syntax, and usage. Even if you have never tried object-oriented programming
before, Part I will have you understanding and applying it. Chapter 1 gives an overview of
ActionScript 2.0. Chapter 2 teaches you the basics of OOP and helps you decide how much is right for
your projects. Chapter 3 through Chapter 10 offer details on classes, objects, methods, properties,
inheritance, composition, interfaces, packages, and myriad other core OOP concepts. If you already
know a lot about OOP because you program in Java or another object-oriented language, this book
helps you leverage that prior experience. It draws abundant comparisons between Flash-based OOP
and what you already know. Along the way, it introduces OOP into your regular routine through
exercises that demonstrate real-world Flash OOP in action.

In Part II, Application Development, this book teaches you how to structure entire applications with
ActionScript 2.0. In Chapter 11, you'll learn best practices for setting up and architecting an object-
oriented project. In Chapter 12 and Chapter 13, you'll learn how user interface components and
movie clips fit into a well-structured Flash application. In Chapter 14, you'll see how to parcel up and
share code with other developers. All this will help you build more scalable, extensible, stable apps.
It's all part of this book's plan.

Finally, in Part III, Design Pattern Examples in ActionScript 2.0, you'll explore a variety of approaches
to various programming situations. You'll see how to apply proven and widely accepted object-
oriented programming strategies-known as design patterns-to Flash. The design patterns in Part
III cover two key topics in Flash development: event broadcasting and user interface management.
After an introduction to design patterns in Chapter 15, we'll explore four common patterns in Chapter
16 through Chapter 19. Once you've tried working with the patterns presented in Part III, you'll have
confidence consulting the larger body of patterns available online and in other literature. And you'll
have the skills to draw on other widely recognized object-oriented practices. You see, this book
knows it won't be with you forever. It knows it must teach you to find your own solutions.

This book doesn't care whether you already know the meaning of the words "class," "inheritance,"
"method," "prototype," or "property." If you have no idea what OOP is or why it's worthwhile, this
book is delighted to meet you. If, on the other hand, you're already a skilled object-oriented
developer, this book wants to make you better. It wants you to have the exhaustive reference
material and examples you need to maximize your productivity in ActionScript 2.0.

This book is determined to make you an adept object-oriented programmer. And it's confident it will
succeed.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

What This Book Is Not

While this book is zealous about core ActionScript 2.0 and object-oriented programming, it does not
cover every possible ActionScript-related topic. Specifically, you won't find much discussion of
companion technologies, such as Flash Remoting or Flash Communication Server, nor will you find a
dictionary-style Language Reference, as you do in ActionScript for Flash MX: The Definitive Guide
(O'Reilly). Whereas that book describes the Flash Player's native functions, properties, classes, and
objects, this book teaches you how to use those classes and objects, and how to fit them into your
own custom-built structures. The built-in library of classes available in the Flash Player changed only
incrementally in Flash Player 7, so ActionScript for Flash MX: The Definitive Guide, continues to be a
worthwhile reference-even to ActionScript 2.0 developers. It makes the perfect companion to
Essential ActionScript 2.0.

This book does not cover the Screens feature (including Slides and Forms), which is supported only in
Flash MX Professional 2004. Screens are used to develop user interfaces visually (in the tradition of
Microsoft Visual Basic) and to create slideshow presentations (in the tradition of Microsoft
PowerPoint). Although the feature is not a direct topic of study, you'll certainly be prepared to explore
Screens on your own once you understand the fundamentals taught by this text.

This book is also not a primer on programming basics, such as conditionals (if statements), loops,
variables, arrays, and functions. For a gentle introduction to programming basics in Flash, again see
ActionScript for Flash MX: The Definitive Guide.

Finally, this book does not teach the use of the Flash authoring tool, except as it applies to application
development with ActionScript 2.0. For help with the authoring tool, such as creating graphics or
timeline animations, you should consult the in-product documentation or any of the fine third-party
books available on the topic, including O'Reilly's own Flash Out of the Box, by Robert Hoekman,
scheduled for release in the second half of 2004.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Who Should (and Shouldn't) Read This Book

You should read this book if you are:

An intermediate ActionScript 1.0 or JavaScript programmer who understands the basics of
variables, loops, conditionals, functions, arrays, and other programming fundamentals.

An advanced ActionScript 1.0 or ActionScript 2.0 programmer who wants hard facts about best
practices for OOP in ActionScript 2.0, including detailed syntax and usage information, language
idiosyncrasies, and sample application structures.

A Flash designer who does some programming and is curious to learn more about application
development.

A programmer migrating to Flash development from another language, such as Java, C++, Perl,
JavaScript, or ASP. (Be prepared to learn the fundamentals of the Flash authoring tool from the
sources mentioned earlier. You should also read Chapter 13, Movie Clips, in ActionScript for
Flash MX: The Definitive Guide, available online at: http://moock.org/asdg/samples.)

You should not read this book if you are a Flash designer/animator with little or no programming
experience. (Start your study of ActionScript with ActionScript for Flash MX: The Definitive Guide
instead.)

 < Day Day Up >

http://moock.org/asdg/samples
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

ActionScript 2.0 Versus ActionScript 1.0

Chapter 1 introduces ActionScript 2.0 in more detail, but this discussion provides a brief orientation
for ActionScript 1.0 developers.

ActionScript 1.0 and ActionScript 2.0 have the same core syntax. Basics like conditionals, loops,
operators, and other non-object-oriented aspects of ActionScript 1.0 can be used verbatim in
ActionScript 2.0 and are still an official part of the language. In addition, object creation, property
access, and method invocation have the same syntax in ActionScript 1.0 and ActionScript 2.0. So,
generally speaking, ActionScript 2.0 is familiar to ActionScript 1.0 developers. The main difference
between the two versions of the language is object-oriented syntax and authoring tool support for
object-oriented development.

In ActionScript 1.0, object-oriented programming had an unintuitive syntax and nearly no authoring
tool support (e.g., no compiler messages, no class file structure, no type checking, poor connections
between code and movie assets, etc.). With ActionScript 1.0, object-oriented programming was an
awkward, esoteric undertaking. With ActionScript 2.0, it is a natural endeavor. ActionScript 2.0's
more traditional OOP implementation makes ActionScript 2.0 skills more transferable to and from
other languages.

If you're an ActionScript 1.0 programmer and have already been applying OOP techniques,
ActionScript 2.0 will be a delight (and a relief) to work with. If you're an ActionScript 1.0 programmer
who doesn't use OOP, you don't need to learn OOP in ActionScript 1.0 before you learn it in
ActionScript 2.0. Now is the perfect time to explore and adopt this important methodology. OOP
offers to increase your productivity, make your projects easier to manage, and improve your code's
quality and reusability.

Although this book doesn't spend a lot of time focusing on how to upgrade your code from
ActionScript 1.0 to ActionScript 2.0, after reading it, you should have no trouble doing so. The book
focuses on giving you a strong fundamental understanding of ActionScript 2.0 and I didn't want to
unnecessarily distract from that focus by talking too much about obsolete ActionScript 1.0 code. That
said, keep an eye out for the numerous ActionScript 1.0 notes that look like this:

 Such notes directly compare an ActionScript 1.0 technique with the analogous
ActionScript 2.0 technique, so you can see the difference between the old way of doing things
and the new, improved way.

Finally let's be clear about what I mean by "programming in ActionScript 2.0 versus ActionScript
1.0." If you are just creating timeline code and not using ActionScript 2.0 classes, static datatypes, or
other OOP features, then it is really moot whether you refer to your code as "ActionScript 1.0" or
"ActionScript 2.0." Without using OOP features, ActionScript 2.0 code looks indistinguishable from
ActionScript 1.0 code. So when I say, "we're going to learn to program in ActionScript 2.0," of
necessity, I'm assuming you're creating a meaningful OOP application in which you're developing one
or more classes. For an example, consider an online form that merely sends an email. You might

http://lib.ommolketab.ir
http://lib.ommolketab.ir

implement that form entirely on the Flash timeline using only variables and functions. If that's
generally all you want to do with your applications, then frankly, this book might be overkill for your
current needs. However, given the chance, this book will expand your horizons and teach you how to
be a skilled object-oriented programmer and to tackle larger projects. So when I say "programming
in ActionScript 2.0," I mean "developing object-oriented applications in ActionScript 2.0." The
emphasis is on "object-oriented development" rather than ActionScript 2.0, per se, as ActionScript
2.0 is just a means to that end. You may ask, "Is this book about ActionScript 2.0 syntax, object-
oriented design, or object-oriented programming?" The answer is, "All of the above."

For more information about ActionScript 2.0 and ActionScript 1.0 in relation to Flash Player 6 and
Flash Player 7, see Chapter 1.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Deciphering Flash Versions

With the introduction of the Studio MX family of products, including Flash MX, Macromedia abandoned
a standard numeric versioning system for its Flash authoring tool. Subsequent to Flash MX,
Macromedia incorporated the year of release in the product name (products released after
September use the following year in the product name). With the 2004 release, Macromedia also split
the Flash authoring tool into two versions: Flash MX 2004 and Flash MX Professional 2004, as
discussed in Table P-1. The principal features specific to the Professional edition are:

Screens (form- and slide-based content development)

Additional video tools

Project and asset management tools

An external script editor

Databinding (linking components to data sources obtained via web services, XML, or record
sets)

Advanced components (however, Flash MX Professional 2004 components work happily in Flash
MX 2004)

Mobile device development tools

The techniques taught in this book can be used in both Flash MX 2004 and Flash MX Professional
2004, although I note the rare circumstances in which the two versions differ as pertaining to
development in ActionScript 2.0. Unlike the Flash authoring tool, the Flash Player is still versioned
numerically; at press time, the latest version is Flash Player 7. Table P-1 describes the naming
conventions used in this book for Flash versions.

Table P-1. Flash naming conventions used in this book

Name Meaning

Flash MX
The version of the Flash authoring tool that was released at the same time as Flash
Player 6.

Flash MX 2004

The standard edition of the Flash authoring tool that was released at the same time
as Flash Player 7. In the general sense, the term "Flash MX 2004" is used to refer
to both the standard edition (Flash MX 2004) and the Professional edition (Flash
MX Professional 2004) of the software. When discussing a feature that is limited to
the Professional edition, this text states the limitation explicitly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name Meaning

Flash MX
Professional
2004

The Professional edition of the Flash authoring tool that was released at the same
time as Flash Player 7. The Professional edition includes some features not found in
the standard edition (see preceding list). The Professional edition is not required for
this book or to use ActionScript 2.0.

Flash Player 7

The Flash Player, version 7. The Flash Player is a browser plugin for major web
browsers on Windows and Macintosh. At press time, Flash Player 6, but not Flash
Player 7, was available for Linux. There are both ActiveX control and Netscape-
style versions of the plugin, but I refer to them collectively as "Flash Player 7."

Flash Player
x.0.y.0

The Flash Player, specifically, the release specified by major version number x and

major build number y, as in Flash Player 7.0.19.0. The minor version number and

minor build number of publicly released versions is always 0.

Standalone
Player

A version of the Flash Player that runs directly as an executable off the local
system, rather than as a web browser plugin or ActiveX control.

Projector
A self-sufficient executable that includes both a .swf file and a Standalone Player.
Projectors can be built for either the Macintosh or Windows operating system using
Flash's File Publish feature.

 < Day Day Up >

Flash MX
Professional
2004

The Professional edition of the Flash authoring tool that was released at the same
time as Flash Player 7. The Professional edition includes some features not found in
the standard edition (see preceding list). The Professional edition is not required for
this book or to use ActionScript 2.0.

Flash Player 7

The Flash Player, version 7. The Flash Player is a browser plugin for major web
browsers on Windows and Macintosh. At press time, Flash Player 6, but not Flash
Player 7, was available for Linux. There are both ActiveX control and Netscape-
style versions of the plugin, but I refer to them collectively as "Flash Player 7."

Flash Player
x.0.y.0

The Flash Player, specifically, the release specified by major version number x and

major build number y, as in Flash Player 7.0.19.0. The minor version number and

minor build number of publicly released versions is always 0.

Standalone
Player

A version of the Flash Player that runs directly as an executable off the local
system, rather than as a web browser plugin or ActiveX control.

Projector
A self-sufficient executable that includes both a .swf file and a Standalone Player.
Projectors can be built for either the Macintosh or Windows operating system using
Flash's File Publish feature.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Example Files and Resources

The official companion website for this book is:

http://moock.org/eas2

You can download the example files for this book at:

http://moock.org/eas2/examples

More example Flash code can be found at the Code Depot for ActionScript for Flash MX: The
Definitive Guide:

http://moock.org/asdg/codedepot

For a long list of Flash-related online resources, see:

http://moock.org/moockmarks

For an extensive collection of links to hundreds of ActionScript 2.0 resources, see:

http://www.actionscripthero.com/adventures

 < Day Day Up >

http://moock.org/eas2
http://moock.org/eas2/examples
http://moock.org/asdg/codedepot
http://moock.org/moockmarks
http://www.actionscripthero.com/adventures
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Typographical Conventions

In order to indicate the various syntactic components of ActionScript, this book uses the following
conventions:

Menu options

Menu options are shown using the character, such as File Open.

Constant width

Indicates code examples, code snippets, clip instance names, frame labels, property names,
variable names, and symbol linkage identifiers.

Italic

Indicates function names, method names, class names, package names, layer names, URLs,
filenames, and file suffixes such as .swf. In addition to being italicized in the body text, method
and function names are also followed by parentheses, such as duplicateMovieClip().

Constant width bold

Indicates text that you must enter verbatim when following a step-by-step procedure.
Constant width bold is also used within code examples for emphasis, such as to highlight an

important line of code in a larger example.

Constant width italic

Indicates code that you must replace with an appropriate value (e.g., your name here).

Constant width italic is also used to emphasize variable, property, method, and function

names referenced in comments within code examples.

This is a tip. It contains useful information about the topic at hand, often
highlighting important concepts or best practices.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is a warning. It helps you solve and avoid annoying problems or warns you
of impending doom. Ignore at your own peril.

This is a note about ActionScript 1.0. It compares and contrasts ActionScript 1.0 with
ActionScript 2.0, helping you to migrate to ActionScript 2.0 and to understand important
differences between the two versions of the language.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Essential ActionScript 2.0 by Colin Moock. Copyright 2004
O'Reilly Media, Inc., 0-596-00652-7"

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

We'd Like to Hear from You

We have tested and verified the information in this book to the best of our ability, but you may find
that features have changed (or even that we have made mistakes!). Please let us know about any
errors you find, as well as your suggestions for future editions, by writing to:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

We have a web page for the book, where we list errata, examples, or any additional information. You
can access this page at:

http://www.oreilly.com/catalog/0596006527

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers, and the O'Reilly
Network, see our web site at:

http://www.oreilly.com

 < Day Day Up >

http://www.oreilly.com/catalog/0596006527
http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Acknowledgments

Sometimes you're given the opportunity to thank someone but you know you won't be able to fully
express the magnitude of your appreciation. You can say what you want, but ultimately you just have
to trust that the person knows how deeply grateful you are. I trust that Rebecca Sun, Macromedia's
lead ActionScript 2.0 developer, knows.

I'm in a similar boat with Derek Clayton. I've been working with Derek for years on Unity, our
commercial framework for creating multiuser applications (see http://moock.org/unity). Derek's been
a programming mentor to me since I met my first if statement, and he's been a friend for even
longer. I learn something from him almost every day. This book is filled with the wisdom he has
imparted to me over the years.

Bruce Epstein, my editor. What can you say? He is, quite simply, the best. No hyperbole can
exaggerate his merit, nor do it justice, so I shall attempt none.

I'd also like to thank all of the members of O'Reilly's editorial, production, interior design, art,
marketing, and sales teams including Glenn Bisignani, Claire Cloutier, Colleen Gorman, Tim O'Reilly,
Rob Romano, Sarah Sherman, Ellen Troutman, and Ellie Volckhausen. Also my thanks to the copy
editor, Norma Emory, for helping to ensure the text's consistency, readability, and accuracy.

Then there are the members of Macromedia's Flash team, who have been a constant source of
inspiration, knowledge, and friendship to me since there was a "Flash." I believe that anyone
interested in computers is indebted to the whole Flash team for constantly pioneering new forms of
computer-based communication. Above all, for his unending support and kindness, I owe Gary
Grossman a lifetime of deep bows, obsequious "thank yous," and long handshakes. Specific members
of the Flash team, past and present, that I'm honored to know and work with are: Nigel Pegg,
Michael Williams, Erica Norton, Waleed Anbar, Deneb Meketa, Matt Wobensmith, Mike Chambers,
Chris Thilgen, Gilles Drieu, Nivesh Rajbhandari, Tei Ota, Troy Evans, Lucian Beebe, John Dowdell,
Bentley Wolfe, Jeff Mott, Tinic Uro, Robert Tatsumi, Michael Richards, Sharon Seldon, Jody Zhang,
Jim Corbett, Karen Cook, Jonathan Gay, Pete Santangeli, Sean Kranzberg, Michael Morris, Kevin
Lynch, Ben Chun, Eric Wittman, Jeremy Clark, and Janice Pearce.

I was extraordinarily fortunate to have some truly wonderful technical reviewers and beta readers for
this book. Rebecca Sun lent her sage eye to the entire text. Gary Grossman reviewed key sections,
including Chapter 10. The following keen beta readers guided me throughout the writing process:
Alistair McLoed, Chafic Kazoun, Jon Williams, Marcus Dickinson, Owen Van Dijk, Peter Hall, Ralf
Bokelberg, Robert Penner, and Sam Neff. Special thanks to Mark Jonkman and Nick Reader for their
consistently thorough examinations of the manuscript.

Love to my wife, Wendy, who completes me. To my family and friends. And to the trees, for
providing the answer to any question, the splendor of any dream, and the paper upon which this
book is printed.

Colin MoockToronto, CanadaMarch 2004

http://moock.org/unity
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Part I: The ActionScript 2.0 Language
Part I teaches you the fundamentals of object-oriented concepts, syntax, and usage in
ActionScript 2.0. Even if you have never tried object-oriented programming before, Part I will
have you understanding and applying it. Part I covers classes, objects, methods, properties,
inheritance, composition, interfaces, packages, and myriad other core OOP concepts. Beyond
teaching you the basics of OOP, it helps you decide how much OOP is right for your projects,
and how to structure your classes and their methods.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 1. ActionScript 2.0 Overview
Over the course of this book, we'll study ActionScript 2.0 and object-oriented programming in Flash
exhaustively. There's lots to learn ahead but, before we get into too much detail, let's start with a
quick summary of ActionScript 2.0's core features and Flash Player 7's new capabilities. If you have
an ActionScript 1.0 background, the summary will give you a general sense of what's changed in the
language. If, on the other hand, you're completely new to Flash or to ActionScript, you may want to
skip directly to Chapter 2.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

1.1 ActionScript 2.0 Features

Introduced in Flash MX 2004 and Flash MX Professional 2004, ActionScript 2.0 is a major
grammatical overhaul of ActionScript as it existed in Flash 5 and Flash MX (retroactively dubbed
ActionScript 1.0). ActionScript 2.0 adds relatively little new runtime functionality to the language but
radically improves object-oriented development in Flash by formalizing objected-oriented
programming (OOP) syntax and methodology.

While ActionScript 1.0 could be used in an object-oriented way, it lacked a traditional, official
vocabulary for creating classes and objects. ActionScript 2.0 adds syntactic support for traditional
object-oriented features. For example, ActionScript 2.0 provides a class keyword for creating classes
and an extends keyword for establishing inheritance. Those keywords were absent from ActionScript
1.0 (though it was still possible to create prototypical objects that could be used as classes). The
traditional OOP syntax of ActionScript 2.0 makes the language quite familiar for programmers coming
from other OOP languages such as Java and C++.

Most of the new OOP syntax in ActionScript 2.0 is based on the proposed
ECMAScript 4 standard. Its specification is posted at
http://www.mozilla.org/js/language/es4.

Here are some of the key features introduced in ActionScript 2.0. Don't worry if these features are
new to you; the remainder of the book covers them in detail:

The class statement, used to create formal classes. The class statement is covered in Chapter
4.

The extends keyword, used to establish inheritance. In ActionScript 1.0 inheritance was typically
established using the prototype property but could also be established via the _ _proto_ _

property. Inheritance is covered in Chapter 6.

The interface statement, used to create Java-style interfaces (i.e., abstract datatypes). Classes
provide implementations for interfaces using the implements keyword. ActionScript 1.0 did not
support interfaces. Interfaces are covered in Chapter 8.

The official file extension for class files is .as. Formerly, classes could be defined in timeline code
or in external .as files. ActionScript 2.0 now requires classes to be defined in external class files.
Class files can be edited in Flash MX Professional 2004's script editor or in an external text
editor.

Formal method-definition syntax, used to create instance methods and class methods in a class
body. In ActionScript 1.0, methods were added to a class via the class constructor's prototype

property. See Chapter 4.

Formal getter and setter method syntax, which replaces ActionScript 1.0's Object.addProperty()

http://www.mozilla.org/js/language/es4
http://lib.ommolketab.ir
http://lib.ommolketab.ir

method. See Chapter 4.

Formal property-definition syntax, used to create instance properties and class properties in a
class body. In ActionScript 1.0, instance properties could be added in several ways-via the
class constructor's prototype property, in the constructor function, or on each object directly.
Furthermore, in ActionScript 1.0, class properties were defined directly on the class constructor
function. See Chapter 4.

The private and public keywords, used to prevent certain methods and properties from being
accessed outside of a class.

Static typing for variables, properties, parameters, and return values, used to declare the
datatype for each item. This eliminates careless errors caused by using the wrong kind of data
in the wrong situation. See Chapter 3 for details on type mismatch errors.

Type casting, used to tell the compiler to treat an object as though it were an instance of
another datatype, as is sometimes required when using static typing. See Chapter 3 for details
on casting.

Classpaths, used to define the location of one or more central class repositories. This allows
classes to be reused across projects and helps make source files easy to manage. See Chapter
9.

Exception handling-including the throw and try/catch/finally statements-used to generate and
respond to program errors. See Chapter 10.

Easy linking between movie clip symbols and ActionScript 2.0 classes via the symbol Linkage
properties. This makes MovieClip inheritance easier to implement than in ActionScript 1.0, which
required the use of #initclip and Object.registerClass(). See Chapter 13.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

1.2 Features Introduced by Flash Player 7

In addition to the ActionScript 2.0 language enhancements, Flash Player 7 introduces some important
new classes and capabilities. These are available only to Flash Player 7-format movies playing in
Flash Player 7 or later. (For information on export formats, see "Setting a Movie's ActionScript
Version and Player Version," later in this chapter.) Although these features are not the direct topic of
study in this book, we'll cover a few of them during our exploration of ActionScript 2.0.

The key new features of Flash Player 7 include:

New array-sorting capabilities

The ContextMenu and ContextMenuItem classes for customizing the Flash Player context menu
that appears when the user right-clicks (Windows) or Ctrl-clicks (Macintosh) on a Flash movie

Cross-domain policy files for permitting data and content to be loaded from an external domain

ID3 v2 tag support for loaded MP3 files

Mouse wheel support in text fields (Windows only)

Improved MovieClip depth management methods

The MovieClipLoader class for loading movie clips and images

The PrintJob class for printing with greater control than was previously possible

Support for images in text fields, including flowing text around images

Improved text metrics (the ability to obtain more accurate measurements of the text in a text
field than was possible in Flash Player 6)

Cascading stylesheet (CSS) support for text fields, allowing the text in a movie to be formatted
with a standard CSS stylesheet

Improved ActionScript runtime performance

Strict case sensitivity

The topic of this book is the core ActionScript 2.0 language. As such, the preceding Flash Player
features are not all covered in a detailed manner. For more information on the new features in Flash
Player 7, see Flash's online help under Help ActionScript Reference Guide What's New in
Flash MX 2004 ActionScript.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

1.3 Flash MX 2004 Version 2 Components

Flash MX introduced components-ready-to-use interface widgets and code modules that implement
commonly needed functionality. Flash's built-in components make it relatively easy to create
desktop-style Flash applications. Flash MX 2004 introduces the new v2 components, rewritten from
scratch in ActionScript 2.0 and built atop version 2 of the Macromedia Component Architecture, which
provides a much richer feature set than its predecessor. The new architecture necessitates new ways
of developing and using components (see Chapter 12 for component usage). Officially, the v2
components require Flash Player 6.0.79.0 or higher; however, tests show that many v2 components
work in earlier releases of Flash Player 6 (especially Flash Player 6.0.40.0 and higher). If you want to
use a v2 component in a version prior to Flash Player 6.0.79.0, you should test your application
extensively.

A single application produced in either Flash MX 2004 or Flash MX Professional 2004 can include both
v2 components and Flash MX's v1 components, provided the v1 components have been updated to
support ActionScript 2.0 and the movie is exported in ActionScript 2.0 format.

Don't confuse v1 and v2 components with the version of ActionScript in which they are written.
Granted, v2 components are written in ActionScript 2.0 and there are no ActionScript 1.0 versions of
the v2 components. However, although v1 components were written originally in ActionScript 1.0,
versions updated to compile under ActionScript 2.0 are available.

The v1 component update for ActionScript 2.0 is available at the Flash
Exchange (http://www.macromedia.com/exchange/flash), in the User Interface
category, under the title "Flash MX Components for Flash MX 2004."

If nonupdated v1 components (i.e., those written in ActionScript 1.0) are used with v2 components in
the same movie, some compile-time and runtime errors may occur, depending on the components
used.

Do not mix ActionScript 1.0 OOP techniques with ActionScript 2.0 code. If you
are using classes, inheritance, and other OOP features, make sure all your code
is upgraded to ActionScript 2.0.

Key new v2 component features include:

A new listener event model for handling component events, which lets many external objects
receive a single component's events

CSS-based stylesheet support, making it easier to change text attributes across components

Focus management to support tabbing between user interface elements

http://www.macromedia.com/exchange/flash
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Depth management to manage the visual stacking of components on screen

Richer accessibility support (i.e., better support for screen readers)

Richer skinning (i.e., graphic replacement) support

Encapsulation of component assets in a single file, allowing easier component management and
sharing

The v2 components tend to be larger than their v1 counterparts. This is especially true if using only
one or two components, as the v2 architecture is optimized for applications that use at least three or
four different component types. Therefore, if you need only one or two components, and you don't
need focus management or accessibility support, you'll get faster (smaller) downloads using the v1
components.

Beware that the default theme ("halo") for the v2 components does not support custom colors for
scrollbars and buttons. That is, the scrollTrackColor and buttonColor style properties do not work

with the default v2 component theme in Flash MX 2004 and Flash MX Professional 2004. To set the
color of buttons and scrollbars on v2 components, you must apply a new theme to the document.
See Help Using Components About Themes Applying a Theme to a Document.

Table 1-1 shows the complete set of components in Flash MX 2004 and Flash MX Professional 2004.
Professional components that are not available in Flash MX 2004 will still work in that version of the
software. That is, a .fla document that contains a component specific to the Professional edition will
open normally and work properly in Flash MX 2004. Macromedia's End User License Agreement for
Flash MX 2004 does not explicitly prohibit the use of Professional-only components in the standard
edition of the software.

Table 1-1. The v1 and v2 components

Component Flash MX
Flash

MX
2004

Flash
Pro

Notes

Accordion [1] v2

Alert [2], [3] v2

Button v1 v2 v2

CheckBox v1 v2 v2

ComboBox v1 v2 v2

Data
Components

 v2
Includes DataHolder, DataSet, RDBMSResolver,
WebServiceConnector, XMLConnector, and
XUpdateResolver

DataGrid [2] v2

DateChooser [3], [4] v2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Component Flash MX
Flash

MX
2004

Flash
Pro

Notes

DateField v2

Label [1] v2 v2

List v1 v2 v2

Loader [2] v2 v2

Media
Components

[2] v2 MediaController, MediaDisplay, MediaPlayback

Menu [3] v2

MenuBar v2

NumericStepper v2 v2

ProgressBar
Footnote
2, [3] v2 v2

RadioButton v1 v2 v2

ScrollPane v1 v2 v2

TextArea v1 v2 v2

TextInput v1 v2 v2

Tree [3] v2

Window [3] v2 v2

[1] Similar component available in DRK3
(http://www.macromedia.com/software/drk/productinfo/product_overview/volume3).

[2] Similar component available in DRK1
(http://www.macromedia.com/software/drk/productinfo/product_overview/volume1).

[3] Similar component available in Flash UI Component Set 2 at the Flash Exchange
(http://www.macromedia.com/exchange/flash).

[4] Similar component available in DRK2
(http://www.macromedia.com/software/drk/productinfo/product_overview/volume2).

In Chapter 12, we'll learn how to program graphical, OOP applications that use the v2 components.

 < Day Day Up >

DateField v2

Label [1] v2 v2

List v1 v2 v2

Loader [2] v2 v2

Media
Components

[2] v2 MediaController, MediaDisplay, MediaPlayback

Menu [3] v2

MenuBar v2

NumericStepper v2 v2

ProgressBar
Footnote
2, [3] v2 v2

RadioButton v1 v2 v2

ScrollPane v1 v2 v2

TextArea v1 v2 v2

TextInput v1 v2 v2

Tree [3] v2

Window [3] v2 v2

[1] Similar component available in DRK3
(http://www.macromedia.com/software/drk/productinfo/product_overview/volume3).

[2] Similar component available in DRK1
(http://www.macromedia.com/software/drk/productinfo/product_overview/volume1).

[3] Similar component available in Flash UI Component Set 2 at the Flash Exchange
(http://www.macromedia.com/exchange/flash).

[4] Similar component available in DRK2
(http://www.macromedia.com/software/drk/productinfo/product_overview/volume2).

In Chapter 12, we'll learn how to program graphical, OOP applications that use the v2 components.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

1.4 ActionScript 1.0 and 2.0 in Flash Player 6 and 7

ActionScript 1.0 is based on the ECMAScript 3 standard (as is JavaScript 1.5), whereas ActionScript
2.0 is based on the emerging ECMAScript 4 standard (as is the theoretical JavaScript 2.0). As we
learned in the Preface, under "ActionScript 2.0 Versus ActionScript 1.0," this common heritage gives
the two versions a strong family resemblance; they share the same syntax for most non-OOP
features, such as loops, conditionals, and operators.

Although ActionScript 2.0 is now the preferred version of ActionScript, ActionScript 1.0 syntax
continues to be fully supported by Flash Player 7 and is not deprecated. As we'll see shortly, you can
author either ActionScript 1.0 or ActionScript 2.0 in Flash MX 2004 and Flash MX Professional 2004
(but you cannot author ActionScript 2.0 in Flash MX). With a few minor exceptions, noted throughout
the text, ActionScript 2.0 code is also backward compatible with Flash Player 6. However,
ActionScript 2.0 is not compatible with older versions such as Flash Player 5 or Flash Player 4.

If you're an ActionScript 1.0 programmer, you can think of ActionScript 2.0 as a syntactic façade
over ActionScript 1.0. That is, both ActionScript 2.0 and ActionScript 1.0 compile to the same .swf
bytecode (with a few minor additions for ActionScript 2.0). To the Flash Player, at runtime, there's
effectively no difference between ActionScript 1.0 and ActionScript 2.0 (barring the aforementioned
minor additions). For example, once an ActionScript 2.0 class, such as Rectangle, is compiled to a
.swf file, it exists as a Function object at runtime, just as an older ActionScript 1.0 function
declaration used as a class constructor would. Similarly, at runtime, an ActionScript 2.0 Rectangle
instance (r) is given a _ _proto_ _ property that refers to Rectangle.prototype, again making it

look to the Flash Player just like its ActionScript 1.0 counterpart.

But for the most part, you don't need to worry about these behind-the-scenes compiler and runtime
issues. If you're moving to ActionScript 2.0 (and I think you should!), you can permanently forget
ActionScript 1.0's prototype-based programming. In fact, most ActionScript 1.0 techniques for
dynamically manipulating objects and classes at runtime are considered bad practice in ActionScript
2.0, and will actually lead to compiler errors when mixed with ActionScript 2.0 code. But never fear,
this book highlights problematic ActionScript 1.0 practices and show you how to replace them with
their modern ActionScript 2.0 counterparts.

1.4.1 Setting a Movie's ActionScript Version and Player Version

Flash MX 2004 lets you export .swf files (a.k.a. movies) in a format compatible with specific versions
of the Flash Player. Don't confuse this with the version of the Flash Player the end user has installed
(which is beyond your control except for checking their Player version and suggesting they upgrade
when appropriate).

To set the version of a .swf file, use the drop-down list under File Publish Settings >
Flash Version. For maximum compatibility, always set your .swf file's Flash Player version
explicitly to the lowest version required, and no higher. If the .swf file version is higher than the end
user's version of the Flash Player, it might not display correctly, and most code execution will fail.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Setting the version of a Flash movie has the following effects:

The movie will be compatible with (i.e., playable in) the specified version of the Flash Player (or
later versions). In earlier versions, most ActionScript code will either not execute properly or not
execute at all.

The movie will play properly in the most recent version of the Flash Player, even if it uses
features that have changed since the specified version was released. In other words, the newest
Flash Player will always play older format .swf files properly. For example, ActionScript
identifiers in a Flash Player 6-format .swf file playing in Flash Player 7 are not case sensitive,
even though identifiers in Flash Player 7-format .swf files are case sensitive. However, there's
one exception: the security changes to the rules of cross-domain data loading in Flash Player 7
affect Flash Player 6-format .swf files in some cases. For details see
http://moock.org/asdg/technotes/crossDomainPolicyFiles.

When exporting Flash Player 6- and Flash Player 7-format movies from either Flash MX 2004 or Flash
MX Professional 2004, you can tell Flash whether to compile your code as if it is ActionScript 1.0 or
ActionScript 2.0. Naturally, you should make this choice at the beginning of development, as you
don't want to rewrite your code at the end. To specify which version of the ActionScript compiler to
use when creating a .swf file, use the drop-down list under File Publish Settings Flash
ActionScript Version.

Throughout the remainder of the text, this book assumes you are using
ActionScript 2.0's compiler.

When the ActionScript version is set to ActionScript 1.0, the following changes take effect:

ActionScript 2.0 syntax is not recognized and ActionScript 2.0 features, such as type checking
(including post-colon syntax) and error handling, can either cause compiler errors (for Flash
Player 6-format movies) or simply fail silently (for Flash Player 7-format movies).

Flash 4-style "slash syntax" for variables is allowed (but this coding style is deprecated and not
recommended).

Reserved words added in ActionScript 2.0 such as class, interface, and public can be used as
identifiers (but this practice makes code difficult to update and is highly discouraged).

The following runtime features of ActionScript 2.0 will not work in .swf files exported to a Flash Player
6-format .swf file, no matter which version of the Flash Player is used:

Exception handling (see Chapter 10).

Case sensitivity. (Scripts exported in Flash Player 6-format .swf files are not case sensitive,
even in Flash Player 7. But beware! ActionScript 1.0 code in a Flash Player 7-format .swf file is
case sensitive when played in Flash Player 7. See Table 1-2.)

Type casting (see "Runtime Casting Support" in Chapter 3).

http://moock.org/asdg/technotes/crossDomainPolicyFiles
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 1-2 outlines case sensitivity for various possible permutations of the .swf file version and the
user's Flash Player version. Note that runtime case sensitivity is unrelated to the ActionScript
compiler version chosen and is dependent only on the format of the exported .swf file and the Flash
Player version. In other words, both ActionScript 1.0 and 2.0 are case sensitive when exported in
Flash Player 7-format .swf files and played in Flash Player 7. In other cases, code is case insensitive
subject to the exceptions cited in the footnotes to Table 1-2. Consult my book ActionScript for Flash
MX: The Definitive Guide (O'Reilly) for a full discussion of case sensitivity and its implications in Flash
Player 6.

Table 1-2. Runtime case sensitivity support by language, file format, and
Flash Player version

Movie compiled as either ActionScript 1.0
or 2.0 and

Played in Flash
Player 6

Played in Flash
Player 7

Flash Player 6-format .swf file Case insensitive[5] Case-insensitive[5]

Flash Player 7-format .swf file Not supported[6] Case-sensitive

[5] Identifiers (i.e., variable and property names), function names, frame labels, and symbol export IDs are case
insensitive in Flash Player 6-format .swf files. However, reserved words such as "if" are case sensitive, even in
Flash Player 6.

[6] Flash Player 6 cannot play Flash Player 7-format .swf files.

1.4.2 Changes to ActionScript 1.0 in Flash Player 7

In a Flash Player 7-format .swf file running in Flash Player 7, some ActionScript 1.0 code behaves
differently than it does in Flash Player 6. These changes bring Flash Player 7 closer to full ECMAScript
3 compliance. Specifically:

The value undefined converts to the number NaN when used in a numeric context and to the
string "undefined" when used in a string context (in Flash Player 6, undefined converts to the

number 0 and to the empty string, "").

Any nonempty string converts to the Boolean value true when used in a Boolean context (in
Flash Player 6, a string converts to true only if it can be converted to a valid nonzero number;
otherwise, it converts to false).

Identifiers (function names, variable names, property names, etc.) are case sensitive. For
example, the identifiers firstName and firstname refer to two different variables in Flash

Player 7. In Flash Player 6, the identifiers would refer to a single variable. (However, as usual,
frame labels and symbol linkage IDs are not case sensitive.)

The preceding changes affect you only when you are updating a Flash Player 6-format movie to a
Flash Player 7-format movie in order to use a feature unique to Flash Player 7. That is, if you
upgrade your movie, you must test and possibly modify your code to make sure that it operates the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

same in Flash Player 7 format as it did in Flash Player 6 format. If you do not need Flash Player 7
features in your movie, you can continue to export it to Flash Player 6 format and it will usually run in
Flash Player 7 exactly as it did in Flash Player 6. This last point cannot be emphasized enough.

Macromedia goes to great lengths to ensure that movies exported in older
versions of the .swf format, such as Flash Player 6 format, continue to operate
unchanged even if played in a later Player, such as Flash Player 7. However,
when you publish a movie in Flash Player 7 format, you must be mindful of the
changes implemented since the previous version of the .swf format. That is, the
changes needed in your ActionScript depend on the .swf file version, not the
Flash Player version.

Of course, any newly created .swf files exported in Flash Player 7 format (and not just those
upgraded from Flash Player 6-format .swf files) must obey the new conventions, so keep them in
mind moving forward. Remember that these new conventions bring ActionScript in line with other
languages such as JavaScript and Java, making it easier to port code to or from other languages.

1.4.3 Flash 4 Slash Syntax Is Not Supported in ActionScript 2.0

In Flash 4 and subsequent versions, variables could be referenced with so-called "slash syntax." For
example, in Flash 4, the following code is a reference to the variable x on the movie clip ball:

/ball:x

That syntax generates the following error if you attempt to use it with the ActionScript 2.0 compiler,
whether exporting in Flash Player 6 or Flash Player 7 format:

Unexpected '/' encountered

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

1.5 Let's Go OOP

Now that we've had a taste of what ActionScript 2.0 has to offer, we can start our study of object-
oriented programming with Flash in earnest. When you're ready to get your hands dirty, move on to
Chapter 2!

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 2. Object-Oriented ActionScript
Ironically, Flash users who are new to object-oriented programming (OOP) are often familiar with
many object-oriented concepts without knowing their formal names. This chapter demystifies some
of the terminology and brings newer programmers up to speed on key OOP concepts. It also serves
as a high-level overview of OOP in ActionScript for experienced programmers who are making their
first foray into Flash development.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

2.1 Procedural Programming and Object-Oriented
Programming

Traditional programming consists of various instructions grouped into procedures. Procedures
perform a specific task without any knowledge of or concern for the larger program. For example, a
procedure might perform a calculation and return the result. In a procedural-style Flash program,
repeated tasks are stored in functions and data is stored in variables. The program runs by executing
functions and changing variable values, typically for the purpose of handling input and generating
output. Procedural programming is sensible for certain applications; however, as applications become
larger or more complex and the interactions between procedures (and the programmers who use
them) become more numerous, procedural programs can become unwieldy. They can be hard to
maintain, hard to debug, and hard to upgrade.

Object-oriented programming (OOP) is a different approach to programming, intended to solve some
of the development and maintenance problems commonly associated with large procedural
programs. OOP is designed to make complex applications more manageable by breaking them down
into self-contained, interacting modules. OOP lets us translate abstract concepts and tangible real-
world things into corresponding parts of a program (the "objects" of OOP). It's also designed to let an
application create and manage more than one of something, as is often required by user interfaces.
For example, we might need 20 cars in a simulation, 2 players in a game, or 4 checkboxes in a fill-in
form.

Properly applied, OOP adds a level of conceptual organization to a program. It groups related
functions and variables together into separate classes , each of which is a self-contained part of the
program with its own responsibilities. Classes are used to create individual objects that execute
functions and set variables on one another, producing the program's behavior. Organizing the code
into classes makes it easier to create a program that maps well to real-world problems with real-
world components. Parts II and III of this book cover some of the common situations you'll encounter
in ActionScript, and show how to apply OOP solutions to them. But before we explore applied
situations, let's briefly consider the basic concepts of OOP.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

2.2 Key Object-Oriented Programming Concepts

An object is a self-contained software module that contains related functions (called its methods) and
variables (called its properties). Individual objects are created from classes, which provide the
blueprint for an object's methods and properties. That is, a class is the template from which an object
is made. Classes can represent theoretical concepts, such as a timer, or physical entities in a
program, such as a pull-down menu or a spaceship. A single class can be used to generate any
number of objects, each with the same general structure, somewhat as a single recipe can be used to
bake any number of muffins. For example, an OOP space fighting game might have 20 individual
SpaceShip objects on screen at one time, all created from a single SpaceShip class. Similarly, the
game might have one 2dVector class that represents a mathematical vector but thousands of
2dVector objects in the game.

The term instance is often used as a synonym for object. For example, the
phrases "Make a new SpaceShip instance" and "Make a new SpaceShip object"
mean the same thing. Creating a new object from a class is sometimes called
instantiation.

To build an object-oriented program, we:

Create one or more classes.1.

Make (i.e., instantiate) objects from those classes.2.

Tell the objects what to do.3.

What the objects do determines the behavior of the program.

In addition to using the classes we create, a program can use any of the classes built into the Flash
Player. For example, a program can use the built-in Sound class to create Sound objects. An
individual Sound object represents and controls a single sound or a group of sounds. Its setVolume()
method can raise or lower the volume of a sound. Its loadSound() method can retrieve and play an
MP3 sound file. And its duration property can tell us the length of the loaded sound, in milliseconds.

Together, the built-in classes and our custom classes form the basic building blocks of all OOP
applications in Flash.

2.2.1 Class Syntax

Let's jump right into a tangible example. Earlier, I suggested that a space fighting game would have
a SpaceShip class. The ActionScript that defines the class might look like the source code shown in
Example 2-1 (don't worry if much of this code is new to you; we'll study it in detail in the coming
chapters).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 2-1. The SpaceShip class

class SpaceShip {

 // This is a public property named speed.

 public var speed:Number;

 // This is a private property named damage.

 private var damage:Number;

 // This is a constructor function, which initializes

 // each SpaceShip instance.

 public function SpaceShip () {

 speed = 100;

 damage = 0;

 }

 // This is a public method named fireMissile().

 public function fireMissile ():Void {

 // Code that fires a missile goes here.

 }

 // This is a public method named thrust().

 public function thrust ():Void {

 // Code that propels the ship goes here.

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice how the SpaceShip class groups related aspects of the program neatly together (as do all
classes). Variables (properties), such as speed and damage, related to spaceships are grouped with

functions (methods) used to move a spaceship and fire its weapons. Other aspects of the program,
such as keeping score and drawing the background graphics can be kept separate, in their own
classes (not shown in this example).

2.2.2 Object Creation

Objects are created (instantiated) with the new operator, as in:

new ClassName()

where ClassName is the name of the class from which the object will be created.

For example, when we want to create a new SpaceShip object in our hypothetical game, we use this
code:

new SpaceShip()

The syntax for creating objects (e.g., new SpaceShip()) is the same in
ActionScript 2.0 as it was in ActionScript 1.0. However, the syntax for defining
classes in ActionScript 2.0 differs from ActionScript 1.0.

Most objects are stored somewhere after they're created so that they can be used later in the
program. For example, we might store a SpaceShip instance in a variable named ship, like this:

var ship:SpaceShip = new SpaceShip();

Each object is a discrete data value that can be stored in a variable, an array element, or even a
property of another object. For example, if you create 20 alien spaceships, you would ordinarily store
references to the 20 SpaceShip objects in a single array. This allows you to easily manipulate multiple
objects by cycling through the array and, say, invoking a method of the SpaceShip class on each
object.

2.2.3 Object Usage

An object's methods provide its capabilities (i.e., behaviors)-things like "fire missile," "move," and
"scroll down." An object's properties store its data, which describes its state at any given point in
time. For example, at a particular point in a game, our ship's current state might be speed is 300,
damage is 14.

Methods and properties that are defined as public by an object's class can be accessed from
anywhere in a program. By contrast, methods and properties defined as private can be used only
within the source code of the class or its subclasses. As we'll learn in Chapter 4, methods and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

properties should be defined as public only if they must be accessed externally.

To invoke a method, we use the dot operator (i.e., a period) and the function call operator (i.e.,
parentheses). For example:

// Invoke the ship object's fireMissile() method.

ship.fireMissile();

To set a property, we use the dot operator and an equals sign. For example:

// Set the ship's speed property to 120.

ship.speed = 120;

To retrieve a property's value, we use the dot operator on its own. For example:

// Display the value of the speed property in the Output panel.

trace(ship.speed);

2.2.4 Encapsulation

Objects are said to encapsulate their property values and method source code from the rest of the
program. If properly designed, an object's private properties and the internal code used in its
methods (including public methods) are its own business; they can change without necessitating
changes in the rest of the program. As long as the method names (and their parameters and return
values) stay the same, the rest of the program can continue to use the object without being
rewritten.

Encapsulation is an important aspect of object-oriented design because it allows different
programmers to work on different classes independently. As long as they agree on the names of the
public methods through which they'll communicate, the classes can be developed independently.
Furthermore, by developing a specification that shows the publicly available methods, the parameters
they require, and the values they return, a class can be tested thoroughly before being deployed. The
same test code can be used to reverify the class's operation even if the code within the class is
refactored (i.e., rewritten to enhance performance or to simplify the source code without changing
the previously existing functionality).

In Chapter 4, we'll learn how to use the private modifier to prevent a method or property from being
accessed by other parts of a program.

2.2.5 Datatypes

Each class in an object-oriented program can be thought of as defining a unique kind of data, which
is formally represented as a datatype in the program.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A class effectively defines a custom datatype.

You are probably already familiar with custom datatypes defined by built-in ActionScript classes, such
as the Date class. That is, when you create a Date object using new Date(), the returned value
contains not a string or a number but a complex datatype that defines a particular day of a particular
year. As such, the Date datatype supports various properties and methods uniquely associated with
dates.

Datatypes are used to impose limits on what can be stored in a variable, used as a parameter, or
passed as a return value. For example, when we defined the speed property earlier, we also specified

its datatype as Number (as shown in bold):

// The expression ":Number" defines speed's datatype.

public var speed:Number;

Attempts to store a nonnumeric value in the speed property generate a compile-time error.

If you test a movie and Flash's Output panel displays an error containing the phrase "Type
mismatch," you know that you used the wrong kind of data somewhere in your program (the
compiler will tell you precisely where). Datatypes help us guarantee that a program isn't used in
unintended ways. For example, by specifying that the datatype of speed is a number, we prevent
someone from unintentionally setting speed to, say, the string "very fast." The following code

generates a compile-time error due to the datatype mismatch:

public var speed:Number = "very fast"; // Error!

 // You can't assign a String to a

 // variable whose type is Number.

We'll talk more about datatypes and type mismatches in Chapter 3.

2.2.6 Inheritance

When developing an object-oriented application, we can use inheritance to allow one class to adopt
the method and property definitions of another. Using inheritance, we can structure an application
hierarchically so that many classes can reuse the features of a single class. For example, specific Car,
Boat, and Plane classes could reuse the features of a generic Vehicle class, thus reducing redundancy
in the application. Less redundancy means less code to write and test. Furthermore, it makes code
easier to change-for example, updating a movement algorithm in a single class is easier and less
error prone than updating it across several classes.

A class that inherits properties and methods from another class is called a subclass. The class from

http://lib.ommolketab.ir
http://lib.ommolketab.ir

which a subclass inherits properties and methods is called the subclass's superclass. Naturally, a
subclass can define its own properties and methods in addition to those it inherits from its superclass.
A single superclass can have more than one subclass, but a single subclass can have only one
superclass (although it can also inherit from its superclass's superclass, if any). We'll cover
inheritance in detail in Chapter 6.

2.2.7 Packages

In a large application, we can create packages to contain groups of classes. A package lets us
organize classes into logical groups and prevents naming conflicts between classes. This is
particularly useful when components and third-party class libraries are involved. For example, Flash
MX 2004's GUI components, including one named Button, reside in a package named mx.controls.
The GUI component class named Button would be confused with Flash's built-in Button class if it
weren't identified as part of the mx.controls package. Physically, packages are directories that are
collections of class files (i.e., collections of .as files).

We'll learn about preventing naming conflicts by referring to classes within a package, and much
more, in Chapter 9.

2.2.8 Compilation

When an OOP application is exported as a Flash movie (i.e., a .swf file), each class is compiled; that
is, the compiler attempts to convert each class from source code to bytecode-instructions that the
Flash Player can understand and execute. If a class contains errors, compilation fails and the Flash
compiler displays the errors in the Output panel in the Flash authoring tool. The error messages, such
as the datatype mismatch error described earlier, should help you diagnose and solve the problem.
Even if the movie compiles successfully, errors may still occur while a program is running; these are
called runtime errors . We'll learn about Player-generated runtime errors and program-generated
runtime errors in Chapter 10.

2.2.9 Starting an Objected-Oriented Application

In our brief overview of OOP in Flash, we've seen that an object-oriented application is made up of
classes and objects. But we haven't learned how to actually start the application running. Every Flash
application, no matter how many classes or external assets it contains, starts life as a single .swf file
loaded into the Flash Player. When the Flash Player loads a new .swf file, it executes the actions on
frame 1 and then displays the contents of frame 1.

Hence, in the simplest case, we can create an object-oriented Flash application and start it as
follows:

Create one or more classes in .as files.1.

Create a .fla file.2.

On frame 1 of the .fla file, add code that creates an object of a class.3.

4.

5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.

3.

Optionally invoke a method on the object to start the application.4.

Export a .swf file from the .fla file.5.

Load the .swf file into the Flash Player.6.

We'll study more complex ways to structure and run object-oriented Flash applications in Chapter 5,
Chapter 11, and Chapter 12.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

2.3 But How Do I Apply OOP?

Many people learn the basics of OOP only to say, "I understand the terminology and concepts, but I
have no idea how or when to use them." If you have that feeling, don't worry, it's perfectly normal;
in fact, it means you're ready to move on to the next phase of your learning- object-oriented design
(OOD).

The core concepts of OOP (classes, objects, methods, properties, etc.) are only tools. The real
challenge is designing what you want to build with those tools. Once you understand a hammer,
nails, and wood, you still have to draw a blueprint before you can actually build a fence, a room, or a
chair. Object-oriented design is the "draw a blueprint" phase of object-oriented programming, during
which you organize your entire application as a series of classes. Breaking up a program into classes
is a fundamental design problem that you'll face daily in your OOP work. We'll return to this
important aspect of OOP regularly throughout this book.

But not all Flash applications need to be purely object-oriented. Flash supports both procedural and
object-oriented programming and allows you to combine both approaches in a single Flash movie. In
some cases, it's sensible to apply OOP only to a single part of your project. Perhaps you're building a
web site with a section that displays photographs. You don't have to make the whole site object-
oriented; you can just use OOP to create the photograph-display module. (In fact, we'll do just that
in Chapter 5 and Chapter 7!)

So if Flash supports both procedural and object-oriented programming, how much of each is right for
your project? To best answer that question, we first need to understand the basic structure of every
Flash movie. The fundamental organizing structure of a Flash document (a .fla file) is the timeline ,
which contains one or more frames. Each frame defines the content that is displayed on the graphical
canvas called the Stage. In the Flash Player, frames are displayed one at a time in a linear sequence,
producing an animated effect-exactly like the frames in a filmstrip.

At one end of the development spectrum, Flash's timeline is often used for interactive animation and
motion graphics. In this development style, code is mixed directly with timeline frames and graphical
content. For example, a movie might display a 25-frame animation, then stop, calculate some
random feature used to display another animation, and then stop again and ask the user to fill in a
form while yet another animation plays in the background. That is, for simple applications, different
frames in the timeline can be used to represent different program states (each state is simply one of
the possible places, either physical or conceptual, that a user can be in the program). For example,
one frame might represent the welcome screen, another frame might represent the data entry
screen, a third frame might represent an error screen or exit screen, and so on. Of course, if the
application includes animation, each program state might be represented by a range of frames
instead of a single frame. For example, the welcome screen might include a looping animation.

When developing content that is heavily dependent on motion graphics, using the timeline makes
sense because it allows for precise, visual control over graphic elements. In this style of
development, code is commonly attached to the frames of the timeline using the Actions panel (F9).
The code on a frame is executed immediately before the frame's content is displayed. Code can also
be attached directly to the graphical components on stage. For example, a button can contain code
that governs what happens when it is clicked.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Timeline-based development usually goes hand-in-hand with procedural programming because you
want to take certain actions at the time a particular frame is reached. In Flash, "procedural
programming" means executing code, defining functions, and setting variables on frames in a
document's timeline or on graphical components on stage.

However, not all Flash content necessarily involves timeline-based motion. If you are creating a video
game, it becomes impossible to position the monsters and the player's character using the timeline.
Likewise, you don't know exactly when the user is going to shoot the monster or take some other
action. Therefore, you must use ActionScript instead of the timeline to position the characters in
response to user actions (or in response to an algorithm that controls the monsters in some semi-
intelligent way). Instead of a timeline-based project containing predetermined animated sequences,
we have a nonlinear project in which characters and their behavior are represented entirely in code.

This type of development lends itself naturally to objects that represent, say, the player's character
or the monsters. At this end of the development spectrum lies traditional object-oriented
programming, in which an application exists as a group of classes. In a pure object-oriented Flash
application, a .fla file might contain only a single frame, which simply loads the application's main
class and starts the application by invoking a method on that main class. Of course, OOP is good for
more than just video games. For example, a Flash-based rental car reservation system might have
no timeline code whatsoever and create all user interface elements from within classes.

Most real-world Flash applications lie somewhere between the extreme poles of timeline-only
development and pure OOP development. For example, consider a Flash-based web site in which two
buttons slide into the center of the screen and offer the user a choice of languages: "English" or
"French." The user clicks the preferred language button, and both buttons slide off screen. An
animated sequence then displays company information and a video showing a product demo. The
video is controlled by a MediaPlayback component.

Our hypothetical web site includes both procedural programming and OOP, as follows:

Frames 2 and 3 contain preloader code.

Frame 10 contains code to start the button-slide animation.

Frames 11-25 contain the button-slide animation.

Frame 25 contains code to define button event handlers, which load a language-specific movie.

In the loaded language-specific movie, frame 1 contains code to control the MediaPlayback
component.

In the preceding example, code placed directly on frames (e.g., the preloader code) is procedural.
But the buttons and MediaPlayback component are objects derived from classes stored in external .as
files. Controlling them requires object-oriented programming. And, interestingly enough, Flash
components are, themselves, movie clips. Movie clips, so intrinsic to Flash, can be thought of as self-
contained objects with their own timelines and frames. Components (indeed, any movie clip) can
contain procedural code internally on their own frames even though they are objects. Such is the
nature of Flash development-assets containing procedural code can be mixed on multiple levels with
object-oriented code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As mentioned in the Preface, this book assumes you understand movie clips
and have used them in your work. If you are a programmer coming to Flash
from another language, and you need a crash course on movie clips from a
programmer's perspective, consult Chapter 13 of ActionScript for Flash MX: The
Definitive Guide (O'Reilly), available online at http://moock.org/asdg/samples.

Flash's ability to combine procedural and object-oriented code in a graphical, time-based
development environment makes it uniquely flexible. That flexibility is both powerful and dangerous.
On one hand, animations and interface transitions that are trivial in Flash might require hours of
custom coding in languages such as C++ or Java. But on the other hand, code that is attached to
frames on timelines or components on the Stage is time-consuming to find and modify. So overuse of
timeline code in Flash can quickly (and quietly!) turn a project into an unmaintainable mess. Object-
oriented techniques stress separation of code from assets such as graphics and sound, allowing an
object-oriented application to be changed, reused, and expanded on more easily than a comparable
timeline-based program. If you find yourself in the middle of a timeline-based project faced with a
change and dreading the work involved, chances are the project should have been developed with
object-oriented principles from the outset. Although OOP may appear to require additional up-front
development time, for most nontrivial projects, you'll recoup that time investment many times over
later in the project.

Ultimately, the amount of OOP you end up using in your work is a personal decision that will vary
according to your experience and project requirements. You can use the following list to help decide
when to use OOP and when to use procedural timeline code. Bear in mind, however, that these are
just guidelines-there's always more than one way to create an application. Ultimately, if the
software works and can be maintained, you're doing something right.

Consider using OOP when creating:

Traditional desktop-style applications with few transitions and standardized user interfaces

Applications that include server-side logic

Functionality that is reused across multiple projects

Components

Games

Highly customized user interfaces that include complex visual transitions

Consider using procedural programming when creating:

Animations with small scripts that control flow or basic interactivity

Simple applications such as a one-page product order form or a newsletter subscription form

Highly customized user interfaces that include complex visual transitions

You'll notice that the bulleted item "Highly customized user interfaces that include complex visual
transitions" is included as a case in which you might use both OOP and procedural programming.

http://moock.org/asdg/samples
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Both disciplines can effectively create that kind of content. However, remember that OOP in Flash is
typically more maintainable than timeline code and is easier to integrate into version control systems
and other external production tools. If you suspect that your highly customized UI will be used for
more than a single project, you should strongly consider developing it as a reusable class library or
set of components with OOP.

Note that in addition to Flash's traditional timeline metaphor, Flash MX Professional 2004 introduced
a Screens feature (which includes both Slides and Forms). Screens provide a facade over the
traditional timeline metaphor. Slides and Forms are akin to the card-based metaphors of programs
like HyperCard. Slides are intended for PowerPoint-style slide presentations, while Forms are
intended for VB developers used to working on multipage forms. Like timeline-based applications,
Screens-based applications include both object-oriented code (i.e., code in classes) and procedural-
style code (i.e., code placed visually on components and on the Screens of the application). As
mentioned in the Preface, this book does not cover Screens in detail, but the foundational OOP skills
you'll learn in this text will more than equip you for your own exploration of Screens.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

2.4 On with the Show!

In this chapter, we summarized the core concepts of OOP in Flash. We're now ready to move on with
the rest of Part I, where we'll study all of those concepts again in detail, applying them to practical
situations along the way. If you're already quite comfortable with OOP and want to dive into some
examples, see Chapter 5, Chapter 7, Chapter 11, and Chapter 12, and all of Part III, which contain
in-depth studies of real-world object-oriented code.

Let's get started!

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 3. Datatypes and Type Checking
ActionScript 2.0 defines a wide variety of datatypes. Some datatypes are native to the language itself
(e.g., String, Number, and Boolean). Others are included in the Flash Player and are available
throughout all Flash movies (e.g., Color, Date, and TextField). Still other datatypes are defined by
components that can be added individually to Flash movies (e.g., List, RadioButton, and ScrollPane).

For a primer on ActionScript's datatypes, see Chapter 3 of ActionScript for Flash MX: The Definitive
Guide (O'Reilly), available online at http://moock.org/asdg/samples.

In addition to using ActionScript 2.0's datatypes, developers can add new datatypes to a program by
creating classes (covered in Chapter 4) and interfaces (covered in Chapter 8). Every value in
ActionScript 2.0 belongs to a datatype, whether built-in or programmer-defined. When we work with
a value, we must use it only in ways supported by its datatype. For example, we can call getTime()
on a Date object, but we must not call gotoAndPlay() on a Date object, because the Date class does
not support the gotoAndPlay() method. On the other hand, we can call gotoAndPlay() on a movie
clip because that method is defined by the MovieClip class.

In order for an object-oriented program to work properly, every operation performed on every object
should succeed. That is, if a method is invoked on an object, the object's class must actually define
that method. And if a property is accessed on an object, the object's class must define that property.
If the object's class does not support the method or property, that aspect of the program will fail.
Depending on how we write our code, either the failure will be silent (i.e., cause no error message),
or it will cause an error message that appears in the Output panel. The error message helps us
diagnose the problem.

We certainly strive to use objects appropriately. We don't intentionally call gotoAndPlay() on a Date
object, because we know that the gotoAndPlay() method isn't supported by the Date class. But what
happens if we make a typographical error? What if we accidentally invoke geTime() (missing a "t")
instead of getTime() on a Date object?

someDate.geTime() // WRONG! No such method!

Our call to geTime() will fail because the Date class defines no such method.

And what happens if we invoke indexOf() on a value we think is a String, but the value turns out to
be a Number? The call to indexOf() will fail, because the Number class doesn't support the indexOf()
method. Example 3-1 demonstrates this situation.

Example 3-1. A mistaken datatype assumption

// WRONG! This code mistakenly assumes that getDay() returns

// a string indicating the day (e.g., "Monday", "Tuesday"),

http://moock.org/asdg/samples
http://lib.ommolketab.ir
http://lib.ommolketab.ir

// but getDay() actually returns a number from 0 to 6.

var today;

today = new Date().getDay();

if (today.indexOf("Friday") == 1) {

 trace("Looking forward to the weekend!");

}

// The correct code should be:

var today;

today = new Date().getDay();

// Sunday is 0, Monday is 1, ... Friday is 5.

if (today == 5) {

 trace("Looking forward to the weekend!");

}

In a large program, these kinds of problems can be exceedingly difficult and time-consuming to track
down. In both the geTime() example and the indexOf() example, unless ActionScript reports an
error in the Output panel, we'll have a hard time identifying the issue and locating its cause in our
program.

To help us recognize and isolate datatype-related problems in our code, we use ActionScript 2.0's
type checking capabilities. That is, we can ask ActionScript to check the values in our program and
warn us with an error message if it detects a value being used in some inappropriate way. But there's
a catch: in order to provide this service, ActionScript 2.0 requires that you formally declare the
datatype of every variable, property, parameter, and return value that you want checked. To declare
the datatype of a variable or property, we use this general form, referred to as post-colon syntax:

var variableOrPropertyName:datatype

Specifying an item's datatype is often called datatype declaration. For example, this line of code
declares that the datatype of the variable count is Number:

var count:Number;

We'll learn more about datatype syntax later in this chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As a best practice, in an ActionScript 2.0 program, you should declare the
datatype of every variable, property, function parameter, method parameter,
function return value, and method return value.

ActionScript 2.0 performs type checking on every variable, property, parameter, and return value
that has a declared datatype. If your code attempts to store incompatible types of data in an item
that has a declared datatype, a type error appears in the Output panel at compile time. Later we'll
learn precisely what constitutes an "incompatible type," but for now, you can just assume intuitively
that two types are incompatible when they don't match (i.e., String and Number, Array and Sound,
etc.).

Variables, properties, parameters, and return values without a declared
datatype are not type checked. If you omit the datatype, omit the colon used in
post-colon syntax as well.

Type checking helps us guarantee that a program will run the way we intend it to. To see how, let's
return to Example 3-1 in which a programmer mistakenly attempted to invoke indexOf() on a
numeric value. The source of the programmer's problem was the incorrect assumption that
Date.getDay() returns a string, when in fact, it returns a number. The programmer originally
assigned the return value of getDay() to the variable today without specifying today's datatype:

var today;

today = new Date().getDay();

Because the code doesn't specify the datatype of the variable today, the ActionScript 2.0 compiler
has no way of knowing that the programmer expects today to contain a string. The compiler, hence,
allows any type of data to be stored in today. The preceding code simply stores the return value of
getDay() into today. Because the return value of getDay() is a number, today stores a number, not

a string. This eventually leads to a problem with the program.

In ActionScript 2.0, the programmer can prevent the problem from going unnoticed by declaring the
intended datatype of the variable today, as follows (changes shown in bold):

// ":String" is the datatype declaration

var today:String;

today = new Date().getDay();

In this case, the programmer is still "wrong." His assumption that getDay() returns a string is still a
problem, but it is no longer a hidden problem. Because the programmer has stated his assumption
and intent, the ActionScript 2.0 compiler dutifully generates this error:

Type mismatch in assignment statement: found Number where String is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

required.

This error message should elicit great joy. Why? Because known errors are usually trivial to fix once
you understand the error message. The error message states that the code requires a string but
encountered a number instead. We need to work backward to understand the message's meaning.
Why did the code "require" a string? It was just obeying the programmer's request! The compiler
thinks the code requires a string because (and for no other reason than) the programmer declared
today's datatype as String. The error message tells the programmer that he is breaking his own
constraints; the programmer declared a string-only data container (the variable today) and tried to

place a numeric value (the return value of getDay()) into it.

An inexperienced developer might immediately say, "Aha! The problem is that awful number where a
string belongs! I must change the number into a string!" Don't fall into that trap, and don't be misled
by the error message.

The programmer originally assumed that Date.getDay() returns a String when it in fact returns a
Number. But the programmer has no control over the value returned by getDay(), which is defined
by the Date class and not the programmer. So the solution is to accommodate the return value's
correct datatype by storing it in a variable of type Number instead of type String. Example 3-2
demonstrates.

Example 3-2. Fixing a datatype mismatch error

// This line declares today's type as a Number.

var today:Number

// Assign the return value of getDay() to today. In this version,

// the variable's datatype matches the datatype of the value returned

// by getDay(), so no type mismatch error occurs.

today = new Date().getDay();

// Sunday is 0, Monday is 1, ... Friday is 5.

if (today == 5) {

 trace("Looking forward to the weekend!");

}

Example 3-3 demonstrates an alternative case in which the programmer really does need a string for
display purposes. As usual, getDay() returns a number, so in this case, the programmer must
manually convert the number to a human-readable string. The trick is to use the number returned by
getDay() to extract a string from an array of day names.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 3-3. One way to derive a string from a number

// This line declares today's type as a Number

// and assigns the return value of getDay() to today.

var today:Number = new Date().getDay();

// Populate an array with the names of the days.

var dayNames:Array = ["Sunday", "Monday", "Tuesday", "Wednesday",

 "Thursday", "Friday", "Saturday"];

// Make a new variable that stores the human-readable day.

var todayName:String = dayNames[today];

// Display the human-readable day in a text field.

currentDay_txt.text = todayName;

// Display the human-readable day in the Output panel.

trace(todayName);

So there are two ways to solve a type mismatch error. One way is to declare your variable to be of
the correct type and write (or rewrite if necessary) your code to deal with the datatype accordingly.
The alternative is to write extra code to convert the returned data to the datatype you desire.

Regardless, without ActionScript 2.0's type checking, the original datatype mismatch might have
gone unnoticed.

ActionScript 1.0 had no form of type checking whatsoever and generated no type-
based errors. This left developers with the arduous chore of hunting down unintentional typos
and misuses of objects.

ActionScript 2.0's approach to datatyping is called static typing . In static typing, the datatype of
variables and other data containers is fixed at compile time so that the compiler can guarantee the
validity of every method called and property accessed in the program. Because datatypes are fixed in
a statically typed language, the compiler can say, "I know this variable contains a Date object, and I
know that the Date class doesn't define a method by the name geTime() (remember our earlier

http://lib.ommolketab.ir
http://lib.ommolketab.ir

typo?), so I'll warn the programmer with an error message." Handy indeed.

In ActionScript 1.0, methods were often added to a class via the prototype object.

This technique is not recognized by the ActionScript 2.0 compiler in most cases. Therefore, if
you are compiling code for ActionScript 2.0, invoking a prototype-based method on a variable

with a declared datatype may cause a compile-time error. In ActionScript 2.0, there is no way
to add a method to most classes at runtime; the practice is considered officially illegitimate. You
should define all methods in class files, prior to compiling. See Section 3.4 for exceptions to this
rule. See Section 4.1.1 in Chapter 4 for related information.

The converse of static typing is dynamic typing , in which each value is associated with a datatype at
runtime, not at compile time. With dynamic typing, data containers such as variables can change
datatypes at runtime because type information is associated with each value, not with each data
container. In a dynamically typed language, such as Python or Smalltalk, type mismatch errors can
occur at runtime but they can't be detected a priori at compile type. ActionScript 2.0 does not
provide any dynamic type facilities and generates no runtime type errors. ActionScript 1.0, by
contrast, provided no type checking at all and therefore could not be considered statically typed nor
dynamically typed-rather, it was considered untyped. ActionScript 1.0 effectively let you do
whatever you wanted with any kind of data. For example, in ActionScript 1.0, you could change the
type of a variable from one type to another without errors:

// ActionScript 1.0 code...

var x = 10; // Look ma, I'm a number!

x = "hello world"; // Now I'm a string!

And you could access a nonexistent method or property without errors:

// ActionScript 1.0 code...

var s = new Sound();

s.thisMethodDoesntExist(); // No error in ActionScript 1.0!

As we learned earlier, the preceding code-without any modifications-would not cause errors even in
ActionScript 2.0! That's because ActionScript 2.0's type checking is an opt-in system. In order to
activate type checking, you must specify the datatype of the variable, property, parameter, or return
value being used. Hence, to cause the preceding ActionScript 1.0 code to generate helpful errors in
ActionScript 2.0, we declare the variables' datatypes, as follows:

// ActionScript 2.0 code...

var x:Number = 10; // Here, x's datatype starts as Number.

x = "hello world"; // This attempt to store a string in x causes an error!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

var s:Sound = new Sound();

s.thisMethodDoesntExist(); // ERROR! No such method...

// Here's the output:

Error Scene=Scene 1, layer=Layer 1, frame=1:Line 3: Type mismatch in

assignment statement: found String where Number is required.

x = "hello world"; // This attempt to store a string in x causes an error!

Error Scene=Scene 1, layer=Layer 1, frame=1:Line 6: There is no method

 with the name 'thisMethodDoesntExist'.

s.thisMethodDoesntExist(); // ERROR! No such method...

Because ActionScript 2.0 lets you circumvent type checking by omitting type declarations, its specific
variety of static typing is called weak static typing , where "weak" means that the language will check
for type errors at compile time if told to do so but also offers programmers ways to disable the type
checking system. Languages such as Java that do not let the programmer circumvent type checking
are called strongly typed . Generally speaking, it pays to develop all ActionScript 2.0 projects with
datatyping enabled for all variables, properties, parameters, and return values (i.e., by declaring
their types using post-colon syntax). Even when upgrading ActionScript 1.0 code, try to add as much
type information as you can; the more information you provide, the more feedback you'll get from
the compiler when you do something wrong.

Macromedia's documentation uses the term "strict data typing" to refer to
ActionScript's type checking capabilities. Although Macromedia uses "strict" as a
synonym for "static," they are not technically the same. So be aware that the
terms "strict," "static," and "strong" are often interchanged recklessly in
common discussion, as are "weak" and "dynamic."

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.1 Why Static Typing?

There's plenty of debate about whether static typing (compile-time type checking) is better than
dynamic typing (runtime type checking). But there's no question that a programmer benefits from
being alerted to potential or actual type mismatch errors. Next to syntax errors (grammatical and
typographical errors), datatype errors are the most common kind of error in an object-oriented
program. If a syntax error occurs, a program won't compile. If a type mismatch error occurs, a
program may be able to run, but it wouldn't likely be able to perform one or more requested
operations. Such errors often lead to program failures. Some compilers merely warn of type
mismatch errors but still allow compilation to continue. However, ActionScript 2.0's static typing
facilities prevent the movie from compiling if type mismatch errors exist. Compared to ActionScript
1.0's complete lack of type checking, this is a great step forward for the language.

You must address all type mismatch errors to get your movie to compile. If type checking is new to
you, you may feel that this requirement adds unnecessary work. You might be tempted to simply
eliminate the datatype declarations that are causing the type mismatch errors in order to get your
movie to compile. That's a little like going upstairs when your basement is flooded. Avoiding the
problem doesn't solve anything in the long run. Here's a laundry list of reasons that explains why you
should stay the course and learn to love type checking:

Type checking guarantees the validity of most operations at compile time, catching potential
errors before they ever occur. Once a program type checks (i.e., compiles without producing
type errors), most careless errors are eliminated, so you can focus on correcting any errors in
logic.

Specifying type information throughout your code helps to ensure you follow your own OOP
architectural plan. Similarly, it guarantees you'll use another developer's class as intended. If
you misuse a class, you'll hear about it from the compiler.

Type checking reduces the amount of manual data-verification code you need in your methods
(though you'll still have to do some data verification, such as when parsing user input or server
results).

Some programmers find static typing easier to read because statically typed code expresses
important information about values and dependencies in a program's source code.

In Flash MX 2004, when you specify datatypes in your code, the Flash
authoring tool provides code hints for built-in classes and components. A code
hint is a pop-up menu that lists the properties and methods of objects as you
type them. This isn't a traditional OOP benefit, but it's a nice side effect. It also
eliminates the need to use suffixes such as "_mc" to activate code hinting, as
was necessary in Flash MX.

As noted earlier, static typing is not universally accepted as the best way to implement type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

checking. The jury is split, but many well-known programmers argue in favor of dynamic typing over
static typing. Dynamic type checking is often less restrictive and can make code easier to change
than statically typed code. Those arguments aside, ActionScript 2.0 will be statically typed for the
foreseeable future because static typing is part of the ECMAScript 4 specification on which
ActionScript 2.0 is based. However, if type theory debates titillate you, you should enjoy these
articles:

Static Type Checking, by Dave Harris, at http://ootips.org/static-typing.html

Strong Typing vs. Strong Testing, by Bruce Eckel, at http://mindview.net/WebLog/log-0025

The main advantage of static type checking is that it can check all your code at compile time,
whereas dynamic type checking requires that you execute the code in order to verify it. To be sure
that all your code is executed, you need to perform unit testing on each module (writing classes
specifically to test the output of other classes). Mr. Eckel argues that combining religious unit testing
with dynamic type checking offers all the error-catching benefits of strong typing and more. For a
quick-and-dirty example showing how to write a unit test in Java, see http://c2.com/cgi/wiki?
CodeUnitTestFirstExampleTwo. For an ActionScript 2.0 unit testing tool, see http://www.as2unit.org.

In some languages, static typing improves runtime performance. ActionScript
2.0's static typing does not improve runtime performance.

 < Day Day Up >

http://ootips.org/static-typing.html
http://mindview.net/WebLog/log-0025
http://c2.com/cgi/wiki?
http://www.as2unit.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.2 Type Syntax

Now that we've had a general introduction to type checking in ActionScript 2.0, let's study the syntax
more formally. ActionScript 2.0's compile-time type checking can be applied to:

A variable

A property

A function or method parameter

A function or method return value

To enable type checking for any of the preceding items, we declare the item's type using post-colon
syntax, as discussed earlier and in the next section. Declaring an item's type tells the compiler what
kind of data it should contain. Armed with that knowledge, the compiler can warn us of two possible
error conditions:

If a value of an incompatible type is stored in a variable, passed as a function parameter, or
returned by a function, the compiler generates a type mismatch error.

If a nonexistent property or method is accessed through a typed variable, function parameter,
or function return value, the compiler generates an error explaining that the property or method
cannot be found.

The compiler selectively type checks only items that have their types declared. Unfortunately, Flash
MX 2004 does not provide a way to force the ActionScript compiler to report which items have no
datatype declared. Hence, type errors can slip through if you're not vigilant about declaring
datatypes. (For comparison, in Java, a program will not compile if any datatype declarations are
missing.)

3.2.1 Declaring Variable and Property Datatypes

To declare the datatype of a variable or property, use the following syntax:

var variableOrPropertyName:datatype;

where variableOrPropertyName is the name of the variable or property, and datatype is the type of

data that the variable or property can legally contain. For example, the following code creates a
variable called currentTime and declares its datatype as Date. It then assigns a new Date instance

to the variable, which is legal, because the class of the instance is compatible with the datatype of
the variable:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Create a variable that can contain only data

// compatible with the Date datatype.

var currentTime:Date;

// Store a Date instance in the currentTime variable.

currentTime = new Date();

We could also reduce the preceding two lines to a single step:

var currentTime:Date = new Date();

If you mistakenly refer to a nonexistent datatype in a datatype declaration or elsewhere, the compiler
will return the following message:

The class '<NONEXISTENT_TYPE>' could not be loaded.

Once a variable's datatype is declared, it is fixed until the variable is destroyed. Attempts to assign
any value not compatible with the original type cause a type mismatch error at compile time. For
example, this code attempts to assign a Number to currentTime, whose datatype was declared as

Date:

var currentTime:Date;

currentTime = 10;

That code yields the following compile-time error:

Type mismatch in assignment statement: found Number where Date is required.

Attempts to access any property or method on currentTime that is not defined by the Date class

likewise yields an error. For example, this code:

// Create a typed variable.

var currentTime:Date = new Date();

// Attempt to access the nonexistent _width property.

currentTime._width = 20;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Attempt to access the nonexistent sort() method.

currentTime.sort();

yields the following errors:

There is no property with the name '_width'.

There is no method with the name 'sort'.

Note that in order to report nonexistent methods and properties, ActionScript 2.0 prevents new
properties or methods from being added to individual objects after they have been created (unlike
ActionScript 1.0, which allows such additions). For example, in ActionScript 2.0, the following code is
illegal, but in ActionScript 1.0, it is allowed:

var currentTime:Date = new Date();

currentTime.name = "Day One"; // Illegal in ActionScript 2.0, but

 // legal in ActionScript 1.0.

As we'll learn in Chapter 4, ActionScript 2.0 provides a special means of creating classes whose
instances allow new properties and methods to be added at runtime. However, instances of these
classes cannot, by definition, be checked for nonexistent methods and properties. Later in this
chapter, under "Bypassing Type Checking on a Per-Use Basis," we'll see that ActionScript 2.0's type
checking can also be disabled on a per-object basis.

But remember that type checking is intended to help you write better code more quickly. Don't try to
avoid it by, say, changing the datatype of a variable as follows:

var currentTime:Date;

var currentTime:Number;

In ActionScript 2.0, the preceding code does not change the datatype of currentTime to Number.
The second line is simply ignored and later attempts to assign a numeric value to currentTime will

generate errors.

However, due to a bug in the ActionScript 2.0 compiler in Flash MX 2004, the following code does
change the datatype of currentTime from Date to Number:

var currentTime:Date;

var currentTime:Number = 10; // Redeclare with assignment.

currentTime = 11; // currentTime's datatype is now Number.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The preceding code redeclares the datatype of the variable currentTime and also reassigns its value.

The reassignment causes the (buggy) change in the variable's datatype. Such code is ill advised, as
the official behavior will very likely change in the future.

Instead of redeclaring a variable's datatype, you should use two separate variables when you need to
store values of two different datatypes. That said, you can safely reuse a loop counter when its
datatype is the same across multiple loops in the same script, function, or method. Just remember to
omit the keyword var, the colon, and the datatype on the second and subsequent loops. For
example:

// First loop: declare i as a Number.

for (var i:Number = 0; i < 10; i++) {

 trace(i);

}

// Second loop: reuse i, but don't include var or :Number.

for (i = 15; i > 0; i--) {

 trace(i);

}

In a loop in which a different datatype is required, use a new variable:

// Use p instead of i.

for (var p:String in someObj) {

 // List properties of an object.

 trace("Found property: " + p);

}

Naturally, local variables within one function have no relation to local variables within a separate
function. So you could have a local variable declared as a number in one function and a different local
variable of the same name declared as a string in another function.

3.2.2 Declaring Method Parameter and Return Value Datatypes

The following code shows how to declare the datatype of method or function parameters and return
values:

function methodName (param1Name:param1Type,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 param2Name:param2Type):returnType {

 // ...

}

where methodName is the name of the method or function, param1Name and param2Name are the

names of the parameters, param1Type and param2Type are the parameters' datatypes, and

returnType is the datatype of the function's return value. This example shows a function with two

parameters but, naturally, a function declaration may have zero or more parameter:datatype pairs,
separated by commas. Functions that return no value should specify a returnType of Void. But note

that the Void type is reserved for use only as a function returnType. To declare a variable or

parameter with a datatype that can accommodate any value, use the Object type, as described in the
later section, "Compatible Types."

The following code creates a function, largerThanTen(), that checks whether a numeric value is
greater than ten. It requires a single numeric argument and returns a Boolean result (either true or
false):

function largerThanTen (n:Number):Boolean {

 return n > 10;

}

If we pass a nonnumeric value to the function, the compiler issues a type mismatch error, indicating
the location of the error in your code by line number. For example, the following code:

largerThanTen("colin");

yields this error (line number omitted):

Type mismatch.

If, within the function, we access a nonnumeric property or method on n, the compiler generates an

error. For example, the following code:

function largerThanTen (n:Number):Boolean {

 n.charAt(0);

 return n > 10;

}

yields this error:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There is no method with the name 'charAt'.

Returning anything but a Boolean value from the function also causes a type mismatch error. We'll
revisit return-value type mismatch errors with examples when we study methods in the next chapter.

Finally, storing the return value of a function or method in a variable or property of an incompatible
type causes a type mismatch error. For example, the following code attempts to store a numeric
return value in a String variable:

function sum (x:Number, y:Number):Number {

 return x+y;

}

var result:String = sum(10, 20);

In response, the compiler generates the following error:

Type mismatch in assignment statement: found Number where String is required.

Refer to the discussion accompanying Examples Example 3-2 and Example 3-3 for ways of
addressing this sort of type mismatch error.

Accessing nonexistent methods and properties on a typed return value also causes an error. This
attempt to call getYear() on a numeric return value:

sum(10, 20).getYear();

yields this error:

There is no method with the name 'getYear'.

Remember, these errors are your best friends. Don't think of them as scolding you or complaining
about something that's not your problem. You should thank the compiler for telling you when you've
made a mistake, just as you'd thank your neighbor for pointing out that you left your keys in your
front door. Every time the compiler generates a datatype-related error, think to yourself, "Wow, I
just saved a few minutes or maybe a few hours tracking down that problem myself!"

In an object-oriented Flash application, be sure to provide a datatype for each property, variable,
method parameter, and method return value. If you omit the datatype of an item, ActionScript 2.0
performs no type checking on it and cannot warn you about datatype-related errors in your code.

In Chapter 4, we'll study method definition again, in much greater detail.

3.2.3 Why Post-Colon Syntax?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As we've learned in this section, ActionScript 2.0 uses the following, slightly unusual syntax for type
declarations:

variableOrPropertyName:datatype = value;

By contrast, Java and C++ use:

datatype variableName = value;

In JavaScript 2.0: Evolving a Language for Evolving Systems, Waldemar Horwat (one of the creators
of the ECMAScript 4 specification) explains the reason for this difference at
http://www.mozilla.org/js/language/evolvingJS.pdf.

Embarrassingly, this is a decision based purely on a historical standards committee
vote-this seemed like a good idea at one time. There is no technical reason for using [post-
colon] syntax, but it's too late to reverse it now (implementations using this syntax have
already shipped), even though most of the people involved with it admit the syntax is a
mistake.

 < Day Day Up >

http://www.mozilla.org/js/language/evolvingJS.pdf
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.3 Compatible Types

The following discussion assumes an understanding of inheritance in OOP. If you're not familiar with
that concept, you may want to skip this section for now and return to it once you've read Chapter 6.

Earlier we learned that a variable of one type can store only a value of a compatible type. Intuitively,
we understand that the String type is incompatible with the Number type (that is, putting aside for a
moment that it is possible to convert between strings and numbers, we know that a string is not a
number). But the phrase "compatible type" has a very precise technical meaning. A type, X, is
compatible with another type, Y, if X is of type Y, or if X is any subtype of Y.

For example, suppose we have a class, Ball, and a subclass, Basketball. A variable of type Ball can
store a Basketball instance because the Basketball type is a subtype (i.e., subclass) of Ball:

var ball1:Ball = new Basketball(); // Legal!

The preceding code works because the compiler knows that every Basketball instance has (through
inheritance) all the properties and methods of the Ball class. The converse, however, is not true;
every Ball instance does not necessarily have the properties and methods of the Basketball class.
Therefore, the following code yields a compile-time type mismatch error:

var ball2:Basketball = new Ball(); // Illegal!

On first glance, you might think that the preceding examples seem backward, but they are not. In
the first example, we store a Basketball instance in the variable ball1, whose declared datatype is

Ball. The compiler allows this even though the Basketball subclass might define methods and
properties not supported by the Ball superclass. However, the compiler displays an error if we try to
access a method or property on ball1 that isn't supported by the Ball class (i.e., the datatype of
ball1) even if such method or property is defined for the Basketball class. For example, suppose that

the Basketball subclass defines an inflate() method but the Ball superclass does not. The second line
of the following code example causes the compiler to display an error:

var ball1:Ball = new Basketball(); // Legal, so far...

ball1.inflate(); // But this causes a compiler error!

Thus, the compiler gives us a little rope and we have to avoid the temptation to hang ourselves. As
programmers, we need to be smart enough not to access methods and parameters of the Basketball
class on ball1, unless they are also supported by the Ball class.

The compiler checks the datatype of the variable (ball1)-not the class of the

object actually stored in the variable-to determine what methods and
properties are available.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

That explanation might be clear, but it is admittedly counterintuitive. You may be wondering whether
there is some way to make use of the Basketball-ness of the Basketball instance stored in ball1,

even though the variable's datatype is Ball. We'll answer that question under "Casting," later in this
chapter. And we'll revisit our Basketball and Ball classes under "Polymorphism and Dynamic Binding"
in Chapter 6.

Now let's return to the converse example in which we attempted to store a Ball instance in the
variable ball2, whose datatype is Basketball:

var ball2:Basketball = new Ball(); // Illegal!

What would happen if the compiler allowed the preceding assignment? At some point later in the
program, we might try to access methods and properties of the Basketball subclass on the ball2
instance, but those methods and properties would not be supported (the object we stored in ball2 is

a Ball, not a Basketball!). Therefore, the compiler prevents us from storing a Ball instance in a
Basketball-typed variable to prevent potential runtime errors resulting from accessing methods or
properties of the Basketball class on an instance of the Ball class.

In the following example, if the first line were allowed by the compiler, we'd get into trouble later.
The second line seems reasonable at compile time (it invokes the inflate() method on what it thinks
is a Basketball instance). But at runtime, the interpreter would attempt to invoke inflate() on what is
in fact a Ball instance (stored in ball2). The invocation would fail because the Ball class doesn't

define the inflate() method:

var ball2:Basketball = new Ball(); // If this were allowed at compile time...

ball2.inflate(); // this would cause a runtime error!

Make sense? If not, remember that all basketballs are balls, but not all balls are basketballs. We can
treat any basketball as a ball (even if we don't take advantage of all its features), but we can't treat
any ball like a basketball. For example, inflating a bowling ball wouldn't work very well!

The rule of thumb is to declare the variable to be of a more general type than
the content placed in it (i.e., you can place data of the subtype's class within a
variable declared to be of the supertype's class).

The ability to use subtypes wherever a given type is expected enables an important OOP feature:
polymorphism. We'll return to subtypes and polymorphism in Chapter 6.

3.3.1 Handling Any Datatype

In ActionScript 2.0, we can make a variable, property, parameter, or return value accept data of any
type by specifying Object as the datatype. For example, here we declare the datatype of container

as Object. We can subsequently store an instance of any class in it without error:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

var container:Object = new Date(); // No error.

container = new Color(); // No error.

This technique works because the Object class is the superclass of all ActionScript classes, so all
types are compatible with the Object type (primitive values such as the Boolean true or the string

"hello world" are not, strictly speaking, instances of any class but are still considered compatible with
the Object type).

But be careful not to overuse this technique, as it effectively disables the compiler's ability to
generate type errors for the variable, property, parameter, or return value in question. The compiler
won't complain when you refer to a nonexistent property or method on an item whose datatype is
Object. For example, the following code generates no errors:

var container:Object = new Date(); // No error.

trace(container.toString()); // Execute toString() normally.

container.blahblahblah(); // Invoke nonexistent method. No error.

trace(container.foobarbaz); // Access nonexistent property. No error.

The toString() method executes normally because it is supported by all objects, but no error occurs
for the invocation of blahblahblah() and the access of foobarbaz, despite the fact that they are not

defined by any class.

Using the Object datatype is not the only way to elude ActionScript 2.0's type checking; we'll discuss
several others shortly, under "Circumventing Type Checking."

3.3.2 Compatibility with null and undefined

In an object-oriented ActionScript 2.0 program, it's typical to store null or undefined in a variable

as an indication of an absence of data or an uninitialized variable. Knowing this, you might wonder
how a variable can store null if its datatype is, say, MovieClip. Rest easy-unlike other values, the
null and undefined types can be used anywhere, regardless of the type of container they are stored

in:

var target:MovieClip = null; // Legal.

function square (x:Number):Number {

 return x*x;

}

square(null); // Legal.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

function square (x:Number):Number {

 if (x == 0) {

 return null; // Legal.

 }

 return x*x;

}

Declaring something's type to be Object makes it a universal recipient, like a person with type AB
positive blood who can accept any type of blood you give her. On the other hand, null and
undefined are universal donors, like people with type O negative blood whose blood can be

transfused into any other person without harm.

This flexibility allows us to use the null type to indicate an empty value for any data container. For
example, here we construct a new TextFormat object, using null for arguments we wish to leave

empty:

// Specify emphasis format, but not other font information.

var tf:TextFormat = new TextFormat(null, null, null, true);

Compatibility with undefined also allows ActionScript to assign undefined to parameters, variables,

and properties that have never been assigned a value. For example, here we define a method that
displays a message on screen, complete with the message sender's name. If the name of the
message sender is not provided, ActionScript sets the sentBy parameter to undefined, in which case

the method uses the name "Anonymous":

public function displayMsg (msg:String, sentBy:String):Void {

 // Use "Anonymous" if a name was not supplied.

 if (sentBy == undefined) {

 sentBy = "Anonymous";

 }

 // Display the message in a text field.

 output.text = sentBy + ": " + msg;

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.4 Built-in Dynamic Classes

We saw earlier that trying to dynamically add a property to the Date class generates a compile-time
error in ActionScript 2.0. To allow new properties and methods to be added to a class's instances
without generating a compile-time error, we can use a dynamic class. You can define your own
dynamic classes, but some built-in classes are dynamic by default. Due partially to the architecture of
the Flash Player and partially to the heritage of ActionScript 1.0, the following native ActionScript 2.0
classes are dynamic:

Array

ContextMenu

ContextMenuItem

Function

FunctionArguments (a.k.a. the Arguments object)

LoadVars

MovieClip

Object

TextField

When you attempt to access a nonexistent property or method on an object of one of the preceding
dynamic classes, the ActionScript 2.0 compiler does not generate an error. For example, the following
code yields no error:

var dataSender:LoadVars = new LoadVars();

dataSender.firstName = "Rebecca"; // No error, even though

 // the LoadVars class doesn't

 // define the firstName property.

However, type mismatch errors may still occur when using the preceding dynamic classes. For
example, the following code creates a variable of type Array and attempts to place a Date instance
into it:

var list:Array = new Date();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It yields the following error:

Type mismatch in assignment statement: found Date where Array is required.

As we emphasized earlier, in ActionScript 1.0, unlike in ActionScript 2.0, it was
possible to add a new property or method to any object at runtime. Furthermore, ActionScript
1.0 allowed you to add new methods and properties to an entire class at runtime (via the class's
prototype object). ActionScript 2.0 considers adding new properties and methods to classes or

objects at runtime bad form. We'll cover this limitation, its motivation, and its workarounds in
Chapter 6, under "Augmenting Built-in Classes and Objects."

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.5 Circumventing Type Checking

We learned earlier that ActionScript 2.0's type checking is an "opt-in" system. That is, type checking
occurs only when the programmer supplies type information (i.e., declares an item's datatype) in a
program's source code. If you are sadistic and prefer to check your code manually for type errors,
simply do not declare type information for variables, properties, parameters, and return values.
When no type information is supplied for a data container, the compiler skips type checking for it. For
example, the following code creates a variable, x, but does not declare x's datatype:

var x = 10;

Because the variable x is not typed, type checking is not (indeed cannot be) performed, and x's

datatype can be changed without generating an error:

x = "hello"; // Change from Number to String.

Furthermore, accessing nonexistent properties and methods on x causes no error:

trace(x._width); // No error. Returns undefined if _width doesn't exist.

x.flyToTheMoon(); // No error.

 // Fails silently if flyToTheMoon() doesn't exist.

Likewise, when a function or method parameter's type is not supplied, the parameter can accept
values of any type without generating a compile-time error. And when a function's or method's return
type is not supplied, the function or method can return values of any type without generating a
compile-time error. The following code shows a method that declares no parameter types or return
type. No matter what the types of the parameters, the method adds them together and returns the
result. The result can legally belong to any datatype:

function combine (x, y) {

 return x + y;

}

// Pass values with different datatypes to x and y.

// No errors occur because the parameters x and y are not typed.

trace(combine(4,5)); // Displays: 9

http://lib.ommolketab.ir
http://lib.ommolketab.ir

trace(combine("hello ", "world")); // Displays: hello world

trace(combine(_root, "hello world")); // Displays: _level0hello world

While the preceding code may seem more convenient because of its flexibility, it actually causes more
work and problems than a typed version would. When the method is not typed, the program
code-not the compiler-must decide whether the method's return value is useful or nonsensical. The
program becomes responsible for guarding against basic data errors rather than relying on the
compiler to do so automatically. For example, if we wanted to be sure that the result of combine(4,
5) were a number, we'd have to use:

if (typeof combine(4, 5) == "number") {

 // Okay to proceed...

} else {

 trace("Unusable value returned by combine().");

}

The preceding code successfully safeguards against nonnumeric uses of combine(), but it takes five
lines to do so! What's more, it is required every time the program uses the combine() method, and
similar code would be needed for any other calls to methods without return types. That is, absent
compile-time datatype checking, the programmer has to implement a lot of runtime datatype
checking.

With datatypes declared, the combine() method would look like this:

function combine (x:Number, y:Number):Number {

 return x + y;

}

In which case, the following code:

combine("ten", 5);

would automatically generate a type mismatch error at compile time. With the typed version of the
method, we can omit the earlier five lines of type checking code because the compiler checks the
datatypes for us and displays an error when a type is misused.

3.5.1 Creating Parameters That Accept Multiple Types

Occasionally it's convenient to create a function or method whose parameters accept more than one
type of data. For example, you might want our recent combine() method to work with both strings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and numbers. Or you might want to be able to send both XML objects and strings to a server, as
does the built-in XMLSocket class via its send() method. The XMLSocket.send() method's only
parameter, data, can accept a String object, an XML object, or an item of any other datatype,

allowing the developer to choose what's appropriate for a given situation. The following calls to
XMLSocket.send() are both legal:

theSocket.send("Hello World"); // Send a string.

var doc:XML = new XML("<P>Hello World</P>");

theSocket.send(doc); // Send an XML instance.

As we learned earlier under "Handling Any Datatype," we can use any type of data wherever the
Object datatype is declared. Hence, we can make a parameter that accepts any type of data by
specifying Object as the parameter's datatype. Again, this technique works because the Object class
is the superclass of all ActionScript classes, so all types are compatible with the Object type.

The following function defines a parameter, msg, that can accept any type of data. Within the body of
the function, we invoke toString() on whatever value was passed for msg:

function output (msg:Object):Void {

 trace(msg.toString());

}

The toString() method is defined by the Object class, so it is guaranteed to work on any value
passed for msg.

But our earlier warning applies here: be careful not to overuse this technique, as it effectively
disables the compiler's ability to generate type errors for the parameter in question.

To restore the compiler's ability to type check msg, we must cast the generic msg value to the desired

datatype (we'll cover casting soon). For example, the following rewrite of the output() function
checks the datatype of msg. If msg is a string, the function traces the text to the Output panel as-is.
If msg is an instance of the XML class, the function assigns it to a new variable, doc, whose declared
type is XML. Casting msg to the XML type using XML(msg), tells the compiler to treat msg as an XML
object. The function then uses doc instead of msg to access the data, thereby enjoying the benefits of
type checking. Specifically, if we access non-XML methods and properties on doc, the compiler

generates errors:

function output (msg:Object):Void {

 // Use typeof to detect the datatype of primitive values.

 if (typeof msg == "string") {

 trace(msg);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 // Use instanceof to check the class of an object.

 if (msg instanceof XML) {

 var doc:XML = XML(msg);

 trace(doc.firstChild.firstChild.nodeValue);

 }

}

Some languages (e.g., Java) address the need for multiple parameter types
with so-called method overloading. Method overloading lets multiple methods
have the same name but define unique parameter types. When an overloaded
method is called, the compiler determines which version of the method to
execute based on the datatype(s) of the passed argument(s). ActionScript 2.0
does not support method overloading. However, we'll see how to simulate
overloaded methods and constructor functions in Chapter 4.

3.5.2 Allowing Property and Method Creation on a Class's Instances

As of the introduction of ActionScript 2.0, the compiler normally generates an error when you
attempt to access a nonexistent property or method on an object. (A nonexistent property or method
is one that is not defined by the object's class.) If, however, you feel you must create a class that
allows new properties or methods to be added to its instances at runtime, you can disable
nonexistent property and method checking by declaring the class dynamic. For much more
information, see "Class Attributes" in Chapter 4.

Do not take this technique lightly. Dynamic classes let you create instances that have unknown
properties and methods, which can cause unexpected results in the rest of your program (or when
incorporated into a different program).

3.5.3 Bypassing Type Checking on a Per-Use Basis

As we just learned, omitting the datatype for a data container disables type checking for all uses of
that container. However, type checking may also be sidestepped for a single use of a data value in
one of two ways.

First, we can use the [] operator to access methods and properties without concern for compile-time

type checking. For example, the following code generates an error because the Sound class does not
define the property url:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

var song:Sound = new Sound();

song.url = "track3.mp3"; // Error!

But if we use the [] operator when referring to url, no error occurs, and a new url property is

added to the song object:

var song:Sound = new Sound();

song["url"] = "track3.mp3";

trace(song["url"]); // Displays: track3.mp3

This technique adds a new property (in this case, url) to the object instance (in this case, song), not

to the class itself (in this case, Sound). We still haven't fully addressed the question of how to add
methods or properties to a class dynamically. We'll cover that in Chapter 6, under "Augmenting Built-
in Classes and Objects." All we've done here is bypass some of the type checking otherwise
performed by the ActionScript compiler.

Alternatively, we can cast the value to the desired type (casting is covered next, so if it's new to you,
you may want to skip ahead for now). For example, the following code casts someValue to the
TextField class so that it can be stored in the variable tf, whose type is TextField:

var tf:TextField = TextField(someValue);

In ActionScript 2.0, casting data to a datatype always succeeds at compile time. That is, the
preceding code convinces the compiler that whatever the actual type of someValue, it should be

treated as a legitimate TextField object. In reality, the cast operation may fail at runtime, but we're
talking only about compile-time type checking here.

Once again, do not take either of these techniques for bypassing compile-time type checking lightly!

It's considered extremely bad form to add a new property (i.e., one not defined
by the object's class) to a single object instance. It can also be dangerous to
cast an object to a class if the object is not actually an instance of that class.

You may fool the compiler but, as we'll learn next, at runtime you can easily end up with a null

reference instead of the object you thought you cast. In the vast majority of cases, you should not
circumvent the type checking system. (However, as discussed in the next section, casting certainly
has other valid uses.)

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

;

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.7 Datatype Information for Built-in Classes

When working with static typing and ActionScript 2.0's built-in classes, you must observe the
declared datatypes for each class. For example, if you store a TextFormat object in a typed variable,
you must use the correct datatypes when assigning values to its properties. The following code
generates an error because the TextFormat.align property requires a String, but a Boolean is used:

var tf:TextFormat = new TextFormat();

tf.align = true; // Error! Boolean values not allowed.

Unfortunately, Macromedia's documentation does not provide type information for the methods and
properties of the built-in classes nor for the Flash MX 2004 components. For your benefit, the type
information is listed in Appendix A.

Type information can also be retrieved from the source code of the classes in the installation folder
for Flash MX 2004, as follows:

/Macromedia/Flash MX 2004/en/First Run/Classes

Component class definitions are found in the /mx/ directory, one directory below the /Classes/
directory listed previously.

Note that although source code for components is included in full, the built-in class definitions are
intrinsic, meaning that they do not include method bodies or other implementation information. They
do, however, contain datatype information as specified in Appendix A. For more details on intrinsic
definitions, see Chapter 6.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.8 ActionScript 2.0 Type Checking Gotchas

ActionScript 2.0's type checking system has its quirks and limitations. The remainder of this chapter
covers some anomalies to keep in mind when working with ActionScript 2.0.

3.8.1 Global Variables Can't Be Typed

To create a global variable in ActionScript, we add a property to the _global object, as follows:

_global.varname = value;

The preceding property-definition syntax is a carryover from ActionScript 1.0 and does not support
datatype declarations. It is, therefore, impossible to use type checking with a global variable. For
example, this causes a compile-time syntax error:

_global.author:String = "moock"; // Output panel displays: Syntax error.

As an alternative, you should consider using a class property in lieu of globals, as discussed under
"Property Attributes" in Chapter 4.

3.8.2 Type Checking and Timeline Code

When code is placed on a frame in a timeline, the properties and methods of movie clips are not type
checked. For example, the following attempt to assign a String value to the numeric property _y does

not generate a compile-time type mismatch error when the code is placed on a frame in a timeline:

_root._y = "test"; // No error. (Should be a type mismatch error.)

Similarly, the following attempt to store a number returned by getBytesLoaded() in a String variable
does not generate an error when the code is placed on a frame:

// No error. (Should be a type mismatch error.)

var msg:String = _root.getBytesLoaded();

Furthermore, assigning the current MovieClip instance (this) to a non-MovieClip variable or passing
the current MovieClip instance (this) to a non-MovieClip function parameter causes no error. For

example, when placed on a frame in a timeline, the following examples yield no error:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

var x:String = this; // No error. (Should be a type mismatch error.)

function square(x:Number):Number {

 return x * x;

}

square(this); // No error. (Should be a type mismatch error.)

These problems occur only within code on a frame in a timeline, because on a timeline, nested movie
clips are treated as dynamic properties of the containing movie clip. ActionScript 2.0 does not type
check dynamic properties. However, within an ActionScript 2.0 class, type checking works properly
with MovieClip instances.

To ensure proper type checking for movie clips within timeline code, first assign the MovieClip
instance in question to a variable of type MovieClip, and use that variable in place of the MovieClip
instance reference. For example, this code generates type mismatch errors at compile time
(remember, compile-time errors are your friend, so although this code generates errors, it
demonstrates the proper way to achieve type checking in timeline code):

var theRoot:MovieClip = _root;

theRoot._y = "test"; // Type mismatch error!

var msg:String = theRoot.getBytesLoaded(); // Type mismatch error!

var thisMC:MovieClip = this;

var x:String = thisMC; // Type mismatch error!

function square(x:Number):Number {

 return x * x;

}

square(thisMC); // Type mismatch error!

3.8.3 Type Checking XML Instances

Unbeknownst to many developers, the built-in XML class is actually a subclass of the XMLNode class,
which was undocumented by Macromedia until Flash MX 2004. Furthermore, all child nodes of an XML
instance are instances of the XMLNode class, not of the XML class! The relationship between the XML
and XMLNode classes can be a source of confusion when working with ActionScript 2.0's type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

checking. The following code demonstrates the issue. It creates a new XML instance, stores the
instance in a variable, xmlDoc, then attempts to assign one of its child nodes to a new variable,
xmlFragment:

var xmlDoc:XML = new XML("<P>Hello world</P>");

var xmlFragment:XML = xmlDoc.firstChild; // Error.

The preceding code causes a type mismatch error because xmlDoc.firstChild is an XMLNode
instance, not an XML instance. To fix the error, we simply declare the datatype of xmlFragment as

XMLNode instead of XML (change shown in bold):

var xmlDoc:XML = new XML("<P>Hello world</P>");

var xmlFragment:XMLNode = xmlDoc.firstChild; // No error

The preceding code does not cause a type mismatch error because-as we learned earlier under
"Compatible Types"-the compiler knows that every XML instance has, through inheritance, all the
properties and methods of the XMLNode class (remember that the XML class is a subclass of the
XMLNode class despite their names, which might imply the opposite).

In general, when you want a variable to store an XML instance or any of its children, you should set
the variable's datatype to XMLNode.

3.8.4 No Type Checking with the [] Operator

When a property or method is accessed via the [] operator, the compiler does not perform type

checking. For example, the following code attempts to execute a nonexistent method. No error
occurs when the method is accessed via the [] operator:

var d:Date = new Date();

d["noSuchMethod"](); // No compile-time error, but fails

 // silently at runtime.

d.noSuchMethod(); // Compile-time error.

Similarly, the following code mistakenly attempts to store a String property (name_txt.text) in a
Number variable (userID). No error occurs when the property is accessed via the [] operator:

target_mc.createTextField("tf", 0, 0, 0, 400, 400);

var name_txt:TextField = target_mc.tf;

name_txt.border = true;

name_txt.text = "Type your name...";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

var userID:Number = name_txt["text"]; // No error. At runtime, userID

 // stores a string value.

var userID:Number = name_txt.text; // Compile-time error.

Therefore, to take advantage of type checking, you should rewrite any old code that uses the []
operator to access methods or properties. Use the dot operator (a period) instead of [], as is a best

practice in ActionScript 2.0 regardless, unless you're dynamically generating the name of a property
or method. Although the lack of type checking when using the [] operator might seem an oversight,

it is necessary because it allows access to properties and methods whose names are determined
dynamically at runtime.

3.8.5 Array Elements and Type Checking

In other object-oriented languages, the canonical example of casting portrays a programmer
retrieving an object from an array of objects whose types are unknown and casting that object to a
known type.

For example, here we have an XML instance:

var doc:XML = new XML("<P>hello world</P");

Suppose we store that XML instance in an array, like this:

var items:Array = new Array();

items.push(doc);

Because the array, items, does not keep track of the datatypes of its elements, the following code

should generate a type mismatch error:

var otherDoc:XML = items[0];

The programmer knows that the element items[0] is an XML instance, but the compiler doesn't

recognize this fact. Rather, the compiler treats each array element as a generic Object. The sensible
solution here is to cast the value items[0] to the XML datatype:

var otherDoc:XML = XML(items[0]);

However, even without that cast, the code generates no errors at compile time. Why not? Because,
as we learned in the previous section, the compiler skips type checking for values accessed with the
[] operator.

The compiler also generates no errors when accessing nonexistent properties and methods on an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

array's elements. For example, this code generates no error even though neither the XML class nor
the Object class defines the method fixAllBugs().

items[0].fixAllBugs(); // No error.

This unfortunate lack of error messages means that you must effectively type check all objects used
through array elements yourself. Remember to be extra careful when working with arrays.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

3.9 Up Next: Creating Classes-Your Own Datatypes!

As we've seen in this chapter, datatypes and type checking are an essential part of programming in
ActionScript 2.0. Now that you're familiar with how datatypes work and how they help you write
better code, it's time to move on. In Chapter 4 you'll learn how to define your own datatypes by
creating classes. Learning to create a class is the first hands-on step down the path of the object-
oriented programmer.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 4. Classes
This chapter covers the syntax and theory behind classes in ActionScript 2.0 and assumes a prior
basic understanding of the concepts discussed in Chapter 2. Classes are the foundational structure of
all object-oriented programs, making them arguably the most important aspect of OOP. As such,
classes are predictably intricate. This chapter is correspondingly lengthy and detailed but, even so,
newer programmers can use it to learn the basics of creating and using classes.

If this is your first real exposure to programming with classes, you may want to concentrate on the
first few pages of each of the following sections:

"Defining Classes"

"Constructor Functions (Take 1)"

"Properties"

"Methods"

"Completing the Box Class"

Then you can dive right into Chapter 5, which shows, step-by-step, how to create a real-world class
in the Flash authoring environment. We'll address the big-picture questions in Chapter 5. (I decided
to cover the syntax and mechanics first so you'd have a strong foundation moving forward.)

Just remember to return to the present chapter whenever you need detailed reference material on
implementing and using classes in ActionScript 2.0.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

4.1 Defining Classes

A class is a template for the creation of objects (or, synonymously, instances). Classes are the
building blocks of an object-oriented program. Every object-oriented application includes at least one
class, and typical applications include several or dozens of classes. From classes, a program
generates the objects that determine the things the program can do.

We saw earlier that classes are used to group properties and methods into a coherent bundle. A
typical class might define a spaceship or a scrollbar in terms of how it looks, what it does when the
user clicks on it, or how it interacts with other objects.

To create, or define, an ActionScript 2.0 class, we use a class declaration, which starts with the
class keyword, as follows:

class ClassIdentifier {

}

where ClassIdentifier is the name of the class (which, by convention, should start with a capital

letter). For example, the following code defines a class named Box, albeit one that doesn't do
anything interesting yet:

class Box {

}

We'll use the Box class as an example throughout this chapter. Eventually, our Box will represent and
control an on-screen rectangular shape. You might use a similar class in a drawing-tool application.
The Box class is intentionally generic, allowing you to map its concepts onto your own classes. In
subsequent chapters, we'll explore more applied scenarios.

A class definition must reside in an external plain text file that has the
extension .as. Use of the class keyword anywhere else-such as on a

keyframe or a button-generates a compile-time error. Furthermore, each .as
file can contain only one class definition and must have a filename exactly
matching the name of the class it contains (case sensitivity matters!).

For example, the Box class must be stored in a file named Box.as. If Box.as erroneously contains a
class named, say, Circle, the compiler generates the following error when the Box class is
instantiated:

The class 'Circle' needs to be defined in a file whose relative

http://lib.ommolketab.ir
http://lib.ommolketab.ir

path is 'Circle.as'.

We'll learn more about the file structure of an object-oriented Flash application in Chapter 5 and
Chapter 11. For now, our focus is mainly on the code that goes into a class.

ActionScript 1.0 had no formal class statement. Classes were defined using the
function statement, as in:

function Box () {

}

ActionScript 1.0 class definitions were allowed anywhere that code was legal (e.g., a frame, a
button, or a movie clip) but were conventionally stored in external .as files and brought into a
.fla file using the #include directive, which is not required in ActionScript 2.0.

Everything between the curly braces in a class declaration constitutes the class definition block, or
more informally, the class body. The class body can contain:

A constructor function (used to initialize instances of the class)

Variable definitions (the class's properties)

Function definitions (the class's methods)

#include directives, which can include files containing properties, methods, and constructor

functions

Metadata tags used in Flash MX 2004 components

Comments

Nothing else is permitted-class definitions cannot be nested, and no other code can appear in a class
definition. For example, the following code is illegal because the if statement is not one of the six
legal items listed:

class Box {

 if (100 == 10*10) {

 trace("One hundred is ten times ten");

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In other words, you cannot place raw code directly into a class statement. All code must either define
a property or be part of a method or constructor function.

However, you can work around this limitation by adding a so-called class method that runs the first
time an instance is constructed, but never again. The following code demonstrates the approach,
using techniques we haven't yet covered. If the code seems foreign to you, try returning to it when
you've finished reading this chapter:

class Box {

 private static var inited:Boolean = false;

 public function Box () {

 if (!inited) {

 init();

 }

 }

 private static function init():Void {

 if (100 == (10*10)) {

 trace("One hundred is ten times ten");

 }

 inited = true;

 }

}

In ActionScript, a class's methods and properties are referred to collectively as
its members. For example, we might say "radius is not a member of Box,"

meaning that the Box class does not define any methods or properties named
radius.

Further, the term instance member refers to either an instance property or an instance method
(covered later), while the term class member refers to either a class property or a class method (also
covered later). The terms static member, static property, and static method are sometimes used as
synonyms for the terms class member, class property, and class method. We'll learn much more

http://lib.ommolketab.ir
http://lib.ommolketab.ir

about instance and class members throughout this chapter.

4.1.1 Class Attributes

Class definitions can be modified with one or both of two attributes: dynamic and intrinsic. Attributes
dictate how a class and its instances can be used in a program. Attributes must be listed before the
keyword class in a class definition. For example, to add the dynamic attribute to the Box class, we'd

use:

dynamic class Box {

}

ActionScript 2.0 does not support ECMAScript 4's final attribute (which prevents a class from being
subclassed), nor does it support a Java-style abstract modifier (which prevents instances of a class
from being created). For one way to simulate an abstract class, see "Constructor Functions (Take 2),"
later in this chapter.

4.1.1.1 The dynamic attribute

By default, a class's members must be defined exclusively within the class statement. Any attempt to
add a property or method to an individual instance of a class or the class itself from outside the class
definition causes a compile-time error. However, when a class is defined with the dynamic attribute,
new properties and methods can legally be added both to the class's instances and to the class itself.
For example, suppose we define the Box class without the dynamic attribute, as follows:

class Box {

}

Further, suppose we create a Box instance and attempt to give it a new property named size:

var b:Box = new Box();

b.size = "Really big";

When that code is compiled, the following error appears in the Output panel:

There is no property with the name 'size'.

because the size property isn't declared within the Box class definition, and properties cannot be

added dynamically, so the compiler thinks you are trying to access a nonexistent property.

But if we add the dynamic attribute to the class definition:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dynamic class Box {

}

then the preceding size property addition is allowed and does not cause an error at compile time.

Similarly, when the Box class is not dynamic, the following attempt to define a new class property is
illegal:

// Illegal when Box class is not dynamic.

Box.classPurpose = "Represent a four-sided figure";

But again, when the Box class is dynamic, the preceding property definition is legal.

The size and classPurpose properties are examples of dynamic properties, which can be added at

runtime only to classes declared with the dynamic attribute (and to instances of such classes).

Generally speaking, you should not rely on dynamic classes in your application development. It's
considered bad form to augment a single object with a new dynamic property or method. If the
property or method rightly applies to all instances of the class, add it to the class definition. If the
property or method does not apply to all instances of the class, the following approach is preferred
over using a dynamic class:

Create a subclass of the original class.1.

Add the new property or method to the subclass definition (i.e., don't add it dynamically at
runtime).

2.

Create the object as an instance of the subclass instead of the superclass.3.

The dynamic attribute is provided primarily to give the built-in ActionScript classes special behavior.
For example, the MovieClip and Object classes are both defined as dynamic, which allows all
MovieClip and Object instances to take on new properties and methods. If the MovieClip class were
not dynamic, any attempt to create a variable on a Flash timeline frame would fail. Similarly, the
Array class is declared dynamic so that any array can define named elements (in addition to
numbered elements). Note, however, that even though the built-in Object class is dynamic, a
compiler bug in Flash MX 2004 makes attempts to add class properties to the Object class fail when
they occur in a class body. For example, if the following line of code appears in any class body, the
compiler generates an error:

Object.someProp = "Hello world";

In general, subclasses of a dynamic class are also dynamic. This guarantees that features in the
superclass that rely on the dynamic class definition work properly in any subclass. However,
subclasses of the MovieClip and Object classes are, by default, not dynamic, because every class is a
subclass of Object, but not all classes should be dynamic by default. With the exception of MovieClip
and Object, there is no way to make a subclass of a dynamic class nondynamic.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In ActionScript 1.0, all classes were effectively dynamic. Properties and methods
could be added to any instance or class at runtime without error.

4.1.1.2 The intrinsic attribute

The intrinsic attribute is used only when distributing a compiled class without also distributing the
class's source code, such as in the case of the built-in Flash Player classes. A class defined with the
intrinsic attribute includes no method bodies or property values; it simply specifies property and
method names and datatypes for the sake of compile-time type checking.

For example, the following code shows the intrinsic class definition for the Flash Player's built-in
LoadVars class:

dynamic intrinsic class LoadVars {

 var contentType:String;

 var loaded:Boolean;

 var _customHeaders:Array;

 function load(url:String):Boolean;

 function send(url:String,target:String,method:String):Boolean;

 function sendAndLoad(url:String,target,method:String):Boolean;

 function getBytesLoaded():Number;

 function getBytesTotal():Number;

 function decode(queryString:String):Void;

 function toString():String;

 function onLoad(success:Boolean):Void;

 function onData(src:String):Void;

 function addRequestHeader(header:Object, headerValue:String):Void;

}

The LoadVars class is compiled into the Flash Player itself, so its source code is not available to the
ActionScript compiler at authoring time. The compiler uses the preceding intrinsic class definition to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

perform type checking on LoadVars instances at compile time. The Flash MX 2004 and Flash MX
Professional 2004 authoring tools include intrinsic class definitions for all built-in classes and objects.
For details, see "Datatype Information for Built-in Classes" in Chapter 3.

We'll learn more about intrinsic class definitions in Chapter 14.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

4.2 Constructor Functions (Take 1)

Generally speaking, when we create an object, we also want to initialize it. For example, when we
create an instance of our Box class, we might want to:

Initialize the new instance's size (i.e., set its width and height properties)

Represent the new instance on screen (i.e., call the draw() method)

To initialize and perform setup tasks for new objects of a class, we create a constructor function. The
constructor function executes automatically each time an instance is created. Typically, when we
create a class, we immediately add an empty constructor function to it. Then, as we develop the
class, we add any necessary initialization code to the constructor function.

Let's now add an empty constructor function to our Box class. In the following code, lines 2 and 3 are
the Box class's constructor function (or, more succinctly, "the Box constructor"):

class Box {

 public function Box () {

 }

}

Now that our Box class has an empty constructor function, we'll give the class some properties and
methods. Once we add properties and methods, we can use them in the Box constructor to initialize
Box instances.

However, we have a lot to learn about properties and methods in the upcoming sections before we
can finish our Box constructor. Hence, we'll leave it empty for now and return to it later, under
"Constructor Functions (Take 2)." For the sake of brevity, until we return to the Box constructor, we'll
omit it from all intervening code samples. This omission is legal, if uncommon. When no constructor
is provided for a class, ActionScript adds an empty one automatically at compile time.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

4.3 Properties

As we learned in Chapter 2, classes use properties to store information. But some information relates
to a class as a whole (e.g., the default size for all SpaceShip objects) and some information relates to
individual objects (e.g., the current speed or position of each SpaceShip instance). Consequently,
properties come in different varieties:

Class properties

Named data containers associated with a class

Instance properties

Named data containers associated with objects (i.e., instances of the class)

Together, class properties and instance properties are sometimes referred to as
fixed properties , in opposition to the dynamic properties discussed earlier.
Again, dynamic properties are generally considered bad OOP form and should
be avoided, although they are necessary for things like named array elements.

In our coverage of properties, we'll concentrate first on instance properties because they are by far
the most common type of property. We'll also largely ignore dynamic properties because they are
considered bad form in ActionScript 2.0 despite being somewhat common in ActionScript 1.0.

In ActionScript and ECMAScript 4, instance properties are sometimes called instance variables, and
class properties are sometimes called class variables (following Java's terminology). Instance
variables and class variables should not be confused with the normal ActionScript variables that can
be created without reference to an object or a class. To keep things clear, we'll avoid the terms
instance variable and class variable, but you should expect to see them in other technical
documentation and even in ActionScript compiler error messages. Furthermore, to avoid awkward
wordiness, we'll often use the shorter term, property, to mean instance property. Unless otherwise
noted, you should assume that all properties discussed in this book are instance properties, not class
properties. On the other hand, we'll nearly always refer to class properties by the full name, "class
property," unless the context makes the type of property abundantly clear.

Finally, don't confuse instance properties-which are declared once for the class, but for which each
instance maintains it own value-with the dynamic properties discussed under "The dynamic
attribute." Dynamic properties are properties defined solely for a single instance (not for all
instances).

Instance properties typically store information that describes an object's state. Instance properties:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Are stored individually on each instance of a class

Are accessed through instances only

Can be set uniquely for one instance without affecting any other instances

The key thing to remember is that an instance property is declared once for the entire class, but each
instance of the class maintains its own value. For example, every movie clip has its own _rotation
instance property that indicates the amount, in degrees, that the clip is rotated. The _rotation

instance property is declared once in the MovieClip class, but each movie clip (each an instance of the
MovieClip class) defines its own value for _rotation. If we have two MovieClip instances, circle_mc
and square_mc, we can set the instance property _rotation to 45 on circle_mc and to 120 on
square_mc, causing each instance to be rotated individually on screen.

To define an instance property, we use the var statement within the body of a class definition. The
general syntax is:

var propertyName:datatype = value;

where propertyName is the property's identifier (case sensitive in ActionScript 2.0), datatype is the

built-in or custom datatype of the property, and value is the optional default value for the property

(value must be a compile-time constant expression, as discussed later).

Properties must be declared outside of class methods and instance methods
(discussed later). Any variables declared within a method are considered local
variables.

If datatype is omitted, no type checking is performed on the property (allowing it to store any

value). For example:

var propertyName = value; // No type checking for this property.

If the default value is omitted, then the default is undefined:

var propertyName:datatype; // Property set to undefined.

In ActionScript 1.0, instance properties were typically defined in the class constructor
function and could contain values of any datatype (it was not possible to restrict a property to a
specific datatype). For example:

function Box (w, h) {

 // Define properties width and height.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 this.width = w;

 this.height = h;

}

Default instance property values were set on the prototype of the class:

// Set default value of width to 20.

Box.prototype.width = 20;

Let's see what an ActionScript 2.0 instance property definition looks like in real life by adding height
and width properties to our Box class:

class Box {

 var width:Number;

 var height:Number;

}

Notice that lines 2 and 3 of the preceding code sample end with ":Number", which, as we learned in
Chapter 3, is the type declaration of each property definition. It indicates that our width and height

properties must store numeric data (i.e., data of the Number datatype). As a result, any attempt to
assign a nonnumeric value to the width or height properties will cause a compile-time error. For

example, the following code attempts to assign the String value "tall" to the numeric property
height:

var b:Box = new Box();

b.height = "tall";

which results in the following error:

Type mismatch in assignment statement: Found String where Number is required.

In ActionScript 2.0, all properties must be declared explicitly using var, whether or not you also
specify their datatype or initial value. That is, you must use at least the following minimal declaration
before making reference to the height property in later code:

var height;

Making reference to a property that doesn't exist causes an error (unless the class that defines the
property is declared dynamic). For example, the following code attempts to assign a value to the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

nonexistent description property:

var b:Box = new Box();

b.description = "A square object";

which results in the following error:

There is no property with the name 'description'.

To fix the problem, you could add the line shown in bold to the Box class definition:

class Box {

 var width:Number;

 var height:Number;

 var description:String;

}

In ActionScript 1.0, a reference to a nonexistent property did not generate an error.
The interpreter simply created a new property of the specified name the first time it was
encountered at runtime.

Even if our Box class defines a property by the name description, it's often considered bad form to

access properties directly from outside a class, as does the code:

var b:Box = new Box();

b.description = "A square object";

When a property is accessible to code outside a class, code that uses the property becomes
dependent on the class definition, limiting its flexibility. If, for example, we were to rename the
description property to desc, we'd also have to change all code outside the class that referred to
description. If enough external code relies on a class's property name, changing the name can

become unfeasible. Furthermore, when a property is accessible outside a class, class-external code
might unwittingly assign illogical or illegal values to the property. For example, code external to the
Box class might assign a negative or fractional value to the height property, which may not be

considered legal by the Box class. In order to prevent external access to a class's properties, we use
the private attribute.

What luck, we're discussing the private property attribute next!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.3.1 Property Attributes

We saw earlier that class definitions could be modified by the dynamic and instrinsic attributes.
Property definitions can also be modified with three possible attributes-public , private, and
static-which control how and where the property can be accessed. These attributes must be listed
before the keyword var in a property definition. For example, to add the public attribute to the
height property of our Box class, we'd use:

class Box {

 public var height:Number;

}

When a property has more than one attribute, the attributes can appear in any order. However, the
public or private attribute is conventionally placed before the static attribute, as in:

public static var someProperty :someDataType = someValue ;

Furthermore, the public and private attributes cannot both be used to modify the same property
definition; they are mutually exclusive.

4.3.1.1 Restricting property access with the private and public attributes

The private and public attributes are known as access control modifiers because they determine
whether a property is accessible outside of the class that defines it. To make a property inaccessible
to code outside of a class, we use the private attribute. For example, to make our Box class's height
and width properties inaccessible to code outside of the Box class, we use:

class Box {

 private var width:Number;

 private var height:Number;

}

Now suppose we place the following code somewhere outside of the Box class:

var b:Box = new Box();

b.height = 10;

When that code is compiled, the following error appears in the Output panel:

The member is private and cannot be accessed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The somewhat unusual exception to this rule is that code in a subclass can access private properties
defined by its superclass. In most other OOP languages (e.g., Java and C++), private members are
accessible within a single class only, not its subclasses. There is no way to impose a similar restriction
in ActionScript 2.0.

In ActionScript 2.0, a property defined as private is accessible only to code in
the property's class or subclasses.

By defining a class's properties as private, we keep the class's information safely encapsulated,
preventing other code from relying too heavily on the internal structure of the class or accidentally
assigning invalid values to properties.

When a private property represents some aspect of an object that should be externally modifiable
(e.g., the height of a box), we must provide an accessor method as an external means of making the
modification. We'll learn more about accessor methods when we cover methods, later in this chapter.

If a property definition does not include the private attribute, the property is considered public,
meaning that it is accessible to code anywhere (not just to code within the class that defines the
property). That is, all properties are public unless otherwise specified. If, however, we wish to show
that a property is public by intention, not just by default, we can use the optional public attribute, as
follows:

class Box {

 public var width:Number;

 public var height:Number;

}

ActionScript 1.0 had no access control modifiers. All properties were effectively
public.

In general, it's good form to specify either the public or private attribute explicitly for every property.
When a property is defined as public, we can rest assured that the programmer made a conscious
decision to expose the property (i.e., make it publicly accessible). A designation of public says "use
this property freely without worrying that it may become private in the future." By the same token,
no property should be made public unless it is specifically required to be so by the class's
architecture. If you are unsure whether to make a property public or private, make it private. Down
the road, you can easily make the property public if required. By contrast, if you start with a public
property, you'll have a tough time changing it to private later if external code already relies on it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In other languages, access control modifiers are sometimes referred to as
visibility modifiers . In the ECMAScript 4 standard, however, the term visibility
is used to describe whether a property or method is enumerable via a for-in
loop.

Note that ActionScript does not support the protected access control modifier found in Java and C++.
The rules governing ActionScript's access control modifiers are relatively simple (albeit nonstandard):
private properties are accessible to code in a class and its subclasses; public properties are accessible
from anywhere. The rules for Java and C++ access control modifiers are somewhat more complex.
For comparison, Table 4-1 lists the meanings of public, protected, and private in ActionScript, Java,
and C++. In all cases, the public and private attributes are mutually exclusive. (Note that Table 4-1
focuses strictly on access modifiers in various languages and, therefore, does not include other
property attributes such as static.)

Table 4-1. Access control modifiers in ActionScript, Java, and C++

Access
control
modifier

ActionScript Java C++

public
No access
restrictions

No access restrictions No access restrictions

private
Class and subclass
access only

Class access only Class access only

no modifier Same as public
Access allowed from class's own
package only

Same as private

protected Not supported
Access allowed from class's own
package and class's subclasses in
any other package

Access allowed from
class and subclass
only

4.3.1.2 Defining class properties with the static attribute

The static attribute determines whether a property is associated with instances of the class or with
the class itself. By default, property definitions create instance properties. To indicate that a property
should be treated as a class property instead of an instance property, we precede it with the keyword
static, which is traditionally placed after the keyword public or private and before the keyword
var. Because the static attribute is used to define a class property, class properties are sometimes

called static properties.

Our Box class could define a class property, numSides, that indicates the number of sides all Box

instances have, as follows:

class Box {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public static var numSides:Number = 4;

}

Class properties are accessed through a class directly, independent of any object instance. They are
used to store information that relates logically to an entire class, as opposed to information that
varies from instance to instance.

Unlike instance properties, class properties can be initialized to any value, not
just compile-time constant expressions. However, the values available in a
class depend on the compiler's progress through the class. For example, in the
case:

public static var x = y;

public static var y = 10;

x is set to undefined because y hasn't been defined at the time x is assigned a

value. But in the case:

public static var y = 10;

public static var x = y;

x is set to 10 because y is defined before x. A class property can also retrieve

values from methods that return values that are resolvable at compile time.

Within the class that defines a class property (and any of its subclasses), a class property can be
accessed either by name directly, as in numSides, or through the class, as in Box.numSides. For

example, this code, if written within the class definition:

trace("A box has " + numSides + " sides.");

is synonymous with this code:

trace("A box has " + Box.numSides + " sides.");

Outside of its defining class, a class property can be accessed only through the class name, as in
Box.numSides (and only if the property is not declared private). For example, because numSides is

defined as public, we can use the following code outside the Box class definition:

// Displays: A box has 4 sides.

trace("A box has " + Box.numSides + " sides.");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

By contrast, the following code, which does not qualify the property name numSides with the class

name Box, is valid only inside the Box class (or any of its subclasses):

trace("A box has " + numSides + " sides.");

You cannot access a class property through a reference to an instance of a class. For example, if we
attempt to access numSides through b (a Box instance), as follows:

var b:Box = new Box()

b.numSides;

the following error appears in the Output panel:

Static members can only be accessed directly through classes.

A class property stores only a single value. If that value changes due to, say, a method call on a
particular instance, the change is universal. In Example 4-1, we add two methods to our Box class,
one to set the value of Box.numSides and one to retrieve it. No matter which instance invokes the
methods, they operate on a single numSides property value. (We haven't studied methods yet, so

you may want to return to this code later once you're familiar with method definitions.)

Example 4-1. Accessing a static property through a method

// The Box class, with methods to set and retrieve the

// value of the class property, numSides.

class Box {

 // The class property.

 private static var numSides:Number = 4;

 // The method that sets numSides.

 public function setNumSides (newNumSides:Number):Void {

 numSides = newNumSides;

 }

 // The method that retrieves numSides.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public function getNumSides ():Number {

 return numSides;

 }

}

// *** Code placed somewhere outside the Box class.***

// Make two unique Box instances.

var box1:Box = new Box();

var box2:Box = new Box();

// Check the value of numSides for each instance.

trace(box1.getNumSides()); // Displays: 4

trace(box2.getNumSides()); // Displays: 4

// Set numSides through instance box1.

box1.setNumSides(5);

// Retrieve numSides through instance box2.

trace(box2.getNumSides()); // Displays: 5

 // Both box1 and box2 accessed the single

 // value for numSides.

You may be saying, "Wait a minute! I thought class properties cannot be accessed via instances but
only directly through the class. Why does the code access numSides through the box1 and box2

instances?" You are correct that class properties cannot be accessed directly via an instance. The
following is invalid:

box2.numSides

However, Example 4-1 does not access the class property numSides directly through an instance.

Instead, it accesses the class property through a method, getNumSides(), which is accessible to
instances of the class. And if you're wondering, "Is there such a thing as a static method?" Yes, there

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is. We'll discuss static methods later.

Within a single class, the same identifier cannot be used for a class property
and an instance property. Attempting to create two properties with the same
name, whether class or instance properties, always causes a compile-time
error.

Class properties are useful for sharing data across objects of a class or even between classes. For
example, in Chapter 5 we'll study an ImageViewer class that creates a rectangular region for
displaying an image on screen. The ImageViewer class needs to know which depths it should use
when creating the movie clips that make up the rectangular region. The depths are the same for
every ImageViewer instance, so they are best implemented as class properties. Here's an excerpt of
the ImageViewer class that defines the depth-related properties:

class ImageViewer {

 // Depths for visual assets

 private static var imageDepth:Number = 0;

 private static var maskDepth:Number = 1;

 private static var borderDepth:Number = 2;

 // Remainder of class definition not shown...

}

A class property might also provide default values to use when constructing instances of a class. Here
we add defaultHeight and defaultWidth as class properties to the Box class. If values for h and w

aren't supplied to the Box constructor, it uses the defaults (we'll cover constructor functions in detail
later):

class Box {

 private var width:Number;

 private var height:Number;

 private static var defaultWidth:Number = 30;

 private static var defaultHeight:Number = 20;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public function Box (w:Number, h:Number) {

 if (w == undefined) {

 w = defaultWidth;

 }

 if (h == undefined) {

 h = defaultHeight;

 }

 width = w;

 height = h;

 }

}

We might similarly add maxHeight and maxWidth class properties to use to check for a valid Box size

when constructing Box instances.

Class properties can also be handy for storing global counters for a class, such as a property to track
the number of instances that have been created. Or, a class property might have nothing to do
whatsoever with its instances-some classes are simply collections of related class properties and are
never actually instantiated. The built-in Math class is a good example of this; it consolidates
numerical constants such as PI and numerical functions such as max() and min().

As another example, consider a typical application in which we might have an AppStartupSettings
class that maintains a set of application-wide startup parameters as class properties:

class AppStartupSettings {

 public static var CONFIG_LOCATION:String = "config.xml";

 public static var SOUND_ENABLED:Boolean = true;

 public static var SHOW_TIP:Boolean = true;

}

In some cases, we might want to guarantee that the preceding settings never change (i.e., make the
property values constant). The ECMAScript 4 standard provides a means of making that guarantee,
via the final attribute, but ActionScript 2.0 does not support final. Following a common convention in
other languages, we use ALL CAPS when naming static properties that should not be modified by a
program (i.e., should be treated as constants by other programmers).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ActionScript 1.0 did not have a formal means of defining class properties. By
convention, class properties were defined on a class's constructor function, as follows:

// Class constructor

function Box () {

}

// Class property

Box.numSides = 4;

Furthermore, ActionScript 1.0 class properties could be accessed via the class constructor only,
as in Box.numSides (never as numSides).

4.3.1.3 Global variables versus class properties

In addition to class properties, ActionScript supports global variables, which are created like this:

_global.someVariable = someValue;

Notice that no datatype is specified when a global variable is created. ActionScript 2.0 does not
support static typing for global variables.

Global variables are accessible from anywhere in a program and were commonly used in ActionScript
1.0. While global variables are legal in ActionScript 2.0, using them is considered unsafe OOP
practice. In an OOP application, information needed across classes should be stored in class
properties, both for the sake of organization and to prevent variable name collisions (i.e., cases in
which separate classes or .swf files create global variables of the same name). Java, for comparison,
does not support global variables at all and expects all cross-class data to be stored in static variables
(the equivalent of ActionScript's class properties).

In general, you should try to place your class properties in the classes that use them. If more than
one class needs access to the same information, consider creating a separate class, such as the
earlier AppStartupSettings class, that provides a central point of access to the information.

4.3.1.4 Subclasses and class properties

If you're new to the concept of overriding properties and defining subclasses with the extends
keyword, you should skip this section for now and return to it once you've read Chapter 6.

When a class property in a superclass is not overridden by a subclass, the property maintains a single
value that is accessible via both the subclass and the superclass. For example, suppose an Employee
class defines a class property, defaultSalary. Further suppose a Manager class extends the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Employee class but does not override the defaultSalary property. Here's the code, greatly
simplified to show only the defaultSalary property definition:

// Employee class

class Employee {

 public static var defaultSalary:Number = 34000;

}

// Manager class

class Manager extends Employee {

}

In this situation, the references to the properties Employee.defaultSalary and
Manager.defaultSalary are synonymous:

trace(Employee.defaultSalary); // Displays: 34000

trace(Manager.defaultSalary); // Displays: 34000

Furthermore, changes made to defaultSalary via Employee.defaultSalary are reflected in
Manager.defaultSalary and vice versa:

trace(Employee.defaultSalary); // Displays: 34000

Manager.defaultSalary = 40000;

trace(Employee.defaultSalary); // Displays: 40000

Employee.defaultSalary = 50000;

trace(Manager.defaultSalary); // Displays: 50000

By contrast, when a property in a superclass is overridden by a subclass, the property in the subclass
maintains a unique value, distinct from the property's value in the superclass. Let's rewrite our
Manager class so that it overrides the Employee class property defaultSalary (changes shown in

bold):

// Employee class

class Employee {

 public static var defaultSalary:Number = 34000;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

// Manager class

class Manager extends Employee {

 // Override defaultSalary

 public static var defaultSalary:Number = 60000;

}

Now the properties Employee.defaultSalary and Manager.defaultSalary are different:

// Check defaultSalary's value for each class

trace(Employee.defaultSalary); // Displays: 34000

trace(Manager.defaultSalary); // Displays: 60000

And changes made to Employee.defaultSalary are separate from Manager.defaultSalary and

vice versa:

// Change Manager's defaultSalary value

Manager.defaultSalary = 70000;

// Check defaultSalary's value for each class

trace(Employee.defaultSalary); // Displays: 34000

trace(Manager.defaultSalary); // Displays: 70000

// Change Employee's defaultSalary value

Employee.defaultSalary = 20000;

// Check defaultSalary's value for each class

trace(Employee.defaultSalary); // Displays: 20000

trace(Manager.defaultSalary); // Displays: 70000

For more information on overriding properties, see Chapter 6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A bug in ActionScript 2.0 prevents access to inherited class properties before
the superclass that defines the property is used in a script.

For example, in the following code, the class property Employee.defaultSalary is inherited by

Manager:

// Code in Employee.as

class Employee {

 public static var defaultSalary:Number = 34000;

}

// Code in Manager.as

class Manager extends Employee {

}

If, outside of the Employee and Manager classes, we attempt to access Manager.defaultSalary
before referencing the Employee class, then the property will be undefined:

// Fails when this code appears outside of Employee.as and Manager.as

trace(Manager.defaultSalary); // Displays: undefined

To fix the problem, we simply refer to the Employee class before accessing the property:

// Refer to Employee

Employee;

// Now it works

trace(Manager.defaultSalary); // Displays: 34000

Note, however, that the inherited class property bug does not cause problems for code inside the
subclass. For example, the following code in Manager works without any special reference to
Employee:

class Manager extends Employee {

 function paySalary ():Void {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // This reference is valid because Employee is referenced

 // in the Manager class definition.

 var salary:Number = Manager.defaultSalary;

 // Remainder of method not shown...

 }

}

4.3.2 Compile-Time Constant Expressions

Earlier, we learned that an instance property definition can assign a default value to a property,
provided that the value is a so-called compile-time constant expression. A compile-time constant
expression is an expression whose value can be fully determined at compile time (i.e., it does not rely
on any values set at runtime). Specifically, a compile-time constant expression may include only:

null, numeric, boolean, and string constants

The following operators (used only on numbers, booleans, strings, null, or undefined): + (unary
and binary), - (unary and binary), ~, !, *, /, %, <<, >>, >>>, <, >, <=, >=, instanceof, ==,
!=, ===, !==, &, ^, |, &&, ^^, ||, and ?: (ternary operator)

Array literals, Object literals, and instances of the following classes: Array, Boolean, Number,
Object, and String

References to other compile-time constant expressions

Examples of valid compile-time constant expressions are:

4 + 5

"Hello" + " world"

null

[4, 5]

new Array(4, 5)

{a: 5, b: 10}

new Object()

The following code assigns the value of DEFAULT_HEIGHT to height, which is legal because

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DEFAULT_HEIGHT contains a compile-time constant expression:

class Box {

 private var DEFAULT_HEIGHT:Number = 10;

 private var height:Number = DEFAULT_HEIGHT;

}

Compile-time constant expressions cannot contain function calls, method calls, object construction, or
any other value that cannot be entirely determined at compile time. For example, the following code
attempts to use parseInt() in the calculation of an instance property value:

private var area = parseInt("100.5");

which results in the following error:

A class's instance variables may only be initialized to compile-time

constant expressions.

This code attempts illegally to assign an object as the initial value of the property target:

private var target:MovieClip = _root; // ERROR!

 // References to objects are

 // not compile-time constants.

Fortunately, it's easy to work around the compile-time constant requirement placed on instance
properties. Simply move the initialization code to the class's constructor function. For example, to
initialize an area property for our Box class, we would use the following code:

class Box {

 // Property definition

 private var width:Number;

 private var height:Number;

 private var area:Number;

 // Constructor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public function Box (w:Number, h:Number) {

 width = w;

 height = h;

 // Initialize area. This is perfectly legal within a constructor.

 area = width * height;

 }

}

4.3.3 Enumerating Properties with for-in loops

Even if you are familiar with core ActionScript 1.0 syntax such as for-in loops (and this book assumes
you are), you may not be aware of their subtle interaction with object-oriented aspects of the
language. Specifically, although the for-in statement lets us list (a.k.a. enumerate) properties of an
object, not all properties are enumerable. The following example displays the enumerable properties
of obj in the Output panel:

for (var prop:String in obj) {

 trace("property name: " + prop);

 trace("property value: " + obj[prop]);

}

By default, instance properties (i.e., properties not declared as static) are not enumerable with a for-
in loop. For example, suppose our Box class defines two public properties, width and height, and

initializes them both to the value 15:

class Box {

 public var width:Number = 15;

 public var height:Number = 15;

}

When we create a new Box object, its width and height properties are set to 15:

var b:Box = new Box();

trace(b.width); // Displays: 15

http://lib.ommolketab.ir
http://lib.ommolketab.ir

trace(b.height); // Displays: 15

But when we enumerate the properties of the Box object, width and height are not listed:

// This loop generates no output

for (var prop:String in b) {

 trace("property name: " + prop);

 trace("property value: " + b[prop]);

}

According to the ECMAScript 4 specification, instance properties should remain
non-numerable even after value assignment. However, in ActionScript 2.0, due
to the legacy architecture of ActionScript 1.0, an instance property becomes
enumerable after it is assigned a value (unless that value assignment is part of
the property declaration). That is, in ActionScript 2.0, a property whose value is
initialized at declaration time is not enumerable unless and until it is
subsequently assigned another value. You should not rely on this deviation
because ActionScript may become more ECMAScript-compliant in the future.

By contrast, class properties (i.e., properties declared as static) are enumerable with a for-in loop.
For example, suppose our Box class defines two class properties, maxWidth and maxHeight, and

initializes them both to 250:

class Box {

 public static var maxWidth:Number = 250;

 public static var maxHeight:Number = 250;

}

We can use a for-in loop to list the Box class's class properties:

for (var prop:String in Box) {

 trace("property name: " + prop);

 trace("property value: " + Box[prop]);

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Displays:

property name: maxHeight

property value: 250

property name: maxWidth

property value: 250

Perhaps surprisingly, class properties are enumerable even when they are declared private.

Dynamic properties (new properties added to an individual instance of a class declared as dynamic)
are also enumerable, as shown in this example:

// The dynamic class definition

dynamic class Box {

 public var width:Number = 15;

 public var height:Number = 15;

}

// Create an instance

var b:Box = new Box();

// Add a new dynamic property to the instance

b.newProp = "hello world";

// Enumerate b's properties

for (var prop in b) {

 trace("property name: " + prop);

 trace("property value: " + b[prop]);

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Displays:

property name: newProp

property value: hello world

Notice in the preceding example that the dynamic property, newProp, is enumerated, but the
instance properties width and height are not.

ActionScript 2.0 does not support ECMAScript 4's enumerable attribute, which
makes an instance property visible to the for-in statement. To make an
instance property enumerable, you can use the undocumented ASSetPropFlags(
) function. For details, see http://chattyfig.figleaf.com/flashcoders-
wiki/index.php?ASSetPropFlags

 < Day Day Up >

http://chattyfig.figleaf.com/flashcoders-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

4.4 Methods

Methods are functions that determine the behavior of a class. They implement the tasks that
instances of the class or the class itself can perform. For example, ActionScript's built-in Sound class
has a method named loadSound() that can retrieve an external MP3 file for playback in the Flash
Player.

To define methods for our own classes, we use the function statement within the body of a class
definition, as follows:

class ClassName {

 function methodName (param1:type, param2:type,...paramn:type):returnType {

 statements

 }

 }

where methodName is the identifier for the method; param1:type, param2:type, ...paramn:type, is a

list of the method's parameters; returnType is the datatype of the method's return value; and

statements is zero or more statements executed when the method is invoked. Each parameter

definition (e.g., param1:type) consists of a parameter name (param1), a colon (:), and a type

identifier (type), indicating the datatype of the parameter.

In ActionScript 1.0, methods could be defined in several ways. Most commonly,
methods were defined by assigning a function to a property of a class constructor's prototype,

as follows:

ClassName.prototype.methodName = function (param1, param2,...paramn) {

 statements};

Although the ActionScript 2.0 compiler does not generate an error when a prototype-based
method is declared, it does generate an error when a prototype-based method is invoked on or
referenced through an object whose class is not dynamic. Generally speaking, prototype-based
methods should not be used when exporting to ActionScript 2.0.

Within the body of a method, parameters are referred to directly by name. For example, the following
method, square(), defines a parameter, x, and refers to it directly in the method body:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

function square (x:Number):Number {

 return x * x;

}

If a parameter's type is omitted in the method definition, no type checking is performed for that

parameter (allowing the parameter to accept value of any datatype). Similarly, if returnType is

omitted, no type checking is performed for the return value. (Whenever you omit the datatype, omit
the colon as well.) However, if a method returns no value, its returnType should be set to Void (with

a capital "V"), indicating that the method does not return a value.

Don't confuse the Void datatype with the rarely used void operator. The former
starts with a capital "V," while the latter starts with a lowercase "v." Use Void
(with a capital "V") when specifying a method return type for a method that
doesn't return a value. If you use lowercase void instead, you'll get the
following error, which can be very confusing if you don't know the subtle cause:

A type identifier is expected after the ':'.

If your method's returnType is Void, make sure it doesn't return any value. When a method specifies

Void as its returnType but returns a value, the following error appears in the Output panel at

compile time:

A function with return type Void may not return a value.

In most cases, the preceding error is a helpful debugging tool. It means that you probably designed
the method to return no value but have strayed from the original design and implemented the
method with a return value. If that happens, you should either:

Alter your design so that it reflects the method's return type (i.e., specify the return value's
correct datatype in the function declaration)

Stick to your original design by altering your method so it does not return a value (in which case
Void is the correct return datatype for the function declaration)

Conversely, when a method specifies a returnType other than Void but returns a value that does not

match the specified type, the compiler generates the error:

The expression returned must match the function's return type.

And when a method specifies a returnType other than Void but contains no return statement

whatsoever, the compiler generates the error:

A return statement is required in this function.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The general rule, then, is to be sure your method's implementation actually complies with the
parameter and return types it specifies.

Right, enough theory. Let's see what a method definition looks like in real life by adding a getArea()
method to our Box class:

class Box {

 private var width:Number = 0;

 private var height:Number = 0;

 // Here's the method definition

 function getArea ():Number {

 return width * height;

 }

}

The getArea() method definition starts with the function keyword, followed by the method name,
getArea. The getArea() method takes no parameters, so its parameter list is simply an empty set of
parentheses, (). The post-colon datatype, :Number, specifies that getArea() returns a value of the
Number type. When called, getArea() returns the value of width multiplied by height, which will be

a numeric value (as advertised).

By specifying our method's return type explicitly, we make debugging easier down the road. If we
initially design our method to return a number, but then in the method body we accidentally return,
say, a string, the compiler will warn us accordingly.

The final section of our method definition is the statement block, delineated by opening and closing
curly braces:

{

 return width * height;

}

Notice that we refer to the properties width and height directly by name. Within the body of a

method, properties are referred to directly, without any qualifying reference to an object (in the case
of instance properties) or a class (in the case of class properties). In the next section, "Referring to
the Current Object with the Keyword this," we'll learn one exception to this rule.

In a method definition, the method signature-consisting of the method name and parameter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

list-uniquely identifies the method among all other methods in the class. In some languages (most
notably Java), a method is considered completely different from all other methods if any aspect of its
signature differs from that of other methods. Hence, in Java, two methods might have the exact
same name and the exact same number of parameters but be considered unique because, say, the
first parameter of one method has a different datatype than the first parameter of the other! In Java,
methods that have the same name but different signatures are known as overloaded methods.
ActionScript doesn't support method overloading; every method in an ActionScript class must have a
unique name (unique within that class). When two methods within a class have the same name, the
compiler generates the following error:

The same member name may not be repeated more than once.

In our getArea() method definition, getArea() is the method's signature. The :Number datatype is

not considered part of the signature.

You may wonder why the return datatype is not part of the signature. In a language that supports
overloading, the compiler decides which method to execute based on the name of the method called
and, if necessary, the datatypes of the arguments in the method call. Although in theory a compiler
could also check the return datatype to differentiate between two methods with the same names and
same parameter types, in practice nothing in the method invocation expression can sufficiently
indicate which return type (and hence, which method) is required. Thus, the return datatype is not
used to identify a method's signature, but simply to perform type checking on the return types.

Returning to our getArea() method, note that the whitespace adjacent to the curly braces in our
getArea() definition is not dictated by ActionScript's grammatical rules; it's a matter of personal
style. Some developers place the opening curly brace on the first line of the method definition, as
shown earlier and throughout this book. Others place it on a line of its own, as in:

 function getArea ():Number

 {

 return width * height;

 }

Both styles are technically valid; only you can decide which god you pray to.

4.4.1 Referring to the Current Object with the Keyword this

From within a method body, you'll often want to refer to the object on which the method was
invoked-the so-called current object. Consider the expression b.getArea(). When that code runs,
it invokes getArea() on the object b, but within the getArea() method body there is no such variable
as b. So how do we refer to the current object-the object on which getArea() was invoked-from
within getArea()? To refer to the current object within a method, we use the this keyword. You

might ask whether we couldn't alternatively pass in the object reference as a parameter. In theory,
we could, but using this helps our class to remain encapsulated, eliminating the need for the outside
world to worry about the object's internal requirements. The this reference to the current object

allows an object to refer to itself without the need for an additional parameter, and is therefore much

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cleaner.

Let's take a look at several practical situations that require this. Note that neither of the following
situations is exceedingly common. The this keyword is certainly important when you need it, but if

you're a newer programmer, you may want to wait until that need arises before studying the next
sections in detail.

4.4.1.1 Passing the current object to a method

The this keyword is most often used when passing the current object to another object's method, as

in:

function someMethod ():Void {

 // Pass this as a parameter to a completely separate object

 someOtherObject.someOtherMethod(this);

}

Let's build an example that follows this pattern, in which we need to pass the current object (this) to

a method of another class.

First, we'll add a resetDimensions() method to the Box class:

function resetDimensions ():Void {

 height = 1;

 width = 1;

 trace("Dimensions reset!");

}

Now suppose we want to call resetDimensions() whenever the user clicks the mouse. To handle
mouse clicks, we give the Box class an onMouseDown() method that simply invokes
resetDimensions():

function onMouseDown ():Void {

 resetDimensions();

}

However, an instance of the Box class won't receive mouse events unless we register it to do so.
Here we define another method, enableReset(), that can register a Box instance to receive Mouse
event notifications:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

function enableReset ():Void {

 Mouse.addListener(this);

}

The enableReset() method will be called elsewhere in our hypothetical program, but only on Box
instances that should respond to mouse clicks. If we wanted all Box instances to respond to mouse
clicks, then we would add an enableReset() call to the Box constructor function.

Now take a closer look at the body of the enableReset() method. The command:

Mouse.addListener(this);

passes the current Box object, this, to the Mouse class's addListener() method. The code says

literally "Mouse class, please start sending mouse event notifications to the current object (i.e., to
this, the Box instance that called enableReset())." Henceforward, whenever the mouse is clicked,
Box.onMouseDown() executes, resetting the Box instance's dimensions. Without the this keyword,

we couldn't have told the Mouse class that the current object wants to receive mouse events.

To complete the example, we should also define disableReset(), a method to stop the Mouse class
from sending events to a particular Box instance. We again use this to tell the Mouse class which

Box wants to cancel event notifications:

function disableReset ():Void {

 Mouse.removeListener(this);

}

Here's how we'd use enableReset():

var b:Box = new Box();

// When enableReset() is called, the value of this in the enableReset()

// method definition stores a reference to our Box instance, b.

b.enableReset();

// From now on, b.onMouseDown() fires whenever the mouse is clicked.

When an object registers as a listener of another object, it should always
unregister itself before it is deleted.

For example, in the preceding usage example, we registered b to receive mouse events. Suppose we

http://lib.ommolketab.ir
http://lib.ommolketab.ir

were to delete our Box instance, b, as follows:

delete b;

Even though the reference to the Box instance stored in b is gone, another reference to that instance

still exists in the Mouse class's list of registered listeners! We did not delete the Box instance, we only
deleted the variable, b. The instance itself lives on due to the Mouse class's reference to it. This

sloppiness can cause erratic behavior in a program and could become a serious waste of memory. A
class should always provide a means of cleaning up stray object references before an object is
deleted. That is, ActionScript doesn't garbage-collect an object (i.e., free up the memory used by an
object) until no more references to it remain. Typically, cleanup is done in a custom die() or destroy(
) method that must be invoked before an object is deleted. (The name of the method is up to you,
but it should indicate that it wipes the object's slate clean.) For example, here's a die() method for
our Box class:

function die ():Void {

 disableReset(); // Unregister the object so the Mouse class

 // deletes the reference to it.

}

By providing a die() method, a class guarantees a safe means of deleting its instances. A developer
using the class simply calls die() before deleting each instance. For example:

var b:Box = new Box();

b.enableReset();

b.die();

delete b;

Note that the die() method should not attempt to delete the Box instance itself. It is illegal for an
object to delete itself. We'll return to this topic in Chapter 5.

4.4.1.2 Managing parameter/property name conflicts

When an instance property or a class property has the same name as a method parameter, the
parameter takes precedence. That is, uses of the duplicate name in the method will refer to the
parameter, not the property. However, we can still access the property by preceding the name with
the this keyword (known as disambiguating the method parameter from the property.) For example,
the following method, setHeight(), has a parameter, height, whose name is identical to the instance
property height:

class Box {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Instance property height

 private var height:Number;

 // Method with parameter height

 function setHeight (height:Number):Void {

 // Method body not shown

 }

}

Within the body of setHeight(), if we don't include a qualifier, the compiler assumes that the
identifier height refers to the method parameter, not the instance property of the same name. The
height parameter is said to shadow the height property. But we can still access the height property
explicitly using the this keyword. The this keyword contains a reference to the current object;

hence, just as with any other object, we can use the dot operator to access its properties or invoke
its methods, as follows:

function setHeight (height:Number):Void {

 // Sets height property (this.height) to the

 // value of height parameter (height).

 this.height = height;

}

In the preceding setHeight() method, the value of the height parameter is assigned to the height
property. The this keyword tells the compiler that this.height is the property, while height, on its

own, is the parameter.

You will encounter many code examples in which the programmer purposely uses the same name for
a parameter and an instance property. To keep things more clearly separated, however, you may
wish to avoid using parameter names that have the same name as properties. For example, you
could rewrite the preceding setHeight() method so it uses h instead of height as a parameter name:

function setHeight (h:Number):Void {

 // Sets height instance property (height) to value of h parameter

 height = h;

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this case, because the parameter is named h, not height, the unqualified reference (height)

refers to the instance property. We'll see later under "Local Variables" that local variables can also
shadow properties of the same name.

4.4.1.3 Redundant use of the keyword this

Even when the this keyword is not required, using it is perfectly legal. Therefore, in the example at
the end of the preceding section, it is legal to explicitly qualify height by preceding it with this, as

follows:

this.height = h;

Likewise, the following rewrite of our earlier Box.getArea() method is legal:

function getArea ():Number {

 return this.width * this.height;

}

However, using this when not required is redundant. For the sake of easier reading, many
developers (and this book) avoid redundant uses of this. Even the single-line getArea() method is
much less verbose without this:

function getArea ():Number {

 return width * height;

}

Methods that make redundant use of this require more work to produce and take longer to read.
However, some programmers prefer to always use this when referring to instance properties and

methods, simply to distinguish them from local variables. Other programmers prefer to use variable
name prefixes instead, where local variable names start with l_, and all property and method names
start with m_ (meaning member).

In ActionScript 1.0, within method and constructor function bodies, the this

keyword was not redundant-it was a required part of all instance property and method
references.

Inside an ActionScript 2.0 class definition, use of the this keyword is legal only within instance

methods and constructor functions. Within a class method (discussed in the next section), use of the
this keyword generates the following compile-time error:

'this' is not accessible from this scope.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

And anywhere else in a class definition, use of the this keyword generates this error:

This statement is not permitted in a class definition.

4.4.2 Method Attributes

Earlier, we saw how the public, private, and static attributes could control access to properties and
make some properties pertain to an entire class rather than to individual instances of the class.
Likewise, method definitions can be modified using the same three attributes, with an analogous
effect. Method attributes must be listed before the function keyword in a method definition. For

example, to add the private attribute to the getArea() method of our Box class, we'd use:

class Box {

 private function getArea ():Number {

 return width * height;

 }

}

When a method has more than one attribute, the attributes can appear in any order. However, the
public or private attribute is conventionally placed before the static attribute, as in:

private static function getArea ():Number {

 return width * height;

}

Furthermore, the public and private attributes cannot both be used to modify the same method
definition; they are mutually exclusive.

4.4.2.1 Controlling method access with the public and private attributes

The public and private method attributes are analogous to the public and private property attributes;
they determine from where a method can be accessed. A public method is accessible to all code,
anywhere. A private method can be accessed from within the class that defines the method (and its
subclasses). If a method definition does not include the private attribute, the method is considered
public. That is, all methods are public unless otherwise specified. If, however, we wish to show that a
method is public by intention, not just by default, we can use the optional public attribute, as shown
next. In general, it's good form to specify the public or private attribute explicitly for every method.

class Box {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Define properties...

 private var width:Number = 10;

 private var height:Number = 10;

 // Define getArea() with an explicit use of the public attribute

 public function getArea ():Number {

 return width * height;

 }

}

When a private method is accessed outside of the class that defined it (or any of its subclasses), the
following error occurs at compile time:

The member is private and cannot be accessed.

The public and private attributes are used to put the OOP "black box" principle into strict practice. In
OOP, each object can be thought of as a black box that is controlled by an external assortment of
metaphoric knobs. The object's internal operations are unknown (and unimportant) to the person
using those knobs-all that matters is that the object performs the desired action. A class's public
methods are the knobs by which a programmer can specify inputs (i.e., tell the class to perform
some operation). A class's private methods can perform other internal operations. Each class should
publicly expose only methods that the outside world needs to instruct it to do something. Methods
needed to carry out those instructions should be kept internal (i.e., defined as private). For example,
a driver doesn't need to know how a car's engine works; to drive the car, he simply uses the gas
pedal to accelerate and the steering wheel to turn. Making the car accelerate when he steps on the
gas pedal is the manufacturer's concern, not his. The somewhat arbitrary nature of the external
"knobs" is apparent if you compare a car to, say, a motorcycle. On a motorcycle, the rider typically
accelerates by turning the handle grip rather than depressing a gas pedal. In both vehicles, however,
the driver's action (the input) supplies gasoline to the engine, which is ultimately used to power the
wheels (the output).

As you manufacture your own classes, you should focus as much energy designing the way the class
is used as you do implementing how it works internally. Remember to put yourself in the "driver's
seat" regularly. Ideally, the signatures for your class's public methods should change very little or not
at all each time you make an internal change to the class. If you put a new engine in the car, the
driver should still be able to use the gas pedal. Stay mindful that each change to a public method's
signature will force a change everywhere that the method is used. As much as possible, keep the
volatility of your classes behind the scenes, in private methods. Likewise, strive to create stable,
generic public methods that aren't likely to be visibly affected if, say, the gravity of the physics
environment changes or a new field is added to the database.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In OOP terms, an object's public methods and properties are sometimes called
the object's interface to the outside world. In ActionScript, the term interface
has a more specific technical meaning, covered in Chapter 8. To avoid
confusion, we'll use the term "interface" in the ActionScript-specific sense only.

The ImageViewer class in Chapter 5 uses private methods to render an image on screen, crop it to a
particular height and width, and surround it with a border. In the following excerpt from the
ImageViewer class, the buildViewer(), createMainContainer(), createImageClip(),
createImageClipMask(), and createBorder() methods are all private. In theory, this means we could
entirely change how the image is rendered without affecting any code that uses ImageViewer
objects:

private function buildViewer (x:Number,

 y:Number,

 w:Number,

 h:Number):Void {

 // Create the clips to hold the image, mask, and border.

 // Each of the following methods is declared private (not shown).

 createMainContainer(x, y);

 createImageClip();

 createImageClipMask(w, h);

 createBorder(w, h);

}

Consider what would happen if our createBorder() method were public and a developer used it to
resize the border around the image. That seems sensible enough, but the developer probably doesn't
know that in order to resize the border, she must also resize the image mask! The latter is an
internal detail that's specific to our implementation and shouldn't be the developer's concern. What
the developer really needs is a public method, setSize(), that handles resizing the image viewer but
hides the implementation details required to do so. The setSize() method describes the object's
behavior in generic terms rather than in relation to our specific implementation. Hence, setSize()'s
external use is unlikely to change even if we fundamentally change the rendering approach in the
ImageViewer class. It's wise to define the createBorder() method as private in the first place,
averting problems caused by its unintended use. Then, when dynamic resizing becomes a
requirement of our class, we can add public methods to expose that functionality to the world at large
(which is filled with dangerous, nosy, meddling developers).

4.4.2.2 Defining class methods with the static attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Earlier, we saw that the static attribute determines whether a property is associated with instances of
a class or with the class itself. Likewise, when used with methods, the static attribute determines
whether the method is associated with instances of the class or with the class itself. Normally,
method definitions create so-called instance methods-methods that are accessed only through
instances. By contrast, methods defined with the static attribute create so-called class methods,
which are accessed through a class rather than through a particular instance (just like the class
properties we learned about earlier).

Class methods (sometimes referred to as static methods) provide functionality that relates to an
entire class, not just an instance of that class. For example, ActionScript's built-in TextField class
defines a class method named getFontList(), which returns a list of fonts on the user's system. The
result of the getFontList() method is the same for all text fields, not specific to each text field.
Therefore, it should logically be declared static. Because getFontList() is static, we access it through
the TextField class directly, not through a TextField instance. For example, here we store the return
value of getFontList() in a variable, fonts:

var fonts:Array = TextField.getFontList();

There are two reasons you should care if a method is a class method:

You need to know whether it is a class method in order to access it properly (if it's a class
method, access it through the class; otherwise, access it through an instance of the class).

Knowing whether it is a class method tells you whether it affects a particular instance or
whether it applies to the entire class.

Knowing that TextField.getFontList() is a class method (as identified by Appendix A) a developer
should infer that it returns a font list that is independent of a single text field. If getFontList() were
not a class method (that is, if it were accessed through an instance of the TextField class), a
developer might instead assume that it returned a list of fonts used in a particular text field rather
than all the fonts on the user's system.

Class methods can also be used to provide access to private class properties or to compare some
aspect of two instances of a class. For example, the following code adds a class method, findLarger(
), to our Box class. The findLarger() method returns the larger of two Box instances, or if the
instances are the same size, it returns the first instance:

class Box {

 public static function findLarger (box1:Box, box2:Box):Box {

 if (box2.getArea() > box1.getArea()) {

 return box2;

 } else {

 return box1;

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 // Remainder of class not shown...

}

// Usage example:

var biggestBox:Box = Box.findLarger(boxInstance1, boxInstance2);

Let's add another class method, getNumBoxes(), to the Box class. The getNumBoxes() method
returns the value of a private class property, numBoxes, which tracks how many box instances

currently exist:

class Box {

 private static var numBoxes:Number = 0;

 public static function getNumBoxes ():Number {

 return numBoxes;

 }

 // Remainder of class not shown...

}

// Usage example:

var boxCount:Number = Box.getNumBoxes();

Some classes define class methods only (that is, they define no instance methods). In such a case,
the class exists solely to contain a group of related functions, but objects of the class are never
instantiated. For example, you might define a SystemSettings class that contains the following class
methods: setSoundEnabled(), setIntroEnabled(), and setScaleOnResize(). Those class methods are
accessed via SystemSettings directly, so a SystemSettings instance need never be created. The built-
in Mouse class similarly defines the following class methods: show(), hide(), addListener(), and
removeListener(). Those class methods are accessed through Mouse directly (as in, Mouse.hide(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

)), not through an instance of the Mouse class.

Class methods have two limitations that instance methods do not. First, a class method cannot use
the this keyword, as discussed earlier. Second, class methods can access class properties only

(unlike instance methods, which can access both instance properties and class properties). A
moment's consideration reveals why this is so: an instance should be able to access its own
properties (instance properties) plus the properties common to all objects of the class (the class
properties, of which there is only one set). Likewise, a class method should be able to access class
properties. But it makes no sense for a class method to access an instance property, because each
instance has its own set of instance properties. There would be no simple way for a class method to
know which instance's properties are of interest.

Therefore, any attempt to access an instance property from a class method results in the following
compile-time error:

Instance variables cannot be accessed in static functions.

However, a class method can legally create an instance of a class and then access its instance
properties, as shown here:

class SomeClass {

 private static var obj:SomeClass;

 private var prop:Number = 10;

 public static function doSomething ():Void {

 // Create an instance of SomeClass and store it

 // in the class property obj.

 obj = new SomeClass();

 // Access an instance property, prop, of instance stored in obj.

 trace(obj.prop); // Displays: 10

 }

}

In the preceding code, SomeClass defines a class property, obj, and an instance property, prop.

When the class method doSomething() is invoked, it creates an instance of SomeClass, stores it in
obj, and accesses the instance property, prop. We'll revisit this theoretical structure when we study

the Singleton pattern in Chapter 17.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Let's be clear that class properties (declared using static var) and instance properties (declared
using var) are both declared outside of class methods and instance methods. Any variables declared
within a method using the var keyword are considered local variables. For example, you can't declare
a class property by simply using var or static var within a class method. Use of the static

keyword within a method causes the following error:

Attribute used outside class.

ActionScript 1.0 did not have a formal means of defining class methods. By
convention, class methods were defined on a class's constructor function, as follows:

// Class constructor

function Box () {

}

// Class method

Box.findLarger = function (box1, box2) {

 if (box2.getArea() > box1.getArea()) {

 return box2;

 } else {

 return box1;

 }

};

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ActionScript 1.0 class methods could be accessed via the class constructor only,
as in Box.findLarger() (not findLarger()). Furthermore, in an
ActionScript 1.0 class method, the this keyword was legal; it referred to the

class constructor function.

// Class constructor

function Box () {

}

// Class method

Box.showThis = function () {

 trace(this == Box); // Displays: true

};

4.4.3 Accessor Methods

Earlier we learned that it's good OOP practice to declare a class's instance properties as private,
meaning that they cannot be read or modified by code outside of the class. However, most objects
must expose some means of examining and changing their state (i.e., provide a publicly accessible
means of retrieving and assigning the object's properties). To allow external code to read and modify
private properties, we create so-called accessor methods, which come in two varieties:

Those that retrieve a property's value

Those that set a property's value

Traditionally, an accessor method that retrieves a property's value is known as a getter method , and
an accessor method that sets a property's value is known as a setter method . In ActionScript 2.0,
however, those terms have a more specific technical meaning. They refer to special methods that are
invoked automatically when a property is accessed, as described under "Getter and Setter Methods,"
later in this chapter. To avoid confusion, we'll use the terms "getter method" and "setter method"
when referring only to ActionScript's special automatic methods.

In general, an accessor method that retrieves a property's value looks like this:

public function getPropertyName ():returnType {

 return propertyName;

}

By convention, the retrieval method is named getPropertyName, where get is used literally and

PropertyName is the name of the property being retrieved, except that the first letter is capitalized.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An accessor method that assigns a property's value looks like this:

public function setPropertyName (param:type):Void {

 propertyName = param;

}

By convention, the assignment method is named setPropertyName, where set is used literally and

PropertyName is the name of the property whose value is being assigned (again, with the first letter

capitalized). When the method is called, the parameter param receives the value being assigned to

the property.

Recall that our Box class defines two properties, width and height, both of which are declared

private. Let's add accessor methods for those properties so that code outside of the Box class can
retrieve and assign their values. In accordance with accessor-method naming conventions, we'll call
our methods getWidth(), setWidth(), getHeight(), and setHeight(). Here's the code:

class Box {

 private var width:Number;

 private var height:Number;

 // Accessor to retrieve width

 public function getWidth ():Number {

 return width;

 }

 // Accessor to assign width

 public function setWidth (w:Number):Void {

 width = w;

 }

 // Accessor to retrieve height

 public function getHeight ():Number {

 return height;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 // Accessor to assign height

 public function setHeight (h:Number):Void {

 height = h;

 }

}

The getWidth() method simply returns the value of the width property. The setWidth() method
defines a parameter, w, which can accept values of the Number datatype only. When invoked,
setWidth() stores value of w in the private property width:

width = w;

Accessor methods that assign a property value traditionally have one of the following return values
(we chose the first option):

No return value (i.e., return type Void), if the assignment operation has no result, as is the case
for setHeight()

A Boolean, indicating whether the operation was successful (according to the method's own
logic)

The old property value

The new property value (perhaps adjusted to make it fall within legal range)

The getHeight() and setHeight() methods are structured exactly like the getWidth() and setWidth(
) methods but apply to the height property rather than to width.

Here's a sample use of our new accessor methods:

var b:Box = new Box();

b.setWidth(300);

b.setHeight(200);

trace(b.getWidth()); // Displays: 300

trace(b.getHeight()); // Displays: 200

Here, we can start to see the real benefits of a typed language. By specifying the w parameter's

datatype as Number, we guarantee that the setWidth() method assigns only numeric values to the
width property, as required by its property definition (private var width:Number). If some code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

erroneously attempts to pass setWidth() nonnumeric data, the compiler will warn us of the specific
location of the problem! For example, suppose we place the following code on frame 1 of a movie:

var b:Box = new Box();

b.setWidth("really short");

When we attempt to export the movie, the compiler displays the following error in the Output panel:

Error Scene=Scene 1, layer=Layer 1, frame=1:Line 2: Type mismatch.

 b.setWidth("really short");

Specifying w's datatype guarantees that our class cannot be used in ways that will cause runtime

problems that would be difficult to track down. We can further insulate our program from the effects
of erroneous data by implementing custom limitations on the argument values supplied to the
setWidth() method. For example, the following code restricts the legal values of w to numbers
greater than 0 and less than infinity. It also ensures that w's value is neither the special NaN numeric
value nor null. While both NaN and null are legitimate values of the Number type, they would
cause problems for our program. (Remember from Chapter 3 that null is a legal value of any

datatype.)

public function setWidth (w:Number):Boolean {

 if (isNaN(w) || w == null

 || w <= 0 || w > Number.MAX_VALUE) {

 // Invalid data, so return false to indicate a lack of success

 return false;

 }

 // Otherwise, it was successful, so return true to indicate success

 width = w;

 return true;

}

Our revised setWidth() method returns a Boolean value indicating whether width was set

successfully. External code can rely on the Boolean result to handle cases in which invalid data is
passed to the method. For example, the following code attempts to set the width property based on

a user input text field. If the input is not valid, the code can recover, presumably by displaying an
error message:

var b:Box = new Box();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Check the Boolean return value of the call to setWidth()

if (b.setWidth(parseInt(input_txt.text))) {

 // No problems...proceed as planned

} else {

 // ERROR! Invalid data...display a warning (not shown)

}

By using an accessor method to mediate property-value assignments, we can develop applications
that respond gracefully to runtime problems by anticipating and handling illegal or inappropriate
values. But does that mean each and every property access in a program should happen through an
accessor method? For example, consider our earlier getArea() method:

public function getArea ():Number {

 return width * height;

}

Now that we have accessors for the width and height properties, should getArea() be changed as

follows?

public function getArea ():Number {

 return getWidth() * getHeight();

}

The answer depends on the circumstances at hand. Generally speaking, it's quite reasonable to
access private properties directly within the class that defines them, so the preceding rewrite of
getArea() is not necessarily required nor even recommended. In cases in which speed is a factor,
direct property access may be prudent (accessing a property directly is always faster than accessing
it through a method). However, when a property's name or datatype is likely to change in the future
or when an accessor method provides special services during property access (such as error
checking), it pays to use the accessor everywhere, even within the class that defines the property.
For example, remember that we modified our earlier setWidth() method to include error checking for
invalid data. Whenever we assign the value of width within the Box class, we still want the benefit of

setWidth()'s error checking. That is, although accessing properties directly from within a class
conforms to OOP guidelines, it's sensible to use the accessor methods instead.

If you simply prefer the style of direct property access but still want the
benefits of accessor methods, you should consider using ActionScript 2.0's
automatic getter and setter methods, discussed later.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.4.4 Local Variables

We've seen that instance properties are associated with each instance of a class and that class
properties are associated with the class itself. Instance and class properties persist as long as the
object they're associated with persists. But often you'll need a variable only temporarily. A local
variable is a temporary data container used to store a value for the duration of a function or method
execution. Local variables can be defined within a function or method only and are normally marked
for automatic deletion when the function or method finishes executing (we'll learn the one exception
to this rule in the next section, "Nesting Functions in Methods"). To define a local variable in a
method, use the var statement in the method body. Note that var is used for declaring class and
instance properties too, but property declarations must be outside of any method definitions; when
used within a method, the var statement creates a local variable, not a property. For example:

function methodName ():returnType {

 var localVariableName:type;

}

where localVariableName is the identifier (name) for the local variable and type is the datatype

declaration (optional, but recommended).

A local variable definition can also include an initial value, as follows:

var localVariableName:type = value;

For example, the following modified version of our earlier Box.getArea() method stores the value of
height * width in a local variable, area, which it then returns:

public function getArea ():Number {

 var area:Number = width * height;

 return area;

}

Local variables are used for code clarity and to improve code performance by eliminating repeated
method calls or property lookups. For example, in the following method excerpt from a chat
application, we display a user's name in a List component (userList) when the user enters a chat

room. The user's name is retrieved via the expression remoteuser.getAttribute(). Instead of calling
that method repeatedly, we call it once and store the return value in a local variable, username:

public function addUser ():Void {

 var username:String = remoteuser.getAttribute("username");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Use "Guest" as the username if the remoteuser hasn't set a name

 if (username == undefined) {

 username = "Guest";

 }

 // Add the user to the listbox

 userList.addItem(username);

}

Consider the alternative approach, which doesn't bother with the local variable username:

public function addUser ():Void {

 // Use "Guest" as the username if the remoteuser hasn't set a name

 if (remoteuser.getAttribute("username") == undefined) {

 // Add the new user to the listbox

 userList.addItem("Guest");

 } else {

 // Add the new user to the listbox

 userList.addItem(remoteuser.getAttribute("username"));

 }

}

The second version (no local variable used) is less readable and requires separate calls to both
userList.addItem() and remoteuser.getAttribute(), which is error prone. In the first version (local
variable used), the step of adding the username to the List is neatly kept to a single statement and
the code is broken into two logical steps: determining the user's name and adding the user's name to
the List.

Parameters are also treated as local variables, even though they are not declared with the var
keyword.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As of Flash Player 6.0.65.0, local variables and function parameters are stored
in internal registers for quick runtime access (registers are special hardware
locations set aside in the computer's CPU rather than its RAM). Hence, when
performance is a concern, you should use local variables in favor of repeated
object references. For example, instead of:

for (var i:Number = 0; i < clipsArray.length; i++) {

 clipsArray[i]._x = i * 10;

 clipsArray[i]._y = i * 10;

 clipsArray[i]._rotation = i * 10;

}

It's faster to use:

for (var i:Number = 0; i < clipsArray.length; i++) {

 var clip:MovieClip = clipsArray[i];

 clip._x = i * 10;

 clip._y = i * 10;

 clip._rotation = i * 10;

}

Note that if you define a local variable of the same name as a property, the local variable hides the
property for the entire duration of the method, even before the local variable is defined! To access
the property when a local variable of the same name exists, you must qualify it with the this
keyword. For example, the following code does not work as expected because it is missing the this
keyword. The code assigns the undefined variable power to itself:

class Enemy {

 private var power:String = "high";

 public function shoot ():Void {

 trace(power); // Displays: undefined

 //(The value of the local variable hides the property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // even before the local variable definition!)

 var power:String = power; // Assigns undefined variable to itself.

 }

}

By contrast, the following code works because it uses this.power to access the power instance

property (to distinguish it from the local variable of the same name):

class Enemy {

 private var power:String = "high";

 public function shoot ():Void {

 trace(this.power); // Displays: high

 var power:String = this.power; // Assigns property to variable

 }

}

In order to avoid confusion, you should avoid giving properties and local variables the same name.
See "Managing parameter/property name conflicts," earlier in the chapter, for related details.

4.4.5 Nesting Functions in Methods

ActionScript supports nested functions, which means that functions can be declared within methods
or even within other functions. The following code creates a method, Box.getArea(), that contains a
nested function, multiply(). Inside getArea(), the nested function can be invoked as usual. However,
like a local variable, a nested function is accessible only to its parent function (the function in which it
is declared). Code outside the parent function cannot execute the nested function:

class Box {

 private var width:Number;

 private var height:Number;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public function getArea ():Number {

 return multiply(width, height);

 // Here's the nested function definition.

 // Only the getArea() method can invoke it. Other methods cannot.

 function multiply (a:Number, b:Number):Number {

 return a * b;

 }

 }

}

Nested functions are used commonly when assigning callback functions to setInterval() or to objects
that support event handler properties, such as MovieClip, Sound, and XML (callback functions are
merely functions triggered when a particular event has occurred). For example, the following code
shows a simple TimeTracer class with a startTimeDisplay() method. The startTimeDisplay() method
uses setInterval() to call a nested function, displayTime(), once per second (every 1000
milliseconds). The displayTime() function displays the current time in the Output panel:

class TimeTracer {

 public function startTimeDisplay ():Void {

 setInterval(displayTime, 1000);

 // Declare displayTime() as a nested function

 function displayTime ():Void {

 trace(new Date().toString());

 }

 }

}

// Usage:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

var tt:TimeTracer = new TimeTracer();

tt.startTimeDisplay();

All local variables and parameters defined in a method are available to nested functions, even after
the method finishes executing! Methods can, hence, use local variables to store data that will be used
later by a nested function. For example, to make displayTime() report the time of its first execution,
we can store that information in a local variable, begunAt. The displayTime() function can safely
access begunAt's value long after the startTimeDisplay() method has completed:

class TimeTracer {

 public function startTimeDisplay ():Void {

 // Define the local variable, begunAt.

 var begunAt:String = new Date().toString();

 setInterval(displayTime, 1000);

 function displayTime ():Void {

 // Here, the nested function refers to the local variable begunAt,

 // which is defined in the enclosing method, startTimeDisplay().

 trace("Time now: " + new Date().toString() + ". "

 + "Timer started at: " + begunAt);

 }

 }

}

Note that the begunAt variable persists because it is defined in the method outside of displayTime().
If begunAt were declared within displayTime(), its value would be reset each time displayTime() is

invoked.

Now let's add a means of stopping the time display. To do so, we must:

Store the interval ID returned by setInterval() in a property, timerInterval1.

Add a stopTimeDisplay() method that uses clearInterval() to cancel the periodic calls to2.

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

displayTime()
2.

Invoke stopTimeDisplay() each time startTimeDisplay() is called (thus preventing multiple
intervals from running at the same time)

3.

Here's the code:

class TimeTracer {

 private var timerInterval:Number;

 public function startTimeDisplay ():Void {

 stopTimeDisplay();

 var begunAt:String = new Date().toString();

 timerInterval = setInterval(displayTime, 1000);

 function displayTime ():Void {

 trace("Time now: " + new Date().toString() + ". "

 + "Timer started at: " + begunAt);

 }

 }

 public function stopTimeDisplay ():Void {

 clearInterval(timerInterval);

 }

}

When stopTimeDisplay() is called, the interval is halted, and the nested displayTime() function is
automatically deleted. Moreover, the local variable begunAt, which was preserved for use by

displayTime(), is no longer needed and is therefore also automatically garbage-collected (i.e.,
deleted).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.4.5.1 Accessing the current object from a function nested in a method

A function nested in a method does not have direct access to the current object (the object on which
the method was called). However, we can handcraft a hook back to the current object by storing a
reference to it in a local variable.

Let's return to our Box class to show how a function nested in a method can access the current object
via a local variable. We'll give the Box class a debugDimensions() method that periodically displays
the dimensions of a Box instance in the Output panel. The code is similar to
TimeTracer.startTimeDisplay(), but this time the nested function, displayDimensions(), needs to
display the current Box object's width and height. In order to give the displayDimensions() function
access to the Box object, we store a reference to this in a local variable, boxObj. That variable is

accessible every time displayDimensions() runs:

public function debugDimensions ():Void {

 var boxObj:Box = this;

 setInterval(displayDimensions, 1000);

 function displayDimensions ():Void {

 // Access the current object through the local variable boxObj.

 trace("Width: " + boxObj.width + ", Height: " + boxObj.height);

 }

}

Note that if we were feeling tricky, we could bypass the local variable approach altogether and simply
pass the current Box object (this) to the displayDimensions() function, as shown next. The effect is

the same, though the code is perhaps harder to read for less experienced ActionScript programmers.
It relies on the fact that setInterval() passes the third argument (and subsequent arguments) to the
function specified in the first argument. In this case, this, which contains a reference to the current

Box object, is passed as the first parameter to displayDimensions():

public function debugDimensions ():Void {

 // The third argument is passed onto displayDimensions()

 setInterval(displayDimensions, 1000, this);

 // This function receives the current object (this) as its first argument

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 function displayDimensions (boxObj):Void {

 trace("Width: " + boxObj.width + ", Height: " + boxObj.height);

 }

}

The concept of storing the current object in a local variable for use by nested functions is pretty darn
important-it enables two-way communication between a method and a callback function defined
within that method. Let's look at one more example. This time, we'll create a new Box method,
loadDimensions(), that loads the dimensions for a Box instance from an external XML file. Inside
loadDimensions() we create an XML object, dimensions_xml. We assign dimensions_xml an

XML.onLoad() event handler using a nested function. Then, when the XML data loads,
dimensions_xml.onLoad() automatically executes, and we use the loaded XML data to set the
current Box object's height and width properties. We access the current Box object using the local
variable boxObj:

public function loadDimensions (URL:String):Void {

 // Store a reference to the current box object in boxObj.

 var boxObj:Box = this;

 // Create and prepare the XML object.

 var dimensions_xml:XML = new XML();

 dimensions_xml.ignoreWhite = true;

 // Assign a nested function as the XML object's onLoad() handler.

 // It will be called automatically when the XML file loads.

 dimensions_xml.onLoad = function (success:Boolean):Void {

 if (success) {

 // Assign the newly loaded dimensions to the width and height

 // properties of the Box object that called loadDimensions().

 boxObj.width =

 parseInt(this.firstChild.firstChild.firstChild.nodeValue);

 boxObj.height =

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 parseInt(this.firstChild.childNodes[1].firstChild.nodeValue);

 } else {

 // Handle a load error.

 trace("Could not load dimensions from file: " + URL);

 }

 }

 // Load the requested XML file.

 dimensions_xml.load(URL);

}

// Here's a sample XML file, showing the structure expected by loadDimensions().

 <?xml version="1.0"?>

 <DIMENSIONS>

 <WIDTH>8</WIDTH>

 <HEIGHT>9</HEIGHT>

 </DIMENSIONS>

The onLoad() handler executes when the XML file is done loading-long after loadDimensions() has
finished its own execution. However, even though loadDimensions() has finished executing, the local
variable boxObj and even the method parameter URL (which is also a local variable) continue to be

available to the nested onLoad() function. If we hadn't stored the current object in a local variable,
our callback function wouldn't have had access to the Box object, and the width and height

properties could not have been set.

Note that the dimensions_xml object is kept alive until its load() operation completes and onLoad()
fires. Once onLoad() has executed, if no other references to the dimensions_xml object exists (as in

the case is in our example), the interpreter automatically marks the object for deletion, preventing
memory waste.

4.4.6 Getter and Setter Methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Earlier we learned about accessor methods, which are public methods that assign and retrieve the
value of a private property. Some developers consider accessor methods cumbersome. They argue
that:

b.setHeight(4);

is more awkward than:

b.height = 4;

However, in our earlier study, we saw that direct property assignments such as b.height = 4 aren't

ideal OOP practice and can lead to invalid property assignments. To bridge the gap between the
convenience of property assignment and the safety of accessor methods, ActionScript 2.0 supports
"getter" and "setter" methods. Getter and setter methods are accessor-like methods, defined within a
class body, that are invoked automatically when a developer tries to get or set a property directly.

To define a getter method, we use the following general syntax:

function get propertyName ():returnType {

 statements

}

where the get keyword identifies the method as a getter method, propertyName is the name of a

pseudo-property serviced by the getter method, returnType is the datatype returned by the method,

and statements is zero or more statements executed when the method is invoked (one of which is

expected to return the value associated with propertyName).

To define a setter method, we use the following general syntax:

function set propertyName (newValue:type):Void {

 statements

}

where the set keyword identifies the method as a setter method, propertyName is the name of a

pseudo-property serviced by the setter method, newValue receives the value that the caller is

requesting be assigned to the pseudo-property, and statements is zero or more statements

executed when the method is invoked (statements is expected to determine and internally store the

value associated with propertyName). As a developer, you can use the return statement alone in a

setter method body, but you must not return any value. Setter methods have an automatic return
value, discussed later.

Unlike other methods, getter and setter methods cannot be declared with the private attribute. An
attempt to define a getter or setter as private yields the following error:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A member attribute was used incorrectly.

Getter and setter methods have a unique, property-access style of being invoked that does not
require use of the function call operator, ().

Getter and setter methods are invoked automatically when a programmer tries
to access or set a property of the same name using the dot operator.

Therefore, a getter method, x(), on an object, obj, is invoked as:

obj.x;

rather than:

obj.x();

And a setter method, y(), on an object, obj, is invoked as:

obj.y = value;

rather than:

obj.y(value);

where value is the first (and only) argument passed to y.

Getter and setter methods, hence, appear to magically translate property accesses into method calls.
For example, if we add a getter method named height() to our Box class, then all attempts to
retrieve the value of the height property will actually invoke the getter method named height(). The
getter method's return value will appear as though it were the value of the height property.

// Invokes the getter height() and displays

// its return value in the Output panel.

trace(someBox.height);

Similarly, if we add a setter method named height() to our Box class, attempts to assign the value of
the height property invoke the setter method named height(). The value used in the height

assignment statement is passed to the setter method, which is expected to store it internally in a
private property.

// Invokes the setter height(), which should store 5 internally

http://lib.ommolketab.ir
http://lib.ommolketab.ir

someBox.height = 5;

With a getter and a setter method named height() defined, the height property becomes an

external façade only; it does not exist in the class but can be used as though it did. You can,
therefore, think of properties that are backed by getter and setter methods (such as height) as

pseudo-properties.

It is illegal to create an actual property with the same name as a getter or
setter method. Attempts to do so result in the following compile-time error:

The same member name may not be repeated more than once.

Example 4-2 revises our earlier Box class, adding getter and setter methods for the width and
height properties. Notice that the values of the width and height pseudo-properties are stored
internally in real properties named width_internal and height_internal because we can't use
properties named width and height any longer.

Example 4-2. A class with getter and setter methods

class Box {

 // Note that width and height are no longer declared as properties

 private var width_internal:Number;

 private var height_internal:Number;

 public function get width ():Number {

 return width_internal;

 }

 public function set width (w:Number):Void {

 width_internal = w;

 }

 public function get height ():Number {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return height_internal;

 }

 public function set height (h:Number):Void {

 height_internal = h;

 }

}

With our getter and setter methods in place, we can now use the width and height pseudo-

properties as follows:

var b:Box = new Box();

b.width = 20; // Calls the width setter.

trace(b.width); // Calls the width getter. Displays: 20

b.height = 10; // Calls the height setter.

trace(b.height); // Calls the height getter. Displays: 10

In ActionScript 1.0, getter and setter methods can be created with
Object.addProperty() . In fact, ActionScript 2.0's support for getter and setter methods is
effectively a wrapper around Object.addProperty() with some minor optimizations.

Example 4-3 shows the equivalent ActionScript 1.0 code for Example 4-2.

Example 4-3. ActionScript 1.0 code to simulate ActionScript 2.0 getter
and setter methods

_global.Box = function(){};

global.Box.prototype. _get_ _width = function() {

 return this.width_internal;

};

http://lib.ommolketab.ir
http://lib.ommolketab.ir

global.Box.prototype. _set_ _width = function (w) {

 this.width_internal = w;

};

global.Box.prototype. _get_ _height = function() {

 return this.height_internal;

};

global.Box.prototype. _set_ _height = function (h) {

 this.height_internal = h;

};

_global.Box.prototype.addProperty("width",

 Box.prototype._ _get_ _width,

 Box.prototype._ _set_ _width);

_global.Box.prototype.addProperty("height",

 Box.prototype._ _get_ _height,

 Box.prototype._ _set_ _height);

When a setter method is called, it always invokes its corresponding getter and returns the getter's
return value. This allows a program to use the new value immediately after setting it, perhaps in
order to chain method calls. For example, the following code shows a fragment of a fictitious music
player application. It uses a setter call to tell the music player which song to play first. It then
immediately plays that song by calling start() on the return value of the firstSong assignment.

(musicPlayer.firstSong = new Song("lovesong.mp3")).start()

While convenient in some cases, the return-value feature of setters is a deviation from the
ECMAScript 4 specification and is, therefore, considered a bug by Macromedia. This buggy behavior
imposes limits on getters-specifically, getters should never perform tasks beyond those required to
retrieve their internal property value. For example, a getter should not implement a global counter
that tracks how many times a property has been accessed. The automatic invocation of the getter by
the setter would tarnish the counter's record keeping.

Getter and setter methods can be used both inside and outside of the class block that defines them.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For example, we could quite legitimately add the following getArea() method definition to the Box
class shown in Example 4-2; the direct references to the pseudo-properties width and height are

legal and common practice.

public function getArea ():Number {

 return width * height;

}

In fact, getter and setter method usage can even be nested. For example, we could change the
preceding getArea() method definition into a getter method definition as follows:

public function get area ():Number {

 return width * height;

}

In that case, we could use pseudo-properties (width, height, and area) to assign a Box instance a

height and width, and even to retrieve its area:

var b:Box = new Box();

b.width = 20;

b.height = 10;

trace(b.area); // Displays: 200

4.4.6.1 Simulating read-only properties

A getter/setter pseudo-property can be made read-only by declaring a getter without declaring a
setter.

For example, the area property that we just defined does not have a setter because its value

depends on the values of other properties. It doesn't make sense for a user of the class to set the
area directly, so we disable assignment by not defining a setter. However, to explain this limitation to
users who attempt to set the area property, we could define a do-nothing setter that prints a debug

message to the Output panel, as follows:

function set area ():Void {

 trace("Warning: The area property cannot be set directly.");

}

Don't confuse read-only pseudo-properties with private properties (or, for that matter, public

http://lib.ommolketab.ir
http://lib.ommolketab.ir

properties). A read-only pseudo-property can be read from outside the class but cannot be set. A
private property cannot be read or set from outside the class, but a public property can be both read
and set from anywhere.

4.4.7 Extra or Missing Arguments

In ActionScript 2.0 (and 1.0), a method can be invoked with more or fewer arguments than its
signature specifies. The compiler doesn't complain if you pass the wrong number of arguments. It
checks only whether the arguments provided match the specified types. If you pass more arguments
than specified, the compiler type checks only as many arguments as are in the method signature.
Extra arguments are not (indeed cannot be) type checked automatically by the compiler. Although
there is no way to have the compiler warn you if the wrong number of arguments are passed, you
can write custom code to do so. For example, the following method, setCubeDimensions(), aborts
when passed anything other than three arguments (note the use of the arguments object, which we'll

discuss shortly):

public function setCubeDimensions (x:Number, y:Number, z:Number):Void {

 // Wrong number of arguments passed, so abort

 if arguments.length != 3 {

 trace ("This function requires exactly 3 arguments.");

 return;

 }

 // Remainder of method not shown...

}

When a method is invoked with fewer arguments than it expects, the missing arguments are
automatically set to undefined. For example, recall our basic method definition for Box.setWidth(),
which specifies one parameter, w:

public function setWidth (w:Number):Void {

 width = w;

}

The setWidth() method can legally be invoked without arguments as follows:

someBox.setWidth();

In this case, someBox.width is set to undefined by the setWidth() method. Methods should handle

the possibility that they may be invoked with fewer arguments than expected. For example, if we

http://lib.ommolketab.ir
http://lib.ommolketab.ir

wanted to prevent our setWidth() method from setting the width property when invoked with no

arguments, we could adjust it as follows (additions shown in bold):

public function setWidth (w:Number):Void {

 // If w is undefined, then quit

 if (w == undefined) {

 return;

 }

 // If we got this far, w has a usable value, so proceed normally

 width = w;

}

However, we needn't always abort a method simply because arguments are missing. By anticipating
missing arguments, we can effectively provide two flavors of the same method: one that uses
developer-supplied arguments and one that automatically fills in default values for missing
arguments. For example, we could adjust setWidth() as follows:

public function setWidth (w:Number):Void {

 // If w is undefined...

 if (w == undefined) {

 // ...default to 1.

 width = 1;

 } else {

 // ...otherwise, use the supplied value of w.

 width = w;

 }

}

We can then invoke setWidth() as either setWidth() or setWidth(5). Java developers will

recognize this as ActionScript's (partial) answer to method overloading.

Note that the equality operator (==) considers null equal to undefined. Hence, the invocations,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

setWidth() and setWidth(null) are equivalent. In the former, the developer merely implies that
he wishes to omit the value of w; in the latter, the developer explicitly specifies that he's not
providing a value for w. Either way, our redesigned setWidth() method has the same result.

When a method accepts multiple parameters, null can be used as a placeholder for missing

arguments that precede other arguments. Here, we call a method that expects three arguments
(method definition not shown) but we pass the empty placeholder null as the first argument:

methodThatExpectsThreeArguments (null, 4, 5);

Whenever a method is invoked, all the arguments passed in the invocation are available via the
arguments object. The arguments object stores all arguments passed to the method, even when

passed more arguments than it expects (i.e., beyond those declared in the method definition). To
access any argument, we examine the elements of the arguments array, as follows:

arguments[n]

where n is the index of the argument we're accessing. The first argument (the leftmost argument in
the method invocation) is stored at index 0 and is referred to as arguments[0]. Subsequent
arguments are stored in order, proceeding to the right-so, the second argument is arguments[1],
the third is arguments[2], and so on. Here's another rewrite of our setWidth() method; it displays

the first and second arguments passed to the method:

public function setWidth (w:Number):Void {

 trace("Argument 1 is: " + arguments[0]);

 trace("Argument 2 is: " + arguments[1]);

}

// Usage:

someBox.setWidth(15, 25); // Displays:

 // Argument 1 is: 15

 // Argument 2 is: 25

From within a method, we can tell how many arguments were passed to the currently executing
function by checking the number of elements in arguments, as follows:

var numArgs:Number = arguments.length;

We can easily cycle through all the arguments passed to a method using a for loop. Example 4-4
shows a method, sendMessage(), that sends an XML message to a chat server, in the following

http://lib.ommolketab.ir
http://lib.ommolketab.ir

format:

<MESSAGE>

 <ARG>value 1</ARG>

 <ARG>value 2</ARG>

 ...

 <ARG>value n</ARG>

</MESSAGE>

The sendMessage() method defines no parameters. Instead, it retrieves all its argument values via
the arguments object. Any number of arguments can be passed to sendMessage(); each one
becomes the content of an <ARG> tag in the XML message sent.

Example 4-4. A method that accepts an unknown number of arguments

public function sendMessage ():Void {

 // Build the message to send

 var message:String = "<MESSAGE>";

 for (var i:Number = 0; i < arguments.length; i++) {

 message += "<ARG>" + arguments[i] + "</ARG>";

 }

 message += "</MESSAGE>";

 // Display what we're sending in the Output panel

 trace("message sent: \n" + message);

 // Send the message to the server

 socket.send(message);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

As a point of interest, the arguments object also stores:

A reference to the method currently executing (arguments.callee)

A reference to the method that called the method currently executing, if any
(arguments.caller)

Note that arguments.callee is not the same as this. The latter refers to the object on which the

method is invoked, whereas the former is a reference to the current method itself.

For details, see ActionScript for Flash MX: The Definitive Guide (O'Reilly).

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

4.5 Constructor Functions (Take 2)

We've done pretty well with our example Box class. We've given it methods to invoke and properties
to examine and change. Now it's time to return to our Box constructor function, which we introduced
much earlier in this chapter under "Constructor Functions (Take 1)."

Suppose we want to make every Box instance we create start out with a width and height of 1. We
need something that can set each new Box instance's width and height properties during the

instance-creation process. That "something" is our constructor function.

A constructor function is the metaphoric womb of a class; it isn't responsible for creating new
instances, but it can be used to initialize each new instance. When we create a new instance of a
class using the new operator, the class's constructor function runs. Within the constructor function,
we can customize the newly created instance by setting its properties or invoking its methods. The
instance can then be delivered to the world tailored to the situation at hand-perhaps with width and
height properties set to 1 (and big, cute, green eyes).

To define a constructor function, we use the function statement within a class body, exactly as we'd
define a method. However, a constructor function definition must also observe these rules:

The constructor function's name must match its class's name exactly (case sensitivity matters).

The constructor function's definition must not specify a return type (not even Void).

The constructor function must not return a value (the return statement is allowed for the sake
of exiting the function, provided that no return value is specified).

The constructor function's definition must not include the static attribute, but it can be public or
private.

Here's another look at the Box class constructor that we created earlier. Once again, lines 2 and 3
are the (empty) function-the constructor function's body and the rest of the class are omitted from
this example:

class Box {

 public function Box () {

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Remember that a constructor's function declaration must not define a return
datatype, and the constructor function itself must not return a value. In
particular, the constructor function does not return the new instance being
created. Creating and returning the new instance is handled automatically by
ActionScript as part of the new ClassName() operation. Use the constructor

function only for initializing property values or performing other instance
initialization.

In ActionScript 2.0, a constructor function's sole purpose is to initialize instances. Constructor
functions are not mandatory (as they were in ActionScript 1.0). However, because most classes
initialize their instances, most classes include a constructor function. As noted earlier, when a class
does not define a constructor function explicitly, ActionScript automatically provides a default
constructor that takes no parameters and performs no initialization on new instances of the class.
Despite this convenience, as a best practice, always include a constructor, even if it is just an empty
one. The empty constructor serves as a formal indication that the class design does not require a
constructor and should be accompanied by a comment to that effect. For example:

class Box {

 // Empty constructor. This class does not require initialization.

 public function Box () {

 }

}

In ActionScript 1.0, a constructor function and a class definition were one in the
same. There was no formal class statement-classes were created simply by defining a
constructor function, as in:

// In ActionScript 1.0, this function both

// defines the Box class and serves as

// its constructor function.

function Box (w, h) {

 this.width = w;

 this.height = h;

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice that the constructor function can be declared public or private, just like a normal method. The
vast majority of constructor functions are public, but there are specific class designs that require a
private constructor (for one example, see Chapter 17). Classes with private constructor functions
cannot be instantiated directly. For example, if we supply a private constructor for our Box class:

class Box {

 private function Box () {

 }

}

and then we try to create a Box instance:

var b:Box = new Box();

the compiler generates the following error:

The member is private and cannot be accessed.

In order to allow instances to be created, a class with a private constructor must provide a class
method that creates and returns instances. For example:

class Box {

 // Private constructor

 private function Box () {

 }

 // Class method that returns new instances

 public static function getBox ():Box {

 return new Box();

 }

}

// Usage:

var b:Box = Box.getBox();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If a class with a private constructor does not provide a public class method that calls the private
constructor internally, you cannot instantiate objects of the class. You might use a private
constructor in the following situations:

To create a rough equivalent of a Java-style abstract class (i.e., a class that cannot be
instantiated, but must be extended to be used, as discussed in Chapter 8)

To place limits on when and how a class's instances are created (for example, to prevent a
program from creating more than one object from a single class)

While constructors can be declared as public or private, they cannot be declared static. If you specify
the static attribute in a constructor function definition, the compiler generates the following error:

The only attributes allowed for constructor functions are public and private.

Always be sure that the capitalization of a constructor function's name matches
its class name exactly. If you change a class's name from Somename to
SomeName but forget to update the constructor function's name to
SomeName(), ActionScript will no longer consider the constructor function a
constructor, and none of your initialization code will run when instances are
created with the new operator.

Luckily, the ActionScript compiler warns you as follows when the capitalization of your constructor's
name does not match its class name:

The member function '[FunctionName]' has a different case from the name of

the class being defined, '[ClassName]', and will not be treated as the class

constructor at runtime.

Let's flesh out our basic Box constructor so that it assigns 1 to the width and height properties of

every new Box instance created, as described in the earlier scenario. For clarity, we'll also show the
width and height property definitions. By convention (but not by necessity), constructor functions

are placed after property definitions but before method definitions. Note also that the constructor
declaration does not include a return datatype, as they are prohibited for constructors:

class Box {

 private var width:Number;

 private var height:Number;

 public function Box () {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Initialize width and height

 width = 1;

 height = 1;

 }

 // Method definitions typically follow here...

}

Now every time we create a new Box instance, its width and height are initialized to 1 (otherwise,
they'd default to undefined). That's pretty handy, but is also inflexible. To allow the width and
height properties to be customized for each Box instance, we add parameters to our constructor

function definition:

public function Box (w:Number, h:Number) {

 // Initialize width and height, using the

 // values passed to the parameters w and h.

 width = w;

 height = h;

}

A constructor function's parameter values are passed to it via the new operator at object-creation
time, as follows:

new SomeClass(value1, value2,...valuen);

where SomeClass is the name of the class being instantiated and value1, value2, ...valuen are the

values passed to the constructor function. For example, to create a new Box instance with an initial
width of 2 and height of 3, we'd use:

new Box(2, 3);

Supplying parameter values to a constructor function is the ActionScript equivalent of genetically
predetermining that your baby should be a girl, weigh 7 pounds, and have brown hair.

Constructor functions normally use parameter values to set property values, but parameters can also
more generally govern what should happen when an instance is created. For example, the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

constructor function for a Chat class might include a parameter, doConnect, that indicates whether

the Chat instance should automatically connect to the chat server upon creation:

class Chat {

 public function Chat (server:String, port:Number, doConnect:Boolean) {

 if (doConnect) {

 connect(server, port);

 }

 }

}

4.5.1 Simulating Multiple Constructor Functions

Unlike Java, ActionScript does not support multiple constructor functions for a single class (referred
to as overloaded constructors in Java). In Java, a class can initialize an instance differently depending
on the number and type of arguments used with the new operator. In ActionScript, similar
functionality must be implemented manually. Example 4-5, based on our Box class, shows one
possible way to simulate multiple constructor functions in ActionScript. Flash itself uses an analogous
technique to allow Date instances to be created from a specific year, month, and day or from a count
of milliseconds that have elapsed since January 1, 1970.

In Example 4-5, the Box constructor delegates its work to three pseudo-constructor methods, named
boxNoArgs(), boxString(), and boxNumberNumber(). Each pseudo-constructor's name indicates
the number and datatype of the parameters it accepts (e.g., boxNumberNumber() defines two
arguments of type Number). Note that in this specific example the pseudo-constructors do not define
datatypes for their arguments; this anomaly is discussed in the inline code comments.

If some of the code in Example 4-5 is new to you, look for cross-references to related topics in the
code comments.

Example 4-5. Simulating overloaded constructors

class Box {

 public var width:Number;

 public var height:Number;

 /**

 * Box constructor. Delegates initialization

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 * to boxNoArgs(), boxString(), or boxNumberNumber().

 */

 public function Box (a1:Object, a2:Object) {

 // As we learned earlier, the arguments object stores the

 // argument values passed to this function.

 // If the constructor was invoked with no arguments, call boxNoArgs().

 // If the constructor was invoked with one string argument,

 // call boxString(). If the constructor was invoked with

 // two numeric arguments, call boxNumberNumber().

 if (arguments.length == 0) {

 boxNoArgs();

 } else if (typeof a1 == "string") {

 // In the following line of code, we'd normally have to cast a1 to the

 // type required by the boxString() method's first parameter (in

 // this case, String). However, the ActionScript 2.0 cast operator

 // does not work with the String and Number datatypes, so,

 // unfortunately, we must leave the parameters for boxString() and

 // boxNumberNumber() untyped. For details on this casting problem,

 // see Chapter 3.

 boxString(a1);

 } else if (typeof a1 == "number" && typeof a2 == "number") {

 // No cast to Number here either; see previous comment.

 boxNumberNumber(a1, a2);

 } else {

 // Display a warning that the method was used improperly.

 trace("Unexpected number of arguments passed to Box constructor.");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 }

 /**

 * No-argument constructor.

 */

 private function boxNoArgs ():Void {

 // arguments.caller is a reference to the function that called

 // this function.

 // If this method was not called by the Box constructor, then exit.

 if (arguments.caller != Box) {

 return;

 }

 // Supply a default width and height.

 width = 1;

 height = 1;

 }

 /**

 * String constructor.

 */

 private function boxString (size):Void {

 // If this method was not called by the Box constructor, then exit.

 if (arguments.caller != Box) {

 return;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 // Set width and height based on a descriptive string.

 if (size == "large") {

 width = 100;

 height = 100;

 } else if (size == "small") {

 width = 10;

 height = 10;

 } else {

 trace("Invalid box size specified");

 }

 }

 /**

 * Numeric constructor.

 */

 private function boxNumberNumber (w, h):Void {

 // If this method was not called by the Box constructor, then exit.

 if (arguments.caller != Box) {

 return;

 }

 // Set numeric width and height.

 width = w;

 height = h;

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Usage:

var b1:Box = new Box();

trace(b1.width); // Displays: 1

var b2:Box = new Box("large");

trace(b2.width); // Displays: 100

var b3:Box = new Box(25, 35);

trace(b3.width); // Displays: 25

4.5.2 Using this in Constructor Functions

Within the body of a constructor function, the this keyword refers to the newly created instance. We
use this in a constructor function exactly as we use it from within instance methods. For example,
the following code uses this to resolve a parameter/property name conflict:

public function Box (width:Number, height:Number) {

 // Sets width property (this.width) to value of width parameter (width).

 this.width = width;

 // Sets height property (this.height) to value

 // of height parameter (height).

 this.height = height;

}

For details on using this, see the earlier discussion under "Referring to the Current Object with the
Keyword this."

4.5.3 Constructor Functions Versus Default Property Values

Earlier in this chapter we learned that an instance property can be assigned a default value provided

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the value is a compile-time constant expression, such as 10 or "hello world". For example:

private var x:Number = 10;

private var msg:String = "hello world";

While it's legal to initialize an instance property by assigning it a default value, it's a best practice to
perform all instance property initialization in a constructor function. Constructor functions are not
limited by the compile-time constant rule, so they can safely calculate property values with arbitrary
code such as method calls, conditionals, and loops. Furthermore, by keeping property initialization in
constructors, we make our class's initialization code easy to find and maintain.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

4.6 Completing the Box Class

Throughout this chapter we've studied an example Box class. In the real world, our Box class might
be purely conceptual (i.e., never displayed on screen) or it might have a visual representation.
Because most Flash applications are visual, we'll conclude this chapter with a look at how to display
Box instances on screen.

Not all Flash applications display content on screen in the same way. Each application must decide
how the screen is drawn, when it is drawn, and which class or classes contain the drawing code. Here
are the major issues to consider when designing an application's display system:

First decide whether the display elements will render themselves or be rendered by a central
class. For example, will the Box class provide its own drawBox() method, or will there be a
drawBoxes() or drawScreen() method on some other class?

Decide how often the displayed elements should be updated-either when some event occurs
(such as a mouseclick) or repeatedly (as fast as frames are displayed in the Flash Player).

Decide on the rendering technique. Each visual element in a Flash movie must be displayed in a
movie clip. However, movie clips can be placed manually at authoring time or attached with
ActionScript at runtime. The content of a movie clip can also be created from scratch using the
MovieClip Drawing API.

Decide on a screen refresh strategy. Will each visual element be maintained as a single
persistent movie clip that is updated regularly, or will the entire contents of the Stage be
cleared and re-created each time the display is updated?

In our example, the Box class is responsible for its own screen display. When a box is created, we'll
attach an empty movie clip (named container_mc) into which we'll draw the box. If the box is

resized, we'll redraw the contents of the container clip. To move the box, we'll move its container clip
rather than move the box within the clip. This saves us from having to redraw the clip's contents.

Our box display strategy is a runtime-only strategy. Each Box instance appears in the Flash Player
but can't be placed on the Stage while editing a .fla file in the Flash authoring tool. In Chapter 13,
we'll see how to create a visual class that can place instances on stage both at runtime and in the
Flash authoring tool.

Example 4-6 gives you a final look at the Box class in its entirety, complete with screen display code.
You should recognize the following items from earlier Box class samples:

The width and height properties (not pseudo-properties)

The accessor methods getWidth() and getHeight() (not getter and setter methods)

The following items are completely new to this version of the Box class:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The container_mc property, which stores a reference to the movie clip in which we'll draw the

box graphic

The accessor methods getX(), setX(), getY(), and setY(), which retrieve and assign the
position of the container_mc movie clip

The draw() method, which draws the box in the container_mc movie clip

Finally, the following items have changed in this version of the Box class:

The constructor function takes additional parameters, as follows: x and y specify
container_mc's initial horizontal and vertical position, target specifies the movie clip to which
container_mc will be attached, and depth specifies the depth on which container_mc will be

attached.

The setHeight() and setWidth() methods now call draw() after setting the height and width of
the box. (Note the flexibility that our accessor methods afford us: we've changed how our class
works without changing how it's used.)

The detailed comments will help as you study the code.

Example 4-6. A Box class complete with drawing routines

class Box {

 // Box dimensions. Nothing new here.

 private var width:Number;

 private var height:Number;

 // Movie clip to contain visual representation of the box.

 private var container_mc:MovieClip;

 /**

 * Constructor.

 */

 public function Box (w:Number, h:Number,

 x:Number, y:Number,

 target:MovieClip, depth:Number) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Create the container clip that will hold Box visuals.

 container_mc = target.createEmptyMovieClip("boxcontainer" + depth,

 depth);

 // Initialize size.

 setWidth(w);

 setHeight(h);

 // Initialize position.

 setX(x);

 setY(y);

 }

 /**

 * Accessor to retrieve width. Nothing new here.

 */

 public function getWidth ():Number {

 return width;

 }

 /**

 * Accessor to assign width. This version both assigns the new width

 * property value and redraws the box based on the new width.

 */

 public function setWidth (w:Number):Void {

 width = w;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 draw();

 }

 /**

 * Accessor to retrieve height. Nothing new here.

 */

 public function getHeight ():Number {

 return height;

 }

 /**

 * Accessor to assign height. This version both assigns the new height

 * property value and redraws the box based on the new height.

 */

 public function setHeight (h:Number):Void {

 height = h;

 draw();

 }

 /**

 * Accessor to retrieve x. For convenience, the x and y coordinates

 * are stored directly on the container movie clip. If numeric accuracy

 * were a concern, we'd store x as a separate Box property so

 * that it wouldn't be rounded by the MovieClip class.

 */

 public function getX ():Number {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return container_mc._x;

 }

 /**

 * Accessor to assign x.

 */

 public function setX (x:Number):Void {

 container_mc._x = x;

 }

 /**

 * Accessor to retrieve y.

 */

 public function getY ():Number {

 return container_mc._y;

 }

 /**

 * Accessor to assign y.

 */

 public function setY (y:Number):Void {

 container_mc._y = y;

 }

 /**

 * Displays the Box instance on screen. Uses the MovieClip drawing methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 * to draw lines in container_mc. For more information on the Drawing API,

 * see ActionScript for Flash MX: The Definitive Guide.

 */

 public function draw ():Void {

 // Clear the previous box rendering.

 container_mc.clear();

 // Use a 1-point black line.

 container_mc.lineStyle(1, 0x000000);

 // Position the drawing pen.

 container_mc.moveTo(0, 0);

 // Start a white fill.

 container_mc.beginFill(0xFFFFFF, 100);

 // Draw the border of the box.

 container_mc.lineTo(width, 0);

 container_mc.lineTo(width, height);

 container_mc.lineTo(0, height);

 container_mc.lineTo(0, 0);

 // Formally stop filling the shape.

 container_mc.endFill();

 }

}

The following code shows how the Box class from Example 4-6 could be used on a frame in a Flash
document (.fla) timeline:

// Create a box 250 x 260 pixels, placed at coordinates

// (100, 110) in the current movie clip, on depth 1.

var b:Box = new Box(250, 260, 100, 110, this, 1);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

After the Box instance is created, we can adjust its position and size as follows:

b.setX(400);

b.setY(400);

b.setWidth(10);

b.setHeight(20);

trace(b.getX()); // Displays: 400

trace(b.getY()); // Displays: 400

trace(b.getWidth()); // Displays: 10

trace(b.getHeight()); // Displays: 20

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

4.7 Putting Theory into Practice

Code, like art, is never really finished. You should explore your own ideas, even with the simple Box
class discussed in this chapter. Can you add code that randomly places each Box instance on the
Stage? Or changes the color of a Box instance? What about code that rotates a Box instance or
animates it along a straight line? Try adding text fields on each box that display its width, height,
and area. You could even make the text fields accept user input that can change the size of the Box.

You'll gain insight into how to add these kinds of features in the next chapter, which studies an
ImageViewer class. This chapter covered a tremendous amount of technical ground in a largely
theoretical way, so if you are a bit overwhelmed, don't worry. The next chapter covers a concrete
implementation to help you apply what you've learned. See you there!

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 5. Authoring an ActionScript 2.0
Class
In Chapter 4 we studied the general anatomy of ActionScript 2.0 classes. In this chapter we'll put
that theory into practice by authoring a real-world ActionScript 2.0 class named ImageViewer. The
ImageViewer class creates an on-screen rectangular region for displaying a loaded JPEG image. We'll
cover designing and coding the class itself, as well as using it in a Flash document.

The ImageViewer source files discussed in this chapter are available for download at
http://moock.org/eas2/examples.

 < Day Day Up >

http://moock.org/eas2/examples
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.1 Class Authoring Quick Start

Before we jump into designing the ImageViewer class, let's take a brief, high-level look at the
minimal steps required to author and use an ActionScript 2.0 class in Flash. Don't worry if some of
the concepts in this overview are foreign to you-we'll cover each of them in detail throughout the
remainder of this chapter.

To create an ActionScript 2.0 class, follow these general steps:

Create a new text file with the .as extension using any plain text editor or Flash MX Professional
2004's built-in editor. The .as file's name must match the class name exactly (case sensitivity
matters).

1.

Add the class definition to the .as file. For example:2.

class NameOfClass {

 // Class body goes here

}

To use an ActionScript 2.0 class in a Flash movie, follow these general steps:

Create a .fla file with any name, and place it in the same folder as the .as file from Step 1 in the
preceding procedure.

1.

Optionally specify the class's export frame for the .fla file via File Publish Settings Flash
 ActionScript Version Settings Export Frame for Classes. This determines when the

class loads and when it becomes available in the movie. The export frame is usually set to some
frame after your movie's preloader.

2.

Use the class as desired throughout the .fla file, but after the export frame specified in Step 2 (if
any).

3.

Export a .swf file using one of the following: File Publish, Control Test Movie, or File
 Export Export Movie.

4.

The preceding steps apply nicely to small projects in which code reuse and distribution are not
factors. For information on managing a group of classes across many applications, see Chapter 9 and
Chapter 14.

Now let's get started building the ImageViewer class.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.2 Designing the ImageViewer Class

Once you get comfortable with the syntax of your first object-oriented language, you'll inevitably
realize that the challenge of OOP isn't mastering the syntax, it's designing each application's
architecture. As an OOP programmer, you'll face design decisions daily: which classes will make up
the application? How will those classes interrelate? What public methods and properties will they
expose? What methods and properties must be kept internal? What will all these classes, methods,
and properties be named?

Luckily, you won't have to face these questions alone. For years, the OOP community has been
cataloging so-called design patterns, which describe common solutions to generalized, recurring
design problems. We'll see how to apply design patterns to Flash in Part III of this book. Design
patterns focus mainly on the interactions among multiple classes. For now, we face a simpler
problem: how to design a single, standalone class.

We've already given our ImageViewer class a name and a general purpose. Believe it or not, that
means a good deal of the design work has already been done. By giving the class a general purpose,
we've already determined its responsibilities: loading and displaying an image. Likewise, from the
inverse perspective, we've decided that those responsibilities don't belong in other classes. That is, in
an application that uses the ImageViewer class, other classes won't attempt to load images on their
own; instead, they'll instantiate ImageViewer instances and use those instances to load images.
Thus, just by formulating the ImageViewer class's responsibilities, we've shaped how it interacts with
other classes, which is an important aspect of any OOP application design. Determining a class's
responsibilities necessarily determines, in part, how it fits into a larger structure.

With our ImageViewer class's name and purpose settled, we can now establish its detailed functional
requirements. Here's a list of functionality that could be required of the ImageViewer class:

Load an image

Display an image

Crop an image to a particular rectangular "view region"

Display a border around the image

Display image load progress

Reposition the view region

Resize the view region

Pan (reposition) the image within the view region

Zoom (resize) the image within the view region

From that list, we'll select only what's absolutely required by the current situation, leaving everything

http://lib.ommolketab.ir
http://lib.ommolketab.ir

else for later. Our approach follows the Extreme Programming rule that you should "never add
functionality early" (see http://www.extremeprogramming.org/rules.html).

The minimum functionality required to simply get the ImageViewer class up and running is:

Load an image

Display an image

Let's start with that short list.

5.2.1 From Functional Requirements to Code

Our first step in moving from functional requirements to a completed class is to determine how the
ImageViewer class will be used by other programmers. For example, what method would a
programmer invoke to make an image appear on screen? How about loading an image? Are those
two operations implemented as separate methods or as one method? After we've determined how
the class should be used by other classes (whether by ourselves or another developer), we can then
turn our attention to how it should work (i.e., we can implement the proposed methods). Of course,
during implementation we're bound to encounter issues that affect the way the class is used and thus
we'll modify our original design.

The set of public methods and properties exposed by a class is sometimes
referred to as the class's API (application programming interface). Revision is a
natural part of the development cycle, but ideally, the public API doesn't
change even when the internal code is revised. The term refactoring means to
modify the internal code of a program without modifying its external (apparent)
behavior. For example, you might refactor a class to make its operation more
efficient or to improve upon poor coding practices.

In our example, we're trying to fashion the ImageViewer class's API. Traditionally, the term "API"
refers to the services provided by an entire library of classes, such as the Java API or the Windows
API. However, in current common discussion, the term "API" is often used to describe functionality
made publicly available by anything from a single class to a whole group of classes. A class's API is
sometimes also referred to as its public interface, not to be confused with the graphical user interface
(GUI), nor the interfaces we'll study in Chapter 8.

Recall that our ImageViewer class's first functional requirement is to load an image. That operation
should be publicly accessible, meaning that code in any class should be able to tell an ImageViewer
instance to load an image, perhaps multiple times in succession. The network location (URL) of the
image to load must be supplied externally. In short, a programmer using an ImageViewer instance
needs a "load" command, and the ImageViewer instance needs a URL from the programmer in order
to carry out that command. Sounds like a good candidate for a method! We'll call the "load"
command loadImage(). Here's the loadImage() method's basic signature:

ImageViewer.loadImage(URL)

http://www.extremeprogramming.org/rules.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The method name, loadImage, acts as the "verb" to describe the action performed. A method name
should be highly comprehensible. Someone reading it in a program's source code should be able to
deduce the purpose of the method call without reading copious comments. Well-named methods are
effectively self-commenting.

If you're having trouble naming a method, the real cause may be that your
method is trying to do too much. Try splitting the method into multiple methods
or restructuring your class, particularly if your method name has the word
"and" in it.

The loadImage() method takes one parameter, URL, which specifies the network location of the
image to load. The URL parameter must be a string, and the method doesn't return any value. So the

complete signature and return type for the method is:

ImageViewer.loadImage(URL:String):Void

But perhaps we've jumped ahead too quickly. Is a separate loadImage() method required at all?
Maybe the URL of the image to load should simply be passed to the ImageViewer constructor, as in:

var viewer:ImageViewer = new ImageViewer("someImage.jpg");

That's more concise than creating an ImageViewer instance first and then calling loadImage() on it.
But without a loadImage() method, each ImageViewer instance can load only one image. If we want
ImageViewer instances to load multiple images in succession, we need a loadImage() method.
Maybe we should implement both the loadImage() method and a constructor parameter URL but

make the constructor URL optional. That's an interesting possibility, but it's not strictly required by
our current situation. Given that we can easily add the constructor parameter later without affecting
our design, we can safely defer the parameter for now. We should record these decisions as part of
our class design rationale, either in a formal specification document or simply with comments in the
class source code. As you design and implement your classes, be sure to document potential future
features under consideration. You should also document features that you've rejected, rather than
merely deferred, due to some design limitation. This is particularly true of potential features that
have nonobvious drawbacks or limitations. This will help you remember your exact reasons for
rejecting the design decision the next time you or someone else revises the code.

Now let's move on to our second functional requirement-to display an image. Displaying an image
on screen in the Flash Player necessarily involves at least one movie clip (the one into which the
image is loaded). But which movie clip? Should we provide a way to specify an existing clip as the
image-holding clip? We could write a setImageClip() method to be invoked before loadImage(), as
follows:

var viewer:ImageViewer = new ImageViewer();

viewer.setImageClip(someClip_mc);

viewer.loadImage("someImage.jpg");

That would work but might also interfere with the content already in the specified clip. For example, if

http://lib.ommolketab.ir
http://lib.ommolketab.ir

an ImageViewer instance attempted to load an image into the main timeline of _level0, the entire

contents of the Flash Player would be replaced by the image! Not good. Furthermore, if setImageClip(
) were used to change the image-holding clip after an image had already been loaded, the
ImageViewer instance would lose its reference to the original clip. Having lost the clip reference, the
ImageViewer instance would no longer be able to position, size, or otherwise control the image, nor
would it be able to remove the image before loading a different one.

To keep things simple (always keep it simple in the first version!), we want to guarantee a one-to-
one association (one image movie clip for each ImageViewer instance). Hence, each instance will
create a clip to hold the image. This ensures that the clip is empty when we load the image into it
and that each instance always loads its image(s) into the same clip. In ActionScript, each movie clip
can load only one image at a time.

We've decided that each ImageViewer instance will create its own image-holding clip, but we still
need to know where to put that clip. That is, we need to be told which existing clip will contain the
image-holding clip we create. How about adding a public method, setTargetClip(), that specifies the
movie clip and depth on which to put our image-holding clip. Code that uses the ImageViewer would
look like this:

var viewer:ImageViewer = new ImageViewer();

// someClip_mc is the clip that will contain the new image-holding

// clip, and 1 is the depth on which the image-holding clip is created.

viewer.setTargetClip(someClip_mc, 1);

viewer.loadImage("someImage.jpg");

Hmm. That feels a bit cumbersome. It shouldn't take two method calls just to load an image.
Moreover, we want each ImageViewer instance to know its target clip immediately on creation. So
let's move the responsibility of setting the target clip to the ImageViewer constructor. Anyone
creating a new ImageViewer instance must provide the target clip and depth as arguments to the
constructor, so here is the new constructor signature:

ImageViewer(target:MovieClip, depth:Number)

Code that uses the ImageViewer would now look like this:

var viewer:ImageViewer = new ImageViewer(someClip_mc, 1);

viewer.loadImage("someImage.jpg");

That code would create the ImageViewer instance, which would create a new empty movie clip in
someClip_mc at depth 1. It would then load someImage.jpg into the empty clip. Once loaded,
someImage.jpg would automatically appear on screen (assuming someClip_mc were visible at the

time).

The signatures and return datatypes of the constructor and loadImage() method in our current class
design now look like this (recall that constructor declarations never include a return datatype):

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ImageViewer(target:MovieClip, depth:Number)

ImageViewer.loadImage(URL:String):Void

That looks reasonably sensible. Only one way to find out: let's code it up.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.3 ImageViewer Implementation (Take 1)

Every ActionScript 2.0 class must reside in an external text file with the extension .as. Hence, the
first step in authoring our ImageViewer class is to create a text file named ImageViewer.as. If you're
working in Flash MX Professional 2004, you can create and edit ImageViewer.as using its external-
script editor. If you're working in Flash MX 2004 (not the Professional edition), you must use a third-
party text editor to create your .as text file. Even if you are using Flash MX Professional 2004, you
may appreciate the additional features offered by some external editors (such as file management,
syntax highlighting, and code hinting).

Popular choices are:

SciTE|Flash

http://www.bomberstudios.com/sciteflash

UltraEdit

http://www.ultraedit.com

Macromedia HomeSite

http://www.macromedia.com/software/homesite

TextPad

http://www.textpad.com

PrimalScript

http://www.sapien.com

Whichever editor you're using, create a new folder on your hard drive named imageviewer. We'll
place all the files for this tutorial in that folder.

To create the ImageViewer.as file using Flash MX Professional 2004, follow these steps:

1.

2.

http://www.bomberstudios.com/sciteflash
http://www.ultraedit.com
http://www.macromedia.com/software/homesite
http://www.textpad.com
http://www.sapien.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Choose File New.1.

In the New Document dialog box, on the General tab, for the document Type, choose
ActionScript File.

2.

Click OK. The script editor launches with an empty file.3.

Choose File Save As.4.

In the Save As dialog box, specify ImageViewer.as as the filename (using upper- and

lowercase as shown) and save the file in the imageviewer folder you created.

5.

Now let's put a little code into our ImageViewer.as file. We know that the name of our class is
ImageViewer, so we can already sketch out a bare class skeleton. Enter the code from Example 5-1
into your script editor.

Example 5-1. The ImageViewer class skeleton

class ImageViewer {

}

Notice that the class name, ImageViewer, and the filename, ImageViewer.as, must match exactly
(apart from the .as file extension).

A class's name and the name of the external .as text file that contains the class
must be identical (apart from the .as file extension). Likewise, the file extension
must be .as. Do not use a text editor that saves extra formatting information,
such as in Microsoft Word format. Save the file as plain text. Whenever
possible, use Unicode format (UTF-8 encoding). If your editor doesn't support
Unicode, use ANSI, ASCII, or Latin 1.

If you named your class ImageViewer (with an uppercase "V") but mistakenly named your .as file
Imageviewer.as (with a lowercase "v"), Flash won't be able to find the ImageViewer class. In that
case, when you attempt to use the ImageViewer class, you'll see the following error in the Output
panel:

The class 'ImageViewer' could not be loaded.

Conversely, if you mistakenly named your class Imageviewer (with a lowercase "v") but named your
.as file ImageViewer.as (with an uppercase "V"), Flash will find the ImageViewer.as file but will
complain that it can't find a class in that file that matches the filename. In such a case, when you
attempt to use ImageViewer, you'll see the following error:

The class 'Imageviewer' needs to be defined in a file whose

relative path is 'Imageviewer.as'.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If, down the road, you decide to change the class name, you must also change the filename, and vice
versa.

Before we put some meat on the bones of our class, you may want to take a minute to customize
your editing environment. If you're using Flash MX Professional 2004, you'll probably want to turn on
line numbers (View View Line Numbers) and customize your font styles, code hint timing, and
autoindentation rules (Edit Preferences ActionScript). You can even tell Flash how to
autoformat your code (Edit Auto Format Options). The autoformat feature itself is accessed via
Tools Auto Format.

Okay, where were we? The class skeleton-right. Your current ImageViewer.as file should contain:

class ImageViewer {

}

Now recall our earlier class design:

ImageViewer(target:MovieClip, depth:Number)

ImageViewer.loadImage(URL:String):Void

That design shows the basic structure of the ImageViewer class's constructor and loadImage()
method. Let's fill in those items now. Update your ImageViewer.as file to match Example 5-2.

Example 5-2. The ImageViewer class with constructor and loadImage()
method roughed in

class ImageViewer {

 // The constructor function

 public function ImageViewer (target:MovieClip, depth:Number) {

 }

 // The loadImage() method

 public function loadImage (URL:String):Void {

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now that we have our class's constructor and loadImage() method roughed in, we can move on to
coding the constructor function body. We decided earlier that the ImageViewer class constructor
should create an empty movie clip to hold the loaded image. That empty clip should be attached to
the target clip at the depth specified, as follows:

public function ImageViewer (target:MovieClip, depth:Number) {

 target.createEmptyMovieClip("container_mc" + depth, depth);

}

Notice that the empty clip name starts with "container_mc" and ends with the supplied depth. That
gives each empty container clip a unique name. For example, if depth is 4, the empty clip's name will
be container_mc4. Only one clip can occupy each depth at a given time, and each empty clip's name

must be unique (a clip whose name and parent is the same as a preexisting clip is inaccessible via
ActionScript). So by generating a unique name based on the specified depth, more than one empty
clip can reside in target without conflicts.

We needn't worry if we hadn't thought of this necessity in our original design. For brevity, we skipped
some iterations of the typical design process. In a typical first rough pass for the constructor
function, many developers probably would have not remembered to create a unique name for each
image-holding clip.

In the simplest case, in which you are loading only one image in one ImageViewer instance, this
wouldn't be a problem. However, once you started creating multiple instances to load multiple images
(each in its own clip), you'd have realized the deficiency (a.k.a. bug) in your code and made the
necessary adjustments. With practice, you'll learn to anticipate likely design problems.

In almost all cases, your class design should allow for multiple instances of the
same class to coexist peacefully. One exception would be if you define a class
that is never instantiated (i.e., implements only class methods and class
properties, not instance methods or instance properties). Another exception is
the Singleton design pattern discussed in Chapter 17.

In this case, peaceful coexistence means creating movie clips with unique names and putting them on
unique depths. Note that, as written, our current code requires the user of the ImageViewer class to
pass in a unique depth (the code doesn't try to automatically determine a unique depth). Therefore,
the user must ensure that the depth passed to the ImageViewer constructor does not overwrite an
existing asset; document this in the comments for the constructor, as done in Example 5-3.

Moving right along, our constructor is done, so let's implement the loadImage() method so that it
loads a JPEG file into the empty clip. The image-loading code looks generally like this:

theEmptyClip.loadMovie(URL);

Hmm. That brings up a problem: the loadImage() method has no way to access the empty clip
created by the constructor. We must alter the constructor so that it stores a reference to the empty
clip in an instance property. We'll name that instance property container_mc. Example 5-3 shows

the new property and the adjusted constructor function, with additions shown in bold. Update your

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ImageViewer.as file to match Example 5-3 (you don't have to include the comments, but it is a good
habit to get into). Now we can use the container_mc property to access the empty clip from within

the loadImage() method.

Example 5-3. The ImageViewer class with its new property

class ImageViewer {

 // Here's the new property.

 private var container_mc:MovieClip;

 // The constructor function.

 // The caller is responsible for specifying a unique depth

 // within the target clip.

 public function ImageViewer (target:MovieClip, depth:Number) {

 // Store a reference to the new, empty clip in

 // the container_mc property.

 container_mc = target.createEmptyMovieClip("container_mc" + depth,

 depth);

 }

 public function loadImage (URL:String):Void {

 container_mc.loadMovie(URL);

 }

}

Notice that the loadImage() method simply calls Flash's built-in loadMovie() method. When one
method simply calls another method, it is known as wrapping or creating a wrapper; the loadImage(
) method is said to wrap the loadMovie() method. Typically, functions, methods (or even entire
classes) are wrapped in order to adapt them to a particular situation. In our case, by wrapping
loadMovie() in the loadImage() method, we:

Make our class more intuitive (loadImage() describes the method's behavior better than
loadMovie())

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Make our class more convenient to use (someViewer.loadImage() is more convenient than
someViewer.container_mc.loadMovie())

Make our class more flexible and future-proof; we can easily add or change code in the
loadImage() method later without affecting the way that the method is used

Example 5-4 shows the completed code for the first version of our ImageViewer class with the
comments stripped out. Make sure your ImageViewer.as file matches the code in Example 5-4.

Example 5-4. The ImageViewer class, version 1

class ImageViewer {

 private var container_mc:MovieClip;

 public function ImageViewer (target:MovieClip, depth:Number) {

 container_mc = target.createEmptyMovieClip("container_mc" + depth,

 depth);

 }

 public function loadImage (URL:String):Void {

 container_mc.loadMovie(URL);

 }

}

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.4 Using ImageViewer in a Movie

Now that our ImageViewer class is ready for testing, let's see how to actually use it in a Flash movie!
We'll start by obtaining an image file to load, as follows:

Find a (nonprogressive format) JPEG image on your system. If you work in an office, ensure
that the content of the JPEG you choose is appropriate for the office environment. If you can't
find a JPEG image, download one with the completed ImageViewer example posted at
http://moock.org/eas2/examples.

1.

Name the JPEG image picture.jpg and place it in the same folder as the ImageViewer.as file you
created earlier.

2.

Next we'll create a Flash document (.fla file) from which we'll publish a Flash movie (.swf file)
containing an instance of our ImageViewer class. For now, we'll place the .fla file, .as file, .swf file,
and .jpg file all in the same folder, making it easy for each file to access the other files.

When a .fla file and a class file (i.e., an .as file with a class definition) reside in
the same directory, code in the .fla file can refer to the class in the .as file
directly by name. Hence, the easiest way to use an ActionScript 2.0 class is to
place its .as file in the same folder as the .fla file that uses it. The class will
automatically be included in the .swf exported from the .fla (unless the .fla file
does not reference the class at all). Unlike ActionScript 1.0, no #include

statement is required to incorporate an ActionScript 2.0 class into a .fla file.

When reusing classes across many projects, class files should be stored centrally in a location
accessible to each project. In Chapter 9 and Chapter 14, we'll learn how to structure larger projects
that reuse classes.

Now let's create the Flash document that uses the ImageViewer class. Follow these steps:

In the Flash authoring tool, choose File New.1.

In the New Document dialog box, on the General tab, for the document Type, choose Flash
Document, then click OK.

2.

Use File Save As to save the Flash document as imageViewer.fla in the same folder as

the ImageViewer.as file. (By convention, we name .fla files starting with a lowercase letter. The
.fla file's name need not match the case of the class. Usually, a .fla file makes use of multiple
classes and its name has no relation to the class names or .as filenames.)

3.

In imageViewer.fla's main timeline, rename Layer 1 to scripts (we'll place all our code on the

scripts layer).

4.

http://moock.org/eas2/examples
http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.

We're now ready to use the ImageViewer class from within imageViewer.fla. Follow these steps to
instantiate ImageViewer on frame 1 of imageViewer.fla's main timeline:

Use Window Development Panels Actions (F9) to open the Actions panel.1.

Select frame 1 in imageViewer.fla's main timeline.2.

Into the Actions panel, enter the following code:3.

var viewer:ImageViewer = new ImageViewer(this, 1);

viewer.loadImage("picture.jpg");

Notice that the ImageViewer class is globally available and can be referred to directly by name from
any code on any frame, button, or movie clip in imageViewer.fla. In fact, if the exported
imageViewer.swf loads another .swf file, that loaded .swf can also access the ImageViewer class.
However, if that loaded .swf file also contains a class by the name ImageViewer, the loaded .swf's
version will not overwrite the imageViewer.swf version. For more information on using classes at
runtime across multiple .swf files, see Chapter 14.

Through the magic of the Flash compiler, ActionScript 2.0 classes are literally defined
on _global, in the style of ActionScript 1.0 classes. To prove it, after defining our ImageViewer

class, we can execute:

trace(typeof _global.ImageViewer);

which displays "function" in the Output panel. For details, see "ActionScript 1.0 and 2.0 in Flash
Player 6 and 7" in Chapter 1.

Once an ActionScript 2.0 class of a given name is defined, it cannot be redefined by another
ActionScript 2.0 class definition. The only way to change a class definition at runtime is to directly
overwrite the corresponding global variable, as in:

// Replacing the ImageViewer class definition

// with a string disables the ImageViewer class.

_global.ImageViewer = "Goodbye ImageViewer, nice knowing you.";

Using an analogous technique, an ActionScript 2.0 class can be overwritten by an ActionScript 1.0
class as follows:

_global.ImageViewer = function () {

 // ActionScript 1.0 constructor function body goes here

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

Finally, the moment we've been waiting for! Let's export our imageViewer.swf file and test it in
Flash's Test Movie mode, as follows:

Choose Control Test Movie. The .swf file should play, and your image should load and
appear.

1.

When you're finished marveling at your work, choose File Close to return to the
imageViewer.fla file.

2.

How the Compiler Exports SWF Files

When you export a .swf file, the ActionScript 2.0 compiler makes a list of all the classes
that the .swf requires. Specifically, the list of required classes includes all classes
referenced by the .swf's source .fla file and all classes that are referenced within those
classes. (In our case, the list of required classes is simply ImageViewer.) The compiler
then searches the filesystem for the corresponding source .as files and compiles each
source file into the .swf, in the form of bytecode that the Flash Player can understand. By
default, the compiler searches for .as files in the directory that contains the .fla file, but it
will also search any directories that are listed by the developer in the so-called document
classpath or global classpath (we'll cover classpaths in Chapter 9). Class files that exist
on the filesystem but are not required by the .swf are not compiled into the .swf. And
classes that are required but not found cause a compile-time error.

You can export imageViewer.swf for playback in a web browser using the File Publish command.
However, if you have Flash Player 6 installed in your browser, you'll notice that the picture.jpg file
doesn't load.

Even though ActionScript 2.0 is compiled to the same bytecode as ActionScript
1.0 and nearly 100% of ActionScript 2.0 constructs are supported by Flash
Player 6, .swf files must be exported in Flash Player 6 format to work properly
in Flash Player 6. See Chapter 1.

To change imageViewer.fla's export settings to support playback in Flash Player 6, follow these steps:

Choose File Publish Settings.1.

On the Flash tab of the Publish Settings dialog box, select Flash Player 6 as the Version option.2.

Click OK.3.

Once the version is set to Flash Player 6, any .swf file exported from imageViewer.fla (via File
Publish, Control Test Movie, or File Export Export Movie) will work in Flash Player 6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.

ActionScript 2.0 is not supported in Flash Player 5 or older, no matter what the format of the .swf file.

5.4.1 Preloading the ImageViewer Class

Wasn't it great to see the ImageViewer class in action? But there's a minor problem. Right now the
ImageViewer class is so tiny you'll hardly notice it loading. However, if it were, say, 50 KB or 100 KB,
you'd notice a delay when loading it over a slow connection. By default, all classes load before frame
1 is displayed, causing a delay before a movie can start. If the load time is long enough, a movie will
appear broken or hung. Most individual classes won't be large, but in some applications the total size
of all classes will exceed 100 KB. Fortunately, Flash lets us specify precisely when a movie's classes
are loaded.

Let's change our imageViewer.fla file so that the classes it uses aren't loaded until frame 10:

Choose File Publish Settings.1.

In the Publish Settings dialog box, on the Flash tab, next to the ActionScript Version, click
Settings.

2.

In the ActionScript Settings dialog box, for Export Frame for Classes, enter 10.3.

Click OK to confirm the ActionScript Settings.4.

Click OK to confirm the Publish Settings.5.

Now let's add a very basic preloader to our imageViewer.fla file so load progress is reported while the
ImageViewer class loads. When loading is complete, we'll advance the playhead to frame 15 where
we'll instantiate ImageViewer (as we previously did on frame 1).

First, we'll make the timeline 15 frames long, as follows:

In the main timeline of imageViewer.fla, select frame 15 of the scripts layer.1.

Choose Insert Timeline Keyframe (F6).2.

Next, we'll add a labels layer with two frame labels, loading and main. The labels designate the

application's loading state and startup point, respectively.

Choose Insert Timeline Layer.1.

Double-click the new layer's name and change it to labels.2.

At frames 4 and 15 of the labels layer, add a new keyframe (using Insert Timeline
Keyframe).

3.

With frame 4 of the labels layer selected, in the Properties panel, under Frame, change <Frame
Label> to loading.

4.

With frame 15 of the labels layer selected, in the Properties panel, under Frame, change
<Frame Label> to main.

5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.

Now we'll add the preloader script to the scripts layer:

At frame 5 of the scripts layer, add a new keyframe (using Insert timeline Keyframe).1.

With frame 5 of the scripts layer selected, enter the following code into the Actions panel:2.

if (_framesloaded == _totalframes) {

 gotoAndStop("main");

} else {

 gotoAndPlay("loading");

}

Next, we'll move the code that creates our ImageViewer instance from frame 1 to frame 15 of the
scripts layer:

Select frame 1 of the scripts layer.1.

In the Actions panel, cut (delete using Ctrl-X or Cmd-X) the following code from frame 1:2.

var viewer:ImageViewer = new ImageViewer(this, 1);

viewer.loadImage("picture.jpg");

With frame 15 of the scripts layer selected, paste (using Ctrl-V or Cmd-V) the code you deleted
in Step 2 into the Actions panel.

3.

Finally, we'll add a loading message that displays while the ImageViewer class loads:

With frame 1 of the scripts layer selected, enter the following code into the Actions panel:1.

this.createTextField("loadmsg_txt", 0, 200, 200, 0, 0);

loadmsg_txt.autoSize = true;

loadmsg_txt.text = "Loading...Please wait.";

With frame 15 of the scripts layer selected, enter the following code at the end of the Actions
panel (after the code entered in Step 2 of the previous procedure):

2.

loadmsg_txt.removeTextField();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

That's it! Test your movie using Control Test Movie. Once in Test Movie mode, you can watch a
simulated download of your movie by enabling the Bandwidth Profiler (View Bandwidth Profiler)
and then choosing View Simulate Download. Because our class is so small, you may have to
select a very slow download speed to see the preloading message. To change the download speed,
choose View Download Settings.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.5 ImageViewer Implementation (Take 2)

Now that we have a working, albeit simple, version of the ImageViewer class, we can add more
features to it. As we do so, we'll take care not the change the public API of the class. For example, at
this stage we shouldn't change the loadImage() method's name to loadAndDisplayImage(). Nor
should we change the order or datatype of the parameters for the constructor or the loadImage()
method.

However, adding to the ImageViewer class's API is acceptable and normal. Changing its private
methods or properties is also acceptable because such changes do not affect external code. However,
changing the class's public API is dangerous and considered bad form because it forces corresponding
rewrites in all code that uses the class.

During your internal development stages (alpha and beta), API changes are
relatively common. But once a class is released to the world, its public API
should remain fixed.

Any changes to the public API should preferably be accompanied by
documentation and a change in the class's major version number. Additions to
the public API (i.e., new methods) need not require a major version change
because they won't break existing code.

We've completed the first two features (loading and displaying an image) from our list of possible
functional requirements shown earlier under Section 5.2 Let's move on to the third and fourth
requirements: cropping the image and giving it a border.

Flash doesn't have any built-in means of altering a bitmap once it's loaded. Hence, we can't literally
crop our loaded image. Instead, we must apply a mask to it, which hides unwanted areas of the
image from view. To mask our image, we'll first create an empty movie clip, then draw a filled square
in it, then apply that square as a mask over the image-holding clip. We'll add parameters to the
ImageViewer constructor to specify the size of the mask and the position of the cropped image.

At this stage of development, we've made the design decision to add two parameters to the
constructor function to control cropping. Doesn't this undermine our earlier goal of a stable public
API? Not necessarily. First of all, we haven't released any code publicly, so no one else is using our
class yet. Second, to ensure backward compatibility, we can allow the constructor to assume sensible
default values even if the new arguments are omitted when calling the constructor.

To create our border, we'll create a movie clip, then draw a square outline in it. We'll place the border
clip visually on top of the image. We'll retrieve the thickness and color of the border from parameters
that we'll add to the ImageViewer constructor. Again, we've made the design decision to specify the
border thickness and color at the time the object is instantiated. Another option would be to create a
new method through which these could be set. The latter option gives the caller the flexibility to
change those settings even after the object has been created.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To accommodate our border and mask clips, we'll redesign the structure of our on-screen assets.
Previously, we created a single movie clip, container_mc, into which we loaded an image.

For the sake of brevity and clarity, when I say "the movie clip container_mc," I

really mean "the movie clip referenced by the instance property
container_mc." The name of the clip itself is technically container_mcdepth

(where depth is the depth on which the clip resides). But the instance property
is named container_mc.

Here's the original clip-creation code:

container_mc = target.createEmptyMovieClip("container_mc" + depth, depth);

This time we'll use container_mc merely as a holder for three movie clips: the mask clip (mask_mc),
the border clip (border_mc), and a new image-holding clip (image_mc). We'll put the image_mc clip on
the bottom (at depth 0 in container_mc), the mask_mc clip in the middle (at depth 1), and the
border_mc clip on top (at depth 2), as shown in Figure 5-1.

Figure 5-1. ImageViewer movie clip structure

The question is, within the ImageViewer class, when should we create the border, mask, image, and
container clips? In the first version of the ImageViewer class, we created the container_mc clip in

the constructor function. We could theoretically take the same approach now (i.e., create the border,
mask, and image clips in the constructor). But instead, in this version of the ImageViewer class, we'll
define internal (private) methods to handle the creation of the various clips. Splitting out the work
into separate methods has the following benefits:

It makes the code more intelligible.

It simplifies the testing process (testing each method individually is easier than testing a large
block of code that performs many operations).

It allows assets to be created and re-created independently (e.g., the border on an image can
change without reloading the image).

It allows asset-creation operations to be modified or overridden independently (e.g., a new

http://lib.ommolketab.ir
http://lib.ommolketab.ir

border-creation routine can be coded without disturbing other code).

Thus, we've made this design decision to increase our class's flexibility and maintainability.

Table 5-1 lists the new clip-creation methods, all of which are declared private.

Table 5-1. The ImageViewer class's new instance methods that create
movie clips

Method name Method description

buildViewer()
Invokes individual methods to create the container, image, mask, and
border clips

createMainContainer() Creates the container_mc clip

createImageClip() Creates the image_mc clip

createImageClipMask() Creates the mask_mc clip

createBorder() Creates the border_mc clip

Now that our clip-creation operations are separated into methods, we need to add properties that
provide those methods with the following information:

A reference to the target clip to which container_mc should be attached

A list of depths indicating the visual stacking order of the container, image, mask, and border
clips

The style (line weight and color) of the border around the image

Table 5-2 lists the ImageViewer class's complete set of instance and class properties, all of which are
declared private.

The properties indicated as class properties define a single value that all ImageViewer instances
reference. Instance properties pertain separately to each instance.

Table 5-2. The ImageViewer class's instance and class properties

Property name Type Property description

container_mc Instance
A reference to the main container clip, which contains all movie clips
used by each ImageViewer instance

target_mc Instance
A reference to the clip that will contain the container_mc clip, as

specified by the ImageViewer constructor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property name Type Property description

containerDepth Instance
The depth on which container_mc is created in target_mc, as

specified by the ImageViewer constructor

imageDepth Class The depth on which image_mc is created in container_mc

maskDepth Class The depth on which mask_mc is created in container_mc

borderDepth Class The depth on which border_mc is created in container_mc

borderThickness Instance The thickness, in pixels, of the border around the image_mc clip

borderColor Instance The integer RGB color of the border around the image_mc clip

The final change to our ImageViewer class comes in the constructor function, which must define new
parameters to support the new methods and properties of the class. We must define parameters to
specify:

The position of the image (x and y)

The size of the mask over the image (w and h)

The style of the border around the image (borderThickness and borderColor)

In addition to these new parameters, we'll keep our original target and depth parameters, so the

ImageViewer constructor signature is now:

ImageViewer(target:MovieClip, depth:Number, x:Number, y:Number,

 w:Number, h:Number, borderThickness:Number, borderColor:Number)

5.5.1 ImageViewer (Take 2), Design Summary

With the constructor redesign finished, the changes for version 2 of our ImageViewer class are
complete.

Here's the final class design for this version. It repeats information from tables 5-1 and 5-2 in order
to show how you might represent a class during the design phase of a project, perhaps before you've
actually produced any code:

Constructor
ImageViewer(target:MovieClip, depth:Number, x:Number, y:Number,

 w:Number, h:Number, borderThickness:Number, borderColor:Number)

Private properties
container_mc
target_mc
containerDepth

containerDepth Instance
The depth on which container_mc is created in target_mc, as

specified by the ImageViewer constructor

imageDepth Class The depth on which image_mc is created in container_mc

maskDepth Class The depth on which mask_mc is created in container_mc

borderDepth Class The depth on which border_mc is created in container_mc

borderThickness Instance The thickness, in pixels, of the border around the image_mc clip

borderColor Instance The integer RGB color of the border around the image_mc clip

The final change to our ImageViewer class comes in the constructor function, which must define new
parameters to support the new methods and properties of the class. We must define parameters to
specify:

The position of the image (x and y)

The size of the mask over the image (w and h)

The style of the border around the image (borderThickness and borderColor)

In addition to these new parameters, we'll keep our original target and depth parameters, so the

ImageViewer constructor signature is now:

ImageViewer(target:MovieClip, depth:Number, x:Number, y:Number,

 w:Number, h:Number, borderThickness:Number, borderColor:Number)

5.5.1 ImageViewer (Take 2), Design Summary

With the constructor redesign finished, the changes for version 2 of our ImageViewer class are
complete.

Here's the final class design for this version. It repeats information from tables 5-1 and 5-2 in order
to show how you might represent a class during the design phase of a project, perhaps before you've
actually produced any code:

Constructor
ImageViewer(target:MovieClip, depth:Number, x:Number, y:Number,

 w:Number, h:Number, borderThickness:Number, borderColor:Number)

Private properties
container_mc
target_mc
containerDepth

http://lib.ommolketab.ir
http://lib.ommolketab.ir

imageDepth
maskDepth
borderDepth
borderThickness
borderColor

Public properties
None
Private methods
buildViewer(x:Number, y:Number, w:Number, h:Number)
createMainContainer(x:Number, y:Number)
createImageClip()
createImageClipMask(w:Number, h:Number)
createBorder(w:Number, h:Number)
Public methods
loadImage(URL:String)

5.5.2 ImageViewer Implementation (Take 2)

Example 5-5 shows the actual code for the ImageViewer class, version 2. Study the comments
carefully for code explanations. If some of the specific ActionScript techniques are new to you (e.g.,
drawing lines or masking movie clips), consult an ActionScript language reference such as
ActionScript for Flash MX: The Definitive Guide (O'Reilly).

Example 5-5. The ImageViewer class, take 2

// ImageViewer class, Version 2

class ImageViewer {

 // Movie clip references

 private var container_mc:MovieClip;

 private var target_mc:MovieClip;

 // Movie clip depths

 private var containerDepth:Number;

 private static var imageDepth:Number = 0;

 private static var maskDepth:Number = 1;

 private static var borderDepth:Number = 2;

 // Border style

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private var borderThickness:Number;

 private var borderColor:Number;

 // Constructor

 public function ImageViewer (target:MovieClip,

 depth:Number,

 x:Number,

 y:Number,

 w:Number,

 h:Number,

 borderThickness:Number,

 borderColor:Number) {

 // Assign property values.

 target_mc = target;

 containerDepth = depth;

 this.borderThickness = borderThickness;

 this.borderColor = borderColor;

 // Set up the visual assets for this ImageViewer.

 buildViewer(x, y, w, h);

 }

 // Creates the clips to hold the image, mask, and border.

 // This method subcontracts all its work out to individual

 // clip-creation methods.

 private function buildViewer (x:Number,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 y:Number,

 w:Number,

 h:Number):Void {

 createMainContainer(x, y);

 createImageClip();

 createImageClipMask(w, h);

 createBorder(w, h);

 }

 // Creates the container that holds all the assets

 private function createMainContainer (x:Number, y:Number):Void {

 container_mc =

 target_mc.createEmptyMovieClip("container_mc" + containerDepth,

 containerDepth);

 // Position the container clip.

 container_mc._x = x;

 container_mc._y = y;

 }

 // Creates the clip into which the image is actually loaded

 private function createImageClip ():Void {

 container_mc.createEmptyMovieClip("image_mc", imageDepth);

 }

 // Creates the mask over the image

 private function createImageClipMask (w:Number,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 h:Number):Void {

 // Create the mask only if a valid width and height are specified.

 if (!(w > 0 && h > 0)) {

 return;

 }

 // In the container, create a clip to act as the mask over the image.

 container_mc.createEmptyMovieClip("mask_mc", maskDepth);

 // Draw a rectangle in the mask.

 container_mc.mask_mc.moveTo(0, 0);

 container_mc.mask_mc.beginFill(0x0000FF); // Use blue for debugging

 container_mc.mask_mc.lineTo(w, 0);

 container_mc.mask_mc.lineTo(w, h);

 container_mc.mask_mc.lineTo(0, h);

 container_mc.mask_mc.lineTo(0, 0);

 container_mc.mask_mc.endFill();

 // Hide the mask (it will still function as a mask when invisible).

 // To see the mask during debugging, comment out the next line.

 container_mc.mask_mc._visible = false;

 // Notice that we don't apply the mask yet. We must do that

 // after the image starts loading, otherwise the loading of

 // the image will remove the mask.

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Creates the border around the image

 private function createBorder (w:Number,

 h:Number):Void {

 // Create the border only if a valid width and height are specified.

 if (!(w > 0 && h > 0)) {

 return;

 }

 // In the container, create a clip to hold the border around the image.

 container_mc.createEmptyMovieClip("border_mc", borderDepth);

 // Draw a rectangular outline in the border clip, with the

 // specified dimensions and color.

 container_mc.border_mc.lineStyle(borderThickness, borderColor);

 container_mc.border_mc.moveTo(0, 0);

 container_mc.border_mc.lineTo(w, 0);

 container_mc.border_mc.lineTo(w, h);

 container_mc.border_mc.lineTo(0, h);

 container_mc.border_mc.lineTo(0, 0);

 }

 // Loads the image

 public function loadImage (URL:String):Void {

 // Load the JPEG file into the image_mc clip.

 container_mc.image_mc.loadMovie(URL);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Here comes an ugly hack. We'll clean this up in Example 5-6

 // when we add proper preloading support in Version 3.

 // After one frame passes, the image load will have started,

 // at which point we safely apply the mask to the image_mc clip.

 container_mc.onEnterFrame = function ():Void {

 this.image_mc.setMask(this.mask_mc);

 delete this.onEnterFrame;

 }

 }

}

5.5.3 Using ImageViewer (Take 2)

Now that our ImageViewer class can crop an image and add a border to it, let's put ourselves in the
position of a developer who's using the class (not creating and maintaining it). When we used the
first version of the ImageViewer class, we placed the following code on frame 15 of imageViewer.fla:

var viewer:ImageViewer = new ImageViewer(this, 1);

viewer.loadImage("picture.jpg");

ImageViewer version 2 added two new features comprising quite a lot of code. However, none of the
public API defined by ImageViewer version 1 changed in version 2; version 2 made additions only to
that API. The loadImage() method changed internally, but its external usage did not change at all.
Likewise, the constructor function changed internally, but externally it only added parameters. It
retains the target and depth parameters from version 1 and adds six new parameters: x, y, w, h,
borderThickness, and borderColor. Hence, users of ImageViewer version 1 can easily update

imageViewer.fla to use ImageViewer version 2's new features, as follows:

Replace the old ImageViewer.as file with the new one.1.

Change the code on frame 15 of imageViewer.fla to include the six new parameters expected by
the ImageViewer constructor. For example:

2.

var viewer:ImageViewer = new ImageViewer(this, 1, 100, 100,

 250, 250, 10, 0xCE9A3C);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

viewer.loadImage("picture.jpg");

Now let's consider what would happen if we upgraded from ImageViewer version 1 to version 2
without changing any code in imageViewer.fla. (For the sake of this scenario, let's presume that
version 2 contains performance enhancements that have prompted us to upgrade.) We'd replace our
ImageViewer.as file, as in the previous Step 1, but we'd skip Step 2, leaving the following code on
frame 15:

var viewer:ImageViewer = new ImageViewer(this, 1);

viewer.loadImage("picture.jpg");

How would ImageViewer version 2 respond to being constructed with only two parameters?
Fortunately, very well. Version 2 specifically safeguards against missing parameters. The
createImageClipMask() and createBorder() methods create the mask and border clips only if a
useful width and height are supplied, as shown in this excerpt from Example 5-5:

if (!(w > 0 && h > 0)) {

 return;

}

Thus, when no width and height are supplied to the constructor, ImageViewer version 2's behavior
matches ImageViewer version 1's behavior exactly.

After a class is formally released, upgrading to a new version should not break
code that uses the old version. Changes to the class itself should not force
changes to code that merely uses the class. One way to achieve this is for the
new class to assume reasonable default behavior if some arguments are not
supplied.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.6 ImageViewer Implementation (Take 3)

Let's review the potential functional requirements for the ImageViewer class:

Load an image

Display an image

Crop an image to a particular rectangular "view region"

Display a border around the image

Display image load progress

Reposition the view region

Resize the view region

Pan (reposition) the image within the view region

Zoom (resize) the image within the view region

So far, we've successfully implemented the first four items. In the next version of the ImageViewer
class, we'll add the fifth feature: display image load progress. We'll leave the remaining items
unimplemented until the situation specifically requires them. (Plot spoiler: in Chapter 7 we'll return to
the ImageViewer class to add two more features.)

To implement load-progress display for our ImageViewer class, we'll use the MovieClipLoader class,
which was added to Flash Player 7 after a heartfelt petition to Macromedia for improved preloading
support (curious readers can view the petition at http://moock.org/blog/archives/000010.html).

Our load-progress implementation involves these main changes to the ImageViewer class:

Add two new properties:

imageLoader

holds a MovieClipLoader instance

statusDepth

indicates the depth of a load-progress text field

http://moock.org/blog/archives/000010.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Modify the ImageViewer constructor to first create a MovieClipLoader instance and then register
the ImageViewer instance to receive events from it.

Modify the loadImage() method to:

Load the JPEG file using MovieClipLoader instead of loadMovie()

Create a text field in which to display load progress

Add three methods-onLoadProgress(), onLoadInit(), and onLoadError()-to handle
MovieClipLoader events.

The preceding design changes might seem like a pretty big leap given that we're adding only one
feature (image load progress). Take heart. The code required to add preloading support might seem
fairly complex if you're new to it, but luckily, preloading code doesn't vary much from situation to
situation. Once you've implemented preloading support a few times, you'll be able to add it to your
own classes in one fell swoop, as we've done here.

Let's look at each of the preceding changes in turn. First, here's the code for the new imageLoader
and statusDepth properties:

private var imageLoader:MovieClipLoader;

private static var statusDepth:Number = 3;

Next, here's the modified ImageViewer constructor (additions shown in bold):

public function ImageViewer (target:MovieClip,

 depth:Number,

 x:Number,

 y:Number,

 w:Number,

 h:Number,

 borderThickness:Number,

 borderColor:Number) {

 // Assign property values.

 target_mc = target;

 containerDepth = depth;

 this.borderThickness = borderThickness;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 this.borderColor = borderColor;

 // Create the

MovieClipLoader

 instance and store it in

 // the new

imageLoader

 property.

 imageLoader = new MovieClipLoader();

 // Register this

ImageViewer

 instance to receive events

 // from the

MovieClipLoader

 instance.

 imageLoader.addListener(this);

 // Set up the visual assets for this ImageViewer.

 buildViewer(x, y, w, h);

}

Here's the revised loadImage() method. Note that even though the entire contents of the method
have changed, the method's usage is unaltered, so the class's public API is not affected:

public function loadImage (URL:String):Void {

 // Use the MovieClipLoader instance to load the image. This line replaces

 // the previous loadMovie() call.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 imageLoader.loadClip(URL, container_mc.image_mc);

 // Create a load-status text field to show the user load progress.

 container_mc.createTextField("loadStatus_txt", statusDepth, 0, 0, 0, 0);

 container_mc.loadStatus_txt.background = true;

 container_mc.loadStatus_txt.border = true;

 container_mc.loadStatus_txt.setNewTextFormat(new TextFormat(

 "Arial, Helvetica, _sans",

 10, borderColor, false,

 false, false, null, null,

 "right"));

 container_mc.loadStatus_txt.autoSize = "left";

 // Position the load-status text field.

 container_mc.loadStatus_txt._y = 3;

 container_mc.loadStatus_txt._x = 3;

 // Indicate that the image is loading.

 container_mc.loadStatus_txt.text = "LOADING";

}

Finally, Example 5-6 shows the three methods that handle image loading events: onLoadProgress() ,
onLoadInit(), and onLoadError(). The onLoadProgress() method fires automatically when a portion
of the image has arrived. The onLoadInit() method fires automatically once the image has loaded
completely and the image_mc's _width and _height properties have been initialized. The

onLoadError() method fires automatically when a load error such as "File not found" occurs.

The MovieClipLoader class also provides the onLoadStart() and onLoadComplete() events, which are
not required by our ImageViewer class. For details, see Flash's Help under ActionScript Dictionary

 M MovieClipLoader.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 5-6. Image loading event handlers added to version 3 of the
ImageViewer class

public function onLoadProgress (target:MovieClip,

 bytesLoaded:Number,

 bytesTotal:Number):Void {

 // Display load progress in the on-screen text field.

 // Divide bytesLoaded and bytesTotal by 1024 to get kilobytes.

 container_mc.loadStatus_txt.text = "LOADING: "

 + Math.floor(bytesLoaded / 1024)

 + "/" + Math.floor(bytesTotal / 1024) + " KB";

}

public function onLoadInit (target:MovieClip):Void {

 // Remove the loading message.

 container_mc.loadStatus_txt.removeTextField();

 // Apply the mask to the loaded image. This cleanly replaces the

 // onEnterFrame() hack from version 2's loadImage() method in Example 5-5.

 container_mc.image_mc.setMask(container_mc.mask_mc);

}

public function onLoadError (target:MovieClip, errorCode:String):Void {

 // Depending on the value of errorCode, display an appropriate

 // error message in the on-screen text field.

 if (errorCode == "URLNotFound") {

 container_mc.loadStatus_txt.text = "ERROR: File not found.";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 } else if (errorCode == "LoadNeverCompleted") {

 container_mc.loadStatus_txt.text = "ERROR: Load failed.";

 } else {

 // Catch-all to handle possible future error codes.

 container_mc.loadStatus_txt.text = "Load error: " + errorCode;

 }

}

Version 3 of our ImageViewer class is nearly complete. However, we have one more issue to account
for: cleaning up after each ImageViewer instance before it's deleted.

5.6.1 Deleting a Class's Resources

In programming, the fun's not over until you've put your proverbial toys away. Each instance of our
ImageViewer class creates movie clip instances that persist in the Flash Player until they are explicitly
removed, even if the ImageViewer instance that created them is, itself, deleted! For example, the
following code creates an ImageViewer instance, loads an image, and then deletes the ImageViewer
instance:

var viewer:ImageViewer = new ImageViewer(this, 1, 100, 100,

 250, 250, 10, 0xCE9A3C);

viewer.loadImage("picture.jpg");

delete viewer;

After the code executes-despite the statement delete viewer;-the picture.jpg loads and appears

on screen. Why? Because the clips created by the ImageViewer instance were not removed before
the variable viewer was deleted.

Leaving movie clips on stage is not the only way the ImageViewer class orphans resources. Under
certain circumstances, an ImageViewer instance can also abandon itself in the MovieClipLoader
listener list. Recall that when an ImageViewer instance is constructed, it registers itself as an
imageLoader listener using imageLoader.addListener(this). As a result, each ImageViewer
instance is stored in its own imageLoader's list of listener objects. After this line of code executes:

var viewer:ImageViewer = new ImageViewer(this, 1);

there are actually two references to the ImageViewer instance: one in viewer and the other in
viewer.imageLoader's list of listener objects. If the viewer instance is deleted during a load

http://lib.ommolketab.ir
http://lib.ommolketab.ir

operation, the instance in viewer.imageLoader's listener list will live on.

Of course, you might naturally expect that deleting viewer would also delete viewer.imageLoader
and, consequently, viewer.imageLoader's list of listener objects. In general, that would be true, but

the MovieClipLoader class presents a special case: after a MovieClipLoader instance starts a loadClip(
) operation, the instance (along with its list of listener objects) is kept alive internally by the Flash
Player until either the operation completes or the movie clip targeted by the load operation is
removed. For example, in the following code, the mcl instance is kept in memory until level1.swf has
finished loading into box:

var mcl:MovieClipLoader = new MovieClipLoader();

mcl.loadClip("level1.swf", box);

delete mcl;

Hence, even though we can successfully delete all external references to an ImageViewer instance,
the instance may still exist internally in its own imageLoader's listener list!

Each ImageViewer instance, therefore, should clean up its resources before it is deleted. We perform
the cleanup in a custom method: destroy(). The destroy() method takes no parameters and must
be invoked before an ImageViewer instance is deleted. The source code for destroy() is simple but
also critical and imperative. It removes the ImageViewer instance from the imageLoader's listener list

and deletes the hierarchy of movie clips that display the image on screen (thus halting any load in
progress):

public function destroy ():Void {

 // Cancel load event notifications

 imageLoader.removeListener(this);

 // Remove movie clips from Stage (removing container_mc removes subclips)

 container_mc.removeMovieClip();

}

Now, to delete any ImageViewer instance, we first invoke destroy(), as follows:

// Clean up the instance's resources

viewer.destroy();

// Delete the instance

delete viewer;

Incidentally, the name "destroy" is arbitrary. We could have synonymously used "die," "kill," or

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"remove" with the same effect.

Finally, it's worth noting that the imageLoader listener list issue is not a particularly unique situation.

Any time an object is registered as a listener of another object, it must be unregistered before being
deleted. Example 5-7 shows the danger of not unregistering an object before deleting it.

Example 5-7. A lost listener

var obj:Object = new Object();

obj.onMouseDown = function ():Void {

 trace("The mouse was pressed.");

}

Mouse.addListener(obj);

delete obj;

Try the following:

Place the Example 5-7 code on frame 1 of a movie.1.

Run the movie in Test Movie mode (Control Test Movie).2.

Click the Stage.3.

You should see "The mouse was pressed." appear in the Output panel, even though the object obj
was deleted! The reference to the object in the variable obj may have been deleted, but another

reference continues to exist in the Mouse object's list of listener objects. To safely delete the object
obj, first unregister it as a Mouse listener, as follows:

Mouse.removeListener(obj);

delete obj;

This section discussed one specific case in which an object reference might
inadvertently persist after deleting an instance of a class. Failure to free up
resources results in memory waste, which over time could hinder performance
or cause an application to fail. When you write a class, you should include a
cleanup routine that a programmer can call before deleting an instance. Think
carefully about which resources need to be freed. Don't simply avoid deleting
instances as a way to avoid orphaning resources. You should delete instances
when they are no longer needed and make sure that you free all resources
before doing so. Remember: anything your code creates, it should also
eventually destroy.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.6.2 The Final ImageViewer Code

Example 5-8 shows the final code for version 3 of the ImageViewer class. Update your code in
ImageViewer.as to match the example. For usage instructions, refer to the earlier section "Using
ImageViewer (Take 2)" (nothing was added to the class's public API between version 2 and version 3,
so its use has not changed). If you have any trouble getting things running properly, you can
download finished source files for all three versions of the ImageViewer example from
http://moock.org/eas2/examples.

The download progress for a loading image will not display when the image is
loaded off a local hard disk. To test your imageViewer.swf, be sure to post your
images to a web server and play the movie in a web browser.

We'll return to the ImageViewer class again in Chapter 7.

Example 5-8 uses the JavaDoc commenting style to document the class's methods and constructor
function. In Java, when comments are formatted according to JavaDoc conventions, automatic HTML
documentation can be generated from a class source file. Unfortunately, at the time of this writing,
Flash does not support JavaDoc directly, but a third-party tool or Flash itself could conceivably add
support in the future. Either way, the JavaDoc style is a common, easy-to-follow convention that can
greatly improve source code readability. For reference, the JavaDoc conventions used in Example 5-8
are:

@author

The author(s) of the class

@version

The version of the class

@param

A method or constructor parameter name and purpose

For more information on JavaDoc, see:

http://java.sun.com/j2se/javadoc
http://java.sun.com/j2se/javadoc/writingdoccomments
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/javadoc.html#javadoctags

Example 5-8 shows our ImageViewer class to date.

http://moock.org/eas2/examples
http://java.sun.com/j2se/javadoc
http://java.sun.com/j2se/javadoc/writingdoccomments
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/javadoc.html#javadoctags
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 5-8. The ImageViewer class, version 3

/**

 * ImageViewer, Version 3.

 * An on-screen rectangular region for displaying a loaded image.

 * Updates at: http://moock.org/eas2/examples/

 *

 * @author: Colin Moock

 * @version: 3.0.0

 */

class ImageViewer {

 // The movie clip that will contain all ImageViewer assets

 private var container_mc:MovieClip;

 // The movie clip to which container_mc will be attached

 private var target_mc:MovieClip;

 // Depths for visual assets

 private var containerDepth:Number;

 private static var imageDepth:Number = 0;

 private static var maskDepth:Number = 1;

 private static var borderDepth:Number = 2;

 private static var statusDepth:Number = 3;

 // The thickness of the border around the image

 private var borderThickness:Number;

 // The color of the border around the image

http://moock.org/eas2/examples/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private var borderColor:Number;

 // The MovieClipLoader instance used to load the image

 private var imageLoader:MovieClipLoader;

 /**

 * ImageViewer Constructor

 *

 * @param target The movie clip to which the

 * ImageViewer will be attached.

 * @param depth The depth in target on which to

 * attach the viewer.

 * @param x The horizontal position of the viewer.

 * @param y The vertical position of the viewer.

 * @param w The width of the viewer, in pixels.

 * @param h The height of the viewer, in pixels.

 * @param borderThickness The thickness of the image border.

 * @param borderColor The color of the image border.

 *

 */

 public function ImageViewer (target:MovieClip,

 depth:Number,

 x:Number,

 y:Number,

 w:Number,

 h:Number,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 borderThickness:Number,

 borderColor:Number) {

 // Assign property values

 target_mc = target;

 containerDepth = depth;

 this.borderThickness = borderThickness;

 this.borderColor = borderColor;

 imageLoader = new MovieClipLoader();

 // Register this instance to receive events

 // from the imageLoader instance

 imageLoader.addListener(this);

 // Set up the visual assets for this ImageViewer

 buildViewer(x, y, w, h);

 }

 /**

 * Creates the on-screen assets for this ImageViewer.

 * The movie clip hierarchy is:

 * [d]: container_mc

 * 2: border_mc

 * 1: mask_mc (masks image_mc)

 * 0: image_mc

 * where [d] is the user-supplied depth passed to the constructor.

 *

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 * @param x The horizontal position of the viewer.

 * @param y The vertical position of the viewer.

 * @param w The width of the viewer, in pixels.

 * @param h The height of the viewer, in pixels.

 */

 private function buildViewer (x:Number,

 y:Number,

 w:Number,

 h:Number):Void {

 // Create the clips to hold the image, mask, and border

 createMainContainer(x, y);

 createImageClip();

 createImageClipMask(w, h);

 createBorder(w, h);

 }

 /**

 * Creates a movie clip, container_mc, to contain

 * the ImageViewer visual assets.

 *

 * @param x The horizontal position of the

 * container_mc movie clip.

 * @param y The vertical position of the

 * container_mc movie clip.

 */

 private function createMainContainer (x:Number, y:Number):Void {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 container_mc = target_mc.createEmptyMovieClip(

 "container_mc" + containerDepth,

 containerDepth);

 container_mc._x = x;

 container_mc._y = y;

 }

 /**

 * Creates the clip into which the image is actually loaded

 */

 private function createImageClip ():Void {

 container_mc.createEmptyMovieClip("image_mc", imageDepth);

 }

 /**

 * Creates the mask over the image. Note that this method does

 * not actually apply the mask to the image clip because a clip's

 * mask is lost when new content is loaded into it. Hence, the mask

 * is applied from onLoadInit().

 *

 * @param w The width of the mask, in pixels.

 * @param h The height of the mask, in pixels.

 */

 private function createImageClipMask (w:Number,

 h:Number):Void {

 // Create the mask only if a valid width and height are specified

 if (!(w > 0 && h > 0)) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return;

 }

 // In the container, create a clip to act as the mask over the image

 container_mc.createEmptyMovieClip("mask_mc", maskDepth);

 // Draw a rectangle in the mask

 container_mc.mask_mc.moveTo(0, 0);

 container_mc.mask_mc.beginFill(0x0000FF); // Use blue for debugging

 container_mc.mask_mc.lineTo(w, 0);

 container_mc.mask_mc.lineTo(w, h);

 container_mc.mask_mc.lineTo(0, h);

 container_mc.mask_mc.lineTo(0, 0);

 container_mc.mask_mc.endFill();

 // Hide the mask (it will still function as a mask when invisible)

 container_mc.mask_mc._visible = false;

 }

 /**

 * Creates the border around the image.

 *

 * @param w The width of the border, in pixels.

 * @param h The height of the border, in pixels.

 */

 private function createBorder (w:Number,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 h:Number):Void {

 // Create the border only if a valid width and height are specified.

 if (!(w > 0 && h > 0)) {

 return;

 }

 // In the container, create a clip to hold the border around the image

 container_mc.createEmptyMovieClip("border_mc", borderDepth);

 // Draw a rectangular outline in the border clip, with the

 // specified dimensions and color

 container_mc.border_mc.lineStyle(borderThickness, borderColor);

 container_mc.border_mc.moveTo(0, 0);

 container_mc.border_mc.lineTo(w, 0);

 container_mc.border_mc.lineTo(w, h);

 container_mc.border_mc.lineTo(0, h);

 container_mc.border_mc.lineTo(0, 0);

 }

 /**

 * Loads a JPEG file into the image viewer.

 *

 * @param URL The local or remote address of the image to load.

 */

 public function loadImage (URL:String):Void {

 imageLoader.loadClip(URL, container_mc.image_mc);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Create a load-status text field to show the user load progress

 container_mc.createTextField("loadStatus_txt", statusDepth, 0, 0, 0, 0);

 container_mc.loadStatus_txt.background = true;

 container_mc.loadStatus_txt.border = true;

 container_mc.loadStatus_txt.setNewTextFormat(new TextFormat(

 "Arial, Helvetica, _sans",

 10, borderColor, false,

 false, false, null, null,

 "right"));

 container_mc.loadStatus_txt.autoSize = "left";

 // Position the load-status text field

 container_mc.loadStatus_txt._y = 3;

 container_mc.loadStatus_txt._x = 3;

 // Indicate that the image is loading

 container_mc.loadStatus_txt.text = "LOADING";

 }

 /**

 * MovieClipLoader handler. Triggered by imageLoader when data arrives.

 *

 * @param target A reference to the movie clip for which

 * progress is being reported.

 * @param bytesLoaded The number of bytes of target

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 * that have loaded so far.

 * @param bytesTotal The total size of target, in bytes.

 */

 public function onLoadProgress (target:MovieClip,

 bytesLoaded:Number,

 bytesTotal:Number):Void {

 container_mc.loadStatus_txt.text = "LOADING: "

 + Math.floor(bytesLoaded / 1024)

 + "/" + Math.floor(bytesTotal / 1024) + " KB";

 }

 /**

 * MovieClipLoader handler. Triggered by imageLoader when loading is done.

 *

 * @param target A reference to the movie clip for which

 * loading has finished.

 */

 public function onLoadInit (target:MovieClip):Void {

 // Remove the loading message

 container_mc.loadStatus_txt.removeTextField();

 // Apply the mask to the loaded image

 container_mc.image_mc.setMask(container_mc.mask_mc);

 }

 /**

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 * MovieClipLoader handler. Triggered by imageLoader when loading fails.

 *

 *

 * @param target A reference to the movie clip for which

 * loading failed.

 * @param errorCode A string stating the cause of the load failure.

 */

 public function onLoadError (target:MovieClip, errorCode:String):Void {

 if (errorCode == "URLNotFound") {

 container_mc.loadStatus_txt.text = "ERROR: File not found.";

 } else if (errorCode == "LoadNeverCompleted") {

 container_mc.loadStatus_txt.text = "ERROR: Load failed.";

 } else {

 // Catch-all to handle possible future error codes

 container_mc.loadStatus_txt.text = "Load error: " + errorCode;

 }

 }

 /**

 * Must be called before the ImageViewer instance is deleted.

 * Gives the instance a chance to destroy any resources it has created.

 */

 public function destroy ():Void {

 // Cancel load event notifications

 imageLoader.removeListener(this);

 // Remove movie clips from the Stage

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 container_mc.removeMovieClip();

 }

}

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

5.7 Back to the Classroom

It was great to get our hands dirty in this chapter. We really started to see how an application (or at
least part of an application) can be conceived and realized with OOP. Now it's time to return to some
theory. In the next chapter, we'll learn how to set up an inheritance relationship, one kind of
relationship between two or more classes. Then we'll get back to the hands-on stuff in Chapter 7.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 6. Inheritance
In OOP, inheritance is a formal relationship between two or more classes, wherein one class borrows
(or inherits) the property and method definitions of another class. In the practical, technical sense,
inheritance simply lets one class make use of the code in another class.

But the term inheritance implies much more than code reuse. Inheritance is as much an intellectual
tool as it is a technical tool. It lets programmers conceptualize a group of classes in hierarchical
terms. In biology, inheritance is a genetic process through which one living creature passes on traits
to another. You are said to have inherited your mother's eyes or your father's nose, even though you
don't look exactly like either of your parents. In OOP, inheritance has a similar connotation. It lets a
class look and feel in many ways like another class, while adding its own unique features.

We'll consider the benefits of, and alternatives to, inheritance near the end of this chapter, under
"The Theory of Inheritance." But first, we need to study the syntax and general use of inheritance.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.1 A Primer on Inheritance

Let's consider a very simple, abstract example to get a feel for how inheritance works (we'll get into
practical applications once we cover the basic syntax). Here's a class named A, with a single method,
x(), and a single property, p:

class A {

 public var p:Number = 10;

 public function x ():Void {

 trace("Method x() was called.");

 }

}

As usual, we can create an instance of class A, invoke method x(), and access property p like this:

var aInstance:A = new A();

aInstance.x(); // Displays: Method x() was called.

trace(aInstance.p); // Displays: 10

Nothing new so far. Now let's add a second class, B, that inherits method x() and property p from

class A. To set up the inheritance relationship between A and B, we use the extends keyword to
indicate that class B inherits class A's method and property definitions:

class B extends A {

 // No methods or properties defined.

}

ActionScript 1.0 offered two ways to establish inheritance. Here's the official
technique:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

function Class A () { ... }

function Class B () { ... }

ClassB.prototype = new Class A();

Here's the undocumented technique:

function Class A () { ... }

function Class B () { ... }

ClassB.prototype._ _proto_ _ = ClassA.prototype;

To learn the difference between these approaches, consult Chapter 12 of ActionScript for Flash
MX: The Definitive Guide (O'Reilly), which covers the topic in depth.

Don't confuse extending a class with augmenting or enhancing a class's features. When class B
extends class A, no changes whatsoever are made to class A. Contrast this with a case in which we
add a new method to a dynamic class such as MovieClip. The latter is simply enhancing an existing
class and has nothing to do with inheritance.

Now here's the neat part about extending a class. Because class B extends (inherits from) class A,
instances of B can automatically use the method x() and the property p (even though class B does

not define that method or property directly):

var bInstance:B = new B();

bInstance.x(); // Displays: Method x() was called.

trace(bInstance.p); // Displays: 10

When bInstance.x() is invoked, the interpreter checks class B for a method named x(). The

interpreter does not find method x() defined in class B; so it checks B's superclass (i.e., the class
that B extends), class A, for the method. There, the interpreter finds x() and invokes it on
bInstance.

Notice that class B does not define any methods or properties of its own. In practice, there isn't much
point in defining a class that doesn't add anything to the class it extends; therefore, doing so is
usually discouraged. Normally, class B would define its own methods and/or properties in addition to
inheriting A's methods and properties. That is, a subclass is really a superset of the features available
in its superclass (the subclass has everything available in the superclass and more). Accordingly, here
is a more realistic version of class B, which inherits method x() and property p from class A, and also

defines its own method, y():

class B extends A {

 public function y ():Void {

 trace("Method y() was called.");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

}

Now instances of B can use all the methods and properties of both B and its superclass, A:

var bInstance:B = new B();

// Invoke inherited method, defined by class A.

bInstance.x(); // Displays: Method x() was called.

// Invoke method defined by class B.

bInstance.y(); // Displays: Method y() was called.

// Access inherited property.

trace(bInstance.p); // Displays: 10

Thus, class B is said to specialize class A. It uses the features of class A as a base on which to build,
adding its own features or even-as we'll see later-overriding A's features with versions modified for
its own needs. Accordingly, in an inheritance relationship between two classes, the extended class (in
our case, class A) is called the base class, and the class that does the extending (in our case, class B)
is called the derived class. However, the terms "base class" and "derived class" have several
synonyms, including superclass and subclass, parent and child, and type and subtype.

Inheritance can (and often does) involve many more than two classes. For example, even though
class B inherits from class A, class B can act as a base class for another class. The following code
shows a third class, C, that extends class B and also defines a new method, z(). Class C can use all
the methods and properties defined by itself, its superclass (B), or its superclass's superclass (A):

class C extends B {

 public function z ():Void {

 trace("Method z() was called.");

 }

}

// Usage:

var cInstance:C = new C();

// Invoke method inherited from A.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cInstance.x(); // Displays: Method x() was called.

// Invoke method inherited from B.

cInstance.y(); // Displays: Method y() was called.

// Invoke method defined by C.

cInstance.z(); // Displays: Method z() was called.

// Access property inherited from A.

trace(cInstance.p); // Displays: 10

Furthermore, a single superclass can have any number of subclasses (however, a superclass has no
way of knowing which subclasses extend it). The following code adds a fourth class, D, to our
example. Like class B, class D inherits directly from class A. Class D can use the methods and
properties defined by itself and by its superclass, A.

class D extends A {

 public function w ():Void {

 trace("Method w() was called.");

 }

}

With four classes now in our example, we've built up what's known as an inheritance tree or class
hierarchy. Figure 6-1 shows that hierarchy visually. Note that a single subclass can't have more than
one direct superclass, but its superclass can have a superclass, allowing the hierarchy to continue ad
nauseum.

Figure 6-1. Example class hierarchy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

All OOP applications can be depicted with a class diagram such as the one shown in Figure 6-1. In
fact, many developers start their work by creating a class diagram before moving to code. Class
diagrams can be informal, drawn according to a developer's personal iconography, or formal, drawn
according to a diagramming specification such as Unified Modeling Language (UML) (see
http://www.uml.org).

gModeler, an online Flash application written by Grant Skinner, creates class
diagrams from which code and documentation can be exported. See
http://www.gmodeler.com.

Just as we design our own class hierarchies for our OOP applications, ActionScript also organizes its
built-in classes according to a hierarchy. In fact, every class in ActionScript (both built-in and
custom) inherits directly or indirectly from the root of the built-in hierarchy: Object. The Object class
defines some very basic methods that all classes can use. For example, any class can use the
Object.toString() method, which returns a string representation of an object.

6.1.1 Class Method and Class Property Inheritance

A subclass inherits its superclass's instance methods and properties, plus its class methods and
properties (i.e., those defined with the static attribute). For example, in the following code, we define
a static method, s(), in the class A. The method s() is inherited by A's subclass, B.

class A {

 public static function s ():Void {

 trace("A.s() was called.");

 }

}

http://www.uml.org
http://www.gmodeler.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

class B extends A {

 // For this example, class B does not

 // define any of its own methods or properties.

}

An inherited class method or property can be accessed via the superclass, as in:

A.s(); // Displays: A.s() was called.

or synonymously via the subclass, as in:

B.s(); // Also displays: A.s() was called.

Within the body of either class, the method or property can be referred to directly without the
qualifying class name, as in s() rather than A.s() or B.s(). However, it's generally wise to include
the class name when referring to static methods or properties. We'll learn why later, under "Member
Access from Inherited, Overriding, and Overridden Instance Methods."

The class methods and properties of some built-in classes (e.g., Math) are not
inherited by their subclasses. The cause and workaround for this problem are
discussed later in this chapter under "Subclassing Built-in Classes."

Note that a bug in ActionScript 2.0 prevents access to inherited static properties before the
superclass that defines the property is used in a script. For details, see "Subclasses and class
properties" in Chapter 4.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.2 Subclasses as Subtypes

Recall from Chapter 3 that every class effectively defines a custom datatype. Correspondingly, a
subclass is considered a subtype of its superclass. But the term "subtype" is not just figurative; it
means literally that an instance of the subtype can be used anywhere its superclass's type is
expected. For example, if we create a variable, aInstance, whose type is class A, as follows:

var aInstance:A;

we can then legally assign that variable an instance of any subclass of class A:

aInstance = new B(); // No problem.

A variable typed to a given class can legally store instances of any subclasses of
that class.

The preceding assignment works because the compiler knows that any instance of class B has
(through inheritance) all the methods and properties defined by class A. However, the reverse is not
true. We cannot assign an instance of A to a variable whose datatype is B:

var bInstance:B = new A(); // Error.

That assignment does not work because the compiler cannot guarantee that an instance of class A
will have the methods and properties defined by class B. Hence, the compiler generates a type
mismatch error:

Type mismatch in assignment statement. Found A where B is required.

We'll return to this topic later in this chapter when we study polymorphism. For a full discussion of
type mismatches, again see Chapter 3.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.3 An OOP Chat Example

Now that we're familiar with the basic syntax of inheritance, let's take a high-level look at how
inheritance can be used in a real application. Consider a chat application that defines a class,
ChatRoom, which handles communication among a group of users. The ChatRoom class defines
methods for displaying and sending chat messages and for managing a list of users in the room.
Table 6-1 shows the ChatRoom class's property and methods.

Table 6-1. ChatRoom class's property and methods

Method or property
name

Purpose

userList
Property storing a reference to the on-screen List component that
displays users in the room.

displayMessage() Displays an incoming user message in a text field.

sendMessage() Sends an outgoing message to other users.

onAddUser()
Adds the new user to the userList. Invoked when a user joins the

room.

onRemoveUser()
Removes the departed user from the userList. Invoked when a user

leaves the room.

onUserChangeName()
Changes the user's name in the userList. Invoked when a user's

name changes.

Now suppose that our chat application has multiple room types: some rooms are regular chats and
some are "avatar chats." In the avatar chat rooms, each user in the room is represented by a little
cartoon character (an "avatar") that can be positioned on screen. When a user in an avatar chat
room sends a message to other users, other users see the message both in the normal chat text field
and in a cartoon speech bubble next to the sender's avatar. (If you've never seen an avatar chat
before, you'll find one example at http://moock.org/unity/uchatavatar.)

To implement our new avatar chat room, we could (but never should!) copy all of the code from
ChatRoom into a new class, AvatarChatRoom, and then add the avatar-specific features to that new
class. Of course, from then on, any time the code in ChatRoom changed, we'd have to copy the
changes to AvatarChatRoom by hand. Across an entire application, that kind of copy-and-paste code
maintenance becomes unmanageable in a hurry and should be avoided at all costs. Instead of
copying the code from ChatRoom to AvatarChatRoom, we simply make AvatarChatRoom a subclass
of ChatRoom. After all, a regular chat room already does most of what an avatar chat room does;
the avatar chat room just has the extra responsibility of managing the cartoon representation of each

http://moock.org/unity/uchatavatar
http://lib.ommolketab.ir
http://lib.ommolketab.ir

user.

The AvatarChatRoom class uses some of the ChatRoom class's methods as-is, just as our simple
class B used class A's x() method. For example, to send a message, AvatarChatRoom uses
ChatRoom.sendMessage() directly. For other tasks (e.g., positioning avatars), the AvatarChatRoom
defines its own methods, just as class B added the method y(). But for still other tasks (e.g.,
displaying a message), the AvatarChatRoom needs behavior that differs somewhat from an existing
ChatRoom method. For example, when a user's message is received, the AvatarChatRoom class must
show the message in a text bubble next to the user's avatar (in addition to displaying it in the
"incoming messages" text field, as does the ChatRoom class). That means the AvatarChatRoom class
must change what happens when the displayMessage() method executes. Known as overriding,
changing the behavior of a method is the topic of the next section in this chapter.

Table 6-2 shows the AvatarChatRoom's properties and methods, indicating which members are
inherited, which are new, and which are overridden. For another prolonged inheritance example, see
Chapter 7.

Table 6-2. AvatarChatRoom class's methods and properties

Method or property
name

Inheritance
relationship

Original behavior
Behavior added by

AvatarChatRoom class

userList
Inherited
property

Stores a reference to the
on-screen List component
that displays users in the
room

None

avatars
Property added
by subclass

Not applicable
Stores a list of Avatar
instances displayed on
screen

displayMessage()
Overridden
method

Displays an incoming user
message in a text field

Also displays a message
bubble next to the user's
avatar

sendMessage()
Inherited
method

Sends an outgoing
message to other users

None

onAddUser()
Overridden
method

Adds the new user to the
userList

Also displays a new avatar
on the screen

onRemoveUser()
Overridden
method

Removes the departed
user from the userList

Also removes the user's
avatar on the screen

onUserChangeName()
Overridden
method

Changes the user's name
in the userList

Also changes the name
displayed under an avatar

onUserChangePosition(
)

Method added
by subclass

Not applicable
Positions the user's avatar
on screen

Example 6-1 shows the skeletal code for the ChatRoom and AvatarChatRoom classes. The class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

properties and implementation details of each class's methods are omitted, allowing us to focus our
attention directly on the inheritance structure. In place of method implementations, we use the trace(
) function to display a message describing the method's behavior in the Output panel.

Example 6-1. An inheritance example using ChatRoom and
AvatarChatRoom

// This code must be placed in an external file named ChatRoom.as

class ChatRoom {

 // mx.controls is the package path for the built-in List component.

 // See Chapter 9 for details on packages.

 private var userList:mx.controls.List;

 // Declare the five public methods of the ChatRoom class.

 public function displayMessage (userID:String, msg:String):Void {

 trace("Displaying chat message in chat text field.");

 }

 public function sendMessage (msg:String):Void {

 trace("Sending chat message.");

 }

 public function onAddUser (userID:String):Void {

 trace("Adding user to userList.");

 }

 public function onRemoveUser (userID:String):Void {

 trace("Removing user from userList.");

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public function onUserChangeName (userID:String, newName:String):Void {

 trace("Changing name in userList.");

 }

}

// This code must be placed in an external file named AvatarChatRoom.as

class AvatarChatRoom extends ChatRoom {

 private var avatars:Array;

 // Override four of the methods of the ChatRoom class,

 // excluding sendMessage().

 public function displayMessage (userID:String, msg:String):Void {

 // AvatarRoom.displayMessage() also invokes ChatRoom.displayMessage().

 super.displayMessage(userID, msg);

 trace("Displaying message in avatar text bubble.");

 }

 public function onAddUser (userID:String):Void {

 // AvatarRoom.onAddUser() also invokes ChatRoom.onAddUser().

 super.onAddUser(userID);

 trace("Creating avatar for new user.");

 }

 public function onRemoveUser (userID:String):Void {

 // AvatarRoom.onRemoveUser() also invokes ChatRoom.onRemoveUser().

 super.onRemoveUser(userID)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 trace("Removing avatar for user.");

 }

 public function onUserChangeName (userID:String, newName:String):Void {

 // AvatarRoom.onUserChangeName() also

 // invokes ChatRoom.onUserChangeName().

 super.onUserChangeName(userID, newName);

 trace("Changing name on avatar.");

 }

 // Declare a new method not present in the ChatRoom class.

 public function onUserChangePosition (userID:String,

 newX:Number, newY:Number):Void {

 trace("Repositioning avatar.");

 }

}

You should notice that the code in Example 6-1 declares five methods of the ChatRoom class. The
AvatarChatRoom class likewise declares five methods, four of which override methods in the
ChatRoom class plus onUserChangePosition(), which is new. Let's take a closer look at overriding, its
use and implications.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.4 Overriding Methods and Properties

In our study of inheritance so far, we've covered reuse , in which a subclass uses its superclass's methods
and properties, and extension , in which a subclass adds its own methods and properties. We'll now turn
to redefinition , in which a subclass provides an alternative version of a method or property in its
superclass. (Bear in mind that reuse, extension, and redefinition are not mutually exclusive. A subclass
might employ all three techniques in regard to the superclass's members.) Redefinition lets us customize
an existing class for a specific purpose by augmenting, constraining, or even nullifying one or more of its
original behaviors. Redefining a method or property is known technically as overriding that method or
property.

ActionScript allows any of a class's members (that is, static properties, instance properties, static
methods, and instance methods) to be redefined. We'll take a look at the most typical kind of redefinition
first: overriding instance methods.

6.4.1 Overriding Instance Methods

To override a superclass's instance method, we simply supply an instance method definition of the same
name in the subclass. For example, in the following code, in which B is a subclass of A , the method B.x()
overrides the method A.x() :

class A {

 // Declare an instance method in the superclass

 public function x ():Void {

 trace("A.x() was called.");

 }

}

// Class B is a subclass of class A

class B extends A {

 // Override the superclass's method of the same name

 public function x ():Void {

 trace("B.x() was called.");

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

When x() is invoked on an instance of class A , the interpreter uses A 's definition of the method. But
when x() is invoked on an instance of class B , the interpreter uses B 's definition of the method instead
of class A 's definition:

var aInstance:A = new A();

aInstance.x(); // Displays: A.x() was called.

var bInstance:B = new B();

bInstance.x(); // Displays: B.x() was called.

Let's consider a more applied example. Suppose we're building a geometry simulation that depicts
rectangles and squares. To handle the rectangles, we create a Rectangle class, as follows:

// This code must be placed in an external file named Rectangle.as

class Rectangle {

 private var w:Number = 0;

 private var h:Number = 0;

 public function setSize (newW:Number, newH:Number):Void {

 w = newW;

 h = newH;

 }

 public function getArea ():Number {

 return w * h;

 }

}

To handle squares, we could create a completely unrelated Square class. But a square is really just a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

rectangle with sides of equal width and height. To exploit that similarity, we'll create a Square class that
extends Rectangle but alters the setSize() method to prevent w and h from being set unless newW equals
newH . The constraint applies only to squares, not to rectangles in general, so it doesn't belong in the

Rectangle class.

Here's the Square class, showing the overridden setSize() method:

// This code must be placed in an external file named Square.as

class Square extends Rectangle {

 public function setSize (newW:Number, newH:Number):Void {

 // Here's the constraint introduced by the Square class.

 if (newW == newH) {

 w = newW;

 h = newH;

 }

 }

}

A real-world version of Square.setSize() might accept only one argument for the side length, instead of
accepting two potentially different parameters. This eliminates the need to check whether the sides are
equal (although we still want to check that the side length is a positive number). For example:

public function setSize (sideLength:Number):Void {

 if (sideLength > 0) {

 w = sideLength;

 h = sideLength;

 }

}

However, our current focus is adding constraints to a method without changing the method's signature, so
we'll stick with our newW and newH parameters for the sake of this example.

When setSize() is invoked on a Square or Rectangle instance, the interpreter uses the version of the
method that matches the actual class of the instance.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When an instance method is invoked on an object, the interpreter first searches for
the instance method defined on the class used to instantiate the object.

For example, in the following code, we invoke setSize() on a Rectangle instance. The interpreter knows
that the instance's class is Rectangle , so it invokes Rectangle.setSize() :

var r:Rectangle = new Rectangle();

r.setSize(4,5);

trace (r.getArea()); // Displays: 20

By contrast, in the following code, we invoke setSize() on a Square instance. This time the interpreter
knows that the instance's class is Square , so it invokes Square.setSize() , not Rectangle.setSize() :

var s:Square = new Square();

s.setSize(4,5);

trace (s.getArea()); // Displays: 0 (The setSize() method prevented the

 // illegal property assignment.)

In the preceding code, the output of s.getArea()- 0-indicates that values of w and h were not set
properly by the call to s.setSize() ; the Square.setSize() method sets w and h only when newW and newH

are equal.

But what if the declared datatype doesn't match the type of instance stored in a variable?

Even if the datatype of s is declared as Rectangle , because it stores a Square

instance, the interpreter uses the version of the method from the instance's actual
class (namely Square).

Consider this example:

// Datatype is declared as Rectangle...

var s:Rectangle = new Square();

s.setSize(4,5);

// ...but Square.setSize() was still used!

trace (s.getArea()); // Displays: 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Similarly, even if the instance s were cast to the Rectangle class, the interpreter would still use the

version of the method from the instance's actual class (which, again, is Square):

var s:Square = new Square();

// Instance s is cast to Rectangle.

Rectangle(s).setSize(4,5);

// ...but Square.setSize() was still used.

trace (s.getArea()); // Displays: 0

In all cases, instance method calls on an object remain true to that object's actual class!

Notice also that a cast does not change the class of the object. A cast only instructs the compiler and
interpreter to treat an object as though it were of a specified type. For more information on casting, see
"Casting" in Chapter 3 .

6.4.2 Invoking an Overridden Instance Method

When a subclass overrides an instance method, the superclass's version of the method is not lost. It
remains accessible to instances of the subclass via the super operator, which can invoke an overridden
method as follows:

super.methodName(arg1, arg2, ...argn);

where methodName is the name of the overridden method to invoke, and arg1 , arg2 , ... argn are the

arguments to pass to that method. (We'll learn more about other uses of super later in this chapter.)

Let's see how to use super to invoke a method of the superclass that is overridden. So far, our
Square.setSize() method needlessly duplicates the code in the Rectangle.setSize() method. The
Rectangle version is:

public function setSize (newW:Number, newH:Number):Void {

 w = newW;

 h = newH;

}

The Square version of setSize() merely adds an if statement:

public function setSize (newW:Number, newH:Number):Void {

 if (newW == newH) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 w = newW;

 h = newH;

 }

}

To avoid the duplication of setting w and h in both methods, we can use super , as shown in this revised

version of Square.setSize() :

public function setSize (newW:Number, newH:Number):Void {

 if (newW == newH) {

 // Invoke the superclass's setSize() method, in this case

 // Rectangle.setSize(), on the current instance.

 super.setSize(newW, newH);

 }

}

The revised Square.setSize() method checks if newW and newH are equal; if they are, it invokes
Rectangle.setSize() on the current instance. The Rectangle.setSize() method takes care of setting w and
h .

The setSize() method example shows how a subclass can override a method to constrain its behavior. A
subclass can also override a method to augment its behavior. For example, we might create
ScreenRectangle , a subclass of Rectangle that draws a rectangle to the screen. The subclass in the
following code adds a draw() method and augments setSize() . The ScreenRectangle.setSize() method
retains the behavior of the overridden Rectangle.setSize() but adds a call to draw() , so the rectangle
changes size on screen whenever setSize() is invoked. Here's the code:

class ScreenRectangle extends Rectangle {

 public function setSize (newW:Number, newH:Number):Void {

 // Call Rectangle.setSize().

 super.setSize(newW, newH);

 // Now render the rectangle on screen.

 draw();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 public function draw ():Void {

 // Screen-rendering code goes here.

 // For example rendering code, see Example 4-6.

 }

}

Finally, overriding can be used to nullify the behavior of a method. The technique is straightforward: the
subclass's version of the overridden method simply does nothing. For example, the following code shows a
subclass named ReadOnlyRectangle that disables the Rectangle.setSize() method, preventing an instance
from changing size:

class ReadOnlyRectangle extends Rectangle {

 // This effectively disables the setSize() method

 // for instances of the ReadOnlyRectangle class.

 public function setSize (newW:Number, newH:Number):Void {

 // Do nothing.

 }

}

Nullifying a method is legal but, in most cases, not considered good OOP practice. Generally speaking,
every subclass should support the methods of its superclass(es). That way, external code can safely use
the superclass's methods on instances of the subclass (as we'll see later, treating unlike objects alike is an
important part of polymorphism).

6.4.3 Overriding Class Methods

We saw earlier how to override instance methods of a superclass. To override a superclass's class method
(i.e., a method declared with the static attribute), we simply add a static method definition of the same
name in the subclass. For example, in the following code, the static method B.m() overrides the static
method A.m() :

class A {

 public static function m ():Void {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 trace("A.m() was called.");

 }

}

class B extends A {

 public static function m ():Void {

 trace("B.m() was called.");

 }

}

When invoking a class method, whether or not overridden, you should provide the class name as part of
the method invocation. For example, to invoke B 's version of m() , you should use B.m(), and to invoke
A 's version of m() , you should use A.m() . For example:

A.m(); // Displays: A.m() was called

B.m(); // Displays: B.m() was called

m(); // Avoid this unqualified method call

In fact, if you are accessing the method from code outside the class, you must include the class name.
However, from within the class that defines the method, you can legally refer to the method without the
qualifying class name (e.g., m() instead of B.m()). This practice, while legal, is not recommended. We'll
learn why under Section 6.4.6 later in this chapter.

You may wonder what happens if you declare a nonstatic method in a subclass in an attempt to overwrite
a static method of the same name defined in the superclass. Consider this code example:

class A {

 // The static keyword defines a class method

 public static function m ():Void {

 trace("A.m() was called.");

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class B extends A {

 // Note the omission of the static keyword, so this is an instance method

 public function m ():Void {

 trace("B.m() was called.");

 }

}

The preceding code effectively defines a new instance method, m() , for instances of class B , but it has
no effect on the class method of the same name defined in class A . Therefore, the method the interpreter
invokes depends on which object is used in the invocation. For example, in the following code, you might
be surprised by the results of invoking B.m() :

A.m(); // Displays: A.m() was called

B.m(); // Displays: Error! The property being referenced does

 // not have the static attribute.

In the preceding code, because there is no class method (i.e., static method) named m() defined on the
class B , invoking B.m() actually causes a compile-time error. The m() method in class B is declared as
an instance method, so it must be invoked on an instance as follows:

bInstance:B = new B();

bInstance.m(); // Displays: B.m() was called

You wouldn't ordinarily define class methods (i.e., static methods) and instance methods (i.e., nonstatic
methods) of the same name. Therefore, in the preceding example, if your invocation of B.m() causes an
error, you probably just forgot the static attribute when defining the m() method within the B class.

Note that the super operator cannot be used to invoke a superclass's version of a class method from
within the subclass version. The keyword super can be used only in instance methods and constructor
functions. To access the superclass's version of a class method, reference the superclass in the method
invocation, as in:

SomeSuperClass.someOverriddenMethod();

6.4.4 Overriding Properties

Just as instance and class methods can be overridden, so can instance and class properties. To override a
superclass's property, we add a property definition of the same name in the subclass. For example, in the
following code, for instances of class B , the instance property B.p overrides the instance property A.p :

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class A {

 public var p:Number = 10;

}

class B extends A {

 public var p:Number = 15;

}

Remember that overriding a property using a subclass declaration has no effect on instances of the
superclass. Therefore, all instances of class A have an initial value of 10 for the property p . However,
because p is overridden in the subclass, all instances of class B have an initial value of 15 for the property
p :

var aInstance:A = new A();

trace(aInstance.p); // Displays: 10

var bInstance:B = new B();

trace(bInstance.p); // Displays: 15

Any kind of property can override any other kind of property. That is, an instance property can override
an instance property or a class property; a class property can override a class property or an instance
property. However, we're sure to instigate mass confusion if we override an instance property with a class
property or vice versa.

For the sake of code clarity, you should override instance properties with only other
instance properties, and override class properties with only other class properties.

The preceding example overrode a superclass's instance property with an instance property in the
subclass. Similarly, here's an example of overriding a superclass's class property (declared static) with a
class property in the subclass:

class A {

 // Create a class property, s

 public static var s:Number = 20;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

class B extends A {

 // Override the class property, s

 public static var s:Number = 25;

}

When a class property is overridden, it is not lost and can still be accessed via the superclass. For
example:

class A {

 public static var s:Number = 20;

}

class B extends A {

 public static var s:Number = 25;

 public function showS () {

 // Show the subclass version of s.

 trace("B.s is: " + B.s);

 // Show the superclass version of s.

 trace("A.s is: " + A.s);

 }

}

// Usage:

var bInstance:B = new B();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

bInstance.showS(); // Displays:

 // B.s is: 25

 // A.s is: 20

Note, however, that the super keyword, which we used earlier to access an overridden instance method,
cannot be used to reference an overridden class property. For example, if in B.shows() we change the
statement:

trace("A.s is: " + A.s);

to:

trace("A.s is: " + super.s);

the resulting output is:

A.s is: undefined

The preceding use of super causes the following error when Check Syntax (Tools Check Syntax) is
performed on class B in Flash MX Professional 2004's script editor:

Static members can only be accessed directly through classes.

Unfortunately, due to a bug in Flash MX 2004, the compiler does not generate the same compile-time
error when the class is used in a .fla file.

Unlike a class property, an instance property that is overridden does not continue to exist independently.
Rather, a single instance property with a single value exists for each instance of the overriding subclass.
For example, in the following code, class A defines a property, p , that is overridden by class B . An
instance of class B maintains a single value for the property p , despite whether p is assigned by methods

in the superclass or the subclass.

class A {

 public var p:Number;

 public function setTo20 ():Void {

 p = 20;

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class B extends A {

 public var p:Number;

 public function setTo10 ():Void {

 p = 10;

 }

}

// Usage example:

var bInstance:B = new B();

// Use superclass method to set p.

bInstance.setTo20();

trace(bInstance.p); // Displays: 20

// Use subclass method to set p.

bInstance.setTo10();

trace(bInstance.p); // Displays: 10

This single-property-value behavior contrasts with Java, in which the subclass maintains a memory slot
both for its own definition of the overridden property and for its superclass's definition. In Java, the
equivalent code would output:

0

10

because, in Java, invoking bInstance.setTo20() would modify the superclass version of the property p

, not the subclass version because setTo20 () is defined in the superclass despite being invoked on a
subclass instance. In ActionScript, no such separation exists. Even when A.setTo20() is invoked via the
keyword super , the property affected is still the single property p . The following code demonstrates. It

http://lib.ommolketab.ir
http://lib.ommolketab.ir

adds a new method, callSetTo20() to class B (class A remains unchanged):

class B extends A {

 public var p:Number;

 public function setTo10 ():Void {

 p = 10;

 }

 public function callSetTo20 ():Void {

 super.setTo20();

 }

}

// Usage example:

var bInstance:B = new B();

// Use superclass method to set p.

bInstance.setTo20();

trace(bInstance.p); // Displays: 20

// Use subclass method to set p.

bInstance.setTo10();

trace(bInstance.p); // Displays: 10

// Use superclass method through super to set p.

bInstance.callSetTo20();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

trace(bInstance.p); // Displays: 20 (not 10, the previous value)

Again, in Java, the last line of the equivalent code would yield 10, not 20, because calling
bInstance.callSetTo20() sets the superclass's version of the property p , not the subclass's version.

Java displays the value of the subclass's version of the property, which would be 10. For comparison,
Example 6-2 lists the Java code for classes A and B .

Example 6-2. Overridden property access in Java

public class A {

 public int p;

 public void setTo20 () {

 p = 20;

 }

}

public class B extends A {

 public int p;

 public void setTo10 () {

 p = 10;

 }

 public void callSetTo20 () {

 super.setTo20();

 // Check superclass value for p, after setting it.

 System.out.println("Superclass version of p is: " + super.p);

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public static void main (String [] args) {

 B b = new B();

 // This line affects the superclass version of p.

 b.setTo20();

 // The subclass version is not affected.

 System.out.println("Subclass version of p is: " + b.p);

 // This line affects the subclass version of p.

 b.setTo10();

 // The subclass version is affected.

 System.out.println("Subclass version of p is: " + b.p);

 // This line affects the superclass version of p.

 b.callSetTo20();

 // The subclass version is not affected.

 System.out.println("Subclass version of p is: " + b.p);

 }

}

// Output:

Subclass version of p is: 0

Subclass version of p is: 10

Superclass version of p is: 20

Subclass version of p is: 10

6.4.4.1 The super keyword and overridden property access

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In ActionScript 2.0, we cannot use super to retrieve the value of an overridden instance property because,
as we just learned, instance properties that are overridden do not continue to exist independently.

However, strangely enough, if an overridden instance property is initialized in the superclass body
(outside of a method or the constructor), then that initial value is permanently accessible via super :

class A {

 // Initialize the property p to 10.

 public var p:Number = 10;

}

class B extends A {

 public var p:Number = 15;

 public function showP ():Void {

 // Show the value of p.

 trace("p is: " + p);

 // Modify the value of p, then show the modified value.

 p = 5;

 trace("p is: " + p);

 // Show the initial value of p, assigned by

 // the superclass. This will yield 10 even though p has

 // been modified on the current object.

 trace("super.p is: " + super.p);

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Usage:

var bInstance:B = new B();

bInstance.showP(); // Displays:

 // p is: 15

 // p is: 5

 // super.p is: 10

This uncommon super behavior is caused by the compiler's automatic conversion of ActionScript 2.0 code
to ActionScript 1.0 code (which is a necessary evil guaranteeing that most ActionScript 2.0 code will work
in Flash Player 6). The behavior may be changed in future versions of the language. You should,
therefore, avoid using it.

6.4.5 Member Access from Inherited, Overriding, and Overridden Instance
Methods

We've now seen how to override instance methods, static methods, instance properties, and static
properties. We've also seen how to invoke overridden instance methods. With all these overridden
methods and properties afoot, we're forced to consider some tricky scope questions. For example, from
within an instance method that overrides another instance method, what properties and methods are
accessible? What about from within the overridden version of the method? What if the properties and
methods being accessed are, themselves, overridden?

Before we can answer these questions, we need a short lesson on how the compiler resolves unqualified
member references . To qualify a reference is to include explicitly the object or class to which the property
or method pertains.

Therefore, an unqualified member reference is any mention of a property or method that does not
explicitly include the name of an object or class. For example, this is an unqualified reference to the
method x() :

x()

By contrast, this reference to x() is qualified because it specifies the object on which x() should be
invoked (this , the current object):

this.x()

Here is an unqualified reference to the property p :

p

By contrast, this reference to the property p is qualified because it specifies the class on which p is defined

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(A):

A.p

When a class is compiled, if the compiler encounters an unqualified member
reference, it deduces the object or class to which the member pertains and
permanently adds that object or class to the reference.

That is, at compile time, all unqualified member references are permanently converted to qualified
member references of the form:

objectName.memberName

or

ClassName.memberName

If you don't specify an object or class when referring to a member in your source code, the compiler will
supply the object or class it thinks is correct. The compiler chooses the "correct" object or class based on
the name of the member and the compile-time context in which the member reference occurs.

For example, in the following class, A , we define one instance property (instanceProp) and one class
property (classProp). We make unqualified references to those properties in the methods getClassProp(

) and getInstanceProp() :

class A {

 public static var classProp:Number = 0;

 public var instanceProp:Number = 1;

 public function getClassProp ():Number {

 return classProp;

 }

 public function getInstanceProp ():Number {

 return instanceProp;

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

After compilation, the interpreter effectively treats the code as follows (note the addition of A . and this .,

shown in bold):

class A {

 public static var classProp:Number = 0;

 public var instanceProp:Number = 1;

 public function getClassProp ():Number {

 return A.classProp;

 }

 public function getInstanceProp ():Number {

 return this.instanceProp;

 }

}

The compiler knows that classProp should be treated as A.classProp because the classProp property
is defined as static . Likewise, the compiler knows that instanceProp should be treated as
this.instanceProp because the instanceProp property has no static attribute, so it must be an
instance property accessed via the current object (i.e., this).

It's not uncommon or even bad form to use unqualified member references. Most of the time, the
compiler's automatic resolution of those references is intuitive. However, as we'll see next, when
members are accessed from overridden and inherited methods, the compiler's behavior is less obvious.
Therefore, to avoid adding confusion to an already complex situation, it's wise to fully qualify all member
references when using inherited or overridden methods.

Now that we understand how the compiler resolves unqualified member references, let's consider the
three possible member access scenarios:

Member access from an inherited instance method

Member access from an overriding instance method

Member access from an overridden instance method invoked via super

In the preceding scenarios, we'll explore what happens when each of the following members are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

accessed:

An instance method defined in the subclass

An inherited instance method

An overridden instance method

An instance property defined by the subclass

An inherited instance property

An overridden instance property

A class property defined by the subclass

An inherited class property

An overridden class property

A class method defined by the subclass

An inherited class method

An overridden class method

We'll also point out tricky cases in which unqualified member resolution can lead to potentially surprising
results. You don't need to memorize all the behaviors now, but it is a good idea to skim the next pages to
better understand scope issues. If you learn to recognize whether you are, say, accessing an inherited
class property from an overridden class method, you can refer back to this chapter for the necessary
details on scope resolution.

6.4.5.1 Member access from an inherited instance method

As we learned earlier, an inherited instance method is an instance method defined in the superclass but
used by the subclass. For example, in the following code, class B inherits the method methOfA() from
class A :

class A {

 public function methOfA ():Void {

 }

}

class B extends A {

}

An instance of B can invoke methOfA() as follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

var bInstance:B = new B();

bInstance.methOfA();

Table 6-3 describes what happens when bInstance invokes methOfA() and methOfA() accesses various

methods and properties.

Table 6-3. Member access from an inherited instance method

Member
accessed

Example Notes

Instance
method of
subclass

class A {

 public function methOfA():Void {

 methOfB(); // Error!

 }

}

class B extends A {

 public function methOfB():Void {

 }

}

Compile-time error.
Methods of a superclass
can't refer to methods
defined only on a
subclass, and Class A
does not define
methOfB() , so the
reference is illegal.

Inherited
instance
method

class A {

 public function methOfA():Void {

 // Executes otherMethOfA()

 otherMethOfA();

 }

 public function otherMethOfA():Void {

 }

}

One method of a class
can call another
method of the same

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member
accessed

Example Notes

method
(defined in
superclass)

}

class B extends A {

}

// Usage

var bInstance:B = new B();

bInstance.methOfA(); // Executes properly

method of the same
class, even when
invoked via an instance
of a subclass.

Overridden
instance
method
(defined in
both
superclass
and subclass)

class A {

 public function methOfA ():Void {

 // Executes B's version of overriddenMeth() if

 // invoked on an instance of class B.

 // Executes A's version of overriddenMeth() if

 // invoked on an instance of class A.

 overriddenMeth();

 }

 public function overriddenMeth():Void {

 }

}

class B extends A {

 public function overriddenMeth():Void {

 }

}

The version of the
overridden method
executed depends on
the class of the
instance on which the
method is invoked.

method
(defined in
superclass)

}

class B extends A {

}

// Usage

var bInstance:B = new B();

bInstance.methOfA(); // Executes properly

method of the same
class, even when
invoked via an instance
of a subclass.

Overridden
instance
method
(defined in
both
superclass
and subclass)

class A {

 public function methOfA ():Void {

 // Executes B's version of overriddenMeth() if

 // invoked on an instance of class B.

 // Executes A's version of overriddenMeth() if

 // invoked on an instance of class A.

 overriddenMeth();

 }

 public function overriddenMeth():Void {

 }

}

class B extends A {

 public function overriddenMeth():Void {

 }

}

The version of the
overridden method
executed depends on
the class of the
instance on which the
method is invoked.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member
accessed

Example Notes

// Usage

var aInstance:A = new A();

var bInstance:B = new B();

// Invokes A's version of overriddenMeth().

aInstance.methOfA();

// Invokes B's version of overriddenMeth().

bInstance.methOfA();

Instance
property of
subclass

class A {

 public function methOfA():Void {

 trace(propOfB); // Error!

 }

}

class B extends A {

 public var propOfB:Number = 1;

}

Compile-time error.
Methods of a superclass
can't refer to properties
defined only on a
subclass, and class A
does not define
propOfB , so the

reference is illegal.

Inherited
instance
property
(defined in
superclass)

class A {

 public var propOfA:Number = 2;

 public function methOfA():Void {

 trace(propOfA); // Displays: 2

 }

}

class B extends A {

A method of the
superclass, such as
methOfA() , can access
properties of the
superclass, such as
propOfA .

// Usage

var aInstance:A = new A();

var bInstance:B = new B();

// Invokes A's version of overriddenMeth().

aInstance.methOfA();

// Invokes B's version of overriddenMeth().

bInstance.methOfA();

Instance
property of
subclass

class A {

 public function methOfA():Void {

 trace(propOfB); // Error!

 }

}

class B extends A {

 public var propOfB:Number = 1;

}

Compile-time error.
Methods of a superclass
can't refer to properties
defined only on a
subclass, and class A
does not define
propOfB , so the

reference is illegal.

Inherited
instance
property
(defined in
superclass)

class A {

 public var propOfA:Number = 2;

 public function methOfA():Void {

 trace(propOfA); // Displays: 2

 }

}

class B extends A {

A method of the
superclass, such as
methOfA() , can access
properties of the
superclass, such as
propOfA .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member
accessed

Example Notes

}

Overridden
instance
property
(defined in
both
superclass
and subclass)

class A {

 public var overriddenProp:Number = 3;

 public function methOfA():Void {

 trace(overriddenProp);

 }

}

class B extends A {

 public var overriddenProp:Number = 4;

}

// Usage

var aInstance:A = new A();

var bInstance:B = new B();

aInstance.methOfA(); // Displays: 3

bInstance.methOfA(); // Displays: 4

Even though the
property is accessed in
class A , when
methOfA() is invoked
on an instance of B ,
the subclass's value of
the overridden property
(4, not 3) appears
because bInstance can

store only one value in
overriddenProp . (In

Java, calls to methOfA(
) would always display
3.)

Class method
of subclass,
unqualified
reference [1]

class A {

 public function methOfA():Void {

 classMethOfB(); // Error!

 }

}

class B extends A {

Compile-time error.
Class A does not define
classMethOfB() , and
methods of a
superclass can't resolve
unqualified references
to class methods of a
subclass, so the

}

Overridden
instance
property
(defined in
both
superclass
and subclass)

class A {

 public var overriddenProp:Number = 3;

 public function methOfA():Void {

 trace(overriddenProp);

 }

}

class B extends A {

 public var overriddenProp:Number = 4;

}

// Usage

var aInstance:A = new A();

var bInstance:B = new B();

aInstance.methOfA(); // Displays: 3

bInstance.methOfA(); // Displays: 4

Even though the
property is accessed in
class A , when
methOfA() is invoked
on an instance of B ,
the subclass's value of
the overridden property
(4, not 3) appears
because bInstance can

store only one value in
overriddenProp . (In

Java, calls to methOfA(
) would always display
3.)

Class method
of subclass,
unqualified
reference [1]

class A {

 public function methOfA():Void {

 classMethOfB(); // Error!

 }

}

class B extends A {

Compile-time error.
Class A does not define
classMethOfB() , and
methods of a
superclass can't resolve
unqualified references
to class methods of a
subclass, so the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member
accessed

Example Notes

 public static function classMethOfB():Void {

 }

}

subclass, so the
reference is illegal.

Class method
of subclass,
qualified
reference[2]

class A {

 public function methOfA():Void {

 B.classMethOfB(); // Executes properly

 }

}

class B extends A {

 public static function classMethOfB():Void {

 }

}

B.classMethOfB() is a
qualified reference, so
the compiler knows to
look on class B for this
class method (this is
true for all classes,
independent of whether
B is a subclass of A).

Inherited
class method
(defined in
superclass)[2]

class A {

 public static function classMethOfA():Void {

 }

 public function methOfA():Void {

 // Executes A.classMethOfA()

 classMethOfA();

 }

}

class B extends A {

}

At compile time,
unqualified references
to class methods are
resolved relative to the
current class. So
classMethOfA()
resolves to
A.classMethOfA() .
A.classMethOfA()
executes even when
invoked from an
instance of subclass B .

 public static function classMethOfB():Void {

 }

}

subclass, so the
reference is illegal.

Class method
of subclass,
qualified
reference[2]

class A {

 public function methOfA():Void {

 B.classMethOfB(); // Executes properly

 }

}

class B extends A {

 public static function classMethOfB():Void {

 }

}

B.classMethOfB() is a
qualified reference, so
the compiler knows to
look on class B for this
class method (this is
true for all classes,
independent of whether
B is a subclass of A).

Inherited
class method
(defined in
superclass)[2]

class A {

 public static function classMethOfA():Void {

 }

 public function methOfA():Void {

 // Executes A.classMethOfA()

 classMethOfA();

 }

}

class B extends A {

}

At compile time,
unqualified references
to class methods are
resolved relative to the
current class. So
classMethOfA()
resolves to
A.classMethOfA() .
A.classMethOfA()
executes even when
invoked from an
instance of subclass B .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member
accessed

Example Notes

// Usage

var bInstance:B = new B();

bInstance.methOfA(); // Invokes A.classMethOfA()

Overridden
class method
(defined in
both
superclass
and
subclass)[2]

class A {

 public static function overriddenClassMeth():Void {

 }

 public function methOfA():Void {

 // Executes A.overriddenClassMeth()

 overriddenClassMeth();

 }

}

class B extends A {

 public static function overriddenClassMeth():Void {

 }

}

// Usage--compare also with preceding example

var bInstance:B = new B();

// Invokes A.overriddenClassMeth()

bInstance.methOfA();

At compile time,
unqualified references
to class methods are
resolved relative to the
current class. From
within class A ,
overriddenClassMeth()
is converted to
A.overriddenClassMeth(
) . Class A can invoke B
's version using the
qualified reference
B.overriddenClassMeth(
) .

[1] The same access rules apply to class properties as to class methods.

// Usage

var bInstance:B = new B();

bInstance.methOfA(); // Invokes A.classMethOfA()

Overridden
class method
(defined in
both
superclass
and
subclass)[2]

class A {

 public static function overriddenClassMeth():Void {

 }

 public function methOfA():Void {

 // Executes A.overriddenClassMeth()

 overriddenClassMeth();

 }

}

class B extends A {

 public static function overriddenClassMeth():Void {

 }

}

// Usage--compare also with preceding example

var bInstance:B = new B();

// Invokes A.overriddenClassMeth()

bInstance.methOfA();

At compile time,
unqualified references
to class methods are
resolved relative to the
current class. From
within class A ,
overriddenClassMeth()
is converted to
A.overriddenClassMeth(
) . Class A can invoke B
's version using the
qualified reference
B.overriddenClassMeth(
) .

[1] The same access rules apply to class properties as to class methods.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.4.5.2 Member access from an overriding instance method

An instance method in a subclass that overrides an instance method in a superclass is known as an
overriding instance method . For example, in the following code, the method over() in class B overrides
the method of the same name in class A :

class A {

 public function over ():Void {

 }

}

class B extends A {

 public function over ():Void {

 }

}

An instance of B can invoke B 's version of over() as follows:

var bInstance:B = new B();

bInstance.over();

Table 6-4 describes what happens when bInstance invokes the overriding instance method over() , and

over() subsequently accesses various methods and properties. Pay special attention to the Notes column,
which highlights differences between member access in an overriding method and member access from
an inherited method (as covered in Table 6-3).

In general terms, inherited and overridden methods have the scope of the superclass (where they are
defined), whereas overriding methods have the scope of the subclass (where they are defined).

Table 6-4. Member access from an overriding instance method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member
accessed

Example Notes

Instance
method of
subclass

class A {

 public function over ():Void {

 }

}

class B extends A {

 public function methOfB():Void {

 }

 public function over ():Void {

 methOfB(); // Executes B.methOfB()

 }

}

Methods defined within
a subclass can access
each other, even when
one is an overriding
method. So, the
overriding method,
B.over() , can execute
B.methOfB() .
Compare with Table 6-
3 , in which invoking an
instance method of a
subclass from an
inherited method yields
an error.

Inherited
instance
method
(defined in
superclass)

class A {

 public function over ():Void {

 }

 public function otherMethOfA():Void {

 }

}

class B extends A {

 public function over ():Void {

 // Invokes otherMethOfA()

 otherMethOfA();

 }

As in Table 6-3 , any
method of the subclass
(B), even an overriding
method, can access a
method defined in the
superclass (A).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member
accessed

Example Notes

}

Overridden
instance
method
(defined in
both
superclass
and subclass)

class A {

 public function over ():Void {

 }

 public function over2 ():Void {

 }

}

class B extends A {

 public function over ():Void {

 // Invokes B.over2() not A.over2()

 over2();

 }

 public function over2 ():Void {

 }

}

As in all cases, the
compiler attempts to
resolve unqualified
references within the
subclass before looking
to the superclass. In
this case, the
overriding over()
method invokes over2(
) , another overriding
method in the same
subclass.

Instance
property of
subclass

class A {

 public function over ():Void {

 }

}

class B extends A {

 public var propOfB:Number = 1;

 public function over ():Void {

Methods defined within
a subclass can access
properties defined in
the same subclass. So,
the overriding method,
B.over() , can access
propOfB . Compare

with Table 6-3 , in
which accessing an
instance property of a
subclass from an

}

Overridden
instance
method
(defined in
both
superclass
and subclass)

class A {

 public function over ():Void {

 }

 public function over2 ():Void {

 }

}

class B extends A {

 public function over ():Void {

 // Invokes B.over2() not A.over2()

 over2();

 }

 public function over2 ():Void {

 }

}

As in all cases, the
compiler attempts to
resolve unqualified
references within the
subclass before looking
to the superclass. In
this case, the
overriding over()
method invokes over2(
) , another overriding
method in the same
subclass.

Instance
property of
subclass

class A {

 public function over ():Void {

 }

}

class B extends A {

 public var propOfB:Number = 1;

 public function over ():Void {

Methods defined within
a subclass can access
properties defined in
the same subclass. So,
the overriding method,
B.over() , can access
propOfB . Compare

with Table 6-3 , in
which accessing an
instance property of a
subclass from an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member
accessed

Example Notes

 trace(propOfB); // Displays: 1

 }

}

subclass from an
inherited method yields
an error.

Inherited
instance
property
(defined in
superclass)

class A {

 public var propOfA:Number = 2;

 public function over ():Void {

 }

}

class B extends A {

 public function over ():Void {

 trace(propOfA); // Displays: 2

 }

}

Methods defined within
a subclass, even
overriding methods,
can access properties
defined in the
superclass. So, the
overriding method,
B.over() , can access
propOfA .

Overridden
instance
property
(defined in
both
superclass
and subclass)

class A {

 public var overriddenProp:Number = 3;

 public function over ():Void {

 }

}

class B extends A {

 public var overriddenProp:Number = 4;

 public function over ():Void {

 trace(overriddenProp); // Displays: 4

The subclass method
displays the subclass's
value of the overridden
property (4 , not 3).
Because bInstance

stores only one value in
overriddenProp , the

overriding method has
no access to the
superclass's overridden
property value.

 trace(propOfB); // Displays: 1

 }

}

subclass from an
inherited method yields
an error.

Inherited
instance
property
(defined in
superclass)

class A {

 public var propOfA:Number = 2;

 public function over ():Void {

 }

}

class B extends A {

 public function over ():Void {

 trace(propOfA); // Displays: 2

 }

}

Methods defined within
a subclass, even
overriding methods,
can access properties
defined in the
superclass. So, the
overriding method,
B.over() , can access
propOfA .

Overridden
instance
property
(defined in
both
superclass
and subclass)

class A {

 public var overriddenProp:Number = 3;

 public function over ():Void {

 }

}

class B extends A {

 public var overriddenProp:Number = 4;

 public function over ():Void {

 trace(overriddenProp); // Displays: 4

The subclass method
displays the subclass's
value of the overridden
property (4 , not 3).
Because bInstance

stores only one value in
overriddenProp , the

overriding method has
no access to the
superclass's overridden
property value.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member
accessed

Example Notes

 }

}

Class method
of subclass,
unqualified
reference[2]

class A {

 public function over ():Void {

 }

}

class B extends A {

 public static function classMethOfB():Void {

 }

 public function over ():Void {

 classMethOfB(); // Invokes B.classMethOfB()

 }

}

At compile time,
unqualified references
to class methods are
resolved relative to the
current class
(classMethOfB() , is
resolved to
B.classMethOfB() ,
which exists). Compare
with Table 6-3 , in
which an unqualified
reference to a static
method from within an
inherited method
(defined in the
superclass) yields an
error.

Class method
of subclass,
qualified
reference[1]

class A {

 public function over ():Void {

 }

}

class B extends A {

 public static function classMethOfB():Void {

 }

 public function over ():Void {

 B.classMethOfB(); // Executes properly

B.classMethOfB() is a
qualified reference, so
the compiler knows to
look on class B for the
class method (this is
true for all classes even
in the case of
overriding methods).

 }

}

Class method
of subclass,
unqualified
reference[2]

class A {

 public function over ():Void {

 }

}

class B extends A {

 public static function classMethOfB():Void {

 }

 public function over ():Void {

 classMethOfB(); // Invokes B.classMethOfB()

 }

}

At compile time,
unqualified references
to class methods are
resolved relative to the
current class
(classMethOfB() , is
resolved to
B.classMethOfB() ,
which exists). Compare
with Table 6-3 , in
which an unqualified
reference to a static
method from within an
inherited method
(defined in the
superclass) yields an
error.

Class method
of subclass,
qualified
reference[1]

class A {

 public function over ():Void {

 }

}

class B extends A {

 public static function classMethOfB():Void {

 }

 public function over ():Void {

 B.classMethOfB(); // Executes properly

B.classMethOfB() is a
qualified reference, so
the compiler knows to
look on class B for the
class method (this is
true for all classes even
in the case of
overriding methods).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member
accessed

Example Notes

 }

}

Inherited
class method
(defined in
superclass)[1]

class A {

 public static function classMethOfA():Void {

 }

 public function over ():Void {

 }

}

class B extends A {

 public function over ():Void {

 classMethOfA(); // Invokes A.classMethOfA()

 }

}

At compile time,
unqualified references
to class methods are
resolved relative to the
current class. So
classMethOfA()
resolves
B.classMethOfA() .
Although, subclass B
doesn't directly define
classMethOfA() , that
reference succeeds
because an inherited
class method can be
accessed via any
subclass, so
B.classMethOfA() and
A.classMethOfA() work
the same in this case.

class A {

 public static function overriddenClassMeth():Void {

 }

 public function over ():Void {

 // Invokes A.overriddenClassMeth()

 overriddenClassMeth();

 }

}

class B extends A {

At compile time,
unqualified references
to class methods are
resolved relative to the
current class. So in B 's
version of over() ,

 }

}

Inherited
class method
(defined in
superclass)[1]

class A {

 public static function classMethOfA():Void {

 }

 public function over ():Void {

 }

}

class B extends A {

 public function over ():Void {

 classMethOfA(); // Invokes A.classMethOfA()

 }

}

At compile time,
unqualified references
to class methods are
resolved relative to the
current class. So
classMethOfA()
resolves
B.classMethOfA() .
Although, subclass B
doesn't directly define
classMethOfA() , that
reference succeeds
because an inherited
class method can be
accessed via any
subclass, so
B.classMethOfA() and
A.classMethOfA() work
the same in this case.

class A {

 public static function overriddenClassMeth():Void {

 }

 public function over ():Void {

 // Invokes A.overriddenClassMeth()

 overriddenClassMeth();

 }

}

class B extends A {

At compile time,
unqualified references
to class methods are
resolved relative to the
current class. So in B 's
version of over() ,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member
accessed

Example Notes

Overridden
class method
(defined in
both
superclass
and
subclass)[1]

 public static function overriddenClassMeth():Void {

 }

 public function over ():Void {

 // Invokes B.overriddenClassMeth()

 overriddenClassMeth();

 }

}

// Usage:

var aInstance:A = new A();

var bInstance:B = new B();

// Invokes A's version of overriddenClassMeth()

aInstance.over();

// Invokes B's version of overriddenClassMeth()

bInstance.over();

version of over() ,
overriddenClassMeth()
resolves to
B.overriddenClassMeth(
) . To invoke A 's
version of the method,
use the qualified
reference
A.overriddenClassMeth(
) .

Notice that when an
unqualified reference is
used, the version of the
method invoked is that
of the class that
contains the method
call.

[2] The same access rules apply to class properties as to class methods.

6.4.5.3 Member access from an overridden method invoked via super

A method in a superclass that is overridden by a method in a subclass is known as an overridden instance
method . As we learned earlier, an overridden instance method can be invoked via the keyword super .
For example, in the following code, the overridden method, over() , in class A is invoked via super from
the overriding method of the same name in class B :

class A {

 public function over ():Void {

 }

}

Overridden
class method
(defined in
both
superclass
and
subclass)[1]

 public static function overriddenClassMeth():Void {

 }

 public function over ():Void {

 // Invokes B.overriddenClassMeth()

 overriddenClassMeth();

 }

}

// Usage:

var aInstance:A = new A();

var bInstance:B = new B();

// Invokes A's version of overriddenClassMeth()

aInstance.over();

// Invokes B's version of overriddenClassMeth()

bInstance.over();

version of over() ,
overriddenClassMeth()
resolves to
B.overriddenClassMeth(
) . To invoke A 's
version of the method,
use the qualified
reference
A.overriddenClassMeth(
) .

Notice that when an
unqualified reference is
used, the version of the
method invoked is that
of the class that
contains the method
call.

[2] The same access rules apply to class properties as to class methods.

6.4.5.3 Member access from an overridden method invoked via super

A method in a superclass that is overridden by a method in a subclass is known as an overridden instance
method . As we learned earlier, an overridden instance method can be invoked via the keyword super .
For example, in the following code, the overridden method, over() , in class A is invoked via super from
the overriding method of the same name in class B :

class A {

 public function over ():Void {

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class B extends A {

 public function over ():Void {

 super.over();

 }

}

Note the difference between using an inherited method versus calling an overridden method via super . In
the former case, the subclass does not define the method but rather implicitly executes the method
inherited from the superclass. In the latter case, the subclass's overriding method must use super to
explicitly call the overridden superclass method.

In the following code, we invoke the over() method on an instance of B . Without looking at the class
definitions we can't tell that it invokes A.over() via super behind the scenes. In fact, in a properly
designed object-oriented application, the internal implementation should be of no concern to the external
code calling the class.

var bInstance:B = new B();

bInstance.over();

Member access from an overridden method is the same as from an inherited method, as shown in Table
6-3 . The following code shows you the syntactical difference between overridden method access and
inherited method access. Despite the difference in code, the Notes column in Table 6-3 pertains verbatim
to member access from overridden methods. See also the earlier sections "Overriding Properties" and
"Overriding Instance Methods."

Here, we invoke the overridden method, over(), via super , which in turn invokes otherMethOfA() :

class A {

 public function over ():Void {

 // Executes otherMethOfA()

 otherMethOfA();

 }

 public function otherMethOfA():Void {

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class B extends A {

 public function over ():Void {

 // Executes A's version of over()

 super.over();

 }

}

// Usage:

var bInstance:B = new B();

bInstance.over();

Here, we invoke the inherited method, methOfA() , which in turn invokes otherMethOfA() :

// ==== Inherited method access ====

class A {

 public function methOfA():Void {

 // Executes otherMethOfA()

 otherMethOfA();

 }

 public function otherMethOfA():Void {

 }

}

class B extends A {

}

// Usage:

var bInstance:B = new B();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

bInstance.methOfA();

The complexity of overridden member access in Tables Table 6-3 and Table 6-4 is, in itself, a warning to
the developer not to override methods lightly.

Always use caution when overriding members. Excessive overriding can lead to
unmanageable, confusing source code. If you can't easily predict the runtime
results of your code's overridden member access, you should simplify your code.

Now that we've learned how member access works in inherited and overridden instance methods, let's
see how it works in inherited and overridden class methods.

6.4.6 Member Access from Inherited and Overridden Class Methods

Compared to instance method member access, member access from class methods is quite restricted. A
class method cannot use the keyword super to refer to members of a superclass. Neither can it refer to
instance properties or instance methods.

A class method, whether overridden or not, is allowed to access other class
methods and class properties only.

However, even within these restrictions, member access from a class method has the potential to be
confusing. For clarity of code (and your own sanity), you should always refer to class methods and class
properties through a fully qualified class reference (e.g., SomeClass.someMethod() , not someMethod()
).

The potential for confusion lies once again in the compiler's automatic resolution of unqualified member
references. Let's take a walk through this bramble, starting with a class, A , that defines a single class
method, m() , and a single class property, p .

class A {

 public static var p:String = "Hello there";

 public static function m ():Void {

 trace(p);

 }

}

As we learned earlier, at compile time, unqualified static member references (such as p) are resolved to

qualified references of the form:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ClassName.memberName

where ClassName is the name of the class that contains the member reference and memberName is the

name of the member.

Hence, when the compiler compiles the preceding code for class A , it resolves the unqualified property p
in method m() to the qualified reference: A.p . Once the compiler's work is done, the bytecode for

method m() effectively reads:

public static function m ():Void {

 trace(A.p);

}

Therefore, when we invoke m() through A :

A.m();

it displays the value of A.p , namely:

Hello there

So far, so good. Now suppose class B extends class A , adding no properties or methods of its own:

class B extends A {

}

When we invoke m() through B :

B.m();

it likewise displays the value of A.p , namely:

Hello there

Why? Because class A was compiled exactly as before, and the unqualified reference p in the method m()
was resolved to A.p .

Invoking m() through B at runtime has no impact on what has already happened
at compile time.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now things get interesting. Let's override the class property p in class B :

class B extends A {

 public static var p:String = "Goodbye";

}

Once again, we invoke m() through B :

B.m();

and the output is again :

Hello there

What's going on here? Our class B now defines its own property, p . And the method m() was invoked
through B . So we might think the property reference to p in the method m() should yield the value of
B.p ("Goodbye") rather than the value of A.p ("Hello there"). As tempting as that line of thinking is, we'd

be wrong. It's worth repeating: invoking m() through B at runtime has no impact on what has already
happened at compile time . The compile-time conversion of p to A.p is permanent, and it happens
regardless of our creation of B.p and our invocation of m() through B . While we may think that our code

ambiguously reads:

public static function m ():Void {

 trace(p);

}

To the interpreter, it reads, unambiguously as:

public static function m ():Void {

 trace(A.p);

}

Despite our best efforts, we cannot convince the interpreter that we mean B.p when we refer to the
unqualified property p from within a static method of A . (You should be starting to see why qualified

references to static members are so much clearer than unqualified references.)

We're almost out of the bramble.

Suppose we now override both the class method m() and the class property p in B :

class B extends A {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public static var p:String = "The property B.p";

 public static function m ():Void {

 trace(p);

 }

}

At compile time, the reference in B.m() to p resolves to: B.p . So this time if we invoke m() through B :

B.m();

we're invoking B 's version of the method, so the output is:

Goodbye

And if we invoke m() through A :

A.m();

we're invoking A 's version of the method, so the output is:

Hello there

Finally, we have what we wanted. Each class method displays the class property defined within its class.

The moral of the story is "Always qualify your static member references."

Hopefully this little journey through the bramble will help us avoid similar thorns in our code.

6.4.7 Best Practices for Overriding

So far, our consideration of overriding in ActionScript 2.0 has been limited to "like members." That is,
we've seen how an instance method can override another instance method or how a class property can
override another class property. But we haven't discussed what happens when, say, an instance property
overrides a class method. We've specifically avoided this topic, because even though ActionScript 2.0
allows a property to override a method, doing so is atrocious OOP form.

In fact, ActionScript does not prevent any kind of overriding. If a member in a subclass has the same
name as a member in its superclass, the subclass's version overrides the superclass version. If the two

http://lib.ommolketab.ir
http://lib.ommolketab.ir

members are both methods, they can have any number of parameters, any types of parameters, any
return type, or any access level (public or private). If one member is a class member, the other can be
an instance member. If one member is a property, the other can be a method. As long as the names of
the members match, the override is legal. This extremely lenient behavior is a departure from the ECMA
specification and should not be relied on.

For guidance on what constitutes best practices for overriding, we'll start with Java's rules. Note that, in
Java, "properties" are called "variables," and for technical reasons, only instance methods are said to
"override" each other. Variables and class methods are said to "hide" (not "override") each other.
However, to maintain our ActionScript perspective in the following discussion, we'll use ActionScript's
terminology even though we're describing Java's rules.

In Java, a legal override of a method must obey these rules:

Both methods must be instance methods, or both methods must be class methods. An instance
method cannot override a class method and vice versa.

Both methods must have the same name.

Both methods must have the same number of parameters. (ActionScript 2.0 developers must
sometimes ignore this rule; see the later explanation.)

The parameters of both methods must have the same datatypes. (ActionScript 2.0 developers must
sometimes ignore this rule; see the later explanation.)

Both methods must have the same return type.

The overriding method must be at least as accessible as the overridden method (that is, the
overriding method can't be private if the overridden method is public).

In Java, an instance property can override an instance property or a class property. The reverse is also
true-a class property can override an instance property or a class property. However, as noted earlier,
it's clearest to override instance properties only with other instance properties and class properties only
with other class properties.

Table 6-5 summarizes Java's member overriding rules. When programming in ActionScript, it's wise to
follow them, with one exception: in ActionScript, it is legitimate to change the number, datatype(s), and
order of parameters for a method when overriding it. The method doing the overriding might need to offer
different parameters in order to handle a specialized situation. In Java, defining a subclass method with
the same name as a superclass method, but with a different number, datatype(s), or order of parameters
constitutes a method overload , not a method override . That is, in Java, rather than obscuring the
superclass's method, the subclass's version of the method coexists with the superclass's version.
ActionScript does not support overloading, so the incongruent-parameter override is considered
acceptable.

Table 6-5. Overriding members in Java

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member
overridden

Overriding
member is an

instance method

Overriding
member is a class

method

Overriding member
is an instance

property

Overriding
member is a class

property

Instance
method

Legal, with
restrictions listed
earlier

Illegal Coexistence[3] Coexistence[3]

Class method Illegal
Legal, with
restrictions listed
earlier

Coexistence[3] Coexistence[3]

Instance
property

Coexistence[3] Coexistence[3] Legal Legal

Class
property

Coexistence[3] Coexistence[3] Legal Legal

[3] In Java, there is effectively no override because the property and method of the same name can coexist.
ActionScript does not allow a property and a method in the same class to have the same name. This form of member
overriding should be avoided in ActionScript.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.5 Constructor Functions in Subclasses

Now that we've studied the behavior of properties in relation to inheritance, let's turn our attention to
constructors, which we first discussed in Chapter 4.

A constructor function initializes the instances of a class by:

Calling methods that perform setup tasks

Setting properties on the object being created

When a class is extended, the subclass can define a constructor function of its own. A subclass
constructor is expected to:

Perform setup tasks related to the subclass

Set properties defined by the subclass

Invoke the superclass constructor (sometimes called the superconstructor)

In all inheritance relationships, setup and property initialization relating to the superclass occur in the
superclass constructor, not in the subclass constructor.

A subclass constructor function, if specified, is formally required to invoke its
superclass constructor, via the keyword super, as the first statement in the
function. If no such invocation is provided, the compiler adds a no-argument
superclass constructor call automatically.

For example, here is a simple subclass function definition:

class A {

 public function A () {

 }

}

class B extends A {

 // Subclass constructor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public function B () {

 // Invoke superclass's constructor function explicitly

 super();

 }

}

The following two constructor function definitions are functionally synonymous. In the first case, we
provide a call to super() explicitly; in the second case, the compiler provides the call to super()
implicitly:

public function B () {

 // Invoke superclass's constructor function explicitly.

 super();

}

public function B () {

 // No constructor call. The compiler provides one implicitly.

}

In general, it's good form to always provide a call to super() in a subclass constructor, even if that
call has no arguments. If you intentionally omit the call to super(), be sure to add a comment
explaining why; otherwise, it may look as if you simply forgot it.

If a subclass does not define a constructor function at all, the compiler automatically creates one and
adds a call to super() as its only statement. Hence, the following two definitions of the class B are
functionally identical; the first is an explicit version of what the compiler creates automatically in the
second:

// Explicitly provide constructor

class B extends A {

 // Declare a constructor explicitly

 public function B () {

 // Invoke superclass's constructor function explicitly

 super();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

}

// Let compiler create default constructor automatically

class B extends A {

}

Invoking super() anywhere but as the first statement of a subclass constructor function causes the
following error:

The superconstructor must be called first in the constructor body.

Furthermore, super() must not be used twice in a constructor function. (Using super() twice also
yields the preceding error message because the second use is not the constructor's first statement.)

Restricting super() to the first line of a constructor function has the following benefits:

Prevents methods from being called on an object that has not yet been initialized.

Prevents property access on an object that has not yet been initialized.

Prevents property assignments in the superclass constructor from overwriting property
assignments in the subclass constructor.

Guarantees that constructors in a class hierarchy execute from the top down. For example, if
class C extends B which extends A, then when a new C instance is created, A's constructor runs
first, then B's, then C's.

Don't confuse the two forms of the super operator. The first form, super(),
invokes a superclass's constructor function. The second form,
super.methodName(), invokes a superclass's method. The first form is allowed
only as the first statement of a constructor function. The second form is allowed
anywhere in a constructor function or instance method and can be used
multiple times.

A subclass constructor function can (and often does) define different parameters than its superclass
counterpart. This technique allows a subclass to alter the way its superclass instantiates objects. For
example, suppose a Rectangle class defines a constructor with width and height parameters. A
Square subclass could provide its own constructor that defines a single side parameter (squares

have the same width and height, so specifying both is redundant). Example 6-3 shows the code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 6-3. The Rectangle and Square constructors

class Rectangle {

 private var w:Number = 0;

 private var h:Number = 0;

 // Rectangle constructor

 public function Rectangle (width:Number, height:Number) {

 setSize(width, height);

 }

 public function setSize (newW:Number, newH:Number):Void {

 w = newW;

 h = newH;

 }

 public function getArea ():Number {

 return w * h;

 }

}

class Square extends Rectangle {

 // Square constructor

 public function Square (side:Number) {

 // Pass the side parameter onto the Rectangle constructor.

 super(side, side);

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Earlier in this chapter, we implemented the Square.setSize() method

 // with two parameters (newH and newW). This time we'll streamline

 // the method, allowing only a single parameter to be passed.

 public function setSize (side:Number):Void {

 super.setSize(side, side);

 }

}

When defining a subclass's constructor function, be careful not to unintentionally disable the behavior
of a superclass's constructor. In the following example, the ColoredBall class erroneously defines a
constructor function that doesn't supply necessary information to its superclass's constructor
function:

class Ball {

 private var r:Number;

 public function Ball (radius:Number) {

 r = radius;

 }

}

class ColoredBall extends Ball {

 private var c:Number;

 // Here's the problematic constructor...

 public function ColoredBall (color:Number) {

 // OOPs! No call to super(), so all ColoredBalls

 // will start with no radius!

 c = color;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

}

Wait a minute. Doesn't the compiler automatically supply the call to super()? Yes, it does; however,
the implicit call to super() doesn't include the necessary radius parameter.

As written, the ColoredBall constructor does not allow us to create a ColoredBall instance with an
initial radius defined. Therefore, the ColoredBall constructor must not call only super(), but it must
also accept radius as a parameter and pass it on to the superclass constructor. Here's the corrected

version of ColoredBall, which preserves the Ball constructor's behavior:

class ColoredBall extends Ball {

 private var c:Number;

 // All fixed up...

 public function ColoredBall (radius:Number, color:Number) {

 super(radius);

 c = color;

 }

}

Notice that, as a matter of good form, we list the superclass's constructor arguments first (in this
case, the radius), then the additional subclass constructor arguments (in this case, the color).

6.5.1 Extraneous Superclass Constructor Invocation in Flash Player 6

Due to the historical architecture of ActionScript 1.0, in Flash Player 6-format .swf files, a class's
constructor function executes needlessly once for each of its subclasses. For example, the following
code shows two simple classes, A and B. Class A's constructor reports a message to the Output panel
when it runs. Class B does nothing but extend class A.

class A {

 public function A () {

 trace("A's constructor was executed.");

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class B extends A {

}

Class A has one subclass, B; hence, in a Flash Player 6-format .swf file, class A's constructor executes
once, needlessly, even if no instance of A or B is ever created. For example, if the following code
appears in a .fla file, then A's constructor will run:

var bInstance:B;

Extraneous constructor executions can perform unwanted tasks, such as attaching a movie clip or
incrementing an instance counter. To prevent unwanted code execution, use a parameter that
indicates that the constructor is being called intentionally. For example:

class A {

 public function A (doConstruct:Boolean) {

 if (doConstruct) {

 // Normal constructor code goes here.

 }

 }

}

class B extends A {

 public function B () {

 // Pass true to the constructor to tell it to perform initialization.

 super(true);

 }

}

This problem does not affect Flash Player 7-format .swf files that use ActionScript 2.0. For much
more information, see Chapter 12 of ActionScript for Flash MX: The Definitive Guide (O'Reilly).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.6 Subclassing Built-in Classes

Just as we can create subclasses of our own custom classes, we can also create subclasses of
ActionScript's built-in classes, allowing us to implement specialized functionality based on an existing
ActionScript class. For example, suppose we wanted to implement a timediff() method that would
return the amount of time, in milliseconds, between two Date instances. We could put timediff() on a
Date subclass named DateDeluxe, as follows:

class DateDeluxe extends Date {

 public function DateDeluxe (year:Number, month:Number, date:Number,

 hour:Number, min:Number,

 sec:Number, ms:Number) {

 super(year, month, date, hour, min, sec, ms);

 }

 public function timediff (d:Date):Number {

 return Math.abs(this.getTime() - d.getTime());

 }

}

Notice that the DateDeluxe class must provide a constructor function that forwards arguments to the
Date class constructor. Here's how we'd use the new DateDeluxe class:

// Make a DateDeluxe instance

var d1:DateDeluxe = new DateDeluxe();

// Waste some time...

for (var i:Number = 0; i < 10000; i++) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Dum dee dum...

}

// Make another DateDeluxe instance

var d2:DateDeluxe = new DateDeluxe();

// Show the elapsed time between d1 and d2

trace(d1.timediff(d2));

As attractive as the DateDeluxe example is, not all built-in ActionScript classes can be subclassed,
due to various implementation factors. For example, the TextField class cannot be subclassed
because there's no way to create a TextField subclass instance via MovieClip.createTextField(); that
method creates instances only of the TextField class and cannot be instructed to create an instance of
a TextField subclass. (Instance of TextField cannot be created via new TextField().)

Similarly, the XML class cannot be subclassed in many situations because it provides no way to
specify the class to use when creating child nodes (which are instances of XMLNode).

To circumvent the general problem of extending a nonextendable built-in class, you should use
composition instead of inheritance. We'll study composition later in this chapter, but briefly,
composition involves storing an instance of a class in a property and forwarding method and property
access to that instance. Example 6-4 uses composition to create a TextFieldDeluxe class that stores a
TextField instance in a property named tf. The TextFieldDeluxe class adds hypertext links to any text
assigned to the htmlText property. An ActionScript 2.0 setter method, htmlText(), intercepts the
property assignment before forwarding it on to the tf instance. The code shows only part of the

class, giving you enough to understand how the method and property forwarding aspects work. The
remainder of the class (not shown) would be implemented in the same way.

Example 6-4. Creating a subclass using composition

class TextFieldDeluxe {

 private var tf:TextField;

 public function TextFieldDeluxe (target:MovieClip, name:String,

 depth:Number, x:Number, y:Number,

 w:Number, h:Number) {

 target.createTextField(name, depth, x, y, w, h);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 tf = target[name];

 }

 public static function addLinks (s:String):String {

 // The real implementation of link insertion is not shown here.

 // Instead, we just add some text to the string, as a proof of concept.

 return s + "[LINK ADDED HERE]";

 }

 public function set htmlText (s:String):Void {

 tf.htmlText = TextFieldDeluxe.addLinks(s);

 }

 public function get htmlText ():String {

 return tf.htmlText;

 }

 public function addListener (listener:Object):Boolean {

 return tf.addListener(listener);

 }

 public function getDepth ():Number {

 return tf.getDepth();

 }

 // ...Remainder of class not shown

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

Here's how we'd use the TextFieldDeluxe class:

var tfd:TextFieldDeluxe = new TextFieldDeluxe(someClip_mc, "theField", 1,

 20, 20, 400, 200);

// Text field displays: Hello world[LINK ADDED HERE]

tfd.htmlText = "Hello world";

trace(tfd.getDepth()); // Output panel displays: 1

6.6.1 Built-in Classes that Store Function Libraries

Some built-in ActionScript classes are simply collections of class methods and class properties-the
Math, Key, Mouse, Selection, and Stage classes exist merely to store related functions and variables
(e.g., Math.random() and Key.ENTER). Rather than subclassing these classes, also known as static

function libraries , you should distribute your own static function libraries separately. For example,
rather than adding a factorial() method to a subclass of the Math class, you should create a custom
class, say AdvancedMath, to hold your factorial() method. The AdvancedMath class need not
(indeed, should not) be related to the Math class via inheritance.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.7 Augmenting Built-in Classes and Objects

In the previous section we learned how to subclass a built-in class. New properties and methods can
also be added directly to an existing built-in class, without subclassing it. However, the technique
uses an old-school ActionScript 1.0 hack, is heavy-handed, and requires that we break the important
OOP precept that warns us to keep method and property definitions contained within a class
definition. Nevertheless, it does work and can be convenient if used sparingly and prudently.

Here's the general syntax for adding a new method to a built-in class at runtime:

ClassName.prototype.methodName = function (param1, param2, ...paramn) {

 statements

};

Here's the general syntax for adding a new property to a built-in class at runtime:

ClassName.prototype.propertyName = value;

For example, the following code adds a new method, isEmpty(), to the built-in String class. The
isEmpty() method returns true when a string has no characters in it; otherwise, false:

String.prototype.isEmpty = function () {

 return (this == "") ? true : false;

};

// Usage example:

var s1:String = "Hello World";

var s2:String = "";

trace(s1.isEmpty()); // Displays: false

trace(s2.isEmpty()); // Displays: true

http://lib.ommolketab.ir
http://lib.ommolketab.ir

However, the previous code example-and this entire technique-has a problem: the newly defined
method or property isn't added until runtime; therefore, the compiler has no idea that the new
member exists and will generate an error if it is used with typed data. For example, the code in the
preceding example creates two typed variables, s1 and s2, so the code yields this error:

There is no method with the name 'isEmpty'.

To avoid this problem, we're forced into a nasty, hacked solution. We inform the compiler that we've
defined a String.isEmpty() method by adding it to the String class's intrinsic class definition, found in
the location listed next. In each of the following file paths, substitute your operating-system user-
account name for USER and your Flash language code for LANGUAGE CODE (the LANGUAGE CODE for

English is "en"):

Built-in String intrinsic class definition on Windows (this folder is a hidden folder on some
computers):

c:\Documents and Settings\USER\Local Settings\Application Data\Macromedia\Flash MX
2004\LANGUAGE CODE\Configuration\Classes\String.as

Built-in String intrinsic class definition on Mac:

HD:/Users/USER/Library/Application Support/Macromedia/Flash MX 2004/LANGUAGE
CODE/Configuration/Classes/String.as

Here's an excerpt from a modified version of the String.as intrinsic class definition. It shows only the
new method and doesn't show the rest of the intrinsic class definition:

//***

// ActionScript Standard Library

// String object

//***

intrinsic class String

{

 // We add this line to the file so that the compiler

 // knows about our new isEmpty() method

 function isEmpty():Boolean;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

The String.as fix itself has a problem: it must be implemented on every computer that uses the
String.isEmpty() method. That is, if you fix the String.as file on your work computer and then take
your work home, you'll have to fix it on your home computer too. This makes the source code
distribution for any application that uses String.isEmpty() very awkward, particularly if more than
one application on your system requires changes to the String.as file! Hence, as mentioned earlier,
you should use this technique only when absolutely necessary, and you should be particularly
hesitant to use it if you plan on distributing your code among a team or to the public. In fact, if
you're convinced you regularly need to add new methods and properties to built-in classes, you may
simply want to use ActionScript 1.0 or perhaps not declare datatypes in your ActionScript 2.0 code.
In ActionScript 2.0, you should avoid the practice unless you are working with old code.

The compiler does not generate errors when new methods or properties are
accessed on the following built-in classes: Array, ContextMenu,
ContextMenuItem, Function, FunctionArguments (a.k.a. the Arguments object),
LoadVars, MovieClip, Object, and TextField. Those classes are all defined as
dynamic, which allows new methods and properties to be added to their
instances without errors.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.8 The Theory of Inheritance

So far this chapter has focused mainly on the practical details of using inheritance in ActionScript 2.0.
But the theory of why and when to use inheritance in OOP runs much deeper than the technical
implementation. Before we conclude, let's consider some basic theoretical principles, bearing in mind
that a few pages is hardly enough room to do the topic justice. For a much more thorough
consideration of inheritance theory, see Using Inheritance Well
(http://archive.eiffel.com/doc/manuals/technology/oosc/inheritance-design/page.html), an online
excerpt from Bertrand Meyer's illuminating work Object-Oriented Software Construction (Prentice
Hall).

6.8.1 Why Inheritance?

Superficially, the obvious benefit of inheritance is code reuse. Inheritance lets us separate a core
feature set from customized versions of that feature set. Code for the core is stored in a superclass
while code for the customizations is kept neatly in a subclass. Furthermore, more than one subclass
can extend the superclass, allowing multiple customized versions of a particular feature set to exist
simultaneously. If the implementation of a feature in the superclass changes, all subclasses
automatically inherit the change.

But inheritance also lets us express the architecture of an application in hierarchical terms that mirror
the real world and the human psyche. For example, in the real world, we consider plants different
from animals, but we categorize both as living things. We consider cars different from planes, but we
see both as vehicles. Correspondingly, in a human resources application, we might have an Employee
superclass with Manager, CEO, and Worker subclasses. Or, in a banking application, we might create
a BankAccount superclass with CheckingAccount and SavingsAccount subclasses. These are canonical
examples of one variety of inheritance sometimes called subtype inheritance, in which the
application's class hierarchy is designed to model a real-world situation (a.k.a. the domain or problem
domain).

However, while the Employee and BankAccount examples make attractive demonstrations of
inheritance, not all inheritance reflects the real world. In fact, overemphasizing real-world modeling
can lead to miscomprehension of inheritance and its subsequent misuse. For example, given a Person
class, we might be tempted to create Female and Male subclasses. These are logical categories in the
real world, but if the application using those classes were, say, a school's reporting system, we'd be
forced to create MaleStudent and FemaleStudent classes just to preserve the real-world hierarchy. In
our program, male students do not define any operations differently from female students and,
therefore, should be used identically. Hence, the real-world hierarchy in this case conflicts with our
application's hierarchy. If we need gender information, perhaps simply for statistics, we're better off
creating a single Student class and simply adding a gender property to the Person class. As tempting

as it may be, we should avoid creating inheritance structures based solely on the real world rather
than the needs of your software.

Finally, in addition to code reuse and logical hierarchy, inheritance allows instances of different
subtypes to be used where a single type is expected. Known as polymorphism, this important benefit

http://archive.eiffel.com/doc/manuals/technology/oosc/inheritance-design/page.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

warrants a discussion all its own.

6.8.2 Polymorphism and Dynamic Binding

Polymorphism is a feature of all truly object-oriented languages, wherein an instance of a subclass
can be used anywhere an instance of its superclass is expected. The word polymorphism itself means
literally "many forms"-each single object can be treated as an instance of its own class or as an
instance of any of its superclasses.

Polymorphism's partner is dynamic binding, which guarantees that a method invoked on an object
will trigger the behavior defined by that object's actual class (no matter what the type of the data
container in which the object resides).

Don't confuse dynamic binding, which occurs at runtime, with static type
checking, which occurs at compile time. Dynamic binding takes into
consideration the class of the instance stored in a variable, whereas static type
checking does the opposite-it ignores the datatype of the data and considers
only the declared datatype of the variable.

Let's see an example at work, and then we'll reconcile this new information with what we learned
earlier in Chapter 3 regarding type checking and type casting.

The canonical example of polymorphism and dynamic binding is a graphics application that displays
shapes. The application defines a Shape class with an unimplemented draw() method:

class Shape {

 public function draw ():Void {

 // No implementation. In other languages, draw() would be

 // declared with the abstract attribute, which syntactically

 // forces subclasses of Shape to provide an implementation.

 }

}

The Shape class has several subclasses-a Circle class, a Rectangle class, and a Triangle class, each
of which provides its own definition for the draw() method:

class Circle extends Shape {

 public function draw ():Void {

 // Code to draw a Circle on screen, not shown...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

}

class Rectangle extends Shape {

 public function draw ():Void {

 // Code to draw a Rectangle on screen, not shown...

 }

}

class Triangle extends Shape {

 public function draw ():Void {

 // Code to draw a Triangle on screen, not shown...

 }

}

The application stores many different Circle, Rectangle, and Triangle instances in an array named
shapes. The shapes array could be created by the user or generated internally. For this example,

we'll populate it with 10 random shapes:

var rand:Number;

var shapes:Array = new Array();

for (var i:Number = 0; i < 10; i++) {

 // Retrieve a random integer from 0 to 2

 rand = Math.floor(Math.random() * 3);

 if (rand == 0) {

 shapes[i] = new Circle();

 } else if (rand == 1) {

 shapes[i] = new Rectangle();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 } else if (rand == 2) {

 shapes[i] = new Triangle();

 }

}

When it comes time to update the screen, the application runs through its shapes array, invoking

draw() on each element without knowing (or caring) whether the element contains a Circle,
Rectangle, or Triangle instance:

for (var i:Number = 0; i < shapes.length; i++) {

 shapes[i].draw();

}

In the preceding loop, dynamic binding is the runtime process by which each invocation of draw() is
associated with the appropriate implementation of that method. That is, if the instance is a Circle, the
interpreter invokes Circle.draw(); if it's a Rectangle, the interpreter invokes Rectangle.draw(); and
if it's a Triangle, the interpreter invokes Triangle.draw(). Importantly, the class of each instance in
shapes is not known at compile time. The random shapes array is generated at runtime, so the

appropriate version of draw() to invoke can be determined only at runtime. Hence, dynamic binding
is often called late binding: the method call is bound to a particular implementation "late" (i.e., at
runtime).

You might ask how this dynamic binding example differs from the code example under "Casting" in
Chapter 3, reproduced here for your convenience:

var ship:EnemyShip = theEnemyManager.getClosestShip();

if (ship instanceof Bomber) {

 Bomber(ship).bomb(); // Cast to Bomber

} else if (ship instanceof Cruiser) {

 Cruiser(ship).evade(); // Cast to Cruiser

} else if (ship instanceof Fighter) {

 Fighter(ship).callReinforcements(); // Cast to Fighter

 Fighter(ship).fire(); // Cast to Fighter

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The preceding code checks ship's datatype using the instanceof operator and then casts it to the

Bomber, Cruiser, or Fighter class before invoking a method, such as bomb(), evade(), or fire(). So
why doesn't our shapes example check the class of each array element or perform any type casting?

Well, for one thing, the compiler doesn't perform type checking on array elements accessed with the
[] operator. So let's take the array access out of the equation and simplify the situation as follows:

var someShape:Shape = new Circle();

someShape.draw(); // Invokes Circle.draw() not Shape.draw()

In this case, the compiler checks the datatype of the someShape variable, namely Shape, and

confirms that the Shape class defines draw(). However, at runtime, thanks to dynamic binding, the
call to shape.draw() invokes Circle.draw() instead of Shape.draw(). (The draw() method happens

to be declared on the Circle class, but if it weren't, Circle would still inherit draw() from the Shape
class.)

In contrast, the bomb(), evade(), and fire() methods are not declared in the EnemyShip class.
Those methods are declared only in the Bomber, Cruiser, and Fighter subclasses, so our EnemyShip
example needs to perform casting to prevent compiler errors and manual type checking (using
instanceof) to prevent runtime errors. So our Shape example is simplified by the fact that the
superclass defines a method named draw(), which is common to all its subclasses.

Dynamic binding means that the runtime interpreter ignores the datatype of
the container and instead considers the class of the data in the container. In
this case, the interpreter ignores the Shape.draw() method in the superclass
and instead uses the overriding subclass version, Circle.draw(), because shape

holds a Circle instance despite being declared with the Shape datatype.

To bring the discussion full circle, let's revisit our Ball and Basketball example, also from Chapter 3:

var ball1:Ball = new Basketball(); // Legal, so far...

if (ball1 instanceof Basketball) { // Include manual runtime type checking

 Basketball(ball1).inflate(); // Downcast prevents compiler error!

}

Here we see again the advantage of late binding. The manual downcast to the Basketball type is
purely for the compiler's benefit. However, dynamic binding ensures that the Basketball.inflate()
method is invoked because the interpreter recognizes that ball1 stores an instance of type

Basketball even though the variable's datatype is Ball. What if we store a Ball instance instead of a
Basketball instance in ball1? See the following code snippet (changes shown in bold):

var ball1:Ball = new Ball(); // Store a Ball instance

if (ball1 instanceof Basketball) { // Include manual type checking

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Basketball(ball1).inflate(); // Cast to Basketball type

}

In this case, the manual runtime type checking (the if statement) prevents the interpreter from
executing Basketball(ball1).inflate(). See that! Manual type checking works! But let's remove

the type checking and try again:

var ball1:Ball = new Ball(); // Store a Ball instance

Basketball(ball1).inflate(); // This cast is a "lie"

Here, the cast to the Basketball type is a "lie." The attempt to invoke inflate() fails at runtime
because the cast to Basketball fails and, hence, returns null. The interpreter can't invoke inflate()
(or any other method) on null.

The key benefit of dynamic binding and polymorphism is containment of changes to code.
Polymorphism lets one part of an application remain fixed even when another changes. For example,
let's consider how we'd handle the random list of shapes if polymorphism didn't exist. First, we'd
have to use unique names for each version of draw():

class Circle extends Shape {

 public function drawCircle ():Void {

 // Code to draw a Circle on screen, not shown...

 }

}

class Rectangle extends Shape {

 public function drawRectangle ():Void {

 // Code to draw a Rectangle on screen, not shown...

 }

}

class Triangle extends Shape {

 public function drawTriangle ():Void {

 // Code to draw a Triangle on screen, not shown...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

}

Then we'd have to check the class of each shape element manually and invoke the appropriate draw

method, as follows:

for (var i:Number = 0; i < shapes.length; i++) {

 if (shapes[i] instanceof Circle) {

 shapes[i].drawCircle();

 } else if (shapes[i] instanceof Rectangle) {

 shapes[i].drawRectangle ();

 } else if (shapes[i] instanceof Triangle) {

 shapes[i].drawTriangle();

 }

}

That's already more work. But imagine what would happen if we added 20 new kinds of shapes. For
each one, we'd have to update and recompile the code in the preceding examples. In a polymorphic
world, we don't have to touch the code that invokes draw() on each Shape instance. As long as each
Shape subclass supplies its own valid definition for draw(), our application will "just work" without
other changes.

Polymorphism not only lets programmers collaborate more easily, but it allows them to use and
expand on a code library without requiring access to the library's source code. Some argue that
polymorphism is OOP's greatest contribution to computer science.

6.8.3 Inheritance Versus Composition

In this chapter, we focused most of our attention on one type of interobject relationship: inheritance.
But inheritance isn't the only game in town. Composition, an alternative form of interobject
relationship, often rivals inheritance as an OOP design technique. In composition, one class (the front
end class) stores an instance of another class (the back end class) in an instance property. The front
end class delegates work to the back end class by invoking methods on that instance. Here's the
basic approach, shown in code:

// The back end class is analogous to the superclass in inheritance.

class BackEnd {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public function doSomething () {

 }

}

// The front end class is analogous to the subclass in inheritance.

class FrontEnd {

 // An instance of the back end class is stored in

 // a private instance property, in this case called be.

 private var be:BackEnd;

 // The constructor creates the instance of the back end class.

 public function FrontEnd () {

 be = new BackEnd();

 }

 // This method delegates work to BackEnd.doSomething().

 public function doSomething () {

 be.doSomething();

 }

}

Notice that the FrontEnd class does not extend the BackEnd class. Composition does not require or
use its own special syntax, as inheritance does. Furthermore, the front end class may use a subset of
the methods of the back end class, or it may use all of them, or it may add its own unrelated
methods. The method names in the front end class might match those exactly in the back end class,
or they might be completely different. The front end class can constrain, extend, or redefine the back
end class's features, just like a subclass in inheritance, as briefly outlined earlier in Example 6-4.

Example 6-3 showed how, using inheritance, a Square class could constrain the behavior of a
Rectangle class. Example 6-5 shows how that same class relationship can be implemented with
composition instead of inheritance. In Example 6-5, notice that the Rectangle class is unchanged. But
this time, the Square class does not extend Rectangle. Instead, it defines a property, r, that contains

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a Rectangle instance. All operations on r are filtered through Square's public methods. The Square
class forwards, or delegates, method calls to r.

Example 6-5. An example composition relationship

// The Rectangle class is unchanged from Example 6-3.

class Rectangle {

 private var w:Number = 0;

 private var h:Number = 0;

 public function Rectangle (width:Number, height:Number) {

 setSize(width, height);

 }

 public function setSize (newW:Number, newH:Number):Void {

 w = newW;

 h = newH;

 }

 public function getArea ():Number {

 return w * h;

 }

}

// Here's the new Square class.

// Compare with the version under "Invoking an Overridden Instance Method."

class Square {

 private var r:Rectangle;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public function Square (side:Number) {

 r = new Rectangle(side, side);

 }

 // Note that we use our earlier version of Square.setSize(), which defines

 // two parameters, newW and newH. We stick to the original implementation

 // for the sake of direct comparison, rather than implementing a more

 // elegant version, which would define a single sideLength parameter only.

 public function setSize (newW:Number, newH:Number):Void {

 if (newW == newH) {

 r.setSize(newW, newH);

 }

 }

 public function getArea ():Number {

 return r.getArea();

 }

}

6.8.3.1 Is-A, Has-A, and Uses-A

In OOP parlance, an inheritance relationship is known colloquially as an " Is-A" relationship because,
from a datatype perspective, the subclass can be seen literally as being an instance of the superclass
(i.e., the subclass can be used wherever the superclass is expected). In our earlier polymorphic
example, a Circle "Is-A" Shape because the Circle class inherits from the Shape class and can be used
anywhere a Shape is used.

A composition relationship is known as a "Has-A" relationship because the front end class stores an
instance of the back end class (e.g., a ChessBoard "Has-A" Tile). The "Has-A" relationship should not
be confused with the "Uses-A" relationship, in which a class instantiates an object of another class
but does not store it in an instance property. In a "Uses-A" relationship, the class uses the object and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

throws it away. For example, a Circle might store its numeric color in a property, col ("Has-A"), but

then use a Color object temporarily to actually set that color on screen ("Uses-A").

In Example 6-5, our Square class "Has-A" Rectangle instance and adds restrictions to it that
effectively turn it into a Square. In the case of Square and Rectangle, the "Is-A" relationship seems
natural, but the "Has-A" relationship can also be used. Which begs the question: which relationship is
best?

6.8.3.2 When to use composition over inheritance

Example 6-5 raises a serious design question. How do you choose between composition and
inheritance? In general, it's fairly easy to spot a situation in which inheritance is inappropriate. An
AlertDialog instance in an application "has an" OK button, but an AlertDialog instance, itself, "isn't an"
OK button. However, spotting a situation in which composition is inappropriate is trickier, because
any time you can use inheritance to establish the relationship between two classes, you could use
composition instead. If both techniques work in the same situation, how can you tell which is the best
option?

If you're new to OOP, you may be surprised to hear that composition is often favored over
inheritance as an application design strategy. In fact, some of the best-known OOP design
theoreticians explicitly advocate composition over inheritance (see Design Patterns, published by
Addison-Wesley). Hence, conventional wisdom tells us to at least consider composition as an option
even when inheritance seems obvious. That said, here are some general guidelines to consider when
deciding whether to use inheritance or composition:

If a parent class needs to be used where a child class is expected (i.e., if you want to take
advantage of polymorphism), consider using inheritance.

If a class just needs the services of another class, you consider a composition relationship.

If a class you're designing behaves very much like an existing class, consider an inheritance
relationship.

For more advice on choosing between composition and inheritance, read Bill Venner's excellent
JavaWorld article, archived at his site: http://www.artima.com/designtechniques/compoinh.html. Mr.
Venner offers compelling evidence that, generally speaking:

Changing code that uses composition has fewer consequences than changing code that uses
inheritance.

Code based on inheritance generally executes faster than code based on composition. (This is
potentially important in ActionScript, which executes far more slowly than Java.)

In ActionScript, the composition versus inheritance debate most frequently appears when using the
MovieClip class. The debate is over whether one should subclass the MovieClip class or store a
MovieClip instance as a property of another class. Both approaches are acceptable, though MovieClip
inheritance is more complicated and requires use of a Library symbol in a .fla file. For an example of
MovieClip composition, see Chapter 5, in which the ImageViewer class uses a MovieClip to display an
image on screen. For an example of MovieClip inheritance, see Chapter 13. When working with the
MovieClip class, the preceding guidelines can help you determine whether to use inheritance or

http://www.artima.com/designtechniques/compoinh.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

composition.

6.8.3.3 Using composition to shed an old habit

Because ActionScript 1.0 leniently allowed properties to be added to any object of any class, some
Flash developers grew accustomed to forming marriages of convenience between completely
unrelated objects. For example, in order to load the coordinates for a "circle" movie clip, some
developers would marry an XML instance with a MovieClip instance, as follows:

// *** ActionScript 1.0 code ***

// Create an XML instance.

var coords = new XML();

// Store a reference to circle_mc directly on the

// coords instance, in a property named mc.

coords.mc = circle_mc;

// When the coordinates data loads, use the XML instance's

// mc property to transfer the loaded data to the circle_mc movie clip.

coords.onLoad = function ():Void {

 this.mc._x = parseInt(this.firstChild...); // XML node access not shown

 this.mc._y = parseInt(this.firstChild...); // XML node access not shown

};

// Load the coordinates data.

coords.load("circleCoords.xml");

We can correctly argue that the preceding ActionScript 1.0 practice contributes to:

Unreliable, ungeneralized application architecture

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Spaghetti code that is a tangle of special cases

Code that is difficult to follow, extend, and change

However, in ActionScript 2.0, there's a more practical problem: the previous code won't compile. In
ActionScript 2.0, it's illegal to add properties to a class unless the class is dynamic, which the XML
class is not. The rules of ActionScript 2.0 are designed to help programmers avoid such pitfalls.

An impulsive response to the situation would be: "Fine, what's the easiest way I can circumvent
ActionScript 2.0's strictness and add my property to the XML instance?" That kind of thinking might
lead to subclassing XML and adding the mc property to the subclass as follows:

class CoordsXML extends XML{

 private var mc:MovieClip;

 public function CoordsXML (mc:MovieClip, URL:String) {

 this.mc = mc;

 load(URL);

 }

 public function onLoad(success:Boolean):Void {

 mc._x = parseInt(firstChild...); // XML node access not shown

 mc._y = parseInt(firstChild...); // XML node access not shown

 }

}

Extending XML as shown technically works, but here we must return to our inheritance versus
composition question. Is the relationship we need simply a case of using the XML object to load data
(composition) or do we really need a new kind of XML object (inheritance)? It's not very natural to
claim that an XML subclass that arbitrarily stores a reference to a movie clip really "Is-A" kind of
XML. We don't need a new breed of XML here; we merely need to use XML to load some data. Hence,
the situation calls for more of a "Has-A," or even simply a "Uses-A," relationship. After all, we're
trying to represent a circle here. The means of transfer (the XML) and the means of display (the
MovieClip) are mere implementation details. That is, if we want a circle on screen, then we should
make a Circle class. The Circle class should deal with loading data and providing a draw-to-screen
method. How that actually happens is left up to the Circle class.

In the next example, the Circle class uses an XML instance to load data and a MovieClip instance to
draw to the screen. These two instances are stored as Circle properties, as follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class Circle {

 var coordsLoader:XML;

 var mc:MovieClip;

 public function Circle (target:MovieClip,

 symbolID:String,

 name:String,

 depth:Number) {

 mc = target.attachMovie(symbolID, name, depth);

 coordsLoader = new XML();

 }

 public function loadCoords (URL:String):Void {

 var clip:MovieClip = this.mc;

 coordsLoader.onLoad = function (success:Boolean):Void {

 if (success) {

 clip._x = parseInt(this.firstChild...); // XML node access not shown

 clip._y = parseInt(this.firstChild...); // XML node access not shown

 } else {

 // Handle a load error

 trace("Could not load coords from file: " + URL);

 }

 };

 coordsLoader.load(URL);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

}

With access to both instances, the Circle class can happily transfer loaded coordinates from the XML
file to the movie clip. Not only is this composition relationship more natural, but it lets us easily
change the implementation details later without breaking any code that uses the Circle class. For
example, we could change the XML instance to a LoadVars instance without affecting any external
code that invokes Circle.loadCoords().

Note that a Circle instance doesn't really have to store the XML instance in the coordsLoader

property. Instead, the Circle.loadCoords() method could store the XML instance in a local variable (in
other words, we could define a "Uses-A" relationship rather than a "Has-A" relationship). The latter
technique works but has a higher performance cost because the XML instance has to be constructed
anew every time loadCoords() is invoked.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.9 Abstract and Final Classes Not Supported

Many OOP designs require the use of a so-called abstract class. An abstract class is any class that
defines one or more abstract methods-methods that have a signature and a return type but no
implementation (i.e., no code in the method body). A class that wishes to extend an abstract class
must implement all of the superclass's abstract methods; otherwise, a compile-time error occurs. All
subclasses of an abstract class effectively promise to provide some real code to do a job the abstract
class only describes in theory.

Abstract classes are a common, important part of polymorphic designs. For example, in our earlier
discussion of polymorphism, we studied a Shape class with Circle, Rectangle, and Triangle
subclasses. Traditionally, the Shape class's draw() method would be defined as an abstract method,
guaranteeing that:

Each Shape subclass provides a means of drawing itself to the screen

External code can safely call draw() on any Shape subclass (the compiler will not let a class
extend Shape without implementing draw())

Unfortunately, ActionScript 2.0 does not yet support abstract classes or abstract methods. Instead of
defining an abstract method in ActionScript, we simply define a method with no code in its body. It's
left up to the programmer (not the compiler) to ensure that the subclasses of a would-be abstract
class implement the appropriate method(s).

In contrast to an abstract method, which must be implemented by a subclass, a final method is a
method that must not be implemented by a subclass; otherwise, a compile-time error occurs. Final
methods are used to prevent programmers from creating subclasses that accidentally introduce
problems into the behavior of a superclass or intentionally sabotage a superclass. Like abstract
methods, this useful OOP feature is not part of ActionScript 2.0 for Flash Player 7, but may be
implemented in the future.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

6.10 Let's Try Inheritance

We have studied a lot of theory in this chapter. When you're ready to see how inheritance feels in the
real world, move on to the next chapter, where the ImageViewer class is extended.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 7. Authoring an ActionScript 2.0
Subclass
In the preceding chapter, we learned the principles of inheritance in ActionScript 2.0. In this chapter,
we'll study an applied inheritance example, ImageViewerDeluxe. The ImageViewerDeluxe class is a
subclass of the ImageViewer class that we created in Chapter 5. You'll need the files from that
chapter for this tutorial (see Example 5-8 and "Using ImageViewer (Take 2)"), or you can download
them from http://moock.org/eas2/examples. The ImageViewerDeluxe source files discussed in this
chapter are available from the same URL.

 < Day Day Up >

http://moock.org/eas2/examples
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

7.1 Extending ImageViewer's Capabilities

Recall from Chapter 5 the list of possible functional requirements for our ImageViewer class:

Load an image

Display an image

Crop an image to a particular rectangular "view region"

Display a border around the image

Display image load progress

Reposition the view region

Resize the view region

Pan (reposition) the image within the view region

Zoom (resize) the image within the view region

The ImageViewer class already implements the first five requirements, but it stops there. In the
ImageViewerDeluxe class, we'll add the next two items on the list: the abilities to reposition and
resize the viewer. It's important to note that those features could easily have been added directly to
the ImageViewer class. For the sake of this example, we'll presume that we don't have access to the
ImageViewer source code, perhaps because it's a commercial component that isn't open source. In
other words, in this case we're using inheritance out of faux necessity, not because it necessarily
provides the best design. This often happens when working with standard class libraries and
components. In Part III, we'll study more complex interclass relationships, in which inheritance is a
matter of choice rather than circumstance.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

7.2 The ImageViewerDeluxe Skeleton

The bare bones of any subclass requires:

A class declaration that defines the inheritance relationship

A constructor that invokes the superclass constructor with the expected arguments

Hence, our ImageViewerDeluxe class starts out with the skeleton shown in Example 7-1. Refer to
Example 5-8 for the ImageViewer class definition.

Example 7-1. The ImageViewerDeluxe class skeleton

/**

 * The ImageViewerDeluxe class skeleton

 */

class ImageViewerDeluxe extends ImageViewer {

 public function ImageViewerDeluxe (target:MovieClip,

 depth:Number,

 x:Number,

 y:Number,

 w:Number,

 h:Number,

 borderThickness:Number,

 borderColor:Number) {

 // Invoke the ImageViewer constructor from Example 5-8

 super(target, depth, x, y, w, h, borderThickness, borderColor);

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Our ImageViewerDeluxe class does not alter the way an ImageViewer instance is constructed. It
merely preserves the ImageViewer class constructor's behavior by accepting the same arguments as
the ImageViewer constructor and forwarding them to it via super().

To create the ImageViewerDeluxe.as class file using Flash MX Professional 2004, follow these steps:

Choose File New.1.

In the New Document dialog box, on the General tab, for Type, choose ActionScript File.2.

Click OK. The script editor launches with an empty file.3.

Copy the code from Example 7-1 into the script editor.4.

Choose File Save As.5.

In the Save As dialog box, specify ImageViewerDeluxe.as as the filename (which is case

sensitive), and save the file in the imageviewer folder that you created in Chapter 5.

6.

Already, our ImageViewerDeluxe class is ready for use. Instances of the ImageViewerDeluxe class
have all the ImageViewer class's methods and can be used anywhere ImageViewer instances are
used.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

7.3 Adding setPosition() and setSize() Methods

Now let's give the ImageViewerDeluxe class its new features: the abilities to reposition and resize the
viewer. We'll implement two new methods to support these features:

setPosition()

Changes the location of the viewer by assigning the (x, y) coordinates of the viewer's main
container movie clip

setSize()

Changes the size of the viewer by re-creating the mask and border over the image movie clip
(i.e., by recropping the image)

Here's the setPosition() method:

public function setPosition (x:Number, y:Number):Void {

 container_mc._x = x;

 container_mc._y = y;

}

The setPosition() method is declared public, allowing it to be accessed from any code inside or
outside the ImageViewerDeluxe class. The body of setPosition() uses the good old-fashioned _x and
_y properties of the MovieClip class to position the image viewer on screen. Notice that code in the
ImageViewerDeluxe class has direct access to the container_mc property. As we learned in Chapter

6, a subclass can access all of its superclass's properties and methods, even those declared private.

Here's the setSize() method, which resizes the image viewer by recropping the image:

public function setSize (w:Number, h:Number):Void {

 createImageClipMask(w, h);

 createBorder(w, h);

 container_mc.image_mc.setMask(container_mc.mask_mc);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

To resize our image viewer on screen, we first re-create its mask:

createImageClipMask(w, h)

then we re-create its border:

createBorder(w, h)

and finally, we reassign the new mask movie clip (mask_mc) as a mask over the image movie clip
(image_mc):

container_mc.image_mc.setMask(container_mc.mask_mc);

The setSize() method gives a good sense of the convenience and logic of OOP. Every class offers a
set of services; other classes can use those services to build new functionality. In setSize(), most of
the work involves simply invoking methods that already exist in the ImageViewer class.

Example 7-2 shows the updated code for the ImageViewerDeluxe class. Enter the new code, shown in
bold, into your ImageViewerDeluxe.as file.

Example 7-2. The ImageViewerDeluxe class with reposition and resize
features

/**

 * An ImageViewer subclass that adds reposition and resize features

 */

class ImageViewerDeluxe extends ImageViewer {

 public function ImageViewerDeluxe (target:MovieClip,

 depth:Number,

 x:Number,

 y:Number,

 w:Number,

 h:Number,

 borderThickness:Number,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 borderColor:Number) {

 super(target, depth, x, y, w, h, borderThickness, borderColor);

 }

 public function setPosition (x:Number, y:Number):Void {

 container_mc._x = x;

 container_mc._y = y;

 }

 public function setSize (w:Number, h:Number):Void {

 createImageClipMask(w, h);

 createBorder(w, h);

 container_mc.image_mc.setMask(container_mc.mask_mc);

 }

}

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

7.4 Autosizing the Image Viewer

Well, that was so easy we may as well have a little more fun. Now that our ImageViewerDeluxe class
supports resizing, let's add the ability to automatically resize the viewer to fit the size of any loaded
image.

To set the size of the viewer when an image loads, we'll override the ImageViewer class's onLoadInit(
) method. From the ImageViewerDeluxe version of the method, we'll check the size of the loaded
image and then use our handy new setSize() method to resize the viewer to those dimensions. We'll
also use super() to invoke the overridden version of onLoadInit() so that the original behavior of the
method is preserved. Here is the absolute quick-and-dirtiest way to add the new autosize feature:

public function onLoadInit (target:MovieClip):Void {

 super.onLoadInit(target);

 setSize(container_mc.image_mc._width, container_mc.image_mc._height);

}

Admittedly, that code works, but it's inflexible. For starters, every ImageViewerDeluxe instance
created will resize itself when it loads an image. That should be optional, not mandatory.
Furthermore, as we saw when we implemented setSize(), it often pays to break up functionality into
discrete methods, each of which can be accessed selectively by users of the class. Let's reexamine
the autosize feature to see how it can be broken up.

First, we want the autosize feature to be optional, so we need a new Boolean property,
showFullImage, which indicates whether the viewer should autosize (true) or not (false). The
showFullImage property should be private, and should be set and retrieved via accessor methods:

getShowFullImage() and setShowFullImage().

Next, it's likely that an ImageViewerDeluxe user would want to use our autosize feature even after an
image loads. For example, an interface might provide a button to reveal the entire image. Given that
we're building autosize functionality already, it's sensible to offer this feature in a separate method:
scaleViewerToImage().

Finally, consider what the scaleViewerToImage() method does: it checks the width and height of the
image in the viewer and sets the viewer's size to those dimensions. Checking the width and height of
the image in the viewer is useful in and of itself. For example, if the viewer is used as part of a
dynamic interface that automatically adjusts itself to the viewer's size, the creator of that interface
will need some way to retrieve the viewer's dimensions. Hence, we should create public methods that
return the width and height of the image in the viewer: getImageWidth() and getImageHeight().

Let's see how this all plays out in code.

First, here's our showFullImage property definition. The property defaults to false (don't autosize).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

private var showFullImage:Boolean = false;

Next, here are the accessor methods for showFullImage:

public function setShowFullImage(show:Boolean):Void {

 showFullImage = show;

}

public function getShowFullImage():Boolean {

 return showFullImage;

}

The getImageWidth() and getImageHeight() methods are equally simple. They simply return the
_width and _height of the image_mc movie clip. Recall that container_mc is an instance property
defined by the ImageViewer class and that image_mc is a movie clip-nested within
container_mc-that contains the current loaded image.

public function getImageWidth ():Number {

 return container_mc.image_mc._width;

}

public function getImageHeight ():Number {

 return container_mc.image_mc._height;

}

Finally, here's the scaleViewerToImage() method. It uses getImageWidth() and getImageHeight()
to determine the new size of the viewer.

public function scaleViewerToImage ():Void {

 setSize(getImageWidth(), getImageHeight());

}

Now we can return to our onLoadInit() method, where the viewer does its autosizing. Recall what
the quick-and-dirty version looked like:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public function onLoadInit (target:MovieClip):Void {

 super.onLoadInit(target);

 setSize(container_mc.image_mc._width, container_mc.image_mc._height);

}

Here's the revised version, which autosizes only if the viewer's autosize feature is turned on (i.e., if
showFullImage is true):

public function onLoadInit (target:MovieClip):Void {

 super.onLoadInit(target);

 if (showFullImage) {

 scaleViewerToImage();

 }

}

Notice how compact and readable the method is now that the autosize functionality is separated into
distinct methods. The autosize feature is now optional, and we've exposed new methods to retrieve
the image dimensions and arbitrarily resize the viewer to fit the image it's displaying. Great stuff!

It's easy to get carried away with adding new features. In most real-world
cases, features should be added only to satisfy some specific requirement. The
wisdom of the Extreme Programming methodology applies here: never add
functionality early.

More functionality means more code complexity, which translates into more development and
maintenance time. In our autosize example, we posed scenarios that made extra functionality a
requirement. If the real-world case had no such requirement, breaking our autosize feature up into
separate methods would not have been wise.

Example 7-3 shows the final code for the ImageViewerDeluxe class. Update your code in
ImageViewerDeluxe.as to match the example (changes from Example 7-2 shown in bold).

Example 7-3. The ImageViewerDeluxe class, final version

/**

 * An ImageViewer that can be repositioned and resized after it is created

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 */

class ImageViewerDeluxe extends ImageViewer {

 // Flag indicating whether the viewer should be

 // scaled to match the size of the image.

 private var showFullImage:Boolean = false;

 public function ImageViewerDeluxe (target:MovieClip,

 depth:Number,

 x:Number,

 y:Number,

 w:Number,

 h:Number,

 borderThickness:Number,

 borderColor:Number) {

 super(target, depth, x, y, w, h, borderThickness, borderColor);

 }

 /**

 * Sets the position of the viewer.

 *

 * @param x The new horizontal position of the viewer.

 * @param y The new vertical position of the viewer.

 */

 public function setPosition (x:Number, y:Number):Void {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 container_mc._x = x;

 container_mc._y = y;

 }

 /**

 * Sets the size of the viewer (i.e., adjusts the

 * border and mask size).

 *

 * @param w The new width of the viewer, in pixels.

 * @param h The new height of the viewer, in pixels.

 */

 public function setSize (w:Number, h:Number):Void {

 createImageClipMask(w, h);

 createBorder(w, h);

 container_mc.image_mc.setMask(container_mc.mask_mc);

 }

 /**

 * Returns the width of the clip that contains the image.

 */

 public function getImageWidth ():Number {

 return container_mc.image_mc._width;

 }

 /**

 * Returns the height of the clip that contains the image.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 */

 public function getImageHeight ():Number {

 return container_mc.image_mc._height;

 }

 /**

 * Set flag indicating whether the entire image should be

 * displayed or the image should be cropped to fit the viewer.

 *

 * @param show A flag indicating whether the viewer should be

 * scaled to match the size of the image.

 */

 public function setShowFullImage(show:Boolean):Void {

 showFullImage = show;

 }

 /**

 * Returns flag indicating whether the entire image should be

 * displayed or the image should be cropped to fit the viewer.

 */

 public function getShowFullImage():Boolean {

 return showFullImage;

 }

 /**

 * Adjusts the size of the viewer so that the entire

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 * image is visible.

 */

 public function scaleViewerToImage ():Void {

 setSize(getImageWidth(), getImageHeight());

 }

 /**

 * MovieClipLoader handler. Triggered by imageLoader when loading is done.

 * Overrides ImageViewer.onLoadInit(), adding autosizing feature.

 */

 public function onLoadInit (target:MovieClip):Void {

 super.onLoadInit(target);

 if (showFullImage) {

 scaleViewerToImage();

 }

 }

}

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

7.5 Using ImageViewerDeluxe

To try out the new ImageViewerDeluxe class, follow these steps:

In Flash MX 2004 or Flash MX Professional 2004, open the imageViewer.fla we created in Chapter
5 .

1.

Use Window Development Panels Actions (F9) to open the Actions panel.2.

In imageViewer.fla 's main timeline, select frame 15.3.

Delete all existing code from the Actions panel in that frame.4.

Into the Actions panel, enter the following code:5.

var viewer:ImageViewerDeluxe = new ImageViewerDeluxe(this, 1, 20,

 10, 0, 0, 3, 0xFF0000);

viewer.setShowFullImage(true);

viewer.loadImage("picture.jpg");

loadmsg_txt.removeTextField(); // Removes the loading message (see frame 1).

Choose Control Test Movie. The .swf file should play, and your image should load and appear
with a red border. The viewer should size itself to reveal the entire image.

6.

If you have any trouble using the class, compare your work with the finished example files available at
http://moock.org/eas2/examples .

As with the ImageViewer class, the ImageViewerDeluxe class does not display
download progress for a loading image when the image is loaded off a local hard
disk. To test the preloader, be sure to post your images to a web server, and
play the movie in a web browser.

 < Day Day Up >

http://moock.org/eas2/examples
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

7.6 Moving Right Along

The ImageViewerDeluxe class from this chapter showed us how inheritance can work in a real
application. Now that we've explored classes and inheritance in both theory and practice, we've
covered most skills needed in typical OOP Flash development. However, we still have a few concepts
left to consider over the next few chapters-namely, interfaces (abstract datatypes), packages
(containers for classes), and exceptions (errors you can add to your programs). These last three
theoretical topics will prepare you for Parts II and III, which present many more applied OOP
examples and scenarios.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 8. Interfaces
An interface is an ActionScript 2.0 language construct used to define a new datatype, much as a class
defines a datatype. However, whereas a class both defines a datatype and provides the
implementation for it, an interface defines a datatype in abstract terms only; an interface provides no
implementation for the datatype. That is, a class doesn't just declare a bunch of methods and
properties, it also supplies concrete behavior-the method bodies and property values that make the
class actually do something. An interface, instead of providing its own implementation, is adopted by
one or more classes that agree to provide the implementation. A class that provides an
implementation for an interface belongs both to its own datatype and to the datatype defined by the
interface. As a member of multiple datatypes, the class can then play multiple roles in an application.

Don't confuse the term interface, as discussed in this chapter, with other uses
of the word. In this chapter, "interface" refers to an ActionScript 2.0 language
construct, not a graphical user interface (GUI) or the public API of a class,
sometimes also called an interface in general OOP theory.

Unless you're familiar with interfaces already, theoretical descriptions of them can be hard to follow,
so lets dive right into an example.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

8.1 The Case for Interfaces

Suppose we're creating an order-form application with a class, OrderProcessor, that manages the
order-filling process. If a customer makes a mistake while filling in the order form, the
OrderProcessor class signals an error by broadcasting an event, OrderProcessorEvent. Many classes
may want to respond to the event-one class, OrderUI, may want to display an error message on
screen; another class, OrderChat, may want to alert a live support technician; and yet another class,
StatsTracker, may want to log the problem to a database for statistics tracking. To respond to the
OrderProcessorEvent, each class defines an onOrderError() method. When the event occurs, the
OrderProcessor class invokes each class's onOrderError() method automatically.

That all seems logical enough so far, but what happens if one of the error-event-handling classes fails
to define onOrderError()? The event will occur, but the negligent class won't respond. We must
guarantee that every class that signs up to receive OrderProcessor events actually defines the
onOrderError() method.

To make that guarantee, we limit the type of objects that can register to receive events from
OrderProcessor. Specifically, if an object wants to receive events from OrderProcessor, it must be an
instance of the OrderListener class or an instance of one of OrderListener's subclasses. The
OrderListener class itself implements the onOrderError() method in a generic way:

class OrderListener {

 public function onOrderError ():Void {

 // Generic implementation of onOrderError(), not shown...

 }

}

Any class that wishes to receive events from OrderProcessor extends OrderListener and overrides
OrderListener.onOrderError(), providing some specialized behavior. For example, the following class,
StatsTracker, extends OrderListener and overrides onOrderError(), providing database-specific
behavior:

class StatsTracker extends OrderListener {

 // Override OrderListener.onOrderError().

 public function onOrderError () {

 // Send problem report to database. Code not shown...

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

Back in the OrderProcessor class (the class that broadcasts events), we define a method,
addListener(), that registers an object to receive events. Only instances of the OrderListener
datatype (including its subclasses) can be passed to addListener():

class OrderProcessor {

 public function addListener (ol:OrderListener):Boolean {

 // Code here should register ol to receive OrderProcessor events,

 // and return a Boolean value indicating whether registration

 // succeeded (code not shown).

 }

}

If an object passed to addListener() is not of type OrderListener (which also includes instances of
any one of its subclasses), the compiler generates a type mismatch error. If the object belongs to an
OrderListener subclass that doesn't implement onOrderError(), at least the generic
OrderListener.onOrderError() will execute.

Sounds reasonable, right? Almost. But there's a problem. What if a class wishing to receive events
from OrderProcessor already extends another class? For example, suppose the OrderUI class extends
MovieClip:

class OrderUI extends MovieClip {

 public function onOrderError () {

 // Display problem report on screen, not shown...

 }

}

In ActionScript, a single class cannot extend more than one class. The OrderUI class already extends
MovieClip, so it can't extend OrderListener. Hence, instances of OrderUI can't register to receive
events from OrderProcessor. What we really need in this situation is a way to indicate that OrderUI
instances actually belong to two datatypes: OrderUI and OrderListener.

Enter...interfaces!

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

8.2 Interfaces and Multidatatype Classes

Earlier, we created the OrderListener datatype by defining an OrderListener class. That approach
forces every OrderProcessor event consumer to be an instance of either OrderListener or an
OrderListener subclass. To loosen that restriction, we can create the OrderListener datatype by
defining an OrderListener interface rather than an OrderListener class. That way, any class can agree
to provide an implementation for OrderListener while still inheriting from any other class. Let's see
how this works.

Syntactically, an interface is simply a list of methods. For example, the following code creates an
interface named OrderListener that contains a single method, onOrderError():

interface OrderListener {

 function onOrderError();

}

Classes use the implements keyword to enter into an agreement with an interface, promising to
define the methods it contains. For example, to indicate that the OrderUI class agrees to define the
method onOrderError() (defined by the OrderListener interface), we use this code (note the portion
in bold):

class OrderUI extends MovieClip implements OrderListener {

 public function onOrderError () {

 // Display problem report on screen, not shown...

 }

}

Instead of extending the OrderListener class, the OrderUI class extends MovieClip and implements
the OrderListener interface. Because OrderUI implements OrderListener, it can be used anywhere the
OrderListener datatype is required. Instances of OrderUI now belong to two datatypes: OrderUI and
OrderListener. Thus, despite the fact that OrderUI extends MovieClip, OrderUI instances still belong
to the OrderListener type and can be passed safely to OrderProcessor.addListener(). (Wow, Ron,
that's amazing! It's a pasta maker and a juicer!)

If OrderUI didn't define a method named onOrderError(), the compiler would generate the following
error:

The class must implement method 'onOrderError' from interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

'OrderListener'.

Compiler errors are the key to the entire interface system. They guarantee that a class lives up to its
implementation promises, which allows external code to use it with the confidence that it will behave
as required. That confidence is particularly important when designing an application that will be
extended by another developer or used by third parties.

Now that we have a general idea of what interfaces are and how they're used, let's get down to some
nitty-gritty syntax details.

The hypothetical order application just discussed is one example of the
delegation event model, which is covered in detail in Chapter 19.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

8.3 Interface Syntax and Use

Recall that an interface is a construct used to define a new datatype without implementing any of the
methods supported by the datatype.

To create an interface in ActionScript 2.0, we use the interface keyword, using the following syntax:

interface SomeName {

 function method1 (param1 :datatype ,...paramn :datatype):returnType ;

 function method2 (param1 :datatype ,...paramn :datatype):returnType ;

 ...

 function methodn (param1 :datatype ,...paramn :datatype):returnType ;

}

where SomeName is the name of the interface, method1, ...methodn are the methods defined by the

interface, param1:datatype, ...paramn:datatype are the parameters of the methods, and

returnType is the datatype of each method's return value.

In interfaces, method declarations do not (and must not) include curly braces.
The following method declaration causes a compile-time error in an interface
because it includes curly braces:

function method1 (param:datatype):returnType {

}

The errors generated are:

Function bodies are not permitted in interfaces.

This statement is not permitted in an interface definition.

All methods declared in an interface must be public; hence, by convention, the attribute public (which
is the default) is omitted from method definitions in an interface. Property definitions are not allowed
in ActionScript 2.0 interfaces; neither can interface definitions be nested (this contrasts with Java's
interfaces, in which constant definitions are allowed and interfaces can be nested). As with

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ActionScript 2.0 classes, each interface must be defined in its own .as file, whose name must exactly
match the name of the interface (case sensitivity matters).

Let's briefly review the three types of .as files we've covered so far:

Class files

Contain the method and property definitions for each class. They start with the class keyword.
(See Chapter 4.)

Intrinsic files

Contain method signatures strictly for the purpose of satisfying the compiler's type checking.
They start with the intrinsic keyword. (See Chapter 4.)

Interface files

Contain a list of methods to be implemented but not the implementations themselves. They
start with the interface keyword.

A class that wishes to adopt an interface's datatype must agree to implement that interface's
methods. To form such an agreement, the class uses the implements keyword, which has the
following syntax:

class SomeName implements SomeInterface {

}

where SomeName is the name of the class that promises to implement the needed methods, and

SomeInterface is the name of the interface (as defined using the interface keyword in an external

.as file). The SomeName class is said to "implement the SomeInterface interface." Note that

implements must always come after any extends clause that might also be present. Furthermore, if
you specify a class instead of an interface after the implements keyword, the compiler generates this
error:

A class may not implement a class, only interfaces.

The class SomeName must implement all methods defined by SomeInterface, otherwise a compile-

time error such as the following occurs:

The class must implement method 'methodname' from interface 'SomeInterface'.

The implementing class's method definitions must match the interface's method definitions exactly,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

including number of parameters, parameter types, and return type. If any of those aspects differs
between the interface and the implementing class, the compiler generates the following error:

The implementation of the interface method doesn't match its definition.

In theory, when a class implements a method from an interface, it should be
able to define the method as either a class method (i.e., static) or an instance
method. Unfortunately, a bug in ActionScript 2.0 prevents a class from using
the static attribute when implementing a method defined by an interface. Due
to the bug, a method defined by an interface cannot be implemented as a class
method. If the method in the implementing class must be a class method, then
it should not be listed in the interface at all.

A class can legally implement more than one interface by separating interface names with commas,
as follows:

class SomeName implements SomeInterface, SomeOtherInterface {

}

in which case, the class SomeName belongs to all three of the following datatypes: SomeName,

SomeInterface, and SomeOtherInterface. If a class implements two interfaces that define a method
by the same name, but with different signatures, the following error occurs:

Multiple implemented interfaces contain same method with different types.

If, on the other hand, a class implements two interfaces that define a method by the same name and
with the exact same signature, no error occurs. The real question is whether the class can provide
the services required by both interfaces within a single method definition. In most cases, the answer
is no.

Once an interface has been implemented by one or more classes, adding new
methods to it will cause compile-time errors in those implementing classes
(because the classes won't define the new methods)! Hence, you should think
carefully about the methods you want in an interface during the design phase
and be sure you're confident in your application's design before you commit it
to code.

If a class declares that it implements an interface, but that interface cannot be found by the compiler,
the following error occurs (notice that the compiler misleadingly refers to the interface as a class!):

The class 'InterfaceName' could not be loaded.

8.3.1 Interface Naming Conventions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Like classes, interfaces should be named with an initial capital letter so they're easy to identify as
datatypes. Interfaces used for event handling typically take the form SomeClassListener, where

SomeClass is the name of the class broadcasting the events. For example, in Chapter 19, we'll create

a class named Randomizer that broadcasts events. Classes wishing to process Randomizer events
must implement RandomizerListener.

Most other interfaces are named after the additional ability they describe. For example, suppose an
application contains a series of classes that represent visual objects. Some of the objects can be
repositioned; others cannot. In our design, objects that can be repositioned must implement an
interface named Moveable. Here is a theoretical ProductIcon class that implements Moveable:

class ProductIcon implements Moveable {

 public function getPosition ():Position {

 }

 public function setPosition (pos:Position):Void {

 }

}

The interface name, Moveable, indicates the specific capability that the interface adds to a class. An
object might be a piece of clipart or a block of text, but if it implements Moveable, we know it can be
repositioned. Other similar names might be Storable, Killable, or Serializable. Some developers also
preface interface names with an I, as in IMoveable, IKillable, and ISerializable.

8.3.2 Interface Inheritance

As with classes, an interface can use the extends keyword to inherit from another interface. For
example, the following code shows an interface, IntA, that extends another interface, IntB. In this
setup, interface IntB is known as the subinterface, and interface IntA is known as the superinterface.

interface IntA {

 function methodA ():Void;

}

interface IntB extends A {

 function methodB ():Void;

}

Classes that implement interface IntB must provide definitions for both methodA() and methodB().
Interface inheritance lets us define a type hierarchy much as we would with class inheritance, but

http://lib.ommolketab.ir
http://lib.ommolketab.ir

without accompanying method implementations.

Unlike Java, ActionScript 2.0 interfaces do not support multiple interface inheritance; that is, an
interface cannot extend more than one other interface.

8.3.3 Marker Interfaces

Interfaces need not contain any methods at all to be useful. Occasionally, empty interfaces, called
marker interfaces, are used to "mark" (designate) a class as having some feature. Requirements for
the marked classes (i.e., classes implementing a marker interface) are provided by the
documentation for the marker interface.

For example, our earlier OrderProcessor class used the OrderListener interface to ensure that the
appropriate event methods are defined on any object wishing to receive event notifications.

Now consider a similar but more complex situation-a web-based email application that contains
three classes: MessageComposer, MessageSender, and MessageReceiver. Each class wants to
broadcast its own events. The event-handling methods required of every event-receiving object are
defined in the following corresponding interfaces: MessageComposerListener,
MessageSenderListener, and MessageReceiverListener. In the email application, because more than
one class broadcasts events, it's sensible to define a general class, EventListenerList, to manage
objects that receive events (known as event-consumer objects). Each of the MessageComposer,
MessageSender, and MessageReceiver classes uses an EventListenerList instance to manage event-
consumer objects. For example, when a MessageComposer instance wants to add a new event-
consumer object to its EventListenerList, it passes that object to EventListenerList.addListener(), as
follows:

listenerList.addListener(consumerObject);

Can you spot the problem? The event-consumer objects for each of the event-producing classes
belong to different datatypes! A consumer object for the MessageComposer class belongs to the
MessageComposerListener datatype, while a consumer object for the MessageSender class belongs to
the MessageSenderListener datatype. The addListener() method can accept only one type of
consumer object as an argument, but it needs to be used with multiple datatypes.

Solution? Make all event-consumer objects homogeneous by creating a marker interface,
EventListener. The three listener interfaces in the mail application extend EventListener. The
addListener() method then accepts consumer objects of type EventListener. Hence, different types of
event-consumer objects (specifically, subtypes of EventListener) can be passed to the method. The
method definition for addListener() follows (note the use of the marker interface, EventListener,
shown in bold):

public function addListener (l:EventListener):Boolean {

 // Search for the specified event consumer.

 // listeners is an array of event-consumer objects.

 var len:Number = listeners.length;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 for (var i:Number = len; --i >= 0;) {

 if (listeners[i] == l) {

 // The new event consumer is already in the list, so quit.

 return false;

 }

 }

 // The new listener is not already in the list, so add it.

 listeners.push(l);

 return true;

}

Note that we could have solved the problem alternatively by allowing any object to be used as an
event-consumer object, as follows:

public function addListener (l:Object):Boolean {

That works in the technical sense but does nothing to suggest to the developer that event-consumer
objects must implement one of the application's event-listener interfaces. By forcing event-consumer
objects to implement the marker interface, EventListener, the application guides the developer to the
documentation for that interface. The documentation should describe the application's general event
architecture, helping the developer understand how to properly handle events. This system is a
native part of Java. We'll return to it in Chapter 19.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

8.4 Multiple Type Inheritance with Interfaces

In our earlier order-form example, we learned that a class can inherit from another class while also
belonging to a separate datatype defined by an interface. Our earlier OrderUI class inherited from
MovieClip but also belonged to the OrderListener datatype because it implemented the OrderListener
interface. That architectural pattern is one of the more common and powerful uses of interfaces-one
in which a class belongs to multiple datatypes without inheriting from multiple classes. Let's take a
closer look at this pattern with a new example (source code available at:
http://moock.org/eas2/examples).

Suppose we're creating an application that stores objects on disk, either via a server-side script or a
SharedObject instance. Each stored object is responsible for providing a method, serialize(), that
returns a string representation of the object. The string representation can be used to reconstitute
the object from scratch. For example, a Rectangle class with width and height properties might

provide a serialize() method that returns the string "width=w|height=h" (where w and h are the

values of the width and height properties). Later, the string "width=w|height=h" is retrieved and

used to create a new Rectangle instance of the original size. To keep things simple for this example,
we'll presume that every object must store only property names and values and that no property
values are, themselves, objects that would need serialization.

When the time comes to save the state of our application, the StorageManager class performs the
following tasks:

Gathers objects for storage

Converts each object to a string (via serialize())

Transfers the objects to disk

In order to guarantee that every stored object can be serialized (i.e., converted to a string), the
StorageManager class rejects any instances of classes that do not belong to the Serializable datatype.
The Serializable datatype is defined by the interface Serializable, which contains a single method,
serialize(), as follows:

interface Serializable {

 function serialize():String;

}

Classes that support serialization as described are said to "implement Serializable." To handle generic
serialization cases, in which property names and values are retrieved and converted to strings, we
create a class, Serializer, which implements Serializable. The Serializer class has the following
methods:

http://moock.org/eas2/examples
http://lib.ommolketab.ir
http://lib.ommolketab.ir

setSerializationProps()

Specifies which properties of the object, as specified by setSerializationObj(), to serialize, as
an array

setSerializationObj()

Specifies which object to serialize

setRecordSeparator()

Specifies the string to use as a separator between properties

serialize()

Returns a string representing the object

Here's the class listing for Serializer:

class Serializer implements Serializable {

 private var serializationProps:Array;

 private var serializationObj:Serializable;

 private var recordSeparator:String;

 public function Serializer () {

 setSerializationObj(this);

 }

 public function setSerializationProps (props:Array):Void {

 serializationProps = props;

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public function setSerializationObj (obj:Serializable):Void {

 serializationObj = obj;

 }

 public function setRecordSeparator (rs:String):Void {

 recordSeparator = rs;

 }

 public function serialize ():String {

 var s:String = "";

 for (var i:Number = serializationProps.length; --i >= 0;) {

 s += serializationProps[i]

 + "=" + String(serializationObj[serializationProps[i]]);

 if (i > 0) {

 s += recordSeparator;

 }

 }

 return s;

 }

}

To use the Serializer class's serialization services, a class can simply extend Serializer. By extending
Serializer directly, the extending class inherits both the Serializable interface and the Serializer
class's implementation of that interface.

It is common to define a class that implements a particular interface and then
extend that class (i.e., create subclasses that use it). Subclassing in this way
allows you to separate a datatype's interface from its implementation. The
subclasses use the implementation via inheritance but other, unrelated classes
can still choose to implement the interface directly, supplying their own custom
behavior.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For example, the following code shows a Point class that defines x and y properties, which need to be

serialized. The Point class extends Serializer, allowing it to use Serializer's services directly.

// The Point class

class Point extends Serializer {

 private var x:Number;

 private var y:Number;

 public function Point (x:Number, y:Number) {

 super();

 setRecordSeparator(",");

 setSerializationProps(["x", "y"]);

 this.x = x;

 this.y = y;

 }

}

Code that wishes to save a Point instance to disk simply calls serialize() on that instance, as follows:

var p:Point = new Point(5, 6);

trace(p.serialize()); // Displays: y=6,x=5

Note that the Point class does not implement Serializable directly. It extends Serializer, which in turn
implements Serializable.

The Point class does not extend any other class, so it's free to extend Serializer. However, if a class
wants to use Serializer but already extends another class, it must use composition instead of
inheritance. That is, rather than extending Serializer, the class implements Serializable directly,
stores a Serializer object in an instance property, and forwards serialize() method calls to that
object. For example, here's a Rectangle class that extends a Shape class but uses Serializer via
composition (refer specifically to the sections in bold):

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// The Shape superclass

class Shape {

 private var target:MovieClip;

 private var depth:Number;

 public function Shape (t:MovieClip, d:Number) {

 target = t;

 depth = d;

 }

}

// The Rectangle subclass implements Serializable directly

class Rectangle extends Shape implements Serializable {

 private var width:Number = 0;

 private var height:Number = 0;

 private var serializer:Serializer;

 public function Rectangle (t:MovieClip, d:Number) {

 super(t, d);

 // Here is where the composition takes place

 serializer = new Serializer();

 serializer.setRecordSeparator("|");

 serializer.setSerializationProps(["height", "width"]);

 serializer.setSerializationObj(this);

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public function setSize (w:Number, h:Number):Void {

 width = w;

 height = h;

 }

 public function getArea ():Number {

 return width * height;

 }

 public function draw ():Void {

 var container_mc:MovieClip = target.createEmptyMovieClip("rect"

 + depth,

 depth);

 container_mc.clear();

 container_mc.lineStyle(1, 0x000000);

 container_mc.moveTo(0, 0);

 container_mc.beginFill(0xFFFFFF, 100);

 container_mc.lineTo(width, 0);

 container_mc.lineTo(width, height);

 container_mc.lineTo(0, height);

 container_mc.lineTo(0, 0);

 container_mc.endFill();

 }

 public function serialize ():String {

 // Here is where the Rectangle class forwards the serialize()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // invocation to the Serializer instance stored in serializer

 return serializer.serialize();

 }

}

As with the Point class, code that wishes to store a Rectangle instance simply invokes serialize() on
that instance. Through composition, the invocation is forwarded to the Serializer instance stored by
the Rectangle class. Here is an example of its use:

var r:Rectangle = new Rectangle(this, 1);

r.setSize(10, 20);

trace(r.serialize()); // Displays: width=10|height=20

If a class would rather implement its own custom serialize() method instead of using the generic one
provided by Serializer, then the class should simply implement the Serializable interface directly,
providing the serialize() method definition and body itself.

Separating the Serializable datatype's interface from its implementation allows any class to flexibly
choose from among the following options when providing an implementation for the serialize()
method:

Extend Serializer

Use Serializer via composition

Provide its own serialize() method directly

If the class does not already extend another class, it can extend Serializer (this option means the
least work). If the class already extends another class, it can still use Serializer via composition (this
option is the most flexible). Finally, if the class needs its own special serialization routine, it can
implement Serializable directly (this option means the most work but may be required by the
situation at hand).

This flexibility led Sun to formally recommend that, in a Java application, any class that is expected to
be subclassed should be an implementation of an interface. As such, it can be subclassed directly, or
it can be used via composition by a class that inherits from another class. Sun's recommendation is
also sensible for large-scale ActionScript applications.

Figure 8-1 shows the generic structure of a datatype whose implementation can be used via either
inheritance or composition.

Figure 8-1. Multiple datatype inheritance via interfaces

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 8-2 shows the structure of the specific Serializable, Point, and Rectangle example.

Figure 8-2. Multiple datatype inheritance Serializable example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

8.5 Up Next, Packages

Interfaces are an important application development tool, because they promote flexible class
architectures in the context of a statically typed language. They solve the problem of implementing
classes that belong to multiple datatypes without introducing the complexities of multiple class
inheritance.

Next we'll study another valuable ActionScript 2.0 tool, packages, which are used to organize classes
(and interfaces) into logical groups.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 9. Packages
Over the preceding few chapters, we've worked primarily with one or two classes (and interfaces) at
a time. But in larger applications, creating dozens of different classes and grouping them logically
together, perhaps with multiple interfaces, is common. To group classes and interfaces together, we
use packages. You may wonder why we'd want to group classes and interfaces. To learn why, let's
consider a hypothetical scenario.

Imagine you're creating a game with a background music player. You create the game in-house, but
you use a third-party component for the music player. In the game, you have a class for the player,
named Player. Unbeknownst to you, the music player component also defines a class named Player!
When you attempt to use the music player component, it doesn't work because its version of the
Player class is ignored (your game's Player class is defined first, and once a class is defined, it cannot
be redefined). This conflict is called a namespace collision or naming conflict.

What to do?

Well, you could rename your Player class to something like GamePlayer, but that would require a lot
of changes to your existing code. Besides, you like the name Player and don't really want to change
it. And even if you did change your class's name to GamePlayer, you have no guarantee that some
other component you need won't conflict with it. Or conversely, if you are distributing your classes,
you have no way of anticipating the class names in use by other developers who might use your
code.

Fortunately, packages solve your problem. A package is a unique place to put a group of classes,
much as a directory on your hard drive is a unique place to put a group of files. And just as multiple
files named index.html can exist in more than one folder without conflicts, a class named Player can
exist in more than one package without conflicts. Packages allow multiple classes of the same name
to coexist without namespace collisions, because each package constitutes a namespace within which
the class name is unique. A namespace is a set of names that contains no duplicates. The Domain
Name System (DNS) defines a namespace in which registrants can reserve a domain name, such as
moock.org, without fear that someone else might use the same name.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

9.1 Package Syntax

Every package has a name that describes the classes it contains. By convention, package names do
not use initial caps but might use mixed case, such as greatUtils. This helps distinguish them from
classes, which by convention start with a capital letter. For example, a package that contains classes
for a game might be named game, while a package that contains general utilities might be named
tools, and a library of visual classes might be named graphics. Delaying, for a moment, the
discussion of how to create a package, let's see how the classes within an existing package are
accessed.

To refer to a specific class within a package, we use the dot operator, as follows:

packagename.ClassName

For example, in the following code, the names game, tools, and graphics are package names and the
names Player, Randomizer, and Vector2D are class names:

game.Player

tools.Randomizer

graphics.Vector2D

Packages can be nested to form a hierarchy; that is, a package can contain another package. For
example, the game package might contain a vehicles package that contains a SpaceShip class. When
referring to a class in a nested package, separate each package name with the dot operator. For
example:

game.vehicles.SpaceShip

By nesting packages, we can organize our classes into discrete subcategories within a larger
category, which again prevents naming conflicts. For example, a traffic simulation application and a
driving game may both want to use the vehicles namespace. To do so without naming conflicts, each
application must nest vehicles within the larger application namespace:

trafficsimulator.vehicles

game.vehicles

On a more general level, two companies may both want to use the game namespace for the creation
of games. Namespaces, therefore, often include the name of the organization producing the classes
they contain, as in:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

somecompany.game.vehicles

As we'll learn later, under "Package Naming Conventions," many organizations use their domain
name as a namespace, because it is guaranteed to be unique.

Flash's own v2 component classes are categorized in hierarchical packages. For example, the classes
for general user interface components such as List, Button, RadioButton, and ComboBox are
contained by the mx.controls package. Classes related to the individual List component are stored in
a nested package, mx.controls.listclasses. And components that act as application containers, such
as Window and ScrollPane, are stored in the mx.containers package. Notice that a package can
contain both classes and other packages, much as a file folder can contain both files and other
folders.

A reference to a class that includes its complete package name is known as a fully qualified reference
. By contrast, an unqualified reference includes just the class name. For example, SpaceShip is an
unqualified reference, while game.vehicles.SpaceShip is a fully qualified reference.

Prior to discussing packages, we've used unqualified references when creating instances of classes
and specifying the datatypes of variables, parameters, and return types. For example, if the class
SpaceShip were not in a package, we would use the following syntax to create a SpaceShip instance
and store it in a typed variable:

var ship:SpaceShip = new SpaceShip();

However, if a class is in a package, we must use a fully qualified reference when creating instances of
the class and specifying the datatypes of variables, parameters, and return types. Therefore, if the
SpaceShip class were in the package game.vehicles, we would use fully qualified references, such as:

var ship:game.vehicles.SpaceShip = new game.vehicles.SpaceShip();

Similarly, when SpaceShip is not in a package, we specify the return type of a method using
:SpaceShip, as in:

public function getClosestShip ():SpaceShip {

 // Method body not shown...

}

However, if the SpaceShip class is in a package, such as game.vehicles, we must declare the fully
qualified path. So the preceding example becomes:

public function getClosestShip ():game.vehicles.SpaceShip {

 // Method body not shown...

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We haven't talked yet about how to define the SpaceShip class or put it in the vehicles or
game.vehicles package. Regardless, you'll notice that using fully qualified class references becomes
tedious in a hurry. The following code requires more typing and takes longer to read than its
nonpackage counterpart:

var ship:game.vehicles.SpaceShip = new game.vehicles.SpaceShip();

To make life easier, ActionScript 2.0 provides the import statement, covered next.

9.1.1 The import Statement

The import statement lets us use an unqualified class reference as an alias (shorthand) for a fully
qualified class reference. The basic syntax of import is:

import packagename.ClassName;

After the import statement appears in a script or class, every unqualified reference to ClassName is

automatically converted to the fully qualified reference, packagename.ClassName. For example, after

issuing the following import statement:

import game.vehicles.SpaceShip;

the compiler will subsequently treat the unqualified reference SpaceShip as though it were literally
game.vehicles.SpaceShip.

Hence, the earlier assignment statement:

var ship:game.vehicles.SpaceShip = new game.vehicles.SpaceShip();

can be shortened to:

import game.vehicles.SpaceShip;

var ship:SpaceShip = new SpaceShip();

Because of the import statement, the compiler knows we mean game.vehicles.SpaceShip when we
specify the unqualified class name SpaceShip. The import statement doesn't allow us to specify an
identifier to use in place of the fully qualified reference; the alias name is always the name of the
class, excluding the package name(s). Don't try something like this (it won't work):

import spaceAlias = game.vehicles.SpaceShip; // Won't work!

9.1.2 Importing an Entire Package

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The earlier import statement:

import game.vehicles.SpaceShip;

imports only the SpaceShip class, not other classes in the package. To import all the classes in a
package, use the wildcard character, *, as follows:

import packagename.*;

This wildcard syntax lets us refer to any class in packagename by its unqualified name rather than its

fully qualified name (i.e., packagename.ClassName).

For example, suppose the geometry package contains three classes Circle, Triangle, and Rectangle.
Rather than importing each class individually, as follows:

import geometry.Circle;

import geometry.Triangle;

import geometry.Rectangle;

we can simply use:

import geometry.*;

After that statement has been issued, we can then refer to Circle, Triangle, and Rectangle, without
including the package name, geometry.

If we use package wildcards to import two classes with the same name but from different packages,
we again encounter a namespace collision. To access the ambiguous classes, we must use their fully
qualified class names. For example, suppose we're writing an application that uses the classes
game.vehicles.Ship and ordering.Ship. The application imports all classes in game.vehicles and in
ordering:

import game.vehicles.*;

import ordering.*;

When we attempt to access the Ship class without qualification, the class that was imported first
(game.vehicles.Ship) is used:

var s:Ship = new Ship(); // Creates a new game.vehicles.Ship

The only way to create an ordering.Ship instance is to use a fully qualified reference, as in:

var s:ordering.Ship = new ordering.Ship();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To avoid confusion, we should use fully qualified names for all references to Ship. However,
attempting to import two classes of the same name directly, as in:

import game.vehicles.Ship;

import ordering.Ship;

yields this error:

The class 'ordering.Ship' cannot be imported because its leaf name is

already being resolved to imported class 'game.vehicles.Ship'.

The solution is to not import either Ship class and use only fully qualified references to access
game.vehicles.Ship and ordering.Ship.

Note that wildcard imports work with only one package at a time. There is no way to import an entire
hierarchy of packages. We must import the classes of each package individually. For example, to
import the classes in game.vehicles, game.logic, and game.data, we must use:

import game.vehicles.*;

import game.logic.*;

import game.data.*;

not:

import game.*;

The statement import game.* imports only the classes contained by the game package; it does not

import any classes in subpackages of game.

Don't confuse the import statement with the #include directive! The two are
completely unrelated. The #include directive copies external code into the

current script, whereas import merely establishes an unqualified class name
(e.g., SpaceShip) as an alias for a fully qualified class name (e.g.,
game.vehicles.SpaceShip). The import statement pertains only to classes
stored in packages. Imported classes are compiled into a movie only if they are
actually referenced in it. Included code, by contrast, is compiled into the movie
whether it is needed or not, so be frugal with your #include directives.

9.1.3 Package Naming Conventions

Earlier we posed a scenario in which a game and a music component each defined unrelated classes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

named Player. We learned how packages could fix this problem by providing a unique, fully qualified
identifier for each class. For example:

musiccomponent.Player

game.Player

But this merely trades one problem for another. We still need a way to prevent one application's
game.Player class from conflicting with another application's game.Player class. In other words, just
as two class names can conflict, two package names can conflict. To avoid package or class naming
conflicts you should use the convention of placing all your classes and packages in a package named
after your organization's domain name. For example, classes and subpackages created by Acme
Corp., whose domain name is acme.com, would be stored in the package:

com.acme

Notice that com precedes acme (the package name is the reverse of the domain name).

Thus, a game.Player class created by Acme and a game.Player class created by, say, Nintendo, could
be stored safely in the following unique packages:

com.acme.game.Player

com.nintendo.game.Player

Domain names are guaranteed to be unique by the system of authorized top-level-domain (TLD)
registrars; thus, starting your package names with your organization's domain name avoids name
conflicts with code developed by other organizations.

Naming conflicts remain a possibility within a large organization. So large organizations should adopt
the convention of, say, including another identifier, such as the department name or project in the
package hierarchy. Nintendo's GameCube division might use a package name such as:

com.nintendo.gamecube.game.Player

Notice that the first part of the package name, com.nintendo.gamecube, goes from the general
(com) to the specific (.nintendo and .gamecube). Then the package name switches gears from the
organization and department names to a name dependent on the purpose, in this case .game. Here
are two more example package names from my own software, Unity. Unity is a multiuser application
development kit, on top of which many different applications can be built. The following packages
contain classes for the applications Tic Tac Toe and Avatar Chat:

org.moock.unity.tictactoe

org.moock.unity.avatarchat

Notice that, again, both package names start with the general domain name (org.moock), then
specify the general purpose (.unity), then specify the particular purpose (an application written for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the Unity platform).

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

9.2 Defining Packages

Defining a package for a class requires two general steps:

Create a directory structure whose name identically matches the package hierarchy.1.

Specify the package name when defining the class.2.

Note that there is no such thing as a package file, per se. A package is a concept based on placing a
given class's .as file in the appropriate folder.

For example, to place the class Player in the package com.yourdomain.game, we'd follow these
steps:

Create a new directory named com.1.

Create a new directory inside com named yourdomain.2.

Create a new directory inside yourdomain named game.3.

Create a text file, Player.as, in the directory /com/yourdomain/game/.4.

In Player.as, add the following code:5.

class com.yourdomain.game.Player {

 // Class body not shown...

}

The class declaration must use the fully qualified class name, in this case
com.yourdomain.game.Player, indicating to the compiler that the package for
the Player class is com.yourdomain.game.

If any part of the package or class name does not match the actual names of the system directories
and .as file, the compiler generates an error (case sensitivity matters!). For example, if the letter "e"
were missing in the word "game" in our class definition:

// Oops! Missing the "e" in "game"!

class com.yourdomain.gam.Player {

 // Class body not shown...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

the compiler would generate the error:

The class 'com.yourdomain.gam.Player' needs to be defined in a

file whose relative path is 'com\yourdomain\gam\Player.as'.

In our generic game example, we put all the game-related classes in a package named game. We
might also define a subpackage named vehicle to hold the classes that implement all the vehicles,
including SpaceShip and its subclasses (perhaps Fighter, Bomber, and Cruiser). Furthermore, the
SpaceShip class might have a superclass named Vehicle that also resides in the vehicles package. It's
not uncommon for a package and a class to have the same name (except the package name is
lowercase and the class name is uppercase). For example, in Chapter 17, we'll create a class named
Logger and place it in a package named logger. The fully qualified class reference is:

logger.Logger

Here, we can see the capitalization conventions for packages and classes really pay off. At a glance,
we know that logger is the package because it starts with a lowercase "l" and that Logger is the class
because it starts with a capital "L."

Note that the package path for our example SpaceShip class is:

game.vehicles.SpaceShip

not

game.vehicles.Vehicle.SpaceShip

That is, don't attempt to include the superclass name in the fully qualified name for a subclass. A
package names tells the compiler where to find the subclass's .as file and has no bearing on the
subclass's inheritance relationship to the superclass (which is established via extends).

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

9.3 Package Access and the Classpath

In order for a .fla file to access a class in a package, the root directory of the package must reside
within the classpath. The classpath is simply the list of directories (paths) on your hard drive in which
the compiler looks for classes. Entries in the classpath can be added globally for all documents (the
global classpath) or on a per-.fla file basis (a document classpath).

By default, the global classpath includes the following directories:

The current directory, usually represented by a period (.)-i.e., the directory in which the .fla
resides

The Classes directory, $(LocalData)/Classes-that is, the Classes directory in the user
configuration directory for the Flash MX 2004 or Flash MX Professional 2004 application

The Classes directory is found in one of the following locations, depending on your operating system.
In each of the following paths, substitute your operating system user account name for USER and

your Flash language code for LANGUAGE_CODE, which is "en" for English:

Windows 2000, Windows XP

C:\Documents and Settings\USER\Local Settings\Application Data\Macromedia\Flash MX

2004\LANGUAGE_CODE\Configuration\Classes

Note that the Local Settings folder is hidden by default but can be revealed in Windows
Explorer using Tools Folder Options View Advanced Settings Files and Folders

 Hidden Files and Folders Show Hidden Files and Folders.

Windows 98

C:\Windows\Application Data\Macromedia\Flash MX
2004\LANGUAGE_CODE\Configuration\Classes

Macintosh OS X

Hard Drive/Users/USER/Library/Application Support/Macromedia/Flash MX
2004/LANGUAGE_CODE/Configuration/Classes

Because the default global classpath includes the current directory (.), every .fla file can access
classes in the same directory as the .fla itself. Similarly, every .fla file can access classes in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

/Configuration/Classes directory. You should not remove either of those directories from the global
classpath.

Furthermore, if the root directory of a package resides in either the same directory as the .fla file or
in the /Configuration/Classes directory, then the classes in that package are accessible to the .fla file.

For example, suppose that, on Windows XP, we create a document, game.fla and place it in the
directory c:\data\projects\fungame. Then we create a class, com.yourdomain.game.Player and place
its class file in: c:\data\projects\fungame\com\yourdomain\game\Player.as. Because game.fla and
the root of the Player class's package reside in the same directory, game.fla finds the Player class
successfully.

// Given this directory setup, game.fla can access the Player class

C:\data\projects\fungame\game.fla

C:\data\projects\fungame\com\yourdomain\game\Player.as

Likewise, if the class file for com.yourdomain.game.Player resides in the /Configuration/Classes
directory, then game.fla (and, indeed, any .fla file) will find the Player class successfully.

// Given this directory setup, game.fla can access the Player class

C:\data\projects\fungame\game.fla

C:\Documents and Settings\USER\Local Settings\Application Data\

Macromedia\Flash MX 2004\LANGUAGE_CODE\Configuration\Classes\com\yourdomain

\game\Player.as

If Player.as is not found in either of those locations, the compiler generates the following error:

The class 'com.yourdomain.game.Player' could not be loaded.

It's not a good idea to store your class files in the /Configuration/Classes
directory. That directory can easily be confused with a similarly named
directory in Flash's application folder, and it is awkward to include in routine
data backups. You should store your class files with the rest of your project
data (images, videos, sounds, .fla files, etc.). Classes used across multiple
projects should be stored in a central location, such as c:/data/actionscript.

9.3.1 Adding a New Directory to the Classpath

If we want to store our Player.as class file in a directory other than the two included by default in the
global classpath (and /Configuration/Classes), we have to add the package root directory to either

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the global classpath or the document classpath (i.e., the classpath specified by game.fla itself). For
example, suppose we were to place Player.as here:

C:\data\actionscript\com\yourdomain\game\Player.as

To give all .fla files access to the Player class, we'd add the directory C:\data\actionscript to the
global classpath, as follows:

Select Edit Preferences ActionScript Language ActionScript 2.0 Settings.1.

Under Classpath, click the plus sign (+) to add a new classpath entry. A blank entry appears.2.

In the classpath entry, type C:\data\actionscript\. (Or use the crosshair button to browse

to that directory.)

3.

Click OK to accept the ActionScript 2.0 settings.4.

Click OK to accept the new preferences.5.

Alternatively, if we were using the Player class only in game.fla, we could give game.fla individual
access to the Player class by adding the directory C:\data\actionscript to game.fla's own classpath,
like this:

Open game.fla in Flash MX 2004.1.

Select File Publish Settings Flash ActionScript 2.0 Settings.2.

Follow Steps 2-5 in the preceding procedure.3.

When more than one project uses the same classes, it's sensible to store them
in a central location. For information on storing classes centrally, see Chapter
14.

Classpath entries can also be specified using relative paths, such as ./ for the directory that contains
the .fla file, ../ for one directory up from the .fla file, ../../ for two directories up, and so on. For
example, if your .fla file is stored in this location:

C:\data\projects\fungame\movie\game.fla

and the classes used by game.fla are stored in this location:

C:\data\projects\fungame\classes

you can grant game.fla access to the classes in the classes directory by specifying the following
relative classpath:

../classes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Relative classpaths are useful when sharing files across disparate filesystems or operating systems,
as is common when working with a team or using version control software.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

9.4 Simulating Packages in ActionScript 1.0

ActionScript 1.0 did not have formal support for packages, but we can simulate packages in
ActionScript 1.0 by creating a unique global object and defining all classes on it. (In fact, that's
exactly what the ActionScript 2.0 compiler does behind the scenes.)

For example, the following code creates an object, com, and then creates a property of that object,
yourdomain:

if (_global.com == undefined) {

 _global.com = new Object();

}

if (_global.com.yourdomain == undefined) {

 _global.com.yourdomain = new Object();

}

To create a class, Box, in the simulated package, com.yourdomain, we'd use this ActionScript 1.0
code:

com.yourdomain.Box = function () {

 // class body

}

Here's a convenient function, AsSetupPackage(), that you can use to create a simulated package for
your own ActionScript 1.0 classes:

_global.AsSetupPackage = function (path) {

 var a = path.split('.');

 var o = _global;

 for (var i = 0; i < a.length; i++) {

 var name = a[i];

 if (o[name] == undefined) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 o[name] = new Object();

 }

 o = o[name];

 }

}

// Usage:

AsSetupPackage("com.yourdomain");

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

9.5 Just a Little More Theory

In Parts II and III, we'll see packages used in plenty of practical examples. But before we move on to
those situations, we must first conclude our study of ActionScript 2.0's conceptual principles. Last up
is the tool, exceptions, which is used to generate and respond to program errors, as we'll see in the
final chapter in Part I.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 10. Exceptions
Throughout this book, we've encountered plenty of compile-time errors-errors reported in the
Output panel when a movie is exported. If a compile-time error occurs in an ActionScript 2.0
program, compilation fails and Flash won't generate a .swf file to execute. But not all ActionScript
errors occur at compile time. Some errors don't occur until runtime, and they may not cause the
program to fail completely. For example, suppose we attempt to load an XML file from disk, but the
file is not found. If the movie is running in Test Movie mode, the failed load causes the Output panel
to display an error message-but the movie continues to run. The following code demonstrates:

// If the specified file doesn't exist...

var xmlDoc:XML = new XML();

xmlDoc.load("http://www.somenonexistentsite.com/someNonExistentFile.xml");

// ...the Output panel displays:

Error opening URL

"http://www.somenonexistentsite.com/someNonExistentFile.xml"

In an ideal world, we'd like to be able to recover from nonfatal error conditions such as a file-not-
found. We'd like to tell the user there was a problem loading the file and perhaps display the
problematic filename.

Unfortunately, in ActionScript there are precious few built-in runtime errors and, what's worse,
there's no standard error-handling mechanism for dealing with the errors that do occur at
runtime-at least, not for the errors that are generated by ActionScript itself. Most errors in
ActionScript occur in the form of custom error codes and return values. For example, a method might
return the value -1, false, or null to indicate that some operation failed. This requires us to write

different, individualized code for each kind of error generated by ActionScript.

Luckily, the situation is not so bleak for our own code. As of Flash Player 7, we can write code that
generates standardized errors via the throw statement. We handle those errors via the
try/catch/finally statement. (The throw and try/catch/finally statement syntax and behavior are
borrowed from Java and C++.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The vast majority of ActionScript 2.0 is backward compatible with Flash Player
6. However, the exception-handling features discussed in this chapter require
Flash Player 7 to work. Hence, outside this chapter, code examples in this book
do not use exception handling. This allows nearly all examples to run cheerfully
in Flash Player 6.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

10.1 The Exception-Handling Cycle

To learn how to dispatch and respond to errors in our own programs, we'll return to the Box class
example from Chapter 4. Recall that in the Box class, we defined a setWidth() method to set the
width property of a Box instance. The setWidth() method checks whether a new width is within legal
range before changing the width property of the Box instance. If the new width specified is not valid,
no change is made, and the method signals a problem by returning the value false. The relevant

Box class code follows. (Note that the Box class code in this example is incomplete; for now we're
concentrating only on the portions of the class that deal with setting the width property.)

class Box {

 private var width:Number;

 public function setWidth (w:Number):Boolean {

 if ((isNaN(w) || w == null) || (w <= 0 || w > Number.MAX_VALUE)) {

 // Invalid data, so quit.

 return false;

 }

 width = w;

 return true;

 }

}

When setWidth() returns the value false, it does so to indicate an error condition. Code that

invokes the setWidth() method is expected to check setWidth()'s return value and respond
gracefully if there's a problem (i.e., if setWidth() returns false).

Let's now revise the setWidth() method so that it generates an exception, a standard form of error
supported directly by ActionScript 2.0. Error dispatch and recovery with exceptions works in much
the same way as the preceding setWidth() method; when a problem occurs, an error is signaled, and
some error-recovery code is expected to handle it.

To generate an exception (i.e., signal an error) in our code, we use the throw statement, which takes
the following form:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

throw expression

where expression is a data value that describes the unusual or problematic situation. Using throw to

signal an error is known as "throwing an exception." ActionScript allows any value to act as the
expression of a throw statement. For example, the expression value could be the string literal

"Something went wrong!" or it could be a numeric error code. However, the best practice is for
expression to be an instance of the Error class (or an instance of a subclass of Error).

The Error class, introduced as a built-in class in Flash Player 7, is a standard class for representing
error conditions. Instances of the Error class represent an error (a.k.a. an exception) in a program.

The Error class defines two public properties, name and message , used to

describe the error. The Error class also defines a single method, toString(),
which returns the value of message or, if message is not defined, returns the

string "Error."

Here's one way to write setWidth() so that it generates an exception with a throw statement when
an invalid width is received:

public function setWidth (w:Number):Void {

 if ((isNaN(w) || w == null) || (w <= 0 || w > Number.MAX_VALUE)) {

 throw new Error("Invalid width specified.");

 }

 width = w;

}

When the throw statement executes, program control is immediately transferred to a special section
of code that knows how to deal with the problem (we'll discuss this shortly). In official terms, the
code that deals with the problem is said to handle the exception.

In our revised setWidth() method, when the value of w is illegal, we use throw to halt the method,

and we pass a new Error object out of the method to the section of code (not yet shown) that will
handle the problem:

throw new Error("Invalid width specified.");

We also supply a description of the problem-"Invalid width specified"-as an argument to the Error
constructor. The code block that handles the exception (again, not yet shown) uses the Error
instance to diagnose what went wrong. Notice that setWidth() no longer returns a Boolean success
or failure value. If the method encounters a problem, it uses the throw statement to both quit and
signal a failure. Otherwise, it completes normally and we can rest assured that it performed its job
successfully.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now that our setWidth() method includes the throw statement (i.e., now that it might generate an
exception), we must adjust the way we invoke it. Previously, we would have used the return value of
setWidth() to determine what to do in the event of a problem:

var b:Box = new Box();

var someWidth:Number = -10;

// Check setWidth()'s return value...

if (b.setWidth(someWidth)) {

 // ...setWidth() returned true, so no problems; proceed as planned.

 trace("Width set successfully.");

} else {

 // ...setWidth() returned false! ERROR! Invalid data. Display a warning.

 trace("An error occurred.");

}

But now, when invoking the new exception-based version of our method, we don't bother checking
the return value of setWidth(). Instead, we set up a code branch using the formal try/catch/finally
statement instead of an if/else statement. Here's how the new version looks:

var b:Box = new Box();

var someWidth:Number = -10;

try {

 b.setWidth(someWidth);

 // If we get this far, no exception occurred; proceed as planned.

 trace("Width set successfully.");

} catch (e:Error) {

 // ERROR! Invalid data. Display a warning.

 trace("An error occurred: " + e.message);

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Let's study the preceding code in closer detail. The try keyword tells the interpreter that we're about
to execute some code that might generate an exception:

try {

 // Code here might cause an exception.

}

In this case, the code we're executing is setWidth():

try {

 b.setWidth(someWidth);

 // If we get this far, no exception occurred; proceed as planned.

 trace("Width set successfully.");

}

The catch block handles exceptions generated by the try block. That is, the code in the catch block
executes if, and only if, code in the try block generates an exception:

} catch (e:Error) {

 // ERROR! Invalid data. Display a warning.

 trace("An error occurred: " + e.message);

}

When we invoke b.setWidth() within the try block, if setWidth()'s throw statement doesn't

execute (i.e., if no error occurs), then the subsequent statements in the try block execute normally
and the program skips the catch block entirely. But if setWidth() throws an exception, the program
immediately skips to and executes the catch block.

Notice, therefore, the typical structure:

Code in a try clause invokes a function that might throw an exception.

Code in the invoked function throws an exception using the throw statement if an error occurs.

Control returns either to the try block (if no error is thrown) or the catch block (if an error is
thrown). The catch block deals with any errors that occur in the try block.

When the catch block is executed, it receives the expression of the throw statement as a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

parameter. In our present example, within the catch block, the parameter e stores the Error instance

created by the throw statement in the Box.setWidth() method:

// Here's the throw statement, excerpted from setWidth().

throw new Error("Invalid width specified.");

We can use that Error instance to help diagnose the problem. The string passed to the Error
constructor is available via the message property of the Error instance. In our example catch
statement, we simply display the Error instance's message in the Output panel, as follows:

trace("An error occurred: " + e.message);

The Error class's toString() method, which is called automatically when an instance is used in a
string context, returns the value of the message property. Hence, in a string context, e and
e.message are equivalent. For example, the following two statements are synonymous:

trace("An error occurred: " + e.message);

trace("An error occurred: " + e);

We'll use them interchangeably throughout this chapter.

Note that the parameter listed in a catch block should not need to be declared as a variable before
being used. However, due to a bug in version 7.0 of the Flash MX 2004 authoring tool, the compiler
(incorrectly) generates an error when a catch block parameter is referenced without first being
declared. For example, in version 7.0 of Flash MX 2004, the following code:

public function someMethod ():Void {

 try {

 throw new Error("Some error message.");

 } catch (e:Error) {

 // Respond to the error.

 trace("An error occurred: " + e);

 }

}

(incorrectly) generates the following error:

There is no property with the name 'e'.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This bug is fixed in the Flash MX 2004 updater, available at:
http://macromedia.com/support/flash/downloads.html. (To work around the bug without installing
the updater, simply declare the parameter e as a variable.)

Metaphorically, the code that detects a problem throws an exception (passes an Error object) to the
catch block, which receives it as a parameter (catches it).

Incidentally, the try block can throw an error directly. For example, in the following code, the catch
block is executed when x divided by y is the numeric value NaN (as is the case when both x and y are

0):

var x:Number = 0;

var y:Number = 0;

var e:Error; // Declare e as parameter to avoid compiler bug

try {

 if (isNaN(x/y)) {

 throw new Error("Quotient is NaN.");

 } else {

 trace ("Result is " + String(x/y));

 }

} catch (e:Error) {

 trace("Error: " + e.message);

}

In the preceding example, you might think that attempting to divide by 0 (when y is 0) would cause

ActionScript itself to throw a "Division by zero" exception, but no such luck. ActionScript doesn't
throw exceptions. It is up to the developer to check for error conditions and invoke throw as desired.
Furthermore, in ActionScript, dividing anything other than 0 by 0 yields Infinity (for positive
numerators) or -Infinity (for negative numerators).

Whatever the case, it's more common for try blocks to invoke methods that throw exceptions than
for a try block to include a throw statement directly. Later, under "Exception Bubbling," we'll learn
more about how errors are transferred from methods to enclosing try blocks. For now, you can
simply rely on the rules in the following tip.

http://macromedia.com/support/flash/downloads.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Within a try block, if a statement executes, you can safely trust that all
preceding statements have executed successfully. If code in a try block (or a
method invoked in the try block) throws an error, the remaining statements in
the try block are skipped and the statements in the catch block are executed. If
no exception is thrown, the try block completes and execution resumes with the
statements immediately following the try/catch/finally statement.

To find out what happens if the error is never caught (or, synonymously, never trapped), see
"Uncaught Exceptions," later in this chapter.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

10.2 Handling Multiple Types of Exceptions

Our first exception example was overly simplistic. What happens if our method generates more than
one kind of error? Are they all sent to the same catch block? Well, that's up to the developer; they
certainly could be, but it's more typical and better practice for different kinds of errors to be handled
by separate catch blocks. Let's examine why.

Suppose we wanted a finer-grained set of error messages in our setWidth() method: one for general
invalid data, one for too small a width, and one for too large a width. Our revised setWidth() method
might look like this:

public function setWidth (w:Number):Void {

 if (isNaN(w) || w == null) {

 throw new Error("Illegal Box dimension specified.");

 } else if (w <= 0) {

 throw new Error("Box dimensions must be greater than 0.");

 } else if (w > Number.MAX_VALUE) {

 throw new Error("Box dimensions must be less than Number.MAX_VALUE.");

 }

 width = w;

}

To handle the three possible error messages in our new setWidth() message, we might be tempted
to code our try/catch/finally statement as follows:

try {

 b.setWidth(someWidth);

 // If we get this far, no exception occurred; proceed as planned.

 trace("Width set successfully.");

} catch (e:Error) {

 switch (e.message) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 case "Illegal Box dimension specified.":

 trace("An error occurred: " + e.message);

 trace("Please specify a valid dimension.");

 break;

 case "Box dimensions must be greater than 0.":

 trace("An error occurred: " + e.message);

 trace("Please specify a larger value.");

 break;

 case "Box dimensions must be less than Number.MAX_VALUE.":

 trace("An error occurred: " + e.message);

 trace("Please specify a smaller value.");

 break;

 }

}

Admittedly, that code does work, but it's fraught with problems. First, and most serious, the errors
are distinguished from one another only by the text in a string that is hidden within the Box class.
Each time we want to check the type of an error, we have to look inside the Box class and find the
message string. Using the string for error identification across multiple methods and classes is highly
prone to human error and makes our code difficult to maintain. Second, the switch statement itself is
barely more readable than our original, if/else statement (the one we used before we added
exceptions to the setWidth() method). We're not much farther ahead than we would be if we had
used, say, numeric error codes instead of formal exceptions.

Fortunately, there's a formal (and elegant) way to handle multiple exception types. Each try block
can have any number of supporting catch blocks. When an exception is thrown in a try block that has
multiple catch blocks, the interpreter executes the catch block whose parameter's datatype matches
the datatype of the value originally thrown. The datatypes of the catch parameter and thrown value
are considered a match if they are identical or if the catch parameter type is a superclass of the
thrown value's type.

Here's the general syntax of a try statement with multiple catch blocks:

try {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Code that might generate an exception.

} catch (e:ErrorType1) {

 // Error-handling code for ErrorType1.

} catch (e:ErrorType2) {

 // Error-handling code for ErrorType2.

} catch (e:ErrorTypen) {

 // Error-handling code for ErrorTypen.

}

If a throw statement in the preceding try block were to throw an expression of type ErrorType1, then
the first catch block would be executed. For example, the following code causes the first catch block
to execute:

throw new ErrorType1();

If a throw statement were to pass an expression of type ErrorType2, then the second catch clause
would be executed, and so on. As we learned earlier, in ActionScript the throw statement expression
can belong to any datatype. However, as an OOP best practice, we should throw only instances of the
Error class or one of its subclasses (this best practice follows Java, where throw can be used only
with Throwable and its subclasses).

If we want to throw multiple kinds of exceptions in an application, we should define an Error subclass
for each kind of exception. It is up to you as the developer to decide what level of granularity you
require (i.e., to what degree you need to differentiate among different error conditions). However,
don't confuse the following discussion of how to implement granularity in error handling as an
insistence that you must implement such granularity.

10.2.1 Determining Exception Type Granularity

Should you define an Error subclass for each error condition? Typically, no, you won't need that level
of granularity because in many cases multiple error conditions can be treated in the same way. If you
don't need to differentiate among multiple error conditions, you can group them together under a
single custom Error subclass. For example, you might define a single Error subclass named
InvalidInputException to handle a wide range of input problems.

That said, you should define a separate Error subclass for each error condition that you want to
distinguish from other possible conditions. To help you understand when you should create a new
subclass for a given error condition and to demonstrate how to group multiple conditions into a single
subclass, let's return to our familiar Box class.

Earlier we generated three exceptions from the Box.setWidth() method: one for general invalid data,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

one for too small a width, and one for too large a width. All three Box-related exceptions used the
generic Error class. Here's the code again:

public function setWidth (w:Number):Void {

 if (isNaN(w) || w == null) {

 throw new Error("Illegal Box dimension specified.");

 } else if (w <= 0) {

 throw new Error("Box dimensions must be greater than 0.");

 } else if (w > Number.MAX_VALUE) {

 throw new Error("Box dimensions must be less than Number.MAX_VALUE.");

 }

 width = w;

}

In the preceding code, to differentiate Box exceptions from all other exceptions in our application, we
use the Error class's message property, which, as we just learned, made our exceptions awkward to

use and prone to human error. A better way to set Box-related data errors apart from other errors in
our application is to define a custom Error subclass, BoxDimensionException, as follows:

// Code in BoxDimensionException.as:

class BoxDimensionException extends Error {

 public var message:String = "Illegal Box dimension specified.";

}

With our BoxDimensionException class in place, our Box.setWidth() method can throw its very own
type of error, as follows:

public function setWidth (w:Number):Void {

 if (isNaN(w) || w == null) {

 // Throw a BoxDimensionException instead of an Error.

 throw new BoxDimensionException();

 } else if (w <= 0) {

 throw new BoxDimensionException();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 } else if (w > Number.MAX_VALUE) {

 throw new BoxDimensionException();

 }

 width = w;

}

Notice that the preceding method definition throws the same error type (BoxDimensionException) for
all three Box-related error conditions. As developers of the Box class, we now face the crux of the
error granularity issue. We must decide not only how distinguishable we want Box error messages to
be from other application errors, but also how distinguishable we want those errors to be from one
another. We have the following options:

Option 1: use a single Box error class.

Leave the preceding setWidth() method definition as-is. As we'll see shortly, this option lets us
distinguish Box errors from other generic errors in the program, but it does not help us
distinguish internally among the three varieties of Box-related errors (invalid data, too small a
width, and too large a width).

Option 2: simplify code, but still use a single Box error class.

Refactor the setWidth() method to check for all three error conditions using a single if
statement. This option is the same as the previous option, but uses cleaner code.

Option 3: use debugging messages to distinguish among errors.

Add configurable debugging messages to the BoxDimensionException class. This option adds
slightly more granularity than the previous two options but only for the sake of the developer
and only during debugging.

Option 4: create a custom exception class for each error condition.

Create two custom BoxDimensionException subclasses, BoxUnderZeroException and
BoxOverflowException. This option provides the most granularity-it lets a program respond
independently to the three varieties of Box-related errors using formal branching logic.

Let's consider the preceding options in turn.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.2.1.1 Using a single custom exception type

Our first option is to accept the preceding setWidth() definition, which throws the same error type
(BoxDimensionException) for all three Box-related error conditions. Because the method uses
BoxDimensionException and not Error to throw exceptions, Box exceptions are already
distinguishable from other generic exceptions. Users of the setWidth() method can use code such as
the following to discriminate between Box-related errors and other generic errors:

var b:Box = new Box();

var someWidth:Number = -10;

try {

 // This call to setWidth() will generate a BoxDimensionException.

 b.setWidth(someWidth);

 // Other statements in this try block might generate other generic errors.

 // For demonstration purposes, we'll throw a generic error directly.

 throw new Error("A generic error.");

} catch (e:BoxDimensionException) {

 // Handle Box dimension errors here.

 trace("An error occurred: " + e.message);

 trace("Please specify a valid dimension.");

} catch (e:Error) {

 // Handle all other errors here.

 trace("An error occurred: " + e.message);

}

For many applications, the level of error granularity provided by BoxDimensionException is enough.
In such a case, we should at least refactor the setWidth() method so that it doesn't contain
redundant code (throwing the BoxDimensionException three times). Here's the refactored code
(which was option 2 in our earlier list):

public function setWidth (w:Number):Void {

 if ((isNaN(w) || w == null) || (w <= 0) || (w > Number.MAX_VALUE)) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 throw new BoxDimensionException();

 }

 width = w;

}

10.2.1.2 Using configurable debugging messages

Now let's turn to option 3 (adding configurable debugging messages to the BoxDimensionException
class). Options 1 and 2 let us distinguish a Box exception from other exceptions in the application but
didn't help us distinguish, say, an overflow exception from a less-than-zero exception. If we feel that
it's difficult to debug a Box dimension problem without knowing whether a box is too big or too small,
we can adjust the BoxDimensionException class so that it accepts an optional description (the
equivalent of a proverbial "note to self"). Here's the adjusted BoxDimensionException class:

class BoxDimensionException extends Error {

 // The default error message still stands.

 public var message:String = "Illegal Box dimension specified.";

 // Provide a constructor that allows a custom message to be supplied.

 public function BoxDimensionException (boxErrMsg:String) {

 super(boxErrMsg);

 }

}

To make use of our adjusted BoxDimensionException class in setWidth(), we revert to our setWidth(
) code used in option 1 and add debugging error messages, as follows:

public function setWidth (w:Number):Void {

 if (isNaN(w) || w == null) {

 // The default error message is fine in this case,

 // so don't bother specifying a custom error message.

 throw new BoxDimensionException();

 } else if (w <= 0) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Here's the custom "too small" error message.

 throw new BoxDimensionException("Box dimensions must "

 + "be greater than 0.");

 } else if (w > Number.MAX_VALUE) {

 // Here's the custom "too big" error message.

 throw new BoxDimensionException("Box dimensions must be less "

 + "than Number.MAX_VALUE.");

 }

 width = w;

}

Now that setWidth() supplies custom error messages, we'll have an easier time debugging a Box
problem because we'll know more information when the error occurs. Our use of the setWidth()
method has not changed, but we're better informed when something goes wrong, as shown next:

var b:Box = new Box();

var someWidth:Number = -10;

try {

 b.setWidth(someWidth);

} catch (e:BoxDimensionException) {

 // Handle Box dimension errors here.

 // In this case, the helpful debugging output is:

 // An error occurred: Box dimensions must be greater than 0.

 trace("An error occurred: " + e.message);

} catch (e:Error) {

 // Handle all other errors here.

 trace("An error occurred: " + e.message);

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.2.1.3 Multiple custom BoxDimensionException subclasses

Option 3 (adding configurable debugging messages to the BoxDimensionException class) helped us
investigate a problem in our code during development, but it doesn't help the program take
independent action to recover from individual Box errors. To allow the program to execute
independent code branches based on the type of Box error thrown, we need custom
BoxDimensionException subclasses (option 4).

If you want a program to differentiate among error conditions, implement a
separate Error subclass for each one. Don't rely on the Error.message

property alone to implement program branching logic. If your custom Error
subclass defines a constructor that accepts an error string, you should use that
string only for debugging, not for branching logic.

To allow our program to independently differentiate among the Box class's three error conditions, we
create three custom exception types by creating three Error subclasses: BoxDimensionException,
BoxUnderZeroException, and BoxOverflowException. In our case, the BoxDimensionException class
extends Error directly. The BoxUnderZeroException and BoxOverflowException classes both extend
BoxDimensionException because we want to differentiate these specific error types from a more
general invalid dimension exception. Hence, the datatype hierarchy is shown in Figure 10-1.

Figure 10-1. The custom exception class hierarchy

Here's the source code for our three Box Error subclasses:

// Code in BoxDimensionException.as:

class BoxDimensionException extends Error {

 public var message:String = "Illegal Box dimension specified.";

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Code in BoxUnderZeroException.as:

class BoxUnderZeroException extends BoxDimensionException {

 public var message:String = "Box dimensions must be greater than 0.";

}

// Code in BoxOverflowException.as:

class BoxOverflowException extends BoxDimensionException {

 public var message:String = "Box dimensions must be less "

 + "than Number.MAX_VALUE.";

}

Each class specifies the value of its message property directly and does not allow it to be customized

on a per-use basis. Truth be told, now that we're dealing with class-based errors instead of string-
based errors, the message property is completely secondary. What matters is the datatype of the

exception generated by the throw statement. When catching any of the preceding Box exceptions,
our program will use the exception's datatype (not the message property) to distinguish between the

three kinds of exceptions.

Now that we have three exception types, let's update our setWidth() method to throw those types.
Here's the code:

public function setWidth (w:Number):Void {

 if (isNaN(w) || w == null) {

 throw new BoxDimensionException();

 } else if (w <= 0) {

 throw new BoxUnderZeroException();

 } else if (w > Number.MAX_VALUE) {

 throw new BoxOverflowException();

 }

 width = w;

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice that we do not pass any error description to the various Box exception constructors. Once
again, the description of each exception is set by each custom Error subclass using its message

property.

With each Box exception represented by its own class, the errors that can be generated by the
setWidth() method are well-known to programmers working with Box instances. The exception types
are visible outside the Box class, exposed appropriately to programmers working on the application.
Just by glancing at the application class hierarchy, the programmer can determine the exceptions
that relate to the Box class. Furthermore, if the programmer mistakenly uses the wrong name for an
exception, the compiler generates a datatype error.

Now let's see how to add branching logic to our code based on the types of exceptions that can be
generated by Box.setWidth(). Pay close attention to the datatype of each catch block parameter:

var b:Box = new Box();

var someWidth:Number = -10;

try {

 b.setWidth(someWidth);

} catch (e:BoxOverflowException) {

 // Handle overflow.

 trace("An error occurred: " + e.message);

 trace("Please specify a smaller value.");

} catch (e:BoxUnderZeroException) {

 // Handle under zero.

 trace("An error occurred: " + e.message);

 trace("Please specify a larger value.");

} catch (e:BoxDimensionException) {

 // Handle general dimension errors.

 trace("An error occurred: " + e.message);

 trace("Please specify a valid dimension.");

}

In the preceding code, if the setWidth() method generates a BoxOverflowException, the first catch

http://lib.ommolketab.ir
http://lib.ommolketab.ir

block executes. If setWidth() generates a BoxUnderZeroException, the second catch block executes.
And if setWidth() generates a BoxDimensionException, the third catch block executes. Notice that
the error datatypes in the catch blocks progress from specific to general. When an exception is
thrown, the catch block executed is the first one that matches the datatype of the exception.

Hence, if we changed the datatype of the first catch block parameter to BoxDimensionException, the
first catch block would execute for all three kinds of exceptions! (Remember, BoxDimensionException
is the superclass of both BoxUnderZeroException and BoxOverflowException, so they are considered
matches for the BoxDimensionException datatype.) In fact, we could prevent all of the catch blocks
from executing simply by adding a new first catch block with a parameter datatype of Error:

try {

 b.setWidth(someWidth);

} catch (e:Error) {

 // Handle all errors. No other catch blocks will ever execute.

 trace("An error occurred:" + e.message);

 trace("The first catch block handled the error.");

} catch (e:BoxOverflowException) {

 // Handle overflow.

 trace("An error occurred: " + e.message);

 trace("Please specify a smaller value.");

} catch (e:BoxUnderZeroException) {

 // Handle under zero.

 trace("An error occurred: " + e.message);

 trace("Please specify a larger value.");

} catch (e:BoxDimensionException) {

 // Handle general dimension errors.

 trace("An error occurred: " + e.message);

 trace("Please specify a valid dimension.");

}

Obviously, the addition of the first catch clause in the preceding code is self-defeating, but it does
illustrate the hierarchical nature of exception handling. By placing a very generic catch block at the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

beginning of the catch list, we can handle all errors in a single location. Conversely, by placing a very
generic catch block at the end of the catch list, we can provide a general safety net that handles any
errors not caught by earlier catch blocks. For example, in the following code, the final catch block
executes only if the try block generates an exception that doesn't belong to the
BoxOverflowException, BoxUnderZeroException, or BoxDimensionException datatypes:

try {

 b.setWidth(someWidth);

} catch (e:BoxOverflowException) {

 // Handle overflow.

 trace("An error occurred: " + e.message);

 trace("Please specify a smaller value.");

} catch (e:BoxUnderZeroException) {

 // Handle under zero.

 trace("An error occurred: " + e.message);

 trace("Please specify a larger value.");

} catch (e:BoxDimensionException) {

 // Handle general dimension errors.

 trace("An error occurred: " + e.message);

 trace("Please specify a valid dimension.");

} catch (e:Error) {

 // Handle any errors that don't qualify as BoxDimensionException errors.

}

Remember, error granularity is a choice. In option 4 we created a custom Error subclass for each
variety of exception generated by the Box class. This approach gives our program the greatest ability
to respond independently to different types of errors. But such flexibility is not necessarily required in
many situations. Let the needs of your program's logic dictate how granular you make your errors.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the first release of the Flash MX 2004 authoring tool, a bug prevents catch
statements from executing when the catch parameter datatype refers to a
class that has been imported via the import statement. For example, in the
following code, the catch statement never executes because SomeCustomError
is imported:

import somePackage.SomeCustomError;

try {

 throw new SomeCustomError();

} catch(e:SomeCustomError) {

 // This code should execute but it does not

 // if the movie is compiled with version 7.0

 // of the Flash MX 2004 authoring tool.

 trace("Caught: " + e);

}

To work around the problem, we can include the full package name when specifying a custom error
class as a catch block parameter. For example:

import somePackage.SomeCustomError;

try {

 throw new SomeCustomError();

} catch(e:somePackage.SomeCustomError) {

 // Now that the package name is included, this code runs.

 trace("Caught: " + e);

}

This bug is fixed in the Flash MX 2004 updater, available at:

http://macromedia.com/support/flash/downloads.html

 < Day Day Up >

http://macromedia.com/support/flash/downloads.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

10.3 Exception Bubbling

Earlier we learned that exceptions in a try block can be thrown either directly or as the result of a
method call. In reality, an exception can be thrown anywhere in an ActionScript program, even on a
frame in a timeline! Given that an exception can be thrown anywhere, how does the ActionScript
interpreter find the corresponding catch block to handle it? And what if no catch block exists? These
mysteries are resolved through the magic of exception bubbling. Let's follow along a bubbly ride with
the ActionScript interpreter as it encounters a throw statement in a program. During the following
dramatization, the interpreter's musing are shown in code comments.

When a throw statement executes, the interpreter immediately stops normal program flow and looks
for an enclosing try block. For example, here's a throw statement:

// INTERPRETER: Hmm. A throw statement.

// Is there an enclosing try block for it?

throw new Error("Something went wrong");

If the throw statement is enclosed in a try block, the interpreter next tries to find a catch block
whose parameter's datatype matches the datatype of the value thrown (in the present case, Error):

// INTERPRETER: Great, I found a try block. Is there a matching catch block?

try {

 throw new Error("Something went wrong");

}

If a matching catch block is found, the interpreter transfers program control to that block:

try {

 throw new Error("Something went wrong");

// INTERPRETER: Found a catch block whose parameter datatype is Error!

// The hunt's over. I'll execute this catch block now...

} catch (e:Error) {

 // Handle problems...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

But if a matching catch block cannot be found or if the throw statement did not appear within a try
block in the first place, then the interpreter checks whether the throw statement occurred within a
method or function. If the throw statement occurred in a method or function, the interpreter
searches for a try block around the code that invoked the method or function. The following code
demonstrates how the interpreter reacts when, within a method, it encounters a throw statement
that has no enclosing try block:

public function doSomething ():Void {

 // INTERPRETER: Hmm. No try block here. I'll check who called this method.

 throw new Error("Something went wrong");

}

If the code that invoked the method or function is enclosed in a try block, the interpreter looks for a
matching catch block there and, if it finds a match, executes it. The following code demonstrates an
exception thrown out of a method and caught where the method is invoked (i.e., one level up the call
stack).

class ErrorDemo {

 public function doSomething ():Void {

 // INTERPRETER: Hmm. No try block here.

 // I'll check who called this method.

 trace("About to throw an exception from doSomething() method.");

 throw new Error("Something went wrong");

 }

 public static function startApp ():Void {

 // INTERPRETER: Aha, here's who called doSomething(). And here's

 // an enclosing try block with a catch block whose

 // parameter datatype is Error! My work's done. catch

 // block, please execute now...

 try {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 var demo:ErrorDemo = new ErrorDemo();

 demo.doSomething();

 } catch (e:Error) {

 // Handle problems...

 trace("Exception caught in startApp(), thrown by doSomething().");

 }

 }

}

The call stack is the list of functions and methods currently being executed by
the interpreter at any given point in a program. The list includes the functions
and methods in the reverse order from which they were called, from top to
bottom. When a function is immediately below another function in the call
stack, then the lower function was invoked by the higher. The lowest function in
the call stack is the function currently executing.

You can use the Flash debugger to view the call stack for the current movie, as described in the Flash
authoring tool online Help, under ActionScript Reference Guide Debugging. Note, however, that
the Flash debugger displays the currently executing function visually on top rather than on the
bottom. That is, the visual display of the call stack in the Flash debugger is the reverse of the call
stack discussed in the preceding note. Ultimately, the distinction is arbitrary-the glass is half full or
it's half empty; the stack works top down or bottom up, depending on your point of view.

In the preceding code, an exception thrown by a method was caught by a try/catch block enclosing
the method call statement. However, if no try block is found around the function or method caller,
the interpreter searches up the entire call stack for a try block with a matching catch block. The
following code shows a method throwing an error that is caught two levels up the call stack:

class ErrorDemo {

 public function doSomething ():Void {

 // INTERPRETER: Hmm. No try block here.

 // I'll check who called this method.

 trace("About to throw an exception from doSomething() method.");

 throw new Error("Something went wrong");

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public static function startApp ():Void {

 // INTERPRETER: Aha, here's who called doSomething(). But still

 // no try block here. I'll check who called this method.

 var demo:ErrorDemo = new ErrorDemo();

 demo.doSomething();

 }

}

// Meanwhile, elsewhere in the program...

// INTERPRETER: Aha! Found a try block that has a catch block whose

// parameter's datatype is Error! My work's done. catch block,

// please execute now...

try {

 ErrorDemo.startApp();

} catch (e:Error) {

 // Handle problems...

 trace("Exception caught where Error.startApp() was invoked.");

}

Notice that the interpreter finds the try/catch block despite the fact that it surrounds not the error-
throwing method, nor the caller of the error-throwing method, but the caller of the method that
called the error-throwing method!

10.3.1 Uncaught Exceptions

We've seen a number of scenarios in which we've caught (trapped) various errors. But what happens
if the interpreter never finds a catch block that can handle the thrown exception? If no eligible catch
block is found anywhere in the call stack, then the interpreter:

Sends the value of the thrown Error object's message property to the Output panel (or simply

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sends the thrown expression itself if it wasn't an Error object)

Aborts execution of all code currently remaining in the call stack (including frame scripts and
callback functions such as a setInterval() callback)

Execution of the program then resumes normally. For example, if an uncaught exception occurs on
frame 1, layer 1 of a movie, the code on frame 2 executes normally. In fact, code on frame 1, layer 2
will also execute normally. For frame-based code, only the specific frame script that generated the
uncaught exception is aborted.

The following code demonstrates a method that throws an error that is never caught:

class ErrorDemo {

 public function doSomething ():Void {

 // INTERPRETER: Hmm. No try block here.

 // I'll check who called this method.

 throw new Error("Something went wrong");

 }

 public static function startApp ():Void {

 // INTERPRETER: Aha, here's who called doSomething(). But still

 // no try block here. I'll check who called this method.

 doSomething();

 }

}

// Meanwhile, elsewhere in the program...

// INTERPRETER: Hmm. Well, I searched all the way to the top, and still

// no try block. I'll send "Something went wrong" to the Output

// panel. Maybe the programmer will know what to do.

ErrorDemo.startApp();

As we've just seen, because exceptions bubble up the call stack, it's not necessary for a method to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

catch its own exceptions. And it's not even necessary for the caller of a method to catch its
exceptions. The exception can legally be caught at any level in the call stack. Any method can
delegate exception handling to the code that calls it. That said, it's bad form and harmful to a
program to throw an exception and then never catch it. You should always catch exceptions or,
having encountered an uncaught exception, revise your code so that the exception isn't thrown in the
first place.

Unfortunately, there's no way in ActionScript to tell the compiler to force a program to catch its own
exceptions. As we'll learn later, ActionScript does not support Java-style checked exceptions, which
are exceptions that must be caught in order for a program to compile. In Java terminology, all
exceptions in ActionScript are unchecked.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

10.4 The finally Block

So far, we've discussed only the try and catch blocks in the try/catch/finally statement. As we've
seen, a try block contains code that might throw an exception, and a catch block executes code in
response to a thrown exception. The finally block, by comparison, always executes, whether or not
code in the try block throws an exception.

The finally block is placed once (and only once) as the last block in a try/catch/finally statement. For
example:

try {

 // Statements

} catch (e:ErrorType1) {

 // Handle ErrorType1 exceptions.

} catch (e:ErrorTypen) {

 // Handle ErrorTypen exceptions.

} finally {

 // This code always executes, no matter how the try block exits.

}

Misplacing the finally block causes a compile-time error.

In the preceding code, the finally block executes in one of the four circumstances:

Immediately after the try block completes without errors

Immediately after a catch block handles an exception generated in the try block

Immediately before an uncaught exception bubbles up

Immediately before a return, continue, or break statement transfers control out of the try or
catch blocks (but see the bug described under "A Nested Exception Bug," later in this chapter)

The finally block of a try/catch/finally statement typically contains cleanup code that must execute
whether or not an exception occurs in the corresponding try block. For example, suppose we're
creating a space shooter game and we define a class, SpaceShip, to represent spaceships in the
game. The SpaceShip class has a method, attackEnemy() that performs the following tasks:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sets the spaceship's current target

Fires on that target

Clears the current target (i.e., sets the SpaceShip's currentTarget property to null)

In our hypothetical application, we'll assume that the first two of the preceding tasks might generate
an exception. Further, we'll assume that the attackEnemy() method doesn't handle those exceptions
itself; instead, it passes them up to the calling method. But whether or not an exception is
generated, the attackEnemy() method must set the currentTarget property to null.

Here's what the attackEnemy() method would look like if we coded it with a catch statement (i.e.,
without using finally):

public function attackEnemy (enemy:SpaceShip):Void {

 try {

 setCurrentTarget(enemy);

 fireOnCurrentTarget();

 } catch (e:Error) {

 // Clear the current target if an exception occurs.

 setCurrentTarget(null);

 // Pass the exception up to the calling method.

 throw e;

 }

 // Clear the current target if no exception occurs.

 setCurrentTarget(null);

}

Notice that we must duplicate the statement, setCurrentTarget(null). We place it both in the

catch block and after the try/catch statement, guaranteeing that it will run whether or not there's an
exception in the try block. But duplicating the statement is error prone. In the preceding method, a
programmer could have easily forgotten to clear the current target after the try/catch block.

If we change our strategy by clearing the current target in a finally block, we remove the redundancy
in the preceding code:

public function attackEnemy (enemy:SpaceShip):Void {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 try {

 setCurrentTarget(enemy);

 fireOnCurrentTarget();

 } finally {

 setCurrentTarget(null);

 }

}

In the revised version, the finally block clears the current target whether there's an exception or not.
Because both situations are handled, we no longer have any need for a catch block; we can simply
let the exception bubble up to the calling method automatically.

You might be wondering why we need the finally block at all. That is, why not just use the following
code?

// This code might look decent, but there's a problem. Can you spot it?

public function attackEnemy (enemy:SpaceShip):Void {

 setCurrentTarget(enemy);

 fireOnCurrentTarget();

 setCurrentTarget(null);

}

Remember that when an exception is thrown, program control is transferred to the nearest suitable
catch block in the call stack. Hence, if fireOnCurrentTarget() throws an exception, control transfers
out of attackEnemy(), never to return, and setCurrentTarget(null) would never execute. By
using a finally block, we guarantee that setCurrentTarget(null) executes before the exception

bubbles up.

The attackEnemy() method example reflects the most common use of finally in multithreaded
languages like Java, where a program can have multiple sections of code executing simultaneously.
In Java, the following general structure is commonplace-it guards against the possibility that an
object busy with a task might be inappropriately altered by another object during the execution of
that task:

// Set a state indicating this object's current task.

// External objects should check this object's state

// before accessing or manipulating this object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

doingSomething = true;

try {

 // Perform the task.

 doSomething();

} finally {

 // Unset the "in-task" state (whether or not

 // the task generated an exception).

 doingSomething = false;

}

In ActionScript, the preceding state-management code is effectively unnecessary because the
language is single-threaded, so no external object will ever attempt to alter the state of an object
while it is busy executing a method. Hence, finally is used much more rarely in ActionScript than it is
in multithreaded languages. However, it can still be used for organizational purposes, to contain code
that performs cleanup duties after other code has executed.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

10.5 Nested Exceptions

So far we've used only single-level try/catch/finally statements, but exception-handling logic can also
be nested. A try/catch/finally statement can appear inside the try, catch, or finally block of another
try/catch/finally statement. This hierarchical nesting allows any block in a try/catch/finally statement
to execute code that might, itself, throw an error.

For example, suppose we were writing a multiuser, web-based message board system. We define a
core class for the application (called BulletinBoard), another class that manages the user interface
(called GUIManager), and another class that represents a user on the board (called User). We give
BulletinBoard a method, populateUserList(), which displays the list of current active users. The
populateUserList() method splits its work into two stages: first it retrieves a List component from the
application's GUIManager instance, then it populates that List with users from a supplied array of
User instances. These two stages can both potentially generate an exception, so a nested
try/catch/finally structure is used in the populateUserList() method. Let's take a closer look at this
nested structure.

During the first stage of populateUserList(), if the List component isn't available, a UserListNotFound
exception is thrown by the GUIManager. The UserListNotFound exception is caught by the outer
try/catch/finally statement.

If, on the other hand, the List component is available, the populateUserList() method proceeds with
stage two, during which a loop populates the List component with users from the supplied array. For
each iteration through the loop, if the current user's ID cannot be found, the User.getID() method
throws a UserIdNotSet exception. The UserIdNotSet exception is caught by the nested
try/catch/finally statement.

Here's the code (we won't work closely with components until Chapter 12, so if some of this code
looks new to you, try returning to it once you're finished reading that chapter):

public function populateUserList (users:Array):Void {

 try {

 // Start stage 1...get the List.

 // If getUserList() throws an exception, the outer catch executes.

 var ulist:List = getGUIManager().getUserList();

 // Start stage 2...populate the List.

 for (var i:Number = 0; i < users.length; i++) {

 try {

 var thisUser:User = User(users[i]);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // If getID() throws an exception, the nested catch executes.

 ulist.addItem(thisUser.getName(), thisUser.getID());

 } catch (e:UserIdNotSet) {

 trace(e);

 log.warn(e);

 continue; // Skip this user.

 }

 }

 } catch (e:UserListNotFound) {

 trace(e);

 log.warn(e);

 }

}

Now that we've had a look at a specific nested exception example, let's consider how nested
exceptions are handled in general.

If an exception occurs in a try block that is nested within another try block, and the inner try block
has a catch block that can handle the exception, then the inner catch block is executed and the
program resumes at the end of the inner try/catch/finally statement.

try {

 try {

 // Exception occurs here.

 throw new Error("Test error");

 } catch (e:Error) {

 // Exception is handled here.

 trace(e); // Displays: Test error

 }

 // The program resumes here.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

} catch (e:Error) {

 // Handle exceptions generated by the outer try block.

}

If, on the other hand, an exception occurs in a try block that is nested within another try block, but
the inner try block does not have a catch block that can handle the exception, then the exception
bubbles up to the outer try/catch/finally statement (and, if necessary, up the call stack) until a
suitable catch block is found or the exception is not caught. If the exception is caught somewhere in
the call stack, the program resumes at the end of the try/catch/finally statement that handled the
exception. Note that in the following code example (and subsequent examples), the hypothetical
error datatype SomeSpecificError is a placeholder used to force the thrown exception to not be
caught. In order to test the code example in your own code, you'd have to create a subclass of Error
called SomeSpecificError.

try {

 try {

 // Exception occurs here.

 throw new Error("Test error");

 } catch (e:SomeSpecificError) {

 // Exception is not handled here.

 trace(e); // Never executes because the types don't match.

 }

} catch (e:Error) {

 // Exception is handled here.

 trace(e); // Displays: Test error

}

// The program resumes here, immediately after the outer catch block

// has handled the exception.

If an exception occurs in a try block that is nested within a catch block, and the inner try block does
not have a catch block that can handle the exception, then the search for a matching catch block
begins outside the outer try/catch/finally statement:

try {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Outer exception occurs here.

 throw new Error("Test error 1");

} catch (e:Error) {

 // Outer exception handled here.

 trace(e); // Displays: Test error 1

 try {

 // Inner exception occurs here.

 throw new Error("Test error 2");

 } catch (e:SomeSpecificError) {

 // Inner exception is not handled here.

 trace(e); // Never executes because the types don't match.

 }

}

// The search for a matching catch block for the inner exception starts here.

Last, if an exception occurs in a try block that is nested within a finally block, but a prior exception is
already in the process of bubbling up the call stack, then the new exception is handled before the
prior exception continues to bubble up.

// This method throws an exception in a finally block.

public function throwTwoExceptions ():Void {

 try {

 // Outer exception occurs here. Because there is no catch block for this

 // try block, the outer exception starts to bubble up,

 // out of this method.

 throw new Error("Test error 1");

 } finally {

 try {

 // Inner exception occurs here. The inner exception is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // handled before the outer exception actually bubbles up.

 throw new Error("Test error 2");

 } catch (e:Error) {

 // Inner exception is handled here.

 trace("Internal catch: " + e);

 }

 }

}

// Elsewhere, within another method that calls the preceding method.

try {

 throwTwoExceptions();

} catch (e:Error) {

 // The outer exception, which has bubbled up from throwTwoExceptions(),

 // is handled here.

 trace("External catch: " + e);

}

// Output (notice that the inner exception is caught first):

Internal catch: Test error 2

External catch: Test error 1

If, in the preceding example, the exception thrown in the finally block had never been caught, then
the interpreter would have sent it to the Output panel and aborted all other code in the call stack. As
a result, the original, outer exception would have been discarded along with all code in the call stack.
The following code demonstrates the preceding principle. It throws an uncaught exception from a
finally statement. As a result, the exception thrown by the outer try block is discarded. To test the
code, you can run it directly on a frame in the timeline.

try {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Outer exception occurs here.

 throw new Error("Test error 1");

} finally {

 try {

 // Inner exception occurs here.

 throw new Error("Test error 2");

 } catch (e:SomeSpecificError) {

 // Inner exception is not handled here.

 trace("internal catch: " + e); // Never executes because

 // the types don't match.

 }

}

// The search for a matching catch block for the inner exception starts

// here. If no match is ever found, then the Output panel displays

// "Test error 2", and the bubbling of the outer exception is aborted.

The preceding code demonstrates the effect of an uncaught exception in one scenario, but once
again, it's not appropriate to allow an exception to go uncaught. In the preceding case, we should
either catch the exception or revise our code so that the exception isn't thrown in the first place.

10.5.1 A Nested Exception Bug

Earlier we learned that finally executes no matter what happens in a try block. In theory, that should
be true. However, a bug in Flash Player 7 prevents finally from executing when a nested
try/catch/finally statement returns from a function, as shown in the following code:

function nestedFinallyBugDemo ():Void {

 try {

 try {

 throw new Error("Test error");

 } finally {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 trace("Inner finally block.");

 return;

 }

 } finally {

 trace("Outer finally block."); // Due to a bug in Flash Player 7,

 // this line never executes.

 }

}

nestedFinallyBugDemo();

// Displays:

Inner finally block.

The need for this structure is rare, so you probably won't encounter the bug, and Macromedia may
very well fix it in Flash Player 8 if not an interim version of Flash Player 7.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

10.6 Control Flow Changes in try/catch/finally

As we've seen throughout this chapter, the throw statement changes the flow of a program. When
the interpreter encounters a throw statement, it immediately stops what it's doing and transfers
program control to eligible catch and finally blocks. However, it is also quite legal for those catch and
finally blocks to change program flow again via return (in the case of a method or function) or break
or continue (in the case of a loop). Furthermore, a return, break , or continue statement can also
appear in a try block.

To learn the rules of flow changes in the try/catch/finally statement, let's look at how the return
statement affects program flow in a try, catch, and finally block. The following code examples contain
a method, changeFlow() that demonstrates a control flow in various hypothetical situations. Note
that, in all cases, the behavior of the changeFlow() method would be the same if it were a
standalone function.

Example 10-1 shows a return statement in a try block, placed before an error is thrown. In this case,
the method returns normally, and no error is ever thrown or handled. However, before the method
returns, the finally block is executed. Note that you're unlikely to see code exactly like Example 10-1
in the real world. In most applied cases, the return statement would occur in a conditional statement
and execute in response to some specific condition in the program.

Example 10-1. Using return in try, before throw

function changeFlow ():Void {

 try {

 return;

 throw new Error("Test error.");

 } catch (e:Error) {

 trace("Caught: " + e);

 } finally {

 trace("Finally executed.");

 }

 trace("Last line of method.");

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Output when changeFlow() is invoked:

Finally executed.

Example 10-2 shows a return statement in a try block, placed after an error is thrown. In this case,
the return statement is never executed because an error is thrown before it is reached. Once the
error is caught and the try/catch/finally completes, execution resumes after the try/catch/finally
statement, and the method exits at the end of the method body. Again, Example 10-2 demonstrates
a principle but is atypical of real-world code, which would normally throw the error based on some
condition.

Example 10-2. Using return in try, after throw

function changeFlow ():Void {

 try {

 throw new Error("Test error.");

 return;

 } catch (e:Error) {

 trace("Caught: " + e);

 } finally {

 trace("Finally executed.");

 }

 trace("Last line of method.");

}

// Output when changeFlow() is invoked:

Caught: Test error.

Finally executed.

Last line of method.

Example 10-3 shows a return statement in a catch block. In this case, the return statement executes
when the work of error handling is done, and the code after the try/catch/finally statement never

http://lib.ommolketab.ir
http://lib.ommolketab.ir

executes. However, as usual, before the method returns, the finally block is executed. Unlike
Examples 10-1 and Example 10-2, this code is typical of a real-world scenario in which a method is
aborted due to the occurrence of an error.

Example 10-3. Using return in catch

function changeFlow ():Void {

 try {

 throw new Error("Test error.");

 } catch (e:Error) {

 trace("Caught: " + e);

 return;

 } finally {

 trace("Finally executed.");

 }

 trace("Last line of method.");

}

// Output when changeFlow() is invoked:

Caught: Test error.

Finally executed.

Last, Example 10-4 shows a return statement in a finally block. In this case, the return statement
executes when the finally block executes (as we learned earlier, a finally block executes when its
corresponding try block completes in one of the following ways: without errors, with an error that
was caught, with an error that was not caught, or due to a return, break, or continue statement).
Notice that the return statement in Example 10-4 prevents any code in the method beyond the
try/catch/finally statement from executing. You might use a similar technique to quit out of a method
after invoking a block of code, whether or not that code throws an exception. In such a case, you'd
typically surround the entire try/catch/finally block in a conditional statement (otherwise the
remainder of the method would never execute!).

Example 10-4. Using return in finally

http://lib.ommolketab.ir
http://lib.ommolketab.ir

function changeFlow ():Void {

 try {

 throw new Error("Test error.");

 } catch (e:Error) {

 trace("Caught: " + e);

 } finally {

 trace("Finally executed.");

 return;

 }

 trace("Last line of method."); // Not executed.

}

// Output when changeFlow() is invoked:

Caught: Test error.

Finally executed.

If a return statement occurs in a finally block after a return has already been issued in the
corresponding try block, then the return in the finally block replaces the return already in progress.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

10.7 Limitations of Exception Handling in ActionScript 2.0

As you use exceptions in your code, you should be aware of the following exception-handling
limitations in ActionScript 2.0.

10.7.1 No Checked Exceptions

In ActionScript 2.0, if a method throws an exception, it's up to the programmer to know about it in
advance and handle it appropriately. Nothing you write in your code can force you or anyone else to
handle an exception. The compiler will make no complaints if an exception is not handled. (Of course,
an uncaught exception can cause code to be aborted at runtime, as discussed earlier under Section
10.3.1)

Exceptions are, hence, harder to work with in ActionScript than in languages that support compile-
time errors for uncaught exceptions. In Java, for example, an exception can be either checked (a
compile-time error occurs if the exception is not handled) or unchecked (no compile-time error occurs
if the exception is not handled).

In Java, the declaration for a method that throws a checked exception explicitly includes the
exception in the method header. Here's a Java method declaration that explicitly states the type of
exception the method can throw (in this case the method can throw exceptions of type IOException):

public void someMethod() throws IOException {

}

Upon reading the preceding method declaration, the programmer immediately knows she must
handle IOExceptions when invoking the method. If the programmer invokes the method without
catching or rethrowing the exception, Java will produce an error and the program will not compile.
This strictness forces programmers to dutifully deal with exceptions, leading to less time debugging
exception-related errors. ActionScript doesn't support the throws clause in method declarations.

10.7.2 No Built-in Exceptions

We saw earlier that Flash doesn't throw an exception when a developer attempts an illegal operation,
such as dividing by zero. Neither the class library built into the Flash Player nor the Flash MX 2004 v2
components throw exceptions. The only exceptions generated in Flash are those thrown by custom-
written programs. This exception-less environment leads to two problems. First, Flash must relay all
error information to the programmer using unwieldy error codes or return values. Second (and much
worse), Flash often fails silently when a runtime error occurs. Silent errors are very difficult to track
down. In the future, as versions of the Flash Player that support exception handling are adopted, it is
likely that ActionScript will generate more built-in exceptions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.7.3 Exception Performance Issues

In programming languages that do not support exceptions, programmers often use error codes to
represent error conditions. That is, if a method or function encounters an error, it returns a message
or code describing the problem and expects the caller to know how to interpret that code. While more
awkward than exceptions in many situations, this older, grassroots style of signaling an error in a
program is actually faster than throwing an exception.

For this reason, even with exceptions supported in ActionScript, returned error codes are sometimes
still a good technique for error handling, primarily in situations that are highly performance intensive.
Both exception handling and error codes are useful and can be used together in different parts of the
same program, depending upon the performance needs of different parts of your code.

But before you get excited about speed improvements and swear off exceptions for life, be aware
that in most programs, no human-perceivable improvement in speed results from using error codes
instead of exceptions. But in situations in which every last bit of performance makes a difference to
the program, it may be necessary to forego exceptions in favor of faster error codes.

The speed test in Example 10-5 compares the amount of time it takes to throw and catch 1000
exceptions with the amount of time it takes to handle a return value of false 1000 times. On

average, throwing an exception takes approximately three times as long as handling the return
value. However, on my aging Pentium III 700 MHz Windows test machine, the entire process of
throwing 1000 exceptions took a mere 187 milliseconds (compared to 57 milliseconds to handle the
false return values). In most programs, this potential 130-millisecond savings will be irrelevant. In

the vast majority of cases, the benefits of clean exception-based code far outweigh the performance
costs.

Example 10-5. Exception handling benchmark test

// The class file, in ExceptionPerformanceTest.as.

class ExceptionPerformanceTest {

 public function test1 ():Void {

 throw new CustomException();

 }

 public function test2 ():Boolean {

 return false;

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// The exception class in CustomException.as.

class CustomException extends Error {

 public var message:String = "This is the error message.";

}

// The test code, in ExceptionPerformanceTest.fla.

var ept:ExceptionPerformanceTest = new ExceptionPerformanceTest();

var count1:Number = 0;

var count2:Number = 0;

var start1:Number = getTimer();

for (var i:Number = 0; i < 1000; i++) {

 try {

 ept.test1();

 } catch (e:Error) {

 count1++;

 }

}

var elapsed1 = getTimer() - start1;

var start2:Number = getTimer();

for (var i:Number = 0; i < 1000; i++) {

 if (!ept.test2()) {

 count2++;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

}

var elapsed2 = getTimer() - start2;

trace(elapsed1); // On my Pentium III 700, displays: 187

trace(elapsed2); // On my Pentium III 700, displays: 57

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

10.8 From Concepts to Code

We've come to the end of Part I and finished our study of ActionScript 2.0 OOP theory. If you've read
and understood everything up to this point (or at least most of it), you now have the conceptual
foundation required to create object-oriented Flash applications. From here on out, you simply need
to build practical experience on top of that foundation. Parts II and III of this book will help you do
just that. In Part II, we'll study application frameworks, visual programming, and code distribution. In
Part III, we'll explore several widely accepted solutions to specific architectural problems in object-
oriented programming.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Part II: Application Development
Part II teaches you how to structure entire applications with ActionScript 2.0. You'll learn best
practices for setting up and architecting an object-oriented project, plus how user interface
components and movie clips fit into a well-structured Flash application. You'll also see how to
share code with other developers and use code libraries developed by others. All this will help
you build more scalable, extensible, stable applications.

Chapter 11

Chapter 12

Chapter 13

Chapter 14

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 11. An OOP Application
Framework
Flash is notoriously open-ended. If there are several of ways to skin a cat, there are even more ways
to build a Flash application. Flash's flexibility can cause confusion for developers, especially when
they're building their first application. This chapter's goal is to overcome that confusion by providing
one explicit example of how to structure an OOP Flash application. By no means is the example
presented here the only way to create a Flash application, but it is certainly a legitimate, reusable
approach that makes a good foundation for any OOP project. We'll consider the example in the
abstract sense first, not in reference to any particular application. Our framework could be applied to
anything from an email application to a video game. In the next chapter, we'll see how to apply our
generic framework to a real-world situation-a currency conversion application.

The application framework described in this chapter derives from a Java mentality more than, say, a
Microsoft Visual Basic style. That is, our application will be a pure OOP application, in which
everything happens in classes and the .fla file is used only to load classes and provide component
linkage. Not every application in Flash needs to be pure OOP. Flash also fully supports drag-and-drop
visual development, a la Visual Basic. Visual development practices involve placing components on
stage manually at authoring time and setting component properties and data bindings via panels in
the Flash authoring tool. These practices are beyond the scope of this book but are covered in detail
in Flash's online Help. In particular, see Help Using Components, and if you're using Flash MX
Professional 2004, see Help Using Flash Working with Screens. For a visual developer's
introduction to Flash application development, see Building a Google Search Application with
Macromedia Flash MX Professional, at
http://www.macromedia.com/devnet/mx/flash/articles/google_search.html.

The example files discussed in this chapter are available for download at
http://moock.org/eas2/examples.

 < Day Day Up >

http://www.macromedia.com/devnet/mx/flash/articles/google_search.html
http://moock.org/eas2/examples
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

11.1 The Basic Directory Structure

Before we start creating content, let's lay out the basic directory structure for our application.

Follow these steps:

Create a directory named AppName on your hard drive. The AppName directory will contain
everything in our project, including source code and final output. In a real project, you'd use
your application's actual name instead of AppName.

1.

In the AppName directory, create a subdirectory named deploy. The deploy directory will
contain the final, compiled application, ready for posting to a web site or other distribution
medium.

2.

In the AppName directory, create a subdirectory named source. The source directory will
contain all source code for the application, including classes (.as files) and Flash documents (.fla
files).

3.

Your application directory structure should look like this:

AppName/

 deploy/

 source/

In our example application, we have no external assets such as sounds, text copy (Word documents,
etc.), or artwork (e.g., scans, Photoshop files, or Illustrator files). In a more complex scenario, we'd
create an AppName/assets folder to contain those external files.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

11.2 The Flash Document (.fla file)

Every Flash application must include at least one Flash document (.fla file). The Flash document is the
source file from which a Flash movie (.swf file) is exported. The Flash movie is what's actually
displayed in the Flash Player (i.e., the Flash runtime environment). Many Flash applications are
broken down into multiple .swf files that are loaded individually at runtime. For example, one .swf file
might be a single level in a video game, whereas another .swf file might be a self-contained
animation or the "Contact Us" section of a web site. Even in these multiple-.swf file scenarios, there's
always a single, base .swf file on which the rest of the application is built. Sometimes, the base .swf
file simply acts as an empty container, used only to display load progress for the rest of the
application. At the other extreme, the entire application resides in the base .swf file directly, and no
external .swf files are loaded.

Our basic application framework falls into the last category-it includes a single .swf file only and,
hence, requires only one .fla file. However, our application framework does not preclude the use of
other .swf files down the road that might contain different sections of a web site, different stages in a
form or quiz, or different levels in a video game.

To create our application's main .fla file, follow these steps:

In the Flash authoring tool, choose File New.1.

In the New Document dialog box, on the General tab, for Type, choose Flash Document, then
click OK.

2.

Use File Save As to save the Flash document as AppName.fla in the AppName/source
directory.

3.

We'll return to the .fla file in a moment. Right now, let's move on to our application's classes.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

11.3 The Classes

Because we're building a pure OOP application, all of our application's content is created by its
classes. In Flash, most applications are visual and include graphical user interfaces. Hence, the
classes of an OOP Flash application typically create and manage user interface components. But in
our example, we'll include only two sample classes. For now, our focus is the generic structure of our
framework, so neither class creates any visuals or performs any specific practical task. To emphasize
the generic nature of our framework, we'll name our classes A and B. (In Chapter 12, we'll see how
to create components and manage a user interface based on the present skeletal framework.)

An OOP application can have any number of classes, but only one of them is used to start the
application in motion. In our example, class A starts the application. Class A has a class method,
generically named main(). By convention, the main() method contains an application's startup code.
In an actual application, class A would be replaced by a specific class whose main() method performs
a specific startup duty. For example, in a quiz application, the primary class might be Quiz, and the
main() method might initialize the quiz and display the quiz's first question. In a chat application, the
primary class might be ChatClient, and the main() method might connect to the server. In both
cases, the remainder of the application cascades from that first invocation of main(). For example,
an answer to question 1 would cause question 2 to appear, or a successful connection to the server
would cause a chat interface to appear.

For the sake of our example framework, we'll consider A's startup task to be simply creating an
instance of B.

Our use of the class method named main() follows Java's methodology exactly.
But in Flash, the main() method is an optional convention. In Java, it is a
requirement of the language. In Java, main() is invoked automatically,
whereas in Flash, you must manually call main() from, say, the first frame of
the timeline following the application's preloader.

We'll store our classes in the package com.somedomain. In your application, you should change
com.somedomain to match your web site's domain name. For example, I create all my classes under
the package org.moock because my domain name is moock.org.

To create the directories for the com.somedomain package, follow these steps:

In the AppName/source directory, create a subdirectory named com.1.

In the AppName/source/com directory, create a subdirectory named somedomain.2.

To create class A, follow these steps if you're using Flash MX Professional 2004. If you're using Flash
MX 2004 (standard edition), use an external text editor to create the .as class file following similar
steps:

1.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Flash MX Professional 2004, choose File New.1.

In the New Document dialog box, on the General tab, for Type, choose ActionScript File.2.

Click OK. The script editor launches with an empty file.3.

Enter the following code into the script editor:4.

import com.somedomain.B;

class com.somedomain.A {

 private static var bInstance:B;

 public function A () {

 // In this example, class A's constructor is not used.

 }

 public static function main ():Void {

 trace("Starting application.");

 bInstance = new B();

 }

}

Choose File Save As.5.

In the Save As dialog box, specify A.as as the filename, and save the file in the directory:

AppName/source/com/somedomain.

6.

Similarly, to create class B, use Flash MX Professional 2004 or an external text editor to create the
B.as file in the AppName/source/com/somedomain folder with the following content:

class com.somedomain.B {

 public function B () {

 trace("An instance of class B was constructed.");

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice that in our example framework we store the files for our class hierarchy under the
AppName/source subdirectory. That's a reasonable place to store the files, but it's not mandatory.
The class files could theoretically go anywhere. As long as the directory in which they reside is added
to the global or document classpath, the classes will be accessible to timeline code and other
ActionScript classes. For information on classpaths, see "Package Access and the Classpath" in
Chapter 9. For information on storing classes in a central repository, see Chapter 14.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

11.4 The Document Timeline

We've now created two classes (A and B) and a Flash document that will use them (AppName.fla).
Let's see exactly how AppName.fla loads the classes and invokes the class method A.main(), which
starts our application.

In Chapter 2, we learned that the fundamental metaphor of a Flash document is the timeline, which
can be used to create animations like a filmstrip. When used for animation, the frames in the timeline
are displayed in rapid linear succession by the Flash Player. However, the timeline can also be used to
create a series of application states, in which specific frames correspond to specific states and frames
are displayed according to the application's logic, not linearly (according to the passing of time).

In our example application framework, we'll use the timeline of AppName.fla to create two basic
application states: loading and main. Each state is implemented by pausing the playhead in a
corresponding labeled frame. On the frame labeled loading, we display a loading message while our
application's classes load. On the frame labeled main, we invoke A.main(), which starts the
application.

Using frames as application states is a common practice for creating Flash
applications (both OOP and non-OOP). While the practice definitely works and is
widespread, it can also be awkward to work with and generally feels unfamiliar
to programmers coming from other languages. To address this situation, Flash
MX Professional 2004 introduces a Visual Basic-style forms-based development
feature called Screens, which is not covered in this book. For information on
developing applications with Screens, see Help Using Flash Working
with Screens (Flash Professional only).

To load our A and B classes, we'll follow these general steps:

Specify the export frame for classes in the movie.1.

Add the labeled state frames loading and main to AppName.fla's timeline.2.

Add code that displays a loading message while the movie loads.3.

The specific procedures for those three steps are listed next. If you've already read Chapter 5 you'll
have seen some of these procedures before.

To specify the export frame for classes in the movie, follow these steps:

Open AppName.fla in the Flash authoring tool.1.

Choose File Publish Settings.2.

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

2.

In the Publish Settings dialog box, on the Flash tab, next to the ActionScript Version, click
Settings.

3.

In the ActionScript Settings dialog box, for the Export Frame for Classes option, enter 10. The

choice of frame 10 is arbitrary, but the specified frame must come after the code that displays
the loading message (i.e., after the preloader).

4.

Click OK to confirm the ActionScript settings.5.

Click OK to confirm the publish settings.6.

To add the labeled state frames loading and main to AppName.fla's timeline, follow these steps:

In AppName.fla's main timeline, double-click Layer 1 and rename it to scripts. We'll place all

our code on the scripts layer. As a best practice, you should keep all your timeline code in the
scripts layer, which should be the topmost layer in your timeline. The scripts layer should
contain only scripts, not movie clips or other content. Some developers call the layer actions
instead of scripts, but the premise is the same.

1.

In the main timeline of AppName.fla, select frame 15 of the scripts layer.2.

Choose Insert Timeline Keyframe (F6).3.

Choose Insert Timeline Layer.4.

Double-click the new layer's name and change it to labels.5.

At frames 4 and 15 of the labels layer, add a new keyframe (Insert Timeline Keyframe
or F6). Just as the scripts layer holds all our scripts, the labels layer is used exclusively to hold
frame labels. Frame labels are a convenient, human-friendly way to refer to frames instead of
referring to frames by number.

6.

With frame 4 of the labels layer selected, in the Properties panel, under Frame, change <Frame
Label> to loading.

7.

With frame 15 of the labels layer selected, in the Properties panel, under Frame, change
<Frame Label> to main.

8.

Next, follow these steps to add code that displays a loading message while the movie loads:

At frame 5 of the scripts layer, add a new keyframe (Insert Timeline Keyframe or F6).1.

With frame 5 of the scripts layer selected, enter the following code into the Actions panel (F9):2.

if (_framesloaded == _totalframes) {

 gotoAndStop("main");

} else {

 gotoAndPlay("loading");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

With frame 1 of the scripts layer selected, enter the following code into the Actions panel:3.

this.createTextField("loadmsg_txt", 0, 200, 200, 0, 0);

loadmsg_txt.autoSize = true;

loadmsg_txt.text = "Loading...Please wait.";

With frame 15 of the scripts layer selected, enter the following code into the Actions panel:4.

loadmsg_txt.removeTextField();

We've now provided the basic timeline structure that loads our application's classes. All that's left is
to start the application by invoking A.main(). We do that on the frame labeled main in AppName.fla.
Add the following code to the end of the script on frame 15 (i.e., just below
loadmsg_txt.removeTextField();):

import com.somedomain.A;

A.main();

In theory, that will be the last change we ever make to AppName.fla, unless we want to include
components, sounds, or custom graphics. Any code in our application will reside in a class that's
referenced either directly by A.main() or indirectly by a class referenced in A.main(). We won't place
any more code in AppName.fla.

Our application is complete. We now need to test that everything works. To do that, we need to
export a .swf file and run it in the Flash Player.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

11.5 The Exported Flash Movie (.swf file)

Our application is now ready for testing and-assuming all goes well-deployment. To specify the
directory in which to create AppName.swf, follow these steps:

With AppName.fla open, choose File Publish Settings Formats.1.

Under the File heading, for Flash (.swf), enter ../deploy/AppName.swf.2.

Click OK.3.

To test our application in the Flash authoring tool's Test Movie mode, select Control Test
Movie. Testing a movie actually creates AppName.swf in the AppName/deploy directory and
immediately loads it into a debugging version of the Flash Player.

4.

For our application, we'll export to Flash Player 7 format (the default in Flash MX 2004), but you
could also export to Flash Player 6 format if you expect your visitors to be using that version of the
Flash Player. For information on setting the movie format and ActionScript version, see "ActionScript
1.0 and 2.0 in Flash Player 6 and 7" in Chapter 1.

If your application is working, you should see the following appear in the Output panel:

Starting application.

An instance of class B was constructed.

If the preceding messages don't appear in the Output panel, try comparing your source files to the
ones posted at http://moock.org/eas2/examples.

When everything works in Test Movie mode, publish an HTML page that includes the movie, ready for
posting to a web site as follows:

With AppName.fla open, choose File Publish Settings Formats.1.

Under the File heading, for HTML (.html), enter ../deploy/AppName.html.2.

Click Publish.3.

Click OK.4.

Test locally by opening AppName.html in your web browser.5.

When the local testing proves successful, upload the .html and .swf files to your web server.6.

Test in your browser from the remote site by browsing to the URL where you uploaded the .html7.

http://moock.org/eas2/examples
http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.

file. Note that the package location and author-time folder structure do not matter once you
upload your files to the server. Packages and classpaths matter only at compile time.
Furthermore, you can upload the .html and .swf wherever you like on your server, but in our
example, the two files must reside in the same web server folder.

7.

It's a good idea to test in all supported versions of the Flash Player in all target web browsers on all
target platforms throughout the lifetime of a project. If you wait until the end of the project to test in
various browsers, you might discover serious problems that would have been easier to fix if they had
been caught earlier.

For detailed information on exporting and publishing Flash movies, see Help Using Flash
Publishing.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

11.6 Projects in Flash MX Professional 2004

To help manage the files in a large application, Flash MX Professional 2004 supports the concept of
projects. A project is a group of related files that can be managed via the Project panel in the Flash
MX Professional 2004 authoring tool. The Project panel resembles a file explorer and offers the
following features:

Authoring tool integration with source control applications such as Microsoft Visual SourceSafe

Easy access to related source files

One-click application publishing, even while editing class files

A discussion of using the Projects feature is outside the scope of this book. For details on Flash
projects, see Help Using Flash Working with Projects (Flash Professional only).

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

11.7 Let's See It in Action!

Although this chapter may have felt quite conceptual, it lays very important groundwork for OOP
development and for many of the examples in the remainder of this book. In the next chapter, we'll
put some meat on the bones of our application framework by building a currency conversion
application.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 12. Using Components with
ActionScript 2.0
In Chapter 11, we learned how to structure a basic OOP application in ActionScript 2.0. In this
chapter, we'll see how to create a GUI application based on that structure. As usual, you can
download the sample files discussed in this chapter from http://moock.org/eas2/examples.

 < Day Day Up >

http://moock.org/eas2/examples
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

12.1 Currency Converter Application Overview

Our example GUI application is a simple currency converter. Figure 12-1 shows the components used
in our currency converter interface (Button, ComboBox, Label, TextArea, and TextInput). The user
must specify an amount in Canadian dollars, select a currency type from the drop-down list, and click
the Convert button to determine the equivalent amount in the selected currency. The result is
displayed on screen.

Figure 12-1. The currency converter application

We'll place the assets for our application in the following directory structure, which mirrors the
structure we used in Chapter 11. Note that the deploy and source folders are both subdirectories of
CurrencyConverter and that org/moock/tools is a subdirectory of the source folder:

CurrencyConverter/

 deploy/

 source/

 org/

 moock/

 tools/

Our application's main Flash document is named CurrencyConverter.fla. It resides in
CurrencyConverter/source. To create the CurrencyConverter.fla file, we'll copy the file AppName.fla
(which we created in Chapter 11) to the CurrencyConverter/source directory, and rename the file to
CurrencyConverter.fla. That gives CurrencyConverter.fla the basic structure it needs, including a
class preloader on frames 2 and 3 and a frame labeled main, on which we'll start the application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Our application's only class is CurrencyConverter. It is stored in an external .as class file named
CurrencyConverter.as, which resides in CurrencyConverter/source/org/moock/tools. Our exported
application (a Flash movie) is named CurrencyConverter.swf. It resides in CurrencyConverter/deploy.

Now let's take a closer look at each of these parts of our application.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

12.2 Preparing the Flash Document

Our CurrencyConverter class instantiates all the components needed for our application at runtime.
Even though we create instances of components at runtime, Flash requires us to add the components
to the CurrencyConverter.fla's Library during authoring. Unfortunately, Flash does not allow us to
simply drag the required components from the Flash Components panel to CurrencyConverter.fla's
Library. Instead, to add a component to the Library, we must drag an instance of it to the Stage.
Although component instances can be left on the Stage of a .fla file, that development style is not our
current focus. So we'll delete the instances from the Stage; however, Flash leaves a copy of the
underlying component in the Library (which was our original goal).

12.2.1 Adding Components to the Document

Here are the steps to follow to add the Button component to CurrencyConverter.fla's Library. To add
the ComboBox, Label, TextArea, and TextInput components to the Library, follow the same steps,
choosing the appropriate component instead of Button.

With CurrencyConverter.fla open in the Flash authoring tool, select Window Development
Panels > Components.

1.

In the Components panel, in the folder named UI Components, click and drag the Button
component to the Stage. The Button component appears in the Library.

2.

Select and delete the Button instance from the Stage.3.

If we were working in a brand new .fla file, our components would now be ready for runtime
instantiation. However, recall that we're working with the basic Flash document we created in
Chapter 11, which exports its classes at frame 10 and displays a preloading message while those
classes load. Because of this preloading structure, our components would not currently work if we
attempted to use them! We need to integrate the components into our preloading structure.

When a document's ActionScript 2.0 classes are exported on a frame later than
frame 1, components will not work in that document unless they are loaded
after the class export frame!

To load our components after frame 10, we must set them to not export on frame 1, and then we
must place a dummy instance of each component on stage after frame 10. The dummy instance is
not used; it merely forces the component to load.

Here are the steps we follow to prevent the Button component from being exported on frame 1. To
prevent the remaining components from being exported on frame 1, follow the same steps, choosing
the appropriate component instead of Button.

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Select the Button component in the Library.1.

From the Library's pop-up Options menu in the top-right corner of the panel, select Linkage.2.

In the Linkage Properties dialog box, under Linkage, uncheck the Export in First Frame
checkbox.

3.

Click OK.4.

When a component's Export in First Frame option is unchecked, the component is not compiled with
the movie unless an instance of the component is placed on the document's timeline. The component
loads at the frame on which an instance of it is placed. But the component initialization process
requires a movie's ActionScript 2.0 classes to be available before the component is exported. Hence,
in our CurrencyConverter.fla document, we'll place an instance of each of our components on frame
12, two frames after our document's ActionScript 2.0 classes are exported. To store the dummy
component instances, we'll create a new timeline layer and keyframe, as follows:

Select Insert Timeline Layer.1.

Double-click the new layer and rename it load components.2.

Select frame 12 in the load components layer.3.

Select Insert Timeline Keyframe.4.

Select frame 13 in the load components layer.5.

Select Insert Timeline Keyframe. This second keyframe prevents the dummy
component instances from showing up in our application. We need them only for loading; the
CurrencyConverter class handles the actual creation of component instances in our application.

6.

With our component-loading keyframe prepared, we can now place a dummy instance of each
component on our document's timeline, as follows:

Select frame 12 in the load components layer.1.

From the Library, drag an instance of each component to the Stage.2.

Optionally use the Component Inspector panel (Window Development Panels
Component Inspector) to add dummy text to each component instance indicating that it is not
used, as shown in Figure 12-2. Consult Flash's online help for instructions on setting component
parameters via the Component Inspector.

3.

Figure 12-2 shows how our document's timeline and Stage look with frame 12 of the load
components layer selected.

Figure 12-2. CurrencyConverter.fla's timeline and Stage

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.2.2 Starting the Application

In Chapter 11, we saw how to start an OOP application by invoking the main() method of the
application's primary class (i.e., the class and method that we design to be the program launch
point). We'll start our currency converter by invoking main() on our application's primary (indeed,
only) class, CurrencyConverter. The main() call comes on frame 15 of the scripts layer in
CurrencyConverter.fla's timeline, after our classes and components have been preloaded. Here's the
code:

import org.moock.tools.CurrencyConverter;

CurrencyConverter.main(this, 0, 150, 100);

Notice that the import statement allows us, in the future, to refer to the CurrencyConverter class by
its name without typing its fully qualified package path. As implied by the preceding code, our class's
main() method expects four parameters: the movie clip to hold the currency converter (this) and

the depth, horizontal position, and vertical position-0, 150 and 100, respectively-at which to
display the converter within the clip.

Our CurrencyConverter.fla file is now ready. We can now turn our attention to the class that creates
and manages the currency converter application itself, CurrencyConverter.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

12.3 The CurrencyConverter Class

The CurrencyConverter class's three main duties are to:

Provide a method that starts the application (main())

Create the application interface

Respond to user input

Before we examine the specific code required to perform those duties, you should skim the entire
class listing, presented in Example 12-1. For now, you don't need to read the code too carefully; we'll
study it in detail over the remainder of this chapter.

Example 12-1. The CurrencyConverter class

// Import the package containing the Flash UI components we're using.

import mx.controls.*;

// Define the CurrencyConverter class, and include the package path.

class org.moock.tools.CurrencyConverter {

 // Hardcode the exchange rates for this example.

 private static var rateUS:Number = 1.3205; // Rate for US dollar

 private static var rateUK:Number = 2.1996; // Rate for pound sterling

 private static var rateEU:Number = 1.5600; // Rate for euro

 // The container for all UI elements

 private var converter_mc:MovieClip;

 // The user interface components

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private var input:TextInput; // Text field for original amount

 private var currencyPicker:ComboBox; // Currency selection menu

 private var result:TextArea; // Text field for conversion output

 /**

 * CurrencyConverter Constructor

 *

 * @param target The movie clip to which

 * converter_mc will be attached.

 * @param depth The depth, in target, on which to

 * attach converter_mc.

 * @param x The horizontal position of converter_mc.

 * @param y The vertical position of converter_mc.

 */

 public function CurrencyConverter (target:MovieClip, depth:Number,

 x:Number, y:Number) {

 buildConverter(target, depth, x, y);

 }

 /**

 * Creates the user interface for the currency converter

 * and defines the events for that interface.

 */

 public function buildConverter (target:MovieClip, depth:Number,

 x:Number, y:Number):Void {

 // Store a reference to the current object for use by nested functions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 var thisConverter:CurrencyConverter = this;

 // Make a container movie clip to hold the converter's UI.

 converter_mc = target.createEmptyMovieClip("converter", depth);

 converter_mc._x = x;

 converter_mc._y = y;

 // Create the title.

 var title:Label = converter_mc.createClassObject(Label, "title", 0);

 title.autoSize = "left";

 title.text = "Canadian Currency Converter";

 title.setStyle("color", 0x770000);

 title.setStyle("fontSize", 16);

 // Create the instructions.

 var instructions:Label = converter_mc.createClassObject(Label,

 "instructions",

 1);

 instructions.autoSize = "left";

 instructions.text = "Enter Amount in Canadian Dollars";

 instructions.move(instructions.x, title.y + title.height + 5);

 // Create an input text field to receive the amount to convert.

 input = converter_mc.createClassObject(TextInput, "input", 2);

 input.setSize(200, 25);

 input.move(input.x, instructions.y + instructions.height);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 input.restrict = "0-9.";

 // Handle this component's enter event using a generic listener object.

 var enterHandler:Object = new Object();

 enterHandler.enter = function (e:Object):Void {

 thisConverter.convert();

 }

 input.addEventListener("enter", enterHandler);

 // Create the currency selector ComboBox.

 currencyPicker = converter_mc.createClassObject(ComboBox, "picker", 3);

 currencyPicker.setSize(200, currencyPicker.height);

 currencyPicker.move(currencyPicker.x, input.y + input.height + 10);

 currencyPicker.dataProvider = [

 {label:"Select Target Currency", data:null},

 {label:"Canadian to U.S. Dollar", data:"US"},

 {label:"Canadian to UK Pound Sterling", data:"UK"},

 {label:"Canadian to EURO", data:"EU"}];

 // Create the Convert button.

 var convertButton:Button = converter_mc.createClassObject(Button,

 "convertButton",

 4);

 convertButton.move(currencyPicker.x + currencyPicker.width + 5,

 currencyPicker.y);

 convertButton.label = "Convert!";

 // Handle this component's events using a handler function.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // As discussed later under "Handling Component Events," this technique

 // is discouraged by Macromedia.

 convertButton.clickHandler = function (e:Object):Void {

 thisConverter.convert();

 };

 // Create the result output field.

 result = converter_mc.createClassObject(TextArea, "result", 5);

 result.setSize(200, 25);

 result.move(result.x, currencyPicker.y + currencyPicker.height + 10);

 result.editable = false;

 }

 /**

 * Converts a user-supplied quantity from Canadian dollars to

 * the selected currency.

 */

 public function convert ():Void {

 var convertedAmount:Number;

 var origAmount:Number = parseFloat(input.text);

 if (!isNaN(origAmount)) {

 if (currencyPicker.selectedItem.data != null) {

 switch (currencyPicker.selectedItem.data) {

 case "US":

 convertedAmount = origAmount / CurrencyConverter.rateUS;

 break;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 case "UK":

 convertedAmount = origAmount / CurrencyConverter.rateUK;

 break;

 case "EU":

 convertedAmount = origAmount / CurrencyConverter.rateEU;

 break;

 }

 result.text = "Result: " + convertedAmount;

 } else {

 result.text = "Please select a currency.";

 }

 } else {

 result.text = "Original amount is not valid.";

 }

 }

 // Program point of entry

 public static function main (target:MovieClip, depth:Number,

 x:Number, y:Number):Void {

 var converter:CurrencyConverter = new CurrencyConverter(target, depth,

 x, y);

 }

}

12.3.1 Importing the Components' Package

Our CurrencyConverter class makes many references to various component classes (Button,
CombBox, Label, etc.). The component classes we need reside in the package mx.controls.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Throughout our CurrencyConverter class, we could refer to the components by their fully qualified
names, such as mx.controls.Button or mx.controls.ComboBox. That obviously gets tedious, so prior
to defining our CurrencyConverter class, we import the entire mx.controls package, as follows:

import mx.controls.*;

Once the mx.controls package is imported, we can refer to a component class such as Button without
specifying its full package name. Note that not all component classes reside in the mx.controls
package. For example, the classes for containers such as Window and ScrollPane reside in the
mx.containers package. To determine the package for a component class, consult its entry in Flash's
built-in Components Dictionary (Help Using Components Components Dictionary).

For complete details on packages and the import statement, see Chapter 9.

12.3.2 CurrencyConverter Properties

Our CurrencyConverter class defines two general categories of properties: class properties that
specify the exchange rates for various currencies and instance properties that store references to
some of the components in our user interface:

// The exchange rate properties

private static var rateUS:Number = 1.3205; // Rate for US dollar

private static var rateUK:Number = 2.1996; // Rate for Pound Sterling

private static var rateEU:Number = 1.5600; // Rate for euro

// The container for all UI elements

private var converter_mc:MovieClip;

// The user interface components

private var input:TextInput; // Text field for original amount

private var currencyPicker:ComboBox; // Currency selection menu

private var result:TextArea; // Text field for conversion output

For the sake of this example, the exchange rates in our application are permanently set in class
properties. In a real currency converter, they'd most likely be retrieved at runtime from a dynamic,
server-side source, as described in Flash Remoting: The Definitive Guide by Tom Muck (O'Reilly).

Notice that not all of our user interface components are stored in instance properties. After creation,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

some components (e.g., the Label components) need not be used again and, hence, are not stored in
instance properties. When creating a component, we store a reference to it only if another method in
the class needs to manipulate it later in the application.

12.3.3 The main() method

The currency converter application's startup method is CurrencyConverter.main():

public static function main (target:MovieClip, depth:Number,

 x:Number, y:Number):Void {

 var converter:CurrencyConverter = new CurrencyConverter(target, depth,

 x, y);

}

The main() method is a class method (i.e., declared static) because it is invoked once for the entire
application and is not associated with a particular instance. The main() method uses a common Java
convention to set things in motion: it creates an instance of the application's primary class,
CurrencyConverter, and stores that instance in a local variable, converter. The instance manages

the remainder of the application either by itself or, in larger applications, by creating and interacting
with other classes. Notice that the application's primary class, CurrencyConverter, is also the class
that defines the main() method. In fact, the CurrencyConverter class creates an instance of itself!
This structure is both legitimate and common.

As we saw previously, CurrencyConverter.main() is invoked from the frame labeled main following
the preloader. When the main() method exits, the local converter variable goes out of scope (i.e.,

no longer exists), and the reference to the CurrencyConverter instance in it is automatically deleted.
However, the application continues to run because the movie clip and other components created by
CurrencyConverter continue to exist on stage, even after main() exits. Physical assets on stage
(e.g., movie clips and text fields) that are created at runtime exist until they are explicitly removed
(or the clip in which they reside is removed), even if they are not stored in variables or properties.

As we'll see later, the CurrencyConverter instance created by main() is kept alive in the scope chain
of the buildConverter() method. The movie clip and components created by buildConverter() retain
a reference back to the CurrencyConverter instance via the scope chain. Without that reference, our
application wouldn't be able to respond to component events.

12.3.4 The Class Constructor

The CurrencyConverter class constructor is straightforward. It simply invokes buildConverter(),
which creates our application's user interface:

public function CurrencyConverter (target:MovieClip, depth:Number,

 x:Number, y:Number) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 buildConverter(target, depth, x, y);

}

Notice that, like the main() method, the constructor passes on its arguments to another section of
the program-in this case the buildConverter() method, which uses the arguments to create the
application's interface.

12.3.5 Creating the User Interface

As we've just learned, the currency converter interface is created by the buildConverter() method.
To create the interface, buildConverter() instantiates user interface components and defines event
handlers that dictate the interface's behavior.

You should already have skimmed the full listing for buildConverter() earlier in Example 12-1. Now
let's study the method line by line.

The first line of code in buildConverter() may be unfamiliar to some programmers-it stores a
reference to the current object in a local variable named thisConverter:

var thisConverter:CurrencyConverter = this;

Storing the current object in a local variable adds it to the buildConverter() method's scope chain.
This not only allows the current object to be accessed by nested functions, but it keeps the current
object alive for as long as those nested functions exist. As we'll see shortly, the event handlers in our
application are implemented as nested functions; they use the thisConverter variable to access the

current CurrencyConverter instance. For general information on this technique, see "Nesting
Functions in Methods" in Chapter 4 and Section 12.4 later in this chapter.

12.3.5.1 The interface container

Now we can move on to creating interface elements. First, we must create a container movie clip to
which all our components are placed. We give the clip an instance name of converter and place it
inside the specified target clip at the specified depth. Recall that the target and depth are supplied

to the main() method in CurrencyConverter.fla, which passes them on to the CurrencyConverter
constructor, which in turn passes them to buildConverter().

converter_mc = target.createEmptyMovieClip("converter", depth);

Placing our application's components in a single movie clip container makes them easy to manipulate
as a group. For example, to move the entire group of components, we can simply set the _x and _y

properties of the container clip:

converter_mc._x = x;

converter_mc._y = y;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Again, the values x and y were originally supplied to the main() method on frame 15 of

CurrencyConverter.fla.

Notice that our main container clip is stored in the instance property converter_mc. Storing the clip

in a property allows it to be accessed outside the buildConverter() clip, for the purpose of, say,
repositioning it or deleting it. In our case, we do not reposition or delete the main container, so we
could, in theory, store it in a local variable instead of a property. In this case, however, we store it in
the instance property converter_mc simply to make the class easier to enhance in the future.

12.3.5.2 The title Label component

Now that our container movie clip is prepared, we can put our components into it. We start by giving
our application a title using a Label component, which is used to display a single line of text on
screen.

The following code creates a Label component named title inside converter_mc and places it on

depth 0:

var title:Label = converter_mc.createClassObject(Label, "title", 0);

All components in our application are created with the UIObject class's createClassObject() method.
Its three parameters specify:

The class of component to create

The instance name of the component

The depth of the component inside its parent movie clip or component

The createClassObject() method returns a reference to the newly created component. In the case of
our title instance, we store that reference in a local variable named title. We use a local variable
in this case because we have no need to access the title instance later. If, elsewhere in our

application, we needed access to the title component, we'd store it in an instance property instead of
a local variable.

Note that the instance name, "title" is used by convention for clarity, but we never use that name in
our code. In our application, we refer to components via variables and properties only. In this case,
we refer to the title instance by the variable name title-not by its instance name (which happens

to be the same as the variable name). By convention, most of our component instance names match
the variable or property name in which they are stored. However, nothing requires the instance name
and the variable or property name to match; only the variable or property name matters to our
application (the instance name is ignored).

Now take a closer look at the code we use to create the title instance:

converter_mc.createClassObject(Label, "title", 0);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice that we invoke createClassObject() on converter_mc, which is a MovieClip instance, despite

the fact that the MovieClip class does not define a createClassObject() method! We can use
createClassObject() on MovieClip instances because that method is added to the MovieClip class at
runtime by the v2 component architecture (along with various other methods). Adding a new method
or new property to a class at runtime works only when the recipient class is declared dynamic, as is
the built-in MovieClip class.

Because we're accessing createClassObject() through MovieClip, we also don't need to worry that it
returns an object of type UIObject, not type Label as required by our title variable. In theory, the

following line of code should generate a type mismatch error because createClassObject() returns a
UIObject, but title's datatype is Label:

var title:Label = converter_mc.createClassObject(Label, "title", 0);

However, no error occurs because type checking is not performed on methods that are added to a
class dynamically at runtime. When invoking createClassObject() on a component, to prevent a
compiler error, you must cast the return value to the type of object you are creating. For example,
here we cast the return of createClassObject() to the Label type, as is required if converter_mc

holds a component instance instead of a MovieClip instance:

var title:Label = Label(converter_mc.createClassObject(Label, "title", 0));

Now that our application's title instance has been created, we can adjust its display properties, as

follows:

title.autoSize = "left"; // Make the label resize automatically

title.text = "Canadian Currency Converter"; // Set the text to display

title.setStyle("color", 0x770000); // Set the text color

title.setStyle("fontSize", 16); // Set the text size

For more information on setting the style of a single component or all the components in an
application, see Help Using Components Customizing Components Using Styles to
Customize Component Color and Text.

12.3.5.3 The instructions Label component

To create the instructions for our application, we'll use another Label component similar to the
application title created earlier. We store this Label instance in a local variable named instructions:

var instructions:Label = converter_mc.createClassObject(Label,

 "instructions", 1);

instructions.autoSize = "left";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

instructions.text = "Enter Amount in Canadian Dollars";

instructions.move(instructions.x, title.y + title.height + 5);

The last line of the preceding code places the instructions Label 5 pixels below the title Label.

Components can be positioned only with the move() method. Attempts to set a
component's read-only x and y properties fail silently. Note that components
support the properties x, y, width, and height (without an underscore).
However, MovieClip instances support the properties _x and _y, _width, and
_height (with an underscore).

The move() method expects a new x coordinate as its first parameter and a new y coordinate as its
second parameter. To leave the instructions instance's horizontal location unchanged, we specify
its existing horizontal location (instructions.x) as the first argument to move(). The
instructions instance's vertical location is calculated as the vertical position of the title instance,
plus the title instance's height, plus a 5-pixel buffer.

12.3.5.4 The input TextInput component

With the title and instructions completed, we can move on to components that accept user input. Our
first input component is a TextInput instance, which lets a user enter a single line of text (in this
case, an amount in Canadian dollars):

input = converter_mc.createClassObject(TextInput, "input", 2);

input.setSize(200, 25);

input.move(input.x, instructions.y + instructions.height);

input.restrict = "0-9.";

We use setSize() to make our TextInput component 200 x 25 pixels.

Components can be resized only with setSize(). Attempts to set a component's
read-only width and height properties fail silently.

We use the restrict property to prevent the user from entering anything other than numbers or a

decimal point character. Negative values and dollar signs are not allowed.

Next, we define what happens when the Enter key (or Return key) is pressed while the TextInput
component instance has keyboard focus. When Enter is pressed, we want to convert the user-
supplied value to the chosen currency. Conversion is performed by the CurrencyConverter.convert()
method. To invoke that method when Enter is pressed, we register an event listener object to receive
events from the TextInput instance. In this case, the event listener object is simply an instance of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

generic Object class:

var enterHandler:Object = new Object();

On the generic Object instance, we define an enter() method that is invoked automatically by input

(our TextInput instance) when the Enter key is pressed:

enterHandler.enter = function (e:Object):Void {

 thisConverter.convert();

}

Notice that the enter() method accesses the current CurrencyConverter instance via the
thisConverter variable we defined earlier. That variable is accessible to the nested
enterHandler.enter() method for as long as the input instance exists.

Finally, we register the generic Object instance to receive events from input, specifying "enter" as

the type of event the instance is interested in receiving:

input.addEventListener("enter", enterHandler);

Although it's perfectly legitimate to use a generic Object instance to handle events, in more complex
applications, an event listener object may well be an instance of a separate class. However, when a
single event from a single user interface component generates a single response (as in our present
case), it is also possible to handle the event with an event handler function rather than a generic
Object instance. Later, we'll use an event handler function to handle events from our application's
Convert button. We'll also learn why Macromedia discourages the use of event handler functions. In
the specific case of TextInput.enter(), however, we're forced to use a listener object due to a bug in
the TextInput class that prevents its event handler functions from working properly.

12.3.5.5 The currencyPicker ComboBox component

Our application already has a place for the user to enter a dollar amount. Next, we add the drop-
down menu (a ComboBox component) that lets the user pick a currency to which to convert. The
ComboBox instance is stored in the currencyPicker property and is created, sized, and positioned

exactly like previous components in the application:

currencyPicker = converter_mc.createClassObject(ComboBox, "picker", 3);

currencyPicker.setSize(200, currencyPicker.height);

currencyPicker.move(currencyPicker.x, input.y + input.height + 10);

To populate our currencyPicker component with choices, we set its dataProvider property to an
array whose elements are generic objects with label and data properties. The value of each object's
label property is displayed on screen as an option in the drop-down list. The value of each object's

http://lib.ommolketab.ir
http://lib.ommolketab.ir

data property is used later by the convert() method to determine which currency was selected by

the user.

currencyPicker.dataProvider = [

 {label:"Select Target Currency", data:null},

 {label:"Canadian to U.S. Dollar", data:"US"},

 {label:"Canadian to UK Pound Sterling", data:"UK"},

 {label:"Canadian to EURO", data:"EU"}];

We chose this implementation to separate the application's display layer from its data layer (which
might retrieve conversion rates from a server-side application). An alternative, less flexible
implementation might embed the currency conversion rates directly in the data property of each

ComboBox item.

12.3.5.6 The convertButton Button component

We've already seen that the user can convert a value simply by pressing the Enter key while typing in
the input text field. We'll now add an explicit Convert button to the application for users who prefer

not to use the Enter key.

The convertButton component is an instance of the mx.controls.Button component class, not to be

confused with the native Button class that represents instances of Button symbols in a movie.
Because we imported the mx.controls.* package earlier, the compiler knows to treat unqualified
references to Button as references to the mx.controls.Button class.

To create and position the convertButton component, we use now-familiar techniques:

// Create the Convert button.

var convertButton:Button = converter_mc.createClassObject(Button,

 "convertButton",

 4);

convertButton.move(currencyPicker.x + currencyPicker.width + 5,

 currencyPicker.y);

To specify the text on convertButton, we assign a string to its label property:

convertButton.label = "Convert!";

Finally, we must define what happens when convertButton is clicked. To do so, we assign an event

http://lib.ommolketab.ir
http://lib.ommolketab.ir

handler function to convertButton's clickHandler property, as follows:

convertButton.clickHandler = function (e:Object):Void {

 // Invoke convert() on the current CurrencyConverter instance

 // when convertButton is clicked.

 thisConverter.convert();

};

The preceding code demonstrates one way to handle component events. It defines an anonymous
function that is executed automatically when convertButton is clicked. The property name,
clickHandler, specifies the event to handle, in this case the click event. To define an event handler

for a different event, we'd define an eventHandler property where event is the name of the event.

For example, to handle the List component's change event or scroll events, we'd assign a function to
the changeHandler or scrollHandler property.

Because the anonymous function is nested inside the buildConverter() method, it has access to
buildConverter()'s local variables via the scope chain. Hence, convertButton can reference the
current CurrencyConverter instance via the local variable thisConverter. We use that reference to

invoke the convert() method.

We've now seen two different ways to handle events from components. For guidance on which to use
in various situations, see "Handling Component Events," later in this chapter.

12.3.5.7 The result TextArea component

Our interface is almost complete. We have a TextInput component that accepts a dollar amount from
the user, a ComboBox component that lets the user pick a currency, and a button that triggers the
conversion. All we need now is a TextArea component in which to display currency conversion results.
TextArea components are used to display one or more lines of text on screen within a bordered,
adjustable rectangle.

Here's the code that creates, sizes, and positions our TextArea component:

result = converter_mc.createClassObject(TextArea, "result", 5);

result.setSize(200, 25);

result.move(result.x, currencyPicker.y + currencyPicker.height + 10);

To prevent the user from changing the contents of the result TextArea component, we set its
editable property to false (by default, TextArea component instances are editable):

result.editable = false;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

And that concludes the buildConverter() method. Let's move on to the convert() method, which
performs currency conversion.

12.3.6 Converting Currency Based on User Input

In the preceding section, we created the user interface for our currency converter application. We
specified that when the Convert button is clicked or when the user presses the Enter key while
entering a number, the convert() method should be invoked. The convert() method converts a user-
supplied value to a specific currency and displays the result on screen. It also displays error
messages. The code in convert() provides a good example of how components are accessed and
manipulated in a typical ActionScript 2.0 OOP application. Here's a reminder of the full code listing for
convert():

public function convert ():Void {

 var convertedAmount:Number;

 var origAmount:Number = parseFloat(input.text);

 if (!isNaN(origAmount)) {

 if (currencyPicker.selectedItem.data != null) {

 switch (currencyPicker.selectedItem.data) {

 case "US":

 convertedAmount = origAmount / CurrencyConverter.rateUS;

 break;

 case "UK":

 convertedAmount = origAmount / CurrencyConverter.rateUK;

 break;

 case "EU":

 convertedAmount = origAmount / CurrencyConverter.rateEU;

 break;

 }

 result.text = "Result: " + convertedAmount;

 } else {

 result.text = "Please select a currency.";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 } else {

 result.text = "Original amount is not valid.";

 }

}

Our first task in convert() is to create two local variables: convertedAmount, which stores the
postconversion value, and origAmount, which stores the user-supplied value. The value of
origAmount is retrieved from the input component's text property, which stores the user input as a

String. We convert that String to a Number using the built-in parseFloat() function:

var convertedAmount:Number;

var origAmount:Number = parseFloat(input.text);

But the input.text property might be empty, or it might not be valid (that is, it might contain a

nonmathematical value such as "....4..34"). Hence, our next task is to check whether the conversion
from a String to a Number succeeded. If conversion did not succeed, the value of origAmount will be
NaN (not-a-number). Hence, we can say that the value is valid when it is not NaN:

if (!isNaN(origAmount)) {

If the value is valid, we check which currency is selected in the drop-down list using
currencyPicker.selectedItem.data. The selectedItem property stores a reference to the
currently selected item in the ComboBox, which is one of the objects in the dataProvider array we
created earlier. To determine which object is selected, we consult that object's data property, which
will be one of: null, "US," "UK," or "EU." If the data property is null, no item is selected and we

should not attempt to convert the currency:

if (currencyPicker.selectedItem.data != null) {

If, on the other hand, data is not null, we use a switch statement to determine whether data is

"US," "UK," or "EU." Within the case block for each of those possibilities, we perform the conversion
to the selected currency:

switch (currencyPicker.selectedItem.data) {

 case "US":

 convertedAmount = origAmount / CurrencyConverter.rateUS;

 break;

 case "UK":

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 convertedAmount = origAmount / CurrencyConverter.rateUK;

 break;

 case "EU":

 convertedAmount = origAmount / CurrencyConverter.rateEU;

 break;

}

Once the converted amount has been calculated, we display it in the result TextArea component, as

follows:

result.text = "Result: " + convertedAmount;

When no currency has been selected, we display a warning in the result component:

result.text = "Please select a currency.";

Similarly, when the amount entered in the input component is not valid, we display a warning in the
result component:

result.text = "Original amount is not valid.";

12.3.7 Exporting the Final Application

Our currency converter application is ready for testing and deployment. To specify the name of the
movie to create (CurrencyConverter.swf), follow these steps:

With CurrencyConverter.fla open, choose File Publish Settings Formats.1.

Under the File heading, for Flash (.swf), enter ../deploy/CurrencyConverter.swf.2.

Click OK.3.

To test our application in the Flash authoring tool's Test Movie mode, select Control Test
Movie.

4.

For our application, we'll export to Flash Player 7 format (the default in Flash MX 2004), but you
could also export to Flash Player 6 format if you expect your visitors to be using that version of the
Flash Player. The v2 components officially require Flash Player 6.0.79.0 or higher, but in my tests the
currency converter application worked happily in Flash Player 6.0.40.0 as well.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

12.4 Handling Component Events

In this chapter, we handled component events in two different ways:

With a generic listener object (in the case of the TextInput component):
var enterHandler:Object = new Object();

enterHandler.enter = function (e:Object):Void {

 thisConverter.convert();

}

input.addEventListener("enter", enterHandler);

With an event handler function (in the case of the Button component):
convertButton.clickHandler = function (e:Object):Void {

 thisConverter.convert();

};

Handling component events with generic listener objects in ActionScript 2.0 is somewhat analogous to handling Java
Swing component events with anonymous inner classes. In Swing, an anonymous instance of an anonymous inner
class is created simply to define a method that responds to a component event. In ActionScript 2.0, an instance of
the generic Object class is created for the same reason (to define a component-event-handling method). But in
ActionScript 2.0, the anonymous class is not required because new methods can legally be added dynamically to
instances of the Object class at runtime.

In general, the listener object approach is favored over the event handler function approach, primarily because
multiple listener objects can receive events from the same component, whereas only one event handler function can
be defined for a component at a time. This makes listener objects more flexible and scalable than event handler
functions. Hence, Macromedia formally discourages use of event handler functions. However, you'll definitely see
both approaches thriving in the wild. The older v1 components that shipped with Flash MX did not support listener
objects, so all older v1 code uses event handler functions. The v2 components support event handler functions for
backward compatibility. Moving forward, you should use listener objects rather than event handler functions. That
said, even if you're not working with components, you'll still encounter event handler functions when working with
the Flash Player's built-in library of classes. Many of the built-in classes, including MovieClip , Sound , XML , and
XMLSocket use event handler functions as their only means of broadcasting events.

As an alternative to defining an event handler function on a component instance, you can also use a so-called
listener function , which logically lies somewhere between an event handler function and a listener object. A listener
function is a standalone function (i.e., a function not defined on any object) registered to handle a component event.
For example, our earlier event handler function for the Convert Button component looked like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

convertButton.clickHandler = function (e:Object):Void {

 thisConverter.convert();

}

The analogous listener function would be:

function convertClickHandler (e:Object):Void {

 thisConverter.convert();

};

convertButton.addEventListener("click", convertClickHandler);

Listener functions are preferred over event handler functions because multiple listener functions can be registered to
handle events for the same component. However, when using listener functions, you should be careful to delete the
function once it is no longer in use. Or, to avoid cleanup work, you might simply pass a function literal to the
addEventListener() method of the component in question, as follows:

convertButton.addEventListener("click", function (e:Object):Void {

 thisConverter.convert();

});

However, using this function literal approach prevents you from ever removing the listener function from the
component's listener list. Hence, when registering for an event that you may later want to stop receiving, you
should not use the preceding function literal approach.

Whether you're using a listener object, an event handler function, or a listener function, the fundamental goal is the
same: to map an event from a component to a method call on an object. For example, in our Convert button
example, we want to map the button's click event to our CurrencyConverter object's convert() method. Yet another
way to make that mapping would be to define a click() method on the CurrencyConverter class and register the
CurrencyConverter instance to handle button click events. Here's the click() method definition:

public function click (e:Object):Void {

 convert();

}

And here's the code that would register the CurrencyConverter instance to receive click events from the Convert
button:

convertButton.addEventListener("click", this);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the preceding approach, because the click() method is called on the CurrencyConverter instance, the click()
method can invoke convert() directly, without the need for the thisConverter local variable that was required

earlier. However, problems arise when the CurrencyConverter instance needs to respond to more than one Button
component's click event. To differentiate between our Convert button and, say, a Reset button, we'd have to add
cumbersome if or switch statements to our click() method, as shown in the following code. For this example,
assume that the instance properties convertButton and resetButton have been added to the CurrencyConverter

class.

public function click (e:Object):Void {

 if (e.target == convertButton) {

 convert();

 } else if (e.target == resetButton) {

 reset();

 }

}

Rather than forcing our CurrencyConverter class to handle multiple like-named events from various components,
we're better off reverting to our earlier generic listener object system, in which each generic object could happily
forward events to the appropriate methods on CurrencyConverter . For example:

// Convert button handler

var convertClickHandler:Object = new Object();

convertClickHandler.click = function (e:Object):Void {

 thisConverter.convert();

}

convertButton.addEventListener("click", convertClickHandler);

// Reset button handler

var resetClickHandler:Object = new Object();

resetClickHandler.click = function (e:Object):Void {

 thisConverter.reset();

}

resetButton.addEventListener("click", resetClickHandler);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To reduce the labor required to create generic listener objects that map component events to object method calls,
Mike Chambers from Macromedia created a utility class, EventProxy . Using Mike's EventProxy class, the preceding
code could be reduced to:

convertButton.addEventListener("click", new EventProxy(this, "convert"));

resetButton.addEventListener("click", new EventProxy(this, "reset"));

The EventProxy class, shown in Example 12-2 , does a good, clean job of mapping a component event to an object
method call. However, the convenience of EventProxy comes at a price: reduced type checking. For example, in the
following line, even if the current object (this) does not define the method convert() , the compiler does not

generate a type error:

convertButton.addEventListener("click", new EventProxy(this, "convert"));

Hence, wherever you use the EventProxy class, remember to carefully check your code for potential datatype errors.
For more information on EventProxy , see: http://www.markme.com/mesh/archives/004286.cfm .

Example 12-2. The EventProxy class

class EventProxy {

 private var receiverObj:Object;

 private var funcName:String;

 /**

 * receiverObj The object on which funcName will be called.

 * funcName The function name to be called in response to the event.

 */

 function EventProxy(receiverObj:Object, funcName:String) {

 this.receiverObj = receiverObj;

 this.funcName = funcName;

 }

 /**

 * Invoked before the registered event is broadcast by the component.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 * Proxies the event call out to the receiverObj object's method.

 */

 private function handleEvent(eventObj:Object):Void {

 // If no function name has been defined...

 if (funcName == undefined) {

 // ...pass the call to the event name method

 receiverObj[eventObj.type](eventObj);

 } else {

 // ...otherwise, pass the call to the specified method name

 receiverObj[funcName](eventObj);

 }

 }

}

To avoid the type checking problem presented by the EventProxy class, you can use the rewritten version of Mike
Chambers' original class, shown in Example 12-3 . The rewritten version uses a function reference instead of a
string to access the method to which an event is mapped. Hence, to use the rewritten EventProxy class, we pass a
method instead of a string as the second constructor argument, like this:

// No quotation marks around convert! It's a reference, not a string!

convertButton.addEventListener("click", new EventProxy(this, convert));

Because the convert() method is accessed by reference, the compiler generates a helpful error if the method
doesn't exist.

Example 12-3. The Rewritten EventProxy class

class EventProxy {

 private var receiverObj:Object;

 private var funcRef:Function;

 /**

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 * receiverObj The object on which funcRef will be called.

 * funcName A reference to the function to call in response

 * to the event.

 */

 function EventProxy(receiverObj:Object, funcRef:Function) {

 this.receiverObj = receiverObj;

 this.funcRef = funcRef;

 }

 /**

 * Invoked before the registered event is broadcast by the component.

 * Proxies the event call out to the receiverObj object's method.

 */

 private function handleEvent(eventObj:Object):Void {

 // If no function name has been defined...

 if (funcRef == undefined) {

 // ...pass the call to the event name method

 receiverObj[eventObj.type](eventObj);

 } else {

 // ...otherwise, pass the call to the specified method using

 // Function.call().

 funcRef.call(receiverObj, eventObj);

 }

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As evidenced by the sheer number of event-handling techniques just discussed, the v2 component-event-handling
architecture is very flexible. But it also suffers from a general weakness: it allows type errors to go undetected in
two specific ways.

First, any component's events can be handled by any object of any class. The compiler does not (indeed cannot)
check whether an event-consuming object defines the method(s) required to handle the event(s) for which it has
registered. In the following code, if the convertClickHandler object does not define the required click() method,

no error occurs at compile time:

var convertClickHandler:Object = new Object();

// Oops! Forgot the second "c" in "click," but no compiler error occurs!

convertClickHandler.clik = function (e:Object):Void {

 thisConverter.convert();

}

convertButton.addEventListener("click", convertClickHandler);

In other words, in the v2 component architecture there's no well-known manifest of the events a component
broadcasts and no contract between the event source and the event consumer to guarantee that the consumer
actually defines the events broadcast by the source.

Second, event objects themselves are not represented by individual classes. All event objects are instances of the
generic Object class. Hence, if you misuse an event object within an event-handling method, the compiler, again,
does not generate type errors. For example, in the following code (which, so far, contains no type errors), we
disable a clicked button by setting the button's enabled property to false via an event object. We access the
button through the event object's target property, which always stores a reference to the event source:

convertClickHandler.click = function (e:Object):Void {

 thisConverter.convert();

 e.target.enabled = false;

}

But if the programmer specifies the wrong property name for target (perhaps due to a typographical error or a

mistaken assumption), the compiler does not generate a type error:

convertClickHandler.click = function (e:Object):Void {

 thisConverter.convert();

 e.source.enabled = false; // Wrong property name! But no compiler error!

 e.trget.enabled = false; // Oops! A typo, but no compiler error!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

In addition to suppressing potential compiler errors, the lack of typed event objects in the v2 component
architecture effectively hides the information those objects contain. If the architecture used formal event classes,
such as, say, Event or ButtonEvent , the programmer could quickly determine what information is available for an
event simply by examining the v2 component class library. As things stand, such information can be found only in
the documentation (which may be incomplete) or in an event-broadcasting component's raw source code (which is
laborious to read).

One way to help make an application's handling of v2 component events more obvious is to define specific classes
for event-consumer objects rather than using generic objects. For example, to handle events for the Convert
button, an instance of the Button component, in our CurrencyConverter application, we might create a custom
ConvertButtonHandler class as follows:

import org.moock.tools.CurrencyConverter;

class org.moock.tools.ConvertButtonHandler {

 private var converter:CurrencyConverter;

 public function ConvertButtonHandler (converter:CurrencyConverter) {

 this.converter = converter;

 }

 public function click (e:Object):Void {

 converter.convert();

 }

}

Then, to handle the Button component events for the Convert button, we'd use:

convertButton.addEventListener("click", new ConvertButtonHandler(this));

By encapsulating the button-event-handling code in a separate class, we make the overall structure of the
application more outwardly apparent. We also isolate the button-handling code, making it easier to change and
maintain. However, in simple applications, using a separate class can require more work than it's worth. And it
doesn't alleviate the other event type checking problems discussed earlier (namely, the compiler's inability to type
check event-consumer objects and event objects).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Java, every aspect of the Swing component event architecture includes type checking. Event consumers in Java
must implement the appropriate event listener interface, and event objects belong to custom event classes. In
simple Flash applications, Java's additional component event architecture would be cumbersome and hinder rapid,
lightweight development. However, for more complex situations, Java's strictness would be welcome. Therefore,
we'll see how to implement Java-style events in ActionScript 2.0 classes in Chapter 19 . And we'll learn more about
generating and handling custom user interface events in Chapter 18 .

For reference, Table 12-1 summarizes the various component-event-handling techniques discussed in this chapter.

Table 12-1. Component-event-handling techniques

Technique Example Notes

Generic
listener
object

var convertClickHandler:Object = new Object();

convertClickHandler.click = function (e:Object):Void {

 thisConverter.convert();

}

convertButton.addEventListener("click", convertClickHandler);

Generally,
the
preferred
means of
handling
component
events

Typed
listener
object

convertButton.addEventListener("click", new ConvertButtonHandler(this));

Same as
generic
listener
object, but
exposes
event-
handling
code more
explicitly

EventProxy
class

convertButton.addEventListener("click", new EventProxy(this, "convert"));

or

convertButton.addEventListener("click", new EventProxy(this, convert));

Functionally
the same as
generic
listener
object, but
more
convenient
and easier
to read

Listener
function

convertButton.addEventListener("click", function

(e:Object):Void {

 thisConverter.convert();

});

The lesser
evil of the
two
function-
only event-
handling

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Technique Example Notes
}); handling

mechanisms

Event
handler
function

convertButton.clickHandler = function (e:Object):Void {

 thisConverter.convert();

}

The least-
desirable
means of
handling
component
events;
discouraged
by
Macromedia

 < Day Day Up >

}); handling
mechanisms

Event
handler
function

convertButton.clickHandler = function (e:Object):Void {

 thisConverter.convert();

}

The least-
desirable
means of
handling
component
events;
discouraged
by
Macromedia

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

12.5 Components Complete

We've come to the end of our look at a component-based ActionScript 2.0 application. If you want to
see the currency converter in action, you can download all the files discussed in this chapter from
http://moock.org/eas2/examples. For a lot more information on both using and authoring
components, see Flash's online Help (Help Using Components) and the components section of
Macromedia's Flash Developer Center at
http://www.macromedia.com/devnet/mx/flash/components.html.

In the next chapter, we'll continue our exploration of controlling and creating visual assets by
studying MovieClip subclasses.

 < Day Day Up >

http://moock.org/eas2/examples
http://www.macromedia.com/devnet/mx/flash/components.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 13. MovieClip Subclasses
From an application development perspective, a movie clip is a self-contained multimedia object with
a timeline for changing state (you can think of animation in a movie clip as a rapid succession of
visual state changes). Movie clips can contain graphics, video, and audio. They are, hence, perfect for
creating the audio/visual elements of an application-so much so, that every one of Flash's own
components are, in fact, descendents of the MovieClip class.

We've already seen lots of examples of how movie clips can be used in OOP. Most of these have
involved object composition, in which a movie clip instance is stored in an instance property and used
by a class to represent something visual on screen. In the composition model, the class that uses the
movie clip does not inherit from the MovieClip class. For example, in the Box class from Example 4-6,
we create a movie clip in which we draw a square shape. We store that movie clip in an instance
property of the Box class, but the Box class does not inherit from the MovieClip class (i.e., it does not
extend MovieClip).

As an alternative to object composition, we can use inheritance to marry one of our own classes to
the MovieClip class. When taking the inheritance approach, we should feel confident that the custom
class in question really "Is-A" kind of MovieClip. In other words, only when an application calls for a
class whose instances can be used exactly like MovieClip instances but also require their own special
features should we consider making that class a subclass of MovieClip.

Let's put our Box class to this test. In our first implementation, the Box class used a movie clip to
render Box instances on screen, but it did not inherit from MovieClip. Should it have? To answer that
question, we must ask whether a Box instance is a specialized variety of MovieClip. If Box instances
need all of the features of MovieClip instances, then the Box class could sensibly be a MovieClip
subclass. If not, a Box isn't really a specialized variety of MovieClip, so it probably shouldn't be a
MovieClip subclass.

Do Box instances need all the features of MovieClip instances? Do they need to be dragged with the
mouse? No. Do they need to be able to create text fields? No. Should we be able to check the number
of bytes loaded by a Box instance? Or set the mask over a box? No and no. None of these features
are immediate requirements of the Box class. Furthermore, a Box instance doesn't need a timeline or
the timeline control methods of the MovieClip class. It doesn't seem as if a Box "Is-A" MovieClip. In
fact, a Box more likely "Is-A" Shape! If, in a larger application, we made the Box class a MovieClip
subclass, then it wouldn't be able to inherit from a more natural superclass, such as Shape. Our
original composition-based design was probably the better choice.

The warning here is a refrain from Chapter 6-don't inherit from a class just to borrow some of its
functionality; make sure the "Is-A" relationship exists before extending a class. If you're creating a
new kind of generic multimedia class that uses most or all of the features of MovieClip, by all means
subclass MovieClip. (The Flash UI Components fall into that category.) But if you're just trying to
draw something to the screen, make sure you prudently consider composition before opting for an
inheritance implementation.

Now that we've considered when to subclass MovieClip, let's see how to subclass MovieClip.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

13.1 The Duality of MovieClip Subclasses

Every MovieClip subclass has two parts: a movie clip symbol and a corresponding ActionScript 2.0
class. Like any other subclass, a MovieClip subclass uses the extends keyword to inherit from

MovieClip:

class SomeClass extends MovieClip {

}

However, a MovieClip subclass must also be represented physically in a Flash document Library by a
movie clip symbol. The movie clip symbol in the Library specifies the class that represents it, thus
coupling the symbol and MovieClip subclass together. In the vast majority of cases, this symbol-to-
class relationship is a one-to-one relationship. That is, a single movie clip symbol is associated with a
single MovieClip subclass. In fact, it's not even possible to associate a single symbol with more than
one class. However, multiple movie clip symbols can legally each associate itself with the same
MovieClip subclass. This allows different symbols, each with its own artwork, to adopt the behavior
defined by a single class. However, in most cases, associating multiple movie clip symbols with a
single MovieClip subclass is bound to become confusing. Use this "many symbols to one class"
approach with caution.

To create instances of a MovieClip subclass, we do not use the new operator as we would with a
typical class. Instead, instances of the movie clip subclass's symbol (not the subclass itself) are
created either manually in the authoring tool or programmatically via attachMovie() or
duplicateMovieClip(). It is, hence, not possible to create a functioning MovieClip subclass without a
corresponding movie clip symbol in the Library of a .fla file.

Note that the Flash community uses the term "movie clip" to refer to both movie clip instances on
stage and movie clip symbols in the Library. The difference is usually clear from context. For
example, if I say, "All movie clips must be stored as symbols in the Library." you understand that I
mean "all movie clip symbols must be stored in the Library." But in this chapter, loose terminology
can get us in trouble. So I'll differentiate explicitly between "movie clip instances on stage" and
"movie clip symbols in the Library" whenever necessary.

Let's see how this all works in practice by creating a real MovieClip subclass. The example files
discussed in this chapter are available at http://moock.org/eas2/examples.

 < Day Day Up >

http://moock.org/eas2/examples
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

13.2 Avatar: A MovieClip Subclass Example

Our example MovieClip subclass, named Avatar, is an on-screen representation of a user in a chat
room or a game.

For the purposes of this example, we assume that the relationship between our Avatar class and the
MovieClip class is a natural "Is-A" inheritance relationship. In other words, the Avatar class doesn't
need to inherit from some other class, and users of our Avatar class need to treat each Avatar
instance like a MovieClip instance (drag it, manage its depth, mask it, etc.). These assumptions are,
in truth, a bit far-fetched. The Avatar class could quite appropriately be implemented using
composition, as we'll show later. For the sake of learning, however, we'll show how to implement the
class with inheritance first. (The present difficulty is that any class simple enough to use as an
example is, by its very simplicity, probably a better candidate for composition than inheritance.)

13.2.1 The AvatarSymbol Movie Clip

As we learned earlier, every MovieClip subclass has a corresponding movie clip symbol. Our Avatar
class's movie clip symbol is called AvatarSymbol. It contains a graphical depiction of the user in three
different states: Idle, Sad, and Happy. The three states correspond to three labeled frames in
AvatarSymbol's timeline. To change the state of the avatar, we position AvatarSymbol's playhead at
the appropriate frame in its timeline. Figure 13-1 shows AvatarSymbol's timeline and the contents of
its first frame, the Idle state.

Figure 13-1. The AvatarSymbol timeline

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here are the steps we follow to create the AvatarSymbol movie clip, which we'll later associate with
the Avatar class (see "Linking AvatarSymbol to the Avatar Class"):

Create a new Flash document named AvatarDemo.fla.1.

Select Insert New Symbol.2.

For the symbol Name, enter AvatarSymbol. The name is arbitrary, but by convention, you

should name the symbol ClassSymbol where Class is the name of the class with which you

expect to associate the symbol.

3.

For the symbol's Behavior type, select Movie Clip.4.

Click OK. Flash automatically enters Edit mode for the AvatarSymbol symbol.5.

Here are the steps we follow to build AvatarSymbol's timeline and contents:

Double-click Layer 1 and rename it to graphics.1.

Select frame 30 of the graphics layer.2.

Choose Insert Timeline Frame (F5).3.

Using Insert Timeline Layer, create two new layers, and name them labels and scripts.4.

With frame 1 of the scripts layer selected, enter the following code into the Actions panel (F9):5.

stop();

Using Insert Timeline Blank Keyframe (F7), create blank keyframes on the labels and
graphics layers at keyframes 10 and 20.

6.

With frame 1 of the labels layer selected, in the Properties panel, under Frame, change <Frame
Label> to IDLE.

7.

With frame 10 of the labels layer selected, in the Properties panel, under Frame, change
<Frame Label> to SAD.

8.

With frame 20 of the labels layer selected, in the Properties panel, under Frame, change
<Frame Label> to HAPPY.

9.

On the graphics layer, use Flash's drawing tools to draw an idle face on frame 1, a sad face on
frame 10, and a happy face on frame 20.

10.

You may have noticed that we added a stop() statement on frame 1 but not on frames 10 and 20.
We'll see why in a moment. Now that the AvatarSymbol symbol is complete, let's turn our attention
to the Avatar class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.2.2 The Avatar Class

The source code for the Avatar class is surprisingly simple. To subclass the MovieClip class, we
merely use the extends keyword, as we would for any other class. The basic code is:

class Avatar extends MovieClip {

}

In ActionScript 1.0, MovieClip could be subclassed using an arcane nest of
#initclip, Object.registerClass(), and new MovieClip() calls. In ActionScript 2.0, the Flash

authoring tool handles all that dirty work. Syntactically, MovieClip is extended like any other
class, with the extends keyword.

The Avatar class defines two instance methods:

init()

Initializes each Avatar instance

setState()

Sets the avatar's state using one of three constants (class properties)- IDLE, SAD, and HAPPY.

Example 13-1 shows the Avatar class in its entirety.

Example 13-1. Avatar, a MovieClip subclass

class Avatar extends MovieClip {

 public static var HAPPY:Number = 0;

 public static var SAD:Number = 1;

 public static var IDLE:Number = 2;

 public function init ():Void {

 setState(Avatar.HAPPY);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 public function setState(newState:Number):Void {

 switch (newState) {

 case Avatar.HAPPY:

 this.gotoAndStop("HAPPY");

 break;

 case Avatar.SAD:

 this.gotoAndStop("SAD");

 break;

 case Avatar.IDLE:

 this.gotoAndStop("IDLE");

 break;

 }

 }

}

Notice that the class has no constructor function. Instances of MovieClip subclasses are not created
using the standard constructor call syntax (using the new operator), so there's no need to provide a
constructor function. Our init() method fulfills the traditional role of the constructor and should be
called on each Avatar instance directly after it's created. (You can use constructor functions with
MovieClip subclasses but, as we'll learn shortly, doing so can be cumbersome and error prone.)

The Avatar.init() method calls setState() to set each Avatar instance's initial state to Avatar.HAPPY.

In the setState() method, we see the real marriage between the Avatar class and the AvatarSymbol
movie clip; setState() changes the visual state of an Avatar instance by positioning the playhead of
the associated movie clip instance. For example, in the expression this.gotoAndStop("HAPPY"), the
current object (this) is the instance of the AvatarSymbol movie clip. Thus, setState() sends the

movie clip instance's playhead to the frame labeled HAPPY.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Within MovieClip subclass .as files, you must use this explicitly with MovieClip

methods whose names collide with corresponding global functions. For
example, you must use this.gotoAndStop() not gotoAndStop(). The affected
MovieClip methods are: duplicateMovieClip(), getURL(), gotoAndPlay(),
gotoAndStop(), loadMovie(), loadVariables(), nextFrame(), play(),
prevFrame(), removeMovieClip(), startDrag(), stop(), stopDrag(), and
unloadMovie().

To be safe, you should always use this when invoking any MovieClip method

on the current object.

Observant (or perhaps, confused) readers may notice that there is no instance property that stores
the Avatar instance's state. How then is the state stored? In fact, it isn't. Changes to the Avatar
instance's state are represented on screen via the associated clip's timeline, but that state is never
retrieved, so it is not stored in an instance property. In one sense, the state is "stored" implicitly by
the clip's playhead position. At any given time, the frame displayed in the associated clip corresponds
with the Avatar instance's state. Although we could, in theory, use the MovieClip._currentframe

property to check the playhead's position, thus retrieving the state, we should not do so in practice.
If the state of an Avatar instance needs to be retrieved, we should define a state instance property

to store the instance's current state.

You may have noticed that the AvatarSymbol movie clip includes a stop() command on frame 1 but
not on frames 10 and 20. That initial stop() command ensures that the playhead stops at frame 1
(the Idle state) when the clip first loads. What about stopping at frame 10 or 20 when the state of
the clip changes to the Happy or Sad state? Here is another case in which the implementation for the
movie clip symbol depends in part on the code you expect to write in the associated class. Because
setState() invokes MovieClip.gotoAndStop(), we don't need a separate stop() command at frames
10 and 20. If, however, setState() invoked gotoAndPlay() instead of gotoAndStop(), we'd need
separate stop() commands in frames 10 and 20 of our movie clip (or perhaps shortly thereafter if
the state change included an animation).

With practice, you'll learn how to design and coordinate a MovieClip subclass and its associated movie
clip symbol. The degree and type of integration required depends on the responsibilities you assign to
each element. As much as possible, you should keep logic and data in the class and use the symbol
for display only.

13.2.3 Linking AvatarSymbol to the Avatar Class

To associate the AvatarSymbol movie clip with the Avatar class, we must set the AvatarSymbol's so-
called "AS 2.0 Class" in the Flash authoring tool, as follows:

Select the AvatarSymbol movie clip in AvatarDemo.fla's Library.1.

Select the pop-up Options menu in the top-right corner of the Library panel, and choose the
Linkage option.

2.

In the Linkage Properties dialog box, for Linkage, select Export for ActionScript.3.

4.

5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.

In the Linkage Properties dialog box, for Identifier, enter AvatarSymbol.4.

In the Linkage Properties dialog box, for AS 2.0 Class, enter Avatar.5.

Click OK.6.

If our Avatar class were part of a package-say org.moock.chat-then in Step 5, we would enter the
fully qualified class name, org.moock.chat.Avatar, instead of the unqualified class name, Avatar.
Notice that in the Linkage Properties dialog box, we chose to export the AvatarSymbol movie clip in
frame 1. If we had wanted to preload the AvatarSymbol movie clip and the Avatar class, we'd have
followed the instructions we used to preload a component in Chapter 12.

Now that we've created a movie clip symbol and linked it to a MovieClip subclass, we can create
instances of the symbol that combine its own content with the class's behavior. Let's see how.

13.2.4 Creating Avatar Instances

We create an instance of a MovieClip subclass by creating an instance of the associated library
symbol using attachMovie() (exactly as we create a normal MovieClip instance). Here's the code:

var av:Avatar = Avatar(someMovieClip.attachMovie("AvatarSymbol",

 "avatar", 0));

The instance of the library symbol (AvatarSymbol) is physically added to the Stage and also reflected
back to ActionScript in the form of the object returned by attachMovie(). The returned object is an
instance of the subclass (Avatar), while the on-stage movie clip is an instance of the symbol
(AvatarSymbol).

Flash's use of the term "instance" to describe the relationship that an on-stage movie clip has to its
library symbol is unfortunate in an OOP discussion. An on-stage movie clip "instance" is better
described as a "physical incarnation" of its library symbol. That physical incarnation is not an
"instance" of the library symbol in the OOP sense. That is, the library symbol is not a class; it is a
graphical template. However, a physical incarnation of a movie clip symbol is always represented in
ActionScript by a corresponding instance of a class, in the traditional OOP sense. Specifically, the
ActionScript representation of the physical incarnation of a movie clip is an instance either of the
MovieClip class or of a MovieClip subclass such as Avatar. (Say that ten times fast!)

Bearing in mind the subtle but important distinction between a MovieClip instance and a movie clip
symbol's physical incarnation on stage, let's revisit the preceding instance-creation code:

var av:Avatar = Avatar(someMovieClip.attachMovie("AvatarSymbol",

 "avatar", 0));

When that code runs, a physical incarnation of the AvatarSymbol symbol is attached (added) to the
Stage, inside the existing physical movie clip referenced by the variable someMovieClip. The physical
incarnation of AvatarSymbol is named "avatar" and is placed on depth 1 of someMovieClip. The

attachMovie() method then returns an ActionScript object that we will use to control the physical

http://lib.ommolketab.ir
http://lib.ommolketab.ir

incarnation we just created. That ActionScript object is an instance of our Avatar class. We store it in
a variable named av. So technically there are two "instances" here: the on-stage instance of the

AvatarSymbol movie clip symbol and the ActionScript object (instance) whose class is Avatar.
However, in a more casual discussion (and elsewhere in this book), you'll often find these two
instances treated as one and the same.

Dual-instance issues aside, notice that in our instance-creation code we cast the return value of
attachMovie() to the Avatar type. The cast is necessary because attachMovie()'s return type is
MovieClip, but the object returned in this case is actually an Avatar instance. For example, this code
generates a type mismatch error:

var av:Avatar = someMovieClip.attachMovie("AvatarSymbol",

 "avatar", 0);

But this code does not cause an error because we're telling the compiler that the return value of
attachMovie() will, in this case, be an Avatar instance:

var av:Avatar = Avatar(someMovieClip.attachMovie("AvatarSymbol",

 "avatar", 0));

Note that the preceding cast is an (unsafe) downcast. If we were being more cautious, we'd use:

var av:Avatar;

var temp_mc:MovieClip = someMovieClip.attachMovie("AvatarSymbol",

 "avatar", 0);

// Verify that the cast will succeed at runtime before attempting it.

if (temp_mc instanceof Avatar) {

 av = Avatar(temp_mc);

} else {

 trace("Warning: could not cast temp_mc to type Avatar.")

}

For full information on casting, see Chapter 3.

The instance-creation code discussed in this section can be used in the AvatarDemo.fla, in any class
loaded by AvatarDemo.fla, or, more generally, in any class that has access to both the Avatar class
and the AvatarSymbol movie clip symbol. When a MovieClip subclass is reused across many projects,
consider compiling it as a component, which includes both the class and the symbol in a single file.
For details on creating components, see Help Using Components Creating Components in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Flash's online Help.

13.2.5 Initializing Avatar Instances

To initialize our new Avatar instance, we invoke init() on it, as follows:

av.init();

Creating Avatar instances with the attachMovie() syntax can be ungainly because we have to specify
the AvatarSymbol and the name of that symbol's physical incarnation ("avatar") in the call.
Furthermore, requiring developers to call init() on each Avatar is sure to lead to errors. To smooth
the instance-creation process, we'll create a class method, createAvatar(). The createAvatar()
method creates and initializes a new Avatar instance, wrapping the attachMovie() and init() calls
into a single call for the end developer. Here's the code:

public static function createAvatar (name:String, target:MovieClip,

 depth:Number):Avatar {

 var av:Avatar = Avatar(target.attachMovie("AvatarSymbol", name, depth));

 av.init();

 return av;

}

The createAvatar() method conveniently supplies the name of the symbol associated with the Avatar
class, so users of the class don't need to know or remember that it's AvatarSymbol. The method also
invokes init() on the new instance after it's created, so we can be sure init() will always be invoked
on new Avatar instances. Here's how we'd use the createAvatar() method:

var av:Avatar = Avatar.createAvatar("avatar", someMovieClip, 0);

The createAvatar() method also gives us the flexibility to define parameters for use during instance
initialization, exactly like a constructor function. For example, we could easily add parameters to
createAvatar() that set the new instance's initial position:

public static function createAvatar (name:String, target:MovieClip,

 depth:Number, x:Number,

 y:Number):Avatar {

 var av:Avatar = Avatar(target.attachMovie("AvatarSymbol", name, depth));

 av.init(x, y);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return av;

}

public function init (x:Number, y:Number):Void {

 setState(Avatar.HAPPY);

 this._x = x;

 this._y = y;

}

Our avatar-creation code would now look like this:

var av:Avatar = Avatar.createAvatar("avatar", someMovieClip, 0, 100, 100);

which is much tidier and easier to understand than:

var av:Avatar = someMovieClip.attachMovie("AvatarSymbol", "avatar", 0);

av.init(100, 100);

For another example of a MovieClip subclass that uses an instance-creation method, see the
UIObject.createClassObject() method and the Menu.createMenu() method in Flash's online Help,
under Help Using Components Components Dictionary UIObject and Help Using
Components Components Dictionary Menu (Flash Professional Only).

The MovieClip.attachMovie() method supports a parameter, initObj, that can transfer properties to
a new movie clip at creation time. For code clarity, I recommend against requiring initObj as part of

a class design. Instead, I prefer to use a method such as createAvatar() with a helper method, init(
), to handle instance initialization (as shown in the preceding example).

Here's the code for the completed Avatar class, showing the new createAvatar() method and
updated init() method in context with the rest of the class:

class Avatar extends MovieClip {

 public static var HAPPY:Number = 0;

 public static var SAD:Number = 1;

 public static var IDLE:Number = 2;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public static function createAvatar (name:String, target:MovieClip,

 depth:Number, x:Number,

 y:Number):Avatar {

 var av:Avatar = Avatar(target.attachMovie("AvatarSymbol", name, depth));

 av.init(x, y);

 return av;

 }

 public function init (x:Number, y:Number):Void {

 setState(Avatar.HAPPY);

 this._x = x;

 this._y = y;

 }

 public function setState(newState:Number):Void {

 switch (newState) {

 case Avatar.HAPPY:

 this.gotoAndStop("HAPPY");

 break;

 case Avatar.SAD:

 this.gotoAndStop("SAD");

 break;

 case Avatar.IDLE:

 this.gotoAndStop("IDLE");

 break;

 }

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

13.3 Avatar: The Composition Version

Now that we've seen how to implement Avatar as a MovieClip subclass, let's consider an alternative
using object composition. This time, the Avatar class does not inherit from MovieClip. Instead, it
creates an instance of AvatarSymbol and stores it in an instance property, av_mc. (Well, technically,
the ActionScript object representation of that instance is stored in av_mc, but here is an example in

which making a distinction between the symbol instance and the ActionScript object would make the
discussion awkward, albeit more technically accurate. My editor tells me to "Avoid precision where it
merely sacrifices clarity." So I will here and elsewhere in this book.)

Example 13-2 shows a revised version of the Avatar class. This version defines a constructor
because, now that Avatar is no longer a subclass of MovieClip, instances are instantiated with new.
The AvatarSymbol clip instance is created in the Avatar constructor, which replaces the createAvatar(
) method. Because initialization is usually performed in a class's constructor function, we put some of
the code from init() in the constructor and move the rest to a new method, setPosition().

Example 13-2. The composition-based Avatar class

class Avatar {

 public static var HAPPY:Number = 0;

 public static var SAD:Number = 1;

 public static var IDLE:Number = 2;

 private var av_mc:MovieClip;

 public function Avatar (name:String, target:MovieClip,

 depth:Number, x:Number, y:Number) {

 av_mc = target.attachMovie("AvatarSymbol", name, depth);

 setState(Avatar.HAPPY);

 setPosition(x, y);

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public function setState(newState:Number):Void {

 switch (newState) {

 case Avatar.HAPPY:

 av_mc.gotoAndStop("HAPPY");

 break;

 case Avatar.SAD:

 av_mc.gotoAndStop("SAD");

 break;

 case Avatar.IDLE:

 av_mc.gotoAndStop("IDLE");

 break;

 }

 }

 public function setPosition (x:Number, y:Number):Void {

 av_mc._x = x;

 av_mc._y = y;

 }

}

In many ways, the composition version of the Avatar class is cleaner and more flexible than its
MovieClip subclass counterpart-cleaner because it uses fewer methods and a traditional constructor,
more flexible because it can easily change the av_mc to some other movie clip symbol if required.

However, the MovieClip subclass version would still be preferable in the following situations:

When Avatar instances need to belong to the MovieClip datatype (e.g., for the sake of
polymorphism)

When the Avatar class and the AvatarSymbol movie clip symbol need to be packaged together
as a component for distribution

When Avatar instances need most of the methods of the MovieClip class (in which case the "Is-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A" relationship is legitimate)

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

13.4 Issues with Nested Assets

Movie clip symbols can contain other nested movie clips, text fields, or components (i.e., elements
attached to the clip symbol during authoring or at runtime). To access and use these nested assets,
we must sidestep two issues.

13.4.1 Properties and Methods of Nested Assets Initially Undefined

The Flash Player takes an "outside-in" approach to component and movie clip initialization. When
initializing a movie clip hierarchy in a movie, the Flash Player starts with the outermost clip in the
hierarchy, defines its custom properties and methods, then moves on to its child clips, defines their
custom properties and methods, and so on. As a result, immediately after a clip is constructed, it can
see its parent's custom methods and properties, but it cannot see its children's custom methods and
properties.

For example, consider a movie clip symbol, ChatRoomSymbol, that represents a chat room. It
contains the following component instances:

outgoing

A TextInput component for outgoing messages

incoming

A TextArea component for incoming messages

userList

A List component for the list of users in the room

Suppose we use a ChatRoomSymbol instance via composition in a class, ChatRoom, as follows:

class ChatRoom {

 private static var chatroomID:Number = 0;

 private var chat_mc:MovieClip;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public function ChatRoom (target:MovieClip, depth:Number) {

 // Create clip instance.

 chat_mc = target.attachMovie("ChatRoomSymbol",

 "chatroom" + ChatRoom.chatroomID++,

 depth);

 chat_mc.userList.dataProvider = [{label:"Colin", data:"User1"},

 {label:"Derek", data:"User2"},

 {label:"James", data:"User3"}];

 }

}

The ChatRoom constructor creates an instance of the ChatRoomSymbol movie clip symbol and stores
it in the property chat_mc. (By now, you should know that it actually stores the ActionScript object

representation of the ChatRoomSymbol instance, so I'll no longer make the distinction.) The
constructor then attempts to populate the nested userList List component by assigning a value to
its dataProvider property:

chat_mc.userList.dataProvider = [{label:"Colin", data:"User1"},

 {label:"Derek", data:"User2"},

 {label:"James", data:"User3"}];

But the assignment has no effect because the userList component's properties and methods are not
yet functional! To overcome this problem, we must use setInterval() to poll the userList

component until its custom properties and methods are defined. Once we detect the existence of a
single userList method, we can be sure that all of its properties and methods are available. In fact,

we can also be sure that every other nested component is, likewise, ready for use. By the time a
single frame passes, the custom properties and methods of all nested assets will be initialized.

The following new code for the ChatRoom class shows how to poll for the existence of a userList

List component instance's method. The new code uses an init() method to initialize nested
components. The init() method is called by the function passed to setInterval() as soon as the
userList.addItem() method is defined. Notice that the function passed to setInterval() is, itself,
passed a reference to the current object, this. This technique allows the function passed to
setInterval() to invoke the init() method on the current object. Without the reference to this, the

nested function called by setInterval() would have no access to the current object and could not
invoke init().

class ChatRoom {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private static var chatroomID:Number = 0;

 private var chat_mc:MovieClip;

 public function ChatRoom (target:MovieClip, depth:Number) {

 // Create clip instance.

 chat_mc = target.attachMovie("ChatRoomSymbol",

 "chatroom" + ChatRoom.chatroomID++,

 depth);

 // Wait until nested clips are initialized before

 // performing any operations on them.

 var initInt = setInterval(function (cr:ChatRoom):Void {

 if (cr.chat_mc.userList.addItem != undefined) {

 cr.init();

 clearInterval(initInt);

 }

 }, 10, this);

 }

 public function init ():Void {

 // Hardcode some dummy data for this example.

 setUserList([{label:"Colin", data:"User1"},

 {label:"Derek", data:"User2"},

 {label:"James", data:"User3"}]);

 }

 public function setUserList (list:Array):Void {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 chat_mc.userList.dataProvider = list;

 }

}

When you want to access the custom properties and methods of an asset nested in a movie clip
immediately after creating that clip, you should use the preceding setInterval() technique. If,
however, you want to use a native property or method of the MovieClip class (e.g., gotoAndPlay()),
then you do not have to use setInterval(). Native properties and methods are immediately available
on all nested assets.

13.4.2 Nested Assets Not Automatically Recognized by Compiler

Assets nested in a movie clip symbol are not automatically available to a corresponding MovieClip
subclass as instance properties. That is, a MovieClip subclass cannot refer to assets nested inside its
associated movie clip symbol unless the subclass explicitly declares those assets as instance
properties.

For example, consider a LoginSymbol movie clip symbol that contains two text fields, userName and
password. The LoginSymbol's corresponding MovieClip subclass is Login. The Login class wants to set
the default contents of the userName and password text fields. If we use the following Login class

code:

class Login extends MovieClip {

 public function Login () {

 userName.text = "Enter your name.";

 password.text = "Enter your password.";

 }

}

the compiler generates the following errors:

There is no property with the name 'userName'.

 userName.text = "Enter your name.";

There is no property with the name 'password'.

 password.text = "Enter your password.";

We know that the LoginSymbol movie clip symbol contains the required text fields, but the compiler
doesn't have any way of knowing. The compiler bases its type checking on the Login class definition,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

not the contents of the LoginSymbol movie clip symbol. To work around this problem, we simply
declare the userName and password text fields as instance properties, like this:

class Login extends MovieClip {

 public var userName:TextField; // Declare userName

 public var password:TextField; // Declare password

 public function Login () {

 userName.text = "Enter your name.";

 password.text = "Enter your password.";

 }

}

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

13.5 A Note on MovieClip Sub-subclasses

Nothing officially prevents a MovieClip subclass from being subclassed. For example, hearkening back
to the Avatar class, if we wanted to create an Avatar whose mood changed randomly, we could
create a RandomAvatar class that inherits from Avatar. However, the RandomAvatar class would
need to be associated with its own library movie clip symbol because, as we learned earlier, a movie
clip symbol can specify only a single AS 2.0 Class association. Hence, while the RandomAvatar class
would inherit the behavior of the Avatar class, it would not inherit Avatar's physical movie clip
symbol. Hence, to create the RandomAvatar class, we'd have to create a completely separate
symbol, RandomAvatarSymbol, that is a duplicate of AvatarSymbol.

Duplicating a symbol merely for the sake of subclassing is neither practical nor wise in most cases.
The better approach is (yet again) to use composition. When a class uses a movie clip symbol via
composition, the class can easily be subclassed, allowing reuse both of its code and of the movie clip
symbol associated via composition. Example 13-3 shows how we could create the RandomAvatar
class as a subclass of the Avatar class shown earlier in Example 13-2. Neither Avatar nor
RandomAvatar are MovieClip subclasses. We use composition to associate them with a movie clip
symbol.

Example 13-3. RandomAvatar, an Avatar subclass

class RandomAvatar extends Avatar {

 private var randomInt:Number;

 public function RandomAvatar (name:String, target:MovieClip,

 depth:Number, x:Number, y:Number) {

 super(name, target, depth, x, y);

 startRandom();

 }

 public function startRandom ():Void {

 randomInt = setInterval (function (av:RandomAvatar):Void {

 var r:Number = Math.floor(Math.random() * 3);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 av.setState(r);

 }, 500, this);

 }

 public function stopRandom ():Void {

 clearInterval(randomInt);

 }

}

For comparison, the example files for the inheritance and composition versions of the RandomAvatar
class are posted at http://moock.org/eas2/examples.

 < Day Day Up >

http://moock.org/eas2/examples
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

13.6 Curiouser and Curiouser

MovieClip subclasses are an enigmatic aspect of object-oriented Flash development. As we've seen,
given the option, it's often better to use composition to associate a class with a movie clip symbol
rather than to extend MovieClip. In the next chapter, however, we'll be forced to use MovieClip
subclasses in an equally (if not more) enigmatic situation: distributing class libraries.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 14. Distributing Class Libraries
This chapter discusses various techniques for sharing a group of classes (i.e., a class library) among
multiple projects and possibly multiple developers. Before we start, a warning: Flash MX 2004's class
distribution features are not particularly refined; by far the easiest way to share classes is to simply
distribute the source code. We'll cover this easiest case first, before we learn how to share classes
without distributing source code, as you may want to do when selling a professional class library.

The term class library is a generic programming term that simply means a group of classes. Don't
confuse it with a .fla file's Library, the Flash Library panel, shared libraries (used to share Library
assets at authoring time), or runtime shared libraries (used to share Library assets at runtime). Each
of those terms is unique to the Flash environment and not part of the current discussion.

Nor do class libraries have anything to do with the packages discussed in Chapter 9, despite the fact
that both terms happen to relate to the grouping of classes. The term "class library" is just
programmer jargon for an arbitrary group of classes distributed to a team or to the world at large. A
package, on the other hand, is a formal, syntactic namespace in which to define a class (in order to
prevent naming conflicts with other classes).

In ActionScript a class library can be distributed to other developers simply as a bunch of source .as
files, in a .swf file, or in a .swc file. We'll cover all three approaches in this chapter.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

14.1 Sharing Class Source Files

Probably the most common reason for sharing classes is to reuse them across multiple projects. For
example, suppose you work in a small web shop called Spider Services, whose web site is
http://www.spiderservices.com (while I was writing this book, a company named Spider Solutions
LTD registered that domain, but let's pretend Spider Services is a fictitious shop). You've made a
TextAnimation class to handle various text effects. You want to use the TextAnimation class on two
sites you're working on, Barky's Pet Supplies and Mega Bridal Depot. Rather than place a copy of the
class file (that is, the .as file) in each project folder, you should store the class file centrally and
merely refer to it from each project. For example, on Windows, you could store the TextAnimation.as
class file in the following location:

c:\data\actionscript\com\spiderservices\effects\TextAnimation.as

To make the TextAnimation class accessible to both projects, you'd add the directory
c:\data\actionscript to Flash MX 2004's global classpath (under Edit Preferences ActionScript

 Language ActionScript 2.0 Settings).

If there were several members on your team, you might think it would be handy to store your class
on a central server so everyone would be able to use it. For example, your team might want to store
all shared classes on a server called codecentral, in a directory matching the company's domain
name (\com\spiderservices):

\\codecentral\actionscript\com\spiderservices\effects\TextAnimation.as

That practice is highly perilous and is not recommended.

If you store your classes on a central server and allow developers to modify
them directly, the developers are liable to overwrite one another's changes.
Furthermore, if the clock of the server and the clock of a programmer's
personal computer are not in perfect sync, then the latest version of the class
might not be included in the movie at compile time. To avoid these problems,
you should always use version control software to manage your class files when
working on a team. One popular (and free!) option is CVS (see
http://www.cvshome.org).

On large projects, you might also want to automate the .swf export process using a build tool such as
Apache Ant (http://ant.apache.org). To do so, you'd have to execute a command-line JSFL script to
tell Flash to create the .swf for each .fla file in your project(s). Complete coverage of command-line
compilation is outside the scope of this book (and is still in its infancy), but here's a quick sample that
gives the general flavor of it on Windows:

// Code in exportPetSupplies.jsfl:

// ===============================

http://www.spiderservices.com
http://www.cvshome.org
http://ant.apache.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Open the .fla file.

var doc = fl.openDocument("file:///c|/data/projects/pet/petsupplies.fla");

// Export the .swf file.

doc.exportSWF("file:///c|/data/projects/pet/petsupplies.swf", true);

// Quit the Flash MX 2004 authoring tool (optional).

fl.quit(false);

// Command issued on command line from /pet/ directory:

// ==

"c:\program files\macromedia\flash mx 2004\flash.exe" exportPetSupplies.jsfl

For this command to work, Flash MX 2004 must not be running. After the command is issued, the
compiled petsupplies.swf movie appears in the directory c:\data\projects\pet.

14.1.1 Loading Classes at Runtime

When working with multiple .swf files that make use of the same class, compiling the class into every
.swf is a waste of space. When file size is a concern, you can prevent such redundancies by
externalizing the class library into a separate .swf file and loading it at runtime. Once the library has
loaded the first time, it is cached on the end user's machine and can be reused by other .swf files
without being downloaded again.

A class library loaded at runtime is known as a dynamic class library.

To create a dynamic class library, we compile the desired classes into a .swf file. We then use
loadMovie() to load that .swf into any movie that needs the classes. However, in order for this
technique to work, we must be sure that the classes in the class library are excluded from the movies
that load them. To prevent runtime-loaded classes from being compiled into the movies that load
them, we use an exclusion XML file. The exclusion XML file lets a .fla file access classes locally for the
sake of compile-time type checking but prevents those classes from being included in the exported
.swf file, thus allowing them to be loaded at runtime.

To see how to create a runtime-loaded class library, we'll return to our earlier Spider Services
TextAnimation class example.

Here are the general tasks we have to complete:

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Create the classes in the class library (in our case, just the TextAnimation class).1.

Create the .swf file that will contain the classes in the class library.2.

Create the movie that loads the class library .swf file.3.

Create the exclusion XML file.4.

Now let's look at each task individually. The source files discussed in the next few sections can be
downloaded from http://moock.org/eas2/examples.

14.1.1.1 Create the classes in the class library

The first step in creating a class library is to create the classes that it will contain. Our sole class is
called TextAnimation, stored in the file
c:\data\actionscript\com\spiderservices\effects\TextAnimation.as. Here's the source for the
TextAnimation class. For this example, our focus is class library building, so we won't show the actual
text animation code in the class; we'll just provide a trace() statement in the class constructor to
verify that the class is working:

class com.spiderservices.effects.TextAnimation {

 public function TextAnimation () {

 trace("Imagine a text effect with great majesty.");

 }

}

Now that our class library is complete, we can create the .swf file that will contain it.

14.1.1.2 Create the class library .swf file

To make the class library .swf file, follow these steps:

Create the following working directory for the class library source files:
c:\data\spiderservices\spidercore. In this case, we use the name of the company,
spiderservices, as a general folder name for all projects and spidercore as the name of the
folder that will contain our class library .swf file (the class library contains the "core" classes for
most Spider Services projects, so we call it spidercore).

1.

Add the directory c:\data\actionscript to Flash MX 2004's global classpath using Edit
Preferences ActionScript Language ActionScript 2.0 Settings. With the
c:\data\actionscript directory in the global classpath, we'll be able to access our TextAnimation
class when we export our class library .swf file.

2.

3.

http://moock.org/eas2/examples
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Create a new .fla file named spidercore_runtime.fla in the following location:
c:\data\spiderservices\spidercore\spidercore_runtime.fla. We'll export the class library .swf file
from spidercore_runtime.fla. We use the word "runtime" in the document's name to indicate
that our class library will be loaded and used at runtime.

3.

On frame 1 of spidercore_runtime.fla, add the following code:4.

com.spiderservices.effects.TextAnimation;

By referring to the TextAnimation class in our .fla file, we force the class to be included in
our class library .swf file. Each class in the class library should be listed on frame 1. The
compiler finds and includes all dependent classes automatically (for example, if the
TextAnimation class uses a Tween class, then the Tween class will be included in the
spidercore_runtime.swf file automatically). This conveniently relieves us from finding and
individually including all classes upon which TextAnimation is dependent.

Use Insert Timeline Keyframe to add a new keyframe at frame 2 of the main timeline
of spidercore_runtime.fla.

5.

On frame 2 of spidercore_runtime.fla, add the following code:6.

// Notify the parent movie clip that the class library

// has finished loading.

_parent.spidercoreLoaded();

stop();

Select File Export Export Movie to create spidercore_runtime.swf in the same directory
as spidercore_runtime.fla. Be sure to specify ActionScript 2.0 in the publish settings when you
export the .swf file.

7.

Save the spidercore_runtime.fla file.8.

Now that our class library .swf file is ready, we can use it in any movie. Let's do that next.

14.1.1.3 Create the movie that loads the class library .swf file

For this example, the movie that loads spidercore_runtime.swf is the homepage of Barky's Pet
Supplies. To create the homepage movie, follow these steps:

Create the following working directory for the Barky's Pet Supplies project:
c:\data\spiderservices\barkys. As usual, we place company-related files in the folder
spiderservices and project files in a subfolder named after the current project (in this case,
barkys).

1.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Create a new .fla file named barkyshome.fla in the following location:
c:\data\spiderservices\barkys\barkyshome.fla.

2.

On frame 1 of barkyshome.fla, add the following code:3.

import com.spiderservices.effects.TextAnimation;

// This function is called when the class library finishes loading.

function spidercoreLoaded ():Void {

 // Classes are loaded. It's now safe to proceed with the application.

 // Just to prove everything's working, make a TextAnimation instance.

 var ta:TextAnimation = new TextAnimation();

}

// Load class library.

this.createEmptyMovieClip("spidercore", 0);

this.spidercore.loadMovie("../spidercore/spidercore_runtime.swf");

Our Barky's homepage movie is ready to use the class library, but there's a problem. If we use it in
its current state, it will automatically include the TextAnimation class file in the barkyshome.swf
movie! We don't want that to happen because we'll be loading that class at runtime via
spidercore_runtime.swf, and we don't want to load the class twice for no reason. Hence, we now
need to create a special XML file that tells the compiler not to include the class TextAnimation in
barkyshome.swf.

You might assume we could prevent the TextAnimation class from being included in barkyshome.swf
simply by removing the path c:\data\actionscript from the global classpath. In fact, that would work
but would also prevent the compiler from finding the TextAnimation class for the sake of type
checking! Hence, type errors would occur and our barkyshome.swf file wouldn't be compiled. So,
even though we're loading classes at runtime, we still need access to the source files for those
classes at authoring time. Later in this chapter, we'll see how to ship a dynamic class library without
also shipping source code.

14.1.1.4 Create the exclusion XML file

The exclusion file specifies which classes should not be compiled into the associated .swf file. We want
to prevent those classes that will be loaded dynamically at runtime from being compiled into the
applicable .swf.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To make the exclusion XML file, follow these steps:

Create a new text file named barkyshome_exclude.xml in the following location:
c:\data\spiderservices\barkys\barkyshome_exclude.xml.

The precise name of the exclusion file in this step is very important. It must exactly match the
name of the .fla file to which it applies, followed by _exclude.xml.

1.

The exclusion file prevents the specified class(es) from being compiled into the associated .swf
file. To prevent the TextAnimation class from being compiled into the .swf file, add the following
code to barkyshome_exclude.xml:

2.

<excludeAssets>

 <asset name="com.spiderservices.effects.TextAnimation"></asset>

</excludeAssets>

Here's a hypothetical exclusion file that shows how to exclude more than one class. It
excludes the TextAnimation class as well as the hypothetical classes Tween and
Randomizer:

<excludeAssets>

 <asset name="com.spiderservices.effects.TextAnimation"></asset>

 <asset name="com.spiderservices.effects.Tween"></asset>

 <asset name="com.spiderservices.util.Randomizer"></asset>

</excludeAssets>

Save the barkyshome_exclude.xml file.3.

By listing the TextAnimation class in an <asset> tag, we force it to be excluded from our

barkyshome.swf file. Each class in the spidercore_runtime.swf class library should be listed in its own
<asset> tag.

The compiler does not automatically exclude dependent classes. For example, if
our spidercore class library contains a Tween class that is used by
TextAnimation, but the barkyshome_exclude.xml file does not list Tween as an
exclusion in an <asset> tag, the Tween class is included in the barkyshome.swf

file (which is undesirable and unnecessary because the code resides in the class
library too).

You must name each and every class you want excluded in its own <asset>

tag, and there are no wildcards to help you exclude a whole package.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Our spidercore class library is now ready for use!

14.1.1.5 Try it out

We can test our dynamic class library by exporting a .swf file from barkyshome.fla using Control
Test Movie (Ctrl-Enter on Windows or Cmd-Enter on Mac). The barkyshome.swf file will not include
the TextAnimation class but will have access to it via the loaded dynamic class library,
spidercore_runtime.swf. Remember that the class library loads because we told it to on frame 1 of
barkyshome.fla:

// Load class library.

this.createEmptyMovieClip("spidercore", 0);

this.spidercore.loadMovie("../spidercore/spidercore_runtime.swf");

If you're following along at home, you should see this text appear in the Output panel:

Imagine a text effect with great majesty.

Note that if we were to load another class library with its own version of the class
com.spiderservices.effects.TextAnimation, the second version of the class would not overwrite the
first version; it would be ignored. To prevent that kind of name collision, you should always keep your
classes in a uniquely named package, particularly when working with dynamic class libraries.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

14.2 Sharing Classes Without Sharing Source Files

Earlier we learned that it's easiest to share a class library simply by distributing class files (that is, .as
files). However, you may not want to share a class library in that way for two reasons:

You don't want to distribute your source files because they're proprietary.

You want your code to compile faster. (That is, your core classes don't change much, so you
don't want them recompiled every time you export a .swf file-you're happy using precompiled
versions of the classes.)

Both of these concerns are valid. However, given the work involved in distributing a class library
without distributing its source files, you should consider the following factors before you take the no-
source plunge:

No code in a .swf file is safe. Several Flash decompilers that can strip source code from a .swf
file are available, but not obfuscators that can absolutely, 100% prevent source code theft. At
best, efforts to protect source code in a .swf are a deterrent only, merely costing the would-be
thief extra work.

The time saved by using precompiled libraries may be consumed by the extra time required to
maintain a no-source code library. Your mileage may vary. (Maybe you should upgrade your
computer instead and make all compiling faster?)

The remainder of this chapter explains how to distribute a class library without distributing its source
files. Hold on to your hat. The ride's about to get a little bumpy.

14.2.1 Runtime Versus Compile Time

Once you've determined that you must distribute a no-source class library, you need to decide
whether the library should be incorporated at compile time or loaded at runtime. A class library
loaded at compile time is known as a static class library (contrast this with a dynamic class library,
which, as we learned earlier, is a class library loaded at runtime). In Flash MX 2004, a static class
library takes the form of a component .swc file, which is added to a .fla file at authoring time. As we
saw earlier, a dynamic class library takes the form of a .swf file, such as spidercore_runtime.swf.
Dynamic class libraries are loaded into the Flash Player via loadMovie(). The pros and cons in Table
14-1 should help you decide which kind of library you should use in your application.

Table 14-1. Comparing static class libraries with dynamic class libraries

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Library
type

Pros Cons

Dynamic
library

No need to recompile .swfs that
incorporate the class library when the
class library .swf changes (you need to
recompile the dynamic library only once,
not recompile the .swfs that include it)

Reduces overall file size when used across
multiple .swf files

Loaded only if necessary, incurring
download cost when actually used or not
at all if not used

Harder to create, maintain, use,
and distribute

Easier to steal

Static
library

Easier to create, maintain, use, and
distribute

Harder to steal

Need to recompile all .swf files
that use the library if library
changes

Adds to file size of every .swf

Completely included in every .swf
file that incorporates the library,
whether or not all the classes in
the library are referenced at
runtime

Whether you prefer to use a static class library or a dynamic class library, if you want to ship a class
library without also shipping the source code, you'll need to build a static class library to start with. In
the case of shipping a dynamic class library without also shipping source code, you must provide the
static class library for the sake of compile-time type checking. Hence, we'll learn how to create a
static class library first.

14.2.2 Creating a No-Source Compile-time Class Library

A compile-time class library (a.k.a. a static class library) takes the form of a Flash MX 2004
component, which includes the following:

The compiled bytecode for the classes in the library

An intrinsic class definition file for each class in the library (this provides type checking
information to the compiler)

An optional icon .png file for use in the Flash MX 2004 Components panel

In Flash MX 2004, components are fundamentally visual entities. They are subclasses of the
MovieClip class and intended primarily as reusable GUI widgets. The type of class library we want to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

build, by contrast, is not visual at all. It is simply a collection of code that can be added to an
application. Hence, shipping a nonvisual class library as a component is, in part, an exercise of fitting
a square peg into a round hole. That is, some aspects of the component-creation process are
obviously not related to the basic task of shipping class libraries. However, these aspects are required
due to the architecture of components in Flash MX 2004. What matters in the end is that it all works.

To learn how to create a compile-time class library as a component, we'll return to our fictitious web
shop, Spider Services. This time, suppose we want to ship our TextAnimation class in a compile-time
class library, which we'll again call spidercore. Here are the general tasks we have to complete:

Create the classes in the class library (in our case, just the TextAnimation class).1.

Create the component icon (in our case, a little spider) as a .png file.2.

Create the component class, called ClassLoader.3.

Create the component.4.

Distribute the component to other developers, providing instructions on how to use it.5.

Now let's look at each task individually. The source files discussed in the next several sections can be
downloaded at http://moock.org/eas2/examples.

Note that some steps in the following sections are repeated from the earlier section "Loading Classes
at Runtime." If you have completed the procedures in that section already, you can skip some of the
steps in the following sections.

14.2.2.1 Create the classes in the class library

The first step in creating a class library is to create the classes themselves. Refer to the earlier
section "Create the classes in the class library," which I shan't repeat here.

14.2.2.2 Create the component icon

We're going to give our component an icon, not only for cosmetic appearances in the Flash MX 2004
Components panel but also so that we have an image to put in our component symbol. As we'll soon
see, the component symbol should not be empty, otherwise instances of it will not show up on stage
at authoring time. Note that for components created simply to contain a class library, such as ours,
it's appropriate to use the same icon for the Components panel and for the content of the component
itself. The similarity helps draw a connection between the component in the Library of a .fla file and
an instance of the component placed on the Stage.

To create the component icon, follow these steps:

Create the following working directory for the component source files:
c:\data\spiderservices\spidercore. (You will have done this step already if you completed the
procedures earlier under "Loading Classes at Runtime.")

1.

2.

http://moock.org/eas2/examples
http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

Create an 18 x 18-pixel image and save it in .png format using, say, Adobe Photoshop,
Macromedia Fireworks, or your favorite image editor. Our image is a little illustration of a spider,
as seen in Figure 14-1.

2.

Save the image as c:\data\spiderservices\spidercore\spidercore.png.3.

Figure 14-1. Our component icon

14.2.2.3 Create the component class

We must now create the class that will be associated with our component. Because our component's
only purpose is to load other classes, our component class simply lists the classes we want to include
in our class library. The component class is called ClassLoader because loading classes is its only
purpose. Here's the source code for the ClassLoader class, which is stored in a file named
ClassLoader.as in the directory c:\data\actionscript\com\spiderservices:

[IconFile("spidercore.png")]

class com.spiderservices.ClassLoader extends MovieClip {

 public function setSize () {

 _width = 18;

 _height = 18;

 }

 public function doNothing ():Void {

 // Trick the compiler into including

 // the TextAnimation class in the component.

 com.spiderservices.effects.TextAnimation;

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The ClassLoader class has four key features:

It uses a component metadata tag to specify the name of the image icon, spidercore.png, to
use in the Flash MX 2004 Components panel. (A component metadata tag tells the compiler
something about a component, and you need not concern yourself with the technical details for
the purposes of this discussion. For more information, see Using Components Creating
Components > Component Metadata in the online Help.)
[IconFile("spidercore.png")]

It extends MovieClip. This is a necessary evil required by the Flash MX 2004 component
architecture.
class com.spiderservices.ClassLoader extends MovieClip {

It implements a setSize() method, indicating how an instance of the component should be sized
on the Stage. This is another necessary evil required by the Flash MX 2004 component
architecture.
public function setSize () {

 _width = 18;

 _height = 18;

}

In a dummy method, doNothing(), ClassLoader lists all the classes that should be included in
our class library. Listing the classes forces the compiler to include them when generating the
component. The compiler finds and includes all dependent classes automatically (for example, if
the TextAnimation class uses a Tween class, then the Tween class will be included in the
spidercore component automatically).

public function doNothing ():Void {

 com.spiderservices.effects.TextAnimation;

}

The preceding four features are, in truth, quite bizarre-you likely wouldn't expect the ClassLoader
class to be required at all! At least, once the general structure is in place, it rarely needs to be altered
(so you can forget how strange creating the class loader was after it's done).

14.2.2.4 Create the component

Now that the ClassLoader class is ready, we can create our spidercore component, which is what will
contain the class library we'll distribute to the world.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The spidercore component is a movie clip symbol with a so-called component definition that
transforms it from a plain old movie clip into a component. The movie clip symbol resides in a .fla file
(spidercore.fla), which we'll create specifically for the purpose of producing the spidercore
component.

To create spidercore.fla, follow these steps:

Create a new .fla file in the following location: c:\data\spiderservices\spidercore\spidercore.fla.
(Note that the spidercore.png must be in the same folder as the spidercore.fla file in order for
the spidercore component icon to be included with the component.)

1.

Add c:\data\actionscript to the global classpath using Edit Preferences ActionScript
Language ActionScript 2.0 Settings. (Again, you might have done this step already.)

2.

To create the spidercore component, follow these steps:

In the spidercore.fla file, choose Insert New Symbol (Ctrl-F8) to create a new movie clip
symbol.

1.

Name the new symbol spidercore.2.

In the spidercore.fla Library, right-click (Windows) or Cmd-click (Mac) the spidercore symbol

and select the Linkage option.

3.

Under Linkage, be sure the Export for ActionScript and Export in First Frame options are
checked.

4.

For the Linkage Identifier, enter spidercore.5.

For AS 2.0 Class, enter com.spiderservices.ClassLoader.6.

Click OK to accept the Linkage settings specified in Steps 4-6.7.

In the spidercore.fla's Library, right-click (Windows) or Cmd-click (Mac) the spidercore symbol

and select Component Definition from the contextual menu.

8.

In the Component Definition dialog box, for AS 2.0 Class, enter
com.spiderservices.ClassLoader.

9.

Under Options, check Display in Components Panel.10.

For Tool Tip Text, enter SpiderCore Class Library.11.

Click OK to accept the Component Definition settings specified in Steps 9-11.12.

Now we must place some arbitrary content in the spidercore symbol so that instances of it can

appear on the Stage at authoring time. If we skip this important step, instances on the Stage will
completely disappear when deselected! To add content to the spidercore symbol, follow these

steps:

To edit the spidercore symbol, double-click it in the spidercore.fla document's Library.1.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

Select File Import Import to Stage (Ctrl-R in Windows or Cmd-R on Mac).2.

Choose the spidercore image file: c:\data\spiderservices\spidercore\spidercore.png.3.

Ensure that the image appears in the spidercore symbol, with its top-left corner aligned to the

symbol's registration point, which is indicated by a small crosshair in the center of the symbol.

4.

Save the spidercore.fla file.5.

Our component is now complete. All that's left to do is export its .swc file, which is the compiled
component that we'll distribute to the world. Follow these steps:

In the spidercore.fla's Library, right-click (Windows) or Cmd-click (Macintosh) on the
spidercore symbol and select Export SWC File from the contextual menu.

1.

Save the .swc file as c:\data\spiderservices\spidercore\spidercore.swc.2.

The exported spidercore.swc file is our finished class library component. We can now give the
component to other developers to add to their Flash MX 2004 Components panel, for inclusion in any
.fla file.

14.2.2.5 Distribute the component to developers

Anyone who wishes to use the class library must obtain a copy of spidercore.swc and install it in Flash
MX 2004. Here's the set of instructions we include in our class library documentation to help users
install the spidercore component:

Open the following folder, substituting your operating-system user account name for USER and

your Flash language code for LANGUAGE_CODE, such as "en" for English:

On Windows

c:\Documents and Settings\USER/Local Settings\Application Data/Macromedia\Flash MX

2004\LANGUAGE_CODE\Configuration\Components\

Note that the Local Settings folder is a hidden folder that must be revealed explicitly in
Windows File Explorer using Tools Folder Options View Advanced Settings

 Files and Folders Hidden Files and Folders Show Hidden Files and Folders.

On Mac

HD:/Users/USER/Library/Application Support/Macromedia/Flash MX

2004/LANGUAGE_CODE/Configuration/Components/

1.

In the Components folder, create a new folder named Spider Services.2.

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.

Copy spiderservices.swc to Components/Spider Services.3.

If you are currently running the Flash authoring tool, click the Components panel's pop-up
Options menu (top right of the panel) and select Reload.

The spidercore component should now appear in the Components panel.

4.

14.2.2.6 Try it out

Let's try using our spidercore component by adding it to a movie. We'll pretend we're creating a web
site for the Mega Bridal Depot, and we want to use the text animation effect in our spidercore class
library. Follow these steps:

Install the spidercore component in the Components panel as described in the preceding
section.

1.

Create the following working directory for the Mega Bridal Depot project:
c:\data\spiderservices\megabridaldepot.

2.

Create a new .fla file named mbd_home.fla in the following location:
c:\data\spiderservices\megabridaldepot\mbd_home.fla.

3.

Drag an instance of the spidercore component from the Components panel to the Stage of
mbd_home.fla.

4.

Delete the instance you just dragged to the Stage. (The component is required in the .fla file's
Library only, not on stage.)

5.

Be sure never to change the Linkage settings for the component. The settings should always be
set to Export for ActionScript and Export in First Frame. To change the frame on which the
classes in the component are exported, use File Publish Settings ActionScript Version

 Settings Export Frame for Classes.

6.

On frame 1 of Layer 1 in mbd_home.fla, add the following code:7.

import com.spiderservices.effects.TextAnimation;

var textani:TextAnimation = new TextAnimation();

Export a test .swf file from mbd_home.fla using Control Test Movie (Ctrl-Enter on Windows
or Cmd-Enter on Mac).

8.

If you followed the preceding steps correctly, the Output panel should display:

Imagine a text effect with great majesty.

14.2.3 Creating a No-Source Runtime Class Library

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Earlier in this chapter, under "Loading Classes at Runtime," we learned that a runtime-loaded class
library can save overall file size when the same classes are used across multiple .swf files. However,
the implementation we studied earlier for runtime class libraries required users of the library to have
access to the library's source code.

By combining a no-source compile-time class library with a runtime class library, we can distribute a
runtime class library without distributing any class source code. Here's the technique:

Create a class library .swf file, someLib_runtime.swf, as described earlier under "Loading

Classes at Runtime."

1.

Create a class library component, someLib, as described under "Creating a No-Source Compile-

time Class Library."

2.

Create a .fla file, someApp.fla, that loads someLib_runtime.swf, as described under "Loading

Classes at Runtime."

3.

Add the someLib component to someApp.fla, as described under "Distribute the component to

developers."

4.

Create an exclusion XML file, someApp_exclude.xml, for someApp.fla, as described earlier

under "Loading Classes at Runtime."

5.

Select File Export Export movie to export someApp.swf from someApp.fla.6.

Because of the someApp_exclude.xml file, the movie someApp.swf will not contain the classes

included in the someLib component. Instead, someApp.swf will load the classes from

someLib_runtime.swf.

Look, Mom! No source!

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

14.3 Solving Real OOP Problems

The past two chapters explained some of the nitty-gritty mechanical details of producing code in the
Flash MX 2004 authoring environment. For the remainder of this book (Part III), we'll return to a
more generalized study of OOP. Up next, design patterns-widely accepted solutions to specific
architectural problems in object-oriented programming.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Part III: Design Pattern Examples in
ActionScript 2.0

Part III explores a variety of approaches to various programming situations. You'll learn how to
apply proven and widely accepted object-oriented programming strategies-known as design
patterns-to Flash. Once you've tried working with the patterns presented in Part III, you'll have
confidence consulting the larger body of patterns available online and in other literature. You'll
have the skills to draw on other widely recognized object-oriented practices.

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Chapter 19

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 15. Introduction to Design Patterns
We've covered a lot of territory, both theoretical and practical throughout the first two parts of this
book. By now you should have a firm grasp on ActionScript 2.0 syntax and fundamentals, as well as
higher-order concepts such as classes, inheritance, composition, and exception handling, plus
housekeeping details such as packages, class libraries, and components. So you're well on your way
to being a skilled object-oriented programmer. But you may be wondering how to design an
application. You're in luck. This chapter is our first stop on our journey through object-oriented
design. By the end of Part III, you should be comfortable architecting relationships between classes
to address a variety of common scenarios. With time, you'll learn to expand and apply this knowledge
to other problems.

At the beginning of every program is a problem, probably one that other programmers have faced
before. A design pattern is a widely accepted description, with a recommended solution, of a design
or architectural problem in object-oriented programming. Given a specific requirement, a design
pattern describes, in general terms, how to structure interacting classes to meet that requirement. In
other words, the pattern provides a general blueprint to follow when implementing some aspect of a
program.

Design patterns are, by their very nature, generic solutions. For example, one pattern, named
Observer, describes how to update many objects when a single object changes state. Another
pattern, named Singleton, describes how to ensure that a program creates only a single instance of a
class, not multiple instances. The Observer and Singleton patterns each describes a generalized
structure that has a myriad of specific uses. For example, the Observer pattern might be used to
keep a pie chart and a bar chart in sync, or it might be used to let multiple objects respond to the
completion of a game.

A design pattern does not describe the entire structure of an application. For example, a complete
architecture for a tile-based adventure game is not a design pattern. Neither does a design pattern
describe a specific algorithm or procedure in an application. For example, a path-finding algorithm
used by monsters in an adventure game to find their prey is not a design pattern. Design patterns
live somewhere between the complete application and the low-level algorithm. They describe how
classes and objects should communicate in a generalized situation that might occur in any kind of
program. Furthermore, a specific program will often combine several design patterns to build a
complex whole from a group of simpler parts.

By programming with design patterns, we profit from the collective experience of the OOP
community, exploiting known tricks and avoiding common pitfalls. We also make our code more
familiar to other programmers. Design patterns are part of the common OOP vernacular, so we can
use them to more quickly and effectively discuss the general implementation of a program. For
example, when we tell another knowledgeable programmer, "The log in this application is a
Singleton," he immediately understands the structure to which we're referring without even looking
at the code. What might have taken half an hour to explain without reference to an existing design
pattern took only a few seconds.

Many of the design patterns that exist in OOP today were first documented by Erich Gamma, Richard

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Helm, Ralph Johnson, and John Vlissides. In 1994, those four authors published the canonical Design
Patterns: Elements Of Reusable Object-Oriented Software (Addison-Wesley). The book, known
affectionately as GoF (Gang of Four), defined a formal system for describing a design pattern and
presented 23 patterns, many of which are still well-known and commonly used today.

The formal design pattern format laid out by GoF includes four general parts: the pattern name, the
problem, the solution, and the consequences. Those general parts are broken down into the following
sections:

Pattern Name and Classification
Intent
Also Known As
Motivation
Applicability
Structure
Participants
Collaborations
Consequences
Implementation
Sample Code
Known Uses
Related Patterns

Our consideration of design patterns in ActionScript is informal, so it doesn't use the preceding
categories. Similarly, many design patterns include formal UML (Unified Modeling Language)
diagrams, but this book doesn't use UML. The emphasis here is on the concepts, not the formal
notation. If you've never heard of UML or design patterns before but you've understood Parts I and II
of this book, you'll be able to keep up quite easily.

If after finishing Part III, you're keen to learn more about design patterns, you should definitely
purchase a copy of GoF. The theory in that book is language agnostic, but the examples focus on
C++ and Smalltalk.

Here's an excerpt from GoF that introduces the concept of design patterns. It should give you a feel
for the tone of the book (while also giving the present text an opportunity to pay homage to its
groundbreaking work):

[Design patterns are] descriptions of communicating objects and classes that are customized to
solve a general design problem in a particular context.

A design pattern names, abstracts, and identifies the key aspects of a common design structure
that make it useful for creating reusable object-oriented design. The design pattern identifies
the participating classes and instances, their roles and collaborations, and the distribution of
responsibilities. Each design pattern focuses on a particular object-oriented design problem or
issue. It describes when it applies, whether it can be applied in view of other object-oriented
design constraints, and the consequences and trade-offs of its use.

If you know Java (or are willing to learn a little), you might also try Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and Design and the Unified Process, by Craig Larman
(Prentice Hall). For a good resource showing source code in Java for many design patterns, see:
http://www.fluffycat.com/java/patterns.html. Java's syntax is quite similar to ActionScript 2.0, so the
site should be intelligible even to Flash programmers who don't know Java.

http://www.fluffycat.com/java/patterns.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

15.1 Bring on the Patterns

The remainder of this book studies four design patterns that are particularly applicable to the
problems that arise in Flash, showing how to use them to structure sections of an ActionScript 2.0
application. First we'll study two canonical design patterns, Observer and Singleton (both of which
come from GoF). Then we'll move on to two quasi-patterns, Model-View-Controller (MVC) and the
delegation event model. MVC is a combination of patterns that grew out of the Smalltalk language
and is used to structure user interfaces. The delegation event model is a core Java pattern that
describes how to implement events and event handling.

Among the large number of formal and informal design patterns available today, the four patterns
presented in this section were chosen because:

They're extremely well-known and relatively easy to understand.

They address event architectures, an important part of OOP that affects nearly every
application.

They demonstrate tangible, practical ways to develop user interfaces in OOP, which is perhaps
the most important aspect of Flash application development.

The Observer pattern is up first, so put on your thinking caps and let's get started.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 16. The Observer Design Pattern
[The Observer pattern defines] a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated automatically.

-from Design Patterns: Elements of Reusable Object-Oriented Software (the so-called GoF
book discussed in Chapter 15)

Effectively, the Observer pattern is an all-purpose event-broadcasting mechanism. It lets a class
broadcast generic updates to registered listeners, much as you could ask your local movie retailer to
call you when a DVD you're interested in arrives. It could be used in anything from a mail application
(when a new email is received) to a video game (when an enemy dies).

In the Observer pattern, changes in the state of one object (the subject) are broadcast to other
interested objects (the observers). Each observer object indicates that it is interested in receiving
broadcasts by registering with the subject. When the subject changes, it tells its current list of
observers that it changed.

The Observer pattern is perfect for rendering multiple representations of a single body of data. For
example, consider a weather-reporting application with a class, WeatherReporter, that stores the
latest weather report. On screen are two representations of the weather report, each handled by its
own class. The TextReport class describes the weather in text, such as:

Temperature: 29C, Probability of Precipitation: 20%

A separate GraphicReport class represents the weather with icons (a thermometer icon for
temperature and a pie chart for the probability of precipitation).

When the weather application starts, instances of TextReport and GraphicReport register to receive
updates from the WeatherReporter object. When the weather data changes, the WeatherReporter
(the subject) broadcasts the latest weather to its list of observers, in this case the TextReport and
GraphicReport instances. Each object is responsible for independently handling the update in its own
way. The TextReport instance generates a text message whereas the GraphicReport instance displays
weather icons. New classes can be added to the application at any time to handle the weather data in
other ways. For example, a SoundReport class could play the sound of rain when it's raining, and an
EmailReport class could use a server-side script to send out email when the weather report is
updated.

Importantly, nothing about the WeatherReporter class needs to change to allow new types of
observers to receive updates from it. Observer classes can be added, changed, and removed without
affecting any other part of the application. Furthermore, the WeatherReporter class doesn't need to
know the identity of the listeners (observers), such as the TextReport and GraphicReport classes. The
datatype of the observers doesn't matter as long as they can handle updates provided by
WeatherReporter. In other words, in the Observer pattern, the subject and its observers are loosely
coupled, making the application easy to modify and extend. If we weren't using the Observer pattern,
we might tightly couple the WeatherReporter class with the TextReport and GraphicReport classes.
We might have the WeatherReporter class invoke methods found only in those classes, such as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TextReport.updateTextOutput() and GraphicReport.changeWeatherIcons(). In this hypothetical,
tightly coupled implementation, our architecture is much more difficult to change. If we want to add a
new output class, we have to change WeatherReporter to call the new class's specific update method.
And if we want to change the name of, say, GraphicReport.changeWeatherIcons(), we have to
update the code that calls that method in WeatherReporter. The Observer pattern protects us from
that work.

Figure 16-1 depicts the general relationships between the WeatherReporter, TextReport, and
GraphicReport objects in our hypothetical weather application.

Figure 16-1. Observer pattern weather application example

Now let's take a look at how to implement the Observer pattern, first by studying its general
structure, then by creating a real example-an application log. As we progress through the chapter,
try to remember the simplicity of the pattern. If you feel bogged down by code details, come back to
Figure 16-1Figure 16-1 and remind yourself that in the Observer pattern we're just trying to make
one class broadcast changes to other classes. Once we establish a code base for the pattern, it takes
relatively little effort to create new implementations of Observer.

The source code discussed in this chapter is available at http://moock.org/eas2/examples.

 < Day Day Up >

http://moock.org/eas2/examples
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

16.1 Implementing Observer in ActionScript 2.0

The responsibilities of the subject class in the Observer pattern are as follows:

Maintain a list of dependent observers

Provide methods for adding (registering) and removing (unregistering) observer objects

Send notifications to observers

To create the subject class, we'll follow Java's implementation and define a base class, Observable,
that any would-be subject class can extend. The Observable class provides the basic services
required of all subject classes. Specifically, Observable defines the following properties and methods:

observers

An instance property that holds an array of observers

addObserver()

A method for adding a new observer to the observers array

removeObserver()

A method for removing an observer from the observers array

notifyObservers()

A method for sending change notifications to observers

Now let's turn to the observer classes. The sole responsibility of all observer classes is to provide a
standard mechanism for receiving updates.

Certainly, an observer class can (and typically does) implement other behaviors according to a
particular situation. For example, our earlier TextReport class implements methods that can display
text on screen. However, that extra behavior is not a requirement of the Observer pattern. In the
Observer pattern, the sole requirement of an observer class is the ability to receive updates.

In order to guarantee that every observer class provides a standard update mechanism, we'll create

http://lib.ommolketab.ir
http://lib.ommolketab.ir

an Observer interface that defines an update() method. Classes that wish to register with a subject
(using addObserver()) must implement the Observer interface and define an update() method.
When the subject changes state (i.e., has a message to broadcast), it calls notifyObservers(), which
invokes update() on all observers. Each observer's update() method responds to the change as it
sees fit.

If you're thinking ahead, you may already be wondering how the observers know what changed in
the subject. For example, in our hypothetical weather application, the subject, WeatherReporter,
sends an update whenever the weather report changes. How do the observers (TextReport and
GraphicReport) obtain that updated weather information? There are two options, known as the push
and pull models.

In the push model, the updated information is pushed to the observers via an info object. The info
object is sent to observers by the subject's notifyObservers() method. Each observer receives the
info object as an argument to its update() method. For example, if the WeatherReporter class were
to use the push model, it would report weather changes by invoking update() on TextReport and
GraphicReport, as usual, but would also pass update() an object with, say, temperature and
precipitation properties. The TextReport and GraphicReport classes would process the object in

their respective update() methods.

In the pull model, the observers are expected to retrieve the information they want via getter
methods defined by the subject. For example, if the WeatherReporter class were to use the pull
model, it might define methods such as getTemperature() and getPrecipitation(). The TextReport
and GraphicReport classes would then be responsible for implementing an update() method that
used getTemperature() and getPrecipitation() to retrieve the latest weather information.

Both the push and pull models have their pros and cons. The pull model requires observers to
manually determine what has changed every time an update is received, which can be inefficient. In
the push model, observers are told explicitly what changed, but that requires the subject to know the
needs of its observers. The more the subject must know about its observers, the harder it is to
modify observers without affecting the subject.

Our implementation of the Observer pattern supports both push and pull models. That is, the basic
facilities required to send an info object at notification time are available but optional.

Figure 16-1Figure 16-1 shows the architecture of our Observer implementation. The Observable class
is the base class for all subjects. Subject classes (such as WeatherReporter) extend Observable.
Observer classes (such as TextReport) implement the Observer interface and use addObserver() to
register with the subject. When a change in the subject occurs, the subject class invokes update() on
all Observer instances in its observers array.

Example 16-1 shows the source code for the Observable class, which we've chosen to place in the util
package (following Java's lead). In addition to the features we've discussed, the Observable class in
Example 16-1 provides several other conveniences:

The countObservers() method, which returns the number of observers in the observers array.

The clearObservers() method, used to remove all observers with a single, crushing blow.

A Boolean property, changed, and the following supporting methods setChanged(),
clearChanged(), and hasChanged(). The changed property is used to specify and check
whether the subject has changed since the last notification. We use changed when, for the sake

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of efficiency, we want to broadcast a single notification for multiple state changes in the subject
(for an example, see the ClockModel class in Chapter 18).

Figure 16-2. Observer pattern implementation

For an explanation of the Observable class's source code, consult the comments in Example 16-1.
Note, however, that you don't need to know Observable's internals very deeply. The Observable class
is a reusable utility that never changes. We treat it as a black box that we simply extend when
implementing the Observer pattern.

Example 16-1. The Observable class

import util.Observer;

/**

 * A Java-style Observable class used to represent the "subject"

 * of the Observer design pattern. Observers must implement the Observer

 * interface and register to observe the subject via addObserver().

 */

class util.Observable {

 // A flag indicating whether this object has changed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private var changed:Boolean = false;

 // A list of observers.

 private var observers:Array;

 /**

 * Constructor function.

 */

 public function Observable () {

 observers = new Array();

 }

 /**

 * Adds an observer to the list of observers.

 * @param o The observer to be added.

 */

 public function addObserver(o:Observer):Boolean {

 // Can't add a null observer.

 if (o == null) {

 return false;

 }

 // Don't add an observer more than once.

 for (var i:Number = 0; i < observers.length; i++) {

 if (observers[i] == o) {

 // The observer is already observing, so quit.

 return false;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 }

 // Put the observer into the list.

 observers.push(o);

 return true;

 }

 /**

 * Removes an observer from the list of observers.

 *

 * @param o The observer to remove.

 */

 public function removeObserver(o:Observer):Boolean {

 // Find and remove the observer.

 var len:Number = observers.length;

 for (var i:Number = 0; i < len; i++) {

 if (observers[i] == o) {

 observers.splice(i, 1);

 return true;

 }

 }

 return false;

 }

 /**

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 * Tell all observers that the subject has changed.

 *

 * @param infoObj An object containing arbitrary data

 * to pass to observers.

 */

 public function notifyObservers(infoObj:Object):Void {

 // Use a null info object if none is supplied.

 if (infoObj == undefined) {

 infoObj = null;

 }

 // If the subject hasn't changed, don't bother notifying observers.

 if (!changed) {

 return;

 }

 // Make a copy of the observers array. We do this to ensure

 // the list doesn't change while we're processing it.

 var observersSnapshot:Array = observers.slice(0);

 // This change has been processed, so unset the changed flag.

 clearChanged();

 // Invoke update() on all observers. Count backward because

 // it's faster, and order doesn't matter in this case.

 for (var i:Number = observersSnapshot.length-1; i >= 0; i--) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 observersSnapshot[i].update(this, infoObj);

 }

 }

 /**

 * Removes all observers from the observer list.

 */

 public function clearObservers():Void {

 observers = new Array();

 }

 /**

 * Indicates that the subject has changed.

 */

 private function setChanged():Void {

 changed = true;

 }

 /**

 * Indicates that the subject has either not changed or

 * has notified its observers of the most recent change.

 */

 private function clearChanged():Void {

 changed = false;

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /**

 * Checks if the subject has changed.

 *

 * @return true if the subject has changed,

 * as determined by setChanged().

 */

 public function hasChanged():Boolean {

 return changed;

 }

 /**

 * Returns the number of observers in the observer list.

 *

 * @return An integer: the number of observers for this subject.

 */

 public function countObservers():Number {

 return observers.length;

 }

}

Example 16-2 shows the source code for the Observer interface, which resides in the util package
along with Observable. The Observer interface is simple, containing only one method: update(). We
use Observer to guarantee that any class that registers for updates from a subject implements the
standard update() method. Notice that the update() method defines two parameters, o and
infoObj. The parameter o contains a reference to the subject that changed. It is used to distinguish

changes in one subject from changes in another, as well as to access changed data in the subject (if
the subject is using the pull model to update its observers). The parameter infoObj receives the

optional info object provided by the subject if the subject is using the push model to broadcast
changes to its observers. Note that although a single observer can, in theory, register with multiple
subjects (and our code accommodates such a circumstance), in practice, a single observer typically
registers with only one subject. An observer registered with multiple subjects must use awkward
conditionals (if/else or switch statements) to distinguish between those subjects at update time.
When a program reaches that level of complexity, it's often better to implement full-scale event

http://lib.ommolketab.ir
http://lib.ommolketab.ir

handling, as described in Chapter 19.

Example 16-2. The Observer interface

import util.Observable;

/**

 * The interface that must be implemented by all observers of an

 * Observable object.

 */

interface util.Observer {

 /**

 * Invoked automatically by an observed object when it changes.

 *

 * @param o The observed object (an instance of Observable).

 * @param infoObj An arbitrary data object sent by

 * the observed object.

 */

 public function update(o:Observable, infoObj:Object):Void;

}

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

16.2 Logger: A Complete Observer Example

Now that we've implemented the core of the Observer pattern, let's put it to use in a real-world
example-an application log. To create the log, we'll define four classes: Logger, LogMessage,
OutputPanelView, and TextFieldView, all of which reside in the logger package. The Logger class is
our subject. The OutputPanelView and TextFieldView classes are our observers. The LogMessage
class is our info object.

Any class in the application can send a message to the Logger class. The receipt of a new message
constitutes a change in the Logger class's state, causing it to broadcast the change (i.e., the
message) to all Logger observers. In our case, the Logger observers are OutputPanelView and
TextFieldView. The OutputPanelView renders log messages to the Output panel in Flash's Test Movie
mode. The TextFieldView renders log messages to a text field on the movie's Stage, allowing them to
be seen at runtime in the Flash Player.

Our Logger class uses the push model to broadcast messages. When a message arrives, Logger
creates a LogMessage instance and passes that instance on to its list of observers. Each LogMessage
provides methods for retrieving the text and severity of the message logged. LogMessage instances
can have one of five severities, represented by the integers 0 through 4, as follows: FATAL (0),
ERROR (1), WARN (2), INFO (3), and DEBUG (4). The severity-level integers are stored in static
properties of the Logger class. They can be converted to human-readable strings via the
Logger.getLevelDesc() method.

The Logger class provides a filter for suppressing log messages. Using Logger.setLevel(), a Logger
instance can set a severity level, which determines whether messages should be broadcast or
discarded. Messages with a severity level greater than the Logger's severity level are not broadcast
to observers. For example, if a message has a severity of 4 (DEBUG), but the Logger's severity level
is 3 (INFO), the message is not broadcast. The Logger class's filter lets us easily change the quantity
and granularity of messages of a log from a central location. During development, we might use a log
severity level of 4 (broadcast all messages), but in the final application, we might use a log severity
level of 1 (broadcast ERROR and FATAL messages only).

16.2.1 The LogMessage Class

Let's start our examination of our log's source code with the LogMessage class, a simple class for
setting and retrieving the text and severity of a logged message. The LogMessage class defines the
following members:

msg

An instance property that stores the text of the message

http://lib.ommolketab.ir
http://lib.ommolketab.ir

level

An instance property that stores the message severity level

setLevel()

A method for setting the message severity level

getLevel()

A method for retrieving the message severity level

setMessage()

A method for setting the message text

getMessage()

A method for retrieving the message text

As we'll see later, the Logger class creates LogMessage instances when broadcasting a change
notification to its observers. Example 16-3 shows the source code for the LogMessage class.

Example 16-3. The LogMessage class

/**

 * A log message. Sent by the Logger instance to all registered

 * log observers when a new log message is generated.

 */

class logger.LogMessage {

 // The text of the message sent to the log.

 private var msg:String;

 // The severity level of this message.

 private var level:Number;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /**

 * LogMessage Constructor

 */

 public function LogMessage (m:String, lev:Number) {

 setMessage(m);

 setLevel(lev);

 }

 /**

 * Sets the log message.

 */

 public function setMessage (m:String):Void {

 msg = m;

 }

 /**

 * Returns the log message.

 */

 public function getMessage ():String {

 return msg;

 }

 /**

 * Sets the severity level for this message.

 */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public function setLevel (lev:Number):Void {

 level = lev;

 }

 /**

 * Returns the severity level for this message.

 */

 public function getLevel ():Number {

 return level;

 }

}

Now let's move on to OutputPanelView, a class that receives LogMessage instances from Logger and
generates corresponding on-screen messages.

16.2.2 The OutputPanelView Class

The OutputPanelView class displays log messages in the Output panel in Flash's Test Movie mode. It
implements the Observer interface from Example 16-2 and defines only one property and one
method:

log

An instance property that stores a reference to the Logger instance being observed

update()

The all-important method used by Logger to broadcast messages to the OutputPanelView
instance

By convention, all observer classes should store an instance of the subject they are observing. They
use that reference to pull changes from the subject or to set the subject's state. In our case, the
Logger class broadcasts its updates using the push model, so the log property in OutputPanelView is

not actually used. However, we maintain it as a matter of good form and for the sake of possible
future updates to the OutputPanelView class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 16-4 shows the source code for the OutputPanelView class. Pay special attention to the
update() method, which receives a LogMessage instance as an argument and uses it to display log
messages in the Output panel. Notice that the generic infoObj instance received by update() is cast

to the LogMessage datatype before it is used so that the compiler can perform type checking on it.
(Technically, the cast is not necessary in this case because the Object class is dynamic, so invoking
non-Object methods on infoObj would not cause an error.)

Example 16-4. The OutputPanelView class

import util.Observer;

import util.Observable;

import logger.Logger;

import logger.LogMessage;

/**

 * An observer of the Logger class. When a movie is played in

 * the Flash authoring tool's Test Movie mode, this class displays

 * log messages in the Output panel.

 */

class logger.OutputPanelView implements Observer {

 // The log (subject) that this object is observing.

 private var log:Logger;

 /**

 * Constructor

 */

 public function OutputPanelView (l:Logger) {

 log = l;

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /**

 * Invoked when the log changes. For details, see the

 * Observer interface.

 */

 public function update (o:Observable, infoObj:Object):Void {

 // Cast infoObj to a LogMessage instance for type checking.

 var logMsg:LogMessage = LogMessage(infoObj);

 trace(Logger.getLevelDesc(logMsg.getLevel()) + ": " +

 logMsg.getMessage());

 }

 public function destroy ():Void {

 log.removeObserver(this);

 }

}

Now let's look at our log's other observer class, TextFieldView.

16.2.3 The TextFieldView Class

The TextFieldView class displays log messages in a text field in the Flash movie rather than in the
Output panel.

The basic structure of TextFieldView is identical to OutputPanelView. Like OutputPanelView,
TextFieldView defines a log property and an update() method. It also adds a new method,

makeTextField(), which creates an on-screen TextField instance in which to display messages. And it
adds a new property, out, which stores a reference to the text field created by makeTextField(). The

TextFieldView constructor defines seven parameters:

l

A reference to the Logger instance that will be observed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

target

The movie clip in which to create the text field

depth

The depth in target on which to create the text field

x

The horizontal position of the text field

y

The vertical position of the text field

w

The width of the text field

h

The height of the text field

Example 16-5 shows the code for the TextFieldView class. Once again, pay special attention to the
update() method, which receives log messages and handles the important task of displaying them on
screen.

Example 16-5. The TextFieldView class

import util.Observer;

import util.Observable;

import logger.Logger;

import logger.LogMessage;

/**

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 * An observer of the Logger class. This class displays

 * messages sent to the log in an on-screen text field.

 */

class logger.TextFieldView implements Observer {

 // The log that this object is observing.

 private var log:Logger;

 // A reference to the text field.

 private var out:TextField;

 /**

 * TextFieldView Constructor

 */

 public function TextFieldView (l:Logger,

 target:MovieClip,

 depth:Number,

 x:Number,

 y:Number,

 w:Number,

 h:Number) {

 log = l;

 makeTextField(target, depth, x, y, w, h);

 }

 /**

 * Invoked when the log changes. For details, see the

 * Observer interface in Example 16-2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 */

 public function update (o:Observable, infoObj:Object):Void {

 // Cast infoObj to a LogMessage instance for type checking.

 var logMsg:LogMessage = LogMessage(infoObj);

 // Display the log message in the log text field.

 out.text += Logger.getLevelDesc(logMsg.getLevel())

 + ": " + logMsg.getMessage() + "\n";

 // Scroll to the bottom of the log text field.

 out.scroll = out.maxscroll;

 }

 /**

 * Creates a text field in the specified movie clip at

 * the specified depth. Log messages are displayed in the text field.

 */

 public function makeTextField (target:MovieClip,

 depth:Number,

 x:Number,

 y:Number,

 w:Number,

 h:Number):Void {

 // Create the text field.

 target.createTextField("log_txt", depth, x, y, w, h);

 // Store a reference to the text field.

 out = target.log_txt;

 // Put a border on the text field.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 out.border = true;

 // Make the text in the text field wrap.

 out.wordWrap = true;

 }

 public function destroy ():Void {

 log.removeObserver(this);

 out.removeTextField();

 }

}

The completion of the TextFieldView class is a eureka! moment in which we can clearly see the fruits
of our labor. With both the TextFieldView and OutputPanelView classes implemented, we now have
two separate displays based on the same information source. When the Logger class receives a
message, it doesn't have to worry about how the message is rendered. Instead, it merely broadcasts
the message to its observers. The rendering and processing of the messages are handled by two
completely separate observer classes. In our current example, we render the log in two ways, but
once the general logging system is in place, it is trivial to add more log-rendering classes. For
example, we could add a class that sends the log to a server-side database. Or we could add a class
that archives the log locally and provides searching and arbitrary access to log messages. Each class
neatly encompasses its own responsibilities. And the Logger class doesn't care whether there are
three log-processor (observer) classes, a hundred such classes, or none.

Now let's put the final piece in the Observer puzzle, the Logger class.

16.2.4 The Logger Class

As the subject of our Observer implementation, the Logger class extends the Observable class, using
it to handle the grunt work of managing observers and broadcasting state changes (in this case, log
messages).

Here's the skeleton for the Logger class:

class logger.Logger extends Observable {

}

To ensure that each application creates only one Logger instance, we use the Singleton design
pattern, which we'll study in the next chapter. The following aspects of the Logger class are all part of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the Singleton design pattern; we'll skip consideration of these items for now and return to them next
chapter:

The Logger class stores an instance of itself in a static property called log
private static var log:Logger = null;

The Logger constructor function is private so that Logger instances cannot be created by outside
code

Logger instances can be created only via Logger.getLog()
public static function getLog():Logger {

 if (log == null) {

 log = new Logger();

 }

 return log;

}

As we learned earlier, the Logger class maintains a log severity level that is used to filter log
messages. The severity levels are stored in static properties, as follows:

public static var FATAL:Number = 0;

public static var ERROR:Number = 1;

public static var WARN:Number = 2;

public static var INFO:Number = 3;

public static var DEBUG:Number = 4;

Human-readable strings describing the severity levels are stored in the property
levelDescriptions:

public static var levelDescriptions = ["FATAL", "ERROR", "WARN", "INFO", "DEBUG"];

The current severity level is stored in an instance property, logLevel:

private var logLevel:Number;

To allow the log severity level to be set, the Logger class defines a setLevel() method:

public function setLevel(lev:Number):Void {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 lev = Math.floor(lev);

 if (lev >= Logger.FATAL && lev <= Logger.DEBUG) {

 logLevel = lev;

 info("Log level set to: " + lev);

 return;

 }

 warn("Invalid log level specified.");

}

To allow the log severity level to be retrieved, the Logger class defines a getLevel() method:

public function getLevel():Number {

 return logLevel;

}

A human-readable string representing a given log level can be retrieved via the class method
getLevelDesc():

public static function getLevelDesc(level:Number):String {

 return levelDescriptions[level];

}

By default, the Logger constructor sets each Logger instance's severity level to 3 (INFO):

private function Logger () {

 setLevel(Logger.INFO);

}

And now the code we've been waiting for. To allow messages to be sent to the log, the Logger class
provides five methods, corresponding to the five log levels: fatal(), error(), warn(), info(), and
debug(). To send a message to the log, we first create a Logger instance:

var log:Logger = Logger.getLog();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Then we pass the message to be sent to the desired message-sending method. For example, the
following code sends the message, "Something went wrong," with a severity of ERROR:

log.error("Something went wrong");

The following code sends a message, "Application started!" with a severity of INFO:

log.info("Application started!");

The most recent message sent to the log is stored in the instance property lastMsg:

private var lastMsg:LogMessage;

The methods fatal(), error(), warn(), info(), and debug() are all structured identically. Let's look
at the code for the info() method to see how a log message is handled. Remember that the five
message-sending methods are the state-change methods of the subject in our Observer pattern. As
such, they follow a basic structure that all state-change methods in an Observer implementation
follow. Here's the code for info(), with comments explaining each line:

public function info(msg:String):Void {

 // If the filter level is at least "INFO"...

 if (logLevel >= Logger.INFO) {

 // ...then broadcast the message to observers.

 // Using the supplied message string (msg),

 // create a LogMessage instance to send to observers.

 // The LogMessage instance is the info object of this

 // notification. Store the LogMessage instance in

 // lastMsg for later retrieval.

 lastMsg = new LogMessage(msg, Logger.INFO);

 // Indicate that the subject has changed state.

 setChanged();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Use notifyObservers() to invoke update() on all Logger

 // observers, passing the LogMessage instance as an argument.

 // For the source code of notifyObservers(), see Example 16-1.

 notifyObservers(lastMsg);

 }

}

The basic structure of the Logger.info() method is:

Perform state change (i.e., set lastMsg)

Create info object

Register state change in subject (via setChanged())

Broadcast change notification (via notifyObservers())

All state-change methods in Observable subclasses use the preceding structure.

Example 16-6 shows the code for Logger in its entirety.

Example 16-6. The Logger class

import util.Observable;

import logger.LogMessage;

/**

 * A general log class. Use getLog() to create an app-wide instance.

 * Send messages with fatal(), error(), warn(), info(), and debug().

 * Add views for the log with addObserver() (views must implement Observer).

 *

 * @version 1.0.0

 */

class logger.Logger extends Observable {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Static variable. A reference to the log instance (Singleton).

 private static var log:Logger = null;

 // The possible log levels for a message.

 public static var FATAL:Number = 0;

 public static var ERROR:Number = 1;

 public static var WARN:Number = 2;

 public static var INFO:Number = 3;

 public static var DEBUG:Number = 4;

 private var lastMsg:LogMessage;

 // The human-readable descriptions of the preceding log levels.

 public static var levelDescriptions = ["FATAL", "ERROR",

 "WARN", "INFO", "DEBUG"];

 // The zero-relative filter level for the log. Messages with a level

 // above logLevel are not passed on to observers.

 // Default is 3, "INFO" (only DEBUG messages are filtered out).

 private var logLevel:Number;

 /**

 * Logger Constructor

 */

 private function Logger () {

 // Show "INFO" level messages by default.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 setLevel(Logger.INFO);

 }

 /**

 * Returns a reference to the log instance.

 * If no log instance exists yet, creates one.

 *

 * @return A Logger instance.

 */

 public static function getLog():Logger {

 if (log == null) {

 log = new Logger();

 }

 return log;

 }

 /**

 * Returns a human-readable string representing the specified log level.

 */

 public static function getLevelDesc(level:Number):String {

 return levelDescriptions[level];

 }

 /**

 * Sets the message filter level for the log.

 *

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 * @param lev The level above which messages are filtered out.

 */

 public function setLevel(lev:Number):Void {

 // Make sure the supplied level is an integer.

 lev = Math.floor(lev);

 // Set the log level if it's one of the acceptable levels.

 if (lev >= Logger.FATAL && lev <= Logger.DEBUG) {

 logLevel = lev;

 info("Log level set to: " + lev);

 return;

 }

 // If we get this far, the log level isn't valid.

 warn("Invalid log level specified.");

 }

 /**

 * Returns the message filter level for the log.

 */

 public function getLevel():Number {

 return logLevel;

 }

 /**

 * Returns the most recent message sent to the log.

 */

 public function getLastMsg():LogMessage {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return lastMsg;

 }

 /**

 * Sends a message to the log, with severity "FATAL".

 */

 public function fatal(msg:String):Void {

 // If the filter level is at least "FATAL", broadcast

 // the message to observers.

 if (logLevel >= Logger.FATAL) {

 // Construct the log message object.

 lastMsg = new LogMessage(msg, Logger.FATAL);

 // Pass the message on to observers.

 setChanged();

 notifyObservers(lastMsg);

 }

 }

 /**

 * Sends a message to the log, with severity "ERROR".

 */

 public function error(msg:String):Void {

 // If the filter level is at least "ERROR", broadcast

 // the message to observers.

 if (logLevel >= Logger.ERROR) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 lastMsg = new LogMessage(msg, Logger.ERROR);

 setChanged();

 notifyObservers(lastMsg);

 }

 }

 /**

 * Sends a message to the log, with severity "WARN".

 */

 public function warn(msg:String):Void {

 // If the filter level is at least "WARN", broadcast

 // the message to observers.

 if (logLevel >= Logger.WARN) {

 lastMsg = new LogMessage(msg, Logger.WARN);

 setChanged();

 notifyObservers(lastMsg);

 }

 }

 /**

 * Sends a message to the log, with severity "INFO".

 */

 public function info(msg:String):Void {

 // If the filter level is at least "INFO", broadcast

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // the message to observers.

 if (logLevel >= Logger.INFO) {

 lastMsg = new LogMessage(msg, Logger.INFO);

 setChanged();

 notifyObservers(lastMsg);

 }

 }

 /**

 * Sends a message to the log, with severity "DEBUG".

 */

 public function debug(msg:String):Void {

 // If the filter level is at least "DEBUG", broadcast

 // the message to observers.

 if (logLevel >= Logger.DEBUG) {

 lastMsg = new LogMessage(msg, Logger.DEBUG);

 setChanged();

 notifyObservers(lastMsg);

 }

 }

}

Notice that the five message-sending methods in the Logger c lass-fatal(), error(), warn(), info(),
and debug()-all contain nearly identical code. In this example, we'll accept that redundancy in order
to repeatedly demonstrate the general structure of a state-change method. However, in a real-world
version of the Logger class, we'd move the repeated code to a centralized method that checks the log
level and notifies observers when appropriate. We'd call our centralized method handleMessage()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and have each of the message-sending methods use it to validate and broadcast messages, as shown
next:

// The new handleMessage() method.

public function handleMessage(msg:String, msgSeverity:Number):Void {

 if (logLevel >= msgSeverity) {

 lastMsg = new LogMessage(msg, msgSeverity);

 setChanged();

 notifyObservers(lastMsg);

 }

}

// Here's a revised message-sending method, debug(),

// showing how handleMessage() would be used. (Other

// message-sending methods are not shown.)

public function debug(msg:String):Void {

 handleMessage(msg, Logger.DEBUG);

}

16.2.5 Inheritance Misuse?

As we've just seen, in our implementation of the Logger class, we extend Observable. In our
situation, the Logger class doesn't need to inherit from any other class, so it can extend Observable
without issue. But what if the Logger class were already a subclass of some other class (say,
MessageManager)? It wouldn't be able to inherit from the Observable class! Here, we encounter a
classic misuse of inheritance-extending a class simply to borrow its functionality. We first saw this
kind of misuse in Chapter 6 and later showed how to avoid it in Chapter 8, under "Multiple Type
Inheritance with Interfaces." Specifically, the Logger class doesn't have a legitimate "Is-A"
relationship with the Observable class. That is, the Logger class is not a specialized kind of update
broadcaster. Other classes won't use it in place of Observable for its additional broadcast features.
On the contrary, the Logger class manages an application log and just happens to need the update
broadcasting functionality found in Observable. In short, we've used inheritance to arrange a
marriage of convenience between the Logger and Observable classes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In a much more flexible implementation of the Observer pattern, we would define the Observable
datatype as an interface, not as a concrete class. We would then create an implementation of that
interface in a class named ObservableSubject. The ObservableSubject class would have all the
features of the Observable class from Example 16-1. Our Logger class would not extend
ObservableSubject. Instead, it would implement the Observable interface and make use of
ObservableSubject via composition (exactly as the Rectangle class from Chapter 8 implemented
Serializable and used the Serializer class via composition). The Logger class would then be able to
inherit from a more natural superclass (again, perhaps a generic MessageManager class).

So, knowing that we're misusing inheritance in our Logger example, should we now alter our
Observer implementation to allow subjects such as Logger to use a base class such as
ObservableSubject via composition instead of inheritance? That depends on the situation. The
composition approach is undeniably more flexible (adding justification to Sun's recommendation that
every class that can be extended should also be usable via composition!). However, the composition
approach is also more complex. In a simple application, that complexity can translate to unnecessary
development time and source code that's harder to digest. Hence, a good rule to follow is one we've
seen several times already: Never Add Functionality Early (for details on this and other Extreme
Programming rules, see http://www.extremeprogramming.org/rules.html). So far our Logger class
doesn't need to inherit from any other class, so we don't need to worry that we're "misusing"
inheritance. We can wait until the program we're creating requires another subject that cannot inherit
from Observable because it already inherits from another class. That's a good time to implement the
composition version of Observer.

In this chapter, we'll stick with our inheritance-based Observer implementation. For comparison,
however, Example 16-7 presents the composition-based version. Differences from the inheritance
version are shown in bold. Refer to Chapter 8 for an explanation of the basic structure of
composition. Note that the composition-based implementation of Observer uses, verbatim, the
previous versions of the Observer interface and the LogMessage, OutputPanelView, and
TextFieldView classes. The source code for those items is, hence, not repeated in Example 16-7. You
can download the code shown in Example 16-7 from http://moock.org/eas2/examples.

Example 16-7. Implementing the Observer pattern using composition

// Code in Observable.as. This is the new Observable interface.

import util.Observer;

interface util.Observable {

 public function addObserver(o:Observer):Boolean;

 public function removeObserver(o:Observer):Boolean

 public function notifyObservers(infoObj:Object):Void

 public function clearObservers():Void;

 public function hasChanged():Boolean;

 public function setChanged():Void;

http://www.extremeprogramming.org/rules.html
http://moock.org/eas2/examples
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public function clearChanged():Void;

 public function countObservers():Number;

}

// Code in ObservableSubject.as. The ObservableSubject class is nearly

// identical to the previous Observable class, save for the commented

// sections in bold. Note that ObservableSubject implements the new

// Observable interface. Hence, the Observable interface must be imported.

import util.Observer;

import util.Observable;

class util.ObservableSubject implements Observable {

 private var changed:Boolean = false;

 private var observers:Array;

 // Constructor function, this time named ObservableSubject.

 public function ObservableSubject () {

 observers = new Array();

 }

 public function addObserver(o:Observer):Boolean {

 if (o == null) {

 return false;

 }

 for (var i:Number = 0; i < observers.length; i++) {

 if (observers[i] == o) {

 return false;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 }

 observers.push(o);

 return true;

 }

 public function removeObserver(o:Observer):Boolean {

 var len:Number = observers.length;

 for (var i:Number = 0; i < len; i++) {

 if (observers[i] == o) {

 observers.splice(i, 1);

 return true;

 }

 }

 return false;

 }

 public function notifyObservers(infoObj:Object):Void {

 if (infoObj == undefined) {

 infoObj = null;

 }

 if (!changed) {

 return;

 }

 var observersSnapshot:Array = observers.slice(0);

 clearChanged();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 for (var i:Number = observersSnapshot.length-1; i >= 0; i--) {

 observersSnapshot[i].update(this, infoObj);

 }

 }

 public function clearObservers():Void {

 observers = new Array();

 }

 public function setChanged():Void {

 changed = true;

 }

 public function clearChanged():Void {

 changed = false;

 }

 public function hasChanged():Boolean {

 return changed;

 }

 public function countObservers():Number {

 return observers.length;

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Code in Logger.as.

import util.Observable; // Import the new Observable interface.

import util.ObservableSubject; // Import the new ObservableSubject class.

import util.Observer;

import logger.LogMessage;

// Implement Observable, but don't extend ObservableSubject!

class logger.Logger implements Observable {

 // An ObservableSubject instance, used to broadcast updates to observers.

 private var subj:ObservableSubject;

 private static var log:Logger = null;

 public static var FATAL:Number = 0;

 public static var ERROR:Number = 1;

 public static var WARN:Number = 2;

 public static var INFO:Number = 3;

 public static var DEBUG:Number = 4;

 private var lastMsg:LogMessage;

 public static var levelDescriptions = ["FATAL", "ERROR",

 "WARN", "INFO", "DEBUG"];

 private var logLevel:Number;

 // Create the ObservableSubject instance in the constructor.

 private function Logger () {

 subj = new ObservableSubject();

 setLevel(Logger.INFO);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 public static function getLog():Logger {

 if (log == null) {

 log = new Logger();

 }

 return log;

 }

 public static function getLevelDesc(level:Number):String {

 return levelDescriptions[level];

 }

 public function setLevel(lev:Number):Void {

 // Make sure the supplied level is an integer.

 lev = Math.floor(lev);

 // Set the log level if it's one of the acceptable levels.

 if (lev >= Logger.FATAL && lev <= Logger.DEBUG) {

 logLevel = lev;

 info("Log level set to: " + lev);

 return;

 }

 // If we get this far, the log level isn't valid.

 warn("Invalid log level specified.");

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public function getLevel():Number {

 return logLevel;

 }

 public function getLastMsg():LogMessage {

 return lastMsg;

 }

 public function fatal(msg:String):Void {

 if (logLevel >= Logger.FATAL) {

 // Construct the log message object.

 lastMsg = new LogMessage(msg, Logger.FATAL);

 // Pass the message on to observers.

 setChanged();

 notifyObservers(lastMsg);

 }

 }

 public function error(msg:String):Void {

 if (logLevel >= Logger.ERROR) {

 lastMsg = new LogMessage(msg, Logger.ERROR);

 setChanged();

 notifyObservers(lastMsg);

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 public function warn(msg:String):Void {

 if (logLevel >= Logger.WARN) {

 lastMsg = new LogMessage(msg, Logger.WARN);

 setChanged();

 notifyObservers(lastMsg);

 }

 }

 public function info(msg:String):Void {

 if (logLevel >= Logger.INFO) {

 lastMsg = new LogMessage(msg, Logger.INFO);

 setChanged();

 notifyObservers(lastMsg);

 }

 }

 public function debug(msg:String):Void {

 if (logLevel >= Logger.DEBUG) {

 lastMsg = new LogMessage(msg, Logger.DEBUG);

 setChanged();

 notifyObservers(lastMsg);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 }

 // Wrapper methods for ObservableSubject methods follow. These methods

 // subcontract their work out to the ObservableSubject instance, subj.

 public function addObserver(o:Observer):Boolean {

 return subj.addObserver(o);

 }

 public function removeObserver(o:Observer):Boolean {

 return subj.removeObserver(o);

 }

 public function notifyObservers(infoObj:Object):Void {

 subj.notifyObservers(infoObj);

 }

 public function clearObservers():Void {

 subj.clearObservers();

 }

 public function setChanged():Void {

 subj.setChanged();

 }

 public function clearChanged():Void {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 subj.clearChanged();

 }

 public function hasChanged():Boolean {

 return subj.hasChanged();

 }

 public function countObservers():Number {

 return subj.countObservers();

 }

}

16.2.6 Using the Logger Class

Now that we've seen how our subject (Logger) and its observers (OutputPanelView and
TextFieldView) work individually, let's put them all together to form a functional logging system. The
code in this section could go on a frame in the timeline of a .fla file or in a class (an .as file).
Furthermore, the code works equally well with both the inheritance-based and composition-based
implementations of the Observer pattern shown in this chapter.

First, we import the logger package (so we can refer to the Logger, LogMessage, OutputPanelView,
and TextFieldView classes in that package directly):

import logger.*;

Then, we create a variable, log, to store our application's Logger instance:

var log:Logger;

Then we create the Logger instance:

log = Logger.getLog();

Next, we create two variables to store our Logger observers:

var outputLogView:OutputPanelView;

var textLogView:TextFieldView;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Then we create our observer instances, passing each the Logger instance for this application:

outputLogView = new OutputPanelView(log);

textLogView = new TextFieldView(log, someMovieClip, 0, 50, 50, 300, 200);

Finally, we use addObserver() to register our observers to receive updates from the Logger instance:

log.addObserver(outputLogView);

log.addObserver(textLogView);

Our log's ready to go! Let's now try logging some messages:

log.fatal("This is a non-recoverable problem.");

log.error("This is a serious problem that may be recoverable.");

log.warn("This is something to look into, but probably isn't serious.");

log.info("This is a general bit of application information.");

log.debug("This is a note that helps track down a bug.");

If we executed the preceding code, the debug() message wouldn't appear because the Logger
instance filters out debug() messages by default. To enable all messages for the log, we'd use:

log.setLevel(Logger.DEBUG);

If you want to see the log work on your own computer, you can download the example files from
http://moock.org/eas2/examples.

 < Day Day Up >

http://moock.org/eas2/examples
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

16.3 Memory Management Issues with Observer

In Chapter 5, we learned that event-listener objects registered with an event source must always
unregister from that source before being deleted. The same holds true in the Observer
pattern-observers must unregister with their subject before being deleted. For example, suppose we
create an OutputPanelView object and register it to observe a Logger instance (as shown in the
previous section):

var outputLog:OutputPanelView = new OutputPanelView(log);

log.addObserver(outputLog);

Later in the program, we decide we no longer want to print log messages to the Output panel, so we
delete the variable outputLog. But even with outputLog deleted, messages continue to appear in the

Output panel! Why? Because the Logger class stores a reference to OutputPanelView instance, and
deleting the variable outputLog does not remove that reference. We must unregister the reference
with Logger before deleting outputLog, as follows:

log.removeObserver(outputLog);

delete outputLog;

To formalize the process of unregistering an observer from its subject, we implement a destroy()
method on the observer class. For example, the following code shows how we implement destroy()
for OutputPanelView:

public function destroy ():Void {

 log.removeObserver(this);

}

The destroy() method's main responsibility is to unregister the observer from its subject; however,
destroy() can also be used to generally clean up assets used by the observer class. For example, the
following code shows the implementation of destroy() we use for the TextFieldView class. Here, the
destroy() method performs unregistration and also removes the log text field from the screen:

public function destroy ():Void {

 log.removeObserver(this);

 out.removeTextField();

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A similar warning applies to the subject class in the Observer pattern. A subject must be deleted only
after ensuring that its observers no longer refer to it. As we've seen in this chapter, each observer
class stores a reference to its subject. For example, both the OutputPanelView and the TextFieldView
classes store a reference to the Logger class in the property log. If we want to delete a Logger

instance, we first have to remove the reference to it in both OutputPanelView and TextFieldView
(assuming instances of those classes are observing the Logger instance). This requires
OutputPanelView and TextFieldView to implement a new method, releaseSubject(), which sets the
property log to null:

public function releaseSubject():Void {

 log = null;

}

The Observable class then implements a corresponding method, destroy(), which calls
releaseSubject() on its observers prior to deletion:

public function destroy ():Void {

 var observersSnapshot:Array = observers.slice(0);

 // Invoke releaseSubject() on all observers.

 for (var i:Number = observersSnapshot.length-1; i >= 0; i--) {

 observersSnapshot[i].releaseSubject();

 }

}

We can then safely delete a subject by first invoking destroy() on it:

theLog.destroy();

delete theLog;

Note that we don't have to manually remove the subject's list of observers; deleting the subject also
deletes its observers array automatically.

In situations in which the observers do not need arbitrary access to the subject they are observing,
the observers need not store a reference to the subject at all. Instead, a reference to the subject can
be passed to the observers via the update() method (either as a separate argument or as a property
of the info object). The observers can then access the subject at update time via the parameters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

passed to the update() method and then immediately discard the reference to the subject. This
prevents dangling references to deleted subjects in observers.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

16.4 Beyond Observer

In the real world, many classes broadcast events. For example, many of Flash's built-in classes
(Mouse, Selection, XML, Stage, TextField, and so on) broadcast events. The Observer pattern
provides one generic blueprint for event broadcasting, but in practice most classes that broadcast
events use a more complex event architecture structure. You can use Observer to good effect in
simple, self-contained cases such as our application log or, say, to update objects when a stock ticker
changes. You might also use Observer when implementing internal state management for a user
interface component such as a slider bar or, as we'll see in Chapter 18, a clock. But for more complex
event handling, you'll very likely want a more flexible, feature-rich event architecture such as the
delegation event model discussed in Chapter 19. See that chapter for a detailed comparison between
the Observer pattern and the delegation event model.

That completes our study of the Observer pattern. In the next chapter, we'll return to our Logger
class to study its instance-creation process.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 17. The Singleton Design Pattern
[The Singleton pattern's purpose is to] ensure a class has only one instance, and provide a
global point of access to it.

-from Design Patterns: Elements of Reusable Object-Oriented Software (the so-called GoF
book discussed in Chapter 15)

Sometimes an application needs only a single instance of a particular class and should not create
more than that one instance. For example, an order form might need one FormProcessor. A game
might need one LevelManager. A text editor might need one GUIBuilder. Or a chat might need one
SocketManager. In each of those applications, creating more than one instance of the FormProcessor,
LevelManager, GUIBuilder, or SocketManager classes could cause problems. For example, having
multiple SocketManagers might lead to multiple open socket connections, which would waste
resources and potentially disrupt communications. To prevent an application from creating more than
one instance of a class and to give various parts of the application access to that one instance we use
the Singleton pattern.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

17.1 Implementing Singleton in ActionScript 2.0

The Singleton pattern has a relatively simple implementation, particularly considering its general
usefulness. Most of the pattern implementation resides in a class we'll refer to as the Singleton class
(i.e., the class being limited to a single instance). The remainder of the implementation involves the
external access to the lone Singleton instance.

The Singleton class has four main facets (shown in a generic implementation in Example 17-1):

A class property, _instance, that stores the lone instance of the class

A private constructor, Singleton (), that creates the lone instance

An instance-retrieval method, getInstance(), that returns a reference to the lone instance

Typical instance methods, such as doSomething(), and properties (none shown in Example 17-
1) that implement the behavior of the class

Example 17-1 shows the source code for a generic Singleton class. Read it over, then we'll consider
each of its features in turn.

Example 17-1. The Singleton class

class Singleton {

 private static var _instance:Singleton = null;

 private function Singleton () {

 }

 public static function getInstance():Singleton {

 if (Singleton._instance == null) {

 Singleton._instance = new Singleton();

 }

 return Singleton._instance;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 public function doSomething ():Void {

 trace("doSomething() was called");

 }

}

To store the lone instance of the Singleton class, we create a private, static property, _instance,
which we initialize to null. The _instance property must be private so that it cannot be accessed

outside of the Singleton class or its subclasses. And it must be static so that it can be accessed by the
class method getInstance().

To retrieve the lone instance of the Singleton class, other classes use the class method
Singleton.getInstance(). When called, the getInstance() method checks _instance to see whether
an instance of the Singleton class exists already. If the _instance property is null, then no instance

has yet been created, so the getInstance() method creates one and returns it. If, on the other hand,
an instance already exists, the getInstance() method simply returns the existing instance without
creating a new one.

In our Singleton class example, the constructor is empty. Despite that fact, the constructor definition
is extremely important because it specifies that the constructor is private (i.e., cannot be accessed
outside the Singleton class or its subclasses). Omitting the constructor altogether causes Flash to
implicitly create a public constructor, which would allow multiple Singleton instances to be created.
When a class's constructor is private, you can use the new operator to create an instance of the class
from within the class or its subclasses; however, external attempts to create an instance of the class
using the new operator cause an error. For example, when the following code appears outside the
Singleton class (and outside any of its subclasses):

var s:Singleton = new Singleton();

it causes this error:

The member is private and cannot be accessed.

Thus, any class that wishes to create a Singleton instance is forced to use the Singleton.getInstance(
) method, which guarantees that only one Singleton instance is ever created.

Notice that because the Singleton instance is stored in a property of the same class, it is
automatically accessible to any other class that can access Singleton. (In theory, we could have
made our instance accessible to the application by defining it as a global variable, but that global
variable's name might conflict with another global variable.)

Here's how we'd use our Singleton class, somewhere in our application:

var s:Singleton = Singleton.getInstance();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

s.doSomething();

In some cases, it's not necessary to store the Singleton instance in a variable or property. When we
have only temporary need of the Singleton instance, we could reduce the previous code to:

Singleton.getInstance().doSomething();

Now that we've seen how the Singleton pattern is implemented in general, let's look at a specific
Singleton implementation example-the Logger class from Chapter 16.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

17.2 The Singleton Pattern in the Logger Class

In Chapter 16, we created an application log using the Observer pattern. That application required a
single, central logging facility, which we implemented in the Logger class. Now let's return to the
Logger class and look at the specific code in it that implements the Singleton pattern. By using
Singleton, the Logger class guarantees that the application using it creates only a single log, even if
there are multiple observers displaying the log output in various ways.

Example 17-2 shows the relevant section of the Logger class, omitting code that is not directly part of
the Singleton pattern. (For the full Logger class listing, see Example 16-6 in Chapter 16.)

Example 17-2. The Singleton pattern in the Logger class

class logger.Logger extends Observable {

 private static var log:Logger = null;

 private function Logger () {

 setLevel(Logger.INFO);

 }

 public static function getLog():Logger {

 if (log == null) {

 log = new Logger();

 }

 return log;

 }

}

Let's compare the Logger class with the generic Singleton implementation from Example 17-1. The
Logger's log property stores the single Logger instance and is equivalent to Example 17-1s
_instance property. As in Example 17-1, the Logger class constructor is private, but this time the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

constructor actually performs a useful action (setting the log level). Finally, the Logger.getLog()
method provides access to the Logger instance in log, exactly as getInstance() does in Example 17-

1.

To send a testing debug message to the log, we use:

import logger.Logger;

var log:Logger = Logger.getLog();

log.debug("Testing...testing...");

Or, more succinctly:

import logger.Logger;

Logger.getLog().debug("Testing...testing...");

No matter where the preceding code appears in our application, the log message is guaranteed to be
routed through the same, lone Logger instance. Hence, we can be sure that all log messages in the
application are processed in the same way (i.e., are handled by the same Logger observers).

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

17.3 Singleton Versus Class Methods and Class
Properties

You might wonder why we wouldn't implement the Logger class's functionality entirely in class
methods and class properties. That is, why not design Logger to be used directly through class
methods instead of through a solitary instance? The Singleton pattern is used in favor of a class that
simply groups class methods and class properties together for two key reasons.

First, flexibility. Once established, the Singleton pattern is very easy to change from a "sole-instance"
implementation to a multiple-instance implementation. For example, if down the road we decide to
use separate Logger instances to log different aspects of our application, we can easily update the
Logger class to allow the creation of multiple instances. In contrast, moving functionality from class
methods and class properties to individual instances would be much more work.

Second, inheritance. As we've just seen with the Logger class, the Singleton pattern works freely with
inheritance. For example, our Logger class (a Singleton) extends Observable without issue. In
contrast, a class used solely through its class members cannot meaningfully extend a class used
through its instances. If Logger were used entirely through class methods, it could not inherit the
functionality of the Observable class because Observable must be instantiated to work. The inverse is
also true: a class comprised solely of class members is difficult to extend (sometimes prohibitively so)
because of the scope issues described in Chapter 6.

The Singleton pattern gives us the benefits of centralized access to some aspect of a program without
the limitations of class methods and class properties.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

17.4 A Warning Against Singletons as Globals

Beware that the Singleton pattern can turn an object-oriented program into a series of haphazard
global functions and variables, negating most of the benefits of OOP. You should use the Singleton
pattern when you need to limit the number of instances created by a class, not just when you want
to access something globally. If you are tempted to use a Singleton simply as a repository for global
variables, you should stop, rethink the problem, and try to fit the services you're implementing into
some logically encapsulated structure with the rest of your program. When code is spread loosely
around in global variables and functions, it's much harder to maintain, extend, and understand than
when it's neatly packed into self-contained units. For further reading on this topic, see:

Global Variables Are Bad, from the Portland Pattern Repository's Wiki

http://c2.com/cgi/wiki?GlobalVariablesAreBad

Use Your Singletons Wisely, by J. B. Rainsberger

http://www-106.ibm.com/developerworks/webservices/library/co-single.html

 < Day Day Up >

http://c2.com/cgi/wiki?GlobalVariablesAreBad
http://www-106.ibm.com/developerworks/webservices/library/co-single.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

17.5 On to User Interfaces

Now that we've studied two relatively simple design patterns (Observer and Singleton), we're ready
to move on to a more complex pattern, Model-View-Controller (which, itself, is actually a group of
patterns). Model-View-Controller is of particular interest to Flash developers because it suggests how
to structure the classes that create and manage a user interface.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 18. The Model-View-Controller
Design Pattern

In the MVC paradigm the user input, the modeling of the external world, and the visual
feedback to the user are explicitly separated and handled by three types of object, each
specialized for its task.

-from Applications Programming in Smalltalk-80(TM):How to use Model-View-Controller
(MVC), by Steve Burbeck, available at: http://st-www.cs.uiuc.edu/users/smarch/st-
docs/mvc.html

The Model-View-Controller (MVC) design pattern separates user interface code into three distinct
classes:

Model

Stores the data and application logic for the interface

View

Renders the interface (usually to the screen)

Controller

Responds to user input by modifying the model

For example, in a toggle button, the model would store the state of the button (on or off), the view
would draw the button on screen, and the controller would set the state of the button in the model
(to on or off) when the button is clicked. But an interface need not be visual. In some cases, the view
might play a sound or, as a non-ActionScript example, the view might make a video game controller
vibrate.

MVC originated in the Smalltalk language and has been used widely for years in many different
incarnations. Though the basic principles of the pattern are easy to understand, its details are
complex enough to foster an enormous amount of debate and contradictory implementations. In this
chapter, we'll study a relatively traditional implementation of the pattern, bearing in mind that there
is no single "right" way to implement MVC.

The basic principle of MVC is the separation of responsibilities. In an MVC application, the model class

http://st-www.cs.uiuc.edu/users/smarch/st-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

concerns itself only with the application's state and logic. It has no interest in how that state is
represented to the user or how user input is received. By contrast, the view class concerns itself only
with creating the user interface in response to generic updates it receives from the model. It doesn't
care about application logic nor about the processing of input; it just makes sure that the interface
reflects the current state of the model. Finally, the controller class is occupied solely with translating
user input (provided by the view) into updates that it passes to the model. It doesn't care how the
input is received or what the model does with those updates.

Separating the code that governs a user interface into the model, view, and controller classes yields
the following benefits:

Allows multiple representations (views) of the same information (model)

Allows user interfaces (views) to be easily added, removed, or changed, at both compile time
and runtime

Allows response to user input (controller) to be easily changed, at both compile time and
runtime

Promotes reuse (e.g., one view might be used with different models)

Allows multiple developers to simultaneously update the interface, logic, or input of an
application without affecting other source code

Helps developers focus on a single aspect of the application at a time

Despite those benefits, not all user interfaces are best implemented with MVC. For example, in
Chapter 12 we built a simple currency converter application using a single class, CurrencyConverter.
The conceptual responsibilities of the model, view, and controller were still manifest in that
application, but they were encompassed by a single class. The currency converter application was so
simple that the cost of implementing formal MVC outweighed the benefits.

Design patterns offer more benefits to larger projects than to smaller ones, but
the concepts in a pattern like MVC can still inform the design of simple
applications like the currency converter.

The MVC pattern can be applied to a single user interface element (like a button), to a group of user
interface elements (like a control panel), or to an entire application. This chapter uses MVC to create
a clock that combines three user interface elements: a digital display, an analog display, and a
toolbar for starting, stopping, and resetting the clock.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

18.1 The General Architecture of MVC

Before we study our specific clock example, let's explore the general structure of the MVC design
pattern.

18.1.1 Communication in MVC

Although the model, view, and controller classes in MVC are intentionally segregated, they must
communicate regularly. The model must send notifications of state changes to the view. The view
must register the controller to receive user interface events and, possibly, request data from the
model. The controller must update the model and, possibly, update the view in response to user
input.

To facilitate this communication, each object in MVC must store a reference to the other object(s)
with which it interacts. Specifically, the model instance needs a reference to the view instances that
render it, while the view and controller each needs a reference to the model and reciprocal references
to each other. Figure 18-1 shows how the objects in MVC reference one another. The diamond shape
in the figure represents a composition relationship, in which one object stores an instance of another.

Figure 18-1. Object references in MVC

Communication proceeds in a single direction (as shown in Figure 18-2) through the object
references shown in Figure 18-1, as follows:

The view receives user input and passes it to the controller.1.

The controller receives user input from the view.2.

The controller modifies the model in response to user input (or, in some cases, the controller
modifies the view directly and does not update the model at all).

3.

4.

5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.

The model changes based on an update from the controller.4.

The model notifies the view of the change.5.

The view updates the user interface, (i.e., presents the data in some way, perhaps by redrawing
a visual component or by playing a sound).

6.

Figure 18-2 depicts the MVC communication cycle. The starting point for the cycle is typically the
receipt of user input. However, another part of the program could also start the cycle by modifying
the model directly (perhaps in response to new data arriving from a server).

Figure 18-2. The MVC communication cycle

Note that Figure 18-2 shows the simplest case of MVC, with a single model, a single view, and a
single controller. However, it's not uncommon for an application to provide two or more views for a
single model. For example, in our MVC clock implementation, we'll use one model to manage the
time, but we'll have three views-one to represent the clock in digital format, one to represent the
clock in analog format, and one to display buttons that start, stop, and reset the clock. You may
wonder how these buttons qualify as a view of the clock given that they do not represent the time.
Views do not necessarily have to represent the entire model and need not even represent the same
information (the way the analog and digital views do). As we'll see later, the buttons in our clock do
not indicate the current time; instead, the button states reflect whether the clock is currently
running, which is simply another aspect of the model.

While an MVC implementation may contain multiple views per model, every view has exactly one
controller instance and vice versa. Each view's controller is dedicated to that view's sole service.

The view and the controller form an indivisible pair. MVC requires that each
view has a controller (even if it is just the placeholder value, null) and each

controller has a view.

Some views do not allow user input. For example, a view might be a simple graph that cannot be
edited. When a view accepts no user input, it does not need a controller to translate user input into
model updates. Hence, views that do not allow user input have either null in place of a controller or

a controller that does nothing in response to user input.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.1.2 Class Responsibilities in MVC

As we've already learned, responsibilities in an MVC implementation are divided among the model,
view, and controller. By the end of this chapter, you should be mumbling the MVC mantra to yourself
at the grocery store-"the model manages data and logic, the view creates the interface, and the
controller processes user input." Those general responsibilities break down into many specific tasks,
covered next.

18.1.2.1 Responsibilities of the model

The model stores data in properties and provides application-specific methods that set and retrieve
that data. The data-management methods are not generic; they are customized per application and
must be known to the controller and the view. For example, the model in our clock application defines
methods specific to a clock, such as setTime() and stop(). Controllers in MVC are custom written to
manipulate a specific model; for example, a controller in our clock application must know about the
setTime() and stop() methods in order to modify the model.

The model's data can be changed externally by an outside class or internally by its own logic. For
example, the time of our clock's model might be reset by the controller in response to user input, or
it might be updated because, internally, it detects the passing of a second. (It might be monitoring
the operating system's built-in clock or, as in our upcoming example, tracking the passing
milliseconds itself.)

The model must also provide a way for views to register and unregister themselves, and it must
manage a list of registered views. Whenever the model determines that its state has changed
meaningfully, it must notify all registered views.

Finally, the model implements the logic of the MVC triad. For example, the model in our clock
application implements a tick() method that runs once per second, updating the time. The model
might also provide data validation services and other application-specific utilities, such as loading the
current time from a server-side application.

18.1.2.2 Responsibilities of the view

The view must create the user interface and keep it up-to-date. The view listens for state changes in
the model; when the model changes, the view updates the interface to reflect the change. For
example, in our clock application, when the time changes, the model notifies the three registered
views. In response, the analog clock view positions the hands of a traditional clock, while the digital
clock view sets the numbers in its digital display. The third, "buttons" view (ClockTools) changes the
appearance of the buttons to indicate whether the clock is running or has been stopped.

Each view must forward all input events to its controller. It should not process any inputs itself. For
example, our analog clock view might allow the user to set the time by dragging the hands of the
clock. When the hands are dragged, the view merely forwards the input information to the controller,
and the controller decides what to do.

Depending on the specific implementation, the view might query the model for its state in order to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

determine what changed when an update is received. The view never changes the model but can
retrieve information from it. For example, our clock's model might tell its views that the time
changed, and the views, in response, might invoke getTime() on the model to determine the new
time. Alternatively (and more commonly), the model might send the new time to the views directly in
an info object at update time. You should recognize these two options as the push and pull models
discussed in Chapter 16 for the Observer pattern. See that chapter for details.

You may be wondering whether the MVC design pattern as presented makes sense architecturally. It
may seem odd that, if the user changes something in the view, instead of responding immediately,
the view passes the input to the controller, which passes it to the model, which notifies the view of
the change, and finally the view requests the details of the change from the model and renders them
for the user. Wouldn't it be easier to skip all the detailed communication and just have the view
update itself whenever the user makes a change? In some sense that may be easier, and in a simple
application it might be appropriate. As an application becomes more complex, however, the MVC
pattern offers significant benefits. For example, in the case of our clock implementation, in which
there are multiple views, the architecture allows changes in one view to be detected by and reflected
in all views. Therefore, you don't have to write code to make the analog clock view notify or update
the digital clock view (or vice versa). Furthermore, the logic is centralized in the model, which
prevents code duplication and allows us to add or remove views at runtime with minimal effort. For
example, you could add a view that displays time in 24-hour (a.k.a. military) format instead of 12-
hour (a.m./p.m.) format. Complex applications demand this type of flexibility, and MVC provides the
structure to implement it.

18.1.2.3 Responsibilities of the controller

The controller listens for notifications from the view based on user input and translates that input into
changes in the model. In some cases, the controller makes logical decisions about the input before
making a corresponding change to the model. For example, our clock application has a Reset button
that resets the time to midnight. When the button is clicked, the clock controller translates the input
conceptually from "Reset button clicked" to the command "Set model's time to 00:00:00."

In some special cases, the controller might also instruct the view to make changes to the user
interface by calling methods on the view. The changes are sent directly to the view only when they
are purely cosmetic and have no effect on the model. For example, if a user interface has buttons to
alphabetize a list of names in ascending and descending order, the controller may legitimately call the
appropriate sort methods on the view when those buttons are clicked. Calling the sort methods is
legitimate because it does not change the underlying data stored in the model (i.e., the list of
names); only the presentation of that data changes.

18.1.3 What Creates the MVC Classes?

Through all this talk of the model, view, and controller, we still haven't seen how to make instances
of those classes. That's partly because there's no single, definitive way to instantiate the classes in
MVC. In our clock example, we'll create a single class, Clock, which instantiates the model, its views,
and their controllers. Our Clock class sets up the MVC classes as follows:

Create the model

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Create views

Register views with the model

Notice that the controllers are missing from the preceding list because they are created by their
respective views.

Hence, our Clock class forms a wrapper around the MVC triad, packaging it into a tidy, self-contained
unit. However, that's definitely not the only approach possible. At least one Java implementation
suggests that the controller class should create the model, and possibly the view, in its constructor!

In our example code, we'll follow the traditional (Smalltalk) implementation of MVC, in which the
model and view(s) are created by some containing class, and then the model and controller are
registered for each view. When the controller for a view is not specified, the view class creates a
default controller for itself automatically.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

18.2 A Generalized MVC Implementation

Now that we've learned the theoretical structure of MVC, let's explore a real-world MVC
implementation. To get started, we'll create a basic MVC framework that can be reused across many
projects. We'll store our core structure in a package called mvc. The classes and interfaces in the mvc
package are:

View

An interface all views must implement

Controller

An interface all controllers must implement

AbstractView

A generic implementation of the View interface

AbstractController

A generic implementation of the Controller interface

You'll notice that the model class is conspicuously absent from our mvc package. That's because the
model-view relationship in MVC is essentially the same as the Observer pattern we studied in Chapter
16. Hence, we'll use the core code from our existing Observer implementation rather than rewriting
similar code for our MVC implementation. The model class in our MVC architecture will be a subclass
of Observable, which resides in the package util. The Observer pattern provides the basic services for
the model-view relationship-views register with the model using addObserver() and
removeObserver(), and the model sends updates via the standardized method update(),
implemented by each view. Hence, in order to register with a model, every view class must
implement the util.Observer interface in addition to implementing the mvc.View interface.

By definition, to use the Observable class as the basis of our model class, the model class must
extend Observable. If we want our model class to inherit from a different class, we'd have to use the
composition-based implementation of the Observer pattern, from Example 16-7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.2.1 The View Implementation

Example 18-1 shows the View interface in our mvc package. The View interface defines the basic
services every View class must offer, namely:

Methods to set and retrieve the controller reference

Methods to set and retrieve the model reference

A method that returns the default controller for the view

Notice that references to the controller in Example 18-1 must be instances of a class that implements
the Controller interface. References to the model must be instances of a class that extends
Observable (or, in the composition-based version of the Observer pattern, that implements the
Observable interface).

Example 18-1. The View interface

import util.*;

import mvc.*;

/**

 * Specifies the minimum services that the view

 * of a Model-View-Controller triad must provide.

 */

interface mvc.View {

 /**

 * Sets the model this view is observing.

 */

 public function setModel (m:Observable):Void;

 /**

 * Returns the model this view is observing.

 */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public function getModel ():Observable;

 /**

 * Sets the controller for this view.

 */

 public function setController (c:Controller):Void;

 /**

 * Returns this view's controller.

 */

 public function getController ():Controller;

 /**

 * Returns the default controller for this view.

 */

 public function defaultController (model:Observable):Controller;

}

To make the View interface easy to implement, we provide AbstractView , a class that implements
the basic services defined by the View interface (namely, managing interactions with the controller
and model). The AbstractView class also implements the Observer interface. To create a real view
class in an MVC application, we need simply extend AbstractView and add code to build and update a
user interface. The core MVC grunt work in any real view class is taken care of by AbstractView.

Example 18-2 shows the code for the AbstractView class. Typically, subclasses of AbstractView will
create a user interface at construction time and modify that user interface from the update()
method.

Notice that an instance of the model class must be passed to AbstractView's constructor. Without
that reference, the view cannot query the model for its state. An instance of the controller class can
also be passed to the view constructor. However, if you don't supply a controller instance, the
AbstractView class uses defaultController() to create the controller automatically the first time it is
requested (i.e., the first time getController() is invoked). Each AbstractView subclass is expected to
override defaultController(), providing a reference to its own default controller.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 18-2. The AbstractView class

import util.*;

import mvc.*;

/**

 * Provides basic services for the view of a Model-View-Controller triad.

 */

class mvc.AbstractView implements Observer, View {

 private var model:Observable; // A reference to the model.

 private var controller:Controller; // A reference to the controller.

 public function AbstractView (m:Observable, c:Controller) {

 // Set the model.

 setModel(m);

 // If a controller was supplied, use it. Otherwise let the first

 // call to getController() create the default controller.

 if (c !== undefined) {

 setController(c);

 }

 }

 /**

 * Returns the default controller for this view.

 */

 public function defaultController (model:Observable):Controller {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return null;

 }

 /**

 * Sets the model this view is observing.

 */

 public function setModel (m:Observable):Void {

 model = m;

 }

 /**

 * Returns the model this view is observing.

 */

 public function getModel ():Observable {

 return model;

 }

 /**

 * Sets the controller for this view.

 */

 public function setController (c:Controller):Void {

 controller = c;

 // Tell the controller this object is its view.

 getController().setView(this);

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /**

 * Returns this view's controller.

 */

 public function getController ():Controller {

 // If a controller hasn't been defined yet...

 if (controller === undefined) {

 // ...make one. Note that defaultController() is normally overridden

 // by AbstractView's subclass so that it returns the appropriate

 // controller for the view.

 setController(defaultController(getModel()));

 }

 return controller;

 }

 /**

 * A do-nothing implementation of the Observer interface's

 * update() method. Subclasses of AbstractView provide a concrete

 * implementation for this method.

 */

 public function update(o:Observable, infoObj:Object):Void {

 }

}

Now that we have our view defined, let's define the controller.

18.2.2 The Controller Implementation

Example 18-3 shows the Controller interface in our mvc package. The Controller interface defines the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

basic services every Controller class must offer, namely:

Methods to set and retrieve the view reference

Methods to set and retrieve the model reference

In the Controller interface, references to the view must be instances of any class that implements the
View interface. References to the model must be instances of any class that extends Observable.

Example 18-3. The Controller interface

import util.*;

import mvc.*;

/**

 * Specifies the minimum services that the controller of

 * a Model-View-Controller triad must provide.

 */

interface mvc.Controller {

 /**

 * Sets the model for this controller.

 */

 public function setModel (m:Observable):Void;

 /**

 * Returns the model for this controller.

 */

 public function getModel ():Observable;

 /**

 * Sets the view this controller is servicing.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 */

 public function setView (v:View):Void;

 /**

 * Returns this controller's view.

 */

 public function getView ():View;

}

To make controller classes easy to create, we provide AbstractController , a class that implements
the basic services defined by the Controller interface to manage interactions with the view and
model. To create a real controller class in an MVC application, we need to extend AbstractController
and add input-handling code. The core MVC grunt work in any real controller is taken care of by
AbstractController.

Example 18-4 shows the code for the AbstractController class. Typically, subclasses of
AbstractController implement input event-handling methods that translate user input received from
the view into model modification notices sent to the model.

Example 18-4. The AbstractController class

import util.*;

import mvc.*;

/**

 * Provides basic services for the controller of

 * a Model-View-Controller triad.

 */

class mvc.AbstractController implements Controller {

 private var model:Observable; // A reference to the model.

 private var view:View; // A reference to the view.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /**

 * Constructor

 *

 * @param m The model this controller's view is observing.

 */

 public function AbstractController (m:Observable) {

 // Set the model.

 setModel(m);

 }

 /**

 * Sets the model for this controller.

 */

 public function setModel (m:Observable):Void {

 model = m;

 }

 /**

 * Returns the model for this controller.

 */

 public function getModel ():Observable {

 return model;

 }

 /**

 * Sets the view that this controller is servicing.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 */

 public function setView (v:View):Void {

 view = v;

 }

 /**

 * Returns this controller's view.

 */

 public function getView ():View {

 return view;

 }

}

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

18.3 An MVC Clock

With our core MVC structure in place, we can create a real-world MVC application-a clock with
analog and digital displays. The default MVC framework and source files for the clock are available at
http://moock.org/eas2/examples.

Figure 18-3 shows the graphical user interface for the clock. Notice that in addition to the analog and
digital displays, the clock includes buttons to start, stop, and reset the clock's time.

Figure 18-3. The Clock graphical user interface

Our clock application includes seven classes, as follows:

Clock

The main application class, which creates the MVC clock

ClockModel

The model class, which tracks the clock's time

ClockUpdate

An info object class that stores update data sent by ClockModel to all views

http://moock.org/eas2/examples
http://lib.ommolketab.ir
http://lib.ommolketab.ir

ClockAnalogView

A view class that presents the analog clock display

ClockDigitalView

A view class that presents the digital clock display

ClockTools

A view class that presents the Start, Stop, and Reset buttons

ClockController

A controller class that handles button input

Figure 18-4 shows how our application's classes integrate into the core MVC structure we built earlier
in this chapter.

In Figure 18-4, note that ClockUpdate instances are info objects sent by the ClockModel to its views
(ClockAnalogView, ClockDigitalView, and ClockTools) at update time. The View interface specifies
operations for registering the model (ClockModel) and controller (ClockController), while the
Observer interface specifies the operation used by the model (ClockModel) to send updates to its
views (again, ClockAnalogView, ClockDigitalView, and ClockTools). The ClockAnalogView and
ClockDigitalView classes use null for their controller while the ClockTools class uses a ClockController

instance for its controller. Finally, Figure 18-4 does not show the Clock class, which creates the clock
using the ClockModel class and its views.

Figure 18-4. Clock application architecture

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We've already looked at the supporting classes and interfaces in the mvc and util packages. The
classes specific to the clock application are all stored in the package mvcclock. Let's look at them one
at a time.

18.3.1 The ClockModel Class

The ClockModel class extends Observable. It provides methods for setting the time and runs an
internal ticker that updates the time once per second. Whenever the time changes, the ClockModel
class uses notifyObservers() to broadcast the change to all registered views.

Here are the properties defined by the ClockModel class. Remember that the model class's properties
represent its current state.

hour

The current hour, from 0 (midnight) to 23 (11 p.m.)

minute

The current minute, from 0 to 59

second

The current second, from 0 to 59

http://lib.ommolketab.ir
http://lib.ommolketab.ir

isRunning

A Boolean indicating whether the clock's internal ticker is running or not

Here are the public methods of the ClockModel class. These methods are used by the ClockController
class and the Clock class to manipulate the clock's data:

setTime()

Sets the clock's hour, minute, and second, then notifies views if appropriate

start()

Starts the clock's internal ticker and notifies the views

stop()

Stops the clock's internal ticker and notifies the views

Notice that the ClockModel class does not define a reset() method, despite the fact that the clock's
user interface has a Reset button. Instead, the ClockController class defines a resetClock() method,
used to set the time to midnight. This functionality does not belong in the ClockModel class because it
is not a logical requirement of the clock's basic operation. That is, the clock provides a means of
setting the time, starting it, and stopping it-other classes can and should decide that "setting the
time to midnight" constitutes a so-called "reset," while setting the time to, say, 6 p.m. constitutes a
setToDinnerTime() operation. These value judgments should be layered on top of the clock's core
functionality, not incorporated into it.

Here are the private methods of the ClockModel class. These methods are used internally by the
ClockModel class to update the time and to validate data:

isValidHour()

Checks whether a number is a valid hour (i.e., an integer from 0 to 23)

isValidMinute()

Checks whether a number is a valid minute (i.e., is an integer from 0 to 59)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

isValidSecond()

Checks whether a number is a valid second (i.e., is an integer from 0 to 59)

tick()

Increments the second property by 1

The range-checking functions are properly implemented as private methods of the model class so
that all updates from all controllers use the same data validation. Thus, we minimize duplicate code,
standardize the notion of valid clock data, and simplify maintenance.

Note that although the clock class itself determines that, say, 25 is not a legal hour, it is up to the
controller classes to format the time into 24-hour format before sending change requests to the
model. Each controller must take responsibility for formatting the data according to the requirements
of the model. For example, if a view accepts text input, the controller is responsible for converting
the text string into a number before sending the time update to the model.

To register views and notify them when the time changes, the ClockModel class relies on its
superclass's methods: addObserver(), removeObserver(), and notifyObservers().

Example 18-5 shows the code for the ClockModel class. In particular, note the setTime() method's
use of setChanged() to indicate whether an update should be broadcast when the time is set. If
setTime() is called but the new time specified is the same as the existing time, then no update is
sent. An update is sent only if the time has actually changed. (In this case, the time must change by
at least one second. Implementing a version that issues updates more frequently, such as every
tenth of a second, is left as an exercise for the reader. Naturally, you wouldn't bother unless you
were implementing a digital display that displayed the fractional seconds or some other view that
relied on the greater resolution.) Updates take the form of a ClockUpdate object passed to each
view's update() method. The setChanged() method is inherited from the Observable class,
discussed in Chapter 16.

Example 18-5. The ClockModel class

import util.Observable;

import mvcclock.*;

/**

 * Represents the data of a clock (i.e., the model of the

 * Model-View-Controller triad).

 */

class mvcclock.ClockModel extends Observable {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // The current hour.

 private var hour:Number;

 // The current minute.

 private var minute:Number;

 // The current second.

 private var second:Number;

 // The interval identifier for the interval that

 // calls tick() once per second.

 private var tickInterval:Number;

 // Indicates whether the clock is running or not.

 private var isRunning:Boolean;

 /**

 * Constructor

 */

 public function ClockModel () {

 // By default, set the clock time to the current system time.

 var now:Date = new Date();

 setTime(now.getHours(), now.getMinutes(), now.getSeconds());

 }

 /**

 * Starts the clock ticking.

 */

 public function start ():Void {

 if (!isRunning) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 isRunning = true;

 tickInterval = setInterval(this, "tick", 1000);

 var infoObj:ClockUpdate = new ClockUpdate(hour, minute,

 second, isRunning);

 setChanged();

 notifyObservers(infoObj);

 }

 }

 /**

 * Stops the clock ticking.

 */

 public function stop ():Void {

 if (isRunning) {

 isRunning = false;

 clearInterval(tickInterval);

 var infoObj:ClockUpdate = new ClockUpdate(hour, minute,

 second, isRunning);

 setChanged();

 notifyObservers(infoObj);

 }

 }

 /**

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 * Sets the current time (i.e., the hour, minute, and second properties).

 * Notifies observers (views) of any change in time.

 *

 * @param h The new hour.

 * @param m The new minute.

 * @param s The new second.

 */

 public function setTime (h:Number, m:Number, s:Number):Void {

 if (h != null && h != hour && isValidHour(h)) {

 hour = h;

 setChanged();

 }

 if (m != null && m != minute && isValidMinute(m)) {

 minute = m;

 setChanged();

 }

 if (s != null && s != second && isValidSecond(s)) {

 second = s;

 setChanged();

 }

 // If the model has changed, notify views.

 if (hasChanged()) {

 var infoObj:ClockUpdate = new ClockUpdate(hour, minute,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 second, isRunning);

 // Push the changed data to the views.

 notifyObservers(infoObj);

 }

 }

 /**

 * Checks to see if a number is a valid hour

 * (i.e., an integer in the range 0 to 23).

 *

 * @param h The hour to check.

 */

 private function isValidHour (h:Number):Boolean {

 return (Math.floor(h) == h && h >= 0 && h <= 23);

 }

 /**

 * Checks to see if a number is a valid minute

 * (i.e., an integer in the range 0 to 59).

 *

 * @param m The minute to check.

 */

 private function isValidMinute (m:Number):Boolean {

 return (Math.floor(m) == m && m >= 0 && m <= 59);

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /**

 * Checks to see if a number is a valid second

 * (i.e., an integer in the range 0 to 59).

 *

 * @param s The second to check.

 */

 private function isValidSecond (s:Number):Boolean {

 return (Math.floor(s) == s && s >= 0 && s <= 59);

 }

 /**

 * Makes time pass by adding a second to the current time.

 */

 private function tick ():Void {

 // Get the current time.

 var h:Number = hour;

 var m:Number = minute;

 var s:Number = second;

 // Increment the current second, adjusting

 // the minute and hour if necessary.

 s += 1;

 if (s > 59) {

 s = 0;

 m += 1;

 if (m > 59) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 m = 0;

 h += 1;

 if (h > 23) {

 h = 0;

 }

 }

 }

 // Set the new time.

 setTime(h, m, s);

 }

}

Notice that our ClockModel class defines methods for setting the current time but does not define any
methods for retrieving it. That's because the clock's time is pushed to all views via a ClockUpdate
object; views do not need to query the state of the model in our example. However, we could just as
sensibly have required views to retrieve the new time from the model. Typically, the push system (in
this case, sending the time) is used if pulling information from the model (in this case, retrieving the
time) is too processor intensive. That limitation doesn't apply here, so both the push and pull systems
are appropriate.

18.3.2 The ClockUpdate Class

The ClockUpdate class is a simple data holder used to transfer the state of the ClockModel to views
when the time changes or the clock is started or stopped. It defines four properties-hour, minute,
second, and isRunning-which are accessed directly. To avoid distracting from the issues at hand,

we won't implement accessor methods such as getMinute() for these properties. The ClockUpdate
class is simply a data vessel, used like an associative array or a hash, so the direct property access is
arguably appropriate.

Example 18-6 shows the code for the ClockUpdate class.

Example 18-6. The ClockUpdate class

/**

 * An info object sent by the ClockModel class to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 * its views when an update occurs. Indicates the

 * time and whether or not the clock is running.

 */

class mvcclock.ClockUpdate {

 public var hour:Number;

 public var minute:Number;

 public var second:Number;

 public var isRunning:Boolean;

 public function ClockUpdate (h:Number, m:Number, s:Number, r:Boolean) {

 hour = h;

 minute = m;

 second = s;

 isRunning = r;

 }

}

18.3.3 The ClockAnalogView and ClockDigitalView Classes

The ClockAnalogView and ClockDigitalView classes extend AbstractView, which implements the
Observer and View interfaces. They are display-only views; that is, the user interface they create has
no inputs and therefore needs no controller. Accordingly, neither ClockAnalogView nor
ClockDigitalView overrides the AbstractView.defaultController() method. Both classes simply use
null as their controller, as returned by the AbstractView.defaultController() method. If you were to

make the clock hands on the analog display draggable, you would implement an appropriate
controller class to notify the model of the specified input obtained via the view's GUI. Likewise, if the
hours, minutes, and seconds of the digital clock were editable, you would implement an appropriate
controller for that view as well.

The ClockAnalogView class is responsible for rendering the clock as a traditional circle with moving
hands. The ClockDigitalView class is responsible for rendering the clock as a numeric display. Both
classes have the same basic structure, which includes the following two public methods:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

makeClock()

Creates the visual display of the clock at construction time

update()

Handles updates from the ClockModel by setting the appropriate time on screen

In addition to those two methods, the ClockDigitalView class defines two private utility
methods-formatTime12() and formatTime24()-for adjusting the format of the time to 12-hour or
24-hour display (the analog view always displays 12-hour time). Each view is responsible for
translating raw information provided by the model into some particular interface representation.
Hence, the time-formatting methods belong in the ClockDigitalView class, not in a hypothetical
controller for that class (whose job would be to process input) nor in the model class (whose job is to
manage raw data, not to transform that data for the needs of some particular rendering). That said,
formatting time is a particularly common operation that might be required throughout an application.
We might, therefore, have alternatively chosen to implement the time-formatting methods in a
general utility class, say DateFormat. Indeed, date- and time-formatting functionality is built directly
into many languages, but is not built into ActionScript.

The ClockDigitalView class creates its user interface entirely via code in the makeClock() method
(there are no author-time movie clips). The ClockAnalogView class, by contrast, creates its user
interface by attaching an instance of a movie clip symbol (ClockAnalogViewSymbol) from the Flash
document's Library. We won't cover the creation of that symbol in detail here except to say that it
contains a circle shape and three movie clips that represent the hands of the clock: hourHand_mc,
minuteHand_mc, and secondHand_mc. To see the ClockAnalogViewSymbol, download the sample files

from http://moock.org/eas2/examples. The analog clock is an excellent demonstration of Flash's
unique ability to combine hand-drawn graphics with OOP code. Readers of ActionScript for Flash MX:
The Definitive Guide may recognize some of the code in Example 18-7 from the analog clock
developed in Example 13-7 of that book, which is posted at http://moock.org/asdg/codedepot.
Recipe 10.8 in the ActionScript Cookbook, by Joey Lott (O'Reilly), also implements an analog clock
created entirely on-the-fly.

Example 18-7 shows the code for the ClockAnalogView class, which implements the analog display of
the time.

Example 18-7. The ClockAnalogView class

import util.*;

import mvcclock.*;

import mvc.*;

/**

http://moock.org/eas2/examples
http://moock.org/asdg/codedepot
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 * An analog clock view for the ClockModel class. This view has no user

 * inputs, so no controller is required.

 */

class mvcclock.ClockAnalogView extends AbstractView {

 // Contains an instance of ClockAnalogViewSymbol, which

 // depicts the clock on screen.

 private var clock_mc:MovieClip;

 /**

 * Constructor

 */

 public function ClockAnalogView (m:Observable, c:Controller,

 target:MovieClip, depth:Number,

 x:Number, y:Number) {

 // Invoke superconstructor, which sets up MVC relationships.

 // This view has no user inputs, so no controller is required.

 super(m, c);

 // Create UI.

 makeClock(target, depth, x, y);

 }

 /**

 * Creates the movie clip instance that will display the

 * time in analog format.

 *

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 * @param target The clip in which to create the movie clip.

 * @param depth The depth at which to create the movie clip.

 * @param x The movie clip's horizontal position in target.

 * @param y The movie clip's vertical position in target.

 */

 public function makeClock (target:MovieClip, depth:Number,

 x:Number, y:Number):Void {

 clock_mc = target.attachMovie("ClockAnalogViewSymbol",

 "analogClock_mc", depth);

 clock_mc._x = x;

 clock_mc._y = y;

 }

 /**

 * Updates the state of the on-screen analog clock.

 * Invoked automatically by ClockModel.notifyObservers().

 *

 * @param o The ClockModel object that is broadcasting an update.

 * @param infoObj A ClockUpdate instance describing the changes that

 * have occurred in ClockModel.

 */

 public function update (o:Observable, infoObj:Object):Void {

 // Cast the generic infoObj to the ClockUpdate datatype.

 var info:ClockUpdate = ClockUpdate(infoObj);

 // Display the new time.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 var dayPercent:Number = (info.hour>12 ? info.hour-12 : info.hour) / 12;

 var hourPercent:Number = info.minute/60;

 var minutePercent:Number = info.second/60;

 clock_mc.hourHand_mc._rotation = 360 * dayPercent

 + hourPercent * (360 / 12);

 clock_mc.minuteHand_mc._rotation = 360 * hourPercent;

 clock_mc.secondHand_mc._rotation = 360 * minutePercent;

 // Dim the display if the clock isn't running.

 if (info.isRunning) {

 clock_mc._alpha = 100;

 } else {

 clock_mc._alpha = 50;

 }

 }

}

Example 18-8 shows the code for the ClockDigitalView class, which implements the digital display of
the time. In ClockDigitalView, for the sake of contrast, we create the clock interface entirely in code.
Specifically, ClockDigitalView.makeClock() creates a text field in which we display the time. If
desired, we could also have made the earlier ClockAnalogView entirely in code instead of using the
authoring tool approach, in which we create the clock as a movie clip (ClockAnalogViewSymbol). Both
approaches are valid Flash development practices. You might choose to draw your interface manually
in the Flash authoring tool to save time (if the code equivalent would be complex) or to allow the
interface to be redesigned by a nonprogrammer.

Example 18-8. The ClockDigitalView class

import util.*;

import mvcclock.*;

import mvc.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

/**

 * A digital clock view for ClockModel. This view has no user

 * inputs, so no controller is required.

 */

class mvcclock.ClockDigitalView extends AbstractView {

 // The hour format.

 private var hourFormat:Number = 24;

 // The separator character in the clock display.

 private var separator:String = ":";

 // The text field in which to display the clock, created by makeClock().

 private var clock_txt:TextField;

 /**

 * Constructor

 */

 public function ClockDigitalView (m:Observable, c:Controller,

 hf:Number, sep:String, target:MovieClip,

 depth:Number, x:Number, y:Number) {

 // Invoke superconstructor, which sets up MVC relationships.

 super(m, c);

 // Make sure the hour format specified is legal. If it is, use it.

 if (hf == 12) {

 hourFormat = 12;

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // If a separator was provided, use it.

 if (sep != undefined) {

 separator = sep;

 }

 // Create UI.

 makeClock(target, depth, x, y);

 }

 /**

 * Creates the onscreen text field that will display the

 * time in digital format.

 *

 * @param target The clip in which to create the text field.

 * @param depth The depth at which to create the text field.

 * @param x The text field's horizontal position in target.

 * @param y The text field's vertical position in target.

 */

 public function makeClock (target:MovieClip, depth:Number,

 x:Number, y:Number):Void {

 // Make the text field.

 target.createTextField("clock_txt", depth, x, y, 0, 0);

 // Store a reference to the text field.

 clock_txt = target.clock_txt;

 // Assign text field characteristics.

 clock_txt.autoSize = "left";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 clock_txt.border = true;

 clock_txt.background = true;

 }

 /**

 * Updates the state of the on-screen digital clock.

 * Invoked automatically by ClockModel.

 *

 * @param o The ClockModel object that is broadcasting an update.

 * @param infoObj A ClockUpdate instance describing the changes that

 * have occurred in ClockModel.

 */

 public function update (o:Observable, infoObj:Object):Void {

 // Cast the generic infoObj to the ClockUpdate datatype.

 var info:ClockUpdate = ClockUpdate(infoObj);

 // Create a string representing the time in the appropriate format.

 var timeString:String = (hourFormat == 12)

 ?

 formatTime12(info.hour, info.minute, info.second)

 :

 formatTime24(info.hour, info.minute, info.second);

 // Display the new time in the clock text field.

 clock_txt.text = timeString;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Dim the color of the display if the clock isn't running.

 if (info.isRunning) {

 clock_txt.textColor = 0x000000;

 } else {

 clock_txt.textColor = 0x666666;

 }

 }

 /**

 * Returns a formatted 24-hour time string.

 *

 * @param h The hour, from 0 to 23.

 * @param m The minute, from 0 to 59.

 * @param s The second, from 0 to 59.

 */

 private function formatTime24 (h:Number, m:Number, s:Number):String {

 var timeString:String = "";

 // Format hours...

 if (h < 10) {

 timeString += "0";

 }

 timeString += h + separator;

 // Format minutes...

 if (m < 10) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 timeString += "0";

 }

 timeString += m + separator;

 // Format seconds...

 if (s < 10) {

 timeString += "0";

 }

 timeString += String(s);

 return timeString;

 }

 /**

 * Returns a formatted 12-hour time string (not including AM or PM).

 *

 * @param h The hour, from 0 to 23.

 * @param m The minute, from 0 to 59.

 * @param s The second, from 0 to 59.

 */

 private function formatTime12 (h:Number, m:Number, s:Number):String {

 var timeString:String = "";

 // Format hours...

 if (h == 0) {

 timeString += "12" + separator;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 } else if (h > 12) {

 timeString += (h - 12) + separator;

 } else {

 timeString += h + separator;

 }

 // Format minutes...

 if (m < 10) {

 timeString += "0";

 }

 timeString += m + separator;

 // Format seconds...

 if (s < 10) {

 timeString += "0";

 }

 timeString += String(s);

 return timeString;

 }

}

We've now seen two view classes that do not accept user input and therefore have no controller.
Next, we'll consider a view class, ClockTools, which accepts user input and shows how to process that
input with a controller.

18.3.4 The ClockTools Class

Like the ClockAnalogView and ClockDigitalView classes, the ClockTools class is a view for ClockModel,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

so it extends AbstractView. The ClockTools class creates the Start, Stop, and Reset buttons below the
analog and digital clock display, as shown in Figure 18-3. A .fla file that uses ClockTools must contain
the Flash MX 2004 Button component in its Library and have it exported for ActionScript (see
Chapter 12 for information on components).

Unlike ClockAnalogView and ClockDigitalView, the ClockTools view includes a functional controller to
process user input. The general structure of ClockTools follows the structure of ClockAnalogView and
ClockDigitalView-ClockTools has a makeTools() method that creates the user interface and an
update() method that makes changes to that interface based on ClockModel updates. However, the
makeTools() method does more than just render the user interface; it also creates the all-important
connection from that interface to the controller (and, indeed, creates the controller itself).

Because ClockTools has a functional controller, it also overrides the AbstractView.defaultController()
method. The ClockTools.defaultController() method returns an instance of ClockController, the
default controller for the ClockTools view.

Example 18-9 shows the code for the ClockTools class. Read it through, then we'll study the
important makeTools() and update() methods in detail.

Example 18-9. The ClockTools class

import util.*;

import mvcclock.*;

import mvc.*;

import mx.controls.Button;

/**

 * Creates a user interface that can control a ClockModel.

 */

class mvcclock.ClockTools extends AbstractView {

 private var startBtn:Button;

 private var stopBtn:Button;

 private var resetBtn:Button;

 /**

 * Constructor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 */

 public function ClockTools (m:Observable, c:Controller,

 target:MovieClip, depth:Number,

 x:Number, y:Number) {

 // Invoke superconstructor, which sets up MVC relationships.

 super(m, c);

 // Create UI.

 makeTools(target, depth, x, y);

 }

 /**

 * Returns the default controller for this view.

 */

 public function defaultController (model:Observable):Controller {

 return new ClockController(model);

 }

 /**

 * Creates a movie clip instance to hold the Start, Stop,

 * and Reset buttons and also creates those buttons.

 *

 * @param target The clip in which to create the tools_mc clip.

 * @param depth The depth at which to create the tools_mc clip.

 * @param x The tools clip's horizontal position in target.

 * @param y The tools clip's vertical position in target.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 */

 public function makeTools (target:MovieClip, depth:Number,

 x:Number, y:Number):Void {

 // Create a container movie clip.

 var tools_mc:MovieClip = target.createEmptyMovieClip("tools", depth);

 tools_mc._x = x;

 tools_mc._y = y;

 // Create UI buttons in the container clip.

 startBtn = tools_mc.createClassObject(Button, "start", 0);

 startBtn.label = "Start";

 startBtn.enabled = false;

 startBtn.addEventListener("click", getController());

 stopBtn = tools_mc.createClassObject(Button, "stop", 1);

 stopBtn.label = "Stop";

 stopBtn.enabled = false;

 stopBtn.move(startBtn.width + 5, startBtn.y);

 stopBtn.addEventListener("click", getController());

 resetBtn = tools_mc.createClassObject(Button, "reset", 2);

 resetBtn.label = "Reset";

 resetBtn.move(stopBtn.x + stopBtn.width + 5, startBtn.y);

 resetBtn.addEventListener("click", getController());

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /**

 * Updates the state of the user interface.

 * Invoked automatically by ClockModel.

 *

 * @param o The ClockModel object that is broadcasting an update.

 * @param infoObj A ClockUpdate instance describing the changes that

 * have occurred in ClockModel.

 */

 public function update (o:Observable, infoObj:Object):Void {

 // Cast the generic infoObj to the ClockUpdate datatype.

 var info:ClockUpdate = ClockUpdate(infoObj);

 // Enable the Start button if the clock is stopped, or

 // enable the Stop button if the clock is running.

 if (info.isRunning) {

 stopBtn.enabled = true;

 startBtn.enabled = false;

 } else {

 stopBtn.enabled = false;

 startBtn.enabled = true;

 }

 }

}

The ClockTools.makeTools() method creates three Button component instances: one that starts the
clock, one that stops it, and one that resets it. The click event of each Button instance is handled by
the ClockTools controller, ClockController. Let's examine one button, Start, to see how it is wired to
the ClockController.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

First, we create an empty container movie clip, tools_mc, in which to store all three buttons. The
tools_mc clip is attached to target, a movie clip instance specified when the ClockTools view is

instantiated.

var tools_mc:MovieClip = target.createEmptyMovieClip("tools", depth);

Next, we create the Start button instance inside tools_mc, using createClassObject() (which we
studied in Chapter 12). We store the Start button instance in the property startBtn so that we can

access it later when it's time to update the interface. The instance name of the button, "start", will be
used later in the ClockController class to uniquely identify the button:

startBtn = tools_mc.createClassObject(Button, "start", 0);

Now we add the text on the button (i.e., its label) and disable the button. By default, the clock will be
running, so the Start button should be disabled at the outset:

startBtn.label = "Start";

startBtn.enabled = false;

Finally, we make the crucial connection between the view and the controller by specifying the
controller as the listener object for the Start button's click event. This implies (indeed, demands) that
the controller defines a method named click() which will be invoked when the Start button is clicked.

startBtn.addEventListener("click", getController());

Notice that the makeTools() method does not refer to the ClockController class directly. It retrieves
the controller instance via getController(). If a controller already exists, it is returned; if not, an
instance of the default controller is created and returned. By specifying and accessing the controller
indirectly via getController(), we maintain the loose coupling between the view and the controller,
giving us the flexibility to change the controller at runtime (or to rewrite a new implementation in the
future with little disturbance of existing code). For example, at any point in the program, we could
use setController(SomeOtherController) to completely replace the current controller, which in

turn would change the interface's response to user input. If, on the other hand, we had hardcoded
the controller reference, as follows:

startBtn.addEventListener("click", new ClockController());

we would not be able to change the controller at runtime.

The ClockTools.update() method, unlike ClockAnalogView.update() and ClockDigitalView.update(),
does not simply display the current time. Instead, it disables the Start or Stop button depending on
whether the clock is running. If the clock is running, only the Stop and Reset buttons are enabled. If
the clock is stopped, only the Start and Reset buttons are enabled:

if (info.isRunning) {

 stopBtn.enabled = true;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 startBtn.enabled = false;

} else {

 stopBtn.enabled = false;

 startBtn.enabled = true;

}

It's a common misconception that a view is always a literal representation of the model's data. While
ClockAnalogView and ClockDigitalView create literal representations of the ClockModel, the
ClockTools view does not. In general, then, a view depicts a user interface whose display depends on
the state of the model but isn't necessarily a direct visualization of the model. Here, the button states
depend on whether the clock is running, not on the current time. That is, this view depicts the
model's isRunning property, which is equally as valid as the other views depicting the hour, minute,
and second properties.

Now let's move on to the ClockController class, which handles input for ClockTools. Again, the
ClockAnalogView and ClockDigitalView views use the default controller created by AbstractView, but
our ClockTools class creates its own controller.

18.3.5 The ClockController Class

The ClockController class extends AbstractController. It provides event handling for the user interface
created by the ClockTools view.

To change the state of the ClockModel, the ClockController class defines the following methods:

startClock()
stopClock()
resetClock()
setTime()
setHour()
setMinute()
setSecond()

Notice that many of the preceding methods are wrappers over methods in the ClockModel class.
Some of them act as direct pass-through methods (e.g., startClock() and stopClock()), whereas
others add some convenience functionality (e.g., the ability to independently set a single aspect of
the time, such as the hour, minute, or second).

But the real duty of the ClockController class is fulfilled by its click() method, which handles events
from the buttons created by the ClockTools class. Before we look at the full class listing for
ClockController, let's take a detailed look at the click() method:

public function click (e:Object):Void {

 switch (e.target._name) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 case "start":

 startClock();

 break;

 case "stop":

 stopClock();

 break;

 case "reset":

 resetClock();

 break;

 }

}

The click() method is set up like any component-event-handling method. It accepts a single
argument, e, which contains details about the event as well as a very important reference back to the
component that generated the event. In the case of the click() method, the property e.target gives

us a reference back to the Button component that generated the click() event. The property
e.target._name tells us the instance name of that button-either "start", "stop", or "reset". (Recall

that we set each button's instance name when we created it in the ClockTools.makeTools() method.)
Depending on that instance name, we invoke the appropriate method, either startClock(), stopClock(
) or resetClock().

Note that the click() handler is implemented in the controller rather than the view. Some alternative
MVC variations implement event handlers in the view and then pass input to the controller, but in our
implementation, we emphasize the separation between the view's "interface rendering" role and the
controller's "input processing" role. Notice also that a single view and a single controller implement
the event handling for all three buttons. That is, the click() handler distinguishes between buttons
using the event object, e, passed to it. In this case, it would be overkill to implement separate views

and controllers for each of the three buttons, but it wouldn't be insane to do so. MVC can be as
nested and granular as the program needs it to be. For example, in a ComboBox component (i.e., a
pull-down menu), each individual item in the ComboBox might implement MVC while the entire
ComboBox also implements MVC.

Finally, notice that the view is a listener in the model's list of registered listeners (subscribing to the
update event) and the controller is a listener in the view's list of registered listeners (subscribing to
the click event). In our example, the model doesn't subscribe to any events. Its methods are invoked
manually by ClockController and internally by setInterval().

As an example, here's the event sequence for the Reset button:

User clicks on the Reset button, generating a click event.1.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

ClockController.click() receives and interprets the event, eventually calling ClockModel.setTime(
) with zeros for the hour, minute, and second.

2.

ClockModel receives the command from the controller and changes the time accordingly.3.

The ClockModel.notifyObservers() method broadcasts an update event (containing a
ClockUpdate info object) to all registered views.

4.

All three views-ClockAnalogView, ClockDigitalView, and ClockTools-receive the update event
and refresh their user interface elements accordingly.

ClockAnalogView resets both hands to 12 o'clock.a.

ClockDigitalView resets the digital display to "00:00:00".b.

ClockTools makes sure all its buttons are correct (in this case, the Stop and Start button
states would depend on whether the clock was running when it was reset).

c.

5.

The sequence would be similar for the Start and Stop buttons, except that the views would update
differently according to the ClockUpdate object representing the model's state. Notice that none of
the views updates its display until notified by the model. But it all happens so quickly that the analog
and digital displays appear to reset instantly when the Reset button is clicked.

Now let's look at the click() method in the context of the complete ClockController class, shown in
Example 18-10.

Example 18-10. The ClockController class

import mvcclock.ClockModel;

import mvc.*;

import util.*;

/**

 * Makes changes to ClockModel's data based on user input.

 * Provides general services that any view might find handy.

 */

class mvcclock.ClockController extends AbstractController {

 /**

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 * Constructor

 *

 * @param cm The model to modify.

 */

 public function ClockController (cm:Observable) {

 super(cm);

 }

 /**

 * Starts the clock ticking.

 */

 public function startClock ():Void {

 ClockModel(getModel()).start();

 }

 /**

 * Stops the clock ticking.

 */

 public function stopClock ():Void {

 ClockModel(getModel()).stop();

 }

 /**

 * Resets the clock's time to 12 midnight (0 hours).

 */

 public function resetClock ():Void {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 setTime(0, 0, 0);

 }

 /**

 * Changes the clock's time.

 *

 * @param h The new hour, from 0 to 23.

 * @param m The new minute, from o to 59.

 * @param s The new second, from 0 to 59.

 */

 public function setTime (h:Number, m:Number, s:Number):Void {

 ClockModel(getModel()).setTime(h, m, s);

 }

 // As these next three methods show, the controller can provide

 // convenience methods to change data in the model.

 /**

 * Sets just the clock's hour.

 *

 * @param h The new hour.

 */

 public function setHour (h:Number):Void {

 ClockModel(getModel()).setTime(h, null, null);

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /**

 * Sets just the clock's minute.

 *

 * @param m The new minute.

 */

 public function setMinute (m:Number):Void {

 ClockModel(getModel()).setTime(null, m, null);

 }

 /**

 * Sets just the clock's second.

 *

 * @param s The new second.

 */

 public function setSecond (s:Number):Void {

 ClockModel(getModel()).setTime(null, null, s);

 }

 /**

 * Handles events from the Start, Stop, and Reset buttons

 * of the ClockTools view.

 */

 public function click (e:Object):Void {

 switch (e.target._name) {

 case "start":

 startClock();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 break;

 case "stop":

 stopClock();

 break;

 case "reset":

 resetClock();

 break;

 }

 }

}

The ClockController class is fairly generic. It could, in theory, be extended to provide event handling
for other clock-related classes as well. For example, if the ClockAnalogView class allowed its hands to
be dragged, methods could be added to ClockController to handle the clock-hand drag events. In that
case, each view would have its own instance of ClockController. Alternatively, separate controller
classes could be created to handle the drag events. Or, the ClockTools class and the ClockAnalogView
class could use different controllers that inherit from a single ClockController superclass, which would
define a set of methods common to both classes.

18.3.6 Putting It All Together: The Clock Class

The pieces of our MVC clock are now complete. All that's left to do is assemble them into a functional
application. The final assembly of our application occurs in the Clock class, our primary class that
performs the following tasks:

Creates the ClockModel instance

Creates the clock views (ClockAnalogView, ClockDigitalView, ClockTools)

Registers the clock views to receive updates from the ClockModel

Optionally sets the clock's time

Starts the clock ticking

All the preceding tasks occur in the Clock class's constructor function. However, because the clock
needs to run as a standalone application, the Clock class also defines a main() method that starts
the clock application. For information on creating and using a main() method as an application entry
point, see Chapter 11.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 18-11 shows the code for the Clock class.

Example 18-11. The Clock class

import mvcclock.*

/**

 * An example Model-View-Controller (MVC) clock application.

 */

class mvcclock.Clock {

 // The clock data (i.e., the model).

 private var clock_model:ClockModel;

 // Two different displays of the clock's data (i.e., views).

 private var clock_analogview:ClockAnalogView;

 private var clock_digitalview:ClockDigitalView;

 // A toolbar for controlling the clock (also a view).

 private var clock_tools:ClockTools;

 /**

 * Clock constructor

 *

 * @param target The movie clip to which the digital and

 * analog views will be attached.

 * @param h The initial hour, 0 to 23, at which to set the clock.

 * @param m The initial minute, 0 to 59, at which to set the clock.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 * @param s The initial second, 0 to 59, at which to set the clock.

 */

 public function Clock (target:MovieClip, h:Number, m:Number, s:Number) {

 // Create the data model.

 clock_model = new ClockModel();

 // Create the digital clock view, which uses a default controller.

 clock_digitalview = new ClockDigitalView(clock_model, undefined,

 24, ":", target, 0, 253, 265);

 clock_model.addObserver(clock_digitalview);

 // Create the analog clock view, which uses a default controller.

 clock_analogview = new ClockAnalogView(clock_model, undefined,

 target, 1, 275, 200);

 clock_model.addObserver(clock_analogview);

 // Create the clock tools view, which creates its own controller.

 clock_tools = new ClockTools(clock_model, undefined, target,

 2, 120, 300);

 clock_model.addObserver(clock_tools);

 // Set the time.

 clock_model.setTime(h, m, s);

 // Start the clock ticking.

 clock_model.start();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 /**

 * System entry point. Starts the clock application running.

 */

 public static function main (target:MovieClip, h:Number,

 m:Number, s:Number) {

 var clock:Clock = new Clock(target, h, m, s);

 }

}

To start our clock application in motion, we invoke Clock.main() on a frame of a .fla file (presumably
the frame following any preloader). For example:

// Import the package containing the Clock class.

import mvcclock.Clock;

// Attach the clock to someClip. The time defaults to the system time.

Clock.main(someClip);

As mentioned earlier, the .fla file's Library must contain a movie clip symbol named
ClockAnalogViewSymbol, and it must contain the Button UI component. (To add the Button
component to the Library, drag an instance of it from the Components panel to the Stage, and then
delete the instance from the Stage.)

In the preceding example, if we had chosen to set the time of the clock to 3:40:25 a.m., we'd have
used:

Clock.main(someClip, 3, 40, 25);

In either case, a clip referenced by the variable or instance name "someClip" must exist on the
timeline.

To create a clock set to 3:40:25 p.m. and attach it to the current timeline, we can use:

Clock.main(this, 15, 40, 25);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Alternatively, we could create an instance of the Clock class directly (skipping the main() method)
like this:

var c:Clock = new Clock(this, 15, 40, 25);

We'd need to use that approach when creating a clock as part of a larger application. The main()
method approach simply lets us use the clock as a standalone application.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

18.4 Further Exploration

Because our clock is an MVC application, it is incredibly flexible. New interfaces, input responses, and
functionality can easily be added to the clock. If you're keen to experiment with MVC in ActionScript,
try the following exercises:

Create a view that can display a different time zone.

Create a new view that displays a creative representation of the hours, minutes, and seconds of
the clock-perhaps use shapes on screen to represent the time: circles for the hours, triangles
for the minutes, and squares for the seconds.

Create a new view that makes a ticking sound every second and, at the top of every hour,
gongs to indicate the current time.

Add components to the ClockTools view that let the user set the current time.

Change the ClockModel so that it updates by polling the computer's system time instead of by
counting milliseconds with setInterval(). Hint: you'll need the Date() class.

Change the clock so it can display hundredths of a second, like a stopwatch.

Let the user set the time by dragging the analog hands or editing the digital display.

If you'd like to continue reading about the MVC design pattern, see the following online articles:

Steve Burbeck's canonical Applications Programming in Smalltalk-80(TM): How to use Model-View-
Controller (MVC)

http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html

John Hunt's You've got the model-view-controller (excellent article with complete example source in
Java)

http://www.jaydeetechnology.co.uk/planetjava/tutorials/swing/Model-View-Controller.PDF

Richard Baldwin's Implementing The Model-View-Controller Paradigm using Observer and Observable

http://www.dickbaldwin.com/java/Java200.htm

http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
http://www.jaydeetechnology.co.uk/planetjava/tutorials/swing/Model-View-Controller.PDF
http://www.dickbaldwin.com/java/Java200.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sun's Java BluePrints: Model-View-Controller

http://java.sun.com/blueprints/patterns/MVC-detailed.html

In the next (and final) chapter, we'll continue our coverage of interclass update mechanisms by
studying the delegation event model.

 < Day Day Up >

http://java.sun.com/blueprints/patterns/MVC-detailed.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Chapter 19. The Delegation Event Model
[In the delegation event model,] an event is propagated from a "Source" object to a "Listener"
object by invoking a method on the listener and passing in the instance of the event subclass
which defines the event type generated.

-from Sun's Java AWT: Delegation Event Model
(http://java.sun.com/j2se/1.4.1/docs/guide/awt/1.3/designspec/events.html)

In Chapter 16, we used the Observer pattern to structure a group of objects so that when one
changes state, the others are automatically notified. As we learned in Chapter 16, the Observer
pattern is intentionally generic, emphasizing loose coupling between the object that changes (the
subject) and the objects being notified of the change (the observers). In this chapter, we'll apply the
concepts of the Observer pattern to a more specific situation: implementing events for a class. Our
event implementation will follow Java's delegation event model, a general design for event
broadcasting.

The delegation event model framework we'll develop in this chapter can be used to implement event
broadcasting for any class. For example, a Chat class might use it to implement onChatMessage() or
onUserNameChanged() events. An interactive WorldMap class might likewise implement
onCountryClick(), onCountryRollover(), and onCountryRollout() events. Or a ChessGame class
might implement onCheckMate(), onPieceTaken(), and onMove() events. In each case, the
delegation event model provides a basic structure for the event source (Chat, WorldMap, and
ChessGame) and the event listeners (objects that register to receive events from an event source).

As usual, the code discussed in this chapter is available at http://moock.org/eas2/examples.

 < Day Day Up >

http://java.sun.com/j2se/1.4.1/docs/guide/awt/1.3/designspec/events.html
http://moock.org/eas2/examples
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

19.1 Structure and Participants

The delegation event model has three main participants:

Event source

An object that notifies other objects of some specific occurrence (i.e., some event)

Event listeners

The objects that are notified by the event source when an event occurs

Event object

An object that describes the nature of the event

An event is any predetermined occurrence that the event source considers significant enough to tell
other objects about-anything from the clicking of the mouse to the ending of a game to the
submission of an order form. To notify an event listener of an event, the event source invokes an
agreed-upon method on it. The event object is passed to the agreed-upon method by the event
source, giving the event listener access to information about the event.

In a minimal delegation event model implementation, the event source, event listeners, and event
object participants break down into the classes and interfaces described in the following sections.

19.1.1 The Event Source

The event source includes the following classes:

Event source class

The class whose instances broadcast events to event listeners (the class can have any name)

EventListenerList

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A utility class used by the event source to manage event listeners

The EventListenerList class resides in the event package, but the event source class can reside in any
package. The event source class has the following responsibilities:

Register and unregister event listener objects

Broadcast events to event listeners (by invoking agreed-upon methods on them)

Pass an event description (in the form of an event object) to event listeners at event time

For example, earlier we mentioned a hypothetical Chat class with two events, onChatMessage() and
onUserNameChanged(). As an event source, instances of the Chat class would manage objects
interested in receiving those events. At event time, a Chat class instance would invoke either
onChatMessage() or onUserNameChanged() (as appropriate) on all registered listeners. In the
former case, the Chat instance might send the chat message text using the messageText property of

the event object. In the latter, it would send, perhaps, the old username and the new username
using the oldUserName and newUserName properties of the event object.

19.1.2 The Event Object

The event object includes the following classes:

EventObject

A foundation class that provides basic services for all event objects

A subclass of EventObject

Describes a specific event

The EventObject class resides in the event package (along with the EventListenerList class), but the
EventObject subclass can reside in any package. The event object describes an event. That is, the
object stores information about the event in its properties, which it makes accessible either directly
or via accessor methods. The event object also provides event listeners with a reference to the event
source.

In our Chat class example, the EventObject subclass might be called ChatEvent. It would define the
following properties: messageText, messageSender, oldUserName, and newUserName.

19.1.3 The Event Listener

The event listener includes (at least) two interfaces and one class:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

EventListener

A marker interface that all event listener interfaces must extend (a marker interface is simply
an empty interface that does not define any methods and is used for the sake of semantics
only; see Chapter 8)

EventListener subinterface

A subinterface that catalogs the event source's events

The event listener class

A class that implements the EventListener subinterface

The EventListener interface resides in the event package (along with the EventObject and
EventListenerList classes), but the EventListener subinterface and class can reside in any package.

The event listener class defines the methods that are invoked by the event source when events
occur. The EventListener subinterface specifies the set of event methods that must be implemented
by every event listener class. At event time, the event source invokes one of those methods on each
listener object; each listener then has the opportunity to respond in some application-specific way.

In our ongoing hypothetical Chat example, the EventListener interface might look like this:

import event.EventListener;

interface ChatListener extends EventListener {

 public function onChatMessage (e:ChatEvent):Void;

 public function onUserNameChanged (e:ChatEvent):Void;

}

Notice that the event object passed to each event method is a ChatEvent instance.

One of the event listener classes in our Chat example might be ChatGUI, a class responsible for
displaying the chat interface on screen. The ChatGUI class would implement both onChatMessage()
and onUserNameChanged(). Here's a skeletal example of what the ChatGUI class might look like:

class ChatGUI implements ChatListener {

 // Properties and methods used to render the interface not shown.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Constructor also not shown.

 public function onChatMessage (e:ChatEvent):Void {

 displayMessage(e.messageSender, e.messageText);

 }

 public function onUserNameChanged (e:ChatEvent):Void {

 updateUserList(e.oldUserName, e.newUserName);

 }

}

19.1.4 Are Observer and Delegation Event Model Equivalent?

Structurally, the delegation event model has much in common with the Observer pattern. The
Observer pattern's two basic participants-the subject class and the observer classes-correspond to
the delegation event model's event source class, which broadcasts events, and event listener classes,
which receive event notifications. But are the two designs the same?

Not exactly. The delegation event model is designed to broadcast specific, known events rather than
generic updates. In Observer, the subject broadcasts updates to observers by invoking a generic
update() method. But in the delegation event model, the event source broadcasts a specific type of
event by invoking a custom method on its listeners. Listeners receiving the event must implement an
interface that defines the method invoked by the event source. Furthermore, in the delegation event
model, any class can broadcast events; the event source need not be a subclass of some base event-
broadcasting class, such as Observable. The info object (which is optional in the Observer pattern) is
formally required by the delegation event model, and its identity is known to both the event source
and the event listeners. Finally, in Observer, the subject should broadcast an update only in response
to a state change. Events, by contrast, can be broadcast for any reason deemed appropriate by the
event source.

Generally speaking, the Observer pattern works well as an internal update mechanism within a
discrete system, such as maintaining the state of a single toggle button or a tile on a chessboard. In
the preceding chapter, we saw Observer used effectively within the MVC pattern. Observer worked
perfectly as a means of maintaining the internal state of our clock.

By contrast, the delegation event model is typically appropriate when the granularity of events
matters (i.e., when events should correspond to individual methods rather than a single update()
method). Event granularity is desirable for event sources that have a wide variety of unknown event
listeners, as is often the case for publicly distributed components. For example, a SliderBar
component might use the delegation event model to broadcast onChanged(), onDragged(), and
onReleased() events to the world, but internally, it might maintain its own visual appearance using
Observer as part of MVC.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

19.2 The Flow of Logic

Figure 19-1 shows the structure and logic flow of the delegation event model in diagrammatic form.
The steps shown in the figure are as follows:

An instance of the event source (EventSourceClass) is created.

The event source creates and stores an instance of EventListenerList.a.

An instance of the event listener (EventListenerClass) is created and registers to receive
events from the event source.

b.

The event listener is stored by the event source's EventListenerList.c.

An event occurs and is broadcast by the event source as follows:d.

The event source creates an event object (EventObject) instance describing the event.e.

The event source invokes the appropriate method (onEventName()) on all registered
event listeners, passing along the event object that describes the event.

f.

1.

Each event listener processes the event in its own way, using the event object to determine how
to respond to the event.

2.

In Figure 19-1, italic type indicates the part of a name that is customized per implementation. The
names used reflect the formal convention for the delegation event model. The parameter, l, passed

to addEventTypeListener() and removeEventTypeListener() in Figure 19-1 is the listener to be
added or removed.

Figure 19-1. Logic flow in the delegation event model

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Later, in Figure 19-2, we'll compare the abstract roles shown in Figure 19-1 with real examples.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

19.3 Core Implementation

To provide a foundation for delegation event model implementations, we'll create the event package,
which contains two classes and an interface, as we saw earlier:

EventListenerList

A utility class used by the event source to manage event listeners

EventObject

A foundation class that provides basic services for all event objects

EventListener

A marker interface that all event listener interfaces must extend

Let's see how those items look in real code.

19.3.1 The EventListenerList Class

The EventListenerList class stores EventListener objects in an array and defines three methods to
manage those objects:

addObj()

Places a new object in the array (if it isn't already in the array)

removeObj()

Removes an object from the array

getListeners()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Returns a copy of the array (used by the event source during event broadcast)

Recall our earlier Chat example, in which the event source was the Chat class. In that example, an
instance of the Chat class would create an EventListenerList instance to contain listener objects that
implement the ChatListener interface. At event time, the Chat instance would invoke the appropriate
event method on all objects in the EventListenerList.

Example 19-1 shows the code for the EventListenerList class.

Example 19-1. The EventListenerList class

import event.*;

/**

 * Manages a list of objects registered to receive events (i.e., instances

 * of a class that implements EventListener). This class is used by an event

 * source to store its listeners.

 */

class event.EventListenerList {

 // The listener objects.

 private var listeners:Array;

 /**

 * Constructor

 */

 public function EventListenerList () {

 // Create a new array in which to store listeners.

 listeners = new Array();

 }

 /**

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 * Adds a listener to the list.

 *

 * @param l The listener to add. Must implement EventListener.

 */

 public function addObj (l:EventListener):Boolean {

 // Search for the specified listener.

 var len:Number = listeners.length;

 for (var i:Number = len; --i >= 0;) {

 if (listeners[i] == l) {

 return false;

 }

 }

 // The new listener is not already in the list, so add it.

 listeners.push(l);

 return true;

 }

 /**

 * Removes a listener from the list.

 *

 * @param l The listener to remove. Must implement EventListener.

 */

 public function removeObj (l:EventListener):Boolean {

 // Search for the specified listener.

 var len:Number = listeners.length;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 for (var i = len; --i >= 0;) {

 if (listeners[i] == l) {

 // We found the listener, so remove it.

 listeners.splice(i, 1);

 // Quit looking.

 return true;

 }

 }

 return false;

 }

 /**

 * Returns the complete list of listeners, used during event notification.

 */

 public function getListeners ():Array {

 // Return a copy of the list, not the list itself.

 return listeners.slice(0);

 }

}

In addition to managing event listeners in an EventListenerList instance, the event source must
broadcast an event description to its listeners at event time. The description takes the form of an
EventObject subclass. Let's create the EventObject class next.

19.3.2 The EventObject Class

The EventObject class is the parent of all classes that describe an event. It provides a reference to its
event source, which lets event listeners retrieve data from the event source or perform actions on it.
Subclasses of EventObject define properties that describe an event and often provide methods to
access those properties.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The EventObject class defines a single method, getSource(), which returns a reference to the event
source that created the current EventObject instance.

The event source reference is supplied to the EventObject via its constructor. As we described earlier,
our chat application's EventObject subclass would be ChatEvent, which would define the properties:
messageText, messageSender, oldUserName, and newUserName.

Example 19-2 shows the code for the EventObject class.

Example 19-2. The EventObject class

/**

 * The base class for an object describing an event.

 * EventObject instances are passed to event methods defined

 * by classes that implement EventListener.

 * Each kind of event should be represented by an EventObject subclass.

 *

 * Each EventObject instance stores a reference to its event source,

 * which is the object that generated the event.

 */

class event.EventObject {

 // The source of the event.

 private var source:Object;

 /**

 * Constructor

 *

 * @param src The source of the event.

 */

 public function EventObject (src:Object) {

 source = src;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 /**

 * Returns the source of the event.

 */

 public function getSource ():Object {

 return source;

 }

}

In order to receive an event notice (and with it, an EventObject instance), an event listener object
must be an instance of a class that implements the appropriate event listener interface. The event
source class determines which interface its event listeners must implement. All specific event listener
interfaces are subclasses of the generic EventListener interface, described next.

19.3.3 The EventListener Interface

The EventListener interface is a so-called marker interface (as explained in Chapter 8). It simply tags
a class as being part of the delegation event model structure. Each implementation of the delegation
event model must supply an EventListener subinterface listing all methods that can be triggered by
the event source. Listener classes wishing to register to receive events from a particular event source
must implement that source's corresponding EventListener subinterface. For example, suppose the
class OrderForm is an event source and the class FormValidator is an event listener. In order to
receive events from OrderForm, the FormValidator class would have to implement, say,
FormListener. The FormListener interface would extend EventListener and define the OrderForm's
events-perhaps onFormSubmit() and onFormReset().

Example 19-3 shows the code for the EventListener interface.

Example 19-3. The EventListener interface

/**

 * This is a marker interface that marks a class as an event

 * listener. All event listener interfaces should extend this interface.

 */

interface event.EventListener { }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

19.4 NightSky: A Delegation Event Model Example

Now that we have established a foundation for delegation event model implementations, let's use it in
a real example: a starry night sky with animated shooting stars. The code discussed in this section is
available at http://moock.org/eas2/examples. This example breaks from earlier examples in this
book, which focused primarily on application development. Here, we see how OOP and design
patterns can be applied to motion graphics as well as application development. Of course, a random
event generator is also perfect for video games, which make heavy use of OOP.

19.4.1 The Event Source

The event source for our example is Randomizer, a class that triggers an event named
onRandomAction() at random intervals. Every n seconds, the onRandomAction() event has a user-
defined chance of occurring. For example, a specific Randomizer instance might, every 5 seconds,
have a 1-in-20 chance of triggering onRandomAction().

The onRandomAction() event typically activates some random behavior in Randomizer's listeners,
such as the blinking of a cartoon character's eyes, the spawning of a random monster in a game, or,
as in our case, the appearance of a shooting star animation in a night sky. The Randomizer class is a
generally handy utility, so we store it in the package util.

19.4.2 The EventListener Subinterface

The EventListener subinterface in our example is RandomizerListener. The Randomizer class
broadcasts only a single event, so the RandomizerListener interface defines only a single
method-onRandomAction(). Classes wishing to receive Randomizer events must implement
RandomizerListener and define an onRandomAction() method. The RandomizerListener interface
resides in the package util, along with the Randomizer class.

19.4.3 The EventObject Subclass

Each event broadcast by Randomizer is described by a RandomizerEvent instance (RandomizerEvent
is an EventObject subclass). The RandomizerEvent class provides a single method, getTimeSinceLast(
), which reports the elapsed time since the previous onRandomAction() event was generated. The
RandomizerEvent class resides in the package util, along with the Randomizer class and
RandomizerListener interface.

19.4.4 The Event Listener Class

http://moock.org/eas2/examples
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Our night sky application's event listener class is NightSky. It implements the RandomizerListener
interface and defines an onRandomAction() method. When NightSky is constructed, it creates a sky
background. Each time Randomizer invokes onRandomAction() on NightSky, the NightSky class
creates a shooting star animation over the sky background.

19.4.5 The Overall Structure

Figure 19-2 shows the structure of the night sky application. Compare Figure 19-2 with the generic
delegation event model structure shown earlier in Figure 19-1. Specifically, Randomizer is our
EventSourceClass, RandomizerListener is our EventTypeListener, RandomizerEvent is our
EventTypeEvent, and NightSky is our EventListenerClass. The parameter, l, passed to

addRandomizerListener() and removeRandomizerListener() in Figure 19-2 is the listener to be
added or removed.

Figure 19-2. Night sky application structure

Now let's take a closer look at the code in the night sky application.

19.4.6 Randomizer, RandomizerListener, and RandomizerEvent

The Randomizer and RandomizerEvent classes and the RandomizerListener interface work together
to provide event-broadcast services for the Randomizer class. Conceptually, every delegation event
model implementation will have the same three participants-a class that generates events
(Randomizer), a class that describes those events (RandomizerEvent), and an interface that states
the events (RandomizerListener). Let's work through the code for these participants in reverse order,
starting with RandomizerListener.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The RandomizerListener interface and its single method, onRandomAction(), are shown in Example
19-4.

Example 19-4. The RandomizerListener interface

import event.*;

import util.*;

/**

 * Lists the methods that must be implemented by

 * an object that wants to be notified of Randomizer events.

 */

interface util.RandomizerListener extends EventListener {

 /**

 * Triggered when a random event has occurred (according to the

 * odds and interval set for the Randomizer).

 *

 * @param e A RandomizerEvent instance.

 */

 public function onRandomAction (e:RandomizerEvent):Void;

}

The onRandomAction() method defines a single parameter, e, of type RandomizerEvent. By

restricting the type of event object that can be passed to onRandomAction(), we guarantee the
validity of the event system: if the event source passes the wrong kind of object to the
onRandomAction() method, the compiler generates an error. Or, if an event-listening class
implements onRandomAction() but neglects to define a RandomizerEvent parameter, the compiler
generates an error. Static typing ensures that the explicit contract between the event source and its
event listeners is upheld.

Example 19-5 shows the code for the RandomizerEvent class. Event objects are simple in nature,
acting merely as data-storage vessels used to transfer information from the event source to event
listeners. In the case of RandomizerEvent, the information transferred is the time since the last event
occurred.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 19-5. The RandomizerEvent class

import event.*;

import util.*;

/**

 * An event object describing a Randomizer event.

 */

class util.RandomizerEvent extends EventObject {

 // The number of milliseconds since the last event was broadcast.

 private var timeSinceLast:Number;

 /**

 * Constructor

 *

 * @param src The event source (a Randomizer instance).

 * @param timeSinceLast The number of milliseconds since the last event.

 */

 public function RandomizerEvent (src:Randomizer, timeSinceLast:Number) {

 // Always pass event source to superclass constructor!

 super(src);

 // Record the time since the last event.

 this.timeSinceLast = timeSinceLast;

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /**

 * Returns the time since the last event.

 */

 public function getTimeSinceLast ():Number {

 return timeSinceLast;

 }

}

Notice that the RandomizerEvent constructor receives two arguments: src, a reference to the
Randomizer instance that created the RandomizerEvent, and timeSinceLast, the time elapsed since

the last event.

function RandomizerEvent (src:Randomizer, timeSinceLast:Number) {

 super(src);

 this.timeSinceLast = timeSinceLast;

}

In the constructor body, we pass the src reference to the RandomizerEvent's superclass constructor.

There, the reference is stored for access by the event listener receiving the RandomizerEvent object.

Passing the event source reference to the EventObject constructor is a required
step that must not be skipped. If you do not pass the event source to the
EventObject constructor, recipients of the event will not have access to the
object that generated the event.

Example 19-6 shows the code for the Randomizer class. Read it over, then we'll study the important
sections in detail.

Example 19-6. The Randomizer class

import event.*;

import util.*;

/**

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 * Generates random events.

 */

class util.Randomizer {

 // The event listeners that will receive events.

 private var listenerList:EventListenerList;

 // The time in milliseconds between checks for a random event.

 private var randInterval:Number;

 // The time of the last random event.

 private var lastEventTime:Date;

 /**

 * Constructor

 *

 * @param interval The time in milliseconds to wait between

 * checks for a random event.

 * @param odds The likelihood an event will be triggered at

 * each check. An event has a 1-in-odds chance of

 * being triggered.

 */

 public function Randomizer (interval:Number, odds:Number) {

 // Create an EventListenerList to manage listeners.

 listenerList = new EventListenerList();

 // Initialize the time of the most recent event.

 lastEventTime = new Date();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Start checking for events.

 start(interval, odds);

 }

 /**

 * Register an object to receive random events.

 */

 public function addRandomizerListener (l:RandomizerListener):Boolean {

 return listenerList.addObj(l);

 }

 /**

 * Unregister an event listener object.

 */

 public function removeRandomizerListener (l:RandomizerListener):Boolean {

 return listenerList.removeObj(l);

 }

 /**

 * Start an interval to check for random events.

 *

 * @param interval The time in milliseconds to wait between

 * checks for a random event.

 * @param odds The likelihood an event will be triggered at

 * each check.

 */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public function start (interval:Number, odds:Number):Boolean {

 if (interval > 0 && odds > 1) {

 // Call this.check() every interval milliseconds.

 randInterval = setInterval(this, "check", interval, odds);

 return true;

 }

 return false;

 }

 /**

 * Stop checking for random events.

 */

 public function stop ():Void {

 clearInterval(randInterval);

 }

 /**

 * Restart the event-checking interval, possibly with new odds.

 *

 * @param interval The time in milliseconds to wait between

 * checks for a random event.

 * @param odds The likelihood an event will be triggered at

 * each check.

 */

 public function restart (interval:Number, odds:Number):Void {

 stop();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 start(interval, odds);

 }

 /**

 * Checks to see if a random event occurs, based on the

 * current odds.

 *

 * @param odds The likelihood an event will be triggered at

 * each check.

 */

 private function check (odds:Number):Void {

 // Local variables.

 var rand:Number = Math.floor(Math.random() * odds);

 var now:Date = new Date();

 var elapsed:Number;

 // If the random event occurs...

 if (rand == 0) {

 // Determine the elapsed time since the last event.

 elapsed = now.getTime() - lastEventTime.getTime();

 lastEventTime = now;

 // Fire the event.

 fireOnRandomAction(elapsed);

 }

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /**

 * Invokes onRandomAction() on all listeners.

 *

 * @param elapsed The amount of time since the last event notification.

 */

 private function fireOnRandomAction (elapsed:Number):Void {

 // Create an object to describe the event.

 var e:RandomizerEvent = new RandomizerEvent(this, elapsed);

 // Get a list of the current event listeners.

 var listeners:Array = listenerList.getListeners();

 // Broadcast the event to all listeners.

 for (var i:Number = 0; i < listeners.length; i++) {

 // Notice that we don't cast to RandomizerListener here.

 // For an explanation of why the cast isn't required, see

 // "Array Elements and Type Checking," in Chapter 3.

 listeners[i].onRandomAction(e);

 }

 }

}

Much of the Randomizer class code relates to the internal task of checking odds at specific time
intervals, which is not our current focus. From the perspective of the delegation event model, we're
concerned only with the listenerList property and the addRandomizerListener(),

removeRandomizerListener(), and fireOnRandomAction() methods, used to manage event listener
objects and broadcast the onRandomAction event.

When a Randomizer instance is constructed, it creates an EventListenerList instance, which it stores
in the property listenerList:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

listenerList = new EventListenerList();

The EventListenerList instance manages the Randomizer class's event listeners. To register an object
to receive Randomizer events, we pass it to addRandomizerListener(), which, in turn passes it to
listenerList.addObj(). The listenerList.addObj() method is what actually adds the object to the list of
event listeners for the current Randomizer instance:

public function addRandomizerListener (l:RandomizerListener):Boolean {

 return listenerList.addObj(l);

}

To stop an object from receiving Randomizer events, we pass it to removeRandomizerListener(),
which, like addRandomizerListener(), delegates its work to the listenerList object:

public function removeRandomizerListener (l:RandomizerListener):Boolean {

 return listenerList.removeObj(l);

}

Both addRandomizerListener() and removeRandomizerListener() return a Boolean indicating
whether the registration or unregistration attempt succeeded. Registration succeeds (and
addRandomizerListener() returns true) if the object registering is not already registered. If the
object is already registered, addRandomizerListener() returns false. Unregistration will fail if the

object being unregistered is not in the list of currently registered event listeners.

Notice, again, that static typing ensures that only instances of classes that implement
RandomizerListener can register to receive events from Randomizer. If a non-RandomizerListener is
passed to addRandomizerListener() or removeRandomizerListener(), the compiler generates a type
mismatch error. Hence, all registered listeners are guaranteed to define the onRandomAction()
method, which Randomizer uses when broadcasting its event.

When it's time for the Randomizer class to broadcast an event, it invokes fireOnRandomAction(),
passing the amount of time since the last event to that method:

private function fireOnRandomAction (elapsed:Number):Void {

 var e:RandomizerEvent = new RandomizerEvent(this, elapsed);

 var listeners:Array = listenerList.getListeners();

 for (var i:Number = 0; i < listeners.length; i++) {

 listeners[i].onRandomAction(e);

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

In the fireOnRandomAction() method, we first create a RandomizerEvent instance and pass it two
arguments-a reference to the current Randomizer instance and information describing the event, in
this case, the time elapsed since the previous event:

var e:RandomizerEvent = new RandomizerEvent(this, elapsed);

Next, we retrieve the list of currently registered listeners from the listenerList:

var listeners:Array = listenerList.getListeners();

Finally, we invoke onRandomAction() on all registered listeners, passing each the event object we
created earlier:

for (var i:Number = 0; i < listeners.length; i++) {

 listeners[i].onRandomAction(e);

}

Thus, the event is broadcast, and each listener happily determines its own appropriate response. For
example, if we were using a Randomizer to control monsters in an adventure game, each monster
(each listener object) could pick some random behavior-perhaps attackPlayer(), flee(), or defend(
). Or in our shooting star example, when the Randomizer instance invokes onRandomAction() on our
NightSky instance, the NightSky instance responds by displaying a shooting star.

19.4.6.1 Multiple event types from a single event source

Before we move on to the use of our Randomizer class, it's worth noting that a single event source
can legitimately define more than one kind of event. For example, in Java (from whence the
delegation event model originates), the all-purpose user interface class, Component, defines two
categories of mouse events: one for mouse motion and one for mouse input (i.e., mouseclicks). To
register an object for mouse motion events in Java, we first ensure that it implements the
MouseMotionListener interface, then we pass it to Component.addMouseMotionListener(). To register
an object for mouse input events, we first ensure that it implements the MouseListener interface,
then we pass it to Component.addMouseListener(). The same event source, Component, manages
both types of events, keeping separate track of its event listeners by using two separate registration
routines and two separate listener lists.

When an event source defines multiple types of events, its listeners can flexibly sign up to receive
only a particular category of events, ignoring other events that are not of interest. To receive both
events, however, a listener object must register twice (once for each event).

19.4.7 The NightSky Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In our delegation event model example, the NightSky class is the event listener class; it receives
events from Randomizer. In order to become eligible to receive Randomizer events, NightSky
implements RandomizerListener.

Example 19-7 shows the code for the NightSky class.

Example 19-7. The NightSky class

import util.*;

/**

 * Creates a sky full of stars and listens for Randomizer

 * events to create random shooting stars.

 */

class nightsky.NightSky implements RandomizerListener {

 // The movie clip in which to create the sky.

 private var target:MovieClip;

 // The sky movie clip.

 private var sky_mc:MovieClip;

 // The depth, in target, at which to create the sky. Defaults to 0.

 private var skyDepth:Number = 0;

 // The depth, in sky_mc, at which to create shooting stars. Defaults to 0.

 private var starDepth:Number = 0;

 /**

 * Constructor

 */

 public function NightSky (target:MovieClip,

 skyDepth:Number, starDepth:Number) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 this.target = target;

 this.skyDepth = skyDepth;

 this.starDepth = starDepth;

 makeSkyBG();

 }

 /**

 * Responds to random events from a Randomizer object.

 * Creates a shooting star in the sky.

 *

 * @param e An object that describes the event.

 */

 public function onRandomAction (e:RandomizerEvent):Void {

 trace("New shooting star! Time since last star: "

 + e.getTimeSinceLast());

 makeShootingStar();

 }

 /**

 * Creates a sky graphic by attaching a movie clip with the

 * linkage identifier of "skybg".

 */

 private function makeSkyBG ():Void {

 sky_mc = target.attachMovie("skybg", "skybg", skyDepth);

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /**

 * Creates a shooting star by attaching a movie clip with the

 * linkage identifier of "shootingstar".

 */

 private function makeShootingStar ():Void {

 // Create the shooting star in the sky movie clip.

 sky_mc.attachMovie("shootingstar",

 "shootingstar" + starDepth, starDepth);

 // Randomly position the shooting star.

 sky_mc["shootingstar" + starDepth]._x = Math.floor(Math.random()

 * target.skybg._width);

 sky_mc["shootingstar" + starDepth]._y = Math.floor(Math.random()

 * target.skybg._height);

 // Put the next shooting star on a higher depth.

 starDepth++;

 }

}

The NightSky class uses what should now be familiar techniques to create an instance of a movie clip
symbol depicting a sky background, namely MovieClip.attachMovie().

Our focus in Example 19-7 is the onRandomAction() method, which handles onRandomAction events
from Randomizer. The method is simple-when the random event occurs, it creates a shooting star
by invoking makeShootingStar(). For debugging purposes, onRandomAction() also displays the time
elapsed since the last shooting star was created.

public function onRandomAction (e:RandomizerEvent):Void {

 trace("New shooting star! Time since last star: " + e.getTimeSinceLast());

 makeShootingStar();

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Reader exercise: try modifying the code so that the chance of a shooting star appearing dynamically
decreases or increases depending on the amount of time elapsed since the last star. Hint-use
e.getSource() to access the Randomizer.restart() method.

19.4.8 Using NightSky in an Application

To use the NightSky class in an application, we create an instance of Randomizer and an instance of
NightSky, then we use addRandomizerListener() to register the NightSky instance as a listener with
the Randomizer instance. The following code shows the technique:

import nightsky.*;

import util.*;

var sky:NightSky = new NightSky(bg_mc, 1, 0);

var starRandomizer:Randomizer = new Randomizer(1000, 3);

starRandomizer.addRandomizerListener(sky);

The NightSky instance (sky) creates a sky graphic in the movie clip bg_mc at depth 1. Shooting stars
in the sky will start appearing on depth 0. The Randomizer instance (starRandomizer) has a one-in-

three chance of triggering onRandomAction() every second (i.e., every 1000 milliseconds).

The preceding code could appear in a class as part of a larger OOP application, or it could be placed
directly on a frame in the timeline of a .fla file. Either way, the .fla that uses the NightSky instance
must export two movie clip symbols, one for the sky ("skybg") and one for the shooting stars
("shootingstar").

For a working version of the night sky example, see http://moock.org/eas2/examples.

 < Day Day Up >

http://moock.org/eas2/examples
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

19.5 Other Event Architectures in ActionScript

Neither ActionScript's built-in classes, nor the Flash v2 components use the delegation event model in
its entirety. Both do use an event listener model but without an EventListener interface or a formal
EventObject class. For information on handling events from ActionScript's built-in classes, see
ActionScript for Flash MX: The Definitive Guide (O'Reilly). For information on handling events from
the Flash v2 components, see Chapter 12 and Help Using Components Working with
Components About Component Events. The core v2 component architecture comes with its own
event-dispatching facilities. To learn how to implement events for a component that is based on the
v2 component architecture, see Help Using Components Creating Components Handling
Events.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

19.6 From Some Place to Some OtherPlace

This book has reached its end, but your journey as a programmer continues. Over the preceding 19
chapters, you've learned many different programming tools and techniques; it's now up to you to
experiment with them. Take what you've learned and explore your own ideas and projects. If you've
previously spent most of your time in Flash, don't feel limited to it. Most of the concepts in this book
are applicable to many other languages. Your basic OOP ActionScript training will serve you well in
Java, C++, Perl, and Visual Basic, just to name a few. Don't be afraid to venture into that territory.

Programming is an art form. As such, it comes with all the frustrations and elation of sculpture,
writing, painting, or music. And it's subject to the primary law of creativity: there is no final
destination. With every day you program, you'll express something new and learn more along the
way. The process never stops.

In the Preface, I wrote that "This book wants you to use object-oriented programming in your daily
Flash work. It wants you to reap the benefits of OOP-one of the most important revolutions in
programming history. It wants you to understand ActionScript 2.0 completely." I hope this book
achieved that goal. And I hope you had some fun in the process.

With that, I'm off to race cars over the network with my friend Hoss from Scotland. He has
hometown advantage because the track is Edinburgh, his real-life hometown. The game is Project
Gotham Racing 2 and the network infrastructure is Microsoft XBox Live. Quite a programming
marvel, in case you're looking for inspiration. Or I suppose, alternatively, you could go look at
pictures from the robot programmed to drive around on Mars. What a world...

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Part IV: Appendixes
The appendixes include:

Appendix A

Appendix B

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Appendix A. ActionScript 2.0 Language
Quick Reference
The following reference lists the datatypes recognized by the ActionScript 2.0 compiler for the built-in
classes, objects, global properties, and global functions in Flash Player 7. This list will help you
preemptively avoid type mismatch errors when declaring datatypes. Or, if you've encountered a
compiler error because you've used a built-in class, object, property, or function with the wrong
datatype, this list will help you find the correct datatype and fix the error. Remember that if the
datatype is specified as Object, the compiler will accept data of any datatype. See Chapter 3 for
complete information on datatypes in ActionScript 2.0.

The ActionScript compiler retrieves datatype information at compile time from so-called intrinsic files,
which catalog the methods and properties supported by each class. You can find the intrinsic files in
your Flash program installation folder, under Flash MX 2004\en\First Run\Classes.

Numerous errors plague the intrinsic files that shipped with Flash MX 2004 and
Flash MX Professional 2004 (both the original version and the 7.0.1 updated
version). Hence, in those versions of the authoring tool, the compiler will
incorrectly skip type checking for some items and report mistaken datatype
errors for others. Macromedia is aware of the problem and intends to update
the intrinsic files in a future version of the authoring tool.

In response to the general problem of errors in the intrinsic files, I've chosen to list the correct
datatypes for all items in this appendix, not the erroneous datatypes found in the intrinsic files. For
example, according to the Boolean.as intrinsic file that shipped with Flash MX 2004 and Flash MX
Professional 2004 (versions 7.0.0 and 7.0.1), the return type of Boolean.valueOf() is Number. But in
this appendix, we've listed the return type as Boolean, which is the correct return type for
Boolean.valueOf().

When this appendix contradicts an intrinsic file, I'll make a special note so you won't be surprised by
the compiler's behavior. For example, in the case of Boolean.valueOf(), I'll point out that the intrinsic
files for versions 7.0.0 and 7.0.1 of the authoring tool use Number not Boolean as the return type.
It's then up to you to conclude that, say, assigning true.valueOf() to a variable of type Boolean will
(mistakenly) generate an error, as shown here:

// Generates a (mistaken) error in versions 7.0.0 and 7.0.1 of

// Flash MX 2004 and Flash MX Professional 2004.

var val:Boolean = true.valueOf();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Error Scene=Scene 1, layer=Layer 1, frame=1:Line 1: Type mismatch in

assignment statement: found Number where Boolean is required.

To work around the mistaken error, leave the variable val in the preceding code example untyped

or, alternatively, fix your installation's Boolean.as intrinsic file manually by following these steps:

Open the following file, substituting your operating system user account name for USER and

your Flash language code for LANGUAGE_CODE such as "en" for English:

On Windows:

c:\Documents and Settings\USER/Local Settings\Application Data\Macromedia\Flash MX

2004\LANGUAGE_CODE\Configuration\Classes\Boolean.as

Note that the Local Settings folder is a hidden folder that must be revealed explicitly in
Windows File Explorer using Tools Folder Options View Advanced Settings

 Files and Folders Hidden Files and Folders Show Hidden Files and Folders.

On Mac:

HD:/Users/USER/Library/Application Support/Macromedia/Flash MX

2004/LANGUAGE_CODE/Configuration/Classes/Boolean.as

1.

In the file Boolean.as, change the following line:2.

function valueOf():Number;

to:

function valueOf():Boolean;

Save the file Boolean.as.3.

You should also be sure to check for updated intrinsic files from Macromedia at
http://www.macromedia.com/support/flash. I'll post news of any updates on my blog
(http://www.moock.org/blog) and my mailing list (http://www.moock.org/moockupdates).

In general, I've done my best to represent the correct datatype in anticipation of future corrected
intrinsic files. That said, to confirm the datatypes used by the compiler in your specific installation of
the Flash authoring tool, you should always consult the appropriate intrinsic file. If you want to know
which version of Flash you currently have installed, use Help About Flash.

http://www.macromedia.com/support/flash
http://www.moock.org/blog
http://www.moock.org/moockupdates
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Throughout this appendix, items marked with * are those that Macromedia
erroneously omitted from the intrinsic files for Flash MX 2004 and Flash MX
Professional 2004, versions 7.0.0 and 7.0.1. In those versions of the authoring
tool, no type checking is performed on items marked with *. Future versions of
the authoring tool will likely have updated intrinsic files and perform type
checking on items marked with *.

Only core classes and objects defined by the Flash Player itself are presented in this appendix. Other
classes, such as classes for Flash Remoting or Flash UI Components, are not listed. You can find
datatype information for components in the component source files, stored in Flash's program
installation folder, in the following locations: Flash MX 2004\en\First Run\Classes\mx\controls, Flash
MX 2004\en\First Run\Classes\mx\containers, and Flash MX 2004\en\First
Run\Classes\mx\managers.

For a description of the items in this reference, consult the Flash MX 2004 online Help and O'Reilly's
ActionScript for Flash MX: The Definitive Guide (note, however, that depending on the edition, some
items presented here may not be listed in that book).

The following classes are new in Flash MX 2004 and Flash MX Professional 2004. They cannot be used
when exporting to Flash Player 6 format:

ContextMenu
ContextMenuItem
MovieClipLoader
PrintJob
TextField.StyleSheet
TextSnapshot

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

A.1 Global Properties

Global properties store information that relates generally to the Flash Player environment and are
accessible to any scope in a movie.

_focusRect:Boolean*

_global:Object

_highquality:Number*

Infinity:Number

NaN:Number

_quality:String*

_root:MovieClip[1]

_soundbuftime:Number*

$version:String*

[1] Datatype listed as Object in 7.0.0 and 7.0.1

The following global property is never type checked:

_leveln

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

A.2 Global Functions

Global functions provide commands that relate generally to the Flash Player environment and are
accessible to any scope in a movie.

Boolean(value:Object):Boolean*

call():Void*

clearInterval(id:Number):Void

Date():String*

duplicateMovieClip(target:String, newName:String, depth:Number):Void*

escape(value:String):String

eval(expr:String):Object*

fscommand(command:String, parameters:String):Void*

getProperty(movieClip:Object, property:Object):Object*

getTimer():Number*

getURL(url:String, window:String, method:String):Void*

getVersion():String*

gotoAndPlay(frameNumOrLabel:Object):Void*

gotoAndPlay(scene:Object, frameNumOrLabel:Object):Void*

gotoAndStop(frameNumOrLabel:Object):Void*

gotoAndStop(scene:Object, frameNumOrLabel:Object):Void*

int(num:Number):Number*

isFinite(value:Object):Boolean

isNaN(value:Object):Boolean

loadMovie(url:String, target:Object, method:String):Void*

loadMovieNum(url:String, level:Number, method:String):Void*

loadVariables(url:String, target:Object, method:String):Void*

loadVariablesNum(url:String, level:Number, method:String):Void*

nextFrame():Void*

http://lib.ommolketab.ir
http://lib.ommolketab.ir

nextScene():Void*

Number(value:Object):Number

parseFloat(value:String):Number

parseInt(value:String, radix:Number):Number

play():Void*

prevFrame():Void*

prevScene():Void*

print(target:Object, boundingBox:String):Void*

printAsBitmap(target:Object, boundingBox:String):Void*

printAsBitmapNum(level:Number, boundingBox:String):Void*

printNum(level:Number, boundingBox:String):Void*

random(number:Number):Number*

removeMovieClip(target:Object):Void*

setInterval(function:Object, interval:Object, arg1:Object, ...argn:Object):Number[2]

setInterval(object:Object, method:Object, interval:Object, arg1:Object,

...argn:Object):Number[2]

setProperty(movieClip:Object, property:Object, value:Object):Void*

startDrag(target:Object, lockCenter:Boolean, left:Number, top:Number, right:Number,

bottom:Number):Void*

stop():Void*

stopAllSounds():Void*

stopDrag():Void*

String(value:Object):String*

targetPath(mc:MovieClip):String*

toggleHighQuality():Void*

trace(value:String):Void

unescape(value:String):String

unloadMovie(target:Object):Void*

unloadMovieNum(level:Number):Void*

updateAfterEvent():Void*

[2] setInterval() has two forms with differing numbers of parameters, so all parameter types are specified as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Object to accept any datatype.

Accessibility Class

The Accessibility class provides tools for developing advanced accessible UI components.

At runtime, the Accessibility class is actually a standalone, predefined object,
not a class. However, it is treated as a class by the compiler for the sake of
type checking. Hence, the Accessibility class has no constructor.

Constructor

None

Class methods

isActive():Boolean

sendEvent(mc:MovieClip, childID:Object, event:Object, isNonHtml:Boolean):Void[3]

updateProperties():Void

[3] No type specified for the childID parameter in 7.0.0 and 7.0.1

Arguments Class Extends Array

The Arguments class provides access to function arguments, the current function, and the calling
function.

Note that datatype information for the Arguments class is stored in the intrinsic file
FunctionArguments.as. Instances of the Arguments class are created automatically by ActionScript
and made available within each executing function. Hence, the Arguments class has no constructor.

Instance properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

callee:Function[4]

caller:Function[4]

[4] Incorrectly listed as an instance method in 7.0.0 and 7.0.1

Elements are accessed as follows but not type checked:

arguments[index]

Array Class

The Array class provides support for ordered lists of data.

Constructor

Array()*

Array(len:Object)*

Array(elem0:Object, elem1:Object, elem2:Object,...elemn:Object)*

Class properties

The following class properties are supported for arrays in Flash Player 7 and later:

CASEINSENSITIVE:Number

DESCENDING:Number

NUMERIC:Number

RETURNINDEXEDARRAY:Number

UNIQUESORT:Number

Instance properties

length:Number

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Instance methods

concat(value:Object):Array

join(delimiter:String):String

pop():Object

push(value:Object):Number[5]

reverse():Void

shift():Object

slice(startIndex:Number, endIndex:Number):Array

sort(compare:Object, options:Number):Array[6]

sortOn(key:Object, options:Number):Array[7]

splice(startIndex:Number, deleteCount:Number, value:Object):Array

toString():String[8]

unshift(value:Object):Number

[5] Datatype for value not listed in 7.0.0 and 7.0.1

[6] Datatype for compare not listed in 7.0.0 and 7.0.1

[7] Datatype for key not listed in 7.0.0 and 7.0.1

[8] This method overrides the default Object.toString().

Boolean Class

The Boolean class acts as a wrapper class for primitive Boolean data.

Constructor

Boolean(value:Object)*

Instance methods

toString():String

valueOf():Boolean[9]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[9] Return type incorrectly listed as Number in 7.0.0 and 7.0.1

Button Class

The Button class provides control over instances of button symbols in a movie. Note that the
following properties are not defined by the Button class but are erroneously listed in the Button.as
intrinsic file for Flash MX 2004 and Flash MX Professional 2004 in versions 7.0.0 and 7.0.1.

_currentframe

_droptarget

_framesloaded

_totalframes

The legitimate properties and methods of the Button class are listed next.

Constructor

None (use the authoring tool to create buttons)

Instance properties

_alpha:Number trackAsMenu:Boolean

enabled:Boolean _url:String

_focusrect:Boolean useHandCursor:Boolean

_height:Number _visible:Boolean

_name:String _width:Number

_parent:MovieClip _x:Number

_quality:String[10] _xmouse:Number

_rotation:Number _xscale:Number

_soundbuftime:Number[11] _y:Number

tabEnabled:Boolean _ymouse:Number

tabIndex:Number _yscale:Number

http://lib.ommolketab.ir
http://lib.ommolketab.ir

_target:String

[10] Synonym for global property _quality

[11] Synonym for global property _soundbuftime

Instance methods

getDepth():Number

Event handlers

onDragOut():Void onRelease():Void

onDragOver():Void onReleaseOutside():Void

onKeyDown():Void onRollOut():Void

onKeyUp():Void onRollOver():Void

onKillFocus(newFocus:Object):Void onSetFocus(oldFocus:Object):Void

onPress():Void

Camera Class

The Camera class provides support to capture video from a video camera. It is used primarily with
Macromedia Flash Communication Server.

Constructor

None (instances are created with Camera.get())

Class properties

names:Array

Instance properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

activityLevel:Number motionLevel:Number

bandwidth:Number motionTimeOut:Number

currentFps:Number muted:Boolean

fps:Number name:String

height:Number nativeModes:Array

index:Number quality:Number

keyFrameInterval:Number width:Number

loopback:Boolean

Class methods

get(index:Number):Camera

Instance methods

setKeyFrameInterval(keyFrameInterval:Number):Void

setLoopback(compress:Boolean):Void

setMode(width:Number, height:Number, fps:Number, favorArea:Boolean):Void

setMotionLevel(motionLevel:Number, timeOut:Number):Void

setQuality(bandwidth:Number, quality:Number):Void

Event handlers

onActivity(active:Boolean):Void

onStatus(infoObject:Object):Void

Color Class

The Color class provides control over movie clip color values.

Constructor

new Color (target:Object)[12]

[12] The target parameter is not listed in 7.0.0 and 7.0.1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Instance methods

getRGB():Number
getTransform():Object
setRGB(offset:Number):Void

setTransform(transformObject:Object):Void

ContextMenu Class

The ContextMenu class provides control over the Flash Player context menu, which is accessed via
right-click (Windows) or Ctrl-click (Mac). This class is available in Flash Player 7 and later only.

Constructor

ContextMenu(callbackFunction:Function)[13]

[13] Datatype for callbackFunction not listed in 7.0.0 and 7.0.1

Instance properties

builtInItems:Object

Instance methods

copy():ContextMenu
hideBuiltInItems():Void

Event handlers

onSelect(item:Object, item_menu:ContextMenu):Void[14]

[14] Incorrectly listed as a property in 7.0.0 and 7.0.1

ContextMenuItem Class

An instance of the ContextMenuItem class represents an item in the Flash Player's context menu.
This class is available in Flash Player 7 and later only.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constructor

ContextMenuItem(caption:String, callbackFunction:Function, separatorBefore:Boolean,

enabled:Boolean, visible:Boolean)[15]

[15] Datatypes for constructor parameters not listed in 7.0.0 and 7.0.1

Instance properties

caption:String
enabled:Boolean
separatorBefore:Boolean
visible:Boolean

Instance methods

copy():ContextMenuItem

Event handlers

onSelect(obj:Object, menuItem:ContextMenuItem):Void[16]

[16] Incorrectly listed as a property in 7.0.0 and 7.0.1

Date Class

The Date class provides the current time and structured support for date information.

Constructor

Date()
Date(milliseconds:Number)

Date(year:Number, month:Number, date:Number, hour:Number, min:Number, sec:Number,

ms:Number)

Class methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UTC(year:Number, month:Number, date:Number, hour:Number, min:Number, sec:Number,

ms:Number):Number

Instance methods

getDate():Number getYear():Number

getDay():Number setDate(value:Number):Void

getFullYear():Number setFullYear(value:Number):Void

getHours():Number setHours(value:Number):Void

getMilliseconds():Number setMilliseconds(value:Number):Void

getMinutes():Number setMinutes(value:Number):Void

getMonth():Number setMonth(value:Number):Void

getSeconds():Number setSeconds(value:Number):Void

getTime():Number setTime(value:Number):Void

getTimezoneOffset():Number setUTCDate(value:Number):Void

getUTCDate():Number setUTCFullYear(value:Number):Void

getUTCDay():Number setUTCHours(value:Number):Void

getUTCFullYear():Number setUTCMilliseconds(value:Number):Void

getUTCHours():Number setUTCMinutes(value:Number):Void

getUTCMilliseconds():Number setUTCMonth(value:Number):Void

getUTCMinutes():Number setUTCSeconds(value:Number):Void

getUTCMonth():Number setYear(value:Number):Void

getUTCSeconds():Number toString():String

getUTCYear():Number[17] valueOf():Number

[17] Undocumented

Function Class

The Function class provides an object-oriented representation of ActionScript functions.

Constructor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

None (use the function keyword to create functions)

Instance properties

prototype:Object*

Instance methods

apply(thisArg:Object, args:Array)

call(thisArg:Object)

Key Class

The Key class is used to determine the state of keys on the keyboard.

At runtime, the Key class is actually a standalone, predefined object, not a
class. However, it is treated as a class by the compiler for the sake of type
checking. Hence, the Key class has no constructor.

Constructor

None

Class properties

The following properties are all datatype Number:

ALT DOWN INSERT SHIFT

BACKSPACE END LEFT SPACE

CAPSLOCK ENTER PGDN TAB

CONTROL ESCAPE PGUP UP

DELETEKEY HOME RIGHT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class methods

addListener(listener:Object):Void

getAscii():Number
getCode():Number
isDown(code:Number):Boolean

isToggled(code:Number):Boolean

removeListener(listener:Object):Boolean

Events broadcast to listeners

onKeyDown():Void*
onKeyUp():Void*

LoadVars Class

The LoadVars class is used to export variables to, or import variables from, an external source.

Constructor

LoadVars()

Instance properties

contentType:String
loaded:Boolean

Instance methods

addRequestHeader(header:Object, headerValue:String):Void[18]

decode(queryString:String):Void

getBytesLoaded():Number

getBytesTotal():Number

load(url:String):Boolean

send(url:String, target:String, method:String):Boolean

sendAndLoad(url:String, target, method:String):Boolean

toString():String[19]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[18] Supported in Flash Player 6.0.65.0 and later

[19] Overrides Object.toString()

Event handlers

onData(src:String):Void

onLoad(success:Boolean):Void

LocalConnection Class

The LocalConnection class is used to transmit data directly between movies running on the same
system.

Constructor

LocalConnection()

Instance methods

close():Void
connect(connectionName:String):Boolean

domain():String
send(connectionName:String, methodName:String, args:Object):Boolean

Event handlers

allowDomain(domain:String):Boolean

allowInsecureDomain(domain:String):Boolean[20]

onStatus(infoObject:Object):Void

[20] Supported in Flash Player 7 and later

Math Class

The Math class provides access to mathematical functions and constants.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

At runtime, the Math class is actually a standalone, predefined object, not a
class. However, it is treated as a class by the compiler for the sake of type
checking. Hence, the Math class has no constructor.

Constructor

None

Class properties

The following properties are all datatype Number:

E LN2 LOG2E SQRT1_2

LN10 LOG10E PI SQRT2

Class methods

abs(value:Number):Number

acos(value:Number):Number

asin(value:Number):Number

atan(value:Number):Number

atan2(value1:Number, value2:Number):Number

ceil(value:Number):Number

cos(value:Number):Number

exp(value:Number):Number

floor(value:Number):Number

log(value:Number):Number

max(value1:Number, value2:Number):Number

min(value1:Number, value2:Number):Number

pow(value1:Number, value2:Number):Number

random():Number
round(value:Number):Number

sin(value:Number):Number

sqrt(value:Number):Number

tan(value:Number):Number

Microphone Class

The Microphone class is used to capture audio from a microphone. It is used primarily with
Macromedia Flash Communication Server.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constructor

None (instances are created using Microphone.get())

Class properties

names:Array

Instance properties

activityLevel:Number rate:Number

gain:Number silenceLevel:Number

index:Number silenceTimeOut:Number

muted:Boolean useEchoSuppression:Boolean

name:String

Class methods

get(index:Number):Microphone

Instance methods

setGain(gain:Number):Void

setRate(rate:Number):Void

setSilenceLevel(silenceLevel:Number, timeOut:Number):Void

setUseEchoSuppression(useEchoSuppression:Boolean):Void

Event handlers

onActivity(active:Boolean):Void

onStatus(infoObject:Object):Void

Mouse Class

The Mouse class is used to access mouse events and control mouse pointer visibility.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

At runtime, the Mouse class is actually a standalone, predefined object, not a
class. However, it is treated as a class by the compiler for the sake of type
checking. Hence, the Mouse class has no constructor.

Constructor

None

Class methods

addListener(listener:Object):Void

hide():Number
removeListener(listener:Object):Boolean

show():Number

Events broadcast to listeners

onMouseDown():Void
onMouseMove():Void
onMouseUp():Void

MovieClip Class

The MovieClip class is a classlike datatype for main movies and movie clips.

Constructor

None (use createEmptyMovieClip(), attachMovie(), duplicateMovieClip(), or the authoring tool to
create instances)

Instance properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

_alpha:Number tabEnabled:Boolean

_currentframe:Number tabIndex:Number

_droptarget:String _target:String

enabled:Boolean _totalframes:Number

focusEnabled:Boolean trackAsMenu:Boolean

_focusrect:Boolean _url:String

_framesloaded:Number useHandCursor:Boolean

_height:Number _visible:Boolean

hitArea:Object _width:Number

_lockroot:Boolean[21] _x:Number

_name:String _xmouse:Number

_parent:MovieClip _xscale:Number

_quality:String[22] _y:Number

_rotation:Number _ymouse:Number

_soundbuftime:Number[23] _yscale:Number

tabChildren:Boolean

[21] Supported in Flash Player 7 and later

[22] Synonym for global property _quality

[23] Synonym for global property _soundbuftime

Instance methods

attachAudio(id:Object):Void

attachMovie(id:String, name:String, depth:Number, initObject:Object):MovieClip

beginFill(rgb:Number, alpha:Number):Void

beginGradientFill(fillType:String, colors:Array, alphas:Array, ratios:Array,

matrix:Object):Void

clear():Void

createEmptyMovieClip(name:String, depth:Number):MovieClip

createTextField(instanceName:String, depth:Number, x:Number, y:Number, width:Number,

height:Number):Void

http://lib.ommolketab.ir
http://lib.ommolketab.ir

curveTo(controlX:Number, controlY:Number, anchorX:Number, anchorY:Number):Void

duplicateMovieClip(name:String, depth:Number, initObject:Object):MovieClip

endFill():Void

getBounds(targetCoordinateSpace:Object):Object[24]

getBytesLoaded():Number

getBytesTotal():Number

getDepth():Number

getInstanceAtDepth(depth:Number):MovieClip[25]

getNextHighestDepth():Number[28]

getSWFVersion():Number*[28]

getURL(url:String, window:String, method:String):Void

globalToLocal(pt:Object):Void

gotoAndPlay(frame:Object):Void

gotoAndStop(frame:Object):Void

hitTest():Boolean

lineStyle(thickness:Number, rgb:Number, alpha:Number):Void

lineTo(x:Number, y:Number):Void

loadMovie(url:String, method:String):Void

loadVariables(url:String, method:String):Void

localToGlobal(pt:Object):Void

moveTo(x:Number, y:Number):Void

nextFrame():Void

play():Void

prevFrame():Void

removeMovieClip():Void

setMask(mc:Object):Void

startDrag(lockCenter:Boolean, left:Number, top:Number, right:Number,

bottom:Number):Void

stop():Void

stopDrag():Void

swapDepths(mc:Object):Void

unloadMovie():Void

http://lib.ommolketab.ir
http://lib.ommolketab.ir

valueOf():Object*

[24] Datatype for targetCoordinateSpace not listed in 7.0.0 and 7.0.1

[25] Supported in Flash Player 7 and later

Event handlers

onData():Void onMouseMove():Void

onDragOut():Void onMouseUp():Void

onDragOver():Void onPress():Void

onEnterFrame():Void onRelease():Void

onKeyDown():Void onReleaseOutside():Void

onKeyUp():Void onRollOut():Void

onKillFocus(newFocus:Object):Void onRollOver():Void

onLoad():Void onSetFocus(oldFocus:Object):Void

onMouseDown():Void onUnload():Void

MovieClipLoader Class

The MovieClipLoader class is used to load a .swf file or JPEG image into a movie clip and report on its
download progress. Available in Flash Player 7 and later only.

Constructor

MovieClipLoader()

Instance methods

addListener(listener:Object):Boolean

getProgress(target:Object):Object

loadClip(url:String, target:Object):Boolean

removeListener(listener:Object):Boolean

unloadClip(target:Object):Boolean

Events broadcast to listeners

http://lib.ommolketab.ir
http://lib.ommolketab.ir

onLoadComplete(target:Object):Void

onLoadError(target:Object, errorCode:String):Void

onLoadProgress(target:Object, bytesLoaded:Number, bytesTotal:Number):Void

onLoadStart(target:Object):Void

NetConnection Class

The NetConnection class is used to play streaming .flv (video) files. Note that when used with
Macromedia Flash Communication Server or Macromedia Flash Remoting, the NetConnection class
supports more methods. For details, see the documentation for those products. See also Flash
Remoting: The Definitive Guide by Tom Muck (O'Reilly).

Constructor

NetConnection()

Instance properties

isConnected:Boolean
uri:String

Instance methods

addHeader()
call(remoteMethod:String, resultObject:Object):Void

close():Void
connect(targetURI:String):Boolean

Event handlers

onResult(infoObject:Object):Void

onStatus(infoObject:Object):Void

NetStream Class

The NetStream class offers control over a streaming .flv (video) file.

Constructor

NetStream(connection:NetConnection)

Instance properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

bufferLength:Number
bufferTime:Number
bytesLoaded:Number
bytesTotal:Number
currentFps:Number
liveDelay:Number
time:Number

Instance methods

attachAudio(theMicrophone:Microphone):Void

attachVideo(theCamera:Camera, snapshotMilliseconds:Number):Void

close():Void
pause(flag:Boolean):Void

play(name:Object, start:Number, len:Number, reset:Object)

publish(name:Object, type:String):Void

receiveAudio(flag:Boolean):Void

receiveVideo(flag:Object):Void

seek(offset:Number):Void

send(handlerName:String):Void

setBufferTime(bufferTime:Number)

Event handlers

onResult(streamId:Number)

onStatus(info:Object):Void

Number Class

The Number class is a wrapper class for primitive numeric data.

Constructor

Number(value:Object)

Class properties

MAX_VALUE:Number NEGATIVE_INFINITY:Number

MIN_VALUE:Number POSITIVE_INFINITY:Number

NaN:Number

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Object Class

Th Object class is the base class for all other classes and the class for generic objects.

Constructor

Object()

Class properties

prototype:Object

Instance properties

constructor:Object
_ _proto_ _:Object

Class methods

registerClass(name:String, theClass:Function):Boolean

Instance methods

addProperty(name:String, getter:Function, setter:Function):Boolean

hasOwnProperty(name:String):Boolean[26]

isPropertyEnumerable(name:String):Boolean[35]

isPrototypeOf(theClass:Object):Boolean[35]

toLocaleString():String[35]

toString():String

unwatch(name:String):Boolean

valueOf():Object

watch(name:String, callback:Function, userData:Object):Boolean

[26] Undocumented

PrintJob Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The PrintJob class is used to print content from a movie, including dynamic and off-screen content. It
offers more functionality and detailed control than the global print() function. Available in Flash
Player 7 and later only.

Constructor

PrintJob()

Instance properties

orientation:String
pageHeight:Number
pageWidth:Number
paperHeight:Number
paperWidth:Number

Instance methods

addPage(target:Object, printArea:Object, options:Object, frameNum:Number):Boolean

send():Void
start():Boolean

Selection Class

The Selection class provides control over text field selections and movie input focus.

At runtime, the Selection class is actually a standalone, predefined object, not a
class. However, it is treated as a class by the compiler for the sake of type
checking. Hence, the Selection class has no constructor.

Constructor

None

Class methods

addListener(listener:Object):Void

getBeginIndex():Number
getCaretIndex():Number
getEndIndex():Number
getFocus():String

http://lib.ommolketab.ir
http://lib.ommolketab.ir

removeListener(listener:Object):Boolean

setFocus(newFocus:Object):Boolean

setSelection(beginIndex:Number, endIndex:Number):Void

Events broadcast to listeners

onSetFocus(oldFocus:Object, newFocus:Object):Void

SharedObject Class

The SharedObject class supports local data storage and remote data transmission.

Constructor

None (instances are created with SharedObject.getLocal() or SharedObject.getRemote())

Instance properties

data:Object

Class methods

getLocal(name:String, localPath:String):SharedObject

getRemote(name:String, remotePath:String, persistence:Object):SharedObject

Instance methods

close():Void
connect(myConnection:NetConnection):Boolean

flush(minDiskSpace:Number):Object

getSize():Number
send(handlerName:String):Void

setFPS(updatesPerSecond:Number):Boolean

Event handlers

onStatus(infoObject:Object):Void

onSync(objArray:Array):Void

Sound Class

The Sound class offers external sound-loading tools and control over sounds in a movie.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constructor

Sound(target)

Instance properties

duration:Number

id3:Object

ID3:Object[27]

position:Number

[27] Refers to id3 property

Instance methods

attachSound(id:String):Void

getBytesLoaded():Number
getBytesTotal():Number
getPan():Number
getTransform():Object
getVolume():Number
loadSound(url:String, isStreaming:Boolean):Void

onSoundComplete():Void
setPan(value:Number):Void

setTransform(transformObject:Object):Void

setVolume(value:Number):Void

start(secondOffset:Number, loops:Number):Void

stop(linkageID:String):Void

Event handlers

onID3():Void[28]

onLoad(success:Boolean):Void

[28] Supported in Flash Player 7 and later

Stage Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Stage class provides access to a movie's size, scale settings, and alignment.

At runtime, the Stage class is actually a standalone, predefined object, not a
class. However, it is treated as a class by the compiler for the sake of type
checking. Hence, the Stage class has no constructor.

Constructor

None

Class properties

align:String
height:Number
scaleMode:String
showMenu:Boolean
width:Number

Class methods

addListener(listener:Object):Void

removeListener(listener:Object):Void

Events broadcast to listeners

onResize():Void

String Class

The String class is a wrapper class for the string primitive datatype.

Constructor

String(string:String)

Instance properties

length:Number

Class methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

fromCharCode(code_point1, ... code_pointn):String[29]

[29] Code points are not type checked, but should be type Number.

Instance methods

charAt(index:Number):String

charCodeAt(index:Number):Number

concat():String
indexOf(value:String, startIndex:Number):Number

lastIndexOf(value:String, startIndex:Number):Number

slice(index1:Number, index2:Number):String

split(delimiter:String):Array

substr(index1:Number, index2:Number):String

substring(index1:Number, index2:Number):String

toLowerCase():String
toUpperCase():String

System Class

The System class offers access to Flash Player and system settings and specifications.

At runtime, the System class is actually a standalone, predefined object, not a
class. However, it is treated as a class by the compiler for the sake of type
checking. Hence, the System class has no constructor.

Constructor

None

Properties

exactSettings:Boolean[30]

useCodepage:Boolean

[30] Supported in Flash Player 7 and later

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Methods

setClipboard(text:String):Void[31]

showSettings(tabID:Number):Void

[31] Supported in Flash Player 7 and later

System.capabilities Class

The System.capabilities class offers information about the Flash Player and its host system.

At runtime, the System.capabilities class is actually a standalone, predefined
object, not a class. However, it is treated as a class by the compiler for the
sake of type checking. Hence, the System.capabilities class has no constructor.

At runtime, the System.capabilities class is a property of the System object, but at compile-time, the
compiler treats capabilities as a class in the System package. These peculiarities are the unfortunate
consequence of updating Flash's built-in class and object library from ActionScript 1.0 to ActionScript
2.0.

Constructor

None

Class properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

avHardwareDisable:Boolean[32] language:String

hasAccessibility:Boolean localFileReadDisable:Boolean[41]

hasAudio:Boolean manufacturer:String

hasAudioEncoder:Boolean os:String

hasEmbeddedVideo:Boolean[33] pixelAspectRatio:Number

hasMP3:Boolean playerType:String[41]

hasPrinting:Boolean[43] screenColor:String

hasScreenBroadcast:Boolean[34] screenDPI:Number

hasScreenPlayback:Boolean screenResolutionX:Number

hasStreamingAudio:Boolean[43] screenResolutionY:Number

hasStreamingVideo:Boolean[43] serverString:String

hasVideoEncoder:Boolean version:String

input:String windowlessDisable:Boolean[35]

isDebugger:Boolean

[32] Supported in Flash Player 7 and later

[33] Supported in Flash Player 6.0.65.0 and later

[34] Supported in Flash Player 6.0.79.0 and later

[35] Undocumented

System.security Class

The System.security class is used to set cross-domain movie permissions.

At runtime, the System.security class is actually a standalone, predefined
object, not a class. However, it is treated as a class by the compiler for the
sake of type checking. Hence, the System.security class has no constructor.

At runtime, the System.security class is a property of the System object, but at compile time, the
compiler treats security as a class in the System package. These peculiarities are the unfortunate
consequence of updating Flash's built-in class and object library from ActionScript 1.0 to ActionScript
2.0.

Constructor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

None

Class methods

allowDomain(domain1, ...domainn):Void[36]

allowInsecureDomain(domain1, ...domainn):Void[37]

loadPolicyFile(URL:String):Void[38]

[36] Parameters not type checked

[37] Supported in Flash Player 7 and later; parameters not type checked

[38] No type specified for URL in 7.0.0 and 7.0.1

TextField Class

The TextField class is used to display and manipulate text on screen.

Note that the following properties are not defined by the TextField class but are erroneously listed in
the TextField.as intrinsic file for Flash MX 2004 and Flash MX Professional 2004 in versions 7.0.0 and
7.0.1.

_currentframe
_droptarget
_focusrect
_framesloaded
_totalframes

The legitimate properties and methods of the TextField class are listed next.

Constructor

None (use MovieClip.createTextField() or the authoring tool to create instances)

Instance properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

_alpha:Number _rotation:Number

autoSize:String scroll:Number

background:Boolean selectable:Boolean

backgroundColor:Number _soundbuftime:Number[39]

border:Boolean StyleSheet:TextField.StyleSheet[40]

borderColor:Number tabEnabled:Boolean

bottomScroll:Number tabIndex:Number

condenseWhite:Boolean _target:String

embedFonts:Boolean text:String

_height:Number textColor:Number

hscroll:Number textHeight:Number

html:Boolean textWidth:Number

htmlText:String type:String

length:Number _url:String

maxChars:Number variable:String

maxhscroll:Number _visible:Boolean

maxscroll:Number _width:Number

mouseWheelEnabled:Boolean*[41] wordWrap:Boolean

multiline:Boolean _x:Number

_name:String _xmouse:Number

_parent:MovieClip _xscale:Number

password:Boolean _y:Number

_quality:String[42] _ymouse:Number

restrict:String _yscale:Number

[39] Synonym for global property _soundbuftime

[40] Supported in Flash Player 7 and later. The syntax TextField.StyleSheet is a special case allowed only in the
built-in classes. In ActionScript 2.0, you cannot create nested classes such as TextField.StyleSheet.

[41] Supported in Flash Player 7 and later

[42] Synonym for global property _quality

Class methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getFontList():Array

Instance methods

addListener(listener:Object):Boolean

getDepth():Number
getNewTextFormat():TextFormat
getTextFormat(beginIndex:Number, endIndex:Number):TextFormat

removeListener(listener:Object):Boolean

removeTextField():Void
replaceSel(newText:String):Void

replaceText(beginIndex:Number, endIndex:Number, newText:String):Void

setNewTextFormat(tf:TextFormat):Void

setTextFormat():Void

Event handlers

onChanged(changedField:TextField):Void

onKillFocus(newFocus:Object):Void

onScroller(scrolledField:TextField):Void

onSetFocus(oldFocus:Object):Void

Events broadcast to listeners

onChanged(changedField:TextField):Void

onScroller(scrolledField:TextField):Void

TextField.StyleSheet Class

The TextField.StyleSheet class provides CSS stylesheet support for a text field. Available in Flash
Player 7 and later only.

At runtime, the StyleSheet class is actually defined as a static property of the
TextField class. Classes can be made properties of other classes only in
ActionScript 1.0. In ActionScript 2.0, it is illegal to assign a class as a property
of another class. Therefore, for the sake of type checking, the compiler must
treat StyleSheet as a class in the TextField package.

Constructor

StyleSheet()

Instance methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

clear():Void
getStyle(name:String):Object

getStyleNames():Array
load(url:String):Boolean

parse(cssText:String):Boolean

parseCSS(cssText:String):Boolean

setStyle(name:String, style:Object):Void

transform(style:Object):TextFormat

Event handlers

onLoad(success:Boolean):Void

TextFormat Class

The TextFormat class retrieves or sets a text field's visual formatting.

Constructor

TextFormat(font:String, size:Number, textColor:Number, bold:Boolean, italic:Boolean,

underline:Boolean, url:String, window:String, align:String, leftMargin:Number,

rightMargin:Number, indent:Number, leading:Number)

Instance properties

align:String leading:Number

blockIndent:Number leftMargin:Number

bold:Boolean rightMargin:Number

bullet:Boolean size:Number

color:Number tabStops:Array

font:String target:String

indent:Number underline:Boolean

italic:Boolean url:String

Instance methods

getTextExtent(text:String):Object

TextSnapshot Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The TextShapshot class represents static text fields in a movie. Available in Flash Player 7 and later
only.

Constructor

None (create instances using MovieClip.getTextSnapshot())

Instance methods

findText(startIndex:Number, textToFind:String, caseSensitive:Boolean):Number

getCount():Number
getSelected(start:Number, end:Number):Boolean

getSelectedText(includeLineEndings:Boolean):String

getText(start:Number, end:Number, includeLineEndings:Boolean):String

hitTestTextNearPos(x:Number, y:Number, closeDist:Number):Number

setSelectColor(color:Number):Void

setSelected(start:Number, end:Number, select:Boolean):Void

Video Class

The Video class provides control over captured or streaming video.

Constructor

None (create Video instances with the authoring tool)

Instance properties

deblocking:Number
height:Number
smoothing:Boolean
width:Number

Instance methods

attachVideo(source:Object):Void

clear():Void

XML Class Extends XMLNode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The XML class provides DOM-based support for XML-structured data.

Constructor

XML(text:String)

Instance properties

contentType:String
docTypeDecl:String
ignoreWhite:Boolean
loaded:Boolean
status:Number
xmlDecl:String

Instance methods

addRequestHeader(header:Object, headerValue:String):Void[43]

createElement(name:String):XMLNode

createTextNode(value:String):XMLNode

getBytesLoaded():Number

getBytesTotal():Number

load(url:String):Boolean

parseXML(value:String):Void

send(url:String, target:String, method:String):Boolean

sendAndLoad(url:String, result:XML):Void

[43] Supported in Flash Player 6.0.65.0 and later

Event handlers

onData(src:String):Void

onLoad(success:Boolean):Void

XMLNode Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The XMLNode class is the superclass of the XML class. It contains operations required by a node in an
XML DOM tree.

Constructor

XMLNode(type:Number, value:String)

Instance properties

attributes:Object
childNodes:Array
firstChild:XMLNode
lastChild:XMLNode
nextSibling:XMLNode
nodeName:String
nodeType:Number
nodeValue:String
parentNode:XMLNode
previousSibling:XMLNode

Instance methods

appendChild(newChild:XMLNode):Void

cloneNode(deep:Boolean):XMLNode

hasChildNodes():Boolean
insertBefore(newChild:XMLNode, insertPoint:XMLNode):Void

removeNode():Void
toString():String

XMLSocket Class

The XMLSocket class provides support for a persistent client/server TCP/IP connection, typically used
to implement multiuser applications. For numerous examples, see http://www.moock.org/unity.

Constructor

XMLSocket()

Instance methods

close():Boolean
connect(url:String, port:Number):Boolean

send(data:Object):Boolean

Event handlers

http://www.moock.org/unity
http://lib.ommolketab.ir
http://lib.ommolketab.ir

onClose():Void
onConnect(success:Boolean):Void

onData(src:String):Void

onXML(src:XML):Void

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Appendix B. Differences from ECMAScript
Edition 4
Table B-1 reflects important intentional differences between Flash ActionScript 2.0 and the
ECMAScript Edition 4 standard (available at: http://www.mozilla.org/js/language/es4). At the time of
writing, the ECMAScript Edition 4 specification is still very much under development; hence,
additional important differences may not be listed here, and certainly many minor differences are not
listed. Most of ActionScript 2.0's divergences from the ECMAScript Edition 4 standard are the result of
either the standard's ongoing volatility or an architectural limitation imposed by the Flash Player
platform. Finally, Table B-1 does not reflect any bugs that may exist in ActionScript's implementation
of the standard.

Table B-1. Differences between ECMAScript Edition 4 and ActionScript 2.0

Topic Description

Code in class
definition block

In ActionScript 2.0, class definition blocks can contain only variable and function
definitions. In ECMAScript 4, "A Class Definition's Block is evaluated just like any
other Block, so it can contain expressions, statements, loops, etc. Such statements
that do not contain declarations do not contribute members to the class being
declared, but they are evaluated when the class is declared."

Nested classes
ActionScript 2.0 does not allow any form of nested classes. ECMAScript 4 allows a
class to be defined as a static member of another class.

Class
attributes

ActionScript 2.0 does not support ECMAScript 4's final class attribute, but adds its
own custom attribute, intrinsic. See Chapter 4.

Method
overriding

ActionScript 2.0 has no overriding restrictions. ECMAScript 4 requires an overriding
method to use the override attribute and to have the same name, number of
parameters, and parameter types as the overridden method. See Chapter 6.

Property
enumeration

According to the ECMAScript 4 specification, instance properties should be
nonenumerable unless they are defined with the enumerable attribute. In
ActionScript 2.0, instance properties become enumerable once assigned a value.
ActionScript 2.0 does not support the enumerable attribute. See Chapter 4. Refer
to the Object.isPropertyEnumerable() method.

Interfaces
ECMAScript 4 does not include ActionScript 2.0's interface construct. See Chapter
8.

http://www.mozilla.org/js/language/es4
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Topic Description

Member
access

ActionScript 2.0 provides only two levels of member access: private and public. In
ActionScript 2.0, private members are accessible to subclasses. In ECMAScript 4,
members can be private, internal, or public, where internal means package access
only and private means class access only (not subclass).

Packages

Packages are part of ActionScript 2.0 but were removed from the ECMAScript 4
specification due to time constraints. ActionScript 2.0's implementation of
packages depends on the filesystem (like Java), not on ECMAScript 4's package
statement. The semantics of the import statement in ActionScript 2.0 vary slightly
from those in ECMAScript 4. See Chapter 9.

 < Day Day Up >

Member
access

ActionScript 2.0 provides only two levels of member access: private and public. In
ActionScript 2.0, private members are accessible to subclasses. In ECMAScript 4,
members can be private, internal, or public, where internal means package access
only and private means class access only (not subclass).

Packages

Packages are part of ActionScript 2.0 but were removed from the ECMAScript 4
specification due to time constraints. ActionScript 2.0's implementation of
packages depends on the filesystem (like Java), not on ECMAScript 4's package
statement. The semantics of the import statement in ActionScript 2.0 vary slightly
from those in ECMAScript 4. See Chapter 9.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of Essential ActionScript 2.0 is the coral snake (Micrurus fulvius tenere). This
highly dangerous snake is found in the southeastern states of North America and can also be found in
Mexico. It likes wet, humid, and thick foliage-littered forests, but can be found in any environment.

The coral snake is recognized by its vibrant red, yellow and black bands. These colors ward off would-
be attackers. On the head and tail are bands of black and yellow; on the midsection are black, yellow,
and red bands. The red bands are always adjacent to the yellow bands. The average length of a
snake is 24 inches, with a maximum length of 47 inches. The coral snake is the only venomous snake
in North America to hatch its young from eggs.

Coral snakes have short, grooved, and hollow fangs located at the front of the mouth. They feed on
lizards and other snakes. Coral snakes bite their prey to inject neurotoxic venom, which paralyzes the
victim; however, unlike snakes of the viper family, which use a stabbing method, when a coral snake
bites its victim, it hangs on for a long time to inject as much venom as possible. Coral snakes are
seldom seen, due to their habit of living underground, or in cracks and crevices, and their nocturnal
tendencies. Coral snakes usually do not bite humans unless handled. If a human or pet is bitten,
treatment should take place as soon as possible, since coral snake bites are often fatal.

Sarah Sherman was the production editor and proofreader, and Norma Emory was the copyeditor for
Essential ActionScript 2.0. Colleen Gorman and Claire Cloutier provided quality control. Ellen
Troutman-Zaig wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The
cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the
cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Julie Hawks to FrameMaker
5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra
that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear
in the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and
Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This colophon was
written by Janet Santackas.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Ellie Cutler) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, Ellie Cutler, and Jeff Liggett.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

. (dot) operator

. (dot), representing current directory

() (function call) operator

 invoking accessor methods without

[] operator, type checking and

{ } (curly braces)

 delineating statement block 2nd

 interface method declarations and

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

abstract classes, not supported

AbstractController class (example)

AbstractView class (example)

access control modifiers

 ActionScript, Java, and C++

 differences between ECMAScript 4 and ActionScript 2.0

 public and private constructor functions

 public and private method attributes

 public and private property attributes

 visibility modifiers vs.

Accessibility class

accessor methods 2nd

 creating in ActionScript 1.0

 getter 2nd

 inability to define as private

 setter

 return values

actions layer [See scripts layer]

ActionScript 1.0

 changes to, in Flash Player 7

 in Flash Player 6 and 7

 MovieClip, subclassing

 packages, simulating

ActionScript 2.0

 ActionScript 1.0 versus

 differences from ECMAScript Edition 4

 in Flash Player 6 and 7

 links to resources

 object-oriented programming syntax

 unit testing tool

addObj() (EventListenerList)

addProperty() (Object)

algorithms, design patterns vs.

animations, using timeline for

API (application programming interface)

 ActionScript 2.0 interface vs.

 changes to

 class code revision and

 designing

application framework, OOP

 .fla file (Flash document)

 classes

 directory structure

 document timeline

 projects in Flash MX Professional 2004

application state

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 changes in

 changing for clock MVC application

 corresponding labeled frames in timeline

 initial, setting

 model class, MVC pattern 2nd

 no storage of

 setting, using class properties

applications

 object-oriented 2nd [See also object-oriented programming]

 starting

 timeline-based

architecture, design patterns vs.

Arguments class

arguments, method

 arguments object

 invoking methods with missing arguments

 method accepting unknown number of arguments

Array class

array-sorting capabilities (Flash Player 7)

arrays

 problems casting to Array type

 type checking and

.as (class) files

 .fla file in same directory

 accessing in packages with classpath

 creating for ImageViewerDeluxe

 creating for OOP Flash application

 naming of

 storage directory for, adding to classpath

 types of

 writing for ImageViewer

<asset> tag, listing class excluded from .swf file in

assignment

 instance of a subclass to a variable

 of property values

attachMovie() (MovieClip)

attributes

 class 2nd

 dynamic

 intrinsic

 constructor, public and private only

 method

 public and private

 static attribute 2nd

 property

 final

 global variables vs. class properties

 private and public

 static property attribute

 subclasses and class properties

authoring tools

 Flash, different versions of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 OOP development support

avatar chats

Avatar class (example)

 AvatarSymbol movie clip

 code

 composition version

 creating instances of

 initializing instances

 linking AvatarSymbol movie clip

AvatarSymbol (example), building timeline and contents

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

base class

binding, dynamic

booleans

 Boolean class

 problems casting to Boolean type

 string conversions (ActionScript 1.0), in Flash Player 7

border, adding to loaded image

Box class (example), completing

break statement (in try block)

broadcasting events [See delegation event model]

browsers

 .swf file playback in web browsers

 testing application in

Button class

bytecode, compiling classes to

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

C++

 access control modifiers

 type declaration syntax

call stack

callback functions

Camera class

capitalization conventions for classes and packages

cascading stylesheet (CSS)

 TextField.StyleSheet class

case sensitivity

 class names and class files

 constructor function names

 identifiers, changes in Flash Player 7

 names of interfaces and their .as files

 strict, Flash Player 7

 support by language, file format, and Flash Player version

casting 2nd

 conversion vs.

 member selection and

 problems with

 return type of MovieClip to its subclass type

 runtime support

 success of, proving with instanceof

 terminology

catch blocks [See try/catch/finally statements]

character encodings, .as files

chat application (example)

 ChatRoom class, property and methods

 inheritance, ChatRoom and AvatarChatRoom classes

checked exceptions 2nd

child classes

class attributes [See attributes, class]

class body

class files [See .as files]

class hierarchy

class keyword 2nd

class libraries, distributing

 sharing class source files

 loading classes at runtime

 sharing classes without source files

 creating compile-time library

 creating runtime library

 runtime vs. compile time

class member, class property, and class method

class methods

 class name in invocation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 defining in ActionScript 1.0

 defining with static attribute

 inheritance of

 limitations of

 member access from

 overriding

 private class properties, access to

 this (keyword)

class properties 2nd

 ActionScript 1.0

 enumeration with for-in loop

 global variables vs.

 ImageViewer class (example)

 inheritance of

 inherited, bug in ActionScript 2.0

 overriding 2nd

 subclasses and

class statement

class variables

classes 2nd

 abstract and final, not supported

 accessing within packages

 ActionScript 2.0, compiled to .swf file

 adding properties to

 association of movie clip symbols to

 built-in

 augmenting

 datatype information for

 event handling from

 subclassing

 casting [See casting]

 code in class definition blocks

 compiling

 completing Box class (example)

 constructor functions 2nd

 default property values vs.

 multiple, simulating

 this (keyword), using

 corresponding to movie clip symbols

 creating for class library

 as custom datatypes

 defining

 attributes

 class declaration

 methods and properties (members)

 dynamic, built-in

 event object

 EventObject class

 event source

 exported on frame later than 1

 extending

 fully qualified references to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 implementing interfaces

 inheritance 2nd [See also inheritance]

 linking with movie clip symbols

 methods

 accessor 2nd

 defining

 extra or missing arguments

 local variables

 method attributes

 nesting functions in

 referring to current object with this keyword

 movie, export frame for

 multidatatype, interfaces and

 MVC [See Model-View-Controller]

 name of class and external .as text file

 nested

 Object superclass

 OOP application

 properties

 compile-time constant expressions

 enumerating with for-in loops

 property attributes

 sharing source files

 sharing without source files

 creating compile-time library

 creating runtime library

 runtime vs. compile time

 single instance of [See Singleton design pattern]

 syntax

 unqualified references to

 writing

 designing ImageViewer class 2nd

 ImageViewer implementation (v. 2) 2nd

 ImageViewer implementation (v. 3)

 ImageViewer, using in a movie

 implementation

 steps in creating class

 steps in using class in Flash

 subclass

Classes directory

ClassLoader class

classpaths

 class files in

 document

 global

 package access and

 adding new directory

 relative

cleaning up class resources

cleaning up object references before object deletion

clock application (MVC example)

 classes, listing of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Clock class

 ClockAnalogView and ClockDigitalView classes

 ClockController class

 ClockModel class

 ClockTools class

 ClockUpdate class

code

 in class definition blocks

 examples in this book

 hints for built-in classes and components

 reuse of, inheritance and

 theft of source code

Color class

command-line compilation, JSFL script

comments, JavaDoc style

communication in MVC pattern

compatible types

 null and undefined

compilation

 command-line, JSFL script

 excluding classes from runtime loading

 no-source class library, incorporating at runtime vs. compile time

compile-time casting, leniency of AS2

compile-time constant expressions

compile-time type checking, runtime vs.

compilers

 exportation of .swf files

 nested assets, not automatically recognized

 resolution of unqualified member references

 specifying ActionScript version for .swf file

component metadata tag

components 2nd

 code hints for

 compiling frequently used MovieClip subclass as

 creating compile-time class library as

 creating classes in class library

 creating component class

 creating component icon

 creating the component

 distributing the component

 testing the component

 creating runtime class library as

 currency converter [See currency converter application]

 datatype information for built-in classes

 Flash MX 2004, v2

 key new features

 listing of v1 and v2 components

 handling component events 2nd

 initialization by Flash Player

 visual development practices

composition

 Avatar class (example)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 class use of movie clip via

 datatype implementations used via

 implementing Observer pattern with

 inheritance vs.

 Has-A (composition) relationship

 when to use composition

conditionals, ActionScript 2.0

/Configuration/Classes directory

constants

 compile-time constant expressions

 property values, protecting from change

constructor functions 2nd

 class methods defined on, ActionScript 1.0

 CurrencyConverter class (example)

 default property values vs.

 EventObject class, passing event source reference to

 ImageViewer class, setting target clip and depth

 MovieClip subclasses and

 multiple, simulating

 omitting

 parameter values passed with new operator

 public or private

 in subclasses

 problems in Flash 6

 this (keyword), use of 2nd

 writing (ImageViewer class example) 2nd

ContextMenu class 2nd

ContextMenuItem class 2nd

continue statement (in try block)

control flow changes in try/catch/finally

controller, MVC 2nd [See also Model-View-Controller]

 ClockController class (example)

 implementation of

 AbstractController class

 Controller interface

 responsibilities of

converting datatypes, casting vs.

createClassObject() (UIObject)

createMenu() (Menu)

cropping loaded images

cross-domain policy files

CSS (cascading stylesheet)

 support for text fields (Flash 7 Player)

 TextField.StyleSheet class

currency converter application (example)

 CurrencyConverter class

 code

 constructor

 converting currency from user input

 creating user interface

 exporting final application

 importing components package

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 main()

 properties

 handling component events

 classes for event-consumer objects

 event handler function, using

 EventProxy class

 listener function, using

 listener objects, using

 techniques, summary of

 preparing Flash document

 adding components

 starting the application

current directory, represented by a period (.)

CVS (version control software)

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

data and logic, management by MVC model class

datatypes

 ActionScript 2.0, quick reference

 ActionScript, online primer

 built-in classes, information for

 casting

 compile-time, leniency of AS2

 conversion vs.

 member selection and

 problems with

 runtime support

 terminology

 converting numbers to strings

 declaration of

 method parameters and return values

 for properties

 variables and properties

 defined by interfaces

 dynamic typing

 indicating for method parameters

 multidatatype classes, interfaces and

 multiple type inheritance with interfaces

 overridden instance methods and

 post-colon syntax

 property

 redeclaring

 return type, defining for method return value

 static typing

 reasons for

 weak

 strict, static, and strong typing

 strongly typed languages

 subclasses as subtypes

 type and subtype

 type checking

 ActionScript 2.0 features for

 built-in dynamic classes

 casting

 circumventing type checking

 compatible types

 declaring datatypes

 fixing datatype mismatch error

 incompatible types

 mistaken datatype assumption

 quirks and limitations of

 static typing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Void

Date class 2nd

 getDay()

 problems casting to Date type

debugging messages, using to distinguish among exceptions

declarations

 class

 interface methods

declaring datatypes

 method or parameters and return values

 post-colon syntax

 variables and properties

delegation event model 2nd 3rd

 core implementation

 EventListener interface

 EventListenerList class

 EventObject class

 flow of logic

 NightSky (example)

 event source, Randomizer class

 NightSky class 2nd

 overall structure

 Randomizer class

 RandomizerEvent class 2nd

 RandomizerListener interface 2nd

 structure and participants

 event object

 event source

 Observer pattern vs.

deleting

 class resources

 event-listener objects

 objects

depths, movie clips

 unique, supplying for ImageViewer class instances

derived class

design patterns 2nd 3rd

 benefits of

 definition of

 delegation event model 2nd

 core implementation

 flow of logic

 structure and participants

 Model-View-Controller (MVC) 2nd

 clock application

 general architecture

 implementation

 online articles about

 Observer

 implementing in ActionScript 2.0

 Logger (complete example)

 memory management issues

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 real world event handling and

 Singleton

 implementing in ActionScript 2.0

 in Logger class

 static methods and properties vs.

 using as globals, warning against

designing ActionScript 2.0 class

 functional requirements, establishing

 ImageViewer, redesign summary

 moving from functional requirements to code

diagramming classes

die() (Box class example)

directories included in global classpath

directory structure

 defining for packages

 OOP application

disambiguating method parameter from the property

displaying

 image load progress

 images

 shapes (graphics application example)

dividing by zero

document classpath

 adding new directory to

 class files in

DOM-based support for XML-structured data

domain (or problem domain)

domain names

 Domain Name System (DNS)

 naming classes and packages after

domains, cross-domain policy files

doNothing() (ClassLoader)

dot (.) operator

downcasts

 avoiding error-checking with

 MovieClip return type to its subclass return type

 unsafe cast

drag-and-drop visual development

duration property (Sound class)

dynamic binding

 containment of code changes

dynamic class attributes

dynamic class library

 static class library vs.

 testing

dynamic classes

 built-in

 new methods and properties added to

 properties added to

dynamic properties

 enumeration of

dynamic typing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 type checking and

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

ECMAScript 3 standard

ECMAScript 4 standard 2nd

 enumerable attribute

 Flash ActionScript 2.0, differences from

 nonenumerable instance properties

 static typing

 visibility

empty interfaces

encapsulation

enumerable attribute (ECMAScript 4)

errors [See also exceptions]

 datatype-related, benefits of

 Error class

 message property

 subclassing for error conditions

 methods in a class with same name

 nonexistent methods and properties

 nonexistent methods and properties, typed return value

 nonexistent properties

 Object type and

 runtime

 this (keyword), illegal use of

 type mismatch 2nd

 dynamic classes and

event handlers, classes as

event handling

 from ActionScript built-in classes and Flash v2 components

 click(), ClockController class (example)

 component events

 classes for event-consumer objects

 event handler functions

 generic listener objects

 listener functions

 mapping component events to object method calls

 techniques, summary of

 weaknesses of v2 architecture

 interfaces used for, naming of

 Observer pattern and

event listeners

 classes and interfaces

 EventListener interface

 generic listener objects 2nd 3rd

 logic flow, delegation event model

 NightSky class (example) 2nd

 using in application

 RandomizerListener subinterface (example)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 typed listener objects

event source

 classes, list of

 logic flow, delegation event model

 multiple event types from single source

 Randomizer class (example) 2nd

 reference, passing to EventObject class

event-consumer objects, marker interfaces as

EventListener class

EventListenerList class 2nd 3rd

EventObject class 2nd

 passing event source reference to constructor

 RandomizerEvent subclass (example)

EventProxy class (example)

events

 broadcasting mechanism [See Observer design pattern]

 component, handling

 event handler function, using

 EventProxy class (example)

 listener function, using

 listener objects, using

 summary of techniques

 delegation event model 2nd

 deleting event listeners registered with event source

example code

exception handling

exceptions

 control flow changes in try/catch/finally

 exception bubbling

 uncaught exceptions

 exception-handling cycle

 finally block (try/catch/finally statement)

 Flash 7.0 required for ActionScript 2.0 exception handling

 handling multiple types of

 determining error granularity

 handling, limitations in ActionScript 2.0

 no built-in exceptions

 no checked exceptions

 performance issues

 nested

 bug in Flash Player 7

exclusion XML file

 creating

explicit casting

export frame for movie classes

 frames later than 1

 specifying

exporting

 .swf files in format compatible with specific versions of Flash Player

 .swf files with ActionScript 2.0 compiler

 currency converter application

 Flash Player 6 and Flash Player 7 format movies

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ImageViewer .swf file

 variables to an external source

expression of a throw statement

 received by catch block as a parameter

extending classes

 inheritance relationship, setting up

 MovieClip, subclasses

 nonextendable built-in classes

extends keyword 2nd 3rd

Extreme Programming (web site)

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

file extension for class files (.as)

final classes, not supported

final property attribute

finally block [See try/catch/finally statements]

fixed properties

Flash

 .fla files

 accessing packaged class through classpath

 application state frames, adding to timeline

 class files, accessing through classpath

 creating

 timeline, OOP application

 components and movie clips

 components, using (online help)

 design patterns

 example code and online resources

 object-oriented applications, starting

 procedural and OOP, support of

 versions

 naming conventions in this book

Flash Exchange, v1 component update for ActionScript 2.0

Flash MX 2004

 bug in catch block parameters

 code hints

 components, v2

 listing of v1 and v2 components

 datatype information for built-in classes

 instrinsic files, errors in

 static class library

Flash MX Professional 2004

 .as (class) file, creating

 .as file, creating

 components

 complete listing of

 creating a class

 intrinsic files, errors in

 projects in

 Screens feature

 Visual Basic style forms-based development (Screens)

 visual development, online help for

Flash Player

 .swf file versions, changing ActionScript for

 retrieving MP3 files for playback in

 setting version for a movie

 version 4

 slash syntax 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 version 6

 .swf files exported to 2nd

 ActionScript 1.0 and 2.0 in

 extraneous superclass constructor invocation

 movies upgraded to Flash Player 7

 runtime casting in .swf files, not supported

 version 7

 ActionScript 1.0 and 2.0 in

 array-sorting capabilities

 case sensitivity, strict

 changes to ActionScript 1.0

 features introduced by

 MovieClipLoader class

 nested exception bug

 required for ActionScript 2.0 exception handling

 string conversion

 undefined values

flowing text around images

for-in loops, enumerating properties with

Forms

frames

 as application states

 application state, adding to .fla file timeline

 export frame for movie classes

 labeled, AvatarSymbol (example)

 later than 1, classes exported on

fully qualified references

function call operator ()

 invoking accessor methods without

function keyword

function keyword, method attributes and

function libraries, stored by built-in classes

Function objects

function statement

functions [See also methods]2nd

 constructor [See constructor functions]

 declaring parameters and return value datatypes

 event handler

 Function class

 global

 listener

 nesting in methods

 access to local variables and parameters

 current object, acessing

 wrapping

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

getDay() (Date)

getListeners() (EventListenerList)

getSource() (EventObject)

getter and setter method syntax

getter methods 2nd 3rd

 automatic invocation by setter method

 creating in ActionScript 1.0

 defining

 invoking without function call operator ()

global classpath

 adding new directory to

 class files in

global functions

global properties

global variables

 class definitions as

 class properties vs.

 inability to type

globals, Singletons as

gModeler

gotoAndPlay() (MovieClip)

granularity

 determining for exception types

graphics application displaying shapes (example)

GUIs (graphical user interfaces) [See also currency converter application]

 ActionScript 2.0 interfaces vs.

 currency converter application

 Java Component class

 MVC design pattern

 benefits of

 management by view class

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Has-A relationship 2nd

hierarchy, class 2nd 3rd [See also inheritance]

HTML page that includes movie

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

icons, creating for components

ID3 v2 tag

identifiers

 ActionScript 2.0 reserved words as

 case sensitivity, changes in Flash Player 7

image loading events, methods that handle

images in text fields, support for

ImageViewer class (example) 2nd [See also ImageViewerDeluxe subclass]

 creating the class, steps in

 designing

 functional requirements to code

 functional requirements, establishing

 download site for code

 implementation, version 1

 implementation, version 2

 completed code

 redesign, summary of

 using in Flash movie

 implementation, version 3

 completed code

 using in a Flash movie 2nd

 .fla file

 exporting and testing .swf file

 instantiating timeline to frame 15

 preloading the class

ImageViewerDeluxe subclass (example)

 autosizing the image viewer

 setPosition() and setSize() methods

 skeleton of

 using

implementation

 ActionScript 2.0 class [See classes, writing ImageViewer class]

 interfaces 2nd 3rd

implements keyword 2nd 3rd

implicit casting

import keyword

import statements

 #include directives vs.

 importing entire package

 unqualified class references, using

importing components package for currency converter

#include directive, import statement vs.

indexOf()

infinity

info object

inheritance 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 abstract and final classes, not supported

 augmenting built-in classes and objects

 base class and derived class

 benefits of

 chat application (example)

 AvatarChatRoom and ChatRoom classes

 ChatRoom class

 class hierarchy or inheritance tree

 class method and class property

 class properties, bug in ActionScript 2.0

 composition vs.

 constructor functions in subclasses

 problems in Flash 6

 custom classes, from MovieClip

 extending a class

 extends keyword, using

 interfaces

 multiple type

 misuse of, Logger class (example)

 MovieClip subclasses

 composition vs.

 subclassing of

 MovieClip, in ActionScript 2.0

 overriding

 best practices for

 class methods

 instance methods

 member access from class methods

 member access from instance methods

 properties

 overuse of

 polymorphism and dynamic binding

 Singleton pattern and

 subclassing built-in classes

inheritance tree

#initclip directive

 subclassing MovieClip in ActionScript 1.0

initializing

 instances of Avatar class, composition version

 movie clip hierarchy in a movie

 MovieClip subclass instances

initObj parameter (MovieClip.attachMovie())

input, user [See user input]

instance member

instance methods

 class methods vs.

 inheritance of

 member access from

 inherited instance methods

 overridden instance methods

 overriding instance methods

 overridden, invoking

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 overriding

 this (keyword), use of

instance properties 2nd 3rd [See also properties]

 container_mc (ImageViewer)

 enumeration of

 identifiers for

 ImageViewer class (example)

 inheritance of

 overridden

 access by super keyword

 overriding

instance variables

instanceof operator

instances 2nd

 adding new methods and properties to

 Avatar class (example), initializing

 considerations in class design

 relationship of on-stage movie clip to its library symbol

instantiation

interactive animation, use of timeline

interface (object)

interface keyword 2nd

interface statement 2nd

interfaces

 ActionScript 2.0, difference from ECMAScript 4

 casting to super- or subinterface

 event listener

 implementation of

 implements keyword

 multidatatype classes and

 multiple type inheritance with

 public [See API]

 reasons to use

 subinterface and superinterface

 syntax and use

 .as file, creating

 creating an interface

 implementation by classes

 inheritance

 marker interfaces

 naming conventions

intrinsic class attributes

intrinsic class definition

intrinsic files (Flash MX 2004 and Flash MX Professional 2004), errors in

intrinsic keyword 2nd

invoking methods

Is-A relationship 2nd

 MovieClip class and Avatar subclass (example)

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Java

 access control modifiers

 checked exceptions

 delegation event model

 design patterns

 finally block

 main()

 member overriding rules

 method signatures

 overridden instance properties

 overridden property access

 private and public attributes

 type declaration syntax

 unit test, writing in

 user interface class, Component

JavaDoc commenting style

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Key class

keywords

 class 2nd

 extends 2nd 3rd

 function 2nd

 implements 2nd 3rd

 import

 interface 2nd

 intrinsic 2nd

 private and public

 super 2nd

 this [See this]

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

labeled frames

labels layer

language code

late binding [See also dynamic binding]2nd

 advantages of

listener function

listeners

 classes as

 cleaning up before deleting class instance

 clock MVC application (example)

 currency conversion application

 event listeners

 logic flow, delegation event model

 event-consumer objects, marker interfaces as

 EventListener interface

 EventListenerList class 2nd

 interfaces used as

 listener function

 listener objects, event handler functions vs.

 RandomizerListener interface (example)

 unregistering before deleting

load components layer

load-progress display

loading

 application state

 data and content from external domain

loading classes

 MovieClipLoader class

 at runtime

loading images

 image-loading events, methods for

 loadImage() method (example)

 displaying load progress

 wrapping in loadMovie()

loading message, displaying while movie loads

loadMovie()

 dynamic class library, loading

loadSound() (Sound) 2nd

LoadVars class

local variables

 accessibility to functions nested in methods

 performance improvement with

 properties with same name

 stored in registers

LocalConnection class

Logger (Observer pattern example)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 implementing Observer with composition

 Logger class

 inheritance misuse

 using

 LogMessage class

 OutputPanelView class

 TextFieldView class

Logger class (example)

 inheritance, misuse of

 Singleton pattern in

logic and data, management by MVC model class

logic flow, delegation event model

logical hierarchy, inheritance and

LogMessage class (example)

loops

 for-in, enumerating properties with

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Macintosh OS X, Classes directory

Macromedia

 Component Architecture

 Flash versions

 updated intrinsic files

main application state

main()

 Clock class (example)

 CurrencyConverter class (example)

 Java vs. Flash

 starting application by invoking

 starting currency converter application

marker interfaces

 EventListener interface

mask, applying to loaded image

Math class

MediaPlayback component

members

 access from class methods

 access from instance methods

 inherited instance methods

 overridden instance methods

 overriding instance methods

 access to, differences in ECMAScript 4 and ActionScript 2.0

 class

 overriding

 best practices for

 excessive use of

 selection of, casting and

memory loss from failure to clean up class resources

memory management issues, Observer pattern

Menu class, createMenu()

message property (Error class) 2nd

methods 2nd 3rd

 abstract, not supported

 accessor 2nd

 getter methods

 inability to define as private

 setter methods

 adding to built-in class at runtime

 adding to class instances

 arguments, extra or missing

 method accepting unknown number of arguments

 missing

 attributes of

 public and private attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 static 2nd

 class

 defining in ActionScript 1.0

 inheritance of

 class and instance, property declarations and 2nd

 clip-creation, adding to ImageViewer

 defining

 formal syntax, ActionScript 2.0

 final, not supported

 identified uniquely with method signature

 inheritance of [See inheritance]

 interface 2nd

 declarations of

 implementation of

 name conflicts with

 invocation, ActionScript 1.0 and 2.0

 invoking

 listed with code hints

 local variables

 member access from instance methods

 inherited instance methods

 overridden instance methods

 overriding instance methods

 MovieClip subclasses, using this with

 naming

 nested movie clip assets, initially undefined

 nesting functions in

 current object, accessing from function

 local variables and parameters, access to

 overloading 2nd

 overriding

 ActionScript 2.0 vs. ECMAScript 4

 best practices

 class methods

 instance methods

 Java rules for

 parameters of

 casting, problems with

 declaring datatype

 defining

 properties of, direct reference to

 public and private

 referring to current object with this keyword

 parameter/property name conflicts

 passing current object to a method

 redundant use of this

 return type, specifying explicitly

 return value, specifying type for

 signature

 statement block

 static class property, accessing

 static, Singleton pattern vs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 wrapping

Microphone class

model, MVC

 ClockModel class (example)

 ClockUpdate class (example)

 Observer pattern code, reuse for

 responsibilities of 2nd

Model-View-Controller (MVC) 2nd

 architecture

 class responsibilities

 classes, instantiating

 communication

 clock application (example)

 Clock class

 ClockAnalogView and ClockDigitalView classes

 ClockController class

 ClockModel class

 ClockTools class

 ClockUpdate class

 implementation

 classes and interfaces, listing of

 controller

 view

 online articles about

motion graphics

 NightSky (example)

 event listener class, NightSky

 event source, Randomizer class

 EventListener subinterface, RandomizerListener

 EventObject subclass, RandomizerEvent

 NightSky class

 overall structure

 Randomizer class

 RandomizerEvent class

 RandomizerListener interface

 using NightSky class in application

 timeline, use for

Mouse class

mouse wheel support in text fields

movie clip symbols [See symbols, movie clip]

movie clips

 clip-creation methods (ImageViewer)

 nested, Flash Player initialization of

 removing for deleted class instances

 subclassing

 timeline code, type checking and

MovieClip class 2nd

 composition vs. inheritance

 extended by ClassLoader

 improved depth management methods

 subclasses

 ActionScript 1.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Avatar class (example)

 movie clip symbol and ActionScript class

 nested assets, issues with

 subclassing of

 this (keyword), using

MovieClipLoader class 2nd 3rd

 listener list

 methods to handle image loading events

movies [See also .swf files]

 Flash Player 6 format movie upgraded to Flash Player 7 format

 Flash Player 7 format

 format for OOP application

 setting ActionScript and Flash Player versions

 size, scale settings, and alignment (Stage class)

MP3 files

 external, retrieving for playback in Flash Player

 ID3 v2 tag, support for

multithreaded languages, finally block in

MVC [See Model-View-Controller]

MX family of products

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

name property (Error class)

namespace collision

 importing classes with same name from different packages

namespaces

 nested packages in

naming conflicts

 interface method names

 managing for parameters/properties

 package or class, avoiding

 properties and local variables with same name

naming conventions

 interfaces

 interfaces and their .as files

 packages 2nd

NaN (not-a-number) values

nested assets, issues with

 not automatically recognized by compiler

 properties and methods, initially undefined

nested classes

nested exceptions

 bug in Flash Player 7

nested functions

 access to local variables and parameters defined in a method

 accessing current object from

nesting packages

NetConnection class

NetStream class

new MovieClip() calls, ActionScript 1.0

new operator

 MovieClip subclass instances and

 parameter values passed to constructor function

not-a-number (NaN) values

null datatype

 casting to

 placeholder for missing method arguments

nullifying a method

Number class

numbers

 converting to strings

 problems casting to Number type

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Object class 2nd

 addProperty()

 event objects as instances of

 registerClass() 2nd

 root class of built-in hierarchy

object composition [See composition]

object references, using local variables instead of

object-oriented design (OOD)

object-oriented programming (OOP) 2nd

 ActionScript 1.0 vs. 2.0

 ActionScript 2.0 features

 application framework

 .fla file (Flash document)

 classes

 directory structure

 document timeline

 projects in Flash MX Professional 2004

 appropriate situations for

 classes 2nd [See also classes]

 syntax

 compilation

 datatypes defined by classes

 definition of

 design patterns [See design patterns]

 encapsulation

 inheritance 2nd [See also inheritance]

 key concepts

 packages

 starting applications

objects 2nd [See also object-oriented programming]

 built-in, augmenting

 casting to supertype or subtype

 classes as templates for

 converting to strings [See serialization]

 creating 2nd

 current object, referring to with this keyword

 error

 event-consumer

 info object

 instances

 interface

 properties and methods, code hints for

 references to, cleaning up before deleting object

 serialization of

 using

Observable class (example) 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 model class (MVC) as subclass of

 source code

Observable interface (example)

Observer class [See Observer interface]

Observer design pattern 2nd 3rd

 delegation event model vs.

 implementing in ActionScript 2.0

 Logger (complete example)

 implementing using composition

 inheritance misuse in Logger

 Logger class

 Logger class, using

 LogMessage class

 OutputPanelView class

 TextFieldView class

 memory management issues

 model-view relationship in MVC

 multiple representations of a single body of data

 push and pull models

 real world event handling and

 responsibilities of the subject calss

 updated information to observers

Observer interface (example)

 implementation by AbstractView class

observers

online resources, Flash-related

onLoadError() (MovieClipLoader)

onLoadInit() (MovieClipLoader)

onLoadProgress() (MovieClipLoader)

onLoadStart() and onLoadComplete() (MovieClipLoader)

operating systems, location of Classes directory

operators, ActionScript 2.0

Òslash syntaxÓ for variables (Flash 4) 2nd

Output panel

 current time displayed in

 do-nothing setter that prints debug message to

 enumerable properties of obj in

 error message about nonexistant property

 error message about private member access

 error message about static member access

OutputPanelView class (example)

overloaded constructors, simulating

overloaded methods 2nd

overridden methods, inherited by derived class from base class

overriding

 best practices for

 class methods, member access and

 excessive, problems with

 instance methods

 invoking overridden method

 member access and

 methods, ActionScript 2.0 vs. ECMAScript 4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 properties 2nd

 code clarity and

 super keyword and overridden property access

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

packages 2nd

 accessing, classpath and

 adding directory to classpath

 class libraries vs.

 components, importing for currency converter

 defining

 differences between ECMAScript 4 and ActionScript 2.0

 simulating in ActionScript 1.0

 syntax

 import statement

 importing entire package

 naming 2nd

 nesting packages

parameters

 accessibility to functions nested in methods

 casting, problems with

 constructor functions, passing to

 declaring datatype of

 function, stored in registers

 interface methods

 managing name conflicts

 method, defining

 static typing

 undefined type

parent classes 2nd [See also inheritance]

parent function

paths

 package access and the classpath

 relative

performance

 cleaning up class resources

 exception handling

 improvements in ActionScript runtime performance

 improving with use of local variables

persistent client/server TCP/IP connections

playhead of movie clip, positioning

policy files, cross-domain

polymorphism

 abstract classes and

 containment of code changes

post-colon syntax, datatype declarations 2nd

PowerPoint-style slide presentations

preloading classes

 MovieClipLoader class

PrintJob class 2nd

private and public keywords 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

private attribute

 class methods used to access private properties

 constructor functions 2nd

 methods

 getter and setter

 methods and properties

 properties

 access to private properties

 accessor methods for

 read-only pseudo-properties vs.

problem domain

procedural programming

 appropriate situations for using

 combining with OOP in Flash movie

 timeline-based development

procedures

programming in ActionScript 2.0 vs. 1.0

projects, Flash MX Professional 2004

properties 2nd 3rd

 access to, ActionScript 1.0 and 2.0

 ActionScript 2.0 instance property definition

 added to classes

 adding to built-in class at runtime

 adding to class instances

 attributes of

 global variables vs. class properties

 private and public

 static

 subclasses and class properties

 class

 accessing

 inheritance of

 setting application state with

 class and instance

 declared outside of methods

 identifiers for

 ImageViewer

 compile-time constant expressions

 CurrencyConverter class (example)

 datatypes of

 declaring datatypes 2nd

 default values, constructors vs.

 defining

 not allowed in interfaces

 defining instance property

 dynamic

 enumerating with for-in loops

 enumeration of, ActionScript 2.0 vs. ECMAScript 4

 fixed

 formal definition syntax, ActionScript 2.0

 function of

 global

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 inheritance of [See inheritance]

 instance vs. dynamic

 listed with code hints

 local variables with same name

 method

 direct reference to

 managing name conflicts

 nested movie clip assets, initially undefined

 nested movie clip symbol assets, issues with

 overriding

 best practices

 class property

 code clarity and

 overridden instance property

 super keyword and overridden property access

 private, accessor methods for

 pseudo-properties backed by getter/setter methods

 static [See also static attribute]

 Singleton pattern vs.

 synonym for class properties

 static typing

 symbol Linkage properties

 undefined type

protected access control modifier

prototype property

 defining methods in ActionScript 1.0

prototype-based programming, ActionScript 1.0

public attribute

 constructor functions

 methods

 interface

 objects and methods

 properties

 defining property as public

 read-only pseudo-properties vs.

public interface [See API]

publishing HTML page that includes movie

push and pull models, Observer pattern 2nd

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

qualified references [See also unqualified member references]

 compiler conversion of unqualified to

qualifying a reference

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

read-only pseudo-properties, getter/setter methods

real-world situations, modeling

Rectangle class (ActionScript 2.0 and 1.0), Flash Player and

redefinition 2nd [See also overriding]

refactored code

refactoring

references

 fully qualified

 qualified and unqualified member references

 using local variables instead of

registerClass (Object)

registers

relative paths

removeObj() (EventListenerList)

reserved words

 ActionScript 2.0, used as v1.0 identifiers

return statement in try/catch/finally

return values

 declaring datatype of

 defining datatype for method return

 interface method return types

 setter methods 2nd

 static typing

 Void return type

runtime errors

runtime performance

 ActionScript, improvements in

 static typing and

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

safe casts

scope, overridden class members and

Screens 2nd

scripts layer

Selection class

serialization

 classes implementing Serializable interface

 Serializable interface

setSize() (ClassLoader)

setter methods 2nd

 automatic invocation of getter method

 creating in ActionScript 1.0

 defining

 invoking without function call operator ()

 return values 2nd

setVolume() (Sound)

shapes displayed by graphics application (example)

SharedObject class

sharing class libraries [See class libraries, distributing]

signature, method

 public class methods

single-threaded languages, finally block

Singleton design pattern 2nd

 implemented in Logger class (example)

 implementing in ActionScript 2.0

 Singleton class code

 singletons as globals, warning against

 static class methods and properties vs.

Slides

Sound class 2nd

 loadSound()

source code theft

specializing a class

Stage

 movie clip symbol, physical incarnation on

Stage class

standalone functions

starting object-oriented application

startup code in main() method

statement block

 placement of curly braces

states

 application [See application state]

 subject class, broadcasting to interested objects

static attribute [See also class methods; class properties]

 class methods and properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 members, properties, and methods

 methods 2nd

 methods and properties, Singleton pattern vs.

 properties 2nd

 accessing through a method

 enumerating static properties with for-in loop

 inherited, bug preventing access to

 naming convention

static class library, dynamic library vs.

static function libraries

static methods 2nd [See also class methods; static attribute]

static typing 2nd

 datatype information for built-in classes

 reasons for

 runtime performance and

 weak

strict data typing

String class

strings

 ActionScript 1.0, conversions in Flash Player 7

 converting numbers to

 converting objects to [See serialization]

 problems casting to String type

strongly typed languages

stylesheets [See CSS]

 CSS support for Flash Player 7 text fields

 TextField.StyleSheet class

subclasses 2nd

 access to private property of superclass

 accessing inherited class methods/properties

 casting to

 class properties and

 constructor functions in

 problems in Flash 6

 of a dynamic class

 MovieClip

 as subtypes

 writing [See ImageViewerDeluxe subclass]

subclassing

 built-in classes

 MovieClip subclasses

subclasses [See also inheritance]

subinterface [See also interfaces] 2nd

 casting to

subject

 Observable class (example) 2nd

 responsibilities of, in Observer design

 unregistering event-listener objects before deleting subject

subtype inheritance

subtypes

 casting an object to

 subclasses as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

super keyword

super operator

 class methods and

 invoking overridden instance methods

 invoking superclass constructor from subclass constructor

 member access from overridden instance method

 overridden class properties and

 overridden property access and

 two forms of

superclasses 2nd

 accessing inherited class method/property via

 casting to

 Object class

 property overridden by subclass

superinterface 2nd 3rd [See also interfaces]

supertype

.swc file

 distributing to developers

.swf files

 automating export process

 bytecode

 case sensitivity for versions

 class library

 creating for

 creating movie that loads

 currency converter application, exporting

 exported to Flash Player 6's format .swf file

 exporting imageViewer.swf and testing in Flash

 imageViewer.swf, exporting in Flash Player 6 format

 no security for code in

 in OOP application

 versions of, ActionScript and

switch statement

symbols, movie clip

 association with single AS 2.0 Class

 AvatarSymbol (example)

 building timeline and contents

 with component definition

 Linkage properties

 linking AvatarSymbol to Avatar class

 nested assets not automatically recognized by compiler

 properties and methods of nested assets

System class

System.capabilities class

System.security class

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

TCP/IP connections (client/server), persistent

Test Movie mode

text editors (third-party), writing/editing class .as files

text fields

 CSS support for Flash 7

 images in, supported in Flash Player 7

 mouse wheel support in

text metrics, improved (Flash Player 7)

TextAnimation class, excluding from runtime loading

TextField class

TextField.StyleSheet class

TextFieldView class (example)

TextShapshot class

this (keyword)

 class methods and

 constructor functions, using in

 managing parameter/property name conflicts

 MovieClip subclass methods, using with

 passing current object to a method

 redundant use of

 resolving property/local variable naming conflicts

throw statement 2nd 3rd 4th

 datatypes of generated exceptions

 try/catch block, searching call stack for

throwing an exception [See also exceptions]2nd

timeline

 application state

 adding to .fla file timeline

 changing

 creating

 labeled frames corresponding to application states

 placing components in

timeline-based code

 instantiating ImageViewer to frame 15

 overuse of

 procedural programming for

 type checking and

toString()

 Error class 2nd

 Object class

try/catch/finally statements 2nd

 catch blocks

 control flow changes in

 finally block

 circumstances for execution

 cleanup after code execution

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 in multithreaded languages

 in single-threaded ActionScript

 Flash bug in catch block parameters

 handling different kinds of errors

 nested

 bug in Flash Player 7

 searching call stack to match thrown exception

 throwing an error directly from try block

 try block with multiple catch blocks

type casting [See casting]

type checking 2nd [See also datatypes]

 built-in dynamic classes

 casting

 compile-time, leniency of AS2

 conversion vs.

 member selection and

 problems with

 runtime support

 terminology

 circumventing

 compatible types

 handling any datatype

 null and undefined

 datatype information for built-in classes

 dynamic binding vs.

 incompatible types

 manual, at runtime

 method parameters and return values

 quirks and limitations of

 [] operator

 array elements

 global variables

 timeline code

 XML instances

 static typing, reasons for using

 strict, static, and strong typing

 type syntax

 declaring method parameter and return value datatypes

 declaring variable and property datatypes

 items applied to

 post-colon syntax

 weak static typing and

type mismatch errors [See datatypes type checking]

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

UIObject class, createClassObject()

UML (Unified Modeling Language)

 design patterns, use in

uncaught exceptions

undefined datatype

 ActionScript 1.0, changes to in Flash Player 7

 casting to

 missing method arguments

 properties

 returned when casting to null or undefined datatypes

Unicode, using for .as files

uninitialized variables, null or undefined type

unit testing

unqualified references

 to classes in packages

 compiler resolution of, class method access and

 import statements, using in

 to properties

 use of

unsafe casts

upcasts

 implicit

 safety of

updated intrinsic files

user input

 currency conversion application

 management by controller in MVC pattern 2nd

Uses-A relationship 2nd

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

var statement

 creating local variable within a method

 declaring variables with

 defining instance property

variables [See also properties]

 assigning instance of subclass to

 class and instance

 declaring datatypes

 exporting to/importing from an external source

 local

 null type

 overriding, Java rules for

 referenced with slash syntax (Flash 4)

 slash syntax for (Flash 4)

 static typing

 undefined type

version control software, managing class files

versions

 ActionScript and Flash Player, setting for movies

 changes to ActionScript 1.0 in Flash Player 7

 Flash

 naming conventions in this book

 Flash Player

 v2 components, use of

Video class

video games, use of object-oriented programming

view, MVC [See also Model-View-Controller]

 ClockAnalogView and ClockDigitalView classes (example)

 ClockTools class (example)

 implementation of

 AbstractView class

 View interface

 responsibilities of 2nd

visibility modifiers

Visual Basic, multipage forms

Visual Basic-style forms-based development (Screens)

visual development, drag-and-drop

Void datatype

void operator, Void datatype vs.

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

weak static typing

weather-reporting application (observer pattern example)

web site for this book

wildcards, using to import entire package

Windows systems

 Classes directory, location of

 mouse wheel support in text fields (Flash Player 7)

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

XML class

XML file (exclusion file) 2nd

XML instances

 composition vs. inheritance debate

 type checking and

XMLNode class

XMLSocket class

 < Day Day Up >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Essential ActionScript 2.0
	Table of Contents
	Copyright
	Foreword
	Preface
	This Book Wants You
	What This Book Is Not
	Who Should (and Shouldn't) Read This Book
	ActionScript 2.0 Versus ActionScript 1.0
	Deciphering Flash Versions
	Example Files and Resources
	Typographical Conventions
	Using Code Examples
	We'd Like to Hear from You
	Acknowledgments

	Part I: The ActionScript 2.0 Language
	Chapter 1. ActionScript 2.0 Overview
	1.1 ActionScript 2.0 Features
	1.2 Features Introduced by Flash Player 7
	1.3 Flash MX 2004 Version 2 Components
	1.4 ActionScript 1.0 and 2.0 in Flash Player 6 and 7
	1.5 Let's Go OOP

	Chapter 2. Object-Oriented ActionScript
	2.1 Procedural Programming and Object-Oriented Programming
	2.2 Key Object-Oriented Programming Concepts
	2.3 But How Do I Apply OOP?
	2.4 On with the Show!

	Chapter 3. Datatypes and Type Checking
	3.1 Why Static Typing?
	3.2 Type Syntax
	3.3 Compatible Types
	3.4 Built-in Dynamic Classes
	3.5 Circumventing Type Checking
	Day Day Up
	3.7 Datatype Information for Built-in Classes
	3.8 ActionScript 2.0 Type Checking Gotchas
	3.9 Up Next: Creating Classes-Your Own Datatypes!

	Chapter 4. Classes
	4.1 Defining Classes
	4.2 Constructor Functions (Take 1)
	4.3 Properties
	4.4 Methods
	4.5 Constructor Functions (Take 2)
	4.6 Completing the Box Class
	4.7 Putting Theory into Practice

	Chapter 5. Authoring an ActionScript 2.0 Class
	5.1 Class Authoring Quick Start
	5.2 Designing the ImageViewer Class
	5.3 ImageViewer Implementation (Take 1)
	5.4 Using ImageViewer in a Movie
	5.5 ImageViewer Implementation (Take 2)
	5.6 ImageViewer Implementation (Take 3)
	5.7 Back to the Classroom

	Chapter 6. Inheritance
	6.1 A Primer on Inheritance
	6.2 Subclasses as Subtypes
	6.3 An OOP Chat Example
	6.4 Overriding Methods and Properties
	6.5 Constructor Functions in Subclasses
	6.6 Subclassing Built-in Classes
	6.7 Augmenting Built-in Classes and Objects
	6.8 The Theory of Inheritance
	6.9 Abstract and Final Classes Not Supported
	6.10 Let's Try Inheritance

	Chapter 7. Authoring an ActionScript 2.0 Subclass
	7.1 Extending ImageViewer's Capabilities
	7.2 The ImageViewerDeluxe Skeleton
	7.3 Adding setPosition() and setSize() Methods
	7.4 Autosizing the Image Viewer
	7.5 Using ImageViewerDeluxe
	7.6 Moving Right Along

	Chapter 8. Interfaces
	8.1 The Case for Interfaces
	8.2 Interfaces and Multidatatype Classes
	8.3 Interface Syntax and Use
	8.4 Multiple Type Inheritance with Interfaces
	8.5 Up Next, Packages

	Chapter 9. Packages
	9.1 Package Syntax
	9.2 Defining Packages
	9.3 Package Access and the Classpath
	9.4 Simulating Packages in ActionScript 1.0
	9.5 Just a Little More Theory

	Chapter 10. Exceptions
	10.1 The Exception-Handling Cycle
	10.2 Handling Multiple Types of Exceptions
	10.3 Exception Bubbling
	10.4 The finally Block
	10.5 Nested Exceptions
	10.6 Control Flow Changes in try/catch/finally
	10.7 Limitations of Exception Handling in ActionScript 2.0
	10.8 From Concepts to Code

	Part II: Application Development
	Chapter 11. An OOP Application Framework
	11.1 The Basic Directory Structure
	11.2 The Flash Document (.fla file)
	11.3 The Classes
	11.4 The Document Timeline
	11.5 The Exported Flash Movie (.swf file)
	11.6 Projects in Flash MX Professional 2004
	11.7 Let's See It in Action!

	Chapter 12. Using Components with ActionScript 2.0
	12.1 Currency Converter Application Overview
	12.2 Preparing the Flash Document
	12.3 The CurrencyConverter Class
	12.4 Handling Component Events
	12.5 Components Complete

	Chapter 13. MovieClip Subclasses
	13.1 The Duality of MovieClip Subclasses
	13.2 Avatar: A MovieClip Subclass Example
	13.3 Avatar: The Composition Version
	13.4 Issues with Nested Assets
	13.5 A Note on MovieClip Sub-subclasses
	13.6 Curiouser and Curiouser

	Chapter 14. Distributing Class Libraries
	14.1 Sharing Class Source Files
	14.2 Sharing Classes Without Sharing Source Files
	14.3 Solving Real OOP Problems

	Part III: Design Pattern Examples in ActionScript 2.0
	Chapter 15. Introduction to Design Patterns
	15.1 Bring on the Patterns

	Chapter 16. The Observer Design Pattern
	16.1 Implementing Observer in ActionScript 2.0
	16.2 Logger: A Complete Observer Example
	16.3 Memory Management Issues with Observer
	16.4 Beyond Observer

	Chapter 17. The Singleton Design Pattern
	17.1 Implementing Singleton in ActionScript 2.0
	17.2 The Singleton Pattern in the Logger Class
	17.3 Singleton Versus Class Methods and Class Properties
	17.4 A Warning Against Singletons as Globals
	17.5 On to User Interfaces

	Chapter 18. The Model-View-Controller Design Pattern
	18.1 The General Architecture of MVC
	18.2 A Generalized MVC Implementation
	18.3 An MVC Clock
	18.4 Further Exploration

	Chapter 19. The Delegation Event Model
	19.1 Structure and Participants
	19.2 The Flow of Logic
	19.3 Core Implementation
	19.4 NightSky: A Delegation Event Model Example
	19.5 Other Event Architectures in ActionScript
	19.6 From Some Place to Some OtherPlace

	Part IV: Appendixes
	Appendix A. ActionScript 2.0 Language Quick Reference
	A.1 Global Properties
	A.2 Global Functions

	Appendix B. Differences from ECMAScript Edition 4

	Colophon
	Index
	index_SYMBOL
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_J
	index_K
	index_L
	index_M
	index_N
	index_O
	index_P
	index_Q
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W
	index_X

