
[Team LiB]

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

C# Cookbook

By Jay Hilyard, Stephen Teilhet

Publisher: O'Reilly

Pub Date: January 2004

ISBN: 0-596-00339-0

Pages: 800

The C# Cookbook offers a definitive collection of solutions and examples for this new programming
language. Recipes range from simple tasks to the more complex, and are organized with respect to
the types of problems you'll need to solve as you progress in your experience as a C# programmer.
Nearly every recipe contains a complete, documented code sample showing you how to solve the
specific problem, as well as a discussion of how the underlying technology works and a discussion of
alternatives, limitations, and other considerations where appropriate.

[Team LiB]

[Team LiB]

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

C# Cookbook

By Jay Hilyard, Stephen Teilhet

Publisher: O'Reilly

Pub Date: January 2004

ISBN: 0-596-00339-0

Pages: 800

 Dedication

 Copyright

 Preface

 Who This Book Is For

 What You Need to Use This Book

 How This Book Is Organized

 What Was Left Out

 Conventions Used in This Book

 About the Code

 Using Code Examples

 Platform Notes

 Comments and Questions

 Acknowledgments

 Chapter 1. Numbers

 Recipe 1.1. Determining Approximate Equality Between a Fraction and Floating-Point Value

 Recipe 1.2. Converting Degrees to Radians

 Recipe 1.3. Converting Radians to Degrees

 Recipe 1.4. Using the Bitwise Complement Operator with Various Data Types

 Recipe 1.5. Test for an Even or Odd Value

 Recipe 1.6. Obtaining the Most- or Least-Significant Bits of a Number

 Recipe 1.7. Converting a Number in Another Base to Base10

 Recipe 1.8. Determining Whether a String Is a Valid Number

 Recipe 1.9. Rounding a Floating-Point Value

 Recipe 1.10. Different Rounding Algorithms

 Recipe 1.11. Converting Celsius to Fahrenheit

 Recipe 1.12. Converting Fahrenheit to Celsius

 Recipe 1.13. Safely Performing a Narrowing Numeric Cast

 Recipe 1.14. Finding the Length of Any Three Sidesof a Right Triangle

 Recipe 1.15. Finding the Angles of a Right Triangle

 Chapter 2. Strings and Characters

 Recipe 2.1. Determining the Kind of Character

 Recipe 2.2. Determining Whether a Character Is Within a Specified Range

 Recipe 2.3. Controlling Case Sensitivity when Comparing Two Characters

 Recipe 2.4. Finding All Occurrences of a Character Within a String

 Recipe 2.5. Finding the Location of All Occurrencesof a String Within Another String

 Recipe 2.6. The Poor Man's Tokenizer

 Recipe 2.7. Controlling Case Sensitivity when Comparing Two Strings

 Recipe 2.8. Comparing a String to the Beginning or End of a Second String

 Recipe 2.9. Inserting Text into a String

 Recipe 2.10. Removing or Replacing Characters Within a String

 Recipe 2.11. Encoding Binary Data as Base64

 Recipe 2.12. Decoding a Base64-Encoded Binary

 Recipe 2.13. Converting a String Returned as a Byte[] Back into a String

 Recipe 2.14. Passing a String to a Method that Accepts Only a Byte[]

 Recipe 2.15. Converting Strings to Their Equivalent Value Type

 Recipe 2.16. Formatting Data in Strings

 Recipe 2.17. Creating a Delimited String

 Recipe 2.18. Extracting Items from a Delimited String

 Recipe 2.19. Setting the Maximum Number of Characters a String Can Contain

 Recipe 2.20. Iterating Over Each Character in a String

 Recipe 2.21. Improving String Comparison Performance

 Recipe 2.22. Improving StringBuilder Performance

 Recipe 2.23. Pruning Characters from the Headand/or Tail of a String

 Chapter 3. Classes and Structures

 Recipe 3.1. Creating Union-Type Structures

 Recipe 3.2. Allowing a Type to Represent Itself as a String

 Recipe 3.3. Converting a String Representation of an Object into an Actual Object

 Recipe 3.4. Polymorphism via Concrete or Abstract Base Classes

 Recipe 3.5. Making a Type Sortable

 Recipe 3.6. Making a Type Searchable

 Recipe 3.7. Indirectly Overloading the +=, -=, /=, and *= Operators

 Recipe 3.8. Indirectly Overloading the &&, ||, and ?: Operators

 Recipe 3.9. Improving the Performance of a Structure's Equals Method

 Recipe 3.10. Turning Bits On or Off

 Recipe 3.11. Making Error-Free Expressions

 Recipe 3.12. Minimizing (Reducing) Your Boolean Logic

 Recipe 3.13. Converting Between Simple Types in a Language Agnostic Manner

 Recipe 3.14. Determining Whether to Use theCast Operator, the as Operator, or theis Operator

 Recipe 3.15. Casting with the as Operator

 Recipe 3.16. Determining a Variable's Type with the is Operator

 Recipe 3.17. Polymorphism via Interfaces

 Recipe 3.18. Calling the Same Method on Multiple Object Types

 Recipe 3.19. Adding a Notification Callback Using an Interface

 Recipe 3.20. Using Multiple Entry Points toVersion an Application

 Recipe 3.21. Preventing the Creation of an Only Partially Initialized Object

 Recipe 3.22. Returning Multiple Items from a Method

 Recipe 3.23. Parsing Command-Line Parameters

 Recipe 3.24. Retrofitting a Class to Interoperate with COM

 Recipe 3.25. Initializing a Constant Field at Runtime

 Recipe 3.26. Writing Code that Is Compatible with the Widest Range of Managed Languages

 Recipe 3.27. Implementing Nested foreach Functionality in a Class

 Recipe 3.28. Building Cloneable Classes

 Recipe 3.29. Assuring an Object's Disposal

 Recipe 3.30. Releasing a COM Object ThroughManaged Code

 Recipe 3.31. Creating an Object Cache

 Recipe 3.32. The Single Instance Object

 Recipe 3.33. Choosing a Serializer

 Recipe 3.34. Creating Custom Enumerators

 Recipe 3.35. Rolling Back Object Changes

 Recipe 3.36. Disposing of Unmanaged Resources

 Recipe 3.37. Determining Where Boxing and Unboxing Occur

 Chapter 4. Enumerations

 Recipe 4.1. Displaying an Enumeration Value as a String

 Recipe 4.2. Converting Plain Text to an Equivalent Enumeration Value

 Recipe 4.3. Testing for a Valid Enumeration Value

 Recipe 4.4. Testing for a Valid Enumeration of Flags

 Recipe 4.5. Using Enumerated Members in a Bitmask

 Recipe 4.6. Determining Whether One or More Enumeration Flags Are Set

 Chapter 5. Exception Handling

 Recipe 5.1. Verifying Critical Parameters

 Recipe 5.2. Indicating Where Exceptions Originate

 Recipe 5.3. Choosing when to Throw a Particular Exception

 Recipe 5.4. Handling Derived Exceptions Individually

 Recipe 5.5. Assuring Exceptions are Not Lost when Using Finally Blocks

 Recipe 5.6. Handling Exceptions Thrown from Methods Invoked via Reflection

 Recipe 5.7. Debugging Problems whenLoading an Assembly

 Recipe 5.8. HRESULT-Exception Mapping

 Recipe 5.9. Handling User-Defined HRESULTs

 Recipe 5.10. Preventing Unhandled Exceptions

 Recipe 5.11. Displaying Exception Information

 Recipe 5.12. Getting to the Root of a Problem Quickly

 Recipe 5.13. Creating a New Exception Type

 Recipe 5.14. Obtaining a Stack Trace

 Recipe 5.15. Breaking on a First Chance Exception

 Recipe 5.16. Preventing the Nefarious TypeInitializationException

 Recipe 5.17. Handling Exceptions Thrown from an Asynchronous Delegate

 Chapter 6. Diagnostics

 Recipe 6.1. Controlling Tracing Output inProduction Code

 Recipe 6.2. Providing Fine-Grained Control Over Debugging/Tracing Output

 Recipe 6.3. Creating Your Own Custom Switch Class

 Recipe 6.4. A Custom Trace Class that Outputs Information in an XML Format

 Recipe 6.5. Conditionally Compiling Blocks of Code

 Recipe 6.6. Determining Whether a Process Has Stopped Responding

 Recipe 6.7. Using One or More Event Logs in Your Application

 Recipe 6.8. Changing the Maximum Size of a Custom Event Log

 Recipe 6.9. Searching Event Log Entries

 Recipe 6.10. Watching the Event Log for a Specific Entry

 Recipe 6.11. Finding All Sources Belonging to a Specific Event Log

 Recipe 6.12. Implementing a Simple Performance Counter

 Recipe 6.13. Implementing Performance Counters that Require a Base Counter

 Recipe 6.14. Enable/Disable Complex Tracing Code

 Chapter 7. Delegates and Events

 Recipe 7.1. Controlling when and if a Delegate Fires Within a Multicast Delegate

 Recipe 7.2. Obtaining Return Values from Each Delegate in a Multicast Delegate

 Recipe 7.3. Handling Exceptions Individually for Each Delegate in a Multicast Delegate

 Recipe 7.4. Converting a Synchronous Delegate to an Asynchronous Delegate

 Recipe 7.5. Adding Events to a Sealed Class

 Recipe 7.6. Passing Specialized Parameters to and from an Event

 Recipe 7.7. An Advanced Interface Search Mechanism

 Recipe 7.8. An Advanced Member Search Mechanism

 Recipe 7.9. Observing Additions and Modifications to a Hashtable

 Recipe 7.10. Using the Windows Keyboard Hook

 Recipe 7.11. Using Windows Hooks to Manipulate the Mouse

 Chapter 8. Regular Expressions

 Recipe 8.1. Enumerating Matches

 Recipe 8.2. Extracting Groups from a MatchCollection

 Recipe 8.3. Verifying the Syntax of a Regular Expression

 Recipe 8.4. Quickly Finding Only the Last Match in a String

 Recipe 8.5. Replacing Characters or Words in a String

 Recipe 8.6. Augmenting the Basic String Replacement Function

 Recipe 8.7. A Better Tokenizer

 Recipe 8.8. Compiling Regular Expressions

 Recipe 8.9. Counting Lines of Text

 Recipe 8.10. Returning the Entire Line in Which a Match Is Found

 Recipe 8.11. Finding a Particular Occurrence of a Match

 Recipe 8.12. Using Common Patterns

 Recipe 8.13. Documenting Your Regular Expressions

 Chapter 9. Collections

 Recipe 9.1. Swapping Two Elements in an Array

 Recipe 9.2. Quickly Reversing an Array

 Recipe 9.3. Reversing a Two-Dimensional Array

 Recipe 9.4. Reversing a Jagged Array

 Recipe 9.5. A More Flexible StackTrace Class

 Recipe 9.6. Determining the Number of Times an Item Appears in an ArrayList

 Recipe 9.7. Retrieving All Instances of a Specific Itemin an ArrayList

 Recipe 9.8. Inserting and Removing Items from an Array

 Recipe 9.9. Keeping Your ArrayList Sorted

 Recipe 9.10. Sorting a Hashtable's Keys and/or Values

 Recipe 9.11. Creating a Hashtable with Max and Min Size Boundaries

 Recipe 9.12. Creating a Hashtable with Max and Min Value Boundaries

 Recipe 9.13. Displaying an Array's Data as a Delimited String

 Recipe 9.14. Storing Snapshots of Lists in an Array

 Recipe 9.15. Creating a Strongly Typed Collection

 Recipe 9.16. Persisting a Collection Between Application Sessions

 Chapter 10. Data Structures and Algorithms

 Recipe 10.1. Creating a Hash Code for a Data Type

 Recipe 10.2. Creating a Priority Queue

 Recipe 10.3. Creating a More Versatile Queue

 Recipe 10.4. Determining Where Characters or Strings Do Not Balance

 Recipe 10.5. Creating a One-to-Many Map (MultiMap)

 Recipe 10.6. Creating a Binary Tree

 Recipe 10.7. Creating an n-ary Tree

 Recipe 10.8. Creating a Set Object

 Chapter 11. Filesystem I/O

 Recipe 11.1. Creating, Copying, Moving, and Deleting a File

 Recipe 11.2. Manipulating File Attributes

 Recipe 11.3. Renaming a File

 Recipe 11.4. Determining Whether a File Exists

 Recipe 11.5. Choosing a Method of Opening a File or Stream for Reading and/or Writing

 Recipe 11.6. Randomly Accessing Part of a File

 Recipe 11.7. Outputting a Platform-Independent EOL Character

 Recipe 11.8. Create, Write to, and Read from a File

 Recipe 11.9. Determining Whether a Directory Exists

 Recipe 11.10. Creating, Moving, and Deleting a Directory

 Recipe 11.11. Manipulating Directory Attributes

 Recipe 11.12. Renaming a Directory

 Recipe 11.13. Searching for Directories or FilesUsing Wildcards

 Recipe 11.14. Obtaining the Directory Tree

 Recipe 11.15. Parsing a Path

 Recipe 11.16. Parsing Paths in Environment Variables

 Recipe 11.17. Verifying a Path

 Recipe 11.18. Using a Temporary File in Your Application

 Recipe 11.19. Opening a File Stream with just aFile Handle

 Recipe 11.20. Write to Multiple Output Files at One Time

 Recipe 11.21. Launching and Interacting withConsole Utilities

 Recipe 11.22. Locking Subsections of a File

 Recipe 11.23. Watching the Filesystem for Specific Changes to One or More Files or Directories

 Recipe 11.24. Waiting for an Action to Occurin the Filesystem

 Recipe 11.25. Comparing Version Information of Two Executable Modules

 Chapter 12. Reflection

 Recipe 12.1. Listing Imported Assemblies

 Recipe 12.2. Listing Exported Types

 Recipe 12.3. Finding Overridden Methods

 Recipe 12.4. Finding Members in an Assembly

 Recipe 12.5. Finding Members Within an Interface

 Recipe 12.6. Obtaining Types Nested Within a Type

 Recipe 12.7. Displaying the Inheritance Hierarchy for a Type

 Recipe 12.8. Finding the Subclasses of a Type

 Recipe 12.9. Finding All Serializable Types Within an Assembly

 Recipe 12.10. Controlling Additions to an ArrayList Through Attributes

 Recipe 12.11. Filtering Output when Obtaining Members

 Recipe 12.12. Dynamically Invoking Members

 Chapter 13. Networking

 Recipe 13.1. Converting an IP Address to a Hostname

 Recipe 13.2. Converting a Hostname to an IP Address

 Recipe 13.3. Parsing a URI

 Recipe 13.4. Forming an Absolute URI

 Recipe 13.5. Handling Web Server Errors

 Recipe 13.6. Communicating with a Web Server

 Recipe 13.7. Going Through a Proxy

 Recipe 13.8. Obtaining the HTML from a URL

 Recipe 13.9. Writing a TCP Server

 Recipe 13.10. Writing a TCP Client

 Recipe 13.11. Simulating Form Execution

 Recipe 13.12. Downloading Data from a Server

 Recipe 13.13. Using Named Pipes to Communicate

 Chapter 14. Security

 Recipe 14.1. Controlling Access to Types in aLocal Assembly

 Recipe 14.2. Encrypting/Decrypting a String

 Recipe 14.3. Encrypting and Decrypting a File

 Recipe 14.4. Cleaning Up Cryptography Information

 Recipe 14.5. Verifying that a String Is Uncorrupted During Transmission

 Recipe 14.6. Wrapping a String Hash for Ease of Use

 Recipe 14.7. A Better Random Number Generator

 Recipe 14.8. Securely Storing Data

 Recipe 14.9. Making a Security Assert Safe

 Recipe 14.10. Preventing Malicious Modifications to an Assembly

 Recipe 14.11. Verifying that an Assembly Has Been Granted Specific Permissions

 Recipe 14.12. Minimizing the Attack Surface of an Assembly

 Chapter 15. Threading

 Recipe 15.1. Creating Per-Thread Static Fields

 Recipe 15.2. Providing Thread Safe Access to Class Members

 Recipe 15.3. Preventing Silent Thread Termination

 Recipe 15.4. Polling an Asynchronous Delegate

 Recipe 15.5. Timing Out an Asynchronous Delegate

 Recipe 15.6. Being Notified of the Completionof an Asynchronous Delegate

 Recipe 15.7. Waiting for Worker Thread Completion

 Recipe 15.8. Synchronizing the Reading and Writingof a Resource Efficiently

 Recipe 15.9. Determining Whether a Requestfor a Pooled Thread Will Be Queued

 Recipe 15.10. Waiting for All Threads in theThread Pool to Finish

 Recipe 15.11. Configuring a Timer

 Recipe 15.12. Storing Thread-Specific Data Privately

 Chapter 16. Unsafe Code

 Recipe 16.1. Controlling Changes to Pointers Passedto Methods

 Recipe 16.2. Comparing Pointers

 Recipe 16.3. Navigating Arrays

 Recipe 16.4. Manipulating a Pointer to a Fixed Array

 Recipe 16.5. Returning a Pointer to a Particular Element in an Array

 Recipe 16.6. Creating and Using an Array of Pointers

 Recipe 16.7. Creating and Using an Array of Pointersto Unknown Types

 Recipe 16.8. Switching Unknown Pointer Types

 Recipe 16.9. Breaking Up Larger Numbers into Their Equivalent Byte Array Representation

 Recipe 16.10. Converting Pointers to a Byte[], SByte[],or Char[] to a String

 Chapter 17. XML

 Recipe 17.1. Reading and Accessing XML Datain Document Order

 Recipe 17.2. Reading XML on the Web

 Recipe 17.3. Querying the Contents of an XML Document

 Recipe 17.4. Validating XML

 Recipe 17.5. Creating an XML Document Programmatically

 Recipe 17.6. Detecting Changes to an XML Document

 Recipe 17.7. Handling Invalid Characters in anXML String

 Recipe 17.8. Transforming XML to HTML

 Recipe 17.9. Tearing Apart an XML Document

 Recipe 17.10. Putting Together an XML Document

 Colophon

 Index

[Team LiB]

[Team LiB]

Dedication

To my mom, dad, and my brother Justin, thanks for all your help, support, and guidance.

-Stephen

To Brooke, thank you for everything. I love you and couldn't have done this without you.

- J a y

[Team LiB]

[Team LiB]

Copyright

Copyright © 2004 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly & Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly
& Associates, Inc. was aware of a trademark claim, the designations have been printed in caps or
initial caps. The Cookbook series designations, C# Cookbook, the image of a garter snake, and
related trade dress are trademarks of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

[Team LiB]

http://safari.oreilly.com

[Team LiB]

Preface
C# is a language targeted at developers for the Microsoft .NET platform who have already worked
with a C-like language such as C, C++, or Java. Unlike previous versions of C or C++ for the
Microsoft Windows platform, C# code runs under a managed execution environment. While C and
C++ developers using Visual Studio .NET can now write managed code using the Managed Extensions
for C++, C# offers a middle path between C++'s overall power but sometimes difficult code and the
higher-level task orientation provided by Visual Basic .NET. Microsoft portrays C# as a modern and
innovative language for .NET development that will be familiar to current C++ programmers while
allowing more runtime control over the executing code.

C# allows you to perform many C/C++-like functions such as direct memory access via pointers and
operator overloading that are not supported in Visual Basic .NET. Many of the interesting
enhancements for .NET languages are slated to appear first in C#, such as generics. (You can think
of generics as templates with a twist.) C# is the system-level programming language for .NET. You
can still do great application-level work in C#, but it really shines when you need to build code a little
closer to the framework.

If you have seen C#, you may have noticed that it looks a lot like Java; Java programmers will feel
very much at home in C# once they learn the Framework SDK. C# can also be a great language for
Visual Basic .NET programmers when they need a little more control over what the code is doing and
don't want to have to write C++ to gain an advantage. There is a large community on the Web of
people doing really neat things with C# and there is tons of sample code on sites such as
http://www.gotdotnet.com, http://www.codeproject.com, and http://www.4guysfromrolla.com.

We put this book together based on programming problems we ran into when first learning C# as
well as during our continued use of it. We hope that it will help you get past some of the common
(and not-so-common) pitfalls and initial questions everyone has when learning a new language.
There are recipes dealing with things we found missing from the .NET Framework Class Library (FCL),
even though Microsoft has provided tons of functionality to keep folks from reinventing the wheel.
Some of these solutions you might immediately use and some may never darken your door, but we
hope this book helps you get the most out of C# and the .NET Framework.

The book is laid out with respect to the types of problems you will solve as you progress through your
life as a C# programmer. These solutions are called recipes; each recipe consists of a single problem,
its solution, a discussion of the solution and other relevant related information, and finally where you
can look for more information about the classes used from the FCL, other books addressing this topic,
related articles, and other recipes. The question-answer format provides complete solutions to
problems, making the book easy to read and use. Nearly every recipe contains a complete,
documented code sample showing you how to solve the specific problem, as well as a discussion of
how the underlying technology works and a list of alternatives, limitations, and other considerations,
when appropriate.

[Team LiB]

http://www.gotdotnet.com
http://www.codeproject.com
http://www.4guysfromrolla.com

[Team LiB]

Who This Book Is For

You don't have to be an experienced C# or .NET developer to use this book-it is designed for users
of all levels. This book provides solutions to problems that developers face every day as well as some
that may come along infrequently. The recipes are targeted at the real-world developer who needs to
solve problems now, not learn lots of theory first before being able to solve the problem. While
reference or tutorial books can teach general concepts, they do not generally provide the help you
need in solving real-world problems. We chose to teach by example, the natural way for most people
to learn.

The majority of the problems addressed in this book are frequently faced by C# developers, but
some of the more advanced problems call for more intricate solutions that combine many techniques.
Each recipe is designed to help you quickly understand the problem, learn how to solve it, and find
out any potential tradeoffs or ramifications to help you solve your problems quickly, efficiently, and
with minimal effort.

To save you even the effort of typing in the solution, we provide the sample code for the book on the
O'Reilly web site to facilitate the "editor inheritance" mode of development (copy and paste) as well
as to help less experienced developers see good programming practice in action. The sample code
provides a running test harness that exercises each of the solutions, but enough of the code is
provided in each solution in the book to allow you to implement the solution without the sample code.
The sample code is available from the book's catalog page:
http://www.oreilly.com/catalog/csharpckbk.

[Team LiB]

http://www.oreilly.com/catalog/csharpckbk

[Team LiB]

What You Need to Use This Book

To run the samples in this book, you need a computer running Windows 2000 or later (if you are using
Windows NT 4.0, you can use many, but not all, of the examples in this book; in particular, ASP.NET
and .NET web services do not run on NT 4.0). A few of the networking and XML solutions require
Microsoft Internet Information Server (IIS) Version 5 or later.

To open and compile the samples in this book, you need Visual Studio .NET 2003. If you are proficient
with the downloadable Framework SDK and its command-line compilers, you should not have any
trouble following the text of this book and the code samples.

[Team LiB]

[Team LiB]

How This Book Is Organized

This book is organized into seventeen chapters, each of which focuses on a particular topic in creating
C# solutions. The following paragraphs summarize each chapter to give you an overview of this
book's contents:

Chapter 1

This chapter focuses on the numeric data types used in C# code. Recipes cover such things as
numeric conversions, using bitwise operators on numbers, and testing strings to determine
whether they contain a numeric value.

Chapter 2

This chapter covers both the String data type as well as the Char data type. Various recipes

show how to compare strings in various ways, encode/decode strings, break strings apart, and
put them back together again, to name a few.

Chapter 3

This large chapter contains recipes dealing with both class and structure data types. This
chapter covers a wide range of recipes from design patterns to converting a class to
interoperating with COM.

Chapter 4

This chapter covers the enum data type. Recipes display, convert and test enumeration types.

In addition, there are recipes on using enumerations that consist of bit flags.

Chapter 5

The recipes in this chapter focus on the best ways to implement exception handling in your
application. Preventing unhandled exceptions, reading and displaying stack traces, and
throwing/rethrowing exceptions are included recipes. In addition, specific recipes show how to
overcome some tricky situations, such as exceptions from late-bound called methods.

Chapter 6

This chapter explores recipes that use data types that fall under the System.Diagnostics
namespace. Recipes deal with the Trace/Debug classes, event logs, processes, and

performance counters.

Chapter 7

This chapter's recipes show how both delegates and events can be used in your applications.
Recipes allow manipulation of delegates that call more than one method, synchronous
delegates, asynchronous delegates, and Windows keyboard hooks.

Chapter 8

This chapter covers a very useful set of classes that are used to run regular expressions
against strings. Recipes enumerate regular expression matches, break up strings into tokens,
find/replace characters, and verify the syntax of a regular expression. A recipe is also included
that contains many common regular expression patterns.

Chapter 9

This chapter examines recipes that make use of collections. The collection recipes make use
of-as well as extend the functionality of-the array (single, multi, and jagged), the
ArrayList, and the Hashtable. The various ways to create your own strongly typed collection

are also discussed.

Chapter 10

This chapter goes a bit outside of what is provided for you in the .NET Framework Class Library
and implements certain data structures and algorithms that are not in the FCL, or possibly are
not in existence exactly the way you would like to use them, but ones that you have used to
solve problems before. Items such as queues, maps, trees, and hashes are explored.

Chapter 11

This chapter deals with filesystem interactions in four distinct ways. The first way is to look at
typical file interactions; the second way looks at directory- or folder-based interactions; the
third way deals with paths and temporary files; and the fourth way deals with advanced
filesystem I/O topics.

Chapter 12

This chapter shows ways to use the built-in assembly inspection system provided by the .NET
Framework to determine what types, interfaces, and methods are implemented within an
assembly and how to access them in a late-bound fashion.

Chapter 13

Networking explores the connectivity options provided by the .NET Framework and how to
programmatically access network resources. Accessing a web site and its content as well as
lower-level TCP/IP tasks are covered. This chapter also includes a recipe for using named pipes
via P/Invoke.

Chapter 14

There are many ways to write secure code and protect data using the .NET Framework, and in
this chapter, we explore areas such as controlling access to types, encryption and decryption,
random numbers, securely storing data, and using programmatic and declarative security.

Chapter 15

This chapter addresses the subject of using multiple threads of execution in a .NET program
and issues like how to implement threading in your application, protecting resources from and
allowing safe concurrent access, storing per-thread data, and the use of asynchronous
delegates for processing.

Chapter 16

This chapter discusses how C# allows you to step outside of the safe environment of managed
code and write code that is considered unsafe by the .NET Framework. The possibilities and
restrictions of using unsafe code in C# are addressed by illustrating solutions to problems using
unsafe code.

Chapter 17

If you use .NET, it is likely that you will be dealing with XML to one degree or another; in this
chapter, we explore some of the uses for XML, including XPath and XSLT, and topics such as
the validation of XML and transformation of XML to HTML.

In some cases, certain recipes are related. In these cases, the See Also section of the recipe as well
as some text in the Discussion will note the relation.

[Team LiB]

[Team LiB]

What Was Left Out

This book is not a reference or a primer about C#. Some good primers and reference books are C# in
a Nutshell, C# Language Pocket Reference, and Learning C#, all titles available from O'Reilly. The
MSDN Library is also invaluable. It is included with Visual Studio .NET and available online at
http://msdn.microsoft.com/library/default.asp.

This book is not about how to use Visual Studio .NET to build, compile, and deploy applications. See
Mastering Visual Studio .NET (O'Reilly) for excellent coverage of these topics.

[Team LiB]

http://msdn.microsoft.com/library/default.asp

[Team LiB]

Conventions Used in This Book

This book uses the following typographic conventions:

Italic

Used for URLs, names of directories and files, options, and occasionally for emphasis.

Constant width

Used for program listings, and for code items such as commands, options, switches, variables,
attributes, keys, functions, types, classes, namespaces, methods, modules, properties,
parameters, values, objects, events, event handlers, XML tags, HTML tags, macros, the
contents of files, and the output from commands.

Constant width bold

Used in program listings to highlight an important part of the code.

//...

Ellipses in C# code indicate text that has been omitted for clarity.

<!-- ... -->

Ellipses in XML schemas and documents' code indicate text that has been omitted for clarity.

This icon indicates a tip, suggestion, or general note.

This icon indicates a warning or caution.

[Team LiB]

[Team LiB]

About the Code

Nearly every recipe in this book contains one or more code samples. These samples are not just
fragments, but rather a complete solution that takes the form of either a Windows Forms or a
Console application. Most of the code samples are written within a class or structure, making it easier
to use within your applications. In addition to this, any using directives are included for each recipe

so that you will not have to search for which ones to include in your code.

Complete error handling is included only in critical areas, such as input parameters. This allows you
to easily see what is correct input and what is not. Many recipes omit error handling. This makes the
solution easier to understand by focusing on the key concepts.

[Team LiB]

[Team LiB]

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "C# Cookbook by Stephen Teilhet and Jay Hilyard. Copyright 2004
O'Reilly & Associates, Inc., 0-596-00339-0."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

[Team LiB]

[Team LiB]

Platform Notes

The solutions in this book are developed using Visual Studio .NET Version 1.1. The differences
between Version 1.1 and Version 1.0 of the .NET Framework are not very significant and the sample
code is not affected much. A complete list of differences between Version 1.1 and Version 1.0 of the
.NET Framework can be found at http://www.gotdotnet.com/team/upgrade/apiChanges.aspx.

[Team LiB]

http://www.gotdotnet.com/team/upgrade/apiChanges.aspx

[Team LiB]

Comments and Questions

Please address any comments or questions concerning this book to the publisher:

O'Reilly & Associates
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the U.S. or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information.
You can access this page at:

http://www.oreilly.com/catalog/csharpckbk

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
our web site at:

http://www.oreilly.com

[Team LiB]

http://www.oreilly.com/catalog/csharpckbk
http://www.oreilly.com

[Team LiB]

Acknowledgments

This book is the completion of a journey that started out two years ago with Steve and an idea.
Through various trials and tribulations, the book traveled and metamorphosed into the current
incarnation you hold. Along the way, Jay was graciously given the opportunity to broaden his writing
horizons by having Steve as a writing partner and together, we bring you our take on C#. This book
would have been impossible without the following people and we'd like to acknowledge all of their
efforts.

Brian Jepson, our editor, who taught us to hear different voices (active vs. passive), helped bring
things together for the home stretch, and made late nights seem a bit less bleak when he'd respond
to an email immediately we sent at 1:00 a.m. Thank you, Brian, for all of this and for asking the
questions to make us think.

Ian Griffiths, our technical editor, gave such feedback as every writer should be blessed with. Ian not
only kept us honest, but made many great suggestions, and without his efforts this book would have
been a much lesser work.

Nathan Torkington, the cookbook guru at O'Reilly, showed us the light, then proved it wasn't a train.
Thank you for starting this series and seeing it through.

From Steve Teilhet

Jay Hilyard worked incredibly hard to make this book great. This book would never have made it to
the shelves without you.

Kandis Teilhet, my wife, was there every step of the way to give me the strength to persevere and
finish this work. Words cannot express my love for you.

Patrick and Nicholas Teilhet, my two sons, made the rough patches smooth. I couldn't wish for two
better sons.

Jim Barton, a longtime friend, provided solid feedback, great ideas, and pointed out errors that I
would have otherwise missed.

Thanks to the entire DevPartner Code Review team at the Compuware NuMega Lab: Bill Holmes
helped me sort through several of the diagnostics chapter recipes (and yes, the book is done now);
Bob Meagher helped me sort out some rather insidious bugs; Jeff Simmons provided some great
ideas for recipes. Thanks also to all of the others who contributed: Allan Gaithuma, Eliza Lecours,
Paul Pelski, David Headley, Ken Naroff, and Ann-Marie Makenna. Thanks for all your help and
support-I think this calls for a celebration.

From Jay Hilyard

Thanks to Steve Teilhet, without whom I never would have had this opportunity and whom I was glad
to help. Now get back to work. :)

My wife Brooke is better to me than I deserve and helped me find the stamina and desire to write
even in the tough times. No one could have given more support than my "true companion." I love
you.

My sons, Owen and Andrew, who for all those times that "Daddy's in the cellar working," still had
laughter and smiles for me when I came up and needed them.

Thanks to Steve Munyan, Barry Tannenbaum, Craig Neth, and Kit Von Sück for their insights on life
and programming that helped shape my view of .NET.

And thanks to Greg Park, Keith Ludwig, David Fowler and Cleo O'Donnell for believing I would write
someday.

And to my family and friends for asking about a book they don't understand and still being interested
while helping to keep me on an even keel.

[Team LiB]

[Team LiB]

Chapter 1. Numbers
Simple types are value types that are a subset of the built-in types in Visual C# .NET, although, in
fact, the types are defined as part of the .NET Framework Class Library (.NET FCL). Simple types are
made up of several numeric types and a bool type. These numeric types consist of a decimal type
(decimal), nine integral types (byte, char, int, long, sbyte, short, uint, ulong, ushort), and two
floating-point types (float, double). Table 1-1 lists the simple types and their fully qualified names

in the .NET Framework.

Table 1-1. The simple data types

Fully qualified
name

Reserved C#
keyword

Value range

System.Boolean bool true or false

System.Byte byte 0 to 255

System.SByte sbyte -128 to 127

System.Char char 0 to 65535

System.Decimal decimal
-79,228,162,514,264,337,593,543,950,335 to
79,228,162,514,264,337,593,543,950,335

System.Double double -1.79769313486232e308 to 1.79769313486232e308

System.Single float -3.402823e38 to 3.402823e38

System.Int16 short -32768 to 32767

System.Uint16 ushort 0 to 65535

System.Int32 int -2,147,483,648 to 2,147,483,647

System.UInt32 uint 0 to 4,294,967,295

System.Int64 long -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

System.UInt64 ulong 0 to 18,446,744,073,709,551,615

The C# reserved words for the various data types are simply aliases for the fully qualified type name.
Therefore, it does not matter whether you use the type name or the reserved word: the C# compiler
will generate identical code.

It should be noted that the following types are not CLS-compliant: sbyte, ushort, uint, and ulong.

These types do not conform to the rules governing CLS types and therefore, they might not be
supported by other .NET languages. This lack of support might limit or impede the interaction

between your C# code and code written in another CLS-compliant language, such as Visual Basic
.NET.

[Team LiB]

[Team LiB]

Recipe 1.1 Determining Approximate Equality Between a
Fraction and Floating-Point Value

Problem

You need to compare a fraction with a value of type double or float to determine whether they are

within a close approximation to each other. Take, for example, the result of comparing the
expression 1/6 and the value 0.16666667. These seem to be equivalent, except that 0.16666666 is
precise to only 8 places to the right of the decimal point, and 1/6 is precise to the maximum number
of digits to the right of the decimal point that the data type will hold.

Solution

Verify that the difference between the two values is within an acceptable tolerance:

using System;

public static bool IsApproximatelyEqualTo(double numerator,
 double denominator,
 double dblValue,
 double epsilon)
{
 double difference = (numerator/denominator) - dblValue;

 if (Math.Abs(difference) < epsilon)
 {
 // This is a good approximation
 return (true);
 }
 else
 {
 // This is NOT a good approximation
 return (false);
 }
}

Replacing the type double with float allows you to determine whether a fraction and a float value

are approximately equal.

Discussion

Fractions can be expressed as a numerator over a denominator; however, storing them as a
floating-point value might be necessary. Storing fractions as floating-point values introduces rounding
errors that make it difficult to perform comparisons. Expressing the value as a fraction (e.g., 1/6)
allows the maximum precision. Expressing the value as a floating-point value (e.g., 0.16667) can limit
the precision of the value. In this case, the precision depends on the number of digits that the
developer decides to use to the right of the decimal point.

You might need a way to determine whether two values are approximately equal to each other. This
comparison is achieved by defining a value (epsilon) that is the smallest positive value, greater than
zero, in which the absolute value of the difference between two values (numerator/denominator -
dblValue) must be less than. In other words, by taking the absolute value of the difference between

the fraction and the floating-point value and comparing it to a predetermined value passed to the
epsilon argument, we can determine whether the floating-point value is a good approximation of

the fraction.

Consider a comparison between the fraction 1/7 and its floating-point value, 0.14285714285714285.
The following call to the IsApproximatelyEqualTo method indicates that there are not enough digits

to the right of the decimal point in the floating-point value to be a good approximation of the fraction
(there are 6 digits, although 7 are required):

bool Approximate = Class1.IsApproximatelyEqualTo(1, 7, .142857, .0000001);
// Approximate == false

Adding another digit of precision to the third parameter of this method now indicates that this more
precise number is what we require for a good approximation of the fraction 1/7:

bool Approximate = Class1.IsApproximatelyEqualTo(1, 7, .1428571, .0000001);
// Approximate == true

See Also

See the "Double.Epsilon Field" and "Single.Epsilon Field" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 1.2 Converting Degrees to Radians

Problem

When using the trigonometric functions of the Math class, all units are in radians. You have one or

more angles measured in degrees and want to convert these to radians in order to use them with the
members of the Math class.

Solution

To convert a value in degrees to radians, multiply it by /180:

using System;

public static double ConvertDegreesToRadians (double degrees)
{
 double radians = (Math.PI / 180) * degrees;
 return (radians);
}

Discussion

All of the static trigonometric methods in the Math class use radians as their unit of measure for

angles. It is very handy to have conversion routines to convert between radians and degrees,
especially when a user is required to enter data in degrees rather than radians.

The equation for converting degrees to radians is shown here:

radians = (Math.PI / 180) * degrees

The static field Math.PI contains the constant .

[Team LiB]

[Team LiB]

Recipe 1.3 Converting Radians to Degrees

Problem

When using the trigonometric functions of the Math class, all units are in radians; instead, you

require a result in degrees.

Solution

To convert a value in radians to degrees, multiply it by 180/:

using System;

public static double ConvertRadiansToDegrees(double radians)
{
 double degrees = (180 / Math.PI) * radians;
 return (degrees);
}

Discussion

All of the static trigonometric methods in the Math class use radians as their unit of measure for

angles. It is very handy to have conversion routines to convert between radians and degrees,
especially when displaying degrees to a user is more informative than displaying radians.

The equation for converting radians to degrees is shown here:

degrees = (180 / Math.PI) * radians

The static field Math.PI contains the constant .

[Team LiB]

[Team LiB]

Recipe 1.4 Using the Bitwise Complement Operator with
Various Data Types

Problem

The bitwise complement operator (~) is overloaded to work directly with int, uint, long, ulong, and
enumeration data types consisting of the underlying types int, uint, long, and ulong. However, you

need to perform a different bitwise complement operation on a data type.

Solution

You must cast the resultant value of the bitwise operation to the type you wish to work. The following
code demonstrates this technique with the byte data type:

byte y = 1;
byte result = (byte)~y;

The value assigned to result is 254.

Discussion

The following code shows incorrect use of the bitwise complement operator on the byte data type:

byte y = 1;
Console.WriteLine("~y = " + ~y);

This code outputs the following surprising value:

-2

Clearly, the result from performing the bitwise complement of the byte variable is incorrect; it should
be 254. In fact, byte is an unsigned data type, so it cannot be equal to a negative number. If we

rewrite the code as follows:

byte y = 1;
byte result = ~y;

we get a compile-time error: "Cannot implicitly convert type `int' to `byte.'" This error message
gives some insight into why this operation does not work as expected. To fix this problem, we must
explicitly cast this value to a byte before we assign it to the result variable, as shown here:

byte y = 1;

byte result = (byte)~y;

This cast is required because the bitwise operators are only overloaded to operate on six specific data
types: int, uint, long, ulong, bool, and enumeration data types. When one of the bitwise operators

is used on another data type, that data type is converted to the next closest data type of the six
supported data types. Therefore, a byte data type is converted to an int before the bitwise

complement operator is evaluated:

 0x01 // byte y = 1;
0xFFFFFFFE // The value 01h is converted to an int and its
 // bitwise complement is taken
 0xFE // The resultant int value is cast to its original byte data type

Notice that the int data type is a signed data type, unlike the byte data type. This is why we receive
-2 for a result instead of the expected value 254. This conversion of the byte data type to its nearest

equivalent is called numeric promotion. Numeric promotion also comes into play when you use
differing data types with binary operators, including the bitwise binary operators.

Numeric promotion is discussed in detail in the C# Language Specification
document in section 7.2.6 (this document is found in the directory
\MicrosoftVisual Studio .NET 2003\Vc7\1033 below the .NET 2003 installation
directory). Understanding how numeric promotion works is essential when
using operators on differing data types and when using operators with a data
type that it is not overloaded to handle. Knowing this can save you hours of
debugging time.

[Team LiB]

[Team LiB]

Recipe 1.5 Test for an Even or Odd Value

Problem

You need a simple method to test a numeric value to determine whether it is even or odd.

Solution

The solution is actually implemented as two methods. To test for an even integer value, use the
following method:

public static bool IsEven(int intValue)
{
 return ((intValue & 1) == 0);
}

To test for an odd integer value, use the following method:

public static bool IsOdd(int intValue)
{
 return ((intValue & 1) == 1);
}

Discussion

Every odd number always has its least-significant bit set to 1. Therefore, by checking whether this bit
is equal to 1, we can tell whether it is an odd number. Conversely, testing the least-significant bit to
see whether it is 0 can tell you whether it is an even number.

To test whether a value is even we AND the value in question with 1 and then determine whether the

result is equal to zero. If the result is zero, we know that the value is an even number; otherwise, the
value is odd. This operation is part of the IsEven method.

On the other hand, we can determine whether a value is odd by ANDing the value with 1, similar to
how the even test operates, and then determine whether the result is 1. If the result is set to 1, we

know that the value is an odd number; otherwise, the value is even. This operation is part of the
IsOdd method.

Note that you do not have to implement both the IsEven and IsOdd methods in your application,

although implementing both methods might improve the readability of your code.

The methods presented here accept only 32-bit integer values. To allow this method to accept other
numeric data types, you can simply overload it to accept any other data types that you require. For

example, if you need to also determine whether a 64-bit integer is even, you could modify the IsEven

method as follows:

public static bool IsEven(long longValue)
{
 return ((longValue & 1) == 0);
}

Only the data type in the parameter list needs to be modified.

[Team LiB]

[Team LiB]

Recipe 1.6 Obtaining the Most- or Least-Significant Bits
of a Number

Problem

You have a 32-bit integer value that contains information in both its lower and upper 16 bits. You need
a method to get the 16 most-significant bits and/or the 16 least-significant bits of this value.

Solution

To get the most-significant bits (MSB) of an integer value, perform a bitwise and between it and the

value shown in the following method:

public static int GetMSB(int intValue)
{
 return (intValue & 0xFFFF0000);
}

To get the least-significant bits (LSB) of a value, use the following method:

public static int GetLSB(int intValue)
{
 return (intValue & 0x0000FFFF);
}

This technique can easily be modified to work with other sizes of integers (e.g., 8-bit, 16-bit, or 64-
bit); this trick is shown in the Discussion section.

Discussion

In order to determine the values of the MSB of a number, use the following bitwise AND operation:

uint intValue = Int32.MaxValue;
uint MSB = intValue & 0xFFFF0000;

// MSB == 0xFFFF0000

This method simply ANDs the number to another number with all of the MSB set to 1. This method will

zero out all of the LSB, leaving the MSB intact.

In order to determine the values of the LSB of a number, use the following bitwise AND operation:

uint intValue = Int32.MaxValue;
uint LSB = intValue & 0x0000FFFF;

// LSB == 0x0000FFFF

This method simply ANDs the number to another number with all of the LSB set to 1, which zeroes

out all of the MSB, leaving the LSB intact.

The methods presented here accept only 32-bit integer values. To allow this method to accept other
numeric data types, you can simply overload this method to accept any other data types that you
require. For example, if you need to also acquire the least-significant byte or most-significant byte of
a 16-bit integer, you could modify the GetMSB method as follows:

public static int GetMSB(short shortValue)
{
 return (shortValue & 0xFF00);
}

The GetLSB method is modified as shown here:

public static int GetLSB(short shortValue)
{
 return (shortValue & 0x00FF);
}

[Team LiB]

[Team LiB]

Recipe 1.7 Converting a Number in Another Base to
Base10

Problem

You have a string containing a number in base2 (binary), base8 (octal), base10 (decimal), or base16
(hexadecimal). You need to convert this string to its equivalent integer value and display it in base10.

Solution

Use the overloaded static Convert.ToInt32 method on the Convert class:

string base2 = "11";
string base8 = "17";
string base10 = "110";
string base16 = "11FF";

Console.WriteLine("Convert.ToInt32(base2, 2) = " +
 Convert.ToInt32(base2, 2));

Console.WriteLine("Convert.ToInt32(base8, 8) = " +
 Convert.ToInt32(base8, 8));

Console.WriteLine("Convert.ToInt32(base10, 10) = " +
 Convert.ToInt32(base10, 10));

Console.WriteLine("Convert.ToInt32(base16, 16) = " +
 Convert.ToInt32(base16, 16));

This code produces the following output:

Convert.ToInt32(base2, 2) = 3
Convert.ToInt32(base8, 8) = 15
Convert.ToInt32(base10, 10) = 110
Convert.ToInt32(base16, 16) = 4607

Discussion

The static Convert.ToInt32 method has an overload that takes a string containing a number and an

integer defining the base of this number. This method then converts the numeric string into an integer
and returns this number displayed as base10.

The other static methods of the Convert class, such as ToByte, ToInt64, and ToInt16, also have

this same overload, which accepts a number as a string and a base type for this number.
Unfortunately, these methods convert from base2, base8, base10, and base16 only to a value of
base10. They do not convert a value to any other base types.

See Also

See the "Convert Class" and "Converting with System.Convert" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 1.8 Determining Whether a String Is a Valid
Number

Problem

You have a string that possibly contains a numeric value. You need to know whether this string
contains a valid number.

Solution

Use the static Parse method of any of the numeric types. For example, to determine whether a string

contains an integer, use the following method:

public static bool IsNumeric(string str)
{
 try
 {
 str = str.Trim();
 int foo = int.Parse(str);
 return (true);
 }
 catch (FormatException)
 {
 // Not a numeric value
 return (false);
 }
}

If you instead needed to test whether a string is a floating-point value, change the second line in the
try block to the following:

int foo = float.Parse(str);

A more compact way of testing a string for a numeric value-and one that does not have the
overhead of throwing an exception-is to use the double.TryParse method:

public static bool IsNumericFromTryParse(string str)
{
 double result = 0;
 return (double.TryParse(str, System.Globalization.NumberStyles.Float,
 System.Globalization.NumberFormatInfo.CurrentInfo, out result));
}

The following IsNumericRegEx method does not incur the overhead of throwing an exception and it
allows more flexibility in determining what type of number to test for. The IsNumericRegEx method

tests for a number that can be signed/unsigned, contain a decimal point, and be displayed in
scientific notation. This method accepts a string, possibly containing only a number, and returns true
or false, depending on whether this string conforms to a numeric value:

private static Regex r = new Regex(@"^[\+\-]?\d*\.?[Ee]?[\+\-]?\d*$",
 RegexOptions.Compiled);

public static bool IsNumericRegEx(string str)
{
 str = str.Trim();
 Match m = r.Match(str);
 return (m.Value);
}

Discussion

This recipe shows three ways of determining whether a string contains only a numeric value. The
IsNumeric method uses the Parse method, which throws a FormatException if the string cannot be
converted to the appropriate type. The second method, IsNumericFromTryParse, uses the built-in
double.TryParse method; this method also returns a value of type double if the string contains a
valid number. The third method, IsNumericRegEx, uses a regular expression to determine whether

the value of a string conforms to the various formats of a numeric value, such as an integer, a
floating-point value, or a number written in scientific notation.

The method you choose can have a performance impact on your application. It's not just a question
of whether it's called many times, it's also about whether a valid number exists within the string
passed in to these methods. In some scenarios IsNumeric will be fastest, even if you call it many
times. In others, the IsNumericFromTryParse or IsNumericRegEx will be fastest. It all depends on

how often the string will not be a valid number. If you expect the string to contain non-numeric data
most of the time (or even half the time), you should consider using the IsNumericFromTryParse or
IsNumericRegEx methods. Otherwise, the IsNumeric method will give you the best performance.

The IsNumericRegEx method uses the static IsMatch method on the Regex class to attempt to
match a numeric value contained in the string str. This static method returns true if the match
succeeds and false if it does not. Notice also that the regular expression starts with the ̂ character
and ends with the $ character. This forces the regular expression to match everything within the
string, not just part of the string. If these characters were not included, the IsMatch method would
return true for the following string "111 West Ave".

The IsNumericRegEx method has a drawback: it cannot determine the data type of the number
contained within the string. For example, the int.Parse method will accept only strings that contain
a valid integer value; likewise, the float.Parse method will accept only strings containing valid
float values. The regular expression will return true for any type of numeric value matched. To

enhance the regular expression, use the following method to determine whether a value is a non-
floating-point number:

public static bool IsIntegerRegEx(string str)
{
 str = str.Trim();
 return (Regex.IsMatch(str, @"^[\+\-]?\d+$"));

}

We could also use the following method to determine whether the string contains an unsigned
number:

public static bool IsUnsignedIntegerRegEx(string str)
{
 str = str.Trim();
 return (Regex.IsMatch(str, @"^\+?\d+$"));
}

Note also that the Trim method can be excluded if you want to find numbers within strings that

contain no beginning or ending whitespace.

[Team LiB]

[Team LiB]

Recipe 1.9 Rounding a Floating-Point Value

Problem

You need to round a number to a whole number or to a specific number of decimal places.

Solution

To round any number to its nearest whole number, use the overloaded static Math.Round method,

which takes only a single arguments:

int x = (int)Math.Round(2.5555); // x == 3

If you need to round a floating-point value to a specific number of decimal places, use the overloaded
static Math.Round method, which takes two arguments:

decimal x = Math.Round(2.5555, 2); // x == 2.56

Discussion

The Round method is easy to use; however, you need to be aware of how the rounding operation
works. The Round method follows the IEEE Standard 754, section 4 standard. This means that if the
number being rounded is halfway between two numbers, the Round operation will always round to

the even number. An example will show what this means to you:

decimal x = Math.Round(1.5); // x == 2
decimal y = Math.Round(2.5); // y == 2

Notice that 1.5 is rounded up to the nearest even whole number and 2.5 is rounded down to the
nearest even whole number. Keep this in mind when using the Round method.

See Also

See Recipe 1.1; see the "Math Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 1.10 Different Rounding Algorithms

Problem

The Math.Round method will round the value 1.5 to 2; however, the value 2.5 will also be rounded to

2 using this method. Always round to the greater number in this type of situation (e.g., round 2.5 to
3). Conversely, you might want to always round to the lesser number (e.g., round 1.5 to 1).

Solution

Use the static Math.Floor method to always round up when a value is halfway between two whole

numbers:

public static double RoundUp(double valueToRound)
{
 return (Math.Floor(valueToRound + 0.5));
}

Use the following technique to always round down when a value is halfway between two whole
numbers:

public static double RoundDown(double valueToRound)
{
 double floorValue = Math.Floor(valueToRound);
 if ((valueToRound - floorValue) > .5)
 {
 return (floorValue + 1);
 }
 else
 {
 return (floorValue);
 }
}

Discussion

The static Static.Round method rounds to the nearest even number (see Recipe 1.9 for more

information). However, there are some times that you do not want to round a number in this
manner. The static Math.Floor method can be used to allow for different manners of rounding.

Note that the methods used to round numbers in this recipe do not round to a specific number of
decimal points; rather, they round to the nearest whole number.

See Also

See Recipe 1.9; see the "Math Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 1.11 Converting Celsius to Fahrenheit

Problem

You have a temperature reading measured in Celsius and need to convert it to Fahrenheit.

Solution

public static double CtoF(double celsius)
{
 return (((0.9/0.5) * celsius) + 32);
}

Discussion

This recipe makes use of the following Celsius-to-Fahrenheit temperature conversion equation:

TempCelsius = (5 / 9) * (TempFahrenheit - 32)

The Fahrenheit temperature scale is widely used in the United States. However, much of the rest of
the world uses the Celsius temperature scale.

[Team LiB]

[Team LiB]

Recipe 1.12 Converting Fahrenheit to Celsius

Problem

You have a temperature reading measured in Fahrenheit and need to convert it to Celsius.

Solution

public static double FtoC(double fahrenheit)
{
 return ((0.5/0.9) * (fahrenheit - 32));
}

Discussion

This recipe makes use of the following Fahrenheit-to-Celsius temperature conversion equation:

TempFahrenheit = ((9 / 5) * TempCelsius) + 32

The Fahrenheit temperature scale is widely used in the United States. However, much of the rest of
the world uses the Celsius temperature scale.

[Team LiB]

[Team LiB]

Recipe 1.13 Safely Performing a Narrowing Numeric Cast

Problem

You need to cast a value from a larger value to a smaller one, while gracefully handling conditions
that result in a loss of information. For example, casting a long to an int results only in a loss of
information if the long data type is greater than int.MaxSize.

Solution

The simplest way to do this check is to use the checked keyword. The following method accepts two
long data types and attempts to add them together. The result is stuffed into an int data type. If an
overflow condition exists, the OverflowException is thrown:

using System;

public void UseChecked(long lhs, long rhs)
{
 int result = 0;

 try
 {
 result = checked((int)(lhs + rhs));
 }
 catch (OverflowException e)
 {
 // Handle overflow exception here.
 }
}

This is the simplest method. However, if you do not want the overhead of throwing an exception and
having to wrap a lot of code in try/catch blocks to handle the overflow condition, you could use the
MaxValue and MinValue fields of each type. A check using these fields can be done prior to the

conversion to insure that no loss of information occurs. If this does occur, the code can inform the
application that this cast will cause a loss of information. You can use the following conditional
statement to determine whether sourceValue can be cast to a short without losing any information:

// Our two variables are declared and initialized
int sourceValue = 34000;
short destinationValue = 0;

// Determine if sourceValue will lose information in a cast to a short
if (sourceValue <= short.MaxValue && sourceValue >= short.MinValue)
{

 destinationValue = (short)sourceValue;
}
else
{
 // Inform the application that a loss of information will occur
}

Instead of placing this conditional throughout your code, you can use the following overloaded
methods to determine whether an integral type will lose data in a cast:

// Overloaded methods to check conversions from unsigned integral types
// to any other type
public static bool IsSafeToConvert(byte valueToConvert,
 string typeToConvertTo)
{
 return (IsSafeToConvert((ulong)valueToConvert, typeToConvertTo));
}

public static bool IsSafeToConvert(ushort valueToConvert,
 string typeToConvertTo)
{
 return (IsSafeToConvert((ulong)valueToConvert, typeToConvertTo));
}

public static bool IsSafeToConvert(uint valueToConvert,
 string typeToConvertTo)
{
 return (IsSafeToConvert((ulong)valueToConvert, typeToConvertTo));
}

public static bool IsSafeToConvert(ulong valueToConvert,
 string typeToConvertTo)
{
 bool isSafe = false;

 switch(typeToConvertTo)
 {
 case "byte":
 if(valueToConvert <= byte.MaxValue && valueToConvert >= 0)
 isSafe = true;
 break;

 case "sbyte":
 if(valueToConvert <= (ulong)sbyte.MaxValue &&
 valueToConvert >= 0)
 isSafe = true;
 break;

 case "short":
 if(valueToConvert <= (ulong)short.MaxValue &&
 valueToConvert >= 0)
 isSafe = true;

 break;

 case "ushort":
 if(valueToConvert <= ushort.MaxValue && valueToConvert >= 0)
 isSafe = true;
 break;

 case "int":
 if(valueToConvert <= int.MaxValue && valueToConvert >= 0)
 isSafe = true;
 break;

 case "uint":
 if(valueToConvert <= uint.MaxValue && valueToConvert >= 0)
 isSafe = true;
 break;

 case "long":
 if(valueToConvert <= long.MaxValue && valueToConvert >= 0)
 isSafe = true;
 break;

 case "ulong":
 if(valueToConvert <= ulong.MaxValue && valueToConvert >= 0)
 isSafe = true;
 break;

 case "char":
 if(valueToConvert <= char.MaxValue && valueToConvert >= 0)
 isSafe = true;
 break;

 default:
 isSafe = true;
 break;
 }

 return (isSafe);
}

// Overloaded methods to check conversions from signed integral types
// to any other type
public static bool IsSafeToConvert(sbyte valueToConvert,
 string typeToConvertTo)
{
 return (IsSafeToConvert((long)valueToConvert, typeToConvertTo));
}

public static bool IsSafeToConvert(short valueToConvert,
 string typeToConvertTo)
{
 return (IsSafeToConvert((long)valueToConvert, typeToConvertTo));

}

public static bool IsSafeToConvert(int valueToConvert,
 string typeToConvertTo)
{
 return (IsSafeToConvert((long)valueToConvert, typeToConvertTo));
}

public static bool IsSafeToConvert(char valueToConvert,
 string typeToConvertTo)
{
 return (IsSafeToConvert((long)valueToConvert, typeToConvertTo));
}

public static bool IsSafeToConvert(long valueToConvert,
 string typeToConvertTo)
{
 bool isSafe = false;

 switch(typeToConvertTo)
 {
 case "byte":
 if(valueToConvert <= byte.MaxValue &&
 valueToConvert >= byte.MinValue)
 isSafe = true;
 break;

 case "sbyte":
 if(valueToConvert <= sbyte.MaxValue &&
 valueToConvert >= sbyte.MinValue)
 isSafe = true;
 break;

 case "short":
 if(valueToConvert <= short.MaxValue &&
 valueToConvert >= short.MinValue)
 isSafe = true;
 break;

 case "ushort":
 if(valueToConvert <= ushort.MaxValue &&
 valueToConvert >= ushort.MinValue)
 isSafe = true;
 break;

 case "int":
 if(valueToConvert <= int.MaxValue &&
 valueToConvert >= int.MinValue)
 isSafe = true;
 break;

 case "uint":

 if(valueToConvert <= uint.MaxValue &&
 valueToConvert >= uint.MinValue)
 isSafe = true;
 break;

 case "long":
 if(valueToConvert <= long.MaxValue &&
 valueToConvert >= long.MinValue)
 isSafe = true;
 break;

 case "ulong":
 if(valueToConvert >= 0)
 isSafe = true;
 break;

 case "char":
 if(valueToConvert <= char.MaxValue &&
 valueToConvert >= char.MinValue)
 isSafe = true;
 break;

 default:
 isSafe = true;
 break;
 }

 return (isSafe);
}

// Overloaded methods to check conversions from a float type
// to any other type
public bool IsSafeToConvert(float valueToConvert, string typeToConvertTo)
{
 bool isSafe = false;

 switch(typeToConvertTo)
 {
 case "byte":
 if(valueToConvert <= byte.MaxValue &&
 valueToConvert >= byte.MinValue)
 isSafe = true;
 break;

 case "sbyte":
 if(valueToConvert <= sbyte.MaxValue &&
 valueToConvert >= sbyte.MinValue)
 isSafe = true;
 break;

 case "short":
 if(valueToConvert <= short.MaxValue &&

 valueToConvert >= short.MinValue)
 isSafe = true;
 break;

 case "ushort":
 if(valueToConvert <= ushort.MaxValue &&
 valueToConvert >= ushort.MinValue)
 isSafe = true;
 break;

 case "int":
 if(valueToConvert <= int.MaxValue &&
 valueToConvert >= int.MinValue)
 isSafe = true;
 break;

 case "uint":
 if(valueToConvert <= uint.MaxValue &&
 valueToConvert >= uint.MinValue)
 isSafe = true;
 break;

 case "long":
 if(valueToConvert <= long.MaxValue &&
 valueToConvert >= long.MinValue)
 isSafe = true;
 break;

 case "ulong":
 if(valueToConvert <= ulong.MaxValue &&
 valueToConvert >= ulong.MinValue)
 isSafe = true;
 break;

 case "char":
 if(valueToConvert <= char.MaxValue &&
 valueToConvert >= char.MinValue)
 isSafe = true;
 break;

 case "double":
 if(valueToConvert <= double.MaxValue &&
 valueToConvert >= double.MinValue)
 isSafe = true;
 break;

 case "decimal":
 if(valueToConvert <= (float)decimal.MaxValue &&
 valueToConvert >= (float)decimal.MinValue)
 isSafe = true;
 break;

 default:
 isSafe = true;
 break;
 }

 return (isSafe);
}

// Overloaded methods to check conversions from a double type
// to any other type
public bool IsSafeToConvert(double valueToConvert, string typeToConvertTo)
{
 bool isSafe = false;

 switch(typeToConvertTo)
 {
 case "byte":
 if(valueToConvert <= byte.MaxValue &&
 valueToConvert >= byte.MinValue)
 isSafe = true;
 break;

 case "sbyte":
 if(valueToConvert <= sbyte.MaxValue &&
 valueToConvert >= sbyte.MinValue)
 isSafe = true;
 break;

 case "short":
 if(valueToConvert <= short.MaxValue &&
 valueToConvert >= short.MinValue)
 isSafe = true;
 break;

 case "ushort":
 if(valueToConvert <= ushort.MaxValue &&
 valueToConvert >= ushort.MinValue)
 isSafe = true;
 break;

 case "int":
 if(valueToConvert <= int.MaxValue &&
 valueToConvert >= int.MinValue)
 isSafe = true;
 break;

 case "uint":
 if(valueToConvert <= uint.MaxValue &&
 valueToConvert >= uint.MinValue)
 isSafe = true;
 break;

 case "long":
 if(valueToConvert <= long.MaxValue &&
 valueToConvert >= long.MinValue)
 isSafe = true;
 break;

 case "ulong":
 if(valueToConvert <= ulong.MaxValue &&
 valueToConvert >= ulong.MinValue)
 isSafe = true;
 break;

 case "char":
 if(valueToConvert <= char.MaxValue &&
 valueToConvert >= char.MinValue)
 isSafe = true;
 break;

 case "float":
 if(valueToConvert <= float.MaxValue &&
 valueToConvert >= float.MinValue)
 isSafe = true;
 break;

 case "decimal":
 if(valueToConvert <= (double)decimal.MaxValue &&
 valueToConvert >= (double)decimal.MinValue)
 isSafe = true;
 break;

 default:
 isSafe = true;
 break;
 }

 return (isSafe);
}

// Overloaded methods to check conversions from a decimal type
// to any other type
public bool IsSafeToConvert(decimal valueToConvert,
 string typeToConvertTo)
{
 bool isSafe = false;

 switch(typeToConvertTo)
 {
 case "byte":
 if(valueToConvert <= byte.MaxValue &&
 valueToConvert >= byte.MinValue)
 isSafe = true;
 break;

 case "sbyte":
 if(valueToConvert <= sbyte.MaxValue &&
 valueToConvert >= sbyte.MinValue)
 isSafe = true;
 break;

 case "short":
 if(valueToConvert <= short.MaxValue &&
 valueToConvert >= short.MinValue)
 isSafe = true;
 break;

 case "ushort":
 if(valueToConvert <= ushort.MaxValue &&
 valueToConvert >= ushort.MinValue)
 isSafe = true;
 break;

 case "int":
 if(valueToConvert <= int.MaxValue &&
 valueToConvert >= int.MinValue)
 isSafe = true;
 break;

 case "uint":
 if(valueToConvert <= uint.MaxValue &&
 valueToConvert >= uint.MinValue)
 isSafe = true;
 break;

 case "long":
 if(valueToConvert <= long.MaxValue &&
 valueToConvert >= long.MinValue)
 isSafe = true;
 break;

 case "ulong":
 if(valueToConvert <= ulong.MaxValue &&
 valueToConvert >= ulong.MinValue)
 isSafe = true;
 break;

 case "char":
 if(valueToConvert <= char.MaxValue &&
 valueToConvert >= char.MinValue)
 isSafe = true;
 break;

 default:
 isSafe = true;
 break;

 }

 return (isSafe);
}

Discussion

A narrowing conversion occurs when a larger type is cast down to a smaller type. For instance,
consider casting a value of type Int32 to a value of type Int16. If the Int32 value is smaller or
equal to the Int16.MaxValue field and the Int32 value is higher or equal to the Int16.MinValue

field, the cast will occur without error or loss of information. Loss of information occurs when the
Int32 value is larger than the Int16.MaxValue field or the Int32 value is lower than the
Int16.MinValue field. In either of these cases, the most-significant bits of the Int32 value would be

truncated and discarded, changing the value after the cast.

If a loss of information occurs in an unchecked context, it will occur silently without the application
noticing. This problem can cause some very insidious bugs that are hard to track down. To prevent
this, check the value to be converted to determine whether it is within the lower and upper bounds of
the type that it will be cast to. If the value is outside these bounds, then code can be written to
handle this situation. This code could force the cast not to occur and/or possibly to inform the
application of the casting problem. This solution can aid in the prevention of hard-to-find arithmetic
bugs from appearing in your applications.

You should understand that both techniques shown in the Solution section are valid. However, the
technique you use will depend on whether you expect to hit the overflow case on a regular basis or
only occasionally. If you expect to hit the overflow case quite often, you might want to choose the
second technique of manually testing the numeric value. Otherwise, it might be easier to use the
checked keyword, as in the first technique.

In C#, code can run in either a checked or unchecked context; by default, the
code runs in an unchecked context. In a checked context, any arithmetic and
conversions involving integral types are examined to determine whether an
overflow condition exists. If so, an OverflowException is thrown. In an
unchecked context, no OverflowException will be thrown when an overflow

condition exists.

A checked context can be set up by using the /checked{+} compiler switch, by
setting the Check for Arithmetic Overflow/Underflow project property to true,
or by using the checked keyword. An unchecked context can be set up using
the /checked- compiler switch, by setting the Check for Arithmetic
Overflow/Underflow project property to false, or by using the unchecked

keyword.

Notice that floating-point and decimal types are not included in the code that handles the conversions
to integral types in this recipe. The reason is that a conversion from any integral type to a float,
double, or decimal will not lose any information; therefore, it is redundant to check these

conversions.

In addition, you should be aware of the following when performing a conversion:

Casting from a float, double, or decimal type to an integral type results in the truncation of

the fractional portion of this number.

Casting from a float or double to a decimal results in the float or double being rounded to

28 decimal places.

Casting from a double to a float results in the double being rounded to the nearest float

value.

Casting from a decimal to a float or double results in the decimal being rounded to the
resulting type (float or double).

Casting from int, uint, or long to a float could result in the loss of precision, but never

magnitude.

Casting from long to a double could result in the loss of precision, but never magnitude.

See Also

See the "checked" keyword and "Checked and Unchecked" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 1.14 Finding the Length of Any Three Sidesof a
Right Triangle

Problem

You need to calculate the length of one side of a triangle when either the lengths of two sides are
known or one angle and the length of a side are known.

Solution

Use the Math.Sin , Math.Cos , and Math.Tan methods of the Math class to find the length of one side.

The equations for these methods are as follows:

double theta = 40;
double hypotenuse = 5;
double oppositeSide;
double adjacentSide;

oppositeSide = Math.Sin(theta) * hypotenuse;
oppositeSide = Math.Tan(theta) * adjacentSide;
adjacentSide = Math.Cos(theta) * hypotenuse;
adjacentSide = oppositeSide / Math.Tan(theta);
hypotenuse = oppositeSide / Math.Sin(theta);
hypotenuse = adjacentSide / Math.Cos(theta);

where theta () is the known angle, and the oppositeSide variable is equal to the length of the side
opposite to the angle theta , and the adjacentSide variable is equal to the length of the side
adjacent to the angle theta . The hypotenuse variable is equal to the length of the hypotenuse of the

triangle. See Figure 1-1 .

Figure 1-1. A right triangle

In addition to these three static methods, the length of the hypotenuse of a right triangle can be
calculated using the Pythagorean theorem. This theorem states that the hypotenuse of a right triangle
is equal to the square root of the sum of the squares of the other two sides. This equation can be
realized through the use of the Math.Pow and Math.Sqrt static methods of the Math class, as follows:

double hypotenuse = Math.Sqrt(Math.Pow(xSide, 2) + Math.Pow(ySide, 2))

where xSide and ySide are the lengths of the two sides that are not the hypotenuse of the triangle.

Discussion

Finding the length of a side of a right triangle is easy when an angle and the length of one of the sides
are known. Using the trigonometric functions sine, cosine, and tangent, we can derive the lengths of
either of the two unknown sides. The equations for sine, cosine, and tangent are defined here:

sin(Theta) = oppositeSide / hypotenuseSide
cos(Theta) = adjacentSide / hypotenuseSide
tan(Theta) = oppositeSide / adjacentSide

where theta is the value of the known angle. Rearranging these equations allows us to derive the

following equations:

oppositeSide = sin(theta) * hypotenuse;
oppositeSide = tan(theta) * adjacentSide;
adjacentSide = cos(theta) * hypotenuse;
adjacentSide = oppositeSide / tan(theta);
hypotenuse = oppositeSide / sin(theta);
hypotenuse = adjacentSide / cos(theta);

These equations give us two methods to find the length of each side of the triangle.

In the case where none of the angles are known, but the lengths of two of the sides are known, use
the Pythagorean theorem to determine the length of the hypotenuse. This theorem is defined as
follows:

Math.Sqrt(Math.Pow(hypotenuse)) = Math.Sqrt(Math.Pow(xSide, 2) + Math.Pow(ySide, 2))

Simplifying this equation into a syntax usable by C#, we obtain the following code:

double hypotenuse = Math.Sqrt(Math.Pow(xSide, 2) + Math.Pow(ySide, 2));

where hypotenuse is equal to the length of the hypotenuse, and xSide and ySide are the lengths of

the other two sides.

See Also

See the "Math Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 1.15 Finding the Angles of a Right Triangle

Problem

You need to calculate an angle of a triangle when the lengths of two sides are known.

Solution

Use the Math.Atan, Math.Acos, or Math.Asin static methods of the Math class. The following code
calculates the angle theta and returns the value in radian measure:

double theta = Math.Atan(OppositeSide / AdjacentSide);
theta = Math.Acos(AdjacentSide / Hypotenuse);
theta = Math.Asin(OppositeSide / Hypotenuse);

To get the angle in degrees, use the following code:

double theta = Math.Atan(oppositeSide / adjacentSide) * (180 / Math.PI);
theta = Math.Acos(adjacentSide / hypotenuse) * (180 / Math.PI);
theta = Math.Asin(oppositeSide / hypotenuse) * (180 / Math.PI);

where theta is the known angle value, the oppositeSide is equal to the length of the side opposite
to the angle, and adjacentSide is equal to the length of the side adjacent to the angle. The
hypotenuse is the length of the hypotenuse of the triangle. See Figure 1-1 in Recipe 1.14 for a

graphical representation of these sides of a right triangle.

Discussion

In some cases, we need to determine an angle of a right triangle when only the lengths of two sides
are known. The three trigonometric functions arcsine, arccosine, and arctangent allow us to find any
angle of a right triangle, given this information. The static methods Math.Atan, Math.Acos, and
Math.Asin on the Math class provide the functionality to implement these trigonometric operations.

See Also

See Recipe 1.14; see the "Math Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Chapter 2. Strings and Characters
String usage abounds in just about all types of applications. The System.String type does not derive
from System.ValueType and is therefore considered a reference type. The string alias is built into

C# and can be used instead of the full name.

The FCL does not stop with just the string class; there is also a System.Text.StringBuilder class
for performing string manipulations and the System.Text.RegularExpressions namespace for
searching strings. This chapter will cover the string class and the System.Text.StringBuilder

class.

The System.Text.StringBuilder class provides an easy, performance friendly, method of
manipulating string objects. This class duplicates much of the functionality of a string class.

However, this duplicated functionality provides a more efficient manipulation of strings than is
obtainable by using the string class.

[Team LiB]

[Team LiB]

Recipe 2.1 Determining the Kind of Character

Problem

You have a variable of type char and wish to determine the kind of character it contains-a letter,

digit, number, punctuation character, control character, separator character, symbol, whitespace, or
surrogate character. Similarly, you have a string variable and want to determine the kind of

character in one or more positions within this string.

Solution

Use the built-in static methods on the System.Char structure shown here:

Char.IsControl
Char.IsDigit
Char.IsLetter
Char.IsNumber
Char.IsPunctuation
Char.IsSeparator
Char.IsSurrogate
Char.IsSymbol
Char.IsWhitespace

Discussion

The following examples demonstrate how to use the methods shown in the Solution section in a
function to return the kind of a character. First, create an enumeration to define the various types of
characters:

public enum CharKind
{
 Control,
 Digit,
 Letter,
 Number,
 Punctuation,
 Separator,
 Surrogate,
 Symbol,
 Whitespace,
 Unknown
}

Next, create a method that contains the logic to determine the type of a character and to return a
CharKind enumeration value indicating that type:

public static CharKind GetCharKind(char theChar)
{
 if (Char.IsControl(theChar))
 {
 return CharKind.Control;
 }
 else if (Char.IsDigit(theChar))
 {
 return CharKind.Digit;
 }
 else if (Char.IsLetter(theChar))
 {
 return CharKind.Letter;
 }
 else if (Char.IsNumber(theChar))
 {
 return CharKind.Number;
 }
 else if (Char.IsPunctuation(theChar))
 {
 return CharKind.Punctuation;
 }
 else if (Char.IsSeparator(theChar))
 {
 return CharKind.Separator;
 }
 else if (Char.IsSurrogate(theChar))
 {
 return CharKind.Surrogate;
 }
 else if (Char.IsSymbol(theChar))
 {
 return CharKind.Symbol;
 }
 else if (Char.IsWhiteSpace(theChar))
 {
 return CharKind.Whitespace;
 }
 else
 {
 return CharKind.Unknown;
 }
}

If, however, a character in a string needs to be evaluated, use the overloaded static methods on the
Char structure. The following code modifies the GetCharKind method to accept a string variable

and a character position in that string. The character position determines which character in the
string is evaluated:

public static CharKind GetCharKindInString(string theString, int charPosition)
{
 if (Char.IsControl(theString, charPosition))
 {
 return CharKind.Control;
 }
 else if (Char.IsDigit(theString, charPosition))
 {
 return CharKind.Digit;
 }
 else if (Char.IsLetter(theString, charPosition))
 {
 return CharKind.Letter;
 }
 else if (Char.IsNumber(theString, charPosition))
 {
 return CharKind.Number;
 }
 else if (Char.IsPunctuation(theString, charPosition))
 {
 return CharKind.Punctuation;
 }
 else if (Char.IsSeparator(theString, charPosition))
 {
 return CharKind.Separator;
 }
 else if (Char.IsSurrogate(theString, charPosition))
 {
 return CharKind.Surrogate;
 }
 else if (Char.IsSymbol(theString, charPosition))
 {
 return CharKind.Symbol;
 }
 else if (Char.IsWhiteSpace(theString, charPosition))
 {
 return CharKind.Whitespace;
 }
 else
 {
 return CharKind.Unknown;
 }
}

The GetCharKind method accepts a character as a parameter and performs a series of tests on that
character using the Char type's built-in static methods. An enumeration of all the different types of
characters is defined and is returned by the GetCharKind method.

Table 2-1 describes each of the static Char methods.

Table 2-1. Char methods

Char method Description

IsControl A control code in the ranges \U007F, \U0000-\U001F, and \U0080-\U009F.

IsDigit Any decimal digit in the range 0-9.

IsLetter Any alphabetic letter.

IsNumber Any decimal digit or hexadecimal digit.

IsPunctuation Any punctuation character.

IsSeparator A space separating words, a line separator, or a paragraph separator.

IsSurrogate Any surrogate character in the range \UD800-\UDFFF.

IsSymbol
Any mathematical, currency, or other symbol character. Includes characters that
modify surrounding characters.

IsWhitespace

Any space character and the following characters:

\U0009

\U000A

\U000B

\U000C

\U000D

\U0085

\U2028

\U2029

The following code example determines whether the fifth character (the charPosition parameter is

zero-based) in the string is a digit:

if (GetCharKind("abcdefg", 4) == CharKind.Digit) {...}

See Also

See the "Char Structure" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 2.2 Determining Whether a Character Is Within a
Specified Range

Problem

You need to determine whether a character in a char data type is within a range, such as between 1
and 5 or between A and M.

Solution

Use the built-in comparison support for the char data type. The following code shows how to use the

built-in comparison support:

public static bool IsInRange(char testChar, char startOfRange, char endOfRange)
{
 if (testChar >= startOfRange && testChar <= endOfRange)
 {
 // testChar is within the range
 return (true);
 }
 else
 {
 // testChar is NOT within the range
 return (false);
 }
}

There is only one problem with that code. If the startOfRange and endOfRange characters have

different cases, the result may not be what you expect. By adding the following code, which makes all
characters uppercase, to the beginning of the method in Recipe 2.7, we can solve this problem:

testChar = char.ToUpper(testChar);
startOfRange = char.ToUpper(startOfRange);
endOfRange = char.ToUpper(endOfRange);

Discussion

The IsInRange method accepts three parameters. The first is the testChar character that you need

to check on, to test if it falls between the last two parameters on this method. The last two
parameters are the starting and ending characters, respectively, of a range of characters. The
testChar parameter must be between startOfRange and endOfRange or equal to one of theses
parameters for this method to return true; otherwise, false is returned.

The IsInRange method can be called in the following manner:

bool inRange = IsInRange('c', 'a', 'g');
bool inRange = IsInRange('c', 'a', 'b');
bool inRange = IsInRange((char)32, 'a', 'g');

The first call to this method returns true, since c is between a and g. The second method returns
false, since c is not between a and b. The third method indicates how an integer value

representative of a character would be passed to this method.

Note that this method tests whether the testChar value is inclusive between the range of characters
startOfRange and endOfRange. If you wish to determine only whether testChar is between this
range exclusive of the startOfRange and endOfRange character values, you should modify the if

statement, as follows:

if (testChar > startOfRange && testChar < endOfRange)

[Team LiB]

[Team LiB]

Recipe 2.3 Controlling Case Sensitivity when Comparing
Two Characters

Problem

You need to compare two characters for equality, but you need the flexibility of performing a case-
sensitive or case-insensitive comparison.

Solution

Use the Equals instance method on the char structure to compare the two characters:

public static bool IsCharEqual(char firstChar, char secondChar)
{
 return (IsCharEqual(firstChar, secondChar, false));
}

public static bool IsCharEqual(char firstChar, char secondChar,
 bool caseSensitiveCompare)
{
 if (caseSensitiveCompare)
 {
 return (firstChar.Equals(secondChar));
 }
 else
 {
 return (char.ToUpper(firstChar).Equals(char.ToUpper(secondChar)));
 }
}

The first overloaded IsCharEqual method takes only two parameters: the characters to be
compared. This method then calls the second IsCharEqual method with three parameters. The third
parameter on this method call defaults to false so that when this method is called, you do not have
to pass in a value for the caseSensitiveCompare parameter-it will automatically default to false.

Discussion

Using the ToUpper method in conjunction with the Equals method on the string class allows us to

choose whether to take into account the case of the strings when comparing them. To perform a
case-sensitive comparison of two char variables, simply use the Equals method, which, by default,

performs a case-sensitive comparison. Performing a case-insensitive comparison requires that both

characters be converted to their uppercase values (they could just as easily be converted to their
lowercase equivalents, but for this recipe we convert them to uppercase) before the Equals method

is invoked. Setting both characters to their uppercase equivalents removes any case-sensitivity
between the character values, and they can be compared using the case-sensitive Equals

comparison method as though it were a case-insensitive comparison.

You can further extend the overloaded IsCharEqual methods to handle the culture of the characters

passed in to it:

public static bool IsCharEqual(char firstChar, CultureInfo firstCharCulture,
 char secondChar, CultureInfo secondCharCulture)
{
 return (IsCharEqual(firstChar, firstCharCulture,
 secondChar, secondCharCulture, false));
}

public static bool IsCharEqual(char firstChar, CultureInfo firstCharCulture,
 char secondChar, CultureInfo secondCharCulture,
 bool caseSensitiveCompare)
{
 if (caseSensitiveCompare)
 {
 return (firstChar.Equals(secondChar));
 }
 else
 {
 return (char.ToUpper(firstChar, firstCharCulture).Equals
 (char.ToUpper(secondChar, secondCharCulture)));
 }
}

The addition of the CultureInfo parameters to these methods allows us to pass in the culture
information for the strings that we are calling ToUpper on. This information allows the ToUpper

method to correctly uppercase the character based in the culture-specific details of the character
(i.e., the language, region, etc., of the character).

Note that you must include the following using directives to compile this code:

using System;
using System.Globalization;

[Team LiB]

[Team LiB]

Recipe 2.4 Finding All Occurrences of a Character Within
a String

Problem

You need a way of searching a string for multiple occurrences of a specific character.

Solution

Use IndexOf in a loop to determine how many occurrences of a character exist, as well as identify

their location within the string:

using System;
using System.Collections;

public static int[] FindAllOccurrences(char matchChar, string source)
{
 return (FindAllOccurrences(matchChar, source, -1, false));
}

public static int[] FindAllOccurrences(char matchChar, string source,
 int maxMatches)
{
 return (FindAllOccurrences(matchChar, source, maxMatches, false));
}

public static int[] FindAllOccurrences(char matchChar, string source,
 bool caseSensitivity)
{
 return (FindAllOccurrences(matchChar, source, -1, caseSensitivity));
}

public static int[] FindAllOccurrences(char matchChar, string source,
 int maxMatches, bool caseSensitivity)
{
 ArrayList occurrences = new ArrayList();
 int foundPos = -1; // -1 represents not found
 int numberFound = 0;
 int startPos = 0;
 char tempMatchChar = matchChar;
 string tempSource = source;

 if (!caseSensitivity)

 {
 tempMatchChar = char.ToUpper(matchChar);
 tempSource = source.ToUpper();
 }

 do
 {
 foundPos = tempSource.IndexOf(matchChar, startPos);
 if (foundPos > -1)
 {
 startPos = foundPos + 1;
 numberFound++;

 if (maxMatches > -1 && numberFound > maxMatches)
 {
 break;
 }
 else
 {
 occurrences.Add(foundPos);
 }
 }
 }while (foundPos > -1);

 return ((int[])occurrences.ToArray(typeof(int)));
}

Discussion

The FindAllOccurrences method is overloaded to allow the last two parameters (maxMatches and
caseSensitivity) to be set to a default value if the developer chooses not to pass in one or both of
these parameters. The maxMatches parameter defaults to -1, indicating that all matches are to be
found. The caseSensitivity parameter defaults to false to allow for a case-insensitive search.

The FindAllOccurrences method starts out by determining whether case sensitivity is turned on. If
false was passed in to the caseSensitivity parameter, both matchChar and source are set to all

uppercase. This prevents a case-sensitive search.

The main loop in this method is a simple do loop that terminates when foundPos returns -1, meaning
that no more matchChar characters can be found in the source string. We use a do loop so that the
IndexOf operation would be executed at least one time before the check in the while clause is
performed to determine whether there are any more character matches to be found in the source

string.

Once a match is found by the IndexOf method, the numberFound variable is incremented by one to
indicate that another match was found, and startPos is moved past the previously found match to
indicate where the next IndexOf operation should start. The startPos is increased to the starting
position of the last match found plus one. The +1 is needed so that we do not keep matching the

same character that was previously matched. An infinite loop would occur in the code if at least one
match was found in the source string.

Finally, a check is made to determine whether we are done searching for matchChar characters. If

the maxMatches parameter is set to -1, the code keeps searching until it arrives at the end of the
source string. Any other number indicates the maximum number of matchChar characters to search
for. The maxMatches parameter limits the number of matches that can be made in the source string.
If this check indicates that we are able to keep this match, it is stored in the occurrences
ArrayList.

[Team LiB]

[Team LiB]

Recipe 2.5 Finding the Location of All Occurrencesof a
String Within Another String

Problem

You need to search a string for every occurrence of a specific string. In addition, the case-sensitivity,
or insensitivity, of the search needs to be controlled.

Solution

Using IndexOf or IndexOfAny in a loop, we can determine how many occurrences of a character or

string exist as well as their locations within the string. To find each occurrence of a case-sensitive
string in another string, use the following code:

using System;
using System.Collections;

public static int[] FindAll(string matchStr, string searchedStr, int startPos)
{
 int foundPos = -1; // -1 represents not found
 int count = 0;
 ArrayList foundItems = new ArrayList();

 do
 {
 foundPos = searchedStr.IndexOf(matchStr, startPos);
 if (foundPos > -1)
 {
 startPos = foundPos + 1;
 count++;
 foundItems.Add(foundPos);

 Console.WriteLine("Found item at position: " + foundPos.ToString());
 }
 }while (foundPos > -1 && startPos < searchedStr.Length);

 return ((int[])foundItems.ToArray(typeof(int)));
}

If the FindAll method is called with the following parameters:

int[] allOccurrences = FindAll("Red", "BlueTealRedredGreenRedYellow", 0);

the string "Red" is found at locations 8 and 19 in the string searchedStr. This code uses the IndexOf
method inside a loop to iterate through each found matchStr string in the searchStr string.

To find a case-sensitive character in a string, use the following code:

public static int[] FindAll(char MatchChar, string searchedStr, int startPos)
{
 int foundPos = -1; // -1 represents not found
 int count = 0;
 ArrayList foundItems = new ArrayList();

 do
 {
 foundPos = searchedStr.IndexOf(MatchChar, startPos);
 if (foundPos > -1)
 {
 startPos = foundPos + 1;
 count++;
 foundItems.Add(foundPos);

 Console.WriteLine("Found item at position: " + foundPos.ToString());
 }
 }while (foundPos > -1 && startPos < searchedStr.Length);

 return ((int[])foundItems.ToArray(typeof(int)));
}

If the FindAll method is called with the following parameters:

int[] allOccurrences = FindAll('r', "BlueTealRedredGreenRedYellow", 0);

the character 'r' is found at locations 11 and 15 in the string searchedStr. This code uses the
IndexOf method inside a do loop to iterate through each found matchChar character in the
searchStr string. Overloading the FindAll method to accept either a char or string type avoids
the performance hit of boxing the char type to a string type.

To find each case-insensitive occurrence of a string in another string, use the following code:

public static int[] FindAny(string matchStr, string searchedStr, int startPos)
{
 int foundPos = -1; // -1 represents not found
 int count = 0;
 ArrayList foundItems = new ArrayList();

 // Factor out case-sensitivity
 searchedStr = searchedStr.ToUpper();
 matchStr = matchStr.ToUpper();

 do
 {
 foundPos = searchedStr.IndexOf(matchStr, startPos);
 if (foundPos > -1)
 {

 startPos = foundPos + 1;
 count++;
 foundItems.Add(foundPos);

 Console.WriteLine("Found item at position: " + foundPos.ToString());
 }
 }while (foundPos > -1 && startPos < searchedStr.Length);

 return ((int[])foundItems.ToArray(typeof(int)));
}

If the FindAny method is called with the following parameters:

int[] allOccurrences = FindAll("Red", "BlueTealRedredGreenRedYellow", 0);

the string "Red" is found at locations 8, 11, and 19 in the string searchedStr. This code uses the
IndexOf method inside a loop to iterate through each found matchStr string in the searchStr string.
The search is rendered case-insensitive by using the ToUpper method on both the searchedStr and
the matchStr strings.

To find a character in a string, use the following code:

public static int[] FindAny(char[] MatchCharArray, string searchedStr, int startPos)
{
 int foundPos = -1; // -1 represents not found
 int count = 0;
 ArrayList foundItems = new ArrayList();

 do
 {
 foundPos = searchedStr.IndexOfAny(MatchCharArray, startPos);
 if (foundPos > -1)
 {
 startPos = foundPos + 1;
 count++;
 foundItems.Add(foundPos);

 Console.WriteLine("Found item at position: " + foundPos.ToString());
 }
 }while (foundPos > -1 && startPos < searchedStr.Length);

 return ((int[])foundItems.ToArray(typeof(int)));
}

If the FindAll method is called with the following parameters:

int[] allOccurrences = FindAll(new char[] MatchCharArray = {'R', 'r'},
 "BlueTealRedredGreenRedYellow", 0);

the characters 'r' or 'R' are found at locations 8, 11, 15, and 19 in the string searchedStr. This code
uses the IndexOfAny method inside a loop to iterate through each found matchStr string in the
searchStr string. The search is rendered case-insensitive by using an array of char containing all

characters, both upper- and lowercase, to be searched for.

Discussion

In the example code, the foundPos variable contains the location of the found character/string within
the searchedStr string. The startPos variable contains the next position in which to start the
search. The IndexOf or IndexOfAny method is used to perform the actual searching. The count
variable simply counts the number of times the character/string was found in the searchedStr

string.

The example used a do loop so that the IndexOf or IndexOfAny operation would be executed at least
one time before the check in the while clause is performed to determine whether there are any more
character/string matches to be found in the searchedStr string. This loop terminates when foundPos
returns -1 (meaning that no more character/strings can be found in the searchedStr string) or when
an out-of-bounds condition exists. When foundPos equals -1, there are no more instances of the
match value in the searchedStr string; therefore, we can exit the loop. If, however, the startPos
overshoots the last character element of the searchedStr string, an out-of-bounds condition exists

and an exception is thrown. To prevent this, always check to make sure that any positioning
variables that are modified inside of the loop, such as the startPos variable, are within their

intended bounds.

Once a match is found by the IndexOf or IndexOfAny method, the if statement body is executed to
increment the count variable by one and to move the startPos up past the previously found match.
The count variable is incremented by one to indicate that another match was found. The startPos is
increased to the starting position of the last match found plus 1. Adding 1 is necessary so that we do

not keep matching the same character/string that was previously matched, which would cause an
infinite loop to occur in the code if at least one match was found in the searchedStr string. To see
this behavior, remove the +1 from the code.

There is one potential problem with this code. Consider the case where:

searchedStr = "aa";
matchStr = "aaaa";

The code contained in this recipe would match "aa" three times.

(aa)aa
a(aa)a
aa(aa)

This situation may be fine for some applications, but not if you need it to return only the following
matches:

(aa)aa
aa(aa)

To do this, change the following line in the while loop:

startPos = foundPos + 1;

to this:

startPos = foundPos + matchStr.Length;

This code moves the startPos pointer beyond the first matched string, disallowing any internal

matches.

To convert this code to use a while loop rather than a do loop, the foundPos variable must be
initialized to 0 and the while loop expression should be as follows:

while (foundPos >= 0 && startPos < searchStr.Length)
{
 foundPos = searchedStr.IndexOf(matchChar, startPos);
 If (foundPos > -1)
 {
 startPos = foundPos + 1;
 count++;
 }
}

See Also

See the "String.IndexOf Method" and "String.IndexOfAny Method" topics in the MSDN documentation
.

[Team LiB]

[Team LiB]

Recipe 2.6 The Poor Man's Tokenizer

Problem

You need a quick method of breaking up a string into a series of discrete tokens or words.

Solution

Use the Split instance method of the string class. For example:

string equation = "1 + 2 - 4 * 5";
string[] equationTokens = equation.Split(new char[1]{' '});

foreach (string Tok in equationTokens)
 Console.WriteLine(Tok);

This code produces the following output:

1
+
2
-
4
*
5

The Split method may also be used to separate people's first, middle, and last names. For example:

string fullName1 = "John Doe";
string fullName2 = "Doe,John";
string fullName3 = "John Q. Doe";

string[] nameTokens1 = fullName1.Split(new char[3]{' ', ',', '.'});
string[] nameTokens2 = fullName2.Split(new char[3]{' ', ',', '.'});
string[] nameTokens3 = fullName3.Split(new char[3]{' ', ',', '.'});

foreach (string tok in nameTokens1)
{
 Console.WriteLine(tok);
}
Console.WriteLine("");

foreach (string tok in nameTokens2)
{

 Console.WriteLine(tok);
}
Console.WriteLine("");

foreach (string tok in nameTokens3)
{
 Console.WriteLine(tok);
}

This code produces the following output:

John
Doe

Doe
John

John
Q

Doe

Notice that a blank is inserted between the '.' and the space delimiters of the fullName3 name; this

is correct behavior. If you did not want to process this space in your code, you can choose to ignore
it.

Discussion

If you have a consistent string whose parts, or tokens, are separated by well-defined characters, the
Split function can tokenize the string. Tokenizing a string consists of breaking the string down into

well-defined, discrete parts, each of which is considered a token. In the two previous examples, the
tokens were either parts of a mathematical equation (numbers and operators) or parts of a name
(first, middle, and last).

There are several drawbacks to this approach. First, if the string of tokens is not separated by any
well-defined character(s), it will be impossible to use the Split method to break up the string. For
example, if the equation string looked like this:

string equation = "1+2-4*5";

we would clearly have to use a more robust method of tokenizing this string (see Recipe 8.7 for a
more robust tokenizer).

A second drawback is that a string of tokenized words must be entered consistently in order to gain
meaning from the tokens. For example, if we ask users to type in their names, they may enter any of
the following:

John Doe
Doe John
John Q Doe

If one user enters in his name the first way and another user enters it the second way, our code will
have a difficult time determining whether the first token in the string array represents the first or last
name. The same problem will exist for all of the other tokens in the array. However, if all users enter
their names in a consistent style, such as First Name, space, Last Name, we will have a much easier

time tokenizing the name and understanding what each token represents.

See Also

See Recipe 8.7; see the "String.Split Method" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 2.7 Controlling Case Sensitivity when Comparing
Two Strings

Problem

You need to compare the contents of two strings for equality. In addition, the case sensitivity of the
comparison needs to be controlled.

Solution

Use the Compare static method on the string class to compare the two strings. Whether the

comparison is case-insensitive is determined by the third parameter of one of its overloads. For
example:

string lowerCase = "abc";
string upperCase = "AbC";

int caseSensitiveResult = string.Compare(lowerCase, upperCase, false);
int caseInsensitiveResult = string.Compare(lowerCase, upperCase, true);

The caseSensitiveResult value is -1 (indicating that lowerCase is "less than" upperCase) and the
caseInsensitiveResult is zero (indicating that lowerCase "equals" upperCase).

Discussion

Using the static string.Compare method allows us the freedom to choose whether to take into

account the case of the strings when comparing them. This method returns an integer indicating the
lexical relationship between the two strings. A zero means that the two strings are equal, a negative
number means that the first string is less than the second string, and a positive number indicates
that the first string is greater than the second string.

By setting the last parameter of this method (the IgnoreCase parameter) to true or false, we can
determine whether the Compare method takes into account the case of both strings when comparing.
Setting this parameter to true forces a case-insensitive comparison and setting this parameter to
false forces a case-sensitive comparison. In the case of the overloaded version of the method with

no IgnoreCase parameter, comparisons are always case-sensitive.

See Also

See the "String.Compare Method" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 2.8 Comparing a String to the Beginning or End of
a Second String

Problem

You need to determine whether a string is at the head or tail of a second string. In addition, the case
sensitivity of the search needs to be controlled.

Solution

Use the EndsWith or StartsWith instance methods on a string object. Comparisons with EndsWith
and StartsWith are always case-sensitive. The following code compares the value in the string
variable head to the beginning of the string Test:

string head = "str";
string test = "strVarName";
bool isFound = test.StartsWith(head);

The following example compares the value in the string variable Tail to the end of the string test:

string tail = "Name";
string test = "strVarName";
bool isFound = test.EndsWith(tail);

In both examples, the isFound Boolean variable is set to true, since each string is found in test.

To do a case-insensitive comparison, employ the static string.Compare method. The following two

examples modify the previous two examples by performing a case-insensitive comparison. The first is
equivalent to a case-insensitive StartsWith string search:

string head = "str";
string test = "strVarName";
int isFound = string.Compare(head, 0, test, 0, head.Length, true);

The second is equivalent to a case-insensitive EndsWith string search:

string tail = "Name";
string test = "strVarName";
int isFound = string.Compare(tail, 0, test, (test.Length - tail.Length),
 tail.Length, true);

Discussion

Use the BeginsWith or EndsWith instance methods to do a case-sensitive search for a particular

string at the beginning or end of a string. The equivalent case-insensitive comparison requires the
use of the static Compare method in the string class. If the return value of the Compare method is

zero, a match was found. Any other number means that a match was not found.

See Also

See the "String.StartsWith Method," "String.EndsWith Method," and "String.Compare Method" topics
in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 2.9 Inserting Text into a String

Problem

You have some text (either a char or a string value) that needs to be inserted at a specific location

inside of a second string.

Solution

Using the Insert instance method of the string class, a string or char can easily be inserted into a

string. For example, in the code fragment:

string sourceString = "The Inserted Text is here -><-";

sourceString = sourceString.Insert(28, "Insert-This");
Console.WriteLine(sourceString);

the string sourceString is inserted between the > and < characters in a second string. The result is:

The Inserted Text is here ->Insert-This<-

Inserting the character in sourceString into a second literal string between the > and < characters is

shown here:

string sourceString = "The Inserted Text is here -><-";
char insertChar = '1';

sourceString = sourceString.Insert(28, Convert.ToString(insertChar));
Console.WriteLine(sourceString);

There is no overloaded method for Insert that takes a char value, so using a string of length one is

the next best solution.

Discussion

There are two ways of inserting strings into other strings, unless, of course, you are using the regular
expression classes. The first involves using the Insert instance method on the string class. This
method is also slower than the others since strings are immutable, and, therefore, a new string
object must be created to hold the modified value. In this recipe, the reference to the old string
object is then changed to point to the new string object. Note that the Insert method leaves the
original string untouched and creates a new string object with the inserted characters.

To add flexibility and speed to your string insertions, use the Insert instance method on the

StringBuilder class. This method is overloaded to accept all of the built-in types. In addition, the
StringBuilder object optimizes string insertion by not making copies of the original string; instead,

the original string is modified.

If we use the StringBuilder class instead of the string class to insert a string, our code appears

as:

StringBuilder sourceString =
 new StringBuilder("The Inserted Text is here -><-");
sourceString.Insert (28, "Insert-This");
Console.WriteLine(sourceString);

The character insertion example would be changed to the following code:

char charToInsert = '1';
StringBuilder sourceString =
 new StringBuilder("The Inserted Text is here -><-");
sourceString.Insert (28, charToInsert);
Console.WriteLine(sourceString);

Note that when using the StringBuilder class, you must also use the System.Text namespace.

See Also

See the "String.Insert Method" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 2.10 Removing or Replacing Characters Within a
String

Problem

You have some text within a string that needs to be either removed or replaced with a different
character or string. Since the replacing operation is somewhat simple, you do not require the
overhead of using a regular expression to aid in the replacing operation.

Solution

To remove a substring from a string, use the Remove instance method on the string class. For

example:

string name = "Doe, John";
name = name.Remove(3, 1);
Console.WriteLine(name);

This code creates a new string and then sets the name variable to refer to it. The string contained in
name now looks like this:

Doe John

If performance is critical, and particularly if the string removal operation occurs in a loop so that the
operation is performed multiple times, you can instead use the Remove method of the StringBuilder
object. The following code modifies the str variable so that its value becomes 12345678:

StringBuilder str = new StringBuilder("1234abc5678", 12);
str.Remove(4, 3);
Console.WriteLine(str);

To replace a delimiting character within a string, use the following code:

string commaDelimitedString = "100,200,300,400,500";
commaDelimitedString = commaDelimitedString.Replace(',', ':');
Console.WriteLine(commaDelimitedString);

This code creates a new string and then makes the commaDelimitedString variable refer to it. The
string in commaDelimitedString now looks like this:

100:200:300:400:500

To replace a place-holding string within a string, use the following code:

string theName = "Mary";
string theObject = "car";
string ID = "This <ObjectPlaceholder> is the property of <NamePlaceholder>.";
ID = ID.Replace("<ObjectPlaceholder>", theObject);
ID = ID.Replace("<NamePlaceholder>", theName);
Console.WriteLine(ID);

This code creates a new string and then makes the ID variable refer to it. The string in ID now looks

like this:

This car is the property of Mary.

As when removing a portion of a string, you may, for performance reasons, choose to use the
Replace method of the StringBuilder class instead. For example:

string newName = "John Doe";

str = new StringBuilder("name = <NAME>");
str.Replace("<NAME>", newName);
Console.WriteLine(str.ToString());
str.Replace('=', ':');
Console.WriteLine(str.ToString());

str = new StringBuilder("name1 = <FIRSTNAME>, name2 = <FIRSTNAME>");
str.Replace("<FIRSTNAME>", newName, 7, 12);
Console.WriteLine(str.ToString());
str.Replace('=', ':', 0, 7);
Console.WriteLine(str.ToString());

This code produces the following results:

name = John Doe
name : John Doe
name1 = John Doe, name2 = <FIRSTNAME>
name1 : John Doe, name2 = <FIRSTNAME>

Note that when using the StringBuilder class, you must use the System.Text namespace.

Discussion

The string class provides two methods that allow easy removal and modification of characters in a
string: the Remove instance method and the Replace instance method. The Remove method deletes a

specified number of characters starting at a given location within a string. This method returns a new
string object containing the modified string.

The Replace instance method that the string class provides is very useful for removing characters
from a string and replacing them with a new character or string. At any point where the Replace

method finds an instance of the string passed in as the first parameter, it will replace it with the
string passed in as the second parameter. The Replace method is case-sensitive and returns a new
string object containing the modified string. If the string being searched for cannot be found in the
original string, the method returns a copy of the original string object.

The Replace and Remove methods on a string object always create a new string object that
contains the modified text. If this action hurts performance, consider using the Replace and Remove
methods on the StringBuilder class.

The Remove method of the StringBuilder class is not overloaded and is straight-foward to use.

Simply give it a starting position and the number of characters to remove. This method returns a
reference to the same instance of the StringBuilder object whose Replace method modified the

string value.

The Replace method of the StringBuilder class allows for fast character or string replacement to
be performed on the original StringBuilder object. These methods return a reference to the same
instance of the StringBuilder object whose Replace method was called.

Note that this method is case-sensitive.

See Also

See the "String.Replace Method," "String.Remove Method," "StringBuilder.Replace Method," and
"StringBuilder.Remove Method" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 2.11 Encoding Binary Data as Base64

Problem

You have a byte[] , which could represent some binary information such as a bitmap. You need to encode

this data into a string so that it can be sent over a binary-unfriendly transport such as email.

Solution

Using the static method Convert .ToBase64CharArray on the Convert class, a byte[] may be encoded to
a char[] equivalent, and the char[] can then be converted to a string :

using System;

public static string Base64EncodeBytes(byte[] inputBytes)
{
 // Each 3-byte sequence in inputBytes must be converted to a 4-byte
 // sequence
 long arrLength = (long)(4.0d * inputBytes.Length / 3.0d);
 if ((arrLength % 4) != 0)
 {
 // increment the array length to the next multiple of 4
 // if it is not already divisible by 4
 arrLength += 4 - (arrLength % 4);
 }

 char[] encodedCharArray = new char[arrLength];
 Convert.ToBase64CharArray(inputBytes, 0, inputBytes.Length, encodedCharArray, 0);

 return (new string(encodedCharArray));
}

Discussion

The Convert class makes encoding between a byte[] and a char[] and/or a string a simple matter. The
ToBase64CharArray method fills the specified character array with converted bytes, and also returns an
integer specifying the number of elements in the resulting byte[] , which, in this recipe, is discarded. As

you can see, the parameters for this method are quite flexible. It provides the ability to start and stop the
conversion at any point in the input byte array and to add elements starting at any position in the resulting
char[] .

To encode a bitmap file into a string that can be sent to some destination via email, you could use the
following code:

FileStream fstrm = new FileStream(@"C:\WINNT\winnt.bmp", FileMode.Open, FileAccess.Read);

BinaryReader reader = new BinaryReader(fstrm);
byte[] image = new byte[reader.BaseStream.Length];
for (int i = 0; i < reader.BaseStream.Length; i++)
{
 image[i] = reader.ReadByte();
}
reader.Close();
fstrm.Close();
string bmpAsString = Base64EncodeBytes(image);

The bmpAsString string can then be sent as the body of an email message.

To decode an encoded string to a byte[] , see Recipe 2.12 .

See Also

See Recipe 2.12 ; see the "Convert.ToBase64CharArray Method" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 2.12 Decoding a Base64-Encoded Binary

Problem

You have a string that contains information such as a bitmap encoded as base64. You need to
decode this data (which may have been embedded in an email message) from a string into a
byte[] so that you can access the original binary.

Solution

Using the static method Convert.FromBase64CharArray on the Convert class, an encoded char[]
and/or string may be decoded to its equivalent byte[]:

using System;

public static byte[] Base64DecodeString(string inputStr)
{
 byte[] decodedByteArray =
 Convert.FromBase64CharArray(inputStr.ToCharArray(),
 0, inputStr.Length);
 return (decodedByteArray);
}

Discussion

The static FromBase64CharArray method on the Convert class makes decoding an encoded base64
string a simple matter. This method returns a byte[] that contains the decoded elements of the
string.

If you receive a file via email, such as an image file (.bmp), that has previously been converted to a
string, to convert it back into its original bitmap file, you could do something like the following:

byte[] imageBytes = Base64DecodeString(bmpAsString);
fstrm = new FileStream(@"C:\winnt_copy.bmp", FileMode.CreateNew, FileAccess.Write);
BinaryWriter writer = new BinaryWriter(fstrm);
writer.Write(imageBytes);
writer.Close();
fstrm.Close();

In this code, the bmpAsString variable was obtained from the code in the Discussion section of
Recipe 2.11. The imageBytes byte[] is the bmpAsString string converted back to a byte[], which

can then be written back to disk.

To encode a byte[] to a string, see Recipe 2.13.

See Also

See Recipe 2.11; see the "Convert.FromBase64CharArray Method" topic in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 2.13 Converting a String Returned as a Byte[]
Back into a String

Problem

Many methods in the FCL return a byte[] consisting of characters instead of a string. Some of

these methods include:

System.Net.Sockets.Socket.Receive
System.Net.Sockets.Socket.ReceiveFrom
System.Net.Sockets.Socket.BeginReceive
System.Net.Sockets.Socket.BeginReceiveFrom
System.Net.Sockets.NetworkStream.Read
System.Net.Sockets.NetworkStream.BeginRead
System.IO.BinaryReader.Read
System.IO.BinaryReader.ReadBytes
System.IO.FileStream.Read
System.IO.FileStream.BeginRead
System.IO.MemoryStream // Constructor
System.IO.MemoryStream.Read
System.IO.MemoryStream.BeginRead
System.Security.Cryptography.CryptoStream.Read
System.Security.Cryptography.CryptoStream.BeginRead
System.Diagnostics.EventLogEntry.Data

In many cases, this byte[] might contain ASCII or Unicode encoded characters. You need a way to
recombine this byte[] to obtain the original string.

Solution

To convert a byte array of ASCII values to a complete string, use the following method:

using System;
using System.Text;

public static string FromASCIIByteArray(byte[] characters)
{
 ASCIIEncoding encoding = new ASCIIEncoding();
 string constructedString = encoding.GetString(characters);

 return (constructedString);
}

To convert a byte array of Unicode values (UTF-16 encoded) to a complete string, use the following

method:

public static string FromUnicodeByteArray(byte[] characters)
{
 UnicodeEncoding encoding = new UnicodeEncoding();
 string constructedString = encoding.GetString(characters);

 return (constructedString);
}

Discussion

The GetString method of the ASCIIEncoding class converts 7-bit ASCII characters contained in a
byte array to a string. Any value larger than 127 is converted to the ? character. The
ASCIIEncoding class can be found in the System.Text namespace. The GetString method is

overloaded to accept additional arguments as well. The overloaded versions of the method convert all
or part of a string to ASCII and then store the result in a specified range inside a byte array.

The GetString method returns a string containing the converted byte array of ASCII characters.

The GetString method of the UnicodeEncoding class converts Unicode characters into 16-bit
Unicode values. The UnicodeEncoding class can be found in the System.Text namespace. The
GetString method returns a string containing the converted byte array of Unicode characters.

See Also

See the "ASCIIEncoding Class" and "UnicodeEncoding Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 2.14 Passing a String to a Method that Accepts
Only a Byte[]

Problem

Many methods in the FCL accept a byte[] consisting of characters instead of a string. Some of

these methods include:

System.Net.Sockets.Socket.Send
System.Net.Sockets.Socket.SendTo
System.Net.Sockets.Socket.BeginSend
System.Net.Sockets.Socket.BeginSendTo
System.Net.Sockets.NetworkStream.Write
System.Net.Sockets.NetworkStream.BeginWrite
System.IO.BinaryWriter.Write
System.IO.FileStream.Write
System.IO.FileStream.BeginWrite
System.IO.MemoryStream.Write
System.IO.MemoryStream.BeginWrite
System.Security.Cryptography.CryptoStream.Write
System.Security.Cryptography.CryptoStream.BeginWrite
System.Diagnostics.EventLog.WriteEntry

In many cases, you might have a string that you need to pass into one of these methods or some
other method that only accepts a byte[]. You need a way to break up this string into a byte[].

Solution

To convert a string to a byte array of ASCII values, use the GetBytes method on an instance of the
ASCIIEncoding class:

using System;
using System.Text;

public static byte[] ToASCIIByteArray(string characters)
{
 ASCIIEncoding encoding = new ASCIIEncoding();
 int numberOfChars = encoding.GetByteCount(characters);
 byte[] retArray = new byte[numberOfChars];

 retArray = encoding.GetBytes(characters);

 return (retArray);

}

To convert a string to a byte array of Unicode values, use the UnicodeEncoding class:

public static byte[] ToUnicodeByteArray(string characters)
{
 UnicodeEncoding encoding = new UnicodeEncoding();
 int numberOfChars = encoding.GetByteCount(characters);
 byte[] retArray = new byte[numberOfChars];

 retArray = encoding.GetBytes(characters);

 return (retArray);
}

Discussion

The GetBytes method of the ASCIIEncoding class converts ASCII characters-contained in either a
char array or a string-into a byte array of 7-bit ASCII values. Any value larger than 127 is
converted to the ? character. The ASCIIEncoding class can be found in the System.Text namespace.
The GetBytes method is overloaded to accept additional arguments as well. The overloaded versions
of the method convert all or part of a string to ASCII and then store the result in a specified range
inside a byte array, which is returned to the caller.

The GetBytes method of the UnicodeEncoding class converts Unicode characters into 16-bit Unicode
values. The UnicodeEncoding class can be found in the System.Text namespace. The GetBytes
method returns a byte array, each element of which contains the Unicode value of a single character

of the string.

A single Unicode character in the source string or in the source char array corresponds to two
elements of the byte array. For example, the following byte array contains the ASCII value of the
letter 'S':

byte[] sourceArray = {83};

However, for a byte array to contain a Unicode representation (UTF-16 encoded) of the letter 'S', it

must contain two elements. For example:

byte[] sourceArray = {83, 0};

The Intel architecture uses a little-endian encoding, which means that the first element is the least-
significant byte and the second element is the most-significant byte. Other architectures may use
big-endian encoding, which is the opposite of little-endian encoding. The UnicodeEncoding class
supports both big-endian and little-endian encodings. Using the UnicodeEncoding instance

constructor, you can construct an instance that uses either big-endian or little-endian ordering. In
addition, you have the option to indicate whether a byte order mark preamble should be generated
so that readers of the file will know which endianness is in use.

See Also

See the "ASCIIEncoding Class" and "UnicodeEncoding Class" topics in the MSDN documentation .

[Team LiB]

[Team LiB]

Recipe 2.15 Converting Strings to Their Equivalent Value
Type

Problem

You have a string that represents the equivalent value of a number ("12 "), char ("a "), bool ("true
"), or a color enumeration ("Red "). You need to convert this string to its equivalent value type.
Therefore, the number "12 " would be converted to a numeric value such as int , short , float ,
etc. The string "a " would be converted to a char value 'a ', the string "true " would be converted to a
bool value, and the color "Red " could be converted to an enumeration value (if an enumeration were
defined that contained the element Red).

Solution

Use the Parse static method of the type that the string is to be converted to. To convert a string

containing a number to its numeric type, use the following code:

// This code requires the use of the System and System.Globalization namespaces

string longString = "7654321";
int actualInt = Int32.Parse(longString); // longString = 7654321

string dblString = "-7654.321";
double actualDbl = Double.Parse(dblString, NumberStyles.AllowDecimalPoint |
 NumberStyles.AllowLeadingSign); // longString = "-7654.321

To convert a string containing a Boolean value to a Boolean type, use the following code:

// This code requires the use of the System namespace

string boolString = "true";
bool actualBool = Boolean.Parse(boolString); // actualBool = true

To convert a string containing a char value to a char type, use the following code:

// This code requires the use of the System namespace

string charString = "t";
char actualChar = char.Parse(charString); // actualChar = 't'

To convert a string containing an enumeration value to an enumeration type, use the following code:

// This code requires the use of the System namespace

enum Colors

{
 red, green, blue
}

string colorString = "blue";
// Note that the Parse method below is a method defined by System.Enum, not by Colors
Colors actualEnum = (Colors)Colors.Parse(typeof(Colors), colorString);
 // actualEnum = blue

Discussion

The static Parse method on certain types derived from the ValueType data types allows easy
conversion from a string value to the value of that specific value type. The Parse method is supported

by the following types:

Boolean Int64

Byte SByte

Decimal Single

Double UInt16

Int16 UInt32

Int32 UInt64

In addition to the Parse methods that take a single string parameter and convert it to the target
data type, each numeric type has a second overloaded version of the Parse method that includes a
second parameter of type System.Globalization.NumberStyles . This allows the Parse method to

correctly handle specific properties of numbers, such as leading or trailing signs, decimal points,
currency symbols, thousands separators, etc. NumberStyles is marked as a flag-style enumeration,
so you can bitwise OR more than one enumerated value together to allow a group of styles to be used

on the string.

The NumberStyles enumeration is defined as follows:

AllowCurrencySymbol

If the string contains a number with a currency symbol, it is parsed as currency; otherwise, it is
parsed as a number.

AllowDecimalPoint

Allows a decimal point in the number.

AllowExponent

Allows the number to be in exponential notation format.

AllowHexSpecifier

Allows characters that specify a hexadecimal number.

AllowLeadingSign

Allows a leading sign symbol.

AllowLeadingWhite

Ignores any leading whitespace.

AllowParentheses

Allows parentheses.

AllowThousands

Allows group separators.

AllowTrailingSign

Allows a trailing sign symbol.

AllowTrailingWhite

Ignores any trailing whitespace.

Any

Applies any of the previous styles. This style simply OR s together all of the preceding styles.

Currency

Same as the All style, except that the AllowExponent style is omitted.

Float

Equivalent to AllowLeadingWhite | AllowTrailingWhite | AllowLeadingSign |
AllowDecimalPoint | AllowExponent

HexNumber

Equivalent to AllowLeadingWhite | AllowTrailingWhite | AllowHexSpecifier

Integer

Equivalent to AllowLeadingWhite | AllowTrailingWhite | AllowLeadingSign

None

Applies none of the styles.

Number

Equivalent to AllowLeadingWhite | AllowTrailingWhite | AllowLeadingSign |
AllowTrailingSign | AllowDecimalPoint | AllowThousands

If the NumberStyle parameter is not supplied when it is required (as when, for example, a numeric
string includes a thousands separator), or if the NumberStyle enumeration is used on a string that
does not contain a number in the supplied NumberStyle format, a FormatException exception will be

thrown. If the size of the number in the string is too large or too small for the data type, an
OverFlowException exception will be thrown. Passing in a null for the SourceString parameter will
throw an ArgumentNullException exception.

The Parse method of the two non-numeric data types, bool and char , also deserve some additional
explanation. When calling Boolean.Parse , if a string value contains anything except a value equal to
the static properties Boolean.FalseString , Boolean.TrueString , or the string literals "false " or
"true " (which are case-insensitive), a FormatException exception is thrown. Passing in a null for
the SourceString parameter throws an ArgumentNullException exception.

When invoking char.Parse , if a string value containing more than one character is passed as its
single argument, a FormatException exception is thrown. Passing in a null for the string parameter
throws an ArgumentNullException exception.

The static Enum.Parse method returns an Object of the same type as specified in the first parameter
of this method (EnumType). This value is viewed as an Object type and must be cast to its correct

enumeration type.

This method throws an ArgumentException exception if the Value parameter cannot be matched to
a string in the enumeration. An ArgumentNullException exception is thrown if a null is passed in to

the Value parameter.

[Team LiB]

[Team LiB]

Recipe 2.16 Formatting Data in Strings

Problem

You need to format one or more embedded pieces of information inside of a string, such as a number,
character, or substring.

Solution

The static string.Format method allows you to format strings in a variety of ways. For example:

int ID = 12345;
double weight = 12.3558;
char row = 'Z';
string section = "1A2C";

string output = string.Format(@"The item ID = {0:G} having weight = {1:G}
 is found in row {2:G} and section {3:G}", ID, weight, row, section);
Console.WriteLine(output);
output = string.Format(@"The item ID = {0:N} having weight = {1:E}
 is found in row {2:E} and section {3:E}", ID, weight, row, section);
Console.WriteLine(output);
output = string.Format(@"The item ID = {0:N} having weight = {1:N}
 is found in row {2:E} and section {3:D}", ID, weight, row, section);
Console.WriteLine(output);
output = string.Format(@"The item ID = {0:(#####)} having weight = {1:0000.00 lbs}
 is found in row {2} and section {3}", ID, weight, row, section);
Console.WriteLine(output);

The output is as follows:

The item ID = 12345 having weight = 12.3558 is found in row Z and section 1A2C
The item ID = 12,345.00 having weight = 1.235580E+001 is found in row Z and section 1A2C
The item ID = 12,345.00 having weight = 12.36 is found in row Z and section 1A2C
The item ID = (12345) having weight = 0012.36 lbs is found in row Z and section 1A2C

To simplify things, the string.Format method could be discarded and all the work could have been done in
the System.Console.WriteLine method, which calls string.Format internally, as shown here:

Console.WriteLine(@"The item ID = {0,5:G} having weight = {1,10:G} " +
 "is found in row {2,-5:G} and section {3,-10:G}",
 ID, weight, row, section);

The output of this WriteLine method is:

The item ID = 12345 having weight = 12.3558 is found in row Z and section 1A2C

Discussion

The string.Format method allows a wide range of formatting options for string data. The first parameter

of this method can be passed a string that may look similar to the following:

"The item ID = {0,5:G}"

The text The item ID = will be displayed as is, with no changes. The interesting part of this string is the

section enclosed in braces. This section has the following form:

{index, alignment:formatString}

The section can contain the following three parts:

index

A number identifying the zero-based position of the section's data in the args parameter array. The

data is to be formatted accordingly and substituted for this section. This number is required.

alignment

The number of spaces to insert before or after this data. A negative number indicates left justification
(spaces are added to the right of the data), and a positive number indicates right justification (spaces
are added to the left of the data). This number is optional.

formatString

A string indicating the type of formatting to perform on this data. This section is where most of the
formatting information usually resides. Tables Table 2-2 and Table 2-3 contain valid formatting codes
that can be used here. This part is optional.

Table 2-2. The standard formatting strings

Formatting
character(s)

Meaning

C or c
Use the currency format. A precision specifier can optionally follow, indicating the
number of decimal places to use.

D or d
Use the decimal format for integral types. A precision specifier can optionally follow,
which represents the minimum number of digits in the formatted number.

E or e
Use scientific notation. A precision specifier can optionally follow, indicating the number
of digits to use after the decimal point.

Formatting
character(s)

Meaning

F or f
Use fixed-point format. A precision specifier can optionally follow, which represents the
number of digits to display to the right of the decimal point.

G or g
Use the general format. The number is displayed in its shortest form. A precision
specifier can optionally follow, which represents the number of significant digits to
display.

N or n

Use the number format. A minus sign is added to the beginning of a negative number,
and thousands separators are placed accordingly in the number. A precision specifier
can optionally follow, which represents the number of digits to display to the right of the
decimal point.

P or p
Use the percent format. The number is converted to a percent representation of itself. A
precision specifier can optionally follow, indicating the number of decimal places to use.

R or r
Use the round-trip format. This format allows the number to be formatted to a
representation that can be parsed back to its original form by using the Parse method.

Any precision specifier is ignored.

X or x

Use the hexadecimal format. The number is converted to its hexadecimal
representation. The uppercase X produces a hexadecimal number with all capital letters
A through F . The lowercase x produces a hexadecimal number with all lowercase
letters a through f . A precision specifier can optionally follow, which represents the

minimum number of digits in the formatted number.

Table 2-3. Custom formatting strings

Formatting
character(s)

Meaning

0
Use the zero placeholder format. If a digit in the original number exists in this
position, display that digit. If there is no digit in the original string, display a
zero.

#
Use the digit placeholder format. If a digit in the original number exists in this
position, display that digit. If there is no digit in the original string, display
nothing.

.

Use the decimal point format. The decimal point is matched up with the decimal
point in the number that is to be formatted. Formatting to the right of the
decimal point operates on the digits to the right of the decimal point in the
original number. Formatting to the left of the decimal point operates in the same
way.

,
Use the thousands separator format. A thousands separator will be placed after
every three digits starting at the decimal point and moving to the left.

%
Use the percentage placeholder format. The original number is multiplied by 100
before being displayed.

F or f
Use fixed-point format. A precision specifier can optionally follow, which represents the
number of digits to display to the right of the decimal point.

G or g
Use the general format. The number is displayed in its shortest form. A precision
specifier can optionally follow, which represents the number of significant digits to
display.

N or n

Use the number format. A minus sign is added to the beginning of a negative number,
and thousands separators are placed accordingly in the number. A precision specifier
can optionally follow, which represents the number of digits to display to the right of the
decimal point.

P or p
Use the percent format. The number is converted to a percent representation of itself. A
precision specifier can optionally follow, indicating the number of decimal places to use.

R or r
Use the round-trip format. This format allows the number to be formatted to a
representation that can be parsed back to its original form by using the Parse method.

Any precision specifier is ignored.

X or x

Use the hexadecimal format. The number is converted to its hexadecimal
representation. The uppercase X produces a hexadecimal number with all capital letters
A through F . The lowercase x produces a hexadecimal number with all lowercase
letters a through f . A precision specifier can optionally follow, which represents the

minimum number of digits in the formatted number.

Table 2-3. Custom formatting strings

Formatting
character(s)

Meaning

0
Use the zero placeholder format. If a digit in the original number exists in this
position, display that digit. If there is no digit in the original string, display a
zero.

#
Use the digit placeholder format. If a digit in the original number exists in this
position, display that digit. If there is no digit in the original string, display
nothing.

.

Use the decimal point format. The decimal point is matched up with the decimal
point in the number that is to be formatted. Formatting to the right of the
decimal point operates on the digits to the right of the decimal point in the
original number. Formatting to the left of the decimal point operates in the same
way.

,
Use the thousands separator format. A thousands separator will be placed after
every three digits starting at the decimal point and moving to the left.

%
Use the percentage placeholder format. The original number is multiplied by 100
before being displayed.

E or e
Use the scientific notation format. A precision specifier can optionally follow,
indicating the number of digits to use after the decimal point.

\
Use the escape character format. The \ character and the next character after it

are grouped into an escape sequence.

Any text within single
or double quotes such
as "aa " or 'aa '

Use no formatting; display as is and in the same position in which the text
resides in the format string.

;
Used as a section separator between positive, negative, and zero formatting
strings.

Any other character
Use no formatting; display as is and in the same position in which it resides in
the format string.

In addition to the string.Format and the Console.WriteLine methods, the overloaded ToString instance
method of a value type may also use the previous formatting characters in Table 2-3 . Using ToString , the

code would look like this:

float valueAsFloat = 122.35;
string valueAsString = valueAsFloat.ToString("[000000.####]");

The valueAsString variable would contain the formatted number contained in valueAsFloat . The

formatted number would look like this:

[000122.35]

The overloaded ToString method accepts a single parameter of type IFormatProvider . The
IFormatProvider provided for the valueAsFloat.ToString method is a string containing the formatting

for the value type plus any extra text that needs to be supplied.

See Also

See the "String.Format Method," "Standard Numeric Format Strings," and "Custom Numeric Format
Strings" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 2.17 Creating a Delimited String

Problem

You have an array of strings to format as delimited text and possibly to store in a text file.

Solution

Using the static Join method of the string class, the array of strings can be easily joined in as little

as one line of code. For example:

string[] infoArray = new string[5] {"11", "12", "Checking", "111", "Savings"};
string delimitedInfo = string.Join(",", infoArray);

This code sets the value of delimitedInfo to the following:

11,12,Checking,111,Savings

Discussion

The Join method concatenates all the strings contained in a string array. Additionally, a specified

delimiting character(s) is inserted between each string in the array. This method returns a single
string object with the fully joined and delimited text.

Unlike the Split method of the string class, the Join method accepts only one delimiting character
at a time. In order to use multiple delimiting characters within a string of values, subsequent Join

operations must be performed on the information until all of the data has been joined together into a
single string. For example:

string[] infoArray = new string[4] {"11", "12", "Checking", "Savings"};
string delimitedInfoBegin = string.Join(",", infoArray, 0, 2);
string delimitedInfoEnd = string.Join(",", infoArray, 2, 2);
string[] delimitedInfoTotal = new string[2] {delimitedInfoBegin,
 delimitedInfoEnd};
string delimitedInfoFinal = string.Join(":", delimitedInfoTotal);
Console.WriteLine(delimitedInfoFinal);

produces the following delimited file:

11,12:Checking,Savings

See Also

See the "String.Join Method" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 2.18 Extracting Items from a Delimited String

Problem

You have a string, possibly from a text file, which is delimited by one or more characters. You need to
retrieve each piece of delimited information as easily as possible.

Solution

Using the Split instance method on the string class, we can place the delimited information into an

array in as little as a single line of code. For example:

string delimitedInfo = "100,200,400,3,67";
string[] discreteInfo = delimitedInfo.Split(new char[1] {','});

foreach (string Data in discreteInfo)
 Console.WriteLine(Data);

The string array discreteInfo holds the following values:

100
200
400
3
67

Discussion

The Split method, like most methods in the string class, is simple to use. This method returns a

string array with each element containing one discrete piece of the delimited text split on the
delimiting character(s).

In the Solution, the string delimitedInfo was comma-delimited. However, it could have been

delimited by any type of character or even by more than one character. When there is more than one
type of delimiter, use code like the following:

string[] discreteInfo = delimitedInfo.Split(new char[3] {',', ':', ' '});

This line splits the delimitedInfo string whenever one of the three delimiting characters (comma,

colon, or space character) is found.

The Split method is case-sensitive. To split a string on the letter "a" in a case-insensitive manner,

use code like the following:

string[] discreteInfo = delimitedInfo.Split(new char[1] {'a', 'A'});

Now, anytime the letter "a" is encountered, no matter what its case, the Split method views that

character as a delimiter.

See Also

See the "String.Join Method" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 2.19 Setting the Maximum Number of Characters a
String Can Contain

Problem

You want to ensure that the data entered by a user and assigned to a string does not exceed a
certain number of characters.

Solution

Use the overloaded constructor of the StringBuilder class, which accepts a maximum capacity. The
following code creates a StringBuilder object that has a maximum size of 10 characters:

System.Text.StringBuilder sbMax = new System.Text.StringBuilder(10, 10);
sbMax.Append("123456789");
sbMax.Append("0");

This code creates a StringBuilder object, sbMax, which has a maximum length of 10 characters.

Nine characters are appended to this string and then a tenth character is appended without a
problem. However, if the next line of code is executed:

sbMax.Append("#");

The length of sbMax goes beyond 10 characters and an ArgumentOutOfRangeException is thrown.

Discussion

The string object is immutable and, as such, does not have a built-in method to prevent its length
from going beyond a certain point. Fortunately, the StringBuilder object contains an overloaded
constructor that allows the maximum size of its string to be set. The StringBuilder constructor that

we are concerned with is defined as follows:

public StringBuilder(int initialCapacity, int maxCapacity)

For most applications, the initialCapacity and maxCapacity can be identical. This way gives you

the best performance, overall. If these two parameters are not identical, it is critical that these two
parameters can coexist. Take, for example, the following code:

System.Text.StringBuilder sbMax = new System.Text.StringBuilder(3, 12);
sbMax.Append("1234567890");
sbMax.Append("0");
sbMax.Append("#");

which will throw an ArgumentOutOfRangeException as the final # character is appended. This

configuration incorrectly allows a maximum of only 11 characters instead of the 12 indicated.

The following line of code:

System.Text.StringBuilder sbMax = new System.Text.StringBuilder(30, 12);

also throws an ArgumentOutOfRangeException. This time, the initialCapacity parameter is larger

than maxCapacity, causing the exception. While you may not be explicitly writing these values for

your application, if you are calculating them using some type of expression, you may run into these
problems.

To handle an attempt to append characters to the StringBuilder string, forcing it beyond the
maximum size, wrap any code to append text to the StringBuilder object in a try-catch block:

try
{
 sbMax.Append("New String");
}
catch(ArgumentOutOfRangeException rangeE)
{
 // Handle overrun here
}

In addition to the Append method, you should also wrap any AppendFormat, Insert, and Replace
methods of the StringBuilder object in a try-catch block. Any of these methods can allow
characters to be added to the StringBuilder string, potentially causing its length to exceed its

maximum specified length.

See Also

See the "StringBuilder.Append Method" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 2.20 Iterating Over Each Character in a String

Problem

You need to iterate over each character in a string efficiently in order to examine or process each
character.

Solution

C# provides two methods for iterating strings. The first is by using a foreach loop, as follows:

string testStr = "abc123";
foreach (char c in testStr)
{
 Console.WriteLine(c.ToString());
}

This method is quick and easy. Unfortunately, it is somewhat less flexible than the second method,
which uses the for loop instead of a foreach loop to iterate over the string. For example:

string testStr = "abc123";
for (int counter = 0; counter < testStr.Length; counter++)
{
 Console.WriteLine(testStr[counter].ToString());
}

Discussion

The foreach loop is simpler and thus less error-prone, but it lacks flexibility. In contrast, the for

loop is slightly more complex, but it makes up for that in flexibility.

The for loop method uses the indexer of the string variable testStr to get the character located at
the position indicated by the counter loop index. Care must be taken not to run over the bounds of

the string array when using this type of looping mechanism.

A for loop is flexible enough to change how looping over characters in a string is performed. For

example, the loop could be quickly modified to start and end at a specific point in the string by simply
changing the initializer and conditional expressions of the for loop. Characters can be skipped

by changing the iterator expression to increment the counter variable by more than one. The
string can also be iterated in reverse order by changing the for loop expressions, as shown:

for (int counter = testStr.Length - 1; counter >= 0; counter--)
{

 Console.WriteLine(testStr[counter].ToString());
}

This example allows a string to be created containing the characters of the original string in reverse
order:

string revTestStr = "";
for (int counter = testStr.Length - 1; counter >= 0; counter--)
{
 revTestStr += testStr[counter];
}
Console.WriteLine(revTestStr);

It should be noted that each of these methods was compiled using the /optimize compiler option.

However, adding or removing this option has very little impact on the resulting IL code.

The compiler optimizes the use of a foreach loop iterating through a vector

array-one that starts at zero and has only one dimension. Converting a
foreach loop to another type of loop, such as a for loop, may not produce any

noticeable increases in performance.

[Team LiB]

[Team LiB]

Recipe 2.21 Improving String Comparison Performance

Problem

Your application consists of many strings that are compared frequently. You have been tasked with
improving performance and making more efficient use of resources.

Solution

Use the intern pool to improve resource usage and, in turn, improve performance. The Intern and
IsInterned instance methods of the string class allow you to use the intern pool. Use the following

static methods to make use of the string intern pool:

using System;
using System.Text;

public class InternedStrCls
{
 public static void CreateInternedStr(char[] characters)
 {
 string NonInternedStr = new string(characters);
 String.Intern(NonInternedStr);
 }

 public static void CreateInternedStr(StringBuilder strBldr)
 {
 String.Intern(strBldr.ToString());
 }

 public static void CreateInternedStr(string str)
 {
 String.Intern(str);
 }

 public static void CreateInternedStr(string[] strArray)
 {
 foreach(string s in strArray)
 {
 String.Intern(s);
 }
 }
}

Discussion

The CLR automatically stores all string literals declared in an application in an area of memory called
the intern pool. The intern pool contains a unique instance of each string literal found in your code,
which allows for more efficient use of resources by not storing multiple copies of strings that contain
the same string literal. Another benefit is speed. When two strings are compared using either the ==
operator or the Equals instance method of the string class, a test is done to determine whether

each string variable reference is the same; if they are not, then each string's length is checked; if
both string's lengths are equal, each character is compared individually. However, if we could
guarantee that the references, instead of the string contents, could be compared, much faster string
comparisons can be made. String interning does just that: it guarantees that the references to
equivalent string values are the same, eliminating the possibility of attempting the length and
character-by-character checks. This yields better performance in situations where the references to
two equal strings are different and the length and character-by-character comparisons have to be
made.

Note that the only strings automatically placed in this intern pool by the compiler are string
literals-strings surrounded by double quotes-found in code by the compiler. The following lines of
code will place the string "foo" into the intern pool:

string s = "foo";
StringBuilder sb = new StringBuilder("foo");
StringBuilder sb = new StringBuilder().Append("foo");

The following lines of code will not place the string "foo" into the intern pool:

char[] ca = new char[3] {'f','o','o'};
StringBuilder sb = new StringBuilder().Append("f").Append("oo");

string s1 = "f";
string s2 = "oo";
string s3 = s1 + s2;

You can programmatically store a new string created by your application in the intern pool using the
static string.Intern method. This method returns a string referencing the string literal contained in

the intern pool, or, if the string is not found, the string is entered into the intern pool and a reference
to this newly pooled string is returned.

There is also another method used in string interning called IsInterned. This method operates
similarly to the Intern method, except that it returns null if the string is not in the intern pool,

rather than adding it to the pool. This method returns a string referencing the string literal contained
in the intern pool, or, if the string is not found, it returns null.

An example of using this method is shown here:

string s1 = "f";
string s2 = "oo";
string s3 = s1 + s2;
if (String.IsInterned(s3) == null)
{
 Console.WriteLine("NULL");
}

However, if we add the highlighted line of code, the IsInterned test returns a non-null string

object:

string s1 = "f";
string s2 = "oo";
string s3 = s1 + s2;
InternedStrCls.CreateInternedStr(s3);
if (String.IsInterned(s3) == null)
{
 Console.WriteLine("NULL");
}

The Intern method is useful when you need a reference to a string, even if it does not exist in the

intern pool.

The IsInterned method can optimize the comparison of a single string to any string literal or

manually interned string. Consider that you need to determine whether a string variable contains any
string literal that has been defined in the application. Call the string.IsInterned method with the
string variable as the parameter. If null is returned, there is no match in the intern pool, and thus

there is no match between the string variable's value and any string literals:

string s1 = "f";
string s2 = "oo";
string s3 = s1 + s2;

if (String.IsInterned(s3) != null)
{
 // If the string "foo" has been defined in the app and placed
 // into the intern pool, this block of code executes.
}
else
{
 // If the string "foo" has NOT been defined in the app NOR been placed
 // into the intern pool, this block of code executes.
}

Exercise caution when using the string interning methods. Calling the Intern method for every

possible string that could be created by your application would actually cause the application's
performance to slow considerably, since this method must search the intern pool for the string; if it
does not exist in the pool, it is added. The reference to the newly created string in the intern pool is
then returned.

Another potential problem with the IsInterned method in particular stems from the fact that every

string literal in the application is stored in this intern pool at the start of the application. If you are
using IsInterned to determine whether a string exists, you are comparing that string against all

string literals that exist in the application, as well as any you might have explicitly interned, not just
the ones in the scope in which IsInterned is used.

See Also

See the "String.Intern Method" and "String.IsInterned Method" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 2.22 Improving StringBuilder Performance

Problem

In an attempt to improve string-handling performance, you have converted your code to use the
StringBuilder class. However, this change has not improved performance as much as you had

hoped.

Solution

The chief advantage of a StringBuilder object over a string object is that it preallocates a default

initial amount of memory in an internal buffer in which a string value can expand and contract. When
that memory is used, however, .NET must allocate new memory for this internal buffer. You can
reduce the frequency with which this occurs by explicitly defining the size of the new memory using
either of two techniques. The first approach is to set this value when the StringBuilder class

constructor is called. For example, the code:

StringBuilder sb = new StringBuilder(200);

specifies that a StringBuilder object can hold 200 characters before new memory must be

allocated.

The second approach is to change the value after the StringBuilder object has been created, using
one of the following properties or methods of the StringBuilder object:

sb.Capacity = 200;
sb.EnsureCapacity(200);

Discussion

As noted in previous recipes in this chapter, the string class is immutable; once a string is assigned
to a variable of type string, that variable cannot be changed in any way. So changing the contents
of a string variable entails the creation of a new string containing the modified string. The reference
variable of type string must then be changed to reference this newly created string object. The old
string object will eventually be marked for collection by the garbage collector, and, subsequently, its

memory will be freed. Because of this intensive behind-the-scene action, code that performs
intensive string manipulations using the string class suffers greatly from having to create new
string objects for each string modification, and greater pressure is on the garbage collector to

remove unused objects from memory more frequently.

The StringBuilder class solves this problem by preallocating an internal buffer to hold a string. The

contents of this string buffer are manipulated directly. Any operations performed on a
StringBuilder object do not carry with it the performance penalty of creating a whole new string

or StringBuilder object and, consequently, filling up the managed heap with many unused objects.

There is one caveat with using the StringBuilder class, which, if not heeded, can impede
performance. The StringBuilder class uses a default initial capacity to contain the characters of a
string, unless you change this default initial capacity through one of the StringBuilder constructors.

Once this space is exceeded, by appending characters, for instance, a new string buffer is allocated
double the size of the original buffer. For example, a StringBuilder object with an initial size of 20

characters would be increased to 40 characters, then to 80 characters, and so on. The string
contained in the original internal string buffer is then copied to this newly allocated internal string
buffer along with any appended or inserted characters.

The default capacity for a StringBuilder object is 16 characters; in many cases, this is much too
small. To increase this size upon object creation, the StringBuilder class has an overloaded

constructor that accepts an integer value to use as the starting size of the preallocated string.
Determining an initial size value that is not too large (thereby allocating too much unused space) or
too small (thereby incurring a performance penalty for creating and discarding a large number of
StringBuilder objects) may seem like more of an art than a science. However, determining the

optimal size may prove invaluable when your application is tested for performance.

In cases where good values for the initial size of a StringBuilder object

cannot be obtained mathematically, try running the applications under a
constant load while varying the initial StringBuilder size. When a good initial

size is found, try varying the load while keeping this size value constant. You
may discover that this value needs to be tweaked to get better performance.
Keeping good records of each run, and committing them to a graph, will be
invaluable in determining the appropriate number to choose. As an added note,
using PerfMon (Administrative Tools Performance Monitor) to detect and
graph the number of garbage collections that occur might also provide useful
information in determining whether your StringBuilder initial size is causing
too many reallocations of your StringBuilder objects.

The most efficient method of setting the capacity of the StringBuilder object is to set it in the call
to its constructor. The overloaded constructors of a StringBuilder object that accept a capacity

value are defined as follows:

public StringBuilder(int capacity)

public StringBuilder(string str, int capacity)

public StringBuilder(int capacity, int maxCapacity)

public StringBuilder(string str, int startPos, int length, int capacity)

In addition to the constructor parameters, one property of the StringBuilder object allows its
capacity to be increased (or decreased.) The Capacity property gets or sets an integer value that
determines the new capacity of this instance of a StringBuilder object. Note that the Capacity
property cannot be less than the Length property.

A second way to change the capacity is through the EnsureCapacity method, which is defined as

follows:

public int EnsureCapacity(string capacity)

This method returns the new capacity for this object. If the capacity of the existing object already

exceeds that of the value in the capacity parameter, the initial capacity is retained, and this value is

also returned by this method.

There is one problem with using these last two members. If any of these members increases the size
of the StringBuilder object by even a single character, the internal buffer used to store the string

has to be reallocated. However, minimizing the capacity of the object does not force a reallocation of
a new, larger internal string buffer. These methods are useful if they are used in exceptional cases
when the StringBuilder capacity may need an extra boost, so that fewer reallocations are

performed in the long run.

The StringBuilder object also contains a Length property, which, if increased, appends spaces to
the end of the existing StringBuilder object's string. If the Length is decreased, characters are
truncated from the StringBuilder object's string. Increasing the Length property can increase the
Capacity property, but only as a side effect. If the Length property is increased beyond the size of
the Capacity property, the Capacity property value is set to the new value of the Length property.
This property acts similarly to the Capacity property:

sb.Length = 200;

The string and StringBuilder objects are considered nonblittable, which

means that they must be marshaled across any managed/unmanaged
boundaries in your code. The reason is that strings have multiple ways of being
represented in unmanaged code, and there is no one-to-one correlation
between these representations in unmanaged and managed code. In contrast,
types such as byte, sbyte, short, ushort, int, uint, long, ulong, IntPtr,
and UIntPtr are blittable types and do not require conversion between

managed and unmanaged code. One-dimensional arrays of these blittable
types, as well as structures or classes containing only blittable types, are also
considered blittable and do not need extra conversion when passed between
managed and unmanaged code.

The string and StringBuilder objects take more time to marshal, due to

conversion between managed and unmanaged types. Performance will be
improved when calling unmanaged code through P/Invoke methods if only
blittable types are used. Consider using a byte array instead of a string or
StringBuilder object, if at all possible.

See Also

See the "StringBuilder Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 2.23 Pruning Characters from the Headand/or Tail
of a String

Problem

You have a string with a specific set of characters, such as spaces, tabs, escaped single/double
quotes, any type of punctuation character(s), or some other character(s), at the beginning and/or
end of a string. You want a simple way to remove these characters.

Solution

Use the Trim, TrimEnd, or TrimStart instance methods of the String class:

string foo = "--TEST--";
Console.WriteLine(foo.Trim(new char[1] {'-'})); // Displays "TEST"

foo = ",-TEST-,-";
Console.WriteLine(foo.Trim(new char[2] {'-',','})); // Displays "TEST"

foo = "--TEST--";
Console.WriteLine(foo.TrimStart(new char[1] {'-'})); // Displays "TEST--"

foo = ",-TEST-,-";
Console.WriteLine(foo.TrimStart(new char[2] {'-',','})); // Displays "TEST-,-"

foo = "--TEST--";
Console.WriteLine(foo.TrimEnd(new char[1] {'-'})); // Displays "--TEST"

foo = ",-TEST-,-";
Console.WriteLine(foo.TrimEnd(new char[2] {'-',','})); // Displays "-,-TEST"

Discussion

The Trim method is most often used to eliminate whitespace at the beginning and end of a string. In
fact, if you call Trim without any parameters on a string variable, this is exactly what would happen.
The Trim method is overloaded to allow you to remove other types of characters from the beginning
and end of a string. You can pass in a char[] containing all the characters that you want removed
from the beginning and end of a string. Note that if the characters contained in this char[] are

located somewhere in the middle of the string, they are not removed.

The TrimStart and TrimEnd methods remove characters at the beginning and end of a string,
respectively. These two methods are not overloaded, similar to the Trim method. Rather, these two

methods accept only a char[]. If you pass a null into either one of these methods, only whitespace

is removed from the beginning or the end of a string.

See Also

See the "String.Trim Method," "String.TrimStart Method," and "String.TrimEnd Method" topics in the
MSDN documentation.

[Team LiB]

[Team LiB]

Chapter 3. Classes and Structures
Structures, like any other value type, implicitly inherit from System.ValueType. At first glance, a

structure is similar to a class, but they are actually very different. Knowing when to use a structure
over a class will help tremendously when designing an application. Using a structure incorrectly can
result in inefficient and hard-to-modify code. Both structures and simple types inherit from
ValueType.

Structures have two performance advantages over reference types. First, if a structure is allocated
on the stack (i.e., it is not contained within a reference type), access to the structure and its data is
somewhat faster than access to a reference type on the heap. Reference type objects must follow
their reference, or pointer, onto the heap in order to get at their data. However, this performance
advantage pales in comparison to the second performance advantage of structures: namely, that
cleaning up the memory allocated to a structure on the stack requires a simple change of the address
to which the stack pointer points, which is done at the return of a method call. This call is extremely
fast compared to allowing the garbage collector to automatically clean up reference types for you in
the managed heap.

Structure performance falls short in comparison to that of classes when they are passed by value to
other methods. Because they reside on the stack, a structure and its data have to be copied to a new
local variable (the method's parameter that is used to receive the structure) when it is passed by
value to a method. This copying takes more time than passing a single reference to a class's object
by value to a method-unless the structure is the same size as or smaller than the machine's pointer
size; thus, a structure with a size of 32 bits is just as cheap to pass as a reference (which happens to
be the size of a pointer) on a 32-bit machine. Keep this in mind when choosing between a class and a
structure. While creating, accessing, and destroying a class's object may take longer, it also might
not balance the performance hit when a structure is passed by value a large number of times to one
or more methods. Keeping the size of the structure small minimizes the performance hit of passing it
around by value.

Structures can also cause degradation in performance when they are passed to methods that require
a reference type, such as any of the collection types in the FCL. Passing a structure (or any simple
type, for that matter) into a method requiring a reference type causes the structure to be boxed.
Boxing is wrapping a value type in an object. When the method returns, the value type will be
unboxed, which means that the value type will be extracted from its object wrapper. Both of these
operations are time-consuming and may degrade performance.

As concerns the object-oriented capabilities of classes and structures, classes have far more
flexibility. A structure cannot contain a user-defined default constructor, since the C# compiler
automatically provides a default constructor that initializes all the fields in the structure to their
default values. This is also why no field initializers can be added to a structure. If you need to
override the default field values, a structure might not be the way to go. However, a parameterized
constructor can be created that initializes the structure's fields to any value that is necessary.

Structures, like classes, can inherit from interfaces; but unlike classes, structures cannot inherit from
a class or a structure. This limitation precludes creating structure hierarchies, as you can with
classes. Polymorphism as implemented through an abstract base class is also prohibited when using a

structure, since a structure cannot inherit from another class.

Use a class if:

Its identity is important. Structures get copied implicitly when being passed by value into a
method. You could pass a structure by reference, but then another object might not be able to
hold a reference to the structure.

It will have a large memory footprint.

Its fields need initializers.

You need to inherit from a base class.

You need polymorphic behavior. That is, you need to implement an abstract base class from
which you will create several similar classes that inherit from this abstract base class. (Note that
polymorphism can be implemented via interfaces as well, but it is usually not a good idea to
place an interface on a value type, since a boxing operation will occur if the structure is
converted to the interface type.) For more on polymorphism through interfaces, see Recipe
3.17.

Use a structure if:

It will act like a primitive type (int, long, byte, etc.).

It must have a small memory footprint.

You are calling a P/Invoke method that requires a structure to be passed in by value. Platform
Invoke, or P/Invoke for short, allows managed code to call out to an unmanaged method
exposed from within a DLL. Many times an unmanaged DLL method requires a structure to be
passed in to it; using a structure is an efficient method of doing this and is the only way if the
structure is being passed by value.

You need to avoid the overhead of garbage collection.

Its fields need to be initialized only to their default values. This value would be zero for numeric
types, false for Boolean types, and null for reference types.

You do not need to inherit from a base class (other than ValueType, from which all structs

inherit).

You do not need polymorphic behavior.

[Team LiB]

[Team LiB]

Recipe 3.1 Creating Union-Type Structures

Problem

You need to create a data type that operates similar to a union type in C++. A union type is useful
mainly in interop scenarios where the unmanaged code accepts and/or returns a union type; we
suggest that you do not use it in other situations.

Solution

Use a structure and mark it with the StructLayout attribute (specifiying the LayoutKind.Explicit
layout kind in the constructor). In addition, mark each field in the structure with the FieldOffset

attribute. The following structure defines a union in which a single signed numeric value can be
stored:

using System.Runtime.InteropServices;

[StructLayoutAttribute(LayoutKind.Explicit)]
struct SignedNumber
{
 [FieldOffsetAttribute(0)]
 public sbyte Num1;

 [FieldOffsetAttribute(0)]
 public short Num2;

 [FieldOffsetAttribute(0)]
 public int Num3;

 [FieldOffsetAttribute(0)]
 public long Num4;

 [FieldOffsetAttribute(0)]
 public float Num5;

 [FieldOffsetAttribute(0)]
 public double Num6;

 [FieldOffsetAttribute(0)]
 public decimal Num7;
}

The next structure is similar to the SignedNumber structure, except that it also can contain a String

type in addition to the signed numeric value:

[StructLayoutAttribute(LayoutKind.Explicit)]
struct SignedNumberWithText
{
 [FieldOffsetAttribute(0)]
 public sbyte Num1;

 [FieldOffsetAttribute(0)]
 public short Num2;

 [FieldOffsetAttribute(0)]
 public int Num3;

 [FieldOffsetAttribute(0)]
 public long Num4;

 [FieldOffsetAttribute(0)]
 public float Num5;

 [FieldOffsetAttribute(0)]
 public double Num6;

 [FieldOffsetAttribute(0)]
 public decimal Num7;

 [FieldOffsetAttribute(16)]
 public string Text1;
}

Discussion

Unions are structures usually found in C++ code; however, there is a way to duplicate that type of
structure using a C# structure data type. A union is a structure that accepts more than one type at a
specific location in memory for that structure. For example, the SignedNumber structure is a union-

type structure built using a C# structure. This structure accepts any type of signed numeric type
(sbyte, int, long, etc.), but it accepts this numeric type at only one location, or offset, within the

structure.

Since StructLayoutAttribute can be applied to both structures and classes, a

class can also be used when creating a union data type.

Notice the FieldOffsetAttribute has the value zero passed to its constructor. This denotes that

this field will be at the zeroth offset (this is a byte offset) within this structure. This attribute is used
in tandem with the StructLayoutAttribute to manually enforce where the fields in this structure

will start (that is, at which offset from the beginning of this structure in memory each field will start
at). The FieldOffsetAttribute can be used only with a StructLayoutAttribute set to
LayoutKind.Explicit. In addition, it cannot be used on static members within this structure.

Unions can become problematic, since several types are essentially laid on top of one another. The
biggest problem is extracting the correct data type from a union structure. Consider what happens if
you choose to store the long numeric value long.MaxValue in the SignedNumber structure. Later,
you might accidentally attempt to extract a byte data type value from this same structure. In doing

so, you will get back only the first byte of the long value.

Another problem is starting fields at the correct offset. The SignedNumberWithText union overlays

numerous signed numeric data types at the zeroth offset. The last field in this structure is laid out at
the sixteenth byte offset from the beginning of this structure in memory. If you accidentally overlay
the string field Text2 on top of any of the other signed numeric data types, you will get an exception

at runtime. The basic rule is that you are allowed to overlay a value type on another value type, but
you cannot overlay a reference type over a value type. If the Text2 field were marked with the

following attribute:

[FieldOffsetAttribute(14)]

this exception is thrown at runtime (note that the compiler does not catch this problem):

An unhandled exception of type 'System.TypeLoadException' occurred in
Chapter_Code.exe.

Additional information: Could not load type Chapter_Code.SignedNumberWithText from
assembly 14 because it contains an object field at offset 14 that is incorrectly
aligned or overlapped by a non-object field.

It is imperative to get the offsets correct when using complex unions in C#.

See Also

See the "StructLayoutAttribute Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 3.2 Allowing a Type to Represent Itself as a String

Problem

Your class or structure needs to control how its information is displayed when its ToString method is
called. For example, when creating a new data type, such as a Line class, you might want to allow
objects of this type to be able to display themselves in a textual format. In the case of a Line object, it
would display itself as "(x1 , y1)(x2, y2) ".

Solution

Override and/or implement the IFormattable.ToString method to display numeric information, such
as for a Line structure:

using System;
using System.Text;
using System.Text.RegularExpressions;

public struct Line : IFormattable
{
 public Line(int startX, int startY, int endX, int endY)
 {
 x1 = startX;
 x2 = endX;
 y1 = startY;
 y2 = endY;
 }

 public int x1;
 public int y1;
 public int x2;
 public int y2;

 public double GetDirectionInRadians()
 {
 int xSide = x2 - x1;
 int ySide = y2 - y1;

 if (xSide == 0) // Prevent divide-by-zero
 return (0);
 else
 return (Math.Atan (ySide / xSide));
 }

 public double GetMagnitude()
 {

 int xSide = x2 - x1;
 int ySide = y2 - y1;
 return (Math.Sqrt(Math.Sqrt((xSide * xSide) + (ySide * ySide))));
 }

 // This overrides the Object.ToString method
 // This override is not required for this recipe
 // and is included for completeness
 public override string ToString()
 {
 return (String.Format("({0},{1}) ({2},{3})", x1, y1, x2, y2));
 }

 public string ToString(string format)
 {
 return (this.ToString(format, null));
 }

 public string ToString(IFormatProvider formatProvider)
 {
 return (this.ToString(null, formatProvider));
 }

 public string ToString(string format, IFormatProvider formatProvider)
 {
 StringBuilder compositeStr = new StringBuilder("");

 if ((format != null) && (format.ToUpper().Equals("V")))
 {
 double direction = this.GetDirectionInRadians();
 double magnitude = this.GetMagnitude();

 string retStringD = direction.ToString("G5", formatProvider);
 string retStringM = magnitude.ToString("G5", formatProvider);

 compositeStr.Append("magnitude = ").Append(retStringM).Append
 ("\tDirection = ").Append(retStringD);
 }
 else
 {
 string retStringX1 = this.x1.ToString(format, formatProvider);
 string retStringY1 = this.y1.ToString(format, formatProvider);
 string retStringX2 = this.x2.ToString(format, formatProvider);
 string retStringY2 = this.y2.ToString(format, formatProvider);

 compositeStr.Append("(").Append(retStringX1).Append(",").Append
 (retStringY1).Append(")(").Append(retStringX2).Append
 (",").Append(retStringY2).Append(")");
 }

 return (compositeStr.ToString());
 }

}

Discussion

The ToString method provides a convenient way to display the current contents, or state, of a

structure (this recipe works equally well for reference types). The solution section of this recipe shows
the various implementations of ToString for both numeric and textual data. The Line class contains
two points in space that form the endpoints of a line. This line data is then fed into the ToString

methods for that class to produce formatted output.

The following code exercises the ToString methods of the Line class:

using System.Globalization;

public void TestLineToString()
{
 Line V1 = new Line(0, 0, 40, 123);
 Line V2 = new Line(0, -2, 1, 11);
 Line V3 = new Line(0, 1, 0, 1);

 Console.WriteLine("\r\nTest Default ToString method");
 Console.WriteLine("V1 = " + V1);
 Console.WriteLine("V2 = " + V2);
 Console.WriteLine("V1.ToString() = {0:V}", V1.ToString());
 Console.WriteLine("V2.ToString() = {0:V}", V2.ToString());

 Console.WriteLine("\r\nTest overloaded ToString(format) method");
 Console.WriteLine("V1.ToString(\"D\") = {0:D}", V1);
 Console.WriteLine("V1.ToString(\"D5\") = {0:D5}", V1);
 Console.WriteLine("V2.ToString(\"F\") = {0:F}", V2);
 Console.WriteLine("V1.ToString(\"N\") = {0:N}", V1);
 Console.WriteLine("V2.ToString(\"n\") = {0:n}", V2);
 Console.WriteLine("V1.ToString(\"E\") = {0:E}", V1);
 Console.WriteLine("V2.ToString(\"X\") = {0:X}", V2);

 Console.WriteLine("\r\nTest overloaded ToString(formatProvider) method");
 NumberFormatInfo NullFormatter = null;
 NumberFormatInfo Formatter = new NumberFormatInfo();
 Formatter.NegativeSign = "!";
 Formatter.PositiveSign = "+";
 Console.WriteLine("V2.ToString(Formatter) = " + V2.ToString(Formatter));
 Console.WriteLine("V2.ToString(Formatter) = " + V2.ToString(Formatter));
 Console.WriteLine("V2.ToString(null) = " + V2.ToString(NullFormatter));
 Console.WriteLine("V2.ToString(null) = " + V2.ToString(NullFormatter));
 Console.WriteLine("V2.ToString(new CultureInfo(\"fr-BE\")) = "
 + V2.ToString(new CultureInfo("fr-BE"))); //French - Belgium
 Console.WriteLine("V2.ToString(new CultureInfo(\"fr-BE\")) = "
 + V2.ToString(new CultureInfo("fr-BE"))); //French - Belgium

 Console.WriteLine
 ("\r\nTest overloaded ToString(format, formatProvider) method");

 Console.WriteLine("V2.ToString(\"D\", Formatter) = " + V2.ToString("D",
 Formatter));
 Console.WriteLine("V2.ToString(\"F\", Formatter) = " + V2.ToString("F",
 Formatter));
 Console.WriteLine("V2.ToString(\"D\", null) = " + V2.ToString("D", null));
 Console.WriteLine("V2.ToString(\"F\", null) = " + V2.ToString("F", null));
 Console.WriteLine("V2.ToString(\"D\", new CultureInfo(\"fr-BE\")) = "
 + V2.ToString("D", new CultureInfo("fr-BE"))); //French - Belgium
 Console.WriteLine("V2.ToString(\"F\", new CultureInfo(\"fr-BE\")) = "
 + V2.ToString("F", new CultureInfo("fr-BE"))); //French - Belgium

 Console.WriteLine("\r\nTest overloaded ToString(\"V\", formatProvider) method");
 Console.WriteLine("V2.ToString(\"V\", Formatter) = " + V2.ToString("V",
 Formatter));
 Console.WriteLine("V2.ToString(\"V\", null) = " + V2.ToString("V", null));
}

This code displays the following results:

Test Default ToString method
V1 = (0,0) (40,123)
V2 = (0,-2) (1,11)
V1.ToString() = (0,0) (40,123)
V2.ToString() = (0,-2) (1,11)

Test overloaded ToString(format) method
V1.ToString("D") = (0,0)(40,123)
V1.ToString("D5") = (00000,00000)(00040,00123)
V2.ToString("F") = (0.00,-2.00)(1.00,11.00)
V1.ToString("N") = (0.00,0.00)(40.00,123.00)
V2.ToString("n") = (0.00,-2.00)(1.00,11.00)
V1.ToString("E") = (0.000000E+000,0.000000E+000)(4.000000E+001,1.230000E+002)
V2.ToString("X") = (0,FFFFFFFE)(1,B)

Test overloaded ToString(formatProvider) method
V2.ToString(Formatter) = (0,!2)(1,11)
V2.ToString(Formatter) = (0,!2)(1,11)
V2.ToString(null) = (0,-2)(1,11)
V2.ToString(null) = (0,-2)(1,11)
V2.ToString(new CultureInfo("fr-BE")) = (0,-2)(1,11)
V2.ToString(new CultureInfo("fr-BE")) = (0,-2)(1,11)

Test overloaded ToString(format, formatProvider) method
V2.ToString("D", Formatter) = (0,!2)(1,11)
V2.ToString("F", Formatter) = (0.00,!2.00)(1.00,11.00)
V2.ToString("D", null) = (0,-2)(1,11)
V2.ToString("F", null) = (0.00,-2.00)(1.00,11.00)
V2.ToString("D", new CultureInfo("fr-BE")) = (0,-2)(1,11)
V2.ToString("F", new CultureInfo("fr-BE")) = (0,00,-2,00)(1,00,11,00)

Test overloaded ToString("V", formatProvider) method
V2.ToString("V", Formatter) = magnitude = 3.6109 direction = 1.494

V2.ToString("V", null) = magnitude = 3.6109 direction = 1.494

This method prints out the two x and y coordinates that make up the start and end points of a line for
the Line class. An example output of the Line.ToString() method is:

(0,0) (40,123)

This output could also be displayed as a vector that starts at the origin of the Cartesian plane and
points straight up along the positive y-axis. Another choice for this would be to print out the magnitude
and direction of this line. This result is demonstrated in the overloaded ToString method that accepts
both a format string and an IFormatProvider .

The next overloaded ToString method takes a single argument, format , which is a String
containing the formatting information of the type. This method calls the last overloaded ToString
method and passes the format information as the first parameter and a null as the second parameter.
The following ToString method operates similarly to the previous ToString method, except that it
accepts an IFormatProvider data type as its only parameter. The format parameter of the last
ToString method is set to null when called by this method.

The final ToString method is where all the real work takes place. This method accepts two
parameters, a String (format) containing formatting information and an IFormatProvider
(formatProvider) containing even more specific formatting information. The format string makes use

of predefined formats such as "D", "d", "F", "f", "G", "g", "X", and "x", to name a few. (See Recipe 2.16
for more information on the formatting character codes.) These formats specify whether the
information will be displayed as decimal ("D" or "d"), general ("G" or "g"), hexadecimal ("X" or "x"), or
one of the other types. As a note, calling ToString with no parameters always sets the format type to

general. In addition, this method also takes a special format character "V" or "v". This character
formatting code is not one of the predefined formatting codes; instead, it is one that we added to
provide special handling of a Line object's output in vector format. This code allows the Line type to

be displayed as a magnitude and a direction:

magnitude = 13.038 direction = 1.494

The second parameter accepts any data type that implements the IFormatProvider interface. There
are three types in the FCL that implement this interface: CultureInfo , DateTimeFormatInfo , or
NumberFormatInfo . The CultureInfo class contains formatting information specific to the various
supported cultures that exist around the world. The DateTimeFormatInfo class contains formatting
information specific to date and time values; similarly, the NumberFormatInfo class contains

formatting information specific to numbers.

This ToString method sets up a variable, compositeStr , which will contain the final formatted value
of the Line type. Next, the format parameter is checked for null . Remember, the previous ToString
method that accepts the IFormatProvider parameter will call this form of the ToString method and
pass in a format value of null . So we must be able to handle a null value gracefully at this point. If
the format parameter passed in to the Line type is not null and is equal to the character "V", we are
able to provide a string to display this line as a magnitude and a direction. The direction and
magnitude values are obtained for this object and are displayed in a General format with five

significant digits of precision. If, on the other hand, any other type of formatting character code was
passed in-including null -each of the individual coordinates are formatted using the ToString
method of the Int32 structure. These coordinates are concatenated into a string and returned to the

caller to be displayed.

The method:

public string ToString(string format, IFormatProvider formatProvider)

must be implemented, since the structure implements the IFormattable interface. The IFormattable
interface provides a consistent interface for this ToString method:

public interface IFormattable
{
 string ToString(string format, IFormatProvider formatProvider);
}

For the Line structure, the IFormattable.ToString method passes its parameters to the Int32
structure's ToString method with the same method signature, which provides a more uniform
formatting capability for Line values.

Using the IFormattable interface forces you to implement the
IFormattable.ToString method to more effectively display your type's

value(s). However, you do not have to implement it, as you can see for yourself
by removing this interface from the Line structure's declaration. In fact, for

performance's sake, it is best to not implement this interface on structures, due
to the cost of boxing the structure. Implementing this interface on a class does
not incur a performance penalty.

See Also

See Recipe 2.16 ; see the "IFormatProvider Interface" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 3.3 Converting a String Representation of an
Object into an Actual Object

Problem

You need a way of accepting a string containing a textual representation of an object and converting
it to an object usable by your application. For example, if you were provided with the string
representation of a line (x1, y1)(x2, y2), you would want to convert it into a Line structure.

Solution

Implement a Parse method on your Line structure:

using System;
using System.Text;
using System.Text.RegularExpressions;

public struct Line
{
 public Line(int startX, int startY, int endX, int endY)
 {
 x1 = startX;
 x2 = endX;
 y1 = startY;
 y2 = endY;
 }

 public int x1;
 public int y1;
 public int x2;
 public int y2;

 public static Line Parse(string stringLine)
 {
 if (stringLine == null)
 {
 throw (new ArgumentNullException("stringLine",
 "A null cannot be passed into the Parse method."));
 }

 // Take this string (x1,y1)(x2,y2) and convert it to a Line object
 int X1 = 0;
 int Y1 = 0;

 int X2 = 0;
 int Y2 = 0;

 MatchCollection MC = Regex.Matches(stringLine,
 @"\s*\(\s*(?<x1>\d+)\s*\,\s*(?<y1>\d+)\s*\)\s*
 \(\s*(?<x2>\d+)\s*\,\s*(?<y2>\d+)\s*\)");

 if (MC.Count == 1)
 {
 Match M = MC[0];
 X1 = int.Parse(M.Groups["x1"].Value);
 Y1 = int.Parse(M.Groups["y1"].Value);
 X2 = int.Parse(M.Groups["x2"].Value);
 Y2 = int.Parse(M.Groups["y2"].Value);
 }
 else
 {
 throw (new ArgumentException(
 "The value " + stringLine + " is not a well formed Line value."));
 }

 return (new Line(X1, Y1, X2, Y2));
 }
}

Discussion

The Parse method is used to reconstruct one data type-in this case, a String-into the data type
containing that Parse method. For example, if the string "123" were passed into the int.Parse
method, the numeric data type 123 would be extracted and then returned. Many other types in the
FCL use a Parse method to reconstruct an object of its own type from another data type, such as a

string. Note that you are not limited as far as the type and number of parameters that can be passed
into this method. As an example, see how the DateTime.Parse and DateTime.ParseExact methods

are defined and overloaded.

The parsing of a string containing the start and end coordinates of a line is a little more difficult. To
make things easier, we use a regular expression to extract the beginning and ending X and Y

coordinates.

The regular expression parses out the individual coordinate values provided by the stringLine string
parameter. Each found coordinate is passed on to the static int.Parse method on the int structure.

This final step obtains the final parsed integer values from the matches produced by the regular
expression. If the regular expression does not extract the required coordinates, we can assume that
the stringLine parameter does not contain a well-formed string that can be converted to a Line

object.

The following code:

Console.WriteLine("Line.Parse(\"(12,2)(0,45)\") = " + Line.Parse("(12,2)(0,45)"));
Console.WriteLine("Line.Parse(\"(0,0)(0,0)\") = " + Line.Parse("(0,0)(0,0)"));

produces this output:

Line.Parse("(12,2)(0,45)") = (12,2) (0,45)
Line.Parse("(0,0)(0,0)") = (0,0) (0,0)

When implementing a Parse method on your own types, you need to consider

the situation where invalid data is passed to this method. When this happens,
an ArgumentException should be thrown. When a null is passed in, you
should instead throw an ArgumentNullException.

See Also

See the "Parse Method" topic; see the Parse Sample under the ".NET Samples-How To: Base Data
Types" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 3.4 Polymorphism via Concrete or Abstract Base
Classes

Problem

You need to build several classes that share many common traits. These classes may share common
properties, methods, events, delegates, and even indexers; however, the implementation of these
may be different for each class. These classes should not only share common code but also be
polymorphic in nature. That is to say, code that uses an object of the base class should be able to use
an object of any of these classes in the same manner.

Solution

Use an abstract base class to create polymorphic code. To demonstrate the creation and use of an
abstract base class, here is an example of three classes, each defining a media type: magnetic,
optical, and punch card. An abstract base class, Media, is created to define what each derived class

will contain:

public abstract class Media
{
 public abstract void Init();
 public abstract void WriteTo(string data);
 public abstract string ReadFrom();
 public abstract void Close();

 private IntPtr mediaHandle = IntPtr.Zero;

 public IntPtr Handle
 {
 get {return(mediaHandle);}
 }
}

Next, the three specialized media type classes, which inherit from Media, are defined to override each

of the abstract members:

public class Magnetic : Media
{
 public override void Init()
 {
 Console.WriteLine("Magnetic Init");
 }

 public override void WriteTo(string data)
 {
 Console.WriteLine("Magnetic Write");
 }

 public override string ReadFrom()
 {
 Console.WriteLine("Magnetic Read");

 string data = "";
 return (data);
 }

 public override void Close()
 {
 Console.WriteLine("Magnetic Close");
 }
}

public class Optical : Media
{
 public override void Init()
 {
 Console.WriteLine("Optical Init");
 }

 public override void WriteTo(string data)
 {
 Console.WriteLine("Optical Write");
 }

 public override string ReadFrom()
 {
 Console.WriteLine("Optical Read");

 string data = "";
 return (data);
 }

 public override void Close()
 {
 Console.WriteLine("Optical Close");
 }
}

public class PunchCard : Media
{
 public override void Init()
 {
 Console.WriteLine("PunchCard Init");
 }

 public override void WriteTo(string data)
 {
 Console.WriteLine("PunchCard WriteTo");
 }

 public override string ReadFrom()
 {
 Console.WriteLine("PunchCard ReadFrom");

 string data = "";
 return (data);
 }

 public override void Close()
 {
 Console.WriteLine("PunchCard Close");
 }
}

The following methods, TestMediaABC and UseMedia, show how any of the three media types can be
used polymorphically from within the UseMedia method:

public void TestMediaABC()
{
 Media x = new Magnetic();
 UseMedia(x);

 Console.WriteLine();

 x = new Optical();
 UseMedia(x);
}

private void UseMedia(Media media)
{
 media.Init();
 media.WriteTo("text");
 media.ReadFrom();
 Console.WriteLine(media.Handle);
 media.Close();

 Console.WriteLine(media.ToString());
}

The output of these methods is shown here:

Magnetic Init
Magnetic Write
Magnetic Read
0
Magnetic Close
Magnetic

Optical Init
Optical Write
Optical Read
0
Optical Close
Optical

Discussion

Polymorphism through an abstract base class is a powerful tool. With this tool, you are able to create
a method (UseMedia in this solution) that accepts a parameter whose specific type is known only at

runtime. Since the use of this parameter is similar for all objects that can be passed in to this
method, we do not have to worry about the specific class that is passed in; we need to know only
how the abstract base class is defined. It is through this abstract base class definition that we know
how to use the specific type.

There are several things to keep in mind when using an abstract base class:

Neither this class nor its abstract members can be declared as sealed; this would defeat

polymorphism.

The abstract class cannot be instantiated using the new operator, but a variable can be declared

as an abstract base class type.

All abstract members must be overridden in a derived class unless the derived class is also
abstract.

It is implied that an abstract method is also defined as virtual.

Only methods, properties, indexers, and events may be declared as abstract.

Abstract methods, properties, and indexers may not be declared as static or virtual.

If an abstract base class implements an interface, it must provide either an implementation for
the interface members or an abstract definition of the interface members. A combination of the
two may be applied as well.

An abstract base class can contain abstract and nonabstract members. It is not required to
contain any abstract members, but this omission may confuse those who read this code.

An abstract class may implement any number of interfaces and may also inherit from a single
class. As a note, abstract members may override virtual members in the nonabstract base

class.

A derived class can override abstract properties and must include at least one accessor
method (i.e., get or set.) A property in a base class that overrides an abstract property
implementing only a get or a set accessor must override that specific get or set accessor. If
the abstract property implements both a get and a set accessor, the overriding base class

property may override one or both accessors.

A structure cannot implement polymorphism through an abstract base class/structure. Instead,

a structure should consider implementing polymorphism through interfaces (see Recipe 3.17).

It is possible to use interfaces to implement polymorphism; this is discussed at length in Recipe 3.17.
There are several advantages to using an abstract base class over an interface:

Abstract base classes allow more flexibility in versioning. An abstract base class can add a
nonabstract member without breaking existing derived classes; an interface cannot. However,
adding a new abstract member will break the existing derived classes.

An abstract base class can contain abstract members as well as nonabstract members. An
interface may contain only definitions of members with no implementation.

You should also consider using an abstract base class over an interface when a lot of disparate
members need to be overridden in the derived classes. For example, if you are implementing a set of
members that control searching or sorting of items, you should initially consider interfaces, since this
is a focused set of members that may be implemented over a wide range of unrelated classes. If you
were implementing a set of members that determines the base functionality for a complete type,
such as the Media type, you would want to use an abstract base class. See Recipe 3.17 for the

advantages of using interface polymorphism over abstract base classes.

Notice that the abstract Media class in this recipe could be written as a concrete class (i.e., remove
the abstract keyword and add implementations to all abstract methods). This would allow you to
create objects from the Media class. If you do not wish for objects to be created from your base class
(Media), you should make it abstract.

See Also

See Recipe 3.17; see section 10.1.1.1, "Abstract Classes", in the C# Language Specification.

[Team LiB]

[Team LiB]

Recipe 3.5 Making a Type Sortable

Problem

You have a data type that will be stored as elements in an array or an ArrayList . You would like to
use the Array.Sort and ArrayList.Sort methods to allow for a custom sorting of your data types in
the array. In addition, you may need to use this structure in a SortedList collection.

Solution

Implement the IComparable interface. The following class, Square , implements this interface in a
way so that the Array , ArrayList , and SortedList objects can sort and search an array or
collection of these Square objects:

public class Square : IComparable
{
 public Square(){}
 public Square(int height, int width)
 {
 this.height = height;
 this.width = width;
 }

 private int height;
 private int width;

 public int Height
 {
 get{ return (height); }
 set{ height = value; }
 }

 public int Width
 {
 get{ return (width); }
 set{ width = value; }
 }

 public int CompareTo(object obj)
 {
 if (this.GetType() != obj.GetType())
 {
 throw (new ArgumentException(
 "Both objects being compared must be of type Square."));
 }
 else

 {
 Square square2 = (Square)obj;

 long area1 = this.Height * this.Width;
 long area2 = square2.Height * square2.Width;

 if (area1 == area2)
 {
 return (0);
 }
 else if (area1 > area2)
 {
 return (1);
 }
 else if (area1 < area2)
 {
 return (-1);
 }
 else
 {
 return (-1);
 }
 }
 }

 public override string ToString()
 {
 return ("Height:" + height + " Width:" + width);
 }
}

Discussion

By implementing the IComparable interface on your class (or structure), you can take advantage of
the sorting routines of the Array , ArrayList , and SortedList classes. The algorithms for sorting

are built into these classes; all you have to do is tell them how to sort through your classes via the
code you implement in the IComparable.CompareTo method.

When an array of Square objects is passed to the Array.Sort static method, the array is sorted using
the IComparable interface of the Square objects. The same goes for the ArrayList.Sort method.
The Add method of the SortedList class uses this interface to sort the objects as they are being
added to the SortedList .

The algorithm that the Array.Sort and ArrayList.Sort methods use to sort
an array's elements is the QuickSort algorithm.

IComparer is designed to solve the problem of allowing objects to be sorted based on different criteria

in different contexts. This interface also allows us to sort types that we did not write. If we wanted to

also be able to sort the Square objects by height, we could create a new class called CompareHeight ,
which would also implement the IComparer interface:

public class CompareHeight : IComparer
{
 public int Compare(object obj1, object obj2)
 {
 if (!(obj1 is Square) || !(obj2 is Square))
 {
 throw (new ArgumentException("Both parameters must be of type Square."));
 }
 else
 {
 Square square1 = (Square)obj1;
 Square square2 = (Square)obj2;

 if (square1.Height == square2.Height)
 {
 return (0);
 }
 else if (square1.Height > square2.Height)
 {
 return (1);
 }
 else if (square1.Height < square2.Height)
 {
 return (-1);
 }
 else
 {
 return (-1);
 }
 }
 }
}

This class is then passed in to the IComparer parameter of the Sort routine. Now we can specify
different ways to sort our Square objects.

For best performance, keep the CompareTo method short and efficient, since it
will be called multiple times by the Sort methods. For example, in sorting an
array with 4 items, the Compare method was called 10 times.

The following method shows how to use the Square and CompareHeight structures with the Array ,
ArrayList , and SortedList classes:

public static void TestSort()
{
 Square[] arrayOfSquares = new Square[4] {new Square(1,3),
 new Square(4,3),

 new Square(2,1),
 new Square(6,1)};

 ArrayList arrayListOfSquares = new ArrayList();
 arrayListOfSquares.Add(new Square(1,3));
 arrayListOfSquares.Add(new Square(4,3));
 arrayListOfSquares.Add(new Square(2,1));
 arrayListOfSquares.Add(new Square(6,1));

 IComparer HeightCompare = new CompareHeight();

 // Test an ARRAY
 Console.WriteLine("ARRAY");
 Console.WriteLine("Original array");
 foreach (Square s in arrayOfSquares)
 {
 Console.WriteLine(s.ToString());
 }

 Console.WriteLine();
 Console.WriteLine("Sorted array using IComparer=HeightCompare");
 Array.Sort(arrayOfSquares, HeightCompare);
 foreach (Square s in arrayOfSquares)
 {
 Console.WriteLine(s.ToString());
 }

 Console.WriteLine();
 Console.WriteLine("Sorted array using IComparable");
 Array.Sort(arrayOfSquares);
 foreach (Square s in arrayOfSquares)
 {
 Console.WriteLine(s.ToString());
 }

 // Test an ARRAYLIST
 Console.WriteLine();
 Console.WriteLine();
 Console.WriteLine("ARRAYLIST");
 foreach (Square s in arrayListOfSquares)
 {
 Console.WriteLine(s.ToString());
 }

 Console.WriteLine();
 Console.WriteLine("Sorted ArrayList using IComparer=HeightCompare");
 arrayListOfSquares.Sort(HeightCompare);
 foreach (Square s in arrayListOfSquares)
 {
 Console.WriteLine(s.ToString());
 }

 Console.WriteLine();
 Console.WriteLine("Sorted ArrayList using IComparable");
 arrayListOfSquares.Sort();
 foreach (Square s in arrayListOfSquares)
 {
 Console.WriteLine(s.ToString());
 }

 // Test a SORTEDLIST
 SortedList SortedListOfSquares = new SortedList();
 SortedListOfSquares.Add(0, new Square(1,3));
 SortedListOfSquares.Add(2, new Square(4,3));
 SortedListOfSquares.Add(1, new Square(2,1));
 SortedListOfSquares.Add(3, new Square(6,1));

 Console.WriteLine();
 Console.WriteLine();
 Console.WriteLine("SORTEDLIST");
 foreach (DictionaryEntry s in SortedListOfSquares)
 {
 Console.WriteLine(s.Key + " : " + ((Square)s.Value).ToString());
 }
}

This code displays the following output:

ARRAY
Original array
Height:1 Width:3
Height:4 Width:3
Height:2 Width:1
Height:6 Width:1

Sorted array using IComparer=HeightCompare
Height:1 Width:3
Height:2 Width:1
Height:4 Width:3
Height:6 Width:1

Sorted array using IComparable
Height:2 Width:1
Height:1 Width:3
Height:6 Width:1
Height:4 Width:3

ARRAYLIST
Height:1 Width:3
Height:4 Width:3
Height:2 Width:1
Height:6 Width:1

Sorted ArrayList using IComparer=HeightCompare

Height:1 Width:3
Height:2 Width:1
Height:4 Width:3
Height:6 Width:1

Sorted ArrayList using IComparable
Height:2 Width:1
Height:1 Width:3
Height:6 Width:1
Height:4 Width:3

SORTEDLIST
0 : Height:1 Width:3
1 : Height:2 Width:1
2 : Height:4 Width:3
3 : Height:6 Width:1

See Also

See Recipe 3.6 ; see the "IComparable Interface" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 3.6 Making a Type Searchable

Problem

You have a data type that will be stored as elements in an array or an ArrayList . You would like to
use the Array.BinarySearch and ArrayList.BinarySearch methods to allow for custom searching

of your data types in the array.

Solution

Use the IComparable and IComparer interfaces. The Square class, from Recipe 3.5 , implements
these in a way so that the Array , ArrayList , and SortedList objects can sort and search an array
or collection of Square objects.

Discussion

By implementing the IComparable interface on your class (or structure), you can take advantage of
the search routines of the Array , ArrayList , and SortedList classes. The algorithms for searching

are built into these classes; all you have to do is tell them how to search through your classes via the
code you implement in the IComparable.CompareTo method.

To implement the CompareTo method, see Recipe 3.5 .

The Array and ArrayList classes provide a BinarySearch method to perform a search on the
elements in that array. The elements are compared against an object passed to the BinarySearch
method in the object parameter. The SortedList class does not have a BinarySearch method;
instead, it has Contains , ContainsKey , and ContainsValue methods to perform a linear search
when searching for values. This linear search uses the Equals method of the elements in the
SortedList collection to do its work (to overload the Equals method, see Recipe 3.9), the Compare
and CompareTo methods do not have any effect on the operation of the linear search performed in
the SortedList class, but they do have an effect on binary searches.

To perform an accurate search using the BinarySearch methods of the Array
and ArrayList classes, you must first sort the Array or ArrayList using its
Sort method. In addition, if you pass an IComparer interface to the
BinarySearch method, you must also pass the same interface to the Sort
method. Otherwise, the BinarySearch method might not be able to find the

object you are looking for.

The following method shows how to use the Square and CompareHeight structures with the Array ,
ArrayList , and SortedList classes:

public static void TestSort()

{
 Square[] arrayOfSquares = new Square[4] {new Square(1,3),
 new Square(4,3),
 new Square(2,1),
 new Square(6,1)};

 ArrayList arrayListOfSquares = new ArrayList();
 arrayListOfSquares.Add(new Square(1,3));
 arrayListOfSquares.Add(new Square(4,3));
 arrayListOfSquares.Add(new Square(2,1));
 arrayListOfSquares.Add(new Square(6,1));

 IComparer HeightCompare = new CompareHeight();

 // Test an ARRAY
 Console.WriteLine("ARRAY");
 Console.WriteLine("Original array");
 foreach (Square s in arrayOfSquares)
 {
 Console.WriteLine(s.ToString());
 }

 Console.WriteLine();
 Console.WriteLine("Sorted array using IComparer=HeightCompare");
 Array.Sort(arrayOfSquares, HeightCompare);
 foreach (Square s in arrayOfSquares)
 {
 Console.WriteLine(s.ToString());
 }

 Console.WriteLine();
 Console.WriteLine("Search using IComparer=HeightCompare");
 int found = Array.BinarySearch(arrayOfSquares, new Square(1,3), HeightCompare);
 Console.WriteLine("found (1,3): " + found);

 Console.WriteLine();
 Console.WriteLine("Sorted array using IComparable");
 Array.Sort(arrayOfSquares);
 foreach (Square s in arrayOfSquares)
 {
 Console.WriteLine(s.ToString());
 }

 Console.WriteLine("Search using IComparable");
 found = Array.BinarySearch(arrayOfSquares,
 new Square(6,1), null); // Use IComparable
 Console.WriteLine("found (6,1): " + found);

 // Test an ARRAYLIST
 Console.WriteLine();
 Console.WriteLine();
 Console.WriteLine("ARRAYLIST");

 foreach (Square s in arrayListOfSquares)
 {
 Console.WriteLine(s.ToString());
 }

 Console.WriteLine();
 Console.WriteLine("Sorted ArrayList using IComparer=HeightCompare");
 arrayListOfSquares.Sort(HeightCompare);
 foreach (Square s in arrayListOfSquares)
 {
 Console.WriteLine(s.ToString());
 }

 Console.WriteLine();
 Console.WriteLine("Search using IComparer=HeightCompare");
 found = arrayListOfSquares.BinarySearch(new Square(1,3), HeightCompare);
 Console.WriteLine("found (1,3): " + found);

 Console.WriteLine();
 Console.WriteLine("Sorted ArrayList using IComparable");
 arrayListOfSquares.Sort();
 foreach (Square s in arrayListOfSquares)
 {
 Console.WriteLine(s.ToString());
 }

 Console.WriteLine();
 Console.WriteLine("Search using IComparable");
 found = arrayListOfSquares.BinarySearch(new Square(6,1), null);
 Console.WriteLine("found (6,1): " + found);

 // Test a SORTEDLIST
 SortedList SortedListOfSquares = new SortedList();
 SortedListOfSquares.Add(0, new Square(1,3));
 SortedListOfSquares.Add(2, new Square(4,3));
 SortedListOfSquares.Add(1, new Square(2,1));
 SortedListOfSquares.Add(3, new Square(6,1));

 Console.WriteLine();
 Console.WriteLine();
 Console.WriteLine("SORTEDLIST");
 foreach (DictionaryEntry s in SortedListOfSquares)
 {
 Console.WriteLine(s.Key + " : " + ((Square)s.Value).ToString());
 }

 Console.WriteLine();
 bool foundBool = SortedListOfSquares.Contains(2);
 Console.WriteLine("SortedListOfSquares.Contains(2): " + foundBool);

 foundBool = SortedListOfSquares.ContainsKey(2);
 Console.WriteLine("SortedListOfSquares.ContainsKey(2): " + foundBool);

 // Does not use IComparer or IComparable
 // -- uses a linear search along with the Equals method, which has not been
 // overloaded; if the Square object were to be used as the key
 // rather than the value, a binary search would be performed when searching
 // for this Square object.
 Square value = new Square(6,1);
 foundBool = SortedListOfSquares.ContainsValue(value);
 Console.WriteLine
 ("SortedListOfSquares.ContainsValue(new Square(6,1)): " + foundBool);
}

This code displays the following:

ARRAY
Original array
Height:1 Width:3
Height:4 Width:3
Height:2 Width:1
Height:6 Width:1

Sorted array using IComparer=HeightCompare
Height:1 Width:3
Height:2 Width:1
Height:4 Width:3
Height:6 Width:1

Search using IComparer=HeightCompare
found (1,3): 0

Sorted array using IComparable
Height:2 Width:1
Height:1 Width:3
Height:6 Width:1
Height:4 Width:3
Search using IComparable
found (6,1): 2

ARRAYLIST
Height:1 Width:3
Height:4 Width:3
Height:2 Width:1
Height:6 Width:1

Sorted ArrayList using IComparer=HeightCompare
Height:1 Width:3
Height:2 Width:1
Height:4 Width:3
Height:6 Width:1

Search using IComparer=HeightCompare
found (1,3): 0

Sorted ArrayList using IComparable
Height:2 Width:1
Height:1 Width:3
Height:6 Width:1
Height:4 Width:3

Search using IComparable
found (6,1): 2

SORTEDLIST
0 : Height:1 Width:3
1 : Height:2 Width:1
2 : Height:4 Width:3
3 : Height:6 Width:1

SortedListOfSquares.Contains(2): True
SortedListOfSquares.ContainsKey(2): True
SortedListOfSquares.ContainsValue(new Square(6,1)): False

See Also

See Recipe 3.5 and Recipe 3.9 ; see the "IComparable Interface" and "IComparer Interface" topics in
the MSDN documentation .

[Team LiB]

[Team LiB]

Recipe 3.7 Indirectly Overloading the +=, -=, /=, and *=
Operators

Problem

You need to control the handling of the +=, -=, /=, and *= operators within your data type;

unfortunately, these operators cannot be directly overloaded.

Solution

Overload these operators indirectly by overloading the +, -, /, and * operators:

public class Foo
{
 // Other class members...

 // Overloaded binary operators
 public static Foo operator +(Foo f1, Foo f2)
 {
 Foo result = new Foo();

 // Add f1 and f2 here...
 // Place result of the addition into the result variable

 return (result);
 }

 public static Foo operator +(int constant, Foo f1)
 {
 Foo result = new Foo();

 // Add the constant integer and f1 here...
 // Place result of the addition into the result variable

 return (result);
 }

 public static Foo operator +(Foo f1, int constant)
 {
 Foo result = new Foo();

 // Add the constant integer and f1 here...
 // Place result of the addition into the result variable

 return (result);
 }

 public static Foo operator -(Foo f1, Foo f2)
 {
 Foo result = new Foo();

 // Subtract f1 and f2 here...
 // Place result of the subtraction into the result variable

 return (result);
 }

 public static Foo operator -(int constant, Foo f1)
 {
 Foo result = new Foo();

 // Subtract the constant integer and f1 here...
 // Place result of the subtraction into the result variable

 return (result);
 }

 public static Foo operator -(Foo f1, int constant)
 {
 Foo result = new Foo();

 // Subtract the constant integer and f1 here...
 // Place result of the subtraction into the result variable

 return (result);
 }

 public static Foo operator *(Foo f1, Foo f2)
 {
 Foo result = new Foo();

 // Multiply f1 and f2 here...
 // Place result of the multiplication into the result variable

 return (result);
 }

 public static Foo operator *(int multiplier, Foo f1)
 {
 Foo result = new Foo();

 // Multiply multiplier and f1 here...
 // Place result of the multiplication into the result variable

 return (result);

 }

 public static Foo operator *(Foo f1, int multiplier)
 {
 return (multiplier * f1);
 }

 public static Foo operator /(Foo f1, Foo f2)
 {
 Foo result = new Foo();

 // Divide f1 and f2 here...
 // Place result of the division into the result variable

 return (result);
 }

 public static Foo operator /(int numerator, Foo f1)
 {
 Foo result = new Foo();

 // Divide numerator and f1 here...
 // Place result of the division into the result variable

 return (result);
 }

 public static Foo operator /(Foo f1, int denominator)
 {
 return (1 / (denominator / f1));
 }
}

Discussion

While it is illegal to try and overload the +=, -=, /=, and *= operators directly, you can overload them
indirectly by overloading the +, -, /, and * operators. The +=, -=, /=, and *= operators then use the
overloaded +, -, /, and * operators for their calculations.

The four operators +, -, /, and * are overloaded by the methods in the Solution section of this recipe.

You might notice that each operator is overloaded three times. This is intentional, since a user of
your object may attempt to add, subtract, multiply, or divide it by an integer value. The unknown
here is which position the integer constant will be in; will it be in the first parameter or the second?
The following code snippet shows how this might look for multiplication:

Foo x = new Foo();
Foo y *= 100; // Uses: operator *(Foo f1, int multiplier)
y = 100 * x; // Uses: operator *(int multiplier, Foo f1)
y *= x; // Uses: operator *(Foo f1, Foo f2)

The same holds true for the other overloaded operator.

If these operators were being implemented in a class, you would first check whether any were set to
null. The following code for the overloaded addition operator has been modified to do this:

public static Foo operator +(Foo f1, Foo f2)
{
 if (f1 == null || f2 == null)
 {
 throw (new ArgumentException("Neither object may be null."));
 }

 Foo result = new Foo();

 // Add f1 and f2 here...
 // Place result of the addition into the result variable

 return (result);
}

See Also

See the "Operator Overloading Usage Guideline," "Overloadable Operators," and "Operator
Overloading Tutorial" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 3.8 Indirectly Overloading the &&, ||, and ?:
Operators

Problem

You need to control the handling of the &&, ||, and ?: operators within your data type; unfortunately,

these operators cannot be directly overloaded.

Solution

Overload these operators indirectly by overloading the &, |, true, and false operators:

public class ObjState
{
 public ObjState(int state)
 {
 this.state = state;
 }

 public int state = 0;

 public static ObjState operator &(ObjState obj1, ObjState obj2)
 {
 if (obj1.state >= 0 && obj2.state >= 0)
 return (new ObjState(1));
 else
 return (new ObjState(-1));
 }

 public static ObjState operator |(ObjState obj1, ObjState obj2)
 {
 if (obj1.state < 0 && obj2.state < 0)
 return (new ObjState(-1));
 else
 return (new ObjState(1));
 }

 public static bool operator true(ObjState obj)
 {
 if (obj.state >= 0)
 return (true);
 else
 return (false);

 }

 public static bool operator false(ObjState obj)
 {
 if (obj.state >= 0)
 return (true);
 else
 return (false);
 }

 public override string ToString()
 {
 return (state.ToString());
 }
}

This technique gives you complete control over the operations of the &&, ||, and ?: operators.

Alternatively, you can simply add an implicit conversion to bool:

public class ObjState
{
 public ObjState(int state)
 {
 this.state = state;
 }

 public int state = 0;

 public static implicit operator bool(ObjState obj)
 {
 if (obj.state == 0)
 {
 throw new InvalidOperationException();
 }

 return (obj.state > 0);
 }
}

This technique implements strict Boolean logic; the first technique (overriding the &&, ||, and ?:

operators) gives you more freedom to stray from implementing strict Boolean logic.

Discussion

While you cannot overload the &&, ||, and ?: operators directly, you can overload them indirectly by
overloading the &, |, true, and false operators. The &&, ||, and ?: operators then use the
overloaded &, |, true, and false operators for their calculations.

The && operator indirectly uses the false and & operators to perform a short-circuiting And
operation. Initially, the false operator is invoked to determine whether the first object is equal to

false. If so, the operation stops and whatever is on the lefthand side of the && operator is returned.
If the false operator returns a true, the & operator is invoked next to perform the ANDing operation
on the two objects. This initial test using the false operator enables the operator to short-circuit the

operation.

The || operator works the same as the && operator, except that the initial test is done using the
true operator rather than the false operator.

The ?: operator only requires the overloading of the true operator to be indirectly overloaded. Note
that overloading the true operator requires the overloading of the false operator for symmetry. The
?: operator takes a conditional expression as input and evaluates either its true or false expression.

This operator can be defined as follows:

conditional-expression ? true-expression : false-expression

The ?: operator invokes the true operator to determine which expression of this operator should be
evaluated. Note that if an implicit conversion to bool exists, it will be used in preference to the true

operator.

When implementing these operators, you would first check to determine whether any parameters in
the overloaded operator methods were set to null. The code for the overloaded & operator has been

modified to do this:

public static ObjState operator &(ObjState obj1, ObjState obj2)
{
 if (obj1 == null || obj2 == null)
 {
 throw (new ArgumentNullException("Neither object may be null."));
 }

 if (obj1.state >= 0 && obj2.state >= 0)
 return (new ObjState(1));
 else
 return (new ObjState(-1));
}

See Also

See the "Operator Overloading Usage Guidelines," "Overloadable Operators," and "Operator
Overloading Tutorial" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 3.9 Improving the Performance of a Structure's
Equals Method

Problem

You need to provide a better performing Equals method than the default Equals method on a
structure. The default implementation of Equals on a ValueType uses reflection to compare the fields
of two ValueTypes, resulting in poor performance. Note that this recipe does not hold true for
classes; although the same techniques apply if you want to overload the Equals method in a class.

Solution

Override the Equals method. When this method is overridden, you must also override the
GetHashCode method:

public struct Line
{
 public Line(int startX, int startY, int endX, int endY)
 {
 x1 = startX;
 x2 = endX;
 y1 = startY;
 y2 = endY;
 }

 private int x1;
 private int y1;
 private int x2;
 private int y2;

 public override bool Equals(object obj)
 {
 bool isEqual = false;

 if (obj == null || (this.GetType() != obj.GetType()))
 {
 isEqual = false;
 }
 else
 {
 Line theLine = (Line)obj;
 isEqual = (this.x1 == theLine.x1) &&
 (this.y1 == theLine.y1) &&

 (this.x2 == theLine.x2) &&
 (this.y2 == theLine.y2);
 }
 return (isEqual);

 }

 public override int GetHashCode()
 {
 return (x1+109*(x2+113*(y1+127*y2)));
 }
}

In addition, a strongly typed Equals method can be added to further streamline this operation:

public bool Equals(Line lineObj)
{
 bool isEqual = (this.x1 == lineObj.x1) &&
 (this.y1 == lineObj.y1) &&
 (this.x2 == lineObj.x2) &&
 (this.y2 == lineObj.y2);

 return (IsEqual);
}

In this recipe, we chose a Line structure arbitrarily. However, your focus should be on the details of
overriding an Equals method. In addition, we chose to define the equivalence of two Line objects as

having the exact same starting and ending coordinates.

Discussion

All structures come with a predefined Equals method that internally uses reflection. Take a look at
the IL code for the Equals method of the System.ValueType class in the mscorlib.dll using Ildasm.
You will notice that the implementation of this Equals method first checks to see whether the object
passed in to this method is null. If it is not, the next check is to determine whether the object
implementing the Equals method is the same type as the one passed in to it. If so, a check is made
using the internally implemented method ValueType.CanCompareBits. If this method determines

that the bits of the two objects can be compared successfully, a call is made to
ValueType.FastEqualsCheck. If this faster check for equivalence cannot be made, reflection-which

performs slower-is used to obtain all the instance fields of both objects and compare them
individually within a loop. This may not be the best way to go for your custom ValueType-from both

a performance and a logic point of view.

Performance-wise, the Equals methods provided in this recipe are faster. From a logic point of view,

you can create your own equivalence algorithm, and not depend on what the default implementation
considers equivalence. For example, your ValueType could contain many different instance fields, but
the equivalence of two of these ValueTypes may depend only on a subset of these instance fields. By
overriding the Equals method, we can solve both of these problems at one time.

By creating a strongly typed Equals method, we can take performance one step farther. The
overridden Equals method must confirm that the object type passed in to it is not only non-null, but

that it is also of the same type. If both of these tests pass, an unboxing operation must be performed
when the object that is passed is cast to its corresponding ValueType. Note also that a boxing
operation must occur when the Equals method is called.

There are several rules that you should follow when determining when to
override the Equals method. The Equals method should be overridden when
implementing the IComparable interface on your structure/class. If the object
passed as a parameter to this method is either null or not of the same type as
this object, return a false. Finally, exceptions should not be explicitly thrown in

this method, as it might confuse other developers that are trying to debug code
using your object. These rules are valid for reference types as well.

Whenever the Equals method is overloaded, you should overload the GetHashCode method. If you
fail to do so, the code will compile, but a warning will be issued stating that the GetHashCode method

should be overridden.

Overridding the GetHashCode method is desirable for several reasons. Most importantly, overriding
this method allows your ValueType to be used as a key in a System.Collection.HashTable object.
The second reason is performance. If you take a look at the IL for the ValueType.GetHashCode

method in the mscorlib.dll using Ildasm, you will see that it also uses reflection to obtain the first
non-null instance field of the ValueType. Once it obtains this field, that field's GetHashCode method
is called to return a hash code value. If no valid fields exist in the ValueType, the internal method
ValueType.GetMethodTablePtrAsInt is called to get a hash code. The final reason for overloading

this method is to control more precisely the algorithm for obtaining a hash code.

As a final note, when overloading the Equals method, you should strongly consider overloading the
== and != operators. This overloading will provide consistency within your type. For example, some
clients of your type may use the Equals method and some may attempt to use the == or !=

operators. Providing overrides to all three of these members allows consistent use of your type. The
code to overload these two operators for the Line type is as follows:

public static bool operator ==(Line l1, Line l2)
{
 return (l1.Equals(l2));
}

public static bool operator !=(Line l1, Line l2)
{
 return (!l1.Equals(l2));
}

See Also

See the "ValueType.Equals Method" topic in the MSDN documentation .

[Team LiB]

[Team LiB]

Recipe 3.10 Turning Bits On or Off

Problem

You have a numeric value or an enumeration that contains bit flags. You need a method to turn on
(set the bit to 1) or turn off (set the bit to 0) one or more of these bit flags. In addition, you also

want a method to flip one or more bit flag values; that is, change the bit(s) to their opposite value.

Solution

The following method turns one or more bits on:

public static int TurnBitOn(int value, int bitToTurnOn)
{
 return (value | bitToTurnOn);
}

The following method turns one or more bits off:

public static int TurnBitOff(int value, int bitToTurnOff)
{
 return (value & ~bitToTurnOff);
}

The following method flips a bit to its opposite value:

public static int FlipBit(int value, int bitToFlip)
{
 return (value ^ bitToFlip);
}

Discussion

When a large number of flags are required, and particularly when combinations of flags can be set, it
becomes cumbersome and unwieldy to use Boolean variables. In this case, using the binary
representation of a number, we can assign each bit to indicate a specific Boolean value. Each Boolean
value is called a bit flag. For example, we have a number defined as a byte data type. This number is
comprised of eight binary bit values, which can be either a 1 or a 0. Supposing we assign a color to

each bit, our number would be defined as follows:

byte colorValue = 0; // colorValue initialized to no color

// colorValue Bit position

// red 0 (least-significant bit)
// green 1
// blue 2
// black 3
// grey 4
// silver 5
// olive 6
// teal 7 (most-significant bit)

By setting each bit to 0 or 1, we can define a color value for the colorValue variable. Unfortunately,
the colorValue variable does not take into account all colors. We can remedy this by allowing
multiple bits to be set to 1. This trick allows us to combine red (bit 0) and green (bit 1) to get the
color yellow; red (bit 0) and blue (bit 2) to get violet; or red, green, and blue to get white.

Note that we have used the byte data type in defining our colorValue

bitmask. This is because it is more convenient to use unsigned data types for
bit flag variables. The other unsigned integers supported by C# are ushort,
uint, and ulong. This makes it easier to create the bitmask values to use with

the bit flag variable. Simply put, you do not have to worry about negative
values of the data type when using unsigned data types.

Now that we have our bit flags set up in the colorValue variable, we need a way to set the individual
bits to a 0 or 1, as well as a way to determine whether one or more bits (colors) are turned on. To do

this, we use a bitmask. A bitmask is a constant number, usually of the same type as the target type
containing the bit flags. This bitmask value will be ANDed, ORed, or XORed with the number containing
the bit flags to determine the state of each bit flag or to set each bit flag to a 0 or 1:

[Flags]
public enum ColorBitMask
{
 NoColorBitMask = 0, //binary value == 00000000
 RedBitMask = 1, //binary value == 00000001
 GreenBitMask = 2, //binary value == 00000010
 BlueBitMask = 4, //binary value == 00000100
 BlackBitMask = 8, //binary value == 00001000
 GreyBitMask = 16, //binary value == 00010000
 SilverBitMask = 32, //binary value == 00100000
 OliveBitMask = 64, //binary value == 01000000
 TealBitMask = 128, //binary value == 10000000
 YellowBitMask = 3, //binary value == 00000011
 VioletBitMask = 5, //binary value == 00000101
 WhiteBitMask = 7, //binary value == 00000111
}

One common use for the & operator is to set one or more bits in a bit flag value to 0. If we AND a
binary value with 1, we always obtain the original binary value. If, on the other hand, we AND a
binary value with 0, we always obtain 0. Knowing this, we can use the bitmask values to remove
various colors from the colorValue variable:

ColorBitMask color = YellowBitMask;
ColorBitMask newColor = color & ~ColorBitMask.RedBitMask);

This operation removes the RedBitMask from the color value. This value is then assigned to the
newColor variable. The newColor variable now contains the value 2 (00000010 in binary), which is
equal to the GreenBitMask value. Essentially, we removed the color red from the color yellow and

ended up with the color green, which is a constituent color of yellow.

The | operator can also be used to set one or more bits to 1. If we OR a binary value with 0, we
always obtain the original binary value. If, on the other hand, we OR a binary value with 1, we always
obtain 1. Using this knowledge, we can use the bitmask values to add various colors to the color

variable. For example:

ColorBitMask color = ColorBitMask.RedBitMask;
ColorBitMask newColor = color | ColorBitMask.GreenBitMask;

This operation ORs the GreenBitMask to the color value, which is currently set to the value
RedBitMask. This value is then assigned to the newColor variable. The newColor variable now
contains the value 3 (00000011 in binary); this value is equal to the YellowBitMask value.

Essentially, we added the color green to the color red and obtained the color yellow.

The ^ operator is often used to flip or invert one or more bits in a bit flag value. It returns a 1 only
when either bit is set to 1. If both bits are set to 1s or 0s, this operator returns a 0. This operation

provides a convenient method of flipping a bit:

ColorBitMask color = ColorBitMask.RedBitMask;
ColorBitMask newColor = color ^ ColorBitMask.RedBitMask;

The code shown here flips the least-significant bit (defined by the RedBitMask operation) to its
opposite value. So if the color were red, it would become 0, or no defined color, as shown here:

 00000001 == Color (red)

 ^ 00000001 == RedBitMask
 00000000

If we XOR this result a second time with the bitmask RedBitMask, we get our original color (red) back

again, as shown here:

 00000000 == Color (red)

 ^ 00000001 == RedBitMask
 00000001 == red

If this operation is performed on the color yellow, we can obtain the color other than red that makes
up this color. This operation is shown here along with the code:

ColorBitMask color = ColorBitMask.YellowBitMask;
ColorBitMask newColor = color ^ ColorBitMask.RedBitMask;

 00000011 == Color (yellow)

 ^ 00000001 == RedBitMask
 00000010 == green

Use the AND (&) operator to set one or more bits to 0.

Use the OR (|) operator to set one or more bits to 1.

Use the XOR (~) operator when flipping one or more bits to their opposite

values.

See Also

See Recipe 1.4; see the "C# Operators" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 3.11 Making Error-Free Expressions

Problem

A complex expression in your code is returning incorrect results. For example, if you wanted to find the
average area given two circles, you might write the following expression:

double radius1 = 2;
double radius2 = 4;
double aveArea = .5 * Math.PI * Math.Pow(radius1, 2) + Math.PI *
 Math.Pow(radius2, 2);

However, the result is always incorrect.

Complex mathematical and Boolean equations in your code can easily become the source of bugs. You
need to write bug-free equations, while at the same time making them easier to read.

Solution

The solution is quite simple: use parentheses to explicitly define the order of operations that will take
place in your equation. To fix the expression presented in the Problem section, rewrite it as follows:

double radius1 = 2;
double radius2 = 4;
double aveArea = .5 * (Math.PI * Math.Pow(radius1, 2) + Math.PI *
 Math.Pow(radius2, 2));

Notice the addition of the parentheses; these parentheses cause the area of the two circles to be
calculated and added together first. Then the total area is multiplied by .5 . This is the behavior we are

looking for. An additional benefit is that the expression can become easier to read as the parentheses
provide clear distinction of what part of the expression is to be evaluated first. This technique works
equally well with Boolean equations.

Discussion

Parentheses are key to writing maintainable and bug-free equations. Not only is your intention clearly
spelled out, but you also override any operator precedence rules that you might not have taken into
account. In fact, the only way to override operator precedence is to use parentheses (you can use
temporary variables to hold partial results, which aids in readability, but can increase the size of the IL
code). Consider the following equation:

int x = 1 * 2 - -50 / 4 + 220 << 1;
Console.WriteLine("x = " + x);

The value 468 is displayed for this equation.

This is the same equation written with parentheses:

int y = ((1 * 2) - ((-50) / 4) + 220) << 1;
Console.WriteLine("y = " + y);

The same value (468) is also displayed for this equation. Notice how it is much easier to read and

understand how this equation works when parentheses are used. It is possible to get carried away with
the use of parentheses in an equation:

int z = ((((1 * 2) - ((-50) / 4)) + 220) << (1));
Console.WriteLine("z = " + z);

This equation also evaluates to 468 , but due to the overuse of parentheses, you can get lost

determining where one set of parentheses begins and where it ends. You should try to balance your
placement of parentheses in strategic locations to prevent oversaturating your equation with
parentheses.

Another place where you can get into trouble with operator precedence is when using the ternary
operator (? :). The ternary operator is defined as follows:

boolean-expression ? true-case-expression : false-case-expression

Each type of expression used by this operator is defined as follows:

boolean-expression

This expression must evaluate to a Boolean value or to a value whose type has an implicit
conversion to bool or one that has a true operator. Depending on the outcome of this

expression, either the true-case-expression or the false-case-expression will be

executed.

true-case-expression

This expression is evaluated when the boolean-expression evaluates to true .

false-case-expression

This expression is evaluated when the boolean-expression evaluates to false .

Either the true-case-expression or the false-case-expression will be evaluated; never both.

The ternary operator is able to compact several lines of an if-else statement into a single expression

that can fit easily on a single line. This ternary statement is also usable inline with a statement or
another expression. The following code example shows the use of the ternary operator inline with an
expression:

byte x = 8 + ((foo == 1) ? 4 : 2);

By examining the order of operator precedence, we see that the == operator is evaluated first and
then the ternary operator. Depending on the result of the Boolean expression foo == 1 , the ternary
operator will produce either the value 4 or 2 . This value is then added to 8 and assigned to the
variable x .

This operator is considered to have right-associative properties, similar to the assignment operators.
Because of this, you can get into trouble using ternary expressions as expressions within other ternary
expressions. Consider the following code:

// foo currently equals 1
// Assume that all methods will always return a Boolean true, except for Method3,
// which always returns a Boolean false
Console.WriteLine(Method1() ? Method2() : Method3() ? Method4() : Method5());

Which methods will be called? If you started evaluating this expression from the left, your expression
would essentially look like the following:

Console.WriteLine((Method1() ? Method2() : Method3()) ? Method4() : Method5());

Notice the extra highlighted parentheses added to clarify how the expression will be evaluated in this
manner. The answer that the methods Method1 , Method2 , and Method4 will be called is wrong. The

ternary operators are evaluated from right to left, not left to right, as are most other common
operators. The correct answer is that only Method1 and Method2 would be called. Extra highlighted

parentheses have been added to this expression, in order to clarify how it is evaluated:

Console.WriteLine(Method1() ? Method2() : (Method3() ? Method4() : Method5()));

This technique will cause Method1 and Method2 to be called in that order. If any of these methods

produced side effects, the application might produce unexpected results.

If you must use nested ternary expressions, make liberal use of parentheses
around each ternary expression to clearly specify your intentions.

[Team LiB]

[Team LiB]

Recipe 3.12 Minimizing (Reducing) Your Boolean Logic

Problem

Many times a Boolean equation quickly becomes large, complex, and even unmanageable. You need
a way to manage this complexity while at the same time verifying that your logic works as designed.

Solution

To fix this situation, try applying the theorems shown in Table 3-1 to minimize these types of
equations.

Table 3-1. Boolean theorems

Theorem ID Theorem definition

T0 !(!x) == x

T1 x | x == x

T2 x | !x == true

T3 (DeMorgan's Theorem) !x | !y == !(x & y)

T4 x & x == x

T5 x & !x == false

T6 (DeMorgan's Theorem) !x & !y == !(x | y)

T7 (Commutative Law) x | y == y | x

T8 (Associative Law) (x | y) | z == x | (y | z)

T9 (Distributive Law) x & y | x & z == x & (y | z)

T10 x | x & y = x

T11 x & y | x & !y = x

T12 (x & y) | (!x & z) | (y & z) == (x & y) | (!x & z)

T13 (Commutative Law) x & y == y & x

T14 (Associative Law) (x & y) & z == x & (y & z)

Theorem ID Theorem definition

T15 (Distributive Law) (x | y) & (x | z) == x | (y & z)

T16 x & (x | y) = x

T17 (x | y) & (x | !y) = x

T18 (x | y) & (!x | z) & (y | z) == (x | y) & (!x | z)

T19 x | x | x | ... | x == x

T20 !(x | x | x | ... | x) == !x & !x & !x & ... & !x

T21 x & x & x & ... & x == x

T22 !(x & x & x & ... & x) == !x | !x | !x | ... | !x

T23 (x | y) & (w | z) == (x & w) | (x * z) | (y & w) | (y * z)

T24 (x & y) | (w & z) == (x | w) & (x | z) & (y | w) & (y | z)

In Table 3-1, assume that w, x, y, and z are all variables of type bool. The Theorem ID column in this

table allows easy identification of which theorems are being used in the Boolean equations that are
being minimized in the Discussion section.

Discussion

Simplifying your Boolean logic will benefit your code by making it less cluttered and making its logic
clearer and more readily understood. This simplification will lessen the number of potential locations
in your logic where bugs can hide and at the same time improve maintainability.

Let's walk through several examples to show how the process of minimizing your logic works. These
examples use the three Boolean variables X, Y, and Z. The names have been kept simple so that we

can concentrate on minimizing the logic and not have to worry about what the code is trying to do.

The first example uses only the X and Y Boolean variables:

if (!X & !Y) {...}

From this if statement, we extract the following Boolean logic:

!X & !Y

Using theorem T6, we can eliminate one operator from this equation:

!(X | Y)

Now this equation only requires two Boolean operators to be evaluated instead of three. By the way,
you might notice that this equation is a logical NOR operation.

The second example uses the X and Y Boolean variables in a seemingly complex equation:

if ((!X & Y) | (X & !Y) | (X & Y)){...}

T15 (Distributive Law) (x | y) & (x | z) == x | (y & z)

T16 x & (x | y) = x

T17 (x | y) & (x | !y) = x

T18 (x | y) & (!x | z) & (y | z) == (x | y) & (!x | z)

T19 x | x | x | ... | x == x

T20 !(x | x | x | ... | x) == !x & !x & !x & ... & !x

T21 x & x & x & ... & x == x

T22 !(x & x & x & ... & x) == !x | !x | !x | ... | !x

T23 (x | y) & (w | z) == (x & w) | (x * z) | (y & w) | (y * z)

T24 (x & y) | (w & z) == (x | w) & (x | z) & (y | w) & (y | z)

In Table 3-1, assume that w, x, y, and z are all variables of type bool. The Theorem ID column in this

table allows easy identification of which theorems are being used in the Boolean equations that are
being minimized in the Discussion section.

Discussion

Simplifying your Boolean logic will benefit your code by making it less cluttered and making its logic
clearer and more readily understood. This simplification will lessen the number of potential locations
in your logic where bugs can hide and at the same time improve maintainability.

Let's walk through several examples to show how the process of minimizing your logic works. These
examples use the three Boolean variables X, Y, and Z. The names have been kept simple so that we

can concentrate on minimizing the logic and not have to worry about what the code is trying to do.

The first example uses only the X and Y Boolean variables:

if (!X & !Y) {...}

From this if statement, we extract the following Boolean logic:

!X & !Y

Using theorem T6, we can eliminate one operator from this equation:

!(X | Y)

Now this equation only requires two Boolean operators to be evaluated instead of three. By the way,
you might notice that this equation is a logical NOR operation.

The second example uses the X and Y Boolean variables in a seemingly complex equation:

if ((!X & Y) | (X & !Y) | (X & Y)){...}

From this if statement, we extract the Boolean logic:

(!X & Y) | (X & !Y) | (X & Y)

Using theorem T11, we can simplify the last two parenthesized expressions into the following:

(!X & Y) | X

This equation is much simpler than the initial equation. In fact, we reduced the number of operators
from 7 to 3, which is greater than a 2:1 ratio.

Some equations might not seem like they can be simplified very much, but looks can be deceiving.
Let's try to simplify the following equation:

(!X & Y) | (X & !Y)

Using theorem T24, we can derive the following expression:

(!X + X) & (!X | !Y) & (Y | X) & (Y | !Y)

Using theorem T2, we can remove the first and last parenthesized expressions:

(!X | !Y) & (Y | X)

Finally, using theorem T3, we can minimize the equation once again to the following form:

!(X & Y) & (Y | X)

We were only able to remove a single operator from this equation. This optimization might or might
not improve the performance and readability of your code, since it is such a minor change that
requires some effort.

You may think that this expression is in its most reduced form. However, if you examine this
expression more closely, you may notice that it is the equation for the XOR operator. Knowing this,

we can simplify the equation to the following:

X ^ Y

This technique really shines when you are faced with a large and complex Boolean expression, such
as the one shown here:

(!X & !Y & !Z) | (!X & Y & Z) | (X & !Y & !Z) | (X & !Y & Z) |
(X & Y & Z)

Using theorem T9, we get the following equation:

(!X & ((!Y & !Z) | (Y & Z))) | (X & ((!Y & !Z) | (!Y & Z) |
(Y & Z)))

Notice that the equation (!Y & !Z) | (Y & Z) is the equivalent of the NOT XOR operation on Y and
Z. So we can simplify this equation much further:

(!X & !(Y ^ Z)) | (X & ((!Y & !Z) | (!Y & Z) | (Y & Z)))

Using theorem T9, once again, we get the following equation:

(!X & !(Y ^ Z)) | (X & (!Y & (!Z | Z) | (Y & Z)))

Using theorem T2, we get the final equation:

(!X & !(Y ^ Z)) | (X & (!Y | (Y & Z)))

This equation is much simpler than the original and requires much less processing to evaluate, as
well.

While it is unnecessary in most cases to commit all of these theorems to
memory, you should try to understand them all. In addition, memorizing some
of the simpler theorems can come in quite handy in many circumstances.

The theorems outlined in this recipe should be complete enough to allow you to play around with
minimizing your Boolean equations.

See Also

See the "C# Operators" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 3.13 Converting Between Simple Types in a Language
Agnostic Manner

Problem

You need to convert between any two of the following types: bool , char , sbyte , byte , short , ushort , int , uint ,
long , ulong , float , double , decimal , DateTime , and string . Different languages sometimes handle specific

conversions differently; you need a way to perform these conversions in a consistent manner across all .NET languages.
One situation where this recipe is needed is when VB.NET and C# components communicate within the same application.

Solution

Different languages sometimes handle casting of larger numeric types to smaller numeric types differently-these types of
casts are called narrowing conversions. For example consider the following Visual Basic .NET (VB.NET) code which casts a
Single to an Integer :

' Visual Basic .NET Code:
Dim initialValue As Single
Dim finalValue As Integer

initialValue = 13.499
finalValue = CInt(initialValue)
Console.WriteLine(finalValue.ToString())

initialValue = 13.5
finalValue = CInt(initialValue)
Console.WriteLine(finalValue.ToString())

initialValue = 13.501
finalValue = CInt(initialValue)
Console.WriteLine(finalValue.ToString())

This code outputs the following:

13
14
14

Notice that using the CInt cast in VB.NET uses the fractional portion of the number to round the resulting number.

Now let's convert this code to C# using the explicit casting operator:

// C# Code:
float initialValue = 0;
int finalValue = 0;

initialValue = (float)13.499;
finalValue = (int)initialValue;
Console.WriteLine(finalValue.ToString());

initialValue = (float)13.5;
finalValue = (int)initialValue;
Console.WriteLine(finalValue.ToString());

initialValue = (float)13.501;
finalValue = (int)initialValue;
Console.WriteLine(finalValue.ToString());

This code outputs the following:

13
13
13

Notice that the resulting value was not rounded. Instead, the C# casting operator simply truncates the fractional portion of
the number.

Consistently casting numeric types in any language can be done through the static methods on the Convert class. The
previous C# code can be converted to use the ToInt32 method:

// C# Code:
finalValue = Convert.ToInt32((float)13.449);
Console.WriteLine(finalValue.ToString());

finalValue = Convert.ToInt32((float)13.5);
Console.WriteLine(finalValue.ToString());

finalValue = Convert.ToInt32((float)13.501);
Console.WriteLine(finalValue.ToString());

This code outputs the following:

13
14
14

Discussion

All conversions performed using methods on the Convert class are considered to be in a checked context in C#. VB.NET

does not have the concept of a checked or unchecked context, so all conversions are considered to be in a checked
context-an unchecked context cannot be created in VB.NET. An OverflowException will be thrown in a checked context

when a narrowing conversion results in a loss of information. This exception is never thrown in an unchecked context when
a narrowing conversion results in a loss of information.

The various conversion methods are listed in Table 3-2 .

Table 3-2. Conversion methods on the Convert class

Method Use

ToBoolean Convert a type to a bool

ToChar Convert a type to a char

ToString Convert a type to a string

ToDateTime Convert a type to a DateTime

ToInt16 Convert a type to a short

ToInt32 Convert a type to an int

ToInt64 Convert a type to a long

ToUInt16 Convert a type to a ushort

ToUInt32 Convert a type to a uint

ToUInt64 Convert a type to a ulong

ToByte Convert a type to a byte

ToSByte Convert a type to an sbyte

ToSingle Convert a type to a float

ToDecimal Convert a type to a decimal

ToDouble Convert a type to a double

Converting between any of the data types listed in Table 3-2 is a simple matter. All of the listed methods are static and
exist on the Convert class. Converting one type to another is performed by first choosing the correct method on the
Convert class. This method will be named after the type you are converting to (e.g., if you are converting to a char type,
the method name would be ToChar). Next, you need to pass the type that will be casted as the parameter to the Convert
method. Finally, set a variable of the resultant cast type equal to the return value of the Convert method. The following
code converts the value in variable Source -defined as a short that contains a number between 0 and 9-to a char type.
This char value is then returned by the Convert method and assigned to the variable destination . The variable
destination must be defined as a char :

destination = Convert.ToChar(source);

There are cases in which conversions will do nothing. Converting from one type to that same type will do nothing except
return a result that is equivalent to the source variable's value. Take, for example, using the Convert.ToInt32 method to
convert a source variable of type Int32 to a destination variable of type Int32 . This method takes the value obtained

from the source variable and places it in the destination variable.

Some conversions cause exceptions to occur because there is no clear way of converting between the two types; these
attempted conversions are listed in Table 3-3 . Because some conversions might or might not throw an exception-such as
converting from an sbyte to a byte -it is good programming practice to enclose the static conversion method within a
try/catch block. The following code wraps a conversion between numeric types in a try/catch block:

try
{
 finalValue = Convert.ToInt32(SomeFloat);

}
catch(OverflowException oe)
{
 // Handle narrowing conversions that result in a loss
 // of information here.
}
catch(InvalidCastException ice)
{
 // Handle casts that cannot be performed here.
}

The following code wraps a conversion from a string type to an Int32 in a try/catch block:

try
{
 finalValue = Convert.ToInt32(SomeString);
}
catch(OverflowException oe)
{
 // Handle narrowing conversions that result in a loss
 // of information here.
}
catch(ArgumentException ae)
{
 // Handle nulls passed into the Convert method here.
}
catch(FormatException fe)
{
 // Handle attempts to convert a string that does not contain
 // a value that can be converted to the destination type here.
}
catch(Exception e)
{
 // Handle all other exceptions here.
}

Table 3-3. Cases where a Source to Destination type conversion throws an exception

Destination Source Exception type

bool charDateTime InvalidCastException

byte DateTime InvalidCastException

char boolDateTimedecimaldoublefloat InvalidCastException

DateTime boolbytesbytechardecimaldoubleshortintlongushortuintulongobjectfloat InvalidCastException

decimal charDateTime InvalidCastException

double charDateTime InvalidCastException

Destination Source Exception type

short DateTime InvalidCastException

int DateTime InvalidCastException

long DateTime InvalidCastException

sbyte DateTime InvalidCastException

float charDateTime InvalidCastException

ushort DateTime InvalidCastException

uint DateTime InvalidCastException

ulong DateTime InvalidCastException

byte sbyte
OverFlowException (if

Source is out of the
range of Destination)

sbyte byteushortuintulong
OverFlowException (if

Source is out of the
range of Destination)

short bytesbyteushort
OverFlowException (if

Source is out of the
range of Destination)

ushort bytesbyteshort
OverFlowException (if

Source is out of the
range of Destination)

int bytesbyteshortushortuint
OverFlowException (if

Source is out of the
range of Destination)

uint bytesbyteshortushortint
OverFlowException (if

Source is out of the
range of Destination)

long bytesbyteshortushortintuintulong
OverFlowException (if

Source is out of the
range of Destination)

ulong bytesbyteshortushortintuintlong
OverFlowException (if

Source is out of the
range of Destination)

decimal bytesbyteshortushortintuintlongulong
OverFlowException (if

Source is out of the
range of Destination)

float bytesbyteshortushortintuintlongulong
OverFlowException (if

Source is out of the
range of Destination)

short DateTime InvalidCastException

int DateTime InvalidCastException

long DateTime InvalidCastException

sbyte DateTime InvalidCastException

float charDateTime InvalidCastException

ushort DateTime InvalidCastException

uint DateTime InvalidCastException

ulong DateTime InvalidCastException

byte sbyte
OverFlowException (if

Source is out of the
range of Destination)

sbyte byteushortuintulong
OverFlowException (if

Source is out of the
range of Destination)

short bytesbyteushort
OverFlowException (if

Source is out of the
range of Destination)

ushort bytesbyteshort
OverFlowException (if

Source is out of the
range of Destination)

int bytesbyteshortushortuint
OverFlowException (if

Source is out of the
range of Destination)

uint bytesbyteshortushortint
OverFlowException (if

Source is out of the
range of Destination)

long bytesbyteshortushortintuintulong
OverFlowException (if

Source is out of the
range of Destination)

ulong bytesbyteshortushortintuintlong
OverFlowException (if

Source is out of the
range of Destination)

decimal bytesbyteshortushortintuintlongulong
OverFlowException (if

Source is out of the
range of Destination)

float bytesbyteshortushortintuintlongulong
OverFlowException (if

Source is out of the
range of Destination)

Destination Source Exception type

double bytesbyteshortushortintuintlongulong
OverFlowException (if

Source is out of the
range of Destination)

Any type string

ArgumentException (if
source string is null)
orFormatException (if
source string

represents an invalid
value for the
Destination type)

Notice that the string type can be converted to any type, and that any type may be converted to a string
type-assuming that the source string is not null and conforms to the destination type's range.

The most insidious problems can occur when a larger type is converted to a smaller type in an unchecked context; the
potential exists for information to be lost. Code runs in an unchecked context if the conversion is contained in an
unchecked block or if the /checked compiler option is set to false (by default, this compiler option is set to false in both
debug and release builds). An example of code contained in an unchecked block is as follows:

short destination = 0;
int source = Int32.MaxValue;
unchecked(destination = (short)source);

or:

unchecked
{
 short destination = 0;
 int source = Int32.MaxValue;
 destination = (short)source;
}

A checked context is when the conversion is contained in a checked block or if the /checked compiler option is set to true
. An example of code contained in a checked block is as follows:

short destination = 0;
int source = Int32.MaxValue;
checked(destination =(short)source);

or:

checked
{
 short destination = 0;
 int source = Int32.MaxValue;
 destination = (short)source;
}

This code throws an OverflowException exception if any loss of information would occur. This allows the application to be

notified of the overflow condition and to handle it properly.

double bytesbyteshortushortintuintlongulong
OverFlowException (if

Source is out of the
range of Destination)

Any type string

ArgumentException (if
source string is null)
orFormatException (if
source string

represents an invalid
value for the
Destination type)

Notice that the string type can be converted to any type, and that any type may be converted to a string
type-assuming that the source string is not null and conforms to the destination type's range.

The most insidious problems can occur when a larger type is converted to a smaller type in an unchecked context; the
potential exists for information to be lost. Code runs in an unchecked context if the conversion is contained in an
unchecked block or if the /checked compiler option is set to false (by default, this compiler option is set to false in both
debug and release builds). An example of code contained in an unchecked block is as follows:

short destination = 0;
int source = Int32.MaxValue;
unchecked(destination = (short)source);

or:

unchecked
{
 short destination = 0;
 int source = Int32.MaxValue;
 destination = (short)source;
}

A checked context is when the conversion is contained in a checked block or if the /checked compiler option is set to true
. An example of code contained in a checked block is as follows:

short destination = 0;
int source = Int32.MaxValue;
checked(destination =(short)source);

or:

checked
{
 short destination = 0;
 int source = Int32.MaxValue;
 destination = (short)source;
}

This code throws an OverflowException exception if any loss of information would occur. This allows the application to be

notified of the overflow condition and to handle it properly.

The Convert method is always considered to operate in a checked context, even when no other type of checked context

wraps the code performing the conversion.

See Also

See the "checked" keyword, "unchecked" keyword, "Checked and Unchecked," and "Convert Class" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 3.14 Determining Whether to Use theCast
Operator, the as Operator, or theis Operator

Problem

You need to determine which operator is best in your situation the cast- (type)--operator, the as
operator, or the is operator.

Solution

Use the information provided in the Discussion section to determine which operator is best to use.

Discussion

The cast operator should be used when:

It is acceptable for the InvalidCastException to be thrown. To prevent this exception from
being thrown, consider using either the as or is operators.

You are casting a reference type to a reference type.

You are casting a value type to a value type.

You are performing a boxing or unboxing conversion.

You are invoking a user-defined conversion. The is and as operators cannot handle this type of

cast.

The as operator should be used when:

It is not acceptable for the InvalidCastException to be thrown. The as operator will instead
return a null if the cast cannot be performed.

You are casting a reference type to a reference type.

You are not casting a value type to a value type. The cast operator must be used in this case.

You are performing a boxing conversion.

You are not performing an unboxing conversion. The cast operator must be used in this case.

You are not invoking a user defined conversion. The cast operator must be used in this case.

The is operator should be used when:

You need a fast method of determining whether a cast can be performed before the actual cast
is attempted.

You do not need to actually cast a variable from one data type to another; you just need to
determine if the variable can be cast to a specific type.

It is not acceptable for the InvalidCastException to be thrown.

You are casting a reference type to a reference type.

You are not casting a value type to a value type. The cast operator must be used in this case.

You are not invoking a user defined conversion. Unlike the as operator, a compile-time error is
not displayed when using the is operator with a user-defined conversion. This is operator will
instead always return a false value, regardless of whether the cast can successfully be

performed.

See Also

See Recipe 3.15 and Recipe 3.16; see the "() Operator," "as Operator," and "is Operator" topics in
the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 3.15 Casting with the as Operator

Problem

Ordinarily, when you attempt a casting operation, the .NET Common Language Runtime generates an
InvalidCastException if the cast fails. Often, though, you cannot guarantee in advance that a cast
will succeed, but you also do not want the overhead of handling an InvalidCastException.

Solution

Use the as operator. The as operator attempts the casting operation, but if the cast fails, the
expression returns a null instead of throwing an exception. If the cast succeeds, the expression
returns the converted value. The following code shows how the as operator is used:

public static void ConvertObj(Base baseObj)
{
 Specific specificObj = baseObj as Specific;
 if (specificObj == null)
 {
 // Cast failed
 }
 else
 {
 // Cast was successful
 }
}

where the Specific type derives from the Base type:

public class Base {}
public class Specific : Base {}

In this code fragment, the as operator is used to attempt to cast the specificObj to the type Base.
The next lines contain an if-else statement that tests the variable baseObj to determine whether it
is equal to null. If it is equal to null, you should prevent any use of this variable, since it might
cause a NullReferenceException to be thrown.

Discussion

The as operator has the following syntax:

expression as type

The expression and type are defined as follows:

expression

A reference type.

type

The type to which to cast the object defined by expression.

This operation returns expression cast to the type defined by type if the cast succeeds. If the cast
fails, a null is returned, and an InvalidCastException is not thrown. Because of this, you should
always check the result for null.

This operator does not work with user-defined conversions (both explicit and implicit). A user-defined
conversion method extends one type to allow it to be converted to another type. This is done by
adding a method, such as the following, to a class or structure:

public struct MyPoint
{
 public static explicit operator MyPoint(System.Drawing.Point pt)
 {
 // Convert a Point structure to a MyPoint structure type
 return (new MyPoint());
 }
}

This method allows a System.Drawing.Point structure to be cast to an object of type MyPoint. Due
to the use of the explicit keyword, the cast must be explicitly defined:

System.Drawing.Point systemPt = new System.Drawing.Point(0, 0);
MyPoint pt = (MyPoint)systemPt;

If you attempt to use the as operator in a user-defined conversion, the following compiler error is

shown:

Cannot convert type 'Chapter_Code.Vector32' to 'string' via a built-in conversion

This type of conversion does not work with unboxing conversions, either. An unboxing conversion
converts a previously boxed value type to its original value type, such as with the following code:

int x = 5;
object obj = x; // Box x
int originalX = obj as int; // Attempt to unbox obj into an integer

If you attempt to use the as operator in an unboxing conversion, the following compiler error is

shown:

The as operator must be used with a reference type ('int' is a value type)

because as indicates that the cast cannot be performed by returning null, but there is no such thing
as a null value for an int.

See Also

See Recipe 3.14 and Recipe 3.16; see the "() Operator," "as Operator," and "is Operator" topics in
the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 3.16 Determining a Variable's Type with the is
Operator

Problem

A method exists that creates an object from one of several types of classes. This object is then
returned as a generic object type. Based on the type of object that was initially created in the

method, you want to branch to different logic.

Solution

Use the is operator. This operator returns a Boolean true or false indicating whether the cast is

legal, but the cast never actually occurs.

Suppose we have four different point classes:

public class Point2D {...}
public class Point3D {...}
public class ExPoint2D : Point2D {...}
public class ExPoint3D : Point3D {...}

Next, we have a method that accepts an integer value and, based on this value, one of the four
specific point types are returned:

public object CreatePoint(int pointType)
{
 switch (pointType)
 {
 case 0:
 return (new Point2D());
 case 1:
 return (new Point3D());
 case 2:
 return (new ExPoint2D());
 case 3:
 return (new ExPoint3D());
 default:
 return (null);
 }
}

Finally, we have a method that calls the CreatePoint method. This method handles the point object
type returned from the CreatePoint method based on the actual point object returned:

public void CreateAndHandlePoint()
{
 // Create a new point object and return it
 object retObj = CreatePoint(3);

 // Handle the point object based on its actual type
 if (retObj is ExPoint2D)
 {
 Console.WriteLine("Use the ExPoint2D type");
 }
 else if (retObj is ExPoint3D)
 {
 Console.WriteLine("Use the ExPoint3D type");
 }
 else if (retObj is Point2D)
 {
 Console.WriteLine("Use the Point2D type");
 }
 else if (retObj is Point3D)
 {
 Console.WriteLine("Use the Point3D type");
 }
 else
 {
 Console.WriteLine("Invalid point type");
 }
}

Notice that the tests for the ExPoint2D and ExPoint3D objects are performed before the tests for
Point2D and Point3D. This order will allow us to differentiate between base classes and their derived
classes (ExPoint2D derives from Point2D and ExPoint3D derives from Point3D). If we had
reversed these tests, the test for Point2D would evaluate to true for both the Point2D class and its
derivatives (ExPoint2D).

Discussion

The is operator is a fast and easy method of predetermining whether a cast will work. If the cast

fails, you have saved yourself the overhead of trying the cast and handling a thrown exception. If the
is operator determines that this cast can successfully be performed, all you need to do is perform

the cast.

The is operator is defined as follows:

expression is type

The expression and type are defined as follows:

expression

A reference type.

Type

The type to which to cast the reference type defined by expression.

This expression returns a Boolean value: true if the cast is able to succeed or false if the cast would

fail. For example:

if (SpecificObj is Base)
{
 // It is of type Base
}
else
{
 // Cannot cast SpecificObj to a Base type object
}

Never use the is operator with a user-defined conversion (either explicit or
implicit). The is operator always returns false when used with these types of

conversions, regardless of whether the cast can be performed.

This operator does not work with user-defined conversions (both explicit and implicit). Unlike the as
operator, a compile-time error will not be displayed; instead, the is operator will always return
false. This operator should never be used with user-defined conversions, since the result will always
be in question. Also, unlike the as operator, the is operator will work with unboxing conversions.

The following code determines whether an unboxing operation can be performed:

// An int is passed in to this method and boxed
public void SomeMethod(object o)
{
 if (o is int)
 {
 // o can be unboxed
 // It is now possible to cast o to an int
 x = (int)o;
 }
 else
 {
 // Cannot unbox o
 }
}

This code first declares an integer variable x and boxes it into an object variable o. The is operator is
then used to determine whether o can be unboxed back into the integer variable x. This is the one
case where it is absolutely necessary to use is if you want to avoid an exception. You can't use as
here because there is no such thing as a null int, so it cannot tell you if the unboxing fails.

See Also

See Recipe 3.14 and Recipe 3.15; see the "() Operator," "as Operator," and "is Operator" topics in
the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 3.17 Polymorphism via Interfaces

Problem

You need to implement polymorphic functionality on a set of existing classes. These classes already
inherit from a base class (other than Object), thus preventing the addition of polymorphic

functionality through an abstract or concrete base class.

In a second situation, you need to add polymorphic functionality to a structure. Abstract or concrete
classes cannot be used to add polymorphic functionality to a structure.

Solution

Implement polymorphism using an interface instead of an abstract or concrete base class. The code
shown here defines two different classes that inherit from ArrayList:

public class InventoryItems : ArrayList
{
 // ...
}

public class Personnel : ArrayList
{
 // ...
}

We want to add the ability to print from either of these two objects polymorphically. To do this, an
interface called IPrint is added to define a Print method to be implemented in a class:

public interface IPrint
{
 void Print();
}

Implementing the IPrint interface on the InventoryItems and Personnel classes gives us the

following code:

public class InventoryItems : ArrayList, IPrint
{
 public void Print()
 {
 foreach (object obj in this)
 {
 Console.WriteLine("Inventory Item: " + obj);

 }
 }
}

public class Personnel : ArrayList, IPrint
{
 public void Print()
 {
 foreach (object obj in this)
 {
 Console.WriteLine("Person: " + obj);
 }
 }
}

The following two methods TestIPrintInterface and CommonPrintMethod show how any object
that implements the IPrint interface can be passed to the CommonPrintMethod polymorphically and

printed:

public void TestIPrintInterface()
{
 // Create an InventoryItems object and populate it
 IPrint obj = new InventoryItems();
 ((InventoryItems)obj).Add("Item1");
 ((InventoryItems)obj).Add("Item2");

 // Print this object
 CommonPrintMethod(obj);

 Console.WriteLine();

 // Create a Personnel object and populate it
 obj = new Personnel();
 ((Personnel)obj).Add("Person1");
 ((Personnel)obj).Add("Person2");

 // Print this object
 CommonPrintMethod(obj);
}
private void CommonPrintMethod(IPrint obj)
{
 Console.WriteLine(obj.ToString());
 obj.Print();
}

The output of these methods is shown here:

InventoryItems
Inventory Item: Item1
Inventory Item: Item2

Personnel

Person: Person1
Person: Person2

Discussion

The use of interfaces is found throughout the Framework Class Library (FCL). One example is the
IComparer interface: this interface requires a class to implement the Compare method, which

compares two objects to determine if one is greater than, less than, or equal to another object. This
method is used by the Array.Sort and Array.BinarySearch static methods to allow sorting and

searching to be performed on the elements contained in an array. For example, if an array contained
objects that implemented a custom IComparer interface, the static Sort and BinarySearch methods

would use this interface to customize its sorting/searching of elements in that array.

Another example is found in the IEnumerable and IEnumerator interfaces. These interfaces let you
iterate over items in a container using the foreach loop. It does not matter what the contained items
are or what the containing object is. The foreach loop can simply use these interfaces regardless of

the type of objects that implement them.

In many cases, you will choose to implement polymorphism through abstract base classes; however,
there are some cases where interfaces are superior. Interfaces should be considered before abstract
base classes in the following cases:

When several unrelated classes need to implement a common subset of their functionality
polymorphically. The Solution to this recipe demonstrates this concept.

If one or more of the classes already inherits from a base class, an interface may be added to
implement polymorphism. If you look at the Solution for this recipe, you'll see that our
InventoryItem class could have inherited from an existing Item class. This would make it

impossible to use an abstract base class. An interface can be added in this case to implement
polymorphism.

If, in future versions of your data type, you will want to add new polymorphic functionality
without breaking the existing interface of your data type. Interface polymorphism provides
better versioning than abstract or concrete base classes. To add new polymorphic functionality,
implement a new interface containing this functionality on your existing data type.

When you need to implement polymorphism on value types.

Implementing polymorphism through interfaces works not only on reference types, but also with
value types. Value types cannot derive from any other type except ValueType; this makes them

unable to implement an abstract base class. We must instead use interfaces to implement
polymorphism. This can be shown by changing the following class declarations:

public class InventoryItems : ArrayList
public class Personnel : ArrayList

to this:

public struct InventoryItems : ArrayList, IPrint
public struct Personnel : ArrayList, IPrint

These structures now can act polymorphically on the IPrint interface. When implementing an

interface on a structure, be aware that a boxing operation will be performed whenever the value is
cast to the interface type (in this case, the IPrint interface). The boxed object is a copy of the

original structure. This means that if you modify the boxed object, using a reference to the interface,
you will be modifying a copy of the original structure.

See Also

See the "interface" keyword in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 3.18 Calling the Same Method on Multiple Object
Types

Problem

You need to perform a particular action on a set of dissimilar objects contained within an array or
collection, preferably without having to know each individual object's type.

Solution

Use interfaces in a polymorphic manner. The following interface contains a single method, Sort,

which allows sorting to be performed on the object that implements this interface:

public interface IMySort
{
 void Sort();
}

The next three classes implement the IMySort interface. These classes all share the same Sort

method, but each class implements it in a different way:

public class CharContainer : IMySort
{
 public void Sort()
 {
 // Do character type sorting here

 Console.WriteLine("Characters sorted");
 }
}

public class NumberContainer : IMySort
{
 public void Sort()
 {
 // Do numeric type sorting here

 Console.WriteLine("Numbers sorted");
 }
}

public class ObjectContainer : IMySort
{

 public void Sort()
 {
 // Do object type sorting here

 Console.WriteLine("Objects sorted");
 }
}

The SortAllObjects method accepts an array of objects :

public void SortAllObjects(IMySort[] sortableObjects)
{
 foreach (IMySort m in sortableObjects)
 {
 m.Sort();
 }
}

If this method is called as follows:

Obj.SortAllObjects(new IMySort[3] {new CharContainer(),
 new NumberContainer(),
 new ObjectContainer()});

the following is displayed:

Characters sorted
Numbers sorted
Objects sorted

Discussion

The foreach loop is useful not only for iterating over individual elements in a collection or an array,

but also in iterating over a specific interface implemented by each element in a collection or array.
Using this technique, interface members may be used in a similar manner on each element, even if
the elements are unrelated object types. Consider the following array of objects:

Object[] objs = new Object[6] {new CharContainer(),
 new NumberContainer(),
 new CharContainer(),
 new ObjectContainer(),
 new NumberContainer(),
 new ObjectContainer()});

This array contains several objects of differing types. The one thread of similarity that runs through
each type is the implementation of the IMySort interface, defined as follows:

public interface IMySort
{
 void Sort();
}

Passing the Objects array in to the following method allows each Sort method to be called from
each object in the Objects array:

public void SortAllObjects(object[] sortableObjects)
{
 foreach (IMySort m in sortableObjects)
 {
 m.Sort();
 }
}

The foreach loop in this method is able to treat each object in the sortableObjects array in the
same way because each object in the sortableObjects array is cast to its IMySort interface and

used as such.

If the foreach loop encounters a sortableObjects array that contains one or more objects that do
not implement the IMySort interface, an InvalidCastException will be thrown. To prevent an
exception from being thrown while at the same time allowing the foreach loop to iterate over all
elements in the sortableObjects array, you can use the following modified code:

public void SortAllObjects(object[] sortableObjects)
{
 foreach (object o in sortableObjects)
 {
 IMySort sortObject = o as IMySort;
 if (sortObject!= null)
 {
 sortObject.Sort();
 }
 }
}

This modified method will now test each element of the sortableObjects array to first determine
whether it can be cast to an IMySort interface. If it can be cast to this interface type, the variable
sortObject will not be null and the if statement will allow the Sort method on that object to be

called.

See Also

See the "interface" keyword, "Base Class Usage Guidelines," and "When to Use Interfaces" topics in
the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 3.19 Adding a Notification Callback Using an
Interface

Problem

You need a flexible, well-performing callback mechanism that does not make use of a delegate
because you need more than one callback method. So the relationship between the caller and the
callee is more complex than can easily be represented through the one method signature that you
get with a delegate.

Solution

Use an interface to provide callback methods. The INotificationCallbacks interface contains two

methods that will be used by a client as callback methods. The first method,
FinishedProcessingSubGroup, is called when an amount specified in the amount parameter is
reached. The second method, FinishedProcessingGroup, is called when all processing is complete:

public interface INotificationCallbacks
{
 void FinishedProcessingSubGroup(int amount);
 void FinishedProcessingGroup();
}

The NotifyClient class implements the INotificationCallbacks interface. This class contains the

implementation details of each of the callback methods:

public class NotifyClient : INotificationCallbacks
{
 public void FinishedProcessingSubGroup(int amount)
 {
 Console.WriteLine("Finished processing " + amount + " items");
 }

 public void FinishedProcessingGroup()
 {
 Console.WriteLine("Processing complete");
 }
}

The Task class is the main class that implements its callbacks through the NotifyClient object. The
Task class contains a field called notificationObj, which stores a reference to the NotifyClient
object that is passed to it either through construction or through the AttachToCallback method. The
UnAttachCallback method removes the NotifyClient reference from this object. The

ProcessSomething method implements the callback methods:

public class Task
{
 public Task(NotifyClient notifyClient)
 {
 notificationObj = notifyClient;
 }

 NotifyClient notificationObj = null;

 public void AttachToCallback(NotifyClient notifyClient)
 {
 notificationObj = notifyClient;
 }

 public void UnAttachCallback()
 {
 notificationObj = null;
 }

 public void ProcessSomething()
 {
 // This method could be any type of processing

 for (int counter = 0; counter < 100; counter++)
 {
 if ((counter % 10) == 0)
 {
 if (notificationObj != null)
 {
 notificationObj.FinishedProcessingSubGroup(counter);
 }
 }
 }

 if (notificationObj != null)
 {
 notificationObj.FinishedProcessingGroup();
 }
 }
}

The CallBackThroughIFace method uses callback features of the Task class as follows:

public void CallBackThroughIFace()
{
 NotifyClient notificationObj = new NotifyClient();
 Task t = new Task(notificationObj);
 t.ProcessSomething();

 Console.WriteLine();

 t.UnAttachCallback();
 t.ProcessSomething();

 Console.WriteLine();

 t.AttachToCallback(notificationObj);
 t.ProcessSomething();

 Console.WriteLine();

 t.UnAttachCallback();
 t.ProcessSomething();
}

This method displays the following:

Finished processing 0 items
Finished processing 10 items
Finished processing 20 items
Finished processing 30 items
Finished processing 40 items
Finished processing 50 items
Finished processing 60 items
Finished processing 70 items
Finished processing 80 items
Finished processing 90 items
Processing complete

Finished processing 0 items
Finished processing 10 items
Finished processing 20 items
Finished processing 30 items
Finished processing 40 items
Finished processing 50 items
Finished processing 60 items
Finished processing 70 items
Finished processing 80 items
Finished processing 90 items
Processing complete

Discussion

Using an interface mechanism for callbacks is a simple but effective alternative to using delegates.
The interface mechanism is only slightly faster than using a delegate since you are simply making a
call through an interface.

This interface mechanism requires a notification client (NotifyClient) to be created that implements
a callback interface (INotificationCallbacks). This notification client is then passed to an object

that is required to call back to this client. This object is then able to store a reference to the
notification client and use it appropriately whenever its callback methods are used.

When using the callback methods on the notificationObj, you should test to determine whether
the notificationObj is null; if so, you should not use it or else a NullReferenceException will be

thrown:

if (notificationObj != null)
{
 notificationObj.FinishedProcessingGroup();
}

Interface callbacks cannot always be used in place of delegates. The following list indicates where to
use each type of callback:

Use a delegate if you require ease of coding over performance.

Use the interface callback mechanism if you need potentially complex callbacks. An example of
this could be adding a single callback interface method that will call back to an overloaded
method. The number and types of parameters determine the method chosen.

The current Task class is designed to allow only a single notification client to be used; in many cases,
this would be a severe limitation. The Task class could be modified to handle multiple callbacks,
similar to a multicast delegate. The MultiTask class is a modification of the Task class to do just

this:

public class MultiTask
{
 public MultiTask(NotifyClient notifyClient)
 {
 notificationObjs.Add(notifyClient);
 }

 ArrayList notificationObjs = new ArrayList();

 public void AttachToCallback(NotifyClient notifyClient)
 {
 notificationObjs.Add(notifyClient);
 }

 public void UnAttachCallback(NotifyClient notifyClient)
 {
 notificationObjs.Remove(notifyClient);
 }

 public void UnAttachAllCallbacks()
 {
 notificationObjs.Clear();
 }

 public void ProcessSomething()
 {
 // This method could be any type of processing

 for (int counter = 0; counter < 100; counter++)

 {
 if ((counter % 10) == 0)
 {
 foreach (NotifyClient callback in notificationObjs)
 {
 callback.FinishedProcessingSubGroup(counter);
 }
 }
 }

 foreach (NotifyClient callback in notificationObjs)
 {
 callback.FinishedProcessingGroup();
 }
 }
}

The MultiCallBackThroughIFace method uses callback features of the MultiTask class as follows:

public void MultiCallBackThroughIFace()
{
 NotifyClient notificationObj = new NotifyClient();
 MultiTask t = new MultiTask(notificationObj);
 t.ProcessSomething();

 Console.WriteLine();

 t.AttachToCallback(notificationObj);
 t.ProcessSomething();

 Console.WriteLine();

 t.UnAttachCallback(notificationObj);
 t.ProcessSomething();

 Console.WriteLine();

 t.UnAttachAllCallbacks();
 t.ProcessSomething();
}

This method displays the following:

Finished processing 0 items
Finished processing 10 items
Finished processing 20 items
Finished processing 30 items
Finished processing 40 items
Finished processing 50 items
Finished processing 60 items
Finished processing 70 items
Finished processing 80 items

Finished processing 90 items
Processing complete

Finished processing 0 items
Finished processing 0 items
Finished processing 10 items
Finished processing 10 items
Finished processing 20 items
Finished processing 20 items
Finished processing 30 items
Finished processing 30 items
Finished processing 40 items
Finished processing 40 items
Finished processing 50 items
Finished processing 50 items
Finished processing 60 items
Finished processing 60 items
Finished processing 70 items
Finished processing 70 items
Finished processing 80 items
Finished processing 80 items
Finished processing 90 items
Finished processing 90 items
Processing complete
Processing complete

Finished processing 0 items
Finished processing 10 items
Finished processing 20 items
Finished processing 30 items
Finished processing 40 items
Finished processing 50 items
Finished processing 60 items
Finished processing 70 items
Finished processing 80 items
Finished processing 90 items
Processing complete

Another shortcoming exists with both the Task and MultiTask classes. What if you need several
types of client notification classes? For example, we already have the NotifyClient class, what if we
added a second class NotifyClientType2 that also implements the INotificationCallbacks

interface? This new class is shown here:

public class NotifyClientType2 : INotificationCallbacks
{
 public void FinishedProcessingSubGroup(int amount)
 {
 Console.WriteLine("[Type2] Finished processing " + amount + " items");
 }

 public void FinishedProcessingGroup()
 {

 Console.WriteLine("[Type2] Processing complete");
 }
}

The current code base cannot handle this new client notification type. To fix this problem, we can
replace all occurrences of the type NotifyClient with the interface type INotificationCallbacks.
This will allow us to use any type of notification client with our Task and MultiTask objects. The

modifications to these classes are highlighted in the following code:

public class Task
{
 public Task(INotificationCallbacks notifyClient)
 {
 notificationObj = notifyClient;
 }

 INotificationCallbacks notificationObj = null;

 public void AttachToCallback(INotificationCallbacks notifyClient)
 {
 notificationObj = notifyClient;
 }

 ...
}

public class MultiTask
{
 public MultiTask(INotificationCallbacks notifyClient)
 {
 notificationObjs.Add(notifyClient);
 }

 ArrayList notificationObjs = new ArrayList();

 public void AttachToCallback(INotificationCallbacks notifyClient)
 {
 notificationObjs.Add(notifyClient);
 }

 public void UnAttachCallback(INotificationCallbacks notifyClient)
 {
 notificationObjs.Remove(notifyClient);
 }

 ...

 public void ProcessSomething()
 {
 // This method could be any type of processing

 for (int counter = 0; counter < 100; counter++)

 {
 if ((counter % 10) == 0)
 {
 foreach (INotificationCallbacks callback in notificationObjs)
 {
 callback.FinishedProcessingSubGroup(counter);
 }
 }
 }

 foreach (INotificationCallbacks callback in notificationObjs)
 {
 callback.FinishedProcessingGroup();
 }
 }
}

Now we can use either of the client notification classes interchangeably. This is shown in the following
modified methods MultiCallBackThroughIFace and CallBackThroughIFace:

public void CallBackThroughIFace()
{
 INotificationCallbacks notificationObj = new NotifyClient();
 Task t = new Task(notificationObj);
 t.ProcessSomething();

 Console.WriteLine();

 t.UnAttachCallback();
 t.ProcessSomething();

 Console.WriteLine();

 INotificationCallbacks notificationObj2 = new NotifyClientType2();
 t.AttachToCallback(notificationObj2);
 t.ProcessSomething();

 Console.WriteLine();

 t.UnAttachCallback();
 t.ProcessSomething();
}

public void MultiCallBackThroughIFace()
{
 INotificationCallbacks notificationObj = new NotifyClient();
 MultiTask t = new MultiTask(notificationObj);
 t.ProcessSomething();

 Console.WriteLine();

 INotificationCallbacks notificationObj2 = new NotifyClientType2();

 t.AttachToCallback(notificationObj2);
 t.ProcessSomething();

 Console.WriteLine();

 t.UnAttachCallback(notificationObj);
 t.ProcessSomething();

 Console.WriteLine();

 t.UnAttachAllCallbacks();
 t.ProcessSomething();
}

The highlighted code has been modified from the original code.

See Also

See the "interface" keyword, "Base Class Usage Guidelines," and "When to Use Interfaces" topics in
the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 3.20 Using Multiple Entry Points toVersion an
Application

Problem

Some companies reuse the same duplicated, but slightly modified, application, with each version built
especially for a particular client or group of clients. Bug fixes, testing, adding, and modifying code in
each of these code bases can get very confusing as the number of duplicated applications grows. You
need a way of managing this increasing complexity.

Solution

Instead of copying the entire application to a different area, modifying the duplicated code, and
creating a special build script for it, you could compile the same application (with all modifications
included, of course) and use a different entry point based on the client. To do this, add a new class
with a new Main entry point method, one for each client or group of clients:

public class ClientABC
{
 public static void Main()
 {
 //Startup/Initialization code for client ABC
 }
}

public class ClientXYZ
{
 public static void Main()
 {
 //Startup/Initialization code for client XYZ
 }
}

The build scripts can be modified to build the same application using a different entry point that
matches up to one or more clients:

csc /out:AppABC.exe *.cs /main:ClientABC
csc /out:AppXYZ.exe *.cs /main:ClientXYZ

Discussion

It is very difficult to work with several slightly different copies of the same application. If a bug is

found and fixed in one application, it must be fixed in all of the copies as well. This can be a time-
consuming and arduous task. To make things easier on your coding team, consider using multiple
entry points into your application, one for each client or set of clients. Using this technique, you can
fix code in one place as opposed to fixing the same bug over multiple applications.

The /main compiler switch controls the class in which the compiler looks for a public static Main
method that it can use as an entry point. If the compiler finds a /main switch, the Main method at
the location specified in this switch is used as the entry point and all other Main methods in the

application are considered as regular methods and nonentry points.

You should note that only one Main entry point method is allowed per class. If two or more are found

in a single class, a compiler error will result. You can have entry points in both a nested class and its
parent class, as shown here:

public class ClientABC
{
 public static void Main()
 {
 //Startup/Initialization code for client ABC
 }

 public class ClientXYZ
 {
 public static void Main()
 {
 //Startup/Initialization code for client XYZ
 }
 }
}

The /main compiler option would have to be modified in this case to the following:

csc /out:AppABC.exe *.cs /main:ClientABC
csc /out:AppXYZ.exe *.cs /main:ClientABC.Clientxyz

Also note that if classes ClientABC and ClientXYZ were nested in a namespace-the MyCompany

namespace, for instance-the namespace would also have to be added to this compiler switch, as
follows:

csc /out:AppABC.exe *.cs /main:MyCompany.ClientABC
csc /out:AppXYZ.exe *.cs /main:MyCompany.ClientABC.Clientxyz

The /main switch can be modified through the Visual Studio .NET Property Pages dialog box. If you

open this dialog box, drill down to the Common Properties General Startup Object property.
The fully qualified class name containing the Main method entry point can be entered in this property.

See Also

See the "/main" compiler option and the "Main" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 3.21 Preventing the Creation of an Only Partially
Initialized Object

Problem

You need to force a client to use an overloaded constructor, which accepts parameters to fully
initialize the object, rather than a default constructor, which may not fully initialize the object. Often
a default constructor cannot fully initialize an object since it may not have the necessary information
to do it. Using a default constructor, the client is required to perform a multistep process; for
instance, create the object and then initialize its fields either through various properties and/or
methods.

Solution

By removing the default constructor and strictly using parameterized constructors, the client is forced
to provide the necessary initialization parameters during object creation. The following Log class will
not initialize its LogStream field to a StreamWriter object on construction:

public class Log
{
 private StreamWriter logStream = null;

 public StreamWriter LogStream
 {
 get {return (logStream);}
 set {logStream = value;}
 }

 // use the LogStream field...
 public void Write(string text)
 {
 logStream.Write(text);
 }
}

The C# compiler will automatically create a default constructor that calls the default constructor of its
base class, if you omit the constructor for a class. The following modified class will prevent the default
constructor from being created:

public class Log
{
 public Log(StreamWriter logStream)
 {

 this.logStream = logStream;
 }

 private StreamWriter logStream = null;

 public StreamWriter LogStream
 {
 get {return (logStream);}
 set {logStream = value;}
 }

 // use the LogStream field...
 public void Write(string text)
 {
 logStream.Write(text);
 }
}

When a client creates an object from this class, the client is forced to initialize the LogStream field.

Discussion

There is a small problem with not supplying a default constructor. If a class inherits from Log and

does not supply a constructor of its own, the C# compiler will produce the rather cryptic error "No
overload for method `Log' takes `0' arguments." The following class produces this error:

public class EnhancedLog : Log
{
 public EnhancedLog (string s)
 {
 // Initialize...
 }
}

What this means is that Log does not contain a default constructor. The C# compiler automatically

adds a call to the base class's default constructor, if you do not specify otherwise. Therefore, the
EnhancedLog constructor contains an unseen call (this call can be seen using Ildasm) to the default
constructor of the Log class.

This problem can be solved in one of several ways. First, we could simply add a protected default
constructor to the Log class. This would prevent the creation of a Log object using the default
constructor, but would allow classes inheriting from Log to do so without problems. A second method
is to use the base keyword to direct the constructor to call a particular constructor in the base class.
The following EnhancedLog class uses the base keyword to call the parameterized constructor of the
base Log class, passing in a StreamWriter object:

public class EnhancedLog : Log
{
 public EnhancedLog (string s) : base(new StreamWriter(@"C:\test.log"))
 {
 // Initialize...

 }
}

A third way to solve this problem is to make the Log class noninheritable by adding the sealed

keyword to the class declaration. While this prevents the problem of calling the default constructor, it
also prevents others from inheriting from and extending the Log class. For many cases, this third

solution is not the best one.

[Team LiB]

[Team LiB]

Recipe 3.22 Returning Multiple Items from a Method

Problem

In many cases, a single return value for a method is not enough. You need a way to return more
than one item from a method.

Solution

Use the out keyword on parameters that will act as return parameters. The following method accepts
an inputShape parameter and calculates height, width, and depth from that value:

public void ReturnDimensions(int inputShape,
 out int height,
 out int width,
 out int depth)
{
 height = 0;
 width = 0;
 depth = 0;

 // Calculate height, width, depth from the inputShape value
}

This method would be called in the following manner:

// Declare output parameters
int height;
int width;
int depth;

// Call method and return the height, width, and depth
Obj.ReturnDimensions(1, out height, out width, out depth);

Another method is to return a class or structure containing all the return values. The previous
method has been modified to return a structure instead of using out arguments:

public Dimensions ReturnDimensions(int inputShape)
{
 // The default ctor automatically defaults this structure's members to 0
 Dimensions objDim = new Dimensions();

 // Calculate objDim.Height, objDim.Width, objDim.Depth from the inputShape value

 return (objDim);
}

where Dimensions is defined as follows:

public struct Dimensions
{
 int Height;
 int Width;
 int Depth;
}

This method would now be called in this manner:

// Call method and return the Height, Width, and Depth
Dimensions objDim = obj.ReturnDimensions(1);

Discussion

Marking a parameter in a method signature with the out keyword indicates that this parameter will

be initialized and returned by this method. This trick is useful when a method is required to return
more than one value. A method can, at most, have only one return value, but through the use of the
out keyword, we can mark several parameters as a kind of return value.

To set up an out parameter, the parameter in the method signature is marked with the out keyword,

shown here:

public void ReturnDimensions(int inputShape,
 out int height,
 out int width,
 out int depth)
{
 ...
}

To call this method, we must also mark the calling method's arguments with the out keyword, shown

here:

obj.ReturnDimensions(1, out height, out width, out depth);

The out arguments in this method call do not have to be initialized; they can simply be declared and
passed in to the ReturnDimensions method. Regardless of whether they are initialized before the
method call, they must be initialized before they are used within the ReturnDimensions method.
Even if they are not used through every path in the ReturnDimensions method, they still must be

initialized. That is why this method starts out with the following three lines of code:

height = 0;
width = 0;
depth = 0;

You may be wondering why you couldn't use a ref parameter instead of the out parameter, as they
both allow a method to change the value of an argument marked as such. The answer is that an out

parameter makes the code somewhat self-documenting. You know that when an out parameter is
encountered, this parameter is acting as a return value. In addition, an out parameter does not
require the extra work to be initialized before it is passed in to the method, which a ref parameter

does.

The out parameter was originally designed for marshaling scenarios. An out

parameter does not have to be marshaled when the method is called; rather, it
is marshaled once when the method returns the data to the caller. Any other
type of call (by-value or by-reference) requires that the value be marshaled in
both directions. Using the out keyword in marshaling scenarios improves

performance.

[Team LiB]

[Team LiB]

Recipe 3.23 Parsing Command-Line Parameters

Problem

You require your applications to accept one or more command-line parameters in a standard format.
You need to access and parse the entire command line passed to your application.

Solution

Use the following class to help with parsing command-line parameters:

using System;
using System.Diagnostics;

public class ParseCmdLine
{
 // All args are delimited by tab or space
 // All double-quotes are removed except when escaped '\"'
 // All single-quotes are left untouched

 public ParseCmdLine() {}

 public virtual string ParseSwitch(string arg)
 {
 arg = arg.TrimStart(new char[2] {'/', '-'});

 return (arg);
 }

 public virtual void ParseSwitchColonArg(string arg, out string outSwitch,
 out string outArgument)
 {
 outSwitch = "";
 outArgument = "";

 try
 {
 // This is a switch or switch/argument pair
 arg = arg.TrimStart(new char[2] {'/', '-'});

 if (arg.IndexOf(':') >= 0)
 {
 outSwitch = arg.Substring(0, arg.IndexOf(':'));

 outArgument = arg.Substring(arg.IndexOf(':') + 1);

 if (outArgument.Trim().Length <= 0)
 {
 throw (new ArgumentException(
 "Command-Line parameter error: switch " +
 arg +
 " must be followed by one or more arguments.", arg));
 }
 }
 else
 {
 throw (new ArgumentException(
 "Command-Line parameter error: argument " +
 arg +
 " must be in the form of a 'switch:argument}' pair.",
 arg));
 }
 }
 catch (ArgumentException ae)
 {
 // Re-throw the exception to be handled in the calling method
 throw;
 }
 catch (Exception e)
 {
 // Wrap an ArgumentException around the exception thrown
 throw (new ArgumentException("General command-Line parameter error",
 arg, e));
 }
 }

 public virtual void ParseSwitchColonArgs(string arg, out string outSwitch,
 out string[] outArguments)
 {
 outSwitch = "";
 outArguments = null;

 try
 {
 // This is a switch or switch/argument pair
 arg = arg.TrimStart(new char[2] {'/', '-'});

 if (arg.IndexOf(':') >= 0)
 {
 outSwitch = arg.Substring(0, arg.IndexOf(':'));
 string Arguments = arg.Substring(arg.IndexOf(':') + 1);

 if (Arguments.Trim().Length <= 0)
 {
 throw (new ArgumentException(
 "Command-Line parameter error: switch " +

 arg +
 " must be followed by one or more arguments.", arg));
 }

 outArguments = Arguments.Split(new char[1] {';'});
 }
 else
 {
 throw (new ArgumentException(
 "Command-Line parameter error: argument " +
 arg +
 " must be in the form of a 'switch:argument{;argument}' pair.",
 arg));
 }
 }
 catch (Exception e)
 {
 // Wrap an ArgumentException around the exception thrown
 throw ;
 }
 }

 public virtual void DisplayErrorMsg()
 {
 DisplayErrorMsg("");
 }

 public virtual void DisplayErrorMsg(string msg)
 {
 Console.WriteLine
 ("An error occurred while processing the command-line arguments:");
 Console.WriteLine(msg);
 Console.WriteLine();

 FileVersionInfo version =
 Process.GetCurrentProcess().MainModule.FileVersionInfo;
 if (Process.GetCurrentProcess().ProcessName.Trim().Length > 0)
 {
 Console.WriteLine(Process.GetCurrentProcess().ProcessName);
 }
 else
 {
 Console.WriteLine("Product Name: " + version.ProductName);
 }

 Console.WriteLine("Version " + version.FileVersion);
 Console.WriteLine("Copyright " + version.LegalCopyright);
 Console.WriteLine("TradeMarks " + version.LegalTrademarks);

 DisplayHelp();
 }

 public virtual void DisplayHelp()
 {
 Console.WriteLine("See help for command-line usage.");
 }
}

Discussion

Before command-line parameters can be parsed, a common format must first be decided upon. The
format for this recipe follows the command-line format for the Visual C# .NET language compiler. The
format used is defined as follows:

All command-line arguments are separated by one or more spaces and/or tabs.

Each argument may start with either a - or / character, but not both. If it does not, that
argument is considered a literal, such as a filename.

Each argument that starts with either the - or / character may be divided up into a switch
followed by a colon followed by one or more arguments separated with the ; character. The
command-line parameter -sw:arg1;arg2;arg3 is divided up into a switch (sw) and three
arguments (arg1, arg2, and arg3). Note that there should not be any spaces in the full

argument; otherwise, the runtime command-line parser will split up the argument into two or
more arguments.

Strings delineated with double quotes, such as "c:\test\file.log" will have their double

quotes stripped off. This is a function of the runtime interpreting the arguments passed in to
your application.

Single quotes are not stripped off.

To preserve double quotes, precede the double quote character with the \ escape sequence
character.

The \ character is handled only as an escape sequence character when followed by a double
quote-in which case, only the double-quote is displayed.

The ^ character is handled by the runtime command-line parser as a special character.

Fortunately, the runtime command-line parser (for Visual Studio .NET, this would be devenv.exe)
handles most of this before your application receives the individual parsed arguments.

The runtime command-line parser passes a string[] containing each parsed argument to the entry

point of your application. The entry point can take one of the following forms:

public static void Main()
public static int Main()
public static void Main(string[] args)
public static int Main(string[] args)

The first two accept no arguments, but the last two accept the array of parsed command-line
arguments. Note that the static Environment.CommandLine property will also return a string
containing the entire command line and the static Environment.GetCommandLineArgs method will

return an array of strings containing the parsed command-line arguments. The individual arguments
in this array can then be passed to the various methods of the ParseCmdLine class. The following

code shows how this can be accomplished:

[STAThread]
public static void Main(string[] args)
{
 // The application should be initialized here assuming no command-line
 // parameters were found.

 ParseCmdLine parse = new ParseCmdLine();

 try
 {
 // Create an array of all possible command-line parameters
 // and how to parse them
 object[,] mySwitches = new object[2, 4] {
 {"file", "output", "trialmode", "debugoutput"},
 {ArgType.Simple, ArgType.Compound, ArgType.SimpleSwitch,
 ArgType.Complex}};

 // Loop through all command-line parameters
 for (int counter = 0; counter < args.Length; counter++)
 {
 args[counter] = args[counter].TrimStart(new char[2] {'/', '-'});

 // Search for the correct ArgType and parse argument according to
 // this ArgType
 for (int index = 0; index <= mySwitches.GetUpperBound(1); index++)
 {
 string theSwitch;
 string theArgument;
 string[] theArguments;

 if (args[counter].StartsWith((string)mySwitches[0, index]))
 {
 // Parse each argument into switch:arg1;arg2...
 switch ((ArgType)mySwitches[1, index])
 {
 case ArgType.Simple:
 theSwitch = args[counter];
 break;

 case ArgType.SimpleSwitch:
 theSwitch = parse.ParseSwitch(args[counter]);
 break;

 case ArgType.Compound:
 parse.ParseSwitchColonArg(args[counter],out theSwitch,
 out theArgument);
 break;

 case ArgType.Complex:
 parse.ParseSwitchColonArgs(args[counter],out theSwitch,
 out theArguments);
 break;

 default:
 throw (new ArgumentException(
 "Cmd-Line parameter error: ArgType enumeration " +
 mySwitches[1, index].ToString() +
 " not recognized."));
 }

 // Implement functionality to handle each parsed
 // command-line parameter
 switch ((string)mySwitches[0, index])
 {
 case "file":
 // Handle this switch here...
 break;

 case "output":
 // Handle this switch here...
 break;

 case "trialmode":
 // Handle this switch and its argument here...
 break;

 case "debugoutput":
 // Handle this switch and its arguments here...
 break;

 default:
 throw (new ArgumentException(
 "Cmd-Line parameter error: Switch " +
 mySwitches[0, index].ToString() +
 " not recognized."));
 }
 }
 }
 }
 }
 catch (ArgumentException ae)
 {
 parse.DisplayErrorMsg(ae.ToString());
 return;
 }
 catch (Exception e)
 {
 // Handle other exceptions here
 // ...
 }

}

The ArgType enumeration is defined as follows:

enum ArgType
{
 Simple = 0, // A simple file name with no preceding '/' or '-' chars
 SimpleSwitch = 1, // A switch preceded by '/' or '-' chars
 Compound = 2, // A 'switch:argument' pair preceded by '/' or '-' chars
 Complex = 3 // A 'switch:argument{;argument}' pair with multiple args
 // preceded by '/' or '-' chars
}

Passing in the following command-line arguments to this application:

MyApp c:\input\infile.txt -output:d:\outfile.txt -trialmode
 /debugoutput:c:\test1.log;\\myserver\history\test2.log

results in the following parsed switches and arguments:

Literal: c:\input\infile.txt

Switch: output
Argument: d:\outfile.txt

Switch: trialmode

Switch: debugoutput
Arguments: c:\test1.log
 \\myserver\history\test2.log

If we input incorrectly formed command-line parameters, such as forgetting to add arguments to the
-output switch, we get the following output:

An error has occured while processing the command-line arguments:
System.ArgumentException: Command-Line parameter error: argument output must be
in the form of a 'switch:argument{;argument}' pair.
Parameter name: output
 at Chapter_Code.ParseCmdLine.ParseSwitchColonArg(String arg,
 String& outSwitch, String& outArgument)
 in c:\book cs cookbook\code\chapter3.cs:line 238
 at Chapter_Code.Class1.Main(String[] args)
 in c:\book cs cookbook\code\main.cs:line 55

CHAPTER_CODE.EXE
Version 1.0.1009.12739
Copyright
TradeMarks
See help for command-line usage.

This may be too much output to show to the user; for example, you might not want the entire
exception to be displayed. In addition, the last line in the message indicates that you should see the
help files for information on the correct command-line usage. It would be more useful to display the

correct command-line arguments and some brief information on their usage. To do this, we can
extend the ParseCmdLine class and make our own specialized class to use in our application. The

following class shows how this is accomplished:

public class SpecializedParseCmdLine : ParseCmdLine
{
 public SpecializedParseCmdLine() {}

 public override string ParseSwitch(string arg)
 {
 if (arg.IndexOf(':') < 0)
 {
 throw (new ArgumentException("Command-Line parameter error: switch " +
 arg + " must not be followed by one or more arguments.", arg));
 }

 return (base.ParseSwitch(arg));
 }

 public virtual void DisplayErrorMsg()
 {
 DisplayErrorMsg("");
 }

 public virtual void DisplayErrorMsg(string msg)
 {
 Console.WriteLine(
 "An error has occurred while processing the command-line arguments:");
 Console.WriteLine();

 FileVersionInfo version =
 Process.GetCurrentProcess().MainModule.FileVersionInfo;
 if (Process.GetCurrentProcess().ProcessName.Trim().Length > 0)
 {
 Console.WriteLine(Process.GetCurrentProcess().ProcessName);
 }
 else
 {
 Console.WriteLine("Product Name: " + version.ProductName);
 }

 Console.WriteLine("Version " + version.FileVersion);
 Console.WriteLine("Copyright " + version.LegalCopyright);
 Console.WriteLine("TradeMarks " + version.LegalTrademarks);

 DisplayHelp();
 }
 public override void DisplayHelp()
 {
 // Display correct input args
 base.DisplayHelp();

 Console.WriteLine("Chapter_Code [file | /output:projectfile | /trialmode |
 /debugoutput:file{;file}]");
 Console.WriteLine();
 Console.WriteLine("Available command-line switches:");
 Console.WriteLine("\tfile : The file to use as input.");
 Console.WriteLine("\toutput : The file to use as output.");
 Console.WriteLine("\ttrialmode : Turns on the trial mode, if present.");
 Console.WriteLine("\tdebugoutput : One or more files in which to dump
 debug information into.");
 }
}

This class overrides four methods of the ParseCmdLine class. The DisplayHelp method is overridden

to display the relevant information needed to correctly use the command-line parameters in our
application. The overloaded DisplayErrorMsg methods are overridden to prevent the lengthy
exception message from being displayed. Finally, the ParseSwitch method is overridden to add some

more preventative code that will disallow any arguments from being added to a switch that should
not have any arguments. By overriding other methods in the ParseCmdLine class, you can modify

this class to handle many other situations specific to your application.

See Also

See the "Main" and "Command-Line Arguments" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 3.24 Retrofitting a Class to Interoperate with COM

Problem

An existing C# class needs to be usable by a COM object or will need to be usable sometime in the
future. You need to make your class work seamlessly with COM.

Solution

Microsoft has made COM interop quite easy. In fact, you really have to do only two minor steps to
make your code visible to COM:

Set the Register for COM interop field in the project properties to True. This produces a type

library that can be used by a COM client.

1.

Use the Regasm.exe command-line tool to register the class. For example, to register the type
library for the ClassLibrary1.dll, you would do the following:

2.

regasm ClassLibrary1.dll /tlb:ClassLibrary1.tlb

By default, this tool will make many decisions for you. For example, new GUIDs are created for your
classes and interfaces unless you specify a particular GUID to use. This can be a bad thing; it is
usually a good idea to explicity specify which GUIDs your classes and interfaces are to use. To take
control of how your C# code is viewed and used from a COM client, you need to use a few attributes.
Table 3-4 contains a list of attributes and their descriptions that can be used to control these things.

Table 3-4. Attributes to control how a COM client views and is able to use
your C# code

Attribute name Description

GuidAttribute

Places a GUID on an assembly, class, struct, interface, enum, or
delegate. Prevents the Tlbimp (the type library converter tool, which
converts a COM type library into the equivalent metadata) from
creating a new GUID for this target.

Defines the class interface type that will be applied to an assembly or
class. Valid interface types are:

Attribute name Description

ClassInterfaceAttribute

AutoDispatch

The interface will support only late binding. This is the default.

AutoDual

The interface will support both early and late binding.

None

An interface will not be explicitly provided. Therefore, only late-
bound access is allowed through an IDispatch interface.

InterfaceTypeAttribute

Defines how an interface is exposed to COM clients. This attribute may
only be used on interfaces. Valid interface types are:

InterfaceIsDual

The interface will be exposed as a dual interface.

InterfaceIsIDispatch

The interface will be exposed as a dispinterface.

InterfaceIsIUnknown

The interface will be exposed as deriving from IUnknown.

If this attribute is not used, the interface defaults to being exposed as
a dual interface.

ProgIdAttribute

Force the ProgId of a class to a defined string. An automatically
generated ProgId consists of the namespace and type name. If your
ProgId may exceed 39 characters (i.e., your namespace is equal to or
greater than 39 characters), you should use this attribute to manually
set a ProgId that is 39 characters or less. By default the ProgId is
generated from the full namespace and type name (e.g.,
Namespace1.Namespace2.TypeName).

Allows fine grained control over which C# code is visible to a COM
client. To limit the exposed types, set the ComVisibleAttribute to
false at the assembly level:

ClassInterfaceAttribute

AutoDispatch

The interface will support only late binding. This is the default.

AutoDual

The interface will support both early and late binding.

None

An interface will not be explicitly provided. Therefore, only late-
bound access is allowed through an IDispatch interface.

InterfaceTypeAttribute

Defines how an interface is exposed to COM clients. This attribute may
only be used on interfaces. Valid interface types are:

InterfaceIsDual

The interface will be exposed as a dual interface.

InterfaceIsIDispatch

The interface will be exposed as a dispinterface.

InterfaceIsIUnknown

The interface will be exposed as deriving from IUnknown.

If this attribute is not used, the interface defaults to being exposed as
a dual interface.

ProgIdAttribute

Force the ProgId of a class to a defined string. An automatically
generated ProgId consists of the namespace and type name. If your
ProgId may exceed 39 characters (i.e., your namespace is equal to or
greater than 39 characters), you should use this attribute to manually
set a ProgId that is 39 characters or less. By default the ProgId is
generated from the full namespace and type name (e.g.,
Namespace1.Namespace2.TypeName).

Allows fine grained control over which C# code is visible to a COM
client. To limit the exposed types, set the ComVisibleAttribute to
false at the assembly level:

Attribute name Description

ComVisibleAttribute
[assembly: ComVisibleAttribute(false)]

and then set each type and/or member's visibility individually using
the following syntax:

[ComVisibleAttribute(true)]
public class Foo {...}

These attributes are used in conjunction with the previous two steps mentioned to create and register
the assembly's classes. Several other COM interop attributes exist in the FCL, but the ones
mentioned here provide the most basic control over how your assembly is viewed and used by COM
clients.

Discussion

To show how these attributes are applied, we use the Foo class, defined within the Chapter_Code

namespace:

using System;

namespace Chapter_Code
{
 public class Foo
 {
 public Foo() {}

 private int state = 100;

 public string PrintMe()
 {
 return("TEST SUCCESS");
 }

 public int ShowState()
 {
 return (state);
 }

 public void SetState(int newState)
 {
 state = newState;
 }
 }
}

To allow the Foo type to be exposed to a COM client, we would first add an interface, IFoo,
describing the members of Foo, that are to be exposed. Adding an interface in this manner is
optional, especially if you are exposing classes to scripting clients. If the AutoDual interface type is

ComVisibleAttribute
[assembly: ComVisibleAttribute(false)]

and then set each type and/or member's visibility individually using
the following syntax:

[ComVisibleAttribute(true)]
public class Foo {...}

These attributes are used in conjunction with the previous two steps mentioned to create and register
the assembly's classes. Several other COM interop attributes exist in the FCL, but the ones
mentioned here provide the most basic control over how your assembly is viewed and used by COM
clients.

Discussion

To show how these attributes are applied, we use the Foo class, defined within the Chapter_Code

namespace:

using System;

namespace Chapter_Code
{
 public class Foo
 {
 public Foo() {}

 private int state = 100;

 public string PrintMe()
 {
 return("TEST SUCCESS");
 }

 public int ShowState()
 {
 return (state);
 }

 public void SetState(int newState)
 {
 state = newState;
 }
 }
}

To allow the Foo type to be exposed to a COM client, we would first add an interface, IFoo,
describing the members of Foo, that are to be exposed. Adding an interface in this manner is
optional, especially if you are exposing classes to scripting clients. If the AutoDual interface type is

used with the ClassInterfaceAttribute, early-bound clients will not need this interface either.

Even though it is optional, it is still a good idea to use an interface in this manner.

Next, an unchanging GUID is added to the assembly, the IFoo interface, and the Foo class using the
GuidAttribute. A ProgId is also added to the Foo class. Finally, the class interface type is defined as
an AutoDispatch interface, using the ClassInterfaceAttribute. The new code is shown here with

the changes highlighted:

using System;
using System.Runtime.InteropServices;

[assembly: GuidAttribute("D4E77B72-43C8-45f1-B0C0-D47685EC18C2")]

namespace Chapter_Code
{
 [GuidAttribute("1C6CD700-A37B-4295-9CC9-D7392FDD425D")]
 public interface IFoo
 {
 string PrintMe();
 int ShowState();
 void SetState(int newState);
 }

 [GuidAttribute("C09E2DD6-03EE-4fef-BB84-05D3422DD3D9")]
 [ClassInterfaceAttribute(ClassInterfaceType.AutoDispatch)]
 [ProgIdAttribute("Chapter_Code.Foo")]
 public class Foo : IFoo
 {
 public Foo() {}

 private int state = 100;

 public string PrintMe()
 {
 return("TEST SUCCESS");
 }

 public int ShowState()
 {
 return (state);
 }

 public void SetState(int newState)
 {
 state = newState;
 }
 }
}

The code to use the exposed C# code from VBScript using COM interop is shown here:

<script runat=server>

 Sub TestCOMInterop()
 'ClassLibrary1 was created using Regasm in the Solution section
 'of this recipe
 Dim x As New ClassLibrary1.Foo

 MsgBox ("Current State: " & x.ShowState())
 x.SetState (-1)
 MsgBox ("Current State: " & x.ShowState())
 MsgBox ("Print String: " & x.PrintMe())
 End Sub
</script>

The first Dim statement creates a new instance of the Foo type that is usable from the VBScript code.
The rest of the VBScript code exercises the exposed members of the Foo type.

There are some things to keep in mind when exposing C# types to COM clients:

Only public members or explicit interface member implementations are exposed to COM clients.
Explicit interface member implementations are not public, but if the interface itself is public, it
may be seen by a COM client.

Constant fields are not exposed to COM clients.

You must provide a default constructor in your exposed C# type.

Parameterized constructors are not exposed to COM clients.

Static members are not exposed to COM clients.

Interop flattens the inheritance hierarchy so that your exposed type and its base class members
are all available to the COM client. For example, the methods ToString() and GetHashCode(
), defined in the base Object class, are also available to VBScript code:
Sub TestCOMInterop()
 Dim x As New ClassLibrary1.Foo

 MsgBox (x.ToString())
 MsgBox (x.GetHashCode())
End Sub

It is a good idea to explicitly state the GUIDs for any types exposed to COM clients, including
any exposed interfaces, through the use of the GuidAttribute. This prevents Tlbexp/Regasm

from creating new GUIDs every time your interface changes. A new GUID is created by the
Regasm tool every time you choose the Build Rebuild Solution or Build Rebuild
ProjectName menu item. These actions cause the date/time of the module (dll or exe) to

change, as well as the version number for your assembly, which, in turn, can cause a different
GUID to be calculated. A new GUID will be calculated for a rebuilt assembly even if no code
changes within that assembly. Explicitly adding a GUID to your exposed types will cause your
registry to greatly expand during the development stage as more new GUIDs are added to it.

It is also a good idea to limit the visibility of your types/members through judicial use of the
ComVisibleAttribute. This can prevent unauthorized use of specific types/members that could

possibly corrupt data or be used to create a security hole by malicious code.

Exposed types should implement an interface (for example, IFoo) that allows you to specify

exactly what members of that type are exposed to COM. If such an explicit interface is not
implemented, the compiler will default to exposing what it can of the type.

See Also

See the "Assembly Registration Tool (Regasm.exe)," "Type Library Exporter (Tlbexp.exe)," "Type
Library Importer (Tlbimp.exe)," and "Assembly to Type Library Conversion Summary" topics in the
MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 3.25 Initializing a Constant Field at Runtime

Problem

A field marked as const can be initialized only at compile time. You need to initialize a field at

runtime to a valid value, not at compile time. This field must then act as if it were a constant field for
the rest of the application's life.

Solution

When declaring a constant value in your code, there are two choices. You can use a readonly field or
a const field. Each has its own strengths and weaknesses. However, if you need to initialize a
constant field at runtime, you should use a readonly field:

public class Foo
{
 public readonly int bar;

 public Foo() {}

 public Foo(int constInitValue)
 {
 bar = constInitValue;
 }

 // Rest of class...
}

This is not possible using a const field. A const field can be initialized only at compile time:

public class Foo
{
 public const int bar; // This line causes a compile-time error

 public Foo() {}

 public Foo(int constInitValue)
 {
 bar = constInitValue; // This line also causes a compile-time error
 }

 // Rest of class...
}

Discussion

A readonly field allows initialization to take place only in the constructor at runtime, whereas a
const field must be initialized at compile time. Therefore, implementing a readonly field is the only

way to allow a field that must be constant to be initialized at runtime.

There are only two ways to initialize a readonly field. The first is by adding an initializer to the field

itself:

public readonly int bar = 100;

The second way is to initialize the readonly field through a constructor. This is demonstrated

through the code in the Solution to this recipe.

If you look at the following class:

public class Foo
{
 public readonly int x;
 public const int y = 1;

 public Foo() {}

 public Foo(int roInitValue)
 {
 x = roInitValue;
 }

 // Rest of class...
}

You'll see it is compiled into the following IL:

.class public auto ansi beforefieldinit Foo
 extends [mscorlib]System.Object
{
.field public static literal int32 y = int32(0x00000001) //<<-- const field
.field public initonly int32 x //<<-- readonly field
.method public hidebysig specialname rtspecialname
 instance void .ctor(int32 input) cil managed
{
 // Code size 14 (0xe)
 .maxstack 8
//001659: }
//001660: }

//001666: public class Foo
//001667: {
//001668: public readonly int x;
//001669: public const int y = 1;
//001670:
//001671: public Foo(int roInitValue)

 IL_0000: ldarg.0
 IL_0001: call instance void [mscorlib]System.Object::.ctor()
//001672: {
//001673: x = input;
 IL_0006: ldarg.0
 IL_0007: ldarg.1
 IL_0008: stfld int32 Foo::x
//001674 }
 IL_000d: ret
} // end of method Foo::.ctor

} // end of class Foo

Notice that a const field is compiled into a static field, and a readonly field is compiled into an
instance field. Therefore, you need only a class name to access a const field.

A common argument against using const fields is that they do not version as
well as readonly fields. If you rebuild a component that defines a const field,
and the value of that const changes in a later version, any other components

that were built against the old version won't pick up the new value.

The following code shows how to use a readonly field:

Foo obj1 = new Foo(100);
Console.WriteLine(obj1.bar);

Those two lines compile into the following IL:

IL_0013: ldc.i4 0xc8
IL_0018: newobj instance void Foo::.ctor(int32)
IL_001d: stloc.1
IL_001e: ldloc.1
IL_001f: ldfld int32 Foo::bar

Since the const field is already compiled into the application as a static member field, only one
simple IL instruction is needed to use this const field at any point in the application:

IL_0029: ldc.i4.1

Notice that the compiler compiled away the const field and uses the value it was initialized to, which
is 1. This is faster than using a readonly field. However, const fields are inflexible as far as

versioning is concerned.

See Also

See the "const" and "readonly" keywords in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 3.26 Writing Code that Is Compatible with the
Widest Range of Managed Languages

Problem

You need to make sure your C# code will interoperate with all other managed languages that are
CLS-compliant consumers, such as VB.NET.

Solution

Mark the assembly with the CLSCompliantAttribute:

[assembly: CLSCompliantAttribute(true)]

Discussion

By default, your C# assemblies created with VS.NET are not marked with the
CLSCompliantAttribute. This does not mean that the assembly will not work in the managed

environment. It means that this assembly may use elements that are not recognized by other
Common Language Specification (CLS)-compliant languages. For example, unsigned numeric types
are not recognized by all managed languages, but they can be used in the C# language. The problem
occurs when C# returns an unsigned data type, such as uint, either through a return value or a

parameter to a calling component in another language that does not recognize unsigned data
types-VB.NET is one example.

CLS compliance is enforced only on types/members marked public or protected.
This makes sense because components written in other languages will only be
able to use the public or protected types/members of components written in
C#.

Marking your assembly as CLS-compliant means that any CLS-compliant language will be able to
seamlessly interoperate with your code; that is, it enables CLS-compliance checking. It should also be
noted that if you have types and/or members within those types that are not CLS-compliant, a
compiler error will be generated. This makes it much easier on developers to catch problems before
they manifest themselves, especially in an environment where multiple managed languages are being
used on a single project. Marking your entire assembly to be CLS-compliant is done with the following
line of code:

[assembly: CLSCompliantAttribute(true)]

Sometimes you just can't be 100% CLS-compliant, but you don't want to have to throw away the
benefit of compiler checking for the 99.9% of your methods that are CLS-compliant just so you can
expose one method that is not. To mark these types or members as not being CLS-compliant, use
the following attribute:

[CLSCompliantAttribute(false)]

By passing a value of false to this constructor's isCompliant parameter, any type/member marked

as such will not cause any compiler errors due to non-CLS-compliant code.

Many types/members in the FCL are not CLS-compliant. This is not a problem
when using C# to interact with the FCL. However, this is a problem for other
languages. To solve this dilemma, the authors of the FCL usually included a
CLS-compliant type/member where possible to mirror the non-CLS-compliant
type/member.

The following is a list of some of the things that can be done to make code non-CLS- compliant when
using the C# language:

Two identifiers with the same name that differ only by case

Using unsigned data types (byte, ushort, uint, ulong)

Use of the UIntPtr type

Boxed value types

The use of operator overloading

An array of non-CLS-compliant types, such as unsigned data types

An enumeration type having a non-CLS-compliant underlying data type

See Also

See the "CLSCompliantAttribute Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 3.27 Implementing Nested foreach Functionality in
a Class

Problem

You need a class that contains an array of objects; each of these objects in turn contains an array of
objects. You want to use a nested foreach loop to iterate through all objects in both the outer and

inner arrays in the following manner:

foreach (SubSet aSubSet in Set)
{
 foreach (Item i in aSubSet)
 {
 // Operate on Item objects contained in the innermost object collection
 // SomeSubSet, which in turn is contained in another outer collection
 // called Set
 }
}

Solution

Implement IEnumerable on the top-level class as usual, but also implement IEnumerable on each of
the objects returned by the top-level enumeration. The following class set contains an ArrayList of
SubGroup objects, and each SubGroup object contains an ArrayList of Item objects:

using System;
using System.Collections;

//---
//
// The top-level class
//
//---
public class Set : IEnumerable
{
 //CONSTRUCTORS
 public Set() {}

 //FIELDS
 private ArrayList setArray = new ArrayList();

 //PROPERTIES
 public int Count
 {

 get{return(setArray.Count);}
 }

 //METHODS
 public IEnumerator GetEnumerator()
 {
 return(new SetEnumerator(this));
 }

 public int AddGroup(string name)
 {
 return(setArray.Add(new SubGroup(name)));
 }

 public SubGroup GetGroup(int setIndex)
 {
 return((SubGroup)setArray[setIndex]);
 }

 //NESTED ITEMS
 public class SetEnumerator : IEnumerator
 {
 //CONSTRUCTORS
 public SetEnumerator(Set theSet)
 {
 setObj = theSet;
 }

 //FIELDS
 private Set setObj;
 private int index = -1;

 //METHODS
 public bool MoveNext()
 {
 index++;
 if (index >= setObj.Count)
 {
 return(false);
 }
 else
 {
 return(true);
 }
 }

 public void Reset()
 {
 index = -1;
 }

 public object Current

 {
 get{return(setObj.setArray[index]);}
 }
 }
}

//---
//
// The inner class
//
//---
public class SubGroup : IEnumerable
{
 //CONSTRUCTORS
 public SubGroup() {}

 public SubGroup(string name)
 {
 subGroupName = name;
 }

 //FIELDS
 private string subGroupName = "";
 private ArrayList itemArray = new ArrayList();

 //PROPERTIES
 public string SubGroupName
 {
 get{return(subGroupName);}
 }

 public int Count
 {
 get{return(itemArray.Count);}
 }

 //METHODS
 public int AddItem(string name, int location)
 {
 return(itemArray.Add(new Item(name, location)));
 }

 public Item GetSubGroup(int index)
 {
 return((Item)itemArray[index]);
 }

 public IEnumerator GetEnumerator()
 {
 return(new SubGroupEnumerator(this));
 }

 //NESTED ITEMS
 public class SubGroupEnumerator : IEnumerator
 {

 //CONSTRUCTORS
 public SubGroupEnumerator(SubGroup SubGroupEnum)
 {
 subGroup = SubGroupEnum;
 }

 //FIELDS
 private SubGroup subGroup;
 private int index = -1;

 //METHODS
 public bool MoveNext()
 {
 index++;
 if (index >= subGroup.Count)
 {
 return(false);
 }
 else
 {
 return(true);
 }
 }

 public void Reset()
 {
 index = -1;
 }

 public object Current
 {
 get{return(subGroup.itemArray[index]);}
 }
 }
}

//---
//
// The lowest-level class
//
//---
public class Item
{
 //CONSTRUCTOR
 public Item(string name, int location)
 {
 itemName = name;
 itemLocation = location;

 }

 private string itemName = "";
 private int itemLocation = 0;

 public string ItemName
 {
 get {return(itemName);}
 set {itemName = value;}
 }

 public int ItemLocation
 {
 get {return(itemLocation);}
 set {itemLocation = value;}
 }
}

Discussion

Building functionality into a class to allow it to be iterated over using the foreach loop is not
extremely difficult; however, building functionality into embedded classes to allow a nested foreach

idiom to be used requires keeping careful track of the classes you are building.

The ability of a class to be used by the foreach loop requires the use of two interfaces: IEnumerable
and IEnumerator. The IEnumerable interface contains the GetEnumerator method, which accepts no

parameters and returns an enumerator object. It is this enumerator object that implements the
IEnumerator interface. This interface contains the methods MoveNext and Reset along with the
property Current. The MoveNext method accepts no parameters and returns a bool indicating
whether the MoveNext method has reached the last element in the collection. The Reset method also
accepts no parameters and returns a void. This method simply moves to the position in the collection
that is immediately before the first element. Once in this state, the MoveNext method must be called
in order to access the first element. The Current property is read-only and returns an object, which

is the current element in the collection.

The code for this recipe is divided among five classes. The top-level class is the Set class, which
contains an ArrayList of SubGroup objects. The SubGroup object also contains an ArrayList, but
this ArrayList contains Item objects. The Set and SubGroup classes each contain a nested class,
which is the enumerator class (i.e., it implements IEnumerator). The Set and SubGroup classes both
implement the IEnumerable interface. The class structure looks like this:

Set (Implements IEnumerable)
SetEnumerator (Implements IEnumerator and is nested within the Set class)
 SubGroup (Implements IEnumerable)
 SubGroupEnumerator (Implements IEnumerator and is nested within the SubGroup
 class)
 Item

By examining the Set class, we can see how classes usable by a foreach loop are constructed. This

class contains:

A simple ArrayList, which will be iterated over by the class enumerator.

A property, Count, which returns the number of elements in the ArrayList.

A method, GetEnumerator, which is defined by the IEnumerable interface. This method returns
a SetEnumerator object. As you shall see later, this object allows the foreach loop to do its

work.

A method, AddGroup, which adds a SubGroup object to the ArrayList.

A method, GetGroup, which returns a SubGroup object in the ArrayList.

The SetEnumerator class, which is nested within the Set class, contains:

A constructor that accepts a Set object. This Set object will be iterated over by the foreach

loop.

Two fields to hold the current index (index) and the Set object (setObj).

A method, MoveNext, which is defined by the IEnumerator interface. This method moves the
current index (index) to the next position in the Set object's ArrayList. If the index is moved
past the last element in the ArrayList, a false is returned. Otherwise, the index is
incremented by one, and a true is returned.

A method Reset, which is defined by the IEnumerator interface. This method moves the
current index (index) to a position immediately before the first element in the ArrayList of the
Set object (i.e., -1).

A method Current, which is defined by the IEnumerator interface. This method returns the
SubGroup object in the Set object's ArrayList, which is pointed to by the index field.

To create the SubGroup and SubGroupEnumerator class, we follow the same pattern, except that the
SubGroup class contains an ArrayList of Item objects and the SubGroupEnumerator operates on a
SubGroup object.

The final class is the Item class. This class is the lowest level of this structure and contains data that
has been grouped within the SubGroup objects, all of which is contained in the Set object. There is

nothing out of the ordinary with this class; it simply contains data and the means with which to set
and retrieve this data.

Using these classes is quite simple. The following method shows how to create a Set object that
contains multiple SubGroup objects, which, in turn, contain multiple Item objects:

public void CreateNestedObjects()
{
 Set topLevelSet = new Set();

 // Create two groups under the TopLevelSet object
 topLevelSet.AddGroup("sg1");
 topLevelSet.AddGroup("sg2");

 // For each SubGroup object in the TopLevelSet object, add two Item objects
 foreach (SubGroup SG in TopLevelSet)

 {
 SG.AddItem("item1", 100);
 SG.AddItem("item2", 200);
 }
}

The CreateNestedObjects method first creates a topLevelSet object and creates two SubGroups
within it called sg1 and sg2. Each of these SubGroup objects in turn is filled with two Item objects
called item1 and item2.

The next method shows how to read all of the Item objects contained within the Set object that was
created in the CreateNestedObjects method:

public void ReadNestedObjects(Set TopLevelSet)
{
 Console.WriteLine("TopLevelSet.Count: " + TopLevelSet.Count);

 // Outer foreach to iterate over all SubGroup objects
 //in the Set object
 foreach (SubGroup SG in TopLevelSet)
 {
 Console.WriteLine("\tSG.SubGroupName: " + SG.SubGroupName);
 Console.WriteLine("\tSG.Count: " + SG.Count);

 // Inner foreach to iterate over all Item objects
 //in the current SubGroup object
 foreach (Item i in SG)
 {
 Console.WriteLine("\t\ti.ItemName: " + i.ItemName);
 Console.WriteLine("\t\ti.ItemLocation: " + i.ItemLocation);
 }
 }
}

This method displays the following:

TopLevelSet.Count: 2
 SG.SubGroupName: sg1
 SG.Count: 2
 I.ItemName: item1
 I.ItemLocation: 100
 I.ItemName: item2
 I.ItemLocation: 200
 SG.SubGroupName: sg2
 SG.Count: 2
 I.ItemName: item1
 I.ItemLocation: 100
 I.ItemName: item2
 I.ItemLocation: 200

The outer foreach loop is used to iterate over all SubGroup objects that are stored in the top-level
Set object. The inner foreach loop is used to iterate over all Item objects that are stored in the
current SubGroup object.

See Also

See the "IEnumerable Interface" and "IEnumerator Interface" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 3.28 Building Cloneable Classes

Problem

You need a method of performing a shallow cloning operation, a deep cloning operation, or both on a
data type that may also reference other types.

Solution

Shallow copying means that the copied object's fields will reference the same objects as the original
object. To allow shallow copying, add the following Clone method to your class:

using System;
using System.Collections;

public class ShallowClone : ICloneable
{
 public int data = 1;
 public ArrayList listData = new ArrayList();
 public object objData = new object();

 public object Clone()
 {
 return (this.MemberwiseClone());
 }
}

Deep copying or cloning means that the copied object's fields will reference new copies of the original
object's fields. This method of copying is more time-consuming than the shallow copy. To allow deep
copying, add the following Clone method to your class:

using System;
using System.Collections;
using System.Runtime.Serialization.Formatters.Binary;
using System.IO;

[Serializable]
public class DeepClone : ICloneable
{
 public int data = 1;
 public ArrayList listData = new ArrayList();
 public object objData = new object();

 public object Clone()

 {
 BinaryFormatter BF = new BinaryFormatter();
 MemoryStream memStream = new MemoryStream();

 BF.Serialize(memStream, this);
 memStream.Flush();
 memStream.Position = 0;

 return (BF.Deserialize(memStream));
 }
}

Add an overloaded Clone method to your class to allow for deep or shallow copying. This method

allows you to decide at runtime how your object will be copied. The code might appear as follows:

using System;
using System.Collections;
using System.Runtime.Serialization.Formatters.Binary;
using System.IO;

[Serializable]
public class MultiClone : ICloneable
{
 public int data = 1;
 public ArrayList listData = new ArrayList();
 public object objData = new object();

 public object Clone(bool doDeepCopy)
 {
 if (doDeepCopy)
 {
 BinaryFormatter BF = new BinaryFormatter();
 MemoryStream memStream = new MemoryStream();

 BF.Serialize(memStream, this);
 memStream.Flush();
 memStream.Position = 0;

 return (BF.Deserialize(memStream));
 }
 else
 {
 return (this.memberwiseClone());
 }
 }

 public object Clone()
 {
 return (Clone(false));
 }
}

Discussion

Cloning is the ability to make an exact copy (a clone) of an instance of a type. Cloning may take one
of two forms: a shallow copy or a deep copy. Shallow copying is relatively easy. It involves copying
the object that the Clone method was called on. The reference type fields in the original object are

copied over, as are the value type fields. This means that if the original object contains a field of type
StreamWriter, for instance, the cloned object will point to this same instance of the original object's
StreamWriter; a new object is not created.

There is no need to deal with static fields when performing a cloning

operation. There is only one memory location reserved for each static field per
class. Besides, the cloned object will have access to the same static fields as
the original.

Support for shallow copying is implemented by the MemberwiseClone method of the Object class,

which serves as the base class for all .NET classes. So the following code allows a shallow copy to be
created and returned by the Clone method:

public object Clone()
{
return (this.MemberwiseClone());
}

Making a deep copy is the second way of cloning an object. A deep copy will make a copy of the
original object just as the shallow copy does. However, a deep copy will also make separate copies of
each reference type field in the original object. Therefore, if the original object contains a
StreamWriter type field, the cloned object will also contain a StreamWriter type field, but the cloned
object's StreamWriter field will point to a new StreamWriter object, not the original object's
StreamWriter object.

Support for deep copying is not automatically provided by the Clone method or the .NET Framework.

Instead, the following code illustrates an easy way of implementing a deep copy:

BinaryFormatter BF = new BinaryFormatter();
MemoryStream memStream = new MemoryStream();

BF.Serialize(memStream, this);
memStream.Flush();
memStream.Position = 0;

return (BF.Deserialize(memStream));

Basically, the original object is serialized out to a memory stream using binary serialization, then it is
deserialized into a new object, which is returned to the caller. Note that it is important to flush
memory and reposition the memory stream pointer back to the start of the stream before calling the
Deserialize method; otherwise, an exception indicating that the serialized object contains no data

will be thrown.

Performing a deep copy using object serialization allows the underlying object to be changed without
having to modify the code that performs the deep copy. If you performed the deep copy by hand,

you'd have to make a new instance of all the instance fields of the original object and copy them over
to the cloned object. This is a tedious chore in and of itself. If a change is made to the fields of the
object being cloned, the deep copy code must also change to reflect this modification. Using
serialization, we rely on the serializer to dynamically find and serialize all fields contained in the
object. If the object is modified, the serializer will still make a deep copy without any code
modifications. Two reasons you would possibly want to do a deep copy by hand are:

It can be faster in terms of application performance.1.

The serialization technique presented in this recipe works properly only when everything in your
object is serializable. Of course, manual cloning doesn't always help there either-some objects
are just inherently nonclonable. Suppose you have a network management application where an
object represents a particular printer on your network. What's it supposed to do when you clone
it? Fax a purchase order for a new printer?

2.

One problem inherent with deep copying is performing a deep copy on a nested data structure with
circular references. This recipe manages to make it possible to deal with circular references, although
it's a tricky problem. So, in fact, you don't need to avoid circular references if you are using this
recipe.

See Also

See the "ICloneable Interface" and "Object.MemberwiseClone Method" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 3.29 Assuring an Object's Disposal

Problem

You require a way to always have the Dispose method of an object called when that object's work is

done or it goes out of scope.

Solution

Use the using statement:

using System;
using System.IO;

// ...

using(FileStream FS = new FileStream("Test.txt", FileMode.Create))
{
 FS.WriteByte((byte)1);
 FS.WriteByte((byte)2);
 FS.WriteByte((byte)3);

 using(StreamWriter SW = new StreamWriter(FS))
 {
 SW.WriteLine("some text.");
 }
}

Discussion

The using statement is very easy to use and saves you the hassle of writing extra code. If the
solution had not used the using statement, it would look like this:

FileStream FS = new FileStream("Test.txt", FileMode.Create);
try
{
 FS.WriteByte((byte)1);
 FS.WriteByte((byte)2);
 FS.WriteByte((byte)3);

 StreamWriter SW = new StreamWriter(FS);
 try
 {

 SW.WriteLine("some text.");
 }
 finally
 {
 if (SW != null)
 {
 ((IDisposable)SW).Dispose();
 }
 }
}
finally
{
 if (FS != null)
 {
 ((IDisposable)FS).Dispose();
 }
}

There are several points about the using statement.

There is a using directive, such as
using System.IO;

which should be differentiated from the using statement. This is potentially confusing to

developers first getting into this language.

The variable(s) defined in the using statement clause must all be of the same type, and they
must have an initializer. However, you are allowed multiple using statements in front of a

single code block, so this isn't a significant restriction.

Any variables defined in the using clause are considered read-only in the body of the using

statement. This prevents a developer from inadvertently switching the variable to refer to a
different object and causing problems when an attempt is made to dispose of the object that
the variable initially referenced.

The variable should not be declared outside of the using block and then initialized inside of the
using clause.

This last point is described by the following code:

FileStream FS;
using(FS = new FileStream("Test.txt", FileMode.Create))
{
 FS.WriteByte((byte)1);
 FS.WriteByte((byte)2);
 FS.WriteByte((byte)3);

 using(StreamWriter SW = new StreamWriter(FS))
 {
 SW.WriteLine("some text.");
 }

}

For this example code, we will not have a problem. But consider that the variable FS is usable outside
of the using block. Essentially, we could revisit this code and modify it as follows:

FileStream FS;
using(FS = new FileStream("Test.txt", FileMode.Create))
{
 FS.WriteByte((byte)1);
 FS.WriteByte((byte)2);
 FS.WriteByte((byte)3);

 using(StreamWriter SW = new StreamWriter(FS))
 {
 SW.WriteLine("some text.");
 }
}
FS.WriteByte((byte)4);

This code compiles but throws an ObjectDisposedException on the last line of this code snippet
because the Dispose method has already been called on the FS object. The object has not yet been

collected at this point and still remains in memory in the disposed state.

See Also

See Recipe 3.30 and Recipe 3.36; see the "IDispose Interface," "Using foreach with Collections," and
"Implementing Finalize and Dispose to Clean Up Unmanaged Resources" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 3.30 Releasing a COM Object ThroughManaged
Code

Problem

You need to release a COM object from managed code without forcing a garbage collection to occur.

Solution

Use the static ReleaseComObject method of the Marshal class:

int newRefCount = System.Runtime.InteropServices.Marshal.ReleaseComObject(COMObj);

where COMObj is a reference to the runtime callable wrapper (RCW) of a COM object.

Discussion

If the COM object is holding on to resources that need to be released in a timely manner, we will
want to decrement the reference count on the COM object as quickly as possible, once we've finished
using the COM object and have set it to null. The GC needs to run in order to collect the

unreferenced RCW around our COM object, thereby decrementing the reference count on the COM
object. Unfortunately, there is no guarantee that the GC will run in order to collect the RCW anytime
in the near future.

To solve this problem, we could call GC.Collect ourselves to try to free the RCW, but this might be
overkill. Instead, use the ReleaseComObject method to manually force the RCW to decrement its

reference count on the COM object without having to force a collection to occur.

The static ReleaseComObject method returns an int indicating the current reference count

contained in the RCW object after this method has finished decrementing its reference count.
Remember that this method decrements the reference count contained in the RCW, not the COM
object's reference count. When the RCW reference count goes to zero, it releases its COM object. At
this point, the GC can collect the RCW.

Care must be used when calling the ReleaseComObject method. Misuse of this method can cause a
COM object to be released by the RCW too early. Since the ReleaseComObject method decrements

the reference count in the RCW, you should call it no more than one time for every object that
contains a pointer to the RCW. Calling it multiple times might cause the RCW to release the COM
object earlier than expected. Any attempt to use a reference to an RCW that has had its reference
count decremented to zero results in a NullReferenceException exception. The RCW might not

have been collected yet, but its reference to the COM object has been terminated.

See Also

See Recipe 3.29 and Recipe 3.36; see the "Marshal.ReleaseComObject Method" topic in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 3.31 Creating an Object Cache

Problem

Your application creates many objects that are expensive to create and/or have a large memory
footprint-for instance, objects that are populated with data from a database or a web service upon their
creation. These objects are used throughout a large portion of the application's lifetime. You need a way to
not only enhance the performance of these objects-and as a result, your application-but also to use
memory more efficiently.

Solution

Create an object cache to keep these objects in memory as long as possible, without tying up valuable heap
space and possibly resources. Since cached objects may be reused at a later time, you also forego the
process of having to create similar objects many times.

You can reuse the ASP.NET cache that is located in the System.Web.Caching namespace or you can build

your own lightweight caching mechanism. The See Also section at the end of this recipe provides several
Microsoft resources that show you how to use the ASP.NET cache to cache your own objects. However, the
ASP.NET cache is very complex and may have a nontrivial overhead associated with it, so using a
lightweight caching mechanism like the one shown here is a viable alternative.

The following class, ObjCache , represents a type that allows the caching of SomeComplexObj objects:

using System;
using System.Collections;

public class ObjCache
{
 // Constructors
 public ObjCache()
 {
 Cache = new Hashtable();
 }

 public ObjCache(int initialCapacity)
 {
 Cache = new Hashtable(initialCapacity);
 }

 // Fields
 private Hashtable cache = null;

 // Methods
 public SomeComplexObj GetObj(object key)
 {

 if (!cache.ContainsKey(key) || !IsObjAlive(key))
 {
 AddObj(key, new SomeComplexObj());
 }

 return ((SomeComplexObj)((WeakReference)cache[key]).Target);
 }

 public object GetObj(object key, object obj)
 {
 if (!cache.ContainsKey(key) || !IsObjAlive(key))
 {
 return (null);
 }
 else
 {
 return (((WeakReference)cache[key]).Target);
 }
 }

 public void AddObj(object key, SomeComplexObj item)
 {
 WeakReference WR = new WeakReference(item, false);

 if (cache.ContainsKey(key))
 {
 cache[key] = WR;
 }
 else
 {
 cache.Add(key, WR);
 }
 }

 public void AddObj(object key, object item)
 {
 WeakReference WR = new WeakReference(item, false);

 if (cache.ContainsKey(key))
 {
 cache[key] = WR;
 }
 else
 {
 cache.Add(key, WR);
 }
 }

 public bool IsObjAlive(object key)
 {
 if (cache.ContainsKey(key))
 {

 return (((WeakReference)cache[key]).IsAlive);
 }
 else
 {
 return (false);
 }
 }

 public int AliveObjsInCache()
 {
 int count = 0;

 foreach (DictionaryEntry item in cache)
 {
 if (((WeakReference)item.Value).IsAlive)
 {
 count++;
 }
 }

 return (count);
 }

 public int ExistsInGeneration(object key)
 {
 int retVal = -1;

 if (cache.ContainsKey(key) && IsObjAlive(key))
 {
 retVal = GC.GetGeneration((WeakReference)cache[key]);
 }

 return (retVal);
 }

 public bool DoesKeyExist(object key)
 {
 return (cache.ContainsKey(key));
 }

 public bool DoesObjExist(object complexObj)
 {
 return (cache.ContainsValue(complexObj));
 }

 public int TotalCacheSlots()
 {
 return (cache.Count);
 }
}

The SomeComplexObj class can be replaced with any type of class you choose. For

this recipe, we will use this class, but for your code, you can change it to whatever
class or structure type you need.

The SomeComplexObj is defined here (realistically, this would be a much more complex object to create and

use; however, for the sake of brevity, this class is written as simply as possible):

public class SomeComplexObj
{
 public SomeComplexObj() {}

 private int idcode = -1;

 public int IDCode
 {
 set{idcode = value;}
 get{return (idcode);}
 }
}

ObjCache , the caching object used in this recipe, makes use of a Hashtable object to hold all cached
objects. This Hashtable allows for fast lookup when retrieving objects and generally for fast insertion and
removal times. The Hashtable object used by this class is defined as a private field and is initialized

through its overloaded constructors.

Developers using this class will mainly be adding and retrieving objects from this object. The GetObj

method implements the retrieval mechanism for this class. This method returns a cached object if its key
exists in the Hashtable and the WeakReference object is considered to be alive. An object that the
WeakReference type refers to has not been garbage collected. The WeakReference type can remain alive
long after the object to which it referred is gone. An indication of whether this WeakReference object is
alive is obtained through the read-only IsAlive property of the WeakReference object. This property
returns a bool indicating whether this object is alive (true) or not (false). When an object is not alive, or
when its key does not exist in the Hashtable , this method creates a new object with the same key as the
one passed in to the GetObj method and adds it to the Hashtable .

The AddObj method implements the mechanism to add objects to the cache. This method creates a
WeakReference object that will hold a weak reference to our object. Each object in the cache is contained
within a WeakReference object. This is the core of the caching mechanism used in this recipe. A
WeakReference that references an object (its target) allows that object to later be referenced through
itself. When the target of the WeakReference object is also referenced by a strong (i.e., normal) reference,
the GC cannot collect the target object. But if no references are made to this WeakReference object, the GC

can collect this object to make room in the managed heap for new objects.

After creating the WeakReference object, the Hashtable is searched for the same key that we want to add.
If an object with that key exists, it is overwritten with the new object; otherwise, the Add method of the
Hashtable class is called.

The ObjCache class has been written to cache either a specific object type or multiple object types. To do
this, a method called GetAnyTypeObj has been added that returns an object. Additionally, the AddObj
method is overloaded to accept an object as its second parameter type. The following code uses the

strongly typed GetObj method to return a SomeComplexObj object:

SomeComplexObj SCO2 = OC.GetObj("ID2");

The following code uses the generic GetAnyTypeObj method to return some other type of object:

Obj SCO2 = (Obj)OC.GetAnyTypeObj("ID2");
if (SCO2 == null)
{
 OC.AddObj("ID2", new Obj());
 SCO2 = (Obj)OC.GetAnyTypeObj("ID2");
}

where Obj is an object of any type. Notice that it is now the responsibility of the caller to verify that the
GetObj method does not return null .

Quite a bit of extra work is required in the calling code to support a cache of heterogeneous objects. More
responsibility is placed on the user of this cache object, which can quickly lead to usability and maintenance
problems if not written correctly.

The code to exercise the ObjCache class is shown here:

// Create the cache here
ObjCache OC = new ObjCache();

public void TestObjCache()
{
 OC.AddObj("ID1", new SomeComplexObj());
 OC.AddObj("ID2", new SomeComplexObj());
 OC.AddObj("ID3", new SomeComplexObj());
 OC.AddObj("ID4", new SomeComplexObj());
 OC.AddObj("ID5", new SomeComplexObj());

 Console.WriteLine("\r\n--> Add 5 weak references");
 Console.WriteLine("OC.TotalCacheSlots = " + OC.TotalCacheSlots());
 Console.WriteLine("OC.AliveObjsInCache = " + OC.AliveObjsInCache());
 Console.WriteLine("OC.ExistsInGeneration('ID1') = " +
 OC.ExistsInGeneration("ID1"));

 ////////////// BEGIN COLLECT //////////////
 GC.Collect();
 GC.WaitForPendingFinalizers();
 ////////////// END COLLECT //////////////

 Console.WriteLine("\r\n--> Collect all weak references");
 Console.WriteLine("OC.TotalCacheSlots = " + OC.TotalCacheSlots());
 Console.WriteLine("OC.AliveObjsInCache = " + OC.AliveObjsInCache());

 OC.AddObj("ID1", new SomeComplexObj());
 OC.AddObj("ID2", new SomeComplexObj());
 OC.AddObj("ID3", new SomeComplexObj());
 OC.AddObj("ID4", new SomeComplexObj());
 OC.AddObj("ID5", new SomeComplexObj());

 Console.WriteLine("\r\n--> Add 5 weak references");
 Console.WriteLine("OC.TotalCacheSlots = " + OC.TotalCacheSlots());
 Console.WriteLine("OC.AliveObjsInCache = " + OC.AliveObjsInCache());

 CreateObjLongMethod();
 Create135();
 CollectAll();
}

private void CreateObjLongMethod()
{
 Console.WriteLine("\r\n--> Obtain ID1");
 if (OC.IsObjAlive("ID1"))
 {
 SomeComplexObj SCOTemp = OC.GetObj("ID1");
 SCOTemp.IDCode = 100;
 Console.WriteLine("SCOTemp.IDCode = " + SCOTemp.IDCode);
 }
 else
 {
 Console.WriteLine("Object ID1 does not exist...Creating new ID1...");
 OC.AddObj("ID1", new SomeComplexObj());

 SomeComplexObj SCOTemp = OC.GetObj("ID1");
 SCOTemp.IDCode = 101;
 Console.WriteLine("SCOTemp.IDCode = " + SCOTemp.IDCode);
 }
}

private void Create135()
{
 Console.WriteLine("OC.ExistsInGeneration('ID1') = " +
 OC.ExistsInGeneration("ID1"));
 Console.WriteLine("\r\n--> Obtain ID1, ID3, ID5");
 SomeComplexObj SCO1 = OC.GetObj("ID1");
 SomeComplexObj SCO3 = OC.GetObj("ID3");
 SomeComplexObj SCO5 = OC.GetObj("ID5");
 SCO1.IDCode = 1000;
 SCO3.IDCode = 3000;
 SCO5.IDCode = 5000;
 Console.WriteLine("OC.ExistsInGeneration('ID1') = " +
 OC.ExistsInGeneration("ID1"));

 ////////////// BEGIN COLLECT //////////////
 GC.Collect();
 GC.WaitForPendingFinalizers();
 ////////////// END COLLECT //////////////

 Console.WriteLine("\r\n--> Collect all weak references");
 Console.WriteLine("OC.TotalCacheSlots = " + OC.TotalCacheSlots());
 Console.WriteLine("OC.AliveObjsInCache = " + OC.AliveObjsInCache());

 Console.WriteLine("OC.ExistsInGeneration('ID1') = "
 + OC.ExistsInGeneration("ID1"));

 Console.WriteLine("SCO1.IDCode = " + SCO1.IDCode);
 Console.WriteLine("SCO3.IDCode = " + SCO3.IDCode);
 Console.WriteLine("SCO5.IDCode = " + SCO5.IDCode);

 Console.WriteLine("\r\n--> Get ID2, which has been collected. ID2 Exists ==" +
 OC.IsObjAlive("ID2"));
 SomeComplexObj SCO2 = OC.GetObj("ID2");
 Console.WriteLine("ID2 has now been re-created. ID2 Exists == " +
 OC.IsObjAlive("ID2"));
 Console.WriteLine("OC.AliveObjsInCache = " + OC.AliveObjsInCache());
 SCO2.IDCode = 2000;
 Console.WriteLine("SCO2.IDCode = " + SCO2.IDCode);

 ////////////// BEGIN COLLECT //////////////
 GC.Collect();
 GC.WaitForPendingFinalizers();
 ////////////// END COLLECT //////////////

 Console.WriteLine("\r\n--> Collect all weak references");
 Console.WriteLine("OC.TotalCacheSlots = " + OC.TotalCacheSlots());
 Console.WriteLine("OC.AliveObjsInCache = " + OC.AliveObjsInCache());
 Console.WriteLine("OC.ExistsInGeneration('ID1') = " +
 OC.ExistsInGeneration("ID1"));
 Console.WriteLine("OC.ExistsInGeneration('ID2') = " +
 OC.ExistsInGeneration("ID2"));
 Console.WriteLine("OC.ExistsInGeneration('ID3') = " +
 OC.ExistsInGeneration("ID3"));
}

private void CollectAll()
{
 ////////////// BEGIN COLLECT //////////////
 GC.Collect();
 GC.WaitForPendingFinalizers();
 ////////////// END COLLECT //////////////

 Console.WriteLine("\r\n--> Collect all weak references");
 Console.WriteLine("OC.TotalCacheSlots = " + OC.TotalCacheSlots());
 Console.WriteLine("OC.AliveObjsInCache = " + OC.AliveObjsInCache());
 Console.WriteLine("OC.ExistsInGeneration('ID1') = " +
 OC.ExistsInGeneration("ID1"));
 Console.WriteLine("OC.ExistsInGeneration('ID2') = " +
 OC.ExistsInGeneration("ID2"));
 Console.WriteLine("OC.ExistsInGeneration('ID3') = " +
 OC.ExistsInGeneration("ID3"));
 Console.WriteLine("OC.ExistsInGeneration('ID5') = " +
 OC.ExistsInGeneration("ID5"));
}

The output of this test code is shown here:

--> Add 5 weak references
OC.TotalCacheSlots = 5
OC.AliveObjsInCache = 5
OC.ExistsInGeneration('ID1') = 0

--> Collect all weak references
OC.TotalCacheSlots = 5
OC.AliveObjsInCache = 0

--> Add 5 weak references
OC.TotalCacheSlots = 5
OC.AliveObjsInCache = 5

--> Obtain ID1
SCOTemp.IDCode = 100
OC.ExistsInGeneration('ID1') = 0

--> Obtain ID1, ID3, ID5
OC.ExistsInGeneration('ID1') = 0

--> Collect all weak references
OC.TotalCacheSlots = 5
OC.AliveObjsInCache = 3
OC.ExistsInGeneration('ID1') = 1
SCO1.IDCode = 1000
SCO3.IDCode = 3000
SCO5.IDCode = 5000

--> Get ID2, which has been collected. ID2 Exists == False
ID2 has now been re-created. ID2 Exists == True
OC.AliveObjsInCache = 4
SCO2.IDCode = 2000

--> Collect all weak references
OC.TotalCacheSlots = 5
OC.AliveObjsInCache = 4
OC.ExistsInGeneration('ID1') = 2
OC.ExistsInGeneration('ID2') = 1
OC.ExistsInGeneration('ID3') = 2

--> Collect all weak references
OC.TotalCacheSlots = 5
OC.AliveObjsInCache = 0
OC.ExistsInGeneration('ID1') = -1
OC.ExistsInGeneration('ID2') = -1
OC.ExistsInGeneration('ID3') = -1
OC.ExistsInGeneration('ID5') = -1

Discussion

Caching involves storing frequently used objects in memory that are expensive to create and recreate for
fast access. This technique is in contrast to recreating these objects through some time-consuming
mechanism (e.g., from data in a database or from a file on disk) every time they are needed. By storing
frequently used objects such as these-so that we do not have to create them nearly as much-we can
further improve the performance of the application.

When deciding which types of items can be cached, you should look for objects that take a long time to
create and/or initialize. For example, if an object's creation involves one or more calls to a database, to a
file on disk, or to a network resource, it can be considered as a candidate for caching. In addition to
selecting objects with long creation times, these objects should also be frequently used by the
application.Selection depends on a combination of the frequency of use and the average time for which it is
used in any given usage. Objects that remain in use for a long time when they are retrieved from the cache
may work better in this cache than those that are frequently used but for only a very short period of time.

If you know that the number of cached objects will be equal to or less than 10 , you can substitute a
ListDictionary for the Hashtable . The ListDictionary is optimized for 10 items or fewer. If you are
unsure of whether to pick a ListDictionary or a Hashtable , consider using a HybridDictionary object
instead. A HybridDictionary object uses a ListDictionary when the number of items it contains is 10 or
fewer. When the number of contained items exceeds 10 , a Hashtable object is used. The switch from a
ListDictionary to a Hashtable involves copying the elements from the ListDictionary to the
Hashtable . This can cause a performance problem if this type of collection will usually contain more than
10 items. In addition, if the initial size of a ListDictionary is set above 10 , a Hashtable is used by the
HybridDictionary exclusively, again reducing the effectiveness of the HybridDictionary .

If you do not want to overwrite cached items having the same key as the object you are attempting to
insert into the cache, the AddObj method must be modified. The code for the AddObj method could be

modified to this:

public void AddObj(object key, SomeComplexObj item)
{
 WeakReference WR = new WeakReference(item, false);
 if (!cache.ContainsKey(key))
 {
 cache.Add(key, WR);
 }
 else
 {
 throw (new Exception("Attempt to insert duplicate keys."));
 }
}

We could also add a mechanism to calculate the cache-hit-ratio for this cache. The cache-hit-ratio is the
ratio of hits-every time an existing object is requested from the Hashtable -to the total number of calls
made to attempt a retrieval of an object. This can give us a good indication of how well our ObjCache is

working. The code to add to this class to implement a cache-hit-ratio is shown highlighted here:

private float numberOfGets = 0;
private float numberOfHits = 0;

public float HitMissRatioPcnt()
{
 if (numberOfGets == 0)

 {
 return (0);
 }
 else
 {
 return ((numberOfHits / numberOfGets) * 100);
 }
}

public SomeComplexObj GetObj(object key)
{
 ++numberOfGets;

 if (!cache.ContainsKey(key) || !IsObjAlive(key))
 {
 AddObj(key, new SomeComplexObj());
 }
 else
 {
 ++numberOfHits;
 }

 return ((SomeComplexObj)((WeakReference)cache[key]).Target);
}

The numberOfGets field tracks the number of calls made to the GetObj retrieval method. The
numberOfHits field tracks the number of times that an object to be retrieved exists in the cache. The
HitMissRatioPcnt method returns the numberOfHits divided by the numberOfGets as a percentage. The
higher the percent, the better our cache is operating (100% is equal to a hit every time the GetObj method
is called). A lower percentage indicates that this cache object is not working efficiently (0% is equal to a
miss every time the GetObj method is called). A very low percentage indicates that the cache object may

not be the correct solution to your problem or that you are not caching the correct object(s).

The WeakReference objects created for the ObjCache class do not track objects after they are finalized.

This would add much more complexity than is needed by this class. Moreover, we would have the
responsibility of dealing with resurrected objects that are in an undefined state. This is a dangerous path to
follow.

Remember, a caching scheme adds complexity to your application. The most a caching scheme can do for
your application is to enhance performance and possibly place less stress on memory resources. You should
consider this when deciding whether to implement a caching scheme such as the one in this recipe.

See Also

To use the built-in ASP.NET cache object independently of a web application, see the following topics in
MSDN:

"Caching Application Data"

"Adding Items to the Cache"

"Retrieving Values of Cached Items"

"Deleting Items from the Cache"

"Notifying an Application when an Item Is Deleted from the Cache"

"System.Web.Caching Namespace"

In addition, see the Datacache2 Sample under ".NET Samples-ASP.NET Caching" in MSDN; see the sample
links to the Page Data Caching example in the ASP.NET QuickStart Tutorials.

Also see the "WeakReference Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 3.32 The Single Instance Object

Problem

You have a data type that will be used by several clients. This data type will create and hold a
reference to another object that takes a long time to create; this could be a database connection or
an object that is made up of many internal objects, which also must be created along with their
containing object. Rather than allow this data type to be instantiated many times by many different
clients, you would rather have a single object that is instantiated only one time and used by
everyone.

Solution

The following two code examples illustrate the two singleton design patterns. The first design always
returns the same instance of the OnlyOne class through its GetInstance method:

public sealed class OnlyOne
{
 private OnlyOne() {}

 private static OnlyOne theOneObject = null;

 public static OnlyOne GetInstance()
 {
 lock (typeof(OnlyOne))
 {
 if (theOneObject == null)
 {
 OnlyOne.theOneObject = new OnlyOne();
 }

 return (OnlyOne.theOneObject);
 }
 }

 public void Method1() {}
 public void Method2() {}
}

The second design uses only static members to implement the singleton design pattern:

public sealed class OnlyStaticOne
{
 private OnlyStaticOne() {}

 // Use a static constructor to initialize the singleton
 static OnlyStaticOne() {}

 public static void Method1() {}
 public static void Method2() {}
}

Discussion

The singleton design pattern allows one and only one instance of a class to exist in memory at any
one time. Singleton classes are useful when you need a single way of accessing a resource such as a
database connection or a file on a network. Many times, manager objects are created as singletons.
For example, an object pool manager most likely would be a singleton; this allows a single access
point to the pool for the entire application. Several examples of the singleton class can be found in
the FCL, such as the System.Diagnostics.Trace, System.Diagnostics.Debug, and
System.IO.Path classes, to name a few.

The OnlyOne class implements the singleton pattern by using a static field of the same type as its
containing class-the OnlyOne type, in this case-and a common access point called GetInstance.
The GetInstance method is called by the client code to obtain the one and only instance of the
OnlyOne class. If there are no instantiated OnlyOne classes, a new one is created and returned. Once
the OnlyOne object is created for the first time by the GetInstance method, a reference to it is
placed in the theOneObject static field. This field contains a reference to the only OnlyOne object

running in the application. Note that because static fields do not cross application domain boundaries,
a single instance of the OnlyOne object is created for each application domain in a process. On
successive calls to GetInstance, the OnlyOne object referenced by theOneObject field is returned.
All access to the OnlyOne object is performed on the object returned by the GetInstance method.

The default constructor for this class has its accessibility made private to prevent code from
accidentally creating an instance of this class. Setting the default constructor to private and
disallowing any nonprivate constructors in this class is critical to a good singleton pattern. If code
were to accidentally create a second or third class of this type, your application code would then have
more than one access point to a resource, or you might have more than one manager type object
managing a set of objects. When setting the default constructor to private, or if there is no default
constructor in your class, you should mark the class with the sealed keyword. This keyword prevents

any class from inheriting from this class. If a class were to inherit from this class, and if this new
class did not provide an explicit constructor, a default constructor would be provided by the compiler.
This default constructor is written to automatically call the base class's default constructor. If the
base class's default constructor is private, it is inaccessible to its subclasses. The compiler will catch
this type of error, but it makes the code more readable and maintainable if the sealed keyword is

used to mark a singleton class.

The OnlyStaticOne class implements the singleton pattern in a much different way. This class makes

exclusive use of static members to allow only one access point to this class's members (the use of
the word "instance" would be misleading here-static members do not operate on an actual instance
of an object, but rather on the type itself). Similar to the previous singleton pattern example, this
class is also marked as sealed, and it has a private default constructor.

There are advantages and disadvantages to using each of these implementations of the singleton
design pattern. The advantages of using the OnlyOne style are:

Converting the class into a nonsingleton class can be done easily. To do this, eliminate the
sealed keyword on the class, make the constructor public, and remove the GetInstance
method and the theOneObject field.

Modifying this pattern to allow a fixed number of instances of this type of object to be
instantiated is fairly easy to do. The code to do this is shown here:
public sealed class OnlyThree
{
 private OnlyThree()
 {
 count++;
 }

 private static OnlyThree[] anObject = new OnlyThree[3];
 private static int count = 0;
 private static int lastObjReturned = 0;
 private const int maxInstances = 3;

 public static OnlyThree GetInstance()
 {
 if (count < maxInstances)
 {
 OnlyThree.anObject[count] = new OnlyThree();
 lastObjReturned = count;
 }
 else
 {
 if (lastObjReturned == 1)
 {
 lastObjReturned = maxInstances;
 }
 else
 {
 lastObjReturned--;
 }
 }

 return (OnlyThree.anObject[lastObjReturned -1]);
 }

 public void Method1() {}
 public void Method2() {}
}

Subclassing and overriding/hiding members of this class are possible. Note that you must
remove the sealed keyword first.

The disadvantages to this style are:

The code is a bit more complex than simply using all static members.

You must always obtain an object reference to the one instance of this class through the
GetInstance method.

If coded incorrectly, this type of singleton could allow more than one of these objects to be
created. For instance, this could happen if the default constructor's accessibility was not set to
private and you forgot to write the constructor in this class.

The advantages to using the OnlyStaticOne style of the singleton class are:

It is easy to read and therefore easy to maintain.

It is easy to write.

It is easy to use since there is no GetInstance method to call.

Making the default constructor (or any other constructor) nonprivate would have little impact on
the use of this class, since instantiating a class with no instance members other than an
instance constructor is of little use.

The disadvantages to this style are:

This style may be more difficult to convert to a regular nonsingleton class if future requirements
demand it.

A single instance of the OnlyOne object is created for each application domain in a process. If

your process will be hosting more than one application domain, you should consider using the
first style of singleton class.

Subclassing this class requires more work than the previous singleton style.

See Also

See the "sealed" keyword and "lock Statement" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 3.33 Choosing a Serializer

Problem

The FCL contains several classes to allow objects to be serialized into different formats. Choosing the
correct format for your task and remembering how to use that format can become a chore, especially
when there is a mixture of different formats and all of them are on disk. You need some way of
simplifying the serialization interfaces to make serialization easy without worrying about the
underlying differences in the serialization classes. This will also allow other developers on your team
to become proficient with the use of the various serializers more quickly.

Solution

Use the façade design pattern to create the following Serializer class:

using System;
using System.Collections;
using System.IO;
using System.Runtime.Serialization.Formatters.Binary;
using System.Xml.Serialization;
using System.Runtime.Serialization.Formatters.Soap;

// Note that you must also add a reference to the following assembly:
// System.Runtime.Serialization.Formatters.Soap.dll

[Serializable]
public class Serializer
{
 public Serializer() {}

 protected Hashtable serializationMap = new Hashtable();
 protected Hashtable serializationTypeOfMap = new Hashtable();

 // Serialize an object
 public void SerializeObj(object obj, string destination)
 {
 SerializeObj(obj, destination, SerializationAction.Default);
 }

 public void SerializeObj(
 object obj, string destination, SerializationAction action)
 {
 if (action == SerializationAction.RetainAssemblyInfo ||
 action == SerializationAction.RetainPrivateMembers ||
 action == SerializationAction.SmallestFootprint ||
 action == SerializationAction.Default)

 {
 BinarySerializeObj(obj, destination);
 serializationMap.Add(destination.ToUpper(), DeserializationType.Binary);
 }
 else if (action == SerializationAction.MakePortable ||
 action == SerializationAction.AsSOAPMsg)
 {
 SoapSerializeObj(obj, destination);
 serializationMap.Add(destination.ToUpper(), DeserializationType.SOAP);
 }
 else if (action == SerializationAction.AsXML ||
 action == SerializationAction.SendToXMLWebService)
 {
 XmlSerializeObj(obj, destination);
 serializationMap.Add(destination.ToUpper(), DeserializationType.XML);
 serializationTypeOfMap.Add(destination.ToUpper(),
 obj.GetType().FullName);
 }
 }

 private void BinarySerializeObj(object obj, string destination)
 {
 BinaryFormatter binFormatter = new BinaryFormatter();
 Stream fileStream = new FileStream(destination, FileMode.Create,
 FileAccess.Write, FileShare.None);
 binFormatter.Serialize(fileStream, obj);
 fileStream.Close();
 }

 private void SoapSerializeObj(object obj, string destination)
 {
 SoapFormatter SOAPFormatter = new SoapFormatter();
 Stream fileStream = new FileStream(destination, FileMode.Create,
 FileAccess.Write, FileShare.None);
 SOAPFormatter.Serialize(fileStream, obj);
 fileStream.Close();
}

 private void XmlSerializeObj(object obj, string destination)
 {
 XmlSerializer XMLFormatter = new XmlSerializer(obj.GetType());
 Stream fileStream = new FileStream(destination, FileMode.Create,
 FileAccess.Write, FileShare.None);
 XMLFormatter.Serialize(fileStream, obj);
 fileStream.Close();
 }

 // DeSerialize an object
 public object DeSerializeObj(string source)
 {
 return (DeSerializeObj(source,
 (DeserializationType)serializationMap[source.ToUpper()]));

 }

 public object DeSerializeObj(string source, DeserializationType type)
 {
 object retObj = null;

 if (type == DeserializationType.Binary)
 {
 retObj = BinaryDeSerializeObj(source);
 serializationMap.Remove(source.ToUpper());
 }
 else if (type == DeserializationType.SOAP)
 {
 retObj = SoapDeSerializeObj(source);
 serializationMap.Remove(source.ToUpper());
 }
 else if (type == DeserializationType.XML)
 {
 retObj = XmlDeSerializeObj(source);
 serializationMap.Remove(source.ToUpper());
 serializationTypeOfMap.Remove(source.ToUpper());
 }

 return (retObj);
 }

 private object BinaryDeSerializeObj(string source)
 {
 BinaryFormatter binFormatter = new BinaryFormatter();
 Stream fileStream = new FileStream(source, FileMode.Open, FileAccess.Read,
 FileShare.None);
 object DeserializedObj = binFormatter.Deserialize(fileStream);
 fileStream.Close();

 return (DeserializedObj);
 }

 private object SoapDeSerializeObj(string source)
 {
 SoapFormatter SOAPFormatter = new SoapFormatter();
 Stream fileStream = new FileStream(source, FileMode.Open, FileAccess.Read,
 FileShare.None);
 object DeserializedObj = SOAPFormatter.Deserialize(fileStream);
 fileStream.Close();

 return (DeserializedObj);
 }

 private object XmlDeSerializeObj(string source)
 {
 XmlSerializer XMLFormatter = new
 XmlSerializer(Type.GetType((string)serializationTypeOfMap

 [source.ToUpper()]));
 Stream fileStream = new FileStream(source, FileMode.Open,
 FileAccess.Read, FileShare.None);
 object DeserializedObj = XMLFormatter.Deserialize(fileStream);
 fileStream.Close();

 return (DeserializedObj);
 }
}

public enum SerializationAction
{
 Default = 0,
 RetainAssemblyInfo,
 RetainPrivateMembers,
 MakePortable,
 SmallestFootprint,
 SendToXMLWebService,
 AsSOAPMsg,
 AsXML
}

public enum DeserializationType
{
 Binary = 0,
 SOAP,
 XML
}

Discussion

The façade design pattern uses a façade class to provide a simple interface to a group of underlying
objects that do similar work. Any client that wants to use one of the underlying objects can go
through the façade object. In effect, the façade pattern abstracts away the complexities and
disparities between the underlying classes. This allows a uniform, and much easier to use, interface to
be presented to the clients that wish to use any of these underlying objects.

The façade object can decide which underlying object will be used to perform the action requested,
but it is not required to do so. The user could even pass in one or more arguments allowing the
façade object to determine which underlying object to use. The nice thing about this pattern is that if
the client decides that they need more flexibility than is provided by the façade object, they can
choose to use the underlying objects and contend with their individual complexities. Also, if other
serialization classes are created, they can easily be added to the façade object without breaking the
existing code.

The class that acts as the façade in this recipe is the Serializer class. This class abstracts away the

various interfaces to the various serializers that ship with the FCL, namely:

System.Runtime.Serialization.Formatters.Binary.BinaryFormatter
System.Xml.Serialization.XmlSerializer
System.Runtime.Serialization.Formatters.Soap.SoapFormatter

In addition, this class provides an enumeration called SerializationAction , which can be passed to
the SerializeObj method for the Serializer to choose the best type of serialization object to use to
serialize the input data. The various values of the SerializationAction enumeration and their

meanings are:

Default

Uses the default serialization object, which is BinaryFormatter .

RetainAssemblyInfo

Uses the BinaryFormatter . This value is used when the assembly information needs to be

retained by the serialization process.

RetainPrivateMembers

Uses the BinaryFormatter . This value is used when private members need to be added to the

serialization stream.

SmallestFootprint

Uses the BinaryFormatter . This value is used when the client wants the serialization data in

the most compact form possible. As an added benefit, this serialization method is also the
fastest.

MakePortable

Uses the SoapFormatter . This value is used when the serialization data needs to be in the

most portable form (i.e., SOAP).

AsSOAPMsg

Uses the SoapFormatter . This value tells the façade object to explicitly use the SoapFormatter

.

SendToXMLWebService

Uses the XmlSerializer . This value is used when the serialized object will be sent to an

ASP.NET XML web service.

AsXML

Uses the XmlSerializer . This value tells the façade object to explicitly use the XmlSerializer

.

The interface to the Serializer object contains two sets of overloaded methods: SerializeObj and

DeSerializeObj . Both SerializeObj methods accept an object to be serialized in the obj

parameter and a location to store the serialized object in the destination parameter. The second
SerializeObj method also has a parameter that accepts a SerializationAction enumeration,
which was previously discussed. The first SerializeObj method does not have this parameter and so
defaults to using the SerializationAction.Default enumeration value.

You need to have permissions to open a FileStream directly from your code in

order to use this recipe. This recipe cannot be used in a partial-trust
environment where you are obliged to get your FileStream s either from
IsolatedStorage or from a FileDialog .

Both DeSerializeObj methods accept a source string indicating where the serialized object is
located. The second overloaded DeSerializeObj method also accepts a DeserializationType
enumeration. This enumeration contains three values- Binary , SOAP , and XML -and is used to
explicitly inform the underlying Deserialize methods of which serialization objects to use. If the first
DeSerializeObj method is called, the values cached in the SerializeObj methods are used to

deserialize the object without the client having to remember various small details about the
serialization process used to initially serialize the object. If the SerializeObj methods are not used
to serialize the object, one of the various DeserializationType enumeration values can be explicitly
passed as an argument to inform the DeSerializeObj method which underlying deserialization

method to call.

The serializationMap and serializationTypeOfMap Hashtables are used to cache various pieces
of information during the serialization process. The SerializeObj methods use the
serializationMap Hashtable to map the destination of the serialized object to the type of
serialization process used. This allows the DeSerializeObj methods to use the source parameter to
locate the pertinent information in the serializationMap Hashtable . The serializationTypeOfMap
is used only when the XmlSerializer object is used for serialization. Upon deserialization, the
XmlSerializer uses the serializationTypeOfMap to locate the full type name that is to be

deserialized.

The following code serializes an integer array to the file TestBinSerXML.txt and then deserializes it
into the retArray variable:

Serializer s = new Serializer();
s.SerializeObj(new int[10] {1,2,3,4,5,6,7,8,9,10}, @"C:\TestBinSerXML.txt",
 SerializationAction.AsXML);
int[] retArray = (int[])s.DeSerializeObj(@"c:\TestBinSerXML.txt");

See Also

See the "Serializing Objects," "Introducing XML Serialization," and "Serialization Guidelines" topics in

the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 3.34 Creating Custom Enumerators

Problem

You need to add foreach support to a class, but the normal way of adding an IEnumerator class is

not flexible enough. Instead of simply iterating from the first element to the last, you also need to
iterate from the last to the first, and you need to be able to step over, or skip, a predefined number
of elements on each iteration. All of these types of iterators should be available to your class.

Solution

The following interfaces allow polymorphic use of the foreach method:

using System.Collections;

public interface IRevEnumerator
{
 IEnumerator GetEnumerator();
}

public interface IStepEnumerator
{
 IEnumerator GetEnumerator();
}

The following class acts as a container for a private ArrayList called InternalList and is used in
the foreach loop to iterate through the private InternalList:

public class Container : IEnumerable, IRevEnumerator, IStepEnumerator
{
 public Container()
 {
 // Add dummy data to this class
 internalList.Add(-1);
 internalList.Add(1);
 internalList.Add(2);
 internalList.Add(3);
 internalList.Add(4);
 internalList.Add(5);
 internalList.Add(6);
 internalList.Add(7);
 internalList.Add(8);
 internalList.Add(9);
 internalList.Add(10);

 internalList.Add(200);
 internalList.Add(500);
 }

 private ArrayList internalList = new ArrayList();
 private int step = 1;

 IEnumerator IEnumerable.GetEnumerator()
 {
 return (new ContainerIterator(this));
 }

 IEnumerator IRevEnumerator.GetEnumerator()
 {
 return (new RevContainerIterator(this));
 }

 IEnumerator IStepEnumerator.GetEnumerator()
 {
 return (new StepContainerIterator(this, step));
 }

 public int ForeachStep
 {
 get {return (step);}
 set {step = value;}
 }

 public ArrayList List
 {
 get {return (internalList);}
 set {internalList = value;}
 }

 // Nested classes
 // This class iterates from the first element to the last element
 // in the internalList
 public class ContainerIterator : IEnumerator
 {
 public ContainerIterator(Container c)
 {
 this.c = c;
 Reset();
 }

 private int index = -1;
 private Container c = null;

 public void Reset()
 {
 index = -1;
 }

 public object Current
 {
 get {return (c.internalList[index]);}
 }

 public bool MoveNext()
 {
 ++index;

 if (index < c.internalList.Count)
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }
 }

 // This class iterates from the last element to the first element
 // in the internalList
 public class RevContainerIterator : IEnumerator
 {
 public RevContainerIterator(Container c)
 {
 this.c = c;
 Reset();
 }

 private int index = -1;
 private Container C = null;

 public void Reset()
 {
 index = c.internalList.Count;
 }

 public object Current
 {
 get {return (c.internalList[index]);}
 }

 public bool MoveNext()
 {
 --index;

 if (index >= 0)
 {
 return (true);
 }

 else
 {
 return (false);
 }
 }
 }

 // This class iterates from the first element to the last element
 // int the internalList and skips a predefined number of elements
 // in the internalList on each iteration
 public class StepContainerIterator : IEnumerator
 {
 public StepContainerIterator(Container c, int step)
 {
 this.c = c;
 this.step = step;
 Reset();
 }

 private int index = -1;
 private int step = 1;
 private Container c = null;

 public void Reset()
 {
 index = -1;
 }

 public object Current
 {
 get {return (c.internalList[index]);}
 }

 public bool MoveNext()
 {
 if (index == -1)
 {
 ++index;
 }
 else
 {
 index += step;
 }

 if (index < c.internalList.Count)
 {
 return (true);
 }
 else
 {
 return (false);
 }

 }
 }
}

Discussion

The iterator design pattern provides an easy method of moving from item to item contained within an
object. This object could be an array, a collection, or some other similar type of container. This
technique is similar to using a for loop to iterate over each item contained in an array. The difference

is that, with the iterator design pattern, you do not need advance knowledge about how the elements
are stored in the container or where the elements are located in the container. In contrast, when
using a for loop, you need to know what elements are stored in the container. And you need some

type of direct or indirect access, via a method or indexer, to the contained list of elements. This is not
so with the foreach loop.

The FCL provides two special interfaces, IEnumerable and IEnumerator, that allow us to easily
implement this design pattern. The IEnumerable interface defines a single method:

IEnumerator GetEnumerator()

This method accepts no parameters and returns an IEnumerator interface object. The IEnumerator

type that is returned is another interface that has the following property and two methods:

object Current {get;}
bool MoveNext()
void Reset()

The Current method returns the current element being accessed. The MoveNext method moves to
the next element. If this method successfully moves to the next element, it returns true. If there are
no more elements in the list, it returns false as an indication to stop the iteration. The Reset

method resets the current element pointer to the position immediately before the first element in the
list.

Implementing these two interfaces allows us to use a familiar looping mechanism: the foreach loop.
With the foreach loop, you do not have to worry about moving the current element pointer to the

beginning of the list or even about incrementing this pointer as you move through the list. In
addition, you do not have to watch for the end of the list, preventing you from going beyond the
bounds of the list. The best part about the foreach loop and the iterator pattern is that you do not

have to know how to access the list of elements within its container-indeed, you do not even have to
have access to the list of elements; the IEnumerator and IEnumerable interfaces implemented on

the container do this for you.

The Container class contains a private ArrayList of items called internalList. The
GetEnumerator method on this class is implemented to return a class called ContainerIterator,
which is nested within the Container class. This ContainerIterator class implements the
IEnumerator interface and contains all of the intelligence to control how the foreach loop operates

and what data it operates on.

The ContainerIterator class uses a private variable, index, as the pointer to the current element
in the Container.internalList ArrayList. Remember that this ArrayList is private and cannot be
seen by the client code. A second private variable, c, holds a pointer to the outer class Container. A

nested class is used because it can see all private members of the outer class; therefore, it is not a

problem to access the internalList from the nested ContainerIterator class.

The ContainerIterator class is designed to move from the first element in the ArrayList to the
last. The foreach loop may not change this. However, we may add code to the ContainerIterator
class to move across the elements in the ArrayList in different manners. For example, if we always
wanted to iterate the ArrayList in ascending order, we could modify the ContainerIterator class
constructor by calling the ArrayList.Sort method, as follows:

public ContainerIterator(Container c)
{
 this.c = c;
 Reset();
 c.internalList.Sort();
}

The ContainerIterator may also be modified to start at the last element in the ArrayList and
work its way to the first element. The RevContainerIterator class demonstrates this. A third class
called StepContainerIterator demonstrates a way to step over a specified number of elements in
the ArrayList. This is similar to the following VB.NET and C# code:

' VB.NET Code
For i = 0 to 100 Step 2
...
Next

// C# Code
for (int i = 0; i <= 100; i += 2) {...}

In both of these loops, every other element in the list is skipped. The StepContainerIterator allows

this by accepting an integer value in its constructor that determines how many items will be skipped.
This is the step parameter in this constructor.

There is also a way to choose which IEnumerator interface to use with a foreach loop. Since the
GetEnumerator method returns only an IEnumerator interface instead of a concrete object, we can
nest all three of these IEnumerator type classes within our Container class and tell the foreach

loop which iterator it will use.

To enable this, our Container class needs to implement three distinct interfaces, IEnumerator,
IRevEnumerator, and IStepEnumerator. The IEnumerator interface is defined by the FCL. Notice
that all three interfaces define the same GetEnumerator method. The Container class implements

the methods on these three interfaces as explicit interface methods. This allows us to choose which
GetInterface method to use by casting the Container class to one of these three interface types.

To use the ContainerIterator, we do not have to do anything to the foreach loop; this is the
default IEnumerator type that is returned by GetEnumerator. The code for this is as follows:

Container cntnr = new Container();
foreach (int i in cntnr)
{
 Console.WriteLine(i);
}

If we do not know that cntnr contains an ArrayList of integers, we could write the following to

iterate over each element:

foreach (object i in cntnr)
{
 Console.WriteLine(i.ToString());
}

To use RevContainerIterator, we cast the cntnr object to the interface that has the
GetEnumerator method to return a RevContainerIterator. This code is written as follows:

Container cntnr = new Container();
foreach (int i in ((IRevEnumerator)cntnr))
{
 Console.WriteLine(i);
}

Again, to use the StepContainerIterator, we cast the cntnr object to the correct interface,
IStepEnumerator. This code is written as follows:

Container cntnr = new Container();
cntnr.ForeachStep = 2;
foreach (int i in ((IStepEnumerator)cntnr))
{
 Console.WriteLine(i);
}

Notice the extra step with this interface: the ForeachStep property in the Container object needs to
be set to an integer value. This value then is passed to the StepContainerIterator constructor to

be used in skipping over that number of elements in the list.

See Also

See the "IEnumerator Interface," "Using foreach with Collections," and "Collection Classes Tutorial"
topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 3.35 Rolling Back Object Changes

Problem

You have an object that allows its state to be changed. However, you do not want these changes to
become permanent if other changes to the system cannot be made at the same time. In other words,
you want to be able to roll back the changes if any of a group of related changes fails.

Solution

Use the memento design pattern to allow your object to save its original state in order to roll back
changes. The SomeDataOriginator class defined for this recipe contains data that must be changed

only if other system changes occur. Its source code is:

using System;
using System.Collections;

public class SomeDataOriginator
{
 public SomeDataOriginator() {}

 public SomeDataOriginator(int state, string id, string clsName)
 {
 this.state = state;
 this.id = id;
 this.clsName = clsName;
 }

 private int state = 1;
 private string id = "ID1001";
 private string clsName = "SomeDataOriginator";

 public string ClassName
 {
 get {return (clsName);}
 set {clsName = value;}
 }

 public string ID
 {
 get {return (id);}
 set {id = value;}
 }

 public void ChangeState(int newState)
 {
 state = newState;
 }

 public void Display()
 {
 Console.WriteLine("State: " + state);
 Console.WriteLine("Id: " + id);
 Console.WriteLine("clsName: " + clsName);
 }

 // Nested Memento class used to save outer class's
 state internal class Memento
 {
 internal Memento(SomeDataOriginator data)
 {
 this.state = data.State;
 this.id = data.id;
 this.clsName = data.clsName;
 originator = data;
 }

 private SomeDataOriginator originator = null;
 private int state = 1;
 private string id = "ID1001";
 private string clsName = "SomeDataOriginator";

 internal void Rollback()
 {
 originator.clsName = this.clsName;
 originator.id = this.id;
 originator.state = this.state;
 }
 }
}

The MementoCareTaker is the caretaker object, which saves a single state that the originator object

can roll back to. Its source code is:

public class MementoCareTaker
{
 private SomeDataOriginator.Memento savedState = null;

 internal SomeDataOriginator.Memento Memento
 {
 get {return (savedState);}
 set {savedState = value;}
 }
}

MultiMementoCareTaker is another caretaker object that can save multiple states to which the

originator object can roll back. Its source code is:

public class MultiMementoCareTaker
{
 private ArrayList savedState = new ArrayList();

 internal SomeDataOriginator.Memento this[int index]
 {
 get {return ((SomeDataOriginator.Memento)savedState[index]);}
 set {savedState[index] = (SomeDataOriginator.Memento)value;}
 }

 internal void Add(SomeDataOriginator.Memento memento)
 {
 SavedState.Add(memento);
 }

 internal int Count
 {
 get {return (savedState.Count);}
 }
}

Discussion

The memento design pattern allows object state to be saved so that it can be restored in response to
a specific situation. The memento pattern is very useful for implementing undo/redo or
commit/rollback actions. This pattern usually has an originator object-a new or existing object that
needs to have an undo/redo or commit/rollback style behavior associated with it. This originator
object's state-the values of its fields-will be mirrored in a memento object, which is an object that
can store the state of an originator object. Another object that usually exists in this type of pattern is
the caretaker object. The caretaker is responsible for saving one or more memento objects, which
can then be used later to restore the state of an originator object. This recipe makes use of two
caretaker objects. The first, MementoCareTaker, saves a single object state that can later be used to
roll an object back. The second, MultiMementoCareTaker, uses an ArrayList object to save multiple

object states, thereby allowing many levels of rollbacks to occur. You can also think of
MultiMementoCareTaker as storing multiple levels of undo/redo state.

The originator class, SomeDataOriginator, has the state, id, and clsName fields to store
information. The originator class has a nested Memento class that needs to access the fields of the

originator directly.

One thing we have to add to the class, that will not affect how it behaves or how it is used, is a
nested Memento class. This nested class is used to store the state of its outer class. We use a nested
class so that it can access the private fields of the outer class. This allows the Memento object to get

copies of all the needed fields of the originator object without having to add special logic to the
originator to allow it to give this field information to the Memento object.

The Memento class contains only private fields that mirror the fields in the outer object that you want

to store. Note that you do not have to store all fields of an outer type, just the ones that you want to
roll back or undo. The Memento object also contains a constructor that accepts a
SomeDataOriginator object. The constructor saves the pointer to this object as well as its current

state. There is also a single method called Rollback. The Rollback method is central to restoring the
state of the current SomeDataOriginator object. This method uses the originator pointer to this
object to set the SomeDataOriginator object's fields back to the values contained in this instance of
the Memento object.

The caretaker objects store any Memento objects created by the application. The application can then
specify which Memento objects to use to roll back an object's state. Remember that each Memento

object knows which originator object to roll back. Therefore, you need to tell the caretaker object
only to use a Memento object to roll back an object, and the Memento object takes care of the rest.

There is a potential problem with the caretaker objects that is easily remedied. The problem is that
the caretaker objects are not supposed to know anything about the Memento objects. The caretaker
objects in this recipe see only one method, the Rollback method, that is specific to the Memento

objects. So, for this recipe, this is not really a problem. However, if you decide to add more logic to
the Memento class, you need a way to shield it from the caretaker. You do not want another

developer to add code to the caretaker objects that may allow it to change the internal state of any
Memento objects they contain.

To the caretaker objects, each Memento object should simply be an object that contains the Rollback
method. To make the Memento objects appear this way to the caretaker objects, we can place an
interface on the Memento class. This interface is defined as follows:

public interface IMemento
{
 void Rollback();
}

The Memento class is then modified as follows (changes are highlighted):

internal class Memento : IMemento
{
 public void Rollback()
 {
 originator.clsName = this.clsName;
 originator.id = this.id;
 originator.state = this.state;
 }

 // The rest of this class does not change
}

The caretaker classes are modified as follows (changes are highlighted):

internal class MementoCareTaker
{
 private IMemento savedState = null;

 internal IMemento Memento
 {
 get {return (savedState);}
 set {savedState = value;}
 }
}

internal class MultiMementoCareTaker
{
 private ArrayList savedState = new ArrayList();

 internal IMemento this[int index]
 {
 get {return ((SomeDataOriginator.Memento)savedState[index]);}
 set {savedState[index] = (SomeDataOriginator.Memento)value;}
 }

 internal void Add(IMemento memento)
 {
 savedState.Add(memento);
 }

 internal int Count
 {
 get {return (savedState.Count);}
 }
}

Implementing the IMemento interface serves two purposes. First, it prevents the caretaker classes
from knowing anything about the internals of the Memento objects they contain. Second, it allows the
caretaker objects to handle any type of Memento object, so long as it implements the IMemento

interface.

The following code shows how the SomeDataOriginator, Memento, and caretaker objects are used. It
uses the MementoCareTaker object to store a single state of the SomeDataOriginator object and
then rolls the changes back after the SomeDataOriginator object is modified:

// Create an originator and default its internal state
SomeDataOriginator data = new SomeDataOriginator();
Console.WriteLine("ORIGINAL");
data.Display();

// Create a caretaker object
MementoCareTaker objState = new MementoCareTaker();

// Add a memento of the original originator object to the caretaker
objState.Memento = new SomeDataOriginator.Memento(data);

// Change the originator's internal state
data.ChangeState(67);
data.ID = "foo";
data.ClassName = "bar";
Console.WriteLine("NEW");
data.Display();

// Rollback the changes of the originator to its original state
objState.Memento.Rollback();
Console.WriteLine("ROLLEDBACK");
data.Display();

The use of the MultiMementoCareTaker object is very similar to the MementoCareTaker object, as

the following code shows:

SomeDataOriginator data = new SomeDataOriginator();
Console.WriteLine("ORIGINAL");
data.Display();

MultiMementoCareTaker multiObjState = new MultiMementoCareTaker();
multiObjState.Add(new SomeDataOriginator.Memento(data));

data.ChangeState(67);
data.ID = "foo";
data.ClassName = "bar";
Console.WriteLine("NEW");
data.Display();
multiObjState.Add(new SomeDataOriginator.Memento(data));

data.ChangeState(671);
data.ID = "foo1";
data.ClassName = "bar1";
Console.WriteLine("NEW1");
data.Display();
multiObjState.Add(new SomeDataOriginator.Memento(data));

data.ChangeState(672);
data.ID = "foo2";
data.ClassName = "bar2";
Console.WriteLine("NEW2");
data.Display();
multiObjState.Add(new SomeDataOriginator.Memento(data));

data.ChangeState(673);
data.ID = "foo3";
data.ClassName = "bar3";
Console.WriteLine("NEW3");
data.Display();

for (int Index = (multiObjState.Count - 1); Index >= 0; Index--)
{
 Console.WriteLine("\r\nROLLBACK(" + Index + ")");
 multiObjState[Index].Rollback();
 data.Display();
}

This code creates a SomeDataOriginator object and changes its state several times. At every state
change, a new Memento object is created to save the SomeDataOriginator object's state at that
point in time. At the end of this code, a for loop iterates over each Memento object stored in the
MultiMementoCareTaker object, from the most recent to the earliest. On each iteration of this loop,
the Memento object is used to restore the state of the SomeDataOriginator object.

[Team LiB]

[Team LiB]

Recipe 3.36 Disposing of Unmanaged Resources

Problem

Your class references unmanaged resources such as some type of handle, or it manipulates a block of
memory or a file via P/Invoke methods or your class uses a COM object that requires some cleanup
method to be called before it is released. You need to make sure that the resources are released
properly and in a timely manner. In a garbage-collected environment, such as that used by the
Common Language Run-time (CLR), you cannot assume either will happen.

Solution

Implement the dispose design pattern , which is specific to .NET. The class that contains a reference to
the unmanaged resources is shown here as Foo . This object contains references to a COM object
called SomeCOMObj , a FileStream object called FStream , and an ArrayList that may or may not

contain references to unmanaged resources. The source code is:

using System;
using System.Collections;
using System.IO;

[DllImport("Kernel32.dll", SetLastError = true)]
private static extern IntPtr CreateSemaphore(IntPtr lpSemaphoreAttributes,
 int lInitialCount, int lMaximumCount, string lpName);

[DllImport("Kernel32.dll", SetLastError = true)]
private static extern bool ReleaseSemaphore(IntPtr hSemaphore, int lReleaseCount,
 out IntPtr lpPreviousCount);

public class Foo : IDisposable
{
 public Foo() {}

 // Replace SomeCOMObj with your COM object type
 private SomeCOMObj comObj = new SomeCOMObj();
 private FileStream fileStream = new FileStream(@"c:\test.txt",
 FileMode.OpenOrCreate);
 private ArrayList aList = new ArrayList();
 private bool hasBeenDisposed = false;
 private IntPtr hSemaphore = IntPtr.Zero; // Unmanaged handle

 // Protect these members from being used on a disposed object
 public void WriteToFile(string text)
 {
 if(hasBeenDisposed)
 {

 throw (new ObjectDisposedException(this.ToString(),
 "Object has been disposed"));
 }

 UnicodeEncoding enc = new UnicodeEncoding();
 fileStream.Write(enc.GetBytes(text), 0, text.Length);
 }

 public void UseCOMObj()
 {
 if(hasBeenDisposed)
 {
 throw (new ObjectDisposedException(this.ToString(),
 "Object has been disposed"));
 }

 Console.WriteLine("GUID: " + comObj.GetType().GUID);
 }

 public void AddToList(object obj)
 {
 if(hasBeenDisposed)
 {
 throw (new ObjectDisposedException(this.ToString(),
 "Object has been disposed"));
 }

 aList.Add(obj);
 }

 public void CreateSemaphore()
 {
 // Create unmanaged handle here
 hSemaphore = CreateSemaphore(IntPtr.Zero, 5, 5, null);
 }

 // The Dispose methods
 public void Dispose()
 {
 Dispose(true);
 }

 protected virtual void Dispose(bool disposeManagedObjs)
 {
 if (!hasBeenDisposed)
 {
 if (disposeManagedObjs)
 {
 // Dispose all items in an array or ArrayList
 foreach (object obj in aList)
 {
 IDisposable disposableObj = obj as IDisposable;

 if (disposableObj != null)
 {
 disposableObj.Dispose();
 }
 }

 // Dispose managed objects implementing IDisposable
 fileStream.Close();

 // Reduce reference count on RCW
 while (Marshal.ReleaseComObject(comObj) > 0);

 GC.SuppressFinalize(this);
 }
 // Release unmanaged handle here
 IntPtr prevCnt = new IntPtr();
 ReleaseSemaphore(hSemaphore, 1, out prevCnt);

 hasBeenDisposed = true;
 }
 }

 // The destructor
 ~Foo()
 {
 Dispose(false);
 }

 // Optional Close method
 public void Close()
 {
 Dispose();
 }
}

The following class inherits from Foo :

// Class inherits from an IDisposable class
public class Bar : Foo
{
 //...

 private bool hasBeenDisposed = false;

 protected override void Dispose(bool disposeManagedObjs)
 {
 if (!hasBeenDisposed)
 {
 try
 {
 if(disposeManagedObjs)
 {

 // Call Dispose/Close/Clear on any managed objects here...
 }

 // Release any unmanaged objects here...
 }
 finally
 {
 // Call base class' Dispose method
 base.Dispose(disposeManagedObjs);
 hasBeenDisposed = true;
 }
 }
 }
}

Whether this class directly contains any references to unmanaged resources, it should be disposed of
as shown in the code.

Discussion

The dispose design pattern allows any unmanaged resources held by an object to be cleaned up from
within the managed environment. This pattern is flexible enough to allow unmanaged resources held
by the disposable object to be cleaned up explicitly (by calling the Dispose method) or implicitly (by

waiting for the garbage collector to call the destructor). Finalizers are a safety net to clean up objects
when you forget to do it.

This design pattern should be used on any base class that has derived types that
hold unmanaged resources. This indicates to the inheritor that this design
pattern should be implemented in their derived class as well.

All the code that needs to be written for a disposable object is written within the class itself. First, all
disposable types must implement the IDisposable interface. This interface contains a single method,
Dispose , which accepts no parameters and returns void . The Dispose method is overloaded to

accept a Boolean flag indicating whether any managed objects referenced by this object should also be
disposed. If this parameter is true , managed objects referenced by this object will have their Dispose

method called, and unmanaged resources are released; otherwise, only unmanaged resources are
released.

The IDisposable.Dispose method will forward its call to the overloaded Dispose method that accepts
a Boolean flag. This flag will be set to true to allow all managed objects to attempt to dispose of

themselves as well as to release unmanaged resources held by this object.

The IDisposable interface is very important to implement. This interface allows the using statement
to take advantage of the dispose pattern. A using statement that operates on the Foo object is written

as follows:

using (Foo f = new Foo())
{
 f.WriteToFile("text");

}

Always implement the IDisposable interface on types that contain resources

that need to be disposed or otherwise explicitly closed or released. This allows
the use of the using keyword and aids in self-documenting the type.

A foreach loop will also make use of the IDisposable interface, but in a slightly different manner.
After each iteration of this loop, the Dispose method is called via the enumerator type of the object
being enumerated. The enumerator type is usually a nested class that implements IEnumerator , and,
in this case, would also implement IDisposable . The foreach loop guarantees that it will call the
Dispose method on the enumerator object to allow each individually enumerated object to be disposed

of properly.

The overloaded Dispose method that accepts a Boolean flag contains a static method call to
GC.SuppressFinalize to force the garbage collector to remove this object from the fqueue , or

finalization queue. The fqueue allows the garbage collector to run C# destructors at a point after the
object has been freed. However, this ability comes at a price: it takes many garbage collection cycles
to completely collect an object with a destructor. If the object is placed on the fqueue in generation 0,
the object will have to wait until generation 1 is collected, which could be some time, since it usually
takes 10 generation 0 collections before generation 1 is collected. The GC.SuppressFinalize method

prevents the need for the object to stay in memory for all of these garbage collection cycles. Calling
this static method from within the Dispose method is critical to writing better performing classes.

Always call the GC.SuppressFinalize method in the base class Dispose

method. Doing so will allow your object to be taken off of the finalization queue
in the garbage collector allowing for earlier collection. This will help prevent
memory retention and will help your application's performance.

A destructor is also added to this class. The destructor contains code to call the overloaded Dispose
method, passing in false as its only argument. Note that all cleanup code should exist within the
overloaded Dispose method that accepts a Boolean flag. All other methods should call this method to
perform any necessary cleanup. The destructor will pass a false value into the Dispose method to

prevent any managed objects from being disposed. Remember, the destructors run in their own
thread. Attempting to dispose of objects that may have already been collected or are about to be
collected could have serious consequences for your code, such as resurrecting an object into an
undefined state. It is best to prevent any references to other objects while the destructor is running.

It is possible to add a Close or even a Clear method to your class to be called as well as the Dispose
method. Several classes in the FCL use a Close or Clear method to clean up unmanaged resources:

FileStream.Close()
StreamWriter.Close()
TcpClient.Close()
MessageQueue.Close()
SymmetricAlgorithm.Clear()
AsymmetricAlgorithm.Clear()
CryptoAPITransform.Clear()
CryptoStream.Clear()

Each of these classes also contains a Dispose method. The Clear method usually calls the Dispose
method directly. There is a problem with this design. The Clear method is used extensively throughout
the FCL for classes such as ArrayList , Hashtable , and other collection type classes. However, the
Clear method of the collection classes performs a much different task; instead of calling the
IDisposable.Dispose method, it clears the collection of all its items. This Clear method has nothing
to do with releasing unmanaged resources or calling the Dispose method.

Another problem is the confusion with the Close , Clear , and Dispose methods of the CryptoStream
class. The Close method simply flushes the pending data and attempts to close the underlying stream
object. The Clear method forwards its call on to the Dispose method. The Dispose method cleans up
this object, but does not close the underlying stream object. If you look at the base Stream class, it
has an implementation of IDisposable , and it will close the stream when you dispose it. But
CryptoStream replaces this implementation with its own that fails to close the stream, and which
doesn't call back into the Stream base class's Dispose implementation. So it's entirely inconsistent.
From this, we can conclude that to completely clean up a CryptoStream object, we must first call
Close and then either call Clear or Dispose . When in doubt, always default to calling the Dispose

method on an object.

Consider not implementing a Close method unless it will be obvious to the user

or inheritor of this class what it is for, or if you are deriving from a type such as
Stream , which does not give you a choice, since the Stream class contains no
implementation for this method. Never implement a Clear method that will be
used to dispose your object. Instead, use the commonly recognized Dispose

method. Otherwise, your code will not operate in a consistent manner with the
disposable classes within the FCL.

This implementation does not follow the dispose design pattern. To follow this pattern, the Close
method should simply forward its call on to the IDisposable.Dispose method. In addition, the Clear
method is never mentioned in the dispose design pattern, so avoid using a Clear method for anything
other than to remove elements from a collection type. As a note, this inappropriate usage of the Clear

method is unique to the cryptography classes. All other classes in the FCL seem to use it correctly.

The overloaded Dispose method that accepts a Boolean flag will contain all of the logic to release
unmanaged resources from this object as well as possibly calling Dispose on types referenced by this

object. In addition to these two actions, this method can also reduce the reference count on any COM
objects that are referenced by this object. The static Marshal.ReleaseComObject method will

decrement the reference count by one on the COM object reference passed in to this method:

Marshal.ReleaseComObject(comObj);

To force the reference count to go to zero, allowing the COM object to be released and its Runtime
Callable Wrapper (RCW) to be garbage collected, you could write the following code:

while (Marshal.ReleaseComObject(comObj) > 0);

Take great care when forcing the reference count to zero in this manner. If another object is using this
COM object, the COM object will be released out from under this other object. This can easily destabilize
a system. For more information on using this method, see Recipe 3.30 .

Any callable method/property/indexer (basically, any nonprivate method except for the Dispose and
Close methods and the constructor(s) and the destructor) should throw the

ObjectDisposedException exception if it is called after the object has been disposed-that is, after its
Dispose method has been called. A private field called hasBeenDisposed is used as a Boolean flag to
indicate whether this object has been disposed; a true confirms that it has been disposed. This flag is

checked to determine whether this object has been disposed at the beginning of every
method/property/indexer. If it has been disposed, the ObjectDisposedException is thrown. This

prevents the use of an object after it has been disposed and potentially placed in an unknown state.

Disposable objects should always check to see if they have been disposed in all of
their public methods, properties, and indexers. If a client attempts to use your
object after it has been disposed, an ObjectDisposedException should be
thrown. Note that a Dispose method can be called multiple times after this

object has been disposed without having any side effects (including the throwing
of ObjectDisposedException s) on the object.

Any classes inheriting from Foo need not implement the IDisposable interface; it is implied from the
base class. The inheriting class should implement the hasBeenDisposed Boolean flag field and use this

flag in any methods/properties/indexers to confirm that this object has been disposed. Finally, a
Dispose method is implemented that accepts a Boolean flag and overrides the same virtual method in
the base class. This Dispose method does not have to call the GC.SuppressFinalize(this) static
method; this is done in the base class's Dispose method.

The IDisposable.Dispose method should not be implemented in this class. When the Dispose
method is called on an object of type Bar , the Foo.Dispose method will be called. The Foo.Dispose
method will then call the overridden Bar.Dispose(bool) method, which, in turn, calls its base class
Dispose(bool) method, Foo.Dispose(bool) . The base class's destructor is also inherited by the Bar

class.

All Dispose methods should call their base class's Dispose method.

If the client code fails to call the Dispose or Close method, the destructor will run and the
Dispose(bool) method will still be called, albeit at a later time. The destructor is the object's last line

of defense for releasing unmanaged resources.

See Also

See Recipe 3.29 and Recipe 3.30 ; see the "Dispose Interface," "Using foreach with Collections," and
"Implementing Finalize and Dispose to Clean Up Unmanaged Resources" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 3.37 Determining Where Boxing and Unboxing
Occur

Problem

You have a project consisting of some very complex code that is a performance bottleneck for the
entire application. You have been assigned to increase performance, but you do not know where to
start looking.

Solution

A great way to start looking for performance problems is to use a profiling tool to see whether boxing
is actually causing you any kind of problem in the first place. A profiler will show you exactly what
allocations are occurring and in what volume. There are several profilers on the market; some are
free and others are not.

If you have already established through profiling that boxing is definitely causing a problem but you
are still having trouble working out where it's occurring, then you can use the Ildasm disassembler
tool that is packaged with VS.NET. With Ildasm you can convert an entire project to its equivalent IL
code and then dump the IL to a text file. To do this, Ildasm has several command-line switches, one
of which is the /output switch. This switch is used as follows:

ildasm Proj1.dll /output:Proj1.il

This command will disassemble the file Proj1.dll and then write the disassembled IL to the file
Proj1.il.

A second useful command-line switch is /source. This switch shows the original code (C#, VB.NET,

etc.) in which this DLL was written, as well as the IL that was compiled from each of these source
lines. Note that the DLL must be built with debugging enabled. This switch is used as follows:

ildasm Proj1.dll /output:Proj1.il /source

We prefer the second method of invoking Ildasm, since the original source is included, preventing you
from getting lost in all of the IL code.

After running Ildasm from the command line, open the resulting IL code file into VS.NET or your
favorite editor. Inside the editor, do a text search for the words box and unbox. This will find all

occurrences of boxing and unboxing operations.

Using this information, you have pinpointed the problem areas. Now, you can turn your attention to
them to see if there is any way to prevent or minimize the boxing/unboxing operations.

Discussion

When a boxing or unboxing operation occurs in code, whether it was implicit or explicit, the IL
generated includes the box or unbox command. For example, the following C# code:

int valType = 1;
object boxedValType = valType;
valType = (int)boxedValType;

compiles to the following IL code:

//000883: int valType = 1;
 IL_0000: ldc.i4.1
 IL_0001: stloc.0
//000884: object boxedValType = valType;
 IL_0002: ldloc.0
 IL_0003: box [mscorlib]System.Int32
 IL_0008: stloc.1
//000898: int valType = (int) boxedValType;
 IL_0061: ldloc.1
 IL_0062: unbox [mscorlib]System.Int32
 IL_0067: ldind.i4

Notice the box and unbox commands in the previous IL code. IL makes it very apparent when a

boxing or unboxing operation occurs. We can use this to our advantage to find and hopefully prevent
a boxing operation from occurring.

The following can help prevent or eliminate boxing:

Use classes instead of structures. This usually involves simply changing the struct keyword to
class in the structure definition. This very simple and quick change can dramatically improve

performance.

1.

Do not implement explicit interface members on structures. As the discussion shows, this
causes the structure to be boxed before the call to an interface member is made through the
interface. This reflects the fact that explicit implementation of a method on an interface is only
accessible from the interface type. This means that the structure must be cast to that interface
type before the explicitly declared methods of that interface type can be used. An interface is a
reference type and therefore causes the structure to be boxed when an explicit interface
method is accessed on that structure.

2.

Note that changes to a value type that exists in both boxed and unboxed form
occur independently of one another.

See Also

See the "Boxing Conversion" and "Unboxing Conversion" topics in the MSDN documentation.

Below is a list of some available profiling tools:

Allocation Profiler (free), which can be obtained in the UserSamples section of the web site
http://www.gotdotnet.com/community/usersamples/.

DevPartner Profiler Community Edition (free), which can be obtained at
http://www.compuware.com/products/devpartner/profiler/.

DevPartner Studio Professional Edition (purchase), which can be purchased at
http://www.compuware.com/products/devpartner/studio/. This package contains the code
profiler tool as well as many other tools that work with .NET and other .NET code. This package
also contains a memory analysis tool that can aid in debugging performance problems.

[Team LiB]

http://www.gotdotnet.com/community/usersamples/
http://www.compuware.com/products/devpartner/profiler/
http://www.compuware.com/products/devpartner/studio/

[Team LiB]

Chapter 4. Enumerations
Enumerations implicitly inherit from System.Enum, which, in turn, inherits from System.ValueType.

Enumerations have a single use: to describe items of a specific group. For example, the colors red,
blue, and yellow could be defined by the enumeration ValidShapeColor; likewise square, circle, and
triangle could be defined by the enumeration ValidShape. These enumerations would look like the

following:

enum ValidShapeColor
{
 Red, Blue, Yellow
}

enum ValidShape
{
 square = 2, circle = 4, triangle = 6
}

Each item in the enumeration receives a numeric value regardless of whether you assign one. Since
the compiler automatically adds the numbers starting with zero and increments by one for each item
in the enumeration, the ValidShapeColor enumeration previously defined would be exactly the same

if it were defined in the following manner:

enum ValidShapeColor
{
 Red = 0, Blue = 1, Yellow = 2
}

Enumerations are good code-documenting tools. For example, it is more intuitive to write the
following:

ValidShapeColor currentColor = ValidShapeColor.Red;

than it is to write:

int currentColor = 0;

Either mechanism can work, but the first method is easy to read and understand, especially for a new
developer taking over someone else's code.

[Team LiB]

[Team LiB]

Recipe 4.1 Displaying an Enumeration Value as a String

Problem

You need to display the textual or numeric value of an enumeration member.

Solution

Use the ToString method that each enumeration member inherits from System.Enum.

Using the following ValidShape enumeration type as an example, we can obtain the textual and

numeric values so that we may display them:

enum ValidShape
{
 Square = 0, Circle, Cylinder, Octagon
}

Using the ToString method of the ValidShape enumeration type, we can derive the value of a
specific ValidShape enumeration value directly:

Console.WriteLine(ValidShape.Circle.ToString());
Console.WriteLine(ValidShape.Circle.ToString("G"));
Console.WriteLine(ValidShape.Circle.ToString("D"));
Console.WriteLine(ValidShape.Circle.ToString("F"));
Console.WriteLine(ValidShape.Circle.ToString("X"));

This generates the following output:

Circle
Circle
1
Circle
00000001

If we are working with a variable of type ValidShape, the enumeration values can be derived in the

same manner:

ValidShape shapeStyle = ValidShape.Cylinder;

Console.WriteLine(shapeStyle.ToString());
Console.WriteLine(shapeStyle.ToString("G"));
Console.WriteLine(shapeStyle.ToString("D"));
Console.WriteLine(shapeStyle.ToString("F"));

Console.WriteLine(shapeStyle.ToString("X"));

The following is displayed:

Cylinder
Cylinder
2
Cylinder
00000002

Discussion

Deriving the textual or numeric representation of an enumeration value is a simple matter, using the
ToString instance method on the Enum type. This method can accept a character indicating the type
of formatting to place on the enumeration value. The character can be one of the following: G, g, F,
f, D, d, X, or x. See Table 4-1 for a description of these formatting types.

Table 4-1. Formatting types

Formatting
type

Description

G or g (General) Displays the string representation of the enumeration value.

F or f
(Flag) Displays the string representation of the enumeration value. The
enumeration is treated as if it were a bit field.

D or d (Decimal) Displays decimal equivalent of the enumeration.

X or x (Hexadecimal) Displays hexadecimal equivalent of the enumeration.

When printing out the values of an enumeration with the Flags attribute, the information displayed
takes into account that more than one of the enumeration values may have been ORed together. The
output will be all of the enumerations printed out as strings separated by commas or as the ORed
numeric value, depending on the formatting chosen. For example, consider if the Flags attribute
were added to the ValidShape enumeration as follows:

[Flags]
enum ValidShape
{
 Square = 0, Circle = 1, Cylinder = 2, Octagon = 4
}

and if we changed the code for this recipe as follows:

ValidShape shapeStyle = ValidShape.Circle | ValidShape.Cylinder;

Console.WriteLine(shapeStyle.ToString());
Console.WriteLine(shapeStyle.ToString("G"));
Console.WriteLine(shapeStyle.ToString("D"));

Console.WriteLine(shapeStyle.ToString("F"));
Console.WriteLine(shapeStyle.ToString("X"));

we would see the following output:

Circle, Cylinder
Circle, Cylinder
3
Circle, Cylinder
00000003

This technique provides a flexible way of extracting the flags that we are currently using on an
enumeration type.

See Also

See the "Enum.ToString" method and "Enumeration Format Strings" topic in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 4.2 Converting Plain Text to an Equivalent
Enumeration Value

Problem

You have the textual value of an enumeration element, possibly from a database or text file. This
textual value needs to be converted to a usable enumeration type.

Solution

The static Parse method on the Enum class allows the textual value of an enumeration element to be

converted to a usable enumeration value. For example:

try
{
 Language proj1Language = (Language)Enum.Parse(typeof(Language), "VBNET");
 Language proj2Language = (Language)Enum.Parse(typeof(Language), "UnDefined");
}
catch (ArgumentException e)
{
 // Handle an invalid text value here (such as the "UnDefined" string)
}

where the following Language enumeration is defined as:

enum Language
{
 Other = 0, CSharp = 1, VBNET = 2, VB6 = 3
}

Discussion

The static Enum.Parse method converts text to a specific enumeration value. This technique is useful

when a user is presented a list of values, where each value is defined in an enumeration. When the
user selects an item from this list, the text chosen can be easily converted from its string
representation to its equivalent enumeration representation using Enum.Parse. This method returns

an object of the same type as enumType. This value must then be cast to the same type as

enumType in order to use it.

In addition to accepting a single enumeration value as a string, the enumValue parameter can also

accept the enumeration value as a corresponding numeric value. For example, the following line:

Language proj1Language = (Language)Enum.Parse(typeof(Language), "VBNET");

could be rewritten as follows to perform the exact same action:

Language proj1Language = (Language)Enum.Parse(typeof(Language), "2");

This is assuming that the Language.VBNET enumeration is equal to 2.

Another interesting feature of the parse method is that it can accept a comma-delimited list of
enumeration names or values and then logically OR them together. The following example creates an
enumeration with the languages VBNET and CSharp ORed together:

Language proj1Language = (Language)Enum.Parse(typeof(Language), "CSharp, VBNET");

or:

Language proj1Language = (Language)Enum.Parse(typeof(Language), "1, 2");

Each individual element of the comma-delimited list is trimmed of any whitespace, so it does not
matter if you add any whitespace between each item in this list.

See Also

See the "Enum.Parse" method in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 4.3 Testing for a Valid Enumeration Value

Problem

When a numeric value is passed to a method that accepts an enumeration type, it is possible that the
numeric value does not exist in the parameter that accepts the enumeration value. You want to
perform a test before using this numeric value to determine whether it is indeed listed in this
enumeration type.

Solution

Use the static Enum.IsDefined method on the Enum class.

Using the following Language enumeration:

enum Language
{
 Other = 0, CSharp = 1, VBNET = 2, VB6 = 3
}

If we have a method that accepts the Language enumeration such as the following method:

public void HandleEnum(Language language)
{
 // Use language here...
}

Discussion

The static Enum.IsDefined method determines whether an enumeration value actually exists within
an enumeration of a particular type. Enum.IsDefined is a check used to determine whether the
values exist in the enumeration before they are used in your code. This method returns a bool value,
where a true indicates that the enumeration value is defined in this enumeration and false indicates

that it is not.

The Enum.IsDefined method should be used to determine whether a valid enumeration value has

been passed to any method that accepts an enumeration value as a parameter. In particular, this
Enum.IsDefined should always be used whenever the method is visible to external objects. Any

external object can invoke methods with public visibility; therefore, any enumerated value passed in
to this method should be screened before it is actually used. Methods with internal, protected, and
internal protected visibility have a much smaller scope than public methods but could still suffer
from the same problems as the public methods. Methods with private visibility may not need this
extra level of protection. Use your own judgment on whether to use Enum.IsDefined to evaluate

enumeration values passed in to private methods. Note that calling this method adds a little
overhead to your method. This slight performance hit can be magnified if this method is called many
times throughout your application.

The HandleEnum method can be called in several different ways. Two of these ways are shown here:

HandleEnum(Language.CSharp)
HandleEnum((Language)1)

Any of these method calls are valid. In addition, the following method calls are also valid:

HandleEnum((Language)100)

someVar = 100;

These method calls will also compile without errors, but odd behavior will result if the code in
HandleEnum tries to use the value passed in to it (in this case, the value 100). In many cases an
exception will not even be thrown and the CLR will attempt to handle the value 100 as part of the
Language enumeration.

To prevent this from happening, use the static Enum.IsDefined method to determine if these are
valid Language enumeration values. The following code shows the modified body of the HandleEnum

method:

public void HandleEnum(Language language)
{
 if (Enum.IsDefined(typeof(Language), language))
 {
 // Use language here...
 }
 else
 {
 // Deal with the invalid language value here...
 }
}

See Also

To test for a valid enumeration within an enumeration marked with the [Flags] attribute, see Recipe

4.4; see the "Enum.IsDefined" method in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 4.4 Testing for a Valid Enumeration of Flags

Problem

You need to determine whether a given value is a valid enumeration value or a valid combination of
enumeration values (i.e., bit flags ORed together in an enumeration marked with the Flags

attribute).

Solution

There is a problem with using Enum.IsDefined with an enumeration marked with the Flags
attribute. Consider the situation if the Language enumeration were written as follows:

[Flags]
enum Language
{
 CSharp = 1, VBNET = 2, VB6 = 4
}

Valid values for Language include the set of numbers {1, 2, 3, 4, 5, 6, 7} ; however, the values
3, 5, 6, and 7 are not explicitly represented in this enumeration. The value 3 is equal to the CSharp
and VBNET enumeration members ORed together and the value 7 is equal to all of the enumeration
members ORed together. This means that for the values 3, 5, 6, and 7, the Enum.IsDefined method
will return false, indicating that these are not valid values, when, in fact, they are. We need a way

to determine whether a correct set of flags has been passed into a method.

To fix this problem, we can add a new member to the Language enumeration to define all values for
which the Language enumeration is valid. In our case, the Language enumeration would be rewritten

as:

[Flags]
enum Language
{
 CSharp = 1, VBNET = 2, VB6 = 4,
 All = (CSharp | VBNET | VB6)
}

The new All enumeration member is equal to all other Language members ORed together. Now,
when we want to validate a Language flag, all we have to do is the following:

public bool HandleFlagsEnum(Language language)
{
 if ((language & Language.All) == language)
 {

 return (true);
 }
 else
 {
 return (false);
 }
}

Discussion

If you want to use the HandleFlagsEnum method with existing code, all that is required is to add an
All member to the existing enumeration. The All member should be equal to all the members of the
enumeration ORed together.

The HandleFlagsEnum method then uses this All member to determine whether an enumeration
value is valid. This is accomplished by ANDing the language value with the Language.All value in the
HandleFlagsEnum method.

This method can also be overloaded to handle the underlying type of the enumeration as well (in this
case, the underlying type of the Language enumeration is an integer). The following code determines
whether an integer variable contains a valid Language enumeration value:

public static bool HandleFlagsEnum(int language)
{
 if ((language & (int)Language.All) == language)
 {
 return (true);
 }
 else
 {
 return (false);
 }
}

The overloaded HandleFlagsEnum methods return true if the language parameter is valid, and
false otherwise.

See Also

To test for a valid enumeration within an enumeration not marked with the [Flags] attribute, see

Recipe 4.3.

[Team LiB]

[Team LiB]

Recipe 4.5 Using Enumerated Members in a Bitmask

Problem

An enumeration of values is needed to act as bit flags that can be ORed together to create a

combination of values (flags) in the enumeration.

Solution

Mark the enumeration with the Flags attribute:

[Flags]
enum Language
{
 CSharp = 0x0001, VBNET = 0x0002, VB6 = 0x0004, Cpp = 0x0008
}

Combining elements of this enumeration is a simple matter of using the bitwise OR operator (|). For

example:

Language lang = Language.CSharp | Language.VBNET;

Discussion

Adding the Flags attribute to an enumeration marks this enumeration as individual bit flags that can
potentially be ORed together. Using an enumeration of flags is no different than using a regular
enumeration type. It should be noted that failing to mark an enumeration with the Flags would not

generate an exception or a compile-time error even if the enumeration were used as bit flags.

The addition of the Flags attribute provides you with three benefits. First, if the Flags attribute is
placed on an enumeration, the ToString and ToString("G") methods return a string consisting of

the name of the constant(s) separated by commas. Otherwise, these two methods return the
numeric representation of the enumeration value. Note that the ToString("F") method returns a

string consisting of the name of the constant(s) separated by commas, regardless of whether this
enumeration is marked with the Flags attribute. For an indication of why this works in this manner,
see the "F" formatting type in Table 4-1 in Recipe 4.1.

The second benefit is that when you are using reflection to traverse code and encounter an
enumeration, you are able to determine the developer's intention for this enumeration. If the
developer explicitly defined this enumeration as containing bit flags (with the Flags attribute), you

can use it as such.

The third benefit is similar to the second benefit. If a developer marks an enumeration with the Flags

attribute, you know that the developer intended this enumeration to contain only bit flags. This is
similar to documenting one's code. Knowing that this enumeration can be used as a bitmask, you can
more easily determine what is going on within this developer's code.

The flags enumeration can be viewed as a single value or as one or more values combined into a
single enumeration value. If you need to accept multiple languages at a single time, you could write
the following code:

Language lang = Language.CSharp | Language.VBNET;

The variable lang is now equal to the bit values of the two enumeration values ORed together. These
values ORed together will equal three, as shown here:

Language.CSharp 0001

Language.VBNET 0010
ORed bit values 0011

The enumeration values were converted to binary and ORed together to get the binary value 0011 or
3 in base10. The compiler views this value both as two individual enumeration values
(Language.CSharp and Language.VBNET) ORed together or as a single value (3).

To determine whether a single flag has been turned on in an enumeration variable, we need to use
the bitwise AND (&) operator, as follows:

Language lang = Language.CSharp | Language.VBNET;

if((lang & Language.CSharp) == Language.CSharp)
 Console.WriteLine("The enum contains the C# enumeration value");
else
 Console.WriteLine("The enum does NOT contain the C# value");

This code will display the text "The enum contains the C# enumeration value." The ANDing of these
two values will produce either zero, if the variable lang does not contain the value
Language.CSharp; or the value Language.CSharp, if lang contains this enumeration value. Basically,
ANDing these two values looks like this in binary:

Language.CSharp | Language.VBNET 0011

Language.CSharp 0001
ANDed bit values 0001

This case is dealt with in more detail in Recipe 4.6.

In some cases, the enumeration can grow quite large. We could add many other languages to this
enumeration, as shown here:

[Flags]
enum Language
{
 CSharp = 0x0001, VBNET = 0x0002, VB6 = 0x0004, Cpp = 0x0008,
 FortranNET = 0x0010, JSharp = 0x0020, MSIL = 0x0080
}

In the cases where a Language enumeration value is needed to represent all languages, we would

have to OR together each value of this enumeration:

Language lang = CSharp | VBNET | VB6 | Cpp | FortranNET | Jsharp | MSIL

Instead of doing this, we can simply add a new value to this enumeration that includes all languages
as follows:

[Flags]
enum Language
{
 CSharp = 0x0001, VBNET = 0x0002, VB6 = 0x0004, Cpp = 0x0008,
 FortranNET = 0x0010, JSharp = 0x0020, MSIL = 0x0080,
 All = 0xFFFF
}

or:

[Flags]
enum Language
{
 CSharp = 0x0001, VBNET = 0x0002, VB6 = 0x0004, Cpp = 0x0008,
 FortranNET = 0x0010, JSharp = 0x0020, MSIL = 0x0080,
 All = (CSharp | VBNET | VB6 | Cpp | FortranNET | JSharp | MSIL)
}

Now there is a single enumeration value, All, that encompasses every value of this enumeration.
Notice that there are two methods of creating the All enumeration value. The second method is

much easier to read; however, if individual language elements of the enumeration are added or
deleted, you will have to modify the All value accordingly.

Similarly, we could also add values to capture specific subsets of enumeration values as follows:

[Flags]
enum Language
{
 CSharp = 0x0001, VBNET = 0x0002, VB6 = 0x0004, Cpp = 0x0008,
 FortranNET = 0x0010, JSharp = 0x0020,
 MSIL = 0x0080,
 All = 0x00FF, VBOnly = 0x0006, NonVB = 0x00F9
}

or:

[Flags]
enum Language
{
 CSharp = 0x0001, VBNET = 0x0002, VB6 = 0x0004, Cpp = 0x0008,
 FortranNET = 0x0010, JSharp = 0x0020,
 MSIL = 0x0080,
 All = (CSharp | VBNET | VB6 | Cpp | FortranNET | Jsharp | MSIL)
 VBOnly = (VBNET | VB6),
 NonVB = (CSharp | Cpp | FortranNET | Jsharp | MSIL)
}

Now we have two extra members in the enumerations: one that encompasses VB only languages
(Languages.VBNET and Languages.VB6) and one that encompasses non-VB languages.

[Team LiB]

[Team LiB]

Recipe 4.6 Determining Whether One or More
Enumeration Flags Are Set

Problem

You need to determine whether a variable of an enumeration type, consisting of bit flags, contains
one or more specific flags. For example, given the following enumeration Language:

[Flags]
enum Language
{
 CSharp = 0x0001, VBNET = 0x0002, VB6 = 0x0004, Cpp = 0x0008
}

Determine, using Boolean logic, whether the variable lang in the following line of code contains a
language such as Language.CSharp and/or Language.Cpp:

Language lang = Language.CSharp | Language.VBNET;

Solution

To determine whether a variable contains a single bit flag that is set, use the following conditional:

if((lang & Language.CSharp) == Language.CSharp)
{
 // lang contains at least Language.CSharp
}

To determine whether a variable exclusively contains a single bit flag that is set, use the following
conditional:

if(lang == Language.CSharp)
{
 // lang contains only the Language.CSharp
}

To determine whether a variable contains a set of bit flags that are all set, use the following
conditional:

if((lang & (Language.CSharp | Language.VBNET)) ==
 (Language.CSharp | Language.VBNET))
{
 // lang contains at least Language.CSharp and Language.VBNET
}

To determine whether a variable exclusively contains a set of bit flags that are all set, use the
following conditional:

if((lang | (Language.CSharp | Language.VBNET)) ==
 (Language.CSharp | Language.VBNET))
{
 // lang contains only the Language.CSharp and Language.VBNET
}

Discussion

When enumerations are used as bit flags (these enumerations should be marked with the Flags

attribute) they usually will require some kind of conditional testing to be performed. This kind of
conditional testing requires the use of the bitwise AND (&) and OR (|) operators.

Testing for a variable having a specific bit flag set is done with the following conditional statement:

if((lang & Language.CSharp) == Language.CSharp)

where lang is of the Language enumeration type.

The & operator is used with a bitmask to determine whether a bit is set to 1. The result of ANDing two
bits is 1 only when both bits are 1; otherwise, the result is 0. We can use this operation to determine
if a specific bit flag is set to a 1 in the number containing the individual bit flags. If we AND the
variable lang with the specific bit flag we are testing for (in this case Language.CSharp), we can
extract that single specific bit flag. The expression (lang & Language.CSharp) is solved in the
following manner if lang is equal to Language.CSharp:

Language.CSharp 0001

lang 0001
ANDed bit values 0001

If lang is equal to another value such as Language.VBNET, the expression is solved in the following

manner:

Language.CSharp 0001

lang 0010
ANDed bit values 0000

Notice that ANDing the bits together returns the value Language.CSharp in the first expression and
0x0000 in the second expression. Comparing this result to the value we are looking for
(Language.CSharp) tells us whether that specific bit was turned on.

This method is great for checking specific bits, but what if you wanted to know if only a specific bit
was turned on (and all other bits turned off) or off (and all other bits turned on)? To test whether
only the Language.CSharp bit is turned on in the variable lang, we can use the following conditional

statement:

if(lang == Language.CSharp)

Consider the situation if the variable lang contained only the value Language.CSharp. The
expression using the OR operator would look like this:

Language.CSharp 0001

lang 0001
ORed bit values 0001

Now, add a language value or two to the variable lang and perform the same operation on lang:

Language.CSharp 0001

lang 1101
ORed bit values 1101

The first expression results in the same value as we are testing against. The second expression
results in a much larger value than Language.CSharp. This result indicates that the variable lang in
the first expression only contains the value Language.CSharp and the second expression contains
other languages including Language.CSharp.

Using this same formula, we can test multiple bits to determine whether they are both on and all
other bits are off. This is done in the following conditional statement:

if((lang & (Language.CSharp | Language.VBNET)) ==
 (Language.CSharp | Language.VBNET))

Notice that to test for more than one language, we simply OR the language values together. By
switching the first & operator for an | operator, we can determine whether at least these bits are

turned on. This is done in the following conditional statement:

if((lang | (Language.CSharp | Language.VBNET)) ==
 (Language.CSharp | Language.VBNET))

When testing for multiple enumeration values, it may be beneficial to add a value to your
enumeration, which ORs together all the values you want to test for. If we wanted to test for all
languages except Language.CSharp, our conditional statement(s) would grow quite large and
unwieldy. To fix this, we could add a value to the Language enumeration that ORs together all
languages except Language.CSharp. The new enumeration would look like this:

[Flags]
enum Language
{
 CSharp = 0x0001, VBNET = 0x0002, VB6 = 0x0004, Cpp = 0x0008,
 AllLanguagesExceptCSharp = VBNET | VB6 | Cpp
}

and our conditional statement might look similar to the following:

if((lang | Language.AllLanguagesExceptCSharp) ==
 Language. AllLanguagesExceptCSharp)

This statement is quite a bit smaller and is easier to manage and read.

Use the AND operator when testing whether one or more bits are set to 1. Use
the OR operator when testing whether one or more bits are set to 0.

[Team LiB]

[Team LiB]

Chapter 5. Exception Handling
This chapter contains recipes covering the exception handling mechanism, including the try, catch,
and finally blocks. Along with these recipes are others covering the mechanisms used to throw

exceptions manually from within your code. The final types of recipes include those dealing with the
Exception classes, their uses, and subclassing them to create new types of exceptions.

Often the design and implementation of exception handling is performed later in the development
cycle. But with the power and complexities of C# exception handling, you need to plan and even
implement your exception handling scheme much earlier in the development cycle. Doing so will
increase the reliability and robustness of your code while minimizing the impact of adding exception
handling after most or all of the application is coded.

Exception handling in C# is very flexible. It allows you to choose a fine- or coarse-grained approach
to error handling and any level between. This means that you can add exception handling around any
individual line of code (the fine-grained approach), around a method that calls many other methods
(the coarse-grained approach), or use a mix of the two. When using a fine-grained approach, you can
intercept specific exceptions that might be thrown from just a few lines of code. The following method
sets an object's property to a numeric value using fine-grained exception handling:

protected void SetValue(object value)
{
 try
 {
 myObj.Property1 = value;
 }
 catch (Exception e)
 {
 // Handle potential exceptions arising from this call here.
 }
}

Consequentially, this approach can add a lot of extra baggage to your code if used throughout your
application. This fine-grained approach to exception handling should be used when you have a single
line or just a few lines of code that have a high probability of throwing an exception and you need to
handle that exception in a specific manner. For example, using the previous SetValue method, we

may have to inform the user that an exception occurred and provide a chance to try the action again.
If a method exists on myObj that needs to be called whenever an exception is thrown by one of its

methods, we should make sure that this method is called at the appropriate time.

Coarse-grained exception handling is quite the opposite; it uses fewer try-catch or try-catch-
finally blocks. One example would be to place a try-catch block around all of the code in every
public method in an application or component. Doing this allows exceptions to be handled at the

highest level in your code. If an exception is thrown at any location in your code, it will be bubbled up
the call stack until a catch block is found that can handle it. If try-catch blocks are placed on all
public methods (including the Main method), then all exceptions will be bubbled up to these

methods and handled. This allows for much less exception handling code to be written, but your

ability to handle specific exceptions that may occur in particular areas of your code is diminished. You
must determine how best to add exception handling code to your application. This means applying
the right balance of fine- and coarse-grained exception handling in your application.

C# allows catch blocks to be written without any parameters. An example of this is shown here:

public void CallCOMMethod()
{
 try
 {
 // Call a method on a COM object.
 myCOMObj.Method1();
 }
 catch
 {
 // Handle potential exceptions arising from this call here.
 }
}

This catch block has no parameters. This is a holdover from C++, where exception objects did not
have to be derived from the Exception class. Writing a catch clause in this manner in C++ allows

any type of object thrown as an exception to be caught. However, in C#, only objects derived from
the Exception base class may be thrown as an exception. Using the catch block with no parameters

allows all exceptions to be caught, but you lose the ability to view the exception and its information.
A catch block written in this manner:

catch
{
 // NOT Able to write the following line of code.
 //Console.WriteLine(e.ToString);
}

is equivalent to this:

catch (Exception e)
{
 // Able to write the following line of code.
 Console.WriteLine(e.ToString);
}

except that the Exception object can now be accessed.

Avoid writing a catch block without any parameters. Doing so will prevent you
from accessing the actual Exception object that was thrown.

When catching exceptions in a catch block, you should determine up front when exceptions need to

be rethrown, when exceptions need to be wrapped in an outer exception and thrown, and when
exceptions should be handled immediately and not be rethrown.

Wrapping an exception in an outer exception is a good practice when the original exception thrown

would not make sense to the caller. When wrapping an exception in an outer exception, you need to
determine what exception is most appropriate to wrap the caught exception. As a rule of thumb, the
wrapping exception should always aid in tracking down the original problem.

Another useful practice to use when catching exceptions is to use specific catch blocks to handle
specific exceptions in your code. When using specific catch blocks, consider adding a catch block
that handles all other exceptions (Exception) if you need to handle any other unexpected exception

or make sure that all other exceptions are handled at some point in your code. Also, remember that
base class exceptions-when used in a catch block-catch that type as well as all of its subclasses.
The following code uses specific catch blocks to handle different exceptions in the appropriate

manner:

public void CallCOMMethod()
{
 try
 {
 // Call a method on a COM object.
 myCOMObj.Method1();
 }
 catch (System.Runtime.InteropServices.ExternalException exte)
 {
 // Handle potential COM exceptions arising from this call here.
 }
 catch (InvalidOperationException ae)
 {
 // Handle any potential method calls to the COM object which are
 // not valid in its current state.
 }
}

In this code, any ExternalException or its derivatives are handled differently than any thrown
InvalidOperationException or its derivatives. If any other types of exceptions are thrown from the
myCOMObj.Method1, they are not handled here and are bubbled up until a valid catch block is found.

If none are found, the exception is considered unhandled and the application will terminate.

At times, cleanup code must be executed regardless of whether an exception is thrown. Any object
must be placed in a stable known state when an exception is thrown. In these situations where code
must be executed, use a finally block. The following code has been modified (see boldface lines) to
use a finally block:

public void CallCOMMethod()
{
 try
 {
 // Call a method on a COM object.
 myCOMObj.Method1();
 }
 catch (System.Runtime.InteropServices.ExternalException exte)
 {
 // Handle potential COM exceptions arising from this call here.
 }
 finally

 {
 // Clean up and free any resources here.
 // For example, there could be a method on myCOMObj to allow us to clean
 // up after using the Method1 method .
 }
}

The finally block will always execute, no matter what happens in the try and catch blocks. The
finally block even executes if a return, break, or continue statement is executed in the try or
catch blocks, or if a goto is used to jump out of the exception handler. This setup allows for a
reliable method of cleaning up after the try (and possibly catch) block code executes.

When determining how to structure your exception handling in your application or component,
consider doing the following:

Use a single try-catch or try-catch-finally exception handler at locations higher up in your

code. These exception handlers could be considered coarse-grained.

Code farther down the call stack should contain try-finally exception handlers. These

exception handlers can be considered fine-grained.

The fine-grained try-finally exception handlers allow for better control over cleaning up after an
exception occurs. The exception is then bubbled up to the coarser- grained try-catch or try-catch-
finally exception handler. This technique allows for a more centralized scheme of exception

handling, and minimizes the code that you have to write to handle exceptions.

To improve performance, you should programmatically handle the case when an exception could be
thrown versus catching the exception after it is thrown. For example, if a method has a good chance
of returning a null value, you could test the returned value for null before that value is used, as
opposed to using a try-catch block and allowing the NullReferenceException to be thrown.

Remember that throwing an exception has a negative impact on performance and exception-handling
code has no noticeable impact on performance, as long as an exception is not thrown. To illustrate
this, we take a method that uses exception handling code to handle the NullReferenceException:

public void SomeMethod()
{
 try
 {
 Stream s = GetAnyAvailableStream();
 Console.WriteLine("This stream has a length of " + s.Length);
 }
 catch (Exception e)
 {
 // Handle a null stream here.
 }
}

and convert this method to use an if-else conditional to handle the NullReferenceException as:

public void SomeMethod()
{
 Stream s = GetAnyAvailableStream();

 if (s != null)
 {
 Console.WriteLine("This stream has a length of " + s.Length);
 }
 else
 {
 // Handle a null stream here.
 }
}

Additionally, you should also make sure that this stream was closed, by using the finally block in

the following manner:

public void SomeMethod()
{
 Stream s = null;
 try
 {
 s = GetAnyAvailableStream();

 if (s != null)
 {
 Console.WriteLine("This stream has a length of " + s.Length);
 }
 else
 {
 // Handle a null stream here.
 }
 }
 finally
 {
 s.Close();
 }
}

The finally block contains the method call that will close the stream, ensuring that there is no data

loss.

Consider throwing exceptions instead of returning HRESULTs or some other type of error code. With

well-placed exception handling code, you should not have to rely on methods that return error codes
such as an HRESULT or a Boolean true/false to correctly handle errors, which makes for much
cleaner code. Another benefit is that you do not have to look up any HRESULT values or any other

type of error code to understand the code. However, the biggest advantage is that when an
exceptional situation arises, you cannot just ignore it as you can with error codes.

This technique is especially useful when writing a managed C# component that is called by one or
more COM objects. Throwing an exception is much cleaner and easier to read than returning an
HRESULT. The managed wrapper that the runtime creates for your managed object will make a clean
and consistent conversion between the exception type and its corresponding HRESULT value.

Throw specific exceptions, not general ones. For example, throw an ArgumentNullException instead
of ArgumentException, which is the base class of ArgumentNullException. Throwing an

ArgumentException just tells you that there was a problem with a parameter value to a method.
Throwing an ArgumentNullException tells you more specifically what the problem with the

parameter really is. Another potential problem is that a more general thrown exception may not be
caught if you are looking for a more specific type derived from the thrown exception.

There are several types of exceptions built-in to the FCL that you will find very useful to throw in your
own code. Many of these exceptions are listed here with a definition of where and when they should
be thrown:

Throw an InvalidOperationException in a property, indexer, or method when one is called

while the object is in an inappropriate state. This state could be caused by calling an indexer on
an object that has not yet been initialized or calling methods out of sequence.

Throw ArgumentException if invalid parameters are passed into a method, property, or
indexer. The ArgumentNullException, ArgumentOutOfRangeException, and
InvalidEnumArgumentException are three subclasses of the ArgumentException class. It is

more appropriate to throw one of these subclassed exceptions since they are more indicative of
the root cause of the problem. The ArgumentNullException indicates that a parameter was
passed in as null and that this parameter cannot be null under any circumstance. The
ArgumentOutOfRangeException indicates that an argument was passed in that was outside of a

valid acceptable range. This exception is used mainly with numeric values. The
InvalidEnumArgumentException indicates that an enumeration value was passed in that does

not exist in that enumeration type.

Throw a FormatException when an invalid formatting parameter is passed in as a parameter to

a method. This technique is mainly used when overriding/overloading methods such as
ToString that can accept formatting strings.

Throw ObjectDisposedException when a property, indexer, or method is called on an object

that has already been disposed. This exception should be thrown inside of the called property,
indexer, or method.

Many exceptions that derive from the SystemException class, such as NullReferenceException,
ExecutionEngineException, StackOverflowException, OutOfMemoryException, and
IndexOutOfRangeException are thrown only by the CLR and should not be explicitly thrown with the
throw keyword in your code.

[Team LiB]

[Team LiB]

Recipe 5.1 Verifying Critical Parameters

Problem

You have a method, property, or indexer that requires the correct value or set of values to be passed
in to it (e.g., cannot be null, must be within a numeric range or a set of numeric ranges, the

enumeration value must be a valid value in the enumeration). If an incorrect value is passed in to the
method, it must inform the application and handle the invalid value gracefully.

Solution

The parameters passed in to a public method should always be tested for correctness before they are
used; however, it may be more appropriate to use Debug.Assert or even to use no tests when
checking parameters to nonpublic methods. If one or more fail the test, an ArgumentException, or

one of its derivatives, should be thrown to ensure that the application is notified that critical data has
possibly been corrupted. (Note that an IndexOutOfRangeException could instead be thrown from

within an indexer.)

When a numeric parameter that is out of a specified range is passed, the
ArgumentOutOfRangeException should be thrown. The following code checks whether the
numberOfItems parameter is greater than an upper bound of 100:

if (numberOfItems > 100)
{
 throw (new ArgumentOutOfRangeException("numberOfItems", numberOfItems,
 "The number of items has exceeded the defined limits."));
}

Many parameters passed to methods may produce strange results when they are null. To prevent
this from happening, test the parameters to see whether they are null. If any parameter is null,
throw the ArgumentNullException. The following code checks the charToSeek char variable to see
whether it is null:

if (charToSeek.Equals(null))
{
 throw (new ArgumentNullException("charToSeek",
 "The character to seek may not be null."));
}

If a method accepts an enumeration value, a caller may pass a numeric value in lieu of an
enumeration value of the parameter's type. This is dangerous since the caller can easily pass in a
number that does not exist in the enumeration. To prevent this problem, test the enumeration type
parameter using the static IsDefined method on the Enum class. If the parameter contains a bad
value, throw the InvalidEnumArgumentException. The following code shows how to test the

zooAnimals parameter, of type Animals, for a bad value:

if (!Enum.IsDefined(typeof(Animals), zooAnimals))
{
 throw (new System.ComponentModel.InvalidEnumArgumentException("zooAnimals",
 (int)zooAnimals, typeof(Animals)));
}

There is a problem with using IsDefined with two or more enumeration values ORed together. See

Recipe 4.4.

Discussion

Testing parameters in this way does not have to be done on every method. Instead, you should test
the parameters that are passed in to all public methods of public classes and throw an exception only
if they are in error. For nonpublic methods, you can add Debug.Assert statements to test these

parameters.

Being in control of the code within your assembly makes it much easier for you to know which valid
parameters, their ranges, etc., you need to pass to methods within your own assembly. Someone
who is unfamiliar with your assembly has a much higher chance of passing in bad arguments to the
parameters in your assembly's public interface. Therefore, you should guard against bad parameters
from being passed to methods that will be used by developers other than yourself.

Note that the only exception allowing for an inner exception is ArgumentException. The more
general exceptions, such as ArgumentException, were designed this way, so that the more specific
exceptions, such as ArgumentNullException, can be wrapped with the more general exceptions,
such as ArgumentException. This specificity gives a much clearer picture of how and where the

exception occurred.

See Also

See the "ArgumentException Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 5.2 Indicating Where Exceptions Originate

Problem

You want to be able to clearly distinguish which of your objects threw an exception, to aid in tracking
down problems.

Solution

You should rethrow the exception in the catch clause in which the original exception was handled.
The throw keyword is used, followed by a semicolon, to rethrow an exception:

try
{
 Console.WriteLine("In inner try");
 int z2 = 9999999;
 checked{z2 *= 999999999;}
}
catch(DivideByZeroException dbze)
{
 Console.WriteLine(@"A divide by zero exception occurred. " +
 "Error message == " + dbze.Message);
 throw;
}

Discussion

Rethrowing a caught exception is useful to inform clients of your code that an error has occurred.
Consider the case in which a client application contained the CatchReThrownException method and
the ReThrowException method was contained in a separate server application that existed
somewhere on the network. When the client application called the ReThrowException method and an

error occurred, the server application could handle the exception and continue about its business.
However, if this exception forced the server application to abort, it should rethrow the exception so
that the client application knows what happened and can deal with the same exception in a graceful
manner.

Remember that throwing exceptions is expensive. Try not to needlessly throw
and rethrow exceptions since this might bog down your application.

[Team LiB]

[Team LiB]

Recipe 5.3 Choosing when to Throw a Particular Exception

Problem

There are many exceptions to choose from in the FCL. You need an easily accessible list of these
exceptions that indicates when and where to use them. By throwing exceptions in a consistent manner
(e.g., throwing an IndexOutOfRangeException when an array index is greater than the length of the

array), you and others on your team will be able to debug problems more easily.

Solution

Use the list of exceptions and their definitions in Table 5-1 to determine which exception to employ when
throwing or catching exceptions.

Discussion

Table 5-1. The built-in exception types

Exception name Derives from Description

System.ApplicationException Exception

Use this class
as the base
class to user-
defined
exceptions; a
more derived
exception
should be
thrown.

System.ArgumentNullException ArgumentException

Thrown when
a parameter
value for a
method is
null and
null is not

allowed.

System.ArgumentOutOfRangeException ArgumentException

Thrown when
a parameter
value for a
method is
out of the

Exception name Derives from Description out of the
range of
expected
values.

System.ArrayTypeMismatchException SystemException

Thrown when
an
incompatible
data type is
assigned to
an element in
an array.

System.Runtime.InteropServices.COMException ExternalException

Thrown when
an unknown
HRESULT is

returned
from a COM
object.

System.Configuration.ConfigurationException SystemException

Thrown when
an invalid
configuration
setting is
encountered.

System.Reflection.CustomAttributeFormatException FormatException

Thrown when
a custom
attribute
format is
incorrect.

System.IO.DirectoryNotFoundException IOException

Thrown when
a file or
directory
cannot be
found.

System.Exception Object

Base class of
all
exceptions;
you should
always throw
a more
derived
exception.

System.FormatException SystemException

Thrown when
an invalid
format
parameter is
passed to a
method.

out of the
range of
expected
values.

System.ArrayTypeMismatchException SystemException

Thrown when
an
incompatible
data type is
assigned to
an element in
an array.

System.Runtime.InteropServices.COMException ExternalException

Thrown when
an unknown
HRESULT is

returned
from a COM
object.

System.Configuration.ConfigurationException SystemException

Thrown when
an invalid
configuration
setting is
encountered.

System.Reflection.CustomAttributeFormatException FormatException

Thrown when
a custom
attribute
format is
incorrect.

System.IO.DirectoryNotFoundException IOException

Thrown when
a file or
directory
cannot be
found.

System.Exception Object

Base class of
all
exceptions;
you should
always throw
a more
derived
exception.

System.FormatException SystemException

Thrown when
an invalid
format
parameter is
passed to a
method.

Exception name Derives from Description

System.IndexOutOfRangeException SystemException

Thrown when
you attempt
to access an
array
element with
an index
value outside
the valid
range for
that array.

System.Configuration.Install.InstallException SystemException

Thrown
during
software
installation
when an
error is
encountered
during
uninstall,
committing
of data, or
rolling back
of data.

System.ComponentModel.InvalidEnumArgumentException ArgumentException

Thrown when
an invalid
enumeration
value is
passed to a
method.

System.InvalidOperationException SystemException

Thrown when
a method is
called while
the object it
resides in is
in a state
that makes it
illegal to call
this method.

System.IO.IOException SystemException

Thrown when
a general I/O
exception
occurs; you
should throw
a more
derived
exception.

Thrown when

System.IndexOutOfRangeException SystemException

Thrown when
you attempt
to access an
array
element with
an index
value outside
the valid
range for
that array.

System.Configuration.Install.InstallException SystemException

Thrown
during
software
installation
when an
error is
encountered
during
uninstall,
committing
of data, or
rolling back
of data.

System.ComponentModel.InvalidEnumArgumentException ArgumentException

Thrown when
an invalid
enumeration
value is
passed to a
method.

System.InvalidOperationException SystemException

Thrown when
a method is
called while
the object it
resides in is
in a state
that makes it
illegal to call
this method.

System.IO.IOException SystemException

Thrown when
a general I/O
exception
occurs; you
should throw
a more
derived
exception.

Thrown when

Exception name Derives from Description

System.MemberAccessException SystemException

Thrown when
a general
error occurs
while using a
class
member; you
should throw
a more
derived
exception.

System.MethodAccessException MemberAccessException

Thrown when
a general
error occurs
while using a
method
member.

System.NotFiniteNumberException ArithmeticException

Thrown when
a double or
single data
type is
expected to
have a finite
number and
instead it
contains
NaN,
+infinity, or -
infinity.

System.NotImplementedException SystemException

Thrown when
a member is
accessed that
is not yet
implemented.

System.NotSupportedException SystemException

Thrown when
a member is
accessed that
is not yet
supported.

System.NullReferenceException SystemException

Thrown when
a reference
set to null is

used.

System.ObjectDisposedException
InvalidOperation-
Exception

Thrown when
a disposed
object is
accessed.

System.MemberAccessException SystemException

Thrown when
a general
error occurs
while using a
class
member; you
should throw
a more
derived
exception.

System.MethodAccessException MemberAccessException

Thrown when
a general
error occurs
while using a
method
member.

System.NotFiniteNumberException ArithmeticException

Thrown when
a double or
single data
type is
expected to
have a finite
number and
instead it
contains
NaN,
+infinity, or -
infinity.

System.NotImplementedException SystemException

Thrown when
a member is
accessed that
is not yet
implemented.

System.NotSupportedException SystemException

Thrown when
a member is
accessed that
is not yet
supported.

System.NullReferenceException SystemException

Thrown when
a reference
set to null is

used.

System.ObjectDisposedException
InvalidOperation-
Exception

Thrown when
a disposed
object is
accessed.

Exception name Derives from Description

System.ServiceProcess.TimeoutException SystemException
Thrown when
a service
times out.

System.ComponentModel.WarningException SystemException

Thrown when
a warning
message
needs to be
displayed.
This
exception
does not
imply a
serious
failure of the
application or
system.

System.Net.WebException
InvalidOperation-
Exception

Thrown when
a pluggable
protocol
causes an
error.

System.Xml.XmlException SystemException

Thrown due
to a general
error in the
XML.

See Also

See the "Exception Class" topic in the MSDN documentation; also see the classes that derive from the
Exception class.

[Team LiB]

System.ServiceProcess.TimeoutException SystemException
Thrown when
a service
times out.

System.ComponentModel.WarningException SystemException

Thrown when
a warning
message
needs to be
displayed.
This
exception
does not
imply a
serious
failure of the
application or
system.

System.Net.WebException
InvalidOperation-
Exception

Thrown when
a pluggable
protocol
causes an
error.

System.Xml.XmlException SystemException

Thrown due
to a general
error in the
XML.

See Also

See the "Exception Class" topic in the MSDN documentation; also see the classes that derive from the
Exception class.

[Team LiB]

[Team LiB]

Recipe 5.4 Handling Derived Exceptions Individually

Problem

You have an exception hierarchy that consists of a base exception class and multiple derived
exception classes. At some point in your code, you want to handle only one or two of these derived
exceptions in a specific manner. All other derived exceptions should be handled in a more generic
manner. You need a clean way to target specific exceptions in an exception class hierarchy to be
handled differently from the rest.

Solution

The exception handlers for C# allow for multiple catch clauses to be implemented. Each of these
catch clauses can take a single parameter-a type derived from the Exception class. An exception

handler that uses multiple catch clauses is shown here:

try
{
 int d = 0;
 int z = 1/d;
}
catch(DivideByZeroException dbze)
{
 Console.WriteLine("A divide by zero exception occurred. Error message == "
 + dbze.Message);
}
catch(OverflowException ofe)
{
 Console.WriteLine("An Overflow occurred. Error message == " + ofe.Message);
}
catch(Exception e)
{
 Console.WriteLine("Another type of error occurred. Error message == "
 + e.Message);
}

This code produces the following output:

A divide by zero exception occurred. Error message == Attempted to divide by zero.

Discussion

Notice the exception types that each catch clause handles in this try-catch block. These specific
exception types will be handled on an individual basis within their own catch block. Suppose the try

block looked as follows:

try
{
 int z2 = 9999999;
 checked{z2 *= 999999999;}
}

We would get the following message:

An Overflow occurred. Error message == Arithmetic operation resulted in an overflow.

Now, since the OverflowException is being thrown, it is handled in a totally different catch block.

You may be thinking that you could do the same thing in a single catch block using an if-else

statement. An example of this is shown here:

catch(Exception e)
{
 if (e is OverflowException)
 Console.WriteLine("An Overflow occurred. Error message == " + e.Message);
 else if (e is DivideByZeroException)
 Console.WriteLine("A divide by zero exception occurred. Error message == " +
 e.Message);
 else
 Console.WriteLine("Another type of error occurred. Error message == " +
 e.Message);
}

The if-else statements are used to check the type of this exception and then execute the

appropriate code. This structure has two flaws. The first is that the compiler does not check whether
the exceptions are listed in the correct order in the if-else statements. If an exception class is
placed in the if-else conditional structure after a class in which it inherits from, the derived class will
never be checked. Consider the following modified catch clause:

try
{
 int d = 0;
 int z = 1/d;
}
catch(Exception e)
{
 if (e is ArithmeticException)
 Console.WriteLine("The base class exception was chosen.");
 else if (e is OverflowException)
 Console.WriteLine("An Overflow occurred. Error message == " + e.Message);
 else if (e is DivideByZeroException)
 Console.WriteLine("A divide by zero exception occurred. Error message == " +
 e.Message);
 else
 Console.WriteLine("Another type of error occurred. Error message == " +
 e.Message);
}

This code produces the following output:

The base class exception was chosen.

Even though the DivideByZeroException was thrown, the ArithmeticException is always found
first, as the DivideByZeroException and OverflowException both have the ArithmeticException

class as their base class.

The second flaw is one of appearance. Using multiple catch clauses is much easier to read due to its

natural and consistent structure. This is the way the language should be used, and, therefore, this is
what many developers are going to look for. Other developers reading your code may find it more
natural to read the multiple catch classes rather than the single catch clause with a decision

structure inside of it. Not everyone may agree with us on this part, but we do consider structure and
consistency an integral part of writing good code.

There is one case where we would consider using the single catch clause with the decision structure:
when large amounts of code would have to be duplicated in each catch clause and there is no way to
put the duplicated code in a finally clause after the try-catch block.

See Also

See the "Error Raising and Handling Guidelines" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 5.5 Assuring Exceptions are Not Lost when Using
Finally Blocks

Problem

You have multiple nested try /catch , try /finally , and try /catch /finally blocks. If a catch

block attempts to rethrow an exception, it is possible that the rethrown exception could get discarded
and a new and unexpected exception could be caught by an outer exception handler. You want to
prevent this situation from occurring.

Solution

Add an inner try /catch block in the finally block of the outer exception handler:

private void PreventLossOfException()
{
 try
 {
 //...
 }
 catch(Exception e)
 {
 Console.WriteLine("Error message == " + e.Message);
 throw;
 }
 finally
 {
 try
 {
 //...
 }
 catch(Exception e)
 {
 Console.WriteLine(@"An unexpected error occurred in the finally block .
 Error message == " + e.Message);
 }
 }
}

This block will prevent the original exception from being lost.

Discussion

Consider what would happen if an error were thrown from the inner finally block contained in the

ReThrowException method. If the code looked like this:

public void PreventLossOfException()
{
 try
 {
 Console.WriteLine("In outer try");
 ReThrowException();
 }
 catch(Exception e)
 {
 Console.WriteLine("In outer catch. ReThrown error == " + e.Message);
 }
 finally
 {
 Console.WriteLine("In outer finally");
 }
}

private void ReThrowException()
{
 try
 {
 Console.WriteLine("In inner try");
 int z2 = 9999999;
 checked{z2 *= 999999999;}
 }
 catch(OverflowException ofe)
 {
 Console.WriteLine("An Overflow occurred. Error message == " +
 ofe.Message);
 throw;
 }
 catch(Exception e)
 {
 Console.WriteLine("Another type of error occurred. Error message == " +
 e.Message);
 throw;
 }
 finally
 {
 Console.WriteLine("In inner finally");
 throw(new Exception("Oops"));
 }
}

the following output would be displayed:

In outer try
In inner try
An Overflow occurred. Error message == Arithmetic operation resulted in an overflow.
In inner finally

In outer catch. ReThrown error == Oops
In outer finally

If we modify the inner finally block to handle its own errors (changes are highlighted), similar to the

following code:

public void PreventLossOfException()
{
 try
 {
 Console.WriteLine("In outer try");
 ReThrowException();
 }
 catch(Exception e)
 {
 Console.WriteLine("In outer catch. ReThrown error == " + e.Message);
 }
 finally
 {
 Console.WriteLine("In outer finally");
 }
}

private void ReThrowException()
{
 try
 {
 Console.WriteLine("In inner try");
 int z2 = 9999999;
 checked{z2 *= 999999999;}
 }
 catch(OverflowException ofe)
 {
 Console.WriteLine("An Overflow occurred. Error message == " +
 ofe.Message);
 throw;
 }
 catch(Exception e)
 {
 Console.WriteLine("Another type of error occurred. " +
 "Error message == " + e.Message);
 throw;
 }
 finally
 {
 try
 {
 Console.WriteLine("In inner finally");
 throw(new Exception("Oops"));
 }
 catch(Exception e)
 {

 Console.WriteLine(@"An error occurred in the finally block. " +
 "Error message == " + e.Message);
 }
 }
}

we would get the following output:

In outer try
In inner try
An Overflow occurred. Error message == Arithmetic operation resulted in an overflow.
In inner finally
An error occurred in the finally block. Error message == Oops
In outer catch. ReThrown error == Arithmetic operation resulted in an overflow.
In outer finally

By handling exceptions within the inner finally block, we assure that the correct re-thrown exception

bubbles up to the next outer exception handler.

When writing a finally block, consider placing a separate try-catch around

the code.

See Also

See the "Error Raising and Handling Guidelines" topic and the "throw," "try," "catch," and "finally"
keywords in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 5.6 Handling Exceptions Thrown from Methods
Invoked via Reflection

Problem

Using reflection, you invoke a method that generates an exception. You want to obtain the real
exception object and its information in order to diagnose and fix the problem.

Solution

The real exception and its information can be obtained through the InnerException property of the
TargetInvocationException exception that is thrown by MethodInfo.Invoke .

Discussion

The following example shows how an exception that occurs within a method invoked via reflection is
handled. The Reflect class contains a ReflectionException method that invokes the static
TestInvoke method using the reflection classes as shown here:

using System;
using System.Reflection;

public class Reflect
{
 public void ReflectionException()
 {
 Type reflectedClass = typeof(Reflect);
 try
 {
 MethodInfo methodToInvoke = reflectedClass.GetMethod("TestInvoke");

 if (methodToInvoke != null)
 {
 object oInvoke = methodToInvoke.Invoke(null, null);
 }
 }
 catch(Exception e)
 {
 Console.WriteLine("MESSAGE: " + e.Message);
 Console.WriteLine("SOURCE: " + e.Source);
 Console.WriteLine("TARGET: " + e.TargetSite);
 Console.WriteLine("STACK: " + e.StackTrace + "\r\n");

 if(e.InnerException != null)

 {
 Console.WriteLine();
 Console.WriteLine("\t**** INNEREXCEPTION START ****");
 Console.WriteLine("\tTYPE THAT THREW EXCEPTION: " +
 reflectedClass.ToString());
 Console.WriteLine("\tINNEREXCEPTION MESSAGE: " +
 e.InnerException.Message);
 Console.WriteLine("\tINNEREXCEPTION SOURCE: " +
 e.InnerException.Source);
 Console.WriteLine("\tINNEREXCEPTION STACK: " +
 e.InnerException.StackTrace);
 Console.WriteLine("\tINNEREXCEPTION TARGETSITE: " +
 e.InnerException.TargetSite);
 Console.WriteLine("\t**** INNEREXCEPTION END ****");
 }

 Console.WriteLine();

 // Shows fusion log when assembly cannot be located
 Console.WriteLine(e.ToString());
 }
 }

 // Method to invoke via reflection
 public static void TestInvoke()
 {
 throw (new Exception("Thrown from invoked method."));
 }
}

This code displays the following text:

MESSAGE: Exception has been thrown by the target of an invocation.
SOURCE: mscorlib
TARGET: System.Object InternalInvoke(System.Object, System.Reflection.BindingFlags,
 System.Reflection.Binder, System.Object[], System.Globalization.CultureInfo,
 Boolean, System.Reflection.Assembly, Boolean)
STACK: at System.Reflection.RuntimeMethodInfo.InternalInvoke(Object obj,
 BindingFlags invokeAttr, Binder binder, Object[] parameters, CultureInfo culture,
 Boolean isBinderDefault, Assembly caller, Boolean verifyAccess)
 at System.Reflection.RuntimeMethodInfo.InternalInvoke(Object obj,
 BindingFlags invokeAttr, Binder binder, Object[] parameters, CultureInfo culture,
 Boolean verifyAccess)
 at System.Reflection.RuntimeMethodInfo.Invoke(Object obj, BindingFlags invokeAttr,
 Binder binder, Object[] parameters, CultureInfo culture)
 at System.Reflection.MethodBase.Invoke(Object obj, Object[] parameters)
 at Reflect.ReflectionException() in
 c:\book cs cookbook\code\test.cs:line 22

 **** INNEREXCEPTION START ****
 TYPE THAT THREW EXCEPTION: ClassLibrary1.Reflect
 INNEREXCEPTION MESSAGE: Thrown from invoked method.

 INNEREXCEPTION SOURCE: ClassLibrary1
 INNEREXCEPTION STACK: at ClassLibrary1.Reflect.TestInvoke() in
 C:\BOOK CS CookBook\Code\Test.cs:line 49
 at ClassLibrary1.Reflect.TestInvoke() in
 C:\BOOK CS CookBook\Code\Test.cs:line 49
 INNEREXCEPTION TARGETSITE: Void TestInvoke()
 **** INNEREXCEPTION END ****

When the methodToInvoke.Invoke method is called, the TestInvoke method is called and
subsequently throws an exception. The outer exception thrown is the TargetInvocationException

exception; this is the generic exception thrown when a method invoked through reflection throws an
exception. The CLR automatically wraps the original exception thrown by the invoked method inside of
the TargetInvocationException object's InnerException property. In this case, the exception
thrown by the invoked method is the generic Exception exception. This exception is shown after the
section that begins with the text **** INNEREXCEPTION START **** .

In addition to this text, the code also calls e.ToString to print out the exception text. The text output
from ToString is:

System.Reflection.TargetInvocationException: Exception has been thrown by the target
of an invocation. ---> System.Exception: Thrown from invoked method.
 at ClassLibrary1.Reflect.TestInvoke() in
 C:\BOOK CS CookBook\Code\Test.cs:line 49
 at ClassLibrary1.Reflect.TestInvoke() in
 C:\BOOK CS CookBook\Code\Test.cs:line 49
 --- End of inner exception stack trace ---
 at System.Reflection.RuntimeMethodInfo.InternalInvoke(Object obj, BindingFlags
 invokeAttr, Binder binder, Object[] parameters, CultureInfo culture, Boolean
 isBinderDefault, Assembly caller, Boolean verifyAccess)
 at System.Reflection.RuntimeMethodInfo.InternalInvoke(Object obj, BindingFlags
 invokeAttr, Binder binder, Object[] parameters, CultureInfo culture, Boolean
 verifyAccess)
 at System.Reflection.RuntimeMethodInfo.Invoke(Object obj, BindingFlags invokeAttr,
 Binder binder, Object[] parameters, CultureInfo culture)
 at System.Reflection.MethodBase.Invoke(Object obj, Object[] parameters)
 atReflect.ReflectionException() in c:\book cs cookbook
 \code\test.cs:line 22

Using the ToString method is a quick and simple way of displaying the most relevant outer exception

information along with the most relevant information for each inner exception.

See Also

See the "Type Class" and "MethodInfo Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 5.7 Debugging Problems whenLoading an
Assembly

Problem

You want to use a reflection-based technique, such as the static Assembly.LoadFrom method, to load

an assembly. If this method fails, you want to collect as much useful information you can as to why
this assembly failed to load.

Solution

Either call the ToString method on the exception object thrown or use the FusionLog property on
BadImageFormatException, FileLoadException, or FileNotFoundException. When an exception

occurs while using a file, the exception contains extra information that is taken from the fusion log.
To see this in action, run the following code:

public static void LoadMissingDLL()
{
 // Load the DLL
 try
 {
 Assembly reflectedAssembly = Assembly.LoadFrom("BadFileName.dll");
 }
 catch (FileNotFoundException fnf)
 {
 // This displays the fusion log information only
 Console.WriteLine(fnf.FusionLog);
 }
 catch (Exception e) // Note that you would use one catch block or the other,
 { // not both
 // This displays the exception information along
 // with any fusion log information
 Console.WriteLine(e.ToString());
 }
}

Discussion

Use this technique to debug problems when loading an assembly from a file. When using the
ToString method of the Exception object, notice the bottom part of the error message that starts

with "Fusion log follows." This is the section that can provide some clue as to why the reflection APIs
could not find your assembly. If you want just the fusion information, you can use the FusionLog

property of one of the aforementioned exception objects.

See Also

See the "BadImageFormatException Class," "FileLoadException Class," and "FileNotFoundException
Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 5.8 HRESULT-Exception Mapping

Problem

You need a reference table that maps each COM HRESULT to its managed exception counterpart. This

mapping will allow you to throw the correct managed exception in C#, which will map to the expected
COM HRESULT in unmanaged code.

Solution

Every managed exception maps to an HRESULT. Table 5-2 lists the managed exception classes and
their equivalent HRESULT values. Use this table to determine what type of managed exception to use

when throwing an exception back to unmanaged code, as well as what type of exception object to
use when handling returned COM/COM+ HRESULT values.

Table 5-2. Mappping .NET exceptions to HRESULTS

.NET exception class name HRESULT name (hex value of HRESULT)

AccessException COR_E_MEMBERACCESS (0x8013151A)

AmbiguousMatchException COR_E_AMBIGUOUSMATCH (0X80138000211D)

AppDomainUnloadedException MSEE_E_APPDOMAINUNLOADED (0x80131015)

ApplicationException COR_E_APPLICATION (0x80131600)

ArgumentException COR_E_ARGUMENT (0x80070057)

ArgumentNullException E_POINTER (0x80004003)

ArgumentOutOfRangeException COR_E_ARGUMENTOUTOFRANGE (0x80131502)

ArithmeticException COR_E_ARITHMETIC (0x80070216)

ArrayTypeMismatchException COR_E_ARRAYTYPEMISMATCH (0x80131503)

BadImageFormatException COR_E_BADIMAGEFORMAT (0x8007000B)

CannotUnloadAppDomainException COR_E_CANNOTUNLOADAPPDOMAIN (0x80131015)

COMException
Any Other HRESULT Defaults To This .NET
Exception

ContextMarshalException COR_E_CONTEXTMARSHAL (0x80131504)

.NET exception class name HRESULT name (hex value of HRESULT)

CryptographicException NTE_FAIL

CryptographicUnexpectedOperationException CORSEC_E_CRYPTO_UNEX_OPER (0x80131431)

CustomAttributeFormatException COR_E_FORMAT (0x80131537)

DirectoryNotFoundException
COR_E_DIRECTORYNOTFOUND (0x80070003)

STG_E_PATHNOTFOUND (0x80030003)

DivideByZeroException COR_E_DIVIDEBYZERO (0x80020012)

DllNotFoundException COR_E_DLLNOTFOUND (0x80131524)

DuplicateWaitObjectException COR_E_DUPLICATEWAITOBJECT (0x80131529)

EndOfStreamException COR_E_ENDOFSTREAM (0x801338)

EntryPointNotFoundException COR_E_TYPELOAD (0x80131522)

Exception COR_E_EXCEPTION (0x80131500)

ExecutionEngineException COR_E_EXECUTIONENGINE (0x80131506)

ExternalException E_FAIL (0x80004005)

FieldAccessException COR_E_FIELDACCESS (0x80131507)

FileNotFoundException
COR_E_FILELOAD (0x80131621 or
0x80131018)

FileNotFoundException COR_E_FILENOTFOUND (0x80070002)

FormatException COR_E_FORMAT (0x80131537)

IndexOutOfRangeException COR_E_INDEXOUTOFRANGE (0x80131508)

InvalidCastException COR_E_INVALIDCAST (0x80004002)

InvalidComObjectException COR_E_INVALIDCOMOBJECT (0x80131527)

InvalidFilterCriteriaException COR_E_INVALIDFILTERCRITERIA (0x80131601)

InvalidOleVariantTypeException COR_E_INVALIDOLEVARIANTTYPE (0x80131531)

InvalidOperationException COR_E_INVALIDOPERATION (0x80131509)

InvalidProgramException COR_E_INVALIDPROGRAM (0x8013153A)

IOException COR_E_IO (0x80131620)

IsolatedStorageException ISS_E_ISOSTORE (0x80131450)

MarshalDirectiveException COR_E_MARSHALDIRECTIVE (0x80131535)

MethodAccessException COR_E_METHODACCESS (0x80131510)

MissingFieldException COR_E_MISSINGFIELD (0x80131511)

CryptographicException NTE_FAIL

CryptographicUnexpectedOperationException CORSEC_E_CRYPTO_UNEX_OPER (0x80131431)

CustomAttributeFormatException COR_E_FORMAT (0x80131537)

DirectoryNotFoundException
COR_E_DIRECTORYNOTFOUND (0x80070003)

STG_E_PATHNOTFOUND (0x80030003)

DivideByZeroException COR_E_DIVIDEBYZERO (0x80020012)

DllNotFoundException COR_E_DLLNOTFOUND (0x80131524)

DuplicateWaitObjectException COR_E_DUPLICATEWAITOBJECT (0x80131529)

EndOfStreamException COR_E_ENDOFSTREAM (0x801338)

EntryPointNotFoundException COR_E_TYPELOAD (0x80131522)

Exception COR_E_EXCEPTION (0x80131500)

ExecutionEngineException COR_E_EXECUTIONENGINE (0x80131506)

ExternalException E_FAIL (0x80004005)

FieldAccessException COR_E_FIELDACCESS (0x80131507)

FileNotFoundException
COR_E_FILELOAD (0x80131621 or
0x80131018)

FileNotFoundException COR_E_FILENOTFOUND (0x80070002)

FormatException COR_E_FORMAT (0x80131537)

IndexOutOfRangeException COR_E_INDEXOUTOFRANGE (0x80131508)

InvalidCastException COR_E_INVALIDCAST (0x80004002)

InvalidComObjectException COR_E_INVALIDCOMOBJECT (0x80131527)

InvalidFilterCriteriaException COR_E_INVALIDFILTERCRITERIA (0x80131601)

InvalidOleVariantTypeException COR_E_INVALIDOLEVARIANTTYPE (0x80131531)

InvalidOperationException COR_E_INVALIDOPERATION (0x80131509)

InvalidProgramException COR_E_INVALIDPROGRAM (0x8013153A)

IOException COR_E_IO (0x80131620)

IsolatedStorageException ISS_E_ISOSTORE (0x80131450)

MarshalDirectiveException COR_E_MARSHALDIRECTIVE (0x80131535)

MethodAccessException COR_E_METHODACCESS (0x80131510)

MissingFieldException COR_E_MISSINGFIELD (0x80131511)

.NET exception class name HRESULT name (hex value of HRESULT)

MissingManifestResourceException
COR_E_MISSINGMANIFESTRESOURCE
(0x80131532)

MissingMemberException COR_E_MISSINGMEMBER (0x80131512)

MissingMethodException COR_E_MISSINGMETHOD (0x80131513)

MulticastNotSupportedException COR_E_MULTICASTNOTSUPPORTED (0x80131514)

NotFiniteNumberException COR_E_NOTFINITENUMBER (0x80131528)

NotImplementedException E_NOTIMPL

NotSupportedException COR_E_NOTSUPPORTED (0x80131515)

NullReferenceException COR_E_NULLREFERENCE (0x80004003)

OutOfMemoryException COR_E_OUTOFMEMORY (0x8007000E)

OverflowException COR_E_OVERFLOW (0x80131516)

PathTooLongException COR_E_PATHTOOLONG (0x8013206)

PlatformNotSupportedException COR_E_PLATFORMNOTSUPPORTED (0x80131539)

PolicyException CORSEC_E_POLICY_EXCEPTION

RankException COR_E_RANK (0x80131517)

ReflectionTypeLoadException COR_E_REFLECTIONTYPELOAD (0x80131602)

RemotingException COR_E_REMOTING (0x8013150B)

RemotingTimeoutException COR_E_REMOTING (0x8013150B)

SafeArrayTypeMismatchException COR_E_SAFEARRAYTYPEMISMATCH (0x80131533)

SafeArrayRankMismatchException COR_E_SAFEARRAYRANKMISMATCH (0x80131538)

SecurityException COR_E_SECURITY (0x8013150A)

SEHException E_FAIL (0x80004005)

SerializationException COR_E_SERIALIZATION (0x8013150C)

ServerException COR_E_SERVER (0x8013150E)

StackOverflowException COR_E_STACKOVERFLOW (0x800703E9)

SUDSGeneratorException COR_E_EXCEPTION (0x80131500)

SUDSParserException COR_E_EXCEPTION (0x80131500)

SynchronizationLockException COR_E_SYNCHRONIZATIONLOCK (0x80131518)

SystemException COR_E_SYSTEM (0x80131501)

TargetException COR_E_TARGET

TargetInvocationException COR_E_TARGETINVOCATION (0x80131604)

MissingManifestResourceException
COR_E_MISSINGMANIFESTRESOURCE
(0x80131532)

MissingMemberException COR_E_MISSINGMEMBER (0x80131512)

MissingMethodException COR_E_MISSINGMETHOD (0x80131513)

MulticastNotSupportedException COR_E_MULTICASTNOTSUPPORTED (0x80131514)

NotFiniteNumberException COR_E_NOTFINITENUMBER (0x80131528)

NotImplementedException E_NOTIMPL

NotSupportedException COR_E_NOTSUPPORTED (0x80131515)

NullReferenceException COR_E_NULLREFERENCE (0x80004003)

OutOfMemoryException COR_E_OUTOFMEMORY (0x8007000E)

OverflowException COR_E_OVERFLOW (0x80131516)

PathTooLongException COR_E_PATHTOOLONG (0x8013206)

PlatformNotSupportedException COR_E_PLATFORMNOTSUPPORTED (0x80131539)

PolicyException CORSEC_E_POLICY_EXCEPTION

RankException COR_E_RANK (0x80131517)

ReflectionTypeLoadException COR_E_REFLECTIONTYPELOAD (0x80131602)

RemotingException COR_E_REMOTING (0x8013150B)

RemotingTimeoutException COR_E_REMOTING (0x8013150B)

SafeArrayTypeMismatchException COR_E_SAFEARRAYTYPEMISMATCH (0x80131533)

SafeArrayRankMismatchException COR_E_SAFEARRAYRANKMISMATCH (0x80131538)

SecurityException COR_E_SECURITY (0x8013150A)

SEHException E_FAIL (0x80004005)

SerializationException COR_E_SERIALIZATION (0x8013150C)

ServerException COR_E_SERVER (0x8013150E)

StackOverflowException COR_E_STACKOVERFLOW (0x800703E9)

SUDSGeneratorException COR_E_EXCEPTION (0x80131500)

SUDSParserException COR_E_EXCEPTION (0x80131500)

SynchronizationLockException COR_E_SYNCHRONIZATIONLOCK (0x80131518)

SystemException COR_E_SYSTEM (0x80131501)

TargetException COR_E_TARGET

TargetInvocationException COR_E_TARGETINVOCATION (0x80131604)

.NET exception class name HRESULT name (hex value of HRESULT)

TargetParameterCountException COR_E_TARGETPARAMCOUNT (0x80138002)

ThreadAbortException COR_E_THREADABORTED (0x80131530)

ThreadInterruptedException COR_E_THREADINTERRUPTED (0x80131519)

ThreadStateException COR_E_THREADSTATE (0x80131520)

ThreadStopException COR_E_THREADSTOP

TypeInitializationException COR_E_TYPEINITIALIZATION (0x80131534)

TypeLoadException COR_E_TYPELOAD (0x80131522)

TypeUnloadedException COR_E_TYPEUNLOADED (0x80131013)

UnauthorizedAccessException COR_E_UNAUTHORIZEDACCESS (0x80070005)

VerificationException COR_E_VERIFICATION

WeakReferenceException COR_E_WEAKREFERENCE

Discussion

Handling exceptions generated by COM/COM+ components involves the following two steps:

Handle any specific exceptions that the .NET Common Language Runtime maps the COM/COM+
HRESULTs in which you're interested. The table in the Discussion section lists the standard
HRESULT values returned by COM/COM+ objects and the .NET exceptions classes to which they

are mapped.

1.

Handle any user-defined exceptions that are unique to a specific COM/COM+ component by
trapping the COMException exception. The COMException class reflects COM/COM+ HRESULTs

that have no mapping to managed exceptions.

2.

The following code fragment illustrates this handling of COM/COM+ exceptions:

try
{
 CallCOMMethod();
}
catch (UnauthorizedAccessException uae)
{
 // Handle COM/COM+ access exceptions here
}
catch (System.Runtime.InteropServices.COMException ce)
{
 // Handle user-defined COM/COM+ exceptions here
}
catch (Exception e)
{
 // Handle all other exceptions here

TargetParameterCountException COR_E_TARGETPARAMCOUNT (0x80138002)

ThreadAbortException COR_E_THREADABORTED (0x80131530)

ThreadInterruptedException COR_E_THREADINTERRUPTED (0x80131519)

ThreadStateException COR_E_THREADSTATE (0x80131520)

ThreadStopException COR_E_THREADSTOP

TypeInitializationException COR_E_TYPEINITIALIZATION (0x80131534)

TypeLoadException COR_E_TYPELOAD (0x80131522)

TypeUnloadedException COR_E_TYPEUNLOADED (0x80131013)

UnauthorizedAccessException COR_E_UNAUTHORIZEDACCESS (0x80070005)

VerificationException COR_E_VERIFICATION

WeakReferenceException COR_E_WEAKREFERENCE

Discussion

Handling exceptions generated by COM/COM+ components involves the following two steps:

Handle any specific exceptions that the .NET Common Language Runtime maps the COM/COM+
HRESULTs in which you're interested. The table in the Discussion section lists the standard
HRESULT values returned by COM/COM+ objects and the .NET exceptions classes to which they

are mapped.

1.

Handle any user-defined exceptions that are unique to a specific COM/COM+ component by
trapping the COMException exception. The COMException class reflects COM/COM+ HRESULTs

that have no mapping to managed exceptions.

2.

The following code fragment illustrates this handling of COM/COM+ exceptions:

try
{
 CallCOMMethod();
}
catch (UnauthorizedAccessException uae)
{
 // Handle COM/COM+ access exceptions here
}
catch (System.Runtime.InteropServices.COMException ce)
{
 // Handle user-defined COM/COM+ exceptions here
}
catch (Exception e)
{
 // Handle all other exceptions here

}

See Recipe 5.9 for more information on handling user-defined HRESULTs.

See Also

See Recipe 5.9; see the "Error Raising and Handling Guidelines," "HRESULTs and Exceptions," and
"Handling COM Interop Exceptions" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 5.9 Handling User-Defined HRESULTs

Problem

A COM object can return a user-defined HRESULT or an HRESULT that has no mapping to a managed
exception type. You wish to handle these returned HRESULTs in a more specific manner.

Solution

The following code fragment illustrates the handling of user-defined COM/COM+ exceptions:

try
{
 CallCOMMethod();
}
catch (System.Runtime.InteropServices.COMException ce)
{
 switch ((uint)ce.ErrorCode)
 {
 case 0x80132000:
 // Handle this specific user-defined COM/COM+ exceptions here
 break;
 case 0x80132001:
 // Handle this specific user-defined COM/COM+ exceptions here
 break;
 default:
 // Handle any other specific user-defined COM/COM+
 // exceptions here
 break;
 }
}
catch (Exception e)
{
 // Handle all other exceptions here
}

Discussion

Handle any user-defined exceptions that are unique to a specific COM/COM+ component by trapping
the COMException exception. This class reflects COM/COM+ HRESULTs that have no mapping to

managed exceptions.

The COMException has a property, ErrorCode, in addition to those properties in the base Exception

class. This property contains the HRESULT value that the COM/COM+ object returned. Another
difference between COMException and Exception is that the InnerException property of a
COMException object will always be null.

See Also

See the "Error Raising and Handling Guidelines" and "Handling COM Interop Exceptions" topics in the
MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 5.10 Preventing Unhandled Exceptions

Problem

You need to make absolutely sure that every exception thrown by your application is handled and that
no exception is bubbled up past the outermost exception handler. Hackers often use these types of
exceptions to aid in their analysis of the vulnerabilities of an application.

Solution

Place try-catch or try-catch-finally blocks in strategic places in your application. In addition, use

the exception event handler as a final line of defense against unhandled exceptions.

Discussion

If an exception occurs and is not handled, it will cause your application to shut down prematurely.
This can leave data in an unstable state, which may only be able to be rectified by manual
intervention-meaning that you could be spending a long night cleaning up the data by hand. To
minimize the damage, you can place exception handlers in strategic locations throughout your code.

The most obvious location to place exception handling code is inside of the Main method. The Main

method is the entry point to executables (files with an .exe extension). Therefore, if any exceptions
occur inside your executable, the CLR starts looking for an exception handler, starting at the location
where the exception occurred. If none are found, the CLR walks the stack until one is found; each
method on the stack is examined in turn to determine whether an exception handler exists. If no
exception handlers are found in the final method in the stack, the exception is considered unhandled
and the application is terminated. In an executable, this final method is the Main method.

In addition, or in place of using try-catch or try-catch-finally blocks at the entry point of your

application, you can use the exception event handler to capture unhandled exceptions. Note that
Windows Forms applications provide their own unhandled exception trap around exception handlers
and never raise the AppDomain level event. There are two steps to setting up an exception event
handler. The first is to create the actual event handler. This is done as follows:

static void LastChanceHandler(object sender, UnhandledExceptionEventArgs args)
{
 try
 {
 Exception e = (Exception) args.ExceptionObject;

 Console.WriteLine("Unhandled exception == " + e.ToString());
 if (args.IsTerminating)
 {
 Console.WriteLine("The application is terminating");
 }

 else
 {
 Console.WriteLine("The application is not terminating");
 }
 }
 catch(Exception e)
 {
 Console.WriteLine("Unhandled exception in unhandled exception handler == " +
 e.ToString());
 }
 finally
 {
 // Add other exception logging or cleanup code here.
 }
}

Next, you should add code to your application to wire up this event handler. The code to wire up the
event handler should be executed as close to the start of the application as possible. For example, by
placing this code in the Main method:

public static void Main()
{
 AppDomain.CurrentDomain.UnhandledException +=
 new UnhandledExceptionEventHandler(LastChanceHandler);

 //...
}

you are assured of being able to clean up after any unhandled exception.

The exception event handler takes two parameters. The first is the sender object, which is the
AppDomain object that threw the exception. The second argument is an
UnhandledExceptionEventArgs object. This object contains all the relevant information on the

unhandled exception. Using this object, we can obtain the actual exception object that was thrown as
well as a Boolean flag that indicates whether the application will terminate.

Exception event handlers are a great help when used in multithreaded code. If an unhandled
exception is thrown in a thread other than the main thread, that thread aborts. However, only the
worker thread, and not the application as a whole, will terminate. But you are not clearly notified
when the CLR aborts this thread, which can cause some interesting debugging problems. However,
when an exception event handler is used, you can be notified of any unhandled exceptions that occur
in any worker thread and that cause it to abort.

The exception event handler captures unhandled exceptions only for the primary application domain.
Any application domains created from the primary application domain do not fire this event for
unhandled exceptions.

See Also

See the "Error Raising and Handling Guidelines" and "UnhandledExceptionEventHandler Class" topics
in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 5.11 Displaying Exception Information

Problem

There are several different methods of displaying exception information. You need to choose the best
one to use.

Solution

The .NET platform supports several methods for displaying exception information, depending on the
specific type of information that you want to show. The easiest method is to use the ToString method
of the thrown exception object, usually in the catch block of an exception handler:

catch(Exception e)
{
 Console.WriteLine(e.ToString());
}

Another method is to manually display the individual properties of the thrown exception and iterate
through each inner exception, if any exist. For example, the following custom method is called from a
catch block that takes a single exception object as a parameter and proceeds to display its

information, including information on all inner exceptions:

public void DisplayException(Exception e)
{
 Console.WriteLine("Outer Exception.");
 Console.WriteLine("ExceptionType: " + e.GetType().Name);
 Console.WriteLine("HelpLine: " + e.HelpLink);
 Console.WriteLine("Message: " + e.Message);
 Console.WriteLine("Source: " + e.Source);
 Console.WriteLine("StackTrace: " + e.StackTrace);
 Console.WriteLine("TargetSite: " + e.TargetSite);

 string indent = "\t";
 Exception ie = e;

 while(ie.InnerException != null)
 {
 ie = ie.InnerException;

 Console.WriteLine("Inner Exception.");
 Console.WriteLine(indent + "ExceptionType: " +
 ie.GetType().Name);
 Console.WriteLine(indent + "HelpLink: " + ie.HelpLink);
 Console.WriteLine(indent + "Message: " + ie.Message);
 Console.WriteLine(indent + "Source: " + ie.Source);

 Console.WriteLine(indent + "StackTrace: " + ie.StackTrace);
 Console.WriteLine(indent + "TargetSite: " + ie.TargetSite);

 indent += "\t";
 }
}

Discussion

A typical exception object of type Exception displays the following information if its ToString method

is called:

System.Exception: Exception of type System.Exception was thrown.
 at Chapter_Code.Chapter7.TestSpecializedException() in c:\book cs cookbook\code\
 test.cs:line 286

There are three pieces of information shown here:

The exception type (Exception in this case) followed by a colon.

The string contained in the exception's Message property.

The string contained in the exception's StackTrace property.

The great thing about the ToString method is that information about any exception contained in the
InnerException property is automatically displayed as well. The following text shows the output of an

exception that wraps an inner exception:

System.Exception: Exception of type System.Exception was thrown.
---> System.Exception: The Inner Exception
 at Chapter_Code.Chapter7.TestSpecializedException()
 in c:\book cs cookbook\code\
 test.cs:line 306
 --- End of inner exception stack trace ---
 at Chapter_Code.Chapter7.TestSpecializedException()
 in c:\book cs cookbook\code\
 test.cs:line 310

The same three pieces of information are displayed for each exception. The output is broken down into
the following format:

Outer exception type: Outer exception Message property
---> Inner Exception type: Inner exception Message property
Inner Exception StackTrace property
 --- End of inner exception stack trace ---
Outer exception StackTrace property

If the inner exception contains an exception object in its InnerException property, that exception is

displayed as well. In fact, information for all inner exceptions is displayed in this format.

Calling the ToString method is a quick, useful way of getting the most pertinent information out of the

exception and displaying it in a formatted string. However, not all of the exception's information is

displayed. There might be a need to display the HelpLine or Source properties of the exception. In

fact, if this is a user-defined exception, there could be custom fields that need to be displayed or
captured in an error log. Also, you might not like the default formatting that the ToString method

offers. In these cases, consider writing your own method to display the exception's information.

To illustrate the custom method presented in the Solution section (the DisplayException method),

consider the following code, which throws an exception that wraps two inner exceptions:

Exception innerInner = new Exception("The innerInner Exception.");
ArgumentException inner = new ArgumentException("The inner Exception.", innerInner);
NullReferenceException se = new NullReferenceException("A Test Message.", inner);
se.HelpLink = "MyComponent.hlp";
se.Source = "MyComponent";

try
{
 throw (se);
}
catch(Exception e)
{
 DisplayException(e);
}

If this code were executed, DisplayException would display the following:

Outer Exception.
ExceptionType: NullReferenceException
HelpLine: MyComponent.hlp
Message: A Test Message.
Source: MyComponent
StackTrace: at Chapter_Code.SEH.DisplayException() in c:\book cs cookbook\code\
 test.cs:line 219
TargetSite: Void DisplayException()
inner Exception.
 ExceptionType: ArgumentException
 HelpLink:
 Message: The inner Exception.
 Source:
 StackTrace:
 TargetSite:
inner Exception.
 ExceptionType: Exception
 HelpLink:
 Message: The innerInner Exception.
 Source:
 StackTrace:
 TargetSite:

The outermost exception is displayed first, followed by all of its properties. Next, each inner exception
is displayed in a similar manner.

The while loop of the DisplayException method is used to iterate through each inner exception until
the innermost exception is reached. The indent variable is used to create the staggered display of

inner exception information. Initially, this variable contains a single tab character ('\t '). A single tab

character is added to this variable at the end of each iteration of the loop, allowing for the creation of
the staggered display.

See Also

See the "Error Raising and Handling Guidelines" and "Exception Class" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 5.12 Getting to the Root of a Problem Quickly

Problem

A thrown and caught exception can contain one or more inner exceptions. The innermost exception is
usually indicates the origin of the problem. You want to be able to view the original thrown exception
and skip all of the outer exceptions, and to view the initial problem.

Solution

The GetBaseException instance method of the Exception class displays information on only the

innermost (original) exception; all other exception information is not displayed. This method accepts
no parameters and returns the innermost exception. For example:

Console.WriteLine(e.GetBaseException().ToString());

Discussion

Calling the GetBaseException().ToString() method on an exception object that contains an
inner exception produces the same error information as if the ToString method was called directly

on the inner exception. However, if the exception object does not contain an inner expression, the
information of the provided exception object is displayed. For the following code:

Exception innerInner = new Exception("The innerInner Exception.");
ArgumentException inner = new ArgumentException("The inner Exception.", innerInner);
NullReferenceException se = new NullReferenceException("A Test Message.", inner);

try
{
 throw (se);
}
catch(Exception e)
{
 Console.WriteLine(e.GetBaseException().ToString());
}

something similar to this would be displayed:

System.Exception: The innerInner Exception.
 at Chapter_Code.EH.MyMethod() in c:\book cs cookbook\code\test.cs:line 286

Notice that no exception other than the innerInner exception is displayed. This useful technique gets

to the root of the problem while filtering out all of the other outer exceptions that you are not

interested in.

See Also

See the "Error Raising and Handling Guidelines" and "Exception Class" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 5.13 Creating a New Exception Type

Problem

None of the built-in exceptions in the .NET Framework provide the implementation details that you
require for an exception that you need to throw. You need to create your own exception class that
operates seamlessly with your application, as well as other applications. Whenever an application
receives this new exception, it can inform the user that a specific error occurred in a specific
component. This report will greatly reduce the time required to debug the problem.

Solution

Create your own exception class. To illustrate, we'll create a custom exception class,
RemoteComponentException, that will inform a client application that an error has occurred in a
remote server assembly. The complete source code for the RemoteComponentException class is:

using System;
using System.IO;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binary;

[SerializableAttribute]
public class RemoteComponentException :
 ApplicationException, ISerializable
{
 // New exception field
 private string serverName = "";

 // Normal exception ctor's
 public RemoteComponentException() : base()
 {
 }

 public RemoteComponentException(string message) : base(message)
 {
 }

 public RemoteComponentException(string message,
 Exception innerException)
 : base(message, innerException)
 {
 }

 // Exception ctor's that accept the new ServerName parameter
 public RemoteComponentException(string message,
 string serverName) : base(message)
 {
 this.serverName = serverName;
 }

 public RemoteComponentException(string message,
 Exception innerException, string serverName)
 : base(message, innerException)
 {
 this.serverName = serverName;
 }

 // Serialization ctor
 public RemoteComponentException(SerializationInfo exceptionInfo,
 StreamingContext exceptionContext)
 : base(exceptionInfo, exceptionContext)
 {
 this.serverName = exceptionInfo.GetString("ServerName");
 }

 // Read-only property
 public string ServerName
 {
 get{return (serverName.Trim());}
 }

 public override string Message
 {
 get
 {
 if (this.ServerName.Length == 0)
 return (base.Message + Environment.NewLine +
 "An unnamed server has encountered an error.");
 else
 return (base.Message + Environment.NewLine +
 "The server " + this.ServerName +
 " has encountered an error.");
 }
 }

 // Overridden methods
 // ToString method
 public override string ToString()
 {
 string errorString = "An error has occured in a server " +
 "component of this client.";
 errorString += Environment.NewLine + "Server Name: " +
 this.ServerName;
 if (this.InnerException == null)
 {

 errorString += Environment.NewLine +
 "Server component failed to provide an " +
 "underlying exception!";
 }
 else
 {
 string indent = "\t";
 Exception ie = this;
 while(ie.InnerException != null)
 {
 ie = ie.InnerException;
 errorString += Environment.NewLine + indent +
 "inner exception type thrown by server component: " +
 ie.GetType().Name.ToString();
 errorString += Environment.NewLine + indent + "Message: "
 + ie.Message;
 errorString += Environment.NewLine + indent +
 "StackTrace: " + ie.StackTrace;

 indent += "\t";
 }
 }
 errorString += Environment.NewLine + "StackTrace of client " +
 "component: " + this.StackTrace;

 return (errorString);
 }

 // Call base.ToString method
 public string ToBaseString()
 {
 return (base.ToString());
 }

 // GetHashCode
 public override int GetHashCode()
 {
 return (ServerName.GetHashCode());
 }

 // Equals
 public override bool Equals(object obj)
 {
 bool isEqual = false;

 if (obj == null || (this.GetType() != obj.GetType()))
 {
 isEqual = false;
 }
 else
 {
 RemoteComponentException se = (RemoteComponentException)obj;

 if ((this.ServerName.Length == 0)
 && (se.ServerName.Length == 0))
 isEqual = false;
 else
 isEqual = (this.ServerName == se.ServerName);
 }

 return (isEqual);
 }

 // == operator
 public static bool operator ==(RemoteComponentException v1,
 RemoteComponentException v2)
 {
 return (v1.Equals(v2));
 }

 // != operator
 public static bool operator !=(RemoteComponentException v1,
 RemoteComponentException v2)
 {
 return (!(v1 == v2));
 }

 // Used during serialization to capture information about extra fields
 public override void GetObjectData(SerializationInfo exceptionInfo,
 StreamingContext exceptionContext)
 {
 base.GetObjectData(exceptionInfo, exceptionContext);
 exceptionInfo.AddValue("ServerName", this.ServerName);
 }
}

Discussion

The code to test the RemoteComponentException class is:

public void TestSpecializedException()
{
 // Generic inner exception used to test the
 // RemoteComponentException's inner exception
 Exception inner = new Exception("The inner Exception");

 // Test each ctor
 Console.WriteLine(Environment.NewLine + Environment.NewLine +
 "TEST EACH CTOR");
 RemoteComponentException se1 = new RemoteComponentException ();
 RemoteComponentException se2 =
 new RemoteComponentException ("A Test Message for se2");
 RemoteComponentException se3 =
 new RemoteComponentException ("A Test Message for se3", inner);

 RemoteComponentException se4 =
 new RemoteComponentException ("A Test Message for se4",
 "MyServer");
 RemoteComponentException se5 =
 new RemoteComponentException ("A Test Message for se5", inner,
 "MyServer");

 // Test new ServerName property
 Console.WriteLine(Environment.NewLine +
 "TEST NEW SERVERNAME PROPERTY");
 Console.WriteLine("se1.ServerName == " + se1.ServerName);
 Console.WriteLine("se2.ServerName == " + se2.ServerName);
 Console.WriteLine("se3.ServerName == " + se3.ServerName);
 Console.WriteLine("se4.ServerName == " + se4.ServerName);
 Console.WriteLine("se5.ServerName == " + se5.ServerName);

 // Test overridden Message property
 Console.WriteLine(Environment.NewLine +
 "TEST -OVERRIDDEN- MESSAGE PROPERTY");
 Console.WriteLine("se1.Message == " + se1.Message);
 Console.WriteLine("se2.Message == " + se2.Message);
 Console.WriteLine("se3.Message == " + se3.Message);
 Console.WriteLine("se4.Message == " + se4.Message);
 Console.WriteLine("se5.Message == " + se5.Message);

 // Test -overridden- ToString method
 Console.WriteLine(Environment.NewLine +
 "TEST -OVERRIDDEN- TOSTRING METHOD");
 Console.WriteLine("se1.ToString() == " + se1.ToString());
 Console.WriteLine("se2.ToString() == " + se2.ToString());
 Console.WriteLine("se3.ToString() == " + se3.ToString());
 Console.WriteLine("se4.ToString() == " + se4.ToString());
 Console.WriteLine("se5.ToString() == " + se5.ToString());

 // Test ToBaseString method
 Console.WriteLine(Environment.NewLine +
 "TEST TOBASESTRING METHOD");
 Console.WriteLine("se1.ToBaseString() == " + se1.ToBaseString());
 Console.WriteLine("se2.ToBaseString() == " + se2.ToBaseString());
 Console.WriteLine("se3.ToBaseString() == " + se3.ToBaseString());
 Console.WriteLine("se4.ToBaseString() == " + se4.ToBaseString());
 Console.WriteLine("se5.ToBaseString() == " + se5.ToBaseString());

 // Test -overridden- Equals method
 Console.WriteLine(Environment.NewLine +
 "TEST -OVERRIDDEN- EQUALS METHOD");
 Console.WriteLine("se1.Equals(se1) == " + se1.Equals(se1));
 Console.WriteLine("se2.Equals(se1) == " + se2.Equals(se1));
 Console.WriteLine("se3.Equals(se1) == " + se3.Equals(se1));
 Console.WriteLine("se4.Equals(se1) == " + se4.Equals(se1));
 Console.WriteLine("se5.Equals(se1) == " + se5.Equals(se1));
 Console.WriteLine("se5.Equals(se4) == " + se5.Equals(se4));

 // Test -overridden- == operator
 Console.WriteLine(Environment.NewLine +
 "TEST -OVERRIDDEN- == OPERATOR");
 Console.WriteLine("se1 == se1 == " + (se1 == se1));
 Console.WriteLine("se2 == se1 == " + (se2 == se1));
 Console.WriteLine("se3 == se1 == " + (se3 == se1));
 Console.WriteLine("se4 == se1 == " + (se4 == se1));
 Console.WriteLine("se5 == se1 == " + (se5 == se1));
 Console.WriteLine("se5 == se4 == " + (se5 == se4));

 // Test -overridden- != operator
 Console.WriteLine(Environment.NewLine +
 "TEST -OVERRIDDEN- != OPERATOR");
 Console.WriteLine("se1 != se1 == " + (se1 != se1));
 Console.WriteLine("se2 != se1 == " + (se2 != se1));
 Console.WriteLine("se3 != se1 == " + (se3 != se1));
 Console.WriteLine("se4 != se1 == " + (se4 != se1));
 Console.WriteLine("se5 != se1 == " + (se5 != se1));
 Console.WriteLine("se5 != se4 == " + (se5 != se4));

 // Test -overridden- GetBaseException method
 Console.WriteLine(Environment.NewLine +
 "TEST -OVERRIDDEN- GETBASEEXCEPTION METHOD");
 Console.WriteLine("se1.GetBaseException() == " + se1.GetBaseException());
 Console.WriteLine("se2.GetBaseException() == " + se2.GetBaseException());
 Console.WriteLine("se3.GetBaseException() == " + se3.GetBaseException());
 Console.WriteLine("se4.GetBaseException() == " + se4.GetBaseException());
 Console.WriteLine("se5.GetBaseException() == " + se5.GetBaseException());

 // Test -overridden- GetHashCode method
 Console.WriteLine(Environment.NewLine +
 "TEST -OVERRIDDEN- GETHASHCODE METHOD");
 Console.WriteLine("se1.GetHashCode() == " + se1.GetHashCode());
 Console.WriteLine("se2.GetHashCode() == " + se2.GetHashCode());
 Console.WriteLine("se3.GetHashCode() == " + se3.GetHashCode());
 Console.WriteLine("se4.GetHashCode() == " + se4.GetHashCode());
 Console.WriteLine("se5.GetHashCode() == " + se5.GetHashCode());

 // Test serialization
 Console.WriteLine(Environment.NewLine +
 "TEST SERIALIZATION/DESERIALIZATION");
 BinaryFormatter binaryWrite = new BinaryFormatter();
 Stream ObjectFile = File.Create("se1.object");
 binaryWrite.Serialize(ObjectFile, se1);
 ObjectFile.Close();
 ObjectFile = File.Create("se2.object");
 binaryWrite.Serialize(ObjectFile, se2);
 ObjectFile.Close();
 ObjectFile = File.Create("se3.object");
 binaryWrite.Serialize(ObjectFile, se3);
 ObjectFile.Close();

 ObjectFile = File.Create("se4.object");
 binaryWrite.Serialize(ObjectFile, se4);
 ObjectFile.Close();
 ObjectFile = File.Create("se5.object");
 binaryWrite.Serialize(ObjectFile, se5);
 ObjectFile.Close();

 BinaryFormatter binaryRead = new BinaryFormatter();
 ObjectFile = File.OpenRead("se1.object");
 object Data = binaryRead.Deserialize(ObjectFile);
 Console.WriteLine("----------" + Environment.NewLine + Data);
 ObjectFile.Close();
 ObjectFile = File.OpenRead("se2.object");
 Data = binaryRead.Deserialize(ObjectFile);
 Console.WriteLine("----------" + Environment.NewLine + Data);
 ObjectFile.Close();
 ObjectFile = File.OpenRead("se3.object");
 Data = binaryRead.Deserialize(ObjectFile);
 Console.WriteLine("----------" + Environment.NewLine + Data);
 ObjectFile.Close();
 ObjectFile = File.OpenRead("se4.object");
 Data = binaryRead.Deserialize(ObjectFile);
 Console.WriteLine("----------" + Environment.NewLine + Data);
 ObjectFile.Close();
 ObjectFile = File.OpenRead("se5.object");
 Data = binaryRead.Deserialize(ObjectFile);
 Console.WriteLine("----------" + Environment.NewLine +
 Data + Environment.NewLine + "----------");
 ObjectFile.Close();

 Console.WriteLine(Environment.NewLine + "END TEST" + Environment.NewLine);
}

The exception hierarchy starts with the Exception class; from this, two classes are derived:
ApplicationException and SystemException. The SystemException class and any classes derived

from it are reserved for the developers of the FCL. Most of the common exceptions, such as the
NullReferenceException or the OverflowException exceptions, are derived from
SystemException. The FCL developers created the ApplicationException class for other

developers using the .NET languages to derive their own exceptions from. This partitioning allows for
a clear distinction between user-defined exceptions and the built-in system exceptions. Nothing
actively prevents you from deriving a class from the SystemException class, but it is better to be
consistent and use the convention of always deriving from the ApplicationException class for user-

defined exceptions.

You should follow the naming convention for exceptions when determining the name of your
exception. The convention is very simple. Whatever you decide on for the exception's name, add the
word Exception to the end of the name (e.g., use UnknownException as the exception name instead
of just Unknown). In addition, the name should be camel-cased[1] and contain no underscore

characters.

[1] ThisIsCamelCasing.

Every user-defined exception should include at least three constructors, described next. This is not a

requirement, but it makes your exception classes operate similar to every other exception class in
the FCL and minimizes the learning curve for other developers using your new exception. These three
constructors are:

The default constructor

This constructor takes no arguments and simply calls the base class's default constructor.

A constructor with a parameter that accepts a message string

This message string overwrites the default contents of the Message field of this exception. Like

the default constructor, this constructor also calls the base class's constructor, which also
accepts a message string as its only parameter.

A constructor that accepts a message string and an inner exception as parameters

The object contained in the innerException parameter is added to the InnerException field

of this exception object. Like the other two constructors, this constructor calls the base class'
constructor of the same signature.

If this exception will be caught in unmanaged code, such as a COM object, you can also override the
HRESULT value for this exception. An exception caught in unmanaged code becomes an HRESULT
value. If the exception does not override the HRESULT value, it defaults to the HRESULT value of the

base class exception, which, in the case of a user-defined exception object that inherits from
ApplicationException, is HRESULT COR_E_APPLICATION, which has a value of 0x80131600. To
override the default HRESULT value, simply change the value of this field in the constructor. The

following code demonstrates this technique:

public class RemoteComponentException : ApplicationException
{
 public RemoteComponentException() : base()
 {
 HResult = 0x80040321;
 }

 public RemoteComponentException(string message) : base(message)
 {
 HResult = 0x80040321;
 }

 public RemoteComponentException(string message, Exception innerException)
 : base(message, innerException)
 {
 HResult = 0x80040321;
 }
}

Now the HResult that the COM object will see is the value 0x80040321. See Table 5-2 in Recipe 5.8
for more information on the mapping of HRESULT values to their equivalent managed exception

classes.

It is usually a good idea to override the Message field in order to incorporate

any new fields into the exception's message text. Always remember to include
the base class's message text along with any additional text you add to this
property.

Fields and their accessors should be created to hold data specific to the exception. Since this
exception will be thrown as a result of an error that occurs in a remote server assembly, we will add
a private field to contain the name of the server or service. In addition, we will add a public read-only
property to access this field. Since we added this new field, we should add two constructors that
accept an extra parameter used to set the value of the serverName field.

If necessary, override any base class members whose behavior is inherited by the custom exception
class. For example, since we have added a new field, we need to determine whether it will need to be
added to the default contents of the Message field for this exception. If it does, we must override the
Message property.

Notice that the Message field in the base class is displayed on the first line and our additional text is

displayed on the next line. This organization takes into account that a user might modify the message
that will appear in the Message field by using one of the overloaded constructors that takes a

message string as a parameter.

In certain cases (such as remoting), your exception object should be serializable and deserializable.
This involves performing the following two additional steps:

Add the Serializable attribute to the class definition. This attribute specifies that this class
can be serialized or deserialized. A SerializationException is thrown if this attribute does not

exist on this class and an attempt is made to serialize this class.

1.

The class should implement the ISerializable interface if you want control over how

serialization and deserialization are performed, and it should provide an implementation for its
single member, GetObjectData. Here we implement it because the base class implements it,

which means that we have no choice but to reimplement it if we want the fields we added (e.g.,
serverName) to get serialized.

2.

In addition, a new overridden constructor is needed that accepts information to deserialize this
object.

Even though it is not required, you should make all user-defined exception
classes serializable and deserializable.

At this point, the RemoteComponentException class contains everything you need for a complete

user-defined exception class. You could stop at this point, but let's continue a bit farther and override
some default functionality that deals with the hash code, equality, and inequality:

Overriding the Equals method

It is possible that we might need to override the default implementation of the Equals method
and the == and != operators. The default implementation tests each object for reference

equality. We may need to test for value equality; in this case, we need to override this method
and both operators. The ServerName property value will be used in determining equality
between two RemoteComponentException classes. The Equals method returns true only if the
ServerName properties of both RemoteComponentException objects return the same value.

Otherwise, the two objects are not considered equal. The exception occurs when the
ServerName properties of both objects are blank. In this case, both
RemoteComponentException objects are considered to be in an unknown state and therefore

equality cannot be definitely determined.

Overriding the GetHashCode method

Since we have overridden the Equals method, we should override the GetHashCode method,

which overrides the hash code generation algorithm.

Overriding the == and != operators

When overriding the Equals method, both the == and != operators should be overloaded as
well. Notice that both operators ultimately use the Equals method to determine equality.

Therefore, they are simple to write.

As a final note, it is wise to place all user-defined exceptions in a separate assembly, which allows for
easier reuse of these exceptions in other applications, and, more importantly, allows other application
domains and remotely executing code to both throw and handle these exceptions correctly no matter
where they are thrown. The assembly that holds these exceptions should be signed with a strong
name and added to the Global Assembly Cache (GAC) so that any code that uses or handles these
exceptions can find the assembly that defines them. See Recipe 14.10 for more information on how
to do this.

See Also

See Recipe 14.10 ; see the "Using User-Defined Exceptions" and "ApplicationException Class" topics
in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 5.14 Obtaining a Stack Trace

Problem

You need a view of what the stack looks like at any particular point in your application. However, you do
not have an exception object from which to obtain this stack trace.

Solution

Use the following line of code to obtain a stack trace at any point in your application:

string currentStackTrace = System.Environment.StackTrace;

The variable currentStackTrace now contains the stack trace at the location where this line of code

was executed.

Discussion

A good use of the Solution is tracking down stack overflow problems. You can obtain the current stack
trace at various points in your application and then calculate the stack depth. This depth calculation can
then be logged to determine when and why the stack is overflowing or potential trouble spots where the
stack may grow very large.

It is very easy to obtain a stack trace using the System.Environment.StackTrace property.
Unfortunately, this stack trace also lists three methods defined in the System.Environment class that
are called when you use the Environment.StackTrace property. The returned stack trace, using this

method, will look something like the following:

at System.Environment.GetStackTrace(Exception e)
at System.Environment.GetStackTrace(Exception e)
at System.Environment.get_StackTrace()
at Chapter_Code.Class1.ObtainingStackTrace() in c:\book cs cookbook\test.cs:line 260
at Chapter_Code.Class1.Main(String[] args) in c:\book cs cookbook\main.cs:line 78

The first three items in the stack trace are method calls that we are not interested in. To fix this, we can
write the following method to find and remove these items from the stack trace:

public static string GetStackTraceInfo(string currentStackTrace)
{
 string firstStackTraceCall = "System.Environment.get_StackTrace()";
 int posOfStackTraceCall = currentStackTrace.IndexOf(firstStackTraceCall);
 return (currentStackTrace.Substring(posOfStackTraceCall +
 firstStackTraceCall.Length));
}

This method is called using the following line of code:

string stackTraceInfo = GetStackTraceInfo(System.Environment.StackTrace);

The second line in the GetStackTraceInfo method creates and initializes a string variable to the first
called StackTrace method-which is actually a call to the get portion of the StackTrace property. This

variable is used in the third line to obtain its starting position in the complete stack trace string. The
final line of code grabs the end of the complete stack trace string, starting at the ending of the first
called StackTrace method. The FinalStackTrace variable now contains the following string:

at Chapter_Code.Class1.ObtainingStackTrace() in c:\book cs cookbook\test.cs:line 260
at Chapter_Code.Class1.Main(String[] args) in c:\book cs cookbook\main.cs:line 78

This is the current stack trace at the point in the code where the Environment.StackTrace method was

called.

Now that we have a stack trace of our code, we can calculate the stack depth at the point where we call
Environment.StackTrace . The following code uses a regular expression to determine the depth of a

stack trace:

using System;
using System.Text.RegularExpressions;

public static int GetStackTraceDepth(string currentStackTrace)
{
 string firstStackTraceCall = "System.Environment.get_StackTrace()";
 int posOfStackTraceCall = currentStackTrace.IndexOf(firstStackTraceCall);
 string finalStackTrace = currentStackTrace.Substring(posOfStackTraceCall +
 firstStackTraceCall.Length);

 MatchCollection methodCallMatches = Regex.Matches(finalStackTrace,
 @"\sat\s.*(\sin\s.*\:line\s\d*)?");
 return (methodCallMatches.Count);
}

This regular expression captures every method call in the stack trace string. Note that, if the correct
symbols are located for our assembly, the stack trace might look like this:

at Chapter_Code.Class1.ObtainingStackTrace() in c:\book cs cookbook\test.cs:line 260
at Chapter_Code.Class1.Main(String[] args) in c:\book cs cookbook\main.cs:line 78

However, if the correct symbols cannot be found, the stack trace string will look similar to the following:

at Chapter_Code.Class1.ObtainingStackTrace()
at Chapter_Code.Class1.Main(String[] args)

The file and line numbers are not displayed in this case, and the regular expression must take this into
account.

To get a count of the stack depth, use the Count property of the MatchCollection object to give the

total number of method calls in the stack. In addition, we can obtain each individual method call as an
independent string by iterating through the MatchCollection object. The code to do this is:

Console.WriteLine("-------------");
foreach(Match m in MethodCallMatches)
{
 Console.WriteLine(m.Value + System.Environment.NewLine + "-------------");
}

This code will display the following:

at Chapter_Code.Class1.ObtainingStackTrace() in
 c:\book cs cookbook\test.cs:line 260

at Chapter_Code.Class1.Main(String[] args) in
 c:\book cs cookbook\main.cs:line 78

Each method and its information are contained within a Match object within the MatchCollection

object.

The Environment.StackTrace method can be useful as a debugging tool. You can see at various points

in your application which methods have been called and their calling order. This can come in very handy
when creating and debugging an application that uses recursion. In addition, you can also keep track of
the stack depth by using the Environment.StackTrace property.

See Also

See the "Environment.StackTrace Property" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 5.15 Breaking on a First Chance Exception

Problem

You need to fix a problem with your code that is throwing an exception. Unfortunately, an exception
handler is handling the exception, and you are having a tough time pinpointing where and when the
exception is being thrown.

Forcing the application to break on an exception before the application has a chance to handle it is
very useful in situations where you need to step through the code at the point where the exception is
first being thrown. If this exception was thrown and not handled by your application, the debugger
would intervene and break on the line of code that caused the unhandled exception. In this case, you
can see the context in which the exception was thrown. However, if an exception handler is active
when the exception is thrown, the exception handler will handle it and continue on, preventing you
from being able to see the context at the point where the exception was thrown. This is the default
behavior for all exceptions.

Solution

Select Debug Exceptions within Visual Studio .NET to display the Exceptions dialog box (see
Figure 5-1). Select the exception from the tree that you want to modify and then click on the "Break
into the debugger" radio button in the "When the exception is thrown" frame. Click the OK button and
then run your application. Any time the application throws the type of error you selected in the
Exceptions dialog box, the debugger will break on that line of code before your application has a
chance to handle it.

Figure 5-1. The Exceptions dialog box

Discussion

Using the Exceptions dialog box, you can target specific exceptions or sets of exceptions for which
you wish to alter the default behavior. This dialog has three main sections. The first is the TreeView
control, which contains the list of categorized exceptions. Using this TreeView, you can choose one or
more exceptions or groups of exceptions whose behavior you wish to modify.

The next section on this dialog is the frame with the caption "When the exception is thrown." This
frame contains three radio buttons that control the behavior when the exception is first thrown. At
this stage, the exception is considered a first chance exception. The "Break into the debugger" radio
button forces the debugger to intervene when a first chance exception of the type chosen in the
TreeView control is thrown. The "Continue" radio button allows the application to attempt to handle
the first chance exception. The "Use parent setting" radio button uses the configuration of the parent
of this exception when handling it as a first class exception.

The third section on this dialog is the frame with the caption "If the exception is not handled." This
frame contains the same three radio buttons as the previous frame. These radio buttons control the
behavior when an unhandled exception is thrown by the application. At this stage, the exception is
considered a second chance exception. The radio buttons operate in the same manner as with the
previous frame.

This dialog contains two helpful buttons, Find and Find Next, to allow you to search for an exception
rather than dig into the TreeView control and search for it on your own. In addition to these buttons,
there are three buttons, Clear All, Add, and Delete, which are used to add and remove user-defined
exceptions. For example, we can create our own exception, as we did in Recipe 5.13, and add this
exception to the TreeView list. You must add any managed exception such as this to the TreeView

node entitled Common Language Runtime Exceptions. This setting tells the debugger that this is a
managed exception and should be handled as such.

To add a user-defined exception to the TreeView, click the Add button and the dialog box shown in
Figure 5-2 appears.

Figure 5-2. Adding a user-defined exception to the TreeView

Type the name of the exception-exactly as its class name is spelled-into the Name field of this
dialog box. Do not append any other information to this name, such as the namespace it resides in or
a class name that it is nested within. Doing so will cause the debugger to fail to see this exception
when it is thrown. Clicking the OK button places this exception into the TreeView under the Common
Language Run-time Exceptions node. You can then modify the way this exception will be handled
using the radio buttons at the bottom of the Exceptions dialog box. The Exceptions dialog box will
look something like the one in Figure 5-3 after you add and modify this user-defined exception.

Figure 5-3. The Exceptions dialog box after adding a user-defined
exception to the TreeView

The Delete button deletes any selected user-defined exception that you added to the TreeView. The
Clear All button deletes any and all user-defined exceptions that have been added to the TreeView.

[Team LiB]

[Team LiB]

Recipe 5.16 Preventing the Nefarious TypeInitializationException

Problem

Problems can occur when initializing a class or a structure's static fields. Some of these problems are serious enough to raise a
TypeInitializationException exception. Unfortunately, this exception can be hard to track down and can potentially shut down

your application. You want to prevent this from occurring.

Solution

If you are initializing static fields to a value, null, or not initializing them at all, as is the case with the following class:

public class TestInit
{
 public static object one;
 public static string two = one.ToString();
}

you should consider rewriting the class to include a static constructor that performs the initialization of the static fields. This will aid in
the debugging of your static fields:

public class TestInit
{
 static TestInit()
 {
 try
 {
 one = null;
 two = one.ToString();
 }
 catch (Exception e)
 {
 Console.WriteLine("CAUGHT EXCEPTION IN .CCTOR: " + e.ToString());
 }
 }

 public static object one;
 public static string two;
}

Discussion

To see this exception in action, run the following method:

public static void Main()

{
 // Causes TypeInitializationException
 TestInit c = new TestInit();

 // Replacing this method's code with the following line
 // will produce similar results
 //TestInit.one.ToString();
}

This code creates an instance of the TestInit class. We are assured that any static fields of the class will be initialized before this
class is created, and any static constructors on the TestInit class will be called as well. The TestInit class is written as follows:

public class TestInit
{
 public static object one = null;
 public static string two = one.ToString();
}

As you can see, a NullReferenceException should be thrown on the second static field, since it is trying to call ToString on an
object set to null . If run from the development environment, you will see two message boxes pop up in sequence. The first is the

message box depicted in Figure 5-4 . The second message box shown is depicted in Figure 5-5 . The application proceeds to shut down
at this point.

Figure 5-4. An unhandled NullReferenceException

Figure 5-5. An unhandled TypeInitializationException

However, if this executable is run from outside the development environment, the message box shown in Figure 5-6 is displayed and
the application shuts down.

Figure 5-6. An unhandled runtime exception

Now, let's add a try-catch block around the Main method, as shown here:

public static void Main()
{
 try
 {
 // Causes TypeInitializationException
 TestInit c = new TestInit();
 }
 catch(Exception e)
 {
 Console.WriteLine("CAUGHT EXCEPTION IN CREATING METHOD: " + e.ToString());
 }
}

When this code is run inside the development environment, the message box in Figure 5-4 appears again, but the
TypeInitializationException is caught by the new exception handler that we added to the Main method. The text displayed by the

exception handler is shown here:

CAUGHT EXCEPTION IN CREATING METHOD: System.TypeInitializationException:
 The type initializer for "TestInit" threw an exception. --->
 System.NullReferenceException: Object reference not set to an instance
 of an object.
 at Chapter_Code.TestInit..cctor() in c:\book cs cookbook\code\test.cs:line 200
 --- End of inner exception stack trace ---
 at Chapter_Code.TestInit..ctor()
 at Chapter_Code.Class1.TypeinitExceptionPrevention() in c:\book cs cookbook\
 code\test.cs:line 175

The TypeInitializationException wraps the NullReferenceException that was the original exception thrown. The runtime
provides the TypeInitializationException wrapper automatically.

A third method of trapping this exception is to use the exception event handler. This exception event handler is described in detail in
Recipe 5.10 . When only this exception handler is employed with no supporting try-catch or try-catch-finally blocks, the

following events occur when running the executable in the development environment:

The message boxes shown in Figures Figure 5-4 and Figure 5-5 are displayed in that order.1.

The event exception handler intercepts the exception before the application is terminated. When the executable is run
standalone, the message box in Figure 5-6 is displayed first. Then, the event exception handler intercepts the exception, and,
finally, the application is terminated.

2.

The second method seems to work best; use try-catch blocks at a minimum around code that will potentially cause static fields to

initialize.

There is a way to eliminate the TypeInitializationException from the picture. We can simply initialize our class or structure's

static fields within the appropriate static constructor(s), shown in the Solution section of this recipe. When this code is executed, the
catch block captures the real exception and there is no fear of the application shutting down. The text displayed by the catch block is

as follows:

CAUGHT EXCEPTION IN .CCTOR: System.NullReferenceException: Object reference not set to an instance of an object.
 at Chapter_Code.TestInit..cctor() in c:\book cs cookbook\code\test.cs:line 191

This is much cleaner and more elegant than the other solutions. In addition, tracking down the source of the bug is much easier. As a
note, this exception now operates in the same manner regardless of whether the application is being run in the development
environment.

See Also

See the "Error Raising and Handling Guidelines" and "TypeInitializationException Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 5.17 Handling Exceptions Thrown from an
Asynchronous Delegate

Problem

When using a delegate asynchronously, you want to be notified in the calling thread if the delegate has
thrown any exceptions.

Solution

Wrap the EndInvoke method of the delegate in a try /catch block:

using System;
using System.Threading;

public class AsyncAction
{
 public void PollAsyncDelegate()
 {
 // Create the async delegate to call Method1 and call its BeginInvoke method
 AsyncInvoke MI = new AsyncInvoke(TestAsyncInvoke.Method1);
 IAsyncResult AR = MI.BeginInvoke(null, null);

 // Poll until the async delegate is finished
 while (!AR.IsCompleted)
 {
 System.Threading.Thread.Sleep(100);
 Console.Write('.');
 }
 Console.WriteLine("Finished Polling");

 // Call the EndInvoke method of the async delegate
 try
 {
 int RetVal = MI.EndInvoke(AR);
 Console.WriteLine("RetVal: " + RetVal);
 }
 catch (Exception e)
 {
 Console.WriteLine(e.ToString());
 }
 }
}

The following code defines the AsyncInvoke delegate and the asynchronously invoked static method

TestAsyncInvoke.Method1 :

public delegate int AsyncInvoke();

public class TestAsyncInvoke
{
 public static int Method1()
 {
 throw (new Exception("Method1")); // Simulate an exception being thrown
 }
}

Discussion

If the code in the PollAsyncDelegate method did not contain a call to the delegate's EndInvoke
method, the exception thrown in Method1 would simply be discarded and never caught. This behavior

is by design; for all unhandled exceptions that occur within the thread, the thread immediately returns
to the thread pool and the exception is lost.

If a method that was called asynchronously through a delegate throws an exception, the only way to
trap that exception object is to include a call to the delegate's EndInvoke method and wrap this call in
an exception handler. The EndInvoke method must be called to retrieve the results of the
asynchronous delegate; in fact, the EndInvoke method must be called even if there are no results.
These results can be obtained through a return value or any ref or out parameters of the delegate.

See Also

For more on calling delegates asynchronously, see Recipe 7.4 .

[Team LiB]

[Team LiB]

Chapter 6. Diagnostics
The .NET Framework Class Library (FCL) contains many classes to obtain diagnostic information
about your application, as well as the environment it is running in. In fact, there are so many classes
that a namespace, System.Diagnostics, was created to contain all of them. This chapter contains

recipes for instrumenting your application with debug/trace information, obtaining process
information, using the built-in Event Log, and taking advantage of performance counters.

Debugging (using the Debug class) is turned on by default in the debug build only, and tracing (using
the Trace class) is turned on by default in both debug and release builds. These defaults allow you to
ship your application instrumented with tracing code using the Trace class. You ship your code with

tracing turned off so that the tracing code is not called (otherwise, the tracing would slow your
application). If a problem that you cannot recreate on your development computer occurs on the
production machine, you can enable tracing and allow the tracing information to be dumped to a file.
This file can be inspected to help pinpoint the real problem. This trick is discussed at length in Recipe
6.1 and Recipe 6.2.

Since both the Debug and Trace classes contain the same members with the same names, they can
be interchanged in your code by renaming Debug to Trace and vice versa. Most of the recipes in this
chapter use the Trace class; you can modify those recipes so that they use the Debug class by
replacing each Trace with Debug in the code.

[Team LiB]

[Team LiB]

Recipe 6.1 Controlling Tracing Output inProduction Code

Problem

Mysterious bugs often appear at the client's site, even after the application is thoroughly tested. Most
of the time these bugs are difficult, if not impossible, to reproduce on your development machine.
Knowing this, you want an application with built-in instrumentation that's off by default but can easily
be turned on when you need it.

Solution

Use the Trace class for any tracing code that you might need to turn on after your application has

been deployed. To turn on tracing at a client's site, provide the client with an application
configuration file such as this one:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.diagnostics>
 <switches>
 <add name="DatabaseSwitch" value="4"/>
 <!-- 4 == TraceLevel.Verbose -->
 </switches>

 <trace autoflush = "true" indentsize = "2">
 <listeners>
 <add name = "MyListener"
 type = "System.Diagnostics.TextWriterTraceListener"
 initializeData = " MyFileName.log"/>
 </listeners>
 </trace>
 </system.diagnostics>
</configuration>

Discussion

Allowing tracing code to be enabled and used at a client site can be incredibly useful when debugging
problems in release code. This technique is even more useful when the problem cannot easily be
reproduced in-house. For this reason, it is-in some cases-a wise practice to use the Trace class
instead of the Debug class when adding tracing code to your application.

To control the trace output at a client site, you can use an XML config file. This XML file must have
the same base name as the executable that is to use these switches, followed by an extension of
.exe.config. For example, if the executable name were Accounting.exe, the configuration file would be

named Accounting.exe.config. This file should be placed in the same directory as the executable
Accounting.exe.

The application configuration file always consists of the following two outer elements for diagnostic
information:

<configuration>
 <system.diagnostics>
 ...
 </system.diagnostics>
</configuration>

However, the configuration element may contain other child elements besides the
system.diagnostics element.

Within these elements, the switches and trace elements may be added. These two elements
contain information specific to switches and listeners. If your code contains a TraceSwitch (as shown
in the next example) or BooleanSwitch object-or any other type derived from the Switch
class-you can control this object's trace level setting through the <switches> element in the

configuration file:

private static TraceSwitch ts = new TraceSwitch("DatabaseSwitch",
 "Only allow database transactions to be logged");

The <listeners> element shown in the Solution adds a new TraceListener derived object to the
listeners collection. Any Trace or Debug statements will use this new listener.

The switches element of the Solution can contain the three elements defined here:

<clear/>

Clears any previously added switch.

<add name= "Switch_Name" value= "Number"/>

Adds new switch initialization information to be used at runtime. The name attribute defines the
name of the switch that is used in your code. The value attribute is set to a number that either
turns the switch on or off, in the case of a BooleanSwitch class, or defines the switch level
(e.g., the amount of output you wish to receive), in the case of a TraceSwitch class. To turn
on a BooleanSwitch, use a nonzero value (negative numbers work here, too); to turn it off,

use zero.

<remove name= "Switch_Name"/>

Removes switch initialization information at runtime. The name attribute defines the name of

the switch that is used in your code.

Immediately after the switches tags in the solution are the trace tags, although the ordering of
these tags is up to you. The trace tags can contain the following two optional attributes:

autoflush = true|false

Indicates whether the listener automatically flushes its buffer after every write (true) or not
(false).

indentsize = "4"

Specifies the number of indent characters to use when indenting the output.

Within the trace tags are the listeners tags, which, in turn, can contain any of the following

defined tags:

<clear/>

Clears any previously added listeners. This tag also removes the DefaultTraceListener from

the listeners collection.

<add name= "MyListener" type="System.Diagnostics.TextWriterTraceListener,System"

initializeData= "MyFileName.log"/>

Adds a new listener to any Trace and Debug classes used in your application. The name
attribute defines the name of the listener that is used in your code. The type attribute is set to
the listener's class name. The optional initializeData attribute allows a string to be passed

in to the constructor of this listener. If you are using a custom listener, you will need to include
a constructor that accepts a string as the only argument to prevent an exception from being
thrown.

<remove name = "MyListener"/>

Removes a listener at runtime. The name attribute defines the name of the listener to be

removed. This could be useful if another configuration file, such as the machine.config file, has
already added a listener or if any listeners were created through your application's code. If
more than one listener is added, the output will be written out twice-once for each listener.

Regardless of whether your code defines TRACE and/or DEBUG, the code will attempt to access this file
for switch initialization information if a class derived from Switch is instantiated. If you wish to

prevent this behavior, place any code that instantiates a switch class inside of a method decorated
with the ConditionalAttribute attribute:

public class Traceable
{
 BooleanSwitch DBSwitch = null;
 BooleanSwitch UISwitch = null;
 BooleanSwitch exceptionSwitch = null;

 [System.Diagnostics.ConditionalAttribute("TRACE")]
 public void EnableTracing()
 {
 DBSwitch = new BooleanSwitch("DatabaseSwitch",
 "Switch for database tracing");
 UISwitch = new BooleanSwitch("UISwitch",
 "Switch for user interface tracing");
 exceptionSwitch = new BooleanSwitch("ExceptionSwitch",
 "Switch for tracing thrown exceptions");
 }
}

The ConditionalAttribute attribute prevents the switches from attempting to access the
application configuration file when TRACE is undefined by preventing your application from calling the
EnableTracing method.

In addition to the application configuration file (MyApp.exe.config), there is also a machine.config file
located in the directory %<runtime install path>%\CONFIG\. The configuration tags, and all of its
containing elements may be placed in this file as well. However, doing so will enable these switches
and listeners on a machine-wide level. This can cause applications that define their own listeners to
behave strangely, especially if the listeners are duplicated. Additionally, the application will look for
configuration information in the application configuration file first and the machine.config file second.

The application configuration file and the machine configuration file are both case-sensitive. Be sure
that your tag names and their attributes are in the correct case. However, the string assigned to the
name attribute does not seem to be case-sensitive, while other strings assigned to attributes are

case-sensitive.

See Also

See the "Trace and Debug Settings Schema" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 6.2 Providing Fine-Grained Control Over
Debugging/Tracing Output

Problem

Your application consists of multiple components. You need, at specific times, to turn on debug/trace
output for a select few components, while leaving all other debug/trace output turned off. In addition,
you need control over the type and amount of information that is produced by the Trace/Debug

statements.

Solution

Use the BooleanSwitch class with an application configuration file (*.config). The following method

creates three switches for our application: one that controls tracing for database calls, one that
controls tracing for UI components, and one that controls tracing for any exceptions that are thrown
by the application:

public class Traceable
{
 BooleanSwitch DBSwitch = null;
 BooleanSwitch UISwitch = null;
 BooleanSwitch exceptionSwitch = null;

 public void EnableTracing()
 {
 DBSwitch = new BooleanSwitch("DatabaseSwitch",
 "Switch for database tracing");
 Console.WriteLine("DBSwitch Enabled = " + DBSwitch.Enabled);

 UISwitch = new BooleanSwitch("UISwitch",
 "Switch for user interface tracing");
 Console.WriteLine("UISwitch Enabled = " + UISwitch.Enabled);

 exceptionSwitch = new BooleanSwitch("ExceptionSwitch",
 "Switch for tracing thrown exceptions");
 Console.WriteLine("ExceptionSwitch Enabled = " + exceptionSwitch.Enabled);
 }
}

After creating each switch, the Enabled property is displayed, indicating whether the switch is on or

off.

Creating these switches without an application configuration file results in every switch getting set to

false. To control what state each switch is set to, use an application configuration file, shown here:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.diagnostics>
 <switches>
 <clear/>
 <add name="DatabaseSwitch" value="1" />
 <add name="UISwitch" value="0" />
 <add name="ExceptionSwitch" value="0" />
 </switches>
 </system.diagnostics>
</configuration>

The TraceSwitch class can also be used with an application configuration file (AppName.exe.config).
The following method creates a new TraceSwitch object with a level assigned by the application

configuration file:

public class Traceable
{
 TraceSwitch DBFilterSwitch = null;
 TraceSwitch UIFilterSwitch = null;
 TraceSwitch exceptionFilterSwitch = null;

 public void SetTracingFilter()
 {
 DBFilterSwitch = new TraceSwitch("DatabaseFilter",
 "Filter database output");
 Console.WriteLine("DBFilterSwitch Level = " + DBFilterSwitch.Level);

 UIFilterSwitch = new TraceSwitch("UIFilter",
 "Filter user interface output");
 Console.WriteLine("UIFilterSwitch Level = " + UIFilterSwitch.Level);

 exceptionFilterSwitch = new TraceSwitch("ExceptionFilter",
 "Filter exception output");
 Console.WriteLine("exceptionFilterSwitch Level = "
 + exceptionFilterSwitch.Level);
 }
}

After creating each filter switch, the Level property is displayed to indicate the switch's level.

Creating these switches at this point results in every switch's level being set to zero. To turn them
on, use an application configuration file, shown here:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>
 <system.diagnostics>
 <switches>
 <clear/>
 <add name="DatabaseFilter" value="4" />

 <add name="UIFilter" value="0" />
 <add name="ExceptionFilter" value="1" />
 </switches>
 </system.diagnostics>
</configuration>

This XML file contains a nested tag called switches. This tag defines switch names and sets a value
indicating the level of the switch. The TraceSwitch class accepts five predefined trace levels shown in
Table 6-1. The level of the TraceSwitch can be set through code, but that would defeat the flexibility

of using a configuration file.

Table 6-1. The TraceSwitch class's tracing levels

Level name Value Default

Off 0 Yes

Error 1 No

Warning 2 No

Info 3 No

Verbose 4 No

For more information on the application configuration file, see Recipe 6.1.

Discussion

Turning tracing on or off involves the BooleanSwitch class. When the BooleanSwitch is created, it

attempts to locate a switch with the same name as the displayName parameter in either the

machine.config or application configuration files. If it cannot locate this name in either file,
BooleanSwitch is set to false.

The application configuration file is an XML file named with the assembly's name followed by
.exe.config. An application will automatically use a config file with the same name as the executable;
however, the config file must be in the same directory as the application. Notice the switches tag
nested inside the <system.diagnostics> element. This tag allows switches to be added and their

values set. For Boolean switches, a zero turns the switch off, and any other positive or negative
number turns it on. The Enabled property of the BooleanSwitch can be set through code, but that

would defeat the flexibility of using a configuration file.

This XML file must have the same name as the executable using these switches, followed by .config.
For example, if the executable name were Accounting.exe, the configuration file would be named
Accounting.exe.config. This file should be placed in the same directory as the executable
Accounting.exe. For more information on this file, see Recipe 6.1.

The application configuration file can also set trace and debug output levels in this same switches

tag. These levels identify the scope of the output, for example, if the output will contain only
warnings, only errors, only informational messages, or some combination thereof. Of course, this is

only an example, you may define your own levels as well. For more information on controlling these
output levels, see Recipe 6.3.

The TraceSwitch class operates similarly to the BooleanSwitch class, except that the TraceSwitch

class encapsulates the available levels that control the type and amount of debug/trace output. The
BooleanSwitch class is simply an on/off switch used to enable or disable debugging/tracing.

When the TraceSwitch is created, it attempts to locate a switch with the same name as the

displayName parameter in either the machine.config or application configuration files. If it cannot
locate this name in either file, the TraceSwitch.Level property is set to zero.

The application configuration file can also enable or disable trace and debug output in this same
switches tag. For more information on this topic, see Recipe 6.1.

See Also

See Recipe 6.1 and Recipe 6.3; see the "BooleanSwitch Class" and "Trace and Debug Settings
Schema" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 6.3 Creating Your Own Custom Switch Class

Problem

The BooleanSwitch and TraceSwitch classes defined in the FCL may not always have the required

flexibility or fine-grained control that you need. You want to create you own switch class that
provides the level of control and flexibility that you need. For example, creating a class that allows
you to set more precise trace levels than those supported by the TraceSwitch class. The
TraceSwitch class provides the following tracing levels:

TraceError
TraceWarning
TraceInfo
TraceVerbose

However, you need a finer-grained set of levels, such as the following:

Disable MinorError

Note MediumError

Warning CriticalError

Solution

You can create your own switch class that inherits from System.Diagnostics.Switch and provides

the level of control that you need. For example, creating a class that allows you to set more precise
trace levels than those supported by the TraceSwitch class involves the following steps:

Define a set of enumerated values that represent the levels to be supported by your switch
class:

1.

public enum AppSpecificSwitchLevel
{
 Disable = 0,
 Note = 1,
 Warning = 2,
 MinorError = 3,
 MediumError = 4,
 CriticalError = 5
}

2.

Define a class, such as AppSpecificSwitch, that inherits from System.Diagnostics.Switch:2.

public class AppSpecificSwitch : Switch
{
 protected AppSpecificSwitchLevel level = 0;

 public AppSpecificSwitch(string displayName, string description)
 : base(displayName, description)
 {
 this.Level = (AppSpecificSwitchLevel)base.SwitchSetting;
 }

 // Read/write Level property
 public AppSpecificSwitchLevel Level
 {
 get
 {
 return level;
 }
 set
 {
 if (value < AppSpecificSwitchLevel.Disable)
 {
 level = AppSpecificSwitchLevel.Disable;
 }
 else if (value > AppSpecificSwitchLevel.CriticalError)
 {
 level = AppSpecificSwitchLevel.CriticalError;
 }
 else
 {
 level = value;
 }
 }
 }

 // Read-only properties for the AppSpecificSwitchLevel enum
 public bool Disable
 {
 get
 {
 if (level <= AppSpecificSwitchLevel.Disable)
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }
 }

 public bool Note
 {
 get
 {
 if (level <= AppSpecificSwitchLevel.Note)
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }
 }

 public bool Warning
 {
 get
 {
 if (level <= AppSpecificSwitchLevel.Warning)
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }
 }

 public bool MinorError
 {
 get
 {
 if (level <= AppSpecificSwitchLevel.MinorError)
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }
 }

 public bool MediumError
 {
 get
 {
 if (level <= AppSpecificSwitchLevel.MediumError)
 {
 return (true);

 }
 else
 {
 return (false);
 }
 }
 }

 public bool CriticalError
 {
 get
 {
 if (level <= AppSpecificSwitchLevel.CriticalError)
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }
 }
}

In code, you can instantiate this custom class by invoking its constructor:3.

AppSpecificSwitch appSwitch = new AppSpecificSwitch("MyApplication",
 "My Application Specific Switch");

Set the switch in the application configuration file. For example, the following configuration file
sets the level of our custom switch to AppSpecificSwitchLevel.CriticalLevel:

4.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.diagnostics>
 <switches>
 <add name="MyApplication" value="5" />
 </switches>
 </system.diagnostics>
</configuration>

More information on configuration files can be found in Recipe 6.1 and Recipe 6.2.

Discussion

The BooleanSwitch and TraceSwitch classes defined in the FCL might not always have the flexibility
that you need. In these cases, you can create a class that inherits from the Switch class-the

abstract base class of all switch type classes.

The critical part of creating a custom switch class is the constructor. The constructor must call its
base class constructor using the :base() syntax. If this syntax is omitted, a compiler error will
appear indicating that there is no default constructor to call on the base class Switch. You might
notice that the Switch class contains a single public constructor that accepts two string parameters.

This is designed so that you must use this constructor when building an object of this type or any
type derived from it. Calling the base class's constructor also allows the application configuration file
to be searched, if one exists, for any initialization value for this switch object.

We can circumvent the configuration file search by writing the constructor as follows:

public AppSpecificSwitch(string displayName, string description)
 : base("", description)
{
 this.Level = (AppSpecificSwitchLevel)base.SwitchSetting;
}

The other item of interest in this constructor is the one line of code in its body. This line of code grabs
the level information acquired from the application configuration file and sets this inherited class's
Level property to this value. This line is required because the base class is the one that receives the

initialization information from a configuration file, not the inherited class.

This class contains several other properties. The first is the Level property, which gets and sets the
current level of this object. The levels are defined in the AppSpecificSwitchLevel enumeration. This
class also contains a read-only property for each element in the AppSpecificSwitchLevel

enumeration. These can be used to query this object to determine whether its various levels are set.

See Also

See Recipe 6.1 and Recipe 6.2; see the "Switch Class" and "Trace and Debug Settings Schema"
topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 6.4 A Custom Trace Class that Outputs
Information in an XML Format

Problem

You need to output trace information in an XML format. Unfortunately, the Trace and Debug classes

are sealed and therefore cannot be inherited from in order to create more specialized classes. This
limitation poses somewhat of a problem if you need to create a Trace or Debug class that outputs
XML instead of plain text. You could start from scratch and build new Trace and Debug classes from

the ground up, but you would have to handle configuration files, listener collections, and switch
information, among other things. This way can become quite time-consuming; you need a better
way.

Solution

You could use the Log4Net package found at the SourceForge web site
(http://log4net.sourceforge.net); it is a complete logging system that can easily be added to your
application. However, if you use the XML logging, you should realize that the XML output is not well-
formed. This is done by design so that the XML fragments output from Log4Net can be included as
external entities in a different XML file to create a well-formed XML file.

Another solution is to create a new trace listener class, such as XMLTraceListener, that inherits from
the framework-provided TraceListener class. The XMLTraceListener class is defined as follows
(note that the XMLTraceListener does create a well-formed XML document):

using System;
using System.Collections;
using System.Diagnostics;
using System.IO;
using System.Xml;

public class XMLTraceListener : TraceListener, IDisposable
{
 // CTORS
 public XMLTraceListener() : this(null, "XMLTraceListener") {}

 // Required to be used by a *.config file
 public XMLTraceListener(string name) : this(null, name) {}

 public XMLTraceListener(Stream stream) :
 this(stream, "XMLTraceListener") {}

 public XMLTraceListener(Stream stream, string name)

http://log4net.sourceforge.net

 {
 indentLevel = 0;

 if (stream == null)
 {
 string DirName = Environment.CurrentDirectory;

 if (DirName.EndsWith(Path.DirectorySeparatorChar.ToString()) ||
 DirName.EndsWith(Path.AltDirectorySeparatorChar.ToString()))
 {
 DirName += Process.GetCurrentProcess().ProcessName + ".xml";
 }
 else
 {
 DirName += @"\" + Process.GetCurrentProcess().ProcessName +
 ".xml";
 }

 try
 {
 writer = new XmlTextWriter(File.OpenWrite(DirName), null);
 }
 catch (Exception e)
 {
 Debugger.Log(0, "Initialization Error",
 "Could not create StreamWriter");
 Debugger.Log(0, null, e.ToString());

 // Re-throw exception
 throw;
 }
 }
 else
 {
 // Create XML writer
 writer = new XmlTextWriter(stream, null);
 }

 // Open the XML document, and write the root element
 writer.WriteStartDocument();
 writer.WriteStartElement(XmlConvert.EncodeLocalName(
 "XMLDebugOutput"));
 }

 // FIELDS
 private Stack tagHierarchy = new Stack();
 private int indentLevel = 0;
 private XmlTextWriter writer = null;

 // METHODS
 public override void Write(string message)
 {

 if (this.NeedIndent)
 {
 this.NeedIndent = true;
 }

 WriteData(message);
 }

 public override void Write(object obj)
 {
 if (obj != null)
 {
 this.Write(obj.ToString());
 }
 else
 {
 this.Write("");
 }
 }

 public override void Write(object obj, string message)
 {
 if (obj != null)
 {
 this.Write(obj.ToString(), message);
 }
 else
 {
 this.Write("", message);
 }
 }

 public override void Write(string message, string category)
 {
 this.Write(message + ": " + category);
 }

 public override void WriteLine(string message)
 {
 this.Write(message + Environment.NewLine);
 }

 public override void WriteLine(object obj)
 {
 if (obj == null)
 {
 this.Write(obj.ToString() + Environment.NewLine);
 }
 else
 {
 // If the obj param is specified to be TraceTag.End
 // we can close the last opened XML tag

 if (obj is TraceTag)
 {
 if (((TraceTag)obj) == TraceTag.End)
 {
 WriteEndTag();
 }
 else
 {
 throw (new ArgumentException(
 "This must be specified only " +
 "as a TraceTag.End tag.",
 obj.ToString()));
 }
 }
 else
 {
 this.Write(Environment.NewLine);
 }
 }
 }

 public override void WriteLine(object obj, string message)
 {
 if (obj == null)
 {
 this.Write(obj.ToString(), message + Environment.NewLine);
 }
 else
 {
 // If the obj param is specified to be TraceTag.Start
 // we can open the starting XML tag & record it
 if (obj is TraceTag)
 {
 if (((TraceTag)obj) == TraceTag.Start)
 {
 WriteStartTag(message);
 }
 else
 {
 throw (new ArgumentException(
 "This must be specified only " +
 "as a TraceTag.Start tag.",
 obj.ToString()));
 }
 }
 else
 {
 this.Write("", message + Environment.NewLine);
 }
 }
 }

 public override void WriteLine(string message, string category)
 {
 this.Write(message, category + Environment.NewLine);
 }

 private new string WriteIndent()
 {
 this.NeedIndent = false;

 string IndentChars = "";
 for (int Counter = 0; Counter < (this.indentLevel); Counter++)
 {
 IndentChars += "\t";
 }

 return (IndentChars);
 }

 private void WriteData(string message)
 {
 // Write to the debugger output
 if (Debugger.IsAttached && Debugger.IsLogging())
 {
 Debugger.Log(0, null, WriteIndent() + message);
 }

 // Write to the stream output
 writer.WriteString(message);
 }

 public override void Fail(string message)
 {
 Fail(message, null);
 }

 public override void Fail(string message, string detailedMessage)
 {
 WriteStartTag("FAIL");

 // Write to the debugger output
 if (Debugger.IsAttached && Debugger.IsLogging())
 {
 Debugger.Log(0, null, WriteIndent() +
 "!!! Failure Message !!! ");
 Debugger.Log(0, null, message);
 if (detailedMessage != null)
 {
 Debugger.Log(0, null, ": " + detailedMessage);
 }
 Debugger.Log(0, null, Environment.NewLine);
 }

 // Write to the stream output
 writer.WriteString("!!! Failure Message !!!");
 if (message != null)
 {
 writer.WriteString(message);
 }
 if (detailedMessage != null)
 {
 writer.WriteString(": " + detailedMessage);
 }
 WriteEndTag();
 }

 private void WriteStartTag(string tag)
 {
 // Test the tag param for correct xml tag syntax
 if (!System.Security.SecurityElement.IsValidTag(tag))
 {
 throw (new ArgumentException("Invalid tag.", "tag"));
 }
 else if (tag.Length <= 0)
 {
 throw (new ArgumentException(
 "Invalid tag, tag must be greater than zero " +
 "characters in length.",
 "tag"));
 }
 else if (char.IsNumber(tag[0]))
 {
 throw (new ArgumentException(
 "Invalid tag, tag must not start with a " +
 "numeric character.",
 "tag"));
 }

 // Output the tag to both the debugger & XmlTextWriter
 Debugger.Log(0, null, WriteIndent() + "<" + tag + ">" +
 Environment.NewLine);
 writer.WriteStartElement(XmlConvert.EncodeLocalName(tag));

 // Increase the indent level
 this.indentLevel++;

 // Push this tag onto the stack
 // This stack element will be used again in
 // the WriteEndTag method
 tagHierarchy.Push(tag);
 }

 private void WriteEndTag()
 {
 writer.WriteEndElement();

 this.indentLevel--;

 // Write out the ending tag for the next item to be popped
 // off the stack
 if (tagHierarchy.Count > 0)
 {
 Debugger.Log(0, null, WriteIndent() + @"</" +
 tagHierarchy.Pop().ToString() +
 ">" + Environment.NewLine);
 }
 else
 {
 throw (new InvalidOperationException(
 "Cannot close a tag that has not been created."));
 }
 }

 public override void Close()
 {
 this.Dispose();
 }

 public override void Flush()
 {
 writer.Flush();
 base.Flush();
 }

 public new void Dispose()
 {
 // Close all XmlTextWriter unclosed XML tags
 writer.WriteEndDocument();

 // Close all Debugger.Log unclosed XML tags
 int tagCount = tagHierarchy.Count;
 for (int counter = 0; counter < tagCount; counter++)
 {
 this.indentLevel--;
 Debugger.Log(0, null, WriteIndent() + @"</" +
 tagHierarchy.Pop().ToString() +
 ">" + Environment.NewLine);
 }

 writer.Close();
 base.Close();

 GC.SuppressFinalize(this);
 }
}

Here is the enumeration used to indicate to the XMLTraceListener object whether to write out a

starting or an ending tag:

public enum TraceTag
{
 Start,
 End
}

Discussion

The Trace and Debug classes are sealed and therefore cannot be inherited from to create more

specialized classes. This limitation poses somewhat of a problem if we need to create a specialized
Trace or Debug class that outputs XML instead of plain text. As an alternative plan, we can inherit
from the System.Diagnostics.TraceListener class to create a specialized listener that outputs
XML. Our new XMLTraceListener class can then be added to the collection of listeners contained in
either the Trace or Debug classes. Once the listener is added, we can use the Trace or Debug classes

as normal.

The following example shows how the XMLTraceListener class could be used to output trace

information as an XML document:

public void TestXMLTraceListener()
{
 // The trace information will be displayed in the Output window of the IDE

 // Add our trace listener to the collection of listeners
 Trace.Listeners.Clear();
 Trace.Listeners.Add(new XMLTraceListener());

 // Test output
 Trace.WriteLine(TraceTag.Start, "one"); // <one>
 Trace.WriteLine("The first element");
 Trace.Fail("FIRST FAIL");
 Trace.Fail("SECOND FAIL", "Details");
 Trace.WriteLine(TraceTag.Start, "two"); // <two>
 Trace.WriteLine("The second element");
 Trace.WriteLine(TraceTag.Start, "three"); // <three>
 Trace.WriteLine("The third element");
 Trace.WriteLine(TraceTag.End); // </three>
 Trace.WriteLine(TraceTag.Start, "four"); // <four>
 Trace.WriteLine("The fourth element");
 Trace.WriteLine(TraceTag.End); // </four>
 Trace.Assert(false, "FIRST ASSERTION", "Details");
 Trace.Assert(false, "SECOND ASSERTION");
 Trace.Assert(false);
 Trace.WriteLine(TraceTag.End); // </two>
 Trace.WriteLine(TraceTag.End); // </one>

 // Cleanup
 Trace.Flush();
 Trace.Close();

}

Note that for the Trace class to output any information, the TRACE directive must be defined, either

in the project properties dialog box under Configuration Properties Build Conditional
Compilation Constants or by using a #define directive at the beginning of the file:

#define TRACE

The main difference between using the XMLTraceListener and any other trace listener is the use of
the TraceTag enumeration. This enumeration has two values, Start and End. Start signifies that the
current text to be output will be output as a starting tag, and End signifies that the next tag output

will close the most recently opened tag. Note that the closing tag text is automatically displayed; you
do not have to keep track of this information.

The XMLTraceListener class contains two private methods of interest, WriteStartTag and
WriteEndTag. The WriteStartTag method writes the starting tag for an XML block, after verifying

that the tag is a valid XML tag. Note that these verification steps are not performed by the
XmlTextWriter.WriteStartElement method. The WriteEndTag method writes the ending tag for
the last XML tag that you opened. Notice that the WriteEndTag method does not accept any
parameters. This method knows which closing tag to write to the Debugger.Log method by using the
tagHierarchy Stack object. The last beginning tag written is placed on the top of this stack. All the
WriteEndTag method has to do is pop off the last tag from this stack and write out its closing tag.
The XmlTextWriter.WriteEndElement method automatically keeps track of the starting and ending

tags so no special handling is required.

The WriteStartTag is indirectly called by using the WriteLine method, which accepts both an
object and a string argument. Passing in the value TraceTag.Start for the object argument and
a tag name for the string argument, you can create a beginning tag as shown here:

Trace.WriteLine(TraceTag.Start, "one"); // Displays: <one>

To close this tag, call the overloaded WriteLine method, which accepts only an object argument.
The value passed to this argument must be TraceTag.End in order to display an ending tag:

Trace.WriteLine(TraceTag.End); // Displays: </one>

If the default constructor or the constructor that accepts only a string argument is called, a default
XML file is created and passed to the first parameter of the XmlTextWriter constructor. The name of

the file will be the process name for the application with the .xml extension. The file will be created in
the current directory of the executing assembly.

See Also

See the "TraceListener Class" and "XmlTextWriter" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 6.5 Conditionally Compiling Blocks of Code

Problem

Specific blocks of code will be used only in a nonrelease build of your application. These blocks of
code should not be compiled into the release version of the application. You need a way to
conditionally compile specific blocks of code based on the type of build.

Solution

There are two methods of allowing or preventing code from being compiled. The first is to use the C#
preprocessor directives. The available preprocessor directives are:

#define
#undef
#if
#elif
#else
#endif

The #define and #undef preprocessor directives define and undefine symbols. These symbols are
then used by the #if and #elif preprocessor directives to determine whether the blocks of code

they wrap are to be compiled.

The second method of allowing or preventing code from being compiled is to use the
ConditionalAttribute attribute to allow a method to be compiled based on a defined symbol. This

attribute is used to specify a method as conditionally compiled as follows:

#define TRACE

 ...

[ConditionalAttribute("TRACE")]
public void TraceHelp(string message)
{
 ...
}

The TraceHelp method is compiled only when the TRACE preprocessing identifier is defined.

Discussion

The ConditionalAttribute attribute can be used only on methods to prevent them from being

compiled and called at runtime when the preprocessor identifier passed to the
ConditionalAttribute attribute's constructor is undefined. Properties, indexers, and other

members cannot have this attribute.

Another limitation of this attribute is that it can be placed only on a method that returns void. This

makes sense, since code that invokes this method doesn't expect a return value, and will run
successfully whether the method is invoked. For example, in the code:

int retValue = Car.GetModelNumber();

if the GetModelNumber method is not compiled, then this code will not be able to function correctly.

Along these same lines, a method marked as override cannot be marked with the
ConditionalAttribute attribute. However, the virtual method that a method overrides may be
marked with the ConditionalAttribute attribute. If the virtual method is marked with this

attribute, all methods overriding it are compiled and called based on whether the virtual method is
compiled. In other words, the overriding methods are implicitly marked with the same
ConditionalAttribute attribute as the virtual method.

#define and #undef apply only to preprocessor identifiers within a file scope, whereas the /define:
compiler option defines preprocessor identifiers for all files in a project. #define and #undef also
take precedence over the /define: compiler option. For instance, if the project's /define: compiler
option defined TRACE, and one of the files that project contains has the code:

#undef TRACE

then TRACE will be defined for all files except the one containing the #undef TRACE directive.

To set the project's /define: compiler option in Visual Studio .NET, right-click on the project name in

the Solution Explorer tool window, then click the Properties menu item. This step will display the
Property Pages dialog box for this project. Next, click the Configuration Properties node in the tree on
the left side of this dialog box. In the control to the right of this tree, find the line entitled Conditional
Compilation Constants. On this line, you may add or remove any preprocessor identifiers that you
want.

The #if and #elif directives determine what code within a member is to be compiled. For example:

public void MyMethod()
{
 #if (TRACE)
 Method1();
 #elif (DEBUG)
 Method2();
 #else
 Method3();
 #endif
}

MyMethod will call Method1 when TRACE is defined, Method2 is called if TRACE is undefined and DEBUG
is defined, and Method3 is called if both TRACE and DEBUG are undefined.

See Also

See the "C# Preprocessor Directives" and "ConditionalAttribute Class" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 6.6 Determining Whether a Process Has Stopped
Responding

Problem

You need to watch one or more processes to determine whether they have stopped responding to the
system. This functionality is similar to the column in the Task Manager that displays the text
Responding or Not Responding, depending on the state of the application.

Solution

Use the following method to determine whether a process has stopped responding:

public bool IsProcessResponding(Process process)
{
 if (process.MainWindowHandle == IntPtr.Zero)
 {
 Console.WriteLine("This process does not have a MainWindowHandle");
 return (true);
 }
 else
 {
 // This process has a MainWindowHandle
 if (!process.Responding)
 {
 Console.WriteLine("Process " + process.ProcessName +
 " is not responding.");
 return (false);
 }
 else
 {
 Console.WriteLine("Process " + process.ProcessName +
 " is responding.");
 return (true);
 }
 }
}

Discussion

The IsProcessResponding method accepts a single parameter, process, identifying a process. The

Responding property is then called on the Process object represented by the process parameter.

This property returns a true to indicate that a process is currently responding, or a false to indicate

that the process has stopped responding.

The Responding property always returns true if the process in question does not have a
MainWindowHandle. Processes such as Idle, spoolsv, Rundll32, and svchost do not have a main
window handle and therefore the Responding property always returns true for them. To weed out
these processes, you can use the MainWindowHandle property of the Process class, which returns

the handle of the main window for a process. If this property returns zero, the process has no main
window.

To determine whether all processes on a machine are responding, you can call the
IsProcessResponding method as follows:

foreach (Process proc in Process.GetProcesses())
{
 if (!MyObject.IsProcessResponding(proc))
 {
 Console.WriteLine("Process " + proc.ProcessName + " is not responding.");
 }
}

This code snippet iterates over all processes currently running on your system. The static
GetProcesses method of the Process class takes no parameters and returns an array of Process
objects that contains process information for all processes running on your system. Each Process
object is then passed in to our IsProcessResponding method to determine whether it is responding.
Other static methods on the Process class that retrieve Process objects are GetProcessById,
GetCurrentProcess, and GetProcessesByName.

See Also

See the "Process Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 6.7 Using One or More Event Logs in Your
Application

Problem

You need to add the ability for your application to read and write one or more event logs of specific
events that occur in your application, such as startup, shutdown, critical errors, and even security
breaches. Along with reading and writing to a log, you need the ability to create, clear, close, and
remove logs from the event log.

Your application might need to keep track of several logs at one time. For example, your application
might use a custom log to track specific events as they occur in your application, such as startup and
shutdown. To supplement the custom log, your application could make use of the Security log already
built into the event log system to read/write security events that occur in your application.

Support for multiple logs comes in handy when one log needs to be created and maintained on the local
computer, and another duplicate log needs to be created and maintained on a remote machine. (This
remote machine might contain logs of all running instances of your application on each user's machine.
An administrator could use these logs to quickly find any problems that occur or discover if security is
breached in your application. In fact, an application could be run in the background on the remote
administrative machine that watches for specific log entries to be written to this log from any user's
machine. Recipe 6.10 uses an event mechanism to watch for entries written to an event log and could
easily be used to enhance this recipe.)

Solution

Use the event log built into the Microsoft Windows operating system to record specific events that
occur infrequently. The following class contains all the methods needed to create and use an event log
in your application:

using System;
using System.Diagnostics;

public class AppEvents
{
 // Constructors
 public AppEvents(string logName) :
 this(logName, Process.GetCurrentProcess().ProcessName, ".") {}

 public AppEvents(string logName, string source) : this(logName, source, ".") {}

 public AppEvents(string logName, string source, string machineName)
 {
 this.logName = logName;
 this.source = source;

 this.machineName = machineName;

 if (!EventLog.SourceExists(source, machineName))
 {
 EventLog.CreateEventSource(source, logName, machineName);
 }

 log = new EventLog(logName, machineName, source);
 log.EnableRaisingEvents = true;
 }

 // Fields
 private EventLog log = null;
 private string source = "";
 private string logName = "";
 private string machineName = ".";

 // Properties
 public string Name
 {
 get{return (logName);}
 }

 public string SourceName
 {
 get{return (source);}
 }

 public string Machine
 {
 get{return (machineName);}
 }

 // Methods
 public void WriteToLog(string message, EventLogEntryType type,
 CategoryType category, EventIDType eventID)
 {
 if (log == null)
 {
 throw (new ArgumentNullException("log",
 "This Event Log has not been opened or has been closed."));
 }

 log.WriteEntry(message, type, (int)eventID, (short)category);
 }

 public void WriteToLog(string message, EventLogEntryType type,
 CategoryType category, EventIDType eventID,
 byte[] rawData)
 {
 if (log == null)
 {

 throw (new ArgumentNullException("log",
 "This Event Log has not been opened or has been closed."));
 }

 log.WriteEntry(message, type, (int)eventID, (short)category,
 rawData);
 }

 public EventLogEntryCollection GetEntries()
 {
 if (log == null)
 {
 throw (new ArgumentNullException("log",
 "This Event Log has not been opened or has been closed."));
 }

 return (log.Entries);
 }

 public void ClearLog()
 {
 if (log == null)
 {
 throw (new ArgumentNullException("log",
 "This Event Log has not been opened or has been closed."));
 }

 log.Clear();
 }

 public void CloseLog()
 {
 if (log == null)
 {
 throw (new ArgumentNullException("log",
 "This Event Log has not been opened or has been closed."));
 }

 log.Close();
 log = null;
 }

 public void DeleteLog()
 {
 if (EventLog.SourceExists(source, machineName))
 {
 EventLog.DeleteEventSource(source, machineName);
 }

 if (logName != "Application" &&
 logName != "Security" &&
 logName != "System")

 {
 if (EventLog.Exists(logName, machineName))
 {
 EventLog.Delete(logName, machineName);
 }
 }

 if (log != null)
 {
 log.Close();
 log = null;
 }
 }
}

The EventIDType and CategoryType enumerations used in this class are defined as follows:

public enum EventIDType
{
 NA = 0,
 Read = 1,
 Write = 2,
 ExceptionThrown = 3,
 BufferOverflowCondition = 4,
 SecurityFailure = 5,
 SecurityPotentiallyCompromised = 6
}

public enum CategoryType : short
{
 None = 0,
 WriteToDB = 1,
 ReadFromDB = 2,
 WriteToFile = 3,
 ReadFromFile = 4,
 AppStartUp = 5,
 AppShutDown = 6,
 UserInput = 7
}

Discussion

The AppEvents class created for this recipe provides applications with an easy-to-use interface for

creating, using, and deleting single or multiple event logs in your application. Support for multiple logs
comes in handy when one log needs to be created and maintained on the local computer and another
duplicate log needs to be created and maintained on a remote machine. (This remote machine might
contain logs of all running instances of your application on each user's machine. An administrator could
use these logs to quickly discover whether any problems occur or security is breached in your
application. In fact, an application could be run in the background on the remote administrative
machine that watches for specific log entries to be written to this log from any user's machine. Recipe
6.10 uses an event mechanism to watch for entries written to an event log and could easily be used to

enhance this recipe.)

The methods of the AppEvents class are described as follows:

WriteToLog

This method is overloaded to allow an entry to be written to the event log with or without a byte
array containing raw data.

GetEntries

Returns all the event log entries for this event log in an EventLogEntryCollection .

ClearLog

Removes all the event log entries from this event log.

CloseLog

Closes this event log, preventing further interaction with it.

DeleteLog

Deletes this event log and the associated event log source.

An AppEvents object can be added to an array or collection containing other AppEvent objects; each
AppEvents object corresponds to a particular event log. The following code creates two AppEvents
classes and adds them to a ListDictionary collection:

public void CreateMultipleLogs()
{
 AppEvents appEventLog = new AppEvents("AppLog", "AppLocal");
 AppEvents globalEventLog = new AppEvents("System", "AppGlobal");

 ListDictionary logList = new ListDictionary();
 logList.Add(appEventLog.Name, appEventLog);
 logList.Add(globalEventLog.Name, globalEventLog);
}

To write to either of these two logs, obtain the AppEvents object by name from the ListDictionary
object, cast the resultant object type to an AppEvents type, and call the WriteToLog method:

((AppEvents)logList[appEventLog.Name]).WriteToLog("App startup",

 EventLogEntryType.Information, CategoryType.AppStartUp,
 EventIDType.ExceptionThrown);

((AppEvents)logList[globalEventLog.Name]).WriteToLog("App startup security check",
 EventLogEntryType.Information, CategoryType.AppStartUp,
 EventIDType.BufferOverflowCondition);

Containing all AppEvents objects in a ListDictionary object allows you to easily iterate over all
AppEvents objects that your application has instantiated. Using a foreach loop, you can write a single

message to both a local and a remote event log:

foreach (DictionaryEntry log in logList)
{
 ((AppEvents)log.Value).WriteToLog("App startup", EventLogEntryType.FailureAudit,
 CategoryType.AppStartUp, EventIDType.SecurityFailure);
}

To delete each log in the logList object, you can use the following foreach loop:

foreach (DictionaryEntry log in logList)
{
 ((AppEvents)log.Value).DeleteLog();
}
logList.Clear();

There are several key points that you should be aware of. The first concerns a small problem with
constructing multiple AppEvents classes. If you create two AppEvents objects and pass in the same
source string to the AppEvents constructor, an exception will be thrown. Consider the following code,
which instantiates two AppEvents objects with the same source string:

AppEvents appEventLog = new AppEvents("AppLog", "AppLocal");
AppEvents globalEventLog = new AppEvents("Application", " AppLocal");

The objects are instantiated without errors, but when the WriteToLog method is called on the
globalEventLog object, the following exception is thrown:

An unhandled exception of type 'System.ArgumentException' occurred in system.dll.

Additional information: The source 'AppLocal' is not registered in log 'Application'.
(It is registered in log 'AppLog'.) " The Source and Log properties must be matched,
or you may set Log to the empty string, and it will automatically be matched to the
Source property.

This exception occurs because the WriteToLog method internally calls the WriteEntry method of the
EventLog object. The WriteEntry method internally checks to see whether the specified source is
registered to the log you are attempting to write to. In our case, the AppLocal source was registered
to the first log it was assigned to-the AppLog log. The second attempt to register this same source to

another log, Application, failed silently. You do not know that this attempt failed until you try to use the
WriteEntry method of the EventLog object.

One way to prevent this exception from occurring is to modify the AppEvents class constructor to
create a new EventLog object with an empty string for the log name parameter. This modified

constructor call is highlighted in the following code:

public AppEvents(string logName, string source, string machineName)
{
 this.logName = logName;
 this.source = source;
 this.machineName = machineName;

 if (!EventLog.SourceExists(source, machineName))
 {
 EventLog.CreateEventSource(source, logName, machineName);
 }

 log = new EventLog("", machineName, source);
 log.EnableRaisingEvents = true;
}

Now, instead of an exception being thrown, the system searches for the log that the source is
registered to and uses that log in place of the one specified in the logName parameter. If source is not
registered to any log, the source will be registered with the Application log, and that log will be used
by this EventLog object as well.

Another key point about the AppEvents class is the following code, placed at the beginning of each
method (except for the DeleteLog method):

if (log == null)
{
 throw (new ArgumentNullException("log",
 "This Event Log has not been opened or has been closed."));
}

This code checks to see whether the private member variable log is a null reference. If so, an
ArgumentException is thrown, informing the user of this class that a problem occurred with the
creation of the EventLog object. The DeleteLog method does not check the log variable for null
since it deletes the event log source and the event log itself. The EventLog object is not involved in this
process except at the end of this method, where the log is closed and set to null , if it is not already
null . Regardless of the state of the log variable, the source and event log should be deleted in this

method.

The DeleteLog method makes a critical choice when determining whether to delete a log. The following

code prevents the Application, Security, and System event logs from being deleted from your system:

if (logName != "Application" &&
 logName != "Security" &&
 logName != "System")
{
 if (EventLog.Exists(logName, machineName))
 {
 EventLog.Delete(logName, machineName);
 }
}

If any of these logs are deleted, so are the sources registered with the particular log. Once the log is
deleted, it is permanent; believe us, it is not fun to try and recreate the log and its sources without a

backup.

As a last note, the EventIDType and CategoryType enumerations are designed mainly to log security

type breaches as well as potential attacks on the security of your application. Using these event IDs
and categories, the administrator can more easily track down potential security threats and do post-
mortem analysis after security is breached. These enumerations can easily be modified or replaced
with your own to allow you to track different events that occur as a result of your application running.

You should minimize the number of entries written to the event log from your
application. The reason for this is that writing to the event log causes a
performance hit. Writing too much information to the event log can noticeably
slow your application. Pick and choose the entries you write to the event log
wisely.

See Also

See Recipe 6.10 ; see the "EventLog Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 6.8 Changing the Maximum Size of a Custom
Event Log

Problem

Custom event logs are created with a default maximum size of 512K. For some applications, this
default may be too small or even too large. You need a way of programmatically modifying this size.
If you are a system administrator, you might need to write a utility to modify this value.

Solution

There is no direct way of modifying the maximum size of an event log. However, the following
method makes use of the registry to circumvent this limitation:

using System;
using Microsoft.Win32;

public void SetCustomLogMaxSize(string logName, int maxSize)
{
 RegistryKey key = Registry.LocalMachine.OpenSubKey
 (@"SYSTEM\CurrentControlSet\Services\Eventlog\" + logName, true);
 if (key == null)
 {
 Console.WriteLine(
 "Registry key for this Event Log does not exist.");
 }
 else
 {
 key.SetValue("MaxSize", maxSize);
 Registry.LocalMachine.Close();
 }
}

Discussion

The FCL classes devoted to making use of the event log contain most of the functionality that a
developer will ever need. Yet there are some small items that are not directly accessible using the
event log API in the FCL. One of these is the manipulation of the maximum size of an event log. Event
logs are initialized to a maximum size of 512K, after which the event log entries are overwritten by
default.

There are cases where an application may produce many or very few entries in an event log. In these

cases, it would be nice to manipulate the maximum size of an event log so that memory is used most
efficiently and that critical entries are not lost or overwritten because the event log fills up too fast.

It is possible to set the maximum size of an event log manually through the Event Viewer application.
Unfortunately, you might not always have access to the machine to manually do this. In addition, this
is a tedious and time-consuming process. You can programmatically set the maximum size by
changing the value of a registry entry. If an event log were named MyLog, the properties of this log

would reside in the following registry location:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\MyLog

This location contains several value entries containing properties of this event log. The value entry we
are interested in is MaxSize. Using the static methods of the Registry class, we can add or modify

this value to one of our choosing with code like the following:

Microsoft.Win32.RegistryKey lm = Registry.LocalMachine;
Microsoft.Win32.RegistryKey logKey = lm.OpenSubKey(
 @"SYSTEM\CurrentControlSet\Services\Eventlog\RegistryLog", true);
logKey.SetValue("MaxSize", (int) 1024);
logKey.Close;

To access this registry value, we first call the RegistryKey.OpenSubKey method. This method
returns a RegistryKey object, which, in this case, represents the key containing the MaxSize value
entry in which we are interested. The SetValue method of the RegistryKey object is called next to
change the value of the MaxSize entry. If this value entry does not exist, it is created with the
desired value. This information is then flushed to the registry and the RegistryKey class is closed.
Both of these actions are performed though the Close method on the RegistryKey class.

See Also

See the "Registry.LocalMachine Field" and "RegistryKey.Open Method" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 6.9 Searching Event Log Entries

Problem

Your application might have produced many entries in the event log. To perform an analysis of how the application
operated, how many errors were encountered, and so on, you need to be able to perform a search through all of the
entries in an event log. Unfortunately, there are no good built-in search mechanisms for event logs.

Solution

You will eventually have to sift through all the entries your application writes to an event log in order to find the
entries that allow you to perhaps fix a bug or improve your application's security system. Unfortunately, there are no
good search mechanisms for event logs. This recipe contains an EventLogSearch class, which contains many static

methods allowing you to search for entries in an event log based on a criterion. In addition, this search mechanism
allows complex searches involving multiple criteria to be performed on an event log at one time. The code for the
EventSearchLog class is:

using System;
using System.Collections;
using System.Diagnostics;

public sealed class EventLogSearch
{
 private EventLogSearch() {} // Prevent this class from being instantiated.

 public static EventLogEntry[] FindTimeGeneratedAtOrBefore(
 IEnumerable logEntries, DateTime timeGeneratedQuery)
 {
 ArrayList entries = new ArrayList();

 foreach (EventLogEntry logEntry in logEntries)
 {
 if (logEntry.TimeGenerated <= timeGeneratedQuery)
 {
 entries.Add(logEntry);
 }
 }

 EventLogEntry[] entriesArray = new EventLogEntry[entries.Count];
 entries.CopyTo(entriesArray);
 return (entriesArray);
 }

 public static EventLogEntry[] FindTimeGeneratedAtOrAfter(
 IEnumerable logEntries, DateTime timeGeneratedQuery)
 {

 ArrayList entries = new ArrayList();

 foreach (EventLogEntry logEntry in logEntries)
 {
 if (logEntry.TimeGenerated >= timeGeneratedQuery)
 {
 entries.Add(logEntry);
 }
 }

 EventLogEntry[] entriesArray = new EventLogEntry[entries.Count];
 entries.CopyTo(entriesArray);
 return (entriesArray);
 }
}

Discussion

Other searchable criteria can be added to this class by following the same coding pattern for each search method. For
instance, the following example shows how to add a search method to find all entries that contain a particular
username:

 public static EventLogEntry[] FindUserName(IEnumerable logEntries,
 string userNameQuery)
 {
 ArrayList entries = new ArrayList();

 foreach (EventLogEntry logEntry in logEntries)
 {
 if (logEntry.UserName == userNameQuery)
 {
 entries.Add(logEntry);
 }
 }

 EventLogEntry[] entriesArray = new EventLogEntry[entries.Count];
 entries.CopyTo(entriesArray);
 return (entriesArray);
 }

The methods shown in Table 6-2 list other search methods that could be included in this class and describe which
property of the event log entries they search on. (All of these methods are implemented on the code for this book,
which can be found at http://www.oreilly.com/catalog/csharpckbk .)

Table 6-2. Other possible search methods

Search method name Entry property searched

FindMachineName MachineName == MachineNameQuery

Search method name Entry property searched

FindCategory (overloaded to accept a string type category name) Category == CategoryNameQuery

FindCategory (overloaded to accept a short type category number) Category == CategoryNumberQuery

FindSource Source == SourceQuery

FindEntryType EntryType == EntryTypeQuery

FindMessage Message == Message.Query

FindEventID EventID == EventIDQuery

The FindCategory method can be overloaded to search on either the category name or category number.

The following method makes use of the EventLogSearch methods to find and display entries that are marked as
Error log entries:

public void FindAnEntryInEventLog()
{
 EventLog Log = new EventLog("System");

 EventLogEntry[] entries = EventLogSearch.FindEntryType(Log.entries,
 EventLogEntryType.Error);

 foreach (EventLogEntry Entry in entries)
 {
 Console.WriteLine("Message: " + Entry.Message);
 Console.WriteLine("EventID: " + Entry.EventID);
 Console.WriteLine("Category: " + Entry.Category);
 Console.WriteLine("EntryType: " + Entry.EntryType.ToString());
 Console.WriteLine("Source: " + Entry.Source);
 }
}

The following method finds and displays entries generated at or after 8/24/2002, are marked as Error type logs, and
contain an event ID of 7000 :

public void FindAnEntryInEventLog()
{
 EventLog log = new EventLog("System");

 EventLogEntry[] entries = EventLogSearch.FindTimeGeneratedAtOrAfter(log.entries,
 DateTime.Parse("8/24/2002"));
 entries = EventLogSearch.FindEntryType(entries, EventLogEntryType.Error);
 entries = EventLogSearch.FindEventID(entries, 7000);

 foreach (EventLogEntry entry in entries)
 {
 Console.WriteLine("Message: " + entry.Message);
 Console.WriteLine("EventID: " + entry.EventID);
 Console.WriteLine("Category: " + entry.Category);
 Console.WriteLine("EntryType: " + entry.EntryType.ToString());

FindCategory (overloaded to accept a string type category name) Category == CategoryNameQuery

FindCategory (overloaded to accept a short type category number) Category == CategoryNumberQuery

FindSource Source == SourceQuery

FindEntryType EntryType == EntryTypeQuery

FindMessage Message == Message.Query

FindEventID EventID == EventIDQuery

The FindCategory method can be overloaded to search on either the category name or category number.

The following method makes use of the EventLogSearch methods to find and display entries that are marked as
Error log entries:

public void FindAnEntryInEventLog()
{
 EventLog Log = new EventLog("System");

 EventLogEntry[] entries = EventLogSearch.FindEntryType(Log.entries,
 EventLogEntryType.Error);

 foreach (EventLogEntry Entry in entries)
 {
 Console.WriteLine("Message: " + Entry.Message);
 Console.WriteLine("EventID: " + Entry.EventID);
 Console.WriteLine("Category: " + Entry.Category);
 Console.WriteLine("EntryType: " + Entry.EntryType.ToString());
 Console.WriteLine("Source: " + Entry.Source);
 }
}

The following method finds and displays entries generated at or after 8/24/2002, are marked as Error type logs, and
contain an event ID of 7000 :

public void FindAnEntryInEventLog()
{
 EventLog log = new EventLog("System");

 EventLogEntry[] entries = EventLogSearch.FindTimeGeneratedAtOrAfter(log.entries,
 DateTime.Parse("8/24/2002"));
 entries = EventLogSearch.FindEntryType(entries, EventLogEntryType.Error);
 entries = EventLogSearch.FindEventID(entries, 7000);

 foreach (EventLogEntry entry in entries)
 {
 Console.WriteLine("Message: " + entry.Message);
 Console.WriteLine("EventID: " + entry.EventID);
 Console.WriteLine("Category: " + entry.Category);
 Console.WriteLine("EntryType: " + entry.EntryType.ToString());

 Console.WriteLine("Source: " + entry.Source);
 }
}

Note that this search mechanism can search within only one event log at a time.

To illustrate how searching works, let's assume that you are using the FindEventID method to search on the
EventID . Initially, you would call the FindEventID search method, passing in a collection that implements the
IEnumerable interface, such as the EventLogEntryCollection collection (that contains all entries in that event log)
or an array of EventLogEntry objects. The EventLogEntryCollection collection is returned by the Entries
property of the EventLog class. The FindEventID method will return an array of EventLogEntry objects that match
the search criteria (the value passed in to the second argument of the FindEventID method).

The real power of this searching method design is that the initial search on the EventLogEntryCollection returns
an array of EventLogEntry objects. This EventLogEntry array may then be passed back into another search method
to be searched again, effectively narrowing down the search query. For example, the EventLogEntry array returned
from the FindEventID method may be passed into another search method such as the FindEntryType method to

narrow down the search to all entries that are possibly informational entry types.

See Also

See the "EventLog Class" and "EventLogEntry Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 6.10 Watching the Event Log for a Specific Entry

Problem

You may have multiple applications that write to a single event log. For each of these applications,
you want a monitoring application to watch for one or more specific log entries to be written to the
event log. For example, you might want to watch for a log entry that indicates that an application
encountered a critical error or shut down unexpectedly. These log entries should be reported in real
time.

Solution

Monitoring an event log for a specific entry requires the following steps:

Create the following method to set up the event handler to handle event log writes:1.

public void WatchForAppEvent(EventLog log)
{
 log.EnableRaisingEvents = true;
 log.EntryWritten += new EntryWrittenEventHandler(OnEntryWritten);
}

Create the event handler to examine the log entries and determine whether further action is to
be performed. For example:

2.

public static void OnEntryWritten(object source,
 EntryWrittenEventArgs entryArg)
{
 if (entryArg.Entry.EntryType == EventLogEntryType.Error)
 {
 Console.WriteLine(entryArg.Entry.Message);
 Console.WriteLine(entryArg.Entry.Category);
 Console.WriteLine(entryArg.Entry.EntryType.ToString());
 // Do further actions here as necessary...
 }
}

Discussion

This recipe revolves around the EntryWrittenEventHandler delegate, which calls back a method

whenever any new entry is written to the event log. The EntryWrittenEventHandler delegate

accepts two arguments: a source of type object and an entryArg of type EntryWrittenEventArgs.

The entryArg parameter is the most interesting of the two. It contains a property called Entry that
returns an EventLogEntry object. This EventLogEntry object contains all the information you need

concerning the entry that was written to the event log.

This event log that we are watching is passed as the WatchForAppEvent method's log parameter.
This method performs two actions. First, it sets log's EnableRaisingEvents property to true. If this
property were set to false, no events would be raised for this event log when an entry is written to
it. The second action this method performs is to add the OnEntryWritten callback method to the list

of event handlers for this event log.

To prevent this delegate from calling the OnEntryWritten callback method, you can set the
EnableRaisingEvents property to false, effectively turning off the delegate.

Note that the Entry object returned by the entryArg parameter of the OnEntryWritten callback

method is read-only and therefore the entry cannot be modified before it is written to the event log.

See Also

See the "Handling the EntryWritten Event" and "EventLog.EntryWritten Event" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 6.11 Finding All Sources Belonging to a Specific
Event Log

Problem

You need to determine which sources are attached to a particular event log before the log is
examined and/or deleted. A source is a component or application that has registered itself to a
particular event log as a source of events.

Solution

Use the following method to extract all of the source names registered to a log (pass the log's name
in as the logName argument):

public ArrayList FindSourceNamesFromLog(string logName)
{
 ArrayList sourceNamesList = new ArrayList();

 string[] eventLogNames = Registry.LocalMachine.OpenSubKey
 (@"SYSTEM\CurrentControlSet\Services\Eventlog").GetSubKeyNames();
 foreach (string log in eventLogNames)
 {
 Console.WriteLine("log: " + log);
 if (logName == log)
 {
 string[] sourceNames = Registry.LocalMachine.OpenSubKey
 (@"SYSTEM\CurrentControlSet\Services\Eventlog\" +
 log).GetSubKeyNames();

 sourceNamesList.Capacity = Registry.LocalMachine.OpenSubKey
 (@"SYSTEM\CurrentControlSet\Services\Eventlog\" +
 log).SubKeyCount;

 for (int i = 0; i < sourceNames.Length; i++)
 {
 sourceNamesList.Add(sourceNames[i]);
 Console.WriteLine("SourceName: " + sourceNames[i]);
 }
 }
 }

 return (sourceNamesList);
}

To obtain a listing of all logs and their registered sources, use the following method:

public static Hashtable FindSourceNamesFromAllLogs()
{
 Hashtable logsAndSources = new Hashtable();

 string[] eventLogNames = Registry.LocalMachine.OpenSubKey
 (@"SYSTEM\CurrentControlSet\Services\Eventlog").GetSubKeyNames();

 foreach (string log in eventLogNames)
 {
 ArrayList sourceNamesList = new ArrayList();

 string[] sourceNames = Registry.LocalMachine.OpenSubKey
 (@"SYSTEM\CurrentControlSet\Services\Eventlog\" +
 log).GetSubKeyNames();

 sourceNamesList.Capacity = Registry.LocalMachine.OpenSubKey
 (@"SYSTEM\CurrentControlSet\Services\Eventlog\" +
 log).SubKeyCount;

 for (int i = 0; i < sourceNames.Length; i++)
 {
 sourceNamesList.Add(sourceNames[i]);
 }

 logsAndSources.Add(log, sourceNamesList);
 }

 return (logsAndSources);
}

This method returns a Hashtable with the log name as the key and an ArrayList of source names
as the Hashtable's value. The information in the Hashtable of ArrayLists can be accessed using

the following code:

foreach (DictionaryEntry DE in logsAndSources)
{
 Console.WriteLine("Log: " + DE.Key); // Display the log
 foreach (string source in ((ArrayList)DE.Value))
 {
 // Display all sources for this log
 Console.WriteLine("\tSource: " + source);
 }
}

Discussion

This recipe is similar to Recipe 6.8 in that we need to find information concerning an event log that
can be obtained only through the registry. If we need to find the sources associated with a log called
MyLog, we would look up all of the subkeys contained in the following location:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\MyLog\

If MyLog were associated with two sources called AppSource and MonitorSource, the following keys
would exist under the MyLog key:

\AppSource
\MonitorSource

The full registry path for both keys would be:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\MyLog\AppSource
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\MyLog\MonitorSource

This recipe makes use of the Registry and RegistryKey classes to look up the subkeys under the

event log's key in the registry. See Recipe 6.8 for more information dealing with opening registry
keys using the Registry and RegistryKey classes.

The read-only SubKeyCount property and GetSubKeyNames method of the RegistryKey class are

used to obtain the number of subkeys that reside under a particular key and a string array containing
their names.

The FindSourceNamesFromLog method uses the GetSubKeyNames method to obtain a list of event
logs from the EventLog registry key. It then searches these log names until the log name passed to

this method through the logName parameter is found. Once the correct log is found, its
subkeys-representing all of the sources tied to that log-are saved to the sourceNamesList array.

This array is then passed back to the caller.

See Also

See Recipe 6.8; see the "Registry.LocalMachine Field" and "RegistryKey.Open Method" topics in the
MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 6.12 Implementing a Simple Performance Counter

Problem

You need to use a performance counter to track application-specific information. The simpler
performance counters find, for example, the change in a counter value between successive samplings
or just count the number of times an action occurs. Other, more complex counters exist but are not
dealt with in this recipe. For example, a custom counter could be built to keep track of the number of
database transactions, the number of failed network connections to a server, or even the number of
users connecting to your web service per minute.

Solution

Create a simple performance counter that finds, for example, the change in a counter value between
successive samplings or to simply count the number of times an action occurs. Use the following
method to create a simple custom counter:

public PerformanceCounter CreateSimpleCounter(string counterName, string counterHelp,
 PerformanceCounterType counterType, string categoryName, string categoryHelp)
{
 CounterCreationDataCollection counterCollection =
 new CounterCreationDataCollection();

 // Create the custom counter object and add it to the collection of counters
 CounterCreationData counter = new CounterCreationData(counterName, counterHelp,
 counterType);
 counterCollection.Add(counter);

 // Create category
 if (PerformanceCounterCategory.Exists(categoryName))
 {
 PerformanceCounterCategory.Delete(categoryName);
 }

 PerformanceCounterCategory appCategory =
 PerformanceCounterCategory.Create(categoryName,
 categoryHelp, counterCollection);

 // Create the counter and initialize it
 PerformanceCounter appCounter =
 new PerformanceCounter(categoryName, counterName, false);

 appCounter.RawValue = 0;

 return (appCounter);
}

Discussion

The first action this method takes is to create a counterCollection object and CounterCreationData

object. The CounterCreationData object is created using the counterName , counterHelp , and

countertype parameters passed to the CreateSimpleCounter method. The CounterCreationData
object is then added to the counterCollection .

The ASPNET user account, by default, prevents performance counters from being

read. You can either increase the permissions allowed by this account or use
impersonation to enable this functionality. However, this then becomes a
deployment requirement of your web application. Decreasing security for the
ASPNET account may very well be frowned upon by IT folks deploying your

application.

If categoryName -a string containing the name of the category that is passed as a parameter to the

method-is not registered on the system, a new category is created from a
PerformanceCounterCategory object. If one is registered, it is deleted and created anew from a
PerformanceCounterCategory object. Finally, the actual performance counter is created from a
PerformanceCounter object. This object is initialized to zero and returned by the method.

The CreateSimpleCounter method returns a PerformanceCounter object that will be used by an
application. The application can perform several actions on a PerformanceCounter object. An

application can increment or decrement it using one of these three methods:

long value = appCounter.Increment();
long value = appCounter.Decrement();
long value = appCounter.IncrementBy(i);

// Additionally, a negative number may be passed to the
// IncrementBy method to mimic a DecrementBy method
// (which is not included in this class). For example:
long value = appCounter.IncrementBy(-i);

The first two methods accept no parameters, while the third accepts a long containing the number by
which to increment the counter. All three methods return a long type indicating the new value of the

counter.

In addition to incrementing or decrementing this counter, you can also take samples of the counter at
various points in the application. A sample is a snapshot of the counter and all of its values at a
particular instance in time. A sample may be taken using the following line of code:

CounterSample counterSampleValue = appCounter.NextSample();

The NextSample method accepts no parameters and returns a CounterSample structure.

At another point in the application, a counter can be sampled again, and both samples can be passed
in to the static Calculate method on the CounterSample class. These actions may be performed on a

single line of code as follows:

float calculatedSample = CounterSample.Calculate(counterSampleValue,
 appCounter.NextSample());

The calculated sample calculatedSample may be stored for future analysis.

The simpler performance counters already available in the .NET Framework are:

CounterDelta32 /CounterDelta64

Determines the difference (or change) in value between two samplings of this counter. The
CounterDelta64 counter can hold larger values than CounterDelta32 .

CounterTimer

Calculates the percentage of the CounterTimer value change over the CounterTimer time

change.

CounterTimerInverse

Calculates the inverse of the CounterTimer counter.

CountPerTimeInterval32/CountPerTimeInterval64

Calculates the number of items waiting (possibly within a queue) over the time elapsed.

ElapsedTime

Calculates the difference in time between when this counter recorded the start of an event and
the current time, measured in seconds.

NumberOfItems32 /NumberOfItems64

This counter returns its raw value. The NumberOfItems64 counter can hold larger values than
NumberOfItems32 . This counter does not need to be passed to the static Calculate method of
the CounterSample class; there are no values that must be calculated. Instead, use the
RawValue property of the PerformanceCounter object (i.e., in this recipe, the
appCounter.RawValue property would be used).

NumberOfItemsHEX32 /NumberOfItemsHEX64

This counter returns its raw value in hexadecimal format. The NumberOfItemsHEX64 counter can
hold larger values than NumberOfItemsHEX32 . This counter does not need to be passed to the
static Calculate method of the CounterSample class; there are no values that must be
calculated. Instead, use the RawValue property of the PerformanceCounter object (i.e., in this
recipe, the appCounter.RawValue property would be used).

RateOfCountsPerSecond32 /RateOfCountsPerSecond64

Calculates the RateOfCountsPerSecond* value change over the RateOfCountsPerSecond* time
change, measured in seconds. The RateOfCountsPerSecond64 counter can hold larger values
than the RateOfCountsPerSecond32 counter.

Timer100Ns

Calculates the percentage of the Timer100Ns value change over the Timer100Ns time change,

measured in 100ns time units.

Timer100nsInverse

Calculates the inverse of the Timer100Ns counter.

See Also

See Recipe 6.13 ; see the "PerformanceCounter Class," "PerformanceCounterType Enumeration,"
"PerformanceCounterCategory Class," "ASP.NET Impersonation," and "Monitoring Performance
Thresholds" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 6.13 Implementing Performance Counters that
Require a Base Counter

Problem

You need to use some of the more advanced performance counters to accurately track information
about your application. This performance counter exists as two counters used together. The first
counter is the main counter, which is divided by the second counter, called the base counter.
Essentially, the first counter is the numerator and the second counter is the denominator; the custom
counter reports the result of this division operation. The main counter is used in tandem with its base
counter type to calculate, for example, the average amount of time it takes for an action (e.g.,
connecting to a server) to complete or the average number of actions that occur during a single
process (e.g., database timeouts).

Solution

Create a complex performance counter, which is used in tandem with the base counter type to
calculate, for example, the average amount of time it takes for an action to complete or the average
number of actions that occur during a single process. Use the following method to create a complex
custom counter:

public void CreateComplexCounter(string counterName, string counterHelp,
 PerformanceCounterType counterType, string baseCounterName,
 string baseCounterHelp, PerformanceCounterType baseCounterType,
 string categoryName, string categoryHelp,
 out PerformanceCounter appCounter,
 out PerformanceCounter appBaseCounter)
{
 CounterCreationDataCollection counterCollection =
 new CounterCreationDataCollection();

 // Create the custom counter object and its base counter object
 // and add them to the collection of counters (they must be
 // added successively)
 CounterCreationData counter = new CounterCreationData(counterName,
 counterHelp, counterType);
 counterCollection.Add(counter);
 CounterCreationData BaseCounter =
 new CounterCreationData(baseCounterName,
 baseCounterHelp, baseCounterType);
 counterCollection.Add(BaseCounter);

 // Create category

 if (PerformanceCounterCategory.Exists(categoryName))
 {
 PerformanceCounterCategory.Delete(categoryName);
 }

 PerformanceCounterCategory appCategory =
 PerformanceCounterCategory.Create(categoryName, categoryHelp,
 counterCollection);

 // Create the counter and initialize it
 PerformanceCounter newAppCounter =
 new PerformanceCounter(categoryName, counterName, false);
 PerformanceCounter newAppBaseCounter =
 new PerformanceCounter(categoryName, baseCounterName, false);

 newAppCounter.RawValue = 0;
 newAppBaseCounter.RawValue = 0;

 appCounter = newAppCounter;
 appBaseCounter = newAppBaseCounter;
}

Discussion

The CreateComplexCounter method returns two PerformanceCounter objects as out parameters;

one is the counter, and the other is the base counter. These two counters are used in tandem; the
base counter controls some aspect of the denominator in the calculation relating these two counters.
Since the value of the appCounter parameter, returned from this method, depends on the value in
the appBaseCounter parameter, we are considering these types of counters as complex counters.

The ASPNET user account, by default, prevents performance counters from

being read. You can either increase the permissions allowed by this account or
use impersonation to enable this functionality. However, this then becomes a
deployment requirement of your web application. Decreasing security for the
ASPNET account may very well be frowned upon by IT folks deploying your

application.

This method operates similarly to the CreateSimpleCounter method described in Recipe 6.12. The
one major difference is that two CounterCreationData objects are created and added to the
CounterCreationDataCollection object. This first CounterCreationData object is the main

counter used in the calculation for this counter. The second is the base counter, used in the
denominator of the calculation for this counter. These counters must be added, in order, to the
CounterCreationDataCollection object. In addition, the counter defined by the counterName

parameter must be added before the counter defined by the baseCounterName parameter.

The application can perform several actions on these PerformanceCounter objects. An application
can increment or decrement a PerformanceCounter object using one of these three methods:

long value = newAppCounter.Increment();

long value = newAppCounter.Decrement();
long value = newAppCounter.IncrementBy(i);

long value = newAppBaseCounter.Increment();
long value = newAppBaseCounter.Decrement();
long value = newAppBaseCounter.IncrementBy(i);

// Additionally, a negative number may be passed in to the IncrementBy method
// to mimic a DecrementBy method (which is not included in this class)
long value = newAppCounter.IncrementBy(-i);
long value = newAppBaseCounter.IncrementBy(-i);

The first two methods accept no parameters, while the third accepts a long containing the number
by which to increment the counter. All three methods return a long type indicating the new value of

the counter.

In addition to incrementing or decrementing these counters, you can also take samples of these
counters at various points in the application. A sample is a snapshot of the counter and all of its
values at a particular instance in time. A sample may be taken using the following lines of code:

CounterSample counterSampleValue = newAppCounter.NextSample();
CounterSample counterSampleValue = newAppBaseCounter.NextSample();

The NextSample method accepts no parameters and returns a CounterSample object.

At another point in the application, a counter may be sampled again, and the samples can be passed
in to the static Calculate method on the CounterSample class. These actions may be performed on

a single line of code as follows:

float calculatedSample = CounterSample.Calculate(counterSampleValue,
 newAppCounter.NextSample());

Note that you need to pass only the newAppCounter samples; the newAppBaseCounter samples are
handled for you. The calculated sample calculatedSample may be stored for future analysis. See
Recipe 6.12 for a definition of the Calculate method.

The complex performance counters defined in the .NET Framework are defined here:

AverageCount64

Calculates the AverageTimer64 value change over the AverageBase value change. This
counter uses AverageBase as its base counter type.

AverageTimer32

Calculates the AverageTimer32 value change over the number of ticks per second, all over the
AverageBase value change. This counter uses AverageBase as its base counter type.

CounterMultiTimer

Calculates the percentage of CounterMultiTimer value change over the CounterMultiTimer
time change divided by CounterMultiBase. This counter uses CounterMultiBase as its base

counter type.

CounterMultiTimerInverse

Calculates the inverse of the CounterMultiTimer counter. This counter uses
CounterMultiBase as its base counter type.

CounterMultiTimer100Ns

Calculates the percentage of CounterMultiTime100Ns value change over the
CounterMultiTime100Ns time change divided by CounterMultiBase. The value of this counter
is measured in 100ns time units. This counter uses CounterMultiBase as its base counter type.

CounterMultiTimer100NsInverse

Calculates the inverse of the CounterMultiTimer100Ns counter. This counter uses
CounterMultiBase as its base counter type.

RawFraction

Calculates a percentage of the RawFraction counter value over the RawBase counter value.
This counter uses RawBase as its base counter type.

SampleCounter

Calculates the SampleCounter value change over their corresponding SampleBase value
change per second. This counter uses SampleBase as its base counter type.

SampleFraction

Calculates the percentage of SampleCounter value change over the SampleBase value change.
This counter uses SampleBase as its base counter type.

See Also

See Recipe 6.12; see the "PerformanceCounter Class," "PerformanceCounterType Enumeration,"

"PermformanceCounterCategory Class," "ASP.NET Impersonation," and "Monitoring Performance
Thresholds" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 6.14 Enable/Disable Complex Tracing Code

Problem

You have an object that contains complex tracing/debugging code. In fact, there is so much
tracing/debugging code that to turn it all on would create an extremely large amount of output. You
want to be able to generate objects at runtime that contain all of the tracing/debugging code, only a
specific portion of this tracing/debugging code, or that contain no tracing/debugging code. The
amount of tracing code generated could depend on the state of the application or the environment
where it is running. The tracing code needs to be generated during object creation.

Solution

Use the TraceFactory class, which implements the Simple Factory design pattern to allow creation of

an object that either generates tracing information or does not:

#define TRACE
#define TRACE_INSTANTIATION
#define TRACE_BEHAVIOR

using System.Diagnostics;

public class TraceFactory
{
 public TraceFactory() {}

 public Foo CreateObj()
 {
 Foo obj = null;

 #if (TRACE)
 #if (TRACE_INSTANTIATION)
 obj = new BarTraceInst();
 #elif (TRACE_BEHAVIOR)
 obj = new BarTraceBehavior();
 #else
 obj = new Bar();
 #endif
 #else
 obj = new Bar();
 #endif

 return (obj);

 }
}

The class hierarchy for the Bar, BarTraceInst, and BarTraceBehavior classes is shown next. The
BarTraceInst class would contain only the constructor tracing code, the BarTraceBehavior class
contains only tracing code within specific methods, and the Bar class contains no tracing code:

public abstract class Foo
{
 public virtual void SomeBehavior()
 {
 //...
 }
}

public class Bar : Foo
{
 public Bar() {}

 public override void SomeBehavior()
 {
 base.SomeBehavior();
 }
}

public class BarTraceInst : Foo
{
 public BarTraceInst()
 {
 Trace.WriteLine("BarTraceInst object instantiated");
 }

 public override void SomeBehavior()
 {
 base.SomeBehavior();
 }
}

public class BarTraceBehavior : Foo
{
 public BarTraceBehavior() {}

 public override void SomeBehavior()
 {
 Trace.WriteLine("SomeBehavior called");
 base.SomeBehavior();
 }
}

Discussion

The factory design pattern is designed to abstract away the creation of objects within a system. This
pattern allows code to create objects of a particular type by using an intermediate object called a
factory. In its simplest form, a factory pattern consists of some client code that uses a factory object
to create and return a specific type of object. The factory pattern allows changes to be made in the
way objects are created, independent of the client code. This design prevents code changes to the
way an object is constructed from permeating throughout the client code.

Consider that you could have a class that contained numerous lines of tracing code. If you ran this
code to obtain the trace output, you would be inundated with reams of information. This setup is hard
to manage and even harder to read to pinpoint problems in your code. One solution to this problem is
to use a factory to create an object based on the type of tracing code you wish to output.

To do this, create an abstract base class called Foo that contains all of the base behavior. The Foo
class is subclassed to create the Bar, BarTraceInst, and BarTraceBehavior classes. The Bar class
contains no tracing code, the BarTraceInst class only contains tracing code in its constructor (and
potentially in its destructor), and the BarTraceBehavior class only contains tracing code in specific

methods. (The class hierarchy provided in the Solution section is much simpler than classes that you
would create; this allows you to focus more on the design pattern and less on the class hierarchy
from which the factory creates classes.)

A TraceFactory class is created that will act as our factory to create objects inheriting from the
abstract Foo class. The TraceFactory class contains a single public method called CreateObj. This
method attempts to instantiate an object that inherits from Foo based on the preprocessor symbols

defined in your application. If the following line of code exists:

#define TRACE_BEHAVIOR

the BarTraceBehavior class is created. If this line exists:

#define TRACE_INSTANTIATION

the BarTraceInst class is created. If neither of these exists, the Bar class is created. Once the

correct class is created, it is returned to the caller. The caller never needs to know which exact object
is instantiated, only that it is of type Foo. This allows us to add even more classes to handle varying

types and amounts of tracing code.

To instantiate a TraceFactory class, use the following code:

TraceFactory factory = new TraceFactory();

Using this factory object, we can create a new object of type Foo:

Foo obj = factory.CreateObj();
Console.WriteLine(obj.ToString());
obj.SomeBehavior();

Now we can use the Foo object without regard to the trace output that it will produce. To create and
use a different Foo object, all we have to do is define a different preprocessor symbol that controls
which subclass of Foo is created.

See Also

See the "C# Preprocessor Directives" and "ConditionalAttribute Class" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Chapter 7. Delegates and Events
Delegates contain all that is needed to allow a method, with a specific signature and return type, to
be invoked by your code. A delegate can be used similarly to an object; for example, it can be passed
to methods and stored in a data structure. A delegate is used when, at design time, you do not know
which method you need to call and the information to determine this is available only at runtime.

Another scenario is when the code calling a method is being developed independently of the code that
will supply the method to be called. The classic example is a Windows Forms control. If you design a
control, you are unlikely to know what method should be called when the application raises an event,
so you must use a delegate. However, when others use your control, they will typically decide at
design time which method to call. (For example, it's common to connect a Button's click handler to a

delegate at design time.)

This chapter's recipes make use of delegates and events. These recipes cover handling each method
invoked in a multicast delegate individually, synchronous delegate invocation versus asynchronous
delegate invocation, and enhancing an existing class with events, among other topics. If you are not
familiar with delegates and events, you should read the MSDN documentation on these topics. There
are also good tutorials and example code showing you how to set up and use delegates and events.

[Team LiB]

[Team LiB]

Recipe 7.1 Controlling when and if a Delegate Fires
Within a Multicast Delegate

Problem

You have added multiple delegates to create a multicast delegate. When this multicast delegate is
fired, each delegate within it is fired in turn. You need to exert more control over such things as the
order in which each delegate is fired, firing only a subset of delegates, or firing each delegate based
on the success or failure of previous delegates.

Solution

Use the GetInvocationList method to obtain an array of Delegate objects. Next, iterate over this
array using a for loop. You can then invoke each Delegate object in the array individually and

optionally retrieve its return value.

The following method creates a multicast delegate called All and then uses GetInvocationList to

allow each delegate to be fired individually, in reverse order:

public void InvokeInReverse()
{
 MultiInvoke MI1 = new MultiInvoke(TestInvoke.Method1);
 MultiInvoke MI2 = new MultiInvoke(TestInvoke.Method2);
 MultiInvoke MI3 = new MultiInvoke(TestInvoke.Method3);

 MultiInvoke All = MI1 + MI2 + MI3;

 Console.WriteLine("Fire delegates in reverse");
 Delegate[] Delegates = All.GetInvocationList();
 for (int counter = Delegates.Length - 1; counter >= 0; counter--)
 {
 ((MultiInvoke)Delegates[counter])();
 }
}

The following method fires every other delegate, starting with the first delegate in the list:

public void InvokeEveryOther()
{
 MultiInvoke MI1 = new MultiInvoke(TestInvoke.Method1);
 MultiInvoke MI2 = new MultiInvoke(TestInvoke.Method2);
 MultiInvoke MI3 = new MultiInvoke(TestInvoke.Method3);

 MultiInvoke All = MI1 + MI2 + MI3;

 Delegate[] Delegates = All.GetInvocationList();

 Console.WriteLine("Fire every other delegate");
 for (int counter = 0; counter < Delegates.Length; counter += 2)
 {
 ((MultiInvoke)Delegates[counter])();
 }
}

In .NET, all delegates are implicitly multicast-that is, any delegate can invoke multiple methods each
time it is itself invoked. In this recipe, we use the term "multicast" to describe a delegate that has
been set up to invoke multiple methods. The following delegate defines the MultiInvoke delegate:

public delegate int MultiInvoke();

The following class contains each of the methods that will be called by the MultiInvoke multicast

delegate:

public class TestInvoke
{
 public static int Method1()
 {
 Console.WriteLine("Invoked Method1");
 return (1);
 }

 public static int Method2()
 {
 Console.WriteLine("Invoked Method2");
 return (2);
 }

 public static int Method3()
 {
 Console.WriteLine("Invoked Method3");
 return (3);
 }
}

It is also possible to decide whether to continue firing delegates in the list based on the return value
of the currently firing delegate. The following method fires each delegate, stopping only when a
delegate returns a false value:

public void InvokeWithTest()
{
 MultiInvokeTF MI1 = new MultiInvokeTF(TestInvokeTF.Method1);
 MultiInvokeTF MI2 = new MultiInvokeTF(TestInvokeTF.Method2);
 MultiInvokeTF MI3 = new MultiInvokeTF(TestInvokeTF.Method3);

 MultiInvokeTF All = MI1 + MI2 + MI3;

 bool retVal = true;

 Console.WriteLine(
 "Invoke individually (Call based on previous return value):");
 foreach (MultiInvokeTF individualMI in All.GetInvocationList())
 {
 if (retVal)
 {
 retVal = individualMI();
 }
 else
 {
 // This break is not required; it is an optimization to
 // prevent the loop from continuing to execute.
 break;
 }
 }
}

The following delegate defines the MultiInvokeTF delegate:

public delegate bool MultiInvokeTF();

The following class contains each of the methods that will be called by the MultiInvokeTF multicast

delegate:

public class TestInvokeTF
{
 public static bool Method1()
 {
 Console.WriteLine("Invoked Method1");
 return (true);
 }

 public static bool Method2()
 {
 Console.WriteLine("Invoked Method2");
 return (false);
 }

 public static bool Method3()
 {
 Console.WriteLine("Invoked Method3");
 return (true);
 }
}

Discussion

A delegate, when called, will invoke all delegates stored within its invocation list. These delegates are
invoked sequentially from the first to the last one added. Once the multicast delegate is called, you
cannot change when-or if-any delegate in the list is called.

Fortunately, with the use of the GetInvocationList method of the MulticastDelegate class, you

can obtain each delegate in the invocation list of a multicast delegate. This method accepts no
parameters and returns an array of Delegate objects that corresponds to the invocation list of the
delegate on which this method was called. The returned Delegate array contains the delegates of the

invocation list in the order in which they would normally be called; that is, the zeroth element in the
Delegate array contains the Delegate object that is normally called first.

This application of the GetInvocationList method gives us the ability to control exactly when and

how the delegates in a multicast delegate are invoked and allows us to prevent the continued
invocation of delegates when one delegate fails. This ability is important if each delegate is
manipulating data and one of the delegates fails in its duties but does not throw an exception. If one
delegate fails in its duties and the remaining delegates rely on all previous delegates to succeed, you
must quit invoking delegates at the point of failure. Note that an exception will force the invocation of
delegates to cease, but throwing an exception is an expensive process. This recipe handles a delegate
failure more efficiently, and also provides more flexibility in dealing with these errors. For example,
you can write logic to specify which delegates are to be invoked, based on the performance of
previously invoked delegates.

See Also

See Recipe 7.2 and Recipe 7.3; see the "Delegate Class" and "Delegate.GetInvocationList Method"
topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 7.2 Obtaining Return Values from Each Delegate
in a Multicast Delegate

Problem

You have added multiple delegates to a single multicast delegate. Each of these individual delegates
returns a value that is required by your application. Ordinarily, the values returned by individual
delegates in a multicast delegate are lost; all except the value from the last delegate to fire, whose
return value is returned to the calling application. You need to be able to access the return value of
each delegate that is fired in the multicast delegate.

Solution

Use the GetInvocationList method as in Recipe 7.1. This method returns each individual delegate

from a multicast delegate. In doing so, we can invoke each delegate individually and get its return
value. The following method creates a multicast delegate called All and then uses
GetInvocationList to fire each delegate individually. After firing each delegate, the return value is

captured:

public void TestIndividualInvokesRetVal()
{
 MultiInvoke MI1 = new MultiInvoke(TestInvoke.Method1);
 MultiInvoke MI2 = new MultiInvoke(TestInvoke.Method2);
 MultiInvoke MI3 = new MultiInvoke(TestInvoke.Method3);

 MultiInvoke All = MI1 + MI2 + MI3;

 int retVal = -1;

 Console.WriteLine("Invoke individually (Obtain each return value):");
 foreach (MultiInvoke individualMI in All.GetInvocationList())
 {
 retVal = individualMI();
 Console.WriteLine("\tOutput: " + retVal);
 }
}

The following delegate defines the MultiInvoke delegate:

public delegate int MultiInvoke();

The following class contains each of the methods that will be called by the MultiInvoke multicast

delegate:

public class TestInvoke
{
 public static int Method1()
 {
 Console.WriteLine("Invoked Method1");
 return (1);
 }

 public static int Method2()
 {
 Console.WriteLine("Invoked Method2");
 return (2);
 }

 public static int Method3()
 {
 Console.WriteLine("Invoked Method3");
 return (3);
 }
}

Discussion

One quirk with multicast delegates is that if any or all delegates within its invocation list return a
value, only the value of the last invoked delegate is returned; all others are lost. This loss can
become annoying, or worse, if your code requires these return values. Consider a case in which the
All delegate was invoked normally, as in the following code:

retVal = All();
Console.WriteLine(retVal);

The value 3 would be displayed since Method3 was the last method invoked by the All delegate.

None of the other return values would be captured.

By using the GetInvocationList method of the MulticastDelegate class, we can get around this
limitation. This method returns an array of Delegate objects that can each be invoked separately.

Note that this method does not invoke each delegate; it simply returns an array of them to the caller.
By invoking each delegate separately, we can retrieve each return value from each fired delegate.
(More information on the GetInvocationList method is presented in Recipe 7.1.)

Note that any out or ref parameters will also be lost when a multicast delegate is invoked. This
recipe allows you to obtain the out and/or ref parameters of each invoked delegate within the

multicast delegate.

However, you still need to be aware that any unhandled exceptions emanating from one of these
invoked delegates will be bubbled up to the method TestIndividualInvokesRetVal, presented in

this recipe. To better handle this situation, see Recipe 7.3.

See Also

See Recipe 7.1 and Recipe 7.3; see the "Delegate Class" and "Delegate.GetInvocationList Method"
topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 7.3 Handling Exceptions Individually for Each
Delegate in a Multicast Delegate

Problem

You have added multiple delegates to a single multicast delegate. Each of these individual delegates
must fire, regardless of whether an unhandled exception is thrown within one of the delegates. But
once a delegate in a multicast delegate throws an unhandled exception, no more delegates are fired.
You need a way to trap unhandled exceptions within each individual delegate while still allowing the
rest of the delegates to fire.

Solution

Use the GetInvocationList method as shown in Recipe 7.1. This method returns each individual

delegate from a multicast delegate, and by doing so, allows us to invoke each delegate within an
exception handler. The following method creates a multicast delegate called All and then uses
GetInvocationList to retrieve each delegate individually. Each delegate is then fired within an

exception handler:

using System;
using System.Security;

public class DelegateUtilities
{
 public void TestIndividualInvokesExceptions()
 {
 MultiInvoke MI1 = new MultiInvoke(TestInvoke.Method1);
 MultiInvoke MI2 = new MultiInvoke(TestInvoke.Method2);
 MultiInvoke MI3 = new MultiInvoke(TestInvoke.Method3);

 MultiInvoke All = MI1 + MI2 + MI3;

 int retVal = -1;

 Console.WriteLine("Invoke individually (handle exceptions):");
 foreach (MultiInvoke individualMI in All.GetInvocationList())
 {
 try
 {
 retVal = individualMI();
 Console.WriteLine("\tOutput: " + retVal);
 }
 catch (SecurityException se)

 {
 // Stop everything, malicious code may be attempting
 // to access privileged data
 break;
 }
 catch (Exception e)
 {
 // Display (or log) the exception and continue
 Console.WriteLine(e.ToString());
 }
 }
 }
}

The following delegate defines the MultiInvoke delegate:

public delegate int MultiInvoke();

The following class contains each of the methods that will be called by the MultiInvoke multicast

delegate:

public class TestInvoke
{
 public static int Method1()
 {
 Console.WriteLine("Invoked Method1");
 return (1);
 }

 public static int Method2()
 {
 Console.WriteLine("Invoked Method2");
 return (2);
 }

 public static int Method3()
 {
 // Simulate an exception being thrown
 throw (new Exception("Method3"));
 Console.WriteLine("Invoked Method3");
 return (3);
 }
}

Discussion

If an exception occurs in a delegate that is invoked from within a multicast delegate and that
exception is unhandled, any remaining delegates are not invoked. This is the expected behavior of a
multicast delegate. However, in some circumstances, you'd like to be able to handle exceptions
thrown from individual delegates and then determine at that point whether to continue invoking the
remaining delegates.

In the TestIndividualInvokesExceptions method of this recipe, if an exception
SecurityException is caught, execution of the delegates is immediately stopped to prevent a
security breach. However, if another type of Exception object is thrown, we just display or log it and

continue invoking delegates. This strategy allows for as fine-grained handling of exceptions as you
need. Note that if you rethrow an exception, the exception will be bubbled up to the next enclosing
exception handler. If the next outer exception handler is outside of the loop used to iterate through
each delegate object returned by the GetInvocationList method, any remaining delegates will not

be invoked.

By adding a finally block to this try/catch block, you can be assured that code within this
finally block is executed after every delegate returns. This technique is useful if you want to

interleave code between calls to delegates, such as code to clean up objects that are not needed or
code to verify that each delegate left the data it touched in a stable state.

See Also

See Recipe 7.1 and Recipe 7.2; see the "Delegate Class" and "Delegate.GetInvocationList Method"
topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 7.4 Converting a Synchronous Delegate to an
Asynchronous Delegate

Problem

You have determined that one or more delegates invoked synchronously within your application are
taking a long time to execute. This delay is making the user interface less responsive to the user.
These delegates should be converted to asynchronous delegates.

Solution

A typical synchronous delegate is created in the following manner:

using System;

// The delegate declaration
public delegate void SyncInvoke();

// The class and method that is invoked through the SyncInvoke delegate
public class TestSyncInvoke
{
 public static void Method1()
 {
 Console.WriteLine("Invoked Method1");
 }
}

The code to use this delegate is:

public class DelegateUtilities
{
 public void TestSimpleSyncDelegate()
 {
 SyncInvoke SI = new SyncInvoke(TestSyncInvoke.Method1);
 SI();
 }
}

This delegate can be called asynchronously on a thread obtained from the thread pool by modifying
the code as follows:

public class DelegateUtilities
{

 public void TestSimpleAsyncDelegate()
 {
 AsyncCallback CB = new AsyncCallback(DelegateCallback);

 SyncInvoke ASI = new SyncInvoke(TestSyncInvoke.Method1);
 IAsyncResult AR = ASI.BeginInvoke(CB, null);
 }

 // The callback that gets called when Method1 is finished processing
 private static void DelegateCallback(IAsyncResult iresult)
 {
 AsyncResult result = (AsyncResult)iresult;
 AsyncInvoke ASI = (AsyncInvoke)result.AsyncDelegate;

 int retVal = ASI.EndInvoke(result);
 Console.WriteLine("retVal (Callback): " + retVal);
 }
}

Of course you might want to also change the TestSyncInvoke class name to TestAsyncInvoke and
the SyncInvoke delegate name to AsyncInvoke just to be consistent with your naming.

The previous example shows how to call a delegate that accepts no parameters and returns void.

The next example shows a synchronous delegate that accepts parameters and returns an integer:

using System;

// The delegate declaration
public delegate int SyncInvoke(string message);

// The class and method that is invoked through the SyncInvoke delegate
public class TestSyncInvoke
{
 public static int Method1(string message)
 {
 Console.WriteLine("Invoked Method1 with message: " + message);
 return (1);
 }
}

The code to use this delegate is:

public class DelegateUtilities
{
 public void TestComplexSyncDelegate()
 {
 SyncInvoke SI = new SyncInvoke(TestSyncInvoke.Method1);
 int retVal = SI("Synchronous call");
 Console.WriteLine("Sync: " + retVal);
 }
}

This synchronous delegate can be converted to an asynchronous delegate in the following manner:

using System;
using System.Runtime.Remoting.Messaging;

public class DelegateUtilities
{
 public void TestCallbackAsyncDelegate()
 {
 AsyncCallback CB = new AsyncCallback(DelegateCallback);

 SyncInvoke SI = new SyncInvoke(TestSyncInvoke.Method1);
 IAsyncResult AR = SI.BeginInvoke("Asynchronous call message", CB, null);

 Console.WriteLine("WORKING...");
 }

 // The callback that gets called when Method1 is finished processing
 private static void DelegateCallback(IAsyncResult iresult)
 {
 AsyncResult result = (AsyncResult)iresult;
 AsyncInvoke ASI = (AsyncInvoke)result.AsyncDelegate;

 int retVal = ASI.EndInvoke(result);
 Console.WriteLine("retVal (Callback): " + retVal);
 }
}

Discussion

Converting a delegate from being invoked synchronously to asynchronously is not an overly
complicated procedure. You need to add calls to both BeginInvoke and EndInvoke on the delegate
that is being called synchronously. A callback method, DelegateCallback, is added, which gets
called when the delegate is finished. This callback method then calls the EndInvoke method on the
delegate invoked using BeginInvoke.

The notification callback method specified in the callback parameter accepts a single parameter of
type IAsyncResult. This parameter can be cast to an AsyncResult type and used to set up the call
to the EndInvoke method. If you want to handle any exceptions thrown by the asynchronous
delegate in the notification callback, wrap the EndInvoke method in a try/catch exception handler.

See Also

See the "Delegate Class" and "Asynchronous Delegates" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 7.5 Adding Events to a Sealed Class

Problem

Through the use of inheritance, adding events to a nonsealed class is fairly easy. For example,
inheritance is used to add events to a Hashtable object. However, adding events to a sealed class,
such as System.IO.DirectoryInfo, requires a technique other than inheritance.

Solution

To add events to a sealed class, such as the DirectoryInfo class, wrap it using another class, such
as the DirectoryInfoNotify class defined in the next example.

You can use the FileSystemWatcher class (see Recipe 11.23 and Recipe 11.24)

to monitor the filesystem changes asynchronously due to activity outside of
your program or you could use the DirectoryInfoNotify class defined here to

monitor your program's activity when using the filesystem.

using System;
using System.IO;

public class DirectoryInfoNotify
{
 public DirectoryInfoNotify(string path)
 {
 internalDirInfo = new DirectoryInfo(path);
 }

 private DirectoryInfo internalDirInfo = null;
 public event EventHandler AfterCreate;
 public event EventHandler AfterCreateSubDir;
 public event EventHandler AfterDelete;
 public event EventHandler AfterMoveTo;

 protected virtual void OnAfterCreate()
 {
 if (AfterCreate != null)
 {
 AfterCreate(this, new EventArgs());
 }
 }

 protected virtual void OnAfterCreateSubDir()
 {
 if (AfterCreateSubDir != null)
 {
 AfterCreateSubDir(this, new EventArgs());
 }
 }

 protected virtual void OnAfterDelete()
 {
 if (AfterDelete != null)
 {
 AfterDelete(this, new EventArgs());
 }
 }

 protected virtual void OnAfterMoveTo()
 {
 if (AfterMoveTo != null)
 {
 AfterMoveTo(this, new EventArgs());
 }
 }

 // Event firing members
 public void Create()
 {
 internalDirInfo.Create();
 OnAfterCreate();
 }

 public DirectoryInfoNotify CreateSubdirectory(string path)
 {
 DirectoryInfo subDirInfo = internalDirInfo.CreateSubdirectory(path);
 OnAfterCreateSubDir();

 return (new DirectoryInfoNotify(subDirInfo.FullName));
 }

 public void Delete(bool recursive)
 {
 internalDirInfo.Delete(recursive);
 OnAfterDelete();
 }

 public void Delete()
 {
 internalDirInfo.Delete();
 OnAfterDelete();
 }

 public void MoveTo(string destDirName)

 {
 internalDirInfo.MoveTo(destDirName);
 OnAfterMoveTo();
 }

 // Non-Event firing members
 public string FullName
 {
 get {return (internalDirInfo.FullName);}
 }
 public string Name
 {
 get {return (internalDirInfo.Name);}
 }
 public DirectoryInfoNotify Parent
 {
 get {return (new DirectoryInfoNotify(internalDirInfo.Parent.FullName));}
 }
 public DirectoryInfoNotify Root
 {
 get {return (new DirectoryInfoNotify(internalDirInfo.Root.FullName));}
 }

 public override string ToString()
 {
 return (internalDirInfo.ToString());
 }
}

The DirectoryInfoObserver class, shown in the following code, allows you to register any
DirectoryInfoNotify objects with it. This registration process allows the DirectoryInfoObserver
class to listen for any events to be raised in the registered DirectoryInfoNotify object(s). The only
events that are raised by the DirectoryInfoNotify object are after a modification has been made
to the directory structure using a DirectoryInfoNotify object that has been registered with a
DirectoryInfoObserver object:

public class DirectoryInfoObserver
{
 public DirectoryInfoObserver() {}

 public void Register(DirectoryInfoNotify dirInfo)
 {
 dirInfo.AfterCreate += new EventHandler(AfterCreateListener);
 dirInfo.AfterCreateSubDir +=
 new EventHandler(AfterCreateSubDirListener);
 dirInfo.AfterMoveTo += new EventHandler(AfterMoveToListener);
 dirInfo.AfterDelete += new EventHandler(AfterDeleteListener);
 }

 public void UnRegister(DirectoryInfoNotify dirInfo)
 {
 dirInfo.AfterCreate -= new EventHandler(AfterCreateListener);

 dirInfo.AfterCreateSubDir -=
 new EventHandler(AfterCreateSubDirListener);
 dirInfo.AfterMoveTo -= new EventHandler(AfterMoveToListener);
 dirInfo.AfterDelete -= new EventHandler(AfterDeleteListener);
 }

 public void AfterCreateListener(object sender, EventArgs e)
 {
 Console.WriteLine("Notified after creation of directory--sender: " +
 ((DirectoryInfoNotify)sender).FullName);
 }

 public void AfterCreateSubDirListener(object sender, EventArgs e)
 {
 Console.WriteLine("Notified after creation of SUB-directory--sender: " +
 ((DirectoryInfoNotify)sender).FullName);
 }

 public void AfterMoveToListener(object sender, EventArgs e)
 {
 Console.WriteLine("Notified of directory move--sender: " +
 ((DirectoryInfoNotify)sender).FullName);
 }

 public void AfterDeleteListener(object sender, EventArgs e)
 {
 Console.WriteLine("Notified of directory deletion--sender: " +
 ((DirectoryInfoNotify)sender).FullName);
 }
}

Discussion

There are situations in which this technique might be useful even when a class is not sealed. For
example, if you want to raise notifications when methods that have not been declared as virtual are
called, you'll need this technique. So even if DirectoryInfo were not sealed, you would still need
this technique because you can't override its Delete, Create, and other methods. And hiding them
with the new keyword is unreliable because someone might use your object through a reference of
type DirectoryInfo instead of type DirectoryInfoNotify, in which case they'll end up using the

original methods and not your new methods. So the delegation approach presented here is the only
reliable technique when methods in the base class are nonvirtual, regardless of whether the base
class is sealed.

The following code creates two DirectoryInfoObserver objects along with two
DirectoryInfoNotify objects, and then it proceeds to create a directory C:\testdir and a

subdirectory under C:\testdir called new:

public void TestDirectoryInfoObserver()
{
 // Create two observer objects
 DirectoryInfoObserver observer1 = new DirectoryInfoObserver();

 DirectoryInfoObserver observer2 = new DirectoryInfoObserver();

 // Create a notification object for the directory c:\testdir
 DirectoryInfoNotify dirInfo = new DirectoryInfoNotify(@"c:\testdir");

 // Register the notification object under both observers
 observer1.Register(dirInfo);
 observer2.Register(dirInfo);

 // Create the directory c:\testdir
 dirInfo.Create();

 // Change the first observer to watch the new subdirectory
 DirectoryInfoNotify subDirInfo = dirInfo.CreateSubdirectory("new");
 observer1.Register(subDirInfo);

 // Delete the subdirectory first and then the parent directory
 subDirInfo.Delete(true);
 dirInfo.Delete(false);

 // Unregister notification objects with their observers
 observer2.UnRegister(dirInfo);
 observer1.UnRegister(dirInfo);
}

This code outputs the following:

Notified after creation of directory--sender: c:\testdir
Notified after creation of directory--sender: c:\testdir
Notified after creation of SUB-directory--sender: c:\testdir
Notified after creation of SUB-directory--sender: c:\testdir
Notified of directory deletion--sender: c:\testdir\new
Notified of directory deletion--sender: c:\testdir
Notified of directory deletion--sender: c:\testdir

Rather than using inheritance to override members of a sealed class (i.e., the DirectoryInfo class),
the sealed class is wrapped by a notification class (i.e., the DirectoryInfoNotify class).

The main drawback to wrapping a sealed class is that each method available in the underlying
DirectoryInfo class might have to be implemented in the outer DirectoryInfoNotify class, which

can be tedious if the underlying class has many visible members. The good news is that if you know
you will not be using a subset of the wrapped class's members, you do not have to wrap each of
those members. Simply do not make them visible from your outer class, which is what we have done
in the DirectoryInfoNotify class. Only the methods we intend to use are implemented on the
DirectoryInfoNotify class. If more methods on the DirectoryInfo class will later be used from
the DirectoryInfoNotify class, they can be added with minimal effort.

For a DirectoryInfoNotify object to wrap a DirectoryInfo object, the DirectoryInfoNotify
object must have an internal reference to the wrapped DirectoryInfo object. This reference is in the
form of the internalDirInfo field. Essentially, this field allows all wrapped methods to forward their
calls to the underlying DirectoryInfo object. For example, the Delete method of a
DirectoryInfoNotify object forwards its call to the underlying DirectoryInfo object as follows:

public void Delete()
{
 // Forward the call
 internalDirInfo.Delete();

 // Raise an event
 OnAfterDelete();
}

You should make sure that the method signatures are the same on the outer class as they are on the
wrapped class. This convention will make it much more intuitive and transparent for another
developer to use.

There is one method, CreateSubdirectory, that requires further explanation:

public DirectoryInfoNotify CreateSubdirectory(string path)
{
 DirectoryInfo subDirInfo = internalDirInfo.CreateSubdirectory(path);
 OnAfterCreateSubDir();

 return (new DirectoryInfoNotify(subDirInfo.FullName));
 }

This method is unique since it returns a DirectoryInfo object in the wrapped class. However, if we
also returned a DirectoryInfo object from this outer method, we might confuse the developer
attempting to use the DirectoryInfoNotify class. If a developer is using the DirectoryInfoNotify

class, he or she will expect that class to also return objects of the same type from the appropriate
members rather than returning the type of the wrapped class.

To fix this problem and make the DirectoryInfoNotify class more consistent, a
DirectoryInfoNotify object is returned from the CreateSubdirectory method. The code that
receives this DirectoryInfoNotify object might then register it with any available
DirectoryInfoObserver object(s). This technique is shown here:

// Create a DirectoryInfoObserver object and a DirectoryInfoNotify object
DirectoryInfoObserver observer = new DirectoryInfoObserver();
DirectoryInfoNotify dirInfo = new DirectoryInfoNotify(@"c:\testdir");

// Register the DirectoryInfoNotify object with the DirectoryInfoObserver object
observer.Register(dirInfo);

// Create the c:\testdir directory and then create a sub directory within that
// directory this will return a new DirectoryInfoNotify object, which is
// registered with the same DirectoryInfoObserver object as the dirInfo object
dirInfo.Create();
DirectoryInfoNotify subDirInfo = dirInfo.CreateSubdirectory("new");
observer.Register(subDirInfo);

// Delete this subdirectory
subDirInfo.Delete(true);

// Clean up
observer.UnRegister(dirInfo);

The observer object will be notified of the following events in this order:

When the dirInfo.Create method is called1.

When the dirInfo.CreateSubdirectory method is called2.

When the subDirInfo.Delete method is called3.

If the second observer.Register method were not called, the third event (subDirInfo.Delete)
would not be caught by the observer object.

The DirectoryInfoObserver class contains methods that listen for events on any

DirectoryInfoNotify objects that are registered with it. The XxxListener methods are called
whenever their respective event is raised on a registered DirectoryInfoNotify object. Within these

XxxListener methods, you can place any code that you wish to execute whenever a particular event

is raised.

These XxxListener methods accept a sender object parameter, which is a reference to the

DirectoryInfoNotify object that raised the event. This sender object can be cast to a
DirectoryInfoNotify object and its members may be called if needed. This parameter allows you to

gather information and take action based on the object that raised the event.

The second parameter to the XxxListener methods is of type EventArgs, which is a rather useless
class for our purposes. Recipe 7.6 shows a way to use a class derived from the EventArgs class to

pass information from the object that raised the event to the XxxListener method on the observer

object and then back to the object that raised the event.

See Also

See Recipe 7.6; see the "Event" keyword and "Handling and Raising Events" topic in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 7.6 Passing Specialized Parameters to and from
an Event

Problem

You have implemented Recipe 7.5, but you want to allow an event listener to be able to cancel an
action that raised a particular event. For example, if a class attempts to create a new directory, you
want to be able to verify that the directory is being created in the correct location. If the directory is
not being created in the correct location (perhaps an insecure location), you want to be able to
prevent the directory's creation.

Solution

Use a class derived from EventArgs as the second parameter to the event handler. In this example,
we use CancelEventArgs, a class defined in the .NET Framework Class Library. The Solution for
Recipe 7.5 has been modified to include an event that is raised before the Create method of the
DirectoryInfoNotify object actually creates a new path. An object of type CancelEventArgs is
passed to this new event to allow any listeners of this event to cancel the Create method action. The

modified class is shown here with the modifications highlighted:

using System;
using System.ComponentModel;
using System.IO;

public class DirectoryInfoNotify
{
 public DirectoryInfoNotify(string path)
 {
 internalDirInfo = new DirectoryInfo(path);
 }

 private DirectoryInfo internalDirInfo = null;
 public event CancelEventHandler BeforeCreate;
 public event EventHandler AfterCreate;
 public event EventHandler AfterCreateSubDir;
 public event EventHandler AfterDelete;
 public event EventHandler AfterMoveTo;

 protected virtual void OnBeforeCreate(CancelEventArgs e)
 {
 if (BeforeCreate != null)
 {
 BeforeCreate(this, e);

 }
 }

 protected virtual void OnAfterCreate()
 {
 if (AfterCreate != null)
 {
 AfterCreate(this, new EventArgs());
 }
 }

 protected virtual void OnAfterCreateSubDir()
 {
 if (AfterCreateSubDir != null)
 {
 AfterCreateSubDir(this, new EventArgs());
 }
 }

 protected virtual void OnAfterDelete()
 {
 if (AfterDelete != null)
 {
 AfterDelete(this, new EventArgs());
 }
 }

 protected virtual void OnAfterMoveTo()
 {
 if (AfterMoveTo != null)
 {
 AfterMoveTo(this, new EventArgs());
 }
 }

 // Event firing members
 public void Create()
 {
 CancelEventArgs args = new CancelEventArgs(false);
 OnBeforeCreate(args);

 if (!args.Cancel)
 {
 internalDirInfo.Create();
 OnAfterCreate();
 }
 }

 public DirectoryInfoNotify CreateSubdirectory(string path)
 {
 DirectoryInfo subDirInfo = internalDirInfo.CreateSubdirectory(path);
 OnAfterCreateSubDir();

 return (new DirectoryInfoNotify(subDirInfo.FullName));
 }

 public void Delete(bool recursive)
 {
 internalDirInfo.Delete(recursive);
 OnAfterDelete();
 }

 public void Delete()
 {
 internalDirInfo.Delete();
 OnAfterDelete();
 }

 public void MoveTo(string destDirName)
 {
 internalDirInfo.MoveTo(destDirName);
 OnAfterMoveTo();
 }

 // Non-Event firing members
 public virtual string FullName
 {
 get {return (internalDirInfo.FullName);}
 }
 public string Name
 {
 get {return (internalDirInfo.Name);}
 }
 public DirectoryInfoNotify Parent
 {
 get {return (new DirectoryInfoNotify(internalDirInfo.Parent.FullName));}
 }
 public DirectoryInfoNotify Root
 {
 get {return (new DirectoryInfoNotify(internalDirInfo.Root.FullName));}
 }

 public override string ToString()
 {
 return (internalDirInfo.ToString());
 }
}

The DirectoryInfoObserver class contains each of the event listeners and is shown here with the

modifications highlighted:

public class DirectoryInfoObserver
{
 public DirectoryInfoObserver() {}

 public void Register(DirectoryInfoNotify dirInfo)
 {
 dirInfo.BeforeCreate += new CancelEventHandler(BeforeCreateListener);
 dirInfo.AfterCreate += new EventHandler(AfterCreateListener);
 dirInfo.AfterCreateSubDir +=
 new EventHandler(AfterCreateSubDirListener);
 dirInfo.AfterMoveTo += new EventHandler(AfterMoveToListener);
 dirInfo.AfterDelete += new EventHandler(AfterDeleteListener);
 }

 public void UnRegister(DirectoryInfoNotify dirInfo)
 {
 dirInfo.BeforeCreate -= new CancelEventHandler(BeforeCreateListener);
 dirInfo.AfterCreate -= new EventHandler(AfterCreateListener);
 dirInfo.AfterCreateSubDir -=
 new EventHandler(AfterCreateSubDirListener);
 dirInfo.AfterMoveTo -= new EventHandler(AfterMoveToListener);
 dirInfo.AfterDelete -= new EventHandler(AfterDeleteListener);
 }

 public void BeforeCreateListener(object sender, CancelEventArgs e)
 {
 if (!e.Cancel)
 {
 if (!((DirectoryInfoNotify)sender).Root.FullName.Equals(@"d:\"))
 {
 e.Cancel = true;
 }
 else
 {
 Console.WriteLine(
 "Notified BEFORE creation of directory--sender: " +
 ((DirectoryInfoNotify)sender).FullName);
 }
 }
 }

 public void AfterCreateListener(object sender, EventArgs e)
 {
 Console.WriteLine("Notified after creation of directory--sender: " +
 ((DirectoryInfoNotify)sender).FullName);
 }

 public void AfterCreateSubDirListener(object sender, EventArgs e)
 {
 Console.WriteLine("Notified after creation of SUB-directory--sender: " +
 ((DirectoryInfoNotify)sender).FullName);
 }

 public void AfterMoveToListener(object sender, EventArgs e)
 {
 Console.WriteLine("Notified of directory move--sender: " +

 ((DirectoryInfoNotify)sender).FullName);
 }

 public void AfterDeleteListener(object sender, EventArgs e)
 {
 Console.WriteLine("Notified of directory deletion--sender: " +
 ((DirectoryInfoNotify)sender).FullName);
 }
}

Discussion

The code for the modified DirectoryInfoNotify class contains a new event called BeforeCreate,
which is raised from the OnBeforeCreate method. The OnBeforeCreate method is initially called by
the Create method immediately before calling the Create method of the wrapped DirectoryInfo
object. This setup will allow the event listener for the BeforeCreate event to decide whether the

directory creation operation should be cancelled.

The DirectoryInfoObserver class contains a new method, BeforeCreateListener, which listens
for the BeforeCreate event. In addition, the Register and UnRegister methods of this class contain

logic to add this event to the list of events that will be listened for on any registered
DirectoryInfoNotify objects.

The OnBeforeCreate method of the DirectoryinfoNotify class is passed a parameter of a type
called CancelEventArgs, which exists in the .NET FCL. This type derives from EventArgs and
contains one useful property, called Cancel. This property will be used by the AfterCreateListener
method of the DirectoryInfoObserver class to determine whether the Create method should be

cancelled before it has a chance to create a new directory.

The CancelEventArgs object will be created in a DirectoryInfoNotify object, and when the
BeforeCreate event is raised, the CancelEventArgs object will be passed to the
BeforeCreateListener method on the DirectoryInfoObserver object. This method will then

determine whether the creation of the directory should proceed or be cancelled. The determination is
made by comparing the root drive of the directory to see if it is anything but the D:\ drive; if so, the
operation is cancelled. This prevents any registered DirectoryInfoNotify objects from creating a

directory on any drive other than the D:\ drive.

If multiple DirectoryInfoObserver objects are listening to the BeforeCreate event and one of

those observer objects decides to cancel the operation, the entire operation is cancelled. In other
words, the final handler to be called gets the power of veto.

The same CancelEventArgs object is referenced by each observer as well as each object that raised
the event. This allows us to read the value of the Cancel property on the returned CancelEventArgs
object in the Create method of the DirectoryInfoNotify object. If this property returns true, the

operation cannot proceed; otherwise, the operation is permitted.

You are not confined to merely passing EventArgs objects or any of its subclasses found in the FCL;
you can subclass the EventArgs class to create a specialized EventArgs type. This would be

beneficial if the object passed in to the sender parameter of the event does not include all of the

information that the XxxListener methods will need. For example, you could create the following
specialized EventArgs class:

public class UserEventArgs : EventArgs
{
 public UserEventArgs(string userName)
 {
 this.userName = userName;
 }

 private string userName = "";

 public string UserName
 {
 get {return (userName);}
 }
}

This class passes the name of the logged-on user to the XxxListener methods to allow them to

determine whether the operation should continue based on that user's privileges. This is just one
example of creating a specialized EventArgs class. You can create others to pass in whatever

information your listeners need.

See Also

See Recipe 7.5; see the "Event" keyword, "EventHandler Delegate," and "Handling and Raising
Events" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 7.7 An Advanced Interface Search Mechanism

Problem

You are searching for an interface using the Type class. However, complex interface searches are not
available through the GetInterface and GetInterfaces methods of a Type object. The
GetInterface method searches for an interface only by name (using a case-sensitive or -insensitive
search), and the GetInterfaces method returns an array of all the interfaces implemented on a

particular type. You want a more focused searching mechanism that might involve searching for
interfaces that define a method with a specific signature or implemented interfaces that are loaded
from the Global Assembly Cache (GAC). You need more flexible and more advanced searching for
interfaces that does not involve creating your own interface search engine.

Solution

The FindInterfaces method of a Type object can be used along with a callback to perform complex

searches of interfaces on a type. The following method will call a custom interface searching method,
SearchInterfacesOfType:

using System;
using System.Reflection;

public class SearchType
{
 public void FindSpecificInterfaces()
 {
 Type[] names = new Type[3] {Type.GetType("System.ICloneable"),
 Type.GetType("System.Collections.ICollection"),
 Type.GetType("System.IAppDomainSetup")};
 Type[] interfaces = SearchInterfacesOfType(Type.GetType(
 "System.Collections.ArrayList"), names);

 if (interfaces.Length > 0)
 {
 Console.WriteLine("Matches found:");
 for(int counter =0; counter < interfaces.Length; counter++)
 {
 Console.WriteLine("\tIFace Name: " +
 interfaces[counter].ToString());
 Console.WriteLine("\tIFace Base Type: " +
 interfaces[counter].BaseType);
 foreach (object attr in
 interfaces[counter].GetCustomAttributes(false))

 {
 Console.WriteLine("\t\tIFace attr: " + attr.ToString());
 }
 }
 }
 else
 {
 Console.WriteLine("\t\tNo matches found");
 }
 }

 public Type[] SearchInterfacesOfType(Type searchedType,
 Type[] ifaceNames)
 {
 TypeFilter filter = new TypeFilter(IfaceFilterCallback);
 Type[] interfaces =
 searchedType.FindInterfaces(filter, ifaceNames);

 return (interfaces);
 }

 public bool IfaceFilterCallback(Type type, object criteria)
 {
 foreach (Type ifaceName in (Type[])criteria)
 {
 if(type.FullName == ifaceName.FullName)
 {
 return (true);
 }
 }

 return (false);
 }
}

The FindSpecificInterfaces method searches for any of the three interface types, contained in the
Names array that are implemented by the System.Collections.ArrayList type.

The SearchinterfacesOfType method accepts a type (searchedType) on which to search for

interfaces and an object (ifaceNames) that contains criteria for the search. For this method, the
criterion is a Type array of interfaces. This method then calls the FindInterfaces method on the

searchedType parameter and passes in a delegate and the Type array criteria of interfaces. (The

delegate will be called back to for each found interface.) This method then returns an array of
interface types that match the criterion.

The TypeFilter delegate, filter, defines the IfaceFilterCallback method to be called for each

interface found on the searchedType object. The real power of this search mechanism lies in the
IfaceFilterCallback callback method.

This callback searches for each of the interface types in the criteria array that is implemented by

the searchedType parameter of the SearchInterfacesOfType method.

Discussion

Most complex member searches can be performed only through the use of the FindInterfaces
method of a Type object. This method makes use of the TypeFilter delegate, which is passed to the

filter parameter. This delegate is supplied by the FCL and allows an extra layer of filtering (of any
type that you want) to occur. This delegate returns a Boolean value, where true indicates that the

ifaceType object passed to this delegate should be included in the Type array that the

FindInterfaces method returns; false indicates that this ifaceType object should not be included.

The FindInterfaces method will take into account all interfaces implemented

by the type being searched as well as all of its base types when performing a
search. In addition, if any of the interfaces implemented by any of these types
also implements one or more interfaces, those interfaces are included in the
search.

There are many ways to use this TypeFilter delegate to search for interfaces implemented on a

type-here are just a few other searches that can be performed:

A filter to search for all implemented interfaces that are defined within a particular namespace
(in this case, the System.Collections namespace):
public bool IfaceFilterCallback(Type type, object criteria)
{
 if (type.Namespace.Equals("System.Collections"))
 {
 return (true);
 }
 else
 {
 return (false);
 }
}

A filter to search for all implemented interfaces that contain a method called Add, which returns
an Int32 value:
public bool IfaceFilterCallback(Type type, object criteria)
{
 if (type.GetMethod("Add") != null &&
 type.GetMethod("Add").ReturnType == Type.GetType("System.Int32"))
 {
 return (true);
 }
 else
 {
 return (false);
 }
}

A filter to search for all implemented interfaces that are loaded from the Global Assembly Cache

(GAC):
public bool IfaceFilterCallback(Type type, object criteria)
{
 if (type.Assembly.GlobalAssemblyCache)
 {
 return (true);
 }
 else
 {
 return (false);
 }
}

A filter to search for all implemented interfaces that are defined within an assembly with the
version number 1.0.3300.0:
public bool IfaceFilterCallback(Type type, object criteria)
{
 if (type.Assembly.FullName.IndexOf("Version=1.0.3300.0") >= 0)
 {
 return (true);
 }
 else
 {
 return (false);
 }
}

See Also

See Recipe 7.8; see the "Delegate Class" and "Type.FindInterfaces Method" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 7.8 An Advanced Member Search Mechanism

Problem

You are searching for a member within a type using the Type class. However, complex member
searches are not available through the GetMember and GetMembers methods of a Type object. The
GetMember method searches for a member name only within a type limited by the set of
BindingFlags used, and the GetMembers method searches for all members limited by the set of
BindingFlags used. BindingFlags is an enumeration of various member types that can be
searched. The BindingFlags related to this recipe are defined here:

DeclaredOnly

Include inherited members in the search.

Default

No binding flags are used.

FlattenHierarchy

Include all static members in the inheritance hierarchy in the search (do not include static
members of nested types in the search).

IgnoreCase

Perform a case-insensitive search.

Instance

Include instance members in the search.

NonPublic

Include nonpublic members in the search.

Public

Include public members in the search.

Static

Include static members in the search.

You need to create more flexible and advanced searches for members that do not involve creating
your own member search engine.

Solution

The FindMembers method of a Type object can be used, along with a callback, to create your own

complex searches. The following method will call our custom member searching method,
SearchMembers:

using System;
using System.Reflection;

public class SearchType
{
 public void TestSearchMembers()
 {
 MemberInfo[] members = SearchMembers(this.GetType(),
 Type.GetType("System.Int32"));

 if (members.Length > 0)
 {
 Console.WriteLine("Matches found:");

 // Display information for each match
 for(int counter = 0; counter < members.Length; counter++)
 {
 Console.WriteLine("\tMember Name: " +
 members[counter].ToString());
 Console.WriteLine("\tMember Type: " +
 members[counter].MemberType);
 foreach (object attr in
 members[counter].GetCustomAttributes(false))
 {
 Console.WriteLine("\t\tMember attr: " +
 attr.ToString());
 }
 }

 }
 else
 {
 Console.WriteLine("\t\tNo matches found");
 }
 }

 public MemberInfo[] SearchMembers(Type searchedType, Type returnType)
 {
 // Delegate that compares the member's return type
 // against the returnType parameter
 MemberFilter filterCallback = new MemberFilter(ReturnTypeFilter);

 MemberInfo[] members = searchedType.FindMembers(MemberTypes.All,
 BindingFlags.Instance | BindingFlags.Public |
 BindingFlags.NonPublic | BindingFlags.Static,
 filterCallback,
 returnType);

 return (members);
 }

 private bool ReturnTypeFilter(MemberInfo member, object criteria)
 {
 // Obtain the return type of either a method or property
 string returnType = "";
 if (member is MethodInfo)
 {
 returnType = ((MethodInfo)member).ReturnType.FullName;
 }
 else if (member is PropertyInfo)
 {
 returnType = ((PropertyInfo)member).PropertyType.FullName;
 }
 else
 {
 return (false);
 }

 // Match return type
 if (returnType == ((Type)criteria).FullName)
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }
}

This method will search for any member in the current type that has a return value of

System.Int32.

The SearchMembers method accepts a Type object in which to search and a string representation of

the full name of a return type. This method simply calls the FindMembers method of the searchType

object passed to it. Notice that the returnType parameter is passed to the FindMembers method as

the last parameter.

The MemberFilter delegate, filterCallback, defines the ReturnTypeFilter method to be called
for each member that meets the specified criteria of the FindMembers method (i.e,
MemberTypes.All, BindingFlags.Instance, BindingFlags.Public, BindingFlags.NonPublic,
and BindingFlags.Static). The real power of this search mechanism lies in the ReturnTypeFilter

callback method.

This callback method casts the member parameter to the correct member type (i.e., MethodInfo or
PropertyInfo), obtains the return type, and compares that return type to the one passed in to the

returnType parameter of the SearchMembers method. A return value of true indicates that the
return types matched; a false indicates they did not match.

Discussion

Most complex member searches can be performed only through the use of the FindMembers method
of a Type object. This method returns an array of MemberInfo objects that contain all members that

match the memberType, bindingAttr, and filterCriteria parameters.

This method makes use of the MemberFilter delegate, which is passed in to the filter parameter.

This delegate is supplied by the FCL and allows an extra layer of member filtering to occur. This
filtering can be anything you want. This delegate returns a Boolean value, where true indicates that

the member object passed in to this delegate should be included in the MemberInfo array that the

FindMembers method returns, and false indicates that this member object should not be included.

There are many ways to use this MemberFilter delegate to search for members within a type. Here

are just a few other items that can be searched for:

A filter callback to search for only fields marked as const:
private bool ReturnTypeFilter(MemberInfo member, object criteria)
{
 if (member is FieldInfo)
 {
 if (((FieldInfo)member).IsLiteral)
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }

 return (false);
}

A filter callback to search for only fields marked as readonly:
private bool ReturnTypeFilter(MemberInfo member, object criteria)
{
 if (member is FieldInfo)
 {
 if (((FieldInfo)member).IsInitOnly)
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }

 return (false);
}

A filter to search for a read-only property (note that in VB.NET, this filter finds methods marked
with the readonly modifier, and in C#, this filter finds methods that only have a get accessor):
private bool ReturnTypeFilter(MemberInfo member, object criteria)
{
 if (member is PropertyInfo)
 {
 if (((PropertyInfo)member).CanRead && !((PropertyInfo)member).CanWrite)
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }

 return (false);
}

A filter to search for any methods that contain out parameters:
private bool ReturnTypeFilter(MemberInfo member, object criteria)
{
 if (member is MethodInfo)
 {
 ParameterInfo[] params = ((MethodInfo)member).GetParameters();
 foreach (ParameterInfo param in params)
 {
 if (param.IsOut)
 {
 return (true);
 break;
 }
 }

 return (false);
 }

 return (false);
}

A filter to search for any members that are marked with the System.ObsoleteAttribute

attribute:
private bool ReturnTypeFilter(MemberInfo member, object criteria)
{
 object[] attrs = member.GetCustomAttributes(false);
 foreach (object attr in attrs)
 {
 if (attr.ToString().Equals("System.ObsoleteAttribute"))
 {
 return (true);
 }
 }

 return (false);
}

Creating a filter that searches for delegates or some ingredient of a delegate must be done in a
roundabout way, as there is no DelegateInfo object, and the MemberTypes enumeration does

not contain a value for delegates. A delegate type shows up as a nested type in the reflection
API; this nested type's base class can then be checked to see whether it is a
System.MulticastDelegate or a System.Delegate type (note that we can test the base class
because both the MulticastDelegate and Delegate types are sealed). This is the code to

determine whether a nested type is a delegate:

private bool ReturnTypeFilter(MemberInfo member, Object criteria)
{
 if (member.MemberType == MemberTypes.NestedType)
 {
 if (((Type)member).BaseType.ToString().Equals(
 "System.MulticastDelegate") ||
 ((Type)member).BaseType.ToString().Equals("System.Delegate"))
 {
 return (true);
 }

 return (false);
 }

 return (false);
}

See Also

See Recipe 7.7; see the "Delegate Class" and "Type.FindMembers Method" topics in the MSDN

documentation.

[Team LiB]

[Team LiB]

Recipe 7.9 Observing Additions and Modifications to a
Hashtable

Problem

You have multiple objects that need to observe modifications to a Hashtable. When an item is
added, deleted, or modified in the Hashtable, each of these observer objects should be able to vote

to allow or disallow the action. In order for an action to be allowed to complete, all observer objects
must vote to allow the action. If even one observer object votes to disallow the action, the action is
prevented.

Solution

Use the HashtableObserver class to observe additions and modifications to a HashtableSubject
object that is registered with this object. The HashtableSubject class is an extension of the regular
Hashtable class and allows itself to be observed by the HashtableObserver class. Its source code

is:

public class HashtableSubject : Hashtable
{
 public event HashtableEventHandler BeforeAddItem;
 public event HashtableEventHandler AfterAddItem;
 public event HashtableEventHandler BeforeChangeItem;
 public event HashtableEventHandler AfterChangeItem;

 protected virtual bool OnBeforeAdd(HashtableEventArgs e)
 {
 if (BeforeAddItem != null)
 {
 BeforeAddItem(this, e);
 return (e.KeepChanges);
 }

 return (true);
 }

 protected virtual void OnAfterAdd(HashtableEventArgs e)
 {
 if (AfterAddItem != null)
 {
 AfterAddItem(this, e);
 }
 }

 protected virtual bool OnBeforeChange(HashtableEventArgs e)
 {
 if (BeforeChangeItem != null)
 {
 BeforeChangeItem(this, e);
 return (e.KeepChanges);
 }

 return (true);
 }

 protected virtual void OnAfterChange(HashtableEventArgs e)
 {
 if (AfterChangeItem != null)
 {
 AfterChangeItem(this, e);
 }
 }

 public override void Add(object key, object value)
 {
 HashtableEventArgs hashArgs = new HashtableEventArgs(key, value);
 OnBeforeAdd(hashArgs);

 if (hashArgs.KeepChanges)
 {
 base.Add(key, value);
 }
 else
 {
 Console.WriteLine("Addition of key/value cannot be performed");
 }

 OnAfterAdd(hashArgs);
 }

 public override object this[object key]
 {
 get
 {
 return (base[key]);
 }
 set
 {
 HashtableEventArgs hashArgs = new HashtableEventArgs(key, value);
 OnBeforeChange(hashArgs);

 if (hashArgs.KeepChanges)
 {
 base[key] = value;
 }

 else
 {
 Console.WriteLine("Change of value cannot be performed");
 }

 OnAfterChange(hashArgs);
 }
 }
}

The HashtableEventHandler is defined as follows:

[Serializable]
public delegate void HashtableEventHandler(object sender, HashtableEventArgs e);

The code for the HashtableObserver class is:

using System;
using System.Collections;

// The observer object that will observe a registered HashtableSubject object
public class HashtableObserver
{
 public HashtableObserver() {}

 public void Register(HashtableSubject hashtable)
 {
 hashtable.BeforeAddItem += new HashtableEventHandler(BeforeAddListener);
 hashtable.AfterAddItem += new HashtableEventHandler(AfterAddListener);
 hashtable.BeforeChangeItem +=
 new HashtableEventHandler(BeforeChangeListener);
 hashtable.AfterChangeItem +=
 new HashtableEventHandler(AfterChangeListener);
 }

 public void UnRegister(HashtableSubject hashtable)
 {
 hashtable.BeforeAddItem -= new HashtableEventHandler(BeforeAddListener);
 hashtable.AfterAddItem -= new HashtableEventHandler(AfterAddListener);
 hashtable.BeforeChangeItem -=
 new HashtableEventHandler(BeforeChangeListener);
 hashtable.AfterChangeItem -=
 new HashtableEventHandler(AfterChangeListener);
 }

 public void BeforeAddListener(object sender, HashtableEventArgs e)
 {
 if (((string)e.Value).Length > 3)
 {
 e.KeepChanges = false;
 }
 else

 {
 e.KeepChanges = true;
 }

 Console.WriteLine("[NOTIFY] Before Add...");
 }

 public void AfterAddListener(object sender, HashtableEventArgs e)
 {
 Console.WriteLine("[NOTIFY] ...After Add\r\n");
 }

 public void BeforeChangeListener(object sender, HashtableEventArgs e)
 {
 if (((string)e.Value).Length > 3)
 {
 e.KeepChanges = false;
 }
 else
 {
 e.KeepChanges = true;
 }

 Console.WriteLine("[NOTIFY] Before Change...");
 }

 public void AfterChangeListener(object sender, HashtableEventArgs e)
 {
 Console.WriteLine("[NOTIFY] ...After Change\r\n");
 }
}

The HashtableEventArgs class is a specialization of the EventArgs class, which provides the
Hashtable key and value being added or modified to the HashtableObserver object, as well as a
Boolean flag, KeepChanges, that's passed by reference. This flag indicates whether the addition or
modification in the HashtableSubject object will succeed or be rolled back. The source code for the
HashtableEventArgs class is:

// Event arguments for HashtableSubject
public class HashtableEventArgs : EventArgs
{
 public HashtableEventArgs(object key, object value)
 {
 this.key = key;
 this.value = value;
 }

 private object key = null;
 private object value = null;
 private bool keepChanges = true;

 public bool KeepChanges

 {
 get {return (keepChanges);}
 set {keepChanges = value;}
 }

 public object Key
 {
 get {return (key);}
 }

 public object Value
 {
 get {return (value);}
 }
}

Discussion

The observer design pattern allows one or more observer objects to act as spectators over one or
more subject objects. Not only do the observer objects act as spectators, but they can also induce
change in the subject objects. According to this pattern, any subject object is allowed to register itself
with one or more observer objects. Once this is done, the subject can operate as it normally does.
The key feature is that the subject doesn't have to know what it is being observed by-this allows the
coupling between subjects and observers to be minimized. The observer object(s) will then be
notified of any changes in state to the subject objects. When the subject object's state changes, the
observer object(s) can change the state of other objects in the system to bring them into line with
changes that were made to the subject object(s). In addition, the observer could even make changes
or refuse changes to the subject object(s) themselves.

The observer pattern is best implemented with events in C#. The event object provides a built-in way
of implementing the observer design pattern. This recipe implements this pattern on a Hashtable.
The Hashtable object must raise events for any listening observer objects to handle. But the
Hashtable class found in the FCL does not raise any events. In order to make a Hashtable raise
events at specific times, we must derive a new class, HashtableSubject, from the Hashtable class.
This HashtableSubject class overrides the Add and indexer members of the base Hashtable. In
addition, four events (BeforeAddItem, AfterAddItem, BeforeChangeItem, and AfterChangeItem)
are created that will be raised before and after items are added or modified in the HashtableSubject

object. To raise these events, the following four methods are created, one to raise each event:

The OnBeforeAdd method raises the BeforeAddItem event.

The OnAfterAdd method raises the AfterAddItem event.

The OnBeforeChange method raises the BeforeChangeItem event.

The OnAfterChange method raises the AfterChangeItem event.

The Add method calls the OnBeforeAdd method, which then raises the event to any listening observer
objects. The OnBeforeAdd method is called before the base.Add method-which adds the key/value
pair to the Hashtable-is called. After the key/value pair has been added, the OnAfterAdd method is
called. This operation is similar to the indexer set method.

The Onxxx methods that raise the events in the HashtableSubject class are
marked as protected virtual to allow classes to subclass this class and

implement their own method of dealing with the events. Note that this
statement is not applicable to sealed classes. In those cases, you can simply
make the methods public.

The HashtableEventArgs class contains three private fields defined as follows:

key

The key that is to be added to the Hashtable.

value

The value that is to be added to the Hashtable.

keepChanges

A flag indicating whether the key/value pair should be added to the Hashtable.true indicates
that this pair should be added to the Hashtable.

The keepChanges field is used by the observer to determine whether an add or change operation
should proceed. This flag is discussed further when we look at the HashtableObserver observer

object.

The HashtableObserver is the observer object that watches any HashtableSubject objects it is told
about. Any HashtableSubject object can call the HashtableObserver.Register method in order to
tell the HashtableObserver object that it wants to be observed. This method accepts a pointer to a
HashtableSubject object (hashtable) as its only parameter. This method then hooks up the event
handlers in the HashtableObserver object to the events that can be raised by the
HashtableSubject object passed in through the hashtable parameter. Therefore, the following

events and event handlers are bound together:

The HashtableSubject.BeforeAddItem event is bound to the
HashtableObserver.BeforeAddListener event handler.

The HashtableSubject.AfterAddItem event is bound to the HashtableObserver.
AfterAddListener event handler.

The HashtableSubject.BeforeChangeItem event is bound to the
HashtableObserver.BeforeChangeListener event handler.

The HashtableSubject.AfterChangeItem event is bound to the
HashtableObserver.AfterChangeListener event handler.

The BeforeAddListener and BeforeChangeListener methods watch for additions and changes to
the key/value pairs of the watched HashtableSubject object(s). Since we have an event firing

before and after an addition or modification occurs, we can determine whether the addition or change
should occur. This is where the keepChanges field of the HashtableEventArgs object comes into
play. The HashtableObserver object will set this flag according to whether it determines that the
action should proceed or be prematurely terminated. The HashtableEventArgs object is passed back
to the OnBeforeAdd and OnBeforeChange methods. These methods then return the value of the
KeepChanges property to either the calling Add method or indexer. The Add method or indexer then
uses this flag to determine whether the base Hashtable object should be updated.

The following code shows how to instantiate subjects and observers, and to register, use, and
unregister them:

// Create three subject objects
ObserverPattern.HashtableSubject H1 =
 new ObserverPattern.HashtableSubject();
ObserverPattern.HashtableSubject H2 =
 new ObserverPattern.HashtableSubject();
ObserverPattern.HashtableSubject H3 =
 new ObserverPattern.HashtableSubject();

// Create an observer for the three subject objects
ObserverPattern.HashtableObserver observer =
 new ObserverPattern.HashtableObserver();

// Register the three subjects with the observer
observer.Register(H1);
observer.Register(H2);
observer.Register(H3);

// Use the subjects
H1.Add(1,"one");
H2.Add(2,"two");
H3.Add(3,"three");

// Unregister the subjects
observer.UnRegister(H3);
observer.UnRegister(H2);
observer.UnRegister(H1);

Note that if the subject objects are used without registering them, no events will be raised. Since no
events are raised, the observer cannot do its job, and values may be added to the unregistered
subjects that are out of bounds for the application.

Many other scenarios exist in which the observer design pattern can be used. For example, if you
wanted another Hashtable object to be updated to reflect the additions or modifications of a
HashtableSubject object, you could modify the HashtableObserver object as shown in the

highlighted text here:

public void Register(Hashtable hashtable)
{
 MirrorTable = hashtable;

}

Hashtable MirrorTable = null;

public void BeforeAddListener(object sender, EventArgs e)
{
 HashtableEventArgs hashE = (HashtableEventArgs)e;

 if (((string)hashE.Value).Length > 3)
 {
 hashE.KeepChanges = false;
 }
 else
 {
 hashE.KeepChanges = true;
 if (MirrorTable != null)
 {
 MirrorTable.Add(hashE.Key, hashE.Value);
 }
 }

 Console.WriteLine("[NOTIFY] Before Add...");
}

public void BeforeChangeListener(object sender, EventArgs e)
{
 HashtableEventArgs hashE = (HashtableEventArgs)e;

 if (((string)hashE.Value).Length > 3)
 {
 hashE.KeepChanges = false;
 }
 else
 {
 hashE.KeepChanges = true;
 if (MirrorTable != null)
 {
 MirrorTable[hashE.Key] = hashE.Value;
 }
 }

 Console.WriteLine("[NOTIFY] Before Change...");
}

A new field, MirrorTable, has been added; it points to a Hashtable mirroring the observed
HashtableSubject object. The MirrorTable object is set through the constructor of this class. The
MirrorTable object is updated whenever the observed object is successfully modified. With these
modifications to the HashtableObserver object, you should observe only one HashtableSubject

object at any one time. If you are observing more than one subject object, you run the risk of
attempting to add duplicate keys to the MirrorTable object.

When using the observer design pattern, you should keep in mind that fine-grained events, such as

the ones in this recipe, should be watched carefully so that they do not drag down performance. If
you have many subjects raising many events, your application could fail to meet performance
expectations. If this occurs, you need to either minimize the number of actions that cause events to
be raised or remove some events.

See Also

See the "Event" keyword, "EventHandler Delegate," "EventArgs Class," and "Handling and Raising
Events" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 7.10 Using the Windows Keyboard Hook

Problem

You need to watch and respond to specific user keyboard input, and, based on the input, you want to
perform one or more actions. For example, pressing the Windows key and the E key at the same
time launches Windows Explorer. You would like to add other Windows key combinations for your
own applications. In addition, you could prevent the user from using specific keys (such as the
Windows key) from within your application.

Solution

The following Windows Forms application uses the WH_KEYBOARD Windows hook:

using System;
using System.Windows.Forms;
using System.Runtime.InteropServices;

namespace WindowsApplication2
{
 public class Form1 : System.Windows.Forms.Form
 {
 // Required designer variable.
 private System.ComponentModel.Container components = null;

 private System.Windows.Forms.Button button1;
 private System.Windows.Forms.Button button2;
 private System.Windows.Forms.TextBox textBox1;

 public Form1()
 {
 // Required for Windows Form Designer support
 InitializeComponent();
 }

 protected override void Dispose(bool disposing)
 {
 if(disposing)
 {
 if (components != null)
 {
 components.Dispose();
 }

 }
 base.Dispose(disposing);
 }

 #region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.button1 = new System.Windows.Forms.Button();
 this.button2 = new System.Windows.Forms.Button();
 this.textBox1 = new System.Windows.Forms.TextBox();
 this.SuspendLayout();
 //
 // button1
 //
 this.button1.Name = "button1";
 this.button1.TabIndex = 0;
 this.button1.Text = "Start";
 this.button1.Click +=
 new System.EventHandler(this.button1_Click);
 //
 // button2
 //
 this.button2.Location = new System.Drawing.Point(0, 48);
 this.button2.Name = "button2";
 this.button2.TabIndex = 1;
 this.button2.Text = "End";
 this.button2.Click +=
 new System.EventHandler(this.button2_Click);
 //
 // textBox1
 //
 this.textBox1.Location = new System.Drawing.Point(80, 0);
 this.textBox1.Multiline = true;
 this.textBox1.Name = "textBox1";
 this.textBox1.ScrollBars =
 System.Windows.Forms.ScrollBars.Vertical;
 this.textBox1.Size = new System.Drawing.Size(752, 504);
 this.textBox1.TabIndex = 2;
 this.textBox1.Text = "";
 this.textBox1.WordWrap = false;
 //
 // Form1
 //
 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
 this.ClientSize = new System.Drawing.Size(832, 509);
 this.Controls.AddRange(new System.Windows.Forms.Control[] {
 this.textBox1,
 this.button2,

 this.button1});
 this.Name = "Form1";
 this.Text = "Form1";
 this.ResumeLayout(false);
 }
 #endregion

 [STAThread]
 static void Main()
 {
 Application.Run(new Form1());
 }

 // Declare Windows API calls used to access Windows hooks
 [DllImport("user32.dll")]
 public static extern int SetWindowsHookEx(int hookType,
 HookProc callback,
 int instance,
 int threadID);
 [DllImport("user32.dll")]
 public static extern int CallNextHookEx(int hookHandle, int code,
 int wparam, int lparam);
 [DllImport("user32.dll")]
 public static extern bool UnhookWindowsHookEx(int hookHandle);
 [DllImport("user32.dll")]
 public static extern int GetAsyncKeyState(int vKey);

 // Fields, constants, and structures used by the keyboard hook
 int hookHandle = 0;
 HookProc cb = null;

 public const int WH_KEYBOARD = 2;

 public const int HC_ACTION = 0;
 public const int HC_NOREMOVE = 3;

 public const int VK_CONTROL = 0x11;
 public const int VK_LWIN = 0x5B;
 public const int VK_RWIN = 0x5C;
 public const int VK_APPS = 0x5D;
 public const int VK_LSHIFT = 0xA0;
 public const int VK_RSHIFT = 0xA1;
 public const int VK_LCONTROL = 0xA2;
 public const int VK_RCONTROL = 0xA3;
 public const int VK_LMENU = 0xA4;
 public const int VK_RMENU = 0xA5;
 public const int VK_BROWSER_BACK = 0xA6;
 public const int VK_BROWSER_FORWARD = 0xA7;
 public const int VK_BROWSER_REFRESH = 0xA8;
 public const int VK_BROWSER_STOP = 0xA9;
 public const int VK_BROWSER_SEARCH = 0xAA;
 public const int VK_VOLUME_MUTE = 0xAD;

 public const int VK_VOLUME_DOWN = 0xAE;
 public const int VK_VOLUME_UP = 0xAF;
 public const int VK_MEDIA_NEXT_TRACK = 0xB0;
 public const int VK_MEDIA_PREV_TRACK = 0xB1;
 public const int VK_MEDIA_STOP = 0xB2;
 public const int VK_MEDIA_PLAY_PAUSE = 0xB3;

 // Keyboard hook delegate
 public delegate int HookProc(int code, int wparam, int lparam);

 public int Proc(int code, int wparam, int lparam)
 {
 if (code == HC_ACTION)
 {
 switch (wparam)
 {
 case VK_BROWSER_BACK:
 // Handle Back keyboard button here
 textBox1.Text += "Browser Back key caught" +
 Environment.NewLine;
 break;
 case VK_BROWSER_FORWARD:
 // Handle Forward keyboard button here
 textBox1.Text += "Browser Forward key caught" +
 Environment.NewLine;
 break;
 case VK_BROWSER_REFRESH:
 // Handle Refresh keyboard button here
 textBox1.Text += "Browser Refresh key caught" +
 Environment.NewLine;
 break;
 case VK_BROWSER_STOP:
 // Handle Stop keyboard button here
 textBox1.Text += "Browser Stop key caught" +
 Environment.NewLine;
 break;
 case VK_BROWSER_SEARCH:
 // Handle Search keyboard button here
 textBox1.Text += "Browser Search key caught" +
 Environment.NewLine;
 break;
 case VK_VOLUME_MUTE:
 // Handle Mute keyboard button here
 textBox1.Text += "Volume Mute key caught" +
 Environment.NewLine;
 break;
 case VK_VOLUME_DOWN:
 // Handle Volume - keyboard button here
 textBox1.Text += "Volume Down key caught" +
 Environment.NewLine;
 break;
 case VK_VOLUME_UP:

 // Handle Volume + keyboard button here
 textBox1.Text += "Volume Up key caught" +
 Environment.NewLine;
 break;
 case VK_MEDIA_NEXT_TRACK:
 // Handle Next Track keyboard button here
 textBox1.Text += "Media Next Track key caught" +
 Environment.NewLine;
 break;
 case VK_MEDIA_PREV_TRACK:
 // Handle Previous Track keyboard button here
 textBox1.Text += "Media Previous Track key caught" +
 Environment.NewLine;
 break;
 case VK_MEDIA_STOP:
 // Handle Stop keyboard button here
 textBox1.Text += "Media Stop key caught" +
 Environment.NewLine;
 break;
 case VK_MEDIA_PLAY_PAUSE:
 // Handle Play keyboard button here
 textBox1.Text += "Media Play/Pause key caught" +
 Environment.NewLine;
 break;
 }
 }
 return (CallNextHookEx(hookHandle, code, wparam, lparam));
 }

 // Click event handlers for button1 and button2
 private void button1_Click(object sender, System.EventArgs e)
 {
 // Set the keyboard hook
 if (hookHandle == 0)
 {
 cb = new HookProc(Proc);
 hookHandle = SetWindowsHookEx(WH_KEYBOARD, cb, 0,
 AppDomain.GetCurrentThreadId());
 }
 else
 {
 textBox1.Text += "Hook already set" + Environment.NewLine;
 }
 textBox1.Text += "Start: " + hookHandle + Environment.NewLine;
 }

 private void button2_Click(object sender, System.EventArgs e)
 {
 // Unhook the keyboard hook
 textBox1.Text += "End: " + UnhookWindowsHookEx(hookHandle) +
 Environment.NewLine;
 hookHandle = 0;

 }
 }
}

Discussion

The hooks provided by the Windows operating system allow for very powerful code to be written with
a minimum of work. The hook used in this recipe is the WH_KEYBOARD hook, which watches messages

that are generated by the keyboard.

The WH_KEYBOARD hook allows keyboard messages to be watched or discarded. To discard a keyboard
message, return a 1 from the Proc hook callback method. The HookProc delegate is used as the

method to which the keyboard hook calls back whenever a keyboard message is received. This hook
does not allow the message to be modified.

To use a hook, as the code in the Solution section shows, you first need to declare the following three
Windows API functions:

SetWindowsHookEx

This API creates the hook specified by the first parameter and attaches it to the callback
method specified in the second parameter. The return value of this function is the handle to the
newly created hook. This handle needs to be stored so that it can later be used to remove the
hook.

CallNextHookEx

This API calls the next hook in the hook chain if SetWindowsHookEx has been called multiple

times for a single type of hook. The return value is dependent on the type of hook that is
installed.

UnhookWindowsHookEx

This API removes the callback to the hook specified by the hook handle passed as its only
parameter. The hook handle is returned by the SetWindowsHookEx method. This hook handle is
returned by the SetWindowHookEx function.

Once these functions are declared, the next step is to declare the delegate for the hook callback
method. This hook callback method is automatically invoked whenever a keyboard message is sent.
The return value of both the delegate and callback methods is the return value of the
CallNextHookEx API method.

The keyboard hook used in this recipe will intercept only messages that are sent to the message
queue of the thread on which the hook is installed. The thread on which to install the hook is passed
as the fourth argument of the SetWindowsHookEx API method. For this recipe, the current thread is
passed as an argument using the static AppDomain.GetCurrentThreadId method. Therefore, if you

have a multithreaded application and you want each thread to intercept messages sent by the
keyboard, you will have to call SetWindowsHookEx on each thread to set up the WH_KEYBOARD hook.

The keyboard hook can also be used to capture keys pressed in combination. For example, if the
Windows Menu key is pressed along with the V key, a keyboard hook callback procedure can be
implemented to capture this action:

// Hook callback method
public int Proc(int code, int wparam, int lparam)
{
 if (code == HC_ACTION)
 {
 // Check the state of the Window's keyboard Pop-Up Menu key
 int state = GetAsyncKeyState(VK_APPS);

 // Is the Menu key already down?
 if ((state & 0x8000) == 0x8000)
 {
 // Is the key up?
 if ((lparam & 0x80000000) == 0x80000000)
 {
 // Is this the v key?
 if (wparam == 0x56)
 {
 // Handle AppMenu-v key combination here...
 textBox1.Text += "AppMenu-v action caught" +
 Environment.NewLine;
 }
 }
 }
 }
 return (CallNextHookEx(hookHandle, code, wparam, lparam));
}

This callback gets the state of the Menu key and determines whether it is depressed ((state &
0x8000) == 0x8000). If it is depressed, the V key is checked to see if it is being released ((lparam &
0x80000000) == 0x80000000). If these conditions are true, a message is displayed. (Of course, you

could add your own code here to do something more interesting.)

See Also

See Recipe 7.11; Subclassing & Hooking with Visual Basic by Stephen Teilhet (O'Reilly); and see the
"Delegate Class" and "Hooks" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 7.11 Using Windows Hooks to Manipulate the
Mouse

Problem

Many new mice have more than just a left and right button. Nowadays mice come with several
additional buttons and a mouse wheel. You need to allow your application to take advantage of these
new mice features. Additionally, you might need to know where the current location of the mouse is
on a particular window, whether it is on the client area of the window (where your menus, toolbars,
and controls are placed in the window), the nonclient area of the window (window border, title bar,
close button, etc.), or the x and y coordinates of the mouse pointer.

Solution

Use the mouse events that are built into the System.Windows.Forms.Form class.

Discussion

There are seven mouse events that exist in the System.Windows.Forms.Form class. These are, in the

order in which they occur:

MouseEnter

MouseMove

MouseHover or MouseDown or MouseWheel

MouseUp (if MouseDown was the previously raised event)

MouseLeave

Most of these events accept a MouseEventArgs object that contains all the information about the
mouse when the event is raised. The MouseEventArgs class contains the following data:

Which button the user is acting on

The number of times the mouse button was clicked

The direction and speed of the mouse wheel

The x and y coordinate of the mouse pointer

Your code can make use of any one or more of these events on the Form class along with the
MouseEventArgs object.

See Also

See Recipe 7.10; Subclassing & Hooking with Visual Basic by Stephen Teilhet (O'Reilly); see the
"Form Class," "MouseEventArgs Class," "Control.MouseDown Event," "Control.MouseEnter Event,"
"Control.MouseHover Event," "Control.MouseLeave Event," "Control.MouseMove Event,"
"Control.MouseWheel Event," "Control.MouseUp Event," and "Control.MouseMove Event" topics in the
MSDN documentation.

[Team LiB]

[Team LiB]

Chapter 8. Regular Expressions
Included in the .NET Framework Class Library is the System.Text.RegularExpressions namespace

that is devoted to creating, executing, and obtaining results from regular expressions executed
against a string.

Regular expressions take the form of a pattern that can be matched to zero or more characters
within a string. The simplest of these patterns, such as .* (match anything and everything) and [A-
Za-z] (match any letter) are easy to learn, but more advanced patterns can be difficult to learn and

even more difficult to implement correctly. Learning and understanding regular expressions can take
considerable time and effort, but the work will pay off.

Regular expression patterns can take a simple form-such as a single word or character-or a much
more complex pattern. The more complex patterns can recognize and match such things as the year
portion of a date, all of the <SCRIPT> tags in an ASP page, or a phrase in a sentence that varies with

each use. The .NET regular expression classes provide a very flexible and powerful way to do such
things as recognize text, replace text within a string, and split up text into individual sections based
on one or more complex delimiters.

Despite the complexity of regular expression patterns, the regular expression classes in the FCL are
easy to use in your applications. Executing a regular expression consists of the following steps:

Create an instance of the Regex object that contains the regular expression pattern along with

any options for executing that pattern.

1.

Retrieve a reference to an instance of the Match object by calling the Match instance method if
you want only the first match found, or to an instance of the MatchesCollection object by
calling the Matches instance method if you want more than just the first match found.

2.

If you've called the Matches method to retrieve a MatchCollection object, iterate over the
MatchCollection using a foreach loop. Each iteration will allow access to every Match object

that the regular expression produced.

3.

[Team LiB]

[Team LiB]

Recipe 8.1 Enumerating Matches

Problem

You need to find one or more substrings corresponding to a particular pattern within a string. You
need to be able to inform the searching code to return either all matching substrings or only the
matching substrings that are unique within the set of all matched strings.

Solution

Call the FindSubstrings method, which executes a regular expression and obtains all matching text.

This method returns either all matching results or only the unique matches; this behavior is
controlled by the findAllUnique parameter. Note that if the findAllUnique parameter is set to
true, the unique matches are returned sorted alphabetically. Its source code is as follows:

using System;
using System.Collections;
using System.Text.RegularExpressions;

public static Match[] FindSubstrings(string source, string matchPattern,
 bool findAllUnique)
{
 SortedList uniqueMatches = new SortedList();
 Match[] retArray = null;

 Regex RE = new Regex(matchPattern, RegexOptions.Multiline);
 MatchCollection theMatches = RE.Matches(source);

 if (findAllUnique)
 {
 for (int counter = 0; counter < theMatches.Count; counter++)
 {
 if (!uniqueMatches.ContainsKey(theMatches[counter].Value))
 {
 uniqueMatches.Add(theMatches[counter].Value,
 theMatches[counter]);
 }
 }

 retArray = new Match[uniqueMatches.Count];
 uniqueMatches.Values.CopyTo(retArray, 0);
 }
 else

 {
 retArray = new Match[theMatches.Count];
 theMatches.CopyTo(retArray, 0);
 }

 return (retArray);
}

The following method searches for any tags in an XML string; it does this by searching for a block of
text that begins with the < character and ends with the > character.

This method first displays all unique tag matches present in the XML string and then displays all tag
matches within the string:

public static void TestFindSubstrings()
{
 string matchPattern = "<.*>";

 string source = @"<?xml version='1.0' encoding='UTF-8'?>
 <!-- my comment -->
 <![CDATA[<escaped> <><chars>>>>>]]>
 <Window ID='Main'>
 <Control ID='TextBox'>
 <Property Top='0' Left='0' Text='BLANK'/>
 </Control>
 <Control ID='Label'>
 <Property Top='0' Left='0' Caption='Enter Name Here'/>
 </Control>
 <Control ID='Label'>
 <Property Top='0' Left='0' Caption='Enter Name Here'/>
 </Control>
 </Window>";

 Console.WriteLine("UNIQUE MATCHES");
 Match[] x1 = FindSubstrings(source, matchPattern, true);
 foreach(Match m in x1)
 {
 Console.WriteLine(m.Value);
 }

 Console.WriteLine();
 Console.WriteLine("ALL MATCHES");
 Match[] x2 = FindSubstrings(source, matchPattern, false);
 foreach(Match m in x2)
 {
 Console.WriteLine(m.Value);
 }
}

The following text will be displayed:

UNIQUE MATCHES

<!-- my comment -->
<![CDATA[<escaped> <><chars>>>>>]]>
</Control>
</Window>
<?xml version="1.0\" encoding=\"UTF-8\"?>
<Control ID="Label">
<Control ID="TextBox">
<Property Top="0" Left="0" Caption="Enter Name Here"/>
<Property Top="0" Left="0" Text="BLANK"/>
<Window ID="Main">

ALL MATCHES
<?xml version="1.0\" encoding=\"UTF-8\"?>
<!-- my comment -->
<![CDATA[<escaped> <><chars>>>>>]]>
<Window ID="Main">
<Control ID="TextBox">
<Property Top="0" Left="0" Text="BLANK"/>
</Control>
<Control ID="Label">
<Property Top="0" Left="0" Caption="Enter Name Here"/>
</Control>
<Control ID="Label">
<Property Top="0" Left="0" Caption="Enter Name Here"/>
</Control>
</Window>

Discussion

As you can see, the regular expression classes in the FCL are quite easy to use. The first step is to
create an instance of the Regex object that contains the regular expression pattern along with any
options for running this pattern. The second step is to get a reference to an instance of the Match
object, if you only need the first found match, or a MatchCollection object, if you need more than
just the first found match. To get a reference to this object, the two instance methods Match and
Matches can be called from the Regex object that was created in the first step. The Match method
returns a single match object (Match) and Matches returns a collection of match objects
(MatchCollection).

The FindSubstrings method returns an array of Match objects that can be used by the calling code.

You might have noticed that the unique elements are returned sorted, and the nonunique elements
are not sorted. A SortedList, which is used by the FindSubstrings method to store unique strings

that match the regular expression pattern, automatically sorts its items when they are added.

The regular expression used in the TestFindSubstrings method is very simplistic and will work in

most-but not all-conditions. For example, if two tags are on the same line, as shown here:

<tagData></tagData>

the regular expression will catch the entire line, not each tag separately. You could change the
regular expression from <.*> to <[^>]*> to match only up to the closing > ([^>]* matches
everything that is not a >). However, this will fail in the CDATA section, matching
<![CDATA[<escaped>, <>, and <chars> instead of <![CDATA[<escaped> <><chars>>>>>]]>. The

more complicated @"(<!\[CDATA.*>|<[^>]*>)" will match either <!\[CDATA.*> (a greedy match for
everything within the CDATA section) or <[^>]*>, described previously.

See Also

See the ".NET Framework Regular Expressions" and "SortedList Class" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 8.2 Extracting Groups from a MatchCollection

Problem

You have a regular expression that contains one or more named groups, such as the following:

\\\\(?<TheServer>\w*)\\(?<TheService>\w*)\\

where the named group TheServer will match any server name within a UNC string, and TheService

will match any service name within a UNC string.

You need to store the groups that are returned by this regular expression in a keyed collection (such
as a Hashtable) in which the key is the group name.

Solution

The RegExUtilities class contains a method, ExtractGroupings, that obtains a set of Group

objects keyed by their matching group name:

using System;
using System.Collections;
using System.Text.RegularExpressions;

public static ArrayList ExtractGroupings(string source,
 string matchPattern,
 bool wantInitialMatch)
{
 ArrayList keyedMatches = new ArrayList();
 int startingElement = 1;
 if (wantInitialMatch)
 {
 startingElement = 0;
 }

 Regex RE = new Regex(matchPattern, RegexOptions.Multiline);
 MatchCollection theMatches = RE.Matches(source);

 foreach(Match m in theMatches)
 {
 Hashtable groupings = new Hashtable();

 for (int counter = startingElement;
 counter < m.Groups.Count; counter++)
 {

 // If we had just returned the MatchCollection directly, the
 // GroupNameFromNumber method would not be available to use
 groupings.Add(RE.GroupNameFromNumber(counter),
 m.Groups[counter]);
 }

 keyedMatches.Add(groupings);
 }

 return (keyedMatches);
}

The ExtractGroupings method can be used in the following manner to extract named groups and

organize them by name:

public static void TestExtractGroupings()
{
 string source = @"Path = ""\\MyServer\MyService\MyPath;
 \\MyServer2\MyService2\MyPath2\""";
 string matchPattern = @"\\\\(?<TheServer>\w*)\\(?<TheService>\w*)\\";

 foreach (Hashtable grouping in
 ExtractGroupings(source, matchPattern, true))
 {
 foreach (DictionaryEntry DE in grouping)
 Console.WriteLine("Key / Value = " + DE.Key + " / " +
 DE.Value);
 Console.WriteLine("");
 }
}

This test method creates a source string and a regular expression pattern in the MatchPattern

variable. The two groupings in this regular expression are highlighted here:

string matchPattern = @"\\\\(?<TheServer>\w*)\\(?<TheService>\w*)\\";

The names for these two groups are: TheServer and TheService. Text that matches either of these

groupings can be accessed through these group names.

The source and matchPattern variables are passed in to the ExtractGroupings method, along with
a Boolean value, which we will discuss shortly. This method returns an ArrayList containing
Hashtable objects. These Hashtable objects contain the matches for each of the named groups in

the regular expression, keyed by their group name.

This test method, TestExtractGroupings, returns the following:

Key / Value = 0 / \\MyServer\MyService\
Key / Value = TheService / MyService
Key / Value = TheServer / MyServer

Key / Value = 0 / \\MyServer2\MyService2\
Key / Value = TheService / MyService2
Key / Value = TheServer / MyServer2

If the last parameter to the ExtractGroupings method were to be changed to false, the following

output would result:

Key / Value = TheService / MyService
Key / Value = TheServer / MyServer

Key / Value = TheService / MyService2
Key / Value = TheServer / MyServer2

The only difference between these two outputs are that the first grouping is not displayed when the
last parameter to ExtractGroupings is changed to false. The first grouping is always the complete

match of the regular expression.

Discussion

Groups within a regular expression can be defined in one of two ways. The first way is to add
parentheses around the subpattern that you wish to define as a grouping. This type of grouping is
sometimes labeled as unnamed. This grouping can later be easily extracted from the final text in
each Match object returned by running the regular expression. The regular expression for this recipe

could be modified, as follows, to use a simple unnamed group:

string matchPattern = @"\\\\(\w*)\\(\w*)\\";

After running the regular expression, you can access these groups using a numeric integer value
starting with 1.

The second way to define a group within a regular expression is to use one or more named groups. A
named group is defined by adding parentheses around the subpattern that you wish to define as a
grouping and, additionally, adding a named value to each grouping, using the following syntax:

(?<Name>\w*)

The Name portion of this syntax is the name you specify for this group. After executing this regular

expression, you can access this group by the name Name.

To access each group, you must first use a loop to iterate each Match object in the
MatchCollection. For each Match object, you access the GroupCollection's indexer, using the

following unnamed syntax:

string group1 = m.Groups[1].Value;
string group2 = m.Groups[2].Value;

or the following named syntax where m is the Match object:

string group1 = m.Groups["Group1_Name"].Value;
string group2 = m.Groups["Group2_Name"].Value;

If the Match method was used to return a single Match object instead of the MatchCollection, use

the following syntax to access each group:

// Un-named syntax

string group1 = theMatch.Groups[1].Value;
string group2 = theMatch.Groups[2].Value;

// Named syntax
string group1 = theMatch.Groups["Group1_Name"].Value;
string group2 = theMatch.Groups["Group2_Name"].Value;

where theMatch is the Match object returned by the Match method.

See Also

See the ".NET Framework Regular Expressions" and "Hashtable Class" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 8.3 Verifying the Syntax of a Regular Expression

Problem

You have either constructed a regular expression dynamically from your code or based on user input.
You need to test the validity of this regular expression's syntax before you actually use it.

Solution

Use the following method to test the validity of a regular expression's syntax:

using System;
using System.Text.RegularExpressions;

public static bool VerifyRegEx(string testPattern)
{
 bool isValid = true;

 if ((testPattern != null) && (testPattern.Trim().Length > 0))
 {
 try
 {
 Regex.Match("", testPattern);
 }
 catch (ArgumentException)
 {
 // BAD PATTERN: Syntax error
 isValid = false;
 }
 }
 else
 {
 //BAD PATTERN: Pattern is null or blank
 isValid = false;
 }

 return (isValid);
}

To use this method, pass it the regular expression that you wish to verify:

public static void TestUserInputRegEx(string regEx)
{
 if (VerifyRegEx(regEx))

 Console.WriteLine("This is a valid regular expression.");
 else
 Console.WriteLine("This is not a valid regular expression.");
}

Discussion

The VerifyRegEx method calls the static Regex.Match method, which is useful for running quick
regular expressions against a string. The static Regex.Match method returns a single Match object.

By using this static method to run a regular expression against a string (in this case a blank string),
we can determine whether the regular expression is invalid by watching for a thrown exception. The
Regex.Match method will throw an ArgumentException if the regular expression is not syntactically
correct. The Message property of this exception contains the reason the regular expression failed to
run, and the ParamName property contains the regular expression passed to the Match method. Both

of these properties are read-only.

Before testing the regular expression with the static Match method, the regular expression is tested
to see if it is null or blank. A null regular expression string returns an ArgumentNullException
when passed in to the Match method. On the other hand, if a blank regular expression is passed in to
the Match method, no exception is thrown (as long as a valid string is also passed to the first
parameter of the Match method).

[Team LiB]

[Team LiB]

Recipe 8.4 Quickly Finding Only the Last Match in a
String

Problem

You need to find the last pattern match in a string, but you do not want the overhead of finding all
matches in a string and having to move to the last match in the collection of matches.

Solution

Using the RegexOptions.RightToLeft option, the match starts at the end of the string and proceeds

toward the beginning. The first found match is the last match in the string. You supply the
RegexOptions.RightToLeft constant as an argument to the Match method. The instance Match

method can be used as follows:

Regex RE = new Regex(Pattern, RegexOptions.RightToLeft);

Match theMatch = RE.Match(Source);

or use the static Regex.Match method:

Match theMatch = Regex.Match(Source, Pattern, RegexOptions.RightToLeft);

where Pattern is the regular expression pattern and Source is the string against which to run the

pattern.

Discussion

The RegexOptions.RightToLeft regular expression option will force the regular expression engine to

start searching for a pattern starting with the end of the string and proceeding backward toward the
beginning of the string. The first match encountered will be the match closest to the end of the
string-in other words, the last match in the string.

See Also

See the ".NET Framework Regular Expressions" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 8.5 Replacing Characters or Words in a String

Problem

You are given a string in which a complex pattern of characters needs to be replaced with a new
string.

Solution

Using the Replace instance method on the Regex class allows for easy replacement of text within a

string. The following overloaded Replace methods accept a source string that contains characters or

words to be replaced, a matchPattern to match the replaceable text in the source parameter, and a

replaceStr string to replace the text matched by matchPattern. In addition there are two

parameters, count and startPos, to control the number of replacements allowed and where the

replacements start from in the source string, respectively:

using System;
using System.Text.RegularExpressions;

public static string Replace(string source, char matchPattern,
 string replaceStr)
{
 return (Replace(source, matchPattern.ToString(), replaceStr, -1, 0));
}

public static string Replace(string source, char matchPattern,
 string replaceStr, int count)
{
 return (Replace(source.ToString(), matchPattern.ToString(), replaceStr,
 count, 0));
}

public static string Replace(string source, char matchPattern,
 string replaceStr, int count, int startPos)
{
 return (Replace(source.ToString(), matchPattern.ToString(), replaceStr,
 count, startPos));
}

public static string Replace(string source, string matchPattern,
 string replaceStr)
{
 return (Replace(source, matchPattern, replaceStr, -1, 0));

}

public static string Replace(string source, string matchPattern,
 string replaceStr, int count)
{
 return (Replace(source, matchPattern, replaceStr, count, 0));
}

public static string Replace(string source, string matchPattern,
 string replaceStr, int count, int startPos)
{
 Regex RE = new Regex(matchPattern);
 string newString = RE.Replace(source, replaceStr, count, startPos);

 return (newString);
}

To use the overloaded Replace methods to replace the word FOO with the word BAR in a sentence,

you could write the following:

public static void TestReplace()
{
 string source = "Replace the FOO in this text block of text FOO.";
 string matchPattern = "FOO";
 string replaceStr = "BAR";

 Console.WriteLine(Replace(source, matchPattern, replaceStr));
 Console.WriteLine(Replace(source, matchPattern, replaceStr, -1));
 Console.WriteLine(Replace(source, matchPattern, replaceStr, -1, 0));
 Console.WriteLine(Replace(source, matchPattern, replaceStr, 1));
 Console.WriteLine(Replace(source, matchPattern, replaceStr, 1, 0));
 Console.WriteLine(Replace(source, matchPattern, replaceStr, 1));
 Console.WriteLine(Replace(source, matchPattern, replaceStr, 1, 20));

 Console.WriteLine(Replace(source, matchPattern, replaceStr, -1, 0));
 Console.WriteLine(Replace(source, matchPattern, replaceStr, 1, 0));
 Console.WriteLine(Replace(source, matchPattern, replaceStr, 1, 20));
}

which would produce the following output:

Replace the BAR in this text block of text BAR.
Replace the BAR in this text block of text BAR.
Replace the BAR in this text block of text BAR.
Replace the BAR in this text block of text FOO.
Replace the BAR in this text block of text FOO.
Replace the BAR in this text block of text FOO.
Replace the FOO in this text block of text BAR.
Replace the BAR in this text block of text BAR.
Replace the BAR in this text block of text FOO.
Replace the FOO in this text block of text BAR.

This code looks for the word "FOO", and each time this pattern is found, the string "BAR" is
substituted for the matched string ("FOO").

Discussion

Using the overloaded instance Replace method on the Regex class, we can easily define a

replacement string that is substituted for a regular expression pattern each time that pattern is
found. Several overloads of this method provide even more flexibility in determining where to replace
matches and how many matches will be replaced.

An overloaded static Replace method is also provided on the Regex class. This method is somewhat
different than its instance method counterpart. This static Replace method does not allow for the

flexibility of a startPos or a count parameter. In lieu of these parameters, an options parameter is

used. This parameter allows for modification of the RegexOptions options. If you require that the
regular expression options (RegexOptions) be controllable, rather than using the less flexible static
Regex.Replace method, you can modify the overloaded Replace methods as follows:

// Constant to provide a default set of options for the regular expression
const RegexOptions defaultOptions = RegexOptions.IgnorePatternWhitespace |
 RegexOptions.Multiline;

public static string Replace(string source, char matchPattern,
 string replaceStr)
{
 return (Replace(source, matchPattern.ToString(), replaceStr, -1, 0,
 defaultOptions));
}

public static string Replace(string source, char matchPattern,
 string replaceStr, int count)
{
 return (Replace(source.ToString(), matchPattern.ToString(), replaceStr,
 count, 0, defaultOptions));
}

public static string Replace(string source, char matchPattern,
 string replaceStr, int count, int startPos)
{
 return (Replace(source.ToString(), matchPattern.ToString(), replaceStr,
 count, startPos, defaultOptions));
}

public static string Replace(string source, char matchPattern,
 string replaceStr, int count, int startPos,
 RegexOptions options)
{
 return (Replace(source.ToString(), matchPattern.ToString(), replaceStr,
 count, startPos, options));
}

public static string Replace(string source, string matchPattern,
 string replaceStr)
{
 return (Replace(source, matchPattern, replaceStr, -1, 0,
 defaultOptions));
}

public static string Replace(string source, string matchPattern,
 string replaceStr, int count)
{
 return (Replace(source, matchPattern, replaceStr, count, 0,
 defaultOptions));
}

public static string Replace(string source, string matchPattern,
 string replaceStr, int count, int startPos)
{
 return (Replace(source, matchPattern, replaceStr, count, startPos,
 defaultOptions));
}

public static string Replace(string source, string matchPattern,
 string replaceStr, int count, int startPos,
 RegexOptions options)
{
 Regex RE = new Regex(matchPattern, options);
 string newString = RE.Replace(source, replaceStr, count, startPos);

 return (newString);
}

An options parameter of type RegexOptions has been added to the end of each method's

parameter list. The last Replace method uses this options parameter to define how the Regex
object will use the regular expression. Note also that a constant defaultOptions of type
RegexOptions has been defined to provide a uniform way to represent the default set of options in

each overloaded method.

See Also

See the ".NET Framework Regular Expressions" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 8.6 Augmenting the Basic String Replacement
Function

Problem

You need to replace character patterns within the target string with a new string. However, in this
case, each replacement operation has a unique set of conditions that must be satisfied in order to
allow the replacement to occur. Consider, for example, that you receive a string in the form of XML
(or possibly HTML). You wish to modify an attribute of a specific XML tag to a particular number, but
only if that number is within a specified range (or possibly outside of a particular range).

Solution

Use the overloaded instance Replace method that accepts a MatchEvaluator delegate along with its
other parameters. The MatchEvaluator delegate, which is a callback method that overrides the
default behavior of the Replace method, is shown here:

using System;
using System.Text.RegularExpressions;

public static string MatchHandler(Match theMatch)
{
 // Handle Top property of the Property tag
 if (theMatch.Value.StartsWith("<Property"))
 {
 long topPropertyValue = 0;

 // Obtain the numeric value of the Top property
 Match topPropertyMatch = Regex.Match(theMatch.Value,
 "Top=\"([-]*\\d*)");
 if (topPropertyMatch.Success)
 {
 if (topPropertyMatch.Groups[1].Value.Trim().Equals(""))
 {
 // If blank, set to zero
 return (theMatch.Value.Replace("Top=\"\"", "Top=\"0\""));
 }
 else if (topPropertyMatch.Groups[1].Value.Trim().Equals("-"))
 {
 // If only a negative sign (syntax error), set to zero
 return (theMatch.Value.Replace("Top=\"-\"", "Top=\"0\""));
 }
 else

 {
 // We have a valid number
 // Convert the matched string to a numeric value
 topPropertyValue = long.Parse(
 topPropertyMatch.Groups[1].Value,
 System.Globalization.NumberStyles.Any);

 // If the Top property is out of the specified
 // range, set it to zero
 if (topPropertyValue < 0 || topPropertyValue > 5000)
 {
 return (theMatch.Value.Replace("Top=\"" +
 topPropertyValue +
 "\"", "Top=\"0\""));
 }
 }
 }
 }

 return (theMatch.Value);
}

The callback method for the Replace method is shown here:

public static void ComplexReplace(string matchPattern, string source)
{
 MatchEvaluator replaceCallback = new MatchEvaluator(MatchHandler);
 Regex RE = new Regex(matchPattern, RegexOptions.Multiline);
 string newString = RE.Replace(source, replaceCallback);

 Console.WriteLine("Replaced String = " + newString);
}

To use this callback method with the static Replace method, modify the previous ComplexReplace

method as follows:

public void ComplexReplace(string matchPattern, string source)
{
 MatchEvaluator replaceCallback = new MatchEvaluator(MatchHandler);
 string newString = Regex.Replace(source, matchPattern ,
 replaceCallback);

 Console.WriteLine("Replaced String = " + newString);
}

where source is the original string to run the replace operation against, and matchPattern is the

regular expression pattern to match in the source string.

If the ComplexReplace method is called from the following code:

public static void TestComplexReplace()
{
 string matchPattern = "<.*>";

 string source = @"<?xml version=""1.0\"" encoding=\""UTF-8\""?>
 <Window ID=""Main"">
 <Control ID=""TextBox"">
 <Property Top=""-100"" Left=""0"" Text=""BLANK""/>
 </Control>
 <Control ID=""Label"">
 <Property Top=""99990"" Left=""0"" Caption=""Enter Name Here""/>
 </Control>
 </Window>";

 ComplexReplace(matchPattern, source);
}

only the Top attributes of the Property tags are changed from their original values to 0.

The result of this replace action will change only the Top property value of a Property tag to zero if it
is less than zero or greater than 5000. Any other tag that contains a Top property will remain
unchanged. The following two lines of the source string will be changed from:

<Property Top="100" Left="0" Text="BLANK"/>
<Property Top="99999" Left="0" Caption="Enter Name Here"/>

to:

<Property Top="100" Left="0" Text="BLANK"/>
<Property Top="0" Left="0" Caption="Enter Name Here"/>

Discussion

The MatchEvaluator delegate, which is automatically invoked when it is supplied as a parameter to
the Regexp class's Replace method, allows for custom replacement of each string that conforms to

the regular expression pattern.

If the current Match object is operating on a Property tag whose Top property is out of the specified
range, the code within the MatchHandler callback method returns a new modified string. Otherwise,

the currently matched string is returned unchanged. This ability allows you to override the default
Replace functionality by replacing only that part of the source string that meets certain criteria. The

code within this callback method gives you some idea of what can be accomplished using this
replacement technique.

To make use of this callback method, we need a way to call it from the ComplexReplace method.
First, a variable of type System.Text.RegularExpressions.MatchEvaluator is created. This
variable (replaceCallback) is the delegate that is used to call the MatchHandler method:

MatchEvaluator replaceCallback = new MatchEvaluator(MatchHandler);

Finally, the Replace method is called with the reference to the MatchEvaluator delegate passed in

as a parameter:

string newString = RE.Replace(source, replaceCallback);

See Also

See the ".NET Framework Regular Expressions" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 8.7 A Better Tokenizer

Problem

A simple method of tokenizing-or breaking up a string into its discrete elements-was presented in
Recipe 2.6. However, this is not powerful enough to handle all your string-tokenizing needs. You need
a tokenizer-also referred to as a lexer-that can split up a string based on a well-defined set of
characters.

Solution

Using the Split method of the Regex class, we can use a regular expression to indicate the types of

tokens and separators that we are interested in gathering. This technique works especially well with
equations, since the tokens of an equation are well-defined. For example, the code:

using System;
using System.Text.RegularExpressions;

public static string[] Tokenize(string equation)
{
 Regex RE = new Regex(@"([\+\-*\(\)\^\\])");
 return (RE.Split(equation));
}

will divide up a string according to the regular expression specified in the Regex constructor. In other
words, the string passed in to the Tokenize method will be divided up based on the delimiters +, -,
*, (,), ^, or \. The following method will call the Tokenize method to tokenize the equation: (y -
3)(3111*x^21 + x + 320):

public void TestTokenize()
{
 foreach(string token in Tokenize("(y - 3)(3111*x^21 + x + 320)"))
 Console.WriteLine("String token = " + token.Trim());
}

which displays the following output:

String token =
String token = (
String token = y
String token = -
String token = 3
String token =)
String token =

String token = (
String token = 3111
String token = *
String token = x
String token = ^
String token = 21
String token = +
String token = x
String token = +
String token = 320
String token =)
String token =

Notice that each individual operator, parenthesis, and number has been broken out into its own
separate token.

Discussion

The tokenizer created in Recipe 2.6 would be useful in specific controlled circumstances. However, in
real-world projects, we do not always have the luxury of being able to control the set of inputs to our
code. By making use of regular expressions, we can take the original tokenizer and make it flexible
enough to allow it to be applied to any type or style of input we desire.

The key method used here is the Split instance method of the Regex class. The return value of this
method is a string array whose elements include each individual token of the source string-the

equation, in this case.

Notice that the static method allows RegexOptions enumeration values to be used, while the

instance method allows for a starting position to be defined and a maximum amount of matches to
occur. This may have some bearing on whether you choose the static or instance method.

See Also

See Recipe 2.6; see the ".NET Framework Regular Expressions" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 8.8 Compiling Regular Expressions

Problem

You have a handful of regular expressions to execute as quickly as possible over many different
strings. Performance is of the utmost importance.

Solution

The best way to do this task is to use compiled regular expressions. However, there are some
drawbacks to using this technique, which we will examine.

There are two ways to compile regular expressions. The easiest way is to use the
RegexOptions.Compiled enumeration value in the Options parameter of the static Match or
Matches methods on the Regex class:

Match theMatch = Regex.Match(source, pattern, RegexOptions.Compiled);

MatchCollection theMatches = Regex.Matches(source, pattern, RegexOptions.Compiled);

If more than a few expressions will be compiled and/or the expressions need to be shared across
applications, consider precompiling all of these expressions into their own assembly. Do this by using
the static CompileToAssembly method on the Regex class. The following method accepts an

assembly name and compiles two simple regular expressions into this assembly:

public static void CreateRegExDLL(string assmName)
{
 RegexCompilationInfo[] RE = new RegexCompilationInfo[2]
 {new RegexCompilationInfo("PATTERN", RegexOptions.Compiled,
 "CompiledPATTERN", "Chapter_Code", true),
 new RegexCompilationInfo("NAME", RegexOptions.Compiled,
 "CompiledNAME", "Chapter_Code", true)};

 System.Reflection.AssemblyName aName =
 new System.Reflection.AssemblyName();
 aName.Name = assmName;

 Regex.CompileToAssembly(RE, aName);
}

Now that the expressions are compiled to an assembly, the assembly can be added as a reference to
your project and used as follows:

Chapter_Code.CompiledNAME CN = new Chapter_Code.CompiledNAME();

Match mName = CN.Match("Get the NAME from this text.");
Console.WriteLine("mName.Value = " + mName.Value);

This code displays the following text:

mName.Value = NAME

Discussion

Compiling regular expressions allows the expression to run faster. To understand how, we need to
examine the process that an expression goes through as it is run against a string. If an expression is
not compiled, the regular expression engine converts the expression to a series of internal codes that
are recognized by the regular expression engine; it is not converted to MSIL. As the expression runs
against a string, the engine interprets the series of internal codes. This can be a slow process,
especially as the source string becomes very large and the expression becomes much more complex.

To fix this performance problem, you can compile the expression so that it gets converted directly to
a series of MSIL instructions, which perform the pattern matching for the specific regular expression.
Once the Just-In-Time (JIT) compiler is run on this MSIL, the instructions are converted to machine
code. This allows for an extremely fast execution of the pattern against a string.

There are two drawbacks to using the RegexOptions.Compiled enumerated value to compile regular
expressions. The first is that the first time an expression is used with the Compiled flag, it performs

very slowly, due to the compilation process. Fortunately, this is a one-time expense since every
unique expression is compiled only once. The second drawback is that an in-memory assembly gets
generated to contain the IL, which can never be unloaded. An assembly can never be unloaded from
an AppDomain. The garbage collector cannot remove it from memory. If large numbers of
expressions are compiled, the amount of heap resources that will be used up and not released will be
larger. So use this technique wisely.

Compiling regular expressions into their own assembly immediately gives you two benefits. First,
precompiled expressions do not require any extra time to be compiled while your application is
running. Second, they are in their own assembly and therefore can be used by other applications.

Consider precompiling regular expressions and placing them in their own
assembly rather than using the RegexOptions.Compiled flag.

To compile one or more expressions into an assembly, the static CompileToAssembly method of the
Regex class must be used. To use this method, a RegexCompilationInfo array must be created and
filled with RegexCompilationInfo objects. The next step is to create the assembly in which the
expression will live. An instance of the AssemblyName class is created using the default constructor.
Next, this assembly is given a name (do not include the .dll file extension in the name, it is added
automatically). Finally, the CompileToAssembly method can be called with the
RegexCompilationInfo array and the AssemblyName object supplied as arguments.

In our example, this assembly is placed in the same directory that the
executable was launched from.

See Also

See the ".NET Framework Regular Expressions" and "AssemblyName Class" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 8.9 Counting Lines of Text

Problem

You need to count lines of text within a string or within a file.

Solution

Read in the entire file and count the number of linefeeds, as shown in the following method:

using System;
using System.Text.RegularExpressions;
using System.IO;

public static long LineCount(string source, bool isFileName)
{
 if (source != null)
 {
 string text = source;

 if (isFileName)
 {
 FileStream FS = new FileStream(source, FileMode.Open,
 FileAccess.Read, FileShare.Read);
 StreamReader SR = new StreamReader(FS);
 text = SR.ReadToEnd();
 SR.Close();
 FS.Close();
 }

 Regex RE = new Regex("\n", RegexOptions.Multiline);
 MatchCollection theMatches = RE.Matches(text);

 // Needed for files with zero length
 // Note that a string will always have a line terminator
 // and thus will always have a length of 1 or more
 if (isFileName)
 {
 return (theMatches.Count);
 }
 else
 {
 return (theMatches.Count) + 1;

 }
 }
 else
 {
 // Handle a null source here
 return (0);
 }
}

An alternative version of this method uses the StreamReader.ReadLine method to count lines in a

file and a regular expression to count lines in a string:

public static long LineCount2(string source, bool isFileName)
{
 if (source != null)
 {
 string text = source;
 long numOfLines = 0;

 if (isFileName)
 {
 FileStream FS = new FileStream(source, FileMode.Open,
 FileAccess.Read, FileShare.Read);
 StreamReader SR = new StreamReader(FS);

 while (text != null)
 {
 text = SR.ReadLine();

 if (text != null)
 {
 ++numOfLines;
 }
 }

 SR.Close();
 FS.Close();
 return (numOfLines);
 }
 else
 {
 Regex RE = new Regex("\n", RegexOptions.Multiline);
 MatchCollection theMatches = RE.Matches(text);

 return (theMatches.Count + 1);
 }
 }
 else
 {
 // Handle a null source here
 return (0);
 }

}

The following method counts the lines within a specified text file and a specified string:

public static void TestLineCount()
{
 // Count the lines within the file TestFile.txt
 LineCount(@"C:\TestFile.txt", true);

 // Count the lines within a string
 // Notice that a \r\n characters start a new line
 // as well as just the \n character
 LineCount("Line1\r\nLine2\r\nLine3\nLine4", false);
}

Discussion

Every line ends with a special character. For Windows files, the line terminating characters are a
carriage return followed by a linefeed. This sequence of characters is described by the regular
expression pattern \r\n. Unix files terminate their lines with just the linefeed character (\n). The
regular expression "\n" is the lowest common denominator for both sets of line-terminating
characters. Consequently, this method runs a regular expression that looks for the pattern "\n" in a

string or file.

Macintosh files usually end with a carriage-return character (\r). To count the

number of lines in this type of file, the regular expression should be changed to
the following in the constructor of the Regex object:

Regex RE = new Regex("\r", RegexOptions.Multiline);

Simply running this regular expression against a string returns the number of lines minus one
because the last line does not have a line-terminating character. To account for this, one is added to
the final count of linefeeds in the string.

The LineCount method accepts two parameters. The first is a string that either contains the actual

text that will have its lines counted or the path and name of a text file whose lines are to be counted.
The second parameter, isFileName, determines whether the first parameter (source) is a string or a
file path. If this parameter is true, the source parameter is a file path; otherwise, it is simply a

string.

See Also

See the ".NET Framework Regular Expressions," "FileStream Class," and "StreamReader Class" topics
in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 8.10 Returning the Entire Line in Which a Match Is
Found

Problem

You have a string or file that contains multiple lines. When a specific character pattern is found on a
line, you want to return the entire line, not just the matched text.

Solution

Use the StreamReader.ReadLine method to obtain each line in a file in which to run a regular

expression against:

public static ArrayList GetLines(string source, string pattern,
 bool isFileName)
{
 string text = source;
 ArrayList matchedLines = new ArrayList();

 // If this is a file, get the entire file's text
 if (isFileName)
 {
 FileStream FS = new FileStream(source, FileMode.Open,
 FileAccess.Read, FileShare.Read);
 StreamReader SR = new StreamReader(FS);

 while (text != null)
 {
 text = SR.ReadLine();

 if (text != null)
 {
 // Run the regex on each line in the string
 Regex RE = new Regex(pattern, RegexOptions.Multiline);
 MatchCollection theMatches = RE.Matches(text);

 if (theMatches.Count > 0)
 {
 // Get the line if a match was found
 matchedLines.Add(text);
 }
 }
 }

 SR.Close();
 FS.Close();
 }
 else
 {
 // Run the regex once on the entire string
 Regex RE = new Regex(pattern, RegexOptions.Multiline);
 MatchCollection theMatches = RE.Matches(text);

 // Get the line for each match
 foreach (Match m in theMatches)
 {
 int lineStartPos = GetBeginningOfLine(text, m.Index);
 int lineEndPos = GetEndOfLine(text, (m.Index + m.Length - 1));
 string line = text.Substring(lineStartPos,
 lineEndPos - lineStartPos);
 matchedLines.Add(line);
 }
 }

 return (matchedLines);
}

public static int GetBeginningOfLine(string text, int startPointOfMatch)
{
 if (startPointOfMatch > 0)
 {
 --startPointOfMatch;
 }

 if (startPointOfMatch >= 0 && startPointOfMatch < text.Length)
 {
 // Move to the left until the first '\n char is found
 for (int index = startPointOfMatch; index >= 0; index--)
 {
 if (text[index] == '\n')
 {
 return (index + 1);
 }
 }

 return (0);
 }

 return (startPointOfMatch);
}

public static int GetEndOfLine(string text, int endPointOfMatch)
{
 if (endPointOfMatch >= 0 && endPointOfMatch < text.Length)
 {

 // Move to the right until the first '\n char is found
 for (int index = endPointOfMatch; index < text.Length; index++)
 {
 if (text[index] == '\n')
 {
 return (index);
 }
 }

 return (text.Length);
 }

 return (endPointOfMatch);
}

The following method shows how to call the GetLines method with either a filename or a string:

public static void TestGetLine()
{
 // Get each line within the file TestFile.txt as a separate string
 Console.WriteLine();
 ArrayList lines = GetLines(@"C:\TestFile.txt", "\n", true);
 foreach (string s in lines)
 Console.WriteLine("MatchedLine: " + s);

 // Get the lines matching the text "Line" within the given string
 Console.WriteLine();
 lines = GetLines("Line1\r\nLine2\r\nLine3\nLine4", "Line", false);
 foreach (string s in lines)
 Console.WriteLine("MatchedLine: " + s);
}

Discussion

The GetLines method accepts three parameters:

source

The string or filename in which to search for a pattern.

pattern

The regular expression pattern to apply to the source string.

isFileName

Pass in true if the source is a filename or false if source is a string.

This method returns an ArrayList of strings that contains each line in which the regular expression

match was found.

The GetLines method can obtain the lines on which matches occur, within a string or a file. When

running a regular expression against a file whose name is passed in to the source parameter (when

isFileName equals true) in the GetLines method, the file is opened and read line-by-line. The

regular expression is run against each line and if a match is found, that line is stored in the
matchedLines ArrayList. Using the ReadLine method of the StreamReader object saves us from

having to determine where each line starts and ends. Determining where a line starts and ends in a
string requires some work, as you shall see.

Running the regular expression against a string passed in to the source parameter (when

isFileName equals false) in the GetLines method produces a MatchCollection. Each Match object

in this collection is used to obtain the line on which it is located in the source string. The line is

obtained by starting at the position of the first character of the match in the source string and

moving one character to the left until either a '\n' character is found or the beginning of the source
string is found (this code is found in the GetBeginningOfLine method). This gives you the beginning
of the line, which is placed in the variable LineStartPos. Next, the end of the line is found by

starting at the last character of the match in the source string and moving to the right until either a

'\n' character is found or the end of the source string is found (this code is found in the
GetEndOfLine method). This ending position is placed in the LineEndPos variable. All of the text
between the LineStartPos and LineEndPos will be the line in which the match is found. Each of
these lines is added to the matchedLines ArrayList and returned to the caller.

Something interesting you can do with the GetLines method is to pass in the string "\n" in the

pattern parameter of this method. This trick will effectively return each line of the string or file as a
string in the ArrayList.

Note that if more than one match is found on a line, each matching line will be added to the
ArrayList.

See Also

See the ".NET Framework Regular Expressions," "FileStream Class," and "StreamReader Class" topics
in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 8.11 Finding a Particular Occurrence of a Match

Problem

You need to find a specific occurrence of a match within a string. For example, you want to find the
third occurrence of a word or the second occurrence of a Social Security Number. In addition, you
may need to find every third occurrence of a word in a string.

Solution

To find a particular occurrence of a match in a string, simply subscript the array returned from
Regex.Matches:

public static Match FindOccurrenceOf(string source, string pattern,
 int occurrence)
{
 if (occurrence < 1)
 {
 throw (new ArgumentException("Cannot be less than 1",
 "occurrence"));
 }

 // Make occurrence zero-based
 --occurrence;

 // Run the regex once on the source string
 Regex RE = new Regex(pattern, RegexOptions.Multiline);
 MatchCollection theMatches = RE.Matches(source);

 if (occurrence >= theMatches.Count)
 {
 return (null);
 }
 else
 {
 return (theMatches[occurrence]);
 }
}

To find each particular occurrence of a match in a string, build an ArrayList on the fly:

public static ArrayList FindEachOccurrenceOf(string source, string pattern,
 int occurrence)
{

 ArrayList occurrences = new ArrayList();

 // Run the regex once on the source string
 Regex RE = new Regex(pattern, RegexOptions.Multiline);
 MatchCollection theMatches = RE.Matches(source);

 for (int index = (occurrence - 1);
 index < theMatches.Count; index += occurrence)
 {
 occurrences.Add(theMatches[index]);
 }

 return (occurrences);
}

The following method shows how to invoke the two previous methods:

public static void TestOccurrencesOf()
{
 Match matchResult = FindOccurrenceOf(
 "one two three one two three one two three one"
 + " two three one two three one two three", "two", 2);
 if (matchResult != null)
 Console.WriteLine(matchResult.ToString() + "\t" +
 matchResult.Index);

 Console.WriteLine();
 ArrayList results = FindEachOccurrenceOf(
 "one one two three one two three one two" +
 " three one two three", "one", 2);
 foreach (Match m in results)
 Console.WriteLine(m.ToString() + "\t" + m.Index);
}

Discussion

This recipe contains two similar but distinct methods. The first method, FindOccurrenceOf, returns a

particular occurrence of a regular expression match. The occurrence you want to find is passed in to
this method via the occurrence parameter. If the particular occurrence of the match does not
exist-for example, you ask to find the second occurrence, but only one occurrence exists-a null is

returned from this method. Because of this, you should check that the returned object of this method
is not null before using that object. If the particular occurrence exists, the Match object that holds

the match information for that occurrence is returned.

The second method in this recipe, FindEachOccurrenceOf, works similar to the FindOccurrenceOf

method, except that it continues to find a particular occurrence of a regular expression match until
the end of the string is reached. For example, if you ask to find the second occurrence, this method
would return an ArrayList of zero or more Match objects. The Match objects would correspond to

the second, fourth, sixth, and eighth occurrence of a match and so on until the end of the string is
reached.

See Also

See the ".NET Framework Regular Expressions" and "ArrayList Class" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 8.12 Using Common Patterns

Problem

You need a quick list from which to choose regular expression patterns that match standard items.
These standard items could be a Social Security Number, a zip code, a word containing only
characters, an alphanumeric word, an email address, a URL, dates, or one of many other possible
items used throughout business applications.

These patterns can be useful in making sure that a user has input the correct data and that it is well-
formed. These patterns can also be used as an extra security measure to keep hackers from
attempting to break your code by entering strange or malformed input (e.g., SQL injection or cross-
site-scripting attacks). Note that these regular expressions are not a silver bullet that will stop all
attacks on your system; rather, they are an added layer of defense.

Solution

Match only alphanumeric characters along with the characters -, +, ., and any whitespace:
^([\w\.+-]|\s)*$

Be careful using the - character within a character class-a regular
expression enclosed within [and]. That character is also used to specify
a range of characters, as in a--z for a through z inclusive. If you want to
use a literal - character, either escape it with \ or put it at the end of the

expression, as shown in the previous and next examples.

Match only alphanumeric characters along with the characters -, +, ., and any whitespace, with
the stipulation that there is at least one of these characters and no more than 10 of these
characters:
^([\w\.+-]|\s){1,10}$

Match a date in the form ##/##/#### where the day and month can be a one- or two-digit

value, and year can either be a two- or four-digit value:
^\d{1,2}\/\d{1,2}\/\d{2,4}$

Match a time to be entered with an optional am or pm extension (note that this regular

expression also handles military time):
^\d{1,2}:\d{2}\s?([ap]m)?$

Match an IP address:
^([0-2]?[0-5]?[0-5]\.){3}[0-2]?[0-5]?[0-5]$

Verify that an email address is in the form name@address where address is not an IP address:
^[A-Za-z0-9_\-\.]+@(([A-Za-z0-9\-])+\.)+([A-Za-z\-])+$

Verify that an email address is in the form name@address where address is an IP address:
^[A-Za-z0-9_\-\.]+@([0-2]?[0-5]?[0-5]\.){3}[0-2]?[0-5]?[0-5]$

Match only a dollar amount with the optional $ and + or - preceding characters (note that any
number of decimal places may be added):
^\$?[+-]?[\d,]*(\.\d*)?$

This is similar to the previous regular expression except that only up to two decimal places are
allowed:

^\$?[+-]?[\d,]*\.?\d{0,2}$

Match a credit card number to be entered as four sets of four digits separated with a space, -,
or no character at all:
^((\d{4}[-]?){3}\d{4})$

Match a zip code to be entered either as five digits with an optional four-digit extension:
^\d{5}(-\d{4})?$

Match a North American phone number with an optional area code and an optional - character

to be used in the phone number and no extension:
^(\(?[0-9]{3}\)?)?\-?[0-9]{3}\-?[0-9]{4}$

Match a phone number similar to the previous regular expression, but allow an optional five-
digit extension prefixed with either ext or extension:
^(\(?[0-9]{3}\)?)?\-?[0-9]{3}\-?[0-9]{4}(\s*ext(ension)?[0-9]{5})?$

Match a full path beginning with the drive letter and optionally match a filename with a three-
character extension (note that no .. characters signifying to move up the directory hierarchy are
allowed, nor is a directory name with a . followed by an extension):
^[a-zA-Z]:[\\/]([_a-zA-Z0-9]+[\\/]?)*([_a-zA-Z0-9]+\.[_a-zA-Z0-9]{0,3})?$

Discussion

Regular expressions are effective at finding specific information, and they have a wide range of uses.
Many applications use them to locate specific information within a larger range of text, as well as to
filter out bad input. The filtering action is very useful in tightening the security of an application and
preventing an attacker from attempting to use carefully formed input to gain access to a machine on
the Internet or a local network. By using a regular expression to allow only good input to be passed
to the application, you can reduce the likelihood of many types of attacks, such as SQL injection or
cross-site-scripting.

The regular expressions presented in this recipe only provide a minute cross-section of what can be
accomplished with them. By taking these expressions and manipulating parts of them, you can easily
modify them to work with your application. Take, for example, the following expression which allows
only between 1 and 10 alphanumeric characters, along with a few symbols to be allowed as input:

^([\w\.+-]|\s){1,10}$

By changing the {1,10} part of the regular expression to {0,200}, this expression will now match a

blank entry or an entry of the specified symbols up to and including 200 characters.

Note the use of the ̂ character at the beginning of the expression and the $ character at the end of

the expression. These characters start the match at the beginning of the text and match all the way
to the end of the text. Adding these characters forces the regular expression to match the entire
string or none of it. By removing these characters, you can search for specific text within a larger
block of text. For example, the following regular expression matches only a string containing nothing
but a U.S. zip code (there can be no leading or trailing spaces):

^\d{5}(-\d{4})?$

This version matches only a zip code with leading or trailing spaces (notice the addition of the \s* to

the start and end of the expression):

^\s*\d{5}(-\d{4})?\s*$

However, this modified expression matches a zip code found anywhere within a string (including a
string containing just a zip code):

\d{5}(-\d{4})?

Use the regular expressions in this recipe and modify them to suit your needs.

See Also

Two good books that cover regular expressions are Regular Expression Pocket Reference by Tony
Stubblebine (O'Reilly) and Mastering Regular Expressions, Second Edition, by Jeffrey Friedl (O'Reilly).

[Team LiB]

[Team LiB]

Recipe 8.13 Documenting Your Regular Expressions

Problem

You have one or more complex regular expressions that may exist in a file outside of your code. You
need a way to place comments within the regular expression itself. These comments will aid others in
being able to read and maintain your regular expressions later on.

Solution

Add comments to the regular expression using the # comment character:

string matchPattern = @"\\\\ # Find this: \\
 (?<TheServer>\w*) # Server name
 \\ # Find this: \
 (?<TheService>\w*)\\ # Service name";

or add C#-style comments outside of the regular expression string:

string matchPattern = @"\\\\" + // Find this: \\
 @"(?<TheServer>\w*)" + // Server name
 @"\\" + // Find this: \
 @"(?<TheService>\w*)\\"; // Service name

When using these expressions in a Regex object, the RegexOptions.IgnorePatternWhitespace
enumeration value must be added to the options parameter of the Regex object constructor:

Regex RE = new Regex(matchPattern,
 RegexOptions.Multiline | RegexOptions.IgnorePatternWhitespace);
MatchCollection theMatches = RE.Matches("The source text goes here...");

Discussion

With large and complex regular expressions, it is desirable to break up the expression into
manageable pieces and to identify what each piece does. For example, the regular expression in the
Solution section will pull the server and service pieces out of a UNC string. By breaking up the regular
expression onto separate lines and adding comments to each line, we have allowed other developers
(who might not be familiar with regular expressions) to more quickly and easily read and maintain
our regular expression.

Typically, you would use the string concatenation and C#-style commenting to comment a regular
expression string. However, if you are retrieving the regular expression from an external source,
such as a text file, regular expression style commenting (#) is the type to use.

With simpler regular expressions, you can get away with adding a C# comment outside of the regular
expression string to indicate what it does. But adding comments to the regular expression itself
greatly aids in understanding it.

[Team LiB]

[Team LiB]

Chapter 9. Collections
Collections are groups of items; in .NET, collections contain objects (including boxed value types). Each
object contained in a collection is called an element . Some collections contain a straightforward list of
elements, while others (dictionaries) contain a list of key and value pairs. The following collection types
consist of a straightforward list of elements:

ArrayList
BitArray
Queue
Stack

The following collection types are dictionaries:

Hashtable
SortedList

These collection classes are organized under the System.Collections namespace. In addition to this
namespace, there is also another namespace called System.Collections.Specialized , which

contains a few more useful collection classes. These classes might not be as well known as the previous
classes, so here is a short explanation of the list:

ListDictionary

This class operates very similar to the Hashtable . However, this class beats out the Hashtable

on performance when it contains 10 or fewer elements.

HybridDictionary

This class consists of two internal collections, the ListDictionary and the Hashtable . Only one
of these classes is used at any one time. The ListDictionary is used while the collection contains
10 or fewer elements, and then a switch is made to use a Hashtable when the collection grows
beyond 10 elements. This switch is made transparently to the developer. Once the Hashtable is
used, this collection cannot revert to using the ListDictionary even if the elements number 10

or fewer. Also note that when using strings as the key, this class supports both case-sensitive
(with respect to the invariant culture) and case-insensitive string searches through setting a
Boolean value in the constructor.

CollectionsUtil

This class contains two static methods: one to create a case-insensitive Hashtable and another

to create a case-insensitive SortedList . By directly creating a Hashtable and SortedList
object, you will always create a case-sensitive Hashtable or SortedList , unless you use one of
the constructors that take an IComparer and pass CaseInsensitiveComparer.Default to it.

NameValueCollection

This collection consists of key and value pairs, which are both of type String . The interesting

thing about this collection is that it can store multiple string values with a single key. The multiple
string values are comma-delimited. The String.Split method is useful when breaking up

multiple strings in a value.

StringCollection

This collection is a simple list containing string elements. This list accepts null elements as well

as duplicate strings. This list is case-sensitive.

StringDictionary

This is a Hashtable that stores both the key and value as strings. Keys are converted to all
lowercase letters before being added to the Hashtable , allowing for case-insensitive
comparisons. Keys cannot be null , but values may be set to null .

The C# compiler also supports a fixed-size array. Arrays of any type may be created using the following
syntax:

int[] foo = new int[2];

where foo is an integer array containing exactly 2 elements.

Arrays come in several styles as well: multidimensional, jagged, and even multidimensional jagged.
Multidimensional arrays are defined as shown here:

int[,] foo = new int[2,3]; // A 2-dimensional array containing up to 6 elements
int[,,] bar = new int[2,3,4]; // A 3-dimensional array containing up to 24 elements

A two-dimensional array is usually described as a table with rows and columns. The foo array would be

described as a table of two rows each containing three columns of elements. A three-dimensional array
can be described as a cube with layers of tables. The bar array could be described as four layers of two

rows each containing three columns of elements.

Jagged arrays are arrays of arrays. Therefore, if you picture a jagged array as a type of two-
dimensional array, it could have a different number of elements on each row. A jagged array is defined
as follows:

int[][] baz = new int[2][] {new int[2], new int[3]};

The baz array consists of a one-dimensional array containing two elements. Each of these elements

consists of another array, the first array having two elements and the second array having three.

The rest of this chapter contains recipes dealing with arrays and the various collection types.

[Team LiB]

[Team LiB]

Recipe 9.1 Swapping Two Elements in an Array

Problem

You want an efficient method to swap two elements that exist within a single array.

Solution

Use a temporary object to hold one of the items being swapped:

public static void SwapElementsInArray(object[] theArray, int index1, int index2)
{
 object tempHolder = theArray[index1];
 theArray[index1] = theArray[index2];
 theArray[index2] = tempHolder;
}

You can make this method strongly typed by setting theArray parameter type to a specific type. The
following overload of the SwapElementsInArray method has been modified to accept an array of

integers. This fix will prevent any costly boxing operations in the code that actually swaps the two
elements:

public static void SwapElementsInArray(int[] theArray, int index1, int index2)
{
 int tempHolder = theArray[index1];
 theArray[index1] = theArray[index2];
 theArray[index2] = tempHolder;
}

Discussion

There is no specific method in the .NET Framework that allows only two specific elements to be
swapped within an array. The SwapElementsInArray method presented in this recipe allows for only
two specified elements of an array (specified in the index1 and index2 arguments to this method).

The following code uses the SwapElementsInArray method to swap the zeroth and fourth elements

in an array of integers:

public static void TestSwapArrayElements()
{
 int[] someArray = new int[5] {1,2,3,4,5};

 for (int counter = 0; counter < someArray.Length; counter++)

 {
 Console.WriteLine("Element " + counter + " = " + someArray[counter]);
 }

 SwapElementsInArray(someArray, 0, 4);

 for (int counter = 0; counter < someArray.Length; counter++)
 {
 Console.WriteLine("Element " + counter + " = " + someArray[counter]);
 }
}

This code produces the following output:

Element 0 = 1 The original array
Element 1 = 2
Element 2 = 3
Element 3 = 4
Element 4 = 5

Element 0 = 5 The array with reversed elements
Element 1 = 2
Element 2 = 3
Element 3 = 4
Element 4 = 1

[Team LiB]

[Team LiB]

Recipe 9.2 Quickly Reversing an Array

Problem

You want an efficient method to reverse the order of elements within an array.

Solution

You can use the static Reverse method, as in this snippet of code:

int[] someArray = new int[5] {1,2,3,4,5};
Array.Reverse(someArray);

or you can write your own reversal method:

public static void DoReversal(int[] theArray)
{
 int tempHolder = 0;

 if (theArray.Length > 0)
 {
 for (int counter = 0; counter < (theArray.Length / 2); counter++)
 {
 tempHolder = theArray[counter];
 theArray[counter] = theArray[theArray.Length - counter - 1];
 theArray[theArray.Length - counter - 1] = tempHolder;
 }
 }
 else
 {
 Console.WriteLine("Nothing to reverse");
 }
}

While there is more code to write, the benefit of the DoReversal method is that it is about twice as
fast as the Array.Reverse method. In addition, you can tailor the DoReversal method to a specific
situation. For example, the DoReversal method accepts a value type array (int), whereas the
Array.Reverse method accepts only a reference type (System.Array). This means that a boxing
operation will occur for the int value types. The DoReversal method removes any boxing operations.

Discussion

The following TestArrayReversal method creates a test array of five integers and displays the
elements in their initial order. Next, the DoReversal method is called to reverse the elements in the

array. After this method returns, the array is then displayed a second time as a reversed array:

public unsafe static void TestArrayReversal()
{
 int[] someArray = new int[5] {1,2,3,4,5};

 for (int counter = 0; counter < someArray.Length; counter++)
 {
 Console.WriteLine("Element " + counter + " = " + someArray[counter]);
 }

 DoReversal(someArray);

 for (int counter = 0; counter < someArray.Length; counter++)
 {
 Console.WriteLine("Element " + counter + " = " + someArray[counter]);
 }
}

This code displays the following:

Element 0 = 1 The original array
Element 1 = 2
Element 2 = 3
Element 3 = 4
Element 4 = 5

Element 0 = 5 The reversed array
Element 1 = 4
Element 2 = 3
Element 3 = 2
Element 4 = 1

Reversing the elements in an array is a fairly common routine. The algorithm here swaps elements in
the array until it is fully reversed. The DoReversal method accepts two parameters. The first

(theArray) is a pointer to the first element in the array that is to be reversed. The second

(theArray.Length) is an integer describing the length of this array; in this case it is set to five.

The array is actually reversed inside of the for loop. The for loop counts from zero (the first element

in the array) to a value equal to the array's length divided by two:

for (int counter = 0; counter < (theArray.Length / 2); counter++)

Note that this is integer division, so if the array length is an odd number, any digits to the right of the
decimal point are truncated. Since our array length is five, the for loop counts from zero to two.

Inside of the loop are three lines of code:

tempHolder = theArray[counter];
theArray[counter] = theArray[theArray.Length - counter - 1];
theArray[theArray.Length - counter - 1] = tempHolder;

These three lines swap the first half of the array with the second half. As the for loop counts from

zero, these three lines swap the first and last elements in the array. The loop increments the counter
by one, allowing the second element and the next to last element to be swapped. This continues on
until all elements in the array have been swapped.

There is one element in the array that cannot be swapped; this is the middle element of an array
with an odd number for the length. For example, in our code, we have five elements in the array. The
third element should not be swapped. Put another way, all of the other elements pivot on this third
element when they are swapped. This does not occur when the length of the array is an even
number.

By dividing the array length by two, we can compensate for even or odd array elements. Since we
get back an integer number from this division, we can easily skip over the middle element in an array
with an odd length.

See Also

See Recipe 9.3 and Recipe 9.4; see the "Array.Reverse Method" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 9.3 Reversing a Two-Dimensional Array

Problem

You need to reverse each row in a two-dimensional array. The Array.Reverse method does not

support this.

Solution

Use two loops; one to iterate over rows, the other to iterate over columns:

public static void Reverse2DimArray(int[,] theArray)
{
 for (int rowIndex = 0;
 rowIndex <= (theArray.GetUpperBound(0)); rowIndex++)
 {
 for (int colIndex = 0;
 colIndex <= (theArray.GetUpperBound(1) / 2); colIndex++)
 {
 int tempHolder = theArray[rowIndex, colIndex];
 theArray[rowIndex, colIndex] =
 theArray[rowIndex, theArray.GetUpperBound(1) - colIndex];
 theArray[rowIndex, theArray.GetUpperBound(1) - colIndex] =
 tempHolder;
 }
 }
}

Discussion

The following TestReverse2DimArray method shows how the Reverse2DimArray method is used:

public static void TestReverse2DimArray()
{
 int[,] someArray =
 new int[5,3] {{1,2,3},{4,5,6},{7,8,9},{10,11,12},{13,14,15}};

 // Display the original array
 foreach (int i in someArray)
 {
 Console.WriteLine(i);
 }
 Console.WriteLine();

 Reverse2DimArray(someArray);

 // Display the reversed array
 foreach (int i in someArray)
 {
 Console.WriteLine(i);
 }
}

This method displays the following:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

3 Note that each row of 3 elements are reversed
2
1
6 This is the start of the next row
5
4
9
8
7
12
11
10
15
14
13

The Reverse2DimArray method uses the same logic presented in the previous recipe to reverse the
array; however, a nested for loop is used instead of a single for loop. The outer for loop iterates
over each row of the array (there are five rows in the someArray array). The inner for loop is used
to iterate over each column of the array (there are three columns in the someArray array). The
reverse logic is then applied to the elements handled by the inner for loop, which allows each row in

the array to be reversed.

See Also

Recipe 9.2 and Recipe 9.4.

[Team LiB]

[Team LiB]

Recipe 9.4 Reversing a Jagged Array

Problem

The Array.Reverse method does not provide a way to reverse each subarray in a jagged array. You

need this functionality.

Solution

Use the ReverseJaggedArray method:

public static void ReverseJaggedArray(int[][] theArray)
{
 for (int rowIndex = 0;
 rowIndex <= (theArray.GetUpperBound(0)); rowIndex++)
 {
 for (int colIndex = 0;
 colIndex <= (theArray[rowIndex].GetUpperBound(0) / 2);
 colIndex++)
 {
 int tempHolder = theArray[rowIndex][colIndex];
 theArray[rowIndex][colIndex] =
 theArray[rowIndex][theArray[rowIndex].GetUpperBound(0) -
 colIndex];
 theArray[rowIndex][theArray[rowIndex].GetUpperBound(0) -
 colIndex] = tempHolder;
 }
 }
}

Discussion

The following TestReverseJaggedArray method shows how the ReverseJaggedArray method is

used:

public static void TestReverseJaggedArray()
{
 int[][] someArray =
 new int[][] {new int[3] {1,2,3}, new int[6]{10,11,12,13,14,15}};

 // Display the original array
 for (int rowIndex = 0; rowIndex < someArray.Length; rowIndex++)
 {

 for (int colIndex = 0;
 colIndex < someArray[rowIndex].Length; colIndex++)
 {
 Console.WriteLine(someArray[rowIndex][colIndex]);
 }
 }
 Console.WriteLine();

 ReverseJaggedArray(someArray);

 // Display the reversed array
 for (int rowIndex = 0; rowIndex < someArray.Length; rowIndex++)
 {
 for (int colIndex = 0;
 colIndex < someArray[rowIndex].Length; colIndex++)
 {
 Console.WriteLine(someArray[rowIndex][colIndex]);
 }
 }
}

This method displays the following:

1
2
3
10
11
12
13
14
15

3 The first reversed subarray
2
1
15 The second reversed subarray
14
13
12 The third reversed subarray
11
10

The logic used to reverse each subarray of a jagged array is very similar to the reversal logic
discussed in the previous recipe. The ReverseJaggedArray method uses the same basic logic
presented in Recipe 9.2 to reverse each element in the array; however, a nested for loop is used
instead of a single for loop. The outer for loop iterates over each element of the first dimensioned
array of the jagged array (there are two elements in this array). The inner for loop is used to iterate

over each array contained within the second dimensioned array of the jagged array. The reverse logic
is then applied to the elements handled by the inner for loop. This allows each array contained by

the first dimensioned array in the jagged array to be reversed.

See Also

Recipe 9.2 and Recipe 9.3.

[Team LiB]

[Team LiB]

Recipe 9.5 A More Flexible StackTrace Class

Problem

You have a StackTrace class containing a listing of stack frames. You need to iterate through these stack
frames as if you were using an Array type object.

Solution

Use the adapter design pattern to adapt the public interface of a StackTrace object to look like a
Collection type object. The StackTraceArray class implements this design pattern:

using System;
using System.Collections;
using System.Diagnostics;
using System.Reflection;
using System.Text;
using System.Threading;

public class StackTraceArray : StackTrace, IList
{
 public StackTraceArray() : base()
 {
 InitInternalFrameArray();
 }

 public StackTraceArray(bool needFileInfo) : base(needFileInfo)
 {
 InitInternalFrameArray();
 }

 public StackTraceArray(Exception e) : base(e)
 {
 InitInternalFrameArray();
 }

 public StackTraceArray(int skipFrames) : base(skipFrames)
 {
 InitInternalFrameArray();
 }

 public StackTraceArray(StackFrame frame) : base(frame)
 {
 InitInternalFrameArray();
 }

 public StackTraceArray(Exception e, bool needFileInfo) : base(e, needFileInfo)
 {
 InitInternalFrameArray();
 }

 public StackTraceArray(Exception e, int skipFrames) : base(e, skipFrames)
 {
 InitInternalFrameArray();
 }

 public StackTraceArray(int skipFrames, bool needFileInfo) :
 base(skipFrames, needFileInfo)
 {
 InitInternalFrameArray();
 }

 public StackTraceArray(Thread targetThread, bool needFileInfo) :
 base(targetThread, needFileInfo)
 {
 InitInternalFrameArray();
 }

 public StackTraceArray(Exception e, int skipFrames, bool needFileInfo) :
 base(e, skipFrames, needFileInfo)
 {
 InitInternalFrameArray();
 }

 private StackFrame[] internalFrameArray = null;

 private void InitInternalFrameArray()
 {
 internalFrameArray = new StackFrame[this.FrameCount];

 for (int counter = 0; counter < base.FrameCount; counter++)
 {
 internalFrameArray[counter] = base.GetFrame(counter);
 }
 }

 public string GetFrameAsString(int index)
 {
 StringBuilder str = new StringBuilder("\tat ");
 str.Append(GetFrame(index).GetMethod().DeclaringType.FullName);
 str.Append(".");
 str.Append(GetFrame(index).GetMethod().Name);
 str.Append("(");
 foreach (ParameterInfo PI in GetFrame(index).GetMethod().GetParameters())
 {
 str.Append(PI.ParameterType.Name);
 if (PI.Position < (GetFrame(index).GetMethod().GetParameters().Length - 1))
 {

 str.Append(", ");
 }
 }
 str.Append(")");

 return (str.ToString());
 }

 // IList properties/methods
 public bool IsFixedSize
 {
 get {return (internalFrameArray.IsFixedSize);}
 }

 public bool IsReadOnly
 {
 get {return (true);}
 }

 // Note that this indexer must return an object to comply
 // with the IList interface for this indexer
 public object this[int index]
 {
 get {return (internalFrameArray[index]);}
 set {throw (new NotSupportedException(
 "The set indexer method is not supported on this object."));}
 }

 public int Add(object value)
 {
 return (((IList)internalFrameArray).Add(value));
 }

 public void Insert(int index, object value)
 {
 ((IList)internalFrameArray).Insert(index, value);
 }

 public void Remove(object value)
 {
 ((IList)internalFrameArray).Remove(value);
 }

 public void RemoveAt(int index)
 {
 ((IList)internalFrameArray).RemoveAt(index);
 }

 public void Clear()
 {
 // Throw an exception here to prevent the loss of data
 throw (new NotSupportedException(

 "The Clear method is not supported on this object."));
 }

 public bool Contains(object value)
 {
 return (((IList)internalFrameArray).Contains(value));
 }

 public int IndexOf(object value)
 {
 return (((IList)internalFrameArray).IndexOf(value));
 }

 // IEnumerable method
 public IEnumerator GetEnumerator()
 {
 return (internalFrameArray.GetEnumerator());
 }

 // ICollection properties/methods
 public int Count
 {
 get {return (internalFrameArray.Length);}
 }

 public bool IsSynchronized
 {
 get {return (internalFrameArray.IsSynchronized);}
 }

 public object SyncRoot
 {
 get {return (internalFrameArray.SyncRoot);}
 }

 public void CopyTo(Array array, int index)
 {
 internalFrameArray.CopyTo(array, index);
 }
}

Discussion

The adapter design pattern allows an existing object to be tailored to operate like a different object.
Basically, a new class is created to act the same as the original class. This new object exposes an interface of
the desired type, and the exposed members adapt and forward their calls to the underlying original class.

This can be done using several techniques. One technique involves using containment. A new class is created
that contains a reference to the original class. This new class acts as an intermediary class and forwards calls
to the contained original class. A second technique, which is used in this recipe, is to use inheritance to
create a totally new class, which then exposes a different interface used to forward calls to the base class

members.

This recipe adapts the System.Diagnostics.StackTrace class to look and act like a collection of stack
frames. The StackTrace class provides a convenient way to obtain a stack trace from the current point in
code, an exception object, or a specific thread. Unfortunately, the StackTrace provides only a very simplified
way to get at each stack frame. It would be much better if the StackTrace object operated like an array. To
make this happen, an intermediate object called StackTraceArray is created that inherits from StackTrace
and implements the ICloneable , IList , ICollection , and IEnumerable interfaces-the same interfaces
that the Array class implements.

The constructors for the StackTraceArray class mimic the StackTrace constructors. Each
StackTraceArray constructor passes its work along to the base class using the base keyword:

public StackTraceArray() : base()

Each StackTraceArray constructor contains a call to the private method InitInternalFrameArray . This
private method copies all of the individual StackFrame objects from the base StackTrace object into a
private field of type StackFrame[] called internalFrameArray . The StackTraceArray uses the
internalFrameArray field as a convenient storage mechanism for each individual StackFrame object; in
addition, we get a free implementation of the IEnumerator interface. It also makes it easier to make the
StackTraceArray class look and feel more like an array as opposed to a StackTrace object.

Another useful method added to the StackTraceArray class is the public GetFrameAsString method. This
method accepts an index of a specific StackFrame object in the internalFrameArray field. From this
StackFrame object, it constructs a string similar to the string output for each StackFrame .

The methods implemented from the IList , ICollection , and IEnumerable interfaces forward their calls
on to the internalFrameArray field, which implements the same interfaces-throwing the
NotSupportedException for most of these interface methods.

The StackTrace object can now be used as if it were an array, through the intermediate StackTraceArray
object. To obtain a StackTraceArray object for the current point in code, use the following code:

StackTraceArray arrStackTrace = new StackTraceArray();

To display a portion or all of the stack trace, use the following code:

// Display the first stack frame
Console.WriteLine(arrStackTrace[0].ToString());

// Display all stack frames
foreach (StackFrame SF in arrStackTrace)
{
 Console.WriteLine("stackframe: " + SF.ToString());
}

To obtain a StackTraceArray object from a thrown exception, use the following code:

...
catch (Exception e)
{
 StackTraceArray EST = new StackTraceArray(e, true);

 Console.WriteLine("TOSTRING: " + Environment.NewLine + EST.ToString());
 foreach (StackFrame SF in EST)
 {
 Console.WriteLine(SF.ToString());
 }
}

To copy the StackFrame objects to a new array, use the following code:

StackFrame[] myNewArray = new StackFrame[arrStackTrace.Count];
arrStackTrace.CopyTo(myNewArray, 0);

You will notice that the first StackFrame object in the stack trace contains something like the following:

at AdapterPattern.StackTraceArray..ctor()

This is actually the constructor call to our StackTraceArray object. This information is usually not necessary
to display and can be removed quite easily. When creating the StackTraceArray object, pass in an integer

one as an argument to the constructor. This will force the first stack frame (the one containing the call to the
StackTraceArray constructor) to be discarded:

StackTraceArray arrStackTrace = new StackTraceArray(1);

You should note that the Add , Insert , Remove , and RemoveAt methods on the IList interface of an Array
type throw the NotSupportedException because an array is fixed in length, and these methods will alter the

length of the array.

See Also

See the "StackTrace Class" and "IList Interface" topics in the MSDN documentation. Also see the "Adapter
Design Pattern" chapter in Design Patterns by Erich Gamma et al. (Addison Wesley).

[Team LiB]

[Team LiB]

Recipe 9.6 Determining the Number of Times an Item
Appears in an ArrayList

Problem

You need the number of occurrences of one type of object contained in an ArrayList. The
ArrayList contains methods, such as Contains and BinarySearch to find a single item.

Unfortunately, these methods cannot find all duplicated items at one time-essentially, there is no
count all functionality. If you want to find multiple items, you need to implement your own routine.

Solution

The following class inherits from the ArrayList class in order to extend its functionality. Two

methods are added to return the number of times a particular object appears in a sorted and an
unsorted ArrayList:

using System;
using System.Collections;

public class ArrayListEx : ArrayList
{
 // Count the number of times an item appears in this
 // unsorted or sorted ArrayList
 public int CountAll(object searchValue)
 {
 int foundCounter = 0;

 for (int index = 0; index < this.Count; index++)
 {
 if (this[index].Equals(searchValue))
 {
 foundCounter++;
 }
 }

 return (foundCounter);
 }

 // Count the number of times an item appears in this sorted ArrayList
 public int BinarySearchCountAll(object searchValue)
 {
 // Sort ArrayList
 this.Sort();

 bool done = false;
 int count = 0;

 // Search for first item
 int center = this.BinarySearch(searchValue);
 int left = center - 1;
 int right = center + 1;
 int position = -1;

 if (center >= 0)
 {
 // Increment counter for found item
 ++count;

 // Search to the left
 do
 {
 if (left < 0)
 {
 done = true;
 }
 else
 {
 if (this[left].Equals(searchValue))
 {
 position = left;
 }
 else
 {
 position = -1;
 }

 if (position < 0)
 {
 done = true;
 }
 else
 {
 // Increment counter for found item
 ++count;
 }
 }

 --left;
 }while (!done);

 // Reset done flag
 done = false;

 // Search to the right
 do

 {
 if (right >= (this.Count))
 {
 done = true;
 }
 else
 {
 if (this[right].Equals(searchValue))
 {
 position = right;
 }
 else
 {
 position = -1;
 }

 if (position < 0)
 {
 done = true;
 }
 else
 {
 // Increment counter for found item
 ++count;
 }
 }

 ++right;
 }while (!done);
 }

 return (count);
 }
}

Discussion

The CountAll method accepts a search value (searchValue) of type object. This method then
proceeds to count the number of times the search value appears in the ArrayListEx class. This
method may be used when the ArrayListEx is sorted or unsorted. If the ArrayListEx is sorted (an
ArrayListEx is sorted by calling the Sort method), the BinarySearchCountAll method can be used
to increase the efficiency of the searching. This is done by making use of the BinarySearch method
on the ArrayListEx class, which is much faster than iterating through the entire ArrayListEx. This
is especially true as the ArrayListEx grows in size.

The following code exercises these two new methods of the ArrayListEx class:

class CTest
{
 static void Main()
 {

 ArrayListEx arrayExt = new ArrayListEx();
 arrayExt.Add(-2);
 arrayExt.Add(-2);
 arrayExt.Add(-1);
 arrayExt.Add(-1);
 arrayExt.Add(1);
 arrayExt.Add(2);
 arrayExt.Add(2);
 arrayExt.Add(2);
 arrayExt.Add(2);
 arrayExt.Add(3);
 arrayExt.Add(100);
 arrayExt.Add(4);
 arrayExt.Add(5);

 Console.WriteLine("--CONTAINS TOTAL--");
 int count = arrayExt.CountAll(2);
 Console.WriteLine("Count2: " + count);

 count = arrayExt.CountAll(3);
 Console.WriteLine("Count3: " + count);

 count = arrayExt.CountAll(1);
 Console.WriteLine("Count1: " + count);

 Console.WriteLine("\r\n--BINARY SEARCH COUNT ALL--");
 count = arrayExt.BinarySearchCountAll(2);
 Console.WriteLine("Count2: " + count);

 count = arrayExt.BinarySearchCountAll(3);
 Console.WriteLine("Count3: " + count);

 count = arrayExt.BinarySearchCountAll(1);
 Console.WriteLine("Count1: " + count);
 }
}

This code outputs the following:

--CONTAINS TOTAL--
Count2: 4
Count3: 1
Count1: 1

--BINARY SEARCH COUNT ALL--
Count2: 4
Count3: 1
Count1: 1

The CountAll method uses a sequential search that is performed in a for loop. A linear search must
be used since the ArrayList is not sorted. The if statement determines whether each element in
the ArrayList is equal to the search criteria (searchValue). If the element is found to be a match,

the counter (foundCounter) is incremented by one. This counter is returned by this method to
indicate the number of items matching the search criteria in the ArrayList.

The BinarySearchCountAll method is somewhat more complex. This method implements a binary
search to locate the first item matching the search criteria (searchValue) in the ArrayList. If one is
found, the count variable is incremented by one and the algorithm proceeds to search to the left and

right of the first found element. This first found item is used as a pivot point to locate all other
matching items that exist around it. First, it searches to the left of the initially found item. Once it
encounters the start of the ArrayList or an item that does not match searchValue, the searching to

the left stops and searching to the right of the initially found item starts. Searching to the right
continues until the end of the ArrayList is reached or an item is found that does not match
searchValue. Every time an element is found to the right or left of the initially found item, the count

variable is incremented by one; the value of this variable is then returned to the caller.

Recipe 9.7 contains a variation of this recipe that returns the actual items found, rather than a count.

See Also

See Recipe 9.7; see the "ArrayList Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 9.7 Retrieving All Instances of a Specific Itemin an
ArrayList

Problem

You need to retrieve every object that matches a search criteria contained in an ArrayList. The
ArrayList contains the BinarySearch method to find a single item-essentially, there is no find all
functionality. If you want to find all items duplicated in an ArrayList, you must write your own

routine.

Solution

The following class inherits from the ArrayList class in order to extend its functionality. Two

methods are added to return an array of all the matching objects found in this sorted or unsorted
ArrayList:

using System;
using System.Collections;

public class ArrayListEx : ArrayList
{
 // The method to retrieve all matching objects in a
 // sorted or unsorted ArrayListEx
 public object[] GetAll(object searchValue)
 {
 ArrayList foundItem = new ArrayList();

 for (int index = 0; index < this.Count; index++)
 {
 if (this[index].Equals(searchValue))
 {
 foundItem.Add(this[index]);
 }
 }

 return (foundItem.ToArray());
 }

 // The method to retrieve all matching objects in a sorted ArrayListEx
 public object[] BinarySearchAll(object searchValue)
 {
 // Sort ArrayList
 this.Sort();

 bool done = false;
 ArrayList RetObjs = new ArrayList();

 // Search for first item
 int center = this.BinarySearch(searchValue);
 int left = center - 1;
 int right = center + 1;
 int position = -1;

 if (center >= 0)
 {
 // Add first found
 RetObjs.Add(this[center]);

 // Search to the left
 do
 {
 if (left < 0)
 {
 done = true;
 }
 else
 {
 if (this[left].Equals(searchValue))
 {
 position = left;
 }
 else
 {
 position = -1;
 }

 if (position < 0)
 {
 done = true;
 }
 else
 {
 // Add next found to left
 RetObjs.Add(this[left]);
 }
 }

 --left;
 }while (!done);

 // Reset done flag
 done = false;

 // Search to the right
 do

 {
 if (right >= (this.Count))
 {
 done = true;
 }
 else
 {
 if (this[right].Equals(searchValue))
 {
 position = right;
 }
 else
 {
 position = -1;
 }

 if (position < 0)
 {
 done = true;
 }
 else
 {
 // Add next found to right
 RetObjs.Add(this[right]);
 }
 }

 ++right;
 }while (!done);
 }

 return (RetObjs.ToArray());
 }
}

Discussion

These methods are very similar to the methods used in the previous recipe. The main difference is
that these methods return the actual items found in an object array instead of a count of the

number of times an item was found. The main thing to keep in mind when choosing a method to use
is whether you are going to be searching an ArrayList that is sorted. Choose the GetAll method to
obtain an array of all found items from an unsorted ArrayList, and choose the BinarySearchAll
method to get all items in a sorted ArrayList.

The following code exercises these two new methods of the ArrayListEx class:

class CTest
{
 static void Main()
 {
 ArrayListEx arrayExt = new ArrayListEx();

 arrayExt.Add(-1);
 arrayExt.Add(-1);
 arrayExt.Add(1);
 arrayExt.Add(2);
 arrayExt.Add(2);
 arrayExt.Add(2);
 arrayExt.Add(2);
 arrayExt.Add(3);
 arrayExt.Add(100);
 arrayExt.Add(4);
 arrayExt.Add(5);

 Console.WriteLine("--GET All--");
 object[] objects = arrayExt.GetAll(2);
 foreach (object o in objects)
 {
 Console.WriteLine("obj2: " + o);
 }

 Console.WriteLine();
 objects = arrayExt.GetAll(-2);
 foreach (object o in objects)
 {
 Console.WriteLine("obj-2: " + o);
 }

 Console.WriteLine();
 objects = arrayExt.GetAll(5);
 foreach (object o in objects)
 {
 Console.WriteLine("obj5: " + o);
 }

 Console.WriteLine("\r\n--BINARY SEARCH GET ALL--");
 objects = arrayExt.BinarySearchAll(-2);
 foreach (object o in objects)
 {
 Console.WriteLine("obj-2: " + o);
 }

 Console.WriteLine();
 objects = arrayExt.BinarySearchAll(2);
 foreach (object o in objects)
 {
 Console.WriteLine("obj2: " + o);
 }

 Console.WriteLine();
 objects = arrayExt.BinarySearchAll(5);
 foreach (object o in objects)
 {
 Console.WriteLine("obj5: " + o);

 }
 }
}

This code outputs the following:

--GET All--
obj2: 2
obj2: 2
obj2: 2
obj2: 2

obj5: 5

--BINARY SEARCH GET ALL--

obj2: 2
obj2: 2
obj2: 2
obj2: 2

obj5: 5

The BinarySearchAll method is faster than the GetAll method, especially if the array has already
been sorted. In the BinarySearchAll method, we have added a call to the Sort method for the
current ArrayListEx object; this is done to make absolutely sure that the ArrayListEx has been
sorted. You can remove this call if you are absolutely sure that the ArrayListEx will be sorted. If a
BinarySearch is used on an unsorted ArrayList, it is highly likely that the results returned by the

search will be incorrect.

See Also

See Recipe 9.6; see the "ArrayList Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 9.8 Inserting and Removing Items from an Array

Problem

You need the ability to insert and remove items from a standard array (System.Array). When an

item is inserted, it should not overwrite the item where it is being inserted; instead, it should be
inserted between the element at that index and the previous index. When an item is removed, the
void left by the element should be closed by shifting around the other elements in the array.
However, the Array type has no usable method to perform these operations.

Solution

If possible, switch to an ArrayList instead. If this is not possible, use the approach shown in the
following class. Two methods insert and remove items from the array. The InsertIntoArray method

will insert an item into the array without overwriting any data that already exists in the array. The
RemoveFromArray will remove an element from the array:

using System;

public class ArrayUtilities
{
 public void InsertIntoArray(Array target,
 object value, int index)
 {
 if (index < target.GetLowerBound(0) ||
 index > target.GetUpperBound(0))
 {
 throw (new ArgumentOutOfRangeException("index", index,
 "Array index out of bounds."));
 }
 else
 {
 Array.Copy(target, index, target, index + 1,
 target.Length - index - 1);
 }

 target.SetValue(value, index);
 }

 public void RemoveFromArray(Array target, int index)
 {
 if (index < target.GetLowerBound(0) ||
 index > target.GetUpperBound(0))

 {
 throw (new ArgumentOutOfRangeException("index", index,
 "Array index out of bounds."));
 }
 else if (index < target.GetUpperBound(0))
 {
 Array.Copy(target, index + 1, target, index,
 target.Length - index - 1);
 }

 target.SetValue(null, target.GetUpperBound(0));
 }
}

Discussion

The InsertIntoArray and RemoveFromArray methods make use of the Array.Copy static method to

perform their operations. Initially, both methods test to see whether an item is being added or
removed within the bounds of the array target. If the item passes this test, the Array.Copy method

is used to shift items around to either make room for an element to be inserted or to overwrite an
element being removed from the array.

The RemoveFromArray method accepts two parameters. The first parameter, target, is the array

from which an element is to be removed; the second parameter, index, is the zero-based position of

the element to be removed in the array. Elements at and above the inserted element are shifted
down by one. The last element in the array is set to the default value for the array type.

The InsertIntoArray method accepts three parameters. The first parameter, target, is the array

that is to have an element added, value is the element to be added, and index is the zero-based

position at which value is to be added. Elements at and above the inserted element are shifted up by

one. The last element in the array is discarded.

The following code illustrates the use of the InsertIntoArray and RemoveFromArray methods:

class CTest
{
 static void Main()
 {
 ArrayUtilities arrlib = new ArrayUtilities ();
 string[] numbers = {"one", "two", "four", "five", "six"} ;

 arrlib.InsertIntoArray(numbers, "three", 2);
 foreach (string number in numbers)
 {
 Console.WriteLine(number);
 }

 Console.WriteLine();
 arrlib.RemoveFromArray(numbers, 2);
 foreach (string number in numbers)
 {

 Console.WriteLine(number);
 }
 }
}

This code displays the following:

one
two
three
four
five

one
two
four
five

See Also

See the "Array Class" and "ArrayList Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 9.9 Keeping Your ArrayList Sorted

Problem

You will be using the BinarySearch method of the ArrayList to periodically search the ArrayList

for specific elements. The addition, modification, and removal of elements will be interleaved with the
searches. The BinarySearch method, however, presupposes a sorted array; if the ArrayList is not
sorted, the BinarySearch method will possibly return incorrect results. You do not want to have to
remember to always call the ArrayList.Sort method before calling the ArrayList.BinarySearch

method, not to mention incurring all the overhead associated with this call. You need a way of
keeping the ArrayList sorted without always having to call the ArrayList.Sort method.

Solution

The following class enhances the adding and modifying of elements within an ArrayList. These
methods keep the array sorted when items are added to it and modified. Note that a DeleteSorted

method is not required since this method would not disturb the sorting:

using System;
using System.Collections;

public class SortedArrayList : ArrayList
{
 public void AddSorted(object item)
 {
 int position = this.BinarySearch(item);
 if (position < 0)
 {
 position = ~position;
 }

 this.Insert(position, item);
 }

 public void ModifySorted(object item, int index)
 {
 this.RemoveAt(index);

 int position = this.BinarySearch(item);
 if (position < 0)
 {
 position = ~position;
 }

 this.Insert(position, item);
 }
}

Discussion

Instead of calling ArrayList.Add directly to add elements, use the AddSorted method to add
elements while at the same time keeping the ArrayList sorted. The AddSorted method accepts an

object (item) to add to source.

Likewise, instead of using the ArrayList indexer directly to modify elements, use the ModifySorted
method to modify elements while at the same time keeping the ArrayList sorted. Call this method,

passing in the object to replace the existing object (item), and the index of the object to modify

(index).

The following code exercises the SortedArrayList class:

class CTest
{
 static void Main()
 {
 // Create a SortedArrayList and populate it with
 // randomly choosen numbers
 SortedArrayList sortedAL = new SortedArrayList();
 sortedAL.AddSorted(200);
 sortedAL.AddSorted(20);
 sortedAL.AddSorted(2);
 sortedAL.AddSorted(7);
 sortedAL.AddSorted(10);
 sortedAL.AddSorted(0);
 sortedAL.AddSorted(100);
 sortedAL.AddSorted(-20);
 sortedAL.AddSorted(56);
 sortedAL.AddSorted(55);
 sortedAL.AddSorted(57);
 sortedAL.AddSorted(200);
 sortedAL.AddSorted(-2);
 sortedAL.AddSorted(-20);
 sortedAL.AddSorted(55);
 sortedAL.AddSorted(55);

 // Display it
 foreach (int i in sortedAL)
 {
 Console.WriteLine(i);
 }

 // Now modify a value at a particular index
 sortedAL.ModifySorted(0, 5);
 sortedAL.ModifySorted(1, 10);
 sortedAL.ModifySorted(2, 11);

 sortedAL.ModifySorted(3, 7);
 sortedAL.ModifySorted(4, 2);
 sortedAL.ModifySorted(2, 4);
 sortedAL.ModifySorted(15, 0);
 sortedAL.ModifySorted(0, 15);
 sortedAL.ModifySorted(223, 15);

 // Display it
 Console.WriteLine();
 foreach (int i in sortedAL)
 {
 Console.WriteLine(i);
 }
 }
}

This method automatically places the new item in the ArrayList while keeping its sort order; this is
done without having to explicitly call ArrayList.Sort. The reason this works is because the
AddSorted method first calls the BinarySearch method and passes it to the object to be added to
the ArrayList. The BinarySearch method will either return the index where it found an identical item

or a negative number that we can use to determine where the item that we are looking for should be
located. If the BinarySearch method returns a positive number, we can use the ArrayList.Insert
method to insert our new element at that location, keeping the sort order within the ArrayList. If
the BinarySearch method returns a negative number, we can use the bitwise complement operator
~ to determine where the item should have been located, had it existed in the sorted list. Using this

number, we can use the ArrayList.Insert method to add the item to the correct location in source

while keeping the correct sort order.

You can remove an element from source without disturbing the sort order, but modifying an

element's value in the ArrayList most likely will cause source to become unsorted. The
ModifySorted method alleviates this problem. This method works similarly to the AddSorted
method, except that it will initially remove the element from the ArrayList and then insert the new

element into the correct location.

See Also

See the "ArrayList Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 9.10 Sorting a Hashtable's Keys and/or Values

Problem

You want to sort the keys and/or values contained in a Hashtable in order to display the entire
Hashtable to the user sorted in either ascending or descending order.

Solution

Use the Keys and Values properties of a Hashtable object to obtain an ICollection of its key and
value objects. The methods shown here return an ArrayList of objects containing the keys or values
of a Hashtable:

using System;
using System.Collections;

// Return an ArrayList of Hashtable keys
public static ArrayList GetKeys(Hashtable table)
{
 return (new ArrayList(table.Keys));
}

// Return an ArrayList of Hashtable values
public static ArrayList GetValues(Hashtable table)
{
 return (new ArrayList(table.Values));
}

The following code creates a Hashtable object and displays first keys, and then values, sorted in

ascending and descending order:

public static void TestSortKeyValues()
{
 // Define a hashtable object
 Hashtable hash = new Hashtable();
 hash.Add(2, "two");
 hash.Add(1, "one");
 hash.Add(5, "five");
 hash.Add(4, "four");
 hash.Add(3, "three");

 // Get all the keys in the hashtable and sort them
 ArrayList keys = GetKeys(hash);
 keys.Sort();

 // Display sorted key list
 foreach (object obj in keys)
 Console.WriteLine("Key: " + obj + " Value: " + hash[obj]);

 // Reverse the sorted key list
 Console.WriteLine();
 keys.Reverse();

 // Display reversed key list
 foreach (object obj in keys)
 Console.WriteLine("Key: " + obj + " Value: " + hash[obj]);

 // Get all the values in the hashtable and sort them
 Console.WriteLine();
 Console.WriteLine();
 ArrayList values = GetValues(hash);
 values.Sort();
 foreach (object obj in values)
 Console.WriteLine("Value: " + obj);

 // Reverse the sorted value list
 Console.WriteLine();
 values.Reverse();
 foreach (object obj in values)
 Console.WriteLine("Value: " + obj);
}

The key/value pairs are displayed as shown:

Key: 1 Value: one
Key: 2 Value: two
Key: 3 Value: three
Key: 4 Value: four
Key: 5 Value: five

Key: 5 Value: five
Key: 4 Value: four
Key: 3 Value: three
Key: 2 Value: two
Key: 1 Value: one

Value: five Notice that the values are sorted alphabetically
Value: four
Value: one
Value: three
Value: two

Value: two
Value: three
Value: one
Value: four

Value: five

Discussion

The Hashtable object exposes two useful properties for obtaining a collection of its keys or values.
The Keys property returns an ICollection containing all the keys currently in the Hashtable. The
Values property returns the same for all values currently contained in the Hashtable.

The GetKeys method uses the Keys property. Once the ICollection of keys is returned through this
property, a new ArrayList is created to hold the keys. This ArrayList is then returned to the caller.
The GetValues method works in a similar manner except that it uses the Values property.

The ICollection object returned either from the Keys or Values properties of a Hashtable object
are direct references to the key and value collections within the Hashtable. This means that if the
keys and/or values change in a Hashtable, the key and value collections will be altered accordingly.

See Also

See the "Hashtable Class" and "ArrayList Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 9.11 Creating a Hashtable with Max and Min Size
Boundaries

Problem

You need to use a Hashtable in your project that allows you to set the maximum and/or minimum

number of elements that it can hold.

Solution

Use the MaxMinSizeHashtable class defined here. This class allows a definition of a maximum and a
minimum size beyond which this MaxMinSizeHashtable cannot grow or shrink:

using System;
using System.Collections;

[Serializable]
public class MaxMinSizeHashtable : Hashtable
{
 public MaxMinSizeHashtable() : base(10)
 {
 }

 public MaxMinSizeHashtable(int minSize, int maxSize)
 : base(maxSize)
 {
 if (minSize >= 0 && maxSize > 0)
 {
 this.minSize = minSize;
 this.maxSize = maxSize;
 }
 }

 protected int minSize = 0;
 protected int maxSize = 10; // Initial size for a regular Hashtable
 protected bool readOnly = false;

 public bool ReadOnly
 {
 get {return (readOnly);}
 set {readOnly = value;}
 }

 public override bool IsReadOnly
 {
 get {return readOnly;}
 }

 public override object this[object key]
 {
 get
 {
 return (base[key]);
 }
 set
 {
 if (!readOnly)
 {
 if (key is long)
 {
 if (long.Parse(key.ToString()) < maxSize &&
 long.Parse(key.ToString()) > minSize)
 {
 base[key] = value;
 }
 else
 {
 throw (new ArgumentOutOfRangeException("key", key,
 "The key is outside the minimum/maximum" +
 " boundaries."));
 }
 }
 else
 {
 base[key] = value;
 } }
 else
 {
 throw (new ArgumentOutOfRangeException("value", value,
 "This Hashtable is currently set to read-only."));
 }
 }
 }

 public override void Add(object key, object value)
 {
 if (!readOnly)
 {
 if (this.Count < maxSize)
 {
 base.Add(key, value);
 }
 else
 {
 throw (new ArgumentOutOfRangeException("value", value,

 "No more values can be added to this Hashtable, " +
 "until one is removed"));
 }
 }
 else
 {
 throw (new ArgumentOutOfRangeException("value", value,
 "This Hashtable is currently set to read-only."));
 }
 }

 public override void Remove(object key)
 {
 if (!readOnly)
 {
 if (this.Count > minSize)
 {
 base.Remove(key);
 }
 else
 {
 throw (new InvalidOperationException(
 "No more values can be removed from this Hashtable, " +
 "until one is added"));
 }
 }
 else
 {
 throw (new NotSupportedException(
 "This Hashtable is currently set to read-only."));
 }
 }

 public override void Clear()
 {
 if (!readOnly)
 {
 if (minSize == 0)
 {
 base.Clear();
 }
 else
 {
 throw (new InvalidOperationException(
 "Clearing this Hashtable would go below the minimum " +
 "size of " + minSize));
 }
 }
 else
 {
 throw (new InvalidOperationException(
 "This Hashtable is currently set to read-only."));

 }
 }
}

Discussion

The MaxMinSizeHashtable class inherits from Hashtable and overrides the members that allow
Hashtable values to be added, removed, and modified. The overloaded constructor for the
MaxMinSizeHashtable class is defined here:

public MaxMinSizeHashtable(int minSize, int maxSize)

Its parameters are:

minSize

The smallest number of elements this class can contain

maxSize

The largest number of elements this class can contain

A public Boolean property called ReadOnly has been added to this class to allow or prevent the use of
the Add, Remove, and Clear methods.

The overloaded Add method will add the object to the MaxMinSizeHashtable only when it is not
read-only and the current size is less than the maxSize field. If all tests pass, the value is added to
the MaxMinSizeHashtable.

The overloaded Remove method is overloaded to validate that the size of the MaxMinSizeHashtable
does not fall below the number specific by the minSize field. The Clear method is also overridden to
verify that the minSize field is zero before this operation is allowed to proceed, since this operation
will leave zero elements in this MaxMinSizeHashtable.

As a final point, the overloaded constructor accepts minSize and maxSize as signed integers.
Obviously the MaxMinSizeHashtable cannot have a negative size. The reason for this is compliance

with other .NET languages that may use this class. The unsigned numeric types are not included in
the CLS; therefore, they are not CLS-compliant.

Consider what would happen if a Visual Basic .NET object-which does not handle unsigned numeric
types-tried to use this object. If the MaxMinSizeHashtable constructor accepted only uint types
and a Visual Basic .NET class attempted to instantiate an instance of the MaxMinSizeHashtable:

' Visual Basic .NET code
Dim Table As New MaxMinSizeHashtable(2, 4)

the Visual Basic .NET compiler would complain that a value of type Integer could not be converted
to a System.UInt32 type. Visual Basic .NET has no ability to convert types to and from unsigned

types. To make this object and many others in this book compliant, we choose to use signed rather
than unsigned numeric types where possible.

See Also

See the "Hashtable Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 9.12 Creating a Hashtable with Max and Min Value
Boundaries

Problem

You need to use a Hashtable in your project that stores only numeric data between a set maximum

and minimum value.

Solution

Create a class whose accessors and methods enforce these boundaries. This class,
MaxMinValueHashtable, allows only integer values that fall between a maximum and minimum size

to be stored:

using System;
using System.Collections;

[Serializable]
public class MaxMinValueHashtable : Hashtable
{
 public MaxMinValueHashtable() : base()
 {
 }

 public MaxMinValueHashtable(int minValue, int maxValue)
 : base()
 {
 this.minValue = minValue;
 this.maxValue = maxValue;
 }

 protected int minValue = int.MinValue;
 protected int maxValue = int.MaxValue;
 protected bool readOnly = false;

 public bool ReadOnly
 {
 get {return (readOnly);}
 set {readOnly = value;}
 }

 public override bool IsReadOnly
 {

 get {return readOnly;}
 }

 public override object this[object key]
 {
 get
 {
 return (base[key]);
 }
 set
 {
 if (!readOnly)
 {
 if (value is int)
 {
 if ((int)value >= minValue && (int)value <= maxValue)
 {
 base[key] = value;
 }
 else
 {
 throw (new ArgumentOutOfRangeException("value",
 value,
 "Value must be within the range " + minValue +
 " to " + maxValue));
 }
 }
 else
 {
 base[key] = value;
 }
 }
 else
 {
 throw (new ArgumentOutOfRangeException("value", value,
 "This Hashtable is currently set to read-only."));
 }
 }
 }

// This method has been overridden to allow objects to be
// stored in this Hashtable, as well as integers.
// If you do not wish objects to be stored in this
// Hashtable alongside numeric values, simply throw an
// InvalidOperationException when this method is called.

 public override void Add(object key, object value)
 {
 if (!readOnly)
 {
 base.Add(key, value);
 }

 else
 {
 throw (new ArgumentOutOfRangeException("value", value,
 "This Hashtable is currently set to read-only."));
 }
 }

 public void Add(object key, int value)
 {
 if (!readOnly)
 {
 if (value >= minValue && value <= maxValue)
 {
 base.Add(key, value);
 }
 else
 {
 throw (new ArgumentOutOfRangeException("value", value,
 "Value must be within the range " + minValue +
 " to " + maxValue));
 }
 }
 else
 {
 throw (new ArgumentOutOfRangeException("value", value,
 "This Hashtable is currently set to read-only."));
 }
 }

 public override void Remove(object key)
 {
 if (!readOnly)
 {
 base.Remove(key);
 }
 else
 {
 throw (new ArgumentOutOfRangeException(
 "This Hashtable is currently set to read-only."));
 }
 }

 public override void Clear()
 {
 if (!readOnly)
 {
 base.Clear();
 }
 else
 {
 throw (new ArgumentOutOfRangeException(
 "This Hashtable is currently set to read-only."));

 }
 }
}

Discussion

The MaxMinValueHashtable class inherits from Hashtable and overrides the members that allow
Hashtable values to be added, removed, and modified. The overloaded constructor for the
MaxMinValueHashtable class is defined here:

public MaxMinValueHashtable(int minValue, int maxValue)

This constructor allows the range of values to be set. Its parameters are:

minValue

The smallest integer value that can be added as a value in a key/value pair.

maxValue

The largest integer value that can be added as a value in a key/value pair.

A public Boolean property called ReadOnly has been added to this class to allow or prevent the use of
the Add, Remove, and Clear methods. The IsReadOnly property of the base Hashtable object cannot
be used in this situation, since the IsReadOnly property is a read-only property. For the
MaxMinValueHashtable, we needed read/write access to this property. However, the IsReadOnly
property is overloaded in the MaxMinValueHashtable to return the value of the ReadOnly property.

The overridden indexer has both get and set. The get returns the value that matches the provided

key. The set verifies that this object is not read-only; if it is not, the value parameter is checked to

determine whether it is an integer. If the value parameter is an integer, it is checked to determine

whether it is within the boundaries of the minValue and maxValue fields before it is set. If the value

parameter is not an integer, it is set using the key.

There are two Add methods: one takes an object and the other takes an integer for its value
parameter. The Add method that accepts an object will add the object to the MaxMinValueHashtable

only when it is not read-only. The other Add method that accepts an integer for its value parameter

performs the same tests and adds a new test to determine whether the integer value is between, or
equal to, the minValue and maxValue fields. If all tests pass, the integer is added to the
MaxMinValueHashtable.

See Also

See the "Hashtable Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 9.13 Displaying an Array's Data as a Delimited
String

Problem

You have an array or type that implements ICollection, and that you wish to display or store as a

comma-delimited string (note that another delimiter character can be substituted for the comma).
This ability will allow you to easily save data stored in an array to a text file as delimited text.

Solution

The ConvertCollectionToDelStr method will accept any object that implements the ICollection

interface. This collection object's contents are converted into a delimited string:

public static string ConvertCollectionToDelStr(ICollection theCollection,
 char delimiter)
{
 string delimitedData = "";

 foreach (string strData in theCollection)
 {
 if (strData.IndexOf(delimiter) >= 0)
 {
 throw (new ArgumentException(
 "Cannot have a delimiter character in an element of the array.",
 "theCollection"));
 }

 delimitedData += strData + delimiter;
 }

 // Return the constructed string minus the final
 // appended delimiter char.
 return (delimitedData.TrimEnd(delimiter));
}

Discussion

The following TestDisplayDataAsDelStr method shows how to use the overloaded
ConvertCollectoinToDelStr method to convert an array of strings to a delimited string:

public static void TestDisplayDataAsDelStr()

{
 string[] numbers = {"one", "two", "three", "four", "five", "six"} ;

 string delimitedStr = ConvertCollectionToDelStr(numbers, ',');
 Console.WriteLine(delimitedStr);
}

This code creates a delimited string of all the elements in the array and displays it as follows:

one,two,three,four,five,six

Of course, instead of a comma as the delimiter, we could also have used a semicolon, dash, or any
other character. The delimiter type was made a char because it is best to use only a single delimiting
character if you are going to use the String.Split method to restore the delimited string to an
array of substrings, as the String.Split method works only with delimiters that consist of one

character.

See Also

See the "ICollection Interface" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 9.14 Storing Snapshots of Lists in an Array

Problem

You have an ArrayList, Queue, or Stack object and you want to take a snapshot of its current state.
(Note that this recipe also works for any other data type that implements the ICollection interface.

)

Solution

Use the CopyTo method declared in the ICollection interface. The following method,
TakeSnapshotOfList, accepts any type that implements the ICollection interface and takes a

snapshot of the entire object's contents. This snapshot is returned as an object array:

public static object[] TakeSnapshotOfList(ICollection theList)
{
 object[] snapshot = new object[theList.Count];
 theList.CopyTo(snapshot, 0);
 return (snapshot);
}

Discussion

The following method creates a Queue object, enqueues some data, and then takes a snapshot of it:

public static void TestListSnapshot()
{
 Queue someQueue = new Queue();
 someQueue.Enqueue(1);
 someQueue.Enqueue(2);
 someQueue.Enqueue(3);

 object[] queueSnapshot = TakeSnapshotOfList(someQueue);
}

The TakeSnapshotOfList is useful when you want to record the state of an object that implements
the ICollection interface. This "snapshot" can be compared to the original list later on to determine

what, if anything, has changed in the list. Multiple snapshots can be taken at various points in an
applications run to show the state of the list or lists over time.

The TakeSnapshotOfList method could easily be used as a logging/debugging tool for developers.
Take, for example, an ArrayList that is being corrupted at some point in the application. You can
take snapshots of the ArrayList at various points in the application using the TakeSnapshotOfList

method and then compare the snapshots to narrow down the list of possible places where the
ArrayList is being corrupted.

See Also

See the "ICollection Interface" and "Array Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 9.15 Creating a Strongly Typed Collection

Problem

You have some particular data type (and its descendent types) that you wish to store in a collection,
and you do not want users of your collection to store any other data types within it.

Solution

Create a strongly typed collection by inheriting from the CollectionBase abstract base class. There

are two ways to create a strongly typed collection; the first is to modify the parameters for all the
overloaded methods to accept only a particular type. For example, instead of the Add method
accepting a generic Object data type, you can change it to accept only one particular data type. A
collection base that accepts only objects of a particular type (Media) or its descendents (Magnetic,
Optical, or PunchCard) is shown here (note that the Media class and its descendents are defined in

Recipe 3.4):

public class MediaCollection : CollectionBase
{
 public MediaCollection() : base()
 {
 }

 public Media this[int index]
 {
 get
 {
 return ((Media)List[index]);
 }
 set
 {
 List[index] = value;
 }
 }

 public int Add(Media item)
 {
 return (List.Add(item));
 }

 public int IndexOf(Media item)
 {
 return(List.IndexOf(item));

 }

 public void Insert(int index, Media item)
 {
 List.Insert(index, item);
 }

 public void Remove(Media item)
 {
 List.Remove(item);
 }

 public bool Contains(Media item)
 {
 return(List.Contains(item));
 }
}

The next method of writing a strongly typed collection involves the OnValidate event. This event is

fired immediately before any action that modifies the data within the collection. The next strongly
typed collection operates the same as the previous MediaCollection class, except that it uses an

event to make sure that only a particular type and/or its descendents are operated on:

public class MediaCollectionEv : CollectionBase
{
 public MediaCollectionEv() : base()
 {
 }

 public object this[int index]
 {
 get
 {
 return (List[index]);
 }
 set
 {
 List[index] = value;
 }
 }

 public int Add(object item)
 {
 return (List.Add(item));
 }

 public int IndexOf(object item)
 {
 return(List.IndexOf(item));
 }

 public void Insert(int index, object item)

 {
 List.Insert(index, item);
 }

 public void Remove(object item)
 {
 List.Remove(item);
 }

 public bool Contains(object item)
 {
 return(List.Contains(item));
 }

 protected override void OnValidate(object item)
 {
 if (!(item is Media))
 {
 throw new ArgumentException("This collection only accepts " +
 "the Media type or types that derive from Media");
 }
 }
}

Discussion

Most of the collection types built in to the FCL are generic; that is, they accept only the most basic
type-the Object type. Sometimes it is good to have a more specialized collection type (usually

referred to as strongly typed collections) that can contain only objects of one particular type. Of
course, this collection would also be able to contain objects of types descending from this one
particular type.

There are several benefits to writing a strongly typed collection, such as reducing the number of
potential errors that can be coded into your application. If you are only expecting a particular type to
be contained within a collection, and a piece of code inadvertently adds objects not of this type, your
code might fail when attempting to operate on this unexpected type. If the first of the two strongly
typed collections were used, the compiler would catch this mistake earlier in the development phase.
Note that the OnValidate event will work only at runtime.

Another useful side effect of using the first of the two strongly typed collections is that you do not
have to cast the object being returned from the collection to its correct type before using it. A
strongly typed collection automatically returns the type you expect, as opposed to an Object type,

which must then be cast to the expected type.

A benefit of either strongly typed collection is that you can add specialized code to your collection to
more easily allow you to operate on the objects contained in your collection. For example, if you
wrote a strongly typed collection to contain only Invoice type objects, you could add methods to this

collection to do the following:

Retrieve only those invoices that match a specific criteria, such as being overdue.

Reject attempts to add invoices to this collection that do not meet a criterion, such as a
minimum amount.

Prevent invoice objects from being removed by throwing a NotImplementedException when a
Remove method is called and overloading the RemoveAt method to do the same, so that invoices

cannot be removed.

Now that you have a reason for building a strongly typed collection, you have three choices for doing
so:

Inherit from the CollectionBase abstract base class and implement the members so that they
operate on a specific type, other than Object, as in the MediaCollection class defined in the

Solution section.

1.

Inherit from CollectionBase and override the OnValidate event, as with the
MediaCollectionEv class defined in the Solution section.

2.

Build your own from scratch (this technique is not covered in this recipe since the previous two
ways are much easier to implement).

3.

Many developers opt for the first technique, which involves adding methods to the collection, such as
Add, Remove, IndexOf, and others that operate on a specific type. This technique best aids the

developer for two important reasons. First, the developer can examine the exact type that this
collection is expecting by using the Intellisense features of the IDE. Second, the developer is alerted
at compile time when the collection is not being used as it should, via compile-time errors.

The second technique is very similar to the first technique, but instead of writing strongly typed
methods such as Add, Remove, and so on, these methods are written to accept and return the Object

type. Instead of preventing other data types from being contained in this collection, an event
handler, called OnValidate, is added to validate the object being added to, removed from, and so on,

with regard to the collection. If the object is of the correct type, the event handler does nothing,
allowing the collection to perform the specified action. If the object is not of the correct type, an
exception is thrown, preventing the collection from performing the specified action.

Note that when using weakly typed methods with the OnValidate event handler, the compiler will

not be able to validate any use of the strongly typed collection. However, this event handler is useful
when you want to consolidate all validation routines for your collection. In fact, there is no reason
why the first and second techniques cannot be combined (i.e., strongly typed methods along with the
OnValidate event handler for further validations).

See Also

See Recipe 3.4; see the "CollectionBase Class" and "Creating and Manipulating Collections" topics in
the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 9.16 Persisting a Collection Between Application
Sessions

Problem

You have a collection such as an ArrayList or a Hashtable in which you are storing application

information. This information can be used to tailor the application's environment to the last known
settings (e.g., window size, window placement, currently displayed toolbars), or the information can
be used to allow the user to start using the application at the same point where the application was
last shut down. In other words, if the user were editing an invoice and needed to shut down the
computer for the night, the application would know exactly which invoice to initially display when the
application was started next time.

Solution

Serialize the object(s) to and from a file:

public static void SaveObj(object obj)
{
 FileStream FS = File.Create(dataFile);
 BinaryFormatter binSerializer = new BinaryFormatter();
 binSerializer.Serialize(FS, obj);
 FS.Close();
}

public static object RestoreObj()
{
 FileStream FS = File.OpenRead(dataFile);
 BinaryFormatter binSerializer = new BinaryFormatter();
 object obj = binSerializer.Deserialize(FS);
 FS.Close();

 return (obj);
}

Discussion

The DataFile constant defines a string value to use as a filename. The SaveObj method accepts an
object and attempts to serialize it to a file. Conversely, the RestoreObj method removes the
serialized object from the file created in the SaveObj method.

The following code shows how to use these methods to serialize a Hashtable object (note that this

will work for any type that is marked with the SerializableAttribute):

public static void TestSerialization()
{
 // Create an object to save/restore to/from a file
 Hashtable HT = new Hashtable();
 HT.Add(0, "Zero");
 HT.Add(1, "One");
 HT.Add(2, "Two");

 // Display this object's contents and save it to a file
 foreach (DictionaryEntry DE in HT)
 Console.WriteLine(DE.Key + " : " + DE.Value);
 SaveObj(HT);

 // Restore this object from the same file and display its contents
 Hashtable HTNew = new Hashtable();
 HTNew = (Hashtable)RestoreObj();
 foreach (DictionaryEntry DE in HTNew)
 Console.WriteLine(DE.Key + " : " + DE.Value);
}

If you serialize your objects to disk at specific points in your application, you can then deserialize
them and return to a known state; for instance, in the event of an unintended shutdown.

See Also

See the "ArrayList Class," "Hashtable Class," "File Class," and "BinaryFormatter Class" topics in the
MSDN documentation.

[Team LiB]

[Team LiB]

Chapter 10. Data Structures and
Algorithms
In this chapter, we look at certain data structures and algorithms that are not available for you in the
Framework Class Library (FCL) through Version 1.1. Examples are provided for algorithms like hash
code creation and string balancing. The FCL does not support every data structure you might need,
so this chapter provides solutions for priority and double queues, binary and n-ary trees, sets, and a
multimap, as well as many other things.

[Team LiB]

[Team LiB]

Recipe 10.1 Creating a Hash Code for a Data Type

Problem

You have created a class or structure that will be used as a key in a Hashtable. You need to overload
the GetHashCode method in order to return a good distribution of hash values to be used in a
Hashtable (the Discussion section defines a good distribution of hash values). You also need to
choose the best hash code algorithm to use in the GetHashCode method of your object.

Solution

The following procedures implement hash code algorithms and can be used to override the
GetHashCode method. Included in the discussion of each method are the pros and cons of using it, as

well as why you would want to use one instead of another.

In addition, it is desirable, for performance reasons, to use the return value of the GetHashCode
method to determine whether the data contained within two objects is equal. Calling GetHashCode to

return a hash value of two objects and comparing their hash values can be faster than calling
Equals, which individually tests the equality of all pertinent data within two objects. In fact, some
developers even opt to compare hash code values returned from GetHashCode, within their
overloaded Equals method.

The simple hash

This hash accepts a variable number of integer values and XORs each value to obtain a hash code.

This simple algorithm has a good chance of producing an adequate distribution and good
performance. Remember to profile and measure it to confirm that it works as well for your particular
data set. It fails when you need to integrate more than just numeric values equal or smaller in size to
an integer. Its code is:

public int SimpleHash(params int[] values)
{
 int hashCode = 0;
 if (values != null)
 {
 foreach (int val in values)
 {
 hashCode ^= val;
 }
 }

 return (hashCode);

}

The folding hash

This hash allows you to integrate the long data type into a hash algorithm. It takes the upper 32 bits
of the long value and folds them over the lower 32 bits of this value. The actual process of folding the
two values is implemented by XORing them and using the result. Once again, this is a good

performing algorithm with good distribution properties, but, again, it fails when you need to go
beyond the long data type. A sample implementation is:

public int FoldingHash(params long[] values)
{
 int hashCode = 0;
 if (values != null)
 {
 int tempLowerVal = 0;
 int tempUpperVal = 0;
 foreach (long val in values)
 {
 tempLowerVal = (int)(val & 0x000000007FFFFFFF);
 tempUpperVal = (int)((val >> 32) & 0xFFFFFFFF);
 hashCode^= tempLowerVal ^ tempUpperVal;
 }
 }

 return (hashCode);
}

The contained object cache

This hash obtains the hash codes from a variable number of object types. The only types that should
be passed in to this method are reference type fields contained within your object. This method XORs
all the values returned by the GetHashCode method of each object. Its source code is:

public int ContainedObjHash(params object[] values)
{
 int hashCode = 0;
 if (values != null)
 {
 foreach (int val in values)
 {
 hashCode ^= val.GetHashCode();
 }
 }

 return (hashCode);
}

The CryptoHash method

Potentially the best method of obtaining a hash value for an object is to use the hashing classes built
in to the FCL. The CryptoHash method returns a hash value for some input using the MACTripleDES

class. This method returns a very good distribution for the hash value, although you may pay for it in
performance. If you do not require a near perfect hash value and are looking for an excellent
distribution, consider using this approach to calculate a hash value:

public int CryptoHash(string strValue)
{
 int hashCode = 0;
 if (strValue != null)
 {
 byte[] encodedUnHashedString =
 Encoding.Unicode.GetBytes(strValue);

 // Replace the following Key with your own
 // key value
 byte[] Key = new byte[16] {1,122,3,11,65,7,9,45,42,98,
 77,34,99,45,167,211};

 MACTripleDES hashingObj = new MACTripleDES(Key);
 byte[] code =
 hashingObj.ComputeHash(encodedUnHashedString);

 // use the BitConverter class to take the
 // first 4 bytes and use them as an int for
 // the hash code
 hashCode = BitConverter.ToInt32(code,0);
 }

 return (hashCode);
}

The CryptoHash method using a nonstring

This method shows how other, nonstring data types can be used with the built-in hashing classes to
obtain a hash code. This method converts a numeric value to a string and then to a byte array. The
array is then used to create the hash value using the SHA256Managed class. Finally, each value in the
byte array is added together to obtain a hash code. The code is:

public int CryptoHash(long intValue)
{
 int hashCode = 0;
 byte[] encodedUnHashedString =
 Encoder.Unicode.GetBytes(intValue.ToString());

 SHA256Managed hashingObj = new SHA256Managed();
 byte[] code = hashingObj.ComputeHash(encodedUnHashedString);

 // use the BitConverter class to take the
 // first 4 bytes and use them as an int for
 // the hash code

 hashCode = BitConverter.ToInt32(code,0);

 return (hashCode);
}

The shift and add hash

This method uses each character in the input string, strValue, to determine a hash value. This

algorithm produces a good distribution of hash codes even when this method is fed similar strings.
However, this method will break down when long strings that end with the same characters are
passed. While this may not happen many times with your applications, it is something to be aware of.
If performance is critical, this is an excellent method to use. Its code is:

public int ShiftAndAddHash (string strValue)
{
 int hashCode = 0;
 long workHashCode = 0;

 if (strValue != null)
 {
 for (int counter=0; counter<strValue.Length; counter++)
 {
 workHashCode = (workHashCode << (counter % 4)) +
 (int)strValue[counter];
 }
 workHashCode = workHashCode % (127);
 }
 hashCode = (int)workHashCode;

 return (hashCode);
}

The calculated hash

This method is a rather widely accepted method of creating a good hash value that accepts several
different data types and uses a different algorithm to compute the hash value for each. It calculates
the hash code as follows:

It assigns an arbitrary odd primary number to the HashCode variable. This variable will
eventually contain the final hash code. Good primary numbers to use are 3, 5, 7, 11, 13, 17, 19,
23, 29, 31, 37, 41, 43, 47, 53, 59, 61, or 67. Obviously, others exist beyond this set, but this

should give you a good starting point.

For numeric types equal to or less than the size of an int and char data types, it multiplies the
current HashCode by the primary number selected and then adds to this value the value of the

numeric type cast to an integer.

For numeric types greater than the size of an int, it multiplies the current HashCode by the

primary number selected and then adds to this the folded version of this numeric value. (For
more information on folding, see The folding hash method earlier in this recipe.)

For char, floating point, or decimal data types, it multiplies the current HashCode by the

primary number selected, casts the numeric value to an integer, and then uses the folding
method to calculate its value.

For bool data types, it multiplies the current HashCode by the primary number selected and
then adds a 1 for true and 0 for false (you can reverse this behavior if you wish).

For object data types, it multiplies the current HashCode by the primary number selected and
then adds the return value of GetHashCode called on this object. If an object is set to null, use
the value 0 in your calculations.

For an array or collection, it determines the contained type(s) and uses each element of the
array or collection to calculate the hash value, as follows (in the case of an integer array named
MyArray):
foreach (int element in myArray)
{
 hashCode = (hashCode * 31) + element;
}

This algorithm will produce a good distributed hash code for your object and has the added benefit of
the flexibility to employ any type of data type. This is a high performing algorithm for simple,
moderately complex, and even many complex objects. However, for extremely complex
objects-ones that contain many large arrays, large Hashtables, or other objects that use a slower

hash code algorithm-this algorithm will start performing badly. In this extreme case, you may want
to consider switching to another hash code algorithm to speed performance or simply paring down
the amount of fields used in the calculation. Be careful if you choose this second method to increase
performance; you could inadvertently cause the algorithm to produce similar values for differing
objects. The code for the calculated hash method is:

public int CalcHash(short someShort, int someInt, long someLong,
 float someFloat, object someObject)
{
 int hashCode = 7;
 hashCode = hashCode * 31 + (int)someShort;
 hashCode = hashCode * 31 + someInt;
 hashCode = hashCode * 31 +
 (int)(someLong ^ (someLong >> 32));
 long someFloatToLong = (long)someFloat;
 hashCode = hashCode * 31 +
 (int)(someFloatToLong ^ (someFloatToLong >> 32));

 if (someObject != null)
 {
 hashCode = hashCode * 31 +
 someObject.GetHashCode();
 }

 return (hashCode);
}

The string concatenation hash

This technique converts its input into a string, and then uses that string's GetHashCode method to

automatically generate a hash code for an object. It accepts an integer array, but you could
substitute any type that can be converted into a string. You could also use several different types of
arguments as input to this method. This method iterates through each integer in the array passed as
an argument to the method. The ToString method is called on each value to return a string. The
ToString method of an int data type returns the value contained in that int. Each string value is
appended to the string variable HashString. Finally, the GetHashCode method is called on the
HashString variable to return a suitable hash code.

This method is simple and efficient, but it does not work well with objects that have not overridden
the ToString method to return something other than their data type. It may be best to simply call
the GetHashCode method on each of these objects individually. You should use your own judgment

and the rules found in this recipe to make your decision:

public int ConcatStringGetHashCode(int[] someIntArray)
{
 int hashCode = 0
 StringBuilder hashString = new StringBuilder();

 if (someIntArray != null)
 {
 foreach (int i in someIntArray)
 {
 hashString.Append(i.ToString() + "^");
 }
 }
 hashCode = hashString.GetHashCode();

 return (hashCode);
}

The following using directives must be added to any file containing this code:

using System;
using System.Text;
using System.Security.Cryptography;

Discussion

The GetHashCode method is called when you are using an instance of this class as the key in a
Hashtable object. Whenever your object is added to a Hashtable as a key, the GetHashCode
method is called on your object to obtain a hash code to be used by the Hashtable. A hash code is
also obtained from your object when a search is performed for your object in the Hashtable.

The following class implements the SimpleHash algorithm for the overloaded GetHashCode method:

public class SimpleClass
{
 private int x = 0;
 private int y = 0;

 public override int GetHashCode()

 {
 return(SimpleHash(x, y));
 }

 public int SimpleHash(params int[] values)
 {
 int hashCode = 0;
 if (values != null)
 {
 foreach (int val in values)
 {
 hashCode ^= val;
 }
 }

 return (hashCode);
 }
}

This class could then be used as a key in a Hashtable through the following code:

SimpleClass simpleClass = new SimpleClass();

Hashtable hashTable = new Hashtable();
hashTable.Add(simpleClass, 100);

There are several rules for writing a good GetHashCode method and a good hash code algorithm:

This method should return the same value for two different objects that have value equality.
Value equality means that two objects contain the same data.

The hash algorithm should return a good distribution of values for the best performance in a
Hashtable. A good distribution of values means that the hash values returned by the
GetHashCode method are usually different for objects of the same type, unless those objects

have value equality. Note that objects containing very similar data should also return a unique
hash value. This distribution allows the Hashtable to work more efficiently and thus perform

better.

This method should not throw an exception.

Both the Equals method and GetHashCode method should be overridden together.

The GetHashCode method should compute the hash code using the exact set of variables that
the overridden Equals method uses when calculating equality.

The hash algorithm should be as fast as possible to speed up the process of adding and
searching for keys in a Hashtable.

When creating structures, it is always best to override the GetHashCode method if you think this
hash code will ever be used, since the ValueType.GetHashCode method is slow.
(ValueType.GetHashCode makes use of reflection to obtain a hash value from a type's internal

fields.)

Unless the base class is object, use the base class's GetHashCode value when calculating the

hash code.

Use the GetHashCode values of any contained objects when calculating the hash code of the

parent object.

Use the GetHashCode values of all elements of an array when calculating the array's hash code.

The System.Int32, System.UInt32, and System.IntPtr data types in the FCL use an additional

hash code algorithm not covered in the Solution section. Basically, these data types return the value
that they contain as a hash code. Most likely, your objects will not be so simple as to contain a single
numeric value, but if they are, this method works extremely well.

You may also want to combine specific algorithms to suit your purposes. For instance, if your object
contains one or more string types and one or more long data types, you could combine the
ContainedObjHash method and the FoldingHash method to create a hash value for your object. The
return values from each method could either be added or XORed together.

Once an object is in use as a key in a Hashtable, it should never return a different value for the hash

code. Originally, it was documented that hash codes must be immutable, as the authors of
Hashtable thought that this should be dealt with by whomever writes GetHashCode. It doesn't take

much thought to realize that for mutable types, if you require both that the hashcode never changes,
and that Equals represents the equality of the mutable objects, and that if a.Equals(b), then
a.GetHashCode() == b.GetHashCode(), then the only possible value implementation of
GetHashCode is one that returns the same integer constant for all values.

The GetHashCode method is called when you are using this object as the key in a Hashtable object.
Whenever your object is added to a Hashtable as a key, the GetHashCode method is called on your

object to obtain a hash code. This hash code must not change while your object is a key in the
Hashtable. If it does, the Hashtable will not be able to find your object.

The GetHashCode method is called when you are using this object as the key in a Hashtable object.
Whenever your object is added to a Hashtable as a key, the GetHashCode method is called on your

object to obtain a hash code. This hash code must not change while your object is a key in the
Hashtable. If it does, the Hashtable will not be able to find your object.

From the perspective of memory consumption, this object will not be able to have its memory freed
until the Hashtable is collected causing a noteworthy degree of memory retention.

See Also

See the "GetHashCode Method" and "Hashtable Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 10.2 Creating a Priority Queue

Problem

You need a data structure that operates similarly to a Queue but that returns objects based on a specific

order. When objects are added to this queue, they are located in the queue according to their priority.
When objects are retrieved from the queue, the queue simply returns the highest or lowest priority
element based on which one you ask for.

Solution

Create a priority queue that orders items as they are added to the queue and return items based on
their priority. The PriorityQueue class shows how this is accomplished:

using System;
using System.Collections;

public class PriorityQueue : IEnumerable, ICloneable
{
 public PriorityQueue() {}
 public PriorityQueue(IComparer icomparer)
 {
 specialComparer = icomparer;
 }

 protected ArrayList internalQueue = new ArrayList();
 protected IComparer specialComparer = null;

 public int Count
 {
 get {return (internalQueue.Count);}
 }

 public void Clear()
 {
 internalQueue.Clear();
 }

 public object Clone()
 {
 // Make a new PQ and give it the same comparer
 PriorityQueue newPQ = new PriorityQueue(specialComparer);
 newPQ.CopyTo(internalQueue.ToArray(),0);
 return newPQ;
 }

 public int IndexOf(string str)
 {
 return (internalQueue.BinarySearch(str));
 }

 public bool Contains(string str)
 {
 if (internalQueue.BinarySearch(str) >= 0)
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }

 public int BinarySearch(string str)
 {
 return (internalQueue.BinarySearch(str, specialComparer));
 }

 public bool Contains(string str, IComparer specialComparer)
 {
 if (internalQueue.BinarySearch(str, specialComparer) >= 0)
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }

 public void CopyTo(Array array, int index)
 {
 internalQueue.CopyTo(array, index);
 }

 public virtual object[] ToArray()
 {
 return (internalQueue.ToArray());
 }

 public virtual void TrimToSize()
 {
 internalQueue.TrimToSize();
 }

 public void Enqueue(string str)
 {
 internalQueue.Add(str);

 internalQueue.Sort(specialComparer);
 }

 public string DequeueSmallest()
 {
 string s = (string)internalQueue[0];
 internalQueue.RemoveAt(0);

 return (s);
 }

 public string DequeueLargest()
 {
 string s = (string)internalQueue[internalQueue.Count - 1];
 internalQueue.RemoveAt(internalQueue.Count - 1);

 return (s);
 }

 public string PeekSmallest()
 {
 return ((string)internalQueue[0]);
 }

 public string PeekLargest()
 {
 return ((string)internalQueue[internalQueue.Count - 1]);
 }

 public IEnumerator GetEnumerator()
 {
 return (internalQueue.GetEnumerator());
 }

For example, perhaps your application or component needs to send packets of data of differing sizes
across a network. The algorithm for sending these packets of data states that the smallest (or perhaps
the largest) packets will be sent before the larger (or smaller) ones. An analogous programming
problem involves queuing up specific jobs to be run. Each job could be run based on its type, order, or
size.

This priority queue is designed so that items-in this case, string values-may be added in any order;
but when they are removed from the head or tail of the queue, they are dequeued in a specific order.
The IComparer type object, a specialComparer that is passed in through the constructor of this object,
determines this order. The queued string objects are stored internally in a field called internalQueue of
type ArrayList . This was the simplest way to construct this type of queue, since an ArrayList has

most of the functionality built into it that we wanted to implement for this type of queue.

Many of the methods of this class delegate to the internalQueue in order to perform their duties. These
types of methods include Count , Clear , TrimToSize , and many others. Some of the more important
methods to examine are Enqueue , DequeueSmallest , DequeueLargest , PeekSmallest , and
PeekLargest .

The Enqueue method accepts a string as an argument and adds it to the end of the internalQueue .
Next, this ArrayList is sorted according to the specialComparer object. If the specialComparer
object is null , the comparison defaults to the IComparer of the string object. By sorting the ArrayList

after each item is added, we do not have to perform a sort before every search, dequeue, and peek
method. A small performance hit will occur when an item is added, but this is a one-time-only penalty.
Keep in mind that when items are removed from the head or tail of this queue, the internal ArrayList

does not have to be resorted.

There are two dequeue methods: DequeueSmallest and DequeueLargest . These methods remove
items from the head (index equals 0) of the internalQueue and from the tail (index equals
internalQueue.Length), respectively. Before returning the string, these methods will remove that
string from the queue. The PeekSmallest and PeekLargest methods work in a similar manner, except

that they do not remove the string from the queue.

Two other methods of interest are the ContainsString and Contains methods. The only real difference
between these two methods is that the Contains method uses the IComparer interface of the string
object, whereas the Contains method uses the specialComparer interface to use when searching for a
string in the internalQueue , if one is provided.

The PriorityQueue class members are listed in Table 10-1 .

Table 10-1. PriorityQueue class members

Member Description

Count property Returns an int indicating the number of items in the queue.

Clear method Removes all items from the queue.

Clone method Returns a copy of the PriorityQueue object.

IndexOf method

Returns the zero-based index of the queue item that contains a particular search
string. Its syntax is:

IndexOf(string str)

where str is the string to be found in the queue.

Contains method

Returns a bool indicating whether a particular search string is found in the

queue. Its syntax is:

Contains(string str)

where str is the string to be found in the queue.

BinarySearch

method

Returns the zero-based index of the queue item that contains a particular search
string. Its syntax is:

BinarySearch(string str)

where str is the string to be found in the queue. The comparison of str with
the strings found in the queue is handled by the IComparer implementation, if
one was passed as an argument to one of the overloads of the PriorityQueue

Member Description one was passed as an argument to one of the overloads of the PriorityQueue

class constructor.

Contains method

Returns a bool indicating whether a particular search string is found in the

queue. Its syntax is:

Contains(string str)

where str is the string to be found in the queue. The comparison of str with
the strings found in the queue is handled by the IComparer implementation, if
one was passed as an argument to one of the overloads of the PriorityQueue

class constructor.

CopyTo method

Copies the queue items to a one-dimensional array starting at a particular
position in the queue. Its syntax is:

CopyTo(array array, int arrayIndex)

where array is the array to receive the copy of the queue items and arrayIndex

is the position in the queue from which to begin copying items.

ToArray method Copies the items in the queue to an object array.

TrimToSize

method

Sets the capacity of the queue to the current count of its items. If the
TrimToSize method is called when no items are in the queue, its capacity is set

to a default value.

Enqueue method

Adds an item to the queue and sorts the queue based on either the default sort
behavior of each item or on the IComparer implementation passed as an
argument to one of the overloads of the PriorityQueue class constructor. Its

syntax is:

Enqueue(string str)

where str is the string to be added to the queue.

DequeueLargest

method
Returns and removes the item at the tail of the queue (i.e., the last item in the
queue).

DequeueSmallest

method
Returns and removes the item at the head of the queue (i.e., the first item in the
queue).

PeekSmallest

method
Returns the item at the head of the queue (i.e., the first item in the queue).

PeekLargest

method
Returns the item at the tail of the queue (i.e., the last item in the queue).

GetEnumerator

method
Returns an enumerator that allows iteration of the items in the queue.

The PriorityQueue can be created and filled with strings using code like the following:

class CTest
{

one was passed as an argument to one of the overloads of the PriorityQueue

class constructor.

Contains method

Returns a bool indicating whether a particular search string is found in the

queue. Its syntax is:

Contains(string str)

where str is the string to be found in the queue. The comparison of str with
the strings found in the queue is handled by the IComparer implementation, if
one was passed as an argument to one of the overloads of the PriorityQueue

class constructor.

CopyTo method

Copies the queue items to a one-dimensional array starting at a particular
position in the queue. Its syntax is:

CopyTo(array array, int arrayIndex)

where array is the array to receive the copy of the queue items and arrayIndex

is the position in the queue from which to begin copying items.

ToArray method Copies the items in the queue to an object array.

TrimToSize

method

Sets the capacity of the queue to the current count of its items. If the
TrimToSize method is called when no items are in the queue, its capacity is set

to a default value.

Enqueue method

Adds an item to the queue and sorts the queue based on either the default sort
behavior of each item or on the IComparer implementation passed as an
argument to one of the overloads of the PriorityQueue class constructor. Its

syntax is:

Enqueue(string str)

where str is the string to be added to the queue.

DequeueLargest

method
Returns and removes the item at the tail of the queue (i.e., the last item in the
queue).

DequeueSmallest

method
Returns and removes the item at the head of the queue (i.e., the first item in the
queue).

PeekSmallest

method
Returns the item at the head of the queue (i.e., the first item in the queue).

PeekLargest

method
Returns the item at the tail of the queue (i.e., the last item in the queue).

GetEnumerator

method
Returns an enumerator that allows iteration of the items in the queue.

The PriorityQueue can be created and filled with strings using code like the following:

class CTest
{

 static void Main()
 {
 // Create ArrayList of messages
 ArrayList msgs = new ArrayList();
 msgs.Add("foo");
 msgs.Add("This is a longer message.");
 msgs.Add("bar");
 msgs.Add(@"Message with odd characters
 !@#$%^&*()_+=-0987654321~|}{[]\\;:?/>.<,");
 msgs.Add(@"<
 >");
 msgs.Add("<text>one</text><text>two</text><text>three</text>" +
 "<text>four</text>");
 msgs.Add("");
 msgs.Add("1234567890");

 // Create a Priority Queue with the appropriate comparer
 CompareStrLen comparer = new CompareStrLen();
 PriorityQueue pqueue = new PriorityQueue(comparer);

 // Add all messages from the ArrayList to the priority queue
 foreach (string msg in msgs)
 {
 pqueue.Enqueue(msg);
 }

 // Display messages in the queue in order of priority
 foreach (string msg in pqueue)
 {
 Console.WriteLine("Msg: " + msg);
 }

 // Dequeue messages starting with the smallest
 int currCount = pqueue.Count;
 for (int index = 0; index < currCount; index++)
 {
 // In order to dequeue messages starting with the largest uncomment
 // the following line and comment the following lines that
 // dequeue starting with the smallest message
 //Console.WriteLine("pqueue.DequeueLargest(): " +
 // pqueue.DequeueLargest().ToString());

 Console.WriteLine("pqueue.DequeueSmallest(): " +
 pqueue.DequeueSmallest().ToString());
 }
 }
}

An ArrayList of string messages is created that will be used to fill the queue. A new CompareStrLen
IComparer type object is created and passed in to the constructor of the PriorityQueue . If we did not
pass in this IComparer object, the output would be much different; instead of retrieving items from the
queue based on length, they would be retrieved based on their alphabetical order. (The IComparer

interface is covered in detail in the Discussion section.) Finally, a foreach loop is used to enqueue all
messages into the PriorityQueue object.

At this point, the PriorityQueue object can be used in a manner similar to the Queue class contained in

the FCL, except for the ability to remove items from both the head and tail of the queue.

Discussion

You can instantiate the PriorityQueue class with or without a special comparer object. In the case of

our example, this special comparer object is defined as follows:

public class CompareStrLen : IComparer
{
 public int Compare(object obj1, object obj2)
 {
 int result = 0;

 if ((obj1 is string) && (obj2 is string))
 {
 result = Compare((string)obj1, (string)obj2);
 }
 else
 {
 throw (new ArgumentException("Arguments are not both strings"));
 }

 return (result);
 }

 public int Compare(string str1, string str2)
 {
 if (str1.Length == str2.Length)
 {
 return (0);
 }
 else if (str1.Length > str2.Length)
 {
 return (1);
 }
 else
 {
 return (-1);
 }
 }
}

This special comparer is required because we want to prioritize the elements in the queue by size. The
default string IComparer interface compares strings alphabetically. Implementing the IComparer
interface requires that we implement a single method, Compare , with the following signature:

int Compare(object x, object y);

where x and y are the objects being compared. When implementing custom Compare methods, the

method is to return 0 if x equals y , less than 0 if x is less than y , and greater than 0 if x is greater

than y . This method is called automatically by the .NET runtime whenever the custom IComparer

implementation is used. It attempts to convert its two object arguments to strings and, in turn, calls a
second overload of the Compare method that accepts two string type arguments. This second Compare
method simply returns a 0 if both strings are of the same length, a 1 if the first string argument is larger
than the second, and a -1 if the reverse is true.

If we wanted to compare objects other than strings, the previous IComparer interface could be modified

as follows:

public class CompareObjs : IComparer
{
 public int Compare(object obj1, object obj2)
 {
 int result = 0;

 IComparable comparableObj1 = obj1 as IComparable;
 IComparable comparableObj2 = obj2 as IComparable;
 if(comparableObj1 != null && comparableObj2 != null)
 {
 result = comparableObj1.CompareTo(comparableObj2);
 }
 else
 {
 throw (new ArgumentException(
 "Arguments do not both implement IComparable"));
 }

 return (result);
 }

 public int Compare(string str1, string str2)
 {
 if (str1.Length == str2.Length)
 {
 return (0);
 }
 else if (str1.Length > str2.Length)
 {
 return (1);
 }
 else
 {
 return (-1);
 }
 }
}

This CompareObjs method requires that both objects implement the IComparable interface. If they do
not, you will need to modify the type to implement this interface. This interface requires the CompareTo

method to be implemented in the type. The definition of this method is as follows:

int CompareTo(object obj)

This method accepts an object to compare with this instance. The return value is calculated as follows:

A negative number less than zero is returned if the current instance is less than obj .

A zero is returned if the current instance is equal to obj .

A positive number greater than zero is returned if the current instance is greater than obj .

It is up to you to decide how the CompareTo method is implemented and to define what makes two of

these objects equal, greater than, or less than one another.

See Also

See the "ArrayList Class," "IEnumerable Interface," "ICloneable Interface," "IComparer Interface," and
"IComparable Interface" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 10.3 Creating a More Versatile Queue

Problem

You need a queue object in which you can explicitly control the adding and removing of objects to
either the head (top) or tail (bottom).

Solution

A queue that allows explicit removal of items from the head and the tail is called a double-queue .

This class is defined as follows:

using System;
using System.Collections;

[Serializable]
public class DblQueue : ICollection, IEnumerable, ICloneable
{
 public DblQueue()
 {
 internalList = new ArrayList();
 }

 public DblQueue(ICollection coll)
 {
 internalList = new ArrayList(coll);
 }

 protected ArrayList internalList = null;

 public virtual int Count
 {
 get {return (internalList.Count);}
 }

 public virtual bool IsSynchronized
 {
 get {return (false);}
 }

 public virtual object SyncRoot
 {
 get {return (this);}
 }

 public static DblQueue Synchronized(DblQueue dqueue)
 {
 if (dqueue == null)
 {
 throw (new ArgumentNullException("dqueue"));
 }

 return (new SyncDeQueue(dqueue));
 }

 public virtual void Clear()
 {
 internalList.Clear();
 }

 public virtual object Clone()
 {
 // Make a new DQ
 DblQueue newDQ = new DblQueue(this);
 return newDQ;
 }

 public virtual bool Contains(object obj)
 {
 return (internalList.Contains(obj));
 }

 public virtual void CopyTo(Array array, int index)
 {
 internalList.CopyTo(array, index);
 }

 public virtual object DequeueHead()
 {
 object retObj = internalList[0];
 internalList.RemoveAt(0);
 return (retObj);
 }

 public virtual object DequeueTail()
 {
 object retObj = internalList[InternalList.Count - 1];
 internalList.RemoveAt(InternalList.Count - 1);
 return (retObj);
 }

 public virtual void EnqueueHead(object obj)
 {
 internalList.Insert(0, obj);
 }

 public virtual void EnqueueTail(object obj)

 {
 internalList.Add(obj);
 }

 public virtual object PeekHead()
 {
 return (internalList[0]);
 }

 public virtual object PeekTail()
 {
 return (internalList[internalList.Count - 1]);
 }

 public virtual IEnumerator GetEnumerator()
 {
 return (internalList.GetEnumerator());
 }

 public virtual object[] ToArray()
 {
 return (internalList.ToArray());
 }

 public virtual void TrimToSize()
 {
 internalList.TrimToSize();
 }

 // Nested Synchronized class
 [Serializable]
 public class SyncDeQueue : DblQueue
 {
 public SyncDeQueue(DblQueue q)
 {
 wrappedQ = q;
 root = q.SyncRoot;
 }

 private DblQueue wrappedQ = null;
 private object root = null;

 public override int Count
 {
 get
 {
 lock(this)
 {
 return (wrappedQ.Count);
 }
 }
 }

 public override bool IsSynchronized
 {
 get {return (true);}
 }

 public override object SyncRoot
 {
 get {return (root);}
 }

 public override void Clear()
 {
 lock(this)
 {
 wrappedQ.Clear();
 }
 }

 public override object Clone()
 {
 lock(this)
 {
 return (this.MemberwiseClone());
 }
 }

 public override bool Contains(object obj)
 {
 lock(this)
 {
 return (wrappedQ.Contains(obj));
 }
 }

 public override void CopyTo(Array array, int index)
 {
 lock(this)
 {
 wrappedQ.CopyTo(array, index);
 }
 }

 public override object DequeueHead()
 {
 lock(this)
 {
 return (wrappedQ.DequeueHead());
 }
 }

 public override void EnqueueHead(object obj)

 {
 lock(this)
 {
 wrappedQ.EnqueueHead(obj);
 }
 }

 public override object PeekHead()
 {
 lock(this)
 {
 return (wrappedQ.PeekHead());
 }
 }

 public override object DequeueTail()
 {
 lock(this)
 {
 return (wrappedQ.DequeueTail());
 }
 }

 public override void EnqueueTail(object obj)
 {
 lock(this)
 {
 wrappedQ.EnqueueTail(obj);
 }
 }

 public override object PeekTail()
 {
 lock(this)
 {
 return (wrappedQ.PeekTail());
 }
 }

 public override IEnumerator GetEnumerator()
 {
 lock(this)
 {
 return (wrappedQ.GetEnumerator());
 }
 }

 public override object[] ToArray()
 {
 lock(this)
 {
 return (wrappedQ.ToArray());

 }
 }

 public override void TrimToSize()
 {
 lock(this)
 {
 wrappedQ.TrimToSize();
 }
 }
 }
}

The double-queue class created for this recipe was developed in a fashion similar to the
PriorityQueue in Recipe 10.2 . It exposes most of the ArrayList members through wrapper
methods. For instance, the DblQueue.Count and DblQueue.Clear methods, among others, simply
delegate their calls to the ArrayList.Count and ArrayList.Clear methods, respectively.

The methods defined in Table 10-2 are of particular interest to constructing a double-queue.

Table 10-2. Members of the DblQueue class

Member Description

Count

property
Returns an int indicating the number of items in the queue.

Clear method Removes all items from the queue.

Clone method Returns a copy of the DblQueue object.

Contains

method

Returns a bool indicating whether the queue contains a particular search object.

Its syntax is:

Contains(object obj)

where obj is the object to be found in the queue.

CopyTo

method

Copies a range of items from this queue into an array. Its syntax is:

CopyTo(Array array, int index)

where array is the array in which the queue will be copied into, and index is the
index in the queue to start copying items. The head of the queue is at index 0 .

DequeueHead

method

Removes and returns the object at the head (i.e., position 0) of the queue. This
method makes use of the indexer and RemoveAt methods of the internal
ArrayList to return the first (zeroth) element in the ArrayList . Its syntax is:

DequeueHead()

Member Description

DequeueTail

method

Removes and returns the object at the tail (i.e., position (ArrayList.Count - 1)
of the queue. This method makes use of the indexer and RemoveAt methods of the
internal ArrayList to return the last element in the ArrayList . Its syntax is:

DequeueTail()

EnqueueHead

method

Accepts an object type to add to the head of the queue. This method makes use of
the Insert method of the internal ArrayList to add an element to the start
(zeroth position) in the ArrayList . Its syntax is:

EnqueueHead(object obj)

where obj is the object to add to the head of the queue.

EnqueueTail

method

Accepts an object type to add to the tail of the queue. This method makes use of
the Add method of the internal ArrayList to add an element to the end of the
ArrayList . Its syntax is:

EnqueueTail(object obj)

where obj is the object to add to the tail of the queue.

PeekHead

method

Returns, but does not remove, the object at the head of the queue. This method
makes use of the indexer of the internal ArrayList to obtain the first (zeroth)
element in the ArrayList . Its syntax is:

PeekHead()

PeekTail

method

Returns, but does not remove, the object at the tail of the queue. This method
makes use of the indexer of the internal ArrayList to obtain the last element in
the ArrayList . Its syntax is:

PeekTail()

ToArray

method

Returns the entire queue as an object array. Its syntax is:

ToArray()

The first element in the object array (index 0) is the item at the head object in the

queue and the last element in the array is the tail object in the queue.

TrimToSize

method

Sets the capacity of the queue to the number of elements currently in the queue.
Its syntax is:

TrimToSize()

The following code exercises the DblQueue class:

class CTest
{
 static void Main()
 {
 DblQueue dqueue = new DblQueue();

DequeueTail

method

Removes and returns the object at the tail (i.e., position (ArrayList.Count - 1)
of the queue. This method makes use of the indexer and RemoveAt methods of the
internal ArrayList to return the last element in the ArrayList . Its syntax is:

DequeueTail()

EnqueueHead

method

Accepts an object type to add to the head of the queue. This method makes use of
the Insert method of the internal ArrayList to add an element to the start
(zeroth position) in the ArrayList . Its syntax is:

EnqueueHead(object obj)

where obj is the object to add to the head of the queue.

EnqueueTail

method

Accepts an object type to add to the tail of the queue. This method makes use of
the Add method of the internal ArrayList to add an element to the end of the
ArrayList . Its syntax is:

EnqueueTail(object obj)

where obj is the object to add to the tail of the queue.

PeekHead

method

Returns, but does not remove, the object at the head of the queue. This method
makes use of the indexer of the internal ArrayList to obtain the first (zeroth)
element in the ArrayList . Its syntax is:

PeekHead()

PeekTail

method

Returns, but does not remove, the object at the tail of the queue. This method
makes use of the indexer of the internal ArrayList to obtain the last element in
the ArrayList . Its syntax is:

PeekTail()

ToArray

method

Returns the entire queue as an object array. Its syntax is:

ToArray()

The first element in the object array (index 0) is the item at the head object in the

queue and the last element in the array is the tail object in the queue.

TrimToSize

method

Sets the capacity of the queue to the number of elements currently in the queue.
Its syntax is:

TrimToSize()

The following code exercises the DblQueue class:

class CTest
{
 static void Main()
 {
 DblQueue dqueue = new DblQueue();

 // Count should be zero
 Console.WriteLine("dqueue.Count: " + dqueue.Count);
 try
 {
 // Attempt to remove an item from an empty queue
 object o = dqueue.DequeueHead();
 }
 catch (Exception e)
 {
 Console.WriteLine(e.ToString());
 }

 // Add items to queue
 dqueue.EnqueueHead(1);
 dqueue.EnqueueTail(2);
 dqueue.EnqueueHead(0);
 dqueue.EnqueueTail(3);

 // Clone queue
 DblQueue dqueueClone = (DblQueue) dqueue.Clone();
 Console.WriteLine("dqueueClone.Count: " + dqueueClone.Count);

 // Find these items in the cloned queue
 Console.WriteLine("dqueueClone.Contains(1): " + dqueueClone.Contains(1));
 Console.WriteLine("dqueueClone.Contains(0): " + dqueueClone.Contains(0));
 Console.WriteLine("dqueueClone.Contains(15): " + dqueueClone.Contains(15));

 // Display all items in cloned queue
 foreach (object o in dqueueClone.ToArray())
 {
 Console.WriteLine("Queued Item (Cloned): " + o);
 }
 dqueueClone.TrimToSize();

 // Display all items in original queue
 foreach (int i in dqueue)
 {
 Console.WriteLine("Queued Item: " + i.ToString());
 }

 // Find these items in original queue
 Console.WriteLine("dqueue.Contains(1): " + dqueue.Contains(1));
 Console.WriteLine("dqueue.Contains(10): " + dqueue.Contains(10));

 // Peek at head and tail values without removing them
 Console.WriteLine("dqueue.PeekHead(): " + dqueue.PeekHead().ToString());
 Console.WriteLine("dqueue.PeekTail(): " + dqueue.PeekTail().ToString());

 // Remove one item from the queue's head and two items from the tail
 Console.WriteLine("dqueue.DequeueHead(): " + dqueue.DequeueHead());
 Console.WriteLine("dqueue.DequeueTail(): " + dqueue.DequeueTail());

 Console.WriteLine("dqueue.DequeueTail(): " + dqueue.DequeueTail());

 // Display the count of items and the items themselves
 Console.WriteLine("dqueue.Count: " + dqueue.Count);
 foreach (int i in dqueue)
 {
 Console.WriteLine("Queued Item: " + i.ToString());
 }

 // Clear the cloned queue of all items (items are also removed from the
 // original queue, since this is a shallow copy
 dqueueClone.Clear();
 }
}

Discussion

The DblQueue class implements the same three interfaces as the Queue class found in the
System.Collections namespace of the FCL. These are the ICollection , IEnumerable , and
ICloneable interfaces. The IEnumerable interface forces the DblQueue to implement the
GetEnumerator method. The implementation of the DblQueue.GetEnumerator method returns the
IEnumerator object for the internal ArrayList , used to store the queued items.

The ICloneable interface forces the Clone method to be implemented in the DblQueue class. This
method returns a shallow copy of the DblQueue object.

The ICollection interface forces three properties and a method to be implemented by the DblQueue
class. The IsSynchronized and SyncRoot methods obtain a synchronized DblQueue object that is
thread-safe. In addition to these two properties, a static method called Synchronized is added to

enable clients of this object to obtain a synchronized version of this class. These synchronization
properties and methods will be discussed at length in Recipe 13.4 .

The ICollection interface also forces the Count property and the CopyTo method to be implemented
by the DblQueue class. Both of these delegate to the corresponding ArrayList property and method

for their implementations.

The Enqueue and Dequeue methods of the Queue class found in the FCL operate only on the head of
the queue. The DblQueue class allows these operations to be performed on both the head and tail of
a queue. The DblQueue class has the flexibility of being used as a first-in, first-out (FIFO) queue,
which is similar in operation to the System.Collection.Queue class; or of being used as a first-in,
last-out (FILO) stack, which is similar in operation to the System.Collection.Stack class. In fact,
with a DblQueue , you can start off using it as a FIFO queue and then change in midstream to using it

as a FILO stack. This can be done without having to do anything special, such as creating a new
class.

See Also

See the "ArrayList Class," "IEnumerable Interface," "ICloneable Interface," and "ICollection Interface"
topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 10.4 Determining Where Characters or Strings Do
Not Balance

Problem

It is not uncommon to accidentally create strings that contain unbalanced parentheses. For example,
a user might enter the following equation in your calculator application:

(((a) + (b)) + c * d

This equation contains four (characters while only matching them with three) characters. You
cannot solve this equation, since the user did not supply the fourth) character. Likewise, if a user
enters a regular expression, you might want to do a simple check to see that all the (, {, [, and <
characters match up to every other), },], and > character.

In addition to determining whether the characters/strings/tags match, you should also know where
the unbalanced character/string/tag exists in the string.

Solution

Use the various Check methods of the Balance class to determine whether and where the

character/string is unbalanced:

using System;
using System.Collections;

public class Balance
{
 public Balance() {}

 private Stack bookMarks = new Stack ();

 public int Check(string source, char openChar, char closeChar)
 {
 return (Check(source.ToCharArray(), openChar, closeChar));
 }

 public int Check(char[] source, char openChar, char closeChar)
 {
 bookMarks.Clear();

 for (int index = 0; index < source.Length; index++)
 {

 if (source[index] == openChar)
 {
 bookMarks.Push(Index);
 }
 else if (source[index] == closeChar)
 {
 if (bookMarks.Count <= 0)
 {
 return (index);
 }
 else
 {
 bookMarks.Pop();
 }
 }
 }

 if (bookMarks.Count > 0)
 {
 return ((int)bookMarks.Pop());
 }
 else
 {
 return (-1);
 }
 }

 public int Check(string source, string openChars, string closeChars)
 {
 return (Check(source.ToCharArray(), openChars.ToCharArray(),
 closeChars.ToCharArray()));
 }

 public int Check(char[] source, char[] openChars, char[] closeChars)
 {
 bookMarks.Clear();

 for (int index = 0; index < source.Length; index++)
 {
 if (source[index] == openChars[0])
 {
 if (CompareArrays(source, openChars, index))
 {
 bookMarks.Push(index);
 }
 }

 if (source[index] == closeChars[0])
 {
 if (CompareArrays(source, closeChars, index))
 {
 if (bookMarks.Count <= 0)

 {
 return (index);
 }
 else
 {
 bookMarks.Pop();
 }
 }
 }
 }

 if (bookMarks.Count > 0)
 {
 return ((int)bookMarks.Pop());
 }
 else
 {
 return (-1);
 }
 }

 public bool CompareArrays(char[] source, char[] targetChars, int startPos)
 {
 bool isEqual = true;

 for (int index = 0; index < targetChars.Length; index++)
 {
 if (targetChars[index] != source[startPos + index])
 {
 isEqual = false;
 break;
 }
 }

 return (isEqual);
 }
}

The Check method determines whether there is one closing element for every opening element.
There are four overloaded Check methods, and each takes three parameters of varying types. These

methods return an integer indicating where the offending character is located, or a negative number
if each openChar has a matching closeChar.

These methods return an integer indicating where the offending string is located, or a negative
number if each openChars has a matching closeChars.

The code to exercise the Balance class is shown here:

class CTest
{
 static void Main()
 {

 Balance balanceUtil = new Balance();

 // A string with an unbalanced } char. This unbalanced char is the final
 // } char in the string.
 string unbalanced = @"{namespace Unbalanced
 {
 public class Tipsy
 {
 public Tipsy()
 {
 }}}}}
 ";

 // Use the various overloaded Check methods
 // to check for unbalanced } chars
 Console.WriteLine("Balance {}: " +
 balanceUtil.Check(unbalanced, '{', '}'));
 Console.WriteLine("Balance {}: " +
 balanceUtil.Check(unbalanced.ToCharArray(), '{', '}'));

 Console.WriteLine("Balance {}: " +
 balanceUtil.Check(unbalanced.ToCharArray(),
 new char[1] {'{'}, new char[1] {'}'}));
 Console.WriteLine("Balance {}: " +
 balanceUtil.Check(unbalanced.ToCharArray(),
 new char[1] {'{'}, new char[1] {'}'}));
 }
}

This code produces the following output:

Balance {}: 136
Balance {}: 136
Balance {}: 136
Balance {}: 136
Balance {}: -1

where a -1 means that the items are balanced and a number greater than -1 indicates the character

position that contains the unbalanced character.

Discussion

Determining whether characters have a matching character is actually quite easy when a Stack

object is used. A stack works on a first-in, last-out (FILO) principle. The first item added to a stack is
always the last one to be removed; conversely, the last item added to a stack is always the first
removed.

To see how the stack is used in matching characters, let's see how we'd use it to handle the following
equation:

((a + (b)) + c) * d

The algorithm works like this: we iterate through all characters in the equation, then any time we
come upon a left or right parenthesis, we push or pop an item from the stack. If we see a left
parenthesis, we know to push it onto the stack. If we see a right parenthesis, we know to pop a left
parenthesis from the stack. In fact, the left parenthesis that was popped off of the stack is the
matching left parenthesis to the current right parenthesis. If all parentheses are balanced, the stack
will be empty after iterating through all characters in the equation. If the stack is not empty, the top
left parenthesis on the stack is the one that does not have a matching right parenthesis. If there are
two or more items in the stack, there is more than one unbalanced parenthesis in the equation.

For the previous equation, starting at the lefthand side, we would push one left parenthesis on the
stack and then immediately push a second one. We consume the a and + characters and then come
upon a third left parenthesis; our stack now contains three left parentheses. We consume the b

character and come upon two right parentheses in a row. For each right parenthesis, we will pop one
matching left parenthesis off of the stack. Our stack now contains only one left parenthesis. We
consume the + and c characters and come upon the last right parenthesis in the equation. We pop

the final left parenthesis off of the stack and then check the rest of the equation for any other
parenthesis. Since the stack is empty and we are at the end of the equation, we know that each left
parenthesis has a matching right parenthesis.

For our Check methods in this recipe, the location in the string where each left parenthesis is located

is pushed onto the stack. This allows us to immediately locate the offending parenthesis.

See Also

See the "Stack Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 10.5 Creating a One-to-Many Map (MultiMap)

Problem

A Hashtable can map only a single key to a single value, but you need to map a key to one or more
values. In addition, it may also be possible to map a key to null.

Solution

Use a Hashtable whose values are ArrayLists. This structure allows you to add multiple values (in
the ArrayList) for each key of the Hashtable. The MultiMap class, which is used in practically the
same manner as a Hashtable class, does this:

using System;
using System.Collections;

public class MultiMap
{
 private Hashtable map = new Hashtable();

 public ArrayList this[object key]
 {
 get {return ((ArrayList)map[key]);}
 set {map[key] = value;}
 }

 public void Add(object key, object item)
 {
 AddSingleMap(key, item);
 }

 public void Clear()
 {
 map.Clear();
 }

 public int Count
 {
 get {return (map.Count);}
 }

 public bool ContainsKey (object key)
 {

 return (map.ContainsKey(key));
 }

 public bool ContainsValue(object item)
 {
 if (item == null)
 {
 foreach (DictionaryEntry de in map)
 {
 if (((ArrayList)de.Value).Count == 0)
 {
 return (true);
 }
 }

 return (false);
 }
 else
 {
 foreach (DictionaryEntry de in map)
 {
 if (((ArrayList)de.Value).Contains(item))
 {
 return (true);
 }
 }

 return (false);
 }
 }

 public IEnumerator GetEnumerator()
 {
 return (map.GetEnumerator());
 }

 public void Remove(object key)
 {
 RemoveSingleMap(key);
 }

 public object Clone()
 {
 MultiMap clone = new MultiMap();

 foreach (DictionaryEntry de in map)
 {
 clone[de.Key] = (ArrayList)((ArrayList)de.Value).Clone();
 }

 return (clone);
 }

 protected virtual void AddSingleMap(object key, object item)
 {
 // Search for key in map Hashtable
 if (map.ContainsKey(key))
 {
 if (item == null)
 {
 throw (new ArgumentNullException("value",
 "Cannot map a null to this key"));
 }
 else
 {
 // Add value to ArrayList in map
 ArrayList values = (ArrayList)map[key];

 // Add this value to this existing key
 values.Add(item);
 }
 }
 else
 {
 if (item == null)
 {
 // Create new key and mapping to an empty ArrayList
 map.Add(key, new ArrayList());
 }
 else
 {
 ArrayList values = new ArrayList();
 values.Add(item);

 // Create new key and mapping to its value
 map.Add(key, values);
 }
 }
 }

 protected virtual void RemoveSingleMap(object key)
 {
 if (this.ContainsKey(key))
 {
 // Remove the key from KeysTable
 map.Remove(key);
 }
 else
 {
 throw (new ArgumentOutOfRangeException("key", key.ToString(),
 "This key does not exists in the map."));
 }
 }
}

The methods defined in Table 10-3 are of particular interest to using a MultiMap object.

Table 10-3. Members of the MultiMap class

Member Description

Indexer

The get accessor obtains an ArrayList of all values that are associated with a
key. The set accessor adds an entire ArrayList of values to a key. Its syntax

is:

this[object key]

where key is the key to be added to the MultiMap through the set accessor, or
it is the key in which to retrieve all of its associated values via the get

accessor.

Add method

Adds a key to the Hashtable and its associated value. Its syntax is:

Add(object key, object value)

where key is the key to be added to the MultiMap, and value is the value to
add to the internal ArrayList of the private map field.

Clear method Removes all items from the MultiMap object.

Count method Returns a count of all keys in the MultiMap object.

Clone method Returns a deep copy of the MultiMap object.

ContainsKey

method

Returns a bool indicating whether the MultiMap contains a particular value as

its key. Its syntax is:

ContainsValue(object value)

where value is the key to be found in the MultiMap.

ContainsValue

method

Returns a bool indicating whether the MultiMap contains a particular value. Its

syntax is:

ContainsValue(object value)

where value is the object to be found in the MultiMap.

Remove method

Removes a key from the Hashtable and all its referent values in the internal
valuesTable Hashtable. Its syntax is:

Remove(object key)

where key is the key to be removed.

Items may be added to a MultiMap object in the following manner:

public static void TestMultiMap()
{
 string s = "foo";

 // Create and populate a MultiMap object
 MultiMap myMap = new MultiMap();
 myMap.Add("0", "zero");
 myMap.Add("1", "one");
 myMap.Add("2", "two");
 myMap.Add("3", "three");
 myMap.Add("3", "duplicate three");
 myMap.Add("3", "duplicate three");
 myMap.Add("4", null);
 myMap.Add("5", s);
 myMap.Add("6", s);

 // Display contents
 foreach (DictionaryEntry entry in myMap)
 {
 Console.Write("Key: " + entry.Key.ToString() + "\tValue: ");
 foreach (object o in myMap[entry.Key])
 {
 Console.Write(o.ToString() + " : ");
 }
 Console.WriteLine();
 }

 MultiMap otherMap = (MultiMap)myMap.Clone();

 // Obtain values through the indexer
 Console.WriteLine();
 Console.WriteLine("((ArrayList) myMap[3])[0]: " + myMap["3"][0]);
 Console.WriteLine("((ArrayList) myMap[3])[1]: " + myMap["3"][1]);

 // Add items to MultiMap using an ArrayList
 ArrayList testArray = new ArrayList();
 testArray.Add("BAR");
 testArray.Add("BAZ");
 myMap["10"] = testArray;
 myMap["10"] = testArray;

 // Remove items from MultiMap
 myMap.Remove("0");
 myMap.Remove("1");

 // Display MultiMap
 Console.WriteLine();
 Console.WriteLine("myMap.Count: " + myMap.Count);
 foreach (DictionaryEntry entry in myMap)
 {
 Console.Write("entry.Key: " + entry.Key.ToString() +
 "\tentry.Value(s): ");

 foreach (object o in myMap[entry.Key])
 {
 if (o == null)
 {
 Console.Write("null : ");
 }
 else
 {
 Console.Write(o.ToString() + " : ");
 }
 }
 Console.WriteLine();
 }

 // Determine if the map contains the key("2") or the value("two")
 Console.WriteLine();
 Console.WriteLine("myMap.ContainsKey(2): " + myMap.ContainsKey("2"));
 Console.WriteLine("myMap.ContainsValue(two): " +
 myMap.ContainsValue("two"));

 // Clear all items from MultiMap
 myMap.Clear();
}

This code displays the following:

Key: 2 Value: two :
Key: 3 Value: three : duplicate three : duplicate three :
Key: 0 Value: zero :
Key: 1 Value: one :
Key: 6 Value: foo :
Key: 4 Value:
Key: 5 Value: foo :

((ArrayList) myMap[3])[0]: three
((ArrayList) myMap[3])[1]: duplicate three

myMap.Count: 6
entry.Key: 2 entry.Value(s): two :
entry.Key: 3 entry.Value(s): three : duplicate three : duplicate three :
entry.Key: 6 entry.Value(s): foo :
entry.Key: 4 entry.Value(s):
entry.Key: 5 entry.Value(s): foo :
entry.Key: 10 entry.Value(s): BAR : BAZ :

myMap.ContainsKey(2): True
myMap.ContainsValue(two): True

Discussion

A one-to-many map, or multimap, allows one object, a key, to be associated, or mapped, to zero or

more objects. The MultiMap class presented here operates similarly to a Hashtable. The MultiMap
class contains a Hashtable field called map that contains the actual mapping of keys to values.
Several of the MultiMap methods are delegated to the methods on the map Hashtable object.

A Hashtable operates on a one-to-one principle: only one key may be associated with one value at

any time. However, if you need to associate multiple values with a single key, you must use the
approach used by the MultiMap class. The private map field associates a key with a single ArrayList

of values, which allows multiple mappings of values to a single key and mappings of a single value to
multiple keys. As an added feature, a key can also be mapped to a null value.

Here's what happens when key/value pairs are added to a MultiMap object:

The MultiMap.Add method is called with a key and value provided as parameters.1.

The Add method checks to see whether key exists in the map Hashtable object.2.

If key does not exist, it is added as a key in the map Hashtable object. This key is associated

with a new ArrayList as the value associated with key in this Hashtable.

3.

If the key does exist, the key is looked up in the map Hashtable object and the value is added

to the key's ArrayList.

4.

To remove a key using the Remove method, the key and ArrayList pair are removed from the map
Hashtable. This allows removal of all values associated with a single key. The MultiMap.Remove
method calls the RemoveSingleMap method, which encapsulates this behavior. Removal of key "0",

and all values mapped to this key, is performed with the following code:

myMap.Remove(1);

To remove all keys and their associated values, use the MultiMap.Clear method. This method
removes all items from the map Hashtable.

The other major member of the MultiMap class to discuss is its indexer. The indexer returns the
ArrayList of values for a particular key through its get accessor. The set accessor simply adds the
ArrayList provided to a single key. This code creates an array of values and attempts to map them
to key "5" in the myMap object:

ArrayList testArray = new ArrayList();
testArray.Add("BAR");
testArray.Add("BAZ");
myMap["5"] = testArray;

The following code makes use of the get accessor to access each value associated with key "3":

Console.WriteLine(myMap["3"][0]);
Console.WriteLine(myMap["3"][1]);
Console.WriteLine(myMap["3"][2]);

This looks somewhat similar to using a jagged array. The first indexer is used to pull the ArrayList
from the map Hashtable and the second indexer is used to obtain the value in the ArrayList. This

code displays the following:

three
duplicate three
duplicate three

This MultiMap class also allows the use of the foreach loop to enumerate its key/value pairs. The
following code displays each key/value pair in the MyMap object:

foreach (DictionaryEntry entry in myMap)
{
 Console.Write("Key: " + entry.Key.ToString() + "\tValue: ");
 foreach (object o in myMap[entry.Key])
 {
 Console.Write(o.ToString() + " : ");
 }
 Console.WriteLine();
}

The outer foreach loop is used to retrieve all the keys and the inner foreach loop is used to display
each value mapped to a particular key. This code displays the following for the initial MyMap object:

Key: 2 Value: two :
Key: 3 Value: three : duplicate three : duplicate three :
Key: 0 Value: zero :
Key: 1 Value: one :
Key: 4 Value:

There are two methods that allow searching of the MultiMap object: ContainsKey and
ContainsValue. The ContainsKey method searches for the specified key in the map Hashtable. The
ContainsValue method searches for the specified value in an ArrayList in the map Hashtable. Both
methods return true if the key/value was found or false otherwise:

Console.WriteLine("Contains Key 2: " + myMap.ContainsKey("2"));
Console.WriteLine("Contains Key 12: " + myMap.ContainsKey("12"));

Console.WriteLine("Contains Value two: " + myMap.ContainsValue("two"));
Console.WriteLine("Contains Value BAR: " + myMap.ContainsValue("BAR"));

Note that the ContainsKey and ContainsValue methods are both case-sensitive.

See Also

See the "ArrayList Class," "Hashtable Class," and "IEnumerator Interface" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 10.6 Creating a Binary Tree

Problem

You need to store information in a tree structure, where the left node is less than its parent node, and
the right node is greater than or equal to (in cases where the tree can contain duplicates) its parent.
The stored information must be easily inserted into the tree, removed from the tree, and found within
the tree.

Solution

Each node must be an object that inherits from the IComparable interface. This means that every node
that wishes to be included in the binary tree must implement the CompareTo method. This method will

allow one node to determine whether it is less than, greater than, or equal to another node.

Use the following BinaryTree class, which contains all of the nodes in a binary tree and lets you

traverse it:

using System;
using System.Collections;

public class BinaryTree
{
 public BinaryTree() {}

 public BinaryTree(IComparable value, int index)
 {
 BinaryTreeNode node = new BinaryTreeNode(value, index);
 root = node;
 counter = 1;
 }

 // Use this .ctor when you need to flatten this tree (see recipe 9.15)
 public BinaryTree(IComparable value)
 {
 BinaryTreeNode node = new BinaryTreeNode(value);
 root = node;
 counter = 1;
 }

 protected int counter = 0; // Number of nodes in tree
 protected BinaryTreeNode root = null; // Pointer to root node in this tree

 public void AddNode(IComparable value, int index)
 {
 BinaryTreeNode node = new BinaryTreeNode(value, index);

 ++counter;

 if (root == null)
 {
 root = node;
 }
 else
 {
 root.AddNode(node);
 }
 }

 // Use this method to add a node
 // when you need to flatten this tree (see recipe 9.15)
 public int AddNode(IComparable value)
 {
 BinaryTreeNode node = new BinaryTreeNode(value);
 ++counter;

 if (root == null)
 {
 root = node;
 }
 else
 {
 root.AddNode(node);
 }

 return (counter - 1);
 }

 public BinaryTreeNode SearchDepthFirst(IComparable value)
 {
 return (root.DepthFirstSearch(value));
 }

 public void Print()
 {
 root.PrintDepthFirst();
 }

 public BinaryTreeNode GetRoot()
 {
 return (root);
 }

 public int TreeSize
 {
 get {return (counter);}
 }
}

The BinaryTreeNode encapsulates the data and behavior of a single node in the binary tree:

public class BinaryTreeNode
{
 public BinaryTreeNode() {}

 public BinaryTreeNode(IComparable value)
 {
 nodeValue = value;
 }

 // These 2 ctors Added to allow tree to be flattened
 public BinaryTreeNode(int index)
 {
 nodeIndex = index;
 }

 public BinaryTreeNode(IComparable value, int index)
 {
 nodeValue = value;
 nodeIndex = index;
 }

 protected int nodeIndex = 0; // Added to allow tree to be flattened
 protected IComparable nodeValue = null;
 protected BinaryTreeNode leftNode = null; // leftNode.Value < Value
 protected BinaryTreeNode rightNode = null; // rightNode.Value >= Value

 public int NumOfChildren
 {
 get {return (CountChildren());}
 }

 public int CountChildren()
 {
 int currCount = 0;

 if (leftNode != null)
 {
 ++currCount;
 currCount += leftNode.CountChildren();
 }

 if (rightNode != null)
 {
 ++currCount;
 currCount += rightNode.CountChildren();
 }

 return (currCount);
 }

 public int Index
 {
 get {return (nodeIndex);}
 }

 public BinaryTreeNode Left
 {
 get {return (leftNode);}
 }

 public BinaryTreeNode Right
 {
 get {return (rightNode);}
 }

 public IComparable GetValue
 {
 get {return (nodeValue);}
 }

 public void AddNode(BinaryTreeNode node)
 {
 if (node.nodeValue.CompareTo(nodeValue) < 0)
 {
 if (leftNode == null)
 {
 leftNode = node;
 }
 else
 {
 leftNode.AddNode(node);
 }
 }
 else if (node.nodeValue.CompareTo(nodeValue) >= 0)
 {
 if (rightNode == null)
 {
 rightNode = node;
 }
 else
 {
 rightNode.AddNode(node);
 }
 }
 }

 public bool AddUniqueNode(BinaryTreeNode node)
 {
 bool isUnique = true;

 if (node.nodeValue.CompareTo(nodeValue) < 0)
 {

 if (leftNode == null)
 {
 leftNode = node;
 }
 else
 {
 leftNode.AddNode(node);
 }
 }
 else if (node.nodeValue.CompareTo(nodeValue) > 0)
 {
 if (rightNode == null)
 {
 rightNode = node;
 }
 else
 {
 rightNode.AddNode(node);
 }
 }
 else //node.nodeValue.CompareTo(nodeValue) = 0
 {
 isUnique = false;
 // Could throw exception here as well...
 }

 return (isUnique);
 }

 public BinaryTreeNode DepthFirstSearch(IComparable targetObj)
 {
 // NOTE: foo.CompareTo(bar) == -1 --> (foo < bar)
 BinaryTreeNode retObj = null;
 int comparisonResult = targetObj.CompareTo(nodeValue);

 if (comparisonResult == 0)
 {
 retObj = this;
 }
 else if (comparisonResult > 0)
 {
 if (rightNode != null)
 {
 retObj = rightNode.DepthFirstSearch(targetObj);
 }
 }
 else if (comparisonResult < 0)
 {
 if (leftNode != null)
 {
 retObj = leftNode.DepthFirstSearch(targetObj);
 }

 }

 return (retObj);
 }

 public void PrintDepthFirst()
 {
 if (leftNode != null)
 {
 leftNode.PrintDepthFirst();
 }

 Console.WriteLine(this.nodeValue.ToString());

 try
 {
 Console.WriteLine("\tContains Left: " +
 leftNode.nodeValue.ToString());
 }
 catch
 {
 Console.WriteLine("\tContains Left: NULL");
 }
 try
 {
 Console.WriteLine("\tContains Right: " +
 rightNode.nodeValue.ToString());
 }
 catch
 {
 Console.WriteLine("\tContains Right: NULL");
 }

 if (rightNode != null)
 {
 rightNode.PrintDepthFirst();
 }
 }

 public void RemoveLeftNode()
 {
 leftNode = null;
 }

 public void RemoveRightNode()
 {
 rightNode = null;
 }
}

The methods defined in Table 10-4 are of particular interest to using a BinaryTree object.

Table 10-4. Members of the BinaryTree class

Member Description

Overloaded
constructor

This constructor creates a BinaryTree object with a root node and a node

index id . Its syntax is:

BinaryTree(IComparable value, int index)

where value is the root node for the tree, and index is used for flattening the

tree.

Overloaded
constructor

This constructor creates a BinaryTree object with a root node. Its syntax is:

BinaryTree(IComparable value)

where value is the root node for the tree. Note that this tree may not be

flattened.

AddNode method

Adds a node to the tree. Its syntax is:

AddNode(IComparable value, int id)

where value is the object to be added and id is the node index. Use this

method if the tree will be flattened.

AddNode method

Adds a node to the tree. Its syntax is:

AddNode(IComparable value)

where value is the object to be added. Use this method if the tree will not be

flattened.

SearchDepthFirst

method

Searches for and returns a BinaryTreeNode object in the tree, if one exists.

This method searches the depth of the tree first. Its syntax is:

SearchDepthFirst(IComparable value)

where value is the object to be found in the tree.

Print method
Displays the tree in depth-first format. Its syntax is:

Print()

GetRoot method
Returns the BinaryTreeNode object that is the root of the tree. Its syntax is:

GetRoot()

TreeSize property
A read-only property that gets the number of nodes in the tree. Its syntax is:

int TreeSize {get;}

The methods defined in Table 10-5 are of particular interest to using a BinaryTreeNode object.

Table 10-5. Members of the BinaryTreeNode class

Member Description

Overloaded
constructor

This constructor creates a BinaryTreeNode object. Its syntax is:

BinaryTreeNode(IComparable value)

If a tree is to be flattened, the following constructors should be used instead:

BinaryTreeNode(int nodeIndex)

BinaryTreeNode(IComparable value, int nodeIndex)

where value is the object contained in this node, which will be used to compare

to its parent. The nodeIndex is used for flattening the tree.

NumOfChildren

property

A read-only property to retrieve the number of children below this node. Its
syntax is:

int NumOfChildren {get;}

Index property

A read-only property to retrieve the index number of this node. This index value
was set in the nodeIndex parameter of its constructor. Its syntax is:

int Index {get;}

Left property

A read-only property to retrieve the left child node below this node. Its syntax
is:

BinaryTreeNode Left {get;}

Right property

A read-only property to retrieve the right child node below this node. Its syntax
is:

BinaryTreeNode Right {get;}

CountChildren

method

Retrieves the number of child nodes below this node. Its syntax is:

CountChildren()

GetValue method
Returns the IComparable object that this node contains. Its syntax is:

GetValue()

AddNode method

Adds a new node recursively to either the left or right side. Its syntax is:

AddNode(BinaryTreeNode node)

where node is the node to be added. Duplicate nodes may be added using this

method.

AddUniqueNode

Adds a new node recursively to either the left side or the right side. Its syntax
is:

AddUniqueNode(BinaryTreeNode node)

Member Description AddUniqueNode

method

AddUniqueNode(BinaryTreeNode node)

where node is the node to be added. Duplicate nodes may not be added using
this method. A Boolean value is returned; true indicates a successful operation,
false indicates an attempt to add a duplicate node.

DepthFirstSearch

method

Searches for and returns a BinaryTreeNode object in the tree, if one exists. This

method searches the depth of the tree first. Its syntax is:

DepthFirstSearch(IComparable targetObj)

where targetObj is the object to be found in the tree.

PrintDepthFirst

method

Displays the tree in depth first format. Its syntax is:

PrintDepthFirst()

RemoveLeftNode

method

Removes the left node and any child nodes of this node. Its syntax is:

RemoveLeftNode()

RemoveRightNode

method

Removes the right node and any child nodes of this node. Its syntax is:

RemoveRightNode()

The following code illustrates the use of the BinaryTree and BinaryTreeNode classes when creating

and using a binary tree:

public static void TestBinaryTree()
{
 BinaryTree tree = new BinaryTree("d");
 tree.AddNode("a");
 tree.AddNode("b");
 tree.AddNode("f");
 tree.AddNode("e");
 tree.AddNode("c");
 tree.AddNode("g");

 tree.Print();
 tree.Print();

 Console.WriteLine("tree.TreeSize: " + tree.TreeSize);
 Console.WriteLine("tree.GetRoot().DepthFirstSearch(a).NumOfChildren: " +
 tree.GetRoot().DepthFirstSearch("b").NumOfChildren);
 Console.WriteLine("tree.GetRoot().DepthFirstSearch(a).NumOfChildren: " +
 tree.GetRoot().DepthFirstSearch("a").NumOfChildren);
 Console.WriteLine("tree.GetRoot().DepthFirstSearch(g).NumOfChildren: " +
 tree.GetRoot().DepthFirstSearch("g").NumOfChildren);

 Console.WriteLine("tree.SearchDepthFirst(a): " +
 tree.SearchDepthFirst("a").GetValue.ToString());
 Console.WriteLine("tree.SearchDepthFirst(b): " +
 tree.SearchDepthFirst("b").GetValue.ToString());

AddUniqueNode

method

AddUniqueNode(BinaryTreeNode node)

where node is the node to be added. Duplicate nodes may not be added using
this method. A Boolean value is returned; true indicates a successful operation,
false indicates an attempt to add a duplicate node.

DepthFirstSearch

method

Searches for and returns a BinaryTreeNode object in the tree, if one exists. This

method searches the depth of the tree first. Its syntax is:

DepthFirstSearch(IComparable targetObj)

where targetObj is the object to be found in the tree.

PrintDepthFirst

method

Displays the tree in depth first format. Its syntax is:

PrintDepthFirst()

RemoveLeftNode

method

Removes the left node and any child nodes of this node. Its syntax is:

RemoveLeftNode()

RemoveRightNode

method

Removes the right node and any child nodes of this node. Its syntax is:

RemoveRightNode()

The following code illustrates the use of the BinaryTree and BinaryTreeNode classes when creating

and using a binary tree:

public static void TestBinaryTree()
{
 BinaryTree tree = new BinaryTree("d");
 tree.AddNode("a");
 tree.AddNode("b");
 tree.AddNode("f");
 tree.AddNode("e");
 tree.AddNode("c");
 tree.AddNode("g");

 tree.Print();
 tree.Print();

 Console.WriteLine("tree.TreeSize: " + tree.TreeSize);
 Console.WriteLine("tree.GetRoot().DepthFirstSearch(a).NumOfChildren: " +
 tree.GetRoot().DepthFirstSearch("b").NumOfChildren);
 Console.WriteLine("tree.GetRoot().DepthFirstSearch(a).NumOfChildren: " +
 tree.GetRoot().DepthFirstSearch("a").NumOfChildren);
 Console.WriteLine("tree.GetRoot().DepthFirstSearch(g).NumOfChildren: " +
 tree.GetRoot().DepthFirstSearch("g").NumOfChildren);

 Console.WriteLine("tree.SearchDepthFirst(a): " +
 tree.SearchDepthFirst("a").GetValue.ToString());
 Console.WriteLine("tree.SearchDepthFirst(b): " +
 tree.SearchDepthFirst("b").GetValue.ToString());

 Console.WriteLine("tree.SearchDepthFirst(c): " +
 tree.SearchDepthFirst("c").GetValue.ToString());
 Console.WriteLine("tree.SearchDepthFirst(d): " +
 tree.SearchDepthFirst("d").GetValue.ToString());
 Console.WriteLine("tree.SearchDepthFirst(e): " +
 tree.SearchDepthFirst("e").GetValue.ToString());
 Console.WriteLine("tree.SearchDepthFirst(f): " +
 tree.SearchDepthFirst("f").GetValue.ToString());

 tree.GetRoot().RemoveLeftNode();
 tree.Print();

 tree.GetRoot().RemoveRightNode();
 tree.Print();
}

Discussion

Trees are data structures where each node has exactly one parent and possibly many children. The root
of the tree is a single node that branches out into one or more child nodes. A node is the part of the tree
structure that contains data and contains the branches (or in more concrete terms, references) to its
children node(s).

A tree can be used for many things, such as to represent a management hierarchy with the president of
the company at the root node and the various vice-presidents as child nodes of the president. The vice-
presidents may have managers as child nodes, and so on. A tree can be used to make decisions, where
each node of the tree contains a question and the answer given depends on which branch is taken to a
child node. The tree described in this recipe is called a binary tree . A binary tree can have zero, one, or
two child nodes for every node in the tree. A binary tree node can never have more than two child
nodes; this is where this type of tree gets its name. (There are other types of trees. For instance, the n
-ary tree can have zero to n nodes for each node in the tree. This type of tree is defined in Recipe 10.7 .)

A binary tree is very useful for storing objects and then efficiently searching for those objects. The
following algorithm is used to store objects in a binary tree:

Start at the root node1.

Is this node free?

If yes, add the object to this node, and we are done.a.

If no, continue.b.

2.

Is the object to be added to the tree less than ("less than" is determined by the
IComparable.CompareTo method of the node being added) the current node?

If yes, follow the branch to the node on the left side of the current node, and go to step 2.a.

If no, follow the branch to the node of the right side of the current node, and go to step 2.b.

3.

a.

b.

Basically, this algorithm states that the node to the left of the current node contains an object or value
less than the current node, and the node to the right of the current node contains an object or value
greater than (or equal to, if the binary tree can contain duplicates) the current node.

Searching for an object in a tree is easy. Just start at the root and ask yourself, "Is the object I am
searching for less than the current node's object?" If it is, follow the left branch to the next node in the
tree. If it is not, check the current node to determine whether it contains the object you are searching
for. If this is still not the correct object, continue down the right branch to the next node. When you get
to the next node, start the process over again.

The binary tree used in this recipe is made up of two classes. The BinaryTree class is not a part of the

actual tree; rather, it acts as a starting point from which we can create a tree, add nodes to it, search
the tree for items, and retrieve the root node to perform other actions.

The second class, BinaryTreeNode , is the heart of the binary tree and represents a single node in the

tree. This class contains all the members that are required to create and work with a binary tree.

The BinaryTreeNode class contains a protected field, nodeValue , that contains an object implementing
the IComparable interface. This structure allows us to perform searches and add nodes in the correct
location in the tree. The Compare method of the IComparable interface is used in searching and adding
methods to determine whether we need to follow the left or right branch. See the AddNode ,
AddUniqueNode , and DepthFirstSearch methods to see this in action.

There are two methods to add nodes to the tree, AddNode and AddUniqueNode . The AddNode method
allows duplicates to be introduced to the tree, whereas the AddUniqueNode allows only unique nodes to

be added.

The DepthFirstSearch method allows the tree to be searched by first checking the current node to see

whether it contains the value searched for; if not, recursion is used to check the left and then the right
node. If no matching value is found in any node, this method returns null .

It is interesting to note that even though the BinaryTree class is provided to create and manage the
tree of BinaryTreeNode objects, we could merely use the BinaryTreeNode class as long as we keep

track of the root node ourselves. The following code creates and manages the tree without the use of
the BinaryTree class:

public static void TestManagedTreeWithNoBinaryTreeClass()
{
 // Create the root node
 BinaryTreeNode topLevel = new BinaryTreeNode("d");

 // Create all nodes that will be added to the tree
 BinaryTreeNode one = new BinaryTreeNode("b");
 BinaryTreeNode two = new BinaryTreeNode("c");
 BinaryTreeNode three = new BinaryTreeNode("a");
 BinaryTreeNode four = new BinaryTreeNode("e");
 BinaryTreeNode five = new BinaryTreeNode("f");
 BinaryTreeNode six = new BinaryTreeNode("g");

 // Add nodes to tree through the root
 topLevel.AddNode(three);
 topLevel.AddNode(one);
 topLevel.AddNode(five);

 topLevel.AddNode(four);
 topLevel.AddNode(two);
 topLevel.AddNode(six);

 // Print the tree starting at the root node
 topLevel.PrintDepthFirst();

 // Print the tree starting at node 'Three'
 three.PrintDepthFirst();

 // Display the number of child nodes of various nodes in the tree
 Console.WriteLine("topLevel.NumOfChildren: " + topLevel.NumOfChildren);
 Console.WriteLine("one.NumOfChildren: " + one.NumOfChildren);
 Console.WriteLine("three.NumOfChildren: " + three.NumOfChildren);
 Console.WriteLine("six.NumOfChildren: " + six.NumOfChildren);

 // Search the tree using the depth-first searching method
 Console.WriteLine("topLevel.DepthFirstSearch(a): " +
 topLevel.DepthFirstSearch("a").GetValue.ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(b): " +
 topLevel.DepthFirstSearch("b").GetValue.ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(c): " +
 topLevel.DepthFirstSearch("c").GetValue.ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(d): " +
 topLevel.DepthFirstSearch("d").GetValue.ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(e): " +
 topLevel.DepthFirstSearch("e").GetValue.ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(f): " +
 topLevel.DepthFirstSearch("f").GetValue.ToString());

 // Remove the left child node from the root node and display the entire tree
 topLevel.RemoveLeftNode();
 topLevel.PrintDepthFirst();

 // Remove all nodes from the tree except for the root and display the tree
 topLevel.RemoveRightNode();
 topLevel.PrintDepthFirst();
}

See Also

See the "Queue Class" and "IComparable Interface" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 10.7 Creating an n-ary Tree

Problem

You need a tree that can store a number of child nodes in each of its nodes. A binary tree would work
if each node needs to have only two children, but, in this case, each node needs to have a fixed
number of child nodes greater than two.

Solution

Use the following NTree class to create the root node for the n -ary tree:

using System;
using System.Collections;

public class NTree
{
 public NTree()
 {
 maxChildren = int.MaxValue;
 }

 public NTree(int maxNumChildren)
 {
 maxChildren = maxNumChildren;
 }

 // The root node of the tree
 protected NTreeNodeFactory.NTreeNode root = null;
 // The maximum number of child nodes that a parent node may contain
 protected int maxChildren = 0;

 public void AddRoot(NTreeNodeFactory.NTreeNode node)
 {
 root = node;
 }

 public NTreeNodeFactory.NTreeNode GetRoot()
 {
 return (root);
 }

 public int MaxChildren
 {
 get {return (maxChildren);}
 }

}

The methods defined in Table 10-6 are of particular interest to using an NTree object.

Table 10-6. Members of the NTree class

Member Description

Overloaded
constructor

This constructor creates an NTree object. Its syntax is:

NTree(int maxNumChildren)

where maxNumChildren is the maximum number of children that one node

may have at any time.

MaxChildren

property

A read-only property to retrieve the maximum number of children any node
may have. Its syntax is:

int MaxChildren {get;}

The value this property returns is set in the constructor.

AddRoot method

Adds a node to the tree. Its syntax is:

AddRoot(NTreeNodeFactory.NTreeNode node)

where node is the node to be added as a child to the current node.

GetRoot method
Returns the root node of this tree. Its syntax is:

GetRoot()

The NTreeNodeFactory class is used to create nodes for the n -ary tree. These nodes are defined in
the class NTreeNode , which is nested inside of the NTreeNodeFactory class. You are not able to
create an NTreeNode without the use of this factory class. The code is:

public class NTreeNodeFactory
{
 public NTreeNodeFactory(NTree root)
 {
 maxChildren = root.MaxChildren;
 }

 private int maxChildren = 0;

 public int MaxChildren
 {
 get {return (maxChildren);}
 }

 public NTreeNode CreateNode(IComparable value)
 {

 return (new NTreeNode(value, maxChildren));
 }

 // Nested Node class
 public class NTreeNode
 {
 public NTreeNode(IComparable value, int maxChildren)
 {
 if (value != null)
 {
 nodeValue = value;
 }

 childNodes = new NTreeNode[maxChildren];
 }

 protected IComparable nodeValue = null;
 protected NTreeNode[] childNodes = null;

 public int NumOfChildren
 {
 get {return (CountChildren());}
 }

 public int CountChildren()
 {
 int currCount = 0;

 for (int index = 0; index <= childNodes.GetUpperBound(0); index++)
 {
 if (childNodes[index] != null)
 {
 ++currCount;
 currCount += childNodes[index].CountChildren();
 }
 }

 return (currCount);
 }

 public int CountImmediateChildren()
 {
 int currCount = 0;

 for (int index = 0; index <= childNodes.GetUpperBound(0); index++)
 {
 if (childNodes[index] != null)
 {
 ++currCount;
 }
 }

 return (currCount);
 }

 public NTreeNode[] Children
 {
 get {return (childNodes);}
 }

 public NTreeNode GetChild(int index)
 {
 return (childNodes[index]);
 }

 public IComparable GetValue()
 {
 return (nodeValue);
 }

 public void AddNode(NTreeNode node)
 {
 int numOfNonNullNodes = CountImmediateChildren();

 if (numOfNonNullNodes < childNodes.Length)
 {
 childNodes[numOfNonNullNodes] = node;
 }
 else
 {
 throw (new Exception("Cannot add more children to this node."));
 }
 }

 public NTreeNode DepthFirstSearch (IComparable targetObj)
 {
 NTreeNode retObj = null;

 if (targetObj.CompareTo(nodeValue) == 0)
 {
 retObj = this;
 }
 else
 {
 for (int index=0; index<=childNodes.GetUpperBound(0); index++)
 {
 if (childNodes[index] != null)
 {
 retObj = childNodes[index].DepthFirstSearch(targetObj);
 if (retObj != null)
 {
 break;
 }
 }

 }
 }

 return (retObj);
 }

 public NTreeNode BreadthFirstSearch (IComparable targetObj)
 {
 Queue row = new Queue();
 row.Enqueue(this);

 while (row.Count > 0)
 {
 // Get next node in queue
 NTreeNode currentNode = (NTreeNode)row.Dequeue();

 // Is this the node we are looking for?
 if (targetObj.CompareTo(currentNode.nodeValue) == 0)
 {
 return (currentNode);
 }

 for (int index = 0;
 index < currentNode.CountImmediateChildren();
 index++)
 {
 if (currentNode.Children[index] != null)
 {
 row.Enqueue(currentNode.Children[index]);
 }
 }
 }

 return (null);
 }

 public void PrintDepthFirst()
 {
 Console.WriteLine("this: " + nodeValue.ToString());

 for (int index = 0; index < childNodes.Length; index++)
 {
 if (childNodes[index] != null)
 {
 Console.WriteLine("\tchildNodes[" + index + "]: " +
 childNodes[index].nodeValue.ToString());
 }
 else
 {
 Console.WriteLine("\tchildNodes[" + index + "]: NULL");
 }
 }

 for (int index = 0; index < childNodes.Length; index++)
 {
 if (childNodes[index] != null)
 {
 childNodes[index].PrintDepthFirst();
 }
 }
 }

 public void RemoveNode(int index)
 {
 // Remove node from array and Compact the array
 if (index < childNodes.GetLowerBound(0) ||
 index > childNodes.GetUpperBound(0))
 {
 throw (new ArgumentOutOfRangeException("index", index,
 "Array index out of bounds."));
 }
 else if (index < childNodes.GetUpperBound(0))
 {
 Array.Copy(childNodes, index + 1, childNodes, index,
 childNodes.Length - index - 1);
 }

 childNodes.SetValue(null, childNodes.GetUpperBound(0));
 }
 }
}

The methods defined in Table 10-7 are of particular interest to using an NTreeNodeFactory object.

Table 10-7. Members of the NTreeNodeFactory class

Member Description

Constructor

Creates a new NTreeNodeFactory object that will create NTreeNode objects with
the same number of MaxChildren that the NTree object passed in supports. Its

syntax is:

NTreeNodeFactory(NTree root)

where root is an NTree object.

MaxChildren

property

Read-only property that returns the maximum number of children that the NTree

object supports. Its syntax is:

int MaxChildren {get;}

Member Description

CurrentValue

property

Read-only property that returns the IComparable object that the node created
by the NTreeNodeFactory contains. Its syntax is:

IComparable CurrentValue {get;}

CreateNode

method

Overloaded. Returns a new NTreeNode object. Its syntax is:

CreateNode()

CreateNode(IComparable value)

where value is the IComparable object this new node object will contain.

The methods defined in Table 10-8 are of particular interest to using the nested NTreeNode object.

Table 10-8. Members of the NTreeNode class

Member Description

Constructor

Creates a new NTreeNode object from the NTreeNodeFactory object

passed in to it. Its syntax is:

NTreeNode(NTreeNodeFactory factory)

where factory is an NTreeNodeFactory object.

NumOfChildren property

Read-only property that returns the total number of children below this
node. Its syntax is:

int NumOfChildren {get;}

Children property

Read-only property that returns all of non-null child node objects in

an array that the current node contains. Its syntax is:

NTreeNode[] Children {get;}

CountChildren method

Recursively counts the number of non-null child nodes below the

current node and returns this value as an integer. Its syntax is:

CountChildren()

CountImmediateChildren

method

Counts only the non-null child nodes contained in the current node.

Its syntax is:

CountImmediateChildren()

GetChild method

Uses an index to return the NTreeNode contained by the current node.

Its syntax is:

GetChild(int index)

where index is the array index where the child object is stored.

CurrentValue

property

Read-only property that returns the IComparable object that the node created
by the NTreeNodeFactory contains. Its syntax is:

IComparable CurrentValue {get;}

CreateNode

method

Overloaded. Returns a new NTreeNode object. Its syntax is:

CreateNode()

CreateNode(IComparable value)

where value is the IComparable object this new node object will contain.

The methods defined in Table 10-8 are of particular interest to using the nested NTreeNode object.

Table 10-8. Members of the NTreeNode class

Member Description

Constructor

Creates a new NTreeNode object from the NTreeNodeFactory object

passed in to it. Its syntax is:

NTreeNode(NTreeNodeFactory factory)

where factory is an NTreeNodeFactory object.

NumOfChildren property

Read-only property that returns the total number of children below this
node. Its syntax is:

int NumOfChildren {get;}

Children property

Read-only property that returns all of non-null child node objects in

an array that the current node contains. Its syntax is:

NTreeNode[] Children {get;}

CountChildren method

Recursively counts the number of non-null child nodes below the

current node and returns this value as an integer. Its syntax is:

CountChildren()

CountImmediateChildren

method

Counts only the non-null child nodes contained in the current node.

Its syntax is:

CountImmediateChildren()

GetChild method

Uses an index to return the NTreeNode contained by the current node.

Its syntax is:

GetChild(int index)

where index is the array index where the child object is stored.

Member Description where index is the array index where the child object is stored.

GetValue method

Returns the IComparable object that the current node contains. Its

syntax is:

GetValue()

AddNode method

Adds a new child node to the current node. Its syntax is:

AddNode(NTreeNode node)

where node is the child node to be added.

DepthFirstSearch method

Attempts to locate an NTreeNode by the IComparable object that it
contains. An NTreeNode is returned if the IComparable object is
located or a null if it is not. Its syntax is:

DepthFirstSearch(IComparable targetObj)

where targetObj is the IComparable object to locate in the tree.

Note that this search starts with the current node, which may or may
not be the root of the tree. The tree traversal is done in a depth-first
manner.

BreadthFirstSearch

method

Attempts to locate an NTreeNode by the IComparable object that it
contains. An NTreeNode is returned if the IComparable object is
located or a null if it is not. Its syntax is:

DepthFirstSearch(IComparable targetObj)

where targetObj is the IComparable object to locate in the tree.

Note that this search starts with the current node, which may or may
not be the root of the tree. The tree traversal is done in a breadth-first
manner.

PrintDepthFirst method

Displays the tree structure on the console window starting with the
current node. Its syntax is:

PrintDepthFirst()

This method uses recursion to display each node in the tree.

RemoveNode method

Removes the child node at the specified index on the current node.

Its syntax is:

RemoveNode(int index)

where index is the array index where the child object is stored. Note

that when a node is removed, all of its children nodes are removed as
well.

The following code illustrates the use of the NTree , NtreeNodeFactory , and the NTreeNode classes

when creating and using an n -ary tree:

where index is the array index where the child object is stored.

GetValue method

Returns the IComparable object that the current node contains. Its

syntax is:

GetValue()

AddNode method

Adds a new child node to the current node. Its syntax is:

AddNode(NTreeNode node)

where node is the child node to be added.

DepthFirstSearch method

Attempts to locate an NTreeNode by the IComparable object that it
contains. An NTreeNode is returned if the IComparable object is
located or a null if it is not. Its syntax is:

DepthFirstSearch(IComparable targetObj)

where targetObj is the IComparable object to locate in the tree.

Note that this search starts with the current node, which may or may
not be the root of the tree. The tree traversal is done in a depth-first
manner.

BreadthFirstSearch

method

Attempts to locate an NTreeNode by the IComparable object that it
contains. An NTreeNode is returned if the IComparable object is
located or a null if it is not. Its syntax is:

DepthFirstSearch(IComparable targetObj)

where targetObj is the IComparable object to locate in the tree.

Note that this search starts with the current node, which may or may
not be the root of the tree. The tree traversal is done in a breadth-first
manner.

PrintDepthFirst method

Displays the tree structure on the console window starting with the
current node. Its syntax is:

PrintDepthFirst()

This method uses recursion to display each node in the tree.

RemoveNode method

Removes the child node at the specified index on the current node.

Its syntax is:

RemoveNode(int index)

where index is the array index where the child object is stored. Note

that when a node is removed, all of its children nodes are removed as
well.

The following code illustrates the use of the NTree , NtreeNodeFactory , and the NTreeNode classes

when creating and using an n -ary tree:

public static void TestNTree()
{
 NTree topLevel = new NTree(3);
 NTreeNodeFactory nodeFactory = new NTreeNodeFactory(topLevel);

 NTreeNodeFactory.NTreeNode one = nodeFactory.CreateNode("One");
 NTreeNodeFactory.NTreeNode two = nodeFactory.CreateNode("Two");
 NTreeNodeFactory.NTreeNode three = nodeFactory.CreateNode("Three");
 NTreeNodeFactory.NTreeNode four = nodeFactory.CreateNode("Four");
 NTreeNodeFactory.NTreeNode five = nodeFactory.CreateNode("Five");
 NTreeNodeFactory.NTreeNode six = nodeFactory.CreateNode("Six");
 NTreeNodeFactory.NTreeNode seven = nodeFactory.CreateNode("Seven");
 NTreeNodeFactory.NTreeNode eight = nodeFactory.CreateNode("Eight");
 NTreeNodeFactory.NTreeNode nine = nodeFactory.CreateNode("Nine");

 topLevel.AddRoot(one);
 Console.WriteLine("topLevel.GetRoot().CountChildren: " +
 topLevel.GetRoot().CountChildren());

 topLevel.GetRoot().AddNode(two);
 topLevel.GetRoot().AddNode(three);
 topLevel.GetRoot().AddNode(four);

 topLevel.GetRoot().Children[0].AddNode(five);
 topLevel.GetRoot().Children[0].AddNode(eight);
 topLevel.GetRoot().Children[0].AddNode(nine);
 topLevel.GetRoot().Children[1].AddNode(six);
 topLevel.GetRoot().Children[1].Children[0].AddNode(seven);

 Console.WriteLine("Display Entire tree:");
 topLevel.GetRoot().PrintDepthFirst();

 Console.WriteLine("Display tree from node [two]:");
 topLevel.GetRoot().Children[0].PrintDepthFirst();

 Console.WriteLine("Depth First Search:");
 Console.WriteLine("topLevel.DepthFirstSearch(One): " +
 topLevel.GetRoot().DepthFirstSearch("One").GetValue().ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(Two): " +
 topLevel.GetRoot().DepthFirstSearch("Two").GetValue().ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(Three): " +
 topLevel.GetRoot().DepthFirstSearch("Three").GetValue().ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(Four): " +
 topLevel.GetRoot().DepthFirstSearch("Four").GetValue().ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(Five): " +
 topLevel.GetRoot().DepthFirstSearch("Five").GetValue().ToString());

 Console.WriteLine("\r\n\r\nBreadth First Search:");
 Console.WriteLine("topLevel.BreadthFirstSearch(One): " +
 topLevel.GetRoot().BreadthFirstSearch("One").GetValue().ToString());
 Console.WriteLine("topLevel.BreadthFirstSearch(Two): " +
 topLevel.GetRoot().BreadthFirstSearch("Two").GetValue().ToString());

 Console.WriteLine("topLevel.BreadthFirstSearch(Three): " +
 topLevel.GetRoot().BreadthFirstSearch("Three").GetValue().ToString());
 Console.WriteLine("topLevel.BreadthFirstSearch(Four): " +
 topLevel.GetRoot().BreadthFirstSearch("Four").GetValue().ToString());
}

Discussion

An n -ary tree is one that has no limitation on the number of children each parent node may contain.
This is in contrast to the binary tree in Recipe 10.6 , in which each parent node may only contain two
children nodes.

NTree is a simple class that contains only a constructor and three public methods. Through this

object, you can create an n -ary tree, set the root node, and obtain the root node in order to navigate
and manipulate the tree. An NTree object that can contain at most three children is created in the

following manner:

NTree topLevel = new NTree(3);

An NTree object that can contain at most int.MaxValue children, which allows greater flexibility, is

created in the following manner:

NTree topLevel = new NTree();

The real work is done in the NTreeNodeFactory object and the NTreeNode object, which is nested in
the NTreeNodeFactory class. The NTreeNodeFactor class is an object factory that facilitates the
construction of all NTreeNode objects. When the factory object is created, the NTree object is passed

in to the constructor, as shown here:

NTreeNodeFactory nodeFactory = new NTreeNodeFactory(topLevel);

Therefore, when the factory object is created, it knows the maximum number of children that a
parent node may have. The factory object provides an overloaded public method, CreateNode , that
allows for the creation of an NTreeNode object. If an IComparable type object is passed into this
method, the IComparable object will be contained within this new node in the Value field. If no
IComparable object is passed in, the new NTreeNode object will contain the IComparable object that
was passed in to the CreateNode method of the NTreeNodeFactory object the last time it was called,
or null if this is the first time this method has been called. Since the String object implements the
IComparable interface, it can be passed in to this parameter with no modifications. Passing in no
parameters allows the CreateNode method to be called within a loop to make it easier to create many

duplicate nodes at one time. Node creation is performed in the following manner:

NTreeNodeFactory.NTreeNode one = nodeFactory.CreateNode("One");
NTreeNodeFactory.NTreeNode two = nodeFactory.CreateNode("Two");
NTreeNodeFactory.NTreeNode three = nodeFactory.CreateNode("Three");
NTreeNodeFactory.NTreeNode four = nodeFactory.CreateNode("Four");
NTreeNodeFactory.NTreeNode five = nodeFactory.CreateNode("Five");
NTreeNodeFactory.NTreeNode six = nodeFactory.CreateNode("Six");
NTreeNodeFactory.NTreeNode seven = nodeFactory.CreateNode("Seven");
NTreeNodeFactory.NTreeNode eight = nodeFactory.CreateNode("Eight");
NTreeNodeFactory.NTreeNode nine = nodeFactory.CreateNode("Nine");

The NTreeNode class is nested within the factory class; it is not actually supposed to be used directly

to create a node object. Instead, the factory will create a node object and return it to the caller.
NTreeNode has one constructor that accepts an NTreeNodeFactory object. This factory object
exposes critical information used to initialize this instance of the NTreeNode object; namely, the
maximum number of child nodes allowed. This value is stored in the ChildNodes field of the
NTreeNode object. This object also contains a second field, Value , that is used to store an object that
implements the IComparable interface. It is this Value field that we use when we are searching the

tree for a particular item.

Adding a root node to the TopLevel NTree object is performed using the AddRoot method of the
NTree object:

topLevel.AddRoot(one);

Each NTreeNode object contains a field called ChildNodes . This field is an array containing all child

nodes attached to this parent node object. The maximum number of children-obtained from the
factory class-provides this number, which is used to create the fixed size array. This array is
initialized in the constructor of the NTreeNode object.

The following code shows how to add nodes to this tree:

// Add nodes to root
topLevel.GetRoot().AddNode(two);
topLevel.GetRoot().AddNode(three);
topLevel.GetRoot().AddNode(four);

// Add node to the first node Two of the root
topLevel.GetRoot().Children[0].AddNode(five);

// Add node to the previous node added, node five
topLevel.GetRoot().BreadthFirstSearch("Five").AddNode(six);

The searching method BreadthFirstSearch is constructed similar to the way the same method was
constructed for the binary tree in Recipe 9.14 . The DepthFirstSearch method is constructed a little

differently from the same method in the binary tree. This method uses recursion to search the tree,
but it uses a for loop to iterate over the array of child nodes, searching each one in turn. In addition,
the current node is checked first to determine whether it matches the targetObj parameter to this

method. This is a better-performing design, as opposed to moving this test to the end of the method.

If the RemoveNode method is successful, the array containing all child nodes of the current node is

compacted to prevent fragmentation, which allows nodes to be added later in a much simpler
manner. The AddNode method only has to add the child node to the end of this array as opposed to

searching the array for an open element. The following code shows how to remove a node:

// Remove all nodes below node 'Two'
// Nodes 'Five' and 'Six' are removed
topLevel.GetRoot().BreadthFirstSearch("Two").RemoveNode(0);

// Remove node 'Three' from the root node
topLevel.GetRoot().RemoveNode(1);

It is easy to modify the NTreeNodeFactory and NTreeNode classes to accept an object instead of an
IComparable type object. To do this:

1.

Search for every occurrence of IComparable and replace it with object .1.

Search for all occurrences of the CompareTo method and replace them with the == operator.2.

See Also

See the "Queue Class" and "IComparable Interface" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 10.8 Creating a Set Object

Problem

You need an object that contains a group of unordered objects. This object containing a set of data
must be able to be compared to other objects containing sets of data, as well as have the following
actions performed on them:

Union of the items contained by the two objects containing sets of data.

Intersection of the items contained by the two objects containing sets of data.

Difference of the items contained by the two objects containing sets of data.

Solution

Create a Set object, shown here:

using System;
using System.Collections;
using System.Text;

public class Set : IEnumerable
{
 private ArrayList internalSet = new ArrayList();

 public int Count
 {
 get {return (internalSet.Count);}
 }

 public object this[int index]
 {
 get
 {
 return (internalSet[index]);
 }
 set
 {
 if (internalSet.Contains(value))
 {
 throw (new ArgumentException(
 "Duplicate object cannot be added to this set."));

 }
 else
 {
 internalSet[index] = value;
 }
 }
 }

 public void Add(object obj)
 {
 if (internalSet.Contains(obj))
 {
 throw (new ArgumentException(
 "Duplicate object cannot be added to this set."));
 }
 else
 {
 internalSet.Add(obj);
 }
 }

 public void Remove(object obj)
 {
 if (internalSet.Contains(obj))
 {
 throw (new ArgumentException("Object cannot be removed from " +
 "this set because it does not exist in this set."));
 }
 else
 {
 internalSet.Remove(obj);
 }
 }

 public void RemoveAt(int index)
 {
 internalSet.RemoveAt(index);
 }

 public bool Contains(object obj)
 {
 return (internalSet.Contains(obj));
 }

 public static Set operator |(Set lhs, Set rhs)
 {
 return (lhs.UnionOf(rhs));
 }

 public Set UnionOf(Set set)
 {
 Set unionSet = new Set();

 Set sourceSet = null;
 Set mergeSet = null;

 if (set.Count > this.Count) // An optimization
 {
 sourceSet = set;
 mergeSet = this;
 }
 else
 {
 sourceSet = this;
 mergeSet = set;
 }

 // Initialize unionSet with the entire SourceSet
 for (int index = 0; index < sourceSet.Count; index++)
 {
 unionSet.Add(sourceSet.internalSet[index]);
 }

 // mergeSet OR sourceSet
 for (int index = 0; index < mergeSet.Count; index++)
 {
 if (!sourceSet.Contains(mergeSet.internalSet[index]))
 {
 unionSet.Add(mergeSet.internalSet[index]);
 }
 }

 return (unionSet);
 }

 public static Set operator &(Set lhs, Set rhs)
 {
 return (lhs.IntersectionOf(rhs));
 }

 public Set IntersectionOf(Set set)
 {
 Set intersectionSet = new Set();
 Set sourceSet = null;
 Set mergeSet = null;

 if (set.Count > this.Count) // An optimization
 {
 sourceSet = set;
 mergeSet = this;
 }
 else
 {
 sourceSet = this;
 mergeSet = set;

 }

 // mergeSet AND sourceSet
 for (int index = 0; index < mergeSet.Count; index++)
 {
 if (sourceSet.Contains(mergeSet.internalSet[index]))
 {
 intersectionSet.Add(mergeSet.internalSet[index]);
 }
 }

 return (intersectionSet);
 }

 public static Set operator ^(Set lhs, Set rhs)
 {
 return (lhs.DifferenceOf(rhs));
 }

 public Set DifferenceOf(Set set)
 {
 Set differenceSet = new Set();

 // mergeSet XOR sourceSet
 for (int index = 0; index < set.Count; index++)
 {
 if (!this.Contains(set.internalSet[index]))
 {
 differenceSet.Add(set.internalSet[index]);
 }
 }

 for (int index = 0; index < this.Count; index++)
 {
 if (!set.Contains(internalSet[index]))
 {
 differenceSet.Add(internalSet[index]);
 }
 }

 return (differenceSet);
 }

 public static bool operator ==(Set lhs, Set rhs)
 {
 return (lhs.Equals(rhs));
 }

 public static bool operator !=(Set lhs, Set rhs)
 {
 return (!lhs.Equals(rhs));
 }

 public override bool Equals(object obj)
 {
 bool isEquals = false;

 if (obj != null)
 {
 if (obj is Set)
 {
 if (this.Count == ((Set)obj).Count)
 {
 if (this.IsSubsetOf((Set)obj) &&
 ((Set)obj).IsSubsetOf(this))
 {
 isEquals = true;
 }
 }
 }
 }

 return (isEquals);
 }

 public override int GetHashCode()
 {
 return (internalSet.GetHashCode());
 }

 public bool IsSubsetOf(Set set)
 {
 for (int index = 0; index < this.Count; index++)
 {
 if (!set.Contains(internalSet[index]))
 {
 return (false);
 }
 }

 return (true);
 }

 public bool IsSupersetOf(Set set)
 {
 for (int index = 0; index < set.Count; index++)
 {
 if (!this.Contains(set.internalSet[index]))
 {
 return (false);
 }
 }

 return (true);

 }

 public string DisplaySet()
 {
 if (this.Count == 0)
 {
 return ("{}");
 }
 else
 {
 StringBuilder displayStr = new StringBuilder("{ ");

 for (int index = 0; index < (this.Count - 1); index++)
 {
 displayStr.Append(internalSet[index]);
 displayStr.Append(", ");
 }

 displayStr.Append(internalSet[internalSet.Count - 1]);
 displayStr.Append(" }");

 return (displayStr.ToString());
 }
 }

 public IEnumerator GetEnumerator()
 {
 return(new SetEnumerator(this));
 }

 // Nested enumerator class
 public class SetEnumerator : IEnumerator
 {
 public SetEnumerator(Set theSet)
 {
 setObj = theSet;
 }

 private Set setObj;
 private int index = -1;

 public bool MoveNext()
 {
 index++;
 if (index >= setObj.Count)
 {
 return(false);
 }
 else
 {
 return(true);
 }

 }

 public void Reset()
 {
 index = -1;
 }

 public object Current
 {
 get{return(setObj[index]);}
 }
 }
}

The methods defined in Table 10-9 are of particular interest to using a Set object.

Table 10-9. Members of the Set class

Member Description

Count property

Read-only property to return the number of objects within this Set object.

Its syntax is:

int Count {get;}

Indexer

Allows the Set object to operate in a manner similar to an array. Its syntax

is:

this[int index] {get; set;}

Add method

Add a new object to the current Set object. Its syntax is:

Add(object obj)

where obj is the object to add to this Set.

Remove method

Removes an existing object from the current Set object. Its syntax is:

Remove(object obj)

where obj is the object to remove from this Set.

RemoveAt method

Removes an existing object from the current Set object using an index. Its

syntax is:

Add(int index)

where index is the index where the object to be removed is stored.

Returns a Boolean indicating whether the object passed in exists within this
Set object. If a true is returned, the object exists; otherwise, it does not.

Member Description

Contains method

Set object. If a true is returned, the object exists; otherwise, it does not.

Its syntax is:

Contains(int obj)

where obj is the object to be searched for.

BinarySearch

method

Returns the object searched for, if the object passed in exists within this Set

object. Its syntax is:

BinarySearch(int obj)

where obj is the object to be searched for.

UnionOf method

Performs a union operation on the current Set object and a second Set
object. A new Set object is returned containing the union of these two Set

objects. Its syntax is:

UnionOf(Set set)

where set is the second Set object.

Overloaded |

operator
This operator delegates its work to the UnionOf method.

IntersectionOf

method

Performs an intersection operation on the current Set object and a second
Set object. A new Set object is returned containing the intersection of these
two Set objects. Its syntax is:

IntersectionOf(Set set)

where set is the second Set object.

Overloaded &

operator
This operator delegates its work to the IntersectionOf method.

DifferenceOf

method

Performs a difference operation on the current Set object and a second Set
object. A new Set object is returned containing the difference of these two
Set objects. Its syntax is:

DifferenceOf(Set set)

where set is the second Set object.

Overloaded ̂

operator
This operator delegates its work to the DifferenceOf method.

Overloaded Equals

method

Returns a Boolean indicating whether a second Set object is equal to the
current Set object. Its syntax is:

Equals(object obj)

where obj is the second Set object.

Contains method

Set object. If a true is returned, the object exists; otherwise, it does not.

Its syntax is:

Contains(int obj)

where obj is the object to be searched for.

BinarySearch

method

Returns the object searched for, if the object passed in exists within this Set

object. Its syntax is:

BinarySearch(int obj)

where obj is the object to be searched for.

UnionOf method

Performs a union operation on the current Set object and a second Set
object. A new Set object is returned containing the union of these two Set

objects. Its syntax is:

UnionOf(Set set)

where set is the second Set object.

Overloaded |

operator
This operator delegates its work to the UnionOf method.

IntersectionOf

method

Performs an intersection operation on the current Set object and a second
Set object. A new Set object is returned containing the intersection of these
two Set objects. Its syntax is:

IntersectionOf(Set set)

where set is the second Set object.

Overloaded &

operator
This operator delegates its work to the IntersectionOf method.

DifferenceOf

method

Performs a difference operation on the current Set object and a second Set
object. A new Set object is returned containing the difference of these two
Set objects. Its syntax is:

DifferenceOf(Set set)

where set is the second Set object.

Overloaded ̂

operator
This operator delegates its work to the DifferenceOf method.

Overloaded Equals

method

Returns a Boolean indicating whether a second Set object is equal to the
current Set object. Its syntax is:

Equals(object obj)

where obj is the second Set object.

Member Description

Overloaded ==

operator
This operator delegates its work to the Equals method.

Overloaded !=

operator

This operator delegates its work to the Equals method. However, this
operator takes the inverse of the Boolean returned from the Equals method

and returns this new value.

Overridden
GetHashCode method

Returns the hash code of the internal ArrayList used to hold the objects
contained in this Set object. Its syntax is:

GetHashCode()

IsSubsetOf method

Returns a Boolean indicating whether the current Set object is a subset of a
second Set object. Its syntax is:

IsSubsetOf(Set set)

where set is the second Set object.

IsSupersetOf

method

Returns a Boolean indicating whether the current Set object is a superset of
a second Set object. Its syntax is:

IsSupersetOf(Set set)

where set is the second Set object.

DisplaySet method

Displays all objects within the current Set object in the following format:

{Obj1, Obj2, Obj3, ...}

Its syntax is:

DisplaySet()

The following code illustrates the use of the Set class:

public static void TestSet()
{
 Set set1 = new Set();
 Set set2 = new Set();
 Set set3 = new Set();

 set1.Add(1);
 set1.Add(2);
 set1.Add(3);
 set1.Add(4);
 set1.Add(5);
 set1.Add(6);

 set2.Add(-10);
 set2.Add(2);
 set2.Add(40);

Overloaded ==

operator
This operator delegates its work to the Equals method.

Overloaded !=

operator

This operator delegates its work to the Equals method. However, this
operator takes the inverse of the Boolean returned from the Equals method

and returns this new value.

Overridden
GetHashCode method

Returns the hash code of the internal ArrayList used to hold the objects
contained in this Set object. Its syntax is:

GetHashCode()

IsSubsetOf method

Returns a Boolean indicating whether the current Set object is a subset of a
second Set object. Its syntax is:

IsSubsetOf(Set set)

where set is the second Set object.

IsSupersetOf

method

Returns a Boolean indicating whether the current Set object is a superset of
a second Set object. Its syntax is:

IsSupersetOf(Set set)

where set is the second Set object.

DisplaySet method

Displays all objects within the current Set object in the following format:

{Obj1, Obj2, Obj3, ...}

Its syntax is:

DisplaySet()

The following code illustrates the use of the Set class:

public static void TestSet()
{
 Set set1 = new Set();
 Set set2 = new Set();
 Set set3 = new Set();

 set1.Add(1);
 set1.Add(2);
 set1.Add(3);
 set1.Add(4);
 set1.Add(5);
 set1.Add(6);

 set2.Add(-10);
 set2.Add(2);
 set2.Add(40);

 set3.Add(3);
 set3.Add(6);

 foreach (object o in set2)
 {
 Console.WriteLine(o.ToString());
 }

 Console.WriteLine("set1.Contains(2): " + set1.Contains(2));
 Console.WriteLine("set1.Contains(0): " + set1.Contains(0));

 Console.WriteLine("\r\nset1.Count: " + set1.Count);
 Console.WriteLine();
 Console.WriteLine("set1.DisplaySet: " + set1.DisplaySet());
 Console.WriteLine("set2.DisplaySet: " + set2.DisplaySet());
 Console.WriteLine("set3.DisplaySet: " + set3.DisplaySet());
 Console.WriteLine();
 Console.WriteLine("set1.UnionOf(set2): " +
 set1.UnionOf(set2).DisplaySet());
 Console.WriteLine("set1.IntersectionOf(set2): " +
 set1.IntersectionOf(set2).DisplaySet());
 Console.WriteLine("set1.DifferenceOf(set2): " +
 set1.DifferenceOf(set2).DisplaySet());
 Console.WriteLine("set1 | set2: " + (set1 | set2).DisplaySet());
 Console.WriteLine("set1 & set2: " + (set1 & set2).DisplaySet());
 Console.WriteLine("set1 ^ set2: " + (set1 ^ set2).DisplaySet());
 Console.WriteLine("set1.Equals(set2): " + set1.Equals(set2));
 Console.WriteLine("set1 == set2: " + (set1 == set2));
 Console.WriteLine("set1 != set2: " + (set1 != set2));
 Console.WriteLine("set1.IsSubsetOf(set2): " + set1.IsSubsetOf(set2));
 Console.WriteLine("set1.IsSupersetOf(set2): " + set1.IsSupersetOf(set2));
 Console.WriteLine();
 Console.WriteLine("set2.UnionOf(set1): " +
 set2.UnionOf(set1).DisplaySet());
 Console.WriteLine("set2.IntersectionOf(set1): " +
 set2.IntersectionOf(set1).DisplaySet());
 Console.WriteLine("set2.DifferenceOf(set1): " +
 set2.DifferenceOf(set1).DisplaySet());
 Console.WriteLine("set2.Equals(set1): " + set2.Equals(set1));
 Console.WriteLine("set2 == set1): " + (set2 == set1));
 Console.WriteLine("set2 != set1): " + (set2 != set1));
 Console.WriteLine("set2.IsSubsetOf(set1): " + set2.IsSubsetOf(set1));
 Console.WriteLine("set2.IsSupersetOf(set1): " + set2.IsSupersetOf(set1));
 Console.WriteLine();
 Console.WriteLine("set3.UnionOf(set1): " +
 set3.UnionOf(set1).DisplaySet());
 Console.WriteLine("set3.IntersectionOf(set1): " +
 set3.IntersectionOf(set1).DisplaySet());
 Console.WriteLine("set3.DifferenceOf(set1): " +
 set3.DifferenceOf(set1).DisplaySet());
 Console.WriteLine("set3.Equals(set1): " + set3.Equals(set1));
 Console.WriteLine("set3 == set1: " + (set3 == set1));

 Console.WriteLine("set3 != set1: " + (set3 != set1));
 Console.WriteLine("set3.IsSubsetOf(set1): " + set3.IsSubsetOf(set1));
 Console.WriteLine("set3.IsSupersetOf(set1): " + set3.IsSupersetOf(set1));
 Console.WriteLine("set1.IsSubsetOf(set3): " + set1.IsSubsetOf(set3));
 Console.WriteLine("set1.IsSupersetOf(set3): " + set1.IsSupersetOf(set3));
 Console.WriteLine();
 Console.WriteLine("set3.UnionOf(set2): " +
 set3.UnionOf(set2).DisplaySet());
 Console.WriteLine("set3.IntersectionOf(set2): " +
 set3.IntersectionOf(set2).DisplaySet());
 Console.WriteLine("set3.DifferenceOf(set2): " +
 set3.DifferenceOf(set2).DisplaySet());
 Console.WriteLine("set3 | set2: " + (set3 | set2).DisplaySet());
 Console.WriteLine("set3 & set2: " + (set3 & set2).DisplaySet());
 Console.WriteLine("set3 ^ set2: " + (set3 ^ set2).DisplaySet());
 Console.WriteLine("set3.Equals(set2): " + set3.Equals(set2));
 Console.WriteLine("set3 == set2: " + (set3 == set2));
 Console.WriteLine("set3 != set2: " + (set3 != set2));
 Console.WriteLine("set3.IsSubsetOf(set2): " + set3.IsSubsetOf(set2));
 Console.WriteLine("set3.IsSupersetOf(set2): " + set3.IsSupersetOf(set2));
 Console.WriteLine();
 Console.WriteLine("set3.Equals(set3): " + set3.Equals(set3));
 Console.WriteLine("set3 == set3: " + (set3 == set3));
 Console.WriteLine("set3 != set3: " + (set3 != set3));
 Console.WriteLine("set3.IsSubsetOf(set3): " + set3.IsSubsetOf(set3));
 Console.WriteLine("set3.IsSupersetOf(set3): " + set3.IsSupersetOf(set3));

 Console.WriteLine("set1[1]: " + set1[1].ToString());
 set1[1] = 100;

 set1.RemoveAt(1);
 set1.RemoveAt(2);
 Console.WriteLine("set1: " + set1.DisplaySet());
}

Discussion

Sets are containers that hold a group of homogeneous object types. Various mathematical operations
can be performed on sets, including the following:

Union

(A B)

Combines all elements of set A and set B into a resulting Set object. If an object exists in both
sets, the resulting unioned Set object contains only one of those elements, not both.

Intersection

(A B)

Combines all elements of set A and set B that are common to both A and B into a resulting Set

object. If an object exists in one set and not the other, the element is not added to the
intersectioned Set object.

Difference

(A-B)

Combines all elements of set A, except for the elements that are also members of set B, into a
resulting Set object. If an object exists in both sets A and B, it is not added to the final
differenced Set object. The difference is equivalent to taking the union of both sets and the

intersection of both sets and then removing all elements in the unioned set that exist in the
intersectioned set.

Subset

(A B)

Returns true if all elements of set A are contained in a second set B; otherwise, it returns
false. Set B may contain elements not found in A.

Superset

(A B)

Returns true if all elements of set A are contained in a second set B; otherwise, it returns
false. Set A may contain elements not found in B.

Equivalence

(A == B)

Returns true if both Set objects contain the same number and value of each element;

otherwise, it returns false. This is equivalent to stating that (A B) and (B A).
Nonequivalence is defined by the != operator. Note that the .NET Equals method could be

used to test for equivalence.

The Set class wraps an ArrayList (InternalSet), which contains all elements of that set. Many of
the methods exposed by the Set class are delegated to the internalSet ArrayList. Of these wrapped
methods, the Add method requires some discussion. This method prevents a duplicate object from
being added to the Set object. This is a property of sets-no set may contain duplicate elements at

any time. Calling the Contains method of the internalSet ArrayList, to determine whether the
new object is already contained in this Set object, performs this check. This check is also performed
in the set accessor of the indexer. The following code creates and populates two Set objects:

Set set1 = new Set();
Set set2 = new Set();

set1.Add(1);
set1.Add(2);
set1.Add(3);
set1.Add(4);
set1.Add(5);
set1.Add(6);

set2.Add(-10);
set2.Add(2);
set2.Add(40);

The union operation can be performed in one of two ways. The first is to use the UnionOf method
and pass in a Set with which to union this Set. The Set class also overrides the | operator to provide
this same functionality. Notice that the OR operator is shorthand for the union operation. Essentially,
the resulting set contains elements that exist in either of the two Set objects or both Set objects.

The following code shows how both of these operations are performed:

Set resultingUnionSet = set1.UnionOf(set2);
resultingUnionSet = set1 | set2;

The intersection operation is set up similarly to the union operation. There are two ways to perform
an intersection between two Set objects: the first is to use the IntersectionOf method; and the
second is to use the overloaded & operator. Once again, notice that the logic of the AND operator is
the same as the intersection operation. Essentially, an element must be in both Set A and Set B in
order for it to be placed in the resulting Set object. The following code demonstrates the intersection

operation:

Set resultingIntersectSet = set1.IntersectionOf(set2);
resultingIntersectSet = set1 & set2;

The difference operation is performed either through the overloaded ̂ operator or the DifferenceOf
method. Notice that the XOR operation is similar to taking the difference of two sets. Essentially, only

elements in either set, but not both, are placed in the resulting set. The following code demonstrates
the difference operation:

Set resultingDiffSet = set1.DifferenceOf(set2);
resultingDiffSet = set1 ^ set2;

The subset operation is only performed through a single method called IsSubsetOf. The superset
operation is also performed using a single method called IsSupersetOf. The following code

demonstrates these two operations:

bool isSubset = set1.IsSubsetOf(set2);
bool isSuperset = set1.IsSupersetOf(set2);

The equivalence operation is performed using either the overloaded == operator or the Equals

method. Since the == operator was overloaded, the != operator must also be overloaded. The !=
operator returns the inverse of the == operator or Equals method. The following code demonstrates

these three operations:

bool isEqual = set1.Equals(set2);
isEqual = set1 == set2;
bool isNotEqual = set1 != set2;

See Also

See the "ArrayList Class," "Overloadable Operators," and "Operator Overloading Tutorial" topics in
the MSDN documentation.

[Team LiB]

[Team LiB]

Chapter 11. Filesystem I/O
This chapter deals with the filesystem in four distinct ways. The first set of recipes looks at typical file
interactions like creation, reading and writing, deletion, attributes, encoding methods for character
data, and how to select the correct way (based on usage) to access files via streams. The second set
looks at directory- or folder-based programming tasks like file creation as well as renaming, deleting,
and determining attributes. The third set deals with the parsing of paths and the use of temporary
files and paths, and the fourth set deals with more advanced topics in filesystem I/O, like
asynchronous reads and writes, monitoring for certain filesystem actions, version information in files,
and using P/Invoke to perform file I/O.

The file interactions section comes first since it sets the stage for many of the recipes in the
temporary file and advanced sections. This is foundational knowledge that will help you understand
the other file I/O recipes and how to modify them for your purposes. The various file and directory
I/O techniques are used throughout the more advanced examples to help show a couple of different
ways to approach the problems you will encounter working with filesystem I/O.

Unless otherwise specified, you need the following using statements in any program that uses

snippets or methods from this chapter:

using System;
using System.IO;

[Team LiB]

[Team LiB]

Recipe 11.1 Creating, Copying, Moving, and Deleting a
File

Problem

You need to create a new file, copy an existing file, move an existing file, or delete a file.

Solution

The System.IO namespace contains two classes to perform these actions: the File and FileInfo
classes. The File class contains only static methods, while the FileInfo class contains only instance

methods.

File 's static Create method returns an instance of the FileStream class, which you can use to read
from or write to the newly created file. For example, the following code uses the static Create
method of the File class to create a new file:

FileStream fileStream = null;
if (!File.Exists(@"c:\delete\test\test.txt"))
{
 fileStream = File.Create(@"c:\delete\test\test.txt");
}

The Create instance method of the FileInfo class takes no parameters. You should supply the path
with a filename as the only parameter to the FileInfo class constructor. The method returns an
instance of the FileStream class that you can use to read from or write to the newly created file. For
example, the following code uses the Create instance method of the FileInfo class to create a new

file:

FileInfo fileInfo = null;
FileStream fileStream = null;
if (!File.Exists (@"c:\delete\test\test.txt"))
{
 fileInfo = new FileInfo(@"c:\delete\test\test.txt");
 fileStream = fileInfo.Create();
}

You can copy a file using the overloaded static File.Copy method that returns void. The third
parameter of one of the overrides for this function allows you to pass true or false depending upon

whether you want to overwrite an existing destination file, as shown in the following code, which uses
the static Copy method of the File class to copy a file:

if (File.Exists(@"c:\delete\test\test.txt"))

{
 File.Copy(@"c:\delete\test\test.txt ",
 Directory.GetCurrentDirectory() + @"\test.txt", true);
}

The overloaded CopyTo instance method returns a FileInfo object that represents the newly copied

file. This method can also take a Boolean in one of the overrides to signify your intent to overwrite an
existing file. For example, the following code uses the CopyTo instance method of the FileInfo class

to copy a file:

FileInfo fileInfo = new FileInfo(@"c:\delete\test\test.txt");
fileInfo.CopyTo(@"c:\test.txt", true);

You can move a file using the static Move method of the File class, which returns void. For example,
the following code uses the static Move method to move a file after checking for its existence:

if (!File.Exists(Directory.GetCurrentDirectory() + @"\test.txt"))
{
 File.Move(@"c:\delete\test\test.txt ",
 Directory.GetCurrentDirectory() + @"\test.txt");
}

The MoveTo instance method returns void and is the way to move a file using the FileInfo class.
For example, the following code moves a file using the MoveTo instance method of the FileInfo class

after checking for the file's existence:

FileInfo fileInfo = new FileInfo(@"c:\delete\test\test.txt");
if (!File.Exists(@"c:\test.txt "))
{
 fileInfo.MoveTo(@"c:\test.txt ");
}

You can delete a file using the static Delete method of the File class that returns void. For
example, the following code uses the static Delete method to delete a file:

if (File.Exists(Directory.GetCurrentDirectory() + @"\test.txt"))
{
 File.Delete(Directory.GetCurrentDirectory() + @"\test.txt", true);
}

The Delete instance method on the FileInfo class takes no parameters and returns void. For
example, the following code uses the Delete instance method of the FileInfo class to delete a file:

if(File.Exists(@"c:\delete\test\test.txt")
{
 FileInfo fileInfo = new FileInfo(@"c:\delete\test\test.txt");
 fileInfo.Delete();
}

Discussion

Whether you choose to call the static file operation methods or the instance file operation methods

depends on what you are trying to accomplish. If you need a quick way of creating, moving, copying,
or deleting a file, consider using the static methods. If you will be performing multiple operations on a
file, such as creating, moving, and changing its attributes, you should consider the instance methods
of the FileInfo class. Another consideration is that static methods on a class do not require an

object to be created on the managed heap and subsequently destroyed by the garbage collector.
Instance methods require an object to be created before the methods can be called. If you are trying
to minimize the number of objects the garbage collector has to manage, consider using static
methods.

A few items to note when using the file functions:

If the directory doesn't exist, the method won't create it and you'll get an exception. See how to
check whether a directory exists in Recipe 11.4.

If no path is provided, the file will land in the current working directory. If the user does not
have permission to write to the current working directory (such as the case of a normal user
writing to the Program Files directory), this will result in an UnauthorizedAccessException.

If a relative path is provided (for example, C:\dir1\dir2\..\..\file.txt), it will be evaluated
properly.

If an absolute path is provided, the method will succeed as expected.

When creating a new file, you should first determine whether that file already exists. This is a good
idea since the default creation behavior of the file classes is to either overwrite the existing file
silently or, if the file is read-only, to throw an exception. The File and FileInfo classes both contain
a method, Exists, to perform this operation. Once it is determined that the file does not exist, we
can create it using either the static or instance Create methods. Note that this does leave a small

window open between the time you checked and the time that the creation starts, so it is not a
replacement for proper exception and error handling of the Create call.

See Also

See the "File Class" and "FileInfo Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 11.2 Manipulating File Attributes

Problem

You need to display or manipulate a file's attributes or timestamps.

Solution

To display a file's timestamps, you can use either the static methods of the File class or the instance
properties of the FileInfo class. The static methods are GetCreationTime, GetLastAccessTime,
and GetLastWriteTime. Each has a single parameter, the path and name of the file whose
timestamp information is to be returned, and returns a DateTime value containing the relevant

timestamp. For example:

public void DisplayFileAttr(string path)
{
 Console.WriteLine(File.GetCreationTime(path).ToString());
 Console.WriteLine(File.GetLastAccessTime(path).ToString());
 Console.WriteLine(File.GetLastWriteTime(path).ToString());
}

The instance properties of the FileInfo class are CreationTime, LastAccessTime, and
LastWriteTime. Each returns a DateTime value containing the respective timestamp of the file
represented by the FileInfo object. The following code illustrates their use:

public void DisplayFileAttr(string path)
{
 FileInfo fileInfo = new FileInfo(path);

 Console.WriteLine(fileInfo.CreationTime.ToString());
 Console.WriteLine(fileInfo.LastAccessTime.ToString());
 Console.WriteLine(fileInfo.LastWriteTime.ToString());
}

To modify a file's timestamps, you can use either the static methods of the File class or the instance
properties of the FileInfo class. The static methods are SetCreationTime, SetLastAccessTime,
and SetLastWriteTime. All of them take the path and name of the file whose timestamp is to be
modified as the first parameter and a DateTime value containing the new timestamp as the second,
and each returns void. For example:

public void ModifyFileAttr(string path)
{
 File.SetCreationTime(path, DateTime.Parse(@"May 10, 2003"));
 File.SetLastAccessTime(path, DateTime.Parse(@"May 10, 2003"));

 File.SetLastWriteTime(path, DateTime.Parse(@"May 10, 2003"));
}

The instance properties are the same as the properties used to display timestamp information:
CreationTime, LastAccessTime, or LastWriteTime. To set the timestamp, assign a value of type
DateTime to the relevant timestamp property. For example:

public void ModifyFileAttr(string path)
{
 FileInfo fileInfo = new FileInfo(path);

 DateTime dt = new DateTime(2001,2,8);
 fileInfo.CreationTime = dt;
 fileInfo.LastAccessTime = dt;
 fileInfo.LastWriteTime = dt;
}

To display or modify a file's attributes, use the instance Attributes property. The property's value is
a bitmask consisting of one or more members of the FileAttributes enumeration. For example, the

following code:

public void ViewModifyFileAttr(string path, FileAttributes fileAttribute)
{
 if(File.Exists(path)
 {
 FileInfo fileInfo = new FileInfo(path);

 // Display this file's attributes
 Console.WriteLine(fileInfo.Attributes.ToString());

 // Display whether this file is hidden
 Console.WriteLine("Is file hidden? = " +
 ((fileInfo.Attributes & FileAttributes.Hidden) == FileAttributes.Hidden));

 // Modify this file's attributes
 fileInfo.Attributes |= FileAttributes.Hidden;
 }
}

Discussion

One of the easier methods of creating a DateTime object is to use the static DateTime.Parse
method. This method accepts a string defining a particular date and is converted to a DateTime

object.

In addition to timestamp information, a file's attributes may also be obtained and modified. This is
accomplished through the use of the public instance Attributes property found on a FileInfo
object. This property returns or modifies a FileAttributes enumeration. The FileAttributes

enumeration is made up of bit flags that can be turned on or off through the use of the bitwise
operators &, |, or ^.

Table 11-1 lists each of the flags in the FileAttributes enumeration.

Table 11-1. FileAttributes enumeration values

Member name Description

Archive Represents the file's archive status that marks the file for backup or removal.

Compressed Indicates that the file is compressed.

Device This option is reserved for future use.

Directory Indicates that this is a directory.

Encrypted
Indicates that a file or directory is encrypted. In the case of a file, its contents
are encrypted. In the case of a directory, newly created files will be encrypted
by default.

Hidden Indicates a hidden file.

Normal
Indicates that the file has no other attributes, and, as such, this attribute
cannot be used in combination with others.

NotContentIndexed Indicates that the file is excluded from the content index service.

Offline
Indicates that the state of the file is offline, and its contents will be
unavailable.

ReadOnly Indicates that the file is read-only.

ReparsePoint Indicates a reparse point, a block of data associated with a directory or file.

SparseFile
Indicates a sparse file, which may take up less space on the filesystem than
its reported size because zeros in the file are not actually allocated on-disk.

System Indicates that the file is a system file.

Temporary Indicates a temporary file. It may reside entirely in memory.

In many cases, more than one of these flags can be set at one time, but see the description for the
Normal flag, which must be used alone.

See Also

See the "File Class," "FileInfo Class," and "FileAttributes Enumeration" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 11.3 Renaming a File

Problem

You need to rename a file.

Solution

With all of the bells and whistles hanging off of the .NET Framework, you would figure that renaming
a file is easy. Unfortunately, there is no specific rename method that can be used to rename a file.
Instead, you can use the static Move method of the File class or the instance MoveTo method of the
FileInfo class. The static File.Move method can be used to rename a file in the following manner:

public void RenameFile(string originalName, string newName)
{
 File.Move(originalName, newName);
}

This code has the effect of renaming the originalName file to the newName file.

The FileInfo.MoveTo instance method can also be used to rename a file in the following manner:

public void RenameFile(FileInfo originalFile, string newName)
{
 originalFile.MoveTo(newName);
}

Discussion

The Move and MoveTo methods allow a file to be moved to a different location, but they can also be
used to rename files. For example, you could use RenameFile to rename a file from foo.txt to

bar.dat:

RenameFile("foo.txt","bar.dat");

You could also use fully qualified paths to rename them:

RenameFile("c:\mydir\foo.txt","c:\mydir\bar.dat");

See Also

See the "File Class" and "FileInfo Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 11.4 Determining Whether a File Exists

Problem

You need to determine whether a file exists prior to creating or performing an action on that file.

Solution

Use the static Exists method of the File class to determine whether a file currently exists:

if (File.Exists(@"c:\delete\test\test.txt"))
{
 // Operate on that file here
}

Discussion

Determining whether a file exists is often critical to your code. If a file exists and you try to create it
using one of the file creation methods, one of three things will happen: either the existing file will be
overwritten; or, if the file is read-only, an exception will be thrown; or, an exception will be thrown
indicating that the state of the filesystem is not what you think it is. There is a small window between
the Exists call and the actions you take where another process could change the filesystem, so you

should be prepared for that with proper exception handling.

See Also

See the "File Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 11.5 Choosing a Method of Opening a File or Stream
for Reading and/or Writing

Problem

When you are first learning the .NET Framework-and even for some time after-the proper way to read
to, write from, or otherwise interact with files can be unclear because the framework provides so many
different ways of attacking this problem. How should you determine which approach fits your scenario?

Solution

Use file streams to perform various file functions. There are five basic types of built-in file stream
manipulation classes that you can use in order to read and/or write to the file stream:

FileStream

For the most fine-grained control, use FileStream for file manipulation since it provides the most

low-level access to the file, and, therefore, the most complex actions become available. Some of
these actions are reading and writing files in both synchronous and asynchronous fashions,
methods to lock and unlock part or all of a file, seek a particular position in a file, or even read the
file as a stream of either characters or bytes.

StreamReader

This type is derived from the abstract base class TextReader . The StreamReader class is designed

for reading character or string input from a file. This class contains methods to read single
characters, blocks of characters, lines of characters, or even the whole file into a single string
variable.

StreamWriter

This class derives from the TextWriter class. It is designed for writing character or string output to

a file. This class contains methods to write single characters or lines of characters.

BinaryReader

This type is derived from the Object class, as is the BinaryWriter class. It is designed for reading

primitive data types-including byte or char data-from a file. This class contains methods to read
any of the simple types (int , long , float , etc.), including char arrays and byte arrays.

BinaryWriter

This type derives from the Object class. It is designed for writing primitive data types-including
byte or char data-to a file. This class contains methods to write any of the primitive types (int ,
long , float , etc.), including char arrays and byte arrays.

There are other stream readers and writers (XmlTextReader /Writer , StringReader /Writer) that can

also perform file stream functions but at a higher level. This recipe is meant to give you a more
fundamental approach to file operations.

Here are a few examples of using the various built-in streams:

// create a temp file to work with
string tempFile = Path.GetTempFileName();

// FileStream
FileStream fileStream = null;
try
{
 // open the file
 fileStream = File.Open(tempFile,FileMode.Append);

 string text = "Hello World ";
 byte [] bytes = Encoding.ASCII.GetBytes(text.ToCharArray());

 // write to the file
 fileStream.Write(bytes,0,bytes.Length);
}
finally
{
 //make sure the file is closed if it was opened
 if(fileStream != null)
 fileStream.Close();
}

// StreamReader
StreamReader streamReader = null;
try
{
 streamReader = new StreamReader(tempFile);
 char[] chars = new char[64];
 // read a block of characters
 streamReader.Read(chars,0,64);
 string charsFound = new string(chars);
 Console.WriteLine("Chars in stream {0}",charsFound);
}
finally
{

 if(streamReader != null)
 streamReader.Close();
}

// StreamWriter
StreamWriter streamWriter = null;
try
{
 // open for append
 streamWriter = new StreamWriter(tempFile,true);
 // append some text
 streamWriter.WriteLine(", It's the StreamWriter!");
}
finally
{
 if(streamWriter != null)
 streamWriter.Close();
}

// BinaryWriter
BinaryWriter binaryWriter = null;
long pos = 0;
int twentyFive = 25;
try
{
 // start up the binary writer with the base stream from the streamwriter
 // since it is open
 binaryWriter = new BinaryWriter(streamWriter.BaseStream);
 // move to end
 pos = binaryWriter.Seek(0, SeekOrigin.End);
 // write out 25
 binaryWriter.Write(twentyFive);
}
finally
{
 // close up
 if(binaryWriter != null)
 binaryWriter.Close();
}

// BinaryReader
StreamReader streamReader2 = null;
BinaryReader binaryReader = null;
try
{
 // open a new reader
 streamReader2 = new StreamReader(tempFile);
 binaryReader = new BinaryReader(streamReader2.BaseStream);

 // advance the stream to the number we stored
 for(long i=0;i<pos;i++)
 binaryReader.ReadByte();

 // read our number (should be 25)
 int num = binaryReader.ReadInt32();
 // is this the same number...?
 if(num == twentyFive)
 Console.WriteLine("Successfully read 25 back from stream");
 else
 Console.WriteLine("Failed to successfully read 25 back from stream");
}
finally
{
 // close up
 if(binaryReader != null)
 binaryReader.Close();
 // close stream
 if(streamReader2 != null)
 streamReader2.Close();
}

Discussion

There are many different ways to create a stream. First, we will examine the FileStream class, referring
to useful recipes that will help create objects of this type. We will then look at the StreamWriter and
StreamReader classes, followed by the BinaryWriter and BinaryReader classes.

The most straightforward method of creating an object is to use the new keyword. The FileStream class
has several overloaded class constructors that enable creating a new FileStream from scratch. The
FileStream 's constructor enables a new FileStream object to be created from either a filename or a file

handle. See Recipe 11.19 .

The FileStream constructor can also accept a FileAccess , FileMode , and/or FileShare enumeration

value. These enumeration values are defined in Tables Table 11-2 , Table 11-3 , and Table 11-4 ,
respectively.

Table 11-2. FileMode enumeration values

Value name Definition Specifics

Append

Opens an existing file and
prepares it to be written to,
starting at the end of the file.
If the file does not exist, a
new zero-length file is
created.

This value can be used only in tandem with the
FileAccess.Write enumeration value; otherwise, an
ArgumentException is thrown.

Create
Creates a new file. If the
specified file exists, it is
truncated.

If you do not wish to lose data, consider employing the
CreateNew enumeration value instead. This value can be
used only in tandem with the FileAccess.Write or
FileAccess.ReadWrite enumeration values; otherwise,
an ArgumentException is thrown.

Value name Definition Specifics

CreateNew Creates a new file.

An IOException is thrown if the file already exists. This

prevents accidental data loss. This value can be used
only in tandem with the FileAccess.Write or
FileAccess.ReadWrite enumeration values; otherwise,
an ArgumentException is thrown.

Open Opens an existing file.

A FileNotFoundException is thrown if the file does not
exist. Use OpenOrCreate if it is possible that the file

might not already exist.

OpenOrCreate
Opens a file if it exists or
creates a new one if it does
not exist.

Consider using Open if you expect the file to always exist
before it is opened. An ArgumentException is not

thrown if this enumeration value is used in tandem with
the FileAccess.Read enumeration value.

Truncate
Opens an existing file and
deletes all information in that
file.

A FileNotFoundException is thrown if the file does not

exist. This value can be used in tandem with the
FileAccess.Write or FileAccess.ReadWrite
enumeration values; otherwise, an ArgumentException

is thrown.

Table 11-3. FileAccess enumeration values

Value
name

Definition

Read Allows data only to be read from a file.

ReadWrite
Allows data to be read from and written to a file. Same as FileAccess.Read |
FileAccess.Write .

Write Allows data only to be written to a file.

Table 11-4. FileShare enumeration values

Value name Definition

Inheritable Not supported in Win32.

None
The file cannot be accessed (read from or written to) or deleted by this or any other
process.

Read The file cannot be written to or deleted by this or any other process. It can be read from.

Write The file cannot be read from or deleted by this or any other process. It can be written to.

ReadWrite
The file can be read from or written to by this or any other process. The file still cannot
be deleted while it is being shared in this mode. Same as using FileShare.Read |
FileShare.Write .

CreateNew Creates a new file.

An IOException is thrown if the file already exists. This

prevents accidental data loss. This value can be used
only in tandem with the FileAccess.Write or
FileAccess.ReadWrite enumeration values; otherwise,
an ArgumentException is thrown.

Open Opens an existing file.

A FileNotFoundException is thrown if the file does not
exist. Use OpenOrCreate if it is possible that the file

might not already exist.

OpenOrCreate
Opens a file if it exists or
creates a new one if it does
not exist.

Consider using Open if you expect the file to always exist
before it is opened. An ArgumentException is not

thrown if this enumeration value is used in tandem with
the FileAccess.Read enumeration value.

Truncate
Opens an existing file and
deletes all information in that
file.

A FileNotFoundException is thrown if the file does not

exist. This value can be used in tandem with the
FileAccess.Write or FileAccess.ReadWrite
enumeration values; otherwise, an ArgumentException

is thrown.

Table 11-3. FileAccess enumeration values

Value
name

Definition

Read Allows data only to be read from a file.

ReadWrite
Allows data to be read from and written to a file. Same as FileAccess.Read |
FileAccess.Write .

Write Allows data only to be written to a file.

Table 11-4. FileShare enumeration values

Value name Definition

Inheritable Not supported in Win32.

None
The file cannot be accessed (read from or written to) or deleted by this or any other
process.

Read The file cannot be written to or deleted by this or any other process. It can be read from.

Write The file cannot be read from or deleted by this or any other process. It can be written to.

ReadWrite
The file can be read from or written to by this or any other process. The file still cannot
be deleted while it is being shared in this mode. Same as using FileShare.Read |
FileShare.Write .

In addition to these enumerations that define how a file is opened, the FileStream constructor allows

you to define whether this stream will be opened in a synchronous or asynchronous manner. This is the
only class-of the ones discussed in this chapter-that allows a file to be opened in an asynchronous
manner.

The FileStream class also has methods for seeking to a point within a file stream, as well as locking or

unlocking a portion or an entire file; locking will prevent other processes or threads from modifying the
file. The other stream types discussed in this chapter do not have the ability to lock or unlock portions or
an entire file. This locking/unlocking functionality cannot even be accessed through the BaseStream
property of any of these types. Seeking within a file can be done directly using the BinaryReader or
BinaryWriter classes. The StreamReader and StreamWriter classes cannot directly access the seek
functionality. However, by using the BaseStream property of either the StreamReader or StreamWriter

classes, the base stream's seek functionality can be used.

FileStreams can also be created using the static methods of the File class. Table 11-5 shows these
methods, along with their equivalent FileStream object constructor parameters.

Table 11-5. Static methods of the File class and their equivalent FileStream
constructor calls

Static methods in File class Equivalent FileStream constructor call

FileStream fileStream =
File.Create("File.txt");

FileStream fileStream = new FileStream("File.txt",
FileMode.Create, FileAccess.ReadWrite, FileShare.None);

FileStream fileStream =
File.Open("File.txt");

FileStream fileStream = new FileStream("File.txt");

FileStream fileStream =
File.OpenRead("File.txt");

FileStream fileStream = new FileStream("File.txt",
FileMode.Open, FileAccess.Read, FileShare.Read);

FileStream fileStream =
File.OpenWrite("File.txt");

FileStream fileStream = new FileStream("File.txt",
FileMode.OpenOrCreate, FileAccess.Write, FileShare.None);

The File.Open method is overloaded to accept FileMode , FileAccess , and FileShare enumeration
values. The FileStream constructor is also overloaded to accept these same parameters. Therefore, to
make an equivalent FileStream constructor for the File.Open method, we need to use the same

parameters for each of these three enumeration values in both parameter lists.

The File class has a complementary class called FileInfo that contains similar methods, but these
methods are instance, not static, methods. Table 11-6 shows the FileInfo methods, which are similar to
the File static methods, along with their equivalent FileStream object constructor parameters.

Table 11-6. Instance methods of the FileInfo class and equivalent FileStream
constructor calls

Instance methods in FileInfo
class

Equivalent FileStream constructor call

FileInfo fileInfo =
new FileInfo("File.txt");

FileStream fileStream =
fileInfo.Create();

FileStream fileStream = new FileStream("File.txt",
FileMode.Create, FileAccess.ReadWrite, FileShare.None);

FileInfo fileInfo =
new FileInfo("File.txt");

FileStream fileStream =
fileInfo.Open(FileMode.open);

FileStream fileStream = new FileStream("File.txt");

FileInfo fileInfo =
new FileInfo("File.txt");

FileStream fileStream =
fileInfo.OpenRead();

FileStream fileStream = new FileStream("File.txt",
FileMode.Open, FileAccess.Read, FileShare.Read);

FileInfo fileInfo =
new FileInfo("File.txt");

FileStream fileStream =
fileInfo.OpenWrite();

FileStream fileStream = new FileStream("File.txt",
FileMode.OpenOrCreate, FileAccess.Write, FileShare.
None);

The FileInfo.Open instance method is overloaded to accept FileMode , FileAccess , and FileShare
enumeration values. These values should be matched in the FileStream constructor parameter list.

The StreamReader and StreamWriter objects can be created using their overloaded constructors. These
overloaded constructors accept as parameters either a file path and name or a FileStream object.
Therefore, we can use any of the previously mentioned ways of creating a FileStream object in the
construction of either a StreamReader or StreamWriter object.

In addition, we can use three of the static methods in the File class or three of the instance methods in
the FileInfo class to create a StreamReader or StreamWriter object. Table 11-7 describes the static
methods of the File class used to create StreamReader and StreamWriter objects and their equivalent
StreamReader and StreamWriter object constructor parameters.

Table 11-7. Static methods of the File class and their equivalent
StreamReader/StreamWriter constructor calls

Static methods in File class Equivalent StreamReader/StreamWriter constructor calls

StreamReader streamReader =
File.OpenText("File.txt");

StreamReader streamReader = new StreamReader("File.
txt");

StreamWriter streamWriter =
File.AppendText("File.txt");

StreamWriter streamWriter = new StreamWriter("File.
txt", true);

Table 11-8 describes the instance methods of the FileInfo class used to create StreamReader and
StreamWriter object and their equivalent StreamReader and StreamWriter object constructor

parameters.

Static methods in File class Equivalent StreamReader/StreamWriter constructor calls

StreamWriter streamWriter =
File.CreateText("File.txt");

StreamWriter streamWriter = new StreamWriter("File.
txt", false);

Table 11-8 describes the instance methods of the FileInfo class used to create StreamReader and
StreamWriter object and their equivalent StreamReader and StreamWriter object constructor

parameters.

Table 11-8. Instance methods of the FileInfo class and their equivalent
StreamReader/StreamWriter constructor calls

Instance methods in FileInfo
class

Equivalent StreamReader/StreamWriter constructor calls

FileInfo fileInfo =
new FileInfo("File.txt");

StreamReader streamReader =
fileInfo.OpenText();

StreamReader streamReader = new StreamReader("File.txt");

FileInfo fileInfo =
new FileInfo("File.txt");

StreamWriter streamWriter =
fileInfo.AppendText();

StreamWriter streamWriter = new StreamWriter("File.txt",
true);

FileInfo fileInfo =
new FileInfo("File.txt");

StreamWriter streamWriter =
fileInfo.AppendText();

StreamWriter streamWriter = new StreamWriter("File.txt",
false);

The methods of the File and FileInfo classes do not return BinaryReader and BinaryWriter classes;
therefore, we rely on their constructors to create these types of objects. The overloaded BinaryReader
and BinaryWriter class constructors accept only a Stream object; they do not accept a filename.

To create a BinaryReader or BinaryWriter object, we first need to create a Stream type object. Since
Stream is an abstract class, we need to create one of its derived classes, such as the FileStream class.
Any of the prior ways of creating a FileStream object may be employed as a parameter in the
constructor of either a BinaryReader or BinaryWriter . The following code creates both a BinaryReader
and a BinaryWriter object from a single FileStream object:

fileStream = File.Create("filename.file");
BinaryWriter binaryWriter1 = new BinaryWriter(fileStream);
BinaryReader binaryReader1 = new BinaryReader(fileStream);

There are many different ways of combining the techniques discussed in this recipe to create and open
files. For example, if you require file locking and/or asynchronous file processing, you will need a
FileStream object. If you are dealing with text streams in memory and on disk, perhaps the

StreamWriter streamWriter =
File.CreateText("File.txt");

StreamWriter streamWriter = new StreamWriter("File.
txt", false);

Table 11-8 describes the instance methods of the FileInfo class used to create StreamReader and
StreamWriter object and their equivalent StreamReader and StreamWriter object constructor

parameters.

Table 11-8. Instance methods of the FileInfo class and their equivalent
StreamReader/StreamWriter constructor calls

Instance methods in FileInfo
class

Equivalent StreamReader/StreamWriter constructor calls

FileInfo fileInfo =
new FileInfo("File.txt");

StreamReader streamReader =
fileInfo.OpenText();

StreamReader streamReader = new StreamReader("File.txt");

FileInfo fileInfo =
new FileInfo("File.txt");

StreamWriter streamWriter =
fileInfo.AppendText();

StreamWriter streamWriter = new StreamWriter("File.txt",
true);

FileInfo fileInfo =
new FileInfo("File.txt");

StreamWriter streamWriter =
fileInfo.AppendText();

StreamWriter streamWriter = new StreamWriter("File.txt",
false);

The methods of the File and FileInfo classes do not return BinaryReader and BinaryWriter classes;
therefore, we rely on their constructors to create these types of objects. The overloaded BinaryReader
and BinaryWriter class constructors accept only a Stream object; they do not accept a filename.

To create a BinaryReader or BinaryWriter object, we first need to create a Stream type object. Since
Stream is an abstract class, we need to create one of its derived classes, such as the FileStream class.
Any of the prior ways of creating a FileStream object may be employed as a parameter in the
constructor of either a BinaryReader or BinaryWriter . The following code creates both a BinaryReader
and a BinaryWriter object from a single FileStream object:

fileStream = File.Create("filename.file");
BinaryWriter binaryWriter1 = new BinaryWriter(fileStream);
BinaryReader binaryReader1 = new BinaryReader(fileStream);

There are many different ways of combining the techniques discussed in this recipe to create and open
files. For example, if you require file locking and/or asynchronous file processing, you will need a
FileStream object. If you are dealing with text streams in memory and on disk, perhaps the

StreamReader and StreamWriter might be a better choice. Finally, if you are dealing with binary data or
mixed binary and text data in different encodings, you should consider BinaryReader and BinaryWriter

.

See Also

See Recipe 11.19 ; see the "FileStream Class," "StreamReader Class," "StreamWriter Class,"
"BinaryReader," and "BinaryWriter" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 11.6 Randomly Accessing Part of a File

Problem

When reading a file, you sometimes need to move from the current position in a file to a position
some number of characters before or after the current position, including to the beginning or the end
of a file. After moving to this point, you can add, modify, or read the information at this new point in
the file.

Solution

To move around in a stream, use the Seek method. The following method writes the string contained
in the variables theFirstLine and theSecondLine to a file in this same order. The stream is then

flushed to the file on disk:

public void CreateFile(string theFirstLine, int theSecondLine)
{
 FileStream fileStream = new FileStream("data.txt",
 FileMode.Create,
 FileAccess.ReadWrite,
 FileShare.None);
 StreamWriter streamWriter = new StreamWriter(fileStream);

 streamWriter.WriteLine(theFirstLine);
 streamWriter.WriteLine(theSecondLine);
 streamWriter.Flush();
 streamWriter.Close();
 fileStream.Close();
}

If the following code is used to call this method:

CreateFile("This is the first line.", 1020304050);

the resulting data.txt file will contain the following text:

This is the first line.
1020304050

The following method, ModifyFile, uses the Seek method to reposition the current file position at the

end of the first line. A new line of text is then added between the first and second lines of text in the
file. Finally, the Seek method is used to place the current position pointer in the file to the end, and a

final line of text is written to this file:

public void ModifyFile(int theSecondLine)
{
 // open the file for read/write
 FileStream fileStream =
 File.Open("data.txt",
 FileMode.Open,
 FileAccess.ReadWrite,
 FileShare.None);

 StreamWriter streamWriter = new StreamWriter(fileStream);

 // backup over the newline
 int offset = streamWriter.NewLine.Length;
 // backup over the second line
 offset += (theSecondLine.ToString().Length);
 // make negative
 offset = offset - (2 * offset);
 // move file pointer to just after first line
 streamWriter.BaseStream.Seek(offset, SeekOrigin.End);

 StringBuilder stringBuilder
 = new StringBuilder("This line added by seeking ");
 stringBuilder.AppendFormat("{0} chars from the end of this file.",offset);

 streamWriter.WriteLine(sb.ToString());
 streamWriter.Flush();

 streamWriter.BaseStream.Seek(0, SeekOrigin.End);
 streamWriter.WriteLine("This is the last line" +
 ", added by seeking to the end of the file.");

 streamWriter.Close();
}

If the following code is used to call this method:

ModifyFile(1020304050);

the resulting data.txt file will contain the following text:

This is the first line.
This line added by seeking -12 chars from the end of this file.
This is the last line, added by seeking to the end of the file.

The next method, ReadFile, reads the file that we just created. First, the current position pointer in

the file is moved to the end of the first line (this line contains the string in the variable
theFirstLine). The ReadToEnd method is invoked reading the rest of the file (the second and third

lines in the file) and the results are displayed:

public void ReadFile(string theFirstLine)
{
 StreamReader streamReader = new StreamReader("data.txt");

 streamReader.BaseStream.Seek(
 theFirstLine.Length + Environment.NewLine.Length, SeekOrigin.Begin);

 Console.WriteLine(streamReader.ReadToEnd());
 streamReader.Close();
}

The following text is displayed:

This line added by seeking -12 chars from the end of this file.
This is the last line, added by seeking to the end of the file.

If you are wondering where the line of text that reads:

1020304050

is located, it was overwritten when we did the first Seek while writing data to this file.

Discussion

File seeking is the placement of the pointer to the current location in an opened file anywhere
between-and including-the beginning and ending bytes of a file. Seeking is performed through the
use of the Seek method.

This method returns the new location of the file pointer in the file.

Seeking is performed in one of three ways: as an offset from the beginning of the file, as an offset
from the end of the file, or as an offset from the current location in the file, as shown here:

public void MoveInFile(int offsetValue)
{
 FileStream fileStream =
 File.Open("data.txt",
 FileMode.Open,
 FileAccess.ReadWrite,
 FileShare.None);

 StreamWriter streamWriter = new StreamWriter(fileStream);

 // move from the beginning of the file
 streamWriter.BaseStream.Seek(offsetValue, SeekOrigin.Begin);

 // move from the end of the file
 streamWriter.BaseStream.Seek(offsetValue, SeekOrigin.End);

 // move from the current file pointer location in the file
 streamWriter.BaseStream.Seek(offsetValue, SeekOrigin.Current);

 streamWriter.Close();
}

offsetValue may be any positive or negative number as long as it does not attempt to force the file
pointer before the beginning of the file or after the end. The SeekOrigin.Begin enumeration value
starts the offset at the beginning of the file; likewise, the SeekOrigin.End value starts the offset at
the end of the file. The SeekOrigin.Current value starts the offset at the current location of the file

pointer. You must take extra care not to force the file pointer to a point before the start of the file
when using the seek method with a negative offset, since this action could move the file pointer
before the beginning of the file. If you think about it logically, you should be giving positive values
when specifying SeekOrigin.Begin, negative values when specifying SeekOrigin.End, and any
value makes sense for SeekOrigin.Current, so long as it doesn't cause the pointer to roll over the
beginning or the end. To prevent the IOException from being thrown in this circumstance, you can

test for this condition in the following manner:

long offsetValue = -20;
FileStream fileStream =
 File.Open("data.txt",
 FileMode.Open,
 FileAccess.ReadWrite,
 FileShare.None);

StreamWriter streamWriter = new StreamWriter(fileStream);

if ((offsetValue + streamWriter.BaseStream.Position) >= 0)
{
 streamWriter.BaseStream.Seek(OffsetValue, SeekOrigin.Current);
}
else
{
 Console.WriteLine("Cannot seek before the beginning of the file.");
}

if ((offsetValue + streamWriter.BaseStream.Length) >= 0)
{
 streamWriter.BaseStream.Seek(offsetValue, SeekOrigin.End);
}
else
{
 Console.WriteLine("Cannot seek before the beginning of the file.");
}

if (offsetValue >= 0)
{
 streamWriter.BaseStream.Seek(offsetValue, SeekOrigin.Begin);
}
else
{
 Console.WriteLine("Cannot seek before the beginning of the file.");
}

To seek to the beginning of a file, use the following code:

streamWriter.BaseStream.Seek(0, SeekOrigin.Begin);

To seek to the end of a file, use the following code:

streamWriter.BaseStream.Seek(0, SeekOrigin.End);

The SeekOrigin enumeration value sets the file pointer to the beginning or end of a file and then the

offset, which is zero, does not force the file pointer to move. With this in mind, realize that using zero
as an offset to SeekOrigin.Current is pointless because you just don't move the pointer at all, and

you are killing clock cycles to no effect.

See Also

See the "FileStream Class," "StreamReader Class," "StreamWriter Class," "Binary-Reader Class,"
"BinaryWriter Class," and "SeekOrigin Enumeration" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 11.7 Outputting a Platform-Independent EOL
Character

Problem

Your application will run on more than one platform. Each platform uses a different end-of-line (EOL)
character. You want your code to output the correct EOL character without having to write code to
handle the EOL character specially for each platform.

Solution

The .NET Framework provides the Environment.NewLine constant, which represents a newline on
the given platform. This is the newline string used by all of the framework-provided WriteLine
methods internally (including Console, Debug, and Trace).

There are a few different scenarios when this could be useful:

Formatting a block of text with newlines embedded within it:1.

// 1) Remember to use Environment.NewLine on every block of text
// we format that we want platform correct newlines inside of
string line;
line = String.Format("FirstLine {0} SecondLine {0} ThirdLine {0}",
 Environment.NewLine);

// get a temp file to work with
string file = Path.GetTempFileName();
FileStream stream = File.Create(file);
byte[] bytes = Encoding.Unicode.GetBytes(line);
stream.Write(bytes,0,bytes.Length);
// close the file
stream.Close();

// remove the file (good line to set a breakpoint to check out the file
// we created)
File.Delete(file);

You need to use a different newline character than the default one used by StreamWriter
(which happens to be Environment.NewLine). You can set the newline that a StreamWriter
will use once so that all WriteLines performed by the StreamWriter use that newline instead

of having to manually do it each time:

2.

// 2) Set up a text writer and tell it to use the certain newline
// string
// get a new temp file
file = Path.GetTempFileName();
line = "Double spaced line";
StreamWriter streamWriter = new StreamWriter(file);
// make this always write out double lines
streamWriter.NewLine = Environment.NewLine + Environment.NewLine;
// WriteLine on this stream will automatically use the newly specified
// newline sequence (double newline in our case)
streamWriter.WriteLine(line);
streamWriter.WriteLine(line);
streamWriter.WriteLine(line);
// close the file
streamWriter.Close();
// remove the file (good line to set a breakpoint to check out the file
// we created)
File.Delete(file);

Normal WriteLine calls:3.

// 3) Just use any of the normal WriteLine methods as they use the
// Environment.NewLine by default
line = "Default line";
Console.WriteLine(line);

Discussion

Environment.NewLine allows you to have peace of mind whether the platform is using \n or \r\n as

the newline or possibly something else. Your code will be doing things the right way for each
platform.

One word of caution here: if you are interoperating with a non-Windows operating system via SOAP
and Web Services, the Environment.NewLine defined here might not be accurate for a stream you

send to or receive from that other operating system. Of course, if you are doing Web Services,
newlines aren't your biggest concern.

See Also

See the "Environment Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 11.8 Create, Write to, and Read from a File

Problem

You need to create a file-possibly for logging information to or storing temporary information-and
then write information to it. You also need to be able to read the information that you wrote to this
file.

Solution

To create, write to, and read from a log file, we will use the FileStream and its reader and writer

classes. For example, we will create methods to allow construction, reading to, and writing from a log
file. To create a log file, you can use the following code:

public FileStream CreateLogFile(string logFileName)
{
 FileStream fileStream = new FileStream(logFileName,
 FileMode.Create,
 FileAccess.ReadWrite,
 FileShare.None);
 return (fileStream);
}

To write text to this file, you can create a StreamWriter object wrapper around the previously
created FileStream object (fileStream). You can then use the WriteLine method of the
StreamWriter object. The following code writes three lines to the file: a string, followed by an

integer, followed by a second string:

public void WriteToLog(FileStream fileStream, string data)
{
 // make sure we can write to this stream
 if(!fileStream.CanWrite)
 {
 // close it and reopen for append
 string fileName = fileStream.Name;
 fileStream.Close();
 fileStream = new FileStream(fileName,FileMode.Append);
 }
 StreamWriter streamWriter = new StreamWriter(fileStream);
 streamWriter.WriteLine(data);
 streamWriter.Close();
}

Now that the file has been created and data has been written to it, you can read the data from this

file. To read text from a file, create a StreamReader object wrapper around the file. If the code had
not closed the FileStream object (fileStream), it could use that object in place of the filename used
to create the StreamReader. To read the entire file in as a single string, use the ReadToEnd method:

public string ReadAllLog(FileStream fileStream)
{
 if(!fileStream.CanRead)
 {
 // close it and reopen for read
 string fileName = fileStream.Name;
 fileStream.Close();
 fileStream = new FileStream(fileName,FileMode.Open,FileAccess.Read);
 }
 StreamReader streamReader = new StreamReader(fileStream);
 string contents = streamReader.ReadToEnd();
 streamReader.Close();
 return contents;
}

If you need to read the lines in one by one, use the Peek method, as shown in ReadLogPeeking, or
the ReadLine method, as shown in ReadLogByLines:

public static void ReadLogPeeking(FileStream fileStream)
{
 if(!fileStream.CanRead)
 {
 // close it and reopen for read
 string fileName = fileStream.Name;
 fileStream.Close();
 fileStream = new FileStream(fileName,FileMode.Open,FileAccess.Read);
 }
 Console.WriteLine("Reading file stream peeking at next line:");
 StreamReader streamReader = new StreamReader(fileStream);
 while (streamReader.Peek() != -1)
 {
 Console.WriteLine(streamReader.ReadLine());
 }
 streamReader.Close();
}

or:

public static void ReadLogByLines(FileStream fileStream)
{
 if(!fileStream.CanRead)
 {
 // close it and reopen for read
 string fileName = fileStream.Name;
 fileStream.Close();
 fileStream = new FileStream(fileName,FileMode.Open,FileAccess.Read);
 }
 Console.WriteLine("Reading file stream as lines:");

 StreamReader streamReader = new StreamReader(fileStream);
 string text = "";
 while ((text = streamReader.ReadLine()) != null)
 {
 Console.WriteLine(text);
 }
 streamReader.Close();
}

If you need to read in each character of the file as a byte value, use the Read method, which returns
a byte value:

public static void ReadAllLogAsBytes(FileStream fileStream)
{
 if(!fileStream.CanRead)
 {
 // close it and reopen for read
 string fileName = fileStream.Name;
 fileStream.Close();
 fileStream = new FileStream(fileName,FileMode.Open,FileAccess.Read);
 }
 Console.WriteLine("Reading file stream as bytes:");
 StreamReader streamReader = new StreamReader(fileStream);
 while (streamReader.Peek() != -1)
 {
 Console.Write(streamReader.Read());
 }
 streamReader.Close();
}

This method displays numeric byte values instead of the characters that they represent. For example,
if the log file contained the following text:

This is the first line.
100
This is the third line.

it would be displayed by the ReadAllLogAsBytes method, as follows:

841041051153210511532116104101321021051141151163210810
511010146131049484813108410410511532105115321161041013
211610410511410032108105110101461310

If you need to read in the file by chunks, create and fill a buffer of an arbitrary length based on your
performance needs. This buffer can then be displayed or manipulated as needed:

public static void ReadAllBufferedLog (FileStream fileStream)
{
 if(!fileStream.CanRead)
 {
 // close it and reopen for read
 string fileName = fileStream.Name;
 fileStream.Close();

 fileStream = new FileStream(fileName,FileMode.Open,FileAccess.Read);
 }
 Console.WriteLine("Reading file stream as buffers of bytes:");
 StreamReader streamReader = new StreamReader(fileStream);
 while (streamReader.Peek() != -1)
 {
 char[] buffer = new char[10];
 int bufferFillSize = streamReader.Read(buffer, 0, 10);
 foreach (char c in buffer)
 {
 Console.Write(c);
 }
 Console.WriteLine(bufferFillSize);
 }
 streamReader.Close();
}

This method displays the log file's characters in 10-character chunks, followed by the number of
characters actually read. For example, if the log file contained the following text:

This is the first line.
100
This is the third line.

it would be displayed by the ReadAllBufferedLog method as follows:

This is th10
e first li10
ne.
100
10
This is th10
e third li10
ne.
 5

Notice that at the end of every tenth character (the buffer is a char array of size 10), the number of

characters read in is displayed. During the last read performed, only five characters were left to read
from the file. In this case, a 5 is displayed at the end of the text, indicating that the buffer was not

completely filled.

The previous code could have been modified to use the ReadBlock method as shown in the
ReadAllBufferedLogBlock method instead of the Read method. The output is the same in both

cases:

public static void ReadAllBufferedLogBlock(FileStream fileStream)
{
 if(!fileStream.CanRead)
 {
 // close it and reopen for read
 string fileName = fileStream.Name;
 fileStream.Close();
 fileStream = new FileStream(fileName,FileMode.Open,FileAccess.Read);

 }
 Console.WriteLine("Reading file stream as buffers of bytes using ReadBlock:");
 StreamReader streamReader = new StreamReader(fileStream);
 while (streamReader.Peek() != -1)
 {
 char[] buffer = new char[10];
 int bufferFillSize = streamReader.ReadBlock(buffer, 0, 10);
 foreach (char c in buffer)
 {
 Console.Write(c);
 }
 Console.WriteLine(bufferFillSize);
 }
 streamReader.Close();
}

This displays the following text:

This is th10
e first li10
ne.
100
10
This is th10
e third li10
ne.
 5

Discussion

There are many mechanisms for recording state information about applications, other than creating a
file full of the information. One example of this type of mechanism is the Windows Event Log, where
informational, security, and error states can be logged during an application's progress. One of the
primary reasons for creating a log file is to assist in troubleshooting or to debug your code in the
field. If you are shipping code without some sort of debugging mechanism for your support staff (or
possibly for you in a small company), we suggest you consider adding some logging support. Any
developer who has spent a late night debugging a problem on a QA machine, or worse yet, at a
customer site, can tell you the value of a log of the program's actions.

If you are writing character information to a file, the simplest method is to use the Write and
WriteLine methods of the StreamWriter class to write data to the file. These two methods are
overloaded to handle any of the primitive values (except for the byte data type), as well as character

arrays. These methods are also overloaded to handle various formatting techniques discussed in
Chapter 1. All of this information is written to the file as character text, not as the underlying
primitive type.

If you need to write byte data to a file, consider using the Write and WriteByte methods of the
FileStream class. These methods are designed to write byte values to a file. The WriteByte method
accepts a single byte value and writes it to the file, after which the pointer to the current position in
the file is advanced to the next value after this byte. The Write method accepts an array of bytes

that can be written to the file, after which the pointer to the current position in the file is advanced to
the next value after this array of bytes. The Write method can also choose a range of bytes in the

array in which to write to the file.

The Write method of the BinaryWriter class overloaded similarly to the Write method of the
StreamWriter class. The main difference is that the BinaryWriter class's Write method does not
allow formatting. This allows the BinaryReader to read the information written by the BinaryWriter
as its underlying type, not as a character or a byte. See Recipe 11.18 for an example of the
BinaryReader and BinaryWriter classes in action.

Once we have the data written to the file, we can read it back out. The first concern when reading
data from a file is not to go past the end of the file. The StreamReader class provides a Peek method

that looks-but does not retrieve-the next character in the file. If the end of the file has been
reached, a -1 is returned. Likewise, the Read method of this class also returns a -1 if it has reached
the end of the file. The Peek and Read methods can be used in the following manner to make sure

that you do not go past the end of the file:

StreamReader streamReader = new StreamReader("data.txt");
while (streamReader.Peek() != -1)
{
 Console.WriteLine(streamReader.ReadLine());
}
streamReader.Close();

or:

StreamReader streamReader = new StreamReader("data.txt");
string text = "";
while ((text = streamReader.Read()) != -1)
{
 Console.WriteLine(text);
}
streamReader.Close();

The main differences between the Read and Peek methods are that the Read method actually

retrieves the next character and increments the pointer to the current position in the file by one
character, and the Read method is overloaded to return an array of characters instead of just one. If
the Read method is used that returns an array buffer of characters and the buffer is larger than the

file, the extra elements in the buffer array are set to an empty string.

The StreamReader also contains a method to read an entire line up to and including the newline
character. This method is called ReadLine. This method returns a null if it goes past the end of the
file. The ReadLine method can be used in the following manner to make sure that you do not go past

the end of the file:

StreamReader streamReader = new StreamReader("data.txt");
string text = "";
while ((text = streamReader.ReadLine()) != null)
{
 Console.WriteLine(text);
}
streamReader.Close();

If you simply need to read the whole file in at one time, use the ReadToEnd method to read the entire

file in to a string. If the current position in the file is moved to a point other than the beginning of the

file, the ReadToEnd method returns a string of characters starting at that position in the file and

ending at the end of the file.

The FileStream class contains two methods, Read and ReadByte, which read one or more bytes of
the file. The Read method reads a byte value from the file and casts that byte to an int before
returning the value. If you are explicitly expecting a byte value, consider casting the return type to a
byte value:

FileStream fileStream = new FileStream("data.txt", FileMode.Open);
byte retVal = (byte) fileStream.ReadByte();

However, if retVal is being used to determine whether the end of the file has been reached (i.e.,
retVal == -1 or retVal == 0xffffffff in hexadecimal), you will run into problems. When the return
value of ReadByte is cast to a byte, a -1 is cast to 0xff, which is not equal to -1 but is equal to 255
(the byte data type is not signed). If you are going to cast this return type to a byte value, you

cannot use this value to determine whether you are at the end of the file. You must instead rely on
the Length Property. The following code block shows the use of the return value of the ReadByte

method to determine when we are at the end of the file:

FileStream fileStream = new FileStream("data.txt", FileMode.Open);
int retByte = 0;
while ((retByte = fileStream.ReadByte()) != -1)
{
 Console.WriteLine((byte)retByte);
}
fileStream.Close();

This code block shows the use of the Length property to determine when to stop reading the file:

FileStream fileStream = new FileStream("data.txt", FileMode.Open);
long currPosition = 0;
while (currPosition < fileStream.Length)
{
 Console.WriteLine((byte) fileStream.ReadByte());
 currPosition++;
}
fileStream.Close();

The BinaryReader class contains several methods for reading specific primitive types, including
character arrays and byte arrays. These methods can be used to read specific data types from a file.
Recipe 11.18 contains more on this topic. All of these methods, except for the Read method, indicate
that the end of the file has been reached by throwing the EndOfStreamException. The Read method
will return a -1 if it is trying to read past the end of the file. This class contains a PeekChar method
that is very similar to the Peek method in the StreamReader class. The PeekChar method is used as

follows:

FileStream fileStream = new FileStream("data.txt", FileMode.Open);
BinaryReader binaryReader = new BinaryReader(fileStream);
while (binaryReader.PeekChar() != -1)
{
 Console.WriteLine(binaryReader.ReadChar());
}
binaryReader.Close();

In this code, the PeekChar method is used to determine when to stop reading values in the file. This
will prevent a costly EndOfStreamException from being thrown by the ReadChar method if it tries to

read past the end of the file.

See Also

See the "FileStream Class," "StreamReader Class," "StreamWriter Class," "Binary-Reader Class," and
"BinaryWriter Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 11.9 Determining Whether a Directory Exists

Problem

You need to determine whether a directory exists prior to creating or performing an action on that
directory.

Solution

Use the static Exists method on the Directory class to determine whether a directory currently

exists:

if (Directory.Exists(@"c:\delete\test"))
{
 // Operate on that directory here
}

Discussion

Determining whether a directory exists can be critical to your code. If you try to delete a directory
that no longer exists, a System.IO.DirectoryNotFoundException will be thrown. This can be

handled by catching the exception and reporting the failure accordingly for your application.

This method returns a bool indicating if the directory was found (true) or not (false).

See Also

See the "Directory Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 11.10 Creating, Moving, and Deleting a Directory

Problem

You need to create a new directory, move an existing directory, or delete a directory.

Solution

The System.IO namespace contains two classes to perform these actions: the Directory and
DirectoryInfo classes. The Directory class contains only static methods, while the DirectoryInfo

class contains only instance methods.

To create a directory, you can use the static CreateDirectory method of the Directory class. The
return value for this method is an instance of the DirectoryInfo class. This class can be used to

invoke instance methods on the newly created directory. For example:

DirectoryInfo dirInfo = null;
if (!Directory.Exists(@"c:\delete\test"))
{
 dirInfo = Directory.CreateDirectory(@"c:\delete\test");
}

You can also use the instance Create method of the DirectoryInfo class-a method that takes no
parameters and returns void. For example:

DirectoryInfo dirInfo = null;
if (!Directory.Exists(@"c:\delete\test"))
{
 dirInfo = new DirectoryInfo(@"c:\delete\test");
 dirInfo.Create();
}

To move a directory, you can use the static Move method of the Directory class, which returns
void. For example:

if (!Directory.Exists(@"c:\MovedDir"))
{
 Directory.Move(@"c:\delete", @"c:\MovedDir");
}

You can also use the instance MoveTo method of the DirectoryInfo class, which returns void. For

example:

DirectoryInfo dirInfo = null;

if (!Directory.Exists(@"c:\MovedDir"))
{
 dirInfo = new DirectoryInfo(@"c:\delete\test");
 dirInfo.MoveTo(@"c:\MovedDir");
}

To delete a directory, you can use the static Delete method of the Directory class, which returns
void. There are two overloads for this method: one that will attempt to delete just the directory and

one that you can pass a Boolean value to tell it to delete recursively. If you elect to delete the
directory recursively, all subdirectories and files will be deleted as well. If you do not use the
recursive flag, the Delete method will throw an exception if you attempt to delete a directory that

has either files or subdirectories still in it:

if (Directory.Exists(@"c:\MovedDir"))
{
 Directory.Delete(@"c:\MovedDir", true);
}

You can also use the instance Delete method of the DirectoryInfo class, which returns a void. For

example:

DirectoryInfo dirInfo = null;
if (Directory.Exists(@"c:\MovedDir"))
{
 dirInfo = new DirectoryInfo(@"c:\delete\test");
 dirInfo.Delete(true);
}

Discussion

Creating, moving, and deleting are the basic operations that you can perform on directories. It makes
sense that there are specific methods to address each of these operations. In fact, there are two
methods to perform each of these actions: one static and one instance method.

Which method you choose depends on what you are trying to accomplish. If you need a quick way of
creating, moving, or deleting a directory, use the static methods since you don't incur the overhead
of instantiating an object before performing the operation. If you will be performing multiple
operations on a directory, you should use instance methods. Another consideration is that static
methods on a class do not require an object to be created on the managed heap. Instance methods
require an object to be created before the methods can be called. If you are trying to minimize the
number of objects the garbage collector has to manage, consider using static methods.

Before creating a new directory, you should first determine whether that directory already exists. The
Directory class contains a static method, Exists, to perform this operation (note that there are no

instance classes to do this).

To move a directory, you must first determine whether the destination directory exists. If it does
exist, the move operation will fail and throw an exception.

To delete a directory, you must first determine whether it exists. If it does not exist, the delete
operation will fail and throw an exception.

See Also

See the "Directory Class" and "DirectoryInfo Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 11.11 Manipulating Directory Attributes

Problem

You need to display or manipulate a directory's attributes or timestamps.

Solution

To display a directory's timestamps, you can use either the set of static methods from the Directory
object or the set of instance properties from the DirectoryInfo object. The static methods are
GetCreationTime, GetLastAccessTime, or GetLastWriteTime. For example:

public void DisplayDirAttr(string path)
{
 Console.WriteLine(Directory.GetCreationTime(path).ToString());
 Console.WriteLine(Directory.GetLastAccessTime(path).ToString());
 Console.WriteLine(Directory.GetLastWriteTime(path).ToString());
}

In each case, path is the path to the directory whose timestamp you wish to retrieve, and the
method returns a DateTime value containing the relevant timestamp. The instance properties are
CreationTime, LastAccessTime, or LastWriteTime. For example:

public void DisplayDirAttr(string path)
{
 DirectoryInfo dirInfo = Directory.CreateDirectory(path);

 Console.WriteLine(dirInfo.CreationTime.ToString());
 Console.WriteLine(dirInfo.LastAccessTime.ToString());
 Console.WriteLine(dirInfo.LastWriteTime.ToString());
}

Each property returns a DateTime value containing the timestamp from the directory represented by
the DirInfo object.

To modify a directory's timestamps, you can use either set of static methods of the Directory class
or a set of instance properties of the DirectoryInfo class. The static methods are
SetCreationTime, SetLastAccessTime, or SetLastWriteTime. For example:

public void ModifyDirAttr(string path)
{
 DateTime dt = new DateTime(2003,5,10);
 Directory.SetCreationTime(path, dt);
 Directory.SetLastAccessTime(path, dt);

 Directory.SetLastWriteTime(path, dt);
}

Each method has two parameters: the first is the path to the directory whose timestamp is to be set,
and the second is a DateTime value containing the new timestamp. Each method returns void. The
instance properties, all of which are of type DateTime, are CreationTime, LastAccessTime, and
LastWriteTime. For example:

public void ModifyDirAttr(string path)
{
 DirectoryInfo dirInfo = Directory.CreateDirectory(path);

 DateTime dt = new DateTime(2001,2,8);
 dirInfo.CreationTime = dt;
 dirInfo.LastAccessTime = dt;
 dirInfo.LastWriteTime = dt;
}

To display or modify a directory's attributes, use the instance property Attributes:

public void ViewModifyDirAttr(string path, FileAttributes fileAttributes)
{
 DirectoryInfo dirInfo = new DirectoryInfo(@"C:\Windows\System32");
 // Display this directory's attributes
 Console.WriteLine(dirInfo.Attributes);

 // Display whether this directory is hidden
 Console.WriteLine("Is directory hidden? = " +
 ((dirInfo.Attributes & FileAttributes.Hidden) == FileAttributes.Hidden));

 // Modify this directory's attributes
 dirInfo.Attributes |= fileAttributes;
 // Display whether this directory is hidden
 Console.WriteLine("Is directory hidden? = " +
 ((dirInfo.Attributes & FileAttributes.Hidden) == FileAttributes.Hidden));
}

Discussion

There are three distinct timestamps associated with any particular directory. These timestamps are
creation time, last access time, and last write time.

In addition to timestamp information, a directory's attributes may also be obtained and modified. This
is accomplished through the use of the public instance Attributes property found on a
DirectoryInfo object. This property either returns or modifies a FileAttributes enumeration (see
Table 11-9). The FileAttributes enumeration is made up of bit flags that can be turned on or off
through the use of the bitwise operators &, |, or ^.

Table 11-9. Definitions of each bit flag in the FileAttributes enumeration

Flag name Definition

Archive The current directory is archived.

Compress The current directory uses compression.

Directory The current item is a directory.

Encrypted The current directory is encrypted.

Hidden The current directory is hidden.

Normal
The current directory has no other attributes set. When this attribute is set,
no others can be set.

NotContentIndexed The current directory is not being indexed by the Indexing service.

Offline
The current directory is offline, and its contents are not accessible unless it is
online.

ReadOnly The current directory is read only.

ReparsePoint The current directory contains a reparse point.

SparseFile The current directory contains large files consisting mostly of zeros.

System The current directory is used by the system.

Temporary The current directory is classified as a temporary directory.

In many cases, more than one of these flags may be set at one time. The Normal flag is the

exception; when this flag is set, no other flag may be set.

See Also

See the "Directory Class," "DirectoryInfo Class," and "FileAttributes Enumeration" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 11.12 Renaming a Directory

Problem

You need to rename a directory.

Solution

Unfortunately, there is no specific rename method that can be used to rename a directory. However,
you can use the instance MoveTo method of the DirectoryInfo class or the static Move method of
the Directory class instead. The static Move method can be used to rename a directory in the

following manner:

public void DemonstrateRenameDir(string originalName, string newName)
{
 try
 {
 Directory.CreateDirectory(originalName);
 // "rename" it
 Directory.Move(originalName, newName);
 // clean up after ourselves
 Directory.Delete(newName);
 }
 catch(IOException ioe)
 {
 // most likely given the directory exists or isn't empty
 Console.WriteLine(ioe.ToString());
 }
 catch(Exception e)
 {
 // catch any other exceptions
 Console.WriteLine(e.ToString());
 }
}

This code creates a directory using the originalName parameter, renames it to the value supplied in

the newName parameter and removes it once complete.

The instance MoveTo method of the DirectoryInfo class can also be used to rename a directory in

the following manner:

public void DemonstrateRenameDir (string originalName, string newName)
{
 try

 {
 DirectoryInfo dirInfo = new DirectoryInfo(originalName);
 // create the dir
 dirInfo.Create();
 // "rename" it
 dirInfo.MoveTo(newName);
 // clean up after ourselves
 dirInfo.Delete(false);
 }
 catch(IOException ioe)
 {
 // most likely given the directory exists or isn't empty
 Console.WriteLine(ioe.ToString());
 }
 catch(Exception e)
 {
 // catch any other exceptions
 Console.WriteLine(e.ToString());
 }
}

This code creates a directory using the originalName parameter, renames it to the value supplied in

the newName parameter and removes it once complete.

Discussion

The Move and MoveTo methods allow a directory to be moved to a different location. However, when
the path remains unchanged up to the directory that will have its name changed, the Move methods
act as a Rename method.

See Also

See the "Directory Class" and "DirectoryInfo Class" topics in the MSDN documentation

[Team LiB]

[Team LiB]

Recipe 11.13 Searching for Directories or FilesUsing
Wildcards

Problem

You are attempting to find one or more specific files or directories that might or might not exist within
the current filesystem. The search might need to use wildcard characters in order to widen the
search; for example, searching for all user mode dump files in a filesystem. These files have a .dmp
extension.

Solution

There are several methods of obtaining this information. The first three methods return a string array
containing the full path of each item. The next three methods return an object that encapsulates a
directory, a file, or both.

The static GetFileSystemEntries method on the Directory class returns a string array containing

the names of all files and directories within a single directory. For example, the following method
retrieves a string array containing the names of all files and subdirectories in a particular directory,
then displays them:

public void DisplayFilesDirs(string path)
{
 string[] items = Directory.GetFileSystemEntries(path);
 foreach (string item in items)
 {
 Console.WriteLine(item);
 }
}

The static GetDirectories method on the Directory class returns a string array containing the

names of all directories within a single directory. For example, the following method retrieves a string
array containing the names of all subdirectories in a particular directory, then displays them:

public void DisplayDirs(string path)
{
 string[] items = Directory.GetDirectories(path);
 foreach (string item in items)
 {
 Console.WriteLine(item);
 }

The static GetFiles method on the Directory class returns a string array containing the names of

all files within a single directory. For example, the following method retrieves a string array
containing the name of a file in a particular directory, then displays it:

public void DisplayFiles(string path)
{
 string[] items = Directory.GetFiles(path);
 foreach (string item in items)
 {
 Console.WriteLine(item);
 }
}

These next three methods return an object instead of simply a string. The GetFileSystemInfos
method of the DirectoryInfo object returns a strongly typed array of FileSystemInfo objects (that
is, of DirectoryInfo and FileInfo objects) representing the directories and files within a single
directory. For example, the following code calls the GetFileSystemInfos method to retrieve an array
of FileSystemInfo objects representing all the items in a particular directory, and then lists the

Name property of each item to the console window:

public void DisplayFilesDirs(string path)
{
 DirectoryInfo mainDir = new DirectoryInfo(path);
 FileSystemInfo[] items = mainDir.GetFileSystemInfos();
 foreach (FileSystemInfo item in items)
 {
 if (item is DirectoryInfo)
 {
 Console.WriteLine("DIRECTORY: " + ((DirectoryInfo)item).Name);
 }
 else if (item is FileInfo)
 {
 Console.WriteLine("FILE: " + item.Name);
 }
 else
 {
 Console.WriteLine("Unknown");
 }
 }
}

The GetDirectories instance method of the DirectoryInfo object returns an array of
DirectoryInfo objects representing only subdirectories in a single directory. For example, the
following code calls the GetDirectories method to retrieve an array of DirectoryInfo objects, then
displays the Name property of each object to the console window:

public void DisplayDirs(string path)
{
 DirectoryInfo mainDir = new DirectoryInfo(path);
 DirectoryInfo[] items = mainDir.GetDirectories();
 foreach (DirectoryInfo item in items)
 {
 Console.WriteLine("DIRECTORY: " + ((DirectoryInfo)item).Name);

 }
}

The GetFiles instance method of the FileInfo object returns an array of FileInfo objects
representing only the files in a single directory. For example, the following code calls the GetFiles
method to retrieve an array of FileInfo objects, then it displays the Name property of each object to

the console window:

public void DisplayFiles(string path)
{
 DirectoryInfo mainDir = new DirectoryInfo(path);
 FileInfo[] items = mainDir.GetFiles();
 foreach (FileInfo item in items)
 {
 Console.WriteLine("FILE: " + item.Name);
 }
}

There are several ways to obtain this information. The first three methods return a string
representing the full path of the directory and/or file. The next three methods return an object that
encapsulates a directory, a file, or both.

The static GetFileSystemEntries method on the Directory class returns all files and directories in
a single directory that match pattern:

public void DisplayFilesDirs(string path, string pattern)
{
 string[] items = Directory.GetFileSystemEntries(path, pattern);
 foreach (string item in items)
 {
 Console.WriteLine(item);
 }
}

The static GetDirectories method on the Directory class returns only those directories in a single
directory that match pattern:

public void DisplayDirs(string path, string pattern)
{
 string[] items = Directory.GetDirectories(path, pattern);
 foreach (string item in items)
 {
 Console.WriteLine(item);
 }
}

The static GetFiles method on the Directory class returns only those files in a single directory that
match pattern:

public void DisplayFiles(string path, string pattern)
{
 string[] items = Directory.GetFiles(path, pattern);
 foreach (string item in items)

 {
 Console.WriteLine(item);
 }
}

These next three methods return an object instead of simply a string. The first instance method is
GetFileSystemInfos, which returns both directories and files in a single directory that match
pattern:

public void DisplayFilesDirs(string path, string pattern)
{
 DirectoryInfo mainDir = new DirectoryInfo(path);
 FileSystemInfo[] items = mainDir.GetFileSystemInfos(pattern);
 foreach (FileSystemInfo item in items)
 {
 if (item is DirectoryInfo)
 {
 Console.WriteLine("DIRECTORY: " + ((DirectoryInfo)item).Name);
 }
 else if (item is FileInfo)
 {
 Console.WriteLine("FILE: " + item.Name);
 }
 else
 {
 Console.WriteLine("Unknown");
 }
 }
}

The GetDirectories instance method returns only directories (contained in the DirectoryInfo
object) in a single directory that match pattern:

public void DisplayDirs(string path, string pattern)
{
 DirectoryInfo mainDir = new DirectoryInfo(@"C:\TEMP ");
 DirectoryInfo[] items = mainDir.GetDirectories(pattern);
 foreach (DirectoryInfo item in items)
 {
 Console.WriteLine("DIRECTORY: " + ((DirectoryInfo)item).Name);
 }
}

The GetFiles instance method returns only file information (contained in the FileInfo object) in a
single directory that match pattern:

public void DisplayFiles(string path, string pattern)
{
 DirectoryInfo mainDir = new DirectoryInfo(@"C:\TEMP ");
 FileInfo[] items = mainDir.GetFiles(pattern);
 foreach (FileInfo item in items)
 {
 Console.WriteLine("FILE: " + item.Name);

 }
}

Discussion

If you need just an array of strings containing paths to both directories and files, you can use the
static method Directory.GetFileSystemEntries. The string array returned does not include any

information about whether an individual element is a directory or a file. Each string element contains
the entire path to either a directory or file contained within the specified path.

To quickly and easily distinguish between directories and files, use the Directory.GetDirectories
and Directory.GetFiles static methods. These methods return arrays of directory names and

filenames. These methods return an array of string objects. Each element contains the full path to
the directory or file.

Returning a string is fine if you do not need any other information about the directory or file returned
to you or if you are going to need more information for only one of the files returned. It is more
efficient to use the static methods to get the list of filenames and just retrieve the FileInfo for the
ones you need than to have all of the FileInfos constructed for the directory that the instance

methods will do. If you are going to have to access attributes, lengths, or times on every one of the
files, you should consider using the instance methods described here.

The instance method GetFileSystemInfos returns an array of strongly typed FileSystemInfo
objects. (The FileSystemInfo object is the base class to the DirectoryInfo and FileInfo objects.)
Therefore, you can test whether the returned type is a DirectoryInfo or FileInfo object using the
is or as keywords. Once you know what subclass this object really is, you can cast it to that type

and begin using it.

To get only DirectoryInfo objects, use the overloaded GetDirectories instance method. To get
only Fileinfo objects, use the overloaded GetFiles instance method. These methods return an
array of DirectoryInfo and FileInfo objects respectively; each element of which encapsulates a

directory or file.

See Also

See the "DirectoryInfo Class," "FileInfo Class," and "FileSystemInfo Class" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 11.14 Obtaining the Directory Tree

Problem

You need to get a directory tree, potentially including filenames, extending from any point in the
directory hierarchy. In addition, each directory or file returned must be in the form of an object
encapsulating that item. This will allow you to perform operations on the returned objects, such as
deleting the file, renaming the file, or examining/changing its attributes. Finally, you potentially need
the ability to search for a specific subset of these items based on a pattern, such as finding only files
with the .pdb extension.

Solution

By placing a call to the GetFileSystemInfos instance method in a recursive method, you can iterate

down the directory hierarchy from any starting point and get all files and directories:

public void GetAllDirFilesRecurse(string Dir)
{
 DirectoryInfo mainDir = new DirectoryInfo(dir);
 FileSystemInfo[] items = mainDir.GetFileSystemInfos();
 foreach (FileSystemInfo item in items)
 {
 if (item is DirectoryInfo)
 {
 Console.WriteLine("DIRECTORY: " + ((DirectoryInfo)item).FullName);
 GetAllDirFilesRecurse(((DirectoryInfo)item).FullName);
 }
 if (item is FileInfo)
 {
 Console.WriteLine("FILE: " + ((FileInfo)item).FullName);
 }
 else
 {
 Console.WriteLine("Unknown");
 }
 }
}

It isn't necessarily true that you have to use recursion to retrieve information about all files and
directories. The following recursive method uses both the GetFiles and GetDirectories instance
methods with pattern matching to obtain a listing of all files with the extension of .pdb that exist in

directories that begin with a "Chapter 1":

public void GetAllFilesInPatternRecurse(string Dir)

{
 DirectoryInfo mainDir = new DirectoryInfo(dir);
 FileSystemInfo[] items = mainDir.GetFileSystemInfos("Chapter 1*");
 foreach (FileSystemInfo item in items)
 {
 if (item is DirectoryInfo)
 {
 GetAllFilesInPatternRecurse(((DirectoryInfo)item).FullName);
 }
 if (item is FileInfo)
 {
 FileInfo fileInfo = item as FileInfo;
 if(fileInfo.Extension.ToUpper().CompareTo(".PDB")==0)
 Console.WriteLine("FILE: " + (fileInfo.FullName));
 }
 }
}

Discussion

To obtain a tree representation of a directory with its respective files, you can use a simple recursive
method. This recursive method first creates a DirectoryInfo object that begins in the directory with

which you wish to start creating a hierarchy; in the first code example in the Solution section, this
directory is represented by the mainDir object. It must then check the pattern for this directory to

see whether it should be reported before moving down the directory trees.

Next, it can call the GetFileSystemInfos method on the mainDir object to obtain both
DirectoryInfo and FileInfo objects representing the files and directories in that initial folder.
Alternatively, it could call both the GetFiles and GetDirectories methods on the mainDir object;

the latter two methods return a string array containing the paths and names of files and directories.

Simply calling the GetFileSystemInfos method is easy enough, but you need to cast the returned
FileSystemInfo objects to their correct subtype, which is either a DirectoryInfo or a FileInfo

object. Once cast to the correct type, you can perform operations on that object.

The final step is to add a recursive method call every time you find a DirectoryInfo object. This
DirectoryInfo object is then passed as an argument to this same function, making it the starting

directory for the new function call. This continues on until every directory under the initial directory
has been returned along with its contents.

You will note that the check of the FileSystemInfos in the if statements are not an if-else tree.

This is done deliberately so that you catch the files in a directory as you traverse back upwards.

See Also

See the "DirectoryInfo Class," "FileInfo Class," and "FileSystemInfo Class" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 11.15 Parsing a Path

Problem

You need to separate the constituent parts of a path and place them into separate variables.

Solution

Use the static methods of the Path class:

public static void ParsePath(string path)
{
 string root = Path.GetPathRoot(path);
 string dirName = Path.GetDirectoryName(path);
 string fullFileName = Path.GetFileName(path);
 string fileExt = Path.GetExtension(path);
 string fileNameWithoutExt = Path.GetFileNameWithoutExtension(path);
 StringBuilder format = new StringBuilder();
 format.Append("ParsePath of {0} breaks up into the following" +
 "pieces:\r\n\tRoot: {1}\r\n\t");
 format.Append("Directory Name: {2}\r\n\tFull File Name: {3}\r\n\t");
 format.Append("File Extension: {4}\r\n\tFile Name Without Extension: {5}\r\n");
 Console.WriteLine(format.ToString(),path,root,dirName,
 fullFileName,fileExt,fileNameWithoutExt);
}

If the string @"c:\test\tempfile.txt " is passed to this method, the output would look like this:

ParsePath of C:\test\tempfile.txt breaks up into the following pieces:
 Root: C:\
 Directory Name: C:\test
 Full File Name: tempfile.txt
 File Extension: .txt
 File Name Without Extension: tempfile

Discussion

The Path class contains methods that can be used to parse a given path. Using these classes is much

easier and less error-prone than writing path- and filename-parsing code. There are five main
methods used to parse a path: GetPathRoot , GetDirectoryName , GetFileName , GetExtension ,

and GetFileNameWithoutExtension . Each has a single parameter, path , which represents the

path to be parsed:

GetPathRoot

This method returns the root directory of the path. If no root is provided in the path, such as
when a relative path is used, this method returns an empty string, not null .

GetDirectoryName

This method returns the complete path to a file.

GetFileName

This method returns the filename, including the file extension. If no filename is provided in the
path, this method returns an empty string, not null .

GetExtension

This method returns the file's extension. If no extension is provided for the file or no file exists
in the path, this method returns an empty string, not null .

GetFileNameWithoutExtension

This method returns the root filename without the file extension. If no extension is provided on
the file, this method returns an empty string, not null .

Be aware that these methods do not actually determine whether the drives, directories, or even files
exist on the system that runs these methods. These methods are string parsers and if you pass one
of them a string in some strange format (such as "\\ZY:\foo "), it will try to do what it can with it

anyway:

ParsePath of \\ZY:\foo breaks up into the following pieces:
 Root: \\ZY:\foo
 Directory Name:
 Full File Name: foo
 File Extension:
 File Name Without Extension: foo

These methods will, however, throw an exception if illegal characters are found in the path. To
determine whether files or directories exist, use the static Directory.Exists or File.Exists

methods.

See Also

See the "Path Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 11.16 Parsing Paths in Environment Variables

Problem

You need to parse multiple paths contained in environment variables, such as PATH or Include.

Solution

You can use the Path.PathSeparator field or the ; character to extract individual paths from an

environment variable whose value consists of multiple paths, and place them in an array. Then you
can use a foreach loop to iterate over each individual path in the PATH environment variable and
parse each path. This process is illustrated by the ParsePathEnvironmentVariable method:

public static void ParsePathEnvironmentVariable()
{
 string originalPathEnv = Environment.GetEnvironmentVariable("PATH");
 string[] paths = originalPathEnv.Split(new char[1] {Path.PathSeparator});
 foreach (string s in paths)
 {
 string pathEnv = Environment.ExpandEnvironmentVariables(s);
 Console.WriteLine("Path = " + pathEnv);
 if(pathEnv.Length > 0)
 {
 Console.WriteLine("Individual Path = " + pathEnv);
 }
 else
 {
 Console.WriteLine("Skipping blank environment path details " +
 " as it causes exceptions...");
 }
 Console.WriteLine();
 }
}

If the PATH environment variable contains the following:

PATH=Path=C:\WINDOWS\system32;C:\WINDOWS

then the output of the ParsePathEnvironmentVariable method is as follows:

Path = C:\WINDOWS\system32
GetDirectoryName = C:\WINDOWS
GetExtension =
GetFileName = system32

GetFileNameWithoutExtension = system32
GetFullPath = C:\WINDOWS\system32
GetPathRoot = C:\
HasExtension = False
IsPathRooted = True

Path = C:\WINDOWS
GetDirectoryName = C:\
GetExtension =
GetFileName = WINDOWS
GetFileNameWithoutExtension = WINDOWS
GetFullPath = C:\WINDOWS
GetPathRoot = C:\
HasExtension = False
IsPathRooted = True

Discussion

When working with environment variables in particular, there are a number of cases in which several
paths may be concatenated together and you need to parse each one individually. To distinguish each
individual path from the others, Microsoft Windows uses the semicolon character. (Other operating
systems might use a different character; Unix, Linux, and Mac OS X use a colon.) To make sure that
we always use the correct path separation character, the Path class contains a public static field
called PathSeparator. This field contains the character used to separate paths in the current

platform. This field is marked as read-only, so it cannot be modified.

To obtain each individual path contained in a single string, use the Split instance method from the
String class. This method accepts a param array of character values that are used to break apart the

string instance. These individual strings containing the paths are returned in a string array. We can
then simply use the foreach loop construct to iterate over each string in this string array, and we
can use the various static methods of the Path class to operate on each individual path string.

See Also

See the "Path Class" and "Environment Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 11.17 Verifying a Path

Problem

You have a path-possibly entered by the user-and you need to verify that it has no illegal
characters and that a filename and extension exist.

Solution

We use several of the static fields and methods in the Path class. We begin by writing a method
called CheckUserEnteredPath, which accepts a string containing a path entered by the user and a

Boolean value to decide whether we want to find all illegal characters or just the occurrence of any
illegal character. Just finding any illegal character is much faster if you don't care which illegal
characters are present. This method first calls another method, either FindAnyIllegalChars or
FindAllIllegalChars, each of which are described later in the Solution. If there are no illegal

characters in this path, it is then checked for the existence of a file and extension:

public bool CheckUserEnteredPath(string path, bool any)
{
 try
 {
 Console.WriteLine("Checking path {0}",path);
 bool illegal = false;
 // two ways to do the search, one more expensive than the other...
 if(any == true)
 illegal = FindAnyIllegalChars(path);
 else
 illegal = FindAllIllegalChars(path);

 if (!illegal)
 {
 if (Path.GetFileName(path).Length == 0)
 {
 Console.WriteLine("A filename must be entered");
 }
 else if (!Path.HasExtension(path))
 {
 Console.WriteLine("The filename must have an extension");
 }
 else
 {
 Console.WriteLine("Path is correct");
 return (true);

 }
 }
 }
 catch(Exception e)
 {
 Console.WriteLine(e.ToString());
 }
 return (false);
}

The FindAllIllegalChars method, which is called by the CheckUserEnteredPath method, accepts
a string containing a path. This path is checked for illegal characters by using the IndexOfAny
method on the string class. The IndexOfAny method finds the first occurrence of one of the
characters supplied to it in the string being looked at. This method uses the Path.InvalidPathChars

static field to determine if any illegal characters exist in this path:

private bool FindAllIllegalChars(string userEnteredPath)
{
 int invalidCharPos = -1;
 bool endOfPath = false;
 bool foundIllegalChars = false;

 while (!endOfPath)
 {
 invalidCharPos = userEnteredPath.IndexOfAny(Path.InvalidPathChars,
 invalidCharPos + 1);
 if (invalidCharPos == -1)
 {
 endOfPath = true;
 }
 else
 {
 foundIllegalChars = true;
 Console.WriteLine("Invalid char {0} found at position {1}",
userEnteredPath[invalidCharPos],invalidCharPos);
 if (invalidCharPos >= userEnteredPath.Length - 1)
 {
 endOfPath = true;
 }
 else
 {
 invalidCharPos++;
 }
 }
 }
 return (foundIllegalChars);

}

The FindAnyIllegalChars method, which is also called by the CheckUserEnteredPath method,

accepts a string containing a user entered path. This path is checked for the existence of any illegal
characters by using the IndexOfAny method on the string class. If the IndexOfAny method finds

anything, we have an illegal path and we return false:

private bool FindAnyIllegalChars(string userEnteredPath)
{
 int invalidCharPos = userEnteredPath.IndexOfAny(Path.InvalidPathChars);
 if (invalidCharPos == -1)
 {
 return (false);
 }
 else
 {
 Console.WriteLine("Invalid char {0} found at position {1}",
userEnteredPath[invalidCharPos],invalidCharPos);
 return (true);
 }
}

Discussion

This recipe provides a way of verifying a path for invalid characters before it can be used in your
application. This recipe does not verify that the directory or path exists; use the Directory.Exists
or File.Exists methods to perform this verification.

The CheckUserEnteredPath method starts by calling the FindAnyIllegalChars or
FindAllIllegalChars methods and passing the chosen one a path string. Two different mechanisms
validate the path against the set of characters supplied by Path.InvalidPathChars . This field

contains all of the invalid characters that could be entered into a path string. Both methods return
true if there are illegal characters found, but FindAnyIllegalChars prints information to the console
only for the first one found, whereas FindAllIllegalChars prints out information for every illegal

character found.

See Also

See the "String Class" and "Path Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 11.18 Using a Temporary File in Your Application

Problem

You need a temporary file in which to store information. This file will exist only as long as the process
that created it remains running.

Solution

Use the static GetTempPath and GetTempFileName methods on the Path class. To create the

temporary file in the directory set as the temporary directory and get the full path to it, use the
following line of code:

string tempFilePathWithFileName = Path.GetTempFileName();

Before the application terminates, you should delete this temporary file. The following line of code
deletes this file:

File.Delete(tempFilePathWithFileName);

The GetTempFileName method creates the temporary file and returns the path, including the name of

the file and its extension. To create and obtain just the path without the filename, use the following
line of code:

string tempFilePathWithoutFileName = Path.GetTempPath();

Once all files are closed, before the application terminates, this temporary directory should be deleted
as well. The following line of code deletes this directory and any files or subdirectories within it:

Directory.Delete(tempFilePathWithoutFileName,true);

Discussion

You should use a temporary file whenever you need to store information temporarily for later
retrieval. The one thing you must remember is to delete this temporary file before the application
that created it is terminated. If it is not deleted, it will remain in the user's temporary directory until
the user manually deletes it.

The Path class provides two methods for working with temporary files. The first is the static
GetTempPath method, which returns the path to the temporary directory specified in the TEMP

environment variable.

The second static method, GetTempFileName, will automatically generate a temporary filename,

create a zero-length file in the user's temporary directory, and return a string containing this

filename and its path.

See Also

See the "Directory Class," "File Class," and "Path Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 11.19 Opening a File Stream with just aFile Handle

Problem

When interoperating with unmanaged code, you encounter a situation where you are provided a file
handle and no other information. This file handle must be used to open its corresponding file.

Solution

In order to use an unmanaged file handle to access a file, use the FileStream class. The unmanaged

file handle could have been generated using P/Invoke to open a file and get the file handle. The code
would then pass it to the WriteToFileHandle managed method for writing data, then flush and close

the unmanaged file handle. This setup is illustrated in the following code:

public void UsingAnUnmanagedFileHandle()
{
 IntPtr hFile = IntPtr.Zero;
 // create a file using unmanaged code
 hFile = (IntPtr)FileInteropFunctions.CreateFile("data.txt",
 FileInteropFunctions.GENERIC_WRITE,
 0,
 IntPtr.Zero,
 FileInteropFunctions.CREATE_ALWAYS,
 0,
 0);

 if(hFile.ToInt64() > 0)
 {
 // write to the file using managed code
 WriteToFileHandle(hFile);
 // close the file
 FileInteropFunctions.CloseHandle(hFile);
 // remove the file
 File.Delete("data.txt");
 }
}

In order to write to the file handle, we wrap it in a FileStream, passing the file handle as the first
parameter. Once we have the file stream, we use the capabilities of the FileStream to write to the
file handle by getting the bytes from a string in ASCII encoding format and calling Write on the file

stream, as shown here:

public static void WriteToFileHandle(IntPtr hFile)
{

 // Open a FileStream object using the passed in file handle
 // pass false so that the stream doesn't own the handle, if this was true,
 // closing the filestream would close the handle
 FileStream fileStream = new FileStream(hFile, FileAccess.ReadWrite, false);
 // flush before we start to clear any pending unmanaged actions
 fileStream.Flush();
 // Operate on file here...
 string line = "Managed code wrote this line!";
 // write to the file
 byte[] bytes = Encoding.ASCII.GetBytes(line);
 fileStream.Write(bytes,0,bytes.Length);
 // just close the file stream
 fileStream.Close();
}

In order to perform the unmanaged functions of creating, flushing, and closing the file handle, we
have wrapped the unmanaged Win32 API functions for these functions. The DllImport attribute says
that these functions are being used from kernel32.dll and the SetLastError attribute is set to true,
so that we can see if anything went wrong. A few of the #defines used with file creation have been

brought over from unmanaged code for readability:

class FileInteropFunctions
{
 public const uint GENERIC_READ = (0x80000000);
 public const uint GENERIC_WRITE = (0x40000000);
 public const uint GENERIC_EXECUTE = (0x20000000);
 public const uint GENERIC_ALL = (0x10000000);

 public const uint CREATE_NEW = 1;
 public const uint CREATE_ALWAYS = 2;
 public const uint OPEN_EXISTING = 3;
 public const uint OPEN_ALWAYS = 4;
 public const uint TRUNCATE_EXISTING = 5;

 [DllImport("kernel32.dll", SetLastError=true)]
 public static extern bool CloseHandle(IntPtr hObject);

 [DllImport("kernel32.dll", SetLastError=true)]
 public static extern IntPtr CreateFile(
 String lpFileName, // filename
 uint dwDesiredAccess, // access mode
 uint dwShareMode, // share mode
 IntPtr attr, // Security Descriptor
 uint dwCreationDisposition, // how to create
 uint dwFlagsAndAttributes, // file attributes
 uint hTemplateFile); // handle to template file

 [DllImport("kernel32.dll", SetLastError=true)]
 public static extern bool FlushFileBuffers(IntPtr hFile);
}

Discussion

You can open a file using one of the overloaded constructors of the FileStream class and passing a

file handle into it. When opening a file handle, determine whether this object should be able to close
this file's handle. If the unmanaged code creating the file intends to hand off ownership to the
managed code, the object should set the ownsHandle parameter to true. The ownsHandle parameter

is the third parameter on the constructor used with an existing handle. In many cases, this instance
should not be allowed to close this file's handle. Instead, let the code that initially opened the file also
close the file. If in doubt, set this parameter to false.

Keep your code short when opening a file using a file handle. Call the FileStream.Close method as

soon as possible. The reason for this recommendation is that another object might also have this file
open, and operating on that file through both FileStream objects can corrupt the data in the file.

See Also

See the "DllImport Attribute," "File Class," and "FileStream Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 11.20 Write to Multiple Output Files at One Time

Problem

Any output that is written to one file must also be written to at least one other file. Essentially, you
want to end up with at least the original file and the duplicate file.

Solution

Create a class called MultiWriter with the ability to write to multiple files from a single WriteLine

call.

To create a set of files, just pass the file paths you would like to use to the constructor like this:

// Create a list of three file names
string[] names = new string[3];
for (int i=0;i<3;i++)
{
 names[i] = Path.GetTempFileName();
}
MultiWriter multi = new MultiWriter(names);

Next, perform the writes and close the instance:

multi.WriteLine("First Line");
multi.WriteLine("Second Line");
multi.WriteLine("Third Line");
multi.Close();

Here is the implementation of the MultiWriter class:

class MultiWriter : IDisposable
{
 FileStream[] _streams;
 string [] _names;
 int _streamCount = 0;
 bool _disposed = false;

 public MultiStream(string[] fileNames)
 {
 try
 {
 // copy the names
 _names = (string[])fileNames.Clone();

 // set the number of streams
 _streamCount = fileNames.Length;
 // make the stream array
 _streams = new FileStream[_streamCount];
 for(int i = 0; i < _streams.Length; i++)
 {
 // create this filestream
 _streams[i] = new FileStream(_names[i],
 FileMode.Create,
 FileAccess.ReadWrite,
 FileShare.None);
 }
 }
 catch(IOException ioe)
 {
 Console.WriteLine(ioe.ToString());
 }
 }

 public void WriteLine(string text)
 {
 // add a newline
 text += Environment.NewLine;
 // get the bytes in unicode format...
 byte[] bytes = Encoding.ASCII.GetBytes(text);
 // roll over the streams
 for(int i = 0; i < _streams.Length; i++)
 {
 // write the text
 _streams[i].Write(bytes,0,bytes.Length);
 }
 }

 public void Close()
 {
 Dispose();
 }

 public void Dispose()
 {
 try
 {
 // only close out once
 if(_disposed == false)
 {
 // close each stream
 for(int i=0;i<_streams.Length;i++)
 {
 _streams[i].Close();
 }
 // prevent refinalizing
 GC.SuppressFinalize(this);

 // indicate we have done this already
 _disposed = true;
 }
 }
 catch(IOException ioe)
 {
 Console.WriteLine(ioe.ToString());
 }
 }
}

Discussion

MultiStream implements the IDisposable interface, which helps the users remember to close the
files this will create. Ultimately, if the user forgets to call Close (a thin wrapper around Dispose for
semantic convenience), the finalizer (~MultiStream) will call Dispose anyway and close the files
when the garbage collector finalizes the instance. Note that in the Dispose method, we check to see

whether the instance has been disposed before; if not, we close the file streams we created internally
and call the GC.SuppressFinalize method. This is an optimization to keep the garbage collector

from having to call our finalizer and subsequently hold on to the object longer.

See Also

See the "FileStream Class," "GC Class," and "IDisposable Interface" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 11.21 Launching and Interacting withConsole
Utilities

Problem

You have an application that you need to automate and that takes input only from the standard input
stream. You need to drive this application via the commands it will take over the standard input
stream.

Solution

Say we needed to drive the CMD.EXE application to display the current time with the TIME /T

command (it is possible to just run this command from the command line, but this way we can
demonstrate an alternative method to drive an application that responds to standard input). The way
to do this is to launch a process that is looking for input on the standard input stream. This is
accomplished via the Process class StartInfo property, which is an instance of a
ProcessStartInfo class. The Process.Start method will launch a new process, but the StartInfo

property controls many of the details of what sort of environment that process executes in.

First, make sure that the StartInfo.RedirectStandardInput property is set to true. This setting

notifies the process that it should read from standard input. Then set the
StartInfo.UseShellExecute property to false because if you were to let the shell launch the

process for you, it would prevent you from redirecting standard input.

Once this is done, launch the process and write to its standard input stream as shown:

public void RunProcessToReadStdIn()
{
 Process application = new Process();
 // run the command shell
 application.StartInfo.FileName = @"cmd.exe";

 // turn on standard extensions
 application.StartInfo.Arguments = "/E:ON";

 application.StartInfo.RedirectStandardInput = true;

 application.StartInfo.UseShellExecute = false;

 // start it up
 application.Start();

 // get stdin

 StreamWriter input = application.StandardInput;

 // run the command to display the time
 input.WriteLine("TIME /T");

 // stop the application we launched
 input.WriteLine("exit");
}

Discussion

Once the input has been redirected, you can write into the standard input stream of the process by
getting the Process.StandardInput property that is a StreamWriter. Once you have that, you can
send things to the process via WriteLine calls, as shown earlier.

In order to use StandardInput, you have to specify true for the StartInfo property's
RedirectStandardInput property. Otherwise, reading the StandardInput property throws an

exception.

When UseShellExecute is false, you can only use Process to create executable processes.

Normally the Process class can be used to perform operations on the file, like printing a Microsoft
Word document. Another difference when using false is that the working directory is not used to find
the executable, so you should be mindful to pass a full path or have the executable on your PATH

environment variable.

See Also

See the "Process Class," "ProcessStartInfo Class," "RedirectStandardInput Property," and
"UseShellExecute Property" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 11.22 Locking Subsections of a File

Problem

You need to read or write data to or from a section of a file, and you want to make sure that no other
processes or threads can access, modify, or delete the file until you have finished with it.

Solution

Locking out other processes or threads from accessing your file while you are using it is accomplished
through the Lock method of the FileStream class. The following code creates a file from the

fileName parameter and writes two lines to it. The entire file is then locked using the Lock method.

While the file is locked, the code goes off and does some other processing; when this code returns,
the file is closed, thereby unlocking it:

public void CreateLockedFile(string fileName)
{
 FileStream fileStream = new FileStream(fileName,
 FileMode.Create,
 FileAccess.ReadWrite,
 FileShare.ReadWrite);
 StreamWriter streamWriter = new StreamWriter(fileStream);

 streamWriter.WriteLine("The First Line");
 streamWriter.WriteLine("The Second Line");
 streamWriter.Flush();

 // Lock all of the file
 fileStream.Lock(0, fileStream.Length);

 // Do some lengthy processing here...
 Thread.Sleep(1000);

 // Make sure we unlock the file.
 // If a process terminates with part of a file locked or closes a file
 // that has outstanding locks, the behavior is undefined which is MS
 // speak for bad things....
 fileStream.Unlock(0, fileStream.Length);

 streamWriter.WriteLine("The Third Line");
 streamWriter.Close();
 fileStream.Close();
}

Discussion

If a file is opened within your application and the FileShare parameter of the FileStream.Open call
is set to FileShare.ReadWrite or FileShare.Write, other code in your application can alter the
contents of the file while you are using it. To handle file access with more granularity, use the Lock
method on the FileStream object to prevent other code from overwriting all or a portion of your file.
Once you are done with the locked portion of your file, you can call the Unlock method on the
FileStream object to allow other code in your application to write data to the file or that portion of

the file.

To lock an entire file, use the following syntax:

fileStream.Lock(0, fileStream.Length);

To unlock a portion of a file, use the following syntax:

fileStream.Lock(4, fileStream.Length - 4);

This line of code locks the entire file except for the first four characters. Note that you can lock an
entire file and still open it multiple times, as well as write to it.

If another thread is accessing this file, it is possible to see an IOException thrown during the call to
either the Write, Flush, or Close methods. For example, the following code is prone to such an

exception:

public void CreateLockedFile(string fileName)
{
 FileStream fileStream = new FileStream(fileName,
 FileMode.Create,
 FileAccess.ReadWrite,
 FileShare.ReadWrite);
 StreamWriter streamWriter = new StreamWriter(fileStream);

 streamWriter.WriteLine("The First Line");
 streamWriter.WriteLine("The Second Line");
 streamWriter.Flush();

 // Lock all of the file
 fileStream.Lock(0, fileStream.Length);

 StreamWriter streamWriter2 = new StreamWriter(new FileStream(fileName,
 FileMode.Open,
 FileAccess.Write,
 FileShare.ReadWrite));
 streamWriter2.Write("foo ");
 try
 {
 streamWriter2.Close(); // --> Exception occurs here!
 }
 catch
 {
 Console.WriteLine("The streamWriter2.Close call generated an exception.");

 }
 streamWriter.WriteLine("The Third Line");
 streamWriter.Close();
 fileStream.Close();
}

Even though streamWriter2, the second StreamWriter object, writes to a locked file, it is when the
streamWriter2.Close method is executed that the IOException is thrown.

If the code for this recipe were rewritten as follows:

public void CreateLockedFile(string fileName)
{
 FileStream fileStream = new FileStream(fileName,
 FileMode.Create,
 FileAccess.ReadWrite,
 FileShare.ReadWrite);
 StreamWriter streamWriter = new StreamWriter(fileStream);

 streamWriter.WriteLine("The First Line");
 streamWriter.WriteLine("The Second Line");
 streamWriter.Flush();

 // Lock all of the file
 fileStream.Lock(0, fileStream.Length);

 // Try to access the locked file...
 StreamWriter streamWriter2 = new StreamWriter(new FileStream(fileName,
 FileMode.Open,
 FileAccess.Write,
 FileShare.ReadWrite));
 StreamWriter2.Write("foo ");
 streamWriter.Close();
 streamWriter2.Flush();
 streamWriter2.Close();

 streamWriter.Close();
 fileStream.Close();
}

no exception is thrown. This is due to the fact that the code closed the FileStream object that
initially locked the entire file. This action also freed all of the locks on the file that this FileStream
object was holding onto. Since the streamWriter2.Write("Foo") method had written Foo to the
stream's buffer (but had not flushed it), the string Foo was still waiting to be flushed and written to

the actual file. Keep this situation in mind when interleaving the opening, locking, and closing of
streams. Mistakes in code sometimes manifest themselves a while after they are written. This leads
to some bugs more difficult to track down, so tread carefully when using file locking.

See Also

See the "StreamWriter Class" and "FileStream Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 11.23 Watching the Filesystem for Specific
Changes to One or More Files or Directories

Problem

You want to be notified when a file and/or directory is created, modified, or deleted. In addition, you
might also need to be notified of any of these actions for a group of files and/or directories. This can
aid in alerting your application as to when a file, such as a log file, grows to a certain size, after which
it must be truncated.

Solution

To be notified when an action takes place in the filesystem, you need to employ the
FileSystemWatcher class. The following method, TestWatcher, sets up a FileSystemWatcher object

to watch the entire C:\ drive for any changes. The changes are limited to any file with the extension
.txt. At the end of this method, the events are wired up for each one of the changes listed in the
NotifyFilter property:

public void TestWatcher()
{
 FileSystemWatcher fsw = new FileSystemWatcher();
 fsw.Path = @"c:\";
 fsw.Filter = @"*.txt";
 fsw.IncludeSubdirectories = true;

 fsw.NotifyFilter = NotifyFilters.FileName |
 NotifyFilters.Attributes |
 NotifyFilters.LastAccess |
 NotifyFilters.LastWrite |
 NotifyFilters.Security |
 NotifyFilters.Size |
 NotifyFilters.CreationTime|
 NotifyFilters.DirectoryName;

 fsw.Changed += new FileSystemEventHandler(OnChanged);
 fsw.Created += new FileSystemEventHandler(OnCreated);
 fsw.Deleted += new FileSystemEventHandler(OnDeleted);
 fsw.Renamed += new RenamedEventHandler(OnRenamed);
 fsw.Error += new ErrorEventHandler(OnError);

 fsw.EnableRaisingEvents = true;

 string file = @"c:\myfile.txt";

 string newfile = @"c:\mynewfile.txt";
 FileStream stream = File.Create(file);
 stream.Close();
 File.Move(file,newfile);
 File.Delete(newfile);

 fsw.Dispose();
}

The following code implements the event handlers to handle the events that are raised by the
FileSystemWatcher object that was created and initialized in the TestWatcher method:

public void OnChanged(object source, FileSystemEventArgs e)
{
 Console.WriteLine("File " + e.FullPath + " --> " + e.ChangeType.ToString());
}

public void OnDeleted(object source, FileSystemEventArgs e)
{
 Console.WriteLine("File " + e.FullPath + " --> " + e.ChangeType.ToString());
}

public void OnCreated(object source, FileSystemEventArgs e)
{
 Console.WriteLine("File " + e.FullPath + " --> " + e.ChangeType.ToString());
}

public void OnRenamed(object source, RenamedEventArgs e)
{
 Console.WriteLine("File " + e.OldFullPath + " (renamed to)--> " + e.FullPath);
}

public void OnError(object source, ErrorEventArgs e)
{
 Console.WriteLine("Error " + e.ToString());
}

Discussion

Watching for changes in the filesystem centers around the FileSystemWatcher class. This class can

watch for filesystem changes on the local machine, a networked drive, and even a remote machine.
The limitations of watching files on a remote machine are that the watching machine must be running
versions of Windows starting from Windows NT 4.0 through 2000, XP, Server 2003, and Longhorn.
The one caveat for Windows NT 4.0 is that a Windows NT 4.0 machine cannot watch another remote
Windows NT 4.0 machine.

The FileSystemWatcher object cannot watch directories or files on a CD or DVD drive (including

rewritables) in the current versions of the framework. This limitation might be revisited in a future
version of the framework. This object does watch files regardless of whether their hidden property is
set. To start watching a filesystem, we need to create an instance of the FileSystemWatcher class.
After creating the FileSystemWatcher object, we can set its properties in order to focus our efforts

in watching a filesystem. Table 11-10 examines the various properties that can be set on this object.

Table 11-10. Properties that can be set on the FileSystemWatcher object

Property name Description

Path

A path to a directory in which to watch. The following are some
examples of valid values for this property:

@"C:\temp"
@"C:\Program Files"
@"C:\Progra~1"
@"..\..\temp"
@"\\MyServer\temp"
@"."
@""

Note that if a directory is specified, changes to it, such as deleting it or
changing its attributes, are not watched. Only changes within the temp

directory are watched. Assigning an empty string forces the current
directory to be watched.

IncludeSubdirectories
Set to true to monitor all subdirectories as well, or false to watch only

the specified directory.

Filter

Specifies a specific subset of files to watch. The following are some
examples of valid values for this property:

@"*.exe" // Watch only .exe files
@"*" // Watch all files
@"" // Watch all files
@"a*" // Watch all files beginning with the letter 'a'
@"test.d??" // Watch all files with the name "test" and
 having a three letter extension starting
 with the letter 'd'

NotifyFilter

One or more NotifyFilters enumeration values. This enumeration is
marked with the FlagsAttribute, so each enumeration value can be
ORed together using the | operator. By default, this property is set to

FileName, DirectoryName, and LastWrite. The members of the
NotifyFilters enumeration are shown in Table 11-11.

EnableRaisingEvents
When this property is set to true, the FileSystemWatcher object starts

watching the filesystem. To stop this object from watching the
filesystem, set this property to false.

InternalBufferSize
The internal buffer size in bytes for this object. It is used to store
information about the raised filesystem events. This buffer defaults in
size to 8192 bytes. See additional information about this property next.

Table 11-11. NotifyFilters enumeration value definitions

Enumeration name Description

Attributes Watches for changes to a file or directory's attributes.

CreationTime Watches for changes to a file or directory's creation time.

DirectoryName Watches for changes to a directory's name.

FileName Watches for changes to a file's name.

LastAccess Watches for changes to a file or directory's last-accessed property.

LastWrite Watches for changes to a file or directory's last-written-to property.

Security Watches for changes to a file or directory's security settings.

Size Watches for changes to a file or directory's size.

The NotifyFilters enumeration values in Table 11-11 determine which events the
FileSystemWatcher object watches. For example, the OnChanged event can be raised when any of
the following NotifyFilters enumeration values are passed to the NotifyFilter property:

NotifyFilters.Attributes
NotifyFilters.Size
NotifyFilters.LastAccess
NotifyFilters.LastWrite
NotifyFilters.Security
NotifyFilters.CreationTime

The OnRenamed event can be raised when any of the following NotifyFilters enumeration values
are passed to the NotifyFilter property:

NotifyFilters.DirectoryName
NotifyFilters.FileName

The OnCreated and OnDeleted events can be raised when any of the following NotifyFilters
enumeration values are passed to the NotifyFilter property:

NotifyFilters.DirectoryName
NotifyFilters.FileName

There are times when the FileSystemWatcher object cannot handle the number of raised events
coming from the filesystem. In this case, the Error event is raised, informing you that the buffer has

overflowed and specific events may have been lost. To reduce the likelihood of this problem, we can
limit the number of raised events by minimizing the number of events watched for in the
NotifyFilter property. To decrease the number of raised events further, you can set the
IncludeSubdirectories property to false. You should note that adding a narrower filter to the
Filter property to filter out more files does not affect the number of raised events this object
receives. The Filter property is applied to the information already stored in the buffer, so this will

not help if you are losing notifications due to the buffer overflows.

If the NotifyFilter and IncludeSubdirectories properties cannot be modified, consider
increasing the InternalBufferSize property. To estimate what size to increase this buffer to,

Microsoft provides the following tips:

A 4k byte buffer can keep track of changes for about 80 files in a directory.

Every event consumes 16 bytes of buffer space.

In addition to these 16 bytes, the filename is stored as Unicode characters.

If you are using Windows 2000, consider increasing/decreasing the buffer size by a multiple of
4k bytes. This is the same size as a default memory page.

If you do not know your operating system's page size, use the following code to increase the
FileSystemWatcher's buffer size:
FileSystemWatcher fsw = new FileSystemWatcher();

fsw.InternalBufferSize *= Multiplier;

where Multiplier is an integer used to increase the size of the buffer. This makes the most

efficient use of the buffer space.

If possible, increase the InternalBufferSize as a last resort since this is an expensive operation

due to the buffer space being created in nonpaged memory. Nonpaged memory is memory available
to the process that will always be in physical memory. It is a limited resource and is shared across all
processes on the machine, so it is possible to affect the operation of other processes using this pool if
too much is requested.

In many cases, a single action performed by the user produces many filesystem events. Creating a
text file on the desktop yields the following changes:

File c:\documents and settings\administrator\ntuser.dat.log --> Changed
File c:\documents and settings\administrator\ntuser.dat.log --> Changed
File c:\documents and settings\administrator\ntuser.dat.log --> Changed
File c:\documents and settings\administrator\ntuser.dat.log --> Changed
File c:\documents and settings\administrator\ntuser.dat.log --> Changed
File c:\documents and settings\administrator\ntuser.dat.log --> Changed
File c:\documents and settings\administrator\ntuser.dat.log --> Changed
File c:\documents and settings\administrator\ntuser.dat.log --> Changed
File c:\documents and settings\administrator\ntuser.dat --> Changed
File c:\documents and settings\administrator\ntuser.dat --> Changed
File c:\documents and settings\administrator\ntuser.dat --> Changed
File c:\documents and settings\administrator\ntuser.dat --> Changed
File c:\documents and settings\administrator\ntuser.dat.log --> Changed
File c:\winnt\system32\config\software.log --> Changed
File c:\winnt\system32\config\software.log --> Changed
File c:\winnt\system32\config\software.log --> Changed
File c:\winnt\system32\config\software --> Changed
File c:\winnt\system32\config\software --> Changed
File c:\winnt\system32\config\software --> Changed
File c:\winnt\system32\config\software --> Changed
File c:\winnt\system32\config\software.log --> Changed
File c:\documents and settings\administrator\desktop\newdoc.txt Created

Much of this work is simply registry access, but you notice at the end of this listing that the text file is

finally created.

Another example of multiple filesystem events firing for a single action is when this newly created
text file is opened by double-clicking on it. The following events are raised by this action:

File c:\winnt\system32\notepad.exe --> Changed
File c:\winnt\system32\notepad.exe --> Changed
File c:\documents and settings\administrator\recent\newdoc.txt.lnk --> Deleted
File c:\documents and settings\administrator\recent\newdoc.txt.lnk --> Created
File c:\documents and settings\administrator\recent\newdoc.txt.lnk --> Changed
File c:\winnt\system32\config\software.log --> Changed
File c:\winnt\system32\shell32.dll --> Changed
File c:\winnt\system32\shell32.dll --> Changed

Of course, your results may vary, especially if another application accesses the registry or another
file while the text file is being opened. Even more events may be raised if a background process or
service, such as a virus checker, is accessing the filesystem.

See Also

See the "FileSystemWatcher Class" and "NotifyFilters Enumeration" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 11.24 Waiting for an Action to Occurin the
Filesystem

Problem

You need to be notified when a particular event occurs in the filesystem, such as the renaming of a
particular file or directory, the increasing or decreasing of the size of a file, the user deleting a file or
directory, the creation of a file or directory, or even the changing of a file or directory's attribute(s).
However, this notification must occur synchronously. In other words, the application cannot continue
unless a specific action occurs to a file or directory.

Solution

The WaitForChanged method of the FileSystemWatcher class can be called to wait synchronously

for an event notification. This is illustrated in the following method, which waits for an action-more
specifically, the action of creating the Backup.zip file somewhere on the C:\ drive-to be performed
before proceeding on to the next line of code, which is the WriteLine statement. Finally, we ask the
ThreadPool to use a thread to go create the file in question using the PauseAndCreateFile method,
so that the FileSystemWatcher can detect the file creation:

public void WaitForZipCreation(string path, string fileName)
{
 FileSystemWatcher fsw = null;
 try
 {
 fsw = new FileSystemWatcher();
 string [] data = new string[] {path,fileName};
 fsw.Path = path;
 fsw.Filter = fileName;
 fsw.NotifyFilter = NotifyFilters.LastAccess | NotifyFilters.LastWrite
 | NotifyFilters.FileName | NotifyFilters.DirectoryName;

 // Run the code to generate the file we are looking for
 // Normally you wouldn't do this as another source is creating
 // this file
 if(ThreadPool.QueueUserWorkItem(new WaitCallback(PauseAndCreateFile),
 data))
 {
 // block waiting for change
 WaitForChangedResult result =
 fsw.WaitForChanged(WatcherChangeTypes.Created);
 Console.WriteLine("{0} created at {1}.",result.Name,path);
 }

 }
 catch(Exception e)
 {
 Console.WriteLine(e.ToString());
 }
 // clean it up
 File.Delete(fileName);

 if(fsw != null)
 fsw.Dispose();
}

The code for PauseAndCreateFile is listed here. It is in the form of a WaitCallback to be used as an
argument to QueueUserWorkItem on the Thread class. QueueUserWorkItem will run
PauseAndCreateFile on a thread from the .NET thread pool:

void PauseAndCreateFile(Object stateInfo)
{
 try
 {
 string[] data = (string[])stateInfo;
 // wait a sec...
 Thread.Sleep(1000);
 // create a file in the temp directory
 string path = data[0];
 string file = path + data[1];
 Console.WriteLine("Creating {0} in PauseAndCreateFile...",file);
 FileStream fileStream = File.Create(file);
 fileStream.Close();
 }
 catch(Exception e)
 {
 Console.WriteLine(e.ToString());
 }
}

Discussion

The WaitForChanged method returns a WaitForChangedResult structure that contains the

properties listed in Table 11-12.

Table 11-12. WaitForChangedResult properties

Property Description

ChangeType
Lists the type of change that occurred. This change is returned as a
WatcherChangeTypes enumeration. The values of this enumeration can possibly be

ORed together.

Property Description

Name
Holds the name of the file or directory that was changed. If the file or directory was
renamed, this property returns the changed name. Its value is set to null if the

operation method call times out.

OldName
The original name of the modified file or directory. If this file or directory was not
renamed, this property will return the same value as the Name property. Its value is
set to null if the operation method call times out.

TimedOut
Holds a Boolean indicating whether the WaitForChanged method timed out (true) or
not (false).

Now, you can certainly add a timeout to the WaitForChanged call to prevent you from hanging
forever on the WaitForChanged call, but that is more of a recovery option than actually performing

the action you want, which is to see a file change. This mechanism could be set up in a loop to check
periodically whether you should continue to monitor for this file change (user could hit "cancel" on
your application in another UI thread, for example).

See Also

See the "FileSystemWatcher Class," "NotifyFilters Enumeration," and "WaitForChangedResult
Structure" topics in the MSDN documentation.

[Team LiB]

Name
Holds the name of the file or directory that was changed. If the file or directory was
renamed, this property returns the changed name. Its value is set to null if the

operation method call times out.

OldName
The original name of the modified file or directory. If this file or directory was not
renamed, this property will return the same value as the Name property. Its value is
set to null if the operation method call times out.

TimedOut
Holds a Boolean indicating whether the WaitForChanged method timed out (true) or
not (false).

Now, you can certainly add a timeout to the WaitForChanged call to prevent you from hanging
forever on the WaitForChanged call, but that is more of a recovery option than actually performing

the action you want, which is to see a file change. This mechanism could be set up in a loop to check
periodically whether you should continue to monitor for this file change (user could hit "cancel" on
your application in another UI thread, for example).

See Also

See the "FileSystemWatcher Class," "NotifyFilters Enumeration," and "WaitForChangedResult
Structure" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 11.25 Comparing Version Information of Two
Executable Modules

Problem

You need to programmatically compare the version information of two executable modules. An
executable module is a file that contains executable code such as an EXE or DLL file. The ability to
compare the version information of two executable modules can be very useful to an application if it is
trying to determine if it has all of the "right" pieces present to execute or when deciding on an
assembly to dynamically load through reflection. This trick is also useful when an application is looking
for the newest version of a file or DLL from many files or DLLs spread out in the local filesystem or on
a network.

Solution

Use the CompareFileVersions method to compare executable module version information. This

method accepts two filenames, including their paths, as parameters. The version information of each
module is retrieved and compared. This file returns a FileComparison enumeration, defined as

follows:

public enum FileComparison
{
 Error = 0,
 File1IsNewer = 1,
 File2IsNewer = 2,
 FilesAreSame = 3
}

The code for the CompareFileVersions method is:

public FileComparison CompareFileVersions(string file1, string file2)
{
 FileComparison retValue = FileComparison.Error;
 // do both files exist?
 if (!File.Exists(file1))
 {
 Console.WriteLine(file1 + " does not exist");
 }
 else if (!File.Exists(file2))
 {
 Console.WriteLine(file2 + " does not exist");
 }
 else
 {
 // get the version information

 FileVersionInfo file1Version = FileVersionInfo.GetVersionInfo(file1);
 FileVersionInfo file2Version = FileVersionInfo.GetVersionInfo(file2);

 // check major
 if (file1Version.FileMajorPart > file2Version.FileMajorPart)
 {
 Console.WriteLine(file1 + " is a newer version");
 retValue = FileComparison.File1IsNewer;
 }
 else if (file1Version.FileMajorPart < file2Version.FileMajorPart)
 {
 Console.WriteLine(file2 + " is a newer version");
 retValue = FileComparison.File2IsNewer;
 }
 else // major version is equal, check next...
 {
 // check minor
 if (file1Version.FileMinorPart > file2Version.FileMinorPart)
 {
 Console.WriteLine(file1 + " is a newer version");
 retValue = FileComparison.File1IsNewer;
 }
 else if (file1Version.FileMinorPart < file2Version.FileMinorPart)
 {
 Console.WriteLine(file2 + " is a newer version");
 retValue = FileComparison.File2IsNewer;
 }
 else // minor version is equal, check next...
 {
 // check build
 if (file1Version.FileBuildPart > file2Version.FileBuildPart)
 {
 Console.WriteLine(file1 + " is a newer version");
 retValue = FileComparison.File1IsNewer;
 }
 else if (file1Version.FileBuildPart < file2Version.FileBuildPart)
 {
 Console.WriteLine(file2 + " is a newer version");
 retValue = FileComparison.File2IsNewer;
 }
 else // build version is equal, check next...
 {
 // check private
 if (file1Version.FilePrivatePart > file2Version.FilePrivatePart)
 {
 Console.WriteLine(file1 + " is a newer version");
 retValue = FileComparison.File1IsNewer;
 }
 else if (file1Version.FilePrivatePart <
 file2Version.FilePrivatePart)
 {
 Console.WriteLine(file2 + " is a newer version");

 retValue = FileComparison.File2IsNewer;
 }
 else
 {
 // identical versions.
 Console.WriteLine("The files have the same version");
 retValue = FileComparison.FilesAreSame;
 }
 }
 }
 }
 }
 return retValue;
}

Discussion

Not all executable modules have version information. If you load a module with no version information
using the FileVersionInfo class, you will not throw an exception, nor will you get null back for the
object reference. Instead, you will get a valid FileVersionInfo object with all data members in their
initial state (which is null for .NET objects).

Assemblies actually have two sets of version information: the version information available in the
assembly manifest and the PE (Portable Executable) file version information. FileVersionInfo reads

the assembly manifest version information.

The first action this method takes is to determine whether the two files passed in to the file1 and

file2 parameters actually exist. If so, the static GetVersionInfo method is called on the
FileVersionInfo class with each file passed in as a parameter.

The CompareFileVersions method attempts to compare each portion of the file's version number
using the following properties of the FileVersionInfo object returned by GetVersionInfo :

FileMajorPart

The first 2 bytes of the version number.

FileMinorPart

The second 2 bytes of the version number.

FileBuildPart

The third 2 bytes of the version number.

FilePrivatePart

The final 2 bytes of the version number.

The full version number is comprised of these four parts, making up an 8-byte number representing
the file's version number.

The CompareFileVersions method first compares the FileMajorPart version information of the two
files. If these are equal, the FileMinorPart version information of the two files is compared. This
continues through the FileBuildPart and finally the FilePrivatePart version information values. If

all four parts are equal, the files are considered to have the same version number. If a file is found to
have a higher number than the other file, that first file is considered to be of an earlier version than
the one with the higher number.

See Also

See the "FileVersionInfo Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Chapter 12. Reflection
Reflection is the mechanism provided by the .NET Framework to allow you to inspect how a program
is constructed. Using reflection, you can obtain information such as the name of an assembly and
what other assemblies a given assembly imports. You can even dynamically call methods on a type in
a given assembly. Reflection also allows you to create code dynamically and compile it to an in-
memory assembly or to build a symbol table of type entries in an assembly. Reflection is a very
powerful feature of the framework, and, as such, is guarded by the runtime, requiring the
ReflectionPermission be granted to assemblies doing this type of work. "Code Access Security"
has only two permission sets that give all reflection access by default: FullTrust and Everything.
The LocalIntranet permission set allows for the ReflectionEmit privilege that allows for emitting
metadata and creating assemblies, but not the TypeInformation privilege for inspecting other
assemblies or the MemberAccess privilege for performing dynamic invocation of methods on types in

assemblies. In this chapter, you will see how you can use reflection to dynamically invoke members
on types, figure out all of the assemblies a given assembly is dependent on, and inspect assemblies
for different types of information. Reflection is a great way to understand how things are put together
in .NET; this chapter provides a starting point.

[Team LiB]

[Team LiB]

Recipe 12.1 Listing Imported Assemblies

Problem

You need to determine each assembly imported by a particular assembly. This information can show
you if this assembly is using one or more of your assemblies or if your assembly is using another
specific assembly.

Solution

Use the Assembly.GetReferencedAssemblies method to obtain the imported assemblies of an

assembly:

using System;
using System.Reflection;
using System.Collections.Specialized;

public static void BuildDependentAssemblyList(string path,
 StringCollection assemblies)
{
 // maintain a list of assemblies the original one needs
 if(assemblies == null)
 assemblies = new StringCollection();

 // have we already seen this one?
 if(assemblies.Contains(path)==true)
 return;

 Assembly asm = null;
 // look for common path delimiters in the string
 // to see if it is a name or a path
 if((path.IndexOf(@"\",0,path.Length)!=-1)||
 (path.IndexOf("/",0,path.Length)!=-1))
 {
 // load the assembly from a path
 asm = Assembly.LoadFrom(path);
 }
 else
 {
 // try as assembly name
 asm = Assembly.Load(path);
 }
 // add the assembly to the list

 if(asm != null)
 {
 assemblies.Add(path);
 }

 // get the referenced assemblies
 AssemblyName[] imports = asm.GetReferencedAssemblies();
 // iterate
 foreach (AssemblyName asmName in imports)
 {
 // now recursively call this assembly to get the new modules
 // it references
 BuildDependentAssemblyList(asmName.FullName,assemblies);
 }
}

This code fills a StringCollection containing the original assembly, all imported assemblies, and the

dependent assemblies of the imported assemblies.

If you ran this method against the assembly C:\CSharpRecipes\bin\Debug\CSharpRecipes.exe, you'd
get the following dependency tree:

 C:\CSharpRecipes\bin\Debug\CSharpRecipes.exe

 mscorlib, Version=1.0.5000.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089

 System, Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

 System.Xml, Version=1.0.5000.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089

 System.Runtime.Serialization.Formatters.Soap, Version=1.0.5000.0,
 Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a

 REGEX_Test, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null

 FileIODenied, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null

 FileIOPermitted, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null

Discussion

Obtaining the imported types in an assembly is useful in determining what assemblies another
assembly is using. This knowledge can greatly aid in learning to use a new assembly. This method
can also help determine dependencies between assemblies for shipping purposes.

The GetReferencedAssemblies method of the System.Reflection.Assembly class obtains a list of

all the imported assemblies. This method accepts no parameters and returns an array of
AssemblyName objects instead of an array of Types. The AssemblyName type is made up of members

that allow access to the information about an assembly, such as the name, version, culture
information, public/private key pairs, and other data.

Note that this method does not account for assemblies loaded using the Assembly.Load* methods,

as it is only inspecting for compile-time references.

See Also

See the "Assembly Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 12.2 Listing Exported Types

Problem

You need to obtain all the exported types of an assembly. This information allows you to see what
types are usable from outside of this assembly.

Solution

Use Assembly.GetExportedTypes to obtain the exported types of an assembly:

using System;
using System.Reflection;

public static void ListExportedTypes(string path)
{
 // load the assembly
 Assembly asm = Assembly.LoadFrom(path);
 Console.WriteLine("Assembly: {0} imports:",path);
 // get the exported types
 Type[] types = asm.GetExportedTypes();
 foreach (Type t in types)
 {
 Console.WriteLine ("\tExported Type: {0}",t.FullName);
 }
}

The previous example will display all exported, or public, types:

Assembly: C:\C#Cookbook\CSharpRecipes.exe imports:
 Exported Type: CSharpRecipes.ClassAndStructs
 Exported Type: CSharpRecipes.Line
 Exported Type: CSharpRecipes.Square
 Exported Type: CSharpRecipes.CompareHeight
 Exported Type: CSharpRecipes.Foo
 Exported Type: CSharpRecipes.ObjState

Discussion

Obtaining the exported types in an assembly is useful when determining the public interface to that
assembly. This ability can greatly aid in learning to use a new assembly or can aid the developer of
that assembly in determining all access points to their assembly and seeing whether they are
adequately secure from malicious code. To get these exported types, we use the GetExportedTypes

method on the System.Reflection.Assembly type. The exported types consist of all of the types

that are publicly accessible from outside of the assembly. A type may have public accessibility but not
be accessible from outside of the assembly. Take, for example, the following code:

public class Outer
{
 public class Inner {}
 private class SecretInner {}
}

The exported types are Outer and Outer.Inner; the type SecretInner is not exposed to the world
outside of this assembly. If we change the Outer accessibility from public to private, we now have
no types accessible to the outside world-the Inner class access level is downgraded because of the
private on the Outer class.

See Also

See the "Assembly Class" topic in the MSDN documentation

[Team LiB]

[Team LiB]

Recipe 12.3 Finding Overridden Methods

Problem

You have an inheritance hierarchy that is several levels deep and has many virtual and overridden
methods. You need to determine which method in a derived class overrides what method in one of
many possible base classes.

Solution

Use the MethodInfo.GetBaseDefinition method to determine which method is overridden in what
base class. The following overloaded method, FindMethodOverrides, examines all of the static and

public instance methods in a class and displays which methods override their respective base class
methods. This method also determines which base class the overridden method is in. This overloaded
method accepts an assembly path and name along with a type name in which to find overriding
methods. Note that the typeName parameter must be the fully qualified type name (i.e., the complete

namespace hierarchy, followed by any containing classes, followed by the type name you are
querying):

public void FindMethodOverrides(string asmPath, string typeName)
{
 Assembly asm = Assembly.LoadFrom(asmPath);
 Type asmType = asm.GetType(typeName);

 Console.WriteLine("---[" + asmType.FullName + "]---");

 // get the methods that match this type
 MethodInfo[] methods = asmType.GetMethods(BindingFlags.Instance |
 BindingFlags.NonPublic | BindingFlags.Public |
 BindingFlags.Static | BindingFlags.DeclaredOnly);
 foreach (MethodInfo method in methods)
 {
 Console.WriteLine("Current Method: " + method.ToString());

 // get the base method
 MethodInfo baseDef = method.GetBaseDefinition();
 if (baseDef != method)
 {
 Console.WriteLine("Base Type FullName: " +
 baseDef.DeclaringType.FullName);
 Console.WriteLine("Base Method: " + baseDef.ToString());

 // list the types of this method

 Type[] paramTypes = new Type[method.GetParameters().Length];
 int counter = 0;
 foreach (ParameterInfo param in method.GetParameters())
 {
 paramTypes[counter] = param.ParameterType;
 Console.WriteLine("\tParam {0}: {1}",
 param.Name,param.ParameterType.ToString());
 counter++;
 }
 }
 Console.WriteLine();
 }
}

The second overloaded method allows you to determine whether a particular method overrides a
method in its base class. It accepts the same two arguments as the first overloaded method, along
with the full method name and an array of Type objects representing its parameter types:

public void FindMethodOverrides(string asmPath, string typeName,
 string methodName, Type[] paramTypes)
{
 Console.WriteLine("For [Type] Method: [" + typeName + "] " + methodName);

 Assembly asm = Assembly.LoadFrom(asmPath);
 Type asmType = null;
 asmType = asm.GetType(typeName,true,true);
 MethodInfo method = asmType.GetMethod(methodName, paramTypes);

 if (method != null)
 {
 MethodInfo baseDef = method.GetBaseDefinition();
 if (baseDef != method)
 {
 Console.WriteLine("Base Type FullName: " +
 baseDef.DeclaringType.FullName);
 Console.WriteLine("Base Method: " + baseDef.ToString());
 // get the parameters for the base method
 Type[] baseParamTypes =
 new Type[baseDef.GetParameters().Length];
 bool foundMatch = true;

 // same number of params as we are looking for?
 if(paramTypes.Length == baseParamTypes.Length)
 {
 int counter = 0;
 foreach (ParameterInfo param in baseDef.GetParameters())
 {
 if(paramTypes[counter].UnderlyingSystemType !=
 param.ParameterType.UnderlyingSystemType)
 {
 // found an unmatching parameter, mark false
 foundMatch = false;

 }
 // list the params so we can see which one we got
 Console.WriteLine("\tParam {0}: {1}",
 param.Name,param.ParameterType.ToString());
 counter++;
 }
 }
 else
 foundMatch = false;
 // we found the one we were looking for
 if(foundMatch == true)
 {
 Console.WriteLine("Found Match!");
 }
 }
 }
 Console.WriteLine();
}

The following code shows how to use each of these overloaded methods:

public static void FindOverriddenMethods()
{
 MethodOverrides mo = new MethodOverrides();
 Process current = Process.GetCurrentProcess();
 // get the path of the current module
 string path = current.MainModule.FileName;

 // try the easier one
 mo.FindMethodOverrides(path,"CSharpRecipes.Reflection+DerivedOverrides");

 // try the signature findmethodoverrides
 mo.FindMethodOverrides(path,
 "CSharpRecipes.Reflection+DerivedOverrides",
 "Foo",
 new Type[3] {typeof(long), typeof(double), typeof(byte[])});
}

In the usage code, we are getting the path to the test code assembly (CSharpRecipes.exe) via the
Process class and then using that to find a class that has been defined in the Reflection class,
called DerivedOverrides. DerivedOverrides derives from BaseOverrides and they are both shown

here:

public abstract class BaseOverrides
{
 public abstract void Foo(string str, int i);

 public abstract void Foo(long l, double d, byte[] bytes);
}

public class DerivedOverrides : BaseOverrides
{

 public override void Foo(string str, int i)
 {
 }

 public override void Foo(long l, double d, byte[] bytes)
 {
 }
}

The first method only passes in the assembly path and the fully qualified type name. This method
returns every overridden method for each method that it finds in the
Reflection.DerivedOverrides type. If you wanted to display all overriding methods and their
corresponding overridden method, you can remove the BindingFlags.DeclaredOnly binding
enumeration from the GetMethods method call:

MethodInfo[] methods = asmType.GetMethods(BindingFlags.Instance |
 BindingFlags.NonPublic | BindingFlags.Public |
 BindingFlags.Static);

The second method passes in the assembly path, the fully qualified type name, a method name, and
the parameters for this method to find the override that specifically matches the signature based on
the parameters. In this case, the parameter types of method Foo are a long, double, and byte[].
This method displays the method that CSharpRecipes.Reflection+DerivedOverrides.Foo

overrides. The + in the type name represents a nested class.

Discussion

Determining which methods override their base class methods would be a tedious chore if it were not
for the GetBaseDefinition method of the System.Reflection.MethodInfo type. This method
takes no parameters and returns a MethodInfo object that corresponds to the overridden method in
the base class. If this method is used on a MethodInfo object representing a method that is not
being overridden-as is the case with a virtual or abstract method-GetBaseDefinition returns the
original MethodInfo object.

The code for the FindMethodOverrides methods first loads the assembly using the asmPath

parameter and then gets the type that is specified by the typeName parameter.

Once the type is located, its Type object's GetMethod or GetMethods method is called. GetMethod is
used when both the method name and its parameter array are passed in to FindMethodOverrides;
otherwise, GetMethods is used. If the method is correctly located and its MethodInfo object
obtained, the GetBaseDefinition method is called on that MethodInfo object to get the first
overridden method in the nearest base class in the inheritance hierarchy. This MethodInfo type is
compared to the MethodInfo type that the GetBaseDefinition method was called on. If these two

objects are the same, it means that there were no overridden methods in any base classes;
therefore, nothing is displayed. This code will display only the overridden method; if no methods are
overridden, then nothing is displayed.

See Also

See Recipe 12.11; see the "Process Class," "Assembly Class," "MethodInfo Class," and
"ParameterInfo Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 12.4 Finding Members in an Assembly

Problem

You need to find one or more members in an assembly with a specific name or containing part of a
name. This partial name could be, for example, any member starting with the letter 'A' or the string
"Test".

Solution

Use the Type.GetMember method, which returns all members that match a specified criteria:

public static void FindMemberInAssembly(string asmPath, string memberName)
{
 Assembly asm = Assembly.LoadFrom(asmPath);
 foreach(Type asmType in asm.GetTypes())
 {
 // check for static ones first
 MemberInfo[] members = asmType.GetMember(memberName, MemberTypes.All,
 BindingFlags.Public | BindingFlags.NonPublic |
 BindingFlags.Static);

 if(members.Length == 0)
 {
 // check for instance members as well
 members = asmType.GetMember(memberName, MemberTypes.All,
 BindingFlags.Public | BindingFlags.NonPublic |
 BindingFlags.Instance);
 }

 foreach (MemberInfo member in members)
 {
 Console.WriteLine("Found " + member.MemberType + ": " +
 member.ToString() + " IN " +
 member.DeclaringType.FullName);
 }
 }
}

The memberName argument can contain the wildcard character * to indicate any character or
characters. So to find all methods starting with the string "Test", pass the string "Test*" to the

memberName parameter. Note that the memberName argument is case-sensitive, but the asmPath

argument is not. If you'd like to do a case-insensitive search for members, add the

BindingFlags.IgnoreCase flag to the other BindingFlags in the call to Type.GetMember.

Discussion

The GetMember method of the System.Type class is useful for finding one or more methods within a
type. This method returns an array of MemberInfo objects that describe any members that match the

given parameters.

The * character may be used as a wildcard character only at the end of the

name parameter string. In addition, it may be the only character in the name

parameter; if this is so, all members are returned. No other wildcard
characters, such as ?, are supported.

Once we obtain an array of MemberInfo objects, we need to determine what kind of members they
are. To do this, the MemberInfo class contains a MemberType property that returns a
System.Reflection.MemberTypes enumeration value. This could be any of the values defined in

Table 12-1.

Table 12-1. MemberTypes enumeration values

Enumeration value Definition

All All member types

Constructor A constructor member

Custom A custom member type

Event An event member

Field A field member

Method A method member

NestedType A nested type

Property A property member

TypeInfo A type member that represents a TypeInfo member

See Also

See Recipe 12.11; see the "Assembly Class," "BindingFlags Enumeration," and "MemberInfo Class"
topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 12.5 Finding Members Within an Interface

Problem

You need to find one or more members, with a specific name or a part of a name that belongs to an
interface.

Solution

Use the same technique outlined in Recipe 12.4, but filter out all types except interfaces. The first
overloaded version of the FindIFaceMemberInAssembly method finds a member specified by the

memberName parameter in all interfaces contained in an assembly. Its source code is:

public static void FindIFaceMemberInAssembly(string asmPath, string memberName)
{
 // delegate to the interface based one passing blank
 FindIFaceMemberInAssembly(asmPath, memberName, "*");
}

The second overloaded version of the FindIFaceMemberInAssembly method finds a member in the

interface specified by the interfaceName parameter. Its source code is:

public static void FindIFaceMemberInAssembly(string asmPath, string memberName,
 string interfaceName)
{
 Assembly asm = Assembly.LoadFrom(asmPath);
 foreach(Type asmType in asm.GetTypes())
 {
 if (asmType.IsInterface &&
 (asmType.FullName.Equals(interfaceName) ||
 interfaceName.Equals("*")))
 {
 if (asmType.GetMember(memberName, MemberTypes.All,
 BindingFlags.Instance | BindingFlags.NonPublic |
 BindingFlags.Public | BindingFlags.Static |
 BindingFlags.IgnoreCase).Length > 0)
 {
 foreach(MemberInfo iface in asmType.GetMember(memberName,
 MemberTypes.All,
 BindingFlags.Instance | BindingFlags.NonPublic |
 BindingFlags.Public | BindingFlags.Static |
 BindingFlags.IgnoreCase))
 {
 Console.WriteLine("Found member {0}.{1}",

 asmType.ToString(),iface.ToString());
 }
 }
 }
 }
}

Discussion

The FindIFaceMemberInAssembly method operates very similarly to the FindMemberInAssembly

method of Recipe 17.3. The main difference between this recipe and the one in Recipe 12.4 is that
this method uses the IsInterface property of the System.Type class to determine whether this type
is an interface. If this property returns true, the type is an interface; otherwise, it is a noninterface

type.

This recipe also makes use of the GetMember method of the System.Type class. This name may
contain a * wildcard character at the end of the string only. If the * wildcard character is the only

character in the name parameter, all members are returned.

If you'd like to do a case-sensitive search, you can omit the BindingFlags.IgnoreCase flag from the
call to Type.GetMember.

See Also

See Recipe 12.11; see the "Assembly Class," "BindingFlags Enumeration," and "MemberInfo Class"
topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 12.6 Obtaining Types Nested Within a Type

Problem

You need to determine which types have nested types contained within them in your assembly.
Determining the nested types allows you to programmatically examine various aspects of some
design patterns. Various design patterns may specify that a type will contain another type; for
example, the Decorator and State design patterns make use of object containment.

Solution

Use the DisplayNestedTypes method to iterate through all types in your assembly and list all of

their nested types. Its code is:

public static void DisplayNestedTypes(string asmPath)
{
 bool output = false;
 string line;
 Assembly asm = Assembly.LoadFrom(asmPath);
 foreach(Type asmType in asm.GetTypes())
 {
 if (!asmType.IsEnum && !asmType.IsInterface)
 {
 line = asmType.FullName + " Contains:\n" ;
 output = false;

 // Get all nested types
 Type[] nestedTypes = asmType.GetNestedTypes(BindingFlags.Instance |
 BindingFlags.Static |
 BindingFlags.Public |
 BindingFlags.NonPublic);

 // roll over the nested types
 foreach (Type t in nestedTypes)
 {
 line += " " + t.FullName + "\n";
 output = true;
 }
 if (output)
 Console.WriteLine(line);
 }
 }
}

Discussion

The DisplayNestedTypes method uses a foreach loop to iterate over all nested types in the
assembly specified by the asmPath parameter. Within this foreach loop, any enumeration and
interface types are discarded by testing the IsEnum and IsInterface properties of the System.Type

class. Enumeration types will not contain any types, and no further processing on this type needs to
be done. Interfaces are also discarded since they cannot contain nested types.

Usually the dot operator is used to delimit namespaces and types; however, nested types are
somewhat special. Nested types are set apart from other types by the + operator in their fully
qualified name when dealing with them in the Reflection API. By passing this fully qualified name in to
the static GetType methods, the actual type that it represents can be acquired.

These methods return a Type object that represents the type identified by the typeName parameter.

Calling Type.GetType on a type in a dynamic assembly (one that is created
using the types defined in the System.Reflection.Emit namespace) returns a
null if that assembly has not already been persisted to disk.

See Also

See Recipe 12.11; see the "Assembly Class" and "BindingFlags Enumeration" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 12.7 Displaying the Inheritance Hierarchy for a
Type

Problem

You need to determine all of the base types that make up a specific type. Essentially, you need to
determine the inheritance hierarchy of a type starting with the base (least derived) type and ending
with the specified (most derived) type.

Solution

Use the DisplayTypeHierarchy method to display the entire inheritance hierarchy for all types
existing in an assembly specified by the asmPath parameter. Its source code is:

public static void DisplayTypeHierarchy (string asmPath)
{
 Assembly asm = Assembly.LoadFrom(asmPath);
 foreach(Type asmType in asm.GetTypes())
 {
 // Recurse over all base types
 Console.WriteLine ("Derived Type: " + asmType.FullName);
 Console.WriteLine ("Base Type List: " + GetBaseTypeList(asmType));
 Console.WriteLine ();
 }
}

DisplayTypeHierarchy in turn calls GetBaseTypeList, a private method that uses recursion to get

all base types. Its source code is:

private static string GetBaseTypeList(Type type)
{
 if (type != null)
 {
 string baseTypeName = GetBaseType(type.BaseType);
 if (baseTypeName.Length <= 0)
 {
 return (type.Name);
 }
 else
 {
 return (baseTypeName + "::" + type.Name);
 }
 }

 else
 {
 return ("");
 }
}

If you want to obtain only the inheritance hierarchy of a specific type as a string, use the following
DisplayTypeHierarchy overload:

public static void DisplayTypeHierarchy(string asmPath,string baseType)
{
 Assembly asm = Assembly.LoadFrom(asmPath);
 string typeHierarchy = GetBaseTypeList(asm.GetType(baseType));
 Console.WriteLine(typeHierarchy);
}

To display the inheritance hierarchy of all types within an assembly, use the first instance of the
DisplayTypeHierarchy method call. To obtain the inheritance hierarchy of a single type as a string,
use the second instance of the DisplayTypeHierarchy method call. In this instance, we are looking
for the type hierarchy of the CSharpRecipes.Reflection+DerivedOverrides nested class:

public static void DisplayInheritanceHierarchyType()
{
 Process current = Process.GetCurrentProcess();
 // get the path of the current module
 string asmPath = current.MainModule.FileName;
 // a specific type
 TypeHierarchy.DisplayTypeHierarchy(asmPath,
 "CSharpRecipes.Reflection+DerivedOverrides");
 // all types in the assembly
 TypeHierarchy.DisplayTypeHierarchy(asmPath);
}

These methods result in output like the following:

Derived Type: CSharpRecipes.Reflection
Base Type List: Object::Reflection

Derived Type: CSharpRecipes.Reflection+BaseOverrides
Base Type List: Object::BaseOverrides

Derived Type: CSharpRecipes.Reflection+DerivedOverrides
Base Type List: Object::BaseOverrides::DerivedOverrides

This output shows that when looking at the Reflection class in the CSharpRecipes namespace, its
base type list (or inheritance hierarchy) starts with Object (like all types in .NET). The nested class
BaseOverrides also shows a base type list starting with Object. The nested class DerivedOverrides
shows a more interesting base type list, where DerivedOverrides derives from BaseOverrides,
which derives from Object.

Discussion

Unfortunately, no property of the Type class exists to obtain the inheritance hierarchy of a type. The
DisplayTypeHierarchy methods in this recipe allow you to obtain the inheritance hierarchy of a

type. All that is required is the path to an assembly and the name of the type whose inheritance
hierarchy is to be obtained. The DisplayTypeHierarchy method requires only an assembly path

since it displays only the inheritance hierarchy for all types within that assembly.

The core code of this recipe exists in the GetBaseTypeList method. This is a recursive method that
walks each inherited type until it finds the ultimate base class-which is always the object class.

Once it arrives at this ultimate base class, it returns to its caller. Each time the method returns to its
caller, the next base class in the inheritance hierarchy is added to the string until the final
GetBaseTypeList method returns the completed string.

See Also

See the "Process Class," "Assembly Class," and "Type.BaseType Method" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 12.8 Finding the Subclasses of a Type

Problem

You have a type and you need to find out whether it is subclassed anywhere in an assembly.

Solution

Use the Type.IsSubclassOf method to test all types within a given assembly, which determines
whether each type is a subclass of the type specified in the argument to IsSubClassOf:

public static ArrayList GetSubClasses(string asmPath, Type baseClassType)
{
 Assembly asm = Assembly.LoadFrom(asmPath);
 ArrayList subClasses = new ArrayList();
 if (baseClassType != null)
 {
 foreach(Type type in asm.GetTypes())
 {
 if (type.IsSubclassOf(baseClassType))
 {
 subClasses.Add(type);
 }
 }
 }
 else
 {
 throw (new Exception(baseClassType.FullName +
 " does not exist in assembly " + asmPath));
 }

 return (subClasses);

The GetSubClasses method accepts an assembly path string and a second string containing a fully
qualified base class name. This method returns an ArrayList of Types representing the subclasses of

the type passed to the baseClass parameter.

Discussion

The IsSubclassOf method on the Type class allows us to determine whether the current type is a

subclass of the type passed in to this method.

To use this method, you could use the following code:

public static void FindSubclassOfType()
{
 Process current = Process.GetCurrentProcess();
 // get the path of the current module
 string asmPath = current.MainModule.FileName;
 Type type = Type.GetType("CSharpRecipes.Reflection+BaseOverrides");
 ArrayList subClasses = GetSubClasses(asmPath,type);

 // write out the subclasses for this type
 if(subClasses.Count > 0)
 {
 Console.WriteLine("{0} is subclassed by:",type.FullName);
 foreach(Type t in subClasses)
 {
 Console.WriteLine("\t{0}",t.FullName);
 }
 }
}

First we get the assembly path from the current process, and then we set up use of
CSharpRecipes.Reflection+BaseOverrides as the type to test for subclasses. We call
GetSubClasses, and it returns an ArrayList that we use to produce the following output:

CSharpRecipes.Reflection+BaseOverrides is subclassed by:
 CSharpRecipes.Reflection+DerivedOverrides

See Also

See the "Assembly Class" and "Type Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 12.9 Finding All Serializable Types Within an
Assembly

Problem

You need to find all the serializable types within an assembly.

Solution

Instead of testing the implemented interfaces and attributes on every type, you can query the
Type.Attributes property to determine whether it contains the TypeAttributes.Serializable

flag, as the following method does:

public static ArrayList GetSerializableTypeNames(string asmPath)
{
 ArrayList serializableTypes = new ArrayList();
 Assembly asm = Assembly.LoadFrom(asmPath);

 // look at all types in the assembly
 foreach(Type type in asm.GetTypes())
 {
 if ((type.Attributes & TypeAttributes.Serializable) ==
 TypeAttributes.Serializable)
 {
 // add the name of the serializable type
 serializableTypes.Add(type.FullName);
 }
 }

 return (serializableTypes);
}

The GetSerializableTypeNames method accepts the path of an assembly through its asmPath

parameter. This assembly is searched for any serializable types, and their full names (including
namespaces) are returned in an ArrayList. Note that you can just as easily return an ArrayList
containing the Type object for each serializable type by changing the line of code:

serializableTypes.Add(asmType.FullName);

to:

serializableTypes.Add(asmType);

In order to use this method to display the serializable types in an assembly, use the following:

public static void FindSerializable()
{
 Process current = Process.GetCurrentProcess();
 // get the path of the current module
 string asmPath = current.MainModule.FileName;
 ArrayList serializable = GetSerializableTypeNames(asmPath);
 // write out the serializable types in the assembly
 if(serializable.Count > 0)
 {
 Console.WriteLine("{0} has serializable types:",asmPath);
 for(int i=0;i<serializable.Count;i++)
 {
 Console.WriteLine("\t{0}",serializable[i]);
 }
 }
}

Discussion

A type may be marked as serializable in one of two different ways:

The SerializableAttribute attribute can be added to the type.

The type can be marked with the SerializableAttribute and/or implement the
ISerializable interface.

Testing for either the SerializableAttribute attribute or the ISerializable interface on a type

can turn into a fair amount of work. Fortunately, we do not have to do all of this work; it has been
done for us. The Attributes enumeration on the Type class contains several flags that describe the
current type, one of which is the Serializable flag. This flag is set when either the
SerializableAttribute or the ISerializable interface, or both, are added to a type.

To test for this flag, use the following logic:

(asmType.Attributes & TypeAttributes.Serializable) == TypeAttributes.Serializable

If the Serializable flag is set, this expression will evaluate to true.

See Also

See the "Assembly Class" and "TypeAttributes Enumeration" in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 12.10 Controlling Additions to an ArrayList
Through Attributes

Problem

You need to allow only certain types of items to be stored within an ArrayList or an ArrayList-

derived container, and it is likely that more types will be added to this list of allowed types in the
future. You need the added flexibility to mark the types that are allowed to be stored in the
ArrayList as such, rather than changing the container.

Solution

First, create a new attribute to mark the types that are allowed to be stored in the ArrayList. The
following code defines the AllowedInListAttribute attribute:

using System;

[AttributeUsage(AttributeTargets.Interface | AttributeTargets.Struct |
 AttributeTargets.Class, Inherited = false, AllowMultiple = false)]
public class AllowedInListAttribute : Attribute
{
 public AllowedInListAttribute() {}

 public AllowedInListAttribute(bool allow)
 {
 allowed = allow;
 }

 // by defaulting to false, we default the usage to preventing the
 // use of the type.
 private bool allowed = false;

 public bool IsAllowed
 {
 get {return (allowed);}
 set {allowed = value;}
 }
}

Next, mark all classes that can be stored in the ArrayList with this attribute:

[AllowedInListAttribute(true)]
public class ItemAllowed {}

[AllowedInListAttribute(true)]
public class Item {}

In addition, this attribute allows types to be disallowed from being stored in the ArrayList by
passing false to its constructor or by not passing an argument to the attribute constructor or not

applying the attribute:

[AllowedInListAttribute(false)]
public class ItemDisallowed {}

public class ItemUnmarked {}

Types not marked with this attribute enabled will not be added to the FilteredArrayList shown

next.

Finally, create a new class that inherits from ArrayList and overrides both the indexer and Add

members. The overridden methods will check the object being added to determine whether it is
marked with the AllowedInListAttribute attribute. If it is, and if the IsAllowed property returns
true, this object is added to the subclassed ArrayList:

public class FilteredArrayList : ArrayList
{
 private string attributeTypeName =
 "CSharpRecipes.Reflection+AllowedInListAttribute";
 public override object this[int index]
 {
 get
 {
 return (base[index]);
 }

 set
 {
 object[] allowedAttrs = value.GetType().GetCustomAttributes(
 Type.GetType(attributeTypeName), false);
 if (allowedAttrs.Length > 0)
 {
 if (((AllowedInListAttribute)allowedAttrs[0]).IsAllowed
 == true)
 {
 base[index] = value;
 return;
 }
 }

 throw (new ArgumentException("Type cannot be added to this list",
 "obj"));
 }
 }

 public override int Add (object obj)
 {

 object[] allowedAttrs = obj.GetType().GetCustomAttributes(
 Type.GetType(attributeTypeName), false);
 if (allowedAttrs.Length > 0)
 {
 if (((AllowedInListAttribute)allowedAttrs[0]).IsAllowed == true)
 {
 return (base.Add(obj));
 }
 }

 throw (new ArgumentException("Type cannot be added to this list",
 "obj"));
 }
}

You can then instantiate an ArrayList object and add only allowed elements to it, as the following

code illustrates:

using System;
using System.Collections;
using System.Reflection;

public static void GuardArrayList()
{
 FilteredArrayList list = new FilteredArrayList();
 AddToArray(list, new ItemAllowed());
 AddToArray(list, new ItemDisallowed());
 AddToArray(list, new ItemUnmarked());
 AddToArray(list, new Item());

 Console.WriteLine("ArrayList contains " + list.Count + " items.");
}

private static void AddToArray(FilteredArrayList fa, object obj)
{
 try
 {
 fa.Add(obj);
 }
 catch (ArgumentException e)
 {
 Console.WriteLine("Unable to add " + obj.ToString()
 + "\n " + e.Message);
 }
 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }
}

This code produces the following output:

Unable to add CSharpRecipes.Reflection+ItemDisallowed
 Type cannot be added to this list
Parameter name: obj
Unable to add CSharpRecipes.Reflection+ItemUnmarked
 Type cannot be added to this list
Parameter name: obj
ArrayList contains 2 items.

Discussion

There are times, especially during the initial phases of coding, where the code is constantly changing
along with the design specs. This can make it especially difficult to keep your code stable and bug-
free. We can alleviate some of these problems by using attributes to mark types in a special way. It
is usually easier and much cleaner to add or remove attributes than to add or remove code from
within the type.

This recipe uses a custom attribute, AllowedInListAttribute, to mark certain types as allowed to
be stored in an ArrayList. This attribute may be placed on types such as interfaces, structures, or
classes. (The targets of an attribute are defined by which members of the AttributeTargets
enumeration are passed as arguments to the AttributeUsage attribute's constructor.) It has one
private field, Allowed, which is used to determine if the type it marks is able to be stored in an
ArrayList (true) or not (false).

To use this attribute, subclass ArrayList and override both the indexer and Add method of the
ArrayList class. The get accessor of the indexer can simply pass the call through to the base class
get accessor, since we're interested in filtering items only as they go into the list. However, the set
accessor needs to test for the existence of the AllowedinListAttribute on the type of the object
being added to the FilteredArrayList. If it does not exist, the object may not be added. If this
attribute exists, but the IsAllowed property returns false, it is still not allowed to be added to this
slot. Only when this attribute exists and the IsAllowed property returns true can this object be
added to this ArrayList.

The set accessor of the indexer and the Add method both throw an exception if an object cannot be
added to the ArrayList.

See Also

See the "Attribute Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 12.11 Filtering Output when Obtaining Members

Problem

You want to get information about one or more members, but you want to retrieve only a subset of
members. For example, you need to use Type.GetConstructor to obtain only the static
constructor of a type, or you need to use Type.GetField to obtain only the noninherited nonpublic

fields of a type.

Solution

Use the BindingFlags enumeration together with the appropriate Type.Getxxx methods to find out

about the type, as in the following example:

public static void FilteringOutputObtainingMembers()
{
 Type reflection = typeof(Reflection);
 ConstructorInfo[] constructors =
 reflection.GetConstructors(BindingFlags.Public |
 BindingFlags.NonPublic |
 BindingFlags.Instance |
 BindingFlags.Static);

 Console.WriteLine("Looking for All Constructors");
 foreach(ConstructorInfo c in constructors)
 {
 Console.WriteLine("\tFound Constructor {0}",c.Name);
 }

 constructors =
 reflection.GetConstructors(BindingFlags.Public |
 BindingFlags.Instance);
 Console.WriteLine("Looking for Public Instance Constructors");
 foreach(ConstructorInfo c in constructors)
 {
 Console.WriteLine("\tFound Constructor {0}",c.Name);
 }

 constructors =
 reflection.GetConstructors(BindingFlags.NonPublic |
 BindingFlags.Instance |
 BindingFlags.Static);
 Console.WriteLine("Looking for NonPublic Constructors");

 foreach(ConstructorInfo c in constructors)
 {
 Console.WriteLine("\tFound Constructor {0}",c.Name);
 }

 FieldInfo[] fields =
 reflection.GetFields(BindingFlags.Static |
 BindingFlags.Public);
 Console.WriteLine("Looking for Public, Static Fields");
 foreach(FieldInfo f in fields)
 {
 Console.WriteLine("\tFound Field {0}",f.Name);
 }

 fields =
 reflection.GetFields(BindingFlags.Public |
 BindingFlags.Static |
 BindingFlags.Instance);
 Console.WriteLine("Looking for Public Fields");
 foreach(FieldInfo f in fields)
 {
 Console.WriteLine("\tFound Field {0}",f.Name);
 }

 fields =
 reflection.GetFields(BindingFlags.NonPublic |
 BindingFlags.Static);
 Console.WriteLine("Looking for NonPublic, Static Fields");
 foreach(FieldInfo f in fields)
 {
 Console.WriteLine("\tFound Field {0}",f.Name);
 }

}

In this example, we examine the CSharpRecipes.Reflection type for constructors and fields. The

constructors and fields are listed here:

#region Fields
 int i = 0;
 public int pi = 0;
 static int si = 0;
 public static int psi = 0;
 object o = null;
 public object po = null;
 static object so = null;
 public static object pso = null;
#endregion

#region Constructors
 static Reflection()
 {

 si++;
 psi = 0;
 so = new Object();
 pso = new Object();
 }

 Reflection()
 {
 i = 0;
 pi = 0;
 o = new Object();
 po = new Object();
 }

 public Reflection(int index)
 {
 i = index;
 pi = index;
 o = new Object();
 po = new Object();
 }
#endregion

The output this generates is listed here:

Looking for All Constructors
 Found Constructor .cctor
 Found Constructor .ctor
 Found Constructor .ctor
Looking for Public Instance Constructors
 Found Constructor .ctor
Looking for NonPublic Constructors
 Found Constructor .cctor
 Found Constructor .ctor
Looking for Public, Static Fields
 Found Field psi
 Found Field pso
Looking for Public Fields
 Found Field pi
 Found Field po
 Found Field psi
 Found Field pso
Looking for NonPublic, Static Fields
 Found Field si
 Found Field so

Discussion

The following methods of the Type object accept a BindingFlags enumerator to filter output:

Type.GetConstructor

Type.GetConstructors
Type.GetMethod
Type.GetMethods
Type.GetField
Type.GetFields
Type.GetProperty
Type.GetProperties
Type.Event
Type.Events
Type.GetMember
Type.GetMembers
Type.FindMembers

The following are also methods that accept a BindingFlags enumerator to filter members and types

to invoke or instantiate:

Type.InvokeMember
Type.CreateInstance

BindingFlags allows the list of members on which these methods operate to be expanded or limited.
For example, if the BindingFlags.Public flag were passed to the Type.GetFields method, only
public fields would be returned. If both the BindingFlags.Public and BindingFlags.NonPublic
flags were passed to the Type.GetFields method, the list of fields would be expanded to include the

protected, internal, protected internal, and private fields of a type. Table 12-2 lists and describes
each flag in the BindingFlags enumeration.

Table 12-2. Binding flag definitions

Flag name Definition

CreateInstance
An instance of a specified type is created while passing in the given
arguments to its constructor.

DeclaredOnly Inherited members are not included when obtaining members of a type.

Default No binding flags are used.

ExactBinding
The specified parameters must exactly match the parameters on the
invoked member.

FlattenHierarchy
Static members up the inheritance hierarchy are returned; nested types
won't be returned.

GetField The specified field's value is to be returned.

GetProperty The specified property's value is to be returned.

IgnoreCase Case-sensitivity is turned off.

IgnoreReturn Ignore the returned value when invoking methods on COM objects.

Instance Include all instance members when obtaining members of a type.

Flag name Definition

InvokeMethod The specified method is to be invoked.

NonPublic Include all nonpublic members when obtaining members of a type.

OptionalParamBinding
Used with the Type.InvokeMember method to invoke methods that

contain parameters with default values and methods with variable
numbers of parameters (params).

Public Include all public members when obtaining members of a type.

PutDispProperty Invoke the PROPPUT member of a COM object.

PutRefDispProperty Invoke the PROPPUTREF member of a COM object.

SetField The specified field's value is to be set.

SetProperty The specified property's value is to be set.

Static Include all static members when obtaining members of a type.

SuppressChangeType Not implemented.

Be aware that to examine or invoke nonpublic members, your assembly must have the correct
reflection permissions . The reflection permission flags, and what PermissionSets they are included

in by default, are listed in Table 12-3.

Table 12-3. ReflectionPermissionFlags

PermissionFlag Description
Permission sets
including these

rights

AllFlags
TypeInformation, MemberAccess, and
ReflectionEmit are set.

FullTrust ,
Everything

MemberAccess
Invocation of operations on all type members is
allowed. If this flag is not set, only invocation of
operations on visible type members is allowed.

FullTrust,
Everything

NoFlags No reflection is allowed on types that are not visible. All permission sets

ReflectionEmit Use of System.Reflection.Emit is allowed.
FullTrust,
Everything,
LocalIntranet

TypeInformation
Reflection is allowed on members of a type that are not
visible.

FullTrust,
Everything

One other item to note is that when supplying a BindingFlags set of flags for one of the Get*
methods, you must always pass either BindingFlags.Instance or BindingFlags.Static in order
to get any results back. If you just pass BindingFlags.Public, for example, you will not find any
results. You need to pass BindingFlags.Public | BindingFlags.Instance to get public instance

InvokeMethod The specified method is to be invoked.

NonPublic Include all nonpublic members when obtaining members of a type.

OptionalParamBinding
Used with the Type.InvokeMember method to invoke methods that

contain parameters with default values and methods with variable
numbers of parameters (params).

Public Include all public members when obtaining members of a type.

PutDispProperty Invoke the PROPPUT member of a COM object.

PutRefDispProperty Invoke the PROPPUTREF member of a COM object.

SetField The specified field's value is to be set.

SetProperty The specified property's value is to be set.

Static Include all static members when obtaining members of a type.

SuppressChangeType Not implemented.

Be aware that to examine or invoke nonpublic members, your assembly must have the correct
reflection permissions . The reflection permission flags, and what PermissionSets they are included

in by default, are listed in Table 12-3.

Table 12-3. ReflectionPermissionFlags

PermissionFlag Description
Permission sets
including these

rights

AllFlags
TypeInformation, MemberAccess, and
ReflectionEmit are set.

FullTrust ,
Everything

MemberAccess
Invocation of operations on all type members is
allowed. If this flag is not set, only invocation of
operations on visible type members is allowed.

FullTrust,
Everything

NoFlags No reflection is allowed on types that are not visible. All permission sets

ReflectionEmit Use of System.Reflection.Emit is allowed.
FullTrust,
Everything,
LocalIntranet

TypeInformation
Reflection is allowed on members of a type that are not
visible.

FullTrust,
Everything

One other item to note is that when supplying a BindingFlags set of flags for one of the Get*
methods, you must always pass either BindingFlags.Instance or BindingFlags.Static in order
to get any results back. If you just pass BindingFlags.Public, for example, you will not find any
results. You need to pass BindingFlags.Public | BindingFlags.Instance to get public instance

results.

See Also

See the "BindingFlags Enumeration," "Type Class," "ConstructorInfo Class," and "FieldInfo Class"
topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 12.12 Dynamically Invoking Members

Problem

You have a list of method names that you wish to invoke dynamically within your application. As your
code executes, it will pull names off of this list and attempt to invoke these methods. This technique
would be useful to create a test harness for components that read in the methods to execute from an
XML file and execute them with the given parameters.

Solution

The TestDynamicInvocation method opens the XML configuration file, reads out the test

information, and executes each test method dynamically:

public static void TestDynamicInvocation()
{
 // read in the methods to run from the xml file
 XmlDocument doc = new XmlDocument();
 doc.Load(@"C:\C#Cookbook\SampleClassLibraryTests.xml");

 // get the tests to run
 XmlNodeList nodes = doc.SelectNodes(@"Tests/Test");

 // run each test method
 foreach(XmlNode node in nodes)
 {
 object obj = DynamicInvoke(node,
 @"C:\C#Cookbook\SampleClassLibrary.dll");

 // print out the return
 Console.WriteLine("\tReturned object: " + obj);
 Console.WriteLine("\tReturned object: " + obj.GetType().FullName);
 }
}

The XML document in which the test method information is contained looks like this:

<?xml version="1.0" encoding="utf-8" ?>
<Tests>
 <Test className='SampleClassLibrary.SampleClass' methodName='TestMethod1'>
 <Parameter>Running TestMethod1</Parameter>
 </Test>
 <Test className='SampleClassLibrary.SampleClass' methodName='TestMethod2'>
 <Parameter>Running TestMethod2</Parameter>

 <Parameter>27</Parameter>
 </Test>
</Tests>

The DynamicInvoke method dynamically invokes the method that is passed to it using the
information contained in the XmlNode. The parameters types are determined by examining the
ParameterInfo items on the MethodInfo, and then the values provided are converted to the actual
type from a string via the Convert.ChangeType method. Finally, the return value of the invoked

method is returned by this method. Its source code is:

public static object DynamicInvoke(XmlNode testNode, string asmPath)
{
 // Load the assembly
 Assembly asm = Assembly.LoadFrom(asmPath);

 // get the name of the type from the className attribute on Test
 string typeName = testNode.Attributes.GetNamedItem("className").Value;

 // get the name of the method from the methodName attribute on Test
 string methodName = testNode.Attributes.GetNamedItem("methodName").Value;

 // create the actual type
 Type dynClassType = asm.GetType(typeName, true, false);

 // Create an instance of this type and verify that it exists
 object dynObj = Activator.CreateInstance(dynClassType);
 if (dynObj != null)
 {
 // Verify that the method exists and get its MethodInfo obj
 MethodInfo invokedMethod = dynClassType.GetMethod(methodName);
 if (invokedMethod != null)
 {
 // Create the parameter list for the dynamically invoked methods
 object[] parameters = new object[testNode.ChildNodes.Count];
 int index = 0;

 // for each parameter, add it to the list
 foreach(XmlNode node in testNode.ChildNodes)
 {
 // get the type of the parameter
 Type paramType =
 invokedMethod.GetParameters()[index].ParameterType;

 // change the value to that type and assign it
 parameters[index] =
 Convert.ChangeType(node.InnerText,paramType);
 index++;
 }

 // Invoke the method with the parameters
 object retObj = invokedMethod.Invoke(dynObj, parameters);
 // return the returned object

 return (retObj);
 }
 }

 return (null);
}

These are the dynamically invoked methods located on the SampleClass type in the
SampleClassLibrary assembly:

public bool TestMethod1(string text)
{
 Console.WriteLine(text);
 return (true);
}

public bool TestMethod2(string text, int n)
{
 Console.WriteLine(text + " invoked with {0}",n);
 return (true);
}

The output from these methods looks like this:

Running TestMethod1
 Returned object: True
 Returned object: System.Boolean
Running TestMethod2 invoked with 27
 Returned object: True
 Returned object: System.Boolean

Discussion

Reflection possesses the ability to dynamically invoke both static and instance methods existing
within a type in either the same assembly or a different one. This can be a very powerful tool to allow
your code to determine at runtime which method to call. This determination can be based on an
assembly name, a type name, or a method name, though the assembly name is not required if the
method exists in the same assembly as the invoking code, or if you already have the Assembly
object, or if you have a Type object for the class the method is on.

This technique may seem similar to delegates since both can dynamically determine at runtime which
method is to be called. Delegates, on the whole, require you to know signatures of methods you
might call at runtime, whereas with reflection, you can invoke methods where you have no idea of
the signature, providing a much looser binding. More dynamic invocation can be achieved with
Delegate.DynamicInvoke, but this is more of a reflection-based method than the traditional

delegate invocation.

The DynamicInvoke method shown in the Solution section contains all the code required to

dynamically invoke a method. This code first loads the type using its assembly name (passed in
through the asmName parameter). Next, it gets the Type object for the class containing the method to
invoke (the class name is gotten from the Test element's className attribute). The method name is
then retrieved (from the Test element's methodName attribute). Once we have all of the information

from the Test element, an instance of the Type object is created, and we then invoke the specified

method on this created instance:

First, the static Activator.CreateInstance method is called to actually create an instance of
the Type object contained in the local variable dynClassType. The method returns an object

reference to the instance of type that was created, or an exception is thrown if the object

cannot be created.

Once we have successfully obtained the instance of this class, the MethodInfo object of the
method to be invoked is acquired through a call to GetMethod on the object instance just
returned by the CreateInstance method.

The instance of the object created with the CreateInstance method is then passed as the first
parameter to the MethodInfo.Invoke method. This method returns an object containing the return
value of the invoked method, or null if the return value is void. This object is then returned by the
DynamicInvoke method. The second parameter to MethodInfo.Invoke is an object array containing

any parameters to be passed to this method. This array is constructed based on the number of
Parameter elements under each Test element in the XML, we then look at the ParameterInfo of
each parameter (gotten from MethodInfo.GetParameters()) and use the Convert.ChangeType

method to coerce the string value from the XML to the proper type.

The TestDynamicInvoke method finally displays each returned object value and its type. Note that

there is no extra logic required to return different return values from the invoked methods since they
are all returned as an object, unlike passing differing arguments to the invoked methods.

See Also

See the "Activator Class," "MethodInfo Class," "Convert.ChangeType Method," and "ParameterInfo
Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Chapter 13. Networking
.NET provides many classes to help make network programming easier and more accessible than
many environments that preceded it. There is a great deal of functionality to assist you in building
"web-aware" applications; performing simple tasks like downloading files, sending and receiving HTTP
requests, and writing TCP/IP clients and servers. In areas where Microsoft had not provided a direct
managed way to access networking functionality (like named pipes), there is always P/Invoke to
allow you to perform networking actions via the Win32 API, which we'll show you in this chapter. With
all of the functionality at your disposal in the System.Networking namespace, you'll be writing web

utilities in no time.

[Team LiB]

[Team LiB]

Recipe 13.1 Converting an IP Address to a Hostname

Problem

You have an IP address that you need to resolve into a hostname.

Solution

Use the Dns.Resolve method to get the hostname for an IP address. In the following code, an IP

address is passed resolved, and the hostname is printed to the console:

using System;
using System.Net;

//...

// use the Dnss class to resolve the address
IPHostEntry iphost = Dns.Resolve("127.0.0.1");

// HostName property holds the hostname
string hostName = iphost.HostName;

Discussion

The System.Net.Dns class is provided for simple DNS resolution functionality. The Resolve method
returns an IPHostEntry that can be used to access the hostname via the HostName property.

See Also

See the "DNS Class" and "IPHostEntry Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 13.2 Converting a Hostname to an IP Address

Problem

You have a string representation of a host (such as www.oreilly.com), and you need to obtain the IP
address from this hostname.

Solution

Use the Dns.Resolve method to get the IP addresses. In the following code, a hostname is provided
to the Resolve method that returns an IPHostEntry from which a string of addresses can be

constructed and returned:

using System;
using System.Net;
using System.Text;

// ...

public static string HostName2IP(string hostname)
{
 // resolve the hostname into an iphost entry using the dns class
 IPHostEntry iphost = System.Net.Dns.Resolve(hostname);
 // get all of the possible IP addresses for this hostname
 IPAddress[] addresses = iphost.AddressList;
 // make a text representation of the list
 StringBuilder addressList = new StringBuilder();
 // get each ip address
 foreach(IPAddress address in addresses)
 {
 // append it to the list
 addressList.Append("IP Address: ");
 addressList.Append(address.ToString());
 addressList.Append(";");
 }
 return addressList.ToString();
}

// ...

// writes "IP Address: 208.201.239.37;IP Address: 208.201.239.36;"
Console.WriteLine(HostName2IP("www.oreilly.com"));

Discussion

An IPHostEntry can associate multiple IP addresses with a single hostname via the AddressList
property. AddressList is an array of IPAddress objects, each of which holds a single IP address.
Once the IPHostEntry is resolved, the AddressList can be looped over using foreach to create a

string that shows all of the IP addresses for the given hostname.

See Also

See the "DNS Class," "IPHostEntry Class," and "IPAddress" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 13.3 Parsing a URI

Problem

You need to split a URI (Uniform Resource Identifier) into its constituent parts.

Solution

Construct a System.Net.Uri object and pass the URI to the constructor. This class constructor parses out the
constituent parts of the URI and allows access to them via the Uri properties. We can then display the URI

pieces individually:

public static void ParseUri(string uriString)
{
 try
 {
 // just use one of the constructors for the System.Net.Uri class
 // this will parse it for us.
 Uri uri = new Uri(uriString);
 // Look at the information we can get at now...
 string uriParts;
 uriParts = "AbsoluteURI: " + uri.AbsoluteUri + Environment.NewLine;
 uriParts += "Scheme: " + uri.Scheme + Environment.NewLine;
 uriParts += "UserInfo: " + uri.UserInfo + Environment.NewLine;
 uriParts += "Host: " + uri.Host + Environment.NewLine;
 uriParts += "Port: " + uri.Port + Environment.NewLine;
 uriParts += "Path: " + uri.LocalPath + Environment.NewLine;
 uriParts += "QueryString: " + uri.Query + Environment.NewLine;
 uriParts += "Fragment: " + uri.Fragment;
 // write out our summary
 Console.WriteLine(uriParts);
 }
 catch(ArgumentNullException e)
 {
 // uriString is a null reference (Nothing in Visual Basic).
 Console.WriteLine("URI string object is a null reference: {0}",e);
 }
 catch(UriFormatException e)
 {
 Console.WriteLine("URI formatting error: {0}",e);
 }
}

Discussion

The Solution code uses the Uri class to do the heavy lifting. The constructor for the Uri class can throw two
types of exceptions: an ArgumentNullException and an UriFormatException . The ArgumentNullException is
thrown when the uri argument passed is null . The UriFormatException is thrown when the uri argument

passed is of an incorrect or indeterminate format. Here are the error conditions that can throw a
UriFormatException :

An empty URI was passed in.

The scheme specified in the passed in URI is invalid.

The URI passed in contains too many slashes.

The password specified in the passed in URI is invalid.

The hostname specified in the passed in URI is invalid.

The filename specified in the passed in URI is invalid.

System.Net.Uri provides methods to compare URIs, parse URIs, and combine URIs. It is all you should ever

need for URI manipulation and is used by other classes in the framework when a URI is called for. The syntax for
the pieces of a URI is this:

[scheme]://[user]:[password]@[host/authority]:[port]/[path];[params]?[query string]#[fragment]

If we passed the following URI to ParseURI :

http://user:password@localhost:8080/www.abc.com/home.htm?item=1233#stuff

it would display the following items:

AbsoluteURI:
http://user:password@localhost:8080/www.abc.com/home.htm?item=1233#stuff
Scheme: http
UserInfo: user:password
Host: localhost
Port: 8080
Path: /www.abc.com/home.htm
QueryString: ?item=1233
Fragment: #stuff

See Also

See the "Uri Class," "ArgumentNullException Class," and "UriFormatException Class" topics in the MSDN
documentation.

[Team LiB]

http://user:password@localhost:8080/www.abc.com/home.htm?item=1233#stuff
http://user:password@localhost:8080/www.abc.com/home.htm?item=1233#stuff

[Team LiB]

Recipe 13.4 Forming an Absolute URI

Problem

You have a base URI of the form http://www.oreilly.com and a relative URI of the form
hello_world.htm; you want to form an absolute URI from them.

Solution

Use the Uri class to combine a base URI and a relative URI via a constructor overload that takes the

base and relative paths:

public static Uri CreateAbsoluteUri(string uriBase, string uriRelative)
{
 try
 {
 // make the base uri
 Uri baseUri = new Uri(uriBase);
 // create the full uri by combining the base and relative
 return new Uri(baseUri, uriRelative);
 }
 catch(ArgumentNullException e)
 {
 // uriString is a null reference (Nothing in Visual Basic).
 Console.WriteLine("URI string object is a null reference: {0}",e);
 }
 catch(UriFormatException e)
 {
 Console.WriteLine("URI formatting error: {0}",e);

 }
 return null;
}

// ...

Uri myUri = CreateAbsoluteUri("http://www.oreilly.com",
 "hello_world.htm");

// displays http://www.oreilly.com/hello_world.htm
Console.WriteLine(myUri.AbsoluteUri);

Discussion

http://www.oreilly.com
http://www.oreilly.com/hello

The System.Net.Uri class has a constructor overload that allows you to create a URI from a base

path and a relative path while controlling the escaping of the URI. This creates the absolute URI and
places it in the Uri.AbsoluteUri property. Escaping/Unescaping can also be controlled through two
other overloads of the Uri constructor that take a bool as the last parameter (dontEscape), but care
needs to be taken here: if you unescape the Uri, it will put the URI into a form more readable by a
human but no longer usable as a URI (this is because any spaces that were escaped as %20 will now

be considered whitespace).

Here are the error conditions that can cause a UriFormatException to be thrown when using the
Uri constructor that takes baseUri and relativeUri:

Empty URI formed from combining baseUri and relativeUri.

The scheme specified in the combined URI is invalid.

The combined URI contains too many slashes.

The password specified in the combined URI is invalid.

The hostname specified in the combined URI is invalid.

The filename specified in the combined URI is invalid.

See Also

See the "Uri Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 13.5 Handling Web Server Errors

Problem

You have obtained a response from a web server and you want to make sure that there were no
errors in processing the initial request, such as failing to connect, being redirected, timing out, or
failing to validate a certificate. You don't want to have to catch all of the different response codes
available.

Solution

Check the StatusCode property of the HttpWebResponse class to determine what category of status
this StatusCode falls into, and return an enumeration value (ResponseCategories) representing the

category. This technique will allow you to use a broader approach to dealing with response codes.

public static ResponseCategories VerifyResponse(HttpWebResponse httpResponse)
{
 // Just in case there are more success codes defined in the future
 // by HttpStatusCode, we will check here for the "success" ranges
 // instead of using the HttpStatusCode enum as it overloads some
 // values
 int statusCode = (int)httpResponse.StatusCode;
 if((statusCode >= 100)&& (statusCode <= 199))
 {
 return ResponseCategories.Informational;
 }
 else if((statusCode >= 200)&& (statusCode <= 299))
 {
 return ResponseCategories.Success;
 }
 else if((statusCode >= 300)&& (statusCode <= 399))
 {
 return ResponseCategories.Redirected;
 }
 else if((statusCode >= 400)&& (statusCode <= 499))
 {
 return ResponseCategories.ClientError;
 }
 else if((statusCode >= 500)&& (statusCode <= 599))
 {
 return ResponseCategories.ServerError;
 }
 return ResponseCategories.Unknown;

}

The ResponseCategories enumeration is defined like this:

public enum ResponseCategories
{
 Unknown = 0, // unknown code (< 100 or > 599)
 Informational = 1, // informational codes (100 <= 199)
 Success = 2, // success codes (200 <= 299)
 Redirected = 3, // redirection code (300 <= 399)
 ClientError = 4, // client error code (400 <= 499)
 ServerError = 5 // server error code (500 <= 599)
}

Discussion

There are five different categories of status codes on a response in HTTP:

Category Available range HttpStatusCode defined range

Informational 100-199 100-101

Successful 200-299 200-206

Redirection 300-399 300-307

Client Error 400-499 400-417

Server Error 500-599 500-505

Each of the status codes defined by Microsoft in the .NET Framework is assigned an enumeration
value in the HttpStatusCode enumeration. These status codes reflect what can happen when a

request is submitted. The web server is free to return a status code in the available range even if it is
not currently defined for most commercial web servers. The defined status codes are listed in RFC
2616-Section 10 for HTTP/1.1.

We are trying to figure out the broad category of the status of the request. This is achieved where
the code inspects the HttpResponse.StatusCode property, compares it to the defined status code
ranges for HTTP, and returns the appropriate ResponseCategories value.

When dealing with HttpStatusCode, you will notice that there are certain HttpStatusCode flags that
map to the same status code value. An example of this is HttpStatusCode.Ambiguous and
HttpStatusCode.MultipleChoices, which both map to HTTP status code 300. If you try to use both
of these in a switch statement on the HttpStatusCode, you will get the following error because the

C# compiler cannot tell the difference:

error CS0152: The label 'case 300:' already occurs in this switch statement.

See Also

See HTTP: The Definitive Guide by David Gourley and Brian Totty (O'Reilly); see the "HttpStatusCode

Enumeration" topic in the MSDN documentation. Also see HTTP/1.1 RFC 2616-Section 10 Status
Codes: http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

[Team LiB]

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

[Team LiB]

Recipe 13.6 Communicating with a Web Server

Problem

You want to send a request to a web server in the form of a GET or POST request. After you send the

request to a web server, you want to get the results of that request (the response) from the web
server.

Solution

Use the HttpWebRequest class in conjunction with the WebRequest class to create and send a request

to a server.

Take the URI of the resource, the method to use in the request (GET or POST), and the data to send
(only for POST requests), and use this information to create an HttpWebRequest:

using System.Net;
using System.IO;
using System.Text;

// ...

public static HttpWebRequest GenerateGetOrPostRequest(string uriString,
 string method,
 string postData)
{
 if((method.ToUpper() != "GET") &&
 (method.ToUpper() != "POST"))
 throw new ArgumentException(method +
 " is not a valid method. Use GET or POST.","method");

 HttpWebRequest httpRequest = null;
 // get a URI object
 Uri uri = new Uri(uriString);
 // create the initial request
 httpRequest = (HttpWebRequest)WebRequest.Create(uri);

 // check if asked to do a POST request, if so then modify
 // the original request as it defaults to a GET method
 if(method.ToUpper()=="POST")
 {
 // Get the bytes for the request, should be pre-escaped
 byte[] bytes = Encoding.UTF8.GetBytes(postData);

 // Set the content type of the data being posted.
 httpRequest.ContentType=
 "application/x-www-form-urlencoded";

 // Set the content length of the string being posted.
 httpRequest.ContentLength=postData.Length;

 // Get the request stream and write the post data in
 Stream requestStream = httpRequest.GetRequestStream();
 requestStream.Write(bytes,0,bytes.Length);
 // Done updating for POST so close the stream
 requestStream.Close();
 }

 // return the request
 return httpRequest;
}

Once we have an HttpWebRequest, we send the request and get the response using the
GetResponse method that takes our newly created HttpWebRequest as input and returns an
HttpWebResponse. In this example, we perform a GET for the index.aspx page from the

http://localhost/mysite web site:

HttpWebRequest request =
 GenerateGetOrPostRequest("http://localhost/mysite/index.aspx",
 "GET",
 null);

HttpWebResponse response = (HttpWebResponse) request.GetResponse();
// This next line uses VerifyResponse from Recipe 13.5
if(VerifyResponse(response)==ResponseCategories.Success)
{
 Console.WriteLine("Request succeeded");
}

We generate the HttpWebRequest, send it and get the HttpWebResponse, and then check the
success using the VerifyResponse method from Recipe 13.5.

Discussion

The WebRequest and WebResponse classes encapsulate all of the functionality to perform basic web
transactions. HttpWebRequest and HttpWebResponse are derived classes from these, respectively,

and provide the HTTP specific web transaction support.

At the most fundamental level, to perform an HTTP-based web transaction, you use the Create
method on the WebRequest class to get a WebRequest that can be cast to an HttpWebRequest (so
long as the the scheme is http:// or https://). This HttpWebRequest is then submitted to the web
server in question when the GetResponse method is called, and it returns an HttpWebResponse that

can then be inspected for the response data.

http://localhost/mysite
https://

See Also

See the "WebRequest Class," "WebResponse Class," "HttpWebRequest Class," and
"HttpWebResponse Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 13.7 Going Through a Proxy

Problem

Many companies have a web proxy that allows employees to access the Internet, while at the same
time preventing outsiders from accessing the company's internal network. The problem is that to
create an application that accesses the Internet from within your company, you must first connect to
your proxy and then send information through it, rather than directly out to an Internet web server.

Solution

In order to get a HttpWebRequest successfully through a specific proxy server, we need to set up a
WebProxy object with the settings to validate our specific request to a given proxy. Since this function
is generic for any request, we create the AddProxyInfoToRequest method:

public static HttpWebRequest AddProxyInfoToRequest(HttpWebRequest httpRequest,
 string proxyUri,
 string proxyID,
 string proxyPwd,
 string proxyDomain)
{
 if(httpRequest != null)
 {
 // create the proxy object
 WebProxy proxyInfo = new WebProxy();
 // add the address of the proxy server to use
 proxyInfo.Address = new Uri(proxyUri);
 // tell it to bypass the proxy server for local addresses
 proxyInfo.BypassProxyOnLocal = true;
 // add any credential information to present to the proxy server
 proxyInfo.Credentials = new NetworkCredential(proxyID,
 proxyPwd,
 proxyDomain);
 // assign the proxy information to the request
 httpRequest.Proxy = proxyInfo;
 }
 // return the request
 return httpRequest;
}

If all requests are going to go through the same proxy, you can use the static Select method on the
GlobalProxySelection class to set up the proxy settings for all WebRequests, like so:

Uri proxyURI = new Uri("http://webproxy:80");

GlobalProxySelection.Select = new WebProxy(proxyURI);

Discussion

AddProxyInfoToRequest takes the URI of the proxy and creates a Uri object, which is used to
construct the WebProxy object. The WebProxy object is set to bypass the proxy for local addresses
and then the credential information is used to create a NetworkCredential object. The
NetworkCredential object represents the authentication information necessary for the request to
succeed at this proxy and is assigned to the WebProxy.Credentials property. Once the WebProxy
object is completed, it is assigned to the Proxy property of the HttpWebRequest and the request is

ready to be submitted.

See Also

See the "WebProxy Class," "NetworkCredential Class," and "HttpWebRequest Class" topics in the
MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 13.8 Obtaining the HTML from a URL

Problem

You need to get the HTML returned from a web server in order to examine it for items of interest. For
example, you could examine the returned HTML for links to other pages or for headlines from a news
site.

Solution

We can use the methods for web communication we have set up in Recipe 13.5 and Recipe 13.6 to
make the HTTP request and verify the response; then, we can get at the HTML via the
ResponseStream property of the HttpWebResponse object:

public static string GetHTMLFromURL(string url)
{
 if(url.Length == 0)
 throw new ArgumentException("Invalid URL","url");

 string html = "";
 HttpWebRequest request = GenerateGetOrPostRequest(url,"GET",null);
 HttpWebResponse response = (HttpWebResponse)request.GetResponse();
 try
 {
 if(VerifyResponse(response)== ResponseCategories.Success)
 {
 // get the response stream.
 Stream responseStream = response.GetResponseStream();
 // use a stream reader that understands UTF8
 StreamReader reader = new StreamReader(responseStream,Encoding.UTF8);

 try
 {
 html = reader.ReadToEnd();
 }
 finally
 {
 // close the reader
 reader.Close();
 }
 }
 }
 finally

 {
 response.Close();
 }
 return html;
}

Discussion

The GetHTMLFromURL method is set up to get a web page using the GenerateGetOrPostRequest and
GetResponse methods, verify the response using the VerifyResponse method, and then, once we

have a valid response, we start looking for the HTML that was returned.

The GetResponseStream method on the HttpWebResponse provides access to the body of the
message that was returned in a System.IO.Stream object. In order to read the data, we instantiate
a StreamReader with the response stream and the UTF8 property of the Encoding class to allow for
the UTF8-encoded text data to be read correctly from the stream. We then call ReadToEnd on the
StreamReader, which puts all of the content in the string variable called html and return it.

See Also

See the "HttpWebResponse.GetResponseStream Method," "Stream Class," and "StringBuilder Class"
topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 13.9 Writing a TCP Server

Problem

You need to create a server that listens on a port for incoming requests from a TCP client. These
client requests can then be processed at the server, and any responses can be sent back to the
client. Recipe 13.10 shows how to write a TCP client to interact with this server.

Solution

Use the TcpListener class to create a TCP-based endpoint to listen for requests from TCP based
clients. RunServer initiates a one-request TCP-based server running on a given IP address and port:

public static void RunServer(string address,int port)
{
 // set up address
 IPAddress addr = IPAddress.Parse(address);
 // set up listener on that address/port
 TcpListener tcpListener = new TcpListener(addr,port);
 if(tcpListener != null)
 {
 // start it up
 tcpListener.Start();
 // wait for a tcp client to connect
 TcpClient tcpClient = tcpListener.AcceptTcpClient();

 byte [] bytes = new byte[1024];
 // get the client stream
 NetworkStream clientStream = tcpClient.GetStream();
 StreamReader reader = new StreamReader(clientStream,Encoding.UTF8);
 try
 {
 string request = reader.ReadToEnd();

 // just send an acknowledgement
 bytes = Encoding.UTF8.GetBytes("Thanks for the message!");
 clientStream.Write(bytes,0,bytes.Length);
 }
 finally
 {
 // close the reader
 reader.Close();
 }

 // stop listening
 tcpListener.Stop();

 }
}

Discussion

RunServer takes the IP address and port passed in, creates an IPAddress from the string address,
and creates a TcpListener on that IPAddress and port. Once created, the TcpListener.Start
method is called to start up the server. The blocking AcceptTcpClient method is called to listen for

requests from TCP-based clients. Once the client connects, the request data from the client is read
and a brief acknowledgment is given, and then the client stream is closed and the TcpListener is
stopped using the TcpListener.Stop method.

See Also

See the "IPAddress Class," "TcpListener Class," and "TcpClient Class" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 13.10 Writing a TCP Client

Problem

You want to interact with a TCP-based server.

Solution

Use the TcpClient class to connect to and converse with a TCP-based server by passing the address

and port of the server to talk to. This example will talk to the server from Recipe 13.9 :

public string RunClient(string address,int port)
{
 string response = "";
 // Set up a listener on that address/port
 TcpClient tcpClient = new TcpClient(address,port);
 if(tcpClient != null)
 {
 string message = "Hello there";
 // Translate the passed message into UTF8ASCII and store it as a Byte array.
 byte[] bytes = Encoding.ASCII.GetBytes(message);

 NetworkStream stream = tcpClient.GetStream();

 // Send the message to the connected TcpServer.
 // The write flushes the stream automatically here
 stream.Write(bytes, 0, bytes.Length);

 // Get the response from the server

 StreamReader reader = new StreamReader(stream,Encoding.UTF8);
 try
 {
 response = reader.ReadToEnd();
 }
 finally
 {
 // Close the reader
 reader.Close();
 }

 // Close the client
 tcpClient.Close();
 }
 // Return the response text
 return response;

}

Discussion

RunClient is designed to send one message containing "Hello World" to the server, get the response
and return it as a string, then terminate. To accomplish this, it creates the TcpClient on the address
and port passed in, and then it gets the bytes for the string using the Encoding.UTF8.GetBytes
method. Once it has the bytes to send, it gets the NetworkStream from the TcpClient by calling the
GetStream method and sends the message using the Write method.

In order to receive the response from the server, the blocking ReadToEnd method is then called. Once
ReadToEnd returns, the string contains the response.

See Also

See the "TcpClient Class," "NetworkStream Class," and "Encoding.ASCII Property" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 13.11 Simulating Form Execution

Problem

You need to send a collection of name/value pairs to simulate a form being executed on a browser to a location identified by a URI.

Solution

Use the WebClient class to send a set of name/value pairs to the web server using the UploadValues method. This class enables

you to act as the browser executing a form by setting up the name/value pairs with the input data. The input field ID is the name,
and the value to use in the field is the value:

using System;
using System.Net;
using System.Text;
using System.Collections.Specialized;

Uri uri = new Uri("http://localhost/FormSim/WebForm1.aspx");
WebClient client = new WebClient();

// Create a series of name/value pairs to send
NameValueCollection collection = new NameValueCollection();

// Add necessary parameter/value pairs to the name/value container.
collection.Add("Identity","foo@bar.com");
collection.Add("Item","Books");
collection.Add("Quantity","5");
Console.WriteLine("Uploading name/value pairs to URI {0} ...",
 uri.AbsoluteUri);

// Upload the NameValueCollection.
byte[] responseArray =
 client.UploadValues(uri.AbsoluteUri,"POST",collection);
// Decode and display the response.
Console.WriteLine("\nResponse received was {0}",
 Encoding.ASCII.GetString(responseArray));

The webform1.aspx page to receive and process this data looks like this:

<%@ Page language="c#" Codebehind="WebForm1.aspx.cs" AutoEventWireup="false" Inherits="FormSim.WebForm1" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
 <HEAD>
 <title>WebForm1</title>
 <meta name="GENERATOR" Content="Microsoft Visual Studio .NET 7.1">
 <meta name="CODE_LANGUAGE" Content="C#">

 <meta name="vs_defaultClientScript" content="JavaScript">
 <meta name="vs_targetSchema"
 content="http://schemas.microsoft.com/intellisense/ie5">
 </HEAD>
 <body MS_POSITIONING="GridLayout">
 <form id="Form1" method="post" runat="server">
 <asp:TextBox id="Identity" style="Z-INDEX: 101; LEFT: 194px;
 POSITION: absolute; TOP: 52px" runat="server"></asp:TextBox>
 <asp:TextBox id="Item" style="Z-INDEX: 102; LEFT: 193px;
 POSITION: absolute; TOP: 93px" runat="server"></asp:TextBox>
 <asp:TextBox id="Quantity" style="Z-INDEX: 103; LEFT: 193px;
 POSITION: absolute; TOP: 132px"
 runat="server"></asp:TextBox>
 <asp:Button id="Button1" style="Z-INDEX: 104; LEFT: 203px;
 POSITION: absolute; TOP: 183px" runat="server"
 Text="Submit"></asp:Button>
 <asp:Label id="Label1" style="Z-INDEX: 105; LEFT: 58px;
 POSITION: absolute; TOP: 54px" runat="server"
 Width="122px" Height="24px">Identity:</asp:Label>
 <asp:Label id="Label2" style="Z-INDEX: 106; LEFT: 57px;
 POSITION: absolute; TOP: 94px" runat="server"
 Width="128px" Height="25px">Item:</asp:Label>
 <asp:Label id="Label3" style="Z-INDEX: 107; LEFT: 57px;
 POSITION: absolute; TOP: 135px" runat="server"
 Width="124px" Height="20px">Quantity:</asp:Label>
 </form>
 </body>
</HTML>

The webform1.aspx code-behind looks like this:

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace FormSim
{
 /// <summary>
 /// Summary description for WebForm1.
 /// </summary>
 public class WebForm1 : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.Button Button1;
 protected System.Web.UI.WebControls.TextBox Item;
 protected System.Web.UI.WebControls.Label Label1;

 protected System.Web.UI.WebControls.Label Label2;
 protected System.Web.UI.WebControls.Label Label3;
 protected System.Web.UI.WebControls.TextBox Identity;
 protected System.Web.UI.WebControls.TextBox Quantity;

 private void Page_Load(object sender, System.EventArgs e)
 {
 // Put user code to initialize the page here
 }

 #region Web Form Designer generated code
 override protected void OnInit(EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET Web Form Designer.
 //
 InitializeComponent();
 base.OnInit(e);
 }

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.Button1.Click +=
 new System.EventHandler(this.Button1_Click);
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion

 private void Button1_Click(object sender, System.EventArgs e)
 {
 string response = "Thanks for the order!
";
 response += "Identity: " + Request.Form["Identity"] + "
";
 response += "Item: " + Request.Form["Item"] + "
";
 response += "Quantity: " + Request.Form["Quantity"] + "
";
 Response.Write(response);
 }
 }
}

Discussion

The WebClient class makes it easy to upload form data to a web server in the common format of a set of name/value pairs. You
can see this technique in the call to UploadValues that takes an absolute URI (http://localhost/FormSim/WebForm1.aspx), the
HTTP method to use (POST), and the NameValueCollection we created (collection). The NameValueCollection is populated
with the data for each of the fields on the form by giving the id of the input field as the name, and then the value to put in the
field as the value during each call to Add . In this example, we fill in the Identity field with foo@bar.com , the Item field with Book

http://localhost/FormSim/WebForm1.aspx

, and the Quantity field with 5 . We then print out the resulting response from the POST to the console window.

See Also

See the "WebClient Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 13.12 Downloading Data from a Server

Problem

You need to download data from a location specified by a URI; this data can be either an array of
bytes or a file.

Solution

Use the WebClient DownloadData and DownloadFile methods to download the bytes of a file from a

URI:

string uri = "http://localhost/mysite/upload.aspx";

// make a client
WebClient client = new WebClient();

// get the contents of the file
Console.WriteLine("Downloading {0} " + uri);
// download the page and store the bytes
byte[] bytes = client.DownloadData (uri);
// Write the HTML out
string page = Encoding.ASCII.GetString(bytes);
Console.WriteLine(page);

You could also have downloaded the file itself:

// go get the file
Console.WriteLine("Retrieving file from {1}...\r\n", uri);
// get file and put it in a temp file
string tempFile = Path.GetTempFileName();
client.DownloadFile(uri,tempFile);
Console.WriteLine("Downloaded {0} to {1}",uri,tempFile);

Discussion

WebClient simplifies downloading of files and bytes in files, as these are common tasks when dealing

with the Web. The more traditional stream-based method for downloading can also be accessed via
the OpenRead method on the WebClient.

See Also

See the "WebClient Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 13.13 Using Named Pipes to Communicate

Problem

You need a way to use named pipes to communicate with another application across the network.

Solution

Create a P/Invoke wrapper class for the named pipe APIs in Kernel32.dll to allow for managed access,
and then create a managed client and managed server class to work with named pipes.

Here are the named pipe interop wrappers in a class called NamedPipeInterop :

namespace NamedPipes
{
/// <summary>
/// Imported namedpipe entry points for p/invoke into native code.
/// </summary>
[SuppressUnmanagedCodeSecurity]
public class NamedPipeInterop
{
 // #defines related to named pipe processing
 public const uint PIPE_ACCESS_OUTBOUND = 0x00000002;
 public const uint PIPE_ACCESS_DUPLEX = 0x00000003;
 public const uint PIPE_ACCESS_INBOUND = 0x00000001;

 public const uint PIPE_WAIT = 0x00000000;
 public const uint PIPE_NOWAIT = 0x00000001;
 public const uint PIPE_READMODE_BYTE = 0x00000000;
 public const uint PIPE_READMODE_MESSAGE = 0x00000002;
 public const uint PIPE_TYPE_BYTE = 0x00000000;
 public const uint PIPE_TYPE_MESSAGE = 0x00000004;

 public const uint PIPE_CLIENT_END = 0x00000000;
 public const uint PIPE_SERVER_END = 0x00000001;

 public const uint PIPE_UNLIMITED_INSTANCES = 255;

 public const uint NMPWAIT_WAIT_FOREVER = 0xffffffff;
 public const uint NMPWAIT_NOWAIT = 0x00000001;
 public const uint NMPWAIT_USE_DEFAULT_WAIT = 0x00000000;

 public const uint GENERIC_READ = (0x80000000);
 public const uint GENERIC_WRITE = (0x40000000);
 public const uint GENERIC_EXECUTE = (0x20000000);
 public const uint GENERIC_ALL = (0x10000000);

 public const uint CREATE_NEW = 1;
 public const uint CREATE_ALWAYS = 2;
 public const uint OPEN_EXISTING = 3;
 public const uint OPEN_ALWAYS = 4;
 public const uint TRUNCATE_EXISTING = 5;

 public const int INVALID_HANDLE_VALUE = -1;
 public const uint ERROR_PIPE_BUSY = 231;
 public const uint ERROR_NO_DATA = 232;
 public const uint ERROR_PIPE_NOT_CONNECTED = 233;
 public const uint ERROR_MORE_DATA = 234;
 public const uint ERROR_PIPE_CONNECTED = 535;
 public const uint ERROR_PIPE_LISTENING = 536;

 public static int GetLastError()
 {
 return Marshal.GetLastWin32Error();
 }

 [DllImport("kernel32.dll", SetLastError=true)]
 public static extern bool CallNamedPipe(
 string lpNamedPipeName,
 byte[] lpInBuffer,
 uint nInBufferSize,
 byte[] lpOutBuffer,
 uint nOutBufferSize,
 byte[] lpBytesRead,
 uint nTimeOut);

 [DllImport("kernel32.dll", SetLastError=true)]
 public static extern bool CloseHandle(int hObject);

 [DllImport("kernel32.dll", SetLastError=true)]
 public static extern bool ConnectNamedPipe(
 int hNamedPipe, // handle to named pipe
 IntPtr lpOverlapped // overlapped structure
);

 [DllImport("kernel32.dll", SetLastError=true)]
 public static extern int CreateNamedPipe(
 String lpName, // pipe name
 uint dwOpenMode, // pipe open mode
 uint dwPipeMode, // pipe-specific modes
 uint nMaxInstances, // maximum number of instances
 uint nOutBufferSize, // output buffer size
 uint nInBufferSize, // input buffer size
 uint nDefaultTimeOut, // time-out interval
 //SecurityAttributes attr
 IntPtr pipeSecurityDescriptor // security descriptor
);

 [DllImport("kernel32.dll", SetLastError=true)]
 public static extern int CreatePipe(
 int hReadPipe,
 int hWritePipe,
 IntPtr lpPipeAttributes,
 uint nSize);

 [DllImport("kernel32.dll", SetLastError=true)]
 public static extern int CreateFile(
 String lpFileName, // filename
 uint dwDesiredAccess, // access mode
 uint dwShareMode, // share mode
 IntPtr attr, // security descriptor
 uint dwCreationDisposition, // how to create
 uint dwFlagsAndAttributes, // file attributes
 uint hTemplateFile); // handle to template file

 [DllImport("kernel32.dll", SetLastError=true)]
 public static extern bool DisconnectNamedPipe(int hNamedPipe);

 [DllImport("kernel32.dll", SetLastError=true)]
 public static extern bool FlushFileBuffers(int hFile);

 [DllImport("kernel32.dll", SetLastError=true)]
 public static extern bool GetNamedPipeHandleState(
 int hNamedPipe,
 IntPtr lpState,
 IntPtr lpCurInstances,
 IntPtr lpMaxCollectionCount,
 IntPtr lpCollectDataTimeout,
 string lpUserName,
 uint nMaxUserNameSize);

 [DllImport("KERNEL32.DLL", SetLastError=true)]
 public static extern bool GetNamedPipeInfo(
 int hNamedPipe,
 out uint lpFlags,
 out uint lpOutBufferSize,
 out uint lpInBufferSize,
 out uint lpMaxInstances);

 [DllImport("KERNEL32.DLL", SetLastError=true)]
 public static extern bool PeekNamedPipe(
 int hNamedPipe,
 byte[] lpBuffer,
 uint nBufferSize,
 byte[] lpBytesRead,
 out uint lpTotalBytesAvail,
 out uint lpBytesLeftThisMessage);

 [DllImport("KERNEL32.DLL", SetLastError=true)]
 public static extern bool SetNamedPipeHandleState(

 int hNamedPipe,
 ref int lpMode,
 IntPtr lpMaxCollectionCount,
 IntPtr lpCollectDataTimeout);

 [DllImport("KERNEL32.DLL", SetLastError=true)]
 public static extern bool TransactNamedPipe(
 int hNamedPipe,
 byte [] lpInBuffer,
 uint nInBufferSize,
 [Out] byte [] lpOutBuffer,
 uint nOutBufferSize,
 IntPtr lpBytesRead,
 IntPtr lpOverlapped);

 [DllImport("kernel32.dll", SetLastError=true)]
 public static extern bool WaitNamedPipe(
 string name,
 uint timeout);

 [DllImport("kernel32.dll", SetLastError=true)]
 public static extern bool ReadFile(
 int hFile, // handle to file
 byte[] lpBuffer, // data buffer
 uint nNumberOfBytesToRead, // number of bytes to read
 byte[] lpNumberOfBytesRead, // number of bytes read
 uint lpOverlapped // overlapped buffer
);

 [DllImport("kernel32.dll", SetLastError=true)]
 public static extern bool WriteFile(
 int hFile, // handle to file
 byte[] lpBuffer, // data buffer
 uint nNumberOfBytesToWrite, // number of bytes to write
 byte[] lpNumberOfBytesWritten, // number of bytes written
 uint lpOverlapped // overlapped buffer
);
}

} // end namespace NamedPipes

Now, using the interop wrappers, we can create a named pipe client class named NamedPipeClient :

namespace NamedPipes
{
 /// <summary>
 /// NamedPipeClient - An implementation of a synchronous,
 /// message-based, named pipe client
 ///
 ///</summary>

public class NamedPipeClient : IDisposable

{
 /// <summary>
 /// the full name of the pipe being connected to
 /// </summary>
 string _pipeName = "";

 /// <summary>
 /// the pipe handle once connected
 /// </summary>
 int _handle = NamedPipeInterop.INVALID_HANDLE_VALUE;

 /// <summary>
 /// default response buffer size (1K)
 /// </summary>
 uint _responseBufferSize = 1024;

 /// <summary>
 /// indicates if this has been closed once which calls
 /// for us to re-register for finalization on subsequent
 /// connect calls
 /// </summary>
 bool disposedOnce = false;

 /// <summary>
 /// WriteMessageResponseDelegate - callback for when a response
 /// to when a WriteMessage returns from the server
 ///
 /// </summary>
 public delegate void WriteMessageResponseDelegate(MemoryStream responseStream);

 /// <summary>
 /// CTOR
 /// </summary>
 /// <param name="pipeName">name of the pipe</param>
 public NamedPipeClient(string pipeName)
 {
 _pipeName = pipeName;
 }

 /// <summary>
 /// Finalizer
 /// </summary>
 ~NamedPipeClient()
 {
 Dispose();
 }

 /// <summary>
 /// Dispose
 /// </summary>
 public void Dispose()
 {

 if(_handle != NamedPipeInterop.INVALID_HANDLE_VALUE)
 {
 NamedPipeInterop.CloseHandle(_handle);
 _handle = NamedPipeInterop.INVALID_HANDLE_VALUE;
 }
 // Suppress Finalization since we have now cleaned up our
 // handle
 System.GC.SuppressFinalize(this);
 // indicate we have disposed at least once
 if(disposedOnce == false)
 disposedOnce = true;
 }

 /// <summary>
 /// Close - because it is more intuitive than Dispose... :)
 /// </summary>
 public void Close()
 {
 Dispose();
 }

 /// <summary>
 /// ResponseBufferSize Property - the size used to create response buffers
 /// for messages written using WriteMessage
 /// </summary>
 public uint ResponseBufferSize
 {
 get
 {
 return _responseBufferSize;
 }
 set
 {
 _responseBufferSize = value;
 }
 }

 /// <summary>
 /// Connect - connect to an existing pipe
 /// </summary>
 /// <returns>true if connected</returns>
 public bool Connect()
 {
 if(disposedOnce == true)
 System.GC.ReRegisterForFinalize(this);

 if(_handle != NamedPipeInterop.INVALID_HANDLE_VALUE)
 throw new InvalidOperationException("Pipe is already connected!");

 // keep trying to connect
 while (true)
 {

 // connect to existing pipe
 _handle = NamedPipeInterop.CreateFile(_pipeName,
 NamedPipeInterop.GENERIC_READ |
 NamedPipeInterop.GENERIC_WRITE,
 0,
 IntPtr.Zero,
 NamedPipeInterop.OPEN_EXISTING,
 0,
 0);

 // check to see if we connected
 if(_handle != NamedPipeInterop.INVALID_HANDLE_VALUE)
 break;

 // the pipe could not be opened as all instances are busy
 // any other error we bail for
 if(NamedPipeInterop.GetLastError() !=
 NamedPipeInterop.ERROR_PIPE_BUSY)
 {
 Debug.WriteLine("Could not open pipe: " + _pipeName);
 return false;
 }

 // if it was busy, see if we can wait it out for 20 seconds
 if(!NamedPipeInterop.WaitNamedPipe(_pipeName, 20000))
 {
 Debug.WriteLine("Specified pipe was over-burdened: " +
 _pipeName);
 return false;
 }
 }
 // indicate connection in debug
 Debug.WriteLine("Connected to pipe: " + _pipeName);

 // The pipe connected; change to message-read mode.
 bool success = false;
 int mode = (int) NamedPipeInterop.PIPE_READMODE_MESSAGE;

 // set to message mode
 success = NamedPipeInterop.SetNamedPipeHandleState(
 _handle, // pipe handle
 ref mode, // new pipe mode
 IntPtr.Zero, // don't set maximum bytes
 IntPtr.Zero); // don't set maximum time

 // currently implemented for just synchronous, message-based pipes,
 // so bail if we couldn't set the client up properly
 if(false == success)
 {
 Debug.WriteLine("Could not change pipe mode to message," +
 " shutting client down.");
 Dispose();

 return false;
 }
 return true;
 }

 /// <summary>
 /// WriteMessage - write an array of bytes and return the response from the
 /// server
 /// </summary>
 /// <param name="buffer">bytes to write</param>
 /// <param name="bytesToWrite">number of bytes to write</param>
 /// <param name="ResponseDelegate">callback with the message response</param>
 /// <returns>true if written successfully</returns>
 public bool WriteMessage(byte [] buffer, // the write buffer
 uint bytesToWrite, // number of bytes in the write buffer
 WriteMessageResponseDelegate ResponseDelegate) // callback for
 // message responses
 {
 // buffer to get the number of bytes read/written back
 byte[] _numReadWritten = new byte[4];

 bool success = false;
 // Write the byte buffer to the pipe
 success = NamedPipeInterop.WriteFile(_handle,
 buffer,
 bytesToWrite,
 _numReadWritten,
 0);

 if(true == success)
 {
 byte[] responseBuffer = new byte[_responseBufferSize];
 int size = Convert.ToInt32(_responseBufferSize);
 MemoryStream fullBuffer = new MemoryStream(size);
 do
 {
 // Read the response from the pipe.
 success = NamedPipeInterop.ReadFile(
 _handle, // pipe handle
 responseBuffer, // buffer to receive reply
 _responseBufferSize, // size of buffer
 _numReadWritten, // number of bytes read
 0); // not overlapped

 // failed, not just more data to come
 if (! success && NamedPipeInterop.GetLastError() !=
 NamedPipeInterop.ERROR_MORE_DATA)
 break;

 // concat response to stream
 fullBuffer.Write(responseBuffer,
 0,

 responseBuffer.Length);

 } while (! success); // repeat loop if ERROR_MORE_DATA

 // Callback the caller with this response buffer
 if(ResponseDelegate != null)
 ResponseDelegate(fullBuffer);
 }
 return success;
 }
}
} // end namespace NamedPipes

Then we need to create a server class for testing, which we will call NamedPipeServer :

namespace NamedPipes
{
/// <summary>
/// NamedPipeServer - An implementation of a synchronous, message-based,
/// named pipe server
///
/// </summary>
public class NamedPipeServer : IDisposable
{
 /// <summary>
 /// the pipe handle
 /// </summary>
 int _handle = NamedPipeInterop.INVALID_HANDLE_VALUE;

 /// <summary>
 /// the name of the pipe
 /// </summary>
 string _pipeName = "";

 /// <summary>
 /// the name of the machine the server pipe is on
 /// </summary>
 string _machineName = "";

 /// <summary>
 /// default size of message buffer to read
 /// </summary>
 uint _receiveBufferSize = 1024;

 /// <summary>
 /// indicates if this has been closed once, which calls
 /// for us to re-register for finalization on subsequent
 /// connect calls
 /// </summary>
 bool disposedOnce = false;

 /// <summary>

 /// the internal delegate holder for the callback on message receipt
 /// from clients
 /// </summary>
 MessageReceivedDelegate _messageReceivedDelegate;

 /// <summary>
 /// PIPE_SERVER_BUFFER_SIZE set to 8192 by default
 /// </summary>
 const int PIPE_SERVER_BUFFER_SIZE = 8192;

 /// <summary>
 /// MessageReceivedDelegate - callback for message received from
 /// client
 ///
 /// </summary>
 public delegate void MessageReceivedDelegate(MemoryStream message,
 out MemoryStream response);

 /// <summary>
 /// CTOR
 /// </summary>
 /// <param name="machineName">name of the machine the pipe is on,
 /// use null for local machine</param>
 /// <param name="pipeBaseName">the base name of the pipe</param>
 /// <param name="msgReceivedDelegate">delegate to be notified when
 /// a message is received</param>
 public NamedPipeServer(string machineName,
 string pipeBaseName,
 MessageReceivedDelegate msgReceivedDelegate)
 {
 // hook up the delegate
 _messageReceivedDelegate = msgReceivedDelegate;

 if(machineName == null)
 _machineName = ".";
 else
 _machineName = machineName;

 // assemble the pipe name
 _pipeName = "\\\\" + _machineName + "\\PIPE\\" + pipeBaseName;
 }

 /// <summary>
 /// Finalizer
 /// </summary>
 ~NamedPipeServer()
 {
 Dispose();
 }

 /// <summary>
 /// Dispose - clean up handle

 /// </summary>
 public void Dispose()
 {
 // if we have a pipe handle, disconnect and clean up
 if(_handle > 0)
 {
 NamedPipeInterop.DisconnectNamedPipe(_handle);
 NamedPipeInterop.CloseHandle(_handle);
 _handle = 0;
 }
 // Suppress Finalization since we have now cleaned up our
 // handle
 System.GC.SuppressFinalize(this);
 // indicate we have disposed at least once
 if(disposedOnce == false)
 disposedOnce = true;
 }

 /// <summary>
 /// Close - because it is more intuitive than Dispose...
 /// </summary>
 public void Close()
 {
 Dispose();
 }

 /// <summary>
 /// PipeName
 /// </summary>
 /// <returns>the composed pipe name</returns>
 public string PipeName
 {
 get
 {
 return _pipeName;
 }
 }

 /// <summary>
 /// CreatePipe - create the named pipe
 /// </summary>
 /// <returns>true is pipe created</returns>
 public bool CreatePipe()
 {
 if(disposedOnce == true)
 System.GC.ReRegisterForFinalize(this);

 // make a named pipe in message mode
 _handle = NamedPipeInterop.CreateNamedPipe(_pipeName,
 NamedPipeInterop.PIPE_ACCESS_DUPLEX,
 NamedPipeInterop.PIPE_TYPE_MESSAGE |
 NamedPipeInterop.PIPE_READMODE_MESSAGE |

 NamedPipeInterop.PIPE_WAIT,
 NamedPipeInterop.PIPE_UNLIMITED_INSTANCES,
 PIPE_SERVER_BUFFER_SIZE,
 PIPE_SERVER_BUFFER_SIZE,
 NamedPipeInterop.NMPWAIT_WAIT_FOREVER,
 IntPtr.Zero);

 // make sure we got a good one
 if (_handle == NamedPipeInterop.INVALID_HANDLE_VALUE)
 {
 Debug.WriteLine("Could not create the pipe (" +
 _pipeName + ") - os returned " +
 NamedPipeInterop.GetLastError());

 return false;
 }
 return true;
 }

 /// <summary>
 /// WaitForClientConnect - wait for a client to connect to this pipe
 /// </summary>
 /// <returns>true if connected, false if timed out</returns>
 public bool WaitForClientConnect()
 {
 bool success = false;
 // wait for someone to talk to us
 success = NamedPipeInterop.ConnectNamedPipe(_handle,IntPtr.Zero);
 if(true == success)
 {
 // process the first message
 while (WaitForMessage());
 }
 return success;
 }

 /// <summary>
 /// WaitForMessage - have the server wait for a message
 /// </summary>
 /// <returns>true if got a message, false if timed out</returns>
 public bool WaitForMessage()
 {
 bool success = false;
 // they want to talk to us, read their messages and write
 // replies
 int size = Convert.ToInt32(_receiveBufferSize);
 MemoryStream fullMessageStream = new MemoryStream(size);
 byte [] buffer = new byte[_receiveBufferSize];
 byte [] _numReadWritten = new byte[4];

 // need to read the whole message and put it in one message
 // byte buffer

 do
 {
 // Read the response from the pipe.
 success = NamedPipeInterop.ReadFile(
 _handle, // pipe handle
 buffer, // buffer to receive reply
 _receiveBufferSize, // size of buffer
 _numReadWritten, // number of bytes read
 0); // not overlapped

 // failed, not just more data to come
 if (! success &&
 (NamedPipeInterop.GetLastError() !=
 NamedPipeInterop.ERROR_MORE_DATA))
 break;

 // concat the message bytes to the stream
 fullMessageStream.Write(buffer,0,buffer.Length);

 } while (! success); // repeat loop if ERROR_MORE_DATA

 // we read a message from a client
 if(true == success)
 {
 // call delegate if connected for message processing
 MemoryStream responseStream;
 if(_messageReceivedDelegate != null)
 {
 // call delegate
 _messageReceivedDelegate(fullMessageStream,
 out responseStream);

 if(responseStream != null)
 {
 // get raw byte array from stream
 byte [] responseBytes =
 responseStream.ToArray();
 uint len =
 Convert.ToUInt32(responseBytes.Length);
 // write the response message provided
 // by the delegate
 NamedPipeInterop.WriteFile(_handle,
 responseBytes,
 len,
 _numReadWritten,
 0);
 }
 }
 }
 return success;
 }
}

} // end namespace NamedPipes

In order to use the NamedPipeClient class, we need some code like the following:

using System;
using System.Diagnostics;
using System.Text;
using System.IO;

namespace NamedPipes
{
 class NamedPipesClientTest
 {
 static void Main(string[] args)
 {
 // create our pipe client
 NamedPipeClient _pc =
 new NamedPipeClient("\\\\.\\PIPE\\mypipe");

 if(_pc != null)
 {
 // connect to the server
 if(true == _pc.Connect())
 {
 // set up a dummy message
 string testString = "This is my message!";
 UnicodeEncoding UEncoder = new UnicodeEncoding();

 // turn it into a byte array
 byte[] writebuffer = UEncoder.GetBytes(testString);
 uint len = Convert.ToUInt32(writebuffer.Length);

 // write the message ten times
 for(int i=0;i<10;i++)
 {
 if(false == _pc.WriteMessage(writebuffer,
 len,
 new NamedPipeClient.WriteMessageResponseDelegate(WriteMessageResponse)))
 {
 Debug.Assert(false,
 "Failed to write message!");
 }
 }
 // close up shop
 _pc.Close();
 }
 }
 Console.WriteLine("Press Enter to exit...");
 Console.ReadLine();
 }

 static void WriteMessageResponse(MemoryStream responseStream)

 {
 UnicodeEncoding UEncoder = new UnicodeEncoding();
 string response = UEncoder.GetString(responseStream.ToArray());
 Console.WriteLine("Received response: {0}",response);
 }
 }
}

Then, to set up a server for the client to talk to, we would use the NamedPipeServer class, like this:

namespace NamedPipes
{
 class NamedPipesServerTest
 {
 //
 // MessageReceived - This is the method used in the delegate for the server
 // that gets called after every message is received and before it is replied to
 //
 static void MessageReceived(MemoryStream message,out MemoryStream response)
 {
 // get the bytes of the message from the stream
 byte [] msgBytes = message.ToArray();
 string messageText;

 // I know in the client I used Unicode encoding for the string to
 // turn it into a series of bytes for transmission so just reverse that
 UnicodeEncoding UEncoder = new UnicodeEncoding();
 messageText = UEncoder.GetString(msgBytes);

 // write out our string message from the client
 Console.WriteLine(messageText);

 // now set up response with a polite response using the same
 // Unicode string protocol
 string reply = "Thanks for the message!";
 msgBytes = UEncoder.GetBytes(reply);
 response = new MemoryStream(msgBytes,0,msgBytes.Length);
 }

 //
 // Main - nuff said
 //
 static void Main(string[] args)
 {
 // create pipe server
 NamedPipeServer _ps =
 new NamedPipeServer(null,
 "mypipe",
 new NamedPipeServer.MessageReceivedDelegate(MessageReceived)
);

 // create pipe

 if(true == _ps.CreatePipe())
 {
 // I get the name of the pipe here just to show you can.
 // Normally we would then have to get this name to the client
 // so it knows the name of the pipe to open but hey, I wrote
 // the client too so for now I'm just hard-coding it in the
 // client so we can ignore it :)
 string pipeName = _ps.PipeName();

 // wait for clients to connect and process the first message
 if(true == _ps.WaitForClientConnect())
 {
 // process messages until the read fails
 // (client goes away...)
 bool success = true;
 while(success)
 {
 success = _ps.WaitForMessage();
 }
 }
 // done; bail and clean up the server
 _ps.Close();
 }
 // make our server hang around so you can see the messages sent
 Console.WriteLine("Press Enter to exit...");
 Console.ReadLine();
 }
 }
}

Discussion

Named pipes are a mechanism to allow interprocess or intermachine communications in Windows. As
of v1.1, the .NET Framework has not provided managed access to named pipes, so the first thing we
need to do is to wrap the functions in Kernel32.dll for direct access from managed code in our
NamedPipesInterop class.

Once we have this foundation, we can then build a client for using named pipes to talk to a server,
exposing a pipe that we did in the NamedPipeClient class. The methods on the NamedPipeClient are

listed here with a description:

Method Description

NamedPipeClient Constructor for the named pipe client.

~NamedPipeClient
Finalizer for the named pipe client. This ensures the used pipe
handle is freed.

Dispose
Dispose method for the named pipe client so that the pipe handle

is not held any longer than necessary.

Close Close method which calls down to the Dispose method.

Method Description

Connect Used to connect to a named pipe server.

WriteMessage Writes a message to the connected server.

WriteMessageResponseDelegate A delegate to let clients see the server's response if they wish to.

We then create the NamedPipeServer class to be able to have something for the NamedPipeClient to
connect to. The methods on the NamedPipeServer are listed here with a description as well:

Method Description

NamedPipeServer Constructor for the named pipe server.

~NamedPipeServer
Finalizer for the named pipe server. This ensures the used pipe handles
are freed.

Dispose
Dispose method for the named pipe server so that pipe handles are not

held on to any longer than necessary.

Close
Close method that calls down to the Dispose method. Many developers
use Close , so it is provided for completeness.

PipeName Returns the composed pipe name.

CreatePipe Creates a listener pipe on the server.

WaitForClientConnect Wait on the pipe handle for a client to talk to.

WaitForMessage Have the server wait for a message from the client.

MessageReceivedDelegate
A delegate to notify users of the server that a message has been
received.

Finally we created some code to use NamedPipeClient and NamedPipeServer . The interaction

between these two goes like this:

The server process is started; it fires up a NamedPipeServer , calls CreatePipe to make a pipe,
then calls WaitForClientConnect to wait for the NamedPipeClient to connect.

The client process is then created; it fires up a NamedPipeClient , calls Connect , and connects

to the server process.

The server process sees the connection from the client, and then calls WaitForMessage in a loop.
WaitForMessage starts reading the pipe, which blocks until a messages is written to the pipe by

the client.

The client process then writes a message to the server process using WriteMessage .

The server process sees the message, processes it, and notifies anyone who signed up for
notification via the MessageReceivedDelegate , then writes a response to the client, and then

starts to wait again.

When the client process receives the response from the server, it notifies anyone who signed up

Connect Used to connect to a named pipe server.

WriteMessage Writes a message to the connected server.

WriteMessageResponseDelegate A delegate to let clients see the server's response if they wish to.

We then create the NamedPipeServer class to be able to have something for the NamedPipeClient to
connect to. The methods on the NamedPipeServer are listed here with a description as well:

Method Description

NamedPipeServer Constructor for the named pipe server.

~NamedPipeServer
Finalizer for the named pipe server. This ensures the used pipe handles
are freed.

Dispose
Dispose method for the named pipe server so that pipe handles are not

held on to any longer than necessary.

Close
Close method that calls down to the Dispose method. Many developers
use Close , so it is provided for completeness.

PipeName Returns the composed pipe name.

CreatePipe Creates a listener pipe on the server.

WaitForClientConnect Wait on the pipe handle for a client to talk to.

WaitForMessage Have the server wait for a message from the client.

MessageReceivedDelegate
A delegate to notify users of the server that a message has been
received.

Finally we created some code to use NamedPipeClient and NamedPipeServer . The interaction

between these two goes like this:

The server process is started; it fires up a NamedPipeServer , calls CreatePipe to make a pipe,
then calls WaitForClientConnect to wait for the NamedPipeClient to connect.

The client process is then created; it fires up a NamedPipeClient , calls Connect , and connects

to the server process.

The server process sees the connection from the client, and then calls WaitForMessage in a loop.
WaitForMessage starts reading the pipe, which blocks until a messages is written to the pipe by

the client.

The client process then writes a message to the server process using WriteMessage .

The server process sees the message, processes it, and notifies anyone who signed up for
notification via the MessageReceivedDelegate , then writes a response to the client, and then

starts to wait again.

When the client process receives the response from the server, it notifies anyone who signed up

for the WriteMessageResponseDelegate , closes the NamedPipeClient that closes the pipe

connection on the client side, and waits to go away when the user presses Enter.

The server process notes the closing of the pipe connection by the client via the failed
NamedPipesInterop.ReadFile call in WaitForMessage and calls Close on the server to clean up

and wait for the user to press Enter to terminate the server process.

See Also

See the "Named Pipes," "DllImport Attribute," "IDisposable Interface," and "GC.SuppressFinalize
Method" topics in the MSDN documentation .

[Team LiB]

[Team LiB]

Chapter 14. Security
There are many ways to secure different parts of your application. The security of running code in
.NET revolves around the concept of Code Access Security (CAS). CAS determines the
trustworthiness of an assembly based upon its origin. For example, code installed locally on the
machine is more trusted than code downloaded from the Internet. The runtime will also validate an
assembly's metadata and type safety before that code is allowed to run.

There are many ways to write secure code and protect data using the .NET Framework. In this
chapter, we explore such things as controlling access to types, encryption and decryption, random
numbers, securely storing data, and using programmatic and declarative security.

[Team LiB]

[Team LiB]

Recipe 14.1 Controlling Access to Types in aLocal
Assembly

Problem

You have an existing class that contains sensitive data and you do not want clients to have direct
access to any objects of this class directly. Instead, you would rather have an intermediary object
talk to the clients and allow access to sensitive data based on the client's credentials. What's more,
you would also like to have specific queries and modifications to the sensitive data tracked, so that if
an attacker manages to access the object, you will have a log of what the attacker was attempting to
do.

Solution

Use the proxy design pattern to allow clients to talk directly to a proxy object. This proxy object will
act as gatekeeper to the class that contains the sensitive data. To keep malicious users from
accessing the class itself, make it private, which will at least keep code without the
ReflectionPermissionFlag.TypeInformation access (which is currently given only in fully trusted

code scenarios like executing code interactively on a local machine) from getting at it.

The namespaces we will be using are:

using System;
using System.IO;
using System.Security;
using System.Security.Permissions;
using System.Security.Principal;

We start this design by creating an interface that will be common to both the proxy objects and the
object that contains sensitive data:

internal interface ICompanyData
{
 string AdminUserName
 {
 get;
 set;
 }

 string AdminPwd
 {
 get;
 set;

 }

 string CEOPhoneNumExt
 {
 get;
 set;
 }

 void RefreshData();
 void SaveNewData();
}

The CompanyData class is the underlying object that is "expensive" to create:

internal class CompanyData : ICompanyData
{
 public CompanyData()
 {
 Console.WriteLine("[CONCRETE] CompanyData Created");
 // Perform expensive initialization here
 }

 private string adminUserName = "admin";
 private string adminPwd = "password";
 private string ceoPhoneNumExt = "0000";

 public string AdminUserName
 {
 get {return (adminUserName);}
 set {adminUserName = value;}
 }

 public string AdminPwd
 {
 get {return (adminPwd);}
 set {adminPwd = value;}
 }

 public string CEOPhoneNumExt
 {
 get {return (ceoPhoneNumExt);}
 set {ceoPhoneNumExt = value;}
 }

 public void RefreshData()
 {
 Console.WriteLine("[CONCRETE] Data Refreshed");
 }

 public void SaveNewData()
 {
 Console.WriteLine("[CONCRETE] Data Saved");

 }
}

The following is the code for the security proxy class, which checks the caller's permissions to
determine whether the CompanyData object should be created and its methods or properties called:

public class CompanyDataSecProxy : ICompanyData
{
 public CompanyDataSecProxy()
 {
 Console.WriteLine("[SECPROXY] Created");

 // Must set principal policy first
 AppDomain.CurrentDomain.SetPrincipalPolicy(PrincipalPolicy.
 WindowsPrincipal);
 }

 private ICompanyData coData = null;
 private PrincipalPermission admPerm =
 new PrincipalPermission(null, @"BUILTIN\Administrators", true);
 private PrincipalPermission guestPerm =
 new PrincipalPermission(null, @"BUILTIN\Guest", true);
 private PrincipalPermission powerPerm =
 new PrincipalPermission(null, @"BUILTIN\PowerUser", true);
 private PrincipalPermission userPerm =
 new PrincipalPermission(null, @"BUILTIN\User", true);

 public string AdminUserName
 {
 get
 {
 string userName = "";
 try
 {
 admPerm.Demand();
 Startup();
 userName = coData.AdminUserName;
 }
 catch(SecurityException e)
 {
 Console.WriteLine("AdminUserName_get failed! {0}",e.ToString());
 }
 return (userName);
 }
 set
 {
 try
 {
 admPerm.Demand();
 Startup();
 coData.AdminUserName = value;
 }

 catch(SecurityException e)
 {
 Console.WriteLine("AdminUserName_set failed! {0}",e.ToString());
 }
 }
 }

 public string AdminPwd
 {
 get
 {
 string pwd = "";
 try
 {
 admPerm.Demand();
 Startup();
 pwd = coData.AdminPwd;
 }
 catch(SecurityException e)
 {
 Console.WriteLine("AdminPwd_get Failed! {0}",e.ToString());
 }

 return (pwd);
 }
 set
 {
 try
 {
 admPerm.Demand();
 Startup();
 coData.AdminPwd = value;
 }
 catch(SecurityException e)
 {
 Console.WriteLine("AdminPwd_set Failed! {0}",e.ToString());
 }
 }
 }

 public string CEOPhoneNumExt
 {
 get
 {
 string ceoPhoneNum = "";
 try
 {
 admPerm.Union(powerPerm).Demand();
 Startup();
 ceoPhoneNum = coData.CEOPhoneNumExt;
 }
 catch(SecurityException e)

 {
 Console.WriteLine("CEOPhoneNum_set Failed! {0}",e.ToString());
 }
 return (ceoPhoneNum);
 }
 set
 {
 try
 {
 admPerm.Demand();
 Startup();
 coData.CEOPhoneNumExt = value;
 }
 catch(SecurityException e)
 {
 Console.WriteLine("CEOPhoneNum_set Failed! {0}",e.ToString());
 }
 }
 }

 public void RefreshData()
 {
 try
 {
 admPerm.Union(powerPerm.Union(userPerm)).Demand();
 Startup();
 Console.WriteLine("[SECPROXY] Data Refreshed");
 coData.RefreshData();
 }
 catch(SecurityException e)
 {
 Console.WriteLine("RefreshData Failed! {0}",e.ToString());
 }
 }

 public void SaveNewData()
 {
 try
 {
 admPerm.Union(powerPerm).Demand();
 Startup();
 Console.WriteLine("[SECPROXY] Data Saved");
 coData.SaveNewData();
 }
 catch(SecurityException e)
 {
 Console.WriteLine("SaveNewData Failed! {0}",e.ToString());
 }
 }

 // DO NOT forget to use [#define DOTRACE] to control the tracing proxy
 private void Startup()

 {
 if (coData == null)
 {
#if (DOTRACE)
 coData = new CompanyDataTraceProxy();
#else
 coData = new CompanyData();
#endif
 Console.WriteLine("[SECPROXY] Refresh Data");
 coData.RefreshData();
 }
 }
}

When creating the PrincipalPermissions as part of the object construction, we are using string
representations of the built in objects ("BUILTIN\Administrators") to set up the principal role.

However, the names of these objects may be different depending on the locale the code runs under.
It would be appropriate to use the WindowsAccountType.Administrator enumeration value to ease

localization since this value is defined to represent the administrator role as well. We used text here
to clarify what was being done and also to access the PowerUsers role, which is not available through
the WindowsAccountType enumeration.

If the call to the CompanyData object passes through the CompanyDataSecProxy, then the user has

permissions to access the underlying data. Any access to this data may be logged to allow the
administrator to check for any attempted hacking of the CompanyData object. The following code is

the tracing proxy used to log access to the various method and property access points in the
CompanyData object (note that the CompanyDataSecProxy contains the code to turn on or off this

proxy object):

public class CompanyDataTraceProxy : ICompanyData
{
 public CompanyDataTraceProxy()
 {
 Console.WriteLine("[TRACEPROXY] Created");
 string path = Path.GetTempPath() + @"\CompanyAccessTraceFile.txt";
 fileStream = new FileStream(path, FileMode.Append,
 FileAccess.Write, FileShare.None);
 traceWriter = new StreamWriter(fileStream);
 coData = new CompanyData();
 }

 private ICompanyData coData = null;
 private FileStream fileStream = null;
 private StreamWriter traceWriter = null;

 public string AdminPwd
 {
 get
 {
 traceWriter.WriteLine("AdminPwd read by user.");
 traceWriter.Flush();
 return (coData.AdminPwd);

 }
 set
 {
 traceWriter.WriteLine("AdminPwd written by user.");
 traceWriter.Flush();
 coData.AdminPwd = value;
 }
 }

 public string AdminUserName
 {
 get
 {
 traceWriter.WriteLine("AdminUserName read by user.");
 traceWriter.Flush();
 return (coData.AdminUserName);
 }
 set
 {
 traceWriter.WriteLine("AdminUserName written by user.");
 traceWriter.Flush();
 coData.AdminUserName = value;
 }
 }

 public string CEOPhoneNumExt
 {
 get
 {
 traceWriter.WriteLine("CEOPhoneNumExt read by user.");
 traceWriter.Flush();
 return (coData.CEOPhoneNumExt);
 }
 set
 {
 traceWriter.WriteLine("CEOPhoneNumExt written by user.");
 traceWriter.Flush();
 coData.CEOPhoneNumExt = value;
 }
 }

 public void RefreshData()
 {
 Console.WriteLine("[TRACEPROXY] Refresh Data");
 coData.RefreshData();
 }

 public void SaveNewData()
 {
 Console.WriteLine("[TRACEPROXY] Save Data");
 coData.SaveNewData();
 }

}

The proxy is used in the following manner:

// Create the security proxy here
CompanyDataSecProxy companyDataSecProxy = new CompanyDataSecProxy();

// Read some data
Console.WriteLine("CEOPhoneNumExt: " + companyDataSecProxy.CEOPhoneNumExt);

// Write some data
companyDataSecProxy.AdminPwd = "asdf";
companyDataSecProxy.AdminUserName = "asdf";

// Save and refresh this data
companyDataSecProxy.SaveNewData();
companyDataSecProxy.RefreshData();

Note that as long as the CompanyData object were accessible, we could have also written this to

access the object directly:

// Instantiate the CompanyData object directly without a proxy
CompanyData companyData = new CompanyData();

// Read some data
Console.WriteLine("CEOPhoneNumExt: " + companyData.CEOPhoneNumExt);

// Write some data
companyData.AdminPwd = "asdf";
companyData.AdminUserName = "asdf";

// Save and refresh this data
companyData.SaveNewData();
companyData.RefreshData();

If these two blocks of code are run, the same fundamental actions occur: data is read, data is
written, and data is updated/refreshed. This shows us that our proxy objects are set up correctly and
function as they should.

Discussion

The proxy design pattern is useful for several tasks. The most notable, in COM and .NET Remoting, is
for marshaling data across boundaries such as AppDomains or even across a network. To the client, a
proxy looks and acts exactly the same as its underlying object; fundamentally, the proxy object is a
wrapper around the underlying object.

A proxy can test the security and/or identity permissions of the caller before the underlying object is
created or accessed. Proxy objects can also be chained together to form several layers around an
underlying object. Each proxy could be added or removed depending on the circumstances.

For the proxy object to look and act the same as its underlying object, both should implement the

same interface. The implementation in this recipe uses an ICompanyData interface on both the
proxies (CompanyDataSecProxy and CompanyDataTraceProxy) and the underlying object
(CompanyData). If more proxies are created, they too need to implement this interface.

The CompanyData class represents an expensive object to create. In addition, this class contains a

mixture of sensitive and nonsensitive data that require permission checks to be made before the data
is accessed. For this recipe, the CompanyData class simply contains a group of properties to access

company data and two methods for updating and refreshing this data. You can replace this class with
one of your own and create a corresponding interface that both the class and its proxies implement.

The CompanyDataSecProxy object is the object that a client must interact with. This object is

responsible for determining whether the client has the correct privileges to access the method or
property that it is calling. The get accessor of the AdminUserName property shows the structure of

the code throughout most of this class:

public string AdminUserName
{
 get
 {
 string userName = "";
 try
 {
 admPerm.Demand();
 Startup();
 userName = coData.AdminUserName;
 }
 catch(SecurityException e)
 {
 Console.WriteLine("AdminUserName_get Failed!: {0}",e.ToString());
 }
 return (userName);
 }
 set
 {
 try
 {
 admPerm.Demand();
 Startup();
 coData.AdminUserName = value;
 }
 catch(SecurityException e)
 {
 Console.WriteLine("AdminUserName_set Failed! {0}",e.ToString());
 }
 }
}

Initially, a single permission (AdmPerm) is demanded. If this demand fails, a SecurityException,
which is handed by the catch clause, is thrown. (Other exceptions will be handed back to the caller.)
If the Demand succeeds, the Startup method is called. It is in charge of instantiating either the next
proxy object in the chain (CompanyDataTraceProxy) or the underlying CompanyData object. The
choice depends on whether the DOTRACE preprocessor symbol has been defined. You may use a

different technique, such as a registry key to turn tracing on or off, if you wish. Notice that if a
security demand fails, the expensive object CompanyData is not created, saving our application time

and resources.

This proxy class uses the private field CoData to hold a reference to an ICompanyData type, which
could either be a CompanyDataTraceProxy or the CompanyData object. This reference allows us to

chain several proxies together.

The CompanyDataTraceProxy simply logs any access to the CompanyData object's information to a
text file. Since this proxy will not attempt to prevent a client from accessing the CompanyData object,
the CompanyData object is created and explicitly called in each property and method of this object.

See Also

See Design Patterns by Erich Gamma et al. (Addison Wesley).

[Team LiB]

[Team LiB]

Recipe 14.2 Encrypting/Decrypting a String

Problem

You have a string you want to be able to encrypt and decrypt-perhaps a password or software
key-which will be stored in some form accessible by users, such as in a file, the registry, or even a
field, that may be open to attack from malicious code.

Solution

Encrypting the string will prevent users from being able to read and decipher the information. The
following class, CryptoString, contains two static methods to encrypt and decrypt a string and two

static properties to retrieve the generated key and inititialization vector (IV-a random number used
as a starting point to encrypt data) after encryption has occurred:

using System;
using System.Security.Cryptography;

public sealed class CryptoString
{
 private CryptoString() {}

 private static byte[] savedKey = null;
 private static byte[] savedIV = null;

 public static byte[] Key
 {
 get { return savedKey; }
 set { savedKey = value; }
 }

 public static byte[] IV
 {
 get { return savedIV; }
 set { savedIV = value; }
 }

 private static void RdGenerateSecretKey(RijndaelManaged rdProvider)
 {
 if (savedKey == null)
 {
 rdProvider.KeySize = 256;
 rdProvider.GenerateKey();

 savedKey = rdProvider.Key;
 }
 }

 private static void RdGenerateSecretInitVector(RijndaelManaged rdProvider)
 {
 if (savedIV == null)
 {
 rdProvider.GenerateIV();
 savedIV = rdProvider.IV;
 }
 }

 public static string Encrypt(string originalStr)
 {
 // Encode data string to be stored in memory
 byte[] originalStrAsBytes = Encoding.ASCII.GetBytes(originalStr);
 byte[] originalBytes = {};

 // Create MemoryStream to contain output
 MemoryStream memStream = new MemoryStream(originalStrAsBytes.Length);

 RijndaelManaged rijndael = new RijndaelManaged();

 // Generate and save secret key and init vector
 RdGenerateSecretKey(rijndael);
 RdGenerateSecretInitVector(rijndael);

 if (savedKey == null || savedIV == null)
 {
 throw (new NullReferenceException(
 "savedKey and savedIV must be non-null."));
 }

 // Create encryptor, and stream objects
 ICryptoTransform rdTransform = rijndael.CreateEncryptor((byte[])savedKey.
 Clone(),(byte[])savedIV.Clone());
 CryptoStream cryptoStream = new CryptoStream(memStream, rdTransform,
 CryptoStreamMode.Write);

 // Write encrypted data to the MemoryStream
 cryptoStream.Write(originalStrAsBytes, 0, originalStrAsBytes.Length);
 cryptoStream.FlushFinalBlock();
 originalBytes = memStream.ToArray();

 // Release all resources
 memStream.Close();
 cryptoStream.Close();
 rdTransform.Dispose();
 rijndael.Clear();

 // Convert encrypted string

 string encryptedStr = Convert.ToBase64String(originalBytes);
 return (encryptedStr);
 }

 public static string Decrypt(string encryptedStr)
 {
 // Unconvert encrypted string
 byte[] encryptedStrAsBytes = Convert.FromBase64String(encryptedStr);
 byte[] initialText = new Byte[encryptedStrAsBytes.Length];

 RijndaelManaged rijndael = new RijndaelManaged();
 MemoryStream memStream = new MemoryStream(encryptedStrAsBytes);

 if (savedKey == null || savedIV == null)
 {
 throw (new NullReferenceException(
 "savedKey and savedIV must be non-null."));
 }

 // Create decryptor, and stream objects
 ICryptoTransform rdTransform = rijndael.CreateDecryptor((byte[])savedKey.
 Clone(),(byte[])savedIV.Clone());
 CryptoStream cryptoStream = new CryptoStream(memStream, rdTransform,
 CryptoStreamMode.Read);

 // Read in decrypted string as a byte[]
 cryptoStream.Read(initialText, 0, initialText.Length);

 // Release all resources
 memStream.Close();
 cryptoStream.Close();
 rdTransform.Dispose();
 rijndael.Clear();

 // Convert byte[] to string
 string decryptedStr = Encoding.ASCII.GetString(initialText);
 return (decryptedStr);
 }
}

Discussion

The CryptoString class follows a singleton design pattern. This class contains only static members,

except for the private instance constructor, which prevents anyone from directly creating an object
from this class.

This class uses the Rijndael algorithm to encrypt and decrypt a string. This algorithm is found in the
System.Security.Cryptography.RijndaelManaged class. This algorithm requires a secret key and
an initialization vector; both are byte arrays. A random secret key can be generated for you by
calling the GenerateKey method on the RijndaelManaged class. This method accepts no parameters
and returns void. The generated key is placed in the Key property of the RijndaelManaged class.

The GenerateIV method generates a random initialization vector and places this vector in the IV
property of the RijndaelManaged class.

The byte array values in the Key and IV properties must be stored for later use and not modified.
This is due to the nature of private-key encryption classes, such as RijndaelManaged. The Key and
IV values must be used by both the encryption and decryption routines to successfully encrypt and

decrypt data.

The SavedKey and SavedIV private static fields contain the secret key and initialization vector,

respectively. The secret key is used by the encryption and decryption methods to encrypt and
decrypt data. This key must be used by both the encryption and decryption methods in order to
successfully encrypt and then decrypt the data. This is why there are public properties for these
values, so they can be stored somewhere secure for later use. This means that any strings encrypted
by this object must be decrypted by this object. The initialization vector is used to prevent anyone
from attempting to decipher the secret key.

There are two methods in the CryptoString class, RdGenerateSecretKey and
RdGenerateSecretInitVector, that are used to generate a secret key and initialization vector, when
none exist. The RdGenerateSecretKey method generates the secret key, which is placed in the
SavedKey field. Likewise, the RdGenerateSecretInitVector generates the initialization vector, which
is placed in the SavedIV field. There is only one key and one IV generated for this class. This enables

the encryption and decryption routines to have access to the same key and IV information at all
times.

The Encrypt and Decrypt methods of the CryptoString class do the actual work of encrypting and
decrypting a string, respectively. The Encrypt method accepts a string that you want to encrypt and

returns an encrypted string. The following code calls this method and passes in a string to be
encrypted:

string encryptedString = CryptoString.Encrypt("MyPassword");
Console.WriteLine("encryptedString: " + encryptedString);
// get the key and IV used so you can decrypt it later
byte [] key = CryptoString.Key;
byte [] IV = CryptoString.IV;

Once the string is encrypted, the key and IV are stored for later decryption. This method displays:

encryptedString: Ah4vkmVKpwMYRT97Q8cVgQ==

The following code sets the key and IV used to encrypt the string, then calls the Decrypt method to

decrypt the previously encrypted string:

CryptoString.Key = key;
CryptoString.IV = IV;
string decryptedString = CryptoString.Decrypt(encryptedString);
Console.WriteLine("decryptedString: " + decryptedString);

This method displays:

decryptedString: MyPassword

There does not seem to be any problems with using escape sequences such as \r, \n, \r\n, or \t in

the string to be encrypted. In addition, using a quoted string literal, with or without escaped

characters, works without a problem:

@"MyPassword"

See Also

See Recipe 3.32 ; see the "System.Cryptography Namespace," "MemoryStream Class,"
"ICryptoTransform Interface," and "RijndaelManaged Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 14.3 Encrypting and Decrypting a File

Problem

You have sensitive information that must be encrypted before it is written to a file that might be in a
nonsecure area. This information must also be decrypted before it is read back in to the application.

Solution

Use multiple cryptography providers and write the data to a file in encrypted format. This is
accomplished in the following class, whose constructor expects an instance of the
System.Security.Cryptography.SymmetricAlgorithm class and a path for the file. The
SymmetricAlgorithm class is an abstract base class for all cryptographic providers in .NET, so we

can be reasonably assured that this class could be extended to cover all of them. This example
implements support for TripleDES and Rijndael. It could easily be extended for DES and RC2, which
are also provided by the framework.

The following namespaces are needed for this solution:

using System;
using System.Text;
using System.IO;
using System.Security.Cryptography;

The class SecretFile can be used for TripleDES as shown:

// Use TripleDES
TripleDESCryptoServiceProvider tdes = new TripleDESCryptoServiceProvider();
SecretFile secretTDESFile = new SecretFile(tdes,"tdestext.secret");

string encrypt = "My TDES Secret Data!";

Console.WriteLine("Writing secret data: {0}",encrypt);
secretTDESFile.SaveSensitiveData(encrypt);
// save for storage to read file
byte [] key = secretTDESFile.Key;
byte [] IV = secretTDESFile.IV;

string decrypt = secretTDESFile.ReadSensitiveData();
Console.WriteLine("Read secret data: {0}",decrypt);

// release resources
tdes.Clear();

To use SecretFile with Rijndael, just substitute the provider in the constructor like this:

// Use Rijndael
RijndaelManaged rdProvider = new RijndaelManaged();
SecretFile secretRDFile = new SecretFile(rdProvider,"rdtext.secret");

string encrypt = "My Rijndael Secret Data!";

Console.WriteLine("Writing secret data: {0}",encrypt);
secretRDFile.SaveSensitiveData(encrypt);
// save for storage to read file
byte [] key = secretRDFile.Key;
byte [] IV = secretRDFile.IV;

string decrypt = secretRDFile.ReadSensitiveData();
Console.WriteLine("Read secret data: {0}",decrypt);

// release resources
rdProvider.Clear();

Here is the implementation of SecretFile:

public class SecretFile
{
 private byte[] savedKey = null;
 private byte[] savedIV = null;
 private SymmetricAlgorithm symmetricAlgorithm;
 string path;

 public byte[] Key
 {
 get { return savedKey; }
 set { savedKey = value; }
 }

 public byte[] IV
 {
 get { return savedIV; }
 set { savedIV = value; }
 }

 public SecretFile(SymmetricAlgorithm algorithm, string fileName)
 {
 symmetricAlgorithm = algorithm;
 path = fileName;
 }

 public void SaveSensitiveData(string sensitiveData)
 {
 // Encode data string to be stored in encrypted file
 byte[] encodedData = Encoding.Unicode.GetBytes(sensitiveData);

 // Create FileStream and crypto service provider objects
 FileStream fileStream = new FileStream(path,
 FileMode.Create,
 FileAccess.Write);

 // Generate and save secret key and init vector
 GenerateSecretKey();
 GenerateSecretInitVector();

 // Create crypto transform and stream objects
 ICryptoTransform transform = symmetricAlgorithm.CreateEncryptor(savedKey,
 savedIV);
 CryptoStream cryptoStream =
 new CryptoStream(fileStream, transform, CryptoStreamMode.Write);

 // Write encrypted data to the file
 cryptoStream.Write(encodedData, 0, encodedData.Length);

 // Release all resources
 cryptoStream.Close();
 transform.Dispose();
 fileStream.Close();
 }

 public string ReadSensitiveData()
 {
 // Create file stream to read encrypted file back
 FileStream fileStream = new FileStream(path,
 FileMode.Open,
 FileAccess.Read);

 //print out the contents of the encrypted file
 BinaryReader binReader = new BinaryReader(fileStream);
 Console.WriteLine("---------- Encrypted Data ---------");
 int count = (Convert.ToInt32(binReader.BaseStream.Length));
 byte [] bytes = binReader.ReadBytes(count);
 char [] array = Encoding.Unicode.GetChars(bytes);
 string encdata = new string(array);
 Console.WriteLine(encdata);
 Console.WriteLine("---------- Encrypted Data ---------\r\n");

 // reset the file stream
 fileStream.Seek(0,SeekOrigin.Begin);

 // Create Decryptor
 ICryptoTransform transform = symmetricAlgorithm.CreateDecryptor(savedKey,
 savedIV);
 CryptoStream cryptoStream = new CryptoStream(fileStream,
 transform,
 CryptoStreamMode.Read);

 //print out the contents of the decrypted file

 StreamReader srDecrypted = new StreamReader(cryptoStream,
 new UnicodeEncoding());
 Console.WriteLine("---------- Decrypted Data ---------");
 string decrypted = srDecrypted.ReadToEnd();
 Console.WriteLine(decrypted);
 Console.WriteLine("---------- Decrypted Data ---------");

 // Release all resources
 binReader.Close();
 srDecrypted.Close();
 cryptoStream.Close();
 transform.Dispose();
 fileStream.Close();
 return decrypted;
 }

 private void GenerateSecretKey()
 {
 if(null != (symmetricAlgorithm as TripleDESCryptoServiceProvider))
 {
 TripleDESCryptoServiceProvider tdes;
 tdes = symmetricAlgorithm as TripleDESCryptoServiceProvider;
 tdes.KeySize = 192; // Maximum key size
 tdes.GenerateKey();
 savedKey = tdes.Key;
 }
 else if(null != (symmetricAlgorithm as RijndaelManaged))
 {
 RijndaelManaged rdProvider;
 rdProvider = symmetricAlgorithm as RijndaelManaged;
 rdProvider.KeySize = 256; // Maximum key size
 rdProvider.GenerateKey();
 savedKey = rdProvider.Key;
 }
 }

 private void GenerateSecretInitVector()
 {
 if(null != (symmetricAlgorithm as TripleDESCryptoServiceProvider))
 {
 TripleDESCryptoServiceProvider tdes;
 tdes = symmetricAlgorithm as TripleDESCryptoServiceProvider;
 tdes.GenerateIV();
 savedIV = tdes.IV;
 }
 else if(null != (symmetricAlgorithm as RijndaelManaged))
 {
 RijndaelManaged rdProvider;
 rdProvider = symmetricAlgorithm as RijndaelManaged;
 rdProvider.GenerateIV();
 savedIV = rdProvider.IV;
 }

 }
}

If the SaveSensitiveData method is used to save the following text to a file:

This is a test
This is sensitive data!

the ReadSensitiveData method will display the following information from this same file:

---------- Encrypted Data ---------
??
---------- Encrypted Data ---------

---------- Decrypted Data ---------
This is a test
This is sensitive data!
---------- Decrypted Data ---------

Discussion

Encrypting data is essential to many applications, especially ones that store information in easily
accessible locations. Once data is encrypted, a decryption scheme is required to restore the data
back to an unencrypted form without losing any information. The same underlying algorithms can be
used to authenticate the source of a file or message.

The encryption schemes used in this recipe are TripleDES and Rijndael. The reason for using Triple
DES are:

TripleDES employs symmetric encryption, meaning that a single private key is used to encrypt
and decrypt data. This process allows much faster encryption and decryption, especially as the
streams of data become larger.

TripleDES encryption is much harder to crack than the older DES encryption.

If you wish to use another type of encryption, this recipe can be easily converted using any
provider derived from the SymmetricAlgorithm class.

The main drawback to TripleDES is that both the sender and receiver must use the same key and
Initialization Vector (IV) in order to encrypt and decrypt the data successfully. If you wish to have an
even more secure encryption scheme, use the Rijndael scheme. This type of encryption scheme is
highly regarded as a solid encryption scheme, since it is fast and can use larger key sizes than
TripleDES. However, it is still a symmetric cryptosystem, which means that it relies on shared
secrets. Use an asymmetric cryptosystem, such as RSA or DSA, for a cryptosystem that uses shared
public keys with private keys that are never shared between parties.

See Also

See the "SymmetricAlgorithm Class," "TripleDESCryptoServiceProvider Class," and "RijndaelManaged
Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 14.4 Cleaning Up Cryptography Information

Problem

You will be using the cryptography classes in the FCL to encrypt and/or decrypt data. In doing so,
you want to make sure that no data (e.g., seed values or keys) is left in memory for longer than you
are using the cryptography classes. Hackers can sometimes find this information in memory and use
it to break your encryption; or worse, to break your encryption, modify the data, and then re-encrypt
the data and pass it on to your application.

Solution

In order to clear out the key and initialization vector (or seed), we need to call the Clear method on
whichever SymmetricAlgorithm derived or AsymmetricAlgorithm derived class we are using. Clear
reinitializes the Key and IV properties preventing them from being found in memory. This is done

after saving the key and IV so that we can decrypt later. The following example shows a series of
actions that encodes a string and uses this approach to clean up immediately after the encryption is
performed to provide the smallest window possible for potential attackers:

using System;
using System.Text;
using System.IO;
using System.Security.Cryptography;

string originalStr = "SuperSecret information";
// Encode data string to be stored in memory
byte[] originalStrAsBytes = Encoding.ASCII.GetBytes(originalStr);
byte[] originalBytes = {};

// create MemoryStream to contain output
MemoryStream memStream = new MemoryStream(originalStrAsBytes.Length);

RijndaelManaged rijndael = new RijndaelManaged();

// generate secret key and init vector
rijndael.KeySize = 256;
rijndael.GenerateKey();
rijndael.GenerateIV();

// save the key and IV for later decryption
byte [] key = rijndael.Key;
byte [] IV = rijndael.IV;

// create encryptor, and stream objects
ICryptoTransform transform = rijndael.CreateEncryptor(rijndael.Key,
 rijndael.IV);
CryptoStream cryptoStream = new CryptoStream(memStream, transform,
 CryptoStreamMode.Write);

// write encrypted data to the MemoryStream
cryptoStream.Write(originalStrAsBytes, 0, originalStrAsBytes.Length);
cryptoStream.FlushFinalBlock();

// release all resources as soon as we are done with them
// to prevent retaining any information in memory
memStream.Close();
memStream = null;
cryptoStream.Close();
cryptoStream = null;
transform.Dispose();
transform = null;
// this clear statement regens both the key and the init vector so that
// what is left in memory is no longer the values you used to encrypt with
rijndael.Clear();
// make this eligible for GC as soon as possible
rijndael = null;

Discussion

To be on the safe side, we also close the MemoryStream and CryptoStream objects as soon as
possible, as well as calling Dispose on the ICryptoTransform implementation to clear out any
resources used in this encryption. Finally, we set the references for all of the objects involved to null

to allow the garbage collector to collect them as soon as possible.

See Also

See the "SymmetricAlgorithm.Clear Method" and "AsymmetricAlgorithm.Clear Method" topics in the
MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 14.5 Verifying that a String Is Uncorrupted During
Transmission

Problem

You have some text that will be sent across a network to another machine for processing. It is critical
that you are able to verify that this text remains intact and unmodified when it arrives at its
destination.

Solution

Calculate a hash value from this string and append it to the string before it is sent to its destination.
Once the destination receives the string, it can remove the hash value and determine whether the
string is the same one that was initially sent. The CreateStringHash method takes a string as

input, adds a hash value to the end of it, and returns the new string:

public class HashOps
{
 public static string CreateStringHash(string unHashedString)
 {
 byte[] encodedUnHashedString = Encoding.Unicode.GetBytes(unHashedString);

 SHA256Managed hashingObj = new SHA256Managed();
 byte[] hashCode = hashingObj.ComputeHash(encodedUnHashedString);

 string hashBase64 = Convert.ToBase64String(hashCode);
 string stringWithHash = unHashedString + hashBase64;

 hashingObj.Clear();

 return (stringWithHash);
 }

 public static bool TestReceivedStringHash(string stringWithHash,
 out string originalStr)
 {
 // Code to quickly test the handling of a tampered string
 //stringWithHash = stringWithHash.Replace('a', 'b');

 if (stringWithHash.Length < 45)
 {
 originalStr = null;
 return (true);

 }

 string hashCodeString =
 stringWithHash.Substring(stringWithHash.Length - 44);
 string unHashedString =
 stringWithHash.Substring(0, stringWithHash.Length - 44);

 byte[] hashCode = Convert.FromBase64String(hashCodeString);

 byte[] encodedUnHashedString = Encoding.Unicode.GetBytes(unHashedString);

 SHA256Managed hashingObj = new SHA256Managed();
 byte[] receivedHashCode = hashingObj.ComputeHash(encodedUnHashedString);

 bool hasBeenTamperedWith = false;
 for (int counter = 0; counter < receivedHashCode.Length; counter++)
 {
 if (receivedHashCode[counter] != hashCode[counter])
 {
 hasBeenTamperedWith = true;
 break;
 }
 }

 if (!hasBeenTamperedWith)
 {
 originalStr = unHashedString;
 }
 else
 {
 originalStr = null;
 }

 hashingObj.Clear();

 return (hasBeenTamperedWith);
 }
}

The TestReceivedStringHash method is called by the code that receives a string with a hash value

appended. This method removes the hash value, calculates a new hash value for the string, and
checks to see whether both hash values match. If they match, both strings are exactly the same, and
the method returns false. If they don't match, the string has been tampered with, and the method
returns true.

Since the CreateStringHash and TestReceivedStringHash methods are static members of a class
named HashOps, we can call these methods with code like the following:

public static void VerifyNonStringCorruption()
{
 string testString = "This is the string that we'll be testing.";
 string unhashedString;

 string hashedString = HashOps.CreateStringHash(testString);

 bool result = HashOps.TestReceivedStringHash(hashedString, out unhashedString);
 Console.WriteLine(result);
 if (!result)
 Console.WriteLine("The string sent is: " + unhashedString);
 else
 Console.WriteLine("The string " + unhashedString +
 " has become corrupted.");
}

Discussion

You can use a hash, checksum, or cyclic redundancy check (CRC) to calculate a value based on a
message. This value is then used at the destination to determine whether the message has been
modified during transmission between the source and destination.

This recipe uses a hash value as a reliable method of determining whether a string has been
modified. The hash value for this recipe is calculated using the SHA256Managed class. This hash value

is 256 bits in size and produces greatly differing results when calculated from strings that are very
similar, but not exactly the same. In fact, if a single letter is removed or even capitalized, the
resulting hash value will change.

By appending this value to the string, both the string and hash value can be sent to its destination.
The destination then removes the hash value and calculates a hash value of its own based on the
received string. These two hash values are then compared. If they are equal, the strings are exactly
the same. If they are not equal, you can be sure that somewhere between the source and
destination, the string was corrupted. This technique is great for verifying that transmission
succeeded without errors, but it does not guarantee against malicious tampering. To protect against
malicious tampering, use an asymmetric algorithm: sign the string with a private key and verify the
signature with a public key.

The CreateStringHash method first converts the unhashed string into a byte array using the
GetBytes method of the UnicodeEncoding class. This byte array is then passed into the
ComputeHash method of the SHA256Managed class.

Once the hash value is calculated, the byte array containing the hash code is converted to a string
containing base64 digits, using the Convert.ToBase64String method. This method accepts a byte

array, converts it to a string of base64 digits, and returns that string. The reason for doing this is to
convert all unsigned integers in the byte array to values that can be represented in a string data

type. The last thing that this method does is to append the hash value to the end of the string and
return the newly hashed string.

The TestReceivedStringHash method accepts a hashed string and an out parameter that will return
the unhashed string. This method returns a Boolean; as previously mentioned, true indicates that
the string has been modified, false indicates that the string is unmodified.

This method first removes the hash value from the end of the StringWithHash variable. Next, a new
hash is calculated using the string portion of the StringWithHash variable. These two hash values

are compared. If they are the same, the string has been received, unmodified. Note that if you
change the hashing algorithm used, you must change it both in this method and the
CreateStringHash method. You must also change the numeric literal 44 in the

TestReceivedStringHash method to an appropriate size for the new hashing algorithm. This number

is the exact length of the base64 representation of the hash value, which was appended to the string.

See Also

See the "SHA256Managed Class," "Convert.ToBase64String Method," and
"Convert.FromBase64String Method" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 14.6 Wrapping a String Hash for Ease of Use

Problem

You need to create a class to protect other developers on your team from having to deal with the
details of how to add a hash to a string, as well as how to use the hash to verify if the string has
been modified or corrupted.

Solution

The following classes decorate the StringWriter and StringReader classes to handle a hash added
to its contained string. The WriterDecorator and StringWriterHash classes allow the
StringWriter class to be decorated with extra functionality to add a hash value to the
StringWriter's internal string. Note that the method calls to create the hash value in the
CreateStringHash method was defined in Recipe 14.5:

The code for the WriterDecorator abstract base class is:

using System;
using System.Text;
using System.IO;

[Serializable]
public abstract class WriterDecorator : TextWriter
{
 public WriterDecorator() {}

 public WriterDecorator(StringWriter stringWriter)
 {
 internalStringWriter = stringWriter;
 }

 protected bool isHashed = false;
 protected StringWriter internalStringWriter = null;

 public void SetWriter(StringWriter stringWriter)
 {
 internalStringWriter = stringWriter;
 }
}

This is the concrete implementation of the WriterDecorator class:

[Serializable]

public class StringWriterHash : WriterDecorator
{
 public StringWriterHash() : base() {}

 public StringWriterHash(StringWriter stringWriter) : base(stringWriter)
 {
 }

 public override Encoding Encoding
 {
 get {return (internalStringWriter.Encoding);}
 }

 public override void Close()
 {
 internalStringWriter.Close();
 base.Dispose(true); // Completes the cleanup
 }

 public override void Flush()
 {
 internalStringWriter.Flush();
 base.Flush();
 }

 public virtual StringBuilder GetStringBuilder()
 {
 return (internalStringWriter.GetStringBuilder());
 }

 public override string ToString()
 {
 return (internalStringWriter.ToString());
 }

 public void WriteHash()
 {
 int originalStrLen = internalStringWriter.GetStringBuilder().Length;

 // Call hash generator here for whole string.
 string hashedString = HashOps.CreateStringHash(this.ToString());
 internalStringWriter.Write(hashedString.Substring(originalStrLen));

 isHashed = true;
 }

 public override void Write(char value)
 {
 if (isHashed)
 {
 throw (new Exception("A hash has already been added to this string"+
 ", it cannot be modified."));

 }
 else
 {
 internalStringWriter.Write(value);
 }
 }

 public override void Write(string value)
 {
 if (isHashed)
 {
 throw (new Exception("A hash has already been added to this string"+
 ", it cannot be modified."));
 }
 else
 {
 internalStringWriter.Write(value);
 }
 }

 public override void Write(char[] buffer, int index, int count)
 {
 if (isHashed)
 {
 throw (new Exception("A hash has already been added to this string"+
 ", it cannot be modified."));
 }
 else
 {
 internalStringWriter.Write(buffer, index, count);
 }
 }
}

These are the ReaderDecorator and StringReaderHash classes, which allow the StringReader

class to be decorated with extra functionality to handle the verification of a string's hash value. Note
that the method calls to verify the hash value in the TestRecievedStringHash method were defined

in Recipe 14.5:

[Serializable]
public abstract class ReaderDecorator : TextReader
{
 public ReaderDecorator() {}

 public ReaderDecorator(StringReader stringReader)
 {
 internalStringReader = stringReader;
 }

 protected StringReader internalStringReader = null;

 public void SetReader(StringReader stringReader)

 {
 internalStringReader = stringReader;
 }
}

This is the concrete implementation of the ReaderDecorator class:

[Serializable]
public class StringReaderHash : ReaderDecorator
{
 public StringReaderHash() : base() {}

 public StringReaderHash(StringReader stringReader) : base(stringReader)
 {
 }

 public override void Close()
 {
 internalStringReader.Close();
 base.Dispose(true);// Completes the cleanup
 }

 public string ReadToEndHash()
 {
 string hashStr = internalStringReader.ReadToEnd();

 string originalStr = "";
 // Call hash reader here.
 bool isInvalid = HashOps.TestReceivedStringHash(hashStr,
 out originalStr);

 if (isInvalid)
 {
 throw (new Exception("This string has failed its hash check."));
 }

 return (originalStr);
 }

 public override int Read()
 {
 return (internalStringReader.Read());
 }

 public override int Read(char[] buffer, int index, int count)
 {
 return (internalStringReader.Read(buffer, index, count));
 }

 public override string ReadLine()
 {
 return (internalStringReader.ReadLine());

 }

 public override string ReadToEnd()
 {
 return (internalStringReader.ReadToEnd());
 }
}

The following code creates a StringWriter object (stringWriter) and decorates it with a
StringWriterHash object:

StringWriter stringWriter = new StringWriter(new StringBuilder("Initial Text"));
StringWriterHash stringWriterHash = new StringWriterHash();
stringWriterHash.SetWriter(stringWriter);
stringWriterHash.Write("-Extra Text-");
stringWriterHash.WriteHash();
Console.WriteLine("stringWriterHash.ToString(): " + stringWriterHash.ToString());

The string "Initial Text" is added to the StringWriter on initialization, and later the string "-Extra
Text-" is added. Next, the WriteHash method is called to handle adding a hash value to the end of
the complete string. Notice that if the code attempts to write more text to the StringWriterHash
object after the WriteHash method has been called, an exception will be thrown. The string cannot

be modified once the hash has been calculated and added.

The following code takes a StringReader object (stringReader) that was initialized with the string
and hash produced by the previous code and decorates it with a StringReaderHash object:

StringReader stringReader = new StringReader(stringWriterHash.ToString());
StringReaderHash stringReaderHash = new StringReaderHash();
stringReaderHash.SetReader(stringReader);
Console.WriteLine("stringReaderHash.ReadToEndHash(): " +
 stringReaderHash.ReadToEndHash());

If the original string is modified after the hash is added, the ReadToEndHash method throws an

exception.

Discussion

The decorator design pattern provides the ability to modify individual objects without having to
modify or subclass the object's class. This allows for the creation of both decorated and undecorated
objects. The implementation of a decorator pattern is sometimes hard to understand at first. An
abstract decorator class is created that inherits from the same base class as the class we will
decorate. In the case of this recipe, we will dec orate the StringReader/StringWriter classes to
allow a hash to be calculated and used. The StringReader class inherits from TextReader, and the
StringWriter class inherits from TextWriter. Knowing this, we will create two abstract decorator
classes: ReaderDecorator, which inherits from TextReader; and WriterDecorator, which inherits
from TextWriter.

The abstract decorator classes contain two constructors: a private field named
internalStreamReader\internalStreamWriter and a method named SetReader\SetWriter.
Basically, the field stores a reference to the contained StringReader or StringWriter object that is

being decorated. This field can be set through either a constructor or the SetReader\SetWriter

method. The interesting thing about this pattern is that each of the decorator objects must also
contain an instance of the class that they decorate. The StringReaderHash class contains a
StringReader object in its internalStreamReader field, and the StringWriterHash class contains a
StringWriter object in its internalStreamWriter field.

A concrete decorator class is created that inherits from the abstract decorator classes. The
StringReaderHash class inherits from ReaderDecorator, while the StringWriterHash inherits from
WriterDecorator. This pattern allows us the flexibility to add concrete decorator classes without

having to touch the existing code.

Most of the methods in the StringReaderHash and StringWriterHash classes simply act as
wrappers to the internalStreamReader or internalStreamWriter objects, respectively. The
method that actually decorates the StringReader object with a hash is the
StringReaderCRC.ReadToEndHash method, and the method that actually decorates the
StringWriter object is StringWriterCRC.WriteHash. These two methods allow the hash to be

attached to a string and later used to determine whether the string contents have changed.

The attractiveness of the decorator pattern is that we can add any number of concrete decorator
classes that derives from either ReaderDecorator or WriterDecorator. If we need to use a different
hashing algorithm, or even a quick and dirty hash algorithm, we can subclass the ReaderDecorator
or WriterDecorator classes and add functionality to use these new algorithms. Now we have more

choices of how to decorate these classes.

See Also

See the "StringWriter Class" and "StringReader Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 14.7 A Better Random Number Generator

Problem

You need a random number with which to generate items such as a sequence of session keys. The
random number must be as unpredictable as possible so that the likelihood of predicting the
sequence of keys is as low as possible.

Solution

Use the classes System.Security.Cryptography.RNGCryptoServiceProvider and System.Random.

The RNGCryptoServiceProvider is used to populate a random byte array using the GetBytes

method that is then printed out as a string in the following example:

public static void BetterRandomString()
{
 // create a stronger hash code using RNGCryptoServiceProvider
 byte[] random = new byte[64];
 RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();
 // populate with random bytes
 rng.GetBytes(random);

 // convert random bytes to string
 string randomBase64 = Convert.ToBase64String(random);
 // display
 Console.WriteLine("Random string: {0}\r\n ",randomBase64);
}

Discussion

Random provides methods like Next, NextBytes, and NextDouble to generate random information for

integers, arrays of bytes, and doubles, respectively. These methods can produce a moderate level of
unpredictability, but to truly generate a more unpredictable random series, you would want to use
the RNGCryptoServiceProvider.

RNGCryptoServiceProvider can be customized to use any of the underlying Win32 Crypto API
providers by passing a CspParameters structure in the constructor to determine exactly which
provider is responsible for generating the random bytes sequence. CspParameters allows you to

customize items such as the key container name, the provider type code, the provider name, and the
key number used. The GetBytes method populates the entire length of the byte array with random

bytes.

See Also

See the "RNGCryptoServiceProvider Class," "CspParameters Class," and "Cryptographic Provider
Types" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 14.8 Securely Storing Data

Problem

You need to store settings data about individual users for use by your application that is isolated from
other instances of your application run by different users.

Solution

You can use isolated storage to establish per user data stores for your application data, and then use
hashed values for critical data in your data store.

To illustrate how to do this for settings data, we create the following UserSettings class.
UserSettings holds only two pieces of information, the user identity (current WindowsIdentity) and
the password for our application. The user identity is accessed via the User property, and the
password is accessed via the Password property. Note that the password field is being created the

first time and is stored as a salted hashed value to keep it secure. The combination of the isolated
storage and the hashing of the password value helps to strengthen the security of the password by
using the "defense in depth" principle. The settings data is held in XML that is stored in the isolated
storage scope and accessed via an XmlDocument instance.

This solution uses the following namespaces:

using System;
using System.IO;
using System.IO.IsolatedStorage;
using System.Xml;
using System.Text;
using System.Diagnostics;
using System.Security.Principal;
using System.Security.Cryptography;

Here is the UserSettings class:

// class to hold user settings
public class UserSettings
{
 IsolatedStorageFile isoStorageFile = null;
 IsolatedStorageFileStream isoFileStream = null;
 XmlDocument settingsDoc = null;
 XmlTextWriter writer = null;
 const string storageName = "SettingsStorage.xml";

 // constructor

 public UserSettings(string password)
 {
 // get the isolated storage
 isoStorageFile = IsolatedStorageFile.GetUserStoreForDomain();
 // create an internal DOM for settings
 settingsDoc = new XmlDocument();
 // if no settings, create default
 if(isoStorageFile.GetFileNames(storageName).Length == 0)
 {
 isoFileStream =
 new IsolatedStorageFileStream(storageName,
 FileMode.Create,
 isoStorageFile);

 writer = new XmlTextWriter(isoFileStream,Encoding.UTF8);
 writer.WriteStartDocument();
 writer.WriteStartElement("Settings");
 writer.WriteStartElement("User");
 // get current user as that is the user
 WindowsIdentity user = WindowsIdentity.GetCurrent();
 writer.WriteString(user.Name);
 writer.WriteEndElement();
 writer.WriteStartElement("Password");
 // pass null as the salt to establish one
 string hashedPassword = CreateHashedPassword(password,null);
 writer.WriteString(hashedPassword);
 writer.WriteEndElement();
 writer.WriteEndElement();
 writer.WriteEndDocument();
 writer.Flush();
 writer.Close();
 Console.WriteLine("Creating settings for " + user.Name);
 }

 // set up access to settings store
 isoFileStream =
 new IsolatedStorageFileStream(storageName,
 FileMode.Open,
 isoStorageFile);

 // load settings from isolated filestream
 settingsDoc.Load(isoFileStream);
 Console.WriteLine("Loaded settings for " + User);
 }

The User property provides access to the WindowsIdentity of the user that this set of settings

belongs to:

// User Property
public string User
{
 get

 {
 XmlNode userNode = settingsDoc.SelectSingleNode("Settings/User");
 if(userNode != null)
 {
 return userNode.InnerText;
 }
 return "";
 }
}

The Password property gets the salted and hashed password value from the XML store, and, when

updating the password, takes the plain text of the password and creates the salted and hashed
version, which is then stored:

// Password Property
public string Password
{
 get
 {
 XmlNode pwdNode =
 settingsDoc.SelectSingleNode("Settings/Password");
 if(pwdNode != null)
 {
 return pwdNode.InnerText;
 }
 return "";
 }
 set
 {
 XmlNode pwdNode =
 settingsDoc.SelectSingleNode("Settings/Password");

 string hashedPassword = CreateHashedPassword(value,null);
 if(pwdNode != null)
 {
 pwdNode.InnerText = hashedPassword;
 }
 else
 {
 XmlNode settingsNode =
 settingsDoc.SelectSingleNode("Settings");
 XmlElement pwdElem =
 settingsDoc.CreateElement("Password");
 pwdElem.InnerText=hashedPassword;
 settingsNode.AppendChild(pwdElem);
 }
 }
}

The CreateHashedPassword method performs the creation of the salted and hashed password. The
password parameter is the plain text of the password and the existingSalt parameter is the salt to

use when creating the salted and hashed version. If no salt exists, like the first time a password is

stored, existingSalt should be passed null and a random salt will be generated.

Once we have the salt, it is combined with the plain text password and hashed using the
SHA512Managed class. The salt value is then appended to the end of the hashed value and returned.

The salt is appended so that when we attempt to validate the password, we know what salt was used
to create the hashed value. The entire value is then base64-encoded and returned:

// Make a hashed password
private string CreateHashedPassword(string password,
 byte[] existingSalt)
{
 byte [] salt = null;
 if(existingSalt == null)
 {
 // Make a salt of random size
 Random random = new Random();
 int size = random.Next(16, 64);

 // create salt array
 salt = new byte[size];

 // Use the better random number generator to get
 // bytes for the salt
 RNGCryptoServiceProvider rng =
 new RNGCryptoServiceProvider();
 rng.GetNonZeroBytes(salt);
 }
 else
 salt = existingSalt;

 // Turn string into bytes
 byte[] pwd = Encoding.UTF8.GetBytes(password);

 // make storage for both password and salt
 byte[] saltedPwd = new byte[pwd.Length + salt.Length];

 // add pwd bytes first
 pwd.CopyTo(saltedPwd,0);
 // now add salt
 salt.CopyTo(saltedPwd,pwd.Length);

 // Use SHA512 as the hashing algorithm
 SHA512Managed sha512 = new SHA512Managed();

 // Get hash of salted password
 byte[] hash = sha512.ComputeHash(saltedPwd);

 // append salt to hash so we have it
 byte[] hashWithSalt = new byte[hash.Length + salt.Length];

 // copy in bytes
 hash.CopyTo(hashWithSalt,0);

 salt.CopyTo(hashWithSalt,hash.Length);

 // return base64 encoded hash with salt
 return Convert.ToBase64String(hashWithSalt);
}

To check a given password against the stored salted and hashed value, we call CheckPassword and
pass in the plain text password to check. First, the stored value is retrieved using the Password
property and converted from base64. Then we know we used SHA512, so there are 512 bits in the

hash, but we need the byte size so we do the math and get that size in bytes. This allows us to figure
out where to get the salt from in the value, so we copy it out of the value and call
CreateHashedPassword using that salt and the plain text password parameter. This gives us the

hashed value for the password that was passed in to verify, and once we have that, we just compare
it to the Password property to see whether we have a match and return true or false appropriately:

 // Check the password against our storage
 public bool CheckPassword(string password)
 {
 // Get bytes for password
 // this is the hash of the salted password and the salt
 byte[] hashWithSalt = Convert.FromBase64String(Password);

 // We used 512 bits as the hash size (SHA512)
 int hashSizeInBytes = 512 / 8;

 // make holder for original salt
 int saltSize = hashWithSalt.Length - hashSizeInBytes;
 byte[] salt = new byte[saltSize];

 // copy out the salt
 Array.Copy(hashWithSalt,hashSizeInBytes,salt,0,saltSize);

 // Figure out hash for this password
 string passwordHash = CreateHashedPassword(password,salt);

 // If the computed hash matches the specified hash,
 // the plain text value must be correct.
 // see if Password (stored) matched password passed in
 return (Password == passwordHash);
 }
}

The code to use the UserSettings class is shown here:

class IsoApplication
{
 static void Main(string[] args)
 {
 if(args.Length > 0)
 {
 UserSettings settings = new UserSettings(args[0]);
 if(settings.CheckPassword(args[0]))

 {
 Console.WriteLine("Welcome");
 return;
 }
 }
 Console.WriteLine("The system could not validate your credentials");
 }
}

The way to use this application is to pass the password on the command line as the first argument.
This password is then checked against the UserSettings, which is stored in the isolated storage for

this particular user. If the password is correct, the user is welcomed; if not, the user is shown the
door.

Discussion

Isolated storage allows applications to store data that is unique to the application and the user
running the application. This storage allows the application to write out state information that is not
visible to other applications or even other users of the same application. Isolated storage is based on
the code identity as determined by the CLR, and it stores the information either directly on the client
machine or in isolated stores that can be opened and roam with the user. The storage space available
to the application is directly controllable by the administrator of the machine on which the application
operates.

The Solution uses isolation by User, AppDomain, and Assembly by calling
IsolatedStorageFile.GetUserStoreForDomain. This creates an isolated store that is accessible by

only this user in the current assembly in the current AppDomain:

// get the isolated storage
isoStorageFile = IsolatedStorageFile.GetUserStoreForDomain();

The Storeadm.exe utility will allow you to see which isolated storage stores have been set up on the
machine by running the utility with the /LIST command-line switch. Storeadm.exe is part of the .NET

Framework SDK and can be located in your Visual Studio installation directory under the
\SDK\v1.1\Bin subdirectory.

The output after using the UserSettings class would look like this:

C:\>storeadm /LIST
Microsoft (R) .NET Framework Store Admin 1.1.4322.573
Copyright (C) Microsoft Corporation 1998-2002. All rights reserved.

Record #1
[Domain]
<System.Security.Policy.Url version="1">
 <Url>file://D:/PRJ32/Book/IsolatedStorage/bin/Debug/IsolatedStorage.exe</Url>

</System.Security.Policy.Url>

[Assembly]
<System.Security.Policy.Url version="1">

 <Url>file://D:/PRJ32/Book/IsolatedStorage/bin/Debug/IsolatedStorage.exe</Url>

</System.Security.Policy.Url>

 Size : 1024

Passwords should never be stored in plain text, period. It is a bad habit to get into, so in the
UserSettings class, we have added the salting and hashing of the password value via the
CreateHashedPassword method and verification through the CheckPassword method. Adding a salt

to the hash helps to strengthen the protection on the value being hashed so that the isolated storage,
the hash, and the salt now protect the password we are storing.

See Also

See the "IsolatedStorageFile Class," "IsolatedStorageStream Class," "About Isolated Storage," and
"ComputeHash Method" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 14.9 Making a Security Assert Safe

Problem

You want to assert that at a particular point in the call stack, a given permission is understood to be
available for all subsequent calls. However, doing this can easily open a security hole to allow other
malicious code to spoof your code or to create a back door into your component. You want to assert
a given security permission, but you want to do so in a secure and efficient manner.

Solution

In order to make this approach secure, we need to call Demand on the permissions that the
subsequent calls need and on which we are using Assert in order to make sure that code that
doesn't have these permissions can't slip by due to the Assert. This is demonstrated by the function
CallSecureFunctionSafelyAndEfficiently, which performs a Demand, then an Assert before
calling into SecureFunction, which performs a Demand for a ReflectionPermission.

The code listing for CallSecureFunctionSafelyAndEfficiently is:

public static void CallSecureFunctionSafelyAndEfficiently()
{

 // set up a permission to be able to access nonpublic members
 // via reflection
 ReflectionPermission perm =
 new ReflectionPermission(ReflectionPermissionFlag.MemberAccess);

 // Demand the permission set we have compiled before using Assert
 // to make sure we have the right before we Assert it. We do
 // the Demand to insure that we have checked for this permission
 // before using Assert to short-circuit stackwalking for it, which
 // helps us stay secure, while performing better.
 perm.Demand();

 // Assert this right before calling into the function that
 // would also perform the Demand to short-circuit the stack walk
 // each call would generate. The Assert helps us to optimize
 // out use of SecureFunction
 perm.Assert();

 // We call the secure function 100 times but only generate
 // the stackwalk from the function to this calling function
 // instead of walking the whole stack 100 times.
 for(int i=0;i<100;i++)

 {
 SecureFunction();
 }
}

The code listing for SecureFunction is shown here:

public static void SecureFunction()
{
 // set up a permission to be able to access nonpublic members
 // via reflection
 ReflectionPermission perm =
 new ReflectionPermission(ReflectionPermissionFlag.MemberAccess);

 // Demand the right to do this and cause a stackwalk
 perm.Demand();

 // Perform the action here...
}

Discussion

In our demonstration function CallSecureFunctionSafelyAndEfficiently, the function we are
calling (SecureFunction) performs a Demand on a ReflectionPermission to ensure that the code

can access nonpublic members of classes via reflection. Normally, this would result in a stackwalk for
every call to SecureFunction. The Demand in CallSecureFunctionSafelyAndEfficiently is only
there to protect against the usage of the Assert in the first place. To make this more efficient, we
can use Assert to state that all functions called from this one issuing Demands do not have to stack
walk any further as the Assert says stop checking for this permission in the call stack. In order to do
this, you need the permission to call Assert.

The problem comes in with this Assert as it opens up a potential luring attack where
SecureFunction is called via CallSecureFunctionSafelyAndEfficiently, which calls Assert to
stop the Demand stack walks from SecureFunction. If unauthorized code without this
ReflectionPermission were able to call CallSecureFunctionSafelyAndEfficiently, the Assert
would prevent the SecureFunction Demand call from determining that there is some code in the call

stack without the proper rights. This is the beauty of the call stack-checking in the CLR when a
Demand occurs.

In order to protect against this, we issue a Demand for the ReflectionPermission needed by
SecureFunction in CallSecureFunctionSafelyAndEfficiently to close this hole before issuing the
Assert. The combination of this Demand and the Assert causes us to do one stack walk instead of the
original 100 that would have been caused by the Demand in SecureFunction but to still maintain

secure access to this functionality.

Security optimization techniques, such as using Assert, in this case (even though it isn't the primary
reason to use Assert), can help class library and controls developers that are trusted to perform
Asserts in order to speed the interaction of their code with the runtime; but if used improperly,

these techniques can also open up holes in the security picture as well. This example shows that you
can have both performance and security where secure access is concerned.

If you are using Assert, be mindful that stackwalk overrides should never be made in a class

constructor. Constructors are not guaranteed to have any particular security context, nor are they
guaranteed to execute at a specific point in time. This lack leads to the call stack not being well-
defined, and Assert used here can produce unexpected results.

One other thing to remember with Assert is that you can only have one active Assert in a function
at a given time. If you Assert the same permission twice, a SecurityException is thrown by the
CLR. You must revert the original Assert first using RevertAssert and then you can declare the

second Assert.

You might have the idea that declarative demands would be faster due to the CLR's knowledge of the
call stack; shouldn't it be able to perform the optimization we have done manually here? In the 1.0
and 1.1 versions of the CLR, it turns out that declarative demands are actually slower, since this
optimization does not occur.

See Also

See the "CodeAccessSecurity.Assert Method," "CodeAccessSecurity.Demand Method,"
"CodeAccessSecurity.RevertAssert Method," and "Overriding Security Checks" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 14.10 Preventing Malicious Modifications to an
Assembly

Problem

You are distributing an assembly, but you want to ensure that nobody can tamper with the internals
of that assembly. This tampering could result in its use to gather sensitive information from a user or
to act as a back-door mechanism to attack a network. Additionally, you do not want other malicious
assemblies to be created that look like yours but operate in malevolent ways (e.g., stealing
passwords, reformatting a disk drive). In effect, this malevolent assembly is created to spoof your
benevolent assembly.

Solution

This can be averted to a certain degree by using a strong name for your assembly. A strong named
assembly has a digital signature that is generated from a public/private key pair. The public key is
the part of the pair that provides something well known that your assembly can use to identify as
being from you. The private key is the part of the pair that you keep secret and that ensures that
people can trust that the assembly came from you and hasn't been tampered with.

In order to generate a key pair, you can use the SN.EXE from the Framework SDK:

SN -k MyKeys.snk

This line creates your key pair in a file called MyKeys.snk. Since this file contains both your public and
private keys, you need to guard this file carefully; generate it only on a machine that's locked down
enough to be consider highly trusted. Never make copies of this key, and store it only on a highly
trusted machine or on media that is easy to secure.

Now that you have a key pair, you can get the public key from the pair in order to be able to delay
sign your assemblies. Delay signing allows day-to-day development to continue on the assemblies
while a trusted system holds the public/private key pair file (MyKeys.snk) for final signing of the
assemblies.

In order to extract the public key from our key pair, we use the -p switch on SN.EXE to produce the

MyPublicKey.snk file that holds our public key:

SN -p MyKeys.snk MyPublicKey.snk

Now we can delay-sign the assembly using the public key by placing the public key in two assembly
level attributes, like so:

[assembly: System.Reflection.AssemblyKeyFile("MyPublicKey.snk")]

[assembly: System.Reflection.AssemblyDelaySign(true)]

The AssemblyKeyFile attribute tells the compiler where to find the public key to sign with and the
AssemblyDelaySign attribute tells the compiler to use the delay signing method.

In order to finish the signing process, once you are ready to deploy your assembly, use SN.EXE again
to add the final signing piece, using the -R option like this:

SN -R SignedAssembly.dll MyKeys.snk

This line would result in SignedAssembly being fully signed using the private key in MyKeys.snk. This

step would normally be performed on a secure system that has access to the private key.

Discussion

Note that in Visual Studio .NET 2002, the private key file location needs to be relative to the EXE or
DLL, not the project, or you will get an error when you try to sign the resulting assembly.

If you don't want to delay-sign your assembly, you could use MyKeys.snk as the AssemblyKeyFile

instead like this:

[assembly: System.Reflection.AssemblyKeyFile("MyKeys.snk")]

When you do this, you do not need the AssemblyDelaySign attribute anymore.

In order to use delay signing, you need to prepare the development environments for assemblies that
are only partially signed. To do this, instruct the CLR to skip verification of assemblies using a given
public key. Once again, we use SN.EXE to accomplish this:

SN -Vr *,d15f821006850b34

One other approach would be to have a separate key for development and final release versions,
which would allow for fully signed development versions without compromising the shipping signed
assemblies.

Note that this solution will protect your assembly only as long as the machine it is running on is
secure. If the malicious user can access the code that uses the assembly and the assembly itself, he
can simply replace them with his own copies. Strong naming ensures that the trusted version of the
assembly is deployed, but once it has been installed, it can be modified (as can practically anything
else on the system).

See Also

See the "AssemblyKeyFile Attribute" and "AssemblyDelaySign Attribute" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 14.11 Verifying that an Assembly Has Been
Granted Specific Permissions

Problem

When your assembly requests optional permissions (such as asking for disk access to enable users to
export data to disk as a product feature) using the SecurityAction.RequestOptional flag, it might

or might not get those permissions. Regardless, your assembly will still load and execute. You need a
way to verify whether your assembly actually obtained those permissions. This can help prevent
many security exceptions from being thrown. For example, if you optionally requested read/write
permissions on the registry, but did not receive them, you could disable the user interface controls
that are used to read and store application settings in the registry.

Solution

Check to see if your assembly received the optional permissions using the
SecurityManager.IsGranted method like this:

using System;
using System.Text.RegularExpressions;
using System.Web;
using System.Net;
using System.Security;

Regex regex = new Regex(@"http://www\.oreilly\.com/.*");
WebPermission webConnectPerm = new WebPermission(NetworkAccess.Connect,regex);
if(SecurityManager.IsGranted(webConnectPerm))
{
 // connect to the oreilly site
}

This code would set up a Regex for the O'Reilly web site and then use it to create a WebPermission

for connecting to that site and all sites containing the www.oreilly.com string. We would then check
the WebPermission against the SecurityManager to see whether we have the permission to do this.

Discussion

The IsGranted method is a lightweight way of determining whether permission is granted for an
assembly without incurring the full stackwalk that a Demand would give you. This method can be

helpful not only in determining the permissions available at runtime, but for helping performance by
not incurring the stackwalk from a Demand as well. The downside to this approach is that the code

would still be subject to a luring attack if Assert were misused, so you need to consider where the
call to IsGranted is being made in the overall scheme of your security.

Some of the reasons you might design an assembly to have optional permissions is for deployment in
different customer scenarios. In some scenarios (like desktop applications), it might be acceptable to
have an assembly that can perform more robust actions (talk to a database, create network traffic
via HTTP, etc.). In other scenarios, you would defer these actions if the customer did not wish to
grant enough permissions for these extra services to function.

See Also

See the "WebPermission Class," "SecurityManager Class," and "IsGranted Method" topics in the
MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 14.12 Minimizing the Attack Surface of an
Assembly

Problem

Someone attacking your assembly will first attempt to find out as many things as possible about your
assembly and then use this information in constructing the attack(s). The more surface area you give
to an attacker, the more they have to work with. You need to minimize what your assembly is
allowed to do so that if an attacker is successful in taking over your assembly-possibly through
luring it into doing something like executing a small program that attempts to email a password file
back to the attacker-the attacker will not have the necessary privileges to do any damage to the
system.

Solution

Use the SecurityAction.RequestRefuse enumeration member to indicate, at an assembly level,

the permissions that you do not wish this assembly to have. This will force the CLR to refuse these
permissions to your code and will ensure that even if another part of the system is compromised,
your code cannot be used to perform functions that it does not need the rights to do.

The following example allows the assembly to perform file I/O as part of its minimal permission set
but explicitly refuses to allow this assembly to have permissions to skip verification:

[assembly: FileIOPermission(SecurityAction.RequestMinimal,Unrestricted=true)]
[assembly: SecurityPermission(SecurityAction.RequestRefuse,
 SkipVerification=false)]

Discussion

Once you have determined what permissions your assembly needs as part of your normal security
testing, you can use RequestRefuse to lock down your code. If this seems extreme, think of

scenarios where your code could be accessing a data store with sensitive information contained, such
as Social Security numbers or salary information. This proactive step can help you show your
customers that you take security seriously and can help defend your interests in case of a break-in
on a system your code is part of.

One serious consideration with this approach is that the use of RequestRefuse marks your assembly

as partially trusted and will in turn prevent it from calling any strong-named assembly that hasn't
been marked with the AllowPartiallyTrustedCallers attribute.

See Also

See the "SecurityAction Enumeration" and "Global Attributes" topics in the MSDN documentation. See
Chapter 8, "Code Access Security in Practice," of Microsoft Patterns & Practices Group:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh08.asp.

[Team LiB]

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh08.asp

[Team LiB]

Chapter 15. Threading
A thread represents a single flow of execution logic in a program. Some programs never need more
than a single thread to execute efficiently, but many do. Threading in .NET allows you to build
responsive and efficient applications. Many applications need to perform multiple actions at the same
time (like supporting simultaneous user interface interaction and data processing)-threading allows
the developer to provide this capability. Once you have multiple threads of execution in your
application, you need to start thinking about what data in your application needs to be protected
from multiple access, what data could cause threads to develop an interdependency that could lead
to deadlocking (where Thread A has a resource that Thread B is waiting for and Thread B has a
resource that Thread A is waiting for), and how to store data relative to the individual threads. We
will explore some of these issues to help you take advantage of this wonderful capability of the .NET
Framework, while explaining the areas to beware and items to keep in mind while designing and
creating your multithreaded application.

[Team LiB]

[Team LiB]

Recipe 15.1 Creating Per-Thread Static Fields

Problem

Static fields, by default, are shared between threads within an application domain. You need to allow
each thread to have its own nonshared copy of a static field, so that this static field can be updated
on a per-thread basis.

Solution

Use ThreadStaticAttribute to mark any static fields as not being shareable between threads:

using System;
using System.Threading;

public class Foo
{
 [ThreadStaticAttribute()]
 public static string bar = "Initialized string";
}

Discussion

By default, static fields are shared between the threads that access these fields in an application
domain as a whole. To see this, we'll create a class with a static field called bar and a static method

used to access and display the value contained in this static field:

using System;
using System.Threading;

public class ThreadStaticField
{
 public static string bar = "Initialized string";

 public static void DisplayStaticFieldValue()
 {
 Console.WriteLine(Thread.CurrentThread.GetHashCode() +
 " contains static field value of: " +
 ThreadStaticField.bar);
 }
}

Next, create a test method that accesses this static field both on the current thread and on a newly

spawned thread:

public void TestStaticField()
{
 ThreadStaticField.DisplayStaticFieldValue();

 Thread newStaticFieldThread =
 new Thread(new ThreadStart(
 ThreadStaticField.DisplayStaticFieldValue));

 newStaticFieldThread.Start();

 ThreadStaticField.DisplayStaticFieldValue();
}

This code displays output that resembles the following:

21 contains static field value of: Initialized string
21 contains static field value of: Initialized string
23 contains static field value of: Initialized string

The current thread's hash value is 21 and the new thread's hash value is 23. Notice that both threads
are accessing the same static bar field. Next, add the ThreadStaticAttribute to the static field:

public class ThreadStaticField
{
 [ThreadStaticAttribute()]
 public static string bar = "Initialized string";

 public static void DisplayStaticFieldValue()
 {
 //bar = Thread.CurrentThread.ThreadState.ToString();
 Console.WriteLine(Thread.CurrentThread.GetHashCode() +
 " contains static field value of: " + ThreadStaticField.bar);
 }
}

Now, output resembling the following is displayed:

21 contains static field value of: Initialized string
21 contains static field value of: Initialized string
23 contains static field value of:

Notice that the new thread returns a null for the value of the static bar field. This is the expected
behavior. The bar field is only initialized in the first thread that accesses it. On all other threads, this
field is initialized to null. Therefore, it is imperative that you initialize the bar field on all threads

before it is used.

Remember to initialize any static field that is marked with
ThreadStaticAttribute before it is used on any thread. That is, this field
should be initialized in the method passed in to the ThreadStart delegate. You

should make sure to not initialize the static field using a field initializer as is
shown in the prior code since only one thread gets to see that initial value.

The bar field is initialized to the "Initialized string" string literal before it is used on the first
thread that accesses this field. In the previous test code, the bar field was accessed first, and,

therefore, it was initialized, on the current thread. Suppose we were to remove the first line of the
TestStaticField method, as shown here:

public void TestStaticField()
{
// ThreadStaticField.DisplayStaticFieldValue();
 Thread newStaticFieldThread =
 new Thread(new ThreadStart(ThreadStaticField.DisplayStaticFieldValue));

 newStaticFieldThread.Start();

 ThreadStaticField.DisplayStaticFieldValue();
}

This code now displays similar output to the following:

21 contains static field value of:
23 contains static field value of: Initialized string

The current thread does not access the bar field first and therefore does not initialize it. However,

when the new thread accesses it first, it does initialize it.

Note that adding a static constructor to initialize the static field marked with this attribute will still
follow the same behavior. Static constructors are executed only one time per application domain.

See Also

See the "ThreadStaticAttribute Attribute" and "static Modifier (C#)" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 15.2 Providing Thread Safe Access to Class
Members

Problem

You need to provide thread-safe access through accessor functions to an internal member variable.

The following NoSafeMemberAccess class shows three methods: ReadNumericField,
IncrementNumericField and ModifyNumericField. While all of these methods access the internal
numericField member, the access is currently not safe for multithreaded access:

public sealed class NoSafeMemberAccess
{
 private NoSafeMemberAccess () {}

 private static int numericField = 1;

 public static void IncrementNumericField()
 {
 ++numericField;
 }

 public static void ModifyNumericField(int newValue)
 {
 numericField = newValue;
 }

 public static int ReadNumericField()
 {
 return (numericField);
 }
}

Solution

NoSafeMemberAccess could be used in a multithreaded application, and, therefore, it must be made
thread-safe. Consider what would occur if multiple threads were calling the IncrementNumericField
method at the same time. It is possible that two calls could occur to IncrementNumericField while
the numericField is updated only once. In order to protect against this, we will modify this class by

creating an object that we can lock against in critical sections:

public sealed class SaferMemberAccess
{
 private SaferMemberAccess () {}

 private static int numericField = 1;
 private static object syncObj = new object();

 public static void IncrementNumericField()
 {
 lock(syncObj)
 {
 ++numericField;
 }
 }

 public static void ModifyNumericField(int newValue)
 {
 numericField = newValue;
 }

 public static int ReadNumericField()
 {
 int readValue = 0;
 readValue = numericField;
 return (readValue);
 }
}

Using the lock statement on the syncObj object lets us synchronize access to the numericField

member. This now makes this method safe for multithreaded access.

Discussion

Marking a block of code as a critical section is done using the lock keyword. This keyword accepts a
parameter of either the type object for the class (such as typeof(MyClass)) or a class instance
object (new MyClass()). It uses this type or object to control what you are locking.

There is a problem with synchronization using an object like syncObj in the SaferMemberAccess

example. If you lock an object or type that can be accessed by other objects within the application,
other objects may also attempt to lock this same object. This will manifest itself in poorly written
code that locks itself, such as the following code:

public class DeadLock
{
 public void Method1()
 {
 lock(this)
 {
 // Do something
 }
 }
}

When Method1 is called, it locks the current DeadLock object. Unfortunately, any object that has

access to the DeadLock class may also lock it. This is shown here:

using System;
using System.Threading;

public class AnotherCls
{
 public void DoSomething()
 {
 DeadLock deadLock = new DeadLock();
 lock(deadLock)
 {
 Thread thread = new Thread(new ThreadStart(deadLock.Method1));
 thread.Start();

 // Do some time consuming task here
 }
 }
}

The DoSomething method obtains a lock on the deadLock object and then attempts to call the
Method1 method of the deadLock object on another thread, after which a very long task is executed.
While the long task is executing, the lock on the deadLock object prevents Method1 from being called

on the other thread. Only when this long task ends, and execution exits the critical section of the
DoSomething method, will the Method1 method be able to acquire a lock on the this object. As you

can see, this can become a major headache to track down in a much larger application.

Jeffrey Richter has come up with a relatively simple method to remedy this situation, which he details
quite clearly in the article "Safe Thread Synchronization" in the January 2003 issue of MSDN
Magazine. His solution is to create a private field within the class to synchronize on. The object itself
can only acquire this private field; no outside object or type may acquire it. The DeadLock class can

be rewritten, as follows, to fix this problem:

public class DeadLock
{
 private object syncObj = new object();

 public void Method1()
 {
 lock(syncObj)
 {
 // Do something
 }
 }
}

To clean up your code, you should stop locking any objects or types except for the synchronization
objects that are private to your type or object, such as the syncObj in the fixed DeadLock class. This
recipe makes use of this pattern by creating a static syncObj object within the SaferMemberAccess
class. The IncrementNumericField, ModifyNumericField, and ReadNumericField methods use this
syncObj to synchronize access to the numericField field. Note that if you do not need a lock while
the numericField is being read in the ReadNumericField method, you can remove this lock block

and simply return the value contained in the numericField field.

Minimizing the number of critical sections within your code can significantly
improve performance. Use what you need to secure resource access, but no
more.

If you require more control over locking and unlocking of critical sections, you might want to try using
the overloaded static Monitor.TryEnter methods. These methods allow more flexibility by
introducing a timeout value. The lock keyword will attempt to acquire a lock on a critical section
indefinitely. However, with the TryEnter method, you can enter a timeout value in milliseconds (as
an integer) or as a TimeSpan structure. The TryEnter methods return true if a lock was acquired
and false if it was not. Note that the overload of the TryEnter method that accepts only a single

parameter does not block for any amount of time. This method returns immediately, regardless of
whether the lock was acquired.

The updated class using the Monitor methods is shown here:

using System;
using System.Threading;

public sealed class MonitorMethodAccess
{
 private MonitorMethodAccess () {}

 private static int numericField = 1;
 private static object syncObj = new object();

 public static void IncrementNumericField()
 {
 if (Monitor.TryEnter(syncObj, 250))
 {
 try
 {
 ++numericField;
 }
 finally
 {
 Monitor.Exit(syncObj);
 }
 }
 }

 public static void ModifyNumericField(int newValue)
 {
 if (Monitor.TryEnter(syncObj, 250))
 {
 try
 {
 numericField = newValue;
 }

 finally
 {
 Monitor.Exit(syncObj);
 }
 }
 }

 public static int ReadNumericField()
 {
 if (Monitor.TryEnter(syncObj, 250))
 {
 int readValue = 0;

 try
 {
 readValue = numericField;
 }
 finally
 {
 Monitor.Exit(syncObj);
 }

 return (readValue);
 }

 return (-1);
 }

}

Note that with the TryEnter methods, you should always check to see whether the lock was in fact

acquired. If it is not, your code should wait and try again, or return to the caller.

You might think at this point that all of the methods are thread-safe. Individually, they are, but what
if you are trying to call them and you expect synchronized access between two of the methods? If
ModifyNumericField and ReadNumericField are used one after the other by Class 1 on Thread 1 at
the same time Class 2 is using these methods on Thread 2, locking or Monitor calls will not prevent

Class 2 from modifying the value before Thread 1 reads it. Here is a series of actions that
demonstrates this:

Class 1 Thread 1

Calls ModifyNumericField with 10.

Class 2 Thread 2

Calls ModifyNumericField with 15.

Class 1 Thread 1

Calls ReadNumericField and gets 15, not 10.

Class 2 Thread 2

Calls ReadNumericField and gets 15, which it expected.

In order to solve this problem of synchronizing reads and writes, the calling class needs to manage
the interaction. The external class could accomplish this by using the Monitor class to establish a

lock on the type object, as shown here:

int num = 0;
if(Monitor.TryEnter(typeof(MonitorMethodAccess),250))
{
 MonitorMethodAccess.ModifyNumericField(10);
 num = MonitorMethodAccess.ReadNumericField();
 Monitor.Exit(typeof(MonitorMethodAccess));
}
Console.WriteLine(num);

See Also

See the "lock Statement," "Thread Class," and "Monitor Class" topics in the MSDN documentation.
Also see the "Safe Thread Synchronization" article in the January 2003 issue of MSDN Magazine.

[Team LiB]

[Team LiB]

Recipe 15.3 Preventing Silent Thread Termination

Problem

An exception thrown in a spawned worker thread will cause this thread to be silently terminated if the
exception is unhandled. You need to make sure all exceptions are handled in all threads. If an
exception happens in this new thread, you want to handle it and be notified of its occurrence.

Solution

You must add exception handling to the method that you pass to the ThreadStart delegate with a
try/catch, try/finally, or try/catch/finally block. The code to do this is shown here in bold:

using System;
using System.Threading;

public class MainThread
{
 public void CreateNewThread()
 {
 // Spawn new thread to do concurrent work
 Thread newWorkerThread = new Thread(new ThreadStart(Worker.DoWork));
 newWorkerThread.Start();
 }
}

public class Worker
{
 // Method called by ThreadStart delegate to do concurrent work
 public static void DoWork ()
 {
 try
 {
 // Do thread work here
 }
 catch
 {
 // Handle thread exception here
 // Do not re-throw exception
 }
 finally
 {
 // Do thread cleanup here

 }
 }
}

Discussion

If an unhandled exception occurs in the main thread of an application, the main thread terminates,
along with your entire application. An unhandled exception in a spawned worker thread, however, will
terminate only that thread. This will happen without any visible warnings, and your application will
continue to run as if nothing happened.

Simply wrapping an exception handler around the Start method of the Thread class will not catch
the exception on the newly created thread. The Start method is called within the context of the

current thread, not the newly created thread. It also returns immediately once the thread is
launched, so it isn't going to wait around for the thread to finish. Therefore, the exception thrown on
the new thread will not be caught since it is not visible to any other threads.

If the exception is rethrown from the catch block, the finally block of this structured exception
handler will still execute. However, after the finally block is finished, the rethrown exception is, at

that point, rethrown. The rethrown exception cannot be handled and the thread terminates. If there
is any code after the finally block, it will not be executed, since an unhandled exception occurred.

Never rethrow an exception at the highest point in the exception handling
hierarchy within a thread. Since no exception handlers can catch this rethrown
exception, it will be considered unhandled and the thread will terminate after all
finally blocks have been executed.

What if you were using the ThreadPool and QueueUserWorkItem? This method would still help you

because you added the handling code that will execute inside the thread. Just make sure you have
the finally block set up so that you can notify yourself of exceptions in other threads as shown

earlier.

In order to provide a last chance exception handler for your WinForms application, you would need to
hook up for two separate events. The first event is the
System.AppDomain.CurrentDomain.UnhandledException event, which will catch all unhandled

exceptions in the current AppDomain on worker threads; it will not catch exceptions that occur on the
main UI thread of a WinForms application. In order to catch those, you also need to hook up to the
System.Windows.Forms.Application.ThreadException, which will catch unhandled exceptions in

the main UI thread.

See Also

See the "Thread Class" and "Exception Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 15.4 Polling an Asynchronous Delegate

Problem

While an asynchronous delegate is executing, you need to continuously poll it to see whether it has
completed. This ability is useful when you need to monitor the length of time it takes the
asynchronous delegate to execute or if you need to monitor other objects in the system in parallel
with this asynchronous delegate, possibly to determine which object finishes first, second, third, and
so on. It can also be useful when performing a continuous task, such as displaying an indicator to the
user that the asynchronous operation is still running.

Solution

Use the IsCompleted property of the IAsyncResult interface to determine when the asynchronous

call has completed. The following example shows how this is accomplished:

using System;
using System.Threading;

public class AsyncAction
{
 public void PollAsyncDelegate()
 {
 // Set up the delegate
 AsyncInvoke method1 = new AsyncInvoke(TestAsyncInvoke.Method1);
 // Define the AsyncCallback delegate.
 AsyncCallback callBack = new AsyncCallback(TestAsyncInvoke.CallBack);
 IAsyncResult asyncResult = method1.BeginInvoke(callBack,method1);

 while (!asyncResult.IsCompleted)
 {
 // give up the CPU for 1 second
 Thread.Sleep(1000);
 Console.Write('.');
 }
 Console.WriteLine("Finished Polling");

 try
 {
 int retVal = method1.EndInvoke(asyncResult);
 Console.WriteLine("retVal: " + retVal);
 }
 catch (Exception e)

 {
 Console.WriteLine(e.ToString());
 }
 }
}

The following code defines the AsyncInvoke delegate and the asynchronously invoked static method
TestAsyncInvoke.Method1:

public delegate int AsyncInvoke();

public class TestAsyncInvoke
{
 public static int Method1()
 {
 Console.WriteLine("Invoked Method1");
 return (1);
 }

 public static void CallBack(IAsyncResult ar)
 {
 // Retrieve the delegate.
 AsyncInvoke ai = (AsyncInvoke) ar.AsyncState;

 // Call EndInvoke to retrieve the results.
 int retVal = ai.EndInvoke(ar);
 Console.WriteLine("retVal: " + retVal);
 }
}

Discussion

The delegate, AsyncInvoke, is invoked asynchronously using its BeginInvoke method. The
BeginInvoke method returns an IAsyncResult object, which allows access to the result information

from an asynchronous operation.

If the delegate were to accept a string and an int, in this order, the BeginInvoke method would be

defined as this:

public IAsyncResult BeginInvoke(string s, int i, AsyncCallback callback,

 object state)

For this recipe the callback and state parameters are set to null. The callback parameter could

call back at completion into the code that invoked it, but for this example, it is a no-op.

To poll for the completion of the method1 delegate, we get the IsCompleted property of the
IAsyncResult object that is returned by the BeginInvoke method. The IsCompleted property
returns true if the method1 delegate has completed its operation or false if it has not. This property

can be called continuously within a loop to check whether the delegate has finished.

Once the method1 delegate has finished its asynchronous processing, the results of the operation can
be retrieved through a call to the EndInvoke method. The compiler also creates this method

dynamically, so that the return value of the delegate can be accessed through the EndInvoke
method-as well as any out or ref parameters that the delegate accepts as parameters.

The EndInvoke method returns an object of the same type as the return value of the asynchronous
delegate. An EndInvoke method called on a delegate of the following signature:

public delegate long Foo(ref int i, out string s, bool b);

will be defined as follows:

public long EndInvoke(ref int i, out string s, IAsyncResult result)

Notice that the return type is a long and only the ref and out parameters of the original delegate
are in the signature for this method. The EndInvoke method contains only the output parameters of
the delegate or those marked as ref or out.

If the asynchronous delegate throws an exception, the only way to obtain that
exception object is through the EndInvoke method. The EndInvoke method

should be wrapped in an exception handler.

Once the while loop of the PollAsyncDelegate method in this recipe is exited-meaning that the
asynchronous delegate has completed-the EndInvoke method can be safely called to retrieve the
return value of the delegate as well as any ref or out parameter values. If you want to obtain these
values, you must call the EndInvoke method; however, if you do not need any of these values, you
may leave out the call to the EndInvoke method.

See Also

See the "IAsyncResult Interface," "AsyncResult Class," "BeginInvoke Method," and "EndInvoke
Method" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 15.5 Timing Out an Asynchronous Delegate

Problem

You want an asynchronous delegate to operate only within an allowed time span. If it is not finished
processing within this time frame, the operation will time out. If the asynchronous delegate times
out, it must perform any cleanup before the thread it is running on is terminated.

Solution

The WaitHandle.WaitOne method can indicate when an asynchronous operation times out. The code

on the invoking thread needs to periodically wake up to do some work along with timing-out after a
specific period of time. Use the approach shown in the following code, which will wake up every 20
milliseconds to do some processing. This method also times out after a specific number of
wait/process cycles (note that this code will actually time out after more than two seconds of
operation since work is being done between the wait cycles):

public class AsyncAction
{
 public void TimeOutWakeAsyncDelegate()
 {
 AsyncInvoke method1 = new AsyncInvoke(TestAsyncInvoke.Method1);
 // Define the AsyncCallback delegate to catch EndInvoke if we timeout.
 AsyncCallback callBack = new AsyncCallback(TestAsyncInvoke.CallBack);
 // Set up the BeginInvoke method with the callback and delegate
 IAsyncResult asyncResult = method1.BeginInvoke(callBack,method1);

 int counter = 0;
 while (counter <= 25 &&
 !asyncResult.AsyncWaitHandle.WaitOne(20, true))
 {
 counter++;
 Console.WriteLine("Processing...");
 }

 if (asyncResult.IsCompleted)
 {
 int retVal = method1.EndInvoke(asyncResult);
 Console.WriteLine("retVal (TimeOut): " + retVal);
 }
 else
 {
 Console.WriteLine("TimedOut");

 }

 // Clean up
 asyncResult.AsyncWaitHandle.Close();
 }
}

The following code defines the AsyncInvoke delegate and the asynchronously invoked static method
TestAsyncInvoke.Method1:

public delegate int AsyncInvoke();

public class TestAsyncInvoke
{
 public static int Method1()
 {
 Console.WriteLine("Invoked Method1");
 return (1);
 }

 public static void CallBack(IAsyncResult ar)
 {
 // Retrieve the delegate.
 AsyncInvoke ai = (AsyncInvoke) ar.AsyncState;

 // Call EndInvoke to retrieve the results.
 int retVal = ai.EndInvoke(ar);
 Console.WriteLine("retVal: " + retVal);
 }
}

Discussion

The asynchronous delegates in this recipe are created and invoked in the same fashion as the
asynchronous delegate in Recipe 15.4. However, instead of using the IsCompleted property to
determine whether the asynchronous delegate is finished processing, WaitHandle.WaitOne is used.

This method blocks the thread that it is called on either indefinitely or for a specified length of time.
This method will stop blocking the thread when it is signaled by the ThreadPool that the thread has
completed or timed out, and returns a true indicating that the asynchronous processing is finished

and the calling thread has been signaled. If the processing is not finished before the allotted time-out
value expires, WaitOne returns false. Note that the WaitOne method that accepts no parameters will

block the calling thread indefinitely.

It is usually a better idea to include a time-out value when using the WaitOne

method, as this will prevent the calling thread from being blocked forever if a
deadlock situation occurs (in which case the thread on which the WaitOne

method waits is never signaled) or if the thread running the asynchronous
delegate never returns, such as when entering into an infinite loop.

The TimeOutAsyncDelegate method in this recipe uses the WaitOne method to block the calling

thread for two seconds. If the asynchronous delegate has not finished processing within this two-
second period, the WaitOne method will return a false. If the asynchronous delegate finishes

processing before the time-out value elapses, the calling thread is signaled by the running thread
that the asynchronous delegate is finished and the WaitOne method stops blocking the calling thread
and returns a value of true. If the WaitOne method returns true, the EndInvoke method should be
called to retrieve any return values, ref parameter values, or out parameter values.

The TimeOutWakeAsyncDelegate method in this recipe approaches the time-out technique a little
differently than the first method. The TimeOutWakeAsyncDelegate method will periodically wake up

(after 20 milliseconds) and perform some task on the calling thread; unlike the
TimeOutAsyncDelegate method, which will continue blocking for the allotted time frame and not
wake up. After 25 wait cycles, if the asynchronous delegate has not finished processing, the while

loop will be exited, essentially timing out the delegate. If the delegate finishes processing before the
25 wait cycles have completed, the while loop is exited.

The IsCompleted property is checked next to determine whether the asynchronous delegate has
finished its processing at this time. If it has finished, the EndInvoke method is called to obtain any
return value, ref parameter values, or out parameter values. Otherwise, the delegate has not

completed within the allotted time span and the application should be informed that this thread has
timed out.

The call to the Close method of the WaitHandle object in effect performs the same function as a
Dispose method. Any resources held by this instance of the WaitHandle object are released.

See Also

See the "WaitOne Method" and "AsyncResult Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 15.6 Being Notified of the Completionof an
Asynchronous Delegate

Problem

You need a way of receiving notification from an asynchronously invoked delegate that it has
finished. However, it must be more flexible than the notification schemes in the previous two recipes
(Recipe 15.4 and Recipe 15.5). This scheme must allow your code to continue processing without
having to constantly call IsCompleted in a loop or to rely on the WaitOne method. Since the

asynchronous delegate will return a value, you must be able to pass this return value back to the
invoking thread.

Solution

Use the BeginInvoke method to start the asynchronous delegate, but use the first parameter to pass

a callback delegate to the asynchronous delegate:

using System;
using System.Threading;

public class AsyncAction
{
 public void CallbackAsyncDelegate()
 {
 AsyncCallback callBack = new AsyncCallback(DelegateCallback);

 AsyncInvoke method1 = new AsyncInvoke(TestAsyncInvoke.Method1);
 IAsyncResult asyncResult = method1.BeginInvoke(callBack, method1);

 // No need to poll or use the WaitOne method here, so return to the calling
 // method.
 return;
 }

 private static void DelegateCallback(IAsyncResult iresult)
 {
 AsyncResult asyncResult = (AsyncResult)iresult;
 AsyncInvoke method1 = (AsyncInvoke)asyncResult.AsyncDelegate;

 int retVal = method1.EndInvoke(asyncResult);
 Console.WriteLine("retVal (Callback): " + retVal);
 }
}

This callback delegate will call the DelegateCallback method on the thread the method was

ultimately invoked on when the asynchronous delegate is finished processing.

The following code defines the AsyncInvoke delegate and the asynchronously invoked static method
TestAsyncInvoke.Method1:

public delegate int AsyncInvoke();

public class TestAsyncInvoke
{
 public static int Method1()
 {
 Console.WriteLine("Invoked Method1");
 return (1);
 }
}

Discussion

The asynchronous delegates in this recipe are created and invoked in the same fashion as the
asynchronous delegate in Recipe 15.4. Instead of using the IsCompleted property to determine when
the asynchronous delegate is finished processing (or the WaitOne method to block for a specified

time while the asynchronous delegate continues processing), this recipe uses a callback to indicate to
the calling thread that the asynchronous delegate has finished processing and that its return value,
ref parameter values, and out parameter values are available.

Invoking a delegate in this manner is much more flexible and efficient than simply polling the
IsCompleted property to determine when a delegate finishes processing. When polling this property

in a loop, the polling method cannot return and allow the application to continue processing. A
callback is also better than using a WaitOne method, since the WaitOne method will block the calling
thread and allow no processing to occur. You can break up the WaitOne method into a limited

number of wait cycles as in Recipe 15.5, but this is simply a merging of the polling technique with the
WaitOne operation.

The CallbackAsyncDelegate method in this recipe makes use of the first parameter to the
BeginInvoke method of the asynchronous delegate to pass in another delegate that contains a

callback method to be called when the asynchronous delegate finishes processing. After calling
BeginInvoke, this method can now return and the application can continue processing; it does not

have to wait in a polling loop or be blocked while the asynchronous delegate is running.

The AsyncInvoke delegate that is passed into the first parameter of the BeginInvoke method is

defined as follows:

public delegate void AsyncCallback(IAsyncResult ar)

When this delegate is created, as shown here, the callback method passed in, DelegateCallback,

will be called as soon as the asynchronous delegate completes:

AsyncCallback callBack = new AsyncCallback(DelegateCallback);

DelegateCallback will not run on the same thread BeginInvoke ran on. This callback method

accepts a parameter of type IAsyncResult. You can cast this parameter to an AsyncResult object

within the delegate and use it to obtain information about the completed asynchronous delegate,
such as its return value, any ref parameter values, and any out parameter values. If the delegate
instance that was used to call BeginInvoke is still in scope, you can just pass the IAsyncResult to
the EndInvoke method. In addition, this object can obtain any state information passed into the
second parameter of the BeginInvoke method. This state information can be any object type.

The DelegateCallback method casts the IAsyncResult parameter to an AsyncResult object and
obtains the asynchronous delegate that was originally called. The EndInvoke method of this
asynchronous delegate is called to process any return value, ref parameters, or out parameters. If
any state object was passed in to the BeginInvoke method's second parameter, it can be obtained

here through the following line of code:

object state = asyncResult.AsyncState;

See Also

See the "AsyncCallback Delegate" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 15.7 Waiting for Worker Thread Completion

Problem

You have two threads currently running in your application. You need the main thread to wait until
the worker thread has completed its processing. This ability comes in handy when your application is
monitoring activities amongst multiple threads and you don't want your main application thread to
terminate until all of the workers are done processing.

Solution

Use the Thread.Join method to detect when a thread terminates:

class Worker
{
 static void Main()
 {
 Run();
 }

 static void Run()
 {
 Thread worker = new Thread(new ThreadStart(WorkerThreadProc));
 worker.Start();
 if(worker.Join(4000))
 {
 // worker thread ended ok
 Console.WriteLine("Worker Thread finished");
 }
 else
 {
 // timed out
 Console.WriteLine("Worker Thread timed out");
 }
 }

 static void WorkerThreadProc()
 {
 Thread.Sleep(2000);
 }
}

Discussion

In the Worker class shown previously, the Run method starts off running in the context of the main
thread. It then launches a worker thread; it then calls Join on it with a timeout set to four seconds.

Since we know that the worker thread should not run for more than two seconds (see
WorkerThreadProc), this should be sufficient time to see the worker thread terminate and for the

main thread to finish and terminate in an orderly fashion.

It is very important to call Join only after the worker thread has been started, or you will get a
ThreadStateException.

See Also

See the "Thread.Join Method" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 15.8 Synchronizing the Reading and Writingof a
Resource Efficiently

Problem

You have a resource that is shared by multiple threads. You need to provide exclusive access to this
resource when a thread is writing to it. However, you do not want the overhead of providing
exclusive access to this resource when multiple threads are only reading from it. You want to allow
one thread to access a shared resource only if it is writing to it, but you also want to allow multiple
threads to read from this resource. While multiple threads can read from a resource, a write
operation cannot occur while any thread is reading from this resource.

Solution

Use the ReaderWriterLock class from the FCL. The ReaderWriterLock is optimized for scenarios

where you have data that changes infrequently but needs protection for those times when it is
updated in a multithreading scenario. To illustrate, the GradeBoard class represents a board where

an instructor will post the grades students received from a class. Many students can read the grade
board, but only the instructor can post a grade (write) to the grade board. Students will not,
however, be able to read from the board while the instructor is updating it:

class GradeBoard
{
 // make a static ReaderWriterLock to allow all student threads to check
 // grades and the instructor thread to post grades
 static ReaderWriterLock readerWriter = new ReaderWriterLock();

 // the grade to be posted
 static char studentsGrade = ' ';

 static void Main()
 {
 // create students
 Thread[] students = new Thread[5];
 for(int i=0;i<students.Length;i++)
 {
 students[i] = new Thread(new ThreadStart(StudentThreadProc));
 students[i].Name = "Student " + i.ToString();
 // start the student looking for a grade
 students[i].Start();
 }

 // make those students "wait" for their grades by pausing the instructor

 Thread.Sleep(5000);

 // create instructor to post grade
 Thread instructor = new Thread(new ThreadStart(InstructorThreadProc));
 instructor.Name = "Instructor";
 // start instructor
 instructor.Start();

 // wait for instructor to finish
 instructor.Join();

 // wait for students to get grades
 for(int i=0;i<students.Length;i++)
 {
 students[i].Join();
 }
 }

 static char ReadGrade()
 {
 // wait ten seconds for the read lock
 readerWriter.AcquireReaderLock(10000);
 try
 {
 // now we can read safely
 return studentsGrade;
 }
 finally
 {
 // Ensure that the lock is released.
 readerWriter.ReleaseReaderLock();
 }
 }

 static void PostGrade(char grade)
 {
 // wait ten seconds for the write lock
 readerWriter.AcquireWriterLock(10000);
 try
 {
 // now we can post the grade safely
 studentsGrade = grade;
 Console.WriteLine("Posting Grade...");
 }
 finally
 {
 // Ensure that the lock is released.
 readerWriter.ReleaseWriterLock();
 }
 }

 static void StudentThreadProc()

 {
 bool isGradeFound = false;
 char grade = ' ';
 while(!isGradeFound)
 {
 grade = ReadGrade();
 if(grade != ' ')
 {
 isGradeFound = true;
 Console.WriteLine("Student Found Grade...");
 }
 else // check back later
 Thread.Sleep(1000);
 }
 }

 static void InstructorThreadProc()
 {
 // everyone likes an easy grader :)
 PostGrade('A');
 }
}

Discussion

In the example, the ReaderWriterLock protects access to the grade resource of the GradeBoard
class. Lots of students can be continually reading their grades using the ReadGrade method, but once
the instructor attempts to post the grades using the PostGrade method, the grade resource is locked

so that no one but the instructor can access it. The instructor updates the grades and releases the
lock, and the pending student read requests are allowed to resume. All students continue to read the
grade board, check to see if the grades have been posted, and then wait before making another
request. Once the grades are posted, each student finds it, and the thread for that student
terminates.

The Main method calls Join on the instructor and student threads to wait until those threads finish

before continuing and ending. If it did not do this, the program could potentially end before the
threads finish. It protects against a ThreadInterruptedException, as the Join calls could
potentially throw this if the thread aborts. The threads are named using the Name property to ease

debugging.

See Also

See the "ReaderWriterLock Class" and "Thread Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 15.9 Determining Whether a Requestfor a Pooled
Thread Will Be Queued

Problem

Your application will be creating many threads from the thread pool. When creating a thread from
this pool, you want to be informed as to whether a thread in the pool is available or if none are
available, and the request for a new thread will have to be queued. Basically, you want to know
whether a thread is available for immediate use from the thread pool.

Solution

Use the ThreadPool.GetAvailableThreads method to get the number of worker threads currently
available in the ThreadPool to determine whether you should queue another request to launch
another thread via ThreadPool.QueueUserWorkItem or take an alternate action. The Main method
calls a method (SpawnManyThreads) to spawn lots of threads to do work in the ThreadPool, then

waits for a bit to simulate processing:

public class TestThreads
{
 public static void Main()
 {
 SpawnManyThreads();
 // have to wait here or the background threads in the thread
 // pool would not run before the main thread exits.
 Console.WriteLine("Main Thread waiting to complete...");
 Thread.Sleep(2000);
 Console.WriteLine("Main Thread completing...");
 }

The SpawnManyThreads method launches threads and pauses between each launch to allow the
ThreadPool to register the request and act upon it. The isThreadAvailable method is called with
the parameter set to true to determine whether there is a worker thread available for use in the
ThreadPool:

public static bool SpawnManyThreads()
{
 try
 {
 for(int i=0;i<500;i++)
 {
 // have to wait or threadpool never gives out threads to
 // requests

 Thread.Sleep(100);
 // check to see if worker threads are available in the pool
 if(true == isThreadAvailable(true))
 {
 // launch thread if queue isn't full
 Console.WriteLine("Worker Thread was available...");
 ThreadPool.QueueUserWorkItem(new WaitCallback(ThreadProc),i);
 }
 else
 Console.WriteLine("Worker Thread was NOT available...");
 }
 }
 catch(Exception e)
 {
 Console.WriteLine(e.ToString());
 return false;
 }
 return true;
}

The isThreadAvailable method calls ThreadPool.GetAvailableThreads to determine whether the
ThreadPool has any available worker threads left. If you pass false as the checkWorkerThreads

parameter, it also sees whether there are any completion port threads available. The
GetAvailableThreads method compares the current number of threads allocated from the pool
against the maximum ThreadPool threads. The worker thread maximum is 25 per CPU, and the

completion port thread maximum is 1,000 total, regardless of CPUs on v1.1 of the CLR:

public static bool isThreadAvailable(bool checkWorkerThreads)
{
 int workerThreads = 0;
 int completionPortThreads = 0;
 // get available threads
 ThreadPool.GetAvailableThreads(out workerThreads,out completionPortThreads);

 // indicate how many work threads are available
 Console.WriteLine("{0} worker threads available in thread pool.",
 workerThreads);

 if(checkWorkerThreads)
 {
 if(workerThreads > 0)
 return true;
 }
 else // check completion port threads
 {
 if(completionPortThreads > 0)
 return true;
 }
 return false;
}

This is a simple method to call in a threaded fashion:

static void ThreadProc(Object stateInfo)
 {
 // show we did something with this thread
 Console.WriteLine("Thread {0} running...",stateInfo);
 Thread.Sleep(1000);
 }
}

Discussion

The ThreadPool is a great way to perform background tasks without having to manage all aspects of
the thread yourself. It can be handy to know when the ThreadPool itself is going to become a
bottleneck to your application, and the GetAvailableThreads method can help you. However, you

might want to check your application design if you are consistently using this many threads as you
might be losing performance due to contention or context switching. Queuing up work when the
ThreadPool is full simply queues it up for execution once one of the threads comes free; the request

isn't lost, just postponed.

See Also

See the "ThreadPool Class" topic in the MSDN documentation. Also see Applied Microsoft .NET
Framework Programming by Jeffrey Richter (Wintellect).

[Team LiB]

[Team LiB]

Recipe 15.10 Waiting for All Threads in theThread Pool to
Finish

Problem

For threads that are manually created via the Thread class, you can call the Join method to wait for

a thread to finish. This works well when you need to wait for all threads to finish processing before an
application terminates. Unfortunately, the thread pool threads do not have a Join method. You need

to make sure that all threads in the thread pool have finished processing before another thread
terminates or your application's main thread terminates.

Solution

Use a combination of the ThreadPool methods-GetMaxThreads and GetAvailableThreads- t o
determine when the ThreadPool is finished processing the requests:

public static void Main()
{
 for(int i=0;i<25;i++)
 {
 // have to wait or threadpool never gives out threads to requests
 Thread.Sleep(50);
 // queue thread request
 ThreadPool.QueueUserWorkItem(new WaitCallback(ThreadProc),i);
 }
 // have to wait here or the background threads in the thread
 // pool would not run before the main thread exits.
 Console.WriteLine("Main Thread waiting to complete...");
 bool working = true;
 int workerThreads = 0;
 int completionPortThreads = 0;
 int maxWorkerThreads = 0;
 int maxCompletionPortThreads = 0;
 // get max threads in the pool
 ThreadPool.GetMaxThreads(out maxWorkerThreads,out maxCompletionPortThreads);
 while(working)
 {
 // get available threads
 ThreadPool.GetAvailableThreads(out workerThreads,out completionPortThreads);
 if(workerThreads == maxWorkerThreads)
 {
 // allow to quit
 working = false;

 }
 else
 {
 // sleep before checking again
 Thread.Sleep(500);
 }
 }
 Console.WriteLine("Main Thread completing...");
}
Static void ThreadProc(Object stateInfo)
{
 //show we did something with this thread...
 Console.WriteLine("Thread {0} running...", stateInfo);
 Thread.Sleep(1000);
}

Discussion

This approach is a bit coarse; since the CLR does not allow access to the thread objects being
created, the best we can do is to see when the ThreadPool no longer has requests queued. If this
approach is not sufficient for your needs, you could implement your own thread pool, but be careful
of the many pitfalls that await you because thread pools are not easy to get right in all cases. Some
of the issues are having too many or too few threads to service requests, determining initial levels of
threads in the pool, and deadlocking threads.

See Also

See the "ThreadPool Class" topic in the MSDN documentation. Also see Applied Microsoft .NET
Framework Programming by Jeffrey Richter (Wintellect).

[Team LiB]

[Team LiB]

Recipe 15.11 Configuring a Timer

Problem

You have one of the following timer configuration needs:

You want to use a timer to call a timer callback method at a fixed time after the timer object
has been created. Once this callback method has been called the first time, you want to call this
same callback method at a specified interval (this interval might be different from the time
interval between the creation of the timer and the first time the timer callback method is
called).

You want to use a timer to call a timer callback method immediately upon creation of the
System.Threading.Timer object, after which the callback method is called at a specified

interval.

You want to use a timer to call a timer callback method one time only.

You have been using a System.Threading.Timer object and need to change the intervals at

which its timer callback method is called.

Solution

To fire a System.Threading.Timer after an initial delay, and then at a specified period after that, use
the System.Threading.Timer constructor to set up different times for the initial and following

callbacks:

using System;
using System.Threading;

public class TestTimers
{
 public static int count = 0;
 public static Timer timerRef = null;

 public static void Main()
 {
 TimerCallback callback = new TimerCallback(TimerMethod);

 // Create a timer that waits one half second, then invokes
 // the callback every second thereafter.
 Timer timer = new Timer(callback, null,500, 1000);

 // store a reference to this timer so the callback can use it
 timerRef = timer;

 // The main thread does nothing until the timer is disposed.
 while(timerRef != null)
 Thread.Sleep(0);
 Console.WriteLine("Timer example done.");
 }

 static void TimerMethod(Object state)
 {
 count++;
 if(count == 5)
 {
 timerRef.Dispose();
 timerRef = null;
 }
 }
}

The previous method showed how to fire the callback after 500 milliseconds. To fire the initial callback
immediately, change the value to zero:

// Create a timer that doesn't wait, then invokes
// the callback every second thereafter.
Timer timer = new Timer(callback, null,0, 1000);

To have the timer call the callback only once, change the constructor to pass Timeout.Infinite for

the callback interval. You also have to change the current scheme that waits for five callbacks before
disposing of the timer to do it the first time. If you didn't do this, the program would hang since the
Main function is still waiting for the timer to have Dispose called, but the fifth callback will never
trigger the Dispose call:

 // Create a timer that waits for half a second, then is disposed
 Timer timer = new Timer(callback, null,500, Timeout.Infinite);

// Also change this...to
 static void TimerMethod(Object state)
 {
 timerRef.Dispose();
 timerRef = null;
 }

To change the interval of a running System.Threading.Timer, call the Change method specifying the

delay before the next callback and the new callback interval, like this:

static void TimerMethod(Object state)
{
 count++;
 if(count == 5)
 {
 timerRef.Change(1000,2000);
 }

 if(count == 10)
 {
 timerRef.Dispose();
 timerRef = null;
 }
}

This code now checks for the fifth callback and changes the interval from one second to two seconds.
The sixth callback will happen one second after, and then callbacks through ten will happen two
seconds apart.

Discussion

One item to be aware of when using System.Threading.Timers and TimerCallbacks is that they
are serviced from the ThreadPool. This means that if you have other work being farmed out to the
ThreadPool in your application, it could be contending with the Timer callbacks for an available

worker thread. The basic timer is enough to serve the earlier scenarios, but if you are doing UI work
and want to use timers, you should investigate the System.Windows.Forms.Timer class. If you are
doing server work, you might also want to look at System.Timers.Timer as well. Both of these

classes add events for when the timers are disposed and when the timer "ticks"; they also add
properties that expose the settings.

See Also

See the "System.Threading.Timer Class," "TimerCallback Delegate," "System.Windows.Forms.Timer
Class," and "System.Timers.Timer" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 15.12 Storing Thread-Specific Data Privately

Problem

You want to store thread-specific data discovered at runtime on a thread that will be accessible only
to code running within that thread.

Solution

Use the AllocateDataSlot or AllocateNamedDataSlot method on the Thread class to reserve a

thread local storage (TLS) slot. Using TLS, a large structure can be stored in a data slot on a thread
and used in many different methods. This can be done without having to pass the structure as a
parameter.

For this example, a structure called Data here represents a structure that can grow to be very large

in size:

public struct Data
{
 // Application data is stored here
}

Before using this structure, a data slot has to be created in TLS to store the structure. The following
code creates an instance of the Data structure and stores it in the data slot named AppDataSlot:

Data appData = new Data();
Thread.SetData(Thread.GetNamedDataSlot("appDataSlot"), appData);

Whenever this structure is needed, it can be retrieved with a call to Thread.GetData. The following
line of code gets the appData structure from the data slot named appDataSlot:

Data storedAppData = (Data)Thread.GetData(Thread.GetNamedDataSlot("appDataSlot"));

At this point, the storedAppData structure can be read or modified. After the action has been
performed on the storedAppData structure, storedAppData must be placed back into the data slot
named appDataSlot:

Thread.SetData(Thread.GetNamedDataSlot("appDataSlot"), appData);

Once the application is finished using this structure, the data slot can be released from memory using
the following method call:

Thread.FreeNamedDataSlot("appDataSlot");

The following simple class shows how TLS can be used to store a structure:

using System;
using System.Threading;

public class HandleStructure
{
 public static void Main()
 {
 // Create structure instance and store it in the named data slot
 Data appData = new Data();
 Thread.SetData(Thread.GetNamedDataSlot("appDataSlot"), appData);

 // Call another method that will use this structure
 HandleStructure.MethodB();

 // When done, free this data slot
 Thread.FreeNamedDataSlot("appDataSlot");
 }

 public static void MethodB()
 {
 // Get the structure instance from the named data slot
 Data storedAppData = (Data)Thread.GetData(
 Thread.GetNamedDataSlot("appDataSlot"));

 // Modify the StoredAppData structure

 // When finished modifying this structure, store the changes back
 // into the named data slot
 Thread.SetData(Thread.GetNamedDataSlot("appDataSlot"),
 storedAppData);

 // Call another method that will use this structure
 HandleStructure.MethodC();
 }

 public static void MethodC()
 {
 // Get the structure instance from the named data slot
 Data storedAppData =
 (Data)Thread.GetData(Thread.GetNamedDataSlot("appDataSlot"));

 // Modify the storedAppData structure

 // When finished modifying this structure, store the changes back into
 // the named data slot
 Thread.SetData(Thread.GetNamedDataSlot("appDataSlot"), storedAppData);
 }
}

Discussion

Thread local storage is a convenient way to store data that is usable across method calls without
having to pass the structure to the method or even without knowledge about where the structure
was actually created.

Data stored in a named TLS data slot is available only to that thread; no other thread can access a
named data slot of another thread. The data stored in this data slot is accessible from anywhere
within the thread. This setup essentially makes this data global to the thread.

To create a named data slot, use the static Thread.GetNamedDataSlot method. This method accepts

a single parameter, name, that defines the name of the data slot. This name should be unique; if a

data slot with the same name exists, then the contents of that data slot will be returned and a new
data slot will not be created. This action occurs silently; there is no exception thrown or error code
available to inform you that you are using a data slot someone else created. To be sure that you are
using a unique data slot, use the Thread.AllocateNamedDataSlot method. This method throws a
System.ArgumentException if a data slot already exists with the same name. Otherwise, it operates
similarly to the GetNamedDataSlot method.

It is interesting to note that this named data slot is created on every thread in the process, not just
the thread that called this method. This fact should not be much more than an inconvenience to you,
though, since the data in each data slot can be accessed only by the thread that contains it. In
addition, if a data slot with the same name was created on a separate thread and you call
GetNamedDataSlot on the current thread with this name, none of the data in any data slot on any

thread will be destroyed.

GetNamedDataSlot returns a LocalDataStoreSlot object that is used to access the data slot. Note
that this class is not creatable through the use of the new keyword. It must be created through one of
the AllocateDataSlot or AllocateNamedDataSlot methods on the Thread class.

To store data in this data slot, use the static Thread.SetData method. This method takes the object

passed in to the data parameter and stores it in the data slot defined by the dataSlot parameter.

The static Thread.GetData method retrieves the object stored in a data slot. This method accepts a
LocalDataStoreSlot object that is created through the Thread.GetNamedDataSlot method. The
GetData method then returns the object that was stored in that particular data slot. Note that the

object returned might have to be cast to its original type before it can be used.

The static method Thread.FreeNamedDataSlot will free the memory associated with a named data
slot. This method accepts the name of the data slot as a string and, in turn, frees the memory
associated with that data slot. Remember that when a data slot is created with GetNamedDataSlot, a

named data slot is also created on all of the other threads running in that process. This is not really a
problem when creating data slots with the GetNamedDataSlot method because if a data slot exists
with this name, a LocalDataStoreSlot object that refers to that data slot is returned, a new data

slot is not created, and the original data in that data slot is not destroyed.

This situation becomes more of a problem when using the FreeNamedDataSlot method. This method

will free the memory associated with the data slot name passed in to it for all threads, not just the
thread that it was called on. Freeing a data slot before all threads have finished using the data within
that data slot can be disastrous to your application.

A way to work around this problem is to not call the FreeNamedDataSlot method at all. When a

thread terminates, all of its data slots in TLS are freed automatically. The side effect of not calling
FreeNamedDataSlot is that the slot is taken up until the garbage collector determines that the thread

the slot was created on finished and the slot can be freed.

If you know the number of TLS slots you need for your code at compile time, consider using the
ThreadStaticAttribute on a static field of your class to set up TLS-like storage.

See Also

See the "Thread Local Storage and Thread Relative Static Fields," "ThreadStatic-Attribute Attribute,"
and "Thread Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Chapter 16. Unsafe Code
Visual C# .NET (C#) allows you to step outside of the safe environment of managed code and write
code that is considered "unsafe" by the Common Language Runtime (CLR). Running code that is
considered unsafe by the CLR presents a certain set of restrictions in exchange for opening up
possibilities like accessing memory-mapped data or implementing time-critical algorithms that use
pointers directly. These restrictions are mainly based in the Code Access Security (CAS) system of
the CLR and are in place to draw a distinct line between code the CLR knows to be playing by the
rules (or "safe"), and code that needs to do a bit outside of the traditional sandbox of the CLR (and is
thus "unsafe" code). In order to run code that is marked as unsafe by the CLR, you need the CAS
SkipVerification privilege granted to the assembly that the unsafe code is implemented in. This

tells the CLR to not bother verifying the code and to allow it to run, whereas normally unverified code
would not run. This is a highly privileged operation and is not to be done lightly, as you increase the
permissions your application will require in order to operate correctly on a user's system. If you use
unsafe types in a method signature, you also make the code non-CLS-compliant. This means that
interoperability with other .NET based languages, like VB.NET or Managed C++, for this assembly is
compromised.

Even though unsafe code allows you to easily write potentially unstable code, it does have several
safeguards. Only value types or pointers to value types inside of reference types can be used with
unsafe code; reference types cannot. This allows pointer types to be created solely on the stack, so
you do not have to use the new and delete operations to allocate and release memory to which the

variable points. You only have to wait for the method that declared the pointer type to return, forcing
the pointer to go out of scope and clearing any stack space devoted to this method. You can get into
a bit of trouble if you are doing exotic things with unsafe code (such as pointing to a value type inside
of a reference type) since this behavior allows access to heap-based memory and opens up the
possibility for pointer pitfalls such as those seen in C++.

[Team LiB]

[Team LiB]

Recipe 16.1 Controlling Changes to Pointers Passedto
Methods

Problem

You must pass a pointer variable in to a method; however, you do not want to allow the called
method to change the address that the pointer passed in is pointing to. For example, a developer
wants to assume that after passing in a pointer parameter to a method that that parameter is still
pointing to the same address when this method returns. If the called method were to change what
the pointer pointed to, bugs could be introduced into the code.

In other cases, the converse may be true: the developer wants to allow the address to be changed in
the method she passes the pointer to. Consider a developer who might create a method that accepts
two pointers and switches those pointers by switching the memory locations to which each pointer
points to, rather than swapping the values each pointer points to.

Solution

You must decide whether to pass this pointer by value, by reference, or as an out parameter. There
are several methods of passing arrays to methods. These methods include using or not using the ref
or out keywords to define how the parameters are to be handled.

To make sure that a method does not modify the pointer itself, you would pass the pointer by value,
as shown here:

unsafe
{
 int num = 1;
 int* numPtr = #
 ModifyValue(numPtr);
 // Continue using numPtr...
}

The method ModifyValue can still change the value in the memory location to which the NumPtr
pointer is pointing to, but it cannot force NumPtr to point to a different memory location after the
method ModifyValue returns.

To allow the method to modify the pointer, pass it in by reference:

public unsafe void TestSwitchXY()
{
 int x = 100;
 int y = 20;

 int* ptrx = &x;
 int* ptry = &y;

 Console.WriteLine(*ptrx + "\t" + (int)ptrx);
 Console.WriteLine(*ptry + "\t" + (int)ptry);

 SwitchXY(ref ptrx, ref ptry);

 Console.WriteLine(*ptrx + "\t" + (int)ptrx);
 Console.WriteLine(*ptry + "\t" + (int)ptry);
}

public unsafe void SwitchXY(ref int* x, ref int* y)
{
 int* temp = x;
 x = y;
 y = temp;
}

The SwitchXY method switches the values of the x and y pointers so that they point to the memory

location originally pointed to by the other parameter. In this case, you must pass the pointers in to
the SwitchXY method by reference (ref). This action allows the SwitchXY method to actually modify

where a pointer points to and to return this modified pointer.

Discussion

In safe code, passing a value type to a method by value means that the value is passed in, not the
reference to that value. Therefore, the called method cannot modify the value that the calling
method's reference points to; it can modify only the copy that it received.

It works the same way with unsafe code. When an unsafe pointer is passed in to a method by value,
the value of the pointer (which is a memory location) cannot be modified; however, the value that
this pointer points to can be modified.

To examine the difference between passing a pointer by reference and by value, we first need to set
up a pointer to an integer:

int x = 5;
int* ptrx = &x;

Next, we write the method that attempts to modify the pointer parameter:

private unsafe void CallByValue(int* x)
{
 int newNum = 7;
 x = &newNum;
}

Finally, we call the method and pass in ptrx to this method:

CallByValue(ptrx);

If we examine the pointer variable ptrx before the call to CallByValue, we see that it points to the
value 5. The called method CallByValue changes the passed in parameter to point to a different
memory location. However, when the CallByValue returns, the ptrx pointer still points to the
original memory location that contains the value 5. The reason for this is that the CallByValue
method accepts the pointer ptrx by value. This means that whatever value that ptrx holds, a

memory location in this case, it cannot be modified, which is similar to when a reference type is
passed.

There are other times when we need to allow a called method to modify the memory location that a
pointer points to. Passing a pointer by reference into a method does this. This means that the called
method may, in fact, modify the memory location to which a pointer parameter points. To see this,
we again set up a pointer:

int x = 5;
int* ptrx = &x;

Next, we write the method that attempts to modify the parameter:

private unsafe void CallByRef(ref int* x)
{
 int newNum = 7;
 x = &newNum;
}

Finally, we call the method and pass the pointer by reference:

CallByRef(ref ptrx);

Now if we examine the value that the pointer ptrx points to, before and after the call is made to
CallByRef, we see that it has indeed changed from 5 to 7. Not only this, but the ptrx pointer is
actually pointing to a different memory location. Essentially, the ref keyword allows the method
CallByRef to modify the value contained in the ptrx variable.

Let's consider the use of the out or ref keywords with pointers. A method that accepts a pointer as
an out or ref parameter is called like this:

public unsafe void TestOut()
{
 int* ptrx;
 CallUsingOut(out ptrx);

 Console.WriteLine(*ptrx + "\t" + (int)ptrx);
}

The CallUsingOut method is written as follows:

public unsafe void CallUsingOut(out int* ptrx)
{
 int x = 7;
 ptrx = &x;
}

The ptrx variable is initially a null pointer. After the call is made to the CallUsingOut method, the

ptrx variable points to the value 7.

The code in this section of this recipe is meant to be as simple as possible in order to explain the
difference between passing a pointer by value, by reference, and as an out parameter. However,

there is a serious flaw in the design of this example code (the code in the Solution section does not
contain this flaw). Take the following code, for example:

public unsafe void TestOut()
{
 int* ptrx;
 CallUsingOut(out ptrx);

 Console.WriteLine(*ptrx);
 SomeOtherMethod("Some Text");
 Console.WriteLine(*ptrx);
}

The called method is written as follows:

public unsafe void CallUsingOut(out int* ptrx)
{
 int temp = 7;
 ptrx = &temp;
}

The problem is that the temp variable, pointed to by the out parameter ptrx in the CallUsingOut
method, is in the stack frame of the CallUsingOut method. The first call to WriteLine displays the
correct value (7) for the pointer variable ptrx since the CallUsingOut method's stack frame is still
intact. However, the stack frame to the CallUsingOut method is promptly overwritten when the call
to SomeOtherMethod is made, thereby causing the second call to WriteLine to display garbage.

This mistake is easy to make, especially as the code gets more and more complex. This error can
also occur when returning a pointer from a method as a return value. To solve this, you need to not
assign local variables in the scope of the method that are created on the stack to the pointer since
the value being pointed to can "go away" once the scope is exited, creating a dangling pointer.

Be very careful that you do not create dangling pointers (a pointer that doesn't
point at anything valid, such as by assignging a pointer to memory that is
collected before leaving the function) when passing pointer parameters as ref
or out. This warning also applies to pointers used as return values.

See Also

See the "Method Parameters," "out Parameter," and "ref Parameter" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 16.2 Comparing Pointers

Problem

You need to know whether two pointers point to the same memory location. If they don't, you need
to know which of the two pointers points to a higher or lower element in the same block of memory.

Solution

Using the == and != operators, we can determine if two pointers point to the same memory location.

For example, the code:

unsafe
{
 int[] arr = new int[5] {1,2,3,4,5};
 fixed(int* ptrArr = &arr[0])
 {
 int* p1 = (ptrArr + 1);
 int* p2 = (ptrArr + 3);

 Console.WriteLine("p2 > p1");
 Console.WriteLine("(p2 == p1) = " + (p2 == p1));
 Console.WriteLine("(p2 != p1) = " + (p2 != p1));

 p2 = p1;
 Console.WriteLine("p2 == p1");
 Console.WriteLine("(p2 == p1) = " + (p2 == p1));
 Console.WriteLine("(p2 != p1) = " + (p2 != p1));
 }
}

displays the following:

p2 > p1
(p2 == p1) = False
(p2 != p1) = True

p2 == p1
(p2 == p1) = True
(p2 != p1) = False

Using the >, <, >=, or <= comparison operators, we can determine whether two pointers are pointing

to a higher, lower, or the same element in an array. For example, the code:

unsafe
{
 int[] arr = new int[5] {1,2,3,4,5};
 fixed(int* ptrArr = &arr[0])
 {
 int* p1 = (ptrArr + 1);
 int* p2 = (ptrArr + 3);

 Console.WriteLine("p2 > p1");
 Console.WriteLine("(p2 > p1) = " + (p2 > p1));
 Console.WriteLine("(p2 < p1) = " + (p2 < p1));
 Console.WriteLine("(p2 >= p1) = " + (p2 >= p1));
 Console.WriteLine("(p2 <= p1) = " + (p2 <= p1));

 p2 = p1;
 Console.WriteLine("p2 == p1");
 Console.WriteLine("(p2 > p1) = " + (p2 > p1));
 Console.WriteLine("(p2 < p1) = " + (p2 < p1));
 Console.WriteLine("(p2 >= p1) = " + (p2 >= p1));
 Console.WriteLine("(p2 <= p1) = " + (p2 <= p1));
 }
}

displays the following:

p2 > p1
(p2 > p1) = True
(p2 < p1) = False
(p2 >= p1) = True
(p2 <= p1) = False

p2 == p1
(p2 > p1) = False
(p2 < p1) = False
(p2 >= p1) = True
(p2 <= p1) = True

Discussion

When manipulating the addresses that pointers point to, it is sometimes necessary to compare their
addresses. The ==, !=, >, <, >=, and <= operators have been overloaded to operate on pointer type

variables. These comparison operators do not compare the value pointed to by the pointers; instead,
they compare the addresses pointed to by the pointers.

To compare the values pointed to by two pointers, dereference the pointers and then use a
comparison operator on them. For example:

*intPtr == *intPtr2

or:

structPtr1->value1 != structPtr2->value1

will compare the values pointed to by these pointers, rather than their addresses.

See Also

See the "C# Operators," "= = Operator," and "! = Operator" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 16.3 Navigating Arrays

Problem

You need to iterate through the elements of a single-dimensional, multidimensional, or jagged array
using a pointer to that array.

Solution

To enable iteration, we create an unsafe pointer that points to an array. The manipulation of the
array can then be performed through this pointer.

To create a pointer to a single-dimension array, declare and initialize the array:

int[] intArray = new int[5] {1, 2, 3, 4, 5};

and then set a pointer, arrayPtr, to the address of the first element in this array (we must use the
fixed keyword to pin the array in the managed heap so that the garbage collector does not move it):

fixed(int* arrayPtr = &intArray[0])

Note that this line could also be written as:

fixed(int* arrayPtr = intArray)

without any address of (&) operator or indexer. This is because the array variable always points to

the first element, similar to how C++ array pointers operate.

The following code creates and initializes a pointer to a single-dimension array and then displays the
last item in that array:

unsafe
{
 int[] intArray = new int[5] {1, 2, 3, 4, 5};
 fixed(int* arrayPtr = &intArray[0])
 {
 Console.WriteLine(*(arrayPtr + 4)); //Display the last value '5'
 }
}

Creating a pointer to an array of enumeration values is very similar:

unsafe
{
 Colors[] intArray = new Colors[2] {Colors.Red, Colors.Blue};

 fixed(Colors* arrayPtr = &intArray[0])
 {
 // Use arrayPtr here
 }
}

where Colors is declared as follows:

public enum Colors{Red, Green, Blue}

The last element of the array can then be displayed with the following code:

Console.WriteLine(*(arrayPtr + intArray.GetLength(0) - 1));

Creating a pointer to a multidimensional array is performed by declaring and initializing a
multidimensional array:

int[,] intMultiArray = new int[2,5] {{1,2,3,4,5},{6,7,8,9,10}};

and then setting a pointer to the address of the first element in this array:

fixed(int* arrayPtr = &intMultiArray[0,0])

For example, the following code creates and initializes a pointer to a multidimensional array and then
displays the last item in that array:

unsafe
{
 int[,] intMultiArray = new int[2,5] {{1,2,3,4,5},{6,7,8,9,10}};
 fixed(int* arrayPtr = &intMultiArray[0,0])
 {
 Console.WriteLine(*(arrayPtr + 9)); //Display the last value '10'
 }
}

A jagged array can be pointed to as well, but it is much harder to navigate this type of array using a
pointer. This code creates and initializes a pointer to a jagged array and then displays each item in
that array:

unsafe
{
 int[][] intJaggedArray = new int[3][];
 intJaggedArray[0] = new int[2] {100,200};
 intJaggedArray[1] = new int[3] {300,400,500};
 intJaggedArray[2] = new int[4] {600,700,800,900};
 fixed(int* arrayPtr = &intJaggedArray[0][0])
 {
 for(int counter = -3; counter <= 15; counter++)
 {
 Console.WriteLine(*(arrayPtr + counter));
 }
 }
}

This code creates and initializes a pointer to a jagged array whose second array is defined as a
multidimensional array, and then displays each item in that array:

unsafe
{
 int[][,] intJaggedArray2 = new int[3][,];
 intJaggedArray2[0] = new int[2,1] {{100},{200}};
 intJaggedArray2[1] = new int[3,1] {{300},{400},{500}};
 intJaggedArray2[2] = new int[4,1] {{600},{700},{800},{900}};
 fixed(int* arrayPtr = &intJaggedArray2[0][0,0])
 {
 for(int counter = -5; counter <= 23; counter++)
 {
 Console.WriteLine(*(arrayPtr + counter));
 }
 }
}

See Also

See the "Multidimensional Arrays" and "Jagged Arrays" topics and the "Unsafe at the Limit" article in
the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 16.4 Manipulating a Pointer to a Fixed Array

Problem

One limitation of a pointer to a fixed array is that you may not reassign this pointer to any other
element of that array using pointer arithmetic. The following code will not compile since we are
attempting to modify where the fixed pointer, arrayPtr, is pointing. The line of code in error is

highlighted and results in a compile-time error:

unsafe
{
 int[] intArray = new int[5] {1,2,3,4,5};
 fixed(int* arrayPtr = &intArray[0])
 {
 arrayPtr++;
 }
}

We need a way to increment the address stored in the arrayPtr to access other elements in the

array.

Solution

To allow this operation, create a new temporary pointer to the fixed array, shown here:

unsafe
{
 int[] intArray = new int[5] {1,2,3,4,5};
 fixed(int* arrayPtr = &intArray[0])
 {
 int* tempPtr = arrayPtr;
 tempPtr++;
 }
}

By assigning a pointer that points to the fixed pointer (arrayPtr), we now have a variable (tempPtr)

that we can manipulate as we wish.

Discussion

Any variables declared in a fixed statement cannot be modified or passed as ref or out parameters

to other methods. This limitation can pose a problem when attempting to move a pointer of this type

through the elements of an array. Fixing this problem involves creating a temporary variable,
tempPtr, that points to the same memory locations as the pointer declared in the fixed statement.

Pointer arithmetic can then be applied to this temporary variable to cause the pointer to point to any
of the elements in the array.

The compiler does not allow passing the pointer declared in the fixed statement, arrayPtr, as a ref
or out parameter. However, the tempPtr variable can be passed to a method as a ref or out
parameter. Passing pointers by reference or as out parameters can easily introduce errors into your

code.

See Also

See the "unsafe" and "fixed" keywords in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 16.5 Returning a Pointer to a Particular Element in
an Array

Problem

You need to create a method that accepts a pointer to an array, searches that array for a particular
element, and returns a pointer to the found element.

Solution

The FindInArray method, shown here, returns a pointer to an element found in an array:

public unsafe int* FindInArray(int* theArray, int arrayLength, int valueToFind)
{
 for (int counter = 0; counter < arrayLength; counter++)
 {
 if (theArray[counter] == valueToFind)
 {
 return (&theArray[counter]);
 }
 }

 return (null);
}

This method is strongly typed for arrays that contain integers. To modify this method to use another
type, change the int* types to the pointer type of your choice. Note that if no elements are found in
the array, a null pointer is returned.

The method that creates an array of integers and passes a pointer to this array into the FindInArray

method is shown here:

public void TestFind()
{
 unsafe
 {
 int[] numericArr = new int[3] {2,4,6};
 fixed(int* ptrArr = &numericArr[0])
 {
 int* foundItem = FindInArray(ptrArr, numericArr.Length, 4);
 if (foundItem != null)
 {
 Console.WriteLine(*foundItem);

 }
 else
 {
 Console.WriteLine("Not Found");
 }
 }
 }
}

Discussion

The FindInArray method accepts three parameters. The first parameter, theArray, is a pointer to
the first element in the array that will be searched. The second parameter, arrayLength, is the
length of the array, and the final parameter, valueToFind, is the value we wish to find in the array
theArray.

The second parameter, arrayLength, informs the for loop when the last element is reached. We

cannot determine the length of an array from just a pointer to that array, so this parameter is
needed. Many unmanaged APIs that accept a pointer to an array also require that the length of the
array be passed.

We could pass a pointer to any element in the array through the theArray

parameter, but in doing so, we calculate the remaining length by subtracting
the element location from the length of the array and passing the result to the
arrayLength parameter.

The loop iterates over each element in the array and looks for the element that has a value equal to
the parameter valueToFind. Once this element is found, a pointer to it is returned to the caller. We
could have returned the actual value or the index value (Counter), but by returning a pointer to the

element, more flexibility is offered to the calling method. A pointer can be dereferenced to get the
value pointed to or it can be manipulated to point to the next or previous elements in the array using
simple pointer arithmetic.

The FindInArray method could also be written as follows:

public unsafe int* FindInArray(int* theArray, int arrayLength, int valueToFind)
{
 for (int counter = 0; counter < arrayLength; counter++, theArray++)
 {
 if (*theArray == valueToFind)
 {
 return (theArray);
 }
 }

 return (null);
}

This version of this method uses pointer arithmetic to obtain the correct element in the array to be
returned by this method.

Note that it is possible to return null from this method even though the return value is a pointer to a
primitive type. If it were simply a primitive type and not a pointer to one, we could not return null

from this method.

Make sure you check for null pointers on return when calling a method that
may return a null pointer. Proper exception handling can also mitigate this.

See Also

See the "unsafe" keyword in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 16.6 Creating and Using an Array of Pointers

Problem

You need to create, initialize, and use an array containing pointers.

Solution

The following code creates three pointers (TheNewBrush1, TheNewBrush2, and TheNewBrush3) that
are inserted as elements in an array. The array of pointers to the NewBrush structure is created and
set to a size of 3 so that it can hold each NewBrush structure. This newly defined array now contains

undefined pointers. These undefined pointers should be initialized either to point to a value or to point
to null. Here, all of the pointers in the array are initialized as null pointers. Finally, each NewBrush

structure is then added to this array. Now we have a fully initialized array of pointers. From here we
can use this array as we wish:

unsafe
{
 NewBrush theNewBrush1 = new NewBrush();
 NewBrush theNewBrush2 = new NewBrush();
 NewBrush theNewBrush3 = new NewBrush();

 NewBrush*[] arrayOfNewBrushPtrs = new NewBrush*[3];
 for (int counter = 0; counter < 3; counter++)
 {
 arrayOfNewBrushPtrs[counter] = null;
 }

 arrayOfNewBrushPtrs[0] = &theNewBrush1;
 arrayOfNewBrushPtrs[1] = &theNewBrush2;
 arrayOfNewBrushPtrs[2] = &theNewBrush3;
}

Notice that the for loop initializes each pointer in the array to null before the array is used. This is

usually a good practice so that you do not inadvertently use an uninitialized pointer. Using a pointer
that points to null results in a NullReferenceException being thrown on current versions of the

CLR. This device makes it easier to track down pointer problems.

Using this newly created array of pointers to NewBrush objects allows you to use a pointer to a

pointer. The following code shows how to dereference each pointer within the array
arrayOfNewBrushPtrs:

unsafe
{

 fixed(NewBrush** ptrArrayOfNewBrushPtrs = arrayOfNewBrushPtrs)
 {
 for (int counter = 0; counter < 3; counter++)
 {
 ptrArrayOfNewBrushPtrs[counter]->BrushType = counter;
 Console.WriteLine(ptrArrayOfNewBrushPtrs[counter]->BrushType);
 Console.WriteLine((int)ptrArrayOfNewBrushPtrs[counter]);
 }
 }
}

The for loop initializes the BrushType field of each of the pointers to NewBrush objects in the array.
This field is initialized to the current value of the loop counter (counter). The next two lines display

this newly initialized field and the address of where the structure is located in memory. This code
displays the following output:

0
1243292
1
1243284
2
1243276

Discussion

When using an array of pointers, the fixed statement pins the array in memory. Even though this

array consists of pointers to value types, the array itself is created on the managed heap. Notice that
ptrArrayOfNewBrushPtrs is defined as a pointer to a pointer. This stems from our creation of a
pointer (ptrArrayOfNewBrushPtrs) that will initially point to the first element in an array of pointers.

Therefore, to be able to dereference this pointer to get to the value that the pointer in the array is
pointing to, we must dereference it once to get to the pointer in the array and then a second time to
get the value that the array pointer is pointing to. The NewBrush structure used here is defined like

this:

public struct NewBrush
{
public int BrushType;
}

See Also

See the "Unsafe Code Tutorial" in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 16.7 Creating and Using an Array of Pointersto
Unknown Types

Problem

You need to create and operate on elements of an array that holds objects of unknown types.

Solution

The solution is to create an array of void pointers so that we do not need to know at design time

what type(s) we will be pointing to:

unsafe
{
 long x = 10;
 long y = 20;
 long z = 1;

 void*[] arrayOfPtrs = new void*[3];
 arrayOfPtrs[0] = &X;
 arrayOfPtrs[1] = &Y;
 arrayOfPtrs[2] = &Z;

 Console.WriteLine(*((long*)arrayOfPtrs[0]));
 Console.WriteLine(*((long*)arrayOfPtrs[1]));
 Console.WriteLine(*((long*)arrayOfPtrs[2]));
}

This code creates an array, arrayOfPtrs, that will contain three void pointers. The pointers that are
saved to this array are pointers to the three variables x, y, and z of type long. It is a simple matter
to change the long data type to something different such as a byte or char. However, when the

pointers in this array are used, they must be cast back to their original type. This cast is shown in the
last three lines, where each pointer in the array is being dereferenced and displayed. If you do the
wrong cast, you get undefined results, but the next example helps address this.

The following code creates an array of two void pointers and points the first pointer at a NewBrush

structure and the second at an integer type variable:

unsafe
{
 NewBrush theNewBrush1 = new NewBrush();
 int* theInt = stackalloc int[1];

 void*[] arrayOfPtrs = new void*[2];

 arrayOfPtrs[0] = &theNewBrush1;
 arrayOfPtrs[1] = theInt;

 Console.WriteLine("arrayOfPtrs[0] = " + (
 (NewBrush*)arrayOfPtrs[0])->BrushType);
 Console.WriteLine("arrayOfPtrs[1] = " +
 ((int*)arrayOfPtrs[1])->ToString());
}

This code starts by creating a new NewBrush structure and a new pointer to an integer and the
integer itself on the stack using the stackalloc statement. Next, the array of void pointers is
created. At this point, we could opt to set all of the void pointers to null, but here we will
immediately initialize each void pointer in the array to point to one of the previously declared types.

However, this solution presents a problem with casting the pointers in the array back to their original
types. This solution requires you to keep track of the data type that is stored in each element of the
array so that you can correctly cast it back to its original type.

Discussion

Notice that each of the pointers in the array must be cast to their proper pointer type before the
value they point to can be used, as shown in the following code:

((NewBrush*)arrayOfPtrs[0])->BrushType = 5;
((int)arrayOfPtrs[1]) = 111;

We cannot simply write *arrayOfPtrs[0] to dereference the pointer at the first element of the

array. The compiler cannot accurately determine what type to dereference it as. Therefore the array
element must be cast to some type before it is dereferenced.

When you cast a void pointer to an incorrect type, an exception will never be thrown. Using this
incorrectly cast pointer can result in corruption of the original data that the pointer pointed to. This is
one of the things that makes unsafe code so unsafe to use.

See Also

See the "Void Sample" article and the "stackalloc" keyword in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 16.8 Switching Unknown Pointer Types

Problem

You need a generic method that accepts two pointers and switches the addresses that each pointer
points to. In other words, if X points to an integer variable Foo and Y points to an integer variable
Bar, you want to switch X so that it points to Bar and switch Y so that it points to Foo.

Solution

Create a method that accepts two void pointers. The following method accepts two pointers to void

by reference. The by reference is required since we are actually switching the values contained in the
pointer variables, not the value that the pointer is pointing to:

public unsafe void Switch(ref void* x, ref void* y)
{
 void* temp = x;
 x = y;
 y = temp;
}

The following test code calls the Switch method with two integer variables that point to different

memory locations:

public unsafe void TestSwitch()
{
 int x = 100;
 int y = 20;
 int* ptrx = &x;
 int* ptry = &y;

 Console.WriteLine(*ptrx + "\t" + (int)ptrx);
 Console.WriteLine(*ptry + "\t" + (int)ptry);

 // Convert int* to void*
 void* voidx = (void*)ptrx;
 void* voidy = (void*)ptry;

 // Switch pointer values
 Switch(ref voidx, ref voidy);

 // Convert returned void* to a usable int*
 ptrx = (int*)voidx;
 ptry = (int*)voidy;

 Console.WriteLine(*ptrx + "\t" + (int)ptrx);
 Console.WriteLine(*ptry + "\t" + (int)ptry);
}

The following is displayed:

100 1243108
20 1243104
20 1243104
100 1243108

The TestSwitch method could just have easily been written with another data type, such as a byte,

shown here:

public unsafe void TestSwitch()
{
 byte x = 100;
 byte y = 20;
 byte* ptrx = &x;
 byte* ptry = &y;

 Console.WriteLine(*ptrx + "\t" + (int)ptrx);
 Console.WriteLine(*ptry + "\t" + (int)ptry);

 // Convert byte* to void*
 void* voidx = (void*)ptrx;
 void* voidy = (void*)ptry;

 // Switch pointer values
 Switch(ref voidx, ref voidy);

 // Convert returned void* to a usable byte*
 ptrx = (byte*)voidx;
 ptry = (byte*)voidy;

 Console.WriteLine(*ptrx + "\t" + (int)ptrx);
 Console.WriteLine(*ptry + "\t" + (int)ptry);
}

All that had to be done is to change the int* types to byte* types.

Discussion

A void pointer has no type and therefore cannot be dereferenced, nor can pointer arithmetic be
applied to this type of pointer. A void pointer does have one very useful function, though; it can be
cast to a pointer of any other type. A void pointer is also able to be cast to the following other value

types as well:

sbyte int

byte uint

short long

ushort ulong

In the Switch method, used in the Solution for this recipe, we notice that it takes two parameters by
reference of type void*. We are declaring that any pointer type may be passed to these two
parameters on this method. Once inside the Switch method, we can manipulate the value contained
in the void pointers. However, since we do not know the original type that the void* was cast from,
we cannot dereference the void*.

The one drawback to this technique is that before the Switch method is called in the TestSwitch
method, the int* or byte* pointers must be cast to a void*. When the Switch method returns, the
void* pointers must be cast back to their original types before they may be used. The reason for this
casting is that we are passing the void* pointers by reference instead of by value.

We could pass the void* pointers by value instead, and simply switch the values pointed to, rather
than the memory locations pointed to, in the Switch method. This new SwitchValues method would

look something like this:

public unsafe void SwitchValues(void* x, void* y)
{
 void* temp = x;
 *x = *y;
 *y = *temp;
}

Unfortunately, this code will not compile, since you cannot dereference a void*. The void* must be

cast to its original type before it can be dereferenced. To do this, we must also pass along the type
information to the SwitchValues method. This can become very cumbersome, and it will reduce the

genericity of this method as well.

See Also

See section A.4 Pointer conversions in the C# specification.

[Team LiB]

[Team LiB]

Recipe 16.9 Breaking Up Larger Numbers into Their
Equivalent Byte Array Representation

Problem

You have a larger number, such as an integer or a floating-point value, that you want to break up
into its equivalent byte array representation. For example, you have the integer value 0x1120FFED
and you want to obtain the following byte array: 0x11, 0x20, 0xFF, and 0xED.

Solution

Convert the larger number to a byte*, and operate on the byte* as if it were a pointer to an array of
bytes. The following example creates a byte* to an int value and displays each byte value starting
with the leftmost byte and working to the right:

unsafe
{
 int myInt = 1;
 byte* myIntPointer = (byte*)&myInt; // Convert to a byte*

 // Display all bytes of this integer value
 for (int counter = sizeof(int) - 1; counter >= 0; counter--)
 {
 Console.WriteLine(myIntPointer[counter]);
 }
}

The following code shows how this can also be done with a decimal value:

unsafe
{
 decimal myDec = 1M;
 byte* myBytePointer = (byte*)&myDec; // Convert to a byte*

 // Display all bytes of this decimal value
 for (int counter = sizeof(decimal) - 1; counter >= 0; counter--)
 {
 Console.WriteLine(myBytePointer[counter]);
 }
}

You'll notice that the byte representation for a decimal value (and floating-point values) is quite

different from non-floating-point values.

Discussion

When using this technique to extract bytes from a larger number, keep in mind the endianness of the
machine you are working on. For example, my Intel machine uses little-endian format, while others
may use big-endian format.

With little-endian format, the least-significant byte is stored as the first byte of a 32-bit value, and
the most-significant byte is stored as the last byte. It's as if you were reading the bytes backward in

memory. Big-endian stores the least-significant byte on the right and the most-significant byte on the
left.

On Intel machines, if you want to walk the array starting with the most-significant byte, you must
use the following for loop:

for (int counter = sizeof(int) - 1; counter >= 0; counter--)

Notice that the loop starts with the last element of the array and moves toward the first element.

If you want to walk the array starting with the least-significant byte, you would use the following
modified for loop:

for (int counter = 0; counter < sizeof(decimal); counter++)

Notice now that the loop starts at the first element in the array and works its way to the last
element.

Always determine the endianness of the machine you are working on (consult
System.BitConverter.IsLittleEndian) if you are using the code in this recipe. Otherwise, you

could make the mistake of looking at the most-significant byte when, in fact, it is the least-significant
byte.

See Also

See the "unsafe" keyword in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 16.10 Converting Pointers to a Byte[], SByte[],or
Char[] to a String

Problem

You have obtained a pointer to a byte array, an sbyte array, or a char array. You want to convert
this array into its string equivalent.

Solution

Use one of the string object's constructors that build a string from either a byte*, sbyte*, or char*
passed in as a parameter. The following overloaded ConvertToString methods accept a byte[], an
sbyte[], or a char[] and return the equivalent string object created from these arrays:

public string ConvertToString(byte[] arr)
{
 unsafe
 {
 string returnStr;
 fixed(byte* fixedPtr = arr)
 {
 returnStr = new string((sbyte*)fixedPtr);
 }
 }

 return (returnStr);
}

public string ConvertToString(sbyte[] arr)
{
 unsafe
 {
 string returnStr;
 fixed(sbyte* fixedPtr = arr)
 {
 returnStr = new string(fixedPtr);
 }
 }

 return (returnStr);
}

public string ConvertToString(char[] arr)

{
 unsafe
 {
 string returnStr;
 fixed(char* fixedPtr = arr)
 {
 returnStr = new string(fixedPtr);
 }
 }

 return (returnStr);
}

The following code calls these methods, passing in one of the required array types:

Console.WriteLine(ConvertToString(new byte[3] {0x61,0x62,0x63}));
Console.WriteLine(ConvertToString(new char[3] {'a','b','c'}));
Console.WriteLine(ConvertToString(new sbyte[3] {0x61,0x62,0x63}));

Discussion

The System.String constructor that takes an sbyte* in the Solution code is expecting a null-
terminated string in the buffer. There are also constructors on System.String that take an sbyte*
and default to Unicode, or allow you to pass an Encoding object. One method to create a string from
these arrays is to use a foreach loop to iterate over each element in the array and append the
character value of each array element to the end of a StringBuilder object. However, this would
operate slower than using the technique in this recipe. In fact, assuming a null-terminated string is
in the byte array, the following unsafe code to convert a byte array to a string executes in 46% of

the time of its equivalent safe code:

public string ConvertToString(byte[] arr)
{
 unsafe
 {
 string returnStr;
 fixed(byte* fixedPtr = arr)
 {
 returnStr = new string((sbyte*)fixedPtr);
 }
 }

 return (returnStr);
}

The safe code is shown here:

public string ConvertToStringSlow(byte[] arr)
{
 System.Text.StringBuilder returnStr = new System.Text.StringBuilder();
 foreach (sbyte C in arr)
 {
 returnStr.Append(C);

 }

 return (returnStr.ToString());
}

In addition, the unsafe code is twice as fast as the following code, which uses the Encoding.ASCII
class to convert a byte array to a string:

public string ConvertToASCIIStringSlow(byte[] arr)
{
 String retStr = Encoding.ASCII.GetString(arr);

 return (retStr);
}

This recipe uses two overloaded string constructors that accept either a pointer to a byte array or a
pointer to a char array. The constructor then uses this array to construct a string from the array.
The newly created string object is then initialized to this string created from the array. The

constructors used in this recipe are defined as follows:

unsafe public String(char* value)

unsafe public String(sbyte* value)

The parameter for this constructor is defined as follows:

value

A pointer to either a char array or an sbyte array.

Note that if a pointer to a byte array is passed in, it must be cast to an sbyte:

returnStr = new string((sbyte*)fixedPtr);

Notice that the array's length is not passed in to the string constructor. Instead, the constructor will
keep appending array values to the string until a null character is reached. If you know how many

characters are in the array, then you should use the string overload that allows you to pass in the
length.

See Also

See the "Unsafe Code Tutorial" and the "Encoding Class" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Chapter 17. XML
XML (Extensible Markup Language) is a simple, portable, and flexible way to represent data in a
structured format. XML is used in a myriad of ways, from acting as the foundation of web-based
messaging protocols like SOAP, to being one of the more popular ways to store configuration data
(such as the web.config, machine.config, or security.config files in the .NET Framework). Microsoft
recognized the usefulness of XML to developers and has done a nice job of giving the developer
choices around the tradeoffs one encounters when using XML. Sometimes you want to simply run
though an XML document looking for a value in a read-only cursor-like fashion, and other times you
need to be able to randomly access various pieces of the document. Microsoft provides classes like
XmlTextReader and XmlTextWriter for lighter access and XmlDocument for full DOM (Document

Object Model) processing support. It is likely that if you use .NET you will be dealing with XML to one
degree or another, and in this chapter we explore some of the uses for XML and XML-based
technologies like XPath and XSLT, as well as explore topics like validation of XML and transformation
of XML to HTML.

[Team LiB]

[Team LiB]

Recipe 17.1 Reading and Accessing XML Datain
Document Order

Problem

You need to read in all the elements of an XML document and obtain information about each element,
such as its name and attributes.

Solution

Create an XMLTextReader and use its Read method to process the document:

using System;
using System.Xml;

// ...

public static void Indent(int level)
{
 for (int i = 0; i < level; i++)
 Console.Write(" ");
}

public static void AccessXML()
{
 string xmlFragment = "<?xml version='1.0'?>" +
 "<!-- My sample XML -->" +
 "<?pi myProcessingInstruction?>" +
 "<Root>" +
 "<Node1 nodeId='1'>First Node</Node1>" +
 "<Node2 nodeId='2'>Second Node</Node2>" +
 "<Node3 nodeId='3'>Third Node</Node3>" +
 "</Root>";

 XmlTextReader reader = new XmlTextReader(xmlFragment,
 XmlNodeType.Element, null);
 int level = 0;

 while (reader.Read())
 {
 switch (reader.NodeType)
 {
 case XmlNodeType.CDATA:

 Indent(level);
 Console.WriteLine("CDATA: {0}", reader.Value);
 break;
 case XmlNodeType.Comment :
 Indent(level);
 Console.WriteLine("COMMENT: {0}", reader.Value);
 break;
 case XmlNodeType.DocumentType :
 Indent(level);
 Console.WriteLine("DOCTYPE: {0}={1}",
 reader.Name, reader.Value);
 break;
 case XmlNodeType.Element :
 Indent(level);
 Console.WriteLine("ELEMENT: {0}", reader.Name);
 level++;
 while(reader.MoveToNextAttribute())
 {
 Indent(level);
 Console.WriteLine("ATTRIBUTE: {0}='{1}'",
 reader.Name, reader.Value);
 }
 break;
 case XmlNodeType.EndElement :
 level--;
 break;
 case XmlNodeType.EntityReference :
 Indent(level);
 Console.WriteLine("ENTITY: {0}", reader.Name);
 break;
 case XmlNodeType.ProcessingInstruction :
 Indent(level);
 Console.WriteLine("INSTRUCTION: {0}={1}",
 reader.Name, reader.Value);
 break;
 case XmlNodeType.Text :
 Indent(level);
 Console.WriteLine("TEXT: {0}", reader.Value);
 break;
 case XmlNodeType.XmlDeclaration :
 Indent(level);
 Console.WriteLine("DECLARATION: {0}={1}",
 reader.Name, reader.Value);
 break;
 }
 }
 reader.Close();
}

This code dumps the XML document in a hierarchical format:

DECLARATION: xml=version='1.0'

COMMENT: My sample XML
INSTRUCTION: pi=myProcessingInstruction
ELEMENT: Root
 ELEMENT: Node1
 ATTRIBUTE: nodeId='1'
 TEXT: First Node
 ELEMENT: Node2
 ATTRIBUTE: nodeId='2'
 TEXT: Second Node
 ELEMENT: Node3
 ATTRIBUTE: nodeId='3'
 TEXT: Third Node

Discussion

Reading existing XML and identifying different node types is one of the fundamental actions that you
will need to perform when dealing with XML. The code in the Solution shows how to create an
XmlTextReader from either a string or from a stream, and then iterate over the nodes while

recreating the formatted XML for output to the console window.

See Also

See the "XmlTextReader Class," "XmlNodeType Enumeration," and "StringReader Class" topics in the
MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 17.2 Reading XML on the Web

Problem

Given a URL that points to an XML document, you need to grab the XML.

Solution

Use the XmlTextReader constructor that takes a URL as a parameter:

string url = "http://localhost/xml/sample.xml";

// use the XmlTextReader to get the xml at the url
XmlTextReader reader = new XmlTextReader (url);

 while (reader.Read())
 {
 switch (reader.NodeType)
 {
 case XmlNodeType.Element :
 Console.Write("<{0}>", reader.Name);
 break;
 }
 }
 reader

Discussion

The sample.xml file being referenced in this code is set up in a virtual directory named xml on the
local system. The code retrieves the sample.xml file from the web server and displays all of the
elements in the XML.

Sample.xml contains the following XML data:

<?xml version='1.0'?>
<!-- My sample XML -->
<?pi myProcessingInstruction?>
<Root>
 <Node1 nodeId='1'>First Node</Node1>
 <Node2 nodeId='2'>Second Node</Node2>
 <Node3 nodeId='3'>Third Node</Node3>
 <Node4><![CDATA[<>\&']]></Node4>
</Root>

See Also

See the "XmlTextReader Class" topic in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 17.3 Querying the Contents of an XML Document

Problem

You have a large and complex XML document and you need to find various pieces of information,
such as all the information contained within a specific element and having a particular attribute
setting. You want to query the XML structure without having to iterate through all the nodes in the
XML document and searching for a particular item by hand.

Solution

In order to query a database, you normally would use SQL. In order to query an XML document, you
would use XPath. In .NET, this means using the System.Xml.XPath namespace and classes like
XPathDocument, XPathNavigator, and XPathNodeIterator.

In the following example, we use these classes to select nodes from an XML document we construct
holding members from the board game "Clue" (or "Cluedo", as it is known abroad) and their various
roles. We want to be able to select the married female participants who were witnesses to the crime.
In order to do this, we pass an XPath expression to query the XML data set as follows:

public static void QueryXML()
{
 string xmlFragment = "<?xml version='1.0'?>" +
 "<Clue>" +
 "<Participant type='Perpetrator'>Professor Plum</Participant>" +
 "<Participant type='Witness'>Colonel Mustard</Participant>" +
 "<Participant type='Witness'>Mrs. White</Participant>" +
 "<Participant type='Witness'>Mrs. Peacock</Participant>" +
 "<Participant type='Witness'>Mr. Green</Participant>" +
 "</Clue>";

 XmlTextReader reader = new XmlTextReader(xmlFragment,
 XmlNodeType.Element,null);

 // Instantiate an XPathDocument using the XmlTextReader.
 XPathDocument xpathDoc = new XPathDocument(reader, XmlSpace.Preserve);

 // get the navigator
 XPathNavigator xpathNav = xpathDoc.CreateNavigator();

 // set up the query looking for the married female participants
 // who were witnesses
 string xpathQuery =
 "/Clue/Participant[attribute::type='Witness'][contains(text(),'Mrs.')]";

 // get the nodeset from the query
 XPathNodeIterator xpathIter = xpathNav.Select(xpathQuery);

 // write out the nodes found (Mrs. White and Mrs.Peacock in this instance)
 while(xpathIter.MoveNext())
 {
 Console.WriteLine(xpathIter.Current.Value);
 }

 // close the reader.
 reader.Close();
}

This outputs the following:

Mrs. White
Mrs. Peacock

Discussion

XPath is a very versatile language for performing queries on XML-based data. In order to accomplish

our goal, we first created an XML fragment that looks like this:

<?xml version='1.0'?>
<Clue>
 <Participant type='Perpetrator'>Professor Plum</Participant>
 <Participant type='Witness'>Colonel Mustard</Participant>
 <Participant type='Witness'>Mrs. White</Participant>
 <Participant type='Witness'>Mrs. Peacock</Participant>
 <Participant type='Witness'>Mr. Green</Participant>
</Clue>;

We then load this fragment into an XmlTextReader, as shown in Recipe 17.1, then construct an
XPathDocument to allow us to create an XPathNavigator, which lets us use XPath syntax to query
the XML document shown in the preceding listing. The XmlTextReader reads over the document,
checking for well-formedness; the XPathDocument instance wraps the XmlTextReader so we can use
XPath to locate nodes (as well as perform XSLT transforms directly), and the XPathNavigator gets
the set of nodes selected by the XPath expression.

XmlTextReader reader = new XmlTextReader(xmlFragment,
 XmlNodeType.Element,null);

// Instantiate an XPathDocument using the XmlTextReader.
XPathDocument xpathDoc = new XPathDocument(reader, XmlSpace.Preserve);

// get the navigator
XPathNavigator xpathNav = xpathDoc.CreateNavigator();

Now we have to determine the XPath-based query to get all of the married female participants who
were witnesses. This is set up in the xpathQuery string like this:

// set up the query looking for the married female participants
// who were witnesses
string xpathQuery =
 "/Clue/Participant[attribute::type='Witness'][contains(text(),'Mrs.')]";

In order to get a bit of comprehension of what is going on here, let me explain the syntax a bit:

/Clue/Participant says "Get all of the Participants under the root level node Clue."

Participant[attribute::type='Witness'] says "Select only Participants with an attribute

called type with a value of Witness."

Participant[contains(text(),'Mrs.')] says "Select only Participants with a value that

contains ̀ Mrs.'"

Put them all together and we get all of the married female participants who were witnesses.

Once we have an XPathNavigator, we call the Select method on it, passing the XPath- based query
to select the nodes we are looking for that are returned via the XPathNodeIterator. We use the
XPathNodeIterator to write out the names of the Participants we found and close the
XmlTextReader.

See Also

See the "XPathDocument Class," "XPathNavigator Enumeration," and "XPathNodeIterator Class"
topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 17.4 Validating XML

Problem

You are accepting an XML document created by another source and you want to verify that it
conforms to a specific schema. This schema may be in the form of an XSD or XDR schema;
alternatively, you want the flexibility to use a DTD to validate the XML.

Solution

Use the XmlValidatingReader to validate XML documents against any descriptor document, such as

an XSD (XML Schema), a DTD (Document Type Definition), or an XDR (Xml-Data Reduced):

public static void ValidateXML()
{
 // create XSD schema collection with book.xsd
 XmlSchemaCollection schemaCollection = new XmlSchemaCollection();
 // wire up handler to get any validation errors
 schemaCollection.ValidationEventHandler +=
 new ValidationEventHandler(ValidationCallBack);
 // add book.xsd
 schemaCollection.Add(null, @"..\..\Book.xsd");
 // make sure we added
 if(schemaCollection.Count > 0)
 {
 // open the book.xml file
 XmlTextReader reader = new XmlTextReader(@"..\..\Book.xml");
 // set up the validating reader
 XmlValidatingReader validReader =
 new XmlValidatingReader(reader);

 // set the validation type and add the schema collection
 validReader.ValidationType = ValidationType.Schema;
 validReader.Schemas.Add(schemaCollection);

 // wire up for any validation errors from the validating
 // reader
 validReader.ValidationEventHandler +=
 new ValidationEventHandler(ValidationCallBack);
 // read all nodes and print out
 while (validReader.Read())
 {
 if(validReader.NodeType == XmlNodeType.Element)

 {
 Console.Write("<{0}", validReader.Name);
 while(validReader.MoveToNextAttribute())
 {
 Console.Write(" {0}='{1}'",validReader.Name,
 validReader.Value);
 }
 Console.Write(">");
 }
 else if(validReader.NodeType == XmlNodeType.Text)
 {
 Console.Write(validReader.Value);
 }
 else if(validReader.NodeType == XmlNodeType.EndElement)
 {
 Console.WriteLine("</{0}>",validReader.Name);
 }
 }
 }
}

private static void ValidationCallBack(object sender, ValidationEventArgs e)
{
 Console.WriteLine("Validation Error: {0}", e.Message);
}

Discussion

The Solution illustrates how to use the XmlValidatingReader to validate the book.xml document

against a book.xsd XML Schema definition file. DTDs were the original way to specify the structure of
an XML document, but it has become more common to use XML Schema since it reached W3C
Recommendation status in May 2001. XDR was an early form of the final XML Schema syntax
provided by Microsoft, and, while it might be encountered in existing systems, it should not be used
for new development.

The first thing to do is create an XmlSchemaCollection to hold our XSD (book.xsd):

// create XSD schema collection with book.xsd
XmlSchemaCollection schemaCollection = new XmlSchemaCollection();
// wire up handler to get any validation errors
schemaCollection.ValidationEventHandler +=
 new ValidationEventHandler(ValidationCallBack);
// add book.xsd
schemaCollection.Add(null, @"..\..\Book.xsd");

This code also hooks up the schema collection event handler for validation errors to the
ValidationCallback function that writes out the validation error message:

private static void ValidationCallBack(object sender, ValidationEventArgs e)
{
 Console.WriteLine("Validation Error: {0}", e.Message);
}

Once we have the schema collection, we create an XmlTextReader to load the book.xml file and then
use the XmlTextReader to create our XmlValidatingReader:

// open the book.xml file
XmlTextReader reader = new XmlTextReader(@"..\..\Book.xml");
// set up the validating reader
XmlValidatingReader validReader =
 new XmlValidatingReader(reader);

The XmlValidatingReader error handler is also wired up to the ValidationCallback function; we

then proceed to roll over the XML document and write out the elements and attributes. Setting the
XmlValidationReader.ValidationType to ValidationType.Schema tells the
XmlValidatingReader to perform XML Schema validation. To perform DTD validation, use a DTD and
ValidationType.DTD, and to perform XDR validation, use an XDR schema and
ValidationType.XDR:

 // set the validation type and add the schema collection
 validReader.ValidationType = ValidationType.Schema;
 validReader.Schemas.Add(schemaCollection);

 // wire up for any validation errors from the validating
 // reader
 validReader.ValidationEventHandler +=
 new ValidationEventHandler(ValidationCallBack);

 // read all nodes and print out
 while (validReader.Read())
 {
 if(validReader.NodeType == XmlNodeType.Element)
 {
 Console.Write("<{0}", validReader.Name);
 while(validReader.MoveToNextAttribute())
 {
 Console.Write(" {0}='{1}'",validReader.Name,
 validReader.Value);
 }
 Console.Write(">");
 }
 else if(validReader.NodeType == XmlNodeType.Text)
 {
 Console.Write(validReader.Value);
 }
 else if(validReader.NodeType == XmlNodeType.EndElement)
 {
 Console.WriteLine("</{0}>",validReader.Name);
 }
}

The book.xml file contains the following:

<?xml version="1.0" encoding="utf-8"?>
<Book xmlns="http://tempuri.org/Book.xsd" name="C# Cookbook">

 <Chapter>File System IO</Chapter>
 <Chapter>Security</Chapter>
 <Chapter>Data Structures and Algorithms</Chapter>
 <Chapter>Reflection</Chapter>
 <Chapter>Threading</Chapter>
 <Chapter>Numbers</Chapter>
 <Chapter>Strings</Chapter>
 <Chapter>Classes And Structures</Chapter>
 <Chapter>Collections</Chapter>
 <Chapter>XML</Chapter>
 <Chapter>Delegates And Events</Chapter>
 <Chapter>Diagnostics</Chapter>
 <Chapter>Enums</Chapter>
 <Chapter>Unsafe Code</Chapter>
 <Chapter>Regular Expressions</Chapter>
</Book>

The book.xsd file contains the following:

<?xml version="1.0" ?>
<xs:schema id="NewDataSet" targetNamespace="http://tempuri.org/Book.xsd" xmlns:
mstns="http://tempuri.org/Book.xsd"
 xmlns="http://tempuri.org/Book.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
 attributeFormDefault="qualified" elementFormDefault="qualified">
 <xs:element name="Book">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Chapter" nillable="true"
 minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent
msdata:ColumnName="Chapter_Text" msdata:Ordinal="0">
 <xs:extension base="xs:string">
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" form="unqualified" type="xs:string"/>
 </xs:complexType>
 </xs:element>
</xs:schema>

See Also

See the "XmlValidatingReader Class," "XmlSchemaCollection Class," "ValidationEventHandler Class,"
"ValidationType Enumeration," and "Introduction to XML Schemas" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 17.5 Creating an XML Document Programmatically

Problem

You have data that you want to put into a more structured form, such as an XML document.

Solution

Suppose you have the following information for an address book that you want to turn into XML:

Name Phone

Tim 999-888-0000

Newman 666-666-6666

Harold 777-555-3333

Use the XmlTextWriter to create XML for this table:

XmlTextWriter writer = new XmlTextWriter(Console.Out);
writer.Formatting = Formatting.Indented;
writer.WriteStartElement("AddressBook");
writer.WriteStartElement("Contact");
writer.WriteAttributeString("name", "Tim");
writer.WriteAttributeString("phone", "999-888-0000");
writer.WriteEndElement();
writer.WriteStartElement("Contact");
writer.WriteAttributeString("name", "Newman");
writer.WriteAttributeString("phone", "666-666-6666");
writer.WriteEndElement();
writer.WriteStartElement("Contact");
writer.WriteAttributeString("name", "Harold");
writer.WriteAttributeString("phone", "777-555-3333");
writer.WriteEndElement();
writer.WriteEndElement();
writer.Close();

Or you can use the XmlDocument class to programmatically construct XML from other data:

public static void CreateXML()
{
 // Start by making an XmlDocument

 XmlDocument xmlDoc = new XmlDocument();
 // create a root node for the document
 XmlElement addrBook = xmlDoc.CreateElement("AddressBook");
 xmlDoc.AppendChild(addrBook);
 // create the Tim contact
 XmlElement contact = xmlDoc.CreateElement("Contact");
 contact.SetAttribute("name","Tim");
 contact.SetAttribute("phone","999-888-0000");
 addrBook.AppendChild(contact);
 // create the Newman contact
 contact = xmlDoc.CreateElement("Contact");
 contact.SetAttribute("name","Newman");
 contact.SetAttribute("phone","666-666-6666");
 addrBook.AppendChild(contact);
 // create the Harold contact
 contact = xmlDoc.CreateElement("Contact");
 contact.SetAttribute("name","Harold");
 contact.SetAttribute("phone","777-555-3333");
 addrBook.AppendChild(contact);

 // Display XML
 Console.WriteLine("Generated XML:\r\n{0}",addrBook.OuterXml);
 Console.WriteLine();
}

Both of these methods generate XML that looks like this:

<AddressBook>
 <Contact name="Tim" phone="999-888-0000" />
 <Contact name="Newman" phone="666-666-6666" />
 <Contact name="Harold" phone="777-555-3333" />
</AddressBook>

Discussion

Now that you have seen two ways to do this, the question arises: "Which one to use?" The
XMLDocument uses the traditional DOM method of interacting with XML, while the
XmlTextReader/XmlTextWriter combination deals with XML in a streaming format. If you are
dealing with larger documents, you are probably better off using the XmlTextReader/XmlTextWriter
combination than the XmlDocument. The XmlTextReader/XmlTextWriter combination is the better-

performing of the two when you do not need the whole document in memory. If you need the power
of being able to traverse back over what you have written already, use XmlDocument.

XmlDocument is the class that implements the DOM model for XML processing in the .NET Framework.

The DOM holds all of the nodes in the XML in memory at the same time, which enables tree traversal
both forward and backward. DOM also allows for a writable interface to the whole XML document,
which other XML classes do not provide in .NET. XmlDocument allows you to manipulate any aspect of
the XML tree, is eligible to be used for XSLT transformations via the XslTransform class through its
support of the IXPathNavigable interface, and allows you to run XPath queries against the
document without having to create an XPathDocument first.

See Also

See the "XmlDocument Class," "XML Document Object Model (DOM)," "XslTransform Class," and
"IXPathNavigable Interface" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 17.6 Detecting Changes to an XML Document

Problem

You need to inform one or more classes or components that a node in an XML document has been
inserted, removed, or had its value changed.

Solution

In order to track changes to an active XML document, subscribe to the events published by the
XmlDocument class. XmlDocument publishes events for node creation, insertion, and removal for both

the pre- and post-conditions of these actions. In the following example, we have a number of event
handlers defined in the same scope as the DetectXMLChanges method, but they could just as easily

be callbacks to functions on other classes that are interested in the manipulation of the live XML
document.

DetectXMLChanges loads an XML fragment we define in the method, wires up the event handlers for

the node events, adds, changes, and removes some nodes to trigger the events, then writes out the
resulting XML:

public static void DetectXMLChanges()
{
 string xmlFragment = "<?xml version='1.0'?>" +
 "<!-- My sample XML -->" +
 "<?pi myProcessingInstruction?>" +
 "<Root>" +
 "<Node1 nodeId='1'>First Node</Node1>" +
 "<Node2 nodeId='2'>Second Node</Node2>" +
 "<Node3 nodeId='3'>Third Node</Node3>" +
 @"<Node4><![CDATA[<>\&']]></Node4>" +
 "</Root>";

 XmlDocument doc = new XmlDocument();
 doc.LoadXml(xmlFragment);

 //Create the event handlers.
 doc.NodeChanging += new XmlNodeChangedEventHandler(NodeChangingEvent);
 doc.NodeChanged += new XmlNodeChangedEventHandler(NodeChangedEvent);
 doc.NodeInserting += new XmlNodeChangedEventHandler(NodeInsertingEvent);
 doc.NodeInserted += new XmlNodeChangedEventHandler(NodeInsertedEvent);
 doc.NodeRemoving += new XmlNodeChangedEventHandler(NodeRemovingEvent);
 doc.NodeRemoved += new XmlNodeChangedEventHandler(NodeRemovedEvent);

 // Add a new element node.

 XmlElement elem = doc.CreateElement("Node5");
 XmlText text = doc.CreateTextNode("Fifth Element");
 doc.DocumentElement.AppendChild(elem);
 doc.DocumentElement.LastChild.AppendChild(text);

 // Change the first node
 doc.DocumentElement.FirstChild.InnerText = "1st Node";

 // remove the fourth node
 XmlNodeList nodes = doc.DocumentElement.ChildNodes;
 foreach(XmlNode node in nodes)
 {
 if(node.Name == "Node4")
 {
 doc.DocumentElement.RemoveChild(node);
 break;
 }
 }

 // write out the new xml
 Console.WriteLine(doc.OuterXml);
}

These are the event handlers from the XmlDocument along with one formatting method,
WriteNodeInfo, that takes an action string and gets the name and value of the node being

manipulated. All of the event handlers invoke this formatting method, passing the corresponding
action string:

private static void WriteNodeInfo(string action, XmlNode node)
{
 if (node.Value != null)
 {
 Console.WriteLine("Element: <{0}> {1} with value {2}",
 node.Name,action,node.Value);
 }
 else
 Console.WriteLine("Element: <{0}> {1} with null value",
 node.Name,action);
}

public static void NodeChangingEvent(object source, XmlNodeChangedEventArgs e)
{
 WriteNodeInfo("changing",e.Node);
}

public static void NodeChangedEvent(object source, XmlNodeChangedEventArgs e)
{
 WriteNodeInfo("changed",e.Node);
}

public static void NodeInsertingEvent(object source, XmlNodeChangedEventArgs e)
{

 WriteNodeInfo("inserting",e.Node);
}

public static void NodeInsertedEvent(object source, XmlNodeChangedEventArgs e)
{
 WriteNodeInfo("inserted",e.Node);
}

public static void NodeRemovingEvent(object source, XmlNodeChangedEventArgs e)
{
 WriteNodeInfo("removing",e.Node);
}

public static void NodeRemovedEvent(object source, XmlNodeChangedEventArgs e)
{
 WriteNodeInfo("removed",e.Node);
}

The DetectXmlChanges method results in the following output:

Element: <Node5> inserting with null value
Element: <Node5> inserted with null value
Element: <#text> inserting with value Fifth Element
Element: <#text> inserted with value Fifth Element
Element: <#text> changing with value First Node
Element: <#text> changed with value 1st Node
Element: <Node4> removing with null value
Element: <Node4> removed with null value
<?xml version="1.0"?><!-- My sample XML --><?pi myProcessingInstruction?><Root><
Node1 nodeId="1">1st Node</Node1><Node2 nodeId="2">Second Node</Node2><Node3 nod
eId="3">Third Node</Node3><Node5>Fifth Element</Node5></Root>

Discussion

With an XmlDocument, you can traverse both forward and backward on the XML stream, as well as
use XPath navigation to find nodes. If you are just reading XML and not modifying it, and you have
no need for traversing backward through the nodes, you should avoid using XmlDocument, since
XmlTextReader is faster for reading and XmlTextWriter is faster for writing (both have less
overhead than XmlDocument). The .NET Framework team did a nice job of giving XML processing

flexibility, but if you use a class with more functionality than you need, you will pay the resulting
performance penalty.

See Also

See the "XmlDocument Class" and "XmlNodeChangedEventHandler Class" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 17.7 Handling Invalid Characters in anXML String

Problem

You are creating an XML string. Before adding a tag containing a text element, you want to check it
to determine whether the string contains any of the following invalid characters:

<
>
\"
\'
&

If any of these characters are encountered, you want them to be replaced with their escaped form:

<
>
"
'
&

Solution

There are different methods to accomplish this, depending on which XML creation approach you are
using. If you are using XmlTextWriter, the WriteCData and WriteElementString methods take
care of this for you. If you are using XmlDocument and XmlElements, the XmlElement.InnerXML and
XmlElement.InnerText methods will handle these characters.

The two ways to handle this using an XmlTextWriter work like this. The WriteCData method will
wrap the invalid character text in a CDATA section, as shown in the creation of the InvalidChars1
element in the example that follows. The other method, using XmlTextWriter, is to use the
WriteElementString method that will automatically escape the text for you, as shown while creating
the InvalidChars2 element:

// set up a string with our invalid chars
string invalidChars = @"<>\&'";
XmlTextWriter writer = new XmlTextWriter(Console.Out);
writer.WriteStartElement("Root");
writer.WriteStartElement("InvalidChars1");
writer.WriteCData(invalidChars);
writer.WriteEndElement();
writer.WriteElementString("InvalidChars2",invalidChars);
writer.WriteEndElement();
writer.Close();

The output from this is:

<Root>
 <InvalidChars1><![CDATA[<>\&']]></InvalidChars1>
 <InvalidChars2><>\&'</InvalidChars2>
</Root>

The two ways you can handle this problem with XmlDocument and XmlElement are as follows: the
first way is to surround the text you are adding to the XML element with a CDATA section, and add it
to the InnerXML property of the XmlElement like this:

// set up a string with our invalid chars
string invalidChars = @"<>\&'";
XmlElement invalidElement1 = xmlDoc.CreateElement("InvalidChars1");
invalidElement1.InnerXml = "<![CDATA[" + invalidChars + "]]>";

The second way is to let the XmlElement class escape the data for you by assigning the text directly
to the InnerText property like this:

// set up a string with our invalid chars
string invalidChars = @"<>\&'";
XmlElement invalidElement2 = xmlDoc.CreateElement("InvalidChars2");
invalidElement2.InnerText = invalidChars;

The whole XmlDocument is created with these XmlElements in this code:

public static void HandlingInvalidChars()
{
 // set up a string with our invalid chars
 string invalidChars = @"<>\&'";

 XmlDocument xmlDoc = new XmlDocument();
 // create a root node for the document
 XmlElement root = xmlDoc.CreateElement("Root");
 xmlDoc.AppendChild(root);

 // create the first invalid character node
 XmlElement invalidElement1 = xmlDoc.CreateElement("InvalidChars1");
 // wrap the invalid chars in a CDATA section and use the
 // InnerXML property to assign the value as it doesn't
 // escape the values, just passes in the text provided
 invalidElement1.InnerXml = "<![CDATA[" + invalidChars + "]]>";
 // append the element to the root node
 root.AppendChild(invalidElement1);

 // create the second invalid character node
 XmlElement invalidElement2 = xmlDoc.CreateElement("InvalidChars2");
 // Add the invalid chars directly using the InnerText
 // property to assign the value as it will automatically
 // escape the values
 invalidElement2.InnerText = invalidChars;
 // append the element to the root node
 root.AppendChild(invalidElement2);

 Console.WriteLine("Generated XML with Invalid Chars:\r\n{0}",xmlDoc.OuterXml);
 Console.WriteLine();
}

The XML created by this procedure (and output to the console) looks like this:

<Root>
 <InvalidChars1><![CDATA[<>\&']]></InvalidChars1>
 <InvalidChars2><>\&'</InvalidChars2>
</Root>

Discussion

One of the more interesting types of nodes is the CDATA type of node. A CDATA node allows you to

represent the items in the text section as character data, not as escaped XML, for ease of entry.
Normally these characters would need to be in their escaped format (< for < and so on) but the
CDATA section allows us to enter them as regular text.

When the CDATA tag is used in conjunction with the InnerXML property of the XmlElement class, you
can submit characters that would normally need to be escaped first. The XmlElement class also has
an InnerText property that will automatically escape any markup found in the string assigned. This

allows you to add these characters without having to worry about them.

See Also

See the "XmlDocument Class," "XmlElement Class," and "CDATA Sections" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 17.8 Transforming XML to HTML

Problem

You have a raw XML document that you need to convert into a more readable format. For example, you
have personnel data that is stored as an XML document and you need to display it on a web page or in
a text file. Unfortunately, not everyone wants to sort through reams of XML all day; they would rather
read the data as a formatted list or within a grid with defined columns and rows. You need a method of
transposing the XML data into a more readable form.

Solution

The solution for this is to use an XSLT stylesheet to transform the XML into another format using the
XslTransform class. In the example code, we are transforming some personnel data from a fictitious

business stored in Personnel.xml . First, we load the stylesheet for generating HTML output, then we
perform the transformation to HTML via XSLT using the PersonnelHTML.xsl stylesheet. After that, we
transform the data to comma-delimited format using the PersonnelCSV.xsl stylesheet:

public static void TransformXML()
{
 // Create a resolver with default credentials.
 XmlUrlResolver resolver = new XmlUrlResolver();
 resolver.Credentials = System.Net.CredentialCache.DefaultCredentials;

 // transform the personnel.xml file to html

 XslTransform transform = new XslTransform();
 // load up the stylesheet
 transform.Load(@"..\..\PersonnelHTML.xsl",resolver);
 // perform the transformation
 transform.Transform(@"..\..\Personnel.xml",@"..\..\Personnel.html",resolver);

 // transform the personnel.xml file to comma delimited format

 // load up the stylesheet
 transform.Load(@"..\..\PersonnelCSV.xsl",resolver);
 // perform the transformation
 transform.Transform(@"..\..\Personnel.xml",
 @"..\..\Personnel.csv",resolver);

}

The Personnel.xml file contains the following items:

<?xml version="1.0" encoding="utf-8"?>
<Personnel>

 <Employee name="Bob" title="Customer Service" companyYears="1"/>
 <Employee name="Alice" title="Manager" companyYears="12"/>
 <Employee name="Chas" title="Salesman" companyYears="3"/>
 <Employee name="Rutherford" title="CEO" companyYears="27"/>
<Personnel>

The PersonnelHTML.xsl stylesheet looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xsl:template match="/">
 <html>
 <head />
 <body title="Personnel">
 <xsl:for-each select="Personnel">
 <p>
 <xsl:for-each select="Employee">
 <xsl:if test="position()=1">
 <table border="1">
 <thead>
 <tr>
 <td>Employee Name</td>
 <td>Employee Title</td>
 <td>Years with Company</td>
 </tr>
 </thead>
 <tbody>
 <xsl:for-each select="../Employee">
 <tr>
 <td>
 <xsl:for-each select="@name">
 <xsl:value-of select="." />
 </xsl:for-each>
 </td>
 <td>
 <xsl:for-each select="@title">
 <xsl:value-of select="." />
 </xsl:for-each>
 </td>
 <td>
 <xsl:for-each select="@companyYears">
 <xsl:value-of select="." />
 </xsl:for-each>
 </td>
 </tr>
 </xsl:for-each>
 </tbody>
 </table>
 </xsl:if>
 </xsl:for-each>

 </p>
 </xsl:for-each>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

The output from the PersonnelHTML.xsl stylesheet and the Personnel.xml generates the HTML shown in
Figure 17-1 .

Figure 17-1. Personnel HTML table generated from Personnel.xml

Here is the HTML source:

<html xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <head>
 <META http-equiv="Content-Type" content="text/html; charset=utf-8">
 </head>
 <body title="Personnel">
 <p>
 <table border="1">
 <thead>
 <tr>
 <td>Employee Name</td>
 <td>Employee Title</td>
 <td>Years with Company</td>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Bob</td>
 <td>Customer Service</td>
 <td>1</td>
 </tr>
 <tr>
 <td>Alice</td>
 <td>Manager</td>
 <td>12</td>
 </tr>
 <tr>
 <td>Chas</td>
 <td>Salesman</td>

 <td>3</td>
 </tr>
 <tr>
 <td>Rutherford</td>
 <td>CEO</td>
 <td>27</td>
 </tr>
 </tbody>
 </table>
 </p>
 </body>
</html>

The comma-delimited output is generated using PersonnelCSV.xsl and Personnel.xml ; the stylesheet is
shown here:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:
xs="http://www.w3.org/2001/XMLSchema">
<xsl:output method="text" encoding="UTF-8"/>
 <xsl:template match="/">
 <xsl:for-each select="Personnel">
 <xsl:for-each select="Employee">
 <xsl:for-each select="@name">
 <xsl:value-of select="." />
 </xsl:for-each>,<xsl:for-each select="@title">
 <xsl:value-of select="." />
 </xsl:for-each>,<xsl:for-each select="@companyYears">
 <xsl:value-of select="." />
 </xsl:for-each>
 <xsl:text> 
</xsl:text>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

The output from the PersonnelCSV.xsl stylesheet is shown here:

Bob,Customer Service,1
Alice,Manager,12
Chas,Salesman,3
Rutherford,CEO,27

Discussion

There are many overrides for the XslTransform.Transform method. As of .NET 1.1, the majority of
these are now marked as obsolete because they do not take an XmlResolver as one of the parameters.
If you attempt to use one of these overloads without an XmlResolver , the compiler will issue a

warning:

xml.cs(354,13): warning CS0618: 'System.Xml.Xsl.XslTransform.Transform(string,
string)' is obsolete: 'You should pass XmlResolver to Transform() method'

Since XmlResolver is an abstract class, you need to either use the XmlUrlResolver , the
XmlSecureResolver , or pass null as the XmlResolver typed argument. The XmlUrlResolver will

resolve URLs to external resources, such as schema files, using the file , http , and https protocols. The
XmlSecureResolver restricts the resources that you can access by requiring you to pass in evidence,

which helps prevent cross-domain redirection in XML. If you are accepting XML from the Internet, it
could easily have a redirection in it to a site where malicious XML would be waiting to be downloaded
and executed if you were not using the XmlSecureResolver . If you pass null for the XmlResolver ,
you are saying you do not want to resolve any external resources. Microsoft has declared the null

option to be obsolete, and it shouldn't be used anyway since you should always use some type of
XmlResolver .

XSLT is a very powerful technology that allows you to transform XML into just about any format you can
think of, but it can be frustrating at times. The simple need of a carriage return/linefeed combination in
the XSLT output was such a trial that we were able to find over 20 different message board requests for
help on how to do this! After looking at the W3C spec for XSLT, we found you could do this using the
xsl:text element like this:

<xsl:text> 
</xsl:text>

The & xd; stands for a hexadecimal 13, or a carriage return, and the & xa; stands for a hexadecimal 10,

or a linefeed. This is output at the end of each employee's data from the XML.

See Also

See the "XslTransform Class," "XmlResolver Class," "XmlUrlResolver Class," "XmlSecureResolver Class,"
and "xsl:text" topics in the MSDN documentation.

[Team LiB]

[Team LiB]

Recipe 17.9 Tearing Apart an XML Document

Problem

You have an XML document that needs to be broken apart into its constituent parts. Each part can
then be sent to a different destination (possibly a web service) to be processed individually. This
solution is useful when you have a large document, such as an invoice, in XML form. For example,
with an invoice, you would want to tear off the billing information and send this to accounting while
sending the shipping information to shipping, and then send the invoice items to fulfillment to be
processed.

Solution

In order to separate the invoice items, we will load an XmlDocument with the invoice XML from the

Invoice.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<Invoice invoiceDate='2003-10-05' invoiceNumber='INV-01'>
 <shipInfo>
 <name>Beerly Standing</name>
 <attn>Receiving</attn>
 <street>47 South Street</street>
 <city>Intox</city>
 <state>NH</state>
 </shipInfo>
 <billInfo>
 <name>Beerly Standing</name>
 <attn>Accounting</attn>
 <street>98 North Street</street>
 <city>Intox</city>
 <state>NH</state>
 </billInfo>
 <Items>
 <item partNum="98745">
 <productName>Brown Eyed Stout</productName>
 <quantity>12</quantity>
 <price>23.99</price>
 <shipDate>2003-12-20</shipDate>
 </item>
 <item partNum="34987">
 <productName>Diamond Pearl Lager</productName>
 <quantity>22</quantity>
 <price>35.98</price>

 <shipDate>2003-12-20</shipDate>
 </item>
 <item partNum="AK254">
 <productName>Job Site Ale</productName>
 <quantity>50</quantity>
 <price>12.56</price>
 <shipDate>2003-11-12</shipDate>
 </item>
 </Items>
</Invoice>

The code to tear this invoice apart, and send the various information pieces to their respective
departments, is shown here:

public static void ProcessInvoice()
{
 XmlDocument xmlDoc = new XmlDocument();
 // pick up invoice from deposited directory
 xmlDoc.Load(@"..\..\Invoice.xml");
 // get the Invoice element node
 XmlNode Invoice = xmlDoc.SelectSingleNode("/Invoice");

 // get the invoice date attribute
 XmlAttribute invDate =
 (XmlAttribute)Invoice.Attributes.GetNamedItem("invoiceDate");
 // get the invoice number attribute
 XmlAttribute invNum =
 (XmlAttribute)Invoice.Attributes.GetNamedItem("invoiceNumber");

 // Process the billing information to Accounting
 XmlElement billingEnvelope = xmlDoc.CreateElement("BillingEnvelope");

 // correlate this information back to the original invoice number and date
 billingEnvelope.Attributes.Append((XmlAttribute)invDate.Clone());
 billingEnvelope.Attributes.Append((XmlAttribute)invNum.Clone());

 XmlNodeList billList = xmlDoc.SelectNodes("/Invoice/billInfo");
 // add the billing information to the envelope
 foreach(XmlNode billInfo in billList)
 {
 billingEnvelope.AppendChild(billInfo.Clone());
 }
 Console.WriteLine("BillingEnvelope:\r\n{0}",billingEnvelope.OuterXml);

 // Save a copy of the envelope
 FileStream fileStream = File.Create(@"..\..\BillingEnvelope.xml");
 byte [] bytes = Encoding.ASCII.GetBytes(billingEnvelope.OuterXml);
 fileStream.Write(bytes,0,bytes.Length);
 fileStream.Close();

 // Process the shipping information to Shipping
 XmlElement shippingEnvelope = xmlDoc.CreateElement("ShippingEnvelope");

 // correlate this information back to the original invoice number and date
 shippingEnvelope.Attributes.Append((XmlAttribute)invDate.Clone());
 shippingEnvelope.Attributes.Append((XmlAttribute)invNum.Clone());

 XmlNodeList shipList = xmlDoc.SelectNodes("/Invoice/shipInfo");
 // add the shipping information to the envelope
 foreach(XmlNode shipInfo in shipList)
 {
 shippingEnvelope.AppendChild(shipInfo.Clone());
 }
 Console.WriteLine("ShippingEnvelope:\r\n{0}",shippingEnvelope.OuterXml);

 // Save a copy of the envelope
 fileStream = File.Create(@"..\..\ShippingEnvelope.xml");
 bytes = Encoding.ASCII.GetBytes(shippingEnvelope.OuterXml);
 fileStream.Write(bytes,0,bytes.Length);
 fileStream.Close();

 // Process the item information to Fulfillment
 XmlElement fulfillmentEnvelope = xmlDoc.CreateElement("FulfillmentEnvelope");
 // correlate this information back to the original invoice number and date
 fulfillmentEnvelope.Attributes.Append((XmlAttribute)invDate.Clone());
 fulfillmentEnvelope.Attributes.Append((XmlAttribute)invNum.Clone());

 XmlNodeList itemList = xmlDoc.SelectNodes("/Invoice/Items/item");
 // add the item information to the envelope
 foreach(XmlNode item in itemList)
 {
 fulfillmentEnvelope.AppendChild(item.Clone());
 }
 Console.WriteLine("FulfillmentEnvelope:\r\n{0}",fulfillmentEnvelope.OuterXml);

 // Save a copy of the envelope
 fileStream = File.Create(@"..\..\FulfillmentEnvelope.xml");
 bytes = Encoding.ASCII.GetBytes(fulfillmentEnvelope.OuterXml);
 fileStream.Write(bytes,0,bytes.Length);
 fileStream.Close();

 // Now send the data to the web services ...
}

The "envelopes" containing the various pieces of XML data for the web services are listed in the
following sections:

BillingEnvelope XML

<BillingEnvelope invoiceDate="2003-10-05" invoiceNumber="INV-01">
 <billInfo>
 <name>Beerly Standing</name>
 <attn>Accounting</attn>

 <street>98 North Street</street>
 <city>Intox</city>
 <state>NH</state>
 </billInfo>
</BillingEnvelope>

ShippingEnvelope XML

<ShippingEnvelope invoiceDate="2003-10-05" invoiceNumber="INV-01">
 <shipInfo>
 <name>Beerly Standing</name>
 <attn>Receiving</attn>
 <street>47 South Street</street>
 <city>Intox</city>
 <state>NH</state>
 </shipInfo>
</ShippingEnvelope>

FulfillmentEnvelope XML

<FulfillmentEnvelope invoiceDate="2003-10-05" invoiceNumber="INV-01">
 <item partNum="98745">
 <productName>Brown Eyed Stout</productName>
 <quantity>12</quantity>
 <price>23.99</price>
 <shipDate>2003-12-20</shipDate>
 </item>
 <item partNum="34987">
 <productName>Diamond Pearl Lager</productName>
 <quantity>22</quantity>
 <price>35.98</price>
 <shipDate>2003-12-20</shipDate>
 </item>
 <item partNum="AK254">
 <productName>Job Site Ale</productName>
 <quantity>50</quantity>
 <price>12.56</price>
 <shipDate>2003-11-12</shipDate>
 </item>
</FulfillmentEnvelope>

Discussion

In order to tear apart the invoice, we needed to establish what pieces would go to which
departments. The breakdown of this is that each of the envelopes would get the invoice date and
invoice number from the main invoice to give context to the information in the envelope. The
billInfo element and children would go to the BillingEnvelope, the shipInfo element and
children would go to the ShippingEnvelope, and the item elements would go to the
FulfillmentEnvelope. Once these envelopes were constructed, they would be sent to the web

services for each department that accepts the data to perform their function for this invoice.

In the example program from the solution, we first loaded the Invoice.xml file and got the attributes
we were going to give to each of the envelopes:

XmlDocument xmlDoc = new XmlDocument();
// pick up invoice from deposited directory
xmlDoc.Load(@"..\..\Invoice.xml");
// get the Invoice element node
XmlNode Invoice = xmlDoc.SelectSingleNode("/Invoice");

// get the invoice date attribute
XmlAttribute invDate =
 (XmlAttribute)Invoice.Attributes.GetNamedItem("invoiceDate");
// get the invoice number attribute
XmlAttribute invNum =
 (XmlAttribute)Invoice.Attributes.GetNamedItem("invoiceNumber");

Then we established each envelope with the sections of the invoice that matter to the respective
functions (the BillingEnvelope is handled by Accounting, the ShippingEnveloper is handled by
Shipping, and the FulfillmentEnvelope is handled by Fulfillment, starting with the
BillingEnvelope:

// Process the billing information to Accounting
XmlElement billingEnvelope = xmlDoc.CreateElement("BillingEnvelope");

// correlate this information back to the original invoice number and date
billingEnvelope.Attributes.Append((XmlAttribute)invDate.Clone());
billingEnvelope.Attributes.Append((XmlAttribute)invNum.Clone());

XmlNodeList billList = xmlDoc.SelectNodes("/Invoice/billInfo");
// add the billing information to the envelope
foreach(XmlNode billInfo in billList)
{
 billingEnvelope.AppendChild(billInfo.Clone());
}
Console.WriteLine("BillingEnvelope:\r\n{0}",billingEnvelope.OuterXml);

// Save a copy of the envelope
FileStream fileStream = File.Create(@"..\..\BillingEnvelope.xml");
byte [] bytes = Encoding.ASCII.GetBytes(billingEnvelope.OuterXml);
fileStream.Write(bytes,0,bytes.Length);
fileStream.Close();

Then the ShippingEnvelope was created:

// Process the shipping information to Shipping
XmlElement shippingEnvelope = xmlDoc.CreateElement("ShippingEnvelope");
// correlate this information back to the original invoice number and date
shippingEnvelope.Attributes.Append((XmlAttribute)invDate.Clone());
shippingEnvelope.Attributes.Append((XmlAttribute)invNum.Clone());

XmlNodeList shipList = xmlDoc.SelectNodes("/Invoice/shipInfo");
// add the shipping information to the envelope

foreach(XmlNode shipInfo in shipList)
{
 shippingEnvelope.AppendChild(shipInfo.Clone());
}
Console.WriteLine("ShippingEnvelope:\r\n{0}",shippingEnvelope.OuterXml);

 // Save a copy of the envelope
 fileStream = File.Create(@"..\..\ShippingEnvelope.xml");
 bytes = Encoding.ASCII.GetBytes(shippingEnvelope.OuterXml);
 fileStream.Write(bytes,0,bytes.Length);
 fileStream.Close();

Finally, the FulfillmentEnvelope was created:

// Process the item information to Fulfillment
XmlElement fulfillmentEnvelope = xmlDoc.CreateElement("FulfillmentEnvelope");
// correlate this information back to the original invoice number and date
fulfillmentEnvelope.Attributes.Append((XmlAttribute)invDate.Clone());
fulfillmentEnvelope.Attributes.Append((XmlAttribute)invNum.Clone());

XmlNodeList itemList = xmlDoc.SelectNodes("/Invoice/Items/item");
// add the item information to the envelope
foreach(XmlNode item in itemList)
{
 fulfillmentEnvelope.AppendChild(item.Clone());
}
Console.WriteLine("FulfillmentEnvelope:\r\n{0}",fulfillmentEnvelope.OuterXml);

// Save a copy of the envelope
fileStream = File.Create(@"..\..\FulfillmentEnvelope.xml");
bytes = Encoding.ASCII.GetBytes(fulfillmentEnvelope.OuterXml);
fileStream.Write(bytes,0,bytes.Length);
fileStream.Close();

At this point, each of the envelopes could be posted to the respective web service interfaces.

Note that when we appended the attributes from the Invoice to the envelopes, we called the
XmlNode.Clone method on the XmlAttributes. This is done so that each of the elements had their

own separate copy. If you do not do this, then the attribute will appear only on the last element it
was assigned to.

See Also

See the "XmlDocument Class," "XmlElement Class," and "XmlAttribute Class" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Recipe 17.10 Putting Together an XML Document

Problem

You have various pieces of a document in XML form that need to be put together to form a single
XML document-this is the opposite of what was done in Recipe 17.9. In this case, you have received
various pieces of an invoice in XML form. For example, one department sent the shipping information
as an XML document, one sent the billing information in XML, and another sent invoice line items,
also as an XML document. You need a way to put these XML pieces together to form a single XML
invoice document.

Solution

In order to reconstitute the original invoice, we need to reverse the process used to create the pieces
of the invoice using multiple XmlDocuments. There are three parts being sent back to us to help in

reforming the original invoice XML: BillingEnvelope.xml, ShippingEnvelope.xml, and

Fulfillment.xml. These are shown listed in the following sections:

BillingEnvelope XML

<BillingEnvelope invoiceDate="2003-10-05" invoiceNumber="INV-01">
 <billInfo>
 <name>Beerly Standing</name>
 <attn>Accounting</attn>
 <street>98 North Street</street>
 <city>Intox</city>
 <state>NH</state>
 </billInfo>
</BillingEnvelope>

ShippingEnvelope XML

<ShippingEnvelope invoiceDate="2003-10-05" invoiceNumber="INV-01">
 <shipInfo>
 <name>Beerly Standing</name>
 <attn>Receiving</attn>
 <street>47 South Street</street>
 <city>Intox</city>
 <state>NH</state>
 </shipInfo>
</ShippingEnvelope>

FulfillmentEnvelope XML

<FulfillmentEnvelope invoiceDate="2003-10-05" invoiceNumber="INV-01">
 <item partNum="98745">
 <productName>Brown Eyed Stout</productName>
 <quantity>12</quantity>
 <price>23.99</price>
 <shipDate>2003-12-20</shipDate>
 </item>
 <item partNum="34987">
 <productName>Diamond Pearl Lager</productName>
 <quantity>22</quantity>
 <price>35.98</price>
 <shipDate>2003-12-20</shipDate>
 </item>
 <item partNum="AK254">
 <productName>Job Site Ale</productName>
 <quantity>50</quantity>
 <price>12.56</price>
 <shipDate>2003-11-12</shipDate>
 </item>
</FulfillmentEnvelope>

To put these back together as a single invoice, we reverse the process we went through to break it
apart, while inferring the invoice date and invoice number from the BillingEnvelope to help

reestablish the invoice:

public static void ReceiveInvoice()
{
 XmlDocument invoice = new XmlDocument();
 XmlDocument billing = new XmlDocument();
 XmlDocument shipping = new XmlDocument();
 XmlDocument fulfillment = new XmlDocument();

 // set up root invoice node
 XmlElement invoiceElement = invoice.CreateElement("Invoice");
 invoice.AppendChild(invoiceElement);

 // load the billing
 billing.Load(@"..\..\BillingEnvelope.xml");
 // get the invoice date attribute
 XmlAttribute invDate = (XmlAttribute)
 billing.DocumentElement.Attributes.GetNamedItem("invoiceDate");
 // get the invoice number attribute
 XmlAttribute invNum = (XmlAttribute)
 billing.DocumentElement.Attributes.GetNamedItem("invoiceNumber");
 // set up the invoice with this info
 invoice.DocumentElement.Attributes.SetNamedItem(invDate.Clone());
 invoice.DocumentElement.Attributes.SetNamedItem(invNum.Clone());
 // add the billInfo back in
 XmlNodeList billList = billing.SelectNodes("/BillingEnvelope/billInfo");

 foreach(XmlNode billInfo in billList)
 {
 invoice.DocumentElement.AppendChild(invoice.ImportNode(billInfo,true));
 }

 // load the shipping
 shipping.Load(@"..\..\ShippingEnvelope.xml");
 // add the shipInfo back in
 XmlNodeList shipList = shipping.SelectNodes("/ShippingEnvelope/shipInfo");
 foreach(XmlNode shipInfo in shipList)
 {
 invoice.DocumentElement.AppendChild(invoice.ImportNode(shipInfo,true));
 }

 // load the items
 fulfillment.Load(@"..\..\FulfillmentEnvelope.xml");

 // Create an Items element in the Invoice to add these under
 XmlElement items = invoice.CreateElement("Items");

 // add the items back in under Items
 XmlNodeList itemList = fulfillment.SelectNodes("/FulfillmentEnvelope/item");
 foreach(XmlNode item in itemList)
 {
 items.AppendChild(invoice.ImportNode(item,true));
 }

 // add it in
 invoice.DocumentElement.AppendChild(items.Clone());

 // display Invoice XML
 Console.WriteLine("Invoice:\r\n{0}",invoice.OuterXml);

 // save our reconstitued invoice
 FileStream fileStream = File.Create(@"..\..\ReceivedInvoice.xml");
 byte [] bytes = Encoding.ASCII.GetBytes(invoice.OuterXml);
 fileStream.Write(bytes,0,bytes.Length);
 fileStream.Close();
}

The code reconstitutes the invoice and saves it as ReceivedInvoice.xml, the contents of which are
shown here:

<Invoice invoiceDate="2003-10-05" invoiceNumber="INV-01">
 <billInfo>
 <name>Beerly Standing</name>
 <attn>Accounting</attn>
 <street>98 North Street</street>
 <city>Intox</city>
 <state>NH</state>
 </billInfo>
 <shipInfo>

 <name>Beerly Standing</name>
 <attn>Receiving</attn>
 <street>47 South Street</street>
 <city>Intox</city>
 <state>NH</state>
 </shipInfo>
 <Items>
 <item partNum="98745">
 <productName>Brown Eyed Stout</productName>
 <quantity>12</quantity>
 <price>23.99</price>
 <shipDate>2003-12-20</shipDate>
 </item>
 <item partNum="34987">
 <productName>Diamond Pearl Lager</productName>
 <quantity>22</quantity>
 <price>35.98</price>
 <shipDate>2003-12-20</shipDate>
 </item>
 <item partNum="AK254">
 <productName>Job Site Ale</productName>
 <quantity>50</quantity>
 <price>12.56</price>
 <shipDate>2003-11-12</shipDate>
 </item>
 </Items>
</Invoice>

Discussion

In the Solution code, the first thing we did was to create a set of XmlDocuments for the Invoice,
BillingEnvelope, ShippingEnvelope, and FulfillmentEnvelope. Then we created the new root
Invoice element in the invoice XmlDocument:

XmlDocument invoice = new XmlDocument();
XmlDocument billing = new XmlDocument();
XmlDocument shipping = new XmlDocument();
XmlDocument fulfillment = new XmlDocument();

// set up root invoice node
XmlElement invoiceElement = invoice.CreateElement("Invoice");
invoice.AppendChild(invoiceElement);

Next, we processed the BillingEnvelope first, taking the invoice date and number from it and
adding it to the Invoice. Then we added the billing information back in to the invoice:

// load the billing
billing.Load(@"..\..\BillingEnvelope.xml");
// get the invoice date attribute
XmlAttribute invDate = (XmlAttribute)
 billing.DocumentElement.Attributes.GetNamedItem("invoiceDate");

// get the invoice number attribute
XmlAttribute invNum = (XmlAttribute)
 billing.DocumentElement.Attributes.GetNamedItem("invoiceNumber");
// set up the invoice with this info
invoice.DocumentElement.Attributes.SetNamedItem(invDate.Clone());
invoice.DocumentElement.Attributes.SetNamedItem(invNum.Clone());
// add the billInfo back in
XmlNodeList billList = billing.SelectNodes("/BillingEnvelope/billInfo");
foreach(XmlNode billInfo in billList)
{
 invoice.DocumentElement.AppendChild(invoice.ImportNode(billInfo,true));
}

The ShippingEnvelope came next:

// load the shipping
shipping.Load(@"..\..\ShippingEnvelope.xml");
// add the shipInfo back in
XmlNodeList shipList = shipping.SelectNodes("/ShippingEnvelope/shipInfo");
foreach(XmlNode shipInfo in shipList)
{
 invoice.DocumentElement.AppendChild(invoice.ImportNode(shipInfo,true));
}

And finally, the items from the FulfillmentEnvelope were placed back under an Items element
under the main Invoice element:

// load the items
fulfillment.Load(@"..\..\FulfillmentEnvelope.xml");

// Create an Items element in the Invoice to add these under
XmlElement items = invoice.CreateElement("Items");

// add the items back in under Items
XmlNodeList itemList = fulfillment.SelectNodes("/FulfillmentEnvelope/item");
foreach(XmlNode item in itemList)
{
 items.AppendChild(invoice.ImportNode(item,true));
}

// add it in
invoice.DocumentElement.AppendChild(items.Clone());

One item to be aware of when dealing with multiple XmlDocuments is that when you take a node from
one XmlDocument, you cannot just append it as a child to a node in a different XmlDocument because
the node has the context of the original XmlDocument. If you try to do this, you will get the following

exception message:

The node to be inserted is from a different document context.

To fix this, use the XmlDocument.ImportNode method, which will make a copy (deep or shallow) of
the node you are bringing over to the new XmlDocument, as shown, when we add the shipping

information like so:

invoice.DocumentElement.AppendChild(invoice.ImportNode(shipInfo,true));

This line takes the shipInfo node, clones it deeply, then it appends it to the main invoice node.

See Also

See the "XmlDocument Class," "XmlElement Class," and "XmlAttribute Class" topics in the MSDN
documentation.

[Team LiB]

[Team LiB]

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of C# Cookbook is a garter snake (Thamnophis sirtalis). Named because
their longitudinal stripes resemble those on garters once used to hold up men's socks, garter snakes
are easily identified by their distinctive stripes: a narrow stripe down the middle of the back with a
broad stripe on each side of it. Color and pattern variations enable them to blend into their native
environments, helping them evade predators. They are the most common snake in North America
and the only species of snake found in Alaska.

Garter snakes have keeled scales-one or more ridges down the central axis of the scales-giving them
a rough texture and lackluster appearance. Adult garter snakes generally range in length between 46
and 130 centimeters (one and a half feet to over four feet). Females are usually larger than males,
with shorter tails and a bulge where the body and tail meet.

Female garters are ovoviviparous, meaning they deliver "live" young that have gestated in soft eggs.
Upon delivery, most of the eggs and mucous membranes have broken, which makes their births
appear live. Occasionally, a baby will be born still inside its soft shell. A female will usually deliver 10 to
40 babies: the largest recorded number of live babies birthed by a garter snake is 98. Once emerging
from their mothers, baby garters are completely independent and must begin fending for themselves.
During this time they are most susceptible to predation, and over half of all baby garters die before
they are one year old.

Garter snakes are one of the few animals able to eat toads, newts, and other amphibians with strong
chemical defenses. Although diets vary depending on their environments, garter snakes mostly eat
earthworms and amphibians; however, they occasionally dine on baby birds, fish, and small rodents.
Garter snakes have toxic saliva (harmless to humans), which they use to stun or kill their prey before
swallowing them whole.

Marlowe Shaeffer was the production editor and proofreader for C# Cookbook. Nancy Kotary was the
copyeditor . Reg Aubry and Darren Kelly provided quality control. Jamie Peppard and Mary Agner
provided production assistance. Angela Howard wrote the index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover
image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the cover
layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Julie Hawks to FrameMaker
5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra
that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear
in the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9
and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This colophon
was written by Marlowe Shaeffer.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and

maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

!= (inequality operator)

 comparing pointers with

 overriding 2nd 3rd

 Set class 2nd

"" (double quotes), on command line

"Safe Thread Synchronization" (Richter)

(comment character)

#define preprocessor directive 2nd

#elif preprocessor directive 2nd

#if preprocessor directive 2nd

#undef preprocessor directive 2nd

& (bitwise AND operator) 2nd 3rd 4th

> (greater than operator)

>= (greater than or equal operator)

< (less than operator)

<!--...--> (omitted XML code in examples)

<> (angle brackets), balanced

<= (less than or equal operator)

' (single quotes), on command line

() (cast operator)

() (parentheses)

 balanced

 in equations

* (wildcard character)

*= (assignment operator)

+= (assignment operator)

- (hyphen)

 in regular expression patterns

 on command line

-= (assignment operator)

.dmp file extension

.NET web services, Windows NT 4.0 not supporting

/ (slash), on command line

// (comment characters)

//... (omitted C# code in examples)

/= (assignment operator)

/checked compiler switch

/main compiler switch

; (semicolon), on command line

== (equality operator)

 comparing pointers with

 comparing strings with

 overriding 2nd 3rd

 Set class 2nd

?: (conditional operator)

?: (ternary operator)

?? (logical AND operator)

[] (square brackets), balanced

\ (backslash)

 in regular expression patterns

 on command line

\n (linefeed character)

\r (linefeed character, Macintosh)

^ (bitwise XOR operator) 2nd 3rd

^ (caret), on command line

{} (braces), balanced

| (bitwise OR operator) 2nd 3rd 4th

|| (logical OR operator)

~ (bitwise complement operator)

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

abstract base classes, implementing polymorphism with

AccessException exception

Acos method, Math class

adapter design pattern 2nd 3rd

Add method

 MultiMap class 2nd

 Set class

 SortedList class

AddNode method

 BinaryTree class 2nd

 BinaryTreeNode class 2nd

 NTreeNode class 2nd

AddProxyInfoToRequest method

AddRoot method, NTree class 2nd

AddUniqueNode method, BinaryTreeNode class 2nd

AllFlags privilege

AllocateDataSlot method, Thread class 2nd

AllocateNamedDataSlot method, Thread class 2nd

Allocation Profiler

AmbiguousMatchException exception

angle brackets (<>), balanced

angles

 calculating one angle of triangle

 converting degrees to radians

 converting radians to degrees

AppDomainUnloadedException exception

Append method, StringBuilder class

AppendText method

 File class

 FileInfo class

AppendText method, FileInfo class

AppEvents class

application

 command-line parameters for

 conditionally compiling blocks of

 data for, storing securely

 event logs for [See event logs]

 performance counters for 2nd

 persisting collections between sessions

 processes not responding for, determining

 production, trace output from

 selective debugging and tracing for

 versioning with multiple entry points

 versions of modules, comparing

application configuration file

 selecting components to trace in 2nd

 selecting level of tracing in 2nd

 turning on tracing with

ApplicationException exception 2nd

Applied Microsoft .NET Framework Programming (Richter)

AppSpecificSwitch class

AppSpecificSwitchLevel enumeration

arccosine function

arcsine function

arctangent function

ArgumentException exception 2nd 3rd 4th 5th 6th 7th 8th

ArgumentNullException exception 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

ArgumentOutOfRangeException exception 2nd 3rd 4th 5th

ArithmeticException exception

Array class

 BinarySearch method

 Copy method

 Reverse method

 Sort method

ArrayList class [See also collections]

 as values in Hashtable

 BinarySearch method 2nd 3rd 4th

 Contains method

 controlling additions to, through attributes

 counting occurrences of an object type in

 Hashtable keys or values stored in

 maintaining sort when adding or modifying elements

 persisting between application sessions

 retrieving all instances of an object type

 snapshot of

 Sort method

ArrayListEx class 2nd 3rd

arrays

 byte arrays, breaking large numbers into

 displaying values as a delimited string

 exceptions for 2nd

 fixed-size 2nd

 inserting elements into

 jagged

 navigating with pointer

 reversing

 multidimensional 2nd

 navigating with pointers

 of objects, nested

 of pointers

 of pointers to unknown types

 pointers to, manipulating

 removing elements from

 returning pointers to an element in

 reversing order of elements in

 searching class or structure objects in

 snapshots of

 sorting class or structure objects in

 StackTrace class acting as

 swapping two elements in

 two-dimensional, reversing

 types of

ArrayTypeMismatchException exception 2nd

ArrayUtilities class

as operator

 casting with

 when to use

ASCII values, byte array of, converting to a string

ASCIIEncoding class

 GetBytes method

 GetString method

Asin method, Match class

ASP.NET cache

ASP.NET, Windows NT 4.0 not supporting

ASPNET user account, performance counters prevented by 2nd

assemblies

 access to types in, controlling

 assemblies imported by, listing

 attack surface of, minimizing

 CLSCompliantAttribute for

 digital signature for

 exported types of, listing

 inheritance hierarchies of types in

 loading, exceptions generated by

 malicious modifications to, preventing

 members in

 finding

 retrieving filtered list of

 nested types in, finding

 permissions for, verifying

 reflection and

 regular expressions compiled into

 serializable types in, finding

 strong name for

 subclasses of types in

Assembly class

 GetExportedTypes method

 GetReferencedAssemblies method 2nd

 LoadFrom method

assembly registration tool

Assert method

 CodeAccessSecurity class 2nd

 Debug class

assignment operators, overloading

Associative Law

asterisk (*) as wildcard character

AsymmetricAlgorithm class, Clear method

AsyncAction class 2nd 3rd 4th

asynchronous delegates

 exceptions thrown by

 notification of completion

 polling

 synchronous delegates converted to

 timing out

Atan method, Math class

attributes

 custom, exceptions for

 of files 2nd 3rd

Attributes property, DirectoryInfo class

Attributes property, FileInfo class 2nd

AverageCount64 counter

AverageTimer32 counter

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

backslash (\)

 in regular expression patterns

 on command line

BadImageFormatException exception 2nd

Balance class

base 10, converting to, from another base

base classes, overridden methods in, listing for derived class

Base64 data

 decoding into byte array

 encoding byte array as

Base64DecodeString method

Base64EncodeBytes method

BeginInvoke method 2nd

BetterRandomString method

big-endian format

binary data

 decoding Base64 data into

 encoding as a string

binary trees

BinaryReader class 2nd

 PeekChar method

 Read method

BinarySearch method

 Array class

 ArrayList class 2nd 3rd 4th

 PriorityQueue class

 Set class

BinarySearchAll method

BinarySearchCountAll method

BinaryTree class 2nd 3rd

BinaryTreeNode class 2nd 3rd

BinaryWriter class 2nd 3rd

BindingFlags enumeration 2nd 3rd 4th

bit flags

 in enumerations, testing

 turning on or off

BitArray class 2nd [See also collections]

bitmaps [See binary data byte array]

bitmask 2nd

bitwise AND operator (&) 2nd 3rd 4th

bitwise complement operator (~)

bitwise OR operator (|) 2nd 3rd 4th

bitwise XOR operator (^) 2nd 3rd

blittable objects

books

 about .NET Framework programming

 about adapter design pattern

 about C#

 about design patterns

 about HTTP

 about regular expressions

 about security

 about Visual Studio .NET

bool data type

Boolean equations

 ensuring correctness of

 simplifying

boolean values, conversions to 2nd 3rd

BooleanSwitch class, controlling tracing with 2nd

boxing

 finding where it occurs

 preventing

braces ({}), balanced

brackets [See angle brackets braces square brackets]

BreadthFirstSearch method, NTreeNode class 2nd

BuildDependentAssemblyList method

byte array

 breaking large numbers into

 converting to a string

 decoding Base64 data into

 encoding as a string

 passing strings to methods as

byte data type 2nd

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

C language, compared to C#

C# in a Nutshell (O'Reilly)

C# language

 books about

 specification for

 web sites with sample code for 2nd

C# Language Pocket Reference (O'Reilly)

C++ language, compared to C#

cache

 ASP.NET

 for objects

caching

CalcHash method

calculated hash algorithm

calculations, ensuring correctness of

CallbackAsyncDelegate method 2nd

callbacks

 delegates implementing 2nd

 interfaces used for

CallBackThroughIFace method 2nd

CallCOMMethod method

CallNextHookEx function

CallSecureFunctionSafelyAndEfficiently method 2nd

CannotUnloadAppDomainException exception

Capacity property, StringBuilder class 2nd

caret (^), on command line

CAS (Code Access Security) 2nd

case sensitivity

 comparing characters using

 comparing strings using

 searching for strings at head or tail of string using

 searching for strings within strings using

cast operator (())

casting

 as operator used for 2nd

 cast operator (()) used for

 exceptions thrown as result of

 is operator used for

 predetermining success of, with is operator

 to narrower data type

catch blocks [See also exception handling] 2nd

 multiple, handling exceptions individually

 preventing unhandled exceptions with

 within finally blocks

CDATA nodes

Celsius

 converting Fahrenheit to

 converting to Fahrenheit

char data type 2nd

characters

 byte array of, converting to a string

 case-sensitive or case-insensitive comparison of

 comparison operators and

 conversions to 2nd 3rd

 ensuring maximum number in string

 inserting into strings

 iterating over characters in string

 removing from head or tail of string

 removing or replacing within a string

 searching strings for 2nd

 type of, determining

 within a range, determining

CharKind enumeration

Check for Arithmetic Overflow/Underflow project property

Check method, Balance class

checked context 2nd

checked keyword 2nd

CheckPassword method 2nd

CheckUserEnteredPath method

Children property, NTreeNode class

classes [See also objects]

 abstract base classes

 base classes

 cloneable

 COM objects using

 concrete classes

 Equals method for, overloading

 operating as union types

 overridden methods in, listing

 performance of

 polymorphism for 2nd

 represented as a string

 sealed, adding events to

 single instance of

 static fields, initializing

 when to use

Clear method

 AsymmetricAlgorithm class

 classes using

 DblQueue class

 MultiMap class 2nd

 PriorityQueue class

 SymmetricAlgorithm class

client [See web client]

ClientABC class

Clone method

 DblQueue class

 MultiMap class

 PriorityQueue class

 XmlNode class

cloneable classes

cloning

Close method

CLS compliance

 ensuring compatibility with managed languages

 simple types not conforming to

CLSCompliantAttribute for assembly

coarse-grained exception handling

Code Access Security (CAS) 2nd

Code Access Security in Practice (Microsoft Patterns & Practices Group)

code samples

 in this book, system requirements for

 permission requirements

 web sites for 2nd

CollectionBase abstract base class

collections

 displaying values as a delimited string

 persisting between application sessions

 StackTrace class acting as

 strongly typed (restricted to specific data type)

 types of

CollectionsUtil class

COM components

 exceptions for 2nd

 releasing

 user-defined exceptions for

 using C# classes

COMException exception 2nd 3rd

command-line parameters, parsing

comment characters 2nd

comments regarding this book

Commutative Law

CompanyData class 2nd

CompanyDataSecProxy class 2nd

CompanyDataTraceProxy class 2nd

Compare method, string class 2nd

CompareFileVersions method

CompareHeight class

CompareTo method

comparison operators [See also Equals method]

 characters used with

 pointers and

 Set objects used with 2nd

 strings used with

CompileToAssembly method, Regex class

compiling

 /main switch

 conditionally

 regular expressions

ComplexReplace method

component, as source for event log, determining

ConcatStringGetHashCode method

concrete classes, implementing polymorphism with

conditional operator (?:), overloading

ConditionalAttribute attribute

configuration files [See application configuration file machine configuration file]

configuration, exceptions for

ConfigurationException exception

console utilities, reading from and responding to

const field

constants, initializing at runtime

constructors

 default, removing

 overloaded, initializing objects with

contact information for this book

contained object cache algorithm

ContainedObjHash method

Container class

Contains method

 ArrayList class

 DblQueue class

 PriorityQueue class 2nd

 Set class

 SortedList class

Contains method, PriorityQueue class

ContainsKey method

 MultiMap class 2nd

 SortedList class

ContainsString method, PriorityQueue class

ContainsValue method

 MultiMap class 2nd

 SortedList class

ContextMarshalException exception

control character, determining if character is

conventions used in this book

Convert class

 FromBase64CharArray method

 ToBase64CharArray method

 ToBoolean method

 ToByte method

 ToChar method

 ToDateTime method

 ToDecimal method

 ToDouble method

 ToInt16 method

 ToInt32 method 2nd

 ToInt64 method

 ToSByte method

 ToSingle method

 ToString method

 ToUInt16 method

 ToUInt32 method

 ToUInt64 method

ConvertCollectionToDelStr method

ConvertDegreesToRadians method

ConvertObj method

ConvertRadiansToDegrees method

ConvertToASCIIStringSlow method

ConvertToString method 2nd

ConvertToStringSlow method

Copy method

 Array class

 File class

CopyTo method

 DblQueue class

 FileInfo class

 ICollection interface

 PriorityQueue class

Cos method, Math class

cosine function

Count method, MultiMap class

Count property

 DblQueue class

 PriorityQueue class

 Set class

CountAll method

CountChildren method

 BinaryTreeNode class

 NTreeNode class

CounterDelta32 counter

CounterDelta64 counter

CounterMultiTimer counter

CounterMultiTimer100Ns counter

CounterMultiTimer100NsInverse counter

CounterMultiTimerInverse counter

counters [See performance counters]

CounterTimer counter

CounterTimerInverse counter

CountImmediateChildren method, NTreeNode class

CountPerTimeInterval32 counter

CountPerTimeInterval64 counter

CRC (cyclic redundancy check)

Create method

 DirectoryInfo class

 File class 2nd

 FileInfo class 2nd

CreateAbsoluteUri method

CreateAndHandlePoint method

CreateComplexCounter method

CreateDirectory method, Directory class

CreateFile method

CreateHashedPassword method 2nd 3rd

CreateInternedStr method

CreateLockedFile method

CreateLogFile method

CreateNestedObjects method

CreateNode method, NTreeNodeFactory class 2nd

CreatePoint method

CreateRegExDLL method

CreateSimpleCounter method

CreateStringHash method 2nd 3rd

CreateText method, File class

CreationTime property

 DirectoryInfo class 2nd

 FileInfo class 2nd

credit card number, regular expression patterns for

critical sections, locking objects against

CryptographicException exception

CryptographicUnexpectedOperationException exception

cryptography [See encryption security]

CryptoHash method 2nd

CryptoHash method algorithm 2nd

CryptoStream class

CryptoString class 2nd

 Decrypt method

 Encrypt method

 RdGenerateSecretInitVector method

 RdGenerateSecretKey method

CtoF method

currency, formatting strings as

CurrentValue property, NTreeNodeFactory class

CustomAttributeFormatException exception 2nd

cyclic redundancy check (CRC)

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

dangling pointers

dash (-)

 in regular expression patterns

 on command line

data [See also files]

 controlling and tracking access to

 encrypting [See encryption]

 isolated storage of

 securely storing

 synchronizing reading and writing by multiple threads

 thread-specific, storing privately

data types

 casting [See casting]

 collections restricted to specific data type

 conversions between 2nd [See also specific data types]

 hash codes for

 of variables, determining with is operator

 simple 2nd

date/time values, conversions to 2nd

dates, regular expression patterns for

DateTime object, creating

DblQueue class 2nd

DeadLock class

deadlocks, preventing

Debug class 2nd [See also Trace class]

 Assert method

 interchanging with Trace class

debugging 2nd [See also tracing]

 configuring to break on exceptions

 enabling for specific components

decimal data type

decorator design pattern

Decrypt method, CryptoString class

deep copying 2nd

DeepClone class

degrees

 converting Celsius to Fahrenheit

 converting Fahrenheit to Celsius

 converting radians to

 converting to radians

DelegateCallback method 2nd

delegates

 asynchronous

 exceptions thrown by

 notification of completion

 polling

 timing out

 callbacks implemented by 2nd

 compared to dynamic invocation using reflection

 for keyboard hook callback

 MatchEvaluator

 MemberFilter delegate

 multicast

 controlling delegates executed in

 handling exceptions for each delegate in

 invocation list for

 return values from each delegate in

 synchronous, converting to asynchronous

 TypeFilter delegate

DelegateUtilities class 2nd 3rd

Delete method

 Directory class

 DirectoryInfo class

 File class

 FileInfo class

Demand method 2nd

DemonstrateRenameDir method

DeMorgan's Theorem

DepthFirstSearch method

 BinaryTreeNode class 2nd

 NTreeNode class 2nd

DequeueHead method, DblQueue class

DequeueLargest method, PriorityQueue class 2nd

DequeueSmallest method, PriorityQueue class 2nd

DequeueTail method, DblQueue class

derived classes, overriding methods in, listing

design patterns

 adapter design pattern 2nd

 books about 2nd

 decorator design pattern

 dispose design pattern

 façade design pattern

 iterator design pattern

 memento design pattern

 observer design pattern

 proxy design pattern 2nd

 simple factory design pattern

 singleton design pattern 2nd

Design Patterns: Elements of Reusable Object Oriented Software (Gamma, Helm, Johnson, Vlissides) 2nd

DetectXMLChanges method

DevPartner Profiler Community Edition

DevPartner Studio Professional Edition

diagnostics

dictionary collections

difference of set objects 2nd 3rd 4th

DifferenceOf method, Set class 2nd

digit, determining if character is

digital signatures, for assemblies

directories [See also files]

 creating 2nd

 deleting 2nd

 determining if it exists 2nd

 monitoring for changes to

 moving 2nd

 not existing when creating file

 not found, exceptions for

 renaming

 searching for, using wildcards

 timestamps of, manipulating

 waiting for changes to

Directory class

 CreateDirectory method

 Delete method

 Exists method

 GetCreationTime method

 GetDirectories method 2nd 3rd 4th

 GetFiles method 2nd

 GetFileSystemEntries method 2nd 3rd

 GetLastAccessTime method

 GetLastWriteTime method

 Move method 2nd

 SetCreationTime method

 SetLastAccessTime method

 SetLastWriteTime method

directory trees, retrieving and manipulating

DirectoryInfo class

 Attributes property

 Create method

 creating instance of

 CreationTime property 2nd

 Delete method

 GetDirectories method 2nd 3rd 4th

 GetFiles method

 GetFileSystemInfos method 2nd 3rd 4th

 LastAccessTime property 2nd

 LastWriteTime property 2nd

 MoveTo method 2nd

DirectoryInfoNotify class 2nd

DirectoryInfoObserver class 2nd

DirectoryNotFoundException exception 2nd 3rd

disassembler tool

DisplayDirAttr method

DisplayDirs method 2nd 3rd 4th

DisplayException method

DisplayFileAttr method

DisplayFiles method 2nd

DisplayFilesDirs method 2nd 3rd 4th

DisplayInheritanceHierarchyType method

DisplayNestedTypes method

DisplaySet method, Set class

DisplayTypeHierarchy method 2nd

dispose design pattern

Dispose method 2nd

Distributive Law

DivideByZeroException exception

DllNotFoundException exception

Dns class, Resolve method 2nd

dollar amounts, regular expression patterns for

DOM model

DoReversal method

double data type 2nd

double quotes (""), on command line

double-queue

DownloadData method, WebClient class

DownloadFile method, WebClient class

DTD, validating XML conformance to

dump files, searching for

DuplicateWaitObjectException exception

DynamicInvoke method

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

ElapsedTime counter

elements, in a collection

ellipses (...), omitted code in examples 2nd

email address

 for this book

 regular expression patterns for

Encrypt method, CryptoString class

encryption

 clearing key and initialization vector afterwards

 cryptography providers

 digital signatures for assemblies

 of files

 random number generator for

 of strings

end-of-line character [See EOL character linefeed character]

endianness

EndInvoke method 2nd

EndOfStreamException exception 2nd

EndsWith method, string class

EnhancedLog class

Enqueue method, PriorityQueue class 2nd

EnqueueHead method, DblQueue class

EnqueueTail method, DblQueue class

EnsureCapacity method, StringBuilder class

entry points, multiple

EntryPointNotFoundException exception

EntryWrittenEventHandler delegate

Enum class

 IsDefined method

 Parse method

enumerations

 All member of

 conditional testing of bit flags for

 converting strings to

 converting text of to enumeration value

 displaying as strings

 exceptions for

 Flags attribute

 testing for valid value of 2nd

 used as bitmask

 used as flags 2nd

enumerators, custom

Environment class

 StackTrace method

 StackTrace property

environment variables, parsing paths in

Environment.NewLine constant

EOL (end-of-line) character 2nd [See also linefeed character]

equality operator (==)

 comparing pointers with

 comparing strings with

 overriding 2nd 3rd

 Set class 2nd

Equals method 2nd

 GetHashCode method as alternative to

 improving performance of

 overriding for user-defined exceptions

 Set class 2nd

 string class 2nd

equations [See also calculations]

 balanced, determining

 complex, ensuring correctness of

 complex, simplifying

error handling [See also exception handling]

 web server errors

ErrorCode property, COMException exception

even values, determining if number is

event logs

 custom, maximum size of

 monitoring for specific entries

 multiple

 searching

 sources for, determining

events

 adding to sealed class

 listener for, canceling action that raised an event

 mouse events

 observing object modifications

 specialized parameters for

EventSearchLog class

Everything permissions set 2nd

examples [See code samples]

Exception class

 creating

 GetBaseException method

 mapped to HRESULT

exception event handlers

exception handling

 for asynchronous delegates 2nd

 coarse-grained

 for delegates in multicast delegate

 fine-grained

 incorrect parameters

 performance of 2nd 3rd

 with threads 2nd

 when to throw specific exceptions

exceptions [See also specific exceptions] 2nd [See also specific exceptions]

 asynchronous delegate throwing

 breaking application before handling

 casting

 determining object originating

 displaying information from

 generated by method using reflection

 handling individually

 HRESULTs mapped to

 innermost, finding

 list of

 not losing with finally blocks

 rethrowing

 throwing 2nd

 unhandled, preventing

 user-defined, creating

 when to throw

executable modules, comparing versions of

ExecutionEngineException exception 2nd 3rd

Exists method

 Directory class

 File class 2nd

 FileInfo class

exported types of an assembly, listing

expressions [See also equations]

 balanced, determining

 complex, ensuring correctness of

Extensible Markup Language [See XML]

ExternalException class

ExternalException exception

ExtractGroupings method, RegExUtilities class

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

façade design pattern

factory design pattern, simple

Fahrenheit

 converting Celsius to

 converting to Celsius

FieldAccessException exception

File class

 AppendText method

 Copy method

 Create method 2nd

 CreateText method

 Delete method

 Exists method 2nd

 GetCreationTime method

 GetLastAccessTime method

 GetLastWriteTime method

 Move method 2nd

 Open method

 OpenRead method

 OpenText method

 OpenWrite method

 SetCreationTime method

 SetLastAccessTime method

 SetLastWriteTime method

file handle, opening file from

file streams, types of 2nd [See also BinaryReader class; BinaryWriter class; FileStream class; StreamReader class;

StreamWriter class]

FileAccess enumeration

FileAttributes enumeration 2nd

FileInfo class

 AppendText method 2nd

 Attributes property 2nd

 CopyTo method

 Create method 2nd

 CreationTime property 2nd

 Delete method

 Exists method

 GetFiles method 2nd 3rd

 LastAccessTime property 2nd

 LastWriteTime property 2nd

 MoveTo method 2nd

 Open method

 OpenRead method

 OpenText method

 OpenWrite method

FileLoadException exception

FileMode enumeration

FileNotFoundException exception 2nd 3rd 4th

files [See also directories]

 attributes for 2nd 3rd 4th

 copying

 counting lines of text in

 creating 2nd 3rd

 deleting

 determining whether it exists

 encrypting and decrypting

 EOL character in, platform-independent

 linefeed character in [See linefeed character]

 loading, exceptions generated by

 locking portions of

 monitoring for changes to

 moving

 not found, exception for

 opening for reading and/or writing

 opening from file handle

 persisting collections to, between application sessions

 reading 2nd

 regular expression pattern for path name

 renaming

 returning all lines in an ArrayList

 searching

 searching for, using wildcards

 seeking (randomly accessing)

 temporary

 timestamp of, manipulating 2nd

 waiting for changes to

 writing to 2nd

 writing to multiple files at one time

FileShare enumeration

FileStream class 2nd

 creating instance of 2nd

 creating instance of, from file handle

 Lock method

 Read method

 ReadByte method

 Seek method

 Unlock method

 Write method

 WriteByte method

FileSystemWatcher class 2nd

 as alternative to DirectoryInfoNotify class

 properties of

 WaitForChanged method 2nd

FileVersionInfo class 2nd

FilteredArrayList class

FilteringOutputObtainingMembers method

finalizers

finally blocks [See also exception handling] 2nd

 catch blocks within

 for each delegate in multicast delegate

 not losing exceptions with

 preventing unhandled exceptions with

FindAll method

FindAllIllegalChars method

FindAllOccurrences method

FindAnEntryInEventLog method

FindAny method

FindAnyIllegalChars method

FindIFaceMemberInAssembly method

FindInArray method

FindInterfaces method, Type class 2nd

FindMemberInAssembly method

FindMembers method, Type class

FindMethodOverrides method

FindOccurrenceOf method

FindOverriddenMethods method

FindSerializable method

FindSourceNamesFromAllLogs method

FindSourceNamesFromLog method

FindSpecificInterfaces method

FindSubclassOfType method

FindSubstrings method 2nd

fine-grained exception handling

FinishedProcessingGroup method, INotificationCallbacks interface

FinishedProcessingSubGroup method, INotificationCallbacks interface

fixed statement 2nd

fixed-size arrays 2nd

Flags attribute, enumerations

flags, enumerations used as [See also bit flags]2nd 3rd

FlipBit method

float data type 2nd

floating-point values

 equality with fractions

 rounding

Floor method, Math class

folding hash algorithm

FoldingHash method

fonts used in this book

for loop, iterating over characters in string

foreach loop

 iterating over characters in string using

 iterating over interfaces with

 nested, iterating across nested arrays of objects

 optimizing

 polymorphic use of

Format method, string class

FormatException exception 2nd 3rd 4th 5th 6th

formatting strings

forms, simulating execution of

fractions, equality with floating-point values

FreeNamedDataSlot method, Thread class

FromASCIIByteArray method

FromBase64CharArray method, Convert class

FromUnicodeByteArray method

FtoC method

FullTrust permission set 2nd

FusionLog property

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

GenerateGetOrPostRequest method 2nd

GenerateIV method, RijndaelManaged class

GenerateKey method, RijndaelManaged class

generics

Get methods, Type class

GET request, sending to web server

GetAll method

GetAllDirFilesRecurse method

GetAllFilesInPatternRecurse method

GetAvailableThreads method, ThreadPool class 2nd 3rd

GetBaseDefinition method, MethodInfo class 2nd

GetBaseException method, Exception class

GetBaseTypeList method 2nd

GetBytes method

 ASCIIEncoding class

 UnicodeEncoding class

GetCharKind method

GetCharKindInString method

GetChild method, NTreeNode class

GetCreationTime method

 Directory class

 File class

GetData method, Thread class

GetDirectories method

 Directory class 2nd 3rd

 DirectoryInfo class 2nd 3rd 4th

GetDirectoryName method, Path class

GetEnumerator method, PriorityQueue class

GetExportedTypes method, Assembly class

GetExtension method, Path class

GetFileName method, Path class

GetFileNameWithoutExtension method, Path class

GetFiles method

 Directory class 2nd 3rd

 DirectoryInfo class

 FileInfo class 2nd 3rd

GetFileSystemEntries method, Directory class 2nd 3rd

GetFileSystemInfos method, DirectoryInfo class 2nd 3rd 4th

GetHashCode method

 overriding 2nd 3rd

 Set class

GetHTMLFromURL method

GetInterface method, Type class

GetInterfaces method, Type class

GetInvocationList method, MulticastDelegate class 2nd 3rd 4th

GetKeys method

GetLastAccessTime method

 Directory class

 File class

GetLastWriteTime method

 Directory class

 File class

GetLines method

GetLSB method

GetMaxThreads method, ThreadPool class

GetMember method, Type class 2nd 3rd 4th

GetMembers method, Type class

GetMethod method

GetMethods method 2nd

GetMSB method

GetNamedDataSlot method, Thread class

GetPathRoot method, Path class

GetReferencedAssemblies method, Assembly class 2nd

GetResponse method, HttpWebResponse class 2nd

GetResponseStream method, HttpWebResponse class

GetRoot method

 BinaryTree class

 NTree class

GetSerializableTypeNames method

GetStackTraceDepth method

GetStream method, TcpClient class

GetString method

 ASCIIEncoding class

 UnicodeEncoding class

GetSubClasses method

GetTempFileName method, Path class

GetTempPath method, Path class

GetType method, Type class

GetValues method

GetVersionInfo method, FileVersionInfo class

GradeBoard class 2nd

greater than operator (>)

greater than or equal operator (>=)

groups in regular expressions

GUIDs, created by assembly registration tool

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

HandleEnum method 2nd

HandleFlagsEnum method

HandlingInvalidChars method

hash code algorithms

 calculated hash

 contained object cache

 CryptoHash method 2nd

 folding hash

 guidelines for

 shift and add hash

 simple hash

 string concatenation hash

hash values

 appending to strings for verification 2nd

 creating for a data type

hashed passwords 2nd

HashOps class

Hashtable class 2nd [See also collections]

 displaying sorted by keys and/or values

 maximum size for, setting

 maximum values stored in, setting

 minimum size for, setting

 minimum values stored in, setting

 one-to-many map (multimap) using

 persisting between application sessions

Hashtable object

 observing additions and modifications to

 storing grouped search results in 2nd

HashtableEventArgs class 2nd

HashtableObserver class 2nd 3rd

HashtableSubject class 2nd 3rd

hexadecimal values, formatting strings as

hooks, Windows keyboard

host name

 converting to IP address

 resolving IP address to

HostName2IP method

HRESULT

 for user-defined exceptions

 mapping to exceptions

 throwing exceptions as alternative to

 unknown, exception for

 user-defined, handling

HTML

 converting XML to

 obtaining from URL

 tags, checking if balanced

HTTP status codes

HTTP: The Definitive Guide (Gourley, Totty)

HttpStatusCode enumeration

HttpWebRequest class

HttpWebResponse class

 GetResponse method

 GetResponseStream method

 StatusCode property

HybridDictionary class

hyphen (-)

 in regular expression patterns

 on command line

hypotenuse of a triangle

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

I/O [See files]

IAsynchResult interface, IsCompleted property 2nd

ICloneable interface

ICollection class

ICollection interface 2nd

ICompanyData interface

IComparable interface 2nd 3rd

IComparer interface 2nd

icons used in this book

IDisposable interface

IEnumerable interface 2nd 3rd 4th

IEnumerator interface 2nd

IFormattable interface, ToString method and

Ildasm disassembler tool

Index property, BinaryTreeNode class

indexers

 MultiMap class 2nd

 parameters for, verifying correctness of

 Set class

IndexOf method

 PriorityQueue class

 string class 2nd 3rd

IndexOfAny method, string class 2nd 3rd 4th

IndexOutOfRangeException exception 2nd 3rd 4th 5th

inequality operator (!=)

 comparing pointers with

 overriding 2nd 3rd

 Set class 2nd

inheritance hierarchies, of types in assemblies

InnerException property, TargetInvocationException exception

InnerXML property, XmlElement class

INotificationCallbacks interface

input/output [See files]

Insert method

 string class

 StringBuilder class

InsertIntoArray method

InstallException exception

instance methods, when to use 2nd

int data type

interfaces

 callbacks provided with

 implementing polymorphism with

 members in, finding

 polymorphism implemented with 2nd

 searching, advanced mechanisms for

Intern method, string class

intern pool

InternedStrCls class

Internet

 accessing through proxy

 reading XML data from

intersection of set objects 2nd 3rd 4th

IntersectionOf method, Set class 2nd

InvalidCastException exception 2nd 3rd 4th 5th

InvalidComObjectException exception

InvalidEnumArgumentException exception 2nd 3rd

InvalidFilterCriteriaException exception

InvalidOleVariantTypeException exception

InvalidOperationException exception 2nd 3rd 4th

InvalidPathChars field, Path class 2nd

InvalidProgramException exception

InvokeEveryOther method

InvokeInReverse method

IOException exception 2nd 3rd 4th 5th 6th

IP address

 converting host name to

 regular expression patterns for

 resolving to host name

IPHostEntry class

is operator

 determining variable's type with

 when to use

IsApproximatelyEqualTo method

IsCharEqual method

IsCompleted property 2nd 3rd

IsDefined method, Enum class

IsEven method

IsGranted method, SecurityManager class

IsInRange method

IsIntegerRegEx method

IsInterned method, string class

IsMatch method, Regex class

IsNumeric method

IsNumericFromTryParse method

IsNumericRegEx method

IsOdd method

IsolatedStorageException exception

IsProcessResponding method

IsSafeToConvert method

IsSubclassOf method, Type class

IsSubsetOf method, Set class 2nd

IsSupersetOf method, Set class 2nd

isThreadAvailable method 2nd

IsUnsignedIntegerRegEx method

italic text used in this book

iterator design pattern

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

jagged arrays

 navigating with pointer

 reversing subarrays in

Java language, compared to C#

Join method

 string class

 Thread class 2nd

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

keyboard input, monitoring and responding to

Keys property, Hashtable class 2nd

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Language enumeration 2nd 3rd 4th 5th

languages

 CLS-compliant, ensuring compatibility with

 converting between simple types consistently across

LastAccessTime property

 DirectoryInfo class 2nd

 FileInfo class 2nd

LastChanceHandler method

LastWriteTime property

 DirectoryInfo class 2nd

 FileInfo class

LastWriteTime property, FileInfo class

Learning C# (O'Reilly)

least-significant bits (LSB) of an integer, determining

Left property, BinaryTreeNode class

Length property, StringBuilder class

less than operator (<)

less than or equal operator (<=)

letter, determining if character is 2nd [See also characters]

lexers [See tokenizers]

Line structure 2nd

LineCount method

LineCount2 method

linefeed character [See also EOL (end-of-line character)]

 counting in string or file

 Macintosh (\r)

 Unix (\n)

 XSLT

ListDictionary class 2nd

listeners element, application configuration file 2nd

ListExportedTypes method

little-endian format

LoadFrom method, Assembly class

LoadMissingDLL method

LocalDataStoreSlot class

LocalIntranet permission set 2nd

lock keyword

Lock method, FileStream class

locking

 file streams

 files

 objects

Log class

log file, creating and maintaining

Log4Net software

logging [See also event logs]

 Log4Net software for

logical AND operator (&&), overloading

logical OR operator (||), overloading

long data type

LSB (least-significant bits) of an integer, determining

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

machine configuration file

Magnetic class

managed code [See also unsafe code]

 accessing files created by unmanaged code

 blittable and nonblittable types and

 called by COM objects

 dispose design pattern and

 exceptions for, mapping to HRESULTs

 P/Invoke and 2nd

 releasing COM object through

managed execution environment

managed languages

Marshal class, ReleaseComObject method

MarshalDirectiveException exception

Mastering Regular Expressions (O'Reilly)

Mastering Visual Studio .NET (O'Reilly)

Match method, Regex class

 compiling regular expressions with 2nd

 RightToLeft option for

 verifying syntax of regular expression using

Match object 2nd

MatchCollection object 2nd

Matches method, Regex class

 compiling regular expressions with 2nd

 subscripting array returned by

MatchesCollection object

MatchEvaluator delegate

MatchHandler method

Math class

 Acos method

 Asin method

 Atan method

 converting degrees to radians for

 converting radians to degrees for

 Cos method

 Floor method

 Pow method

 Round method

 Sin method

 Sqrt method

 Tan method

mathematical equations, ensuring correctness of

MaxChildren property

 NTree class

 NTreeNodeFactory class

MaxMinSizeHashtable class

MaxMinValueHashtable class

Media class

MediaCollection class

MemberAccess privilege 2nd

MemberAccessException exception

MemberFilter delegate 2nd

members

 dynamically invoking using reflection

 searching, advanced mechanisms for

 thread-safe access to

MemberTypes enumeration

Memento class

memento design pattern

MementoCareTaker class 2nd

MemoryStream class

MethodAccessException exception 2nd

MethodInfo class, GetBaseDefinition method 2nd

methods [See also parameters]

 calling on multiple object types

 dynamically invoking using reflection

 exceptions for 2nd

 format parameters, exceptions for

 instance, when to use 2nd

 invoked using reflection, exceptions generated by

 overridden, listing for a derived class

 parameters for, verifying correctness of

 pointers passed to, controlling changes to

 preventing compilation of

 raising notifications from non-virtual methods

 returning multiple items from

 static, when to use 2nd

 thread-safe access to

MissingFieldException exception

MissingManifestResourceException exception

MissingMemberException exception

MissingMethodException exception

ModifyDirAttr method

ModifyFile method

ModifyFileAttr method

ModifyNumericField method

monetary values, regular expression patterns for

Monitor class, TryEnter method

MonitorMethodAccess class

most-significant bits (MSB) of an integer, determining

mouse events

mouse, manipulating

Move method

 Directory class 2nd

 File class 2nd

MoveInFile method

MoveTo method

 DirectoryInfo class 2nd

 FileInfo class 2nd

MSB (most-significant bits) of an integer, determining

MSDN Library

MultiCallBackThroughIFace method 2nd

multicast delegates

 controlling delegates executed in

 handling exceptions for each delegate in

 invocation list for

 return values from each delegate in

MulticastDelegate class, GetInvocationList method 2nd 3rd 4th

MulticastNotSupportedException exception

MultiClone class

multidimensional arrays 2nd

MultiMap class 2nd 3rd

MultiMementoCareTaker class 2nd

MultiTask class 2nd

multithreading [See threading]

MultiWriter class

MyKeys.snk file

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

n-ary trees

named groups in regular expressions 2nd

named pipes

NamedPipeClient class 2nd

NamedPipeInterop class

NamedPipeServer class 2nd 3rd

NamedPipesInterop class

NameValueCollection class

narrowing conversions 2nd

NetworkCredential class

networking

 accessing Internet through web proxy

 converting host name to IP address

 downloading data from server

 form execution, simulating

 forming absolute URI

 named pipes communicating across network

 parsing a URI

 resolving IP address to host name

 sending GET or POST to web server

 TCP client, creating

 TCP server, creating

 URL, obtaining HTML from

 web server errors, handling

newline character [See EOL character linefeed character]

NodeChangedEvent method

NodeChangingEvent method

NodeInsertedEvent method

NodeInsertingEvent method

NodeRemovedEvent method

NodeRemovingevent method

NoFlags privilege

nonblittable objects

NotFiniteNumberException exception 2nd

notification callbacks [See callbacks]

notifications, raising from non-virtual methods

NotifyClient class

NotifyFilters enumeration

NotImplementedException exception 2nd 3rd

NotSupportedException exception 2nd 3rd 4th

NTree class 2nd 3rd

NTreeNode class 2nd

NTreeNodeFactory class 2nd 3rd

NullReferenceException exception 2nd 3rd 4th 5th 6th 7th 8th 9th

NumberOfItems32 counter

NumberOfItems64 counter

NumberOfItemsHEX32 counter

NumberOfItemsHEX64 counter

NumberStyles enumeration

numeric data types

 bitwise complement operator used with

 casting to narrower data type

 equality between fractions and floating-point values

 pointers to, converting to strings

 simple

numeric promotion

numeric values

 big flags in, turning on or off

 breaking large numbers into byte arrays

 casting to narrower data type

 contained in string, determining

 conversions to 2nd

 converting strings to

 converting to base 10 from another base

 determining if character is

 determining if even or odd

 exceptions for

 formatting strings as

 obtaining most- or least-significant bits of

 regular expression patterns for

 rounding floating-point values

NumOfChildren property

 BinaryTreeNode class

 NTreeNode class

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

O'Reilly & Associates, contact information for

ObjCache class

ObjectDisposedException exception 2nd 3rd 4th

objects [See also classes]

 cache for

 determining objects originating exceptions

 disposal of, ensuring

 disposed, exception for

 generating tracing code when creating

 initializing with overloaded constructors

 locking against critical sections

 methods used on multiple object types

 nested arrays of, iterating across

 observing modifications to a Hashtable

 rolling back changes to

 serializing

 set objects, creating

 single instance of

 stored in arrays

 searching

 sorting

 strings converted to

ObjState class

observer design pattern

odd values, determining if number is

one-to-many map

OnEntryWritten method

OnlyOne class

OnlyStaticOne class

Open method

 File class

 FileInfo class

OpenRead method

 File class

 FileInfo class

OpenText method

 File class

 FileInfo class

OpenWrite method

 File class

 FileInfo class

operators, precedence of, overriding 2nd [See also specific operators]

out parameter

 acting as return parameter

 passing pointers as

OutOfMemoryException exception 2nd 3rd

OverflowException exception 2nd

OverFlowException exception

OverflowException exception

OverFlowException exception

OverflowException exception

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

P/Invoke method

P/Invoke wrapper class

parameters

 command line, parsing

 exceptions for 2nd 3rd

 out keyword for

 verifying correctness of

parentheses (())

 balanced

 in equations

Parse method

 Enum class

 Line structure

 numeric types

ParseCmdLine class

ParsePath method

ParsePathEnvironmentVariable method

ParseUri method

passwords, for user settings data 2nd

Path class

 GetDirectoryName method

 GetExtension method

 GetFileName method

 GetFileNameWithoutExtension method

 GetPathRoot method

 GetTempFileName method

 GetTempPath method

 InvalidPathChars field 2nd

 PathSeparator field 2nd

path name, regular expression pattern for

paths

 parsing

 parsing in environment variables

 separator character for 2nd

 using in file functions

 verifying syntax and existence of

PathSeparator field, Path class 2nd

PathTooLongException exception

patterns [See design patterns regular expressions]

PauseAndCreateFile method

Peek method, StreamReader class 2nd

PeekChar method, BinaryReader class

PeekHead method, DblQueue class

PeekLargest method, PriorityQueue class

PeekSmallest method, PriorityQueue class

PeekTail method, DblQueue class

percents, formatting strings as

performance

 critical sections and

 exception handling and 2nd 3rd

 GetHashCode method used to test equality

 observer design pattern and

 regular expressions and

 reversing arrays and

performance counters

 averages calculated by

 in .NET Framework

 simple counters

PerformanceCounter class 2nd

permissions

 asserting safely

 for assemblies

 for reflections 2nd

phone number, regular expression patterns for

pipes, named

Platform Invoke method [See P/Invoke method]

PlatformNotSupportedException exception

pluggable protocols, exceptions for

pointers

 arrays of

 comparing

 controlling changes to when passed to methods

 dangling

 navigating arrays with

 null, checking for

 passing as out or ref parameter

 passing by reference 2nd 3rd

 passing by value 2nd

 switching unknown pointer types

 to an array element, returning

 to an array of bytes

 to fixed arrays, manipulating

 to numeric data types, converting to strings

 to unknown types, arrays of

 unsafe code and

 void 2nd 3rd

PolicyException exception

polymorphism

 foreach method and

 implementing with abstract base class

 implementing with concrete class

 implementing with interfaces 2nd

 interfaces implementing

POST request, sending to web server

Pow method, Math class

preprocessor directives, allowing or preventing compilation using

PreventLossOfException method 2nd

Print method, BinaryTree class

PrintDepthFirst method

 BinaryTreeNode class

 NTreeNode class

priority queue

PriorityQueue class 2nd

Process class

 Responding property

 StartInfo property

processes

 launching console utilities with

 not responding, determining

ProcessInvoice method

ProcessStartInfo class

profiling tools 2nd

properties, parameters for, verifying correctness of

protocol, pluggable, exceptions for

proxy

 accessing Internet through

 used for security

proxy design pattern 2nd

punctuation, determining if character is

Pythagorean theorem

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

QueryXML method

Queue class, snapshot of 2nd [See also collections]

queues

 double-queue

 priority

quotes, on command line

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

radians

 converting degrees to

 converting to degrees

Random class

random number generator

range, determining if character is in

RankException exception

RateOfCountsPerSecond32 counter

RateOfCountsPerSecond64 counter

RawFraction counter

RdGenerateSecretInitVector method, CryptoString class

RdGenerateSecretKey method, CryptoString class

Read method

 BinaryReader class

 FileStream class

 StreamReader class 2nd

 XMLTextReader class

 XmlTextReader class

ReadAllBufferedLog method

ReadAllBufferedLogBlock method

ReadAllLog method

ReadAllLogAsBytes method

ReadBlock method, StreamReader class

ReadByte method, FileStream class

ReaderDecorator class 2nd

ReaderWriterLock class 2nd

ReadFile method

ReadLine method, StreamReader class 2nd 3rd 4th

ReadLogByLines method

ReadLogPeeking method

ReadNestedObjects method

readonly field

ReadSensitiveData method, SecretFile class

ReadToEnd method, StreamReader class 2nd

ReceiveInvoice method

ref parameter, passing pointers as

reference types, unsafe code and

Reflect class

reflection

 dynamically invoking members using

 handling exceptions generated by methods using

 permissions for 2nd 3rd 4th

ReflectionEmit privilege 2nd

ReflectionException method

ReflectionTypeLoadException exception

Regasm.exe command-line tool

Regex class

 CompileToAssembly method

 IsMatch method

 Match method 2nd

 Matches method 2nd 3rd

 Replace method 2nd

 Split method

Regex object 2nd

RegExUtilities class, ExtractGroupings method

Register for COM interop field, in project properties

RegistryKey class

 changing maximum event log size using

 determining sources for event logs using

Regular Expression Pocket Reference (O'Reilly)

regular expressions 2nd

 balanced, determining

 books about

 compiling

 conditionally replacing matching text with a new string

 counting lines of text using

 documenting

 finding last match in a string

 finding specific occurrences of a match

 finding substrings in strings using

 groups in

 list of common patterns for

 performance of

 replacing matching text with a new string

 returning line in which match is found

 testing for numeric value in a string using

 tokenizers using

 verifying syntax of

ReleaseComObject method, Marshal class

RemoteComponentException class 2nd

RemotingException exception

RemotingTimeoutException exception

Remove method

 MultiMap class 2nd

 Set class

 string class 2nd

 StringBuilder class

RemoveAt method, Set class

RemoveFromArray method

RemoveLeftNode method, BinaryTreeNode class

RemoveNode method, NTreeNode class 2nd

RemoveRightNode method, BinaryTreeNode class

RenameFile method

Replace method

 Regex class

 MatchEvaluator delegate for

 string class

 StringBuilder class

Resolve method, Dns class 2nd

resources, unmanaged, disposing of

Responding property, Process class

ResponseCategories enumeration

RestoreObj method

ReThrowException method

ReturnDimensions method

ReturnTypeFilter method

Reverse method, Array class

Reverse2DimArray method

ReverseJaggedArray method

RevertAssert method

Richter, Jeffrey ("Safe Thread Synchronization")

Right property, BinaryTreeNode class

RightToLeft constant

Rijndael algorithm 2nd

RijndaelManaged class

 GenerateIV method

 GenerateKey method

RNGCryptoServiceProvider class

Round method, Math class

RoundDown method

rounding floating-point values

RoundUp method

RunClient method

RunProcessToReadStdIn method

RunServer method

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Safe Thread Synchronization (MSDN Magazine)

SafeArrayRankMismatchException exception

SafeArrayTypeMismatchException exception

SaferMemberAccess class

SampleCounter counter

SampleFraction counter

SaveObj method

SaveSensitiveData method, SecretFile class

sbyte data type 2nd

scientific notation, formatting strings as

sealed classes, adding events to

SearchDepthFirst method, BinaryTree class

searches

 array elements 2nd 3rd 4th

 binary trees 2nd

 characters in strings 2nd

 event logs

 files or directories

 groups returned by

 interfaces

 members

 n-ary trees 2nd

 queue items

 set objects

 strings in files

 substrings in strings 2nd 3rd 4th 5th

 tokens in strings 2nd

SearchInterfacesOfType method

SearchMembers method

SearchType class 2nd

SecretFile class 2nd 3rd

 ReadSensitiveData method

 SaveSensitiveData method

SecureFunction method 2nd

security 2nd [See also permissions]

 access to types in an assembly, controlling

 assemblies

 minimizing attack surface of

 preventing malicious modifications to

 verifying permissions for

 asserting a permission safely

 clearing cryptography information after using

 encryption and decryption

 of files

 of strings

 event logs and 2nd 3rd

 random number generator

 regular expression patterns and

 storing data securely

 thread-specific data, storing privately

 verifying strings are uncorrupted during transmission 2nd

SecurityAction enumeration

SecurityException exception 2nd 3rd 4th

SecurityManager class, IsGranted method

Seek method, FileStream class

SeekOrigin enumeration

SEHException exception

semicolon (;), on command line

separator, determining if character is

serializable types, finding in an assembly

SerializationException exception

serializer, choosing

server [See web server]

ServerException exception

Set class 2nd

set objects

 creating

 difference of 2nd 3rd 4th

 equivalence and nonequivalence of 2nd 3rd

 intersection of 2nd 3rd 4th

 subset of 2nd 3rd

 superset of 2nd 3rd

 union of 2nd 3rd 4th

SetCreationTime method

 Directory class

 File class

SetCustomLogMaxSize method

SetData method, Thread class

SetLastAccessTime method

 Directory class

 File class

SetLastWriteTime method

 Directory class

 File class

SetWindowsHookEx function

shallow copying 2nd

ShallowClone class

shift and add hash algorithm

ShiftAndAddHash method

short data type

SignedNumber structure

SignedNumberWithText structure

significant bits of an integer, determining

silent thread termination

simple factory design pattern

simple hash algorithm

simple types 2nd

SimpleClass class

SimpleHash method

Sin method, Math class

sine function

single quotes ('), on command line

singleton design pattern 2nd

SkipVerification privilege

slash (/), on command line

SN.EXE program

SomeDataOriginator class

Sort method, Array class and ArrayList class

SortedArrayList class

SortedList class [See also collections]

 Add method

 Contains method

 ContainsKey method

 ContainsValue method

SourceForge web site

space, determining if character is

SpawnManyThreads method

Split method

 Regex class

 string class 2nd 3rd 4th

Sqrt method, Math class

square brackets ([]), balanced

Square class

Stack class [See also collections]

 finding unbalanced strings using

 snapshot of

stack trace, obtaining without exception object

StackOverflowException exception 2nd 3rd

StackTrace class, iterating through like an array

StackTrace method, Environment class

StackTrace property, Environment class

StackTraceArray class

standard input, reading from and responding to

StartInfo property, Process class

StartsWith method, string class

static fields

 initializing with static constructors 2nd

 per-thread

static methods, when to use 2nd

StatusCode property, HttpWebResponse class

StreamReader class 2nd

 Peek method 2nd

 Read method 2nd

 ReadBlock method

 ReadLine method 2nd 3rd 4th

 ReadToEnd method 2nd

streams [See file streams]

StreamWriter class 2nd

 Write method

 WriteLine method 2nd

string class

 Compare method 2nd

 EndsWith method

 Equals method 2nd

 Format method

 IndexOf method 2nd 3rd

 IndexOfAny method 2nd 3rd 4th

 Insert method

 Intern method

 IsInterned method

 Join method

 Remove method 2nd

 Replace method

 Split method 2nd 3rd 4th

 StartsWith method

 ToUpper method

 Trim method

 TrimEnd method

 TrimStart method

string concatenation hash algorithm

string data type

StringBuilder class

 Append method

 Capacity property 2nd

 constructor for

 EnsureCapacity method

 improving performance of

 Insert method

 Length property

 Remove method

 Replace method

StringCollection class

StringDictionary class

StringReader class, decorating 2nd

StringReaderHash class

strings

 array of, formatting as delimited text

 balanced, determining

 classes represented as

 comparing 2nd

 conditionally replacing text within

 conversions to 2nd 3rd

 converting from pointers to numeric data types

 converting to value type

 counting lines of text in

 decoding from Base64 to byte array

 delimited, extracting items from

 displaying enumerations as

 encoding byte array as

 encrypting and decrypting

 ensuring maximum number of characters in

 formatting data in

 hash values appended to 2nd

 inserting character or string into

 interning

 iterating over characters of

 numeric value in, determining

 objects represented by, converting to objects

 passing to method as byte array

 performance of, with StringBuilder class

 removing characters at head or tail of

 removing or replacing characters in

 replacing text within

 returning all lines in an ArrayList

 searching 2nd

 finding last matching substring in

 finding specific occurrences of a match

 groups resulting from

 searching for characters in 2nd

 searching for string at head or tail of

 searching for strings in

 searching for tokens in 2nd

 structures represented as

 type of characters in, determining

 verifying they are uncorrupted during transmission 2nd

 XML, handling invalid characters in

StringWriter class, decorating 2nd

strongly typed collections

structures

 Equals method for, improving performance of

 GetHashCode method for, overriding

 operating as union types

 performance of

 polymorphism for

 represented as a string

 static fields, initializing

 stored in arrays

 searching

 sorting

 strings converted to

 when to use

subset of set objects 2nd 3rd

SUDSGeneratorException exception

SUDSParserException exception

superset of set objects 2nd 3rd

surrogate character, determining if character is

SwapElementsInArray method

Switch class, custom 2nd [See also BooleanSwitch class; TraceSwitch class]

Switch method

switches element, application configuration file

symbol, determining if character is

SymmetricAlgorithm class

 Clear method

SynchronizationLockException exception

synchronous delegates, converting to asynchronous delegates

SyncInvoke delegate 2nd

system requirements for examples in this book

System.Collections namespace

System.Diagnostics namespace

System.Text.RegularExpressions namespace

SystemException exception 2nd

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

tags, determining if balanced 2nd [See also HTML; XML]

TakeSnapshotOfList method

Tan method, Math class

tangent function

TargetException exception

TargetInvocationException exception 2nd

TargetParameterCountException exception

Task class 2nd

TCP client, creating

TCP server, creating

TcpClient class 2nd

TcpListener class

temperatures

 converting Celsius to Fahrenheit

 converting Fahrenheit to Celsius

ternary operator (?:)

TestDynamicInvocation method

TestInit class

TestMediaABC method

TestReceivedStringHash method 2nd

TestSort method 2nd

TestWatcher method

text [See characters strings]

theorems for Boolean equations

Thread class

 AllocateDataSlot method 2nd

 AllocateNamedDataSlot method 2nd

 FreeNamedDataSlot method

 GetData method

 GetNamedDataSlot method

 Join method

 SetData method

thread local storage (TLS)

ThreadAbortException exception

threading

 article about

 asynchronous delegates

 notification of completion

 polling

 timing out

 exception event handlers for

 per-thread static fields

 silent thread termination

 synchronizing reading and writing of resources

 thread pool requests, notification of availability

 thread-safe access to internal members

 thread-specific data, storing privately

 timer, configuring

 waiting for all threads in pool to finish

 worker thread completion, waiting for

Threading.Timer class

ThreadInterruptedException exception 2nd

ThreadPool class

 GetAvailableThreads method 2nd 3rd

 GetMaxThreads method

 timers and

ThreadStart delegate

ThreadStateException exception 2nd

ThreadStaticAttribute attribute 2nd

ThreadStaticField class

ThreadStopException exception

throw keyword 2nd [See also exception handling; exceptions]

tilde (~) [See bitwise complement operator]

time, regular expression patterns for

TimeOutAsyncDelegate method

TimeoutException exception

TimeOutWakeAsyncDelegate method 2nd

Timer class

timer, configuring

Timer100Ns counter

Timer100nsInverse counter

TimerCallback delegate

timestamps

 of directories

 of files 2nd

TLS (thread local storage)

ToArray method

 DblQueue class

 PriorityQueue class

ToASCIIByteArray method

ToBase64CharArray method, Convert class

ToBoolean method, Convert class

ToByte method, Convert class

ToChar method, Convert class

ToDateTime method, Convert class

ToDecimal method, Convert class

ToDouble method, Convert class

ToInt16 method, Convert class

ToInt32 method, Convert class 2nd

ToInt64 method, Convert class

Tokenize method

tokenizers 2nd

tokens, breaking strings into 2nd

ToSByte method, Convert class

ToSingle method, Convert class

ToString method 2nd 3rd

 formatting with

 using with enumerations

 using with exceptions 2nd 3rd

ToUInt16 method, Convert class

ToUInt32 method, Convert class

ToUInt64 method, Convert class

ToUnicodeByteArray method

ToUpper method, string class

Trace class 2nd [See also Debug class]

 interchanging with Debug class

TRACE directive

trace element, application configuration file

Traceable class 2nd

TraceFactory class

TraceListener class

TraceSwitch class 2nd 3rd

tracing [See also debugging]2nd

 configuration file to turn on

 customizing levels for

 enabling for specific components

 generating code for during object creation

 output from production application

 selecting levels of 2nd

 stack trace

 XML output for

Transform method, XslTransform class

TransformXML method

trees 2nd [See also binary trees; n-ary trees]

TreeSize property, BinaryTree class

triangles

 calculating length of a side for

 calculating one angle of

trigonometric functions

 calculating an angle of right triangle using

 calculating length of a side of right triangle using

 converting degrees to radians for

 converting radians to degrees for

Trim method, string class

TrimEnd method, string class

TrimStart method, string class

TrimToSize method

 DblQueue class

 PriorityQueue class

TripleDES algorithm 2nd

try-catch blocks [See catch blocks]

try-catch-finally blocks [See catch blocks finally blocks]

try-finally blocks [See finally blocks]

TryEnter method, Monitor class

TryParse method

TurnBitOff method

TurnBitOn method

two-dimensional arrays, reversing

Type class

 FindInterfaces method

 FindMembers method

 Get methods

 GetInterface method

 GetInterfaces method

 GetMember method 2nd 3rd 4th

 GetMembers method

 GetType method

 IsSubclassOf method

 searching for interfaces with

 searching for members with

TypeFilter delegate 2nd

TypeInformation privilege 2nd

TypeInitializationException exception 2nd

TypeLoadException exception

types

 inheritance hierarchies of, in assemblies

 nested, finding in assembly

 serializable, finding in an assembly

 simple

 subclasses of, in an assembly

TypeUnloadedException exception

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

uint data type

ulong data type

UnauthorizedAccessException exception 2nd

unchecked context 2nd

unchecked keyword

UnhookWindowsHookEx function

UnicodeEncoding class

 GetBytes method

 GetString method

Uniform Resource Identifier [See URI]

union of set objects 2nd 3rd 4th

union types, structures similar to

UnionOf method, Set class 2nd

Unlock method, FileStream class

unmanaged resources, disposing of

unnamed groups in regular expressions

unsafe code 2nd [See also managed code]

 arrays of pointers

 arrays of pointers to unknown types

 breaking large numbers into byte arrays

 converting pointers to numeric data types to strings

 navigating arrays with pointers

 pointers passed to methods, controlling changes to

 pointers to fixed arrays, manipulating

 pointers, comparing

 returning pointers to an element in an array

 unknown pointer types, switching

UploadValues method, WebClient class 2nd

URI (Uniform Resource Identifier)

 absolute, forming from base and relative URI

 parsing

Uri class 2nd 3rd

UriFormatException exception 2nd

URL

 obtaining HTML from

 reading XML data from

UseChecked method

UseMedia method

UserSettings class

ushort data type

using statement

UsingAnUnmanagedFileHandle method

UTF-16 encoded values [See Unicode values]

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

ValidateXML method

ValidShape enumeration

Value method, BinaryTreeNode class

Value method, NTreeNode class

value types

 converting strings to

 unsafe code and

Values property, Hashtable class 2nd

variable, type of, determining

vector array

VerificationException exception

VerifyRegEx method

VerifyResponse method 2nd

versioning, implementing with multiple entry points

versions, comparing for executable modules

ViewModifyDirAttr method

ViewModifyFileAttr method

Visual Basic .NET, compared to C#

Visual Studio .NET

 books about

 requirements for code samples in this book

 versions used for this book

void pointers 2nd 3rd

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

WaitForChanged method, FileSystemWatcher class 2nd

WaitForChangedResult structure

WaitForZipCreation method

WaitOne method, WaitHandle class 2nd

WarningException exception

WatchForAppEvent method

WeakReferenceException exception

web proxy, accessing Internet through

web server

 downloading data from

 errors from, handling

 sending GET or POST request to

web sites

 C# sample code

 C# sample code for this book

 for this book

 MSDN Library

 O'Reilly & Associates

 profiling tools

 reading XML data from

 SourceForge, Log4Net software

 Visual Studio .NET version differences

WebClient class

 DownloadData method

 DownloadFile method

 UploadValues method 2nd

WebException exception

WebProxy class

WebRequest class 2nd

WebResponse class

WH_KEYBOARD hook

whitespace, determining if character is

wildcard character (*)

wildcards

 searching for files or directories using

 searching for members in assembly using

Windows keyboard hook

Windows NT 4.0, ASP.NET and .NET web services not supported for

Windows operating system, requirements for code samples in this book

words, breaking up strings into 2nd

Worker class

Write method

 BinaryWriter class

 FileStream class

 StreamWriter class

WriteByte method, FileStream class

WriteCData method, XmlTextWriter class

WriteElementString method, XmlTextWriter class

WriteLine method

 formatting data using

 newline characters and

 StreamWriter class 2nd

 writing to multiple files using

WriteNodeInfo method

WriterDecorator class 2nd 3rd

WriteToFileHandle method

WriteToLog method

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

XDR schema, validating XML conformance to

XML (Extensible Markup Language)

 breaking into constituent parts

 constructing from separate constituent pieces

 converting to HTML

 creating programmatically

 DOM model for

 exceptions for

 finding tags in an XML string

 invalid characters in, handling

 Log4Net logging software for

 querying contents of

 reading XML data from the web

 reading XML data in document order

 tags, checking if balanced

 trace output using

 tracking changes to

 validating conformance to a schema

XML configuration file [See application configuration file]

XmlAttributes class

XmlDocument class

 assembling an XML document using 2nd

 breaking apart an XML document using

 constructing XML data using

 handling invalid characters with

 when to use 2nd 3rd

XmlElement class 2nd

XmlException exception

XmlNode class, Clone method

XmlResolver class

XmlSchemaCollection class

XmlSecureResolver class

XmlTextReader class 2nd 3rd 4th 5th

XmlTextWriter class 2nd 3rd

 WriteCData method

 WriteElementString method

XMLTraceListener class

XmlUrlResolver class

XmlValidatingReader class 2nd

XPath, querying XML data using

XPathDocument class

XPathNavigator class

XPathNodeIterator class

XSD schema, validating XML conformance to

XSLT stylesheet, transforming XML using

XslTransform class 2nd

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

zip code, regular expression patterns for

[Team LiB]

	Main Page
	Table of content
	Dedication
	Copyright
	Preface
	Who This Book Is For
	What You Need to Use This Book
	How This Book Is Organized
	What Was Left Out
	Conventions Used in This Book
	About the Code
	Using Code Examples
	Platform Notes
	Comments and Questions
	Acknowledgments

	Chapter 1. Numbers
	Recipe 1.1 Determining Approximate Equality Between a Fraction and Floating-Point Value
	Recipe 1.2 Converting Degrees to Radians
	Recipe 1.3 Converting Radians to Degrees
	Recipe 1.4 Using the Bitwise Complement Operator with Various Data Types
	Recipe 1.5 Test for an Even or Odd Value
	Recipe 1.6 Obtaining the Most- or Least-Significant Bits of a Number
	Recipe 1.7 Converting a Number in Another Base to Base10
	Recipe 1.8 Determining Whether a String Is a Valid Number
	Recipe 1.9 Rounding a Floating-Point Value
	Recipe 1.10 Different Rounding Algorithms
	Recipe 1.11 Converting Celsius to Fahrenheit
	Recipe 1.12 Converting Fahrenheit to Celsius
	Recipe 1.13 Safely Performing a Narrowing Numeric Cast
	Recipe 1.14 Finding the Length of Any Three Sidesof a Right Triangle
	Recipe 1.15 Finding the Angles of a Right Triangle

	Chapter 2. Strings and Characters
	Recipe 2.1 Determining the Kind of Character
	Recipe 2.2 Determining Whether a Character Is Within a Specified Range
	Recipe 2.3 Controlling Case Sensitivity when Comparing Two Characters
	Recipe 2.4 Finding All Occurrences of a Character Within a String
	Recipe 2.5 Finding the Location of All Occurrencesof a String Within Another String
	Recipe 2.6 The Poor Man's Tokenizer
	Recipe 2.7 Controlling Case Sensitivity when Comparing Two Strings
	Recipe 2.8 Comparing a String to the Beginning or End of a Second String
	Recipe 2.9 Inserting Text into a String
	Recipe 2.10 Removing or Replacing Characters Within a String
	Recipe 2.11 Encoding Binary Data as Base64
	Recipe 2.12 Decoding a Base64-Encoded Binary
	Recipe 2.13 Converting a String Returned as a Byte[] Back into a String
	Recipe 2.14 Passing a String to a Method that Accepts Only a Byte[]
	Recipe 2.15 Converting Strings to Their Equivalent Value Type
	Recipe 2.16 Formatting Data in Strings
	Recipe 2.17 Creating a Delimited String
	Recipe 2.18 Extracting Items from a Delimited String
	Recipe 2.19 Setting the Maximum Number of Characters a String Can Contain
	Recipe 2.20 Iterating Over Each Character in a String
	Recipe 2.21 Improving String Comparison Performance
	Recipe 2.22 Improving StringBuilder Performance
	Recipe 2.23 Pruning Characters from the Headand/or Tail of a String

	Chapter 3. Classes and Structures
	Recipe 3.1 Creating Union-Type Structures
	Recipe 3.2 Allowing a Type to Represent Itself as a String
	Recipe 3.3 Converting a String Representation of an Object into an Actual Object
	Recipe 3.4 Polymorphism via Concrete or Abstract Base Classes
	Recipe 3.5 Making a Type Sortable
	Recipe 3.6 Making a Type Searchable
	Recipe 3.7 Indirectly Overloading the +=, -=, /=, and *=Operators
	Recipe 3.8 Indirectly Overloading the &&, ||, and ?: Operators
	Recipe 3.9 Improving the Performance of a Structure's Equals Method
	Recipe 3.10 Turning Bits On or Off
	Recipe 3.11 Making Error-Free Expressions
	Recipe 3.12 Minimizing (Reducing) Your Boolean Logic
	Recipe 3.13 Converting Between Simple Types in a Language Agnostic Manner
	Recipe 3.14 Determining Whether to Use theCast Operator, the as Operator, or theis Operator
	Recipe 3.15 Casting with the as Operator
	Recipe 3.16 Determining a Variable's Type with the is Operator
	Recipe 3.17 Polymorphism via Interfaces
	Recipe 3.18 Calling the Same Method on Multiple Object Types
	Recipe 3.19 Adding a Notification Callback Using an Interface
	Recipe 3.20 Using Multiple Entry Points toVersion an Application
	Recipe 3.21 Preventing the Creation of an Only Partially Initialized Object
	Recipe 3.22 Returning Multiple Items from a Method
	Recipe 3.23 Parsing Command-Line Parameters
	Recipe 3.24 Retrofitting a Class to Interoperate with COM
	Recipe 3.25 Initializing a Constant Field at Runtime
	Recipe 3.26 Writing Code that Is Compatible with the Widest Range of Managed Languages
	Recipe 3.27 Implementing Nested foreach Functionality in a Class
	Recipe 3.28 Building Cloneable Classes
	Recipe 3.29 Assuring an Object's Disposal
	Recipe 3.30 Releasing a COM Object ThroughManaged Code
	Recipe 3.31 Creating an Object Cache
	Recipe 3.32 The Single Instance Object
	Recipe 3.33 Choosing a Serializer
	Recipe 3.34 Creating Custom Enumerators
	Recipe 3.35 Rolling Back Object Changes
	Recipe 3.36 Disposing of Unmanaged Resources
	Recipe 3.37 Determining Where Boxing and Unboxing Occur

	Chapter 4. Enumerations
	Recipe 4.1 Displaying an Enumeration Value as a String
	Recipe 4.2 Converting Plain Text to an Equivalent Enumeration Value
	Recipe 4.3 Testing for a Valid Enumeration Value
	Recipe 4.4 Testing for a Valid Enumeration of Flags
	Recipe 4.5 Using Enumerated Members in a Bitmask
	Recipe 4.6 Determining Whether One or More Enumeration Flags Are Set

	Chapter 5. Exception Handling
	Recipe 5.1 Verifying Critical Parameters
	Recipe 5.2 Indicating Where Exceptions Originate
	Recipe 5.3 Choosing when to Throw a Particular Exception
	Recipe 5.4 Handling Derived Exceptions Individually
	Recipe 5.5 Assuring Exceptions are Not Lost when Using Finally Blocks
	Recipe 5.6 Handling Exceptions Thrown from Methods Invoked via Reflection
	Recipe 5.7 Debugging Problems whenLoading an Assembly
	Recipe 5.8 HRESULT-Exception Mapping
	Recipe 5.9 Handling User-Defined HRESULTs
	Recipe 5.10 Preventing Unhandled Exceptions
	Recipe 5.11 Displaying Exception Information
	Recipe 5.12 Getting to the Root of a Problem Quickly
	Recipe 5.13 Creating a New Exception Type
	Recipe 5.14 Obtaining a Stack Trace
	Recipe 5.15 Breaking on a First Chance Exception
	Recipe 5.16 Preventing the Nefarious TypeInitializationException
	Recipe 5.17 Handling Exceptions Thrown from an Asynchronous Delegate

	Chapter 6. Diagnostics
	Recipe 6.1 Controlling Tracing Output inProduction Code
	Recipe 6.2 Providing Fine-Grained Control Over Debugging/Tracing Output
	Recipe 6.3 Creating Your Own Custom Switch Class
	Recipe 6.4 A Custom Trace Class that Outputs Information in an XML Format
	Recipe 6.5 Conditionally Compiling Blocks of Code
	Recipe 6.6 Determining Whether a Process Has Stopped Responding
	Recipe 6.7 Using One or More Event Logs in Your Application
	Recipe 6.8 Changing the Maximum Size of a Custom Event Log
	Recipe 6.9 Searching Event Log Entries
	Recipe 6.10 Watching the Event Log for a Specific Entry
	Recipe 6.11 Finding All Sources Belonging to a Specific Event Log
	Recipe 6.12 Implementing a Simple Performance Counter
	Recipe 6.13 Implementing Performance Counters that Require a Base Counter
	Recipe 6.14 Enable/Disable Complex Tracing Code

	Chapter 7. Delegates and Events
	Recipe 7.1 Controlling when and if a Delegate Fires Within a Multicast Delegate
	Recipe 7.2 Obtaining Return Values from Each Delegate in a Multicast Delegate
	Recipe 7.3 Handling Exceptions Individually for Each Delegate in a Multicast Delegate
	Recipe 7.4 Converting a Synchronous Delegate to an Asynchronous Delegate
	Recipe 7.5 Adding Events to a Sealed Class
	Recipe 7.6 Passing Specialized Parameters to and from an Event
	Recipe 7.7 An Advanced Interface Search Mechanism
	Recipe 7.8 An Advanced Member Search Mechanism
	Recipe 7.9 Observing Additions and Modifications to a Hashtable
	Recipe 7.10 Using the Windows Keyboard Hook
	Recipe 7.11 Using Windows Hooks to Manipulate the Mouse

	Chapter 8. Regular Expressions
	Recipe 8.1 Enumerating Matches
	Recipe 8.2 Extracting Groups from a MatchCollection
	Recipe 8.3 Verifying the Syntax of a Regular Expression
	Recipe 8.4 Quickly Finding Only the Last Match in a String
	Recipe 8.5 Replacing Characters or Words in a String
	Recipe 8.6 Augmenting the Basic String Replacement Function
	Recipe 8.7 A Better Tokenizer
	Recipe 8.8 Compiling Regular Expressions
	Recipe 8.9 Counting Lines of Text
	Recipe 8.10 Returning the Entire Line in Which a Match Is Found
	Recipe 8.11 Finding a Particular Occurrence of a Match
	Recipe 8.12 Using Common Patterns
	Recipe 8.13 Documenting Your Regular Expressions

	Chapter 9. Collections
	Recipe 9.1 Swapping Two Elements in an Array
	Recipe 9.2 Quickly Reversing an Array
	Recipe 9.3 Reversing a Two-Dimensional Array
	Recipe 9.4 Reversing a Jagged Array
	Recipe 9.5 A More Flexible StackTrace Class
	Recipe 9.6 Determining the Number of Times an Item Appears in an ArrayList
	Recipe 9.7 Retrieving All Instances of a Specific Itemin an ArrayList
	Recipe 9.8 Inserting and Removing Items from an Array
	Recipe 9.9 Keeping Your ArrayList Sorted
	Recipe 9.10 Sorting a Hashtable's Keys and/or Values
	Recipe 9.11 Creating a Hashtable with Max and Min Size Boundaries
	Recipe 9.12 Creating a Hashtable with Max and Min Value Boundaries
	Recipe 9.13 Displaying an Array's Data as a Delimited String
	Recipe 9.14 Storing Snapshots of Lists in an Array
	Recipe 9.15 Creating a Strongly Typed Collection
	Recipe 9.16 Persisting a Collection Between Application Sessions

	Chapter 10. Data Structures and Algorithms
	Recipe 10.1 Creating a Hash Code for a Data Type
	Recipe 10.2 Creating a Priority Queue
	Recipe 10.3 Creating a More Versatile Queue
	Recipe 10.4 Determining Where Characters or Strings Do Not Balance
	Recipe 10.5 Creating a One-to-Many Map (MultiMap)
	Recipe 10.6 Creating a Binary Tree
	Recipe 10.7 Creating an n-ary Tree
	Recipe 10.8 Creating a Set Object

	Chapter 11. Filesystem I/O
	Recipe 11.1 Creating, Copying, Moving, and Deleting a File
	Recipe 11.2 Manipulating File Attributes
	Recipe 11.3 Renaming a File
	Recipe 11.4 Determining Whether a File Exists
	Recipe 11.5 Choosing a Method of Opening a File or Stream for Reading and/or Writing
	Recipe 11.6 Randomly Accessing Part of a File
	Recipe 11.7 Outputting a Platform-Independent EOL Character
	Recipe 11.8 Create, Write to, and Read from a File
	Recipe 11.9 Determining Whether a Directory Exists
	Recipe 11.10 Creating, Moving, and Deleting a Directory
	Recipe 11.11 Manipulating Directory Attributes
	Recipe 11.12 Renaming a Directory
	Recipe 11.13 Searching for Directories or FilesUsing Wildcards
	Recipe 11.14 Obtaining the Directory Tree
	Recipe 11.15 Parsing a Path
	Recipe 11.16 Parsing Paths in Environment Variables
	Recipe 11.17 Verifying a Path
	Recipe 11.18 Using a Temporary File in Your Application
	Recipe 11.19 Opening a File Stream with just aFile Handle
	Recipe 11.20 Write to Multiple Output Files at One Time
	Recipe 11.21 Launching and Interacting withConsole Utilities
	Recipe 11.22 Locking Subsections of a File
	Recipe 11.23 Watching the Filesystem for Specific Changes to One or More Files or Directories
	Recipe 11.24 Waiting for an Action to Occurin the Filesystem
	Recipe 11.25 Comparing Version Information of Two Executable Modules

	Chapter 12. Reflection
	Recipe 12.1 Listing Imported Assemblies
	Recipe 12.2 Listing Exported Types
	Recipe 12.3 Finding Overridden Methods
	Recipe 12.4 Finding Members in an Assembly
	Recipe 12.5 Finding Members Within an Interface
	Recipe 12.6 Obtaining Types Nested Within a Type
	Recipe 12.7 Displaying the Inheritance Hierarchy for a Type
	Recipe 12.8 Finding the Subclasses of a Type
	Recipe 12.9 Finding All Serializable Types Within an Assembly
	Recipe 12.10 Controlling Additions to an ArrayList Through Attributes
	Recipe 12.11 Filtering Output when Obtaining Members
	Recipe 12.12 Dynamically Invoking Members

	Chapter 13. Networking
	Recipe 13.1 Converting an IP Address to a Hostname
	Recipe 13.2 Converting a Hostname to an IP Address
	Recipe 13.3 Parsing a URI
	Recipe 13.4 Forming an Absolute URI
	Recipe 13.5 Handling Web Server Errors
	Recipe 13.6 Communicating with a Web Server
	Recipe 13.7 Going Through a Proxy
	Recipe 13.8 Obtaining the HTML from a URL
	Recipe 13.9 Writing a TCP Server
	Recipe 13.10 Writing a TCP Client
	Recipe 13.11 Simulating Form Execution
	Recipe 13.12 Downloading Data from a Server
	Recipe 13.13 Using Named Pipes to Communicate

	Chapter 14. Security
	Recipe 14.1 Controlling Access to Types in aLocal Assembly
	Recipe 14.2 Encrypting/Decrypting a String
	Recipe 14.3 Encrypting and Decrypting a File
	Recipe 14.4 Cleaning Up Cryptography Information
	Recipe 14.5 Verifying that a String Is Uncorrupted During Transmission
	Recipe 14.6 Wrapping a String Hash for Ease of Use
	Recipe 14.7 A Better Random Number Generator
	Recipe 14.8 Securely Storing Data
	Recipe 14.9 Making a Security Assert Safe
	Recipe 14.10 Preventing Malicious Modifications to an Assembly
	Recipe 14.11 Verifying that an Assembly Has Been Granted Specific Permissions
	Recipe 14.12 Minimizing the Attack Surface of an Assembly

	Chapter 15. Threading
	Recipe 15.1 Creating Per-Thread Static Fields
	Recipe 15.2 Providing Thread Safe Access to Class Members
	Recipe 15.3 Preventing Silent Thread Termination
	Recipe 15.4 Polling an Asynchronous Delegate
	Recipe 15.5 Timing Out an Asynchronous Delegate
	Recipe 15.6 Being Notified of the Completionof an Asynchronous Delegate
	Recipe 15.7 Waiting for Worker Thread Completion
	Recipe 15.8 Synchronizing the Reading and Writingof a Resource Efficiently
	Recipe 15.9 Determining Whether a Requestfor a Pooled Thread Will Be Queued
	Recipe 15.10 Waiting for All Threads in theThread Pool to Finish
	Recipe 15.11 Configuring a Timer
	Recipe 15.12 Storing Thread-Specific Data Privately

	Chapter 16. Unsafe Code
	Recipe 16.1 Controlling Changes to Pointers Passedto Methods
	Recipe 16.2 Comparing Pointers
	Recipe 16.3 Navigating Arrays
	Recipe 16.4 Manipulating a Pointer to a Fixed Array
	Recipe 16.5 Returning a Pointer to a Particular Element in an Array
	Recipe 16.6 Creating and Using an Array of Pointers
	Recipe 16.7 Creating and Using an Array of Pointersto Unknown Types
	Recipe 16.8 Switching Unknown Pointer Types
	Recipe 16.9 Breaking Up Larger Numbers into Their Equivalent Byte Array Representation
	Recipe 16.10 Converting Pointers to a Byte[], SByte[],or Char[] to a String

	Chapter 17. XML
	Recipe 17.1 Reading and Accessing XML Datain Document Order
	Recipe 17.2 Reading XML on the Web
	Recipe 17.3 Querying the Contents of an XML Document
	Recipe 17.4 Validating XML
	Recipe 17.5 Creating an XML Document Programmatically
	Recipe 17.6 Detecting Changes to an XML Document
	Recipe 17.7 Handling Invalid Characters in anXML String
	Recipe 17.8 Transforming XML to HTML
	Recipe 17.9 Tearing Apart an XML Document
	Recipe 17.10 Putting Together an XML Document

	Colophon
	Index
	Index SYMBOL
	Index A
	Index B
	Index C
	Index D
	Index E
	Index F
	Index G
	Index H
	Index I
	Index J
	Index K
	Index L
	Index M
	Index N
	Index O
	Index P
	Index Q
	Index R
	Index S
	Index T
	Index U
	Index V
	Index W
	Index X
	Index Z

